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Abstract 
Accurately estimating how much carbon is leaving the atmosphere and being taken up by 

plants, by processes such as photosynthesis, is critical in order to make accurate climate 

forecasts.  There is a large uncertainty of this atmosphere-plant carbon flux, sometimes 

referred to as Net Ecosystem Exchange (NEE), therefore reducing this is essential.  One 

way of doing this is through Data Assimilation (DA), the framework by which data and 

models are combined together in a statistically optimal way.  A key aspect of DA is that 

the uncertainty on the estimate of interest, e.g. NEE, is less than either the uncertainty on 

using either the model or observations on their own.  DA can also been used to estimate 

model parameters, which have traditionally been estimated from expert knowledge or 

from small scale studies.  While DA has gained much interest as a powerful tool in 

estimating model parameters and quantities such as NEE, there are a number of issues 

surrounding its use, which are not yet properly understood.  These include: 

• When using DA to estimate parameters using ground observations: 

a. Understanding the limitations of DA and the conditions it performs best. 

b. Determining likely factors that cause variations in parameter estimates. 

• Assessing the impact of assimilating satellite observations of leaf area index to 

improve the model states, and whether DA is robust against unrealistic features of 

the satellite data.  

The aim of this PhD was to address and learn more about these issues.  This was done by 

using the evergreen and deciduous versions of the Data Assimilation Linked ECosystem 

(DALEC) model.  The main findings are summarised in the following four paragraphs: 

The Ensemble Kalman Filter (EnKF) is good at estimating parameters using 

synthetic NEE data.  It was found that between 2 and 5 years of this data was required in 

order for the parameters and NEE forecasts to be close to the truth.  There was for the 

most part very little difference to the EnKF parameter estimates and NEE forecasts 

whether very noisy or very non-noisy observations were used, or whether 20% or 100% 

of the daily observations were present in the dataset.   

For the Metropolis algorithm, most of the runs had to be discarded as it was found 

that the the algorithm was not converging for the global minimum for these runs; this 
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caused some other problems, in particular residuals between the modelled and observed 

NEE were autocorrelated.  For these discarded runs, the parameter estimates tended to be 

far from the truth and the 90% posterior intervals rarely included the truth. For the 

remaining runs, where the converse of the above was found to be true, as dataset length 

increased from 1 to 5 years, the posterior parameter distribution coincided with the truth 

to a greater extent.   

Using the Metropolis algorithm and assimilating three years daily NEE 

observations (with around 60% data coverage) and around 10 LAI observations during 

this period, it was found that parameter estimates were sensitive to the initial value of the 

labile carbon store.  Moreover, the parameters were close to their true values if the true 

initial value of the labile C pool was used.  It was also found that when these initial 

conditions were treated as parameters, although the modal value of the corresponding 

marginal posterior distributions were far from the truth, every other aspect of the model 

(parameters and trajectories of the model states) agreed well with the truth.  This 

supported the common approach by many of the DA community that treating initial 

conditions as parameters is preferable than keeping them fixed (using site inventory data 

or from model spin-up).  The novelty of this part of the thesis was for the first time an 

emulator was applied to a DA scheme.   

Finally, the EnKF was used to estimate the LAI and NEE model states, using a 

fixed parameter set and LAI data from the MODIS satellite sensor.  It was found that 

processing the MODIS LAI in order to correct for unrealistic features of the dataset, such 

as excessive temporal variation and very small uncertainties, improved the fit of the 

modelled to observed NEE after assimilation.  The improvement in the fit was 

significantly better for Gross Primary Production (GPP).  
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Chapter 1  

Motivation and aims of thesis: 

modelling and observing the terrestrial 

carbon cycle, and the need for Data 

Assimilation 

 

1.1  The role of the terrestrial biosphere in the C cycle 
Over the past few decades, more and more evidence has been built up to show that 

climate change is happening. Such evidence can be found in the various IPCC (Inter-

Governmental Panel on Climate Change) documents that have been produced since 1990 

(IPCC, 2007). The purpose of the IPCC is to assess whether climate change is happening, 

whether it is anthropogenic, and advising on mitigation and adaptation.  It brings together 

climate change related research from varying academic disciplines and over a wide range 

of countries.  

Joseph Fourier is regarded by some as the father of climate change research, since 

he was the first to hypothesise a concept called the “Greenhouse effect”  - see Burgess 

(1837).  The greenhouse effect is the effect of atmospheric gases referred as greenhouse 

gases (GHGs) in raising the surface temperature of the earth.  To understand this we first 

describe the global energy balance.  The description that follows is taken from Soloman 

et al. (2007).  Of the incoming shortwave solar radiation that reaches the earth, about a 

half is either reflected back into space of absorbed by the atmosphere.  The remainder is 
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absorbed by the surface, but is then transferred back to the atmosphere by thermals (the 

heating of the air close to the earth’s surface), evapotranspiration and surface radiation 

(figure 1.1).  Certain wavelengths of the outgoing longwave radiation emitted from the 

surface are absorbed by GHGs, such as CO2, methane, and water vapour.  This heating of 

the atmosphere caused by this absorption results in the atmosphere emitting more 

radiation, some of which heads towards the earth surface increasing its temperature.  The 

more GHGs are present in the atmosphere, the higher the surface temperature becomes.  

The IPCC report (IPCC, 2007) states: 
 

‘Without the natural greenhouse effect, the average temperature at the 

Earth’s surface would be below the freezing point of water. Thus the 

natural greenhouse effect makes life as we know it possible. However, 

human activities, primarily the burning of fossil fuels and the clearing of 

forests, have greatly intensified the natural greenhouse effect, causing 

global warming.’ 
 

The IPCC report (IPCC, 2007) refers to carbon dioxide as ‘the most important 

anthropogenic (i.e. caused by human activity) greenhouse gas’.  The report states that 

atmospheric CO2 levels have increased from the pre-industrial value of 280 ppm³ (parts 

per million per unit volume of air) to 379 ppm³ (in 2005).  Physical evidence for this 

came from Petit et al. (1999) who used ice core data from Vostok in Antarctica to 

estimate atmospheric CO2 over the past 400,000 years (past 10,000 years shown in the 

left panel of figure 1.2).  The results showed that prior to 1800 atmospheric CO2 levels 

were never above 300 ppm³.  However after 1800, there has been a steady and continuous 

increase in CO2 with levels never dropping below 300 ppm³.  The sudden change in 

atmospheric CO2 levels at around 1800 is observed by Etheridge (1998) who estimated 

CO2 levels from 1006 to 1978, and Neftel (1994) who estimated atmospheric CO2 levels 

from 1734 to 1983, with both studies using ice-core data.     

Increases in CO2 over the past 50 years have been backed up work by Charles 

Keeling (Keeling, 1960) who was the first person to make frequent and continuous 

measurements of CO2.   In 1958 he began taking atmospheric measurements of CO2 conc- 
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Figure 1.1 Estimate of the Earth’s annual and global mean energy balance.  Source: 
Solomon et al. (2007). 
 
 

 

 

 

 
 

Figure 1.2 Left panel: Global average CO2 levels for the past 10,000 years (IPCC, 2007).  
Top right panel: Atmospheric CO2 levels at Mauna Loa in Hawaii from 1958-1974 by 
Charles Keeling and 1974-2007 by the National Oceanic Atmospheric Administration 
(Keeling et al., 2008); Bottom right panel: Atmospheric CO2 levels at the South Pole for 
1957 – 2007 (Keeling et al., 2008). 
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entrations in Mauna Loa, Hawaii, and these have continued to be made to the present day.  

The graphical representation of this data is known as the Keeling curve (figure 1.2, top 

right panel).  A feature of the curve is the seasonal oscillations.  Each annual segment 

peaks in the winter because there is more CO2 in the atmosphere as a result of there being 

less photosynthetic activity, and conversely the troughs occur during the summer when 

photosynthesis is at its highest.  If we were to make atmospheric CO2 measurements in 

the Antarctic (figure 1.2, bottom right panel), we would find that this seasonal variation is 

very minimal because of the lack of vegetation (Keeling et al., 2008).   

For parts of the globe which experience cooler annual average temperatures, an 

increase of a few degrees may be nothing bad. However, there are worrying consequences 

for the planet. One big consequence is the rising of the sea level caused by the melting of 

glaciers and ice-caps and the fact that water expands when it is heated.  The consequences 

of these are catastrophic – countries such as the Netherlands and Bangladesh which are 

low-lying could become inhabitable and flooding is likely to increase in other places.  

There are numerous other consequences of rising CO2 levels and rising temperatures, 

which include: (i) the increased acidification of the oceans (due to greater uptake of CO2 

from the atmosphere) and a decrease in the salinity of the oceans, which are having a 

major impact on the behaviour of many plant and animal organisms; (ii) the melting of 

permafrost in the boreal regions.     

In order to better predict future atmospheric CO2 levels and its implications not 

only on how surface temperatures will rise but also on how the climate will change and 

the effects on all plant and animal life, we need to gain a better understanding of the 

current climate.  In particular better knowledge of the Carbon cycle is required, in order 

to determine the amount of carbon leaving and entering the atmosphere.  Put simply, the 

Carbon cycle describes the movement of carbon between the atmosphere, the biosphere, 

the geosphere and the oceans.  The rate at which carbon moves from one of the four earth 

compartments and within each one varies from seconds to 1000s of years (Post et al., 

1990).  Figure 1.3 displays a simplified diagram of how it operates.   Carbon is 

transferred between the atmosphere, biosphere, etc… in a number of different ways.   

The main natural fluxes of carbon (i.e. those not induced by human activity), are 

shown in black in figure 1.3, are: 
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Figure 1.3: The global carbon cycle for the 1990s, which shows the pre-industrial 
‘natural’ fluxes (black) and ‘anthropogenic’ fluxes (red), measured in GtC/yr.  This figure 
is taken from IPCC (2007), with original sources being Sarmiento & Gruber (2006) and 
Sabine et al. (2004b)). 
 

•  GPP:  The removal of CO2 in the atmosphere by plants via photosynthesis, labelled 

as GPP (Gross Primary Production) in figure 1.3.  On the terrestrial biosphere, 

photosynthesis is a mechanism used by plants to convert solar radiation into 

chemical energy or sugars that provides fuel for the plant to grow, requiring CO2 

and H20, and excreting O2. (Blankenship, 2002).  Larcher (2003) states ‘for every 

gram atomic weight of carbon taken up [by the plant via photosynthesis], 479 kJ of 

potential energy are obtained.’  This is equivalent to approximately 113 kCal, which 

is around 5.7% of the 2000 kCal recommended daily energy required for a man.  

CO2 and O2 are exchanged between the outside air and the chloroplasts inside the 

plant predominantly by diffusion (Niinemets et al., 2005).  

• Respiration: The respiring of carbon by plants and soils back to the atmosphere, 

denoted by the upward facing ‘respiration’ black arrow in figure 1.3.  Carbon can be 

respired back the atmosphere from the biosphere in a number of different ways.  
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First of all, the sugars produced from photosynthesis need to be broken down 

metabolically in order to produce the energy required for plant maintenance, growth 

and reproduction (Larcher, 2003).  Due to this using up of the sugars and using up 

oxygen and the production of CO2, respiration is considered the opposite of 

photosynthesis (Blankenship, 2002).  Respiration can also occur in the soil for the 

same reasons, but as a result of root growth and waste produced by microbes which 

feed on foliar or root litter and soil organic matter (Fang & Moncrieff, 1999) 

• Fires: Although not shown in figure 1.3, vegetation fires can result in a significant 

amount of CO2 to the atmosphere from year to year, but most of the CO2 is taken up 

by the terrestrial biosphere over the course of a decade as the vegetation grows back 

(Bowman et al., 2009). 

• Photosynthesis in the oceans: Phytoplankton in the oceans take up CO2 in the 

atmosphere through photosynthesis, and this is represented by the downward black 

arrow by the ocean part of figure 1.3.  Phytoplankton are organisms that are 

microscopic in size and because they obtain their energy through photosynthesis, 

they must live close to the surface of the ocean where it is well lit (Behrenfeld, 

2009). 

• Respiration in the oceans: The respiring of most of the carbon at the surface occurs 

through the decaying of organic matter by the presence of bacteria (Rivkin & 

Legendre, 2001).  This is represented by the upward facing arrow between the 

surface ocean box and the atmosphere.   

• The biological pump: Represented by the downward and upward black arrows in 

figure 1.3 between the ‘surface ocean’ box and the ‘Intermediate and Deep Ocean’ 

box, some of the photosynthesized carbon descends to intermediate and deep layers 

as particles.  Most of the organic carbon is transported to the deeper part of the ocean 

by sinking particulate material, e.g. dead organisms (Post et al., 1990).  The transport 

of carbon from the lower depths to the surface is achieved by a process known as 

‘upwelling’.  This transport of carbon between the surface and lower depths of the 

ocean is commonly referred as the ‘biological pump’ (Post et al., 1990).   

Perturbations in the natural carbon cycle occur as a result of human activity. These 

anthropogenic fluxes of carbon, represented by the red arrows in figure 1.3, are: 
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• CO2 released back into the atmosphere predominantly by the burning of fossil fuels, 

such as oil and coal.  This is represented by the red arrow on the furthest right of 

figure 1.3.   

• Represented by the red arrow in figure 1.3 labelled ‘land-use change’, CO2 is also 

released back to the atmosphere due to land-use change which is mainly 

deforestation.  This occurs because deforestation results in fewer trees which means 

less CO2 is being taken up by the land via photosynthesis (Van der Werf et al., 

2009).  Although to a lesser extent, CO2 can also be released back to the atmosphere 

by the burning of forests initiated anthropogenically.   

• Extra CO2 taken up plants by photosynthesis due to the extra CO2 in the atmosphere 

some of which, but not all, is respired by the plants back into the atmosphere (Sabine 

et al., 2004b).  This results in a net flux of CO2 from the atmosphere to the 

geosphere, and this is denoted by the ‘land sink’ arrow in figure 1.3.   

• Extra CO2 taken up the phytoplankton in the oceans by photosynthesis, again due to 

the extra CO2 in the atmosphere (Sabine et al., 2004a).  Much of this, but not all, is 

also respired back to atmosphere and is represented by the two red arrows above the 

ocean part of figure 1.3.   

Figure 1.4 shows the global estimates of how carbon is entering the atmosphere 

(the sources) and how it is staying in or leaving the atmosphere (the sinks) from 1960 to 

2008 (Le Quere et al., 2009).  Panel (a) shows the increase in atmospheric CO2, and 

despite the very large intra-annual variability, there is a positive trend.  Canadell et al. 

(2007) state that the growth rate between 2000 and 2006 was 1.93 ppm yr-1 (parts per 

million per year), compared to the lower rates in the 1980s and 1990s of 1.58 ppm yr-1 

and 1.49 ppm yr-1 respectively.  To gain an appreciation of the uncertainty of atmospheric 

CO2 measurements, Tans & Conway (2011) estimated the uncertainty of the mean growth 

rate of measurements made at Mauna Loa as being 0.11 ppm yr-1.  In terms of Pg yr-1, 

Canadell et al. (2007) estimate this to be 0.04 Pg yr-1; this is low because of the high 

precision of the atmospheric CO2 measurements and because of the fast mixing time-scale 

of the atmosphere.  Le Quere et al. (2008) describe the increase in atmospheric CO2 levels 

in terms of the growth rate of the air-borne fraction of CO2.   They state that between 1959 
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GCP (2011) & Le 
Quere et al. (2009) 

Canadell et al. 
(2007) 

2000 - 2008 2000-2006 

4.1 ± 0.2 PgC yr-1 4.1 ± 0.04 PgC yr-1 

  

  

2000 - 2008 2000-2006 

FF: 7.7 ± 0.5 PgC yr-1 7.6 ± 0.38 PgC yr-1 

 

1990 - 2005 

 

2000-2006 

LU: 1.4 ± 0.7 PgCyr-1 1.5 ± 0.5 PgC yr-1 

 (FF = Fossil Fuel & cement;  LU = Land-Use change) 

  

  

2000–2008 &  1990–1999 2000-2006 

3.0 ± 0.7 PgC yr-1 2.8 ± 0.7 PgC yr-1 

  

  

  

2000–2008 &  1990–1999 2000-2006 

2.3 ± 0.4 PgC yr-1 2.2 ± 0.4 PgC yr-1 

  

  

  

  

  

  
 

Figure 1.4 The five left panels show the Global Carbon flux budget for the 1959-2008.  
Units are petagrams of Carbon per year. (Le Quere et al., 2009).  The boxes on the right 
show the amounts of C in Petagrams of Carbon per year (Pg C yr-1) for the period 2000 – 
2008 (estimates taken from the Global Carbon Project (2011) and uncertainties taken 
from Le Quere et al., 2009) and 2000 – 2006 (Canadell et al., 2007).  For panels (c) and 
(d), the uncertainties for the 2000 – 2008 period are taken from the 1990-1999 period. 
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and 2008, 43% on average of the total CO2 emissions each year has remained in the 

atmosphere.  Furthermore, this fraction increased by 0.3 ± 0.2% yr-1 between 1959 and 

2008. The large relative uncertainty of 0.2% is due to the large uncertainty in CO2 emitted 

to the atmosphere as a result of land use change, estimated to be ± 0.7 Pg C yr-1 for 2000 

– 2008 (figure 1.4b).  Le Quere et al. (2009) state that this was revised up from ± 0.5 Pg C 

yr-1 due to recent discrepancies between conversion statistics used to calculate 

deforestation and agricultural rates.  Presumably, this error was found after the 

publication of Canadell et al. (2007) as the uncertainty shown here is 0.5 Pg C yr-1.  

      This source of CO2 to the atmosphere was estimated to be 1.4 Pg C yr-1 for the 

period 1995 – 2006 (Le Quere et al., 2009) or 1.5 Pg C yr-1 during 2000 to 2006 

(Canadell et al., 2007).  The estimates over the past 50 years indicate that this source has 

remained fairly constant over this period though Le Quere et al. (2009) and Canadell et al. 

(2007) do not suggest why.  The uncertainty on this land use source is high because we do 

not have accurate global measurements of rates of deforestation and degradation (Achard 

et al., 2002).   This is mainly due to incomplete and inaccurate data taken from the 

ground, partly because obtaining reliable estimates from individual countries and / or 

landowners can be difficult as programmes of deforestation can carry a high economic 

benefit for that country.  There are other sources of CO2 to the atmosphere due to land use 

change, and these include logging and cultivation of crop-land soils, but deforestation 

(which include fire emissions) of tropical forests accounted for the greatest proportion (Le 

Quere et al., 2009).   

Between 1850 and 1960 fossil fuel emissions and cement production steadily 

increased from close to 0 Pg C yr -1 to around 2 Pg C yr -1 (Boden et al., 2010).  However 

since 1960, we can see from figure 1.4b that this source of CO2 to the atmosphere has 

increased at a much faster rate.  It is likely that this has been the major driver behind the 

atmospheric CO2 increase of 1.93 ppm yr-1 for 2000-2006.  As a percentage, this increase 

is around 0.4%, calculated using ((385–315)÷315)×100, where 315 and 385 are the 

atmospheric CO2 concentration in ppm for 1959 and 2008 (Tans & Conway, 2011).  What 

is interesting is that this 0.4% (ignoring the very small uncertainty) is larger than the 

yearly increase in air-borne fraction of CO2 of 0.3% from 1959 to 2008 suggesting that 

plants are taking up more CO2 from the atmosphere as atmospheric CO2 increases, 



Chapter 1: Motivation and Aims 

Edmund Ryan       -      -  2013 12 

however the large relative uncertainty of the 0.3% (+/-0.2% yr-1) makes this difficult to 

determine for sure at the moment.  Improvements in estimating the contribution of CO2 

from the land use change will reduce this uncertainty.  An alternative way of reducing this 

uncertainty is to directly estimate the take up of CO2 by the land and oceans.  This is 

exactly what is shown in panels (c) and (d) of figure 1.4.   

In both panels (c) and (d), we can see from the general trend of the line plots that 

between 1959 and 2008, there has been a greater uptake of CO2
 from the atmosphere by 

the land and ocean.  While the rise in the uptake by ocean has been fairly steady, the 

uptake by land has been very variable over the past 50 years.  Le Quere et al. (2009) state 

that this is mainly driven by variability in precipitation, surface temperature and radiation.  

The uncertainties in the land and ocean sink were determined from the spread of estimates 

given by five global vegetation model and four ocean general circulation models.  One 

reason for the smaller uncertainty on the ocean sink estimate is because the ocean is more 

uniform in terms of CO2 uptake than the terrestrial biosphere (Gruber et al., 2009).  

However, the ocean is as a complex system as the terrestrial biosphere and there is some 

suggestion that the method used to estimate the atmosphere–ocean C fluxes may not be as 

robust as assumed before (Keeling, 2005); therefore quantifying the uncertainty based on 

the spread of models is arguably unsatisfactory.  Nonetheless the fact that there is a larger 

spread of estimates of the land sink, compared to the ocean sink, suggests that providing 

consistent estimates between different global models is more of a challenge.    

Panel (e) of figure 1.4 shows the residual of the global carbon budget, since what 

goes into the atmosphere must equal what comes out.  If all of the estimates of the sources 

and sinks of CO2 into the atmosphere were correct, the residual would be a flat horizontal 

line at zero line on the y-axis.  The line is far from flat and will only approach this ideal 

state with improved our estimates of the sources and sinks.  The uncertainty on the 

residual is also large and estimated to be of length 2.1 Pg C yr-1.  Le Quere et al. (2009) 

do not define how the uncertainties were obtained, but presumably they represent the 

minimum and maximum values of the residuals based on the upper and lower bounds of 

the sources and sinks.    

Correctly forecasting the carbon budget for the future is essential if we are to 

predict what the earth’s future climate will be under anthropogenic influences (such as 
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continuing to emit CO2 into the atmosphere from the burning of fossil fuels) and we can 

best plan and mitigate against these changes.  However, in order to correctly forecast the 

carbon budget we must be able to first correctly estimate it for the current and past time 

periods.  Reducing the absolute value of the residual to be closer to zero and reducing the 

corresponding uncertainty would be a strong indication that our estimates of the sinks and 

sources of CO2 to the atmosphere for the past 50 years would be closer to the correct 

values.  There is scope for improvement of all the sinks and sources, but it is of critical 

importance to improvement the estimates of those sinks and sources which we are most 

uncertain about.  From figure 1.4, the source or sink with the highest relative uncertainty 

is the source of CO2 to the atmosphere due to land use change.  For 2000 – 2006, this has 

an uncertainty of ± 0.7 Pg C yr-1 or 50% relative to its estimate of 1.4 Pg C yr-1.  As stated 

previously, this large uncertainty is because we do not have accurate global 

measurements of rates of deforestation and degradation, mainly due to incomplete and 

inaccurate data.  For 2000 – 2010, the land sink (panel c of figure 1.4) has the second 

largest relative uncertainty of just over 23% (calculated by dividing 0.7 by 3.0 and 

multiplying by 100%).  The other sources and sinks are less critical for the following 

reasons: 

• The increase in atmospheric CO2 has a very small relative uncertainty of around 

1% (panel (a) of figure 1.4). 

• Although not as small, the source of CO2 to the atmosphere from the burning of 

fossil fuels and from cement also has a small relative uncertainty of around 6.5% 

(panel (b) of figure 1.4).   

• The ocean sink has a relative uncertainty of 17%, which although is not much less 

than that of the land sink, the ocean sink has been much less variable over the past 

50 years (panels (c) and (d) of figure 1.4) and so predicting what it will be in the 

future could be argued to be much easier. 

As a result of the previous paragraph, the following questions that arise: 

(i) How can we reduce the uncertainty on the land use source? 

(ii)  How is the land taking up more carbon in response to increased atmospheric CO2 

from human activity? In the future will there be a saturation point of this land 

sink?  
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(iii)  How can we reduce the uncertainty on the land sink estimate? 

 

Since the land use source is predominantly due to deforestation, the main way (i) can be 

addressed is to get accurate measurements of deforestation rates across the globe.  

Currently the only way this can feasibly be done is by inferring them by using satellite 

measurements.  This is because, as stated previously, taking measurements from the 

ground is likely to be unreliable.  Also, while using a model to forecast future 

deforestation rates might be worthwhile, using a model to estimate current and past global 

deforestation rates requires accurate observations which as stated above are not available 

to an accurate enough degree on the ground.  Measurements of biomass change have been 

made from space since 2005 using the polarimetric Phased Array L-band Synthetic 

Aperture Radar (PALSAR) on board the Advanced Land Observing Satellite (ALOS) 

(Whittle et al., 2012), and are helping to reduce the uncertainties of the land use source.  

Furthermore, one of the aims of BIOMASS mission (Quegan et al., 2012), due to be  

launched in the next five years, is to monitor forest disturbance and help to reduce this 

uncertainty to do the source of C to the atmosphere as a result of land use change.   

Answering (ii) and (iii) is more difficult, but just as urgent as (i), because the 

variation in the land sink over the past 50 years has much greater than that of the land use 

source (figure 1.4b).  Also, unlike deforestation rates, it is almost impossible to measure 

photosynthesis and plant respiration across the entire globe.  This is because if they are 

measured from the ground they are limited by the spatial and temporal frequency they can 

be made, and if measured from space they may only have coarse resolution and we are 

not able to make all types of measurements, e.g. measuring the respiration of carbon from 

the soil.  Therefore, in order to accurate estimate and predict this land sink, we need to 

use models of the terrestrial carbon cycle as well as observations.  Such models describe 

our best knowledge of the physics of the processes that occur, and have the ability to 

provide global estimates and fine resolution.  However, in order for such models to be of 

value they need to be able to validated against what we observe through the 

measurements. 

Therefore, this thesis is motivated by how data and models can be used together to 

accurately estimate and forecast this land carbon sink.  Before discussing the types of 
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models are data that are used, a brief overview is first given of the terrestrial carbon cycle 

and the main quantities of interest that require estimating.   

 

1.2 Modelling and measuring the terrestrial C cycle 
In this section, methods of modelling and measuring the terrestrial C cycle are presented.  

These are discussed in greater detail in chapter two but given that data assimilation, the 

merging of data and models, is at the heart of this thesis it is relevant and important to 

discuss some of the key aspects of modelling and measuring the terrestrial C cycle.  The 

section begins with an overview of the terrestrial C cycle and the main quantities that are 

of interest in estimating.  It then moves onto how measurements are made and then to 

how we might go about modelling the terrestrial C cycle.  This then leads into section 1.3, 

which introduces the argument for the need for data assimilation and the basic principles 

behind it.   

 

1.2.1 The terrestrial C cycle 

The terrestrial carbon cycle is the part of the carbon which only involves exchanges of 

carbon between the atmosphere and geosphere.  We now summarise the main quantities 

of interest in this exchange, based on Steffen et al. (1998), before giving a more full 

description of these quantities including their sizes, uncertainties, and temporal and 

spatial variability.  Of the total amount of carbon taken up by the plant via photosynthesis 

(referred to as Gross Primary Production or GPP), around half is respired autotrophically 

from the plant due to plant maintenance and growth.  What remains is referred to as Net 

Primary Production (NPP).  Some of this is shed as litter entering the soil as foliar litter or 

already exists in the soil as root litter (i.e. dead roots).  This litter decomposes in the soil, 

releasing nutrients to the soil and CO2 to the atmosphere.  The remaining carbon left in 

the geosphere is referred to as Net Ecosystem Production or NEP.  Much of this is lost 

due to fire, insect damage, harvesting and deforestation.   What remains is then called Net 

Biome Production (NBP), a tiny fraction of GPP, and this represents the long-term 

(decadal) store of carbon. This process is depicted graphically in figure 1.5. In this figure, 
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Figure 1.5 Global terrestrial carbon uptake. Plants respire CO2 autotrophically into the 
atmosphere, reducing GPP to NPP. Heterotrophic respiration results from the release of 
CO2 to the atmosphere from the decomposition of litter and soils, reducing NPP to NEP. 
Disturbance from anthropogenic sources (e.g. deforestation) leads to further release of 
CO2 to the atmosphere which leads to long-term carbon storage.  The figure is taken from 
Stefan et al. (1998) with the numerical values updated based on Beer et al. (2010), 
Mooney, Roy & Saugier (2001), Harmon et al. (2011) and Canadell et al. (2007).   
 

values of GPP, NPP, NEP and NBP are given.  These values along with their 

uncertainties and temporal and spatial variability are discussed next.   

 

GPP 

GPP is estimated to be 123 Gt C yr-1 with an uncertainty, represented as a standard 

deviation, of ± 8 Gt C yr-1, based on the period 1998 to 2005 (Beer et al., 2010).  Figure 

1.6 shows how the spatial variation of GPP (left panel) and detailed estimates of it based 

on different latitudes.  Areas around the equator, which predominantly include tropical 

forests and savannahs account for 60% of the total GPP across the globe.  The most 

noticeable observation about figure 1.6 is the large variation in GPP estimates between 

the process models for latitudes close to the equator.  The authors of Beer et al. (2010) do 

not state the number of sites that were used to compute the data driven median estimates 

and to calibrate the process median estimates for the different biomes, but they do state 

that this spread could be reduced with more data for the equatorial areas.    The authors of  
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Figure 1.6 The left panel shows the estimates of GPP for different parts of the globe, 
calculated using the median of five different techniques to extrapolate site level GPP to 
other areas.  The right panel shows the variation of GPP among different latitudes, where 
the black line corresponds to the amounts depicted in the left panel, and the red line and 
red shaded area correspond to the median and spread of GPP estimates by latitude 
computed using five different process models.  Both diagrams are taken from Beer et al. 
(2010).  
 

Beer et al.  (2010) did also not explicitly state how the uncertainty of ±8 Gt C yr-1was 

calculated, only that it was determined by propagating the uncertainties of pre-processing 

of the tower CO2 flux measurements, the flux partitioning into GPP, the climate and 

remote sensing data sets, and the structural uncertainties in the diagnostic models.  No 

information is currently available on the inter-annual variability of GPP for the global 

estimate of GPP and for different parts of the world, however this information is available 

for NPP, which is described next. 

 

NPP 

In the short term, the amount of C take up by plants from the atmosphere is represented 

by NPP.  In order to be able to more accurately how much C is taken up over longer time 

scales (i.e. NEP, NBP), getting NPP correct will make this much easier.  The annual 

global estimate of NPP is approximately 60 Gt C yr-1, based on extrapolation of field 

measurements, with Atjay et al. (1979) and Mooney, Roy & Saugier (2001) estimating it 

to be 59.9 Gt C yr-1 and 62.6 Gt C yr-1 respectively.  These agree with estimates using 

remote sensing data (e.g. Ruimy et al., 1994; Knorr and Heimann, 1995).  However all 

these studies admit to large uncertainties in their estimates, with Ruimy et al. (1994) 

approximating this to be around ± 10 Gt C yr-1.   Figure 1.5 uses the estimate by Mooney, 
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 NPP  

(Gt C yr -1) 

Global Carbon stocks (Gt C) 

 MRS MRS IGBP  

  Plants Soil Total 

 Tropical forests 21.9 340 213 553 

 Temperate forests 8.1 139 153 292 

 Boreal forests 2.6 57 338 395 

 Tropical savannas & grasslands 14.9 79 247 326 

 Temperate grasslands & shrublands 7.0 23 176 199 

 Deserts and semi deserts 3.5 10 159 169 

 Tundra 0.5 2 115 117 

 Croplands 4.1 4 165 169 

 Wetlands - - - - 

Total 62.6 654 1567 2221 
 

Table 1.1 Estimates of NPP and terrestrial carbon stocks (summed up globally by biome).  
Atjay is Atjay et al. (1979); MRS is Mooney, Roy & Saugier (2001); IGBP is 
International Geosphere-Biosphere Programme with the soil carbon layer (Carter and 
Scholes, 2000) overlaid with the current vegetation map (De Fries et al., 1999) to give 
average ecosystem soil carbon. 
 

Roy & Saugier (2001) as this is the most recent of all the estimates and is what is used for 

the IPCC report.  Based on this estimate of 63 Gt C yr-1 to the nearest whole number, 

respiration by plants (autotrophic respiration) is computed by deducting this from the 

GPP estimate of 123 Gt C yr-1 from the previous page. 

Goetz et al. (2000) computed the inter-annual variation of NPP for the period 

1982 to 1989, for different latitudes and biomes.  The authors found that annually 

integrated global NPP was found to vary as much as 12% between years and was very 

sensitive to air temperature.  The authors also found that there was extreme seasonal  and 

moderate inter-annual variation (10 – 60%) in NPP of middle- to high-latitude regions 

(temperate and boreal forests) and found evidence that this could increase year on year.  

This is in contrast to the tropical forests and tropical savannas & grasslands, which have a 

much smaller interannual variability, despite having the largest NPP.  A critical biome is 
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Temperate forests because as stated at the end of the previous page it has one of the 

largest inter-annual variability meaning that it is more difficult to forecast.  It also has the 

3rd highest global aggregated NPP and second highest storage of carbon in plant biomass 

of all the biomes based on estimates from Mooney, Roy & Saugier (2001), meaning that 

it is not small enough to ignore or pay less attention to (table 1.1).  Therefore, one way of 

reducing the large uncertainty of global aggregated NPP is by improving estimates of 

NPP in the temperate forests biome. 

 

NEP and NBP 

On seasonal time scale, most of the C stored as NPP gets returned to the atmosphere 

through heterotrophic respiration, where microbes feed on soil organic matter such as leaf 

and root litter, respiring CO2 in the process.   Heterotrophic respiration (RH) is estimated 

to be 55 ± 2 Gt C yr-1 (Harmon et al., 2011), however this does not include respiration 

from decomposition of woody debris (denoted RWD).  Bond-Lamberty et al. (2004) state 

that in an undisturbed forest, RWD is approximately 10% of RH, thus factoring this in we 

can approximate the global aggregated heterotrophic respiration to be 61 ± 3 Gt C yr-1 

with the uncertainty increased to reflect additional uncertainty of the exact contribution 

RWD to RH.  It should also be noted that RWD can increase to a much larger amount in the 

first 5 to 10 years after a disturbance – Kurz et al. (2008) found this to be true with a 

beetle bug outbreak and Bond-Lamberty et al. (2004) found this after a forest fire.  

However changes to heterotrophic respiration as a result of a disturbance are included in 

the calculations for NBP, so are ignored for the calculation for NEP.  Thus, subtracting 

heterotrophic respiration as stated above (i.e. 61 Gt C yr-1) from the aggregated global 

estimate of NPP (i.e. 63 Gt C yr-1) gives an global aggregated estimate of 2 Gt C yr-1.  

The uncertainty of this NEP estimate is reasonably large, partly because the global 

aggregated NPP has a large uncertainty (around ± 10 Gt C yr-1 as stated previously) and 

based on other very different NEP estimates, for example Stefan et al. (1998) estimates it 

to be 10 Gt C yr-1.  

 As stated in figure 1.4, NEP has a high inter-annual variability, and as stated on 

page 12, this is mainly driven by variability in precipitation, surface temperature and 

radiation (Le Quere et al., 2009).  In other words, GPP is highest when solar radiation is 
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sufficiently high and precipitation is at a certain level.  A similar relationship between the 

weather and respiration is also evident – for instance it is widely known that microbes in 

the soil are most active (and so respire the most) when the soil temperature are at a certain 

levels (Cable et al., 2009).  For these reasons, accurately estimating NEP is a great 

challenge however very necessary if we are to appreciate the extent to which atmospheric 

CO2 is being taken up by the terrestrial biosphere.   

Eventually, the net gain C to the terrestrial biosphere from the atmosphere will be 

NBP, which is NEP minus C returned to the atmosphere from disturbances such as 

deforestation or forest fires.  Using the estimate of the gain of C to the atmosphere from 

disturbances to be 1.5 ± 0.5 Gt C yr-1 from figure 1.4 (Canadell et al., 2007) NBP is 

approximately 0.5 Gt C yr-1.  The uncertainty on NBP is hard to estimate, but based on 

other estimates (IPCC, 2007, and Stefan et al, 1998), it is probably 0.5 – 1 Gt C yr-1.   

Therefore, while we are ultimately interested in NBP above the other quantities (such as 

NEP, NPP and GPP), there are several reasons why it is more important to estimate NEP.  

First of all, if we wish to correctly estimate NBP it is imperative that we get NEP right.  

Secondly, the mechanisms which drive NEP (and so how we model NEP) are very 

different to the mechanisms that determine the land source due to disturbances.  In other 

words, NEP is modelled using theoretical and empirical principles of photosynthesis and 

plant and soil respiration (Parton et al., 2007), whereas disturbances such as forest fires or 

beetle bug outbreaks are often modelled in a more stochastic way (Williams et al., 2012).  

Finally, there is a large global network of flux towers which measure NEP on a 

continuous basis (Baldocchi, 2003).  For these reasons, this thesis focuses on improving 

estimates of NEP.  At this point, it should be noted that Net Ecosystem Exchange (NEE) 

is sometimes used instead of NEP.  NEE is simply –NEP and represents the net loss of 

CO2 from the atmosphere to the terrestrial biosphere via plants.  Traditionally, NEP is 

used by those modelling the carbon cycle from the terrestrial perspective (how much C is 

the forest is gaining), and NEE is used by those modelling the carbon from the 

perspective of the atmosphere (how much C the atmosphere is losing).  However, many 

of the modellers from the terrestrial perspective use NEE (e.g. Williams et al., 2005).  

This is probably due to the fact that those collecting data on C accumulation to the land 

via plants through the network of Eddy-Covariance flux towers use NEE instead NEP 
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(Vickers, 2009), perhaps causing some of the modelling community to also adopt NEE.  

The likely reason why NEE is used instead of NEP where measured from the flux towers 

is because the eddy-covariance instrumentation which make the measurements are usually 

located high up on the flux tower and so could be thought of looking down onto the forest 

or plants, i.e. observing the net C gain to the terrestrial biosphere from the perspective of 

the atmosphere.  NEP is also used by those measuring and modelling the terrestrial 

carbon cycle (e.g. Quaife et al., 2007). 

Throughout this thesis various notations of the quantities of interest will be used, 

the main ones represented in figure 1.5.   Definitions of these are: 

• Gross Primary Production (GPP) = the total amount of carbon taken up by plants 

through photosynthesis.   

• Autotrophic Respiration (Ra) = the amount of carbon respired from the plant.  Ra can 

be further sub-divided into maintenance respiration and growth respiration; 

abbreviated as Rm and Rg in Turner et al. (2005). 

• Heterotrophic Respiration (Rh) = the amount of carbon respired from soils and dead 

plant matter (e.g. litter).   

• Total Respiration (Rtot) = Ra + Rh ; 

• Net Primary Production (NPP) = GPP – Ra; 

• Net Ecosystem Production (NEP) = GPP – Rtot; 

• Net Ecosystem Exchange (NEE) = Rtot – GPP = –NEP; 

• Net Biome Production (NBP) = GPP – Rtot – disturbances (e.g. deforestation). 

The units to these quantities depend on the spatial scale one is working at.  For this thesis, 

the most appropriate units are grams of Carbon / day (g C day-1). 

As stated earlier, the main quantity we are interested in estimating in this thesis is 

NEE = –NEP.  If, over a particular period of time e.g. a day, GPP > Rtot, then NEE will be 

negative and represents the amount of carbon lost from the atmosphere by the land 

(referred to as a sink of carbon).  Conversely, if GPP < Rtot, then NEE will be positive and 

will indicate the amount of carbon gained by the atmosphere.  We are also in interested in 

estimating GPP, Ra, and Rh correctly as all of these could be poorly estimated but NEE 

estimated well.   
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1.2.2 Ecosystem Observations and Data 

DATA MEASURED OR INFERRED FROM MEASUREMENTS FROM GROUND. 

Obtaining data of ground based NEE, GPP and Rtot is important as they can be made 

continuously over a long period of time, and so allow us to understand how NEE (for 

example) changes from year to year, and particularly how certain types of weather (for 

example if one year is particularly hot, or dry or wet) influence NEE.  NEE is measured 

continuously using the Eddy-Covariance technique, which involves calculating the 

covariance between the vertical wind speed and the CO2 concentration (full details given 

in chapter two), and is typically measured at different heights of the forest canopy by 

attaching the measuring equipment to a steel scaffold, or flux tower as they are commonly 

known (Baldocchi, 2003).  Although GPP and Rtot are not measured directly in forests (on 

a continuous basis), such data can be inferred using partitioning models (Reichstein et al., 

2005)  

However, it should be noted that where there is vegetation of a very low height, 

such as grasses or shrubs, GPP and Rtot can be measured almost directly through a 

different measuring technique.  This involves placing a small static chamber over the 

vegetation, which contains within it one or two circulating fans and a photosynthetically 

active sensor (Bachman et al., 2010).  This measures NEE in the same way as the sensors 

do on the flux towers do for the Eddy-Covariance technique, however if the flask is 

covered so as to block out all solar radiation penetrating the flask, then the measured flux 

is then Rtot.  If measurements of NEE and Rtot are made consecutively, then under the 

assumption that the two measurements were made at the same time, GPP can be inferred 

by subtracting the NEE from the Rtot measurements (Bachman et al., 2010).  Such flask 

measurements are not measured continuously over a long period of time as they require a 

significant amount of human labour.  For forests, continuous long-term measurements of 

NEE can only be made using the eddy-covariance technique on flux-towers, and are much 

less labour intensive.  Thus for forests, data for GPP and Rtot can only be inferred using 

partitioning models as stated above.   

Currently, data for NEE, GPP and Rtot are available on half-hourly intervals at 

over 200 sites across the globe (Baldocchi, 2003).  This network of sites is called Fluxnet, 
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with data freely available via an internet based database.  The Fluxnet database holds 

other measurements, which include: 

• Leaf Area Index (m2/m2), or LAI, which is defined as the ‘one-sided green leaf 

area per unit ground area, in broadleaf canopies, and as the projected needle leaf 

area in coniferous canopies’ (Myneni et al., 2002).  LAI is an indicator how much 

photosynthesis is taking place, among other things, and so is an important 

ecological variable (Breda, 2003).  LAI can be inferred from direct measurements 

of foliar biomass which are obtained by stripping the leaves off a tree and feeding 

them through a scanner.   LAI is then inferred by dividing the foliar carbon mass 

by Leaf Mass per Area (LMA); see Williams et al. (2005), De Kauwe (2008), Fox 

et al. (2009), Richardson et al. (2012) and Spadavecchia et al. (2011).  In reality 

LMA can vary between leaves on a tree, especially between different levels of 

canopy (Poorter et al., 2009), but for computational ease it is often treated as fixed 

(Fox et al., 2009; Williams et al., 2005; Quaife et al., 2007).  Obtaining inferred 

measurements of LAI by direct means is the most accurate among methods, but it 

can be time-consuming and it is also very destructive (Gower et al., 1999).  More 

commonly, LAI is determined by indirect methods, and from the ground this is 

done by measuring the gap fraction of the canopy using optical techniques such as 

fish-eye photography (Gower et al., 1999).  A fuller description is given in chapter 

2.  Although obtaining LAI measurements using indirect methods is not as labour 

intensive as making woody, litter and root biomass measurements (described 

next), it is still time consuming and for this reason LAI is typically only measured 

a handful of times throughout the year (Williams et al., 2005). 

• Woody, litter and root biomass (gC/m2), which indicate how much carbon is 

stored in the tree trunks, leaf litter and tree roots for every unit area.  Above 

ground woody biomass is normally estimated by first recording the dimensions of 

the tree and then estimating the biomass using allometric relationships determined 

from the destructive harvest of a variety of trees covering a range of different sizes 

(Law et al., 2001).  Biomass from litter is determined by manually collecting the 

litter into multiple trays and separating it into foliar litter and woody litter.  Fine 

root biomass can be estimated by destructive means by extracting the roots 
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contained in the soil using soil cores and then extracted in the laboratory after 

cleaning off any soil (Law et al., 2001).  Due to these measurements being labour 

intensive, they are usually only made around five or six times a year, sometimes 

less frequently (Law et al., 2001). 

• Soil moisture content, which is a measure of how much water is present in a unit 

amount of soil.  Measurements are made using a frequency domain reflectometer 

probe (Xu et al., 2004) either at a selection of depths such as 5cm, 10cm and 

20cm, or a selection of ranges of depths, such as 0-15cm, 15-30cm, etc… 

Meteorological data are also available from Fluxnet, and these can include: atmospheric 

CO2 concentrations, precipitation, transpiration (mm) and solar radiation (W/m2). 

 

DATA INFERRED FROM MEASUREMENTS MADE FROM SATELLITE SENSORS 

As stated in the previous section, satellites are increasingly being used to make ecological 

measurements, via their sensors, as they provide frequent and global coverage.  Common 

ecological quantities that are inferred from satellite data are: GPP, LAI, the fraction of 

photosynthetically active radiation (fPAR) and soil moisture.  The sensors on the 

satellites do not measure these quantities directly, but instead measure the sun’s reflection 

on the vegetation.  The ecological quantities are then inferred using a 3D radiative 

transfer model (RTM).  The RTM has, among other things, canopy reflectance of solar 

radiation (or simply ‘reflectance’) as its output and uses various biophysical parameters, 

such as LAI, as inputs (Lewis, 1999).  The RTM is inverted to find the parameters (LAI, 

etc…) that produce the best fit between the modelled and observed reflectance; for 

example, for the LAI inferred from the MODIS sensor of the TERRA satellite, see 

Knyazikhin et al. (1998) and Myneni et al. (2002).  To avoid multiple solutions (e.g. if 

inferring LAI and if there are multiple values of LAI, which produce near optimal fits of 

modelled to observed reflectance) a biome classification map is also used in the retrieval.  

From this point on, we refer to ‘satellite data’ as being data of ecological quantities 

inferred from the processing of canopy reflectance data made from satellite sensors, using 

models.  
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DATA CHALLENGES 

Despite their advantages, satellite data can contain gaps and important quantities may be 

unmeasurable.  Using data on their own can also make it difficult to understand particular 

ecosystem processes.  Furthermore, it is not possible to make realistic forecasts of the 

ecosystem under different scenarios using solely data, for example under varying 

atmospheric CO2 levels.  Models can overcome these problems, and these are described 

and discussed next.   

 However a data challenge which, for the most part, models cannot overcome is 

how to quantify the uncertainty of data.  This is important because if untruthworthy data 

is being used to make inferences (e.g. make regional estimates of GPP) or to validate 

model outputs, then these inferences and model outputs will likely be wrong.  Some 

progress has been made with quantifying data uncertainty.  For example, Hollinger and 

Richardson (2005) suggested the random error of Eddy-Covariance measurements 

followed a Laplacian distribution and provided a method for estimating the statistical 

parameters for this distribution, based on pairs of measurements made at two nearby flux 

towers.  Richardson & Hollinger (2006) refined the methodology so as the parameters 

could be estimated using only one flux tower, based on pairs of measurements separated 

by 24 hours and made under similar meteorological conditions.  Despite this progress, 

quantifying systematic errors of NEE data remains a challenge.  For example, it is well 

known that nighttime eddy-covariance respiration data tends to be under-estimated 

because the wind-speed is too low (Baldocchi, 2003), but there is little known on the size 

of this under-estimation. 

 Despite studies that have validated satellite data with comparable ground based 

data (e.g. Garrigues et al., 2008), there has been less attention paid to quantifying the 

uncertainty of these satellite data.  A possible exception to this is the current version of 

the radiative transfer model used to estimate LAI from the MODIS sensor of the TERRA 

satellite; see De Kauwe et al. (2011) for description of algorithm.  Here, a standard 

deviation value is given for each of the MODIS LAI data points, but this refers to the 

spread of retrieved LAI that result in the output of the radiative transfer model (i.e. the 

canopy reflectances) used having a good fit to the observed reflectances (Knyazikhin et 

al., 1998).  It is reasonable to assume that many modellers would treat these standard 
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deviation values as measures of data uncertainty, but it could be argued that these s.d. 

values do not really include a representation of uncertainty of the radiative transfer model 

nor of the raw radiance measurements.  

 

ATMOSPHERIC MEASUREMENTS AND OTHER RELEVANT EO DATA 

In this subsection, we briefly describe examples of atmospheric measurements.  This is 

important as they are relevant to inferring C fluxes.  The Scanning Image Absorption 

Spectrometer for Atmospheric Chartography (SCHIMACHY) and the Global Greenhouse 

Gas Observation by Satellite (GOSAT) are two satellite spectrometers that measure trace 

gas concentrations in the atmosphere (Breon & Ciais, 2010).  Trace gas concentrations 

are inferred by determining the absorption of the wavelengths of the solar radiance 

received by the satellite sensor reflected from different trace gases (Breon & Ciais, 2010).  

A radiative transfer model is then inverted to estimate the trace gas concentration.  This is 

because the radiative model represents the radiance spectrum as a function of trace gas 

concentration; by observing the changes in the reflected solar radiance spectra it is 

possible to infer changes in the gas concentration (Barkley et al., 2006).   

The fraction of Photosynthetically active radiation (fAPAR) is defined as the 

fraction of incoming solar radiation that is absorbed by a plant.  It is an important climate 

variable because it is directly related to GPP and used by some models to infer 

assimilation of CO2 in plant material (Knyazikhin et al., 1998).  fAPAR can be inferred 

from satellite measurements of solar radiation in the same way as LAI  (Knyazikhin et al., 

1998).  fAPAR can also be used as an indicator of the health and evolution of vegetation 

cover; as a result it replaces the Normalized Difference Vegetation (NDVI) assuming it is 

estimated well.  NDVI was (and still is) useful as it can help to identify simple climate 

characteristics such as spring vegetation green-up and subsequent summer and fall dry-

down (Tucker et al., 2001).  NDVI was one of the first climate variables inferred from 

space and so it is useful in that it is one of the longest data streams of all remotely sensed 

data (Tucker et al., 2001).  NDVI is an equation which takes into account the amount of 

infrared reflected by plants.  It is connected to vegetation because healthy vegetation 

reflects very well in the near-infrared part of the electromagnetic spectrum (Tucker et al., 

2001).   
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Global spaceborne observations of solar induced chlorophyll fluorescence is 

becoming increasingly important, due to its strong linear correlation with GPP 

(Frankenberg et al., 2011).  Traditionally GPP has been inferred from space using 

remotely sensed vegetation indices such as LAI or fAPAR (as described above), but using 

florescence data has enabled far better predictive abilitity of GPP (Frankenberg et al., 

2011).  A drawback of the florescence data from the GOSAT satellite is that it is 

incredibily noisy (Guanter et al., 2012), and so methods need to be employed to extract 

the true signal.   

 

1.2.3 Ecosystem models 

In this section, an overview is presented of different models that could be used in this 

thesis, along with the advantages and disadvantages of using each one.  The models vary 

according their size, complexity, and what their main use is.  In chapter two, a more 

comprehensive description is given for the different models, and then an argument is 

made for which model is most appropriate for this thesis based on the context and aims of 

this work.  For this subsection, we begin by describing common features contained in 

process models, the purpose of the different models of the terrestrial carbon cycle, then a 

brief overview is given for 12 models, outlining the advantages and disadvantages of 

adopting each.   

The central role of a model is to try to represent and understand reality, and they 

can be of different forms.   Models can be statistical in nature, i.e. built using data, and 

carry certain assumptions about how the independent variables (e.g. time) and dependent 

variables (e.g. GPP) are related, e.g. in a linear way.  To estimate quantities such as NEE, 

GPP and Rtot, process models are often used. These models are typically based on 

differential equations which describe our best knowledge of the plant processes and 

physics of the system.  These processes are controlled by parameters, which are physical 

quantities giving information about what the system is doing.  Such models are normally 

dynamic since we often wish to understand how these quantities of interest change over 

time.  Regardless of their size, all ecosystem process models will have several things in 

common, including the following: 
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• Pools, which are the stores of carbon, for example the foliar carbon pool, the soil 

carbon pool, the woody carbon pool, etc… 

• Fluxes, which describe the flow of carbon between the pools. 

• A set of parameters, for example the loss rate of woody carbon. 

• States, which are the important quantities we wish to estimate, such as NEE, NBP, 

GPP, Rtot, Ra, Rh, but also the pools and the fluxes.   

There is a whole array of different models of the terrestrial carbon cycle, and these 

vary according to their purpose.  While all aim to estimate the states of the terrestrial 

carbon cycle (e.g. NEE), some are designed to make multiple estimates across the globe 

requiring hundreds or thousands or parameters due to the different types of vegetation 

that need to be modelled differently.  Other models are designed to make site level or 

regional estimates only and often built with a particular vegetation type in mind (e.g. 

Evergreen trees, or crops, …)  and so have fewer parameters that those that are used to 

make global estimates.  It should be noted here that global models can also be put into a 

site level or regional level mode, where they only make estimates for a particular site or 

region.  In this way, only a subset of parameters would be used and the global model in 

effect becomes a site level or regional model (Kennedy et al., 2008).   

The models also vary according to how complex the processes (e.g. vegetation 

dynamics, photosynthesis, …) are modelled.  For example, some might use the Farquahar 

equations (Farquhar & Caemmerer, 1982) to model photosynthesis, e.g. the SPA model 

(Williams et al., 1996).  Alternatively, others might model photosynthesis in a simpler 

way, such as using an approximation to the Farquhar equations (e.g. the Aggregated 

Canopy model used in the DALEC model, Williams et al., 2005), or estimate it 

empirically.  Models may also vary in size according to the number of processes that are 

included.  For example, the SiPNET model (Braswell et al., 2005) simulates the flow of 

carbon from photosynthesis to respiration and includes a simplified representation of the 

water dynamics in the plant and soil (i.e. soil moisture, transpiration).  However, the 

DayCENT model (Parton et al., 2001) not only models the carbon and water cylces, but 

also simulates the Nitrogen, Phospherous and Sulphur dynamics of the plant.    

 Models can also differ according to time-scales.  Some are used to assess 

historical dynamics, others are used for monitoring, while some are also used for making 
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predictions.  Models that are used for monitoring include those that seek to quantify the 

current rates of certain processes, such as GPP and NPP and how they might vary 

temporarily and spatially, such as Ruimy, Saugier & Dedieu (1994), Running et al. (2004) 

and Yuan et al. (2007).  Under the category of monitoring, it could also be argued that 

models that are used to infer measurements, such as radiative transfer models (e.g. 

Myneni et al., 2002) which are used to infer vegetation characteristics from reflectance 

data from a satellite sensor, and partitioning models (Reichstein et al., 2005) that are used 

to estimate GPP and respiration fluxes from NEE measured at flux towers, should be 

included.  A large focus for many modelling activities is to be able to predict what 

vegetation characteristics, such as NEE, woody biomass, etc.. will be in the future.  For 

example, Balshi et al., (2009) used the TEM model to estimate decadal total carbon 

emissions for the North American boreal forests due to wildfires up until 2100.  However, 

making accurate predictions is difficult, and so an increasingly common approach is to 

use a model to estimate what a certain climate quantity will be under a changing climate.  

For example, Parton et al. (2007) used the DayCENT model to assess how soil water 

content, plant production, soil respiration and nutrient mineralisation would change under 

an elevated atmospheric CO2 environment. Another example is Ogle & Pacala (2009) 

who used the ACGCA model to predict forest succession, growth and species diversity 

for two different species of tree under different scenarios based on varying gap dynamics 

and by adjusting some the model parameters.   

We now summarise 12 different terrestrial ecosystem models, starting with the 

simplest model and proceeding to the more complex ones.  The list of models, along with 

the number of parameters, number of states and the spatial scale they operate on is given 

in table 1.2.   

 

THE PROS AND CONS OF SMALL MODELS, WITH EXAMPLES 

The main advantage of the small models described here, namely OpTIC, SPA, DALEC, 

and SiPNET is that they are fast to run.  This is due to there being a small number of 

parameters, process representation and states to estimate.  The small models listed here 

were also all developed to operate at a site level. The main disadvantage of these models 

is that due to their simplified nature, they lack sufficient process representation. For exam- 
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Model No. of 

parameters 

No. of  

states 

Spatial 

 Scale 

Temporal  

Scale  

OpTIC 4 2 Local Daily 

DALEC 11 / 17 17 / 22 Local Daily 

SIPNET 25 22 Local  Half-Daily 

SPA 28 21 Local Half-hourly 

ACGCA 32 × No. of trees 12 × No. of trees Local–Regional  Yearly 

DayCENT ~ 30 ~ 50 Regional Daily 

CASA 35 20 × No. of Grid cells Regional – Global Monthly 

TEM > 50 18 × No. of Grid cells Continental–Global Monthly 

SDGVM > 50 > 50 Global Monthly 

BETHY > 50 20 × No. of Grid cells Global Monthly 

LPJ > 50 > 50 Global Monthly 

ORCHIDEE > 50 > 50 Global Monthly 
 

Table 1.2 A list of twelve terrestrial carbon models, which vary according to the level of 
complexity, the spatial scale and time-step they operate over, and the particular 
processes they try to estimate.   
 

ple, while all of them model part of or all of the terrestrial carbon cycle, they do not 

include any strong representation of the water cycle (except for SPA) or Nitrogen cycle 

for example, which are linked to the carbon cycle.  However, it could be argued that 

including extra process detail may not be necessary. For example DALEC has been shown 

to produce accurate estimates of NEE (Williams et al., 2005) despite being relatively 

simple.  Additionally, because small models operate on a smaller spatial scale than larger 

models, they do not provide estimates of say GPP or NEE at the global or continental 

scale.  However, they are useful for providing for more fine-scale estimates of NEE (for 

example), compared to larger global models whose estimates tend to be coarser.  We now 

provide a simple description of the simplest four models, listed in the first four rows of 

table 1.2.   

The OpTIC model (Trudinger et al, 2007) was developed as a highly simplified 

representation of the carbon dynamics in a terrestrial biosphere model in order to compare 



Chapter 1: Motivation and Aims 

Edmund Ryan       -      -  2013 31 

different methods of estimating its parameters.  Its two states represent carbon stored in 

living biomass and soil carbon.   

The Data Assimilation Linked ECosystem (DALEC) model (Williams et al., 

2005) simulates the flow of carbon from photosynthesis through to respiration for 

evergreen trees, and estimates carbon stored in foliage, roots, litter, woody biomass and 

soil.  GPP is estimated through a sub-model called the Aggregated Canopy Model (ACM) 

which uses meteorological data such as minimum and maximum daily temperature, solar 

radiation, and atmospheric CO2 concentration.  The ACM is simplified version of the 

photosynthesis submodel used in SPA (described on the next page).  There is also a 

feedback which links the foliar carbon pool to GPP, since (put simply) the more leaves 

(foliage) on the trees, the more photosynthesis takes place.  Another version of the model 

called DALEC-D is also available; this is the same as DALEC except that it is used for 

deciduous vegetation and so incorporates an extra pool to store labile carbon, which is 

much like a savings account that stores carbon from the foliar carbon pool during the 

growing season and then expends it during the following Spring bloom in order to 

generate the foliage.    

The Simplified PhotosyNthesis and Evapo-Transpiration (SiPNET) model 

(Braswell et al., 2005) operates on a half-daily time-step rather than a daily one as is the 

case with DALEC.  However there are fewer carbon pools in this model compared to 

DALEC, which include pools of plant wood carbon, plant leaf carbon and soil carbon.  

Unlike DALEC, SiPNET has a simple soil moisture sub-model; if soil moisture falls 

below a certain value the plant becomes water-stressed and results in Gross Primary 

Production being limited.  GPP is estimated in SIPNET by first computing its maximum 

potential value if there were no limitations on resources.  This maximum GPP is then 

multiplied by various scaling factors which describe the limiting factors, such as 

radiation, water stress, surface temperature, Vapour Pressure Deficit.   

Unlike the previous two models, the Soil-Plant-Atmosphere (SPA) model 

(Williams et al., 1996) simulates ecosystem photosynthesis and water balance at 30 

minute time-steps and at a fine spatial scale which include multiple canopies and soil 

layers.  It consists of two components, which are physical and biological.  The physical 

component determines the physical parts of the vegetation, such as the structure of the 
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canopy and the level of absorption of photosynthetically active radiation and other 

wavelengths at different layers of the canopy.  It also computes the leaf boundary layer 

conductance and determines soil water availability.  The biological component simulates 

the assimilation of CO2 from the atmosphere by photosynthesis and transpiration.  It also 

models the factors that affect C uptake and water loss, such as the variation of leaf 

biochemical parameters with foliar Nitrogen content, irradiance and leaf temperature.   

 

THE PROS AND CONS OF MEDIUM SIZED MODELS, WITH EXAMPLES 

We now present two examples of medium size models used to simulate vegetation 

dynamics the terrestrial biosphere.  These models are advantageous in that the combine 

the efficiency of smaller models, which are fast to run, but contain a closer level of 

complexity to larger models which include more processes; in this way they can be a 

good compromise between the smaller and larger models.  However, like smaller models, 

they tend to not provide global estimates of the quantities of interest, such as NEE.  

Nonetheless they typically can provide regional estimates, which can be useful for 

estimating regional inventories of C stocks, such as the DayCENT model (described 

below).  The extra level of complexity, compared to the simpler models, also means that 

more of our understanding of the processes of the plant biology and phenology are able to 

be incorporated, resulting in the potential improvement of terrestrial C cycling estimates, 

but also the possibility to estimate the dynamics of other processes and quantities linked 

to the C cycle, such as the Nitrogen cycle as in the DayCENT model or the allometrics of 

the tree as in the ACGCA model, both described next.   

 The DayCENT model (Parton et al., 2001) simulates the terrestrial Carbon, 

Nitrogen, Phospherous and Sulphur dynamics.  Including the representation of the 

Phospherous and Sulphur dynamics is important as like Nitrogen, if there is insufficient 

availability of these nutrients in the plant cells, this poses a limitation on the amount C 

fixed through photosynthesis.  Like the simpler models, the model simulates the 

accumulation and exchange of C within and between different pools, such as foliage, the 

woody part of the tree and the soil.  It also models the respiration of C from the plant 

directly and from the soil.  Unlike the previous models, it not only estimates NEE but it 

also predicts the emissions of Nitric and Nitrous oxide (N2O and NOx).  These model 
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predictions are then used to inform the United States Environmental Protection Agency 

who compile the National inventory of N2O emissions from U.S. agricultural soils 

(Williams et al., 1995).   

 The Allometrically Constrained Growth and Carbon Allocation (ACGCA) model 

(Ogle & Pacala, 2009) is a different type of terrestrial carbon model compared the 

previous ones listed.  While all the models listed here predict GPP, NPP, NEE, etc… the 

ACGCA differs in that it predicts the height, width of individual and cohorts of trees.  

The focus of this model is therefore to assess the life cycle of trees, as opposed to 

predicting seasonal trend, which is why the time-step is in years instead of months or a 

smaller unit of time.  The model predicts how different species of trees interact and 

compete with each other as they grow.  In this way, the main focus of this model is to 

predict the future state of the forests for a particular region (such as South East United 

States), i.e. what species will exist and in what quantity for a particular location.  Like 

previous models listed here, it also estimates the carbon dynamics for different parts of 

the tree, such as the foliar biomass, the woody biomass and the root parts of the tree.   

 

THE PROS AND CONS OF LARGE MODELS, WITH EXAMPLES 

The main focus of the larger models, listed in the bottom six rows of table 1.2, is to 

include as many of the processes that affect the terrestrial carbon cycle.  All of the large 

models listed here operate under a monthly time-step, as this enables prediction of intra-

annual as well as inter-annual changes of the state of the terrestrial carbon cycle.  Most 

also operate at a spatial scale of 0.5o–1o latitude and 0.5o–1o longitude grid cells.  They 

are the only type of model (compared to the smaller models listed earlier) that are able 

make global estimates of the quantities of interest, such as GPP, NEP and NEE.  This 

ability to fully quantify the terrestrial C cycle across the globe means that they are the 

most important among all the other types of models.    

 Although the power and computational efficiency of supercomputers have 

improved dramatically over the past 30 years, most researchers do not have access them.  

Thus, the obvious downside to these models is that they are very computationally 

expensive to run. Some users try to overcome this, to a certain extent, by decreasing the 

spatial resolution the model predicts over, or by making predictions over a smaller spatial 
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scale, such a region or a continent (Woodward et al., 1995).  Turning off parts of the 

model which are not needed for individual experiments is another way of making these 

models more accessible from a computational point of view (Kennedy et al., 2008).   

Another downside to these models is that by including as much complexity on our 

understanding of the processes as possible, they can become very hard to manage.  For 

example, making a small change to the model may result in other parts of model giving 

strange output which may be hard to diagnose.    

 The Carnegie Ames Stanford Approach (CASA) model (Potter et al., 1993, 

Carvalhais et al, 2008) was created to make global estimates, at the monthly time-step, of 

seasonal patterns of NPP, biomass and nutrient allocation, litterfall and nitrogen 

miteralization, and CO2 production.  It includes 13 different vegetation classes, including 

four classes of broadleaf trees, two classes of Needleleaf trees, two types of shrubs, 

grasslands, Tundra, bare soil, cultivation and ice.  It operates by using driving data of 

Normalized different vegetation indices (NDVI), solar radiation, temperature, 

precipitation to estimate NPP by a semi-empirical methods based how NPP varies with 

intercepted photosynthetically active radiation (IPAR) for different vegetation types – this 

way of estimating net C photosynthesis assimilation rates is referred to as a light-use 

efficiency approach.  Soil moisture is estimated using a sub-model, which is driven by 

temperature and precipitation which, along with estimates from the NPP submodel and 

estimates of litterfall based on NDVI, is then used to estimate carbon and Nitrogen 

dynamics in the soil.  From this, soil respiration rates are simulated which are then used to 

predict NEP from the NPP predictions (since NEP = NPP – soil respiration). The soil 

moisture and soil carbon-Nitrogen submodels are also driven by soil texture data.  

Finally, there is a feedback of Nitrogen uptake from the soil Carbon-Nitrogen submodel 

to the NPP submodel.   

 The Terrestrial Ecosystem Model or TEM (Raich et al., 1991; Balshi et al., 2009) 

was built to predict the major carbon and nitrogen fluxes and pool sizes in terrestrial 

ecosystems at the continental to global scales.  The five major elements of the state vector 

in TEM are carbon  stored in living vegetation, Nitrogen stored in living vegetation, 

organic carbon in detritus (i.e. dead organic material such as leaf litter) and soils, organic 

Nitrogen in detritus and soils, and available inorganic soil carbon.  The maximum rate of 
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C assimilation into the plant per unit area was determined by a simple diffusion scheme 

for each vegetation type.  GPP was then estimated by reducing (by a factor less than 1 but 

greater than 0) this maximum rate of C assimilation according to various limiting factors 

on photosynthesis, such as irradiance of photosynthetically active radiation (PAR), 

atmospheric CO2 concentration, moisture availability, mean air temperature, the relative 

photosynthetic capacity of the vegetation and nitrogen availability.   

The Sheffield Dynamic Global Vegetation Model (SDGVM) is a generalized, 

global-scale model that predicts vegetation structure and dynamics using inputs consisting 

of meteorological, CO2 and soil texture data (Woodward and Lomas, 2004).  The 

physiology and biophysical module gives a representation of the carbon and water fluxes 

of vegetation (Woodward et al., 1995). The water and nutrient fluxes module simulates 

the exchange of canopy CO2 and water vapour along with the nitrogen uptake and 

partitioning within the canopy. The plant structure and phenology module define the 

vegetation leaf area index and the phenology of the vegetation (i.e. the timings at which 

different plant processes occur, e.g. Spring bloom).  Nine plant functional types (PFTs) 

are used in the model, which include two types of Evergreen tree types and two 

Deciduous types, croplands, C3 and C4 grasses, urban and bare ground.  GPP is estimated 

using the Farquhar model (Farquhar et al., 1980) which simulates the biochemical 

processes of electron transport, the Calvin cycle and photorespiration.  SDGVM can also 

estimate NBP, by simulating one type of disturbance, fire, and this is done based on the 

probability of a fire occurring, where the probability is determined from deviations away 

from the ideal environmental conditions (mainly temperature and precipitation amount) 

required for a fire to start (Woodward et al., 2001). 

 The Biosphere Energy-Transfer and Hydrology (BETHY) model (Knorr, 2000) 

was built in response to discrepancies between NPP estimates from different terrestrial 

ecosystem models.  Part of the discrepancy could be caused by how certain processes are 

modelled.  For example, common approaches to simulate photosynthesis use the Farquhar 

model (Farquhar et al., 1980) as is used in SDGVM, a light-use efficiency method that is 

used in CASA above, or by a simple diffusion scheme as is adopted by TEM.  In 

BETHY, photosynthesis can be simulated by either the Farquhar model or a light-use 

efficiency method.  In this way, global estimates of GPP and NPP can be compared using 
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the two different photosynthesis models, and this can be seen as one way of quantifying 

the model uncertainty in relation to structure.  BETHY is split up into four main 

submodels which simulate (i) the energy and water balance, (ii) photosynthesis, (iii) 

phenology, and (iv) the carbon balance.  As with the other larger models, it estimates 

GPP, NPP and NEP at a monthly time-step.  It includes 23 vegetation types including 

four types of evergreen trees and shrubs, four types of deciduous trees and shrubs, four 

types of C3/C4 grasses, nine crop types, tundra vegetation and swamp vegetation.   

 The Lund-Potsdam-Jena (LPJ) dynamic global vegetation model (Sitch et al., 

2003) includes the main processes of other models, such as a photosynthesis model, 

carbon, water and nitrogen dynamics in vegetation and soils, and covers a range of 

different vegetation types or PFTs (Plant Functional Types) as they are commonly 

known.  Unlike other models, except for ACGCA, LPJ also includes representation of 

vegetation structure, dynamics, competition between PFT populations, and soil 

biogeochemistry.  The Farquhar model is used in LPJ to simulate photosynthesis and 

estimate GPP.  NPP is then predicted by subtracting autotrophic respiration, calculated as 

the sum of maintenance and growth respiration, from GPP.  As with other models, the C 

stored in NPP is then allocated to different C stores such as woody carbon, foliar carbon 

and root carbon.    

 The Top-down Representation of Interactive Foliage and Flora Including 

Dynamics (TRIFFID) model (Cox, 2001) is a dynamic global vegetation model, which 

updates the plant distributions and soil carbon stores.  TRIFFID is unique in that 

competition between the five different PFTs is simulated using a Lotka-Volterra 

approach.  The PFTs are: Broadleaf trees, Needleleaf trees, C3 grass, C4 grass and 

shrubs.  Photosynthesis is modelled using the Farquhar model (Farquhar et al., 1980) and 

scaled up to the canopy level using Sellers et al. (1992).  As with other models, NPP is 

determined by subtracting autotrophic respiration from GPP.  The remaining C or NPP is 

then allocated to the C stores of the tree.  Like some of the other models such as SDGVM, 

TRIFFID also estimates the removal of C from the trees from disturbances such as natural 

fires.   
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LAND SURFACE MODELS AND CONCLUDING REMARKS 

Land surface models, such as JULES (Clark et al., 2011) are a further level of complexity 

to the larger models described above.  For example, JULES not only models the carbon, 

nitrogen and water cycle of the terrestrial biosphere, but also provides estimates for the 

surface temperature and simulates the shortwave and long-wave radiative fluxes, and the 

sensible and latent heat fluxes between the land surface and the atmosphere.  TRIFFID is 

the vegetation dynamics module of JULES.  Another example is JSBACH (Brovkin et al., 

2009) which uses BETHY to simulate the evolution of the vegetation.   

 In this section, an overview has been given for the different modelling options.  In 

chapter 2 a subset of the models listed above are described again but with more precise 

detail about how different processes, such as photosynthesis or respiration, are simulated.  

Furthermore, a more critical review is provided in chapter 2 for the different modelling 

approaches.  Then, an argument is made for the reason for the particular model that is to 

be used in this thesis based on the required outcomes of this work.   

 

1.3 Combining data and models 

1.3.1 Non-DA approaches 

While observations and models each provide knowledge about the state of the system, 

they are more useful when used together.  Observations on their own may contain gaps, 

and certain quantities, parameters or processes may be unmeasurable.  A model on its 

own may contain the right mathematics to describe how the system behaves under certain 

conditions, but we only know if the model is correctly estimating reality if we can 

compare it with observations.  Thus, models and observations complement each other 

because: (i) the model allows us to fill in missing (temporal) gaps in the data, to estimate 

quantities and processes where no measurements are made (i.e. spatial gaps), and to 

estimate and represent unmeasurable quantities and processes; (ii) the observations allow 

us to determine whether the model, represented by its parameters and processes, 

accurately represents what we observe the system to be doing, and so enable us to make 

educated predictions of how the system will behave in the future.  In this way, the benefit 
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of models such as the last six listed in table 1.2 is that they can provide us with global 

estimates of the quantities that we are interested in, such as GPP, NPP and NEE.  The 

benefit of the observations is that they can be used to check that the model’s estimate of a 

particular quantity, at locations and times when observations are made, are consistent 

with what is observed. 

Confronting the model with the observations can be done in a number of different 

ways.  A common approach is to compare observations with estimates of these quantities 

from the model.  For the JULES model (Clark et al., 2011), which operates globally, this 

is carried out by comparing model outputs against a number of different measurements 

(e.g. NBP, evapotranspiration, latent heat, etc…) at particular sites which have different 

characteristics (e.g. different meteorological conditions, vegetation, terrain, …).  If the 

model is over or under-estimating certain measurements at certain sites and times, it can 

be interrogated to determine why this is the case.  Also, if the model is wrongly 

estimating the timing of certain ecological events, such as the Spring bloom, this might 

have implications for other quantities that the model estimates.   

In Krinner et al. (2005) the outputs of the ORCHIDEE model, a dynamic global 

vegetation model, were validated against measurements as a way of ensuring that the 

model was able to reproduce what was observed.  ORCHIDEE simulates the main 

processes of the terrestrial carbon cycle such as photosynthesis, autotrophic and 

heterotrophic respiration and fire, as well as the competitive nature of vegetation, such as 

competition for light.  The model also estimates the distribution of vegetation, leaf 

density and carbon stocks and fluxes and it is these that were compared against 

observations located at 28 FluxNet sites in Krinner et al. (2005), which varied according 

to location with every continent and major biomes represented.  The authors described the 

fit of model to the observations as satisfactory.  One of the main model outputs compared 

with observations was LAI, however the LAI data being compared against were inferred 

from radiance data measured by the MODIS sensor of the TERRA satellite.  In relation to 

this the authors made an interesting point: ‘the modelled LAI is generally too low outside 

the equatorial belt. … The under-estimation is particularly strong in the middle and high 

latitudes in summer, partly because absolute LAI errors can be larger where absolute LAI 

values are large.’  The authors continue by saying that satellite LAI estimates are subject 
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to fairly large uncertainties for dense canopies.  This may be true, but the authors do not 

attempt to quantity the uncertainty of the MODIS LAI in a more precise way or at any 

other spatial region.  For the most part, it appears that the authors treated the MODIS LAI 

as if it was subject to very little error.  This lack of quantification of the observational 

uncertainty occurs in other studies which attempt to quantify the accuracy of global 

terrestrial carbon models, for example Woodward & Lomas (2004), Morales et al. (2005) 

and Williams et al. (1996).   

 

1.3.2 DA approaches to combining data with models 

An increasingly important way of using observations to improve the performance of 

models is Data Assimilation (DA).  In DA, the observations and model are combined in a 

statistically optimal way, rather than the observations being compared with model 

outputs.  The major advantage of DA is that uncertainties in the model and observations 

(expressed as probability distributions) are specified.  A key feature is that under certain 

conditions the uncertainty in the model outputs, after the observations have been 

assimilated, is always less than the uncertainty in either the observations or model, e.g. 

Williams et al. (2005), Quaife et al. (2008).  These conditions include: (i) the sensitivity 

of the model output to the observations, i.e. there’s little point assimilating observations 

from the ocean if the model simulates only the terrestrial carbon cycle with no link to the 

ocean; (ii) the observations must be independent with one another and with the model 

output.  It should be noted that this reduction in uncertainty as a result of DA can happen 

if we were to merge two observations together.  The point is that by assimilating 

observations into a model, we not only reduce the uncertainty of the target variable, but 

we also have more confidence in our modelled estimates of other related quantities.  For 

example, Dente et al. (2007) assimilated Leaf area index data into a wheat crop growth 

model.  This had the consequence of reducing the uncertainty of predicted leaf area index; 

however this was not the goal – the purpose of the study was to improve the predicted 

wheat yield, as well as quantifying the corresponding uncertainty, which was achieved by 

the assimilation of LAI.   
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DA can be used to estimate the states or parameters of a model, or both.  In the 

next subsection, we define formally what is meant by parameters and states and how both 

can be estimated using DA. 

 

1.3.3 State and parameter estimation 

As stated in subsection 1.2.3 the state variables are the quantities of interest, such as GPP, 

NEE, autotrophic and heterotrophic respiration, foliar carbon, and woody carbon.  The 

states are governed to large extent by parameters which are physical quantities giving 

information about what the system is doing.  A more formal definition of state variables 

and parameters of a model is given by Bard (1974): 

We refer to the relations which supposedly describe a certain physical 

situation, as a model. Typically, a model consists of one or more equations. 

The quantities appearing in the equations we classify into variables and 

parameters. The distinction between these is not always clear cut, and it 

frequently depends on the context in which the variables appear. Usually a 

model is designed to explain the relationships that exist among quantities 

which can be measured independently in an experiment; these are the 

variables of the model. To formulate these relationships, however, one 

frequently introduces "constants" which stand for inherent properties of 

nature (or of the materials and equipment used in a given experiment). 

These are the parameters. 

 

Chen et al. (2008) define the states and parameters in reference to a dynamic model.  

They state that a dynamic model can be expressed as one or more discrete time nonlinear 

stochastic processes (although it can also be linear): 

Xk+1  = f(Xk, Uk, θ) + εk 

where k denotes the time-step;  Xk is the vector of state variables, such as carbon flux or 

storage attributes (e.g. GPP, NEP, NEE, foliar C, etc…);  f  is the model operator which 

defines how the states change from one time point to the next; Uk is the set of externally 
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specified time-dependent driving data, such as meteorological data and soil data; θ is set 

of parameters; and εk represents the model error.   

We next give a generic definition of how the states and parameters of a model can 

be estimated using DA.  We do not refer to a specific DA algorithm, but rather define it 

more generally for now. 

 

STATE ESTIMATION 

With the exception of a minority of DA schemes such as Optimal Interpolation (Cressie et 

al., 1990), most DA methods used for state estimation, such as the Kalman Filter 

(Kalman, 1960) or the Ensemble Kalman Filter (Evensen, 1994) are derived from Bayes 

theorem:  

  ( | ) ( ) ( | )p X d p X p d X∝              (1.1)             

where, 

( )p X  is the probability distribution (p.d.f.) of X that represents our prior knowledge or 

beliefs about the state vector X, i.e. the p.d.f. whose mode would normally represent 

our best guess of what X should be (say from the model), and where some measure of 

the spread of the distribution (e.g. the standard deviation) would normally represent the 

uncertainty on that estimate.  

( | )p d X  is p.d.f of d given X, i.e. the p.d.f. which represents the knowledge gained from 

the observations including their uncertainty.  It is commonly referred to as the 

likelihood function.   

 ( | )p X d  is the p.d.f. of the state vector X given that some data d has been observed.  

This is what we are trying to determine.  The mode of this p.d.f. represents the location 

of the state space with the highest probability and so it represents the optimal estimate 

of the state of the system given the information provided for by the observations and 

our prior guess.   

Some DA methods used for state estimation assimilate one observation at a time.  In other 

words, Bayes’ theorem above is used every time an observation becomes available.  

These methods, which include the Kalman Filter (Kalman, 1960), the Ensemble Kalman 

Filter (Evensen, 1994), and the Particle Filter (Van Leeuwen, 2010), are referred to as 

sequential (Williams et al., 2010).  In essense at time t=0 the model is run forward, then 
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when an observation becomes available at a future time point, the prior p.d.f. and 

likelihood function from equation 1.1 are determined and ( | )p X d  is determined (up to 

proportionality) either analytically if this is possible (e.g. Kalman Filter) or it is 

approximated using DA schemes such as the Ensemble Kalman filter or the Particle filter.   

In the case of the Kalman Filter, the assimilation of the first observation results in a 

vertical shift in the trajectory of the elements from the state vector which are linked to the 

observation(s) being assimilated.  The model then runs forward until a next observation 

appears and the process is repeated.  This continues until all the observations have been 

assimilated.  Throughout this process, the model parameters are fixed at specified values 

determined by independent means, such as from literature or by estimating the parameters 

using other data.  A schematic of this is given in the left panel of figure 1.7.   

DA can be used to estimate the states of a model by assimilating all of the 

observations in one go and are referred to as ‘batch’ methods for this reason (Williams et 

al., 2009).  For state estimation, a DA scheme such as 4D-Var (Ziehn et al., 2012) is an 

example of this.  It is the weighted sum of the model’s estimate of the state of the system 

and what is observed.  In multiple dimensions, it is written as follows: 

       J(x 0) =  Jb(x 0)  + 0J ( )o x                    (1.2) 

where Jb(x 0) = (x 0 – x b)
T B 1− (x – x b)  and  Jo(x 0) = i

0

( – [ ]) ( – [ ])
n

i i i i i i
i

H H
=
∑ y x R y x . 

B represents the background error and R denotes the error covariance matrix 

corresponding to the observations and model.  The time points when observations are 

present are denoted by the subscript i, and n is the number of data.  Hi is the mapping 

which converts the model state to a something comparable with the observations.  The 

optimal estimate of x0 is obtained by finding the global minimum of J(x0).  This is 

achieved by using a global descent algorithm (Pearson et al., 2008).  The right panel of 

figure 1.7 shows this in a graphical sense. The blue line refers to the model trajectory with 

no influence from the observation, while the red line refers to the model trajectory after 

the Jb and Jo components of J from equation (1.2) have been minimised.  As with 

sequential methods for state estimation, the parameters are fixed at pre-specified values if 

batch methods just as 4D-Var are used to estimate the states of the model.   
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Figure 1.7 Left panel: schematic of the Kalman filter (Pearson, 2008); Right panel: A 
schematic of the 3D-Var and 4D-Var schemes (Bouttier & Courtier, 1999).  The 3D-Var 
only uses observations at the same time point as the background error covariance matrix, 
whereas 4D-Var uses future observations.   
 

PARAMETER ESTIMATION 

For the majority of DA carried out on large models such as CASA, BETHY, JULES, this 

has been done to estimate the model  parameters, e.g. Richardson et  al. (2010),  Knorr & 

Kattge (2005) and Evensen (2009).  As with the state estimation problem, the DA 

schemes can be split into sequential or batch methods.    For a sequential DA scheme such 

as the Ensemble Kalman filter, an approximation of the Kalman filter that that can 

operate with large and complex models, the parameters are estimated by adding the them 

to the state vector, which is then referred to as the augmented state vector (Evensen, 

2009).  This means that the parameters are not treated as being time-invariant, but change 

for each time-step.  For situations where we need an estimate of the parameters, e.g. to 

make forecasts, the parameter set on the final time-step is used (Hill et al., 2012).  These 

methods are still based on the version of Bayes’ theorem as quoted in equation (1.1).   

For batch DA schemes used for parameter estimation, an alternative version of 

Bayes’ theorem is used as the basis.   

  ( | ) ( ) ( | )p d p p dθ θ θ∝              (1.3)             

This is the same as equation (1.1) except that instead of X, used to denote the state vector, 

θ is used to represent the vector of parameters.  Thus, ( )p θ represents the p.d.f. of the 

prior estimates (or our best guesses) of the parameters – these could be from literature or a 

previous study.  Then, ( | )p d θ  represents the likelihood function, and finally ( | )p dθ is 



Chapter 1: Motivation and Aims 

Edmund Ryan       -      -  2013 44 

the p.d.f. of the posterior estimates of the parameters.   The Metropolis algorithm and 4D-

Var are examples of DA schemes used to estimate parameters in this way.  For 4D-Var, 

the procedure is similar to the state estimation problem except that the parameters are 

augmented to the x0 vector from equation 1.2 (Ziehn et al., 2012). 

Most of the DA studies carried out on global terrestrial carbon models have been 

used for parameter estimation, and so we now briefly review some of these studies.  

MacBean et al. (2010) assimilated soil water data derived from satellite sensor 

measurements to estimate the 13 parameters of an adapted version of the CASA model in 

order to predict CH4 fluxes from a peatland site.  The purpose of the study was to 

determine at what level of accuracy the satellite data would need to be and at what 

frequency in order for the data to be able to constrain the parameters.  To address these 

questions, synthetic data was used.  The authors found that even with infrequent 

measurements with a high uncertainty, the true value of the hydrology related parameters 

could be found by assimilating synthetic soil moisture data.  An extension to this study 

could be to test the effect of the length of the dataset being assimilated on the calibrated 

parameters.   

 An interesting study by Ziehn et al. (2012) estimated 19 parameters of the BETHY 

model using a 4D-VAR approach and the Metropolis algorithm.  For most parameters, the 

posterior probability distribution functions (pdfs) of the parameters were very similar 

under both methods.  The pdfs of the global NEP annual rate for the 1980s and 1990s 

were also very similar under both schemes.  However, the 4D-VAR scheme was much 

more computationally efficient than the Metropolis algorithm 

 Gao et al. (2011) used the Ensemble Kalman filter to assimilate eight streams of 

data from the Duke Forest between 1996 and 2004 into the Terrestrial Ecosystem (TECO) 

model, in order to estimate the model parameters.  The EnKF was able to constrain all but 

two parameters, with these two parameters responsible for the slow C processes such as 

the turnover rate of soil C.  As a result of the EnKF only requiring one model iteration, it 

is very fast to run compared to other DA schemes.  However, one question which remains 

unclear is whether we would get similar parameter estimates if a batch type DA scheme, 

such as the Metropolis algorithm, was implemented.   
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In the next section, we outline the research questions that arise from the current 

knowledge on using DA with the corresponding models.   

 

1.4 Research Priorities and brief outline of thesis 
In this chapter, we have described the terrestrial C cycle and outlined the case how key 

components of it, such as GPP, NPP, NEE, can only be globally estimated using models.  

However, we have also made the case that these models need to be better constrained 

using various types of observations, which is necessary to validate the adequacy of the 

model structure and because these models require better estimates of their parameters.  

We have also described Data Assimilation, and its potential to not only improve the 

estimates of the quantities of interest, but also allow us to better quantify the uncertainty 

in those estimates than models or observations on their own. 

Although the theoretical principles behind DA have been around for a while, e.g. 

the Metropolis algorithm was first formulated in the 1950s (Metropolis et al., 1953), the 

practical implementations of DA have been more recent.  The implementation of DA into 

terrestrial C models is even more recent, mainly of the past 10 to 15 years, and while this 

has been happening, there has been less attention to know how to apply DA to different 

situations.  For example there is currently a whole array of different DA methods, but are 

certain ones better ones for certain situations?  Williams et al. (2009) gave a broad but 

extensive review of how DA has been used with ground based observations.  The authors 

also outlined various challenges that remained for the DA research community using 

terrestrial ecosystem models, which included: 

(1) To explore the effect of assimilating 10+ years of data. 

(2) To avoid confounding effects on missing processes in model representation on 

parameter estimation. 

(3) To assimilate more types of data (e.g. pools/stocks of carbon, earch 

observation data) and to define improved observation operators. 

(4) To fully quantify uncertainties arising from estimates of initial conditions, data 

bias and model structure. 
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Some of these challenges were one of the main sources of motivation for part of the 

research done in this PhD, and are discussed to some extent in chapter 2 (subsection 

2.3.2).  Luo et al. (2011) also stated that not many DA studies have explicitly addressed 

issues directly pertinent to forecasting, such as forecasting accuracy, sources of 

uncertainty and usefulness of forecasting under different domains. 

In chapter two, greater detail is given on the gaps in our knowledge as well current 

knowledge of the terrestrial C cycle.  These then form the basis of the specific research 

questions which are addressed in this thesis, and are set out at the end of chapter two.  

Chapter two also contains a more in depth critical review of the data and models, and an 

argument for the choice of model used in this thesis.   

 Chapters three, four and five then address the specific research questions as set out 

at the end of chapter two.  Finally, chapter six concludes by bringing all the findings 

together and how the results contribute the bigger picture of improving our understanding 

and quantification of the terrestrial C cycle.   
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Chapter 2 

Methods and Objectives of thesis 

 

2.1 Introduction 
In this chapter we provide a technical description of the Data Assimilation (DA) 

algorithms, the model and the data used to carry out the research in this thesis 

(chapters 3 – 5).  For the DA algorithms, we also provide an in-depth critical review 

of the most commonly used ones.  We then review the literature on where DA has 

been used not only in terrestrial C modelling but also in other fields.  This then forms 

the basis for the choice of DA algorithms to use in thesis, and helps direct more 

clearly the broad aims of this thesis and the specific research questions that are to be 

addressed. Determining what DA algorithms to use will then inform the choice of 

model to use in this thesis.  A description of the techniques and methods used to 

obtain data used in the thesis is also given.  A critical review is given for the ground 

based measurements but for the satellite inferred data, this is left to the introduction 

section of chapter five, the only chapter to use satellite data.  We now outline the 

structure of the thesis: 

 Section 2.2 begins by describing and in some cases derives the DA algorithms 

considered for this thesis, with a critical review.  These include: sequential methods 

(subsections 2.2.2 to 2.2.7) which includes the Kalman Filter, the Ensemble Kalman 

Filter, the Ensemble Kalman Smoother, the Particle Filter and Optimal Interpolation; 

global search algorithms (subsections 2.2.8 to 2.2.9) which include the Metropolis 

algorithm and the Genetic algorithm; and Gradient Descent algorithms (subsection 

2.2.10) which include the 3D-VAR and 4D-VAR schemes.   
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 Section 2.3 moves onto discussing the current knowledge on DA in terrestrial 

C modelling and other types of modelling.  This is then used to identify the gaps in 

our current knowledge of DA and a broad overview of the sorts of research questions 

which are to be addressed in this thesis.  This will then form the basis (in subsection 

2.3.2) for the choice of DA algorithms to be used in this thesis.  For the remainder of 

section 2.3 (subsections 2.3.3 and 2.3.4) the DA algorithms to be used will be tested to 

ensure that there are no implementation problems.  This is mainly for the benefit of 

chapter four, where the algorithms are compared when estimating the parameters of a 

model.  Many of the DA algorithms also can make slightly different assumptions and 

so it is also important to identify the implications of these assumptions on parameter 

estimates.  Assuming that there are no implementation issues, we also discuss the 

expectations of the DA algorithms when estimating parameters.   

 Sections 2.4 and 2.5 then describe and critically review the model and data 

used in this thesis.  A decision about the choice of model is also made and this is 

based partly on the DA algorithms to be used and the type of research questions being 

addressed.  

 Although the broad research questions will have been addressed earlier in this 

chapter and at the end of chapter one, in section 2.6 we set out the specific research 

questions that are considered in this thesis.  We discuss the reasons for choosing the 

particular questions, and we also give an overview of how they will be answered in 

the remainder of the thesis.   

 

2.2 Principles and Options for Data 

Assimilation 

2.2.1 The Dynamic Linear Model 

A dynamic linear model is a linear model which is dependent on time.  It is made up 

of the evolution equation and the observation equation, given below.  Equation (2.1a) 

describes the evolution of the system as described by the model, whereas (2.1b) 

converts between the model states and the observations.  The RHS of both have noise 

terms because the model is not perfect, nor is the conversion between model and 

observation space.  
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The Evolution equation:                  
k

t
k

t
k wxMx +=+1

,    ),(~ knk x
N Q0w    (2.1a) 

The Observation equation:             
k

t
kk vHxy += ,       ),(~ R0v

ynk N             (2.1b) 

where t
kx  is an 

xn ×1 dimension vector which is the true state (denoted by the 

superscript ‘t’)  of the system at time step k; 

M  is the evolution operator represented by a (
xn ×

xn ) dimensional matrix.  It 

is based on the science that describes the system, for example a sequence of 

differential equations.  When the model is non-linear, the matrix M becomes 

a function, i.e. the evolution equation would be written as: 

1 )t t
k k k+ = +x M (x w ; 

kQ  is the (
xn ×

xn ) dimensional covariance matrix of the model error (also 

called representation error); 

ky  is an ( yn ×1) dimension vector, which contains all the observations of the 

system at time step k; 

H  is an ( yn ×
xn ) dimensional matrix known as the observation operator, 

which converts the state of the system at time step k to a form which may be 

compared to the observations at that time step; 

kw  is an 
xn ×1 dimension vector containing model noise, which is added at 

each timestep.  It is specified by a zero-mean multivariate normal 

distribution, with error covariance matrix kQ ; 

kv  is an 
xn ×1 dimension vector containing observation noise, which is added 

at each timestep.  It is specified by a zero-mean multivariate normal 

distribution, with error covariance matrix R . 

R  is the ( yn × yn ) dimensional covariance matrix of the observation or 

measurement errors and is defined as R= ( )T
kkE vv ; 

The evolution equation describes how the system evolves through time, while the 

observation equation describes the relationship between the observations and the state 

vector.  
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2.2.2 An Introduction to DA by deriving the 1D Kalman Filter 

One of the earliest DA  schemes to be used  is the Kalman Filter (Kalman, 1960).   Its  

most celebrated application was for the navigation system on board the Apollo Space 

spacecrafts.  It is a sequential DA technique, which means that observations are only 

assimilated into the model one time-step at a time.  Although it is not used in this 

thesis (for reasons explained later), we derive it because the Ensemble Kalman filter 

(EnKF), which is used in this thesis, is an approximation of the Kalman filter (KF).  

For ease of explanation, we start by deriving the KF in the one dimensional case.  In 

this case, 
xn = yn =1 from subsection 2.2.1.  In other words the vectors t

kx , 
ky , 

kw , 

kv , 
kQ and R are all scalars.   

To aid the explanation, we use a simple example.  Assume that we wish to 

know the value of an unknown temperature, denoted by T.  Suppose that we have an 

observation of T  (written oT ) and a best guess or forecast of what T might be (e.g. 

from a model), which we denote as 
fT .  We represent the observational and model 

errors by a Normal distribution.  Thus: 

oT = )(tT + oe                         (2.2a) 

fT = )(tT +
fe              (2.2b) 

where )(tT  is the true value of T, with oe  and 
fe  representing the Normally 

distributed errors in oT  and 
fT , where oe  ~ N(0, 2

os ) and 
fe ~ N(0, 2

fs ).  The 

variances are given by: 

2
os   =  E( 2

oe ) – [E(
oe )] 2   =  E( 2

oe )             (2.3a) 

     and 2
fs   =  E( 2

fe ) – [E( fe )] 2   =  E( 2
fe )            (2.3b) 

We also assume that oT  and 
fT are independent, i.e. 

   Cov(
fo ee , )=0    ⇒   E(

foee )=0            (2.3c) 

The best linear unbiased estimate of T is a linear combination of oT  and 
fT , denoted 

as aT , subject to aT  being an unbiased estimator of T and the variance of aT  (denoted 

2
as ) being minimised, i.e. 

aT  =a oT  +b
fT              (2.4a) 
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where a and b are constants to be found subject to E(aT ) = )( tT  and 2
as  being 

minimised.   
 

(i) If aT  to be an unbiased estimator of T or E(aT ) = )( tT , then 
 

 
 

⇒ 
 

⇒ 
 

⇒ 

⇒ 
 

⇒ 

E( ))( t
a TT − =0 

E( ))(t
fo TbTaT −+ =0 

E( ))()()( )()( t
f

t
o

t TeTbeTa −+++ =0 

E( ))()1( t
fo Tbabeae −+++ =0 

E( )oae + E( )fbe + E( ))()1( tTba −+ =0 

     0    +       0    + )1( −+ ba E( ))(tT =0 

 

(using equation (2.4a)) 
 

(using equations (2.2a) 

& (2.2b)) 
 

 

 

 

E( ) 0)( ≠tT , thus 01=−+ ba , which implies that ab −=1  
 

(ii) The variance of ae  is minimised.   

The variance of ae  ( 2
as ) is E( 2

ae ) – [E( ae )]² = E( 2
ae ) (since E( ae ) = 0). Thus: 

 E( 2
ae ) = E{ }2)( )( t

a TT −  

           = E{ }2)( )( t
fo TbTaT −+  

           = E{ }2)()()( ))()(( t
f

t
o

t TeTbeTa −+++  

           = E{ }2)()()( ))()(( t
f

t
o

t TeTbeTa −+++  

           = E{ }2)( ))1(( t
fo Tbabeae −+++  

           = E{ }2)( fo beae +  

           = E( )fofo eabeebea ++ 2222  

           = 2a E( )2
oe + 2b E( )2

fe + abE( )fo ee  

           = 22
osa + 22

fsb  

           = 22
osa + 22)1( fsa−  

 

(using equation 2.4a)  

 

 

(using equations 2.2a & 
2.2b)  
 

(since 01=−+ ba ) 

 

 

 

(using equations 2.3a, 

2.3b & 2.3c) 
 

(since ab −= 1 ) 

       i.e.     E( 2
ae ) = 22

osa + 22)1( fsa−  

E( 2
ae ) is minimised when da

d E( 2
ae )=0  ⇒  22 oas  – 2)1(2 fsa− =0.  This implies: 
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22

2

fo

f

ss

s
a

+
=     and     

22

2

fo

o

ss

s
b

+
=  

Thus, equation (2.4a) becomes:   

aT  =
22

2

fo

o

ss

s

+ fT +
22

2

fo

f

ss

s

+
oT                         (2.4b) 

⇒  aT  =
22

22

fo

offo

ss

TsTs

+
+

 

⇒  aT  =
( )

22

2222

fo

ffofffo

ss

TsTsTss

+
−++

 

⇒  aT  = )(
22

2

fo
fo

f
f TT

ss

s
T −

+
+  

OR  aT  = )( fof TTKT −+                           (2.5) 

where 
22

2

fo

f

ss

s
K

+
=  is referred to as the Kalman gain.  Using equation (2.5), 2

as  is 

given by:  

       2
as  = E( 2

ae ) = 22
osa + 22)1( fsa−  

                = 2

2

22

2
2

2

22

2

f
fo

o
o

fo

f s
ss

s
s

ss

s














+
+















+
 

                = ( )222

2424

fo

foof

ss

ssss

+

+
 

                   = ( )222

2222 )(

fo

ofof

ss

ssss

+

+
 

⇒                   2
as =

22

22

fo

of

ss

ss

+
                            (2.6) 

Since ( )22

2

fo

f

ss

s

+ <1 and ( )22

2

fo

o

ss

s

+
<1, 2

as  will always be less than 2
os  and 2

fs . 

 

DERIVING THE 1D KALMAN FILTER USING BAYES’ THEOREM 

The formulae for aT  and 2
as  (equations 2.5 and 2.6)  can also be derived using Bayes 
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theorem (Bayes, 1753).  This theorem is central to most DA schemes.  Rather than 

representing the forecast and observed estimates of T in terms of means and standard 

deviations, we represent them in terms of their probability distribution functions.  

Bayes theorem states: 

  )|()()|( TdpTpdTp ∝                    (2.7) 

where  

)|( dTp  is the probability of T given we have some data d.  This is what we are trying 

to determine.   

)(Tp is the prior probability of T, i.e. the p.d.f. whose mode would normally represent 

our best guess of what T should be (say from the model), and where some measure 

of the spread of the distribution (e.g. the standard deviation) would normally 

represent the uncertainty on that estimate.  

)|( Tdp is probability of d given T, i.e. the p.d.f. which represents the observational 

uncertainty.  It is commonly referred to as the likelihood function.   

To demonstrate Bayes theorem in practice, it is now applied to the Kalman filter 

example at the start of this subsection to derive the formulae for aT  and 2
as .  Since 

fT is our forecast (i.e. our best guess) of T and since the error on our guess (i.e. fe ) 

follows a N(0, 2
fs ) distribution (equation (2.1a), this is equivalent to saying that T is 

Normally distributed with mean given by fT  and variance 2
fs .  In a similar way, the 

data value ( oT ) can be thought of representing the data’s estimate of T.  Since the error 

on the data (i.e. oe ) follows a N(0, 2
os ) distribution (equation (2.2a), this is equivalent 

to saying that the data is Normally distributed with mean given by To and variance 2
os .  

In other words, 

   )|( Tdp = 






 −
−

2

2)(

2

1
exp

2

1

o

o

o
s

TT

s π
 

   )(Tp =












 −
−

2

2)(

2

1
exp

2

1

f

f

f
s

TT

s π
 

Thus, using Bayes theorem: 

                    )|()()|( TdpTpdTp ∝    
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 −
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1
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2

1
exp

2

1

2

1

o

o

f

f

of
s

TT

s

TT

ss ππ
  

( | )p T d  


























 −
+

−
−∝

2

2

2

2
)()(

2

1
exp

o

o

f

f

s

TT

s

TT
                 (2.8) 

Applying the natural logarithm to both sides of equation (2.8), to make the 

mathematics neater, gives: 

( )ln ( | )p T d  
2 2

2 2

( ) ( )1

2
f o

f o

T T T T

s s

 − −∝ − +  
 

                 (2.9) 

 

Expanding the inner brackets, collecting like terms and dividing the top and bottom by 

( )22
of ss +  gives: 

    ( )
2 2 2 2 2 2

2 2 2 2

2

2 2

2 2

21
ln ( | )

2

o f f o o f f o

f o f o

s T s T s T s T

s s s s

f o

f o

T T
p T d

s s
s s

+ +

+ +

 
 − +
 ∝ −
 
 + 

 

           
( )2 2

2 2

2

2 2

2 2

1

2

o f f o

f o

s T s T

s s

f o

f o

T A

s s
s s

+

+

 
 − +
 = −
 
 + 

,  where ( )222

22

22

2222

of

offo

of

offo

ss

TsTs

ss

TsTs
A

+

+

+

+ −=  

                                      
( )2 2

2 2

2

2 2

2 2

1

2

o f f o

f o

s T s T

s s

f o

f o

T

s s
s s

+

+

 
 −
 ∝ −
 
 + 

 

i.e.             ( )
( )2 2

2 2

2

2 2

2 2

1
ln ( | )

2

o f f o

f o

s T s T

s s

f o

f o

T
p T d

s s
s s

+

+

 
 −
 ∝ −
 
 + 

                 (2.10) 

Thus up to proportionality, |T d  has normal distribution with mean equal to 

22

22

fo

offo

ss

TsTs

aT
+

+=  which is the same as equation (2.4b), and variance given by 22

22
2

fo

of

ss

ss

as
+

=  

which is equation (2.6).   
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2.2.3 Deriving the Kalman Filter in two or more dimensions 

We now derive the KF in multiple dimensions, i.e. where xn >1 and yn >1 from 

subsection 2.2.1.  We first define −kx̂ , which represents our estimated state of the 

system before assimilating the observations.  This is the prior estimate of the state.  

Once we have assimilated our observations we update the estimate, and the posterior 

estimate of the state is written as kx̂ .  The most traditional Bayesian way to derive the 

posterior (up to proportionality) would be to multiply the pdf (probability density 

function) of the prior distribution with that of the data likelihood [ie, p(kx̂ ) = p( −
kx̂ | y) 

∝  p(y| −
kx̂ ) p( −

kx̂ ) ], which is  what Mandel (2007) does.  However, this is quite 

complicated.  A clearer way of deriving the posterior is if we express it first as a 

weighted sum of the prior estimate and the observations: 

        kkkkkk yKxHKIx +−= −ˆ)(ˆ ,             (2.11) 

where kK  is known as the Kalman gain, which contains information about the error 

covariance matrices of the model state and the observations (Q k and R k).  H  k converts 

the prior state (−
kx̂ ) into a form comparable with the observations (y k).  Essentially, 

equation (2.11) is the matrix equivalent of equation (2.4a) where b=1–a.  Therefore 

one way of thinking about it is that, in one dimensional terms, if K  k is large we give 

more weighting to the observation (i.e. our posterior estimate of the state is closer to 

the observation).  However, if K k is small, we give more weighting to the prior 

estimate (ie our posterior estimate is closer to the prior estimate).  After expanding the 

bracket and factorising in terms of K k we get: 

)ˆ(ˆˆ −− −+= kkkkkk xHyKxx             (2.12) 

This is a more commonly used form (equivalent to equation (2.5) in the 1D case), 

although it is sometimes also written as: 

kkkk dKxx += −ˆˆ                       (2.13a) 

)ˆ( −−= kkkk xHyd            (2.13b) 

The above two formulae are called the update equations.  However, we have still to 

derive K k.  To do this, we first define a few things.  Let −
kP  and kP  be the covariance 

matrices for our prior and posterior estimates of the state ( −
kx̂  and kx̂ ) respectively 

(the multivariate equivalent of 2
os  and 2

fs  from the 1D KF) .  In other words, 
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])ˆ)(ˆ[( Tt
kk

t
kkk xxxxP −−Ε= −−−  and ])ˆ)(ˆ[( Tt

kk
t
kkk xxxxP −−Ε= , where t

kx  is the true 

state of the system at time k.  It can be shown that:  

1111 −−−−
− += k

T
kkkk QMPMP     and    −−= kkkk PHKP )I( , 

where I is the identity matrix - see appendix A for the proofs.  Note that kP involves 

kK , therefore if we use information in kP  to optimise kK , this will be the best course 

of action.  One way of measuring how good the posterior estimate of the states are is 

to sum the variances of their errors.  This is the same thing as summing the elements 

in the leading diagonal of kP .    Therefore, since we want to optimise kK , we choose 

kK  such that the trace of kP is minimised.  After some algebraic manipulation, we 

deduce that: 

 

1)( −−− += k
T
kkk

T
kkk RHPHHPK  

 

The proof of this can be found in Appendix A.  Explanation of how the Kalman filter 

works is almost complete.  A final point needs to be made about the initial state, 0x̂ .  

Before anything can happen, this must be estimated along with its corresponding error 

covariance matrix 0P .  This can be done via expert knowledge, related observational 

information, or past experiments.  More recently some studies, for example Braswell 

et al. (2005) or Fox et al. (2009), have treated 0x̂  as parameters to be estimated.   Note 

that 0P here is the same as the background error covariance matrix, B, from the 

variational data assimilation methods (see subsection 2.2.10).   

To summarise, we outline the step by step process for implementation of the 

Kalman filter: 

(1) Recall first of all the evolution and observation equations: 

a. k
t
kk

t
k wxMx +=+1 ,          ),(~ knk x

N Q0w  

b. k
t
kkk vxHy += ,               ),(~ knk yk

N R0v  

(2) Start with 0x̂  and 0P .             (the initial conditions) 

(3) Do k = 1� N              (i.e. we do a loop from day  

      k=1 to k=N) 

(4) Calculate 11 ˆˆ −−
− = kkk xMx                   (prior estimate of state) 
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(5) Calculate 1111 −−−−
− += k

T
kkkk QMPMP  (error covariance matrix of   

                  prior estimate) 

(6) if {observations, yk exist at time k} then 

(7) calculate 1)( −−− += k
T
kkk

T
kkk RHPHHPK   (Kalman gain matrix) 

(8) calculate )ˆ(ˆˆ −− −+= kkkkkk xHyKxx          (posterior estimate of state) 

(9) calculate T
kkk

T
kkkk KRKSPSP −− +=          (error covariance matrix of  

                posterior estimate) 

(10)   else 

(11)                    −= kk xx ˆˆ  

(12)                    −= kk PP ˆˆ  

(13)   end do 

 

Note that: 

(1) In many descriptions of the KF, a subscript is not used for the evolution matrix 

( kM ) since nk MMMMM ====== ......210 , so we just use M instead.  For 

similar reasons, subscripts are often not needed for kH , kQ  and kR , which are just 

replaced by H, Q, and R respectively.     

(2) The prior estimate of the state is sometimes called the forecast, with a 

superscript f  being used.  Also, the posterior estimate of the state is sometimes 

called the analysis, with a superscript a used.   

(3) If the KF is used to give a sequential estimate to the standard Least Squares 

Regression problem, then the solution is not at the global optimal (i.e. for all the 

point collectively) until the end of the time-series, i.e. until all the observations have 

been assimilated.  It is important to note though that the solution is optimal at each 

point where an observation is present, since at each point the matrix K k is chosen 

such that the trace of the matrix Pk is minimised (see top of page 56).   

 

LIMITATIONS OF THE KF 

The Kalman Filter (KF) has been successfully applied in many real world problems, 

most notably as part of the Apollo space missions (Mackenzie, 2003).  However, it 

has two major drawbacks: 
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(a) When the model is non-linear, a matrix cannot be used to model the evolution 

of the system, so the evolution equation becomes, )x(Mx kk =+1 , where )(M ⋅  

is an operator.  This means our prior estimate of the state at time k+1, i.e. 1k+x  

is not Normal.  However, one of the assumptions of the Kalman filter is that 

the prior and likelihood are Normally distributed.  In more practical terms, the 

formulae for f
kP  and K incorporate a matrix M , thus these cannot be updated 

when M is non-linear.  This can be overcome by using the Extended Kalman 

Filter (Evensen, 2007) which operates in exactly the same way as the Kalman 

Filter except that the non-linear model operator )(M ⋅  is linearised, allowing 

the evolution of the modeled system to be put into matrix form. However, 

there are problems with the Extended Kalman Filter (see Evensen (2007) for 

details) so that in practice it is not greatly used.   

(b) When the dimension of the state vector is very large (e.g. of the order of 

millions of elements as in weather forecasting), the dimension of the error 

covariance matrix, f
kP , becomes too large. Consequently, storing f

kP  and 

propagating it forward in time (i.e. using it in the formula 

k
Ta

k
f

k QMPMP += −1 )  becomes computationally very expensive. 

 

2.2.4 The Ensemble Kalman Filter (EnKF)  

USING THE EnKF TO ESTIMATE THE MODEL STATES 

A widely used alternative to the Kalman Filter, which overcomes the problems of non-

linearity and a large state vector, is the Ensemble Kalman Filter (EnKF), which was 

invented by Geir Evensen (Evensen, 1994).   It is a sequential data assimilation 

algorithm which, like other DA algorithms, is based on Bayes’ theorem (Bayes, 1763).  

It is an adaptation of the Kalman Filter method which uses stochastic methods based 

on parallel model runs (called ensembles) to estimate f
kx  and f

k 1+P , with the error 

covariance matrices representing the covariances between the ensembles, rather than 

between the elements of the state vector.  For terrestrial ecosystem models, the EnKF 

has been successfully used for state and parameter estimation (Williams et al., 2005, 

Quaife et al., 2007).    The formulation of  the EnKF is described  in detail by Evensen  
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Figure 2.1 Schematic of the Kalman Filter (left panel) and the Ensemble Kalman 
Filter (right panel), taken from Pearson (2008) and Reichle (2001).   
 

(2003, 2009).  An outline of how it works is now given with a schematic of how it 

works given in the right panel of figure 2.1 with left panel corresponding to the 

Kalman filter.   

 

STEP 1: Referring to the evolution and observation equations (equations (2.1a) and 

(2.1b)), we first need estimates of the matrices kQ  and R, and the initial conditions, 

0x̂  and 0P .  We define the ensemble state matrix (with dimension n × N) at time k=0: 

  [ ] [ ]N
a φφφ |...||ˆ|...|ˆ|ˆˆ

210000 += xxxX ,    ),(~ 0P0ni Nφ ∀ i       

where n is the number of elements of the state vector and N is the number of 

ensembles. 

 

STEP 2: At time point k, the n × N forecast ensemble matrix, fkX̂ , is defined as: 

  [ ]N
a
k

f
k τττ |...||)X̂(MX̂ 211 += − ,     ),(~ kni N Q0τ ∀ i          (2.14)  

 

STEP 3: The estimated forecast error covariance matrix, f
kP

~
, is given by: 

T

f
k

f
k

f
k

f
k

f
k N 








−








−

−
=

__________

ˆˆ
1

1~
XXXXP                         (2.15) 

where  







=

_________________

||| f
k

f
k

f
k

f
k xxxX ⋯ ,                         (2.16a) 

 ( )∑
=

=
N

j
j

f
k

f
k N 1

____

ˆ
1

xx ,                          (2.16b) 
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and ( ) j
f
kx̂  is the jth column of the matrix f

kX̂ .   

 

STEP 4: The analysis ensemble estimates of the state are contained in a
kX̂  with 

corresponding error covariance matrix represented by a
kP

~
 . These two matrices are 

calculated using: 

)ˆ(
~ˆˆ f

kkk
f
k

a
k XHYKXX −+=                        (2.17) 

T

a
k

a
k

a
k

a
k

a
k N 








−








−

−
=

__________

ˆˆ
1

1~
XXXXP                       (2.18) 

where, 

kK
~

 is the Kalman Gain matrix, which contains the information about the uncertainty 

in the observations and the uncertainty of the model.  It is given by 

1)
~

(
~~ −+= RHPHHPK Tf

k
Tf

kk .  See appendix A for derivation. 

kY is a matrix created by replicating the vector of observations by the number of 

ensembles and adding noise: [ ] [ ]Nkkkk εεε |...|||...|| 21+= yyyY ,  

),(~ R0ni Nε ∀ i. 

H is the observation operator, a matrix which converts the model state to something 

comparable with the observations. 

The tildas on f
kP

~
, a

kP
~

 and kK
~

indicate the Ensemble Kalman versions of the f
kP , a

kP  

and kK  used in the original Kalman Filter.   [Note that from Evensen (2009), an 

alternative formula for a
kP

~
 can be used given by f

kk
a
k PHKP

~
)

~
I(

~ −= ]. 

 

STEP 5: Steps 2 to 4 are repeated for all time-steps, i.e. k=2, 3, …  For time-steps 

where there are no observations, f
k

a
k XX ˆˆ =  and a

kP  = f
kP .   

 

STEP 6: At any time k, the best estimate of the state of the system is given by 
____

a
kx , the 

sample mean of the ensemble of the analysis estimates, given by: 

         ( )∑
=

=
N

j
j

a
k

a
k N 1

____

x̂
1

x ,                        (2.19) 
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where ( ) j
a
kx̂  is the jth column of the matrix a

kX̂ .  This is because the distribution of 

the ensembles at the analysis step is assumed to be Normal.  We check this 

assumption by plotting the ensembles at each time-step for each element of the state 

vector. 

 

USING THE EnKF TO ESTIMATE THE MODEL PARAMETERS 

The EnKF can be used to estimate parameters whilst simultaneously estimating the 

model’s states.  This is done by adding the parameters to the state vector, which is 

then referred to as the augmented state vector (Evensen, 2009).  This means that the 

parameters are not treated as being time-invariant, but change for each time-step.  The 

evolution of the parameter elements of the augmented state matrix is the identity 

matrix.  In other words the forecast estimate of a parameter p at time t is the analysis 

estimate of p at the previous time step, t–1.  In mathematical terms, we would 

represent this as: ( )f
tp = ( )

1
a

tp −  where the superscripts denote the forecast and analysis 

estimates of p.  Evensen (2003) states that the parameter distributions, represented by 

the spread of the ensembles, on the final time-step should be used since the parameter 

estimates will be then conditional on all the observations, and will be as globally 

optimal as the Ensemble Kalman Smoother (Evensen & van Leeuwen, 2000). This is 

what is done in Fox et al. (2009) when the EnKF was used to estimate the parameters 

to the DALEC model.   

Furthermore, when the EnKF is used to estimate model parameters, the model 

error in propagating the augmented state vector forward in time is often required to be 

very small.  In Fox et al. (2009) and Spadavecchia et al. (2011) the model error was 

set to be less than 0.5% relative the augmented state vector.  This was also done in 

chapter four for the EnKF parameteristaion set up.  As with Fox et al. (2009) and 

Spadavecchia et al. (2011) this was done to limit the effect of the model error getting 

very large, so that the ensembles become very heavily stochastic, when there are large 

gaps between observations.   

 

LIMITATIONS OF THE EnKF 

A consequence of the EnKF, which is also true for the KF,  is that the mass balance of 

the model is likely to be broken.  In other words, for an individual ensemble member 
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(i.e. for one of the columns of a
kX̂  in equation (2.17)), certain relationships between 

the model states (such as NEE = Ra + Rh1 + R h2 – GPP) may not be true.  This has no 

negative consequences in practical terms, but it is nonetheless limitation of the EnKF.  

Secondary filtering methods to retain the mass balance (e.g. Pan & Wood, 2006) can 

be implemented but this reduces the generality of the results and adds a whole extra 

level of complexity.   

 Since the EnKF assumes that the model noise is Gaussian, if the model is non-

linear any Gaussian uncertainty will be transformed to another distribution once inside 

the model (equation (2.14)).  However at the analysis step (equation (2.17)), this 

distribution will be forced to be Gaussian even if the model does not want it to be.  

For this reason, the Particle Filter (PF) is sometimes used instead of the EnKF for state 

estimation problems because any distribution can be used for the model noise and are 

allowed to persist at the analysis step, i.e. it is not forced to be a particular distribution.  

However for models such as DALEC and DALEC-D which are only slightly non-

linear, this issue is unlikely to be a problem (Quaife, T., 2011, [personal 

communication]).    

 

2.2.5 The Ensemble Kalman Smoother (EnKS) 

The Ensemble Kalman Smoother (Evensen & van Leeuwen, 2000) is the more general 

case of the Ensemble Kalman filter where the estimate of the model state at time t is 

conditional not only on data at time t but at time points at all previously occurring 

observations.  Moreover, the posterior distribution of the state vectors at the previous 

time points are updated.   

 In mathematical terms if tx  and d t  represent the modelled and observed state 

of the system at time t, then the Ensemble Kalman filter approximates the conditional 

probability distribution p( tx |d t ) using Bayes’ theorem, i.e. p( tx |d t ) ∝ p(d t | tx )p( 

tx ) and representing the probability distributions by a distribution of parallel 

realizations or ensembles.  In contrast, the Ensemble Kalman Smoother seeks to 

estimate the probability distribution, p( 0x ,...., 1t−x , tx |d 0 ,…, d 1t − , d t ).  Using Bayes’ 

theorem, this proportional to: 

                  p( 0x ,..., tx |d 0 ,…, d t ) ∝ p(d 0 ,…, d t | 0x ,...., tx ) p( 0x ,...., tx )            (2.20) 
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Assuming that the model evolution is a first order Markov process (Evensen & van 

Leeuwen, 2000), i.e. p( tx | 0x ,...., 1t−x ) = p( tx | 1t−x ), and that the data d 0,…, d 1t − , 

d t are independent, equation (2.20) can be expressed as: 

    p( 0x ,..., tx |d 0,…,d t )  

∝  p( 0x ) p( 1x | 0x ) p(d1 | 0x ) p( 2x | 1x ) p(d 2 | 1x ) … p( tx | 1t−x ) p(d 1t − | tx ) 

As with the EnKF, this equation is evaluated sequentially.  (Evensen & van Leeuwen, 

2000).  Beginning with the probability distribution of the initial state vector p( 0x ), the 

EnKS can be computed sequentially using the following equations: 

                       p( 0x , 1x |d 1) ∝   p( 0x )  p( 1x | 0x ) p(d 1 | 0x )             (2.21) 

         p( 0x , 1x , 2x |d 1 , d 2 )  ∝   p( 0x , 1x |d 1) p( 2x | 1x )  p(d 2 | 1x )            (2.22) 

         ⋮ 

       p( 0x ,..., tx |d 0,…,d t )  ∝   p( 0x ,..., 1t−x |d 0,…,d 1t − )  p( tx | 1t−x )  p(d 1t − | tx )        (2.23) 

Evensen & van Leeuwen (2000) state that at the final time point in the time window 

the EnKS operates over, the post-assimilation state vector is the same as if 

corresponding one computed by the EnKF.  In this way, the parameter estimates 

obtained using the EnKF are globally optimal in the same way that the EnKS 

estimates are also.  However, the authors also emphasise that at all other time points 

the EnKF and EnKS estimates will be different.  In particular, the EnKF estimates at 

all time points except the end one are sub-optimal but they are optimal for the EnKS.  

The reason for this optimality is that for a time point ts, where 0 < ts < t and t is the 

current time window, the EnKS estimates depend on observations both forward (to the 

current time t) and backwards in time, whereas the EnKF estimates are only affected 

by those back in time and in particular by the previous time point only.   In practical 

terms, this results in a smoothing effect on the trajectories of the state vector elements.   

The main disadvantage to the EnKS compared to the EnKF is that it is more 

computationally demanding and more complicated to set up.  This is especially true 

given that the parameter estimates produced by the EnKF are globally optimal and the 

same as those produced by the EnKS (Evensen & van Leeuwen, 2000).  The EnKS is 

appropriate when we require these optimal estimates of the model states for all time 

points such as in Stroud et al. (2010).  However, for large complex models which are 

computationally expensive to run, where we might be primarily interested in obtaining 

parameter estimates and uncertainties, the EnKF will be far more computationally 
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efficient than the EnKS.   Even when we are only interested in state estimation, 

Evensen & van Leeuwen (2000) state that the computational cost may be so high that 

a trade off may be to apply a lagged EnKS, where model states are only updated for a 

subset of every spaced time point.  When the model is simple, the EnKF may still be 

preferred – Evensen & van Leeuwen (2000) state that the EnKF is a first guess of the 

EnKS and this sense can be thought of as an approximation of EnKS.  Therefore, if an 

approximation is all that is needed, then the EnKF may be preferred not only to 

overcome the additional computational cost, but also the extra time required to include 

the additional complexity in the programming code.  

 

2.2.6 The Particle Filter (PF) 

To derive the particle filter (PF), we start with Bayes’ theorem: 

)(

)()|(
)|(

ψ
ψψψ

d

md
m p

pdp
dp =  

where ψ  is the model state at a unspecified time point, and d is the data being 

assimilated.  The ps refer to the pdfs of the model and data (subscripts m and d).  

Standard Bayesian statistics theory states that)(ψdp  can be expressed as 

∫ ψψψ dpdp md ).()|( , i.e.: 
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ψψψ
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).()()( ψψψψψ , equation (2.24) becomes: 
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)(ψmp  is approximated by making N random draws from it, and these are referred to 

as particles.  Van Leeuwen (2010) states that the model is represented by a sum of 

delta functions positioned at the model states chosen as particles: 

            ∑
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i
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p
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1

)( ψψδψ  

 

Substituting this into equation (2.25) results in:    
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where          
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ω                         (2.27) 

is referred to as the weight of the ith particle.  Although any probability can be used 

for )|( id dp ψ , the pdf of the observations given the model state iψ , it is often treated 

as being Normal, i.e. 

 
( ){ }











 −
−=

2

2

2
exp)|(

σ
ψψ i

id

Hd
Adp  

where ( )iH ψ  is the observational operator and σ  is the standard deviation of the 

observational error.  Summarised in figure 2.2, the step by step process of the particle 

filter is then (van Leeuwen, 2009):  

(1) Sample N particles iψ  from the initial model probability density p( )0(ψ ), in which 

the  superscript 0 denotes the time index.  

(2) Integrate all particles forward in time up to the measurement time. In probabilistic 

language we denote this as a sample from p( )| )1()( −n
i

n ψψ for each i (in other words 

for each particle iψ  run the model forward from time n–1 to time n using the non-

linear model equations). We then add some random model noise to )(nψ .   

(3) Calculate the weights according to (2.27) and attach these weights to each 

corresponding particle (i.e. equation (2.26)).  Note that the particles are not 

modified only their relative weight is changed. 

(4) Increase n by 1 and repeat steps 2 and 3 until all observations up to the present 

have been processed.  
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Figure 2.2 The standard particle filter (van Leeuwen, 2010).  The prior (blue in the 
online article) pdf is sampled by a number of particles (10 in this case), indicated by 
the vertical bars (dark blue). These particles are all propagated forward in time using 
the full nonlinear equations, indicated by the lines (brown). When observations are 
present we see the prior particles as vertical bars (blue) again. The pdf of the 
observations is given by the curve (green). 
 

A limitation with the PF in this form is that the particles which continually remain 

furthest from the observations will get the smallest weights until these weights 

become close to zero.  Van Leeuwen (2009) found that when applying this method to 

a low-dimensional model, after only a few analysis steps most of the weight lay with 

one particle.  This is referred as filter degeneracy. To overcome this problem, the PF 

was modified such that particles with very low weights are thrown away, and particles 

with high weight are resampled (i.e. multiple copies are made); the higher the weight 

of the particle, the more copies are made, until the total number of particles becomes 

N again.   

 

2.2.7 Optimal Interpolation  

This was one of the first DA  schemes to be used  by the Met Office to make  weather  

forecasts (Cressie, 1990).  It is similar to KF except that the error covariance matrix 

represents spatial correlation rather than uncertainty in the state vector.  Its advantage 

is that it is simple to implement and it can be quick to run.  Its weaknesses are that no 

uncertainty is  specified for the  observations (or the model)  –  the result of this is that 

when different sets of observations are used on different parts of the model state, 

biases in the model’s estimates can occur.   
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2.2.8 The Metropolis algorithm 

The Metropolis algorithm is a full Markov Chain Monte Carlo (MCMC) algorithm.  It 

uses a numerical least squares approach to find the distribution of model parameters 

that provides optimal fits between the model and observations, and can avoid local 

minima.  Unlike traditional least squares, which finds a single set of parameters (the 

optimal set), the Metropolis algorithm finds a distribution of parameter sets which are 

close to the set that gives the global minimum of the sum of squared differences 

between the observations and model.  The algorithm was first developed by 

Metropolis et al. (1953), and was adapted for applications to geophysics (Mosegaard 

& Tarantola, 1995) and later for terrestrial carbon modelling by Knorr & Kattge 

(2005), Hill & Williams (2009) and Fox et al. (2009).  We begin by giving an 

overview of the basic algorithm. 

 

OVERVIEW OF BASIC FORMULATION OF THE METROPOLIS ALGORITHM 

In the subsections that follow this one, we describe how the Metropolis algorithm is 

applied in a Bayesian setting, but when the algorithm was first developed it was not 

developed fort this purpose.  Metropolis et al. (1953), who first formulated the 

Metropolis algorithm, used it to determine ideal pressure of a configuration of 

interacting molecules (simulated using a simple model) at a phase transition, given a 

specified temperature and a specified number of molecules.  The configuration was 

optimal if the corresponding pressure and pre-determined temperature obeyed the 

ideal pressure law.  The ideal pressure, based on a specific configuration, could not be 

determined analytically because it required determining the expectation of the 

Boltzmann distribution, used to simulate the distribution of molecules, which involved 

an unsolvable integral.  It was unsolvable because it contained an unknown 

normalising constant, and the exponential of potentially complicated Energy function.  

The Metropolis algorithm is unique in that it allows one to generate samples from the 

desired distribution without needing to know the value of the normalising constant.  

Put simply if we wish to know the probability distribution g(x), where g(x) = c*f(x), 

and c is known but f(x) is known, the Metropolis algorithm allows us to approximate 

g(x) withoug knowing c.  For this reason, it has become a very widely used algorithm 

with the Metropolis et al. (1953) paper being cited close to 20,000 times. 
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 We now present a basic overview of the algorithm.  As above, let g(x) be the 

probability distribution we require to know, and let f(x) be a probability distribution 

proportional to g(x).  We first randomly select a point x0, and choose a proposal 

distribution Q(x*|x) which described the locations of future points in the sample space 

starting with x0.  A common choice is the Normal distribution, which says that points 

close to the current sampled point x are more likely to be selected than further away 

points.   The function Q is known as the proposal distribution.  Then, for each iteration 

i (starting at i=0) a candidate point x* is chosen from the distribution Q(x*|xi).  An 

acceptance ratio α = f(x*)/f(x i) =g(x*)/g(xi) is then computed and this determines 

whether the candidate should be accepted or rejected.  If α ≥ 1, then the candidate 

point x* is more likely than xi, therefore we automatically accept x* as the new 

sampled point xi+1.   If α < 1, then we accept the candidate with probability α.  The 

algorithm continues in this way for i=1,2,3,4, …., until part of the sample space with 

highest probability is reached.   

 A key development of the algorithm occurred through Hastings (1970), and we 

describe this now.  The Metropolis algorithm operates by randomly moving around 

the sample space (full details provided after this subsection); this movement is 

controlled by a proposal distribution Q(x*|x), where x* is the proposed point in the 

space and x is the current location in the space.  For the Metropolis algorithm 

described by Metropolis et al. (1953), the proposal distribution needs to be 

symmetrical.  Hastings (1970) extended the algorithm so as the propropsal distribution 

need not be symmetric.  This extended version of the algorithm is thus called the 

Metropolis-Hastings algorithm, and the traditional Metropolis algorithm is thus a 

special case.   

 A parameter of the proposal distribution is the step-size, or some quantity 

which describes how big a jump to make when jumping to a new part of the sample 

space.  For example, if the Normal distribution is chosen for the proposal, the size of 

the jumps is controlled by the standard deviation parameter.  When the function g(x) 

we wish to sample from is multi-dimensional, finding the right proposal distribution 

can be difficult in order for the step-size to be just right in all dimensions.  Problems 

can arise through choosing the wrong one.  Gemen & Gemen (1984) overcame issues 

such as these by proposing Gibbs sampling.  This involves proposing a new sampled 
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point in each dimension, rather than a multi-dimensional sample point, conditioned on 

the most recent values of all the others.   

 Further variants of the Metropolis algorithm continue to emerge, for example 

Černý, V. (1985) proposed adaptive simulated annealing, where the stepsize varies for 

different iteration steps.  Applications of the Metropolis-Hastings algorithm are 

diverse and include, among others, Medicine (Gilks & Best, 1995), geophysics 

(Mosegaard & Tarantola, 1995), hydrology (Vrugt et al., 2003) and terrestrial carbon 

modelling (Knorr and Kattge, 2005).  

 A detailed description of how the algorithm has been applied in terrestrial 

carbon modelling is now given, based on Knorr & Kattge (2005), Hill & Williams 

(2009), and Fox et al. (2009).   

 

THE DYNAMIC MODEL 

Let the dynamic model be represented by the formula: 

m=M(p,S)                         (2.28) 

where 

M denotes the actual model. 

m is the output of the model represented by an (n×1) vector covering the n time-points 

the model is run for.  For chapters three and four which use the Metropolis 

algorithm, there were at most two types of observations (which were NEE and 

LAI).  To make the explanation more straightforward, we assume that there is only 

one type of observation, i.e. m is a vector.  However we provide more explanation 

when there are two types (i.e. m is a two column matrix).  

p is the (p×1) vector of model parameters,  

S is the (n×s) matrix of site specific inputs, where s is the number of inputs, for 

example the meteorological observations such as minimum and maximum 

temperatures at each time-point.   

Since the elements of S are fixed and known, the RHS of equation (2.28) is written as 

M(p) .   Let d represent the (l×1) vector of observations (1 ≤ l ≤ n) over the 1:n time-

window, and let m* be a sub-vector of m where elements of m are included in m* if 

observations are present at the same time-point.  For example, if n=10 and 

observations are only present at the 2nd, 3rd and 10th time-points, then m* is a 3×1 

vector composed of the 2nd, 3rd and 10th elements of m.  Since m* is determined from 
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m and m=M(p) , m* is also technically a function of p.  For ease of the explanation 

that follows we set m*=M(p) .   

 

BAYES THEOREM 

The purpose of the Metropolis algorithm is to find a set of parameters p where the 

misfit between m* and d is minimized.  Frequentist techniques, such as least squares, 

will give one estimate of p.  However, Bayesian techniques instead give a distribution 

of estimates of p.  Bayesian techniques use Bayes’s theorem (Bayes, 1763) at the core 

of their calculations.  In a nutshell, this states that if you have an unknown quantity 

(e.g. a parameter in a model), rather than just using observations to gain an estimate of 

this unknown (as is the case in frequentist statistics), we utilize other information we 

might have, which we refer to as the prior.  This prior is represented by a probability 

distribution.  Using Bayes’ theorem, we can combine this prior knowledge with our 

observations to obtain a distribution (rather than a single estimate), called the posterior 

distribution, by the following formula: 

         f(p) = v L(p) ρ (p)                                    (2.29) 

where v is a normalization constant, L(p) is the likelihood function which expresses 

the degree of fit between the data predicted from the model and the observed data 

andρ (p) is the prior pdf (Mosegaard & Tarantola, 1995).  The likelihood function is 

expressed as: 

        L(p) = exp{-Jm(p)}              (2.30) 

with   

Jm(p) = 2
1 (M(p) – d) T  C 1−

d (M(p) – d) 

where C d  is the error covariance matrix of the observations.  Since we assume that 

the observational errors are Normally distributed, when there is only one observation 

type C d  is simply the variance of this distribution.  When there are two observation 

types, C d  is a 2×2 matrix where the diagonal elements are the variances of the 

Normally distributed errors of the two observation types and the off-diagonals 

represent any covariance between the two types.  In a similar manner the prior pdf, 

ρ (p), is written as: 

                 ρ (p) = exp{-J p (p)}                         (2.31) 

with   
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J p (p) = 2
1 (p – p0)

T  C 1−
p ( p – p0) 

where p0 is the vector of prior values of the parameters (our first guess at what the 

parameters should be), and C p is the error covariance matrix of the priors which 

represents the uncertainty of these prior beliefs.  The above is consistent with what is 

described in Mosegaard & Tarantola (1995), Knorr & Kattge (2005), Hill & Williams 

(2009) and Fox et al. (2009). 

Throughout this subsection the priors are assumed to be Normally distributed, 

and this is what was done for the Metropolis algorithm in chapter four.  However in 

some situations, we may have very poor knowledge about the priors; and the uniform 

distribution is often used (this is what is done in chapter three).  At a later point in this 

subsection we describe how the implementation of the algorithm changes with this 

change of distribution for the prior.   

 

USING MONTE CARLO TO APPROXIMATE THE POSTERIOR DISTRIBUTION 

What is described below is consistent with what is described in Mosegaard & 

Tarantola (1995), Knorr & Kattge (2005), Hill & Williams (2009) and Fox et al. 

(2009).  The posterior pdf, f(p) (equation 2.29), is usually impossible to derive 

analytically so instead Markov Chain Monte Carlo techniques are used to approximate 

f(p) by representing it as a sample of parameter sets p )1( , p )2( , …, p )(N , which have a 

distribution whose highest density is the maximum of f(p).  This sampled distribution 

can be used to compute the expected value of f(p), using the standard expectation 

formula given by: 

∫= )()( ppp ff .dp ∑
=

≅
N

i

i

N 1

)(1
p  

Since L(p) and ρ (p) are assumed to be Normally distributed, analytically this would 

guarantee that their product, i.e. the posterior distribution f(p) (equation (2.29), would 

also be Normal.  Using Monte Carlo techniques to approximate f(p) should also result 

in it being Normal – whether it is or whether it is not, we use the modal value (i.e. the 

value with the highest probability) as the best estimate of the parameter.  If the 

posterior is Normal, then the mode is approximately equal to the mean.  The width of 

the marginal distribution gives us an idea of the uncertainty we have on each 

parameter estimate; this is represented by an interval with the 2.5th and 97.5th 

percentiles as its lower and upper bounds.   
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LOG-NORMALISED PARAMETERS 

We follow the methodology of Knorr & Kattge (2005), Hill & Williams (2009) and 

Fox et al. (2009) where a differentiation is made between model parameters written as 

{ )(
1
mP , )(

2
mP , …, )(m

MP } and log-normalized parameters, p={ )(
1

ap , )(
2
ap , …, )(a

Mp }, the 

latter of which are used in the Metropolis algorithm, where the superscripts (m) and 

(a) denote model and algorithm, and where M is the number of model parameters (e.g. 

for DALEC and DALEC-D, M equals 11 and 17 respectively).  In order for the model 

parameters to always be positive (which is important as it is biologically meaningless 

for them to be negative), we assume that the prior distribution of the ith model 

parameter )(m
iP  is Lognormal with probability distribution function given by: 
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A consequence of this is that when we take the natural logarithm, the resulting 

distribution is Normal.  In other words, if )(m
iP  ~ Log-N( 2,σµ ), then )ln( )(m

iP  ~ 

N( 2,σµ ).  To make the algorithm run more efficiently, we also scale the model 

parameters so that the means of each of them (i.e. each )(a
ip ) are the same.  Knorr & 

Kattge used a value of 1, and for consistency this same value is adopted here, thus 

)(a
ip ~N(1, 2s ).  The authors also used equation (2.24) to link )(m

iP  to )(a
ip , and the 

same formula is adopted for this thesis too, again for consistency.    
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where ( )
,0
m

iP  is mode of the log-Normal distribution prescribed to )(m
iP , which is 

prescribed beforehand. The Metropolis algorithm can be initialised from random 

location in the parameter space, but here (as was done in Knorr & Kattge, 2005) they 

are initiated from the mode of )(m
iP in the model parameter space, i.e. ( )

,0
m

iP .   Thus, the 

ith parameter used for the algorithm was initialised from 1, i.e. )(m
iP = )(

0,
m

iP  ⇔ )(a
ip =1 

for all.   

In Knorr and Kattge (2005), three different runs of the Metropolis algorithm 

were carried out using different values of s, namely 0.125, 0.25 and 0.5.  However, the 

authors of that paper did not say, given the form of equation (2.32), whether these 

values were appropriate.  In the text that follows we describe that, under the 
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assumptions of )(m
iP  following a Log-Normal distribution, having the mode of ( )

,0
m

iP  

and a variance of ( )2( )
,0
m

is P× , what the most appropriate value of s is.   Note that under 

the form of equation (2.32) any value of for the mean of )(a
ip  is acceptable, thus the 

choice of 1 is arbitrary.   

First, we start by rearranging to make )(m
iP  the subject of equation (2.32), i.e. 
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With the mean and variance of the prior distribution of )(a
ip set to 1 and 2s , this 

means )(a
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(using equation 2.32) 

 
 

(using ln(ab)=ln(a)+ln(b), 
and ln(e)=1) 
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, Y=g(X) where g(X) = ( )e
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strictly monotonic, the probability distribution function of Y (i.e. )(m
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determined by using the standard formula: 
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Thus using the notation from the previous page, µ = ( )
,0ln( )m

iP  and 2σ = s2  and the fact 

that the mode and variance of a Log-Normal distribution is 
2σµ−e  and 

22 2)1( σµσ +− ee , 

this means that mode and variance of the pdf of )(m
iP  is very close to ( )

,0
m

iP  and 

( )2( )
,0
m

is P× as long as s≤0.5.   

 A final point to note is that although the model parameters are converted to 

log-Normalised parameters at the start of the Metropolis algorithm, they are converted 
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back to model parameters before being outputted.  In this way, estimates of the model 

parameters can be compared with other DA methods since it is the model parameters 

that the parameter estimates are based on.  

 

THE PRIOR DISTRIBUTION OF THE LOG-NORMALISED PARAMETERS 

As explained, the log-normalized parameters are all initialized at 1, i.e. p={1,1, …,  1} 

with corresponding standard deviation fixed at s.  In terms of the covariances of the 

parameters for the prior distribution, these are difficult to estimate well, thus for 

simplicity they are all assumed to be zero.  This is consistent with Knorr and Kattge 

(2005), Hill & Williams (2009) and Fox et al. (2009).   Therefore the (i,j)th element of  

the error covariance matrix of the priors is given by:  

   C
jip ,
=

2

0

s if i j

else

 =



                        (2.33) 

 

THE METROPOLIS ALGORITHM 

The Metropolis algorithm operates by randomly proposing steps in the parameter 

space (if the model were to have 2 parameters, the parameter space would be a plane 

as illustrated in figure 2.3).    The sequence of steps in the algorithm is initialized from 

the mean of the prior parameter distribution, i.e. p 0
i =1 (for the ith parameter) which is 

)(
0,
m

iP  in model parameter space.  It can alternatively be initialized from a random point 

in the prior parameter space (i.e. for each i randomly selecting a number from 

N(1,0.5)). Subsequent iterations p1, p 2 , … were generated by making a small step 

∆ p, i.e. p 1+j =p j + ∆ p.  Knorr and Kattge (2005) determine ∆ p by generating a zero 

mean random vector with error-covariance given by C p  (equation 2.33).  In this thesis 

∆ p was determined in the same way as in Hill & Williams (2009), where each 

element of the parameter set has a 1/3 chance of increasing by the step-size, 1/3 

chance of staying the same and a 1/3 chance of decreasing by the step-size (note: the 

step-size is chosen so that the algorithm efficiently explores the parameter space; how 

it is chosen is explained later).  Hill & Williams (2009) found from tests that this was 

a more efficient way of exploring the parameter space than selecting a random step 

from the Gaussian distribution.  We accept the proposed parameter set (i.e. p 1+j ) in a 

2-stage acceptance  procedure based on  the prior and then the observations,  as is now  
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Figure 2.3 A simplified schematic of how the Metropolis algorithm works with 2 
model parameters. 
 

explained. Traditionally this 2 stage acceptance procedure is done in one step, 

however doing it in two stages makes the algorithm more computationally efficient 

because we do not do the second stage if the first condition is not satisfied. 

 

Condition 1: Acceptance in terms of the prior distribution 

The proposed parameter set is accepted in terms of the prior if the sum of squared 

differences between the proposed and the prior parameter sets (written as pS (p 1+j )) is 

less than that of the previous iteration (i.e. pS (p j )), where the sum of squared 

differences for a general step k is defined as: 

 

pS (p k ) ( )∑
=

−=
M

i
i

k
i pp

1

2

,0 , 

with k
ip  and ip ,0 denoting the ith parameter value for the kth step and the prior 

respectively,  and M representing the number of parameters.  This constraint ensures 

that the proposed parameter steps do not stray too far from the prior parameter set.   If  

the sum of square differences is not reduced, the condition can still be satisfied with 

probability:  

)(

)( 1

j

j

p

p

ρ
ρ +

 

where )( jpρ  and )( 1+jpρ  are the pdfs of the proposed and current parameter sets 

respectively (equation (2.31)).  This is used to avoid the algorithm converging to local 



Chapter 2: Models, Data and DA algorithms 

Edmund Ryan -        - 2013 76

minima.  This will never be greater than 1 because if it is expanded using equation 

(2.31) and in terms of ( )jS p  and ( )1+jS p , it becomes:  

C=
( ) ( )













 − +

2

1

2
exp

p

jj

s

SS pp
, 

where 2
ps  is the variance of the prior distribution.  Since in this case pS (p 1+j ) 

≥ pS (p j ), this implies that C≤1. Moreover, if pS (p 1+j ) is only slightly greater than 

pS (p j ) then the probability of acceptance is much higher than if pS (p 1+j ) is 

significantly greater than pS (p j ).   

 

Condition 2: Acceptance in terms of the observations 

If there is one set of observations, say NEE,  the proposed parameter set is accepted in 

terms of the observations if the sum of squared differences between the observations 

and the NEE model trajectory corresponding to the proposed parameter set 

(denoted )( 1+jS m ), is less than that of the current parameter set (i.e. )( jS m ), where 

( )∑
=

−=
L

l
NEE

k
NEE

k dmS
1

2
)m( , with k

NEEm  and k
NEEd  denoting the lth modelled and 

observed NEE for each of the L observations.  As with the prior acceptance rule, if the 

sum of squared differences is greater for the proposed step, then the proposed 

parameter set is accepted according to the observations, with probability: 
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where 2
os = variance of observational error.  Similarly to before, this ratio will always 

be less than or equal to 1 since it is only used when )( 1+jS m ≥ )( jS m .  This is 

consistent with Knorr & Kattge (2005), Hill & Williams (2009) and Fox et al. (2009).  

If two sets of observations are used, say NEE and LAI then instead of the above 

expression we use: 

)(

)( 1

j

j

L

L
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p +
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where )( jS m  = 2
LAIs ( )∑

=

−
L

l
NEE

k
NEE dm

1

2
+ 2

NEEs ( )∑
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LAIs  and 2
NEEs  are the  
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variances of the observational random errors.  This is what was done in Fox et al. 

(2009).   

If both conditions 1 and 2 are not both satisfied, then the parameter set of the 

previous iteration is used.    

 

CONVERGENCE OF THE ALGORITHM TO THE POSTERIOR DISTRIBUTION 

To determine the convergence of the chains to an area around the global maximum of 

the posterior probability distribution rather than local maximum, the Gelman criteria 

(Gelman, 1995) was applied.  Convergence of the chains was assessed in exactly the 

same way in Knorr & Kattge (2005), Hill & Williams (2009) and Fox et al. (2009).  

The Gelman Criteria describes a reduction factor which computes the weighted ratio 

of the between-chain and within-chain variances of the J chains (J>1) that are used.  

As the number of iterations tends to infinity, the reduction factor R tends to 1.  Brooks 

& Gelman (1998) state that an R value of less than 1.2 demonstrates that the chains 

have converged.  The same authors also state that if it takes N iterations for the R 

values for all parameters to be less than 1.2, the algorithm should be run for N more 

iterations.  The second set of N iterations then represents a sample from the posterior 

distribution.   

After convergence, the distribution of parameter sets is referred to as the 

posterior distribution.  Tests showed that 5,000,000 iterations were sufficient to ensure 

convergence.  The algorithm was then run for a further 5,000,000 in order to build the 

posterior distribution. 

The estimate of each parameter and the bounds of the corresponding 90% 

posterior interval are calculated by computing the mean, 5th and 95th percentiles from 

every 200th step to avoid autocorrelations (Knorr & Kattge, 2005) from all the chains 

after convergence, i.e. from iterations 5,000,001 to 10,000,000.  As stated earlier, if 

the marginal posterior distribution for any parameter is not Normal then the modal 

value of the marginal distribution is used to represent the best estimate of the 

parameter.  

 

IMPLEMENTING THE METROPOLIS ALGORITHM 

Implementing the Metropolis algorithm, following the procedure of Knorr & Kattge 

(2005), Hill & Williams (2009) and Fox  et al. (2009) involves the  following steps for 
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 each of the parallel chains: 

(1) Determine the initial parameter set by using the modal value from the prior 

distribution or by random generation from the prior distribution.  Convert the 

model parameters to Log-Normal parameters using equation (2.32). 

(2) Using the initial parameter set, an initial model run is carried out to obtain 

model predictions, )0(M , where )0(M  is a matrix with the rows representing 

the length of the dataset and the columns the number of observation types.  

Then for j = 0, 1, 2, …: 

(3) A new parameter set is proposed, 1+j
iP  (where 0

iP = 0,iP ) for each i=1,…,17, by 

stepping from the current parameter (j
iP ) at the current step j.  Stepping occurs 

in the following way – each parameter has a 1/3rd probability of increasing, 

1/3rd probability of decreasing and a 1/3rd probability of staying the at the 

current value ( j
iP ).  The step-size is therefore chosen so that the acceptance 

probability is between 0.2 and 0.8 (Fox et al., 2009, Hill & Williams, 2007).  

Repeating the algorithm with different step-sizes, it can be shown that as the 

step-size increases the acceptance rate decreases tending to 0%, and as the 

step-size decreases the acceptance rate increases tending to 100%.  Hill & 

Williams (2009) state that if the step-size is too large or too small (i.e. 

corresponding to an acceptance rate of less than 20% or greater than 80% 

respectively), this will result in inefficient exploration of the parameter space.  

A step-size too large will mean that the chains will jump around different parts 

of the parameter space, and a step-size too small will result in a low number of 

sampled points in the parameter space (Ziehn et al., 2012).  In either case, the 

chains will fail to converge to take excessively long to converge.    

(4) The proposed parameter set is accepted in terms of the prior if the sum of 

squared differences between the proposed and the prior parameter sets (written 

as pS (p 1+j )) is less than that of the previous iteration (i.e. pS (p j )).  If the 

sum of square differences is not reduced, the condition can still be satisfied 

with probability:  
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where 2
ps  is the variance of the prior distribution.   

(5) The model is now run using the proposed parameter set (i.e. 1+j
iP ) in order to 

compute the corresponding model predictions, i.e. )1( +jM .   

(6) The proposed parameter set is accepted in terms of the data if the sum of 

squared differences between model and observations (i.e. )( 1+jS m ) is less than 

that of the previous iteration (i.e. )( jS m ).  As with the prior acceptance rule, 

if the sum of squared differences is greater for the proposed step, then the 

proposed parameter set is accepted according to the observations with 

probability: 

                
( ) ( )
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where 2
os = variance of observational error. 

(7) If the proposed parameter set is accepted based on both the prior and data then 

the proposed parameter set becomes the current parameter set (i.e. ( 1+= j
i

j
i PP ) 

and the model predictions get similarly updated (m j = m 1+j ). 

(8) For j = 1, 2, …, steps 3 to 7 are repeated until each parameter has converged 

which is determined by visual inspection (i.e. plotting the trajectories of the 

parameters) 

(9) Assuming all parameters have converged after the Nth iteration, the parameter 

sets from the (N+1)th to the 2Nth iterations are extracted.  To avoid 

autocorrelations every 200th parameter set in this sequence of N is chosen to 

represent samples from the posterior distribution.   

 

USING A UNIFORM DISTRIBUTION FOR THE PRIOR 

Up until this point, a Normal distribution has been adopted for the prior.  This is 

appropriate if we have specific belief about what values the parameters should take 

and are able to provide an expression for the uncertainty for that belief.  If our prior 

knowledge of the parameters is weak, a uniform distribution may be more appropriate.  

This uniform distribution means that each value of the parameter in the given range 

has an equal chance of being the true parameter value.  This kind of prior is often 

called a flat prior because no confidence is placed on a particular value in the 
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distribution unlike a Gaussian, where the mean is regarded as being the most likely 

value of the true parameter.  The implementation of the algorithm using a uniform 

prior is almost identical to one using a Normal prior, except that step (4) is missed out, 

as was done in Fox et al. (2009).  For the two chapters where the Metropolis algorithm 

was used both types of prior distributions were adopted (a Uniform in chapter three 

and a Normal in chapter four).   

 

CRITICAL REVIEW OF THE METROPOLIS ALGORITHM 

The main advantage of the Metropolis algorithm is its ability to approximate the the 

entire posterior distributions of the parameters, in particular identifying the location of 

the modal parameter value(s).  In this way it is superior to other DA schemes such as 

the EnKF which has a problem when the posterior parameter distribution is multi-

modal or non-symmetrical since it gives the mean as the best estimate of the 

parameter (Evensen, 2009).  It is also superior to gradient descent algorithms such as 

3D-Var or 4D-Var which suffer from the corresponding cost function converging to 

local minimum rather than the global one (Williams et al., 2009).  The Metropolis 

algorithm has been successfully applied in a whole multitude of cases.  By 

‘successfully applied’, we mean that the marginal posterior distributions of the 

parameters have been narrower, indicating a reduction in uncertainty on the parameter 

estimates, compared to the prior estimates of them.  Examples include Knorr & Kattge 

(2005), Hill & Williams (2009), Fox et al. (2009), Richardson et al. (2010), MacBean 

et al. (2010) and Ziehn et al. (2012).   

 A major limitation of the Metropolis algorithm and other MCMC methods is 

the computation time required if the model is large, particularly if there are lots of 

parameters to estimate.  Ziehn et al. (2012) ran the Metropolis algorithm with 8 chains 

to estimate the posterior probability distributions for 19 of the parameters from the 

BETHY model (Knorr, 2000) for 8 million iterations – all the chains were run on a 

computer cluster in parallel, which allowed up to one million iterations per month and 

chain, so took eight months in time.  Currently therefore, this makes them infeasible to 

estimate the marginal posterior distributions of all parameters of global terrestrial C 

models which can easily be in excess of 100.  However, they have been widely 

applied to models less computationally demanding.    
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2.2.9 Genetic algorithm 

We give a brief overview of this algorithm based on Gallagher & Sambridge (1994).  

The Genetic algorithm is similar to the Metropolis algorithm in that it searches the 

parameter space to find the global minimum.  However, it is a non-Bayesian DA 

scheme, so no prior can be incorporated into the searching – the search is only guided 

by the cost function or fitness function as it is more commonly known. It starts with a 

population of N sets of randomly selected parameters sets called individuals (in the 

Genetic algorithm used in Fox et al, 2009, N was set to 100).  The model is run for 

each of these parameter configurations and the fitness function is evaluated to assess 

the fit between the model output and data.  The individuals whose corresponding fit is 

poor (defined by some threshold) are discarded.  These are replaced by reproduction 

or mutation.  Reproduction is where two individuals ‘mate’ to produce a new 

individual – in practical terms this could be simply that the new parameter set is 

composed using half of the parameters from each of its ‘parents’.  There are other 

ways of reproduction as outlined in Haupt & Haupt (2004).  Occasionally, an 

individual will be created by ‘mutation’, where the values of the new parameter set 

will be chosen at random.  According to Gallagher & Sambridge (1994), this ensures 

that the algorithm does not converge to a local minimum.  This process is repeated 

until the fitness values of the individuals in the population converge.  As this is a non-

Bayesian scheme, the goal is to find the global minimum and the parameter set with 

this optimal fitness is the estimate of the parameter.  No formal regard to given for 

quantifying the uncertainty for the estimate, and in this way, it is similar to the 

variational DA approaches whose main goal is to find the parameter set with the 

optimal fitness solely.  This is different to the Metropolis algorithm, which once 

converged, samples the posterior parameter distribution function.  As we require to 

sample the posterior distribution, and this is something which is not theoretically 

considered partly because no prior distribution is specified, this is a limitation of the 

Genetic algorithm for application here.  It has also not been as widely used as other 

global search algorithms such as the Metropolis algorithm. 
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2.2.10 Variational DA approaches: 3D-VAR and 4D-VAR 

PARAMETER ESTIMATON 

Variational methods of DA are similar to MCMC methods such as the Metropolis in 

that they explore the parameter space with the aim of locating the posterior 

distribution from which it can estimate.  However, while the Metropolis algorithm 

explores the parameter space in a stochastic way variational methods are not 

stochastic.  Instead they attempt to locate the maximum of the posterior distribution in 

a more computationally efficient way (Santaren et al., 2007).  We now derive the 3D-

Var and 4D-Var methods based on Ziehn et al. (2012).  

The formulation for 3D-Var and 4D-Var is the same as the Metropolis 

algorithm, i.e. based on Bayes’ theorem (Bayes, 1753).  Recall that in subsection 2.3.9 

the likelihood and prior parameter distribution was given by equations (2.30) and 

(2.31) which are in their respective full forms: 

L(p) = exp{- 2
1 (M(p) – d) T  C 1−

d (M(p) – d)}     

                      ρ (p) = exp{- 2
1 (p – p0) T  C 1−

p ( p – p0)}                         

where M(p) and d  are the modelled  and observed data, p0  is the prior  parameter set, 

 and Cd and Cp are the error covariance matrices of the observations and priors.  In a 

similar way to the Metropolis algorithm the posterior distribution of the parameters is 

given by f(p) = v L(p) ρ (p), where v is a normalization constant.  Setting v equal to 

1/A, and substituting L(p) and ρ (p) into this formula gives: 

     f(p) = 
1

A
exp{- 2

1 (M(p) – d) T  C 1−
d (M(p) – d)} × exp{- 2

1 (p – p0) T  C 1−
p ( p – p0)} 

This is equivalent to:                             f(p) = 
1

A
exp[-J(p)]         (2.34a) 

where, 

 J(p) = exp{- 2
1 (M(p) – d) T  C 1−

d (M(p) – d)} × exp{- 2
1 (p – p0) T  C 1−

p ( p – p0)}  (2.34b) 

Thus, determining the location in the parameter space of the modal value of the 

posterior probability distribution is the same as finding the minimum of J(p).  The 

minimum is determined by differentiating J(p) w.r.t. p to determine its gradient.  The 

exploration in the parameter space is determined by the downward direction of the 

adjoint, the differentiated J(p). As a result of this a lot fewer iterations are typically 

required compared to global search algorithms like the Metropolis algorithm.  As an 
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example, Zhien et al. (2012) used a variational DA method to estimate 19 of the 

parameters and associated distributions of the BETHY model.  The authors found that 

the variational method required 1300 forward runs of the model compared to the 

Metropolis algorithm which was also used and needed 8 million.   

 

STATE ESTIMATION 

The description of the state estimation problem is based on Smith et al. (2008).  

Equation (2.34b) can also be used to estimate the model states with a fixed parameter 

set.  This is referred to as the 3D Variational (or 3D-Var) state estimation method.  It 

is also similar to the KF in one dimension in that it is the weighted sum of the model’s 

estimate of the state of the system and what is observed.  In multiple dimensions, it is 

the same as equation (2.34b) except that in optimising the parameter set p, we 

optimise the state vector at the current time t=0, labelled as x 0, i.e. 

             J(x 0) = (x 0 – x b)
T B 1− ( x 0 – x b) + (y 0 – H 0 [x 0])

T R 0
1− (y 0 – H 0 [x 0])        (2.35a) 

where B and R are the background and observational error covariance matrix which 

specifies the uncertainty in the state of the system given by the model (x 0) and the 

observations (y 0) at time (t=0).  B and R are the same as C p  
and C d  from equation 

(2.34b).   H 0 is the mapping which converts the model state to a something comparable 

with the observations.  As with the parameter estimation problem, the optimal 

estimate of x 0 is obtained by finding the global minimum of J(x 0), which is achieved 

by using a global descent algorithm which requires J(x 0) to be differentiated.  The 3D-

Var method can be extended so that observations at future times are used to obtain the 

optimal x 0 – this is referred to as 4D-Var and is written as follows: 

          J(x 0) = (x 0 – x b) T B 1− (x 0 – x b) + ∑
=

n

i 0

( y i – H i [x i]) T R i
1− (y i – H i [x i])        (2.35b)  

Here, x i refers to the model state vector at the ith time-step, and is determined by i 

integrations of the model from t=0.  For example, x 3=M [x 2]= M[M [x 1]] = M [M [M [x 

0]]], where M is the model.  To determine the optimal x 0 this, like 3D-Var, this also 

requires J(x 0) to be differentiated.  However given that the RHS of equation (2.35b) 

involves the model M, this also needs to be differentiated.  This can be very time 

consuming if the model is large.  3D-Var and 4D-Var are illustrated in figure 2.4.  Jb 

and Jo refer to the first and second parts (i.e. before and after the plus sign of equations 

(2.34a) and (2.34b), and x a refers to the optimal x 0 (i.e. the value of x 0 when J(x 0) is at  
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Figure 2.4 A schematic of the 3D-Var and 4D-Var schemes (Bouttier & Courtier, 
1999).  The 3D-Var only uses observations at the same time point as the background 
error covariance matrix, whereas 4D-Var uses future observations.   
 

the global minimum).   

 As with the Ensemble Kalman Filter and Smoother, Smith et al. (2008) state 

that 3D-VAR and 4D-VAR can also be used to simultaneously estimate the 

parameters and states of a model.  Following the description by Smith et al. (2008), 

this is done by augmenting the parameters to the state vector, forming an augmented 

state vector w, such that: w=[z p]T, where , , and z .  Treating 

the parameter vector p as time-invariant when the model is run forward in time on its 

own, the evolution of the model can then be written as k+1 = M( k, k) and k+1 = k.  

This can then be written as k+1 = Mɶ ( k, k).  The least squares cost function for the 

augmented state vector is then the same as equation (2.35a) except that x 0 is replaced 

with , resulting in J(w) = (w – w b)
T B 1− (w – wb) + (y – H [w]) T R 1− (y – H [w]),           

where B refers to the background error covariance matrix for the augmented system.   

 

CRITICAL REVIEW OF 3D-VAR AND 4D-VAR 

The major advantage of Variational DA is its computational efficiency over other 

schemes such as global search algorithms like the Metropolis algorithm. As stated 

earlier, Zhien et al. (2012) found that the Metropolis algorithm required 8 million 

evaluations of the model, whereas the 4D-VAR method only required 1300 

evaluations.  In computation time, the Metropolis algorithm needed 8 months (run on 

a computer cluster with the chains running in parallel), whereas the 4D-VAR 
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approach was several orders of magnitude faster - the authors of Zhien et al. (2012) do 

not specify the exact amount.  For this reason, the variational DA approach has been 

the DA scheme of choice for very large models such as the Numerical Weather 

Prediction (NWP) model (Lawless, 2001) and the JULES model (Luke, 2011).   

Despite this advantage, variational DA has a few weaknesses.  First of all, it is 

usually only able to find a local minimum of the cost function due to the non-linearity 

and high dimensionality of the model (Williams et al., 2009).  A second problem is 

that it only focuses on estimating the modal value of the posterior probability density 

function, rather than that the rest of the distribution thus an estimate of the uncertainty 

is not normally given or assumptions need to be made (Ziehn et al., 2012).  However, 

Rayner et al. (2005) showed that it is possible to estimate the spread of the posterior 

distribution by using work by Tarantola (1987) who found that Hessian - the second 

derivative of the cost function - at the global minimum approximates the inverse of 

covariance of the parameters.  The covariance matrix describes the uncertainty of the 

parameters under the assumption that they follow a multivariate Gaussian distribution.  

However, Rayner et al. (2005) points out that the model needs linearising for this to be 

possible, and if the level of non-linearity in the model is strong the linear 

approximation may not be good enough to approximate the Hessian, particularly as 

this is only an approximation itself of the covariance matrix of the parameters.  

Furthermore, the Gaussian assumption of the posterior distribution may not be true.  A 

final shortcoming of variational DA is where the algorithm is initialised from.  Zhien 

et al. (2012) found that if it was initialised from a point further than 1% away from the 

modal point of the prior parameter distribution, then the algorithm either did not 

converge or converged to a non-physical point in the parameter space.   

 

2.3 DA schemes used in thesis and tests 
Having given a description and critical review of a broad range of DA schemes, the 

purpose of this is to provide an overview of the current state of knowledge of  DA 

applied to the improvement our understanding and quantification of the terrestrial C 

cycle.  From this, an outline will be given for the gaps in this current knowledge and 

which of these gaps are of most urgent need in filling.  Arguments for the choice of 

DA schemes to be used in this thesis will then be presented in light of the type of 
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research questions to be addressed.  The remaining part of section 2.3 consists of 

preliminary tests on the DA algorithms to be used in this thesis to ensure that they are 

implemented correctly.  This testing of the schemes is also to gain an appreciation for 

what answers (e.g. parameter estimates) we might expect the DA algorithms to 

produce given different setups and assumptions.  This will be particularly helpful with 

the discussion section of chapter four.   

 Looking ahead, the section that follow this one (2.4) will provide an argument 

for the choice of model to be used in the thesis, based on the type of research 

questions addressed for this PhD but also based on the DA algorithms that are chosen.  

Section 2.5 then describes and critically reviews the data required in later chapters.  

Finally, section 2.6 brings together the chapter by giving a list of specific research 

questions addressed in this thesis, based on the gaps in our current knowledge of DA 

in terrestrial C modelling (subsections 2.3.1 and 2.3.2) and the specific DA schemes, 

models and data used to answer the questions.   

 

2.3.1 Current state of knowledge of DA 

At the end of chapter one a broad overview of DA was given with specific descriptions 

and critical reviews given for nine different DA algorithms covering the three broad 

groups: global search algorithms, global descent algorithms and sequential algorithms 

(Williams et al., 2009).  In this subsection, we describe how these three different 

groups of DA algorithms have been applied to constrain models with a focus on 

terrestrial C models, but other models are also included as well particularly those from 

oceanography and meteorology.  Descriptions are also given of three different DA 

inter-comparison studies. 

  

APPLICATIONS OF SEQUENTIAL DA ALGORITHMS: THE ENSEMBLE 

KALMAN FILTER, THE ENSEMBLE KALMAN SMOOTHER AND THE 

PARTICLE FILTER 

Since its inception by Evensen (1994), the Ensemble Kalman filter (EnKF) has 

become one of the most widely used DA schemes in a whole range of modelling 

fields.  Geir Evensen, the author of Evensen (1994) and an ocean modeler, first 

applied the EnKF to a multi-layered quasi-Geostrophic model, which put simply 

simulates the one aspect of the dynamics of large-scale motions of the oceans.  Prior to 



Chapter 2: Models, Data and DA algorithms 

Edmund Ryan -        - 2013 87

Evensen (1994), the extended Kalman filter or EKF (Evensen, 1992) had been used as 

the main alternative to the Kalman Filter for situations where the model was non-

linear.   Evensen (1994) found that not only did the EnKF give a small error (between 

the mean and true model states) compared to the EKF, but that unbounded linear 

instabilities of the evolution of the error statistics that existed with the EKF as a result 

of the linearization of the model, was not a problem with the EnKF because no 

linearization of the model was needed.  The computational cost of the EnKF for 

reasonable accuracy was also a fraction of that of the EKF (Evensen, 1994).   

 The EnKF has been used in a whole range of applications, most notably in an 

operational context as the Data Assimilation method of choice for the large scale 

global atmospheric weather forecasting at the Meteorological Service of Canada 

(Houtekamer & Mitchell, 2005).  In Houtekamer & Mitchener (2005), the focus was 

on what specific set up of the EnKF, e.g. the optimal number of ensembles, 

specification of the model error, etc…, would result in the smallest error between the 

mean and true model state vector.  Evensen (2009) comments that the biggest 

advantage of using the EnKF for large, complicated and computationally intensive 

models (such as those used for weather forecasting is that EnKF) where the state 

vector can contain 10,000s of elements, is that the computation and propagation of the 

error-covariance matrix has dimension N×N where N is the number of ensemble 

members.  This is because for the KF and the EKF the dimension of the error-

covariance matrix is M×M, where W is the number of elements of state vector with M 

>>> N for the very large models such as the one used by the Meteorological Service 

of Canada (Houtekamer & Mitchell, 2005).  In this way, Evensen (2009) states ‘the 

uncertainty is represented by a set of model realisations rather an explicit expression 

for the error covariance matrix.’   

Williams et al. (2005) was the first to apply an EnKF to a terrestrial carbon 

model, namely DALEC.  Measurements assimilated into the model included Leaf area 

index (LAI), foliar and woody litter, gross primary production (GPP), total respiration 

(Rtot) and Net Ecosystem Exchange (NEE), and were collected at a young ponderosa 

pine stand in central Oregon over a 3-year period.  The authors found that the model 

estimate of total cumulative NEE over the 3 years after assimilating all the data was         

-419±29 gCm-2, which compared with a model-only estimate of -251±197 gCm-2.  The 

key finding of the study was that the uncertainty (expressed as a standard deviation) 
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was less when all the data had been assimilated (i.e. 29 gCm-2 or 0.47 gCm-2day-1) 

compared to either the model on its own (i.e. 197 gCm-2) or the data on its own (0.5 

gCm-2day-1).  The authors provided as accurate as possible estimates of the 

uncertainties of the data and the model; they also carried out a simple sensitivity 

analysis to show that changes in the uncertainties of the model (which are harder to 

determine than those of the data) did not affect the main finding.   

A next major EnKF development occurred in Quaife et al. (2008).  Although 

ground based measurements of NEE and other C fluxes are useful for site based 

studies, satellite based measurements offer more potential for studies aiming to 

determine the terrestrial-atmosphere C flux for regional to global scales.  In response 

to this, Quaife et al. (2008) assimilated satellite observations of canopy reflectance 

into the DALEC model at the same site and over the same 3 year period as the 

Williams et al. (2005) study.  Assimilating this kind of data as opposed to high level 

satellite products (such as LAI) can be preferable for DA for several reasons, the main 

ones being: (i) the observational uncertainty is easier to quantify, and (ii) different 

satellites give different measurements of LAI (for example) because different 

assumptions are made in the algorithms that convert the satellite’s raw data (i.e. 

canopy reflectance) to LAI.  The downside to assimilating canopy reflectance data is 

that the observational operator (used to convert between the measurements and the 

model state vector) becomes extremely complex.  The modelled NEE after 

assimilation showed an accurate representation of the ground based measurements of 

NEE for the study period, however for the wrong reasons: the modelled GPP and total 

respiration after assimilation tended to be over-estimated when compared to ground 

measurements.  Despite this, these results provide great promise of the ability of the 

assimilation of satellite measurements such as canopy reflectance into large climate 

models, such as JULES (Blyth et al., 2010). 

 Searching the literature on the Ensemble Kalman Smoother (EnKS), 

application of this appears to significantly less than the EnKF.  This may be because a 

smoothed model trajectory may not be required for a lot of settings.  Also, as has been 

pointed out in subsection 2.2.6, the parameter estimates produced by the EnKF are as 

globally optimal as those from the EnKS (Evensen & Leeuwen, 2000).  The EnKS is 

more computationally intensive and less straight-forward to implement than the 

EnKF.  Nonetheless, of the fewer studies (compared to the EnKF) which have used 
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the EnKS, an interesting one is Stroud et al. (2010).  The aim of that paper was to 

produce a time sequence of spatial maps during the development of a large sediment 

plume within and around Lake Michigan following a major storm in 1998, by 

combining incomplete satellite data and a model with an EnKS framework.  The need 

for a smoother was important here because a detailed and complete picture of how the 

plume developed was essential.  In other words, knowing the size of sediment built-up 

for each pixel of the map at very frequent time intervals was essential, in order to help 

with forecasting and planning in the event of a repeat of such a sediment plume 

following another major storm.  As a result, the EnKS was preferred to the EnKF even 

at its greater computational cost.  The authors of Stroud et al. (2010) found that by 

applying the EnKS to combine the model and data, the accuracy in the result sediment 

plume map was 20-30% better than standard approaches for combining the data and 

model.   

 As with the EnKS, the applications of the Particle Filter (PF) appear to have 

been less than the EnKF.  A common model that the PF has been used with is the 

Lorenz model - Ades & van Leeuwen (2012), van Leeuwen (2010).  The main utility 

of the Lorenz model (Lorenz, 1963) is that it is able to simulate the very non-linear 

and chaotic nature of the atmosphere but with a minimum of three states and a similar 

number of parameters, meaning that it is very fast to run.  Unlike this application of 

the PF which involved synthetic observations, Quaife et al. (2008) used the PF to 

assimilate reflectance data from the MODIS sensor of NASA’s TERRA satellite into 

the DALEC model (Williams et al., 2005).  This built on previous work (Quaife et al., 

2007) where the reflectance data was assimilated into DALEC using the EnKF.  

Another study (Hill et al., 2011) used the PF to assimilate satellite data of NDVI into a 

simple model.  The data were very coarse, but they applied a method based on 

knowing the observational uncertainty of making the data more fine scale and 

assimilating this into the model.  This resulted in improved estimates of NEE when 

compared to independent ground data.    

 

APPLICATIONS OF GLOBAL SEARCH DA ALGORITHMS: THE METROPOLIS 

ALGORITHM AND THE GENETIC ALGORITHM 

Metropolis et al. (1953), who first formulated the Metropolis algorithm, used it to det- 
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ermine the ideal pressure of a configuration of interacting molecules (simulated using 

a simple model) at a phase transition, given a specified temperature and a specified 

number of molecules.  The configuration was optimal if the corresponding pressure 

and pre-determined temperature obeyed the ideal pressure law.  The ideal pressure, 

based on a specific configuration could not be determined analytically because it 

required determining the expectation of the Boltzmann distribution, used to simulate 

the distribution of molecules, which involved an unsolvable integral.  It was 

unsolvable because it contained an unknown normalising constant, and the 

exponential of potentially complicated Energy function.   

Since this ground-breaking paper, which has been cited close to 20,000 times 

the Metropolis algorithm has been applied to a variety of different problems.  These 

include applications to hydrology (Vrugt et al., 2003), Medicine (Gilks & Best, 1995), 

and geophysics (Mosegaard & Tarantola, 1995), among others.  In terrestrial carbon 

modelling, Knorr and Kattge (2005) used it to estimate the probability distributions of 

the parameters of the BETHY (Biosphere-Energy-Transfer-Hydrology) model.  

BETHY simulates the carbon, water and energy exchanges between the biosphere and 

atmosphere. The prior values of the parameters and the measurements of NEE and 

Latent Energy (LE) were assumed to be Normally distributed.  For the priors, the 

means were determined from expert knowledge and three sizes of variances were used 

as there was uncertainty about what these should be.  After assimilating only 7 days of 

half-hourly NEE and LE measurements, the uncertainties of five of the 29 parameters 

were substantially reduced (compared to the prior distributions) and there was an 

improvement in the modelled NEE estimates over the 2 years that followed.  A 

limitation with this study was the choice of the distribution to represent the 

observational errors (i.e. a Normal one), which conflicts with the findings from 

Hollinger & Richardson (2005) who suggested a double-exponential distribution for 

the random part of the observational errors, when the data are half-hourly.     

A very interesting study was by Richardson et al. (2010).  Here the parameters 

and uncertainties of a version of the DALEC model, operating on a half-daily time-

step, were estimated using the Metropolis algorithm.  Half daily data used to constrain 

the parameters included NEE, soil respiration, leaf area index (LAI), litterfall and 

woody biomass increment, and were collected over a 4 year period. The study showed 

that assimilating many different types of data, as opposed to just one, improved the 
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parameter estimates.  More specifically, the results showed that assimilating 

measurements of woody biomass, and to a lesser extent soil respiration, in addition to 

NEE data gave marked reductions in the uncertainty of the resulting parameter 

estimates, compared to just assimilating NEE.  The authors stated that this made sense 

because these first two data types provided orthogonal constraints to the NEE data.  

The authors also found that the assimilation of multiple data types improved the 

forecasts of the model using the calibrated parameter set.   

 As explained previously, the Genetic algorithm is similar to the Metropolis 

algorithm in that it explores the parameter space in a stochastic way, but how this is 

done is different (see subsection 2.2.9).  Despite the Genetic algorithm being applied 

far less than the Metropolis algorithm, it has been used in a number of settings.  One 

example is Van Wijk (2001) who used it to parameterise a model which simulated the 

vertical root distribution.  The model also carried the assumption that the roots are 

structured so that the water uptake from the root zone is maximised.  The model was 

calibrated under two different settings: a single plant and two neighbouring plants 

competing for the same soil water available.    

 

APPLICATIONS OF GLOBAL DESCENT DA ALGORITHMS: 3D-VAR AND 4D-

VAR 

4D-Var is a DA scheme, which has been used for weather forecasting for almost two 

decades (Courtier, 1994), and has more recently been used with terrestrial carbon 

models.  In particular, over the past few years it has been applied to the Joint UK Land 

Environment Simulator (JULES), which is the terrestrial part of the Met Office’s 

Unified climate model (Luke, 2011).  It has also been shown to give comparative 

results to the Metropolis algorithm.  Scholze et al. (2011) used a 4D-Var scheme to 

estimate the probability density functions (pdfs) of the parameters of the BETHY 

model (where for each pdf the parameter value with the highest probability was 

chosen as its estimate).  They found over 90% of these matched very closely the pdfs 

produced from using Metropolis algorithm.  However the computation time of the 4D-

Var approach was significantly less (1 hour) than that of the Metropolis algorithm (8 

months).  However, the 4D-Var approach required the model to be differentiated 

which can take a significant amount of time in itself.   
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INTERCOMPARISON DA STUDIES 

The REgional Flux Estimation eXperiment or REFLEX (Fox et al., 2009) compared 

different DA schemes’ estimates of parameters and future states of the same model 

(DALEC), after assimilating the same 2 years of NEE and LAI in situ data.  Eight DA 

schemes were used, with five being variants of the Metropolis algorithm, one using the 

Genetic algorithm, one using the EnKF, and one using the Metropolis algorithm and 

the EnKF.  The participants were asked to estimate the parameters and future model 

states using real and synthetic data, where the synthetic data were created by a running 

the model forward and adding noise and gaps to the NEE and LAI.  The uncertainty 

reduced for parameters linked to GPP and respiration e.g. the allocation and turnover 

of foliage and temperature sensitivity), as a result of assimilating the NEE and LAI 

data.  Poorly estimated parameters were those related to the allocation to and turnover 

of fine root/wood pools, which suggested that assimilating observations of fine roots 

and woody biomass may help to constrain the parameters connected to these the fine 

root and woody carbon pools.  An interesting feature of the results was that the DA 

schemes gave different estimates to around half of the parameters, including the 

different variants of the Metropolis algorithm.   

The Optimisation InterComparison or OpTIC study (Trudinger, 2007) also 

compared different DA schemes when estimating the parameters of a very simple 

terrestrial carbon model.  The schemes included three variants of the Metropolis 

algorithm, the Kalman filter and extended Kalman filter, 4D-Var, and the Genetic 

algorithm.  The major finding from this study was that the variation in the parameter 

estimates was not due to the DA scheme, but to the choice of cost function, which 

defines the mismatch between the model and observations.  More specifically, if the 

cost function is specified by equation (2.3.1) (where )(1 itx  and )(2 itx  are the 

observations at time it  with )(1 itz  and )(2 itz  being the corresponding modelled 

values), the authors found that if weights 1w  and 2w  are not constant (i.e. vary with 

time) and vary with noisy observations, this leads to biased parameter estimates.   

           ∑ 
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A limitation of OpTIC was that the model (which only contained two states and four 

parameters) was arguably too simplistic.  In addition, OpTIC did not use real data, and 
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so did not evaluate the calibrated model’s ability to accurately estimate current or 

future states of the system. 

As part of an EU funded project called ‘Carbon Assimilation and Modelling of 

the European Land Surface’ (CAMELS), one of the aims was to produce a Carbon 

Cycle Data Assimilation Scheme (CCDAS) in order to improve understanding of the 

current carbon cycle and to provide predictions for future changes.  CCDAS has been 

active for over a decade and has addressed the following questions: 

• Where are the current carbon sources and sinks located on the land and do 

European sinks compare with sinks of other large continental areas? 

• How could we make optimal use of existing data sources and the latest models to 

produce operational estimates of the European land carbon sink? 

To address these questions, the BETHY model (Knorr, 2000) has been used 

consistently in CCDAS, assimilating data from a range of sources (e.g.  flux 

measurements, carbon inventory data, satellite products).  The Metropolis algorithm 

and 4D-Var scheme have been predominantly used in numerous CCDAS studies with 

the focus primarily on reducing the uncertainties of the parameter estimates.  Earlier 

CCDAS studies primarily used ground data (Knorr & Kattge, 2005), but more recently 

satellite observations, mainly the fraction of photosynthetically active radiation 

(faPAR) have been used.  The achievements of CCDAS have been to reduce the 

uncertainties of BETHY’s parameters and the resulting estimates of the current and 

future states of the ecosystem.   

  EOLDAS (Earth Observation Land Data Assimilation Scheme) is a European 

Space Agency project (Lewis et al., 2012), with the aim of better using earth 

observation data in DA.  Particular focus is on the use or low-level satellite products, 

or satellite data which is closer to the raw radiance data.  One of the main reasons for 

this is that it is easier to quantify the observational uncertainty of such products, 

compared to high-level ones such as Leaf Area Index (LAI) (Quaife et al., 2007).  

Furthermore, certain climate variables, LAI being a good example, are inferred by the 

data from a number of different satellites, but many the algorithms used to infer LAI 

(for example) often carry different assumptions and formulations, resulting in different 

estimates of LAI (Garrigues et al., 2008).  To therefore make full use of satellite 

derived data, EOLDAS is taking a lead role in testing the utility of assimilating low-

level satellite products.   
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2.3.2 Gaps in our current knowledge of DA and choice of DA 

algorithms 

Despite the extensive research carried out on DA applied to terrestrial C modelling, 

various issues remain unanswered or unresolved.  Among others, the REFLEX project 

(Fox et al. 2009) raised some fundamental questions about DA: 

• Why did the parameter estimates vary among the different DA schemes, even 

amongst the Metropolis based ones?  The choice of cost function may be partly 

responsible, as suggested by the OpTIC study.  However there may be other 

reasons, such as the initial conditions of the model. 

• How do different DA schemes respond if the model suffers from equifinality, 

where different sets of parameters can result in almost identical or very similar 

model outputs?   

• Are all parameters fixed or should some have different values for different times 

in the year?  If parameters are not fixed, how do DA algorithms estimate these 

parameters and do they give similar estimates?  

• Does the type of prior (e.g. Uniform, Normal) influence DA? 

Williams et al. (2009) who reviewed the knowledge gained with DA in the terrestrial 

C modelling setting, also stated some of the challenges that remain.  These included: 

(1) To explore the effect of assimilating 10+ years of data? 

(2) To avoid confounding effects on missing processes in model representation on 

parameter estimation.   

(3) To assimilate more types of data (e.g. pools/stocks of carbon, earth observation 

data) and to define improved observation operators. 

(4) To fully quantify uncertainties arising from data bias, model structure and 

estimates of initial conditions. 

For (1) this is of particular importance because different DA studies, using terrestrial 

ecosystem models, have assimilated different numbers of years of observations; for 

example, the REFLEX study used 2 years (Fox et al., 2009), Quaife (2007) used 3 

years, Mo et al. (2008) used 8 years, and Braswell (2005) used 10 years.  Since more 

information is assimilated, longer datasets might be expected to lead to more accurate 

parameter estimates.  Other aspects of the observations might also be important, such 

as the size of the observational uncertainty and the size and frequency of data gaps, 

both of which are features of real datasets.  In all DA studies these have been kept 
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fixed.  Luo et al. (2011) also stated that not many DA studies have explicitly 

addressed issues directly pertinent to forecasting, such as forecasting accuracy, 

sources of uncertainty and usefulness of forecasting under different domains.   

 A key aspect of CCDAS is the assimilation of satellite observations, such as 

the fraction of Photosynthetically Active Radiation or fAPAR.  A satellite observation 

closely linked to fAPAR is Leaf Area Index (LAI).  LAI is an essential climate 

variable as it is an indicator of the health of vegetation, and is used to estimate 

evapotranspiration and the accumulation of carbon from photosynthesis (Sellers, 

1997).   However, LAI measured from satellites can have unrealistic features, such as 

excessive temporal noise and unrealistically small prescribed errors (Gao et al., 2008).  

A key issue, which has not yet been answered, is whether DA is robust enough against 

these unrealistic features affecting the modelled states after assimilation (Guanter et 

al., 2012).   

Based on the gaps in knowledge of DA applied to terrestrial C modelling the 

focus of this thesis is, put simply, an exploratory analysis of how DA works in 

different situations, highlighting where it performs well and is robust and identifying 

and quantifying those situations where it there are weaknesses and important 

limitations.  This thesis will help indirectly with better representation and 

quantification of the terrestrial-atmosphere C flux by highlighting how DA should be 

optimally used.  The precise aims and the rationale for these are given in section 2.6. 

 

CHOICE OF DA ALGORITHMS 

For now however, a decision is made as to which DA algorithms should be used to 

address some of these issues.    It is decided that two algorithms are to be used, and 

these are the Metropolis algorithm and the Ensemble Kalman Filter.  There are several 

reasons for this.  First of all, both of these schemes have been used very widely used 

not only for terrestrial C modelling but in a variety of other fields.  Although Williams 

et al. (2009) identified three broad DA groups, namely global search algorithms, 

global descent algorithms and sequential algorithms, really there are two: batch 

methods (under which the first two come) and sequential methods.  For batch 

methods, all of the data is used at once and a number of executions of the model are 

required.  For sequential methods on the other hand, each element of the dataset is 

assimilated one at a time and only one execution of the model is required.  The 
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Metropolis algorithm is preferred over other batch methods because it is the most 

widely used of all global search algorithms and unlike global descent algorithms it is 

able to determine the full posterior probability distribution.  Although variational 

approaches such as 4D-Var are more computationally efficient, they typically only 

converge to the modal point of the posterior probability distribution which may also 

not be globally optimal.  A measure of the spread of the distribution can be 

approximated but only under assumptions, such as the distribution being Gaussian, 

which may not be true.  Proper quantification of the posterior distribution is essential, 

and this can only be guaranteed with the algorithms like the Metropolis algorithm.  

The EnKF is preferred to the EnKS mainly because it is more straightforward to code 

up, but also when performing parameter estimation it has been previously stated and 

referenced that the results are equally globally optimal.    

In the next three subsections that follow, some preliminary tests are carried out 

on the Metropolis algorithm and the EnKF.  These are carried out to ensure that these 

two DA schemes are properly working as they should, so as results obtained from 

using these algorithms in the chapters that follow can be properly interpreted.  The 

next three subsections are organised as follows: in subsection 2.3.3 the preliminary 

tests are carried out on the two algorithms.  Then in subsection 2.3.4, the expectations 

for the Metropolis algorithm and the EnKF when estimating parameters are discussed, 

which will be particularly relevant in relation to the discussion section in chapter four.   

 

2.3.3 Basic tests of the algorithms  

The purpose of this section is to do some preliminary tests on the Metropolis 

algorithm and the Ensemble Kalman filter to ensure that they are operating correctly.  

 For the Metropolis algorithm this was done by assimilating a synthetic dataset 

and then, based on the examiner’s comments of the original thesis that was submitted, 

initialising the chains from the true parameter set and using very small uncertainty on 

the observations and the prior distribution of the parameters.  A dataset of synthetic 

observations means that observations that have been created from the output of a 

model (e.g. a time series of Net Ecosystem Exchange or NEE output) with a noise 

from a specific probability distribution (e.g. Gaussian) added to the NEE to represent 

observational uncertainty; this could be based on the observational noise 

characteristics from a particular site.  A certain number of the synthetic observations 
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in the dataset are also removed to reflect that in real life observations are not present at 

each time-step, either because they were not measured or inferred from other 

measurements, or they were removed for other reasons such as known biases (e.g. 

instrumentation error).  For ease of implementation, an existing dataset which is also 

used in chapter four was used here.  For reference, the dataset corresponded to run 1 

from table 4.2 in subsection 4.2.8.  This dataset is an NEE dataset of one year in 

length, generated from a forward run of the DALEC-D model (see subsection 2.4.4 for 

description) and has observational noise and gap characteristics based on of Harvard 

forest (Munger & Wofsy, 1999).  For the purposes of the test carried out in this 

subsection, this synthetic NEE dataset was recreated with an observational uncertainty 

based on a zero mean Gaussian distribution with a smaller standard deviation of 0.05 

gC/m2/day.  The prior distribution for the log-Normalised parameters used in the 

parameters was also set to 0.05, much smaller than was used for the chapter four runs 

of the Metropolis algorithm.  By initialising the chains from the true parameter set and 

by using very small uncertainty for the assimilated NEE data and prior distribution for 

the parameters, we expected the chains to converge almost straight away and in 

particular to remain or converge to a the true parameter set (the parameter set from the 

DALEC-D model used to create synthetic data before noise and gaps were added) or 

within a very close vicinity.   

 Figure 2.5 shows the values of Rhat, the diagnostic used in the Gelman criteria 

to assess convergence.  We can see from the bottom panel of this figure that the chains 

for all the parameters had converged by 50,000 iterations, since this was the point by 

which all the corresponding Rhat values went below 1.2, the vast majority getting 

below this threshold a lot sooner.  From the top panel we can see that the Rhat values 

became more and more  close to the 1 as the number of iterations increased.   In figure 

2.6 we can see the estimate of the model parameters from this test run of the 

Metropolis algorithm.  The estimate is the modal value of the posterior distribution 

and the lower and upper limits of the associated error bars represent the 5th and 95th 

percentiles.  The prior mean/modal values of the parameters with the lower and upper 

limits of the errors bars also representing the 5th and 95th percentiles of this 

distribution are also given.  The red horizontal lines represent the locations of the true 

parameter values.  For 21 out of 23 of these parameters, the posterior parameters are 

on or very close their true values with the uncertainty intervals containing or very near- 
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Figure 2.5 The time-series of Rhat values for each of the 23 model parameters to 
assess convergence of the three chains used in the Metropolis algorithm test run. 
 

 
Figure 2.6 The MCMC prior and posterior estimates, with associated uncertainties, of 
each of the 23 DALEC-D parameters.  The red lines denote the true parameter values.     
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ly containing the true values.  In many of these cases, the parameters are closer to the 

true value compared to the prior estimate.   For the remaining two parameters, namely 

Cr(0) and Clab(0), the posterior estimates are noticeably further away from the true 

value compared to the prior values.  If a parameter or parameters are not constrained 

by the assimilated data, the posterior estimate of the parameter should revert to its 

prior value.  However correlations exist between the parameters and given that the 

prior uncertainty is very small it is not zero, and so it is not uncommon that this should 

happen.  Of all the parameters it should happen to, it is almost expected it should 

occur with the ones that control the initial conditions of the two Carbon pools which 

are the least removed from the predicted NEE, namely the root Carbon and labile 

Carbon pools (see subsection 2.4.3 for explanation of model).   

Given the results of this test run, the Metropolis algorithm is operating as it 

should.  In figure 2.5, we can see that it has converged very fast as we would expect 

from starting from the true parameter set and virtually all of the posterior parameter 

estimates are on or very close to the true parameter values with associated 

uncertainties that include or very nearly include the true values.   

The Ensemble Kalman was next run using the same dataset and setup as the 

Metropolis algorithm above.  As can be seen in figure 2.7, the parameter estimates are 

on the whole very close to the corresponding true values, as we saw with the 

Metropolis algorithm.   However for 3 of the parameters, namely Lout, Flr and Cfmax, 

the posterior estimate is either noticeably further away from the truth than the prior 

value or the posterior uncertainty interval is noticeably wider than that of the prior 

interval.  In one sense this might be surprising given that in chapter 4 we find that the 

EnKF parameter estimates appeared to be the whole closer to the truth with narrower 

posterior intervals containing the truth compared to the Metropolis algorithm. 

However, given the improvement in parameter estimates and uncertainties with 

dataset length from the chapter 4 results, including from 1 to 2 years, it is likely that if 

this test run had been carried out using a 2 year dataset the parameter estimates and 

uncertainties for these three parameters would be significantly improved.   
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Figure 2.7 EnKF prior and posterior estimates along with associated uncertainties, of 
each of the 17 DALEC-D parameters. The red lines denote the true parameter values.  

 

2.3.4 Expectations of the EnKF and the Metropolis algorithm for 

estimating parameters and associated uncertainties 
The Metropolis algorithm and the Ensemble Kalman filter are two different types of 

DA  algorithms, with the former being a global search algorithm while the latter is a 

sequential scheme.  In this way, when they are used to estimate parameters and the 

associated uncertainties, they go about this in different ways, yet in both cases their 

parameter estimates are globally optimal.  This has been shown in their corresponding 

descriptions in subsections 2.2.4 and 2.2.8 of chapter 2.  In chapter 4 of this thesis, the 

two algorithms are used to estimate the parameters and associated uncertainties of the 

DALEC-D model.  In this section, we describe the slight differences in the 

assumptions for both schemes when they are implemented, and whether it is likely 

that these are large enough to result in non-insignificant differences in the resulting 

parameter estimates.  We also discuss more generally when we might expect the two 

algorithms to give similar results under identical or almost identical setups  and when 

we might expect to see differences.   

 In chapter 4, where the two algorithms are used to solve the same problem, 

both are setup in the same way except in two very minor ways.  These include (i) a 

slightly different prior distribution on the parameters and (ii) slightly different model 
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errors specified.  For (i), the Ensemble Kalman filter used a Gaussian prior 

distribution for the model parameters, while the Metropolis used a log-Normal 

distribution.  However the parameters used in the Metropolis algorithm, referred to as 

log-Normalised parameters (see subsection 2.2.8), do have a Gaussian prior 

distribution.  Furthermore, the modal value and standard deviation of prior 

distributions of the model parameters between the two algorithms are virtually 

identical.  For these reasons, we would not expect there to be any differences in the 

parameter estimates and associated uncertainties due to prior distributions.  For (ii), 

the EnKF has a relative model error specified for each element of the state vector 

(expressed in terms of a standard deviation) as 0.32% for the parameter elements and 

0.1% for the state elements of the augmented state vector.  This model noise is added 

to each ensemble member of the state matrix for each day the model is run forward 

between observations.  The Metropolis algorithm has no model error added onto at the 

daily time-step.  When there are large gaps between the observations in the dataset, 

the aggregated model noise can become non-insignificant, though not large.  In 

chapter 4, 13 of the 15 runs assimilate datasets with at least 60% of daily data present, 

and so there are never large enough gaps between the data for the model error to grow 

anything beyond insignificant, so this is not an issue here for the most part.  More 

importantly, this means that it is unlikely to be a reason for non-insignificant 

differences between the parameter estimates and associated uncertainties for the two 

DA schemes. 

 Evidence for these two slight differences between the two algorithms not 

resulting in noticeable differences for the parameter estimates can be seen from the 

REFLEX experiment (Fox et al., 2009) when these exact same two algorithms with 

exactly the same setups  were used to estimate the same parameters to the same model 

(DALEC-D) used in chapter 4.  From figure 2.8, we can see that for 13 of the 17 

DALEC-D parameters, the estimates for the two DA schemes are very similar.  For 

each of the remaining 3, there is some difference between the two estimates but not a 

lot.  Interestingly, the lengths of the 5th to 95th percentile intervals are either very good 

or good agreement for 15 of the 17 parameters.   Based on this evidence, it is expected 

that for chapter 4, the EnKF and Metropolis algorithm will give a similarly good 

agreement in  their parameter estimates  and uncertainties when  assimilating a dataset  
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Figure 2.8 The estimates and uncertainties of each of the 17 DALEC-D parameters 
for the Metropolis algorithm and the Ensemble Kalman Filter used in the REFLEX 
project (Fox et al., 2009).  The red lines denote the true parameter values.     
 

with similar characteristics.  In REFLEX, the assimilated NEE dataset was 2 years in 

length with observational noise and data density equivalent to the central levels used 

in chapter 4.  In other words, the dataset used here is most similar to that of run 2 from 

chapter 4 (see table 4.2).  It is worth noting here that synthetic Leaf Area Index data 

were also assimilated in REFLEX, however for the 2 year period or 731 individual 

daily time points the datasetcovered there were only around a dozen LAI  data points, 

thus their influence on the parameter inversions compared to the NEE would have 

been much less.  Therefore this inversion setup used in REFLEX is almost the same as 

run 2 from chapter 4.   

 Based on this result from REFLEX, it is reasonable to expect the parameter 

estimates between the two algorithms to be similar when assimilating shorter datasets, 

i.e. 5 years or less in the case of the chapter 4 experiments with noise and data 

densities at their central levels as in REFLEX, i.e. runs 1 to 3 from chapter 4 (see table 

4.2).  Virtually no terrestrial Carbon DA study has assimilated a dataset 10 years or 

more, or under varying observational uncertainty and varying data density, so it is 

difficult to say with confidence whether these would result in differences in the 

parameter estimates and uncertainties between the EnKF and the Metropolis 

algorithm.  Therefore, we instead explore known factors which might result in 
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differences and whether we might expect these factors to occur when assimilating 

longer datasets or when varying the observational uncertainty or data density.   

 The issue of equifinality has been identified as a potential issue for the 

Metropolis algorithm by many studies, including Medlyn et al. (2005), Tang & Zhang 

(2008), Williams et al. (2009) and Luo et al. (2011).  This is when different sets of 

parameters result in equally good fits of the model output (NEE in the case of chapter 

4) to the (NEE) data being assimilated.  A possible cause for this is the existence of 

‘redundant’ model parameters which have little or virtually no impact on the shape of 

the modelled NEE’s trajectory.  As a result, these parameters can be set at other values 

whilst still resulting in a good fit of the modelled NEE to the NEE data.  In the studies 

listed above, equifinality has been identified to occur when assimilating datasets of 5 

years, but the extent to which it could occur when assimilating datasets that are longer 

or have different noise and gap characteristics is unknown.  One could expect 

equifinality to occur at a similar extent under these differing characteristics of the 

data, as the different dataset would all contain roughly the same important information 

such as the seasonal and inter-annual variation, and the peak to peak amplitude.  

One way of limiting the effects of equifinality is to assimilate multiple types of 

observations as in Richardson et al. (2010).  In this way, these ‘redundant’ parameter 

which control different model processes are better constrained.  Medlyn et al. (2005) 

also states that equifinality can occur as a result of model structure.  For example, 

suppose an inversion algorithm is used to estimate the model parameters to two 

models with different assumptions about the ecological model – for example, Medlyn 

et al. (2005) uses two models of soil respiration, one based solely on soil temperature, 

while the other is based on the turnover rates of two carbon pools.  Medlyn et al. 

(2005) shows that under both hypotheses of the model structure that the modelled 

output using parameter values estimated by an inversion algorithm is of a similarly 

good fit to the data.  The Ensemble Kalman filter also likely to suffer from equifinality 

due to model structure, but its impact is likely to be less than the Metropolis algorithm 

because it is a sequential DA scheme.  As a result, the EnKF does not try the find best 

fit of the modelled and observed NEE for the entire dataset, as batch methods like the 

Metropolis algorithm do. Instead the EnKF compares the modelled and observed NEE 

one time-step at a time.  As a result, this may cause differences in the parameter 

estimates between the two DA schemes in chapter 4.   
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 Another plausible reason for potential differences occurring in the parameter 

estimates between the two DA schemes could be due to the observational error being 

temporarily correlated (Trudinger et al., 2007).  In chapter 4, although the synthetic 

NEE data are created by adding independently distributed Gaussian noise terms to the 

‘true’ NEE, the resulting residuals between noisy NEE data and the modelled NEE, 

using a parameter set from the posterior distribution is not guaranteed to be 

independent in time.  However, this temporal independence of the residuals is not 

guaranteed but it is a requirement of the likelihood function.  Breaking this 

independence assumption of the likelihood may therefore bias the parameter estimates 

from the Metropolis algorithm, or cause an unrealistic representation of the posterior 

distribution.  Autocorrelation may also exist in the residuals for the EnKF, despite the 

sequential nature of it and the data being assimilated one time step at a time, and may 

also cause problems.  If this is a problem, one way of overcoming it is to modify the 

likelihood function to take account of this.  However, this may be challenging or not 

possible for the EnKF due to the restriction of the prior distribution being Gaussian.  

In chapter 4 (or chapter 3), no modifications to the likelihood function were made 

primarily because we are interested in seeing the effects of this problem on 

assimilating datasets with different lengths, noise and gap characteristics.   

 

2.4 Models used 
In subsection 1.2.3 of chapter 1, an overview of 12 different models, varying in size 

and complexity, was presented.  In this section, we form arguments for the choice of 

model to be used in this thesis.  Before this, we go into more detail about common 

approaches to how some of the key ecological processes are represented in the 

models.  To avoid this subsection (2.4.1) being overly lengthy, we refer to a sample of 

the 12 models outlined in subsection 1.2.3 of chapter 1.  The purpose of this is mainly 

to gain more of an appreciation for how differently models simulate these processes, 

and to inform which model to adopt for this thesis.  In subsection 2.4.2, the arguments 

are then laid out to which exact model is most appropriate in the context of the aims of 

this thesis. Finally in section 2.4.3 the model to be used is described in complete detail.   

 



Chapter 2: Models, Data and DA algorithms 

Edmund Ryan -        - 2013 105

2.4.1 How models simulate the key ecological processes in 

terrestrial C dynamics 

In this subsection, we give a basic overview of how a number of key ecological 

processes are represented a sample of the 12 models described in brief in subsection 

1.2.3.  We focus predominantly on 4 models, but the choice is arbitrary and based on 

gaining an appreciation for how these processes are represented in smaller models 

versus larger models, where due to the differences in complexity there appears to be 

the largest gulf.  The four models include two small ones, namely DALEC (Williams 

et al., 2005) and SiPNET (Braswell et al., 2005), and two larger ones, namely 

SDGVM (Woodward & Lomas, 2004) and LPJ (Sitch et al., 2003).   

 

GROSS PRIMARY PRODUCTION (GPP) 

A common approach to modelling the assimilation of carbon into the plant at the leaf 

level due to photosynthesis is done the theory from Farquhar et al. (1980).  This 

simulates the process of electron transport, the Calvin cycle and photorespiration.  

Farquhar et al. (1980) models the assimilation of carbon as the minimum of three rate 

limiting factors.  These include: (i) the level of solar radiation and electron transport; 

(ii) the ratio of the rate of carbon and oxygen fixation by RuBisCO; and (iii) the 

export rate of photosynthate.  The net rate of CO2 assimilation from Farquhar et al. 

(1980) is represented by the equation: 

                         (2.36) 

where  is the total carbon assimilated by the leaf (  m-2 s-1),  is the rate of 

carboxylation,  and  are internal partial pressures of O2 and CO2 respectively,  is 

the specificity factor of RuBisCO for CO2 relative to O2, and  is the rate of 

respiration in light due to processes other than photorespiration.  The three limiting 

factors to photosynthesis are represented in  which is equal to , }, 

where, to be more precise than (i), (ii) and (iii) listed above, , and  are the 

rates of carboxylation limited by RuBisCO, the rate of RuBP regeneration, and triose 

phosphate utilization, respectively (Woodward et al., 1995). 

 SDGVM uses this approach by Farquhar et al. (1980) to simulate 

photosynthesis, whereas LPJ uses the representation by Collatz et al. (1992), which is 

a modification of the Farquhar model.  The main difference is how  is estimated – as 
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stated above, Farquhar et al. (1980) estimates this as the minimum of , and .   

Collatz et al. (1992), on the other hand, smoothes the minimization of these three 

rates, resulting in a co-limitation where two of the limiting rates are similar.  The 

Collatz et al. (1992) model has become common as it is a more generalized version for 

global modelling purposes (Sitch et al., 2003).  However, Bonan et al. (2011) has 

shown that the co-limitation in the representation by Collatz et al. (1992) can have a 

significant effect on the estimates of GPP.   

 Water stress can have a large impact on the assimilation of carbon into the 

plant, and this is incorporated into SDGVM by multiplying stomatal conductance and 

the RHS of equation (2.36) by a constant β.  In LPJ, the effect of water stress on the 

plant is simulated in a more sophisticated way.  If the atmospheric demand for water 

through transpiration is greater than the supply of water to the plant or the soil, then 

the stomatal conductance and assimilated carbon estimates are adjusted to be 

consistent with the transpiration rates.   

 SiPNET estimates GPP using the idea of limiting factors on carbon 

assimilation, but does it in a more simplistic way.  Using Braswell et al. (2005), it is 

estimated to be: 

GPP = GPPmax × Dtemp × DVPD × Dlight × Dwater 

where GPPmax is the maximum daily GPP value, and the remaining terms of the RHS 

are fractions representing the limiting factors on GPP (equalling 1 when not limiting 

GPP, less than 1 otherwise) due to temperature, Vapour Pressure Deficit (VPD), the 

amount of absorbed light, and the water availability.  Each of Dtemp, DVPD, Dlight and 

Dwater are determined using empirical functions.  For example, Dtemp is assumed to be a 

parabolic function, with a value of 1 when the air temperature (Tair) is equal to the 

optimum temperature (Topt) and a value of 0 when Tair > Tmax or Tair < Tmin.  It is given 

by: .  GPPmax is given by: 

GPPmax = Amax×Ad + Rf,o, 

where Amax is the maximum photosynthetic rate in the early morning, when this rate is 

at its peak.  Ad is a scaling factor to account for the fact that the maximum rate over an 

entire day is lower.  Rf,o is the foliar maintenance respiration rate at an optimum 

temperature Topt and is given by Rf,o = RF Amax where RF is a parameter and Amax is 

the leaf-level maximum net instantaneous CO2 assimilation rate which can be 

measured.  
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 In DALEC, GPP is calculated using a sub-model called the Aggregated 

Canopy Model or ACM (Williams et al., 1997).  The ACM is a highly simplified 

coarse-scale (temporally and spatially) version of the fine-scaled Soil-Plant-

Atmosphere (SPA) model developed by Williams et al. (1996).  As with many other 

similarly complex models, SPA simulates the assimilation of C into the leaf using the 

Farquhar model (Farquhar et al., 1980), leaf-level transpiration using the Penman-

Monteith equation (Jones, 1992).  The unique feature of SPA is in how it models 

stomatal conductance which links these two processes.  In particular, the rate at which 

water can be supplied to the canopy is restricted by the plant hydraulics and soil water 

availability.  The rate limits transpiration, causing the stored water to be used 

conservatively in the morning to delay the onset of stomatal closure in the early 

afternoon, resulting in the canopy maximising daily C assimilation.  The ACM is a 

semi-emphirical model, in that it is based on the same biological processes to SPA in 

simulating GPP, but the relations are emphirically based.  More specifically, the 

backbone of the ACM was three assumptions based on the model structure of SPA, 

namely: (1) plant photosynthetic capacity is linearly related to total foliar N; (2) 

metabolic and diffusive constraints are colimiting; and (3) incident radiation is 

hyperbolically related to GPP (Williams et al., 1997).  A data-driven approach to the 

development of the model was also incorporated starting off with these relations.  For 

example, for (1), this is first expressed as: 

PN  = aNL 

where N is the foliar N concentration, L is leaf area index, and a is a parameter.  This 

equation was revised to incorporate the effect of temperature on the response of PN in 

order to better represent the model behaviour of SPA.  It was changed to: 

PN  = a1NLexp(a2T) 

where T is the average daily temperature.   

 

AUTOTROPHIC RESPIRATION 

In both SDGVM and LPJ, autotrophic respiration is modelled by first separating it 

into maintenance respiration and growth respiration.  The first type assists in plant 

metabolism and maintains plant function, while the second type provides carbon as 

the raw ingredient for growth.  In both models, respiration from maintenance is 

determined by computing this separately for foliage, sapwood and roots, For example, 
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for SDGVM, respiration from roots and stems is calculated using , 

where R is the respiration, r is the proportion of biomass respired,  is a fraction 

between 0 and 1 which represents the limitation by soil water, B is biomass and t is 

temperature.  After maintenance respiration has been subtracted from GPP, 25% of the 

remainder is taken as growth respiration, the cost of producing new tissues.  What 

remains is NPP.   

 SiPNET represents autotrophic respiration as the sum of foliar and wood 

maintenance respiration.  Growth respiration is not modelled separately, but assumed 

to be included as part of the calculations for maintenance respiration.  Both foliar and 

wood maintenance (  and  respectively) are modelled using a Q10 function, more 

specifically: 

   and    

where  is the foliar respiration rate at the optimum temperature () for 

photosynthesis,  is a parameter,  is the amount of carbon stored in woody biomass 

and   is the air temperature. 

 DALEC, like SiPNET, also does not explicitly model growth respiration, but 

unlike SiPNET, DALEC does not separate maintenance respiration according to the 

stems or woody parts of the tree nor does it treat it as temperature sensitive.  Instead, 

DALEC assumes that daily autotrophic respiration is a fraction of daily GPP.  

However in the deciduous tree version of DALEC, denoted DALEC-D, two extra 

terms are included when computing autotrophic respiration.  They are temperature 

dependent linear functions of the foliar and labile carbon pools.   

 

HETEROTROPHIC RESPIRATION 

In SDGVM, soil respiration of C is controlled by temperature, water supply, the rate 

of supply and litter and its quality (Woodward & Lomas, 2004).  According to 

Woodward & Lomas (2004), litter quality is calculated by the fixation of carbon and 

the initial uptake of nitrogen into leaves and wood. Litter supply is also a fraction of 

NPP.  In LPJ, heterotrophic respiration is the sum of the carbon emissions from the 

litter pools, the intermediate and slow soil pools (Sitch et al., 2003).  Most of the 

respiration comes from the litter pools, where 70% of the decomposed litter goes 

directly into the atmosphere.  As with SDGVM, the litter decomposition rate is 
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temperature and soil moisture dependent, with both the temperature and soil moisture 

functions being empirical in nature.   

 In SIPNET, heterotrophic respiration is linearly dependent on the soil carbon 

content and varies according the soil temperature using a Q10 relationship and 

according to soil moisture.  DALEC employs a similar temperature sensitive Q10 

relationship for the proportion of soil carbon respired heterotrophically.   

 

LEAF AREA INDEX 

In SDGVM, Leaf Area Index (LAI) is determined as the minimum value determined 

by water uptake, transpiration and the allocation of fixed carbon.  More specifically, it 

is , where NPP is 

Net Primary Production,  and  are the allocations of carbon to the shoots and 

roots, SLA is specific leaf area,  is the water uptake by roots, P is precipitation and 

E is evaporation, V is the vapour pressure deficit and g is the stomatal and boundary 

layer conductance (Woodward & Lomas, 2004).  In LPJ, the LAI of an individual tree 

is calculated using the formula: 

CA

SLAC
LAI f

ind

×
=  

where Cf is the mass of foliar carbon per unit volume, SLA is a plant functional type 

(PFT) specific constant, and CA is the stem diameter dependent crown area which is 

used to represent the fact that LAI varies in different parts of the tree.  In SiPNET, 

LAI is estimated using the formula: 

frac

f

CLMA

C
LAI

×
=  

where LMA is leaf mass per area, and  is another parameter representing the 

fractional C content of leaves.  In DALEC, LAI is calculated using LAI = Cf /LMA 

(Williams et al., 2005), where LMA is Leaf Mass per Area and is the reciprocal of 

SLA (Larcher, 2003).   

 

2.4.2 Choice of model 

The choice of model is a two stage process.  First of all, we need to decide upon what 

size and complexity of model is most appropriate for the purpose of this thesis.  Then, 
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of the models available of that size and level of complexity, a decision is made about 

the precise one to choose.   

Common features of large models (e.g. TEM, SDGVM, BETHY, LPJ, 

ORCHIDEE) are that they simulate the C dynamics of trees, N dynamics, and water 

cycle.  Small models such as DALEC, SiPNET and OpTIC do this, although 

representation of these processes are more simplified, e.g. for DALEC, N and water 

availability are fixed at site specific constants.  One could think of small models as 

good approximations or larger ones, containing the essential features of the larger 

models, but are a lot more computationally efficient.  Another reason for their 

efficiency is that they typically operate over a small spatial scale – obviously if these 

small models were scaled up spatially, they would take longer.  However, for this 

thesis, we are investigating the advantages and weaknesses of DA, and are not 

primarily interested in getting global or regional estimates of the quantities of interest 

– although in the larger context, this is the ultimate goal.  Also, as one of the 

algorithms used in this thesis is the Metropolis algorithm, this is only suited to smaller 

models operating over a small or coarse spatial scale because of the large numbers of 

model runs that are required.  Many other studies (e.g. Williams et al., 2005, Knorr & 

Kattge, 2005, and Richardson et al., 2010) have carried out DA on a model at a 

specific site or sites, and so there is lots of value and potential knowledge gained in 

doing this. 

Of the small models, we choose among four potential ones, namely OpTIC, 

DALEC, SiPNET and SPA (see table 1.2, subsection 1.2.3) all of which typically 

operate on the site-level scale.  There are other small models available, but these four 

have been commonly used in DA studies involving terrestrial C modelling (e.g. 

Williams et al., 2005, Quaife et al., 2007, Trudinger et al., 2007, Brawell et al., 2005, 

and Williams et al., 1997) and are fairly representative of the range of smaller models.  

For example, SPA has the most detailed representation of the key processes such as 

photosynthesis, but the complexity decreases for the others, starting with DALEC, 

then SiPNET and then OpTIC.  Secondly, all four models simulate photosynthesis in 

different ways, and thirdly two simulate the water cycle, whereas the other two do not.  

In making the decision of which one of these four models to choose, we first exclude 

OpTIC.  This is because it is too simplistic.  It only has two state variables and four 

parameters.  We also exclude SPA, partly because it operates at the half-hourly time-
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step and this level of temporal scale is not necessary and could cause the model to be 

too computationally expensive (due to the excessive number of time-steps required) 

since we will require the model to be run over multiple years to assess inter-annual 

and seasonal variability.  Furthermore, SPA is probably the most complex of all the 

small models and this may add excessive computing time.  Of the two that remain, 

namely SiPNET and DALEC, these are different in various ways.  We outline some of 

the main differences and decide upon DALEC for three reasons outlined below. 

First of all, they model photosynthesis differently, but arguably DALEC’s 

version is a more accurate approximation of the photosynthesis used in SPA (Williams 

et al., 1997) where photosynthesis is simulated using the Farquhar model.  SiPNET on 

the other hand, simulates photosynthesis in much more of an empirical way which 

could be argued is less representative of the actual processes.   

Second of all, SiPNET simulates the water cycle whereas DALEC does not.  

However, this is not necessarily a major advantage to SiPNET.  This is because: (i) of 

all the time periods for the sites used in this thesis are not water-stressed; (ii) although 

the main effect simulating the water cycle will have on the model will be to influence 

the estimates of GPP and soil respiration, for GPP the photosynthesis sub-model used 

in DALEC has been shown to produce good estimates of GPP (Williams et al., 2005) 

even without simulating water movement.  Also, although SiPNET also uses its water 

estimates to inform its estimates of soil respiration, because the sites are not water 

stressed this is likely to have only minimal effects on soil respiration estimates.  

Furthermore, soil respiration is most sensitive to variations in temperature (Lloyd & 

Taylor, 1994) which both models include.   

          A third reason DALEC may be preferable to SIPNET because SIPNET operates 

by solving the differential equations using an approximation.  Because of this, the 

model code is fairly complex.  DALEC on the other hand does not solve its equations, 

and in fact it has very many fewer lines of code to run, which are also much simpler.  

In this way, DALEC is much more practical and easier to use than SiPNET.  DALEC 

can also be freely downloaded from the internet, whereas for SiPNET permission 

needs to be granted and from personal experience this took over a year to grant.  

 In the subsection that follows, the evergreen and deciduous versions of the 

DALEC model are described in full detail. 
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2.4.3 The DALEC model 

The DALEC model (Data Assimilation Linked Ecosystem Model for Evergreen 

vegetation) (Williams et al., 2005) is a simple box model that tracks the journey of 

carbon (C) from photosynthesis through to respiration in Evergreen trees via C pools 

and respiration fluxes.  Figure 2.9 shows it in diagrammatic form.  It has 6 carbon 

pools (represented by the boxes in figure 2.9), namely Cf (carbon stored in foliage, i.e. 

leaves), Cr (carbon stored in fine roots), Cw (carbon stored in woody biomass,  i.e. tree 

trunks, roots and major branches), Clit (carbon stored in litter), and Csom/cwd (carbon 

stored in soil organic matter and coarse woody debris).  There is an additional pseudo-

pool for Gross Primary Production (GPP), which represents carbon accumulated from 

photosynthesis. GPP is estimated on a daily time step by a sub-model called the 

Aggregated Canopy Model (ACM), which is a simplified version of the Soil-Plant-

Atmosphere model (Williams et al., 1997). Williams et al. (2005) states: 

The ACM is a big-leaf, daily time step model that estimates GPP as a 

function of LAI, foliar nitrogen, total daily solar radiation, maximum 

and minimum daily  temperature, day length, atmospheric CO2 

concentration, soil–plant water potential, and total soil–plant 

hydraulic resistance. (Williams et al., 2005, p.95). 
 

In DALEC, LAI is linearly related to Cf , by the relation, LAI= Cf/LMA (Williams et 

al., 2005), where LMA (Leaf Mass per Area, m²/m²) is a site specific constant.  This 

feedback (represented by the blue arrow in figure 2.9) is present because, put simply, 

the more leaves you have on the tree the more photosynthesis will take place.  Like 

LMA, foliar nitrogen (gN/m²) is also a site specific constant and is included in the 

GPP function because plants need nitrogen to carry out photosynthesis (more 

specifically they need it to make amino acids, proteins and DNA).  It is worth noting 

that although LMA and foliar nitrogen are treated as constants in reality they vary 

spatially within a site (Larcher, 2003), however given that DALEC operates on a 

coarse scale this assumption is valid.  Furthermore, the creator of DALEC states that 

LMA is a parameter which can be determined in the field or from the trait database 

like TRY (Kattge et al., 2011).  The other parameters in DALEC, determined by DA, 

are those that are poorly constrained by our understanding (Williams, M., 2012, 

[personal communication]).  In the same way, foliar Nitrogen mass is another 

parameter which is kept fixed for a particular site, whereas if we were on a finer  
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Figure 2.9 The DALEC model for evergreen vegetation, where the green and brown 
colours refer to vegetation and soil carbon stores. 

 

resolution model then this would need to vary spatially (Williams et al., 1997).  This 

assumption of treating LMA as a site specific constant has been done by a number of 

other papers, including most notably Williams et al. (2005) where the DALEC model 

was first described and introduced to the research community.  Other papers where it 

appears include: De Kauwe et al. (2008), Fox et al. (2009), Quaife et al. (2007), 

Richardson et al. (2010) and Spadavecchia et al. (2011).    The assumption of Cf being 

directly proportional to LAI is another assumption made which is reasonable given the 

fact that DALEC is a simple model.  This relationship is used to provide estimates of 

LAI from the foliar Carbon pool of the previous time-step when GPP is estimates 

using the ACM.  Since the ACM has been shown to very accurately replicate the SPA 

model in terms of its GPP estimates but at a much lower cost (Williams et al., 1997), it 

could be argued that Cf/LAI relation, used in the ACM, is a satisfactory enough 

approximation.  Furthermore, this relation has been used in the first paper to use 

DALEC (Williams et al., 2005) and all papers to use the model since, such as De 

Kauwe et al. (2008), Fox et al. (2009), Quaife et al. (2007), Richardson et al. (2010) 

and Spadavecchia et al. (2011).   

Despite the good arguments for treating LMA and foliar nitrogen as constants, 

there are perhaps stronger arguments for treating as parameters.  In particular, if 
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DALEC is applied to a site or location where these two quantites have not been 

measured, using an estimate (e.g. from a nearby site or location where it has been 

measured), this may result in model biases.  This is due to work by Chuter (2013) who 

found that DALEC modelled NEE is most sensitive to LMA and one of the exisiting 

DALEC parameters, above all the other model parameters.  Therefore in hindsight, 

treating them as parameters even for sites where they have been measured would have 

been preferable to take account of the uncertainty in their true value arising from 

erroreous measurements or natural variability in time and space.  Therefore, this is a 

limitation and it is recommended that future uses of the model LMA and foliar 

nitrogen should be treated as parameters.  

The soil-plant water potential )( dψ and total soil-plant hydraulic resistance 

(Rtot) are site-invariant constants that are necessary for the estimation of GPP because 

they control how easy it is for the CO2 to enter the leaf via the stomata (i.e. the pores 

of the leaf where CO2 is absorbed into the plant) – this is referred to as stomatal 

conductance.  The openings and closings of the stomata are controlled by guard cells.  

In essence if the leaves of the tree have a high stomatal conductance then the guard 

cells are wide open, and a low value implies they are not as wide open.  dψ  and Rtot  

are also important because they represent the water availability.  Thus these two 

constants can be modified to simulate a drought or very wet conditions.  Stomatal 

conductance is also controlled by the CO2 levels in the atmosphere, the amount of 
solar radiation (MJ/m²/day), and the length of the day in hours (calculated using the 

latitude of the site and the day of the year).  The greater the value of each of these the 

three quantities the greater the amount of photosynthesis occurs during the day.  The 

total daily solar radiation and maximum and minimum daily temperature are provided 

as driving data for each day the model is run for.   

        There are a total of 10 fluxes (represented by the black arrows on figure 2.9), 

which connect the C pools and also provide a way for C to get into the system (via 

GPP) and out of it (via respiration).  They are denoted by the letters A (Allocation), L 

(Loss), R (Respiration) and D (Decomposition).  For example, Af would be the 

allocation of GPP (after deducting Ra, autotrophic respiration) to foliage, Lw would be 

the loss rate of carbon from the Cw pool, etc.    Finally, there are 11 parameters which 

control various aspects of the model, such as the size of the fluxes.  These are 

displayed in table 2.1.  They can be split into 4 groups:  
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(i) The respiration parameters (Fg, Tl, Ts) correspond to how much carbon is 

respired, which can be autotrophic, (i.e. respired from the leaves and 

represented as a fraction, Fg, of GPP), or heterotrophic (i.e. the fractions 

respired from the Csom/cwd and Clit pools, i.e. Tl, Ts). 

(ii)  The NPP allocation parameters, Fnf, Fnrr, are the fraction of NPP allocated to 

foliage, and the fraction of the remaining NPP allocated to roots.   The NPP 

left over is allocated to the Cw pool.  

(iii)  The turnover parameters (Td, Tf, Tw, Tr) are the fractions of Clit, Cf, Cw, and   

Cr values which leave these pools.  Note that Td corresponds to the fraction of 

C going from the Clit pool to the Csom/cwd pool. 

(iv) The miscellaneous parameters (Et, Pr):  Et is referred to as the temperature 

sensitive parameter and is used to calculate the soil temperature (T) from the 

formula: T = 0.5×exp(Et×Tm) where Tm is the maximum minus the minimum 

daily temperature.  This function is equivalent to a curve where an increase of 

Tm by 10ºC results in T doubling in size.  T is used in the calculations of the 

size of the three C fluxes leaving the Clit and Csom/cwd pools by multiplying T 

by each of the respiration parameters.  For example, Rh1= Tl ×T×Clit, whereas 

the other seven fluxes do not rely on T, e.g. the C flux coming out of the Cf 

pool (referred to as Lf) is calculated by Tf×Cf.  Pr is the nitrogen use 

efficiency parameter, and is used directly in the calculations for the ACM.   

The values of the parameters and the initial conditions of the C pools are site 

specific and need to be estimated which in the past was typically done using expert 

knowledge or site inventory data, but more recently Data Assimilation (DA) has been 

used instead.  To appreciate the size of these parameters, table 2.1 shows lower and 

upper bounds that were used as part of the REFLEX project (Fox et al., 2009) which 

included two different Evergreen sites.  Recent work by Chuter (2013) has provided 

some useful insight into the values of the lower and upper bounds of each parameter 

based on physical limitations of the model.  Chuter (2013) found that for certain 

values of particular parameters, the model resulted in tipping points where the 

terrestrial plant ecosystem went from a stable to an unstable environment; in practical 

terms, this often then leads to the ecosystem dying when in reality this may not 

happen for other physical reasons which are not represented by the model.  This 

unrealistic feature of the model can be simply overcome by prescribing physical boun- 



Chapter 2: Models, Data and DA algorithms 

Edmund Ryan -        - 2013 116

Symbol Description Units Lower/Upper bounds 
Td Litter decomposition rate parameter  day-1 1×10 6−  / 0.01 
Fg Fraction of GPP respired autotrophically - 0.2 / 0.7 
Fnf Fraction of GPP allocated to foliage - 0.01 / 0.5 
Fnrr Fraction of GPP allocated to roots - 0.01 / 0.5 
Tf Turn over rate of foliage day-1 1×10 4− / 0.1 
Tw Turn over rate of wood day-1 1×10 6− /0.01 
Tr Turn over rate of roots day-1 1×10 5− / 0.1 
Tl Turn over rate of litter day-1 1×10 6− /0.01 
Ts Turnover rate of CSOM pool. day-1 2.65×10 6−  
Et Exponential temperature dependent rate parameter - 0.05 / 0.2 
Pr Nitrogen use efficiency parameter - 5 /20 
Cf,0 Foliar carbon pool gCm-2 20 / 200 * 
Cw,0 Woody C pool gCm-2 9200 / 16400 * 
Csom/cwd Soil Organic matter & coarse woody debris C pool gCm-2 9700 / 12000 * 
Cr,0 Fine root C pool gCm-2 20 / 200 * 
Clit ,0 Fresh litter C pool gCm-2 20 / 200 * 
Table 2.1 The description of the parameters and C pools of the DALEC model.  The * 
refers to the initial values of the five C pools.  The lower and upper bounds were those 
adopted for the REFLEX project (Fox et al., 2009) based on three Evergreen forest 
sites.  
 

daries to the model parameters; these boundaries may be further constrained for a 

particular location by other information such as local site data/knowledge. 

As with many ecosystem models, DALEC is represented by a system of 

ordinary differential equations, and these are given below.  The RHS of each of these 

differential equations is how much each of the C pools change by.  

ff
f LA

dt

dC
−= ,                   where GPPFFA nfgf ×−= )1(   

          and fff CTL =  

 rr
r LA

dt

dC
−= ,                    where GPPFFFA nrrnfgr ×−−= )1)(1(   

          and rrr CTL =  

ww
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dt

dC
−= ,                   where GPPFFFA nrrnfgw ×−−−= )1)(1)(1(  

          and www CTL =  
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dt

dC
hrf

lit +−+= 1 ,  where TCTR litlh =1   

                     and TCTD litd=  
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2hw
som RDL

dt

dC
−+= ,        where TCTR somsh =2  

Several assumptions are made in order to determine the fluxes in the model (Williams 

et al., 2005): 

1. The mass balance of carbon is conserved.  This means two things: (a) All C fixed 

during a day (i.e. GPP) is expended either in autotrophic respiration or allocated to 

one of the three plant tissue pools, Cf, Cw or Cr;  (b) For all C pools except GPP, C 

going into pool = C going out of pool + growth of pool.  

2. Autotrophic respiration is a constant fraction of GPP (Waring et al., 1998). 

3. Allocations to vegetation pools are constant functions of NPP.   

4. All C losses from the system end up in the atmosphere.   In other words, it is 

assumed that all C exchanges are included in the model.  In reality, some C might 

dissolve out of the litter pool into soil moisture and flow out of the ecosystem, but 

for simplicity, this is ignored.   

In DALEC (as with other models) we refer to the time dependent model 

variables of interest, such as the 6 C pools and the 10 fluxes, as the model states.  We 

define two additional states, called NEE (Net Ecosystem Exchange) and iNEE. NEE is 

total respiration (i.e. the sum of autotrophic respiration, Ra, and heterotrophic 

respiration, Rh1 and Rh2) minus GPP.  This is the quantity we are most interested in, 

since it represents the carbon balance of the forest.  iNEE stands for integrated NEE 

and is the cumulative value of NEE from the first time point to the current time point.   

 

2.4.4 The DALEC-D model 

DALEC-D is an extension to DALEC, modelling the carbon dynamics of deciduous 

forests as opposed to evergreens. From figure 2.10 we can see that DALEC-D contains 

everything that DALEC does (figure 2.9) but includes an extra C pool, which stores 

labile carbon (abbreviated as Clab) with connecting fluxes.  This difference exists 

because deciduous trees shed their foliage in the autumn and regain them in spring, so 

they need this labile carbon pool (a reserve carbon pool) in order for the leaves to 

come through in spring.  Evergreen trees (e.g. pine trees) do not shed their foliage in 

the winter months hence  have no need for a  labile carbon pool.   C accumulates in the 

Clab pool during the growing season, when a portion of the Cf pool gets transferred to 

the Clab pool.   The amount of C in the Clab pool  remains roughly constant until spring  
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Figure 2.10 The DALEC-D model for deciduous vegetation, where the green and 
brown colours refer to vegetation and soil carbon stores 
 

when it gets transferred back to the Cf pool in order for the spring bloom to occur.  

This flow of C between Clab and Cf pools is represented in figure 2.10 by the Atolab and 

A fromlab fluxes.    

In addition to the 11 parameters used DALEC, DALEC-D has 6 others (given 

in table 2.2 along with the original 11) which are now explained.  The timing of when 

the leaves start to grow in spring (represented by Lout) is controlled by a simple 

growing-degree day (GDD) accumulation function.  GDD is a common tool (e.g. used 

by crop growers) to determine when the spring bloom occurs, as well as other rates of 

crop development, such as when a crop will reach maturity.  The timing of when the 

leaves fall in autumn is treated as being after the 200th  day of the year and only where 

the minimum daily temperature is less than a certain threshold (represented by Lfall).  

Of all the C that leaves the Cf pool (i.e. Fnf×Cf), a fraction (Fll) is transferred to the 

litter pool (i.e. from figure 2.10, Lf=Fnf×Fll×Cf).   Tlab is the turnover rate of the Clab 

pool, which has the same interpretation as the Tf, Tr, Tw, Tl and Ts parameters.  During 

spring, of the amount of C which leaves the Clab pool (Tlab×Clab) a proportion 

(represented by Flr) is respired autotrophically.   Finally the timing of the start of 

summer is determined when either the size of the Cf pool exceeds a maximum 

threshold (represented by Cfmax) or the year-day is at least 200. 
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Symbol Description Units Lower/Upper bounds  
Td Litter decomposition rate parameter  day-1 1×10-6 / 0.01 
Fg Fraction of GPP respired autotrophically - 0.2 / 0.7 
Fnf Fraction of GPP allocated to foliage - 0.01 / 0.5 
Fnrr Fraction of GPP allocated to roots - 0.01 / 0.5 
Tf Turn over rate of foliage day-1 1×10-4/ 0.1 
Tw Turn over rate of wood day-1 1×10-6 /0.01 
Tr Turn over rate of roots day-1 1×10-5 / 0.1 
Tl Turn over rate of litter day-1 1×10-6 /0.01 
Ts Turnover rate of CSOM pool. day-1 2.65×10 6−  
Et Exponential temperature dependent rate parameter - 0.05 / 0.2 
Pr Nitrogen use efficiency parameter - 5 /20 
Lout Growing degree days for leaf out -  200 / 400 
L fall Minimum temperature for leaf fall ºC 8 / 15 
Fll Fraction of foliar carbon lost transferred to litter - 0.2 / 0.7 
Tlab Turn over rate of labile carbon day-1 1×10-4/ 0.1 
Flr Fraction of labile carbon respired - 0.01 / 0.5 
Cfmax Maximum Cf gCm-2 100 / 500 
Cf,0 Foliar carbon pool gCm-2 20 / 200 * 
Cw,0 Woody C pool gCm-2 7100 / 12200 * 
Csom/cwd Soil Organic matter & coarse woody debris C pool gCm-2 8800 / 17600 * 
Cr,0 Fine root C pool gCm-2 20 / 200 * 
Clit ,0 Litter C pool gCm-2 20 / 200 * 
Clab,0 Labile C pool gCm-2 20 / 200 * 
Table 2.2 The description of the parameters and C pools of the DALEC model.  The * 
refers to the initial values of the six C pools.  The lower and upper bounds were those 
adopted for the REFLEX project (Fox et al., 2009) based on three Deciduous forest 
sites.  The parameters and C pool used in DALEC-D but not DALEC are highlighted. 

 

2.5 Data 

2.5.1 Introduction 

In this thesis, we make use of data measured from ground measured or those inferred  

from satellite data.  As outlined in chapter 1, it is key to have data in order to validate 

and calibrate models.  There are lots of different types of data of different quantities, 

but there are various challenges or issues that need to be considered when using data, 

some important ones being: (i) Which is the best data to use and how much should be 

used? (ii) How do we trust the accuracy of data? (iii) How do we interpret data 

inferred from satellites? 

For (i), one would expect that having more data is better because we have 

more information to describe what it is going on the real world.  For example, 
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Williams et al. (2005) and Richardson et al. (2010) both calibrate the DALEC model 

with a whole variety of data including Net Ecosystem Exchange (NEE), woody C, 

litter C, soil respiration, Gross Primary Production (GPP), Leaf Area Index (LAI).  In 

each case, the each set of authors find that the uncertainty in the modelled estimates of 

NEE progressively reduces as more types of data are assimilated into the model.  

Clearly this is expected, because we able to constrain more of processes associated 

with plant dynamics and growth.  In this thesis, only data of NEE (or synthetic data 

based on the characteristics) and LAI are used and we do not make use of this variety 

of different data streams because of the specific aims of this work.  This is because 

chapter 3 was motivated by trying to understand some of the results of the REFLEX 

project (Fox et al., 2009) and part of the same data used there was used here too, and 

this consisted on synthetic NEE and LAI data.  In chapter 4, the aim was to understand 

how parameter estimates vary with the length, noisiness and density of the dataset 

being assimilated.  We restricted ourselves to NEE data only partly because for the 

network of FLUXNET sites this is the most continuous type of data available and it is 

also the main quantity of interest (Baldocchi, 2008).  Other data types could have been 

included as well, but this would have extra complication to the problem, which is a 

good idea to do for future work, but not for a first step.  For chapter 5, the main aim 

was to understand the limitations of satellite derived data in calibrating model 

parameters.  As with chapter 4, we limited ourselves to one data type namely LAI, 

because we did not want to over-complicate the problem, but assimilating more types 

of data would be a good extension to the problem.  

For (ii), the accuracy of the data is a very important consideration, because 

whether data is being used on its own to understand the behaviour of the environment 

or to validate models, if the data have too high an uncertainty then then it may be too 

unreliable to use.  For this reason, quantifying the data uncertainty is therefore 

important, and it is critical for data assimilation problems.  In the next subsection and 

in the methodology sections of the chapters that follow, we describe how data 

uncertainty is quantified.  Question (iii) is really a special case of (ii).  Characterising 

and quantifying the uncertainty of data inferred from satellite can be difficult 

(Demantry et al., 2007) but it is important to be able to quantify it well (De Kauwe et 

al., 2012).  We demonstrate this in chapter 5 when assimilating LAI data inferred from 

satellite measurements.   
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In the next subsection we describe how NEE and LAI data, used in this thesis, 

are measured or obtained, critically reviewing the different methods that could be used 

to obtain this data and giving arguments for using the particular procedure for this 

thesis.  We also briefly describe how the uncertainty on these data are quantified, with 

more specific detail is given in the methodology sections of the chapters that follow, 

chapter 4 for the NEE data, and chapter 5 for the LAI data.   

 

2.5.2 Net Ecosystem Exchange (NEE) 

TRADITIONAL WAYS OF MEASURING NEE 

Traditional apparatus for measuring NEE include leaf cuvettes (e.g. Field et al., 1982), 

whole plant chambers (Baldocchi et al., 2010) and soil chambers (Cable et al., 2008).  

A leaf cuvette is a suitcase size portable analyser which connects to a clamp large 

enough to cover the area of a leaf so that the leaf is sealed inside.  The main quantities 

it is used to measure are the net photosynthetic assimilation rate and the transpiration 

rate (Rodeghiero et al., 2007).  Chambers, whether whole plant types of soil types, 

also measure rates of net photosynthetic assimilation of C and transpiration, but the 

volume of space in which measurements are made is much large.  In this way, rather 

than making measurements of a single leave, one could make measurements of an 

entire plant (if it was large enough to fit inside the chamber, so a small shrub).  As the 

name suggests, soil chambers are used to make measurements over terrain which is 

either just soil or has very little vegetation (grass) (Bachmann et al., 2010).  While 

these apparatus are still being used today to make measurements of net photosynthesis 

and soil respiration rates, e.g. PHACE project (Morgan et al., 2011, Pendall et al., 

2004, Parton et al., 2007), they have some major drawbacks.  Their physical size 

limits the space over which C exchange rates can be measured, for example it is very 

hard or impossible to use a leaf cuvette to make measurements over enough leaves in 

a reasonable time frame (e.g. an hour) to be able to properly characterise the true 

spatial variability with a high enough statistical accuracy (Baldochi, 2003).  Also, it is 

very labour intensive to be able to track temporal variability of C exchange between a 

leaf and the atmosphere (i.e. someone needs to be present with the machine 

throughout the day) and impossible to do this for the entire plant if it is bigger than a 

small shrub (Cable et al., 2008).  This impossible task becomes even more impossible 

if we wish to track NEE of the entire plant not only over one day but over consecutive 
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months, years and decades.  Being able to make these types of measurements is 

critical to be able to validate and calibrate models which quantify how the terrestrial 

sink of C is changing over large spatial scales (regionally, temporally and globally) 

and temporally (Baldocchi et al., 2008).  This was the motivation to develop new 

techniques for measuring NEE to be able to make sure continuous and plant wide 

measurements of NEE.   

 

EDDY-COVARIANCE THEORY FOR MEASURING NEE 

Developed in the 1970s and 1980s, the eddy-covariance technique was the first 

method to provide frequent measurements of the land-atmosphere fluxes of carbon 

(i.e. NEE) and water vapour all year round (Wofsy et al., 1993), and has remained the 

only method to do so to the present day. Currently there are almost 200 sites where 

such measurements are made, in a range of different biomes and terrain (Baldocchi, 

2008).  Even though it is infeasible for these methods to be used on their own to 

obtain accurate global estimates of NEE, such the measurements are used to calibrate 

(i.e. Data Assimilation) and validate global estimates from models.  We next describe 

the theory; one of the most recent summaries of the theory and current knowledge on 

its application including limitations is Baldochhi (2008).  We therefore use Baldochhi 

(2008) as a basis from which to describe the main principles and equations behind the 

eddy-covariance method, which are outlined in the paragraphs that follow. 

The eddy-covariance technique uses a sonic anemometer to measure the 

vertical wind speed and an infra-red gas analyser (IRGA) to determine the CO2 

concentration.  These two pieces of equipment (shown in figure 2.11) are now 

described.   

Sonic anemometer: Wind (which is the main carrier of the CO2 fluxes) moves in a 

vertical direction, but also horizontally in the x and y directions (figure 2.11b).  The 

horizontal movements are mainly due to eddies which form as a result of winds 

blowing faster at higher levels than at the surface (Baldocchi, 2003).  The sonic 

anemometer converts  the circular movements  of the wind (the eddies) to a  Cartesian 

coordinate system (figure 2.11b).   Assuming that the terrain is flat, we find that the 

net fluxes of CO2 in the horizontal direction (i.e. along the x-y plane) become zero, i.e. 

what goes in one side of each of x- and y- directions come out of the other sides 

(Baldocchi, 2001).   The wind speed is determined by  sending an acoustic signal from 
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SONIC anemometer      IRGA (Infra-Red Gas Analyser) 

 

 

 

Figure 2.11a (left) A photograph of the IRGA and sonic anemometer (taken by the E. 
Ryan, author of this thesis).  Figure 2.11b (right): The Cartesian coordinate system. 
 

one end of the sonic anemometer to the other end.  If the wind is in the same direction 

as the travelling signal, the signal will move faster than if there was no wind.   Since 

time = distance / speed, we form the equation: 

)( par
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d
t

+
=           (2.37a)  

where: outt = time, d = distance, parU  = speed of wind, c = speed of sound (U) in the 

direction of the acoustic signal.    This is analogous to a plane travelling faster when in 

the direction of the wind.  The quantities outt  and d are easily calculated or already 

known.  When the acoustic signal travels from its destination to its origin this results 

in a similar equation to equation (2.37a) however this time the wind-speed is deducted 

from the overall speed because the signal is travelling in the opposite direction: 
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Thus we have an expression for the wind speed (Upar).    This description is consistent 

with Baldocchi (2007). 

 

IRGA: This measures the CO2 concentration using a laser located between its three 

prongs (figure 2.11a).  It operates by shining an infrared light through a sample of air 
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and onto a detector.  The energy from the light is absorbed by the CO2, thus the CO2 

concentration can be inferred from the decrease in the level of energy that reaches the 

detector (Goulden, 1996).   

 

The covariance part of ‘Eddy-covariance’: Both the wind speed and CO2 

concentrations are measured at 30Hz, ie 30 measurements / second.  For each 

measurement, the covariance between the vertical wind speed and the CO2 

concentrations is computed and since this is proportional to the vertical flux of CO2, 

we are able to work out NEE (Baldocchi et al., 2003).  It should be noted that this 

method does not distinguish between the downward and upward components of the 

vertical flux (i.e. photosynthesis and C respiration).   However in the past decade, it 

has become possible to approximately partition NEE into its photosynthetic C and 

respiration constituents by measuring and modelling the C12 and C13 isotope content of 

the C flux (Zobitz et al., 2007). 

 

Assumptions: There are four assumptions which are made when measurements of 

NEE (and other C fluxes) are made using the eddy-covariance method (Baldocchi, 

2003): 

(1) The terrain is flat. 

(2) The underlying vegetation is homogenous and it is situated on flat terrain for 

an extended distance upwind. 

(3) The atmospheric conditions are steady.  

(4) The sensors and the data-logging system are able to sense and record the 

fastest and smallest eddies. 

 

LIMITATIONS OF THE EDDY-COVARIANCE TECHNIQUE 

The eddy-covariance technique produces biases when one of the above assumptions is 

broken, and the resulting bias induced is not accounted for.  For example, if the first 

assumption is not met and the terrain is sloping, then the net horizontal fluxes of CO2 

cannot be assumed to be sum to zero as stated in the text prior to equation (2.37a).  

Another common problem is the low wind speed at night-time (breaking the third 

assumption) results in inadequate mixing of the CO2 leading to an under-estimation of 

NEE.  It some cases, such as the night-time under-estimation, the bias can be 
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reasonably well quantified in some situations (Aubinet et al., 2005), but for other 

types of bias (such as non-flat terrain) there is disagreement how to properly account 

for them (Baldocchi, 2008).   

 Even if the assumptions are met, there are other problems which could cause 

errors, unaccounted for, to emerge.  For example if the system gets contaminated (by 

insects or soil getting in for instance) this can cause errors in the eddy-covariance 

readings.  Modern systems contain a piece of hardware called an automatic gain 

control which gives a measure of how clean the data are, but ultimately it is up to the 

scientist analysing and processing the raw data to adjust the results to eliminate this 

bias (Baldocchi et al., 2003).  This leads to another problematic issue - there are 

checks which should be done on the raw data which can be thought of as diagnostics 

to determine the accuracy of the data.  It is unclear if all flux sites do this well. 

 Ultimately if the data contains biases or is erroneous the data cannot be used, 

resulting in gaps in the time-series of data, with a typical Fluxnet site having 

approximately 60% coverage.  When the data is made available to modellers, there is 

also no measure of how accurate the data is.  However in the past 6 or 7 years, some 

tools have emerged to be able to gain some appreciation of data uncertainty (e.g. 

Hollinger & Richardson, 2005).  These are described next.  

 

2.5.3 Quantifying NEE observational errors 

Observational error in NEE is defined as the difference between the measured and true 

values of NEE.  This can be split into random and systematic elements (Goulden et al., 

1996; Moncrieff et al., 1996).  Figure 2.12 gives a graphical explanation of the 

different between the two.  Random errors (figure 2.12a) are due to random natural 

variations.  Systematic errors (figure 2.12b) are a result of a problem with the 

measurement process (e.g. insects getting inside the sensor) which results in a bias.   

 

RANDOM ERRORS 

Hollinger & Richardson (2005) and Richardson et al. (2006) were the first to make sig- 

nificant progress in quantifying the random errors of NEE (and other C flux) 

measurements.  These studies aimed to determine the distribution of random errors by 

comparing pairs of measurements from two flux towers less than 1km apart from one 

another (in Hollinger & Richardson, 2005)  or from the same  flux tower but  24 hours  
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Figure 2.12 A graphical representation of the difference between (a) random and (b) 
systematic observational errors (Baldocchi, 2012). 
 

apart and under similar meteorological conditions (in Richardson et al., 2006).  We 

outline in the paragraphs that follow the methodology of Richardson et al. (2006) as 

this is reliant only on NEE from one flux tower, rather than on the strict criteria of two 

flux towers within 1km of one another.   

 In mathematical terms we let x = x*+ ε  be a measurement, where the random 

error ε  is an i.i.d. (identically and independently distributed) measurement, distributed 

with mean zero and variance )(2 εσ  and x* is the true value, the aim was to estimate 

)(2 εσ .  We now suppose that we have a pair of measurements x1 = x*+ 1ε  and x 2  = 

x*+ 2ε , where the random errors, 1ε  and 2ε , are also i.i.d. with mean zero and 

variance )(2 εσ .  The distribution of the random variable ε 1– ε 2 has a distribution 

with expected value and variance: 
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where µ  and b are referred to as the location and scale parameters.  This distribution 

has a mean and variance given by µ  and 22b .  It should be noted that this error 

distribution refers to observations made every half an hour.   

 

SYSTEMATIC ERRORS 

Systematic errors result from, for example, the measuring equipment, if incorrectly 

calibrated.  They can also result from one or more of the assumptions of the eddy-

covariance method not being met as stated earlier (Baldocchi, 2008).  Most of the 

time, systematic errors can be identified indirectly, e.g. if the measured wind speed is 

too low (a problem which occurs mainly at night), this can result in an under-

estimation of NEE.  When systematic errors are identified, a common way of dealing 

with them is to remove the corresponding NEE measurements since it is very difficult 

to accurate quantify these biases.  

 

2.5.4 Leaf Area Index (LAI) 

LAI (m²/m²) is defined as ‘the one-sided green leaf area per unit ground area, in 

broadleaf canopies, and as the projected needle leaf area in coniferous canopies’ 

(Myneni et al., 2002).  In this subsection we provide an overview of its importance, 

how it is measured (from ground and space), and whether these two approaches give 

the same values.  A fuller description and discussion is provided in sections 5.1 and 

5.2. 

LAI is a key climate variable for estimating the growth of vegetation and for 

understanding key components of the water cycle and the energy balance (Sellers, 

1997).  It has a strong influence on: (i) the interception of solar radiation, (ii) 

photosynthesis, (iii) transpiration, (iv) respiration, and (v) water interception (Breda, 

2003).  For (i) & (ii), for example, if LAI is high there is more foliage (i.e. leaves, 

needles) on the trees meaning the total surface leaf area will be larger, resulting in 

more interception of solar radiation and more photosynthesis.  However the more the 

leaves clump together the less of an impact LAI has on radiation interception and 

photosynthesis.  This is because the clumping of the leaves means that the solar 

radiation is less likely to be able to penetrate to the entire the surface of each leaf 

(Breda, 2003).   
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LAI can be measured from the ground directly or indirectly.  Direct methods 

involve stripping the leaves off a tree or collection of trees and feeding each leaf 

through a scanner to determine its one-sided surface area (Smith et al., 1991).  As a 

result, such methods give very accurate measurements of LAI.  However such 

methods are very rarely used because they have two major drawbacks: (i) they are 

destructive, i.e. they involve the removal of the leaves of a tree or trees; (ii) they are 

very time consuming as a tree can contain many thousands of leaves.  As a result 

indirect methods are normally used.  There are many different approaches, but the 

most common involves estimating LAI by measuring the gap fraction of the canopy 

using optical techniques (e.g. fish-eye photography) from different zenith angles 

(Gower et al., 1999).  However to do this, we need knowledge of other quantities, 

which include: (1) the canopy extinction coefficient, defined as the fraction of leaf 

area that is projected onto a plane perpendicular to θ  (Gower et al., 1999); (2) the 

clumping index, which equals l when the foliage is randomly distributed and less than 

1 as it becomes more clumped (Gower et al., 1999); (3) the ratio of Plant Area Index 

(PAI) to LAI, where PAI is the same LAI except refers to the woody parts of the tree 

(i.e. the tree trunk and branches) as well as the leafy parts (De Kauwe et al., 2011). A 

variety of different instruments are available to measure the canopy gap fraction but a 

common one is the Li-Cor LAI Plant Canopy Analyzer (Gower et al., 1999, Hyer & 

Goetz, 2004).   

Although indirect methods have become the standard ways of measuring LAI 

because they are not destructive and much quicker than direct methods, measurements 

can be unreliable if the canopy extinction coefficient, the clumping index or the ratio 

of PAI to LAI are not estimated well enough (Breda, 2003).  However, most 

validation studies suggest that these indirect methods do give accurate estimates of 

LAI when compared to direct methods (MacFarlane et al, 2007).  Measuring LAI 

from the ground is useful for site level studies, but if we require global and frequent 

measurements of LAI, using these indirect methods would become an impossible task 

since in-situ measurements are only made at a limited number of sites worldwide and 

typically very few are made annually (e.g. 10–20).   The only way therefore to obtain 

frequent global measurements is to measure LAI from space.   

LAI is currently measured from space by a number of satellites which include 

MODIS (Yang et al., 2006), AVHRR (Holben, 1986), MERIS (Bacour et al., 2006), 
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and CYCLOPES (Baret et al., 2007).  On MODIS for example, global measurements 

are made every 8 days at a resolution of 1km×1km.  Unlike ground based indirect 

methods of measuring LAI, satellites measure the light reflectance rather than the gap 

fraction, therefore the algorithm used to convert this raw data to LAI is different to 

those used to process gap fraction data.  Therefore although the algorithms used to 

estimate LAI in both situations might be similar, the values of retrieved LAI would be 

different, but perhaps related.  Various validation studies have been carried out on 

satellite derived LAI observations, and suggest the MODIS LAI data offers one of the 

most realistic representation of the spatial and temporal variability of LAI, e.g. 

Garrigues et al. (2008), Fang et al. (2012) and De Kauwe et al. (2011).   

 

2.6 Aims and layout of the thesis 
Based on the gaps in our current knowledge (subsection 2.3.2), the aim of this this 

thesis is to gain better insight into how Data Assimilation (DA) should be used.  This 

will help indirectly with improved understanding and quantification of the land-

atmosphere exchange of C between by outlining certain areas for how DA should be 

optimally used.  There are two aims to this PhD:  

• When using DA to estimate parameters using ground observations: 

a. Understanding the limitations of DA and the conditions it performs 

best. 

b. Determining likely factors that cause parameter estimates to vary. 

• Assessing the impact of assimilating satellite observations of leaf area index to 

improve the model states, and whether DA is robust against unrealistic features 

of the satellite data.  

In subsections 2.3.2 and 2.4.2, arguments were given for the choice of DA algorithms 

and model to use based on the aims of this thesis.  The algorithms are the Metropolis 

algorithm and the Ensemble Kalman filter, and the model is the evergreen and 

deciduous versions of the DALEC model.  A brief description of the remaining four 

chapters that follow is now given.   

 

LAYOUT OF THESIS 

Chapter three determined some of the factors  that cause parameter estimates from DA  
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to vary.  We assessed whether the differences in the parameter estimates amongst the 

nine different DA schemes from the REFLEX study (Fox et al., 2009) were due to the 

different initial conditions of the model and LAI weighting term used in the cost 

function, which were used for the different algorithms.  To test this, a sensitivity 

analysis was carried out on one of the DA schemes to see how the estimates to the 

parameters, using the same model and same LAI and NEE data, changed for different 

initial conditions and LAI weightings.  The main finding was that the parameter 

estimates were most sensitive to changes in the initial conditions of the labile carbon 

pool in the deciduous version of DALEC.   

The results of chapter four were published in a paper in Global Change 

Biology (Hill, Ryan and Williams, 2012).  It aimed to determine if the parameter 

estimates and subsequent forecasts, obtained using the EnKF and the Metropolis 

algorithm, were sensitive to changes in the length, frequency of gaps and 

observational error of the dataset being assimilated.  It was reported that the dataset 

length was the most important of the three factors, while varying the data density and 

observational error had only minimal impact on the estimates and forecasts.  The 

EnKF was very good at estimating parameters and provided reasonably good 

forecasts.  Surprisingly however, while the Metropolis algorithm was in general poor 

at estimating parameters, it produced very accurate forecasts.  The reasons for this are 

discussed. 

In chapter five, MODIS satellite observations of LAI (Leaf Area Index) were 

assimilated into the evergreen version of DALEC, using the EnKF, in order to 

estimate NEE, LAI and the carbon pools of DALEC.  This chapter reported that 

assimilating this MODIS LAI, which contains unrealistic features, into DALEC 

resulted in the modelled NEE and LAI being a worse fit to the observations than if no 

data had been assimilated.  However, if the MODIS LAI is processed, to remove the 

unrealistic features prior to assimilation, then the fit of the modelled to observed NEE 

is vastly improved.  The improvement was more when the modelled GPP was 

compared to GPP measurements.   

Finally in chapter six, we summarise the findings of this thesis, assessing 

whether the aims have been met and how this thesis contributes to a gain in 

knowledge in the wider context.  This chapter also outlines the limitations, 

unanswered questions, and lists several recommendations.   
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Chapter 3 

Assessing the sensitivity of the 

parameter estimates from a DA 

scheme to the initial conditions 

and the cost function 

 

Abstract 
This chapter investigates the sensitivity of estimated parameters to the initial values of 

the labile, litter and fine roots carbon pools of the model and the weighting term of the 

leaf area index term used in the cost function.  This work is motivated by determining 

what factors might be causing variations in parameter estimates, as stated in the aims 

section (section 2.6) of this thesis.  The choice of factor here, i.e. the initial conditions 

of the model, was based on the results of the REFLEX study (Fox et al., 2009) where 

nine DA schemes (six of which were variants of the Metropolis algorithm) gave 

varying estimates of the model parameters even though the same model (DALEC-D) 

and the same synthetic observations were used.  Here we determine the sensitivity of 

the parameter estimates using one of the variants of the Metropolis algorithm.  The 

sensitivity of each parameter estimate to each initial conditions of the C pools was 

determined by averaging over the other initial conditions rather than fixing them at 

nominal values (such as the central value).  Carrying out sensitivity analysis of this 

kind would typically require thousands of runs of the Metropolis algorithm, but a 

computationally cheaper approach is to build an emulator, a statistical representation 

of the input-output relationship of the Metropolis algorithm.  To build an emulator 
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with four inputs requires only 60 runs of the Metropolis algorithm (40 to build it and 

20 for validation) and carrying out the sensitivity analysis using the emulator typically 

requires less than 30 seconds of CPU time.  Due to complexities in building an 

emulator with a multi-dimensional output, it is much easier to build ones with scalar 

outputs.  This meant 17 emulators needed to be built for the 17 parameters.  

 Before carrying out the sensitivity analysis, it was necessary to ensure that the 

emulators were accurately representing the Metropolis algorithm.  This was done by 

comparing the emulator’s estimates of the parameters with those obtained from the 

Metropolis algorithm using the inputs from the validation runs.  These diagnostics 

showed that five of the emulators were not predicting the Metropolis algorithm 

accurately enough.  In building the emulators certain assumptions were made, but for 

two further emulators these were found to be violated, therefore they were also 

excluded from the sensitivity analysis.  The fact that seven of the seventeen DALEC-

D parameters were excluded from the results did not matter.   This was because of the 

twelve parameters which varied among the DA schemes in REFLEX, only three were 

excluded.   

 For the ten parameters whose emulators passed the diagnostic tests, it was 

found that eight were sensitive to the initial values of the labile carbon pool.  The 

parameter estimates were also sensitive to the initial values of the litter and fine roots 

carbon pools and the LAI weighting term but for a fewer number of parameters (five, 

two and six respectively) and the sensitivity was weaker compared to the initial value 

of the labile carbon pool.  An interesting finding for the labile carbon sensitivity plots 

was that nine of the ten parameters were very close to the truth when the true initial 

value of the labile carbon pool was used.  However obtaining accurate enough 

estimates of the initial value of the labile carbon pool is very time consuming and 

labour intensive.  It involves sampling tree tissue and determining the soluble starch 

and sugars in the laboratory.  The process is complex and time consuming.  As a 

result, measurements of labile carbon are rarely available.  Hence we tested whether 

incorporating other information into the assimilation resulted in the parameter 

estimates being close to the truth even if the initial value of the labile carbon was 

poorly estimated.  This involved carrying out two extra sets of runs of the Metropolis 

algorithm.  For the first, we assumed that the initial values of the litter and fine roots 

pools were known.  For the second, we also increased the number of LAI observations 
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being assimilated from 10 to 100.  For both sets therefore only the initial value of the 

labile carbon pool was varied.  Unfortunately, this extra information made little 

difference to the sensitivity of the parameters to the initial value of the labile carbon 

pool. 

As a result of the above, we assessed the impact of wrongly estimating this 

initial condition on the trajectories of the C pools and key model states, using the 

parameter estimates obtained from the wrongly specified Clab(0) values.  We found 

that over-estimating Clab(0) by a small amount (i.e. Clab(0) = 110 gCm-2) compared to 

the true value (i.e. Clab(0) = 70 gCm-2) resulted in the trajectories being closer to the 

true trajectories, than if Clab(0) had been under-estimated by a similar amount (i.e. 

Clab(0) = 35 gCm-2) or over-estimated by a considerable amount (i.e. Clab(0) = 170 

gCm-2).  Thus, even if the parameter estimates require the Clab(0) value to be 

accurately estimated, there is scope for Clab(0) being over-estimated by a reasonable 

amount whilst still being able to estimate the C pools and important model states such 

as NEE to a reasonable level of accuracy.   

An alternative option is to treat the initial conditions as parameters.  It was 

found that even though two of the three initial conditions estimated using DA had 

posterior estimates far from the truth, the posterior distributions of other parameters 

and the corresponding trajectories of the C pools were in general consistent with the 

truth.    

 

3.1 Introduction 

3.1.1 Background 

The central role of a model is to try to represent and understand reality.  For a land-

surface vegetation model, like many models, this is often based on mathematical 

equations which describe our best knowledge of the plant processes and physics of the 

system.  These processes are controlled to a large extent by parameters which are 

physical quantities giving information about what the system is doing.  The Oxford 

English Dictionary defines a parameter as ‘a quantity whose value is selected for the 

particular circumstances and in relation to which other variable quantities may be 

expressed.’  In process models they can be fractions, such as the proportion of GPP 
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allocated to foliar carbon; they can also represent limits of processes, for example the 

maximum carboxylation rate at 25˚C (Bethy model, Knorr and Kattge, 2005); or they 

could be a range of other specific boundaries on how the model should operate, e.g. 

the canopy light attenuation constant (PnET model, Aber and Federer, 1992).  In all 

models these parameters need to be estimated by some means.  In estimating them it is 

almost always assumed that they are fixed for all time, including the DALEC model 

which is used in this thesis.  However, for large models which estimate the system 

regionally or globally, the values of the parameters do tend for different places, for 

example the fraction of GPP allocated to foliage might depend upon the vegetation 

type.  While the assumption of parameters being fixed in time may hold for many 

parameters, for others they may be quantities which in fact vary in the real world at 

different times, for example, the turnover rate of foliar carbon might depend upon the 

season.  By fixing these ‘varying parameters’ we might be imposing an unrealistic 

assumption on the model.  It is therefore important to understand the impact on the 

model’s output (e.g. NEE) by treating the parameters as varying as opposed to being 

fixed in time.  Due to time constraints, this could not be addressed in this PhD.   

Observations of the state of the system can also be made, and these can be 

compared with the model’s estimate of the state.  Data Assimilation (DA) is a way of 

combining the model with these observations so that the estimate of the state of the 

system is better than just using the model or the observations on their own.  DA can 

also be used to estimate parameters by comparing the model’s estimate of the state of 

the system, using a particular configuration of parameters, with observations.  This is 

useful as it provides a way of estimating certain parameters (and processes) that may 

be unobservable or very difficult to accurately observe in the real world.  A corollary 

is that we do not need the same number or types of observations as the number of 

parameters and/or processes we are trying to estimate; for example, one could use 

only Net Ecosystem Exchange (NEE) observations to estimate all the parameters of a 

model. 

 

3.1.2 Justification for this chapter 

One of the aims of this thesis is to determine what causes variations in parameter 

estimates among DA schemes, as this has been observed in two inter-comparison DA 

studies, namely OpTIC (Trudinger et al., 2007) and REFLEX (Fox et al., 2009).  In 
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this chapter, it is hypothesized that these differences are not due to theoretical 

differences in the DA schemes (i.e. they are solving the same problem), but as a result 

of assumptions that are made in the set-up of the algorithms and the type of data and 

model used.  The REFLEX study (Fox et al., 2009) in particular highlighted several 

factors that could be causing variations in the parameter estimates and associated 

uncertainties using a DA.  These factors are listed in (1) to (6) below, but before these 

are stated and explained, a summary of REFLEX is given.   

Nine different DA schemes were employed to estimate the parameter estimates 

of the evergreen and deciduous versions of the DALEC model using the same set of 

NEE and Leaf Area Index (LAI) observations.  The participants were asked to 

estimate the parameters and future model states using real and synthetic data, where 

the synthetic data were created by a running the model forward and adding noise and 

gaps to the NEE and LAI.  For all DA schemes, the uncertainty reduced on parameters 

linked to GPP and respiration e.g. the allocation and turnover of foliage and 

temperature sensitivity), as a result of assimilating the NEE and LAI data.  Poorly 

estimated parameters were those related to the allocation to and turnover of fine 

root/wood pools, which suggested that assimilating observations of fine roots and 

woody biomass may help to constrain the parameters connected to these the fine root 

and woody carbon pools.  A limitation of REFLEX is that other DA schemes, for 

example the Particle filter and 4D-Var, were not included.  Nonetheless, the results of 

the study were informative.  For 12 out of the 17 parameters the DA schemes gave 

different estimates; for 7 of these 12 parameters the differences were marked, while 

for the other 5 the DA schemes gave similar estimates except for only one or two of 

the schemes, one of which was always the Multiple complex Monte Carlo Markov 

Chain (MCMC) method.  We might expect there to be differences between DA 

methods that were sequential in nature, e.g. the Ensemble Kalman filter, as opposed to 

batched methods such as the Metropolis algorithm which use all the data in one go.  

However six of schemes were variants of the Metropolis algorithm, and so while we 

might expect there to be slight differences because the methods are mildly different in 

how they process the data and how they search the parameter space, there are other 

factors which may also be causing differences in the parameter estimates.  These 

factors, which REFLEX did not address, could be:  
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(1) Different the initial conditions of the model: In REFLEX, the initial 

conditions of the small C pools were estimated differently for each of the DA 

schemes.   This may have contributed to the variation in parameter estimates 

amongst the variants of the Metropolis algorithm.  This is particularly true in 

this instance because the DA was carried out over a 2 year period because the 

trajectories of the C pools may not have had time to stabilise to a pseudo 

steady state (Carvalhais et al., 2008).  Even if we were assimilating a longer 

dataset, the assumption of the C pools converging to steady state may not be 

valid (Braswell et al., 2005), and so the choice of initial conditions of the small 

C pools may affect the posterior distribution of the parameters from the 

inversion scheme.   

 It should be noted here that in some ecological applications of the 

Metropolis algorithm, the initial conditions of the model are sometimes treated 

as parameters (e.g. Braswell et al., 2005).  The argument to do this is that they 

are unknowns and so by treating them as parameters, we allow them to be 

estimated based on the data and some prior distribution.  A problem with this 

however is that the can be no or very little information in the data to give good 

estimates of the initial conditions from the posterior distributions.  Moreover, 

known issues with the Metropolis algorithm such as parameter equifinality 

could then result in poor estimates of the initial conditions and the associated 

uncertainties.  As a result of this, it is also common to fix the initial conditions 

at likely values based on site knowledge (e.g. inventory data from the site).  

Examples of ecological applications of the Metropolis algorithm where the 

initial conditions were fixed include Zobitz et al. (2011), Carvalhais et al. 

(2008), Knorr & Kattge (2005), Richardson et al. (2010) and Williams et al. 

(2010).  In this way, understanding how different choices of the initial 

conditions of the model affect the parameter estimates of the model is relevant 

for applications of the Metropolis algorithm where these initial conditions are 

treated as fixed.   

(2) The cost function. This computes the sum of squared difference between the 

observations and the model output, divided by weighting term.  Where there 

are multiple streams of data, as in REFLEX where there were NEE and LAI 

data, the weighted sum of squared of the two data types are added together.  In 
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mathematical terms, the cost function involving two data streams is written 

below where )(1 itx  and )(2 itx  are the observations at time it , )(1 itz  and )(2 itz  

are the corresponding modelled values, and 
1w  and 

2w  are the weights.  A 
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weights is the observational errors.   For REFLEX, the observational error was 

given for the NEE data, but not for the LAI data and so this needed to be 

estimated.  The OpTIC experiment (Trudinger et al. (2007)), which also 

compared different DA schemes when estimating model parameters and using 

two streams of data, found that the choice of the weights in the cost function 

did not affect the parameter estimates.  However this finding may not be true 

for REFLEX for two reasons: (i) the DALEC-D model contains non-linearities 

which the model used in OpTIC did not; (ii) the OpTIC model only had two 

state variables and 4 parameters to be optimized, whereas DALEC-D has 7 

state variables and 17 parameters to be optimized.  Given that the values used 

for the LAI weighting term amongst the variants of the Metropolis algorithm 

also varied from 0.0005 m2/m2 to 0.11 m2/m2, it is of value testing whether 

varying this LAI weighting term would make a difference to the parameter 

estimates using the DA algorithms from REFLEX.  Therefore this is also 

investigated in this chapter. 

(3) The type of prior distribution used: In REFLEX seven of the nine 

algorithms used a uniform prior distribution with the remaining two adopting a 

Normal one.  We do not investigate the effect of the type of prior distribution 

on DA predominantly because there was still variation in the estimates for a 

number of the parameters amongst the DA schemes which adopted a Uniform 

prior.  Also, it is perhaps more clear about what we might expect, in terms of 

the differences with posterior distributions, whether we used a Uniform or 

Gaussian prior.  In other words, for those parameters which may not be 

constrained by the observations the default distribution (ignoring correlations 

between the parameters in the multivariate posterior parameter space) is then 

the prior.  In reality, where there is no or little information in the data to 

constrain these certain parameters, then the posterior distribution of these 
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parameters is influenced by the other parameters due to the correlations that 

exist between them.  However if our prior is Gaussian, this will exhibit some 

‘pull’ on the shape of the posterior distribution for these unconstrained or 

weakly constrained parameters (Knorr & Kattge, 2005).  Conversely, if a 

Uniform prior is assumed then since this has no modal value or values it will 

have far less influence on these parameters and even no influence if this 

Uniform prior is uninformative (Van Dongon, 2006).  The point of this is that 

there is some idea how the parameter estimates and posterior distribution 

might differ if a Uniform versus Gaussian prior distribution was assumed.  In 

contrast, there is less idea of the effects on the parameter estimates and 

uncertainties to other factors such as the varying initial conditions; therefore it 

is more critical to investigate this first.  Due to time constraints in this PhD, 

understanding the effect of the type of prior on the shape of the posterior 

distribution is carried out here, but it is nonetheless in need of investigating in 

future work.   

(4) Parameter equifinality: This is defined as getting very similar modelled 

trajectories of NEE (say) using different parameter sets (Tang & Zhuang, 

2008).  Since the Metropolis algorithm operates by finding a set of parameters 

which gives an optimal fit of the model’s output to the observations, parameter 

equifinality can result in two different sets of parameters giving similarly 

optimal fits to the observations.  This will occur if the model’s output is 

insensitive to certain parameters, which are sometimes called ‘redundant 

parameters’.  Chapter four finds that the NEE estimates from DALEC are very 

insensitive to three parameters (the turnover rates of fine root carbon, litter 

carbon and labile carbon), and very strongly sensitive to two parameters (the 

fraction of GPP respired autotrophically and the turnover rate of foliar carbon).   

(5) Treating varying parameters as fixed: Instead of all parameter being fixed 

for all time, some may have different values for different times in the year, and 

this may also influence equifinality; in other words if it is more meaningful for 

the value of a parameter to vary with time but we are forcing it to be fixed, 

then the DA algorithm may not know what value to choose for such 

parameters and so different sets may result in equally optimal fits of the model 

to the observations.   
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(6) Different quantities and qualities of data being assimilated.  Although the 

same dataset was assimilated for each DA scheme, the parameter estimates 

between the schemes may have varied if the assimilated time-series was 

longer, had a different number and frequency of gaps, or was more or less 

noisy.  This is considered in chapter four where estimates of the DALEC-D 

parameters, using the EnKF and the Metropolis algorithm, from assimilating 

different NEE datasets were compared, and so is not addressed here.   

In this chapter, we investigate whether the different initial conditions of DALEC-D 

and the LAI weighting terms used in the cost function in REFLEX (labelled as (1) and 

(2) above) caused the parameter estimates to vary amongst the variants of the 

Metropolis algorithm, as this is unknown.  Due to time constraints on this PhD, (3) is 

not investigated here as discussed on the previous page, nor is (5) for the same reason.   

(4) and (6) are also not considered here as they are explored in chapter four.  

 In light of the discussion in the second paragraph of (1) on page 134, as well as 

investigating the sensitivity of the initial conditions of the small C pools on the 

parameter estimates from the posterior distribution, the optimisation is also carried out 

by treating the initial conditions - Clab(0), Cr(0), Clit(0) - as parameters to be estimated, 

with the LAI observational error set at the most common value used by the REFLEX 

participants.  This will enable us to answer two questions: 

(i) Is it better to treat the initial conditions as fixed or as parameters? 

(ii)  If we treat the initial conditions as parameters, what impact does wrongly 

estimating them have on the other model parameters and the C pools? 

 

3.1.3 Aims and outline of chapter 

The objectives of this chapter are to determine the sensitivity of the DALEC-D model 

parameters to: (1) the initial conditions of the small C pools and, (2) the LAI 

weighting term of the cost function, when using DA to estimate the 17 parameters of 

the model.  The major novelty in this chapter is the use or a number of emulators to 

carry out this sensitivity analysis.  The reasons for using an emulator and how it was 

implemented for the purposes of carrying out a sensitivity analysis described in full in 

the next section (3.2).  In the context of this chapter, an emulator is a statistical model 

which models the input-output relationship of the Metropolis algorithm, where the 

inputs are the initial values of three C pools and the LAI weighting term.  A key 
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advantage of using an emulator to do sensitivity analysis is that it requires 

significantly fewer runs of the Metropolis algorithm than conventional approaches.  

Details are given in section 3.2 as to how the emulator was built, how the diagnostic 

checks were carried out to ensure the emulator accurately represented the Metropolis 

algorithm, and how the sensitivity analysis was performed.  In the methods section, 

we also describe the setup of two follow-on experiments, carried out in response to the 

findings of the main sensitivity analysis results.  At the end of the methods, we finally 

briefly describe another inversion carried out using the Metropolis algorithm but 

treating the initial conditions of the small C pools as parameters instead of fixed, in 

light of the last paragraph of the previous subsection. 

In Section 3.3 the results of the sensitivity analysis are shown.  Prior to this but 

also in the same section, plots showing convergence of the Metropolis algorithm are 

shown, as are tables and plots corresponding to the diagnostic checks of the emulators.  

Also in section 3.3, the results to the two extra sets of follow-on experiments are also 

shown, as well as the inversion results from treating the initial conditions as 

parameters.  Discussions of the results are given in section 3.4, followed by the 

conclusions in section 3.5.   

 

3.2 Methodology 

3.2.1 Introduction 

This section outlines the sensitivity analysis used to determine how the initial 

conditions and the weighting of LAI in the cost function influence the parameter 

estimates.  Sensitivity analysis is the study of how the outputs of a function are 

sensitive to changes in its inputs; for this chapter, the function is the Metropolis 

algorithm, the inputs are the initial conditions and LAI weighting, and the outputs are 

the parameter estimates.   

The sensitivity analysis could be applied to any one of the six variants of the 

Metropolis algorithm used in the REFLEX study.  This is because all of them operate 

under the same theoretical principles, i.e. they all search the parameter space, avoid 

local solutions using the Metropolis rule (Metropolis et al., 1953), and all sample the 

posterior distribution enabling the statistics of this distribution to be characterised.  
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They differ in certain minor features of how they are implemented, for example how 

big a step to make between iterations when searching the parameter space.  Despite 

these differences, all will lead to the same posterior distribution, although the 

sampling may be slightly different due to the stochastic nature of the Metropolis 

algorithm so the statistics of the distribution may not be exactly the same (this would 

apply for repeated application of the same variant of the algorithm).  Therefore, the 

choice of what variant of the Metropolis algorithm is arbitrary and therefore just came 

down to personal preference.  It was decided that the variant by Hill & Williams 

(2009) would be most appropriate.  This was mainly because it is well documented 

and much easier to code up than other versions.  Hereafter all references to ‘the 

Metropolis algorithm’ in this chapter refer to this variant.   

Sensitivity analysis commonly involves using Monte Carlo methods, but these 

typically require thousands of executions of the algorithm (Saltelli et al., 2000).  Since 

the Metropolis algorithm takes 1 hour to run using the University of Sheffield Iceberg 

Computer cluster and with 2 years of assimilated NEE and LAI data, Monte Carlo 

methods are completely infeasible as they would require thousands of hours of 

computation time.  An alternative approach, which was adopted for this chapter and 

which requires only 40 runs of the algorithm, involves using an emulator.  An 

emulator is a statistical representation of the input-output relationship of an algorithm 

(O’Hagan, 2004).  For this chapter, the inputs refer to the initial conditions of the three 

small carbon pools and the LAI weighting in the cost function, and outputs refer to 

each of the 17 parameter estimates.   After carrying out diagnostic checks to ensure 

the emulator properly represents the input-output relationship of the Metropolis 

algorithm, sensitivity analysis was carried out in a probabilistic framework by 

computing the variance of the expected value of the output given each input.  The 

building of the emulator and the sensitivity analyses were carried out using a freely 

available program called the Gaussian Emulation Machine for Sensitivity Analysis 

(GEM-SA).  Before giving the theoretical basis behind the emulator and the 

sensitivity analysis, details of the implantation of the model and the Metropolis 

algorithm specific to this chapter are first described. 

 

3.2.2 The DALEC-D model 

The DALEC-D model is a simple box model that tracks the journey of C in Deciduous  
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trees from photosynthesis through to respiration via various C pools and connecting 

fluxes, working on a daily time-step.  Subsection 2.4.4 describes the model in detail.  

In REFLEX the 17 DALEC-D parameters were estimated for four sites, two of which 

were deciduous (namely Hesse in France and Brasschaat in Belgium) and two of which 

were evergreen (namely Loobos and Vielsalm in the Netherlands).  A description of 

the 17 parameters is given in table 3.1.  For the Evergreen sites, the model used was 

the same as DALEC-D (called DALEC) but did not contain the labile carbon (Clab) 

pool or the connecting fluxes, because evergreen forests retain their foliage all year 

round and so there is no need to have a store of labile carbon for the spring bloom.  

There was no preference as to whether the sensitivity analysis should be carried out on 

an evergreen or deciduous site, since the variation in parameter estimates from the 

different variants of the Metropolis algorithm occurred at both types of sites.  A 

deciduous site was chosen mainly because there were more parameters to estimate in 

DALEC-D (17) than DALEC (11) which might reveal more interesting findings in the 

results.   

Leaf Area Index (LAI) was determined by: LAI= Cf/LMA where LMA, Leaf 

Mass per Area, is a site specific constant.  For the Brasschaat site used in this chapter 

(subsection 3.2.3), LMA = 22 gCm-2.  The reasons for the linear relationship between 

LMA and LAI and the reasons why LMA and foliar nitrogen are not treated as 

parameters is discussed in subsection 2.4.3, and so are not repeated here.   

 

3.2.3 The site and observations 

CHOICE OF SITE 

For the NEE and LAI datasets from the deciduous sites used in REFLEX, real data 

were taken from Hesse whilst synthetic data were taken from Brasschaat.  For this 

chapter, it was decided for the sake of simplicity that the NEE and LAI datasets from 

one of the sites should be used.  The synthetic dataset for Brasschaat was used because 

whilst giving a good approximation to the real NEE and LAI data, the true values of 

the parameters were known.  The site is situated in the De Inslag forest in Brasschaat 

(51˚18’N, 4˚31’E), 20km NNE of Antwerp in Belgium.  The topography is almost flat 

and is at an elevation of 16m.  The forest is classified as a Deciduous broadleaf forest 

with dominant tree species Quercus robur.   In 1999, there were 375 trees per hectare 

with a mean tree diameter at breast height of 30cm. The forest has a temperate climate 
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Symbol Description 
 

Units True value 
 

Range 
(low/high) 

Td    (p1) Litter decomposition rate parameter  day-1 3.61×10 6−  1x10-6/0.01 

Fg    (p2) Fraction of GPP respired autotrophically - 0.32 0.2/0.7 
Fnf   (p3) Fraction of GPP allocated to foliage - 0.47 0.01/0.5 
Fnrr (p4) Fraction of GPP allocated to roots - 0.3 0.01/0.5 
Tr    (p5) Turn over rate of foliage day-1 5.67×10 2−  1x10-4/0.1 

Tw   (p6) Turn over rate of wood day-1 1.70×10 4−  1x10-6/0.01 

Tr    (p7) Turn over rate of roots day-1 6.73×10 3−  1x10-4/0.01 

Tl    (p8) Turn over rate of litter day-1 2.44×10 2−  1x10-5/0.1 

Ts   (p9) Turnover rate of CSOM pool. day-1 1.30×10 4−  1x10-6/0.01 

Et   (p10) Exponential temperature dependent rate parameter - 0.0693 0.05/0.2 
Pr   (p11) Nitrogen use efficiency parameter - 12 5/20 
Lout (p12) Growing degree days for leaf out °C day 250 200/400 
Lfall (p13) Minimum temperature for leaf fall °C 9.5 8/15 
Fll   (p14) Fraction of carbon loss in transfer to litter - 0.453 0.2/0.7 
Tlab (p15) Turn over rate of labile carbon day-1 5.33×10 2−  1x10-4/0.1 

Flr   (p16) Fraction of labile carbon respired - 0.129 0.01/0.5 
Cfmax (p17) Maximum Cf value gCm-2 120 100/500 
Cf Foliar carbon pool gCm-2 0 N/A 
Cw Wood carbon pool gCm-2 8900 N/A 
Cr Fine root carbon pool gCm-2 100 20/200 
Clab Labile carbon pool gCm-2 70 20/200 
Clit Fresh foliar and fine root litter carbon pool gCm-2 75 20/200 
CSOM Soil organic matter & coarse woody debris pool gCm-2 9900 N/A 
 

Table 3.1 The description of the parameters (first 17 rows) and C pools (remaining 6 
rows) of the DALEC-D model. The range column shows the lower and upper bounds. 
 

with a mean air temperature of 10˚C and an annual precipitation of 750mm.   

 

HOW THE SYNTHETIC DATA WERE CREATED 

The synthetic data used in REFLEX were created by running the DALEC-D model 

forwards in time, with appropriately chosen initial conditions and parameters.  To 

each of these time series, observational error and gaps were added, based on the 

characteristics of the eddy-covariance NEE and in situ LAI observations from the 

Brasschaat site.  For REFLEX, the data were taken from 2000 and 2001, which 

consisted of 231 NEE observations and 10 LAI observations.  The values of the 

parameters and the initial values of the C pools used for the forward run (referred to as 

the ‘true’ parameter set and the ‘true’ initial conditions) were chosen under two 

criteria: (i) based on expert knowledge of an experienced ecologist they appeared 

realistic for the site;  (ii)  the resulting modelled NEE and LAI were good 

approximations to the real NEE and LAI observations.    The initial values of the large 



Chapter 3: Sensitivity of DA to initial conditions and cost function. 

Edmund Ryan                                            - 144 -                                                    2013  
 

pools (Cw  and Csom) were fixed to the values used in REFLEX, while the initial value 

of Cf was set to zero, since the first day of the study was in the middle of winter (1st 

January) when there are no leaves on the trees.   

 

3.2.4 The Metropolis Algorithm 

The Metropolis algorithm is a full Markov Chain Monte Carlo (MCMC) algorithm.   A  

complete description of it is given in subsection 2.2.9 of chapter 2.  In this subsection, 

we describe the particular setup of the algorithm that was used for this chapter, and the 

rationale behind this.   

A key aspect of the formulation of the Metropolis algorithm is the prior 

distribution.  Based on knowledge to the parameters (e.g. from expert belief or 

previous studies), prior values are given to each of the parameters.  The uncertainty 

about these priors is represented by a probability distribution, which is predominantly 

a Normal or a Uniform one; this is because the Normal distribution is the most 

commonly used probability distribution in Statistics for representing the distribution 

of natural phenomenon, while the Uniform is appropriate if there is little prior 

knowledge since every value between a specified lower and upper bound has an equal 

chance of being the correct value.  For most of the Metropolis-based approaches used 

in REFLEX a Uniform distribution was adopted and is also used here, mainly because 

the differences in the REFLEX results occurred even for these variants of the 

Metropolis algorithm that adopted a Uniform prior.  Lower and upper bounds for the 

parameters were given in REFLEX (right column of table 3.1).  For example, for the 

first parameter, Td, has lower and upper bounds given by 1x10-6 and 0.01, so the prior 

distribution of Td is U(1x10-6, 0.01).  This means that for each parameter each value in 

the given range has an equal probability of being the true value.  The initial value for 

the ith parameter pi (
o
iP ), where 1 ≤ i ≤ 17, is determined by generating a random 

number from U(li,ui) where li and ui are the lower and upper bounds for pi. 

In Knorr and Kattge (2005) and Hill & Williams (2009) the prior values were 

converted to log-normalised parameters (iP ) and scaled so that each of their prior 

values was 1.  This ensured that the parameters remain positive; however, this is only 

necessary for a prior distribution such as the Normal that does not have lower and 

upper bounds.  When the prior follows a Uniform distribution, this transformation is 
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unnecessary and makes no difference to the parameter estimates.  For the variant of 

the Metropolis algorithm used in this chapter this transformation was adopted as it 

makes it more fluent from a programming point of view when changing between a 

Uniform and Normal prior distribution.  We adopt it here also for consistency.   

The algorithm decides whether to move to the proposed parameter set or stay 

at the current parameter set.  This is determined by first computing the cost function, a 

weighted sum of squared difference between the observations and the corresponding 

model predictions at the current (written )(kJ ) and the proposed sets (written )1( +kJ ), 

and is given as: 
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∑
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,
 are the modelled NEE at the kth iterative step for the ith day, 

when an NEE observation and/or an LAI observation are present.  Also, NEEw  and 

LAIw  are the weights; a common choice for these are the variances of the Normally 

distributed observational errors (denoted 
2
NEEs  and 

2
LAIs ), since the smaller 

2
NEEs   or 

2
LAIs  is, the more of an influence on the cost function.  In NEEw =

2
NEEs  was set to 

0.5gCm-2 for consistency with what was used in REFLEX.  For the LAI observations, 

the REFLEX participants were told that 
2
LAIs  should be calculated based on a 

coefficient of variance of between 0.1 and 0.2.  In other words, 

2
LAIs  = (mean of LAI observations × C)2 

where C is coefficient of variance, and the mean of the LAI observations is 2.236 

m2/m2.  For four of the six variants of Metropolis algorithms used in REFLEX, a 

coefficient of variance of either 0.1 or 0.15 was used, and so using the above formula 

this results in 
2
LAIs  being equal to 0.05 and 0.11 respectively.  For the other two, one 

used a value of 0.04 whilst the other used a value of 0.0005 (based on coefficient of 

variance of 1%).  The rationale for the participant who used 0.0005 was because there 

were a lot fewer LAI observations than NEE ones so more weighting should be given 

to these LAI measurements.  Since there is uncertainty about whether the different 

specifications of the 
2
LAIs  influenced the parameter estimates, 

2
LAIs  was included as an 
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input for the sensitivity analysis.  It is worth noting here that it is arguably more 

truthful to treat the LAI observational error as time dependent, e.g. a fraction of the 

LAI observation itself (Williams et al., 2005).  This is because the error on LAI in 

general scales with the size of the LAI measurement (Williams et al., 2005).  In this 

chapter the LAI observational error is treated as being fixed, mainly because this is 

what was done in all of the variants of the Metropolis algorithm in REFLEX and so 

this may have influenced the differences in the parameter estimates and uncertainties.  

Furthermore, there were only 10 LAI observations assimilated in REFLEX, compared 

to 231 NEE ones; therefore the effect on the results of assuming a constant LAI error, 

as opposed to a time-varying one, is likely to be minimal.   

 An assumption of the likelihood function, where the variance term is constant, 

is that the residuals between each data point and corresponding modelled value are not 

autocorrelated.  Given that there were only 10 LAI data points over a possible 731 

time points and that the LAI data were in general way spaced between each other, it is 

fair to assume that the LAI residuals are independent between each other.  For the 

NEE residuals, the simplest way to check for their independence is to construct a lag-

plot (Upton & Cook, 2004).  This is what the correlation between pairs of residuals for 

each lag is calculated and plotted.  At lag equal to 0, there is an autocorrelation of 1 

(because the residuals at a particular time are perfectly correlated with themselves), 

but for lags greater than 0, the correlation coefficient should be close to zero if there is 

no autocorrelation.   

As described in chapter 2, the convergence of the Metropolis algorithm is 

determined formally using the Gelman criteria. A plot of the trajectories of the 

Gelman criteria statistic, Rhat, is given for each parameter at the start of the results 

subsection.   

 

3.2.5 Terminology 

For the remainder of the methods, we describe how an emulator is used to represent 

the input-output relationship of the Metropolis algorithm.  Emulators are usually used 

to model this input-output link of a simulator.  Strictly speaking the Metropolis 

algorithm is not a simulator, however it very closely approximates one.  This is 

because if we were to repeat a run of the Metropolis algorithm, the same posterior 

distribution is being sampled.  Therefore, for purpose of describing how the emulator 
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is built, we write ‘simulator’ in place of ‘Metropolis algorithm’ for the remainder of 

the methods.  We also adopt the following terminology: 

• )(⋅f represents the simulator.   

• x is a p×1 vector representing the simulator inputs which, for this chapter, are 

the initial values of the foliar, fine root and labile Carbon pools of DALEC, 

and the variance of the Normally distributed LAI observational errors (
2
LAIs ), 

i.e. p=4.   

• y = f(x) is a scalar representing the simulator output, which is Metropolis 

algorithm’s estimate one of the DALEC-D parameters.  GEM-SA can only 

build emulators which have one output.  Therefore we are required to build 17 

emulators, one for each of the parameters.   

 

3.2.6 Using a Bayesian emulator to carry out sensitivity analysis 

In this subsection we outline how the sensitivity was carried out using an emulator.  

First we describe why carrying out sensitivity analysis (SA) without using an emulator 

is either not possible or infeasible.  Methods such as variance decomposition (e.g. 

ANOVA) are not possible for most applications of SA since they require the simulator 

inputs to be independent.  When we do not assume independence, in the case of this 

chapter, a large number of runs of the algorithm (of the order of thousands) are 

required to perform SA using standard techniques (Saltelli, 2008).  O’Hagan (2004) 

states, ‘Even for a simulator that takes just one second to run, a comprehensive 

variance-based sensitivity analysis may require millions of simulator runs, and just 

one million runs will take 11.5 days of continuous CPU time.’  As a result, building an 

emulator, which is a statistical model of the input-output relationship of the simulator, 

has become an attractive alternative because it is computationally much cheaper to run 

than the simulator.  Therefore as long as the emulator is an accurate representation, 

carrying out SA using the emulator will be very quick; for this chapter GEM-SA took 

around 30 seconds to perform SA. 

 Many types of emulators could be adopted.  Probably the simplest is the basic 

linear model in which both the input and output are one-dimensional and they are 

related by εα += xy  where ε is the residual term and β  is a parameter to be 

estimated from the training data, i.e. from the executions of the algorithm required to 



Chapter 3: Sensitivity of DA to initial conditions and cost function. 

Edmund Ryan                                            - 148 -                                                    2013  
 

build the emulator.  Alternatively, higher order polynomials could be used, for 

example, y = αx + βx2 + ε.  However this has a major limitation – it treats the training 

data as though they were observations.  This is wrong because real data contain 

random error and so are not a true representation of the real world, whereas the 

training data are the true representation of the simulator.  Therefore, the emulator must 

have the property of returning each of the training outputs when the corresponding 

training inputs are used.   Statistical models of this form are called interpolators.  The 

most basic interpolators are Lagrange polynomials (Berrut & Trefethen, 2004) and are 

of the form: 

∑
=

=
n

i
iin yxxP
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)()( ℓ  
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1≤i≤n are the training data.  However a major problem with this is that if the distance 

between the training data points is approximately the same then for large n, the 

interpolator is ill conditioned.  This means that slightly different training data would 

lead to a very different interpolant (Trefethen, 1991, Henrici, 1982).  As a result, 7th or 

8th polynomials at most must be used.   

An Artificial Neural Network (ANN) is another type of emulator (Abrahart & 

See, 2007).  They operate by assigning many simple but different functions to 

represent the different processes of the model.  For example, if x and y are the input 

and output of an ANN represented by f, then f is a function of other functions, i.e. y = 

f(x) = h(g1(x), g2(x), …) where h, g1, g2 , … are the other functions.  However, Gosset 

(2003) and Han et al. (2007) suggest that neural networks can be complex to build 

requiring a huge number of runs of the simulator.   There are other types of emulators, 

but like an ANN, these also need hundreds and usually thousands of runs of the 

simulator.   

Of the range of emulators available, those that adopt a Bayesian framework are 

regarded as being much more computationally efficient as they often require less than 

a hundred runs of the simulator.  Currin et al. (1988, 1991) was first to use Bayesian 

techniques for emulators using a Gaussian process prior, and since then many others 

have done the same, e.g. Welch et al. (1992), O’Hagan (1994), Mrawira et al. (1999), 

O’Hagan and Kennedy (2001), Oakley and O’Hagan (2002), Rougier et al. (2008).  

The advantage of a Bayesian approach is that prior knowledge about what we believe 
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the emulator should be like can be expressed.  Then, with information from the 

training runs, we are able to derive the posterior distribution. 

The most favoured type of prior distribution to use in the emulator to represent 

the simulator’s output is the Normal distribution.  This distribution is the most 

commonly used in Statistics and contains some mathematical properties which make it 

easy and efficient to use in creating an emulator.  As a reminder, we have adopted 

‘simulator’ in place of the ‘Metropolis algorithm’ for the purpose of describing how 

an emulator is built (see subsection 3.2.4).  Since we are treating the simulator’s 

output as a function of its inputs, i.e. y = f(x), we use a Gaussian Process (GP) for the 

prior.  A GP is an extension to the multivariate Normal distribution, where the mean 

and variance are expressed as functions.  For a more formal definition of a GP, if we 

first assume that g⊆ nℜ  is a random variable which follows a Normal distribution, 

then ),(~ Vmg N , where m ⊆ nℜ  and V ⊆ nn×ℜ are the mean and covariance.  If g is 

now a function of an independent variable, say time t, i.e. g(t), and g(0), g(1), g(2), … 

each follow a Normal distribution, )(i),(i)(~(i) Vmx N , for i=0,1,2, …, then we say 

that g(t) follows a Gaussian Process, written as: 

))t'(t,,(t)(~(t) Vmg GP  

where the mean and covariance, i.e. m(t) and V(t,t’), are now functions and t’ is value 

of the independent variable not equal to t (Bastos & O’Hagan, 2008).  A full definition 

of the Gaussian Process is given in the next subsection. 

 

3.2.7 Building the Bayesian emulator 

The theoretical basis behind how an emulator is built using GEM-SA given below is 

based on Bastos and O’Hagan (2008).  Full details can be found Haylock & O’Hagan 

(1996).  It is important to note that emulators had to be built for each of the 17 

parameters because, while GEM-SA can build an emulator with multiple inputs, the 

output must be scalar.  Recent developments of Gaussian process emulators have 

included multidimensional outputs, e.g. Fricker et al. (2010), Rougier (2008) and 

Conti & O’Hagan (2010).  However these are much more complicated and at the time 

of writing the statistical theory behind their operation has yet to be fully formulated.  

Although very recent developments have seen an R package for a multivariate 

emulator be written (Hankin, 2012). 
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THE PRIOR DISTRIBUTION 

The prior distribution of the simulator output is represented by a Gaussian process 

model, and takes the form: 

f(x) | β, 2σ ,b  ~ GP( 0m(x), 0v (x,x’))               (3.1) 

where f(x) | β, 2σ ,b represents the output of the simulator given that β, 2σ  and b 

(defined below) are can be estimated using the training data, and the )(0 ⋅m  and ),(0 ⋅⋅v  

represent the mean and covariance functions given by: 

0m(x) = h(x) Tβ                (3.2) 

         0v (x,x’) = σ ²c(x,x’;b)               (3.3) 

In equation (3.2), x and x’ are two different p×1 input vectors.  The function 

1:)( +ℜ→ℜ⋅ pph  is a known function of the inputs, represented by a (p+1)×1 vector 

of functions.  We choose )(⋅h  according to the form we think it should take.  A 

common choice, and what is done in GEM-SA is h(x) T =[1 x T ], e.g. for p = 4 and x1, 

…, x4 are the elements of x, then h(x) T = [1 x1, x2, x3, x4].  In other words, our prior 

expectation is that the relationship between the inputs and the output is linear.  The 

vector β is a vector of coefficients while σ ² is a scale parameter, estimated using 

equations (3.5) and (3.6). 

 For equation (3.3), c(x,x’;b) =σ ²exp{-(x – x’) T B(x – x’)}.  Here B is known 

as the roughness matrix, a p×p matrix, with zeros in the off-diagonal elements and 

diagonal elements represented by the roughness parameters 1b , 2b , …, pb  (where the 

roughness vector b is given by b T  = [
1b , 

2b , …, pb ]).  These give an indication of 

whether the input-output relationship for each input variable, given the training data, 

should be linear, as specified by h(x).  The linearity is sometimes called the 

smoothness of the simulator.  Low values of the roughness parameters indicate that a 

simulator is smooth for a particular input variable (i.e. linearity is appropriate) 

whereas higher values, particularly ones approaching the scaled maximum of 99, 

suggest the opposite and building an emulator using GEM-SA may not be appropriate.   

 β and σ ² are estimated by combining a prior distribution for each with the 

training data using Bayes theorem.  Weak prior distributions are assumed for β, σ ² 

and b, i.e. our prior knowledge of these three quantities is weak, so probability 
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distributions are chosen which do not favour a particular value strongly.  In GEM-SA, 

these are represented by p(β,σ ²) 2−∝ σ  and ib  ~ Exp(0.01) for independent 
1b , 

2b , 

…, pb , where p(β,σ ²) is the joint probability distribution function of β and σ ², and 

Exp )(⋅  is the Exponential distribution.  Different notation is sometimes used in the 

literature.  For example, the roughness parameters can be written as 
1

1
ψ , 

2

1
ψ , …, 

pψ
1 , 

where 
1ψ , …, pψ  are known as the correlation parameters.  For diagonal B, c(x,x’ ;b) 

can also be expressed as c(x,x’;b) = exp ∑ =
′−− p

k kkk xxb
1

2})({ , where x=[
1x , …, px ] 

and x’= [
1x ′ , …, px′ ]. 

 

THE POSTERIOR DISTRIBUTION 

The posterior distribution of )(⋅f  is the distribution derived combining the prior 

distribution and the information about the emulator from the training runs using 

Bayes’ theorem (see subsection 2.3.3 for definition).  We begin by specifying the 

distribution of the outputs of the training data.  Let the elements of yT = =[
1y , …, ny ] 

be obtained from n runs of the simulator )(⋅f where iy =f(x i ) for i = 1, …, n, and the 

x i ’s have been chosen according to some suitable design (discussed in subsection 

3.2.3) so as to sufficiently sample the input space.  Using equation (3.1) the joint 

distribution of y conditional on β,σ ² and b is given by the multivariate Normal 

distribution: 

y | β,σ ²,b ~ nN (Hβ,σ ²A),              (3.4) 

where H T =[h(x
1
) h(x

2
) … h(x n)] and A is an n×n matrix with A ji , = c(x i ,x j ;b).   

The RHS of equation (3.4) is a multivariate Normal distribution, and not a Gaussian 

process as in equation (3.1), because the mean and covariance terms are now not 

functions.  Using standard techniques for conditioning in multivariate normal 

distributions, and Bayes’ theorem for the posterior distribution of (β ,σ ²) it can be 

shown that, after integrating out these hyperparameters, the posterior distribution for 

f(x) unconditional on β ,σ ² is: 

f(x) | y, b ~ qnt − ( 1m (x), 1v (x,x’))              (3.5) 
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where 1m (x) and 1v (x,x’) represent the respective posterior mean and correlation 

functions given by: 

1m (x) = h(x) β̂
T

  + t(x)T A 1− (y - Hβ̂), 

1v (x,x’) = σ̂ ²[ c(x,x’;b) – t(x) T A 1− t(x’ ) +  (h(x) – t(x) T A 1− H)(H T A 1− H) 1− (h(x’ ) 

– t(x’ ) T A 1− H) T ], 

with β̂  and σ̂ ² given by : 

β̂ = (H T A 1− H) 1−  H T A 1− y 

σ̂ ² = (y T ( A 1−  – A 1− H(H T A 1− H) 1−  H T A 1− ) / (n – q – 2) 

The expectation of equation (3.5), labelledŷ , is the emulator’s estimate of the 

simulator’s output, y.  If the emulator is represented as)(ˆ ⋅f , then ŷ = f̂ (x), where x 

is a vector of inputs.   

 

COMPUTING THE ROUGHNESS PARAMETERS 

One modelling issue is that the posterior distribution of )(⋅f  is conditional on the 

roughness parameters b = [ 1b , 2b , …, pb ].  Therefore these roughness parameters 

need to be estimated.  The posterior distribution of b is computed using Bayes’ 

theorem, i.e. 

p(b | y) = p(b) p(y | b) 

           ∝  p(b) ∫∫ p(y | β,σ ²,b)×p(β,σ ²).dβ.dσ ² 

              ∝  p(b)|A| 2
1

|HTA -1H|(σ̂ ²) 2

qn−−
             (3.6) 

A completely Bayesian approach would integrate out b from the product of equations 

(3.5) and (3.6) to leave the posterior distribution p(f(x)|y).  A major problem with this 

is that (3.6) is extremely complex and so determining p(f(x)|y) would be extremely 

computationally demanding, even if done numerically, resulting in six levels of  

integrals (Kennedy & O’Hagan, 2001).  Instead a plausible estimate of b is 

determined, using the methodology of Kennedy & O’Hagan (2001).  Therefore, the 

emulator is what is given in equation (3.5) but with the estimate of b used in the 

formulae for A, β̂  and σ̂ ². 



Chapter 3: Sensitivity of DA to initial conditions and cost function. 

Edmund Ryan                                            - 153 -                                                    2013  
 

3.2.8 Assumptions and diagnostics of emulators built using 

GEM-SA 

In building the emulator given in equation (3.5), various assumptions are made.  For 

example, in the prior we assume a particular form for the mean and covariance 

functions (equations 3.2 and 3.3).  If these assumptions are not valid or other aspects 

of the emulator are poorly estimated, such as the coefficients in the β vector, then the 

emulator may not perform well in making predictions.  These predictions can be 

checked in two different ways, but before these are explained we first explain a 

diagnostic check which can be carried out independent of any predictions.   

 In equation (3.3), it is assumed that the simulator’s output responds with a 

similar level of smoothness at all points in the input space.  In reality, the simulator 

may be more sensitive to changes in some parts of the input than others.  As a result, 

the credible intervals of the emulator predictions may be too wide in regions of low 

responsiveness or too narrow where the response is more dynamic (Bastos & 

O’Hagan, 2008).  This can be checked by inspecting the roughness parameters.  Small 

roughness parameters suggest that the smoothness assumption is valid; if the 

parameters are large, and particularly if they are approaching the scaled maximum of 

99, then this assumption may not be appropriate (O’Hagan, 2005).  For practical 

purposes, we require most of the roughness parameters to be less than 10 and all to be 

less than 25, for this assumption is valid. 

It is essential to check that the emulator is an accurate representation of the 

Metropolis algorithm.  This can be achieved in two ways.    

(1) A cross validation root mean squared standardised error (RMSSE) is computed.  

This means that alternative emulators are built, with each one leaving one of the 

training inputs out.  The output when training data are missing is then compared 

with the estimated output from the emulator, and the RMSSE of all the 

differences is computed.  The RMSSE values are also standardised as the outputs 

of the different emulators have different units and are of different sizes; the 

standardisation in GEM-SA is scaled so that values close to 1 indicate good 

performance of the emulator.  

(2) Additional runs (often referred to as ‘prediction runs’) of the Metropolis 

algorithm (usually about half the number of training runs) are carried out and 

differences between the resulting and predicted outputs (from the emulator) are 
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computed.  In this chapter we show that 40 training runs are required, thus 20 

prediction runs are carried out.  The differences are then standardised so that they 

are all on the same scale for different parameters, by computing: 

Di(y*)
[ ]

[ ]]|)(

]|)(

y

y
∗

∗∗ −
=

i

ii

xfV

xfEy
 

where i refers to the ith prediction run (1 ≤ i ≤ 20), 
∗
iy  and [ ]]|)( y∗

ixfE  are the 

parameter estimates using the Metropolis algorithm and the emulator (built using 

training outputs given by y) respectively, and [ ]]|)( y∗
ixfV  is the variance of the 

emulator’s estimate.  We then plot *)(yiD  against the index i for i= 1, …, 20.   

Thus, for the emulator to be an accurate representation of the simulator, we require: (i) 

most of the Di(y*)’s are in within the bounds of a 95% tolerance interval, i.e. (-1.96, 

1.96); (ii) the RMSSE values to be close to 1, i.e. between 0.8 and 1.2 is adequate.   

 

3.2.9 Latin Hypercube sampling of the input space 

In order to build an emulator, consideration needs to be given to how best to choose 

the training inputs.  The design needs to be space filling, i.e. one in which most or all 

regions of the input space are represented.  One option is to sample the input space 

using a stratified random sample, but this can require a large number of executions of 

the model when the dimension of the input space is higher than two. An alternative and 

popular design is a Latin Hypercube design (LHD).   

 

LATIN HYPERCUBE SAMPLING 

In Latin hypercube sampling a stratified random sample is applied to each variable (or 

in each dimension of the input space), then the order is randomly permuted, and one 

of the permutations is randomly chosen.  McKay (1979) summarises the general 

definition of an LHD.  In k dimensions: 

‘Let X1, …, XN be a sample of points from the input space.  We divide the 

range of the input variables Xk (1 ≤ k ≤ N) into N equally spaced strata, 

and sample once from each stratum.  Let this sample be Xkj, j = 1,…, N.  

These form the Xk component, k = 1,…, K, in Xi, i = 1, …, N.  The 

components of the various Xk‘s are matched at random.’ 
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An example is now presented to aid understanding.  For simplicity we restrict 

ourselves to two input variables, X1 and X2, and suppose we require n=3 training 

inputs.  Let the known ranges of X1 and X2 be [2,8] and [150, 300] respectively.  

Since n=3, the domain of each variable is split up into three equally sized sections.  

One value is randomly selected from each section, for each variable.  Denote the two 

sets of selected points by 1,2,3 and a,b,c.  Permuting the elements of the two sets with 

each other gives: 

 (1,a) (1,a) (1,b) (1,b) (1,c) (1,c)  

 (2,b) (2,c) (2,a) (2,c) (2,a) (2,b)  

 (3,c) (3,b) (3,c) (3,a) (3,b) (3,a)  

One of the permutations is now randomly selected, except for the one on the furthest 

left (for reasons explained after).  Suppose the fourth group from the left is chosen, 

then the design can be represented as shown in figure 3.1a.  In essence the three input 

parts of the required training data are (1,c), (2,a), (3,b).  The design on the furthest left 

is ignored best if 1,2,3 and a,b,c are paired in ascending order, this gives no 

information about how simulator outputs behave when the two inputs vary in the 

opposite direction.   Figure 3.1b shows this graphically – i.e. if we have a (1,a), (2,b), 

(3,c) design then  the three forward diagonal squares would be used leaving important 

regions (i.e. the top right and the bottom left) empty.    

The key advantage of an LHD is that it ensures that all parts of the domain of 

each input dimension are well represented, while only requiring a small number of 

sampled points. It can also work with a high number of dimensions. The concept of an 

LHD was first proposed by McKay et al. (1979) and  has since become a popular 

design for computer experiments, particularly those which are expensive to run (for 

example, see Butler (2001), Santner (2003) and Wang (2003)).   

 

MAXIMIN LATIN HYPERCUBE SAMPLING 

A maximin Latin Hypercube Design (MmLHD) is a particular class of LHD which has 

been shown to sample the input space better than standard LHD.  In the example 

above there were five possible sets of pairings for the two inputs, and an LHD consists 

of randomly selecting one of these five sets.  The MmLHD chooses the set in an 

optimal way by maximising the distances between the three input points.  We refer to 

figure 3.1a and 3.1b to  understand this.    The design in  figure 3.2b was disallowed  
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                              (a)                                                                    (b)                      

      
Figure 3.1 A diagrammatic representation of an example set of three points chosen 
using a Latin Hypercube Design for two inputs. 
 

because there were large gaps in the input space being ignored, whereas the design in 

figure 3.1a was better because the points were more spread out in the input space.   

Another way of viewing this is if you were to sum the distances between the points for 

the bad design (figure 3.1b), this would be less than the sum from the design in figure 

3.1a.  Morris & Mitchell (1995) provide full details of the MmLHD, and the appendix 

displays the R script used to generate the inputs using this design.   

 

DECIDING ON THE NUMBER OF TRAINING RUNS 

If the simulator is not too computationally expensive and the input dimension is not 

excessive, then Loepky et al. (2008), on the basis on experiment, suggest the number 

of training runs should be at least 10 times the input dimension.  This rule of thumb is 

consistent with a number of other papers where Gaussian Process emulators were built 

using an appropriate space filling design, for example, Bastos & O’Hagan (2008), 

Gosling (2006), Rougier et al. (2008), and Kennedy et al. (2006).  In this chapter there 

are 4 input variables, therefore 40 training runs of the Metropolis algorithm were 

carried out when building each of the 17 emulators.    

 

3.2.10 Sensitivity analysis using the emulator 

Sensitivity analysis (SA) is concerned with quantifying how changes in the output of a 

function can be attributed to changes in each input variable jx  (j = 1,…,p).  For 

this chapter, p=4, the function is each of the 17 emulators.  Thus, labelling the ith 

output and emulator as iŷ  and )(ˆ ⋅if  (1 ≤ i ≤ 17), the function on which we wish to 
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perform sensitivity analysis can be expressed as iŷ = if̂ (
1x ,

2x , 3x ,
4x ).  To explore 

how y changes with 
1x , for example, one option is to fix the other inputs at nominal 

values  (e.g. their central values) whilst varying 
1x .  However, this may lead to biased 

results as the sensitivity of y to changes in 
1x  may vary depending on the chosen 

fixed values of 
2x , 3x  and 

4x .  A better option would be to average over the other 

inputs (Santner, 2003), i.e. the sensitivity of iŷ  to changes in 
1x  would be determined 

by computing the following expectation for multiple values of 
1x : 

        ∫∫∫= ,).,,(),,,(ˆ]|ˆ[ 43243243211 dxdxdxxxxpxxxxfxyE ii             (3.7) 

where ),,( 432 xxxp  is the probability distribution of 2x , 3x  and 4x .  This is what is 

done in GEM-SA.   

 

THE SENSITIVITY INDEX AND TOTAL EFFECTS 

The sensitivity of iŷ  to changes in jx  (1 ≤ j ≤ 17),  is calculated in GEM-SA using the 

methods set out in Santner (2003) and Oakley & O’Hagan (2004).  This sensitivity 

can be quantified by specifying the percentage of variance in the output which is 

apportioned to each input variable.  If jV = ])|ˆ[( jix xyEVar
j

 denotes the variance of 

]|ˆ[ ji xyE , we define the first order sensitivity index (iS ) for this input as: 

V

V
S j

j = , 

where V is the total variance of the output.  In other words jS  measures the proportion 

of the total variance V due to the main effect jx , i.e. excluding all interactions with 

other inputs.   For 1j < 2j , 
21jjS  is the second order sensitivity index, written: 

          
V

V
S jj

jj
21

21
= , 

with 
21jjV = ])|[(

2121
jjxx xyEVar

jj
 – 

1j
V  – 

2j
V , measures the interaction effect due to 

inputs 
1j

x  and 
2j

x ; in other words it measures the proportion of the total variance 

above that of their main effects.  This can be extended to higher orders.  In general for 
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 s=1,…,p and 1≤
1i <…< si <…≤ pi , the s-th order sensitivity index is defined by: 

V

V
S s

s

jj
jj

,...,
,...,

1

1
=  

where 
sjjV ,...,1
= ])|[( ,...,1,...,1 ssjji jjx xyEVar  – 

1j
V  – 

2j
V –…– 

sj
V .  By construction, the 

sensitivity indices satisfy (Santner, 2003): 

1... ,...,2,1
11 21

21
=+++ ∑∑

≤<≤=
p

p

pjj
jj

p

j
j SSS  

In GEM-SA, sensitivity indices for all orders are taken into account but only the first 

and second order orders are displayed.  The total sensitivity of y to input jx  is defined  

as the sum of all orders of sensitivity indices involving that input, i.e. 

.... ,...,2,1

21

12

21

21 p
jj

jj
jj

jjjj SSSST ++++= ∑∑
<>

 

 

HOW SENSITIVITY ANALYSIS IS SUMMARISED IN GEM-SA 

When an emulator is built in GEM-SA it produces tabular and graphical output for 

Sensitivity Analysis.  The tabular form gives, for each ix , the first order (and second 

order if specified) sensitivity indices and the value of iT .  To aid understanding, table 

3.2 shows this tabulated form using a made up example which involves five inputs 

labelled X1, X2, X3, X4 and X5.  For this example we can see that the variance of the 

output can be mainly attributed to changes in the X5 input.  Note that the first order 

sensitivity indices sum to 93.95% which is close to 100%,  so the contribution to the  

variance of second and higher order interactions (not shown) will be very small.   

The graphical output consists of a plot of ]|[ ixyE  against ix  for each of the 

inputs.  This consists of a band of lines, rather than a single line, since )(ˆ ⋅if  is 

uncertain; the thickness of the band is an indicator of the emulator uncertainty.  If the 

band is approximately horizontal, the output is not sensitive to changes in that input.  

Figure 3.2 shows the graphical output from the example that yielded Table 3.2.  We 

can see that the function is insensitive to the first four inputs but is significantly 

affected by X5, which corresponds to the significantly higher percentage of the 

variance for X5 compared to the other inputs in table 3.2.     We can also see that all of  
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Table 3.2 The tabulated form of the sensitivity analysis carried out in GEM-SA using 
a mock example with 5 inputs. 
 

the sensitivity of the output due to X5 is for the higher values of X5.   

In this chapter, only the graphical form is shown, because we are only 

interested in how ]|ˆ[ ji xyE  varies for different jx .  The tabular form shows the 

variance of ]|ˆ[ ji xyE , relative to the total variance V (see previous page), which 

essentially gives the same information as the graphical form but in a numerical format.  

In certain situations the tabular form can be useful, but for this chapter it is not.   

 

CODE UNCERTAINTY 

An extra source of uncertainty when carrying out SA on an emulator results from the 

fact that if SA had been carried out using the Metropolis algorithm directly, the values 

of iS  and iT  would differ from those given by the emulator, because the emulator is 

only an approximation of the Metropolis algorithm.    This uncertainty is called code 

uncertainty and will be negligible as long as the emulator accurately represents the 

input-output relationship of the Metropolis algorithm (O’Hagan, 2004).   

 

3.2.11 Follow-on experiments 
As well as the main sensitivity analysis results, the results section (section 3.3) shows 

additional sensitivity results.  These were carried out in response to the main results in 

order for the main results to be meaningful. The complete rationale behind these addit- 
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Figure 3.2 The graphical form of the sensitivity analysis carried out in GEM-SA using 
a mock setup with 5 inputs.  
 

ional experiments is given in the discussion section (3.4), as it is premature to explain 

this here. However, a description of these extra experiments is given here.  For the 

first of the extra experiments, ten further runs of the Metropolis algorithm are using 

the same data and setup as the main experiment except carried out with three of the 

inputs – Cr(0), Clit(0) and the LAI observational error – kept fixed.  The other input 

Clab(0), was varied using a stratified random sample (which is the same thing as a 

Latin Hypercube design in one dimension.  The second of the extra experiments was 

the same as the first except that an extra 90 LAI data points were used.  As explained 

above, full rationale for these extra experiments are given in the discussion section.   

 

3.2.12 Application of the Metropolis algorithm treating the 

initial conditions of the small C pools as parameters 
To complement the main set of experiments, a further run of the Metropolis algorithm 

is performed using the same data and exactly the same setup as the runs from the main 

sensitivity analysis, except that Clab(0), Cr(0), Clit(0) are treated as parameters, with the 

LAI observational error set at the most common value used by the REFLEX 

participants.  As stated at the end of subsection 3.1.2, this will enable us to answer two 

questions: 
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(i) Is it better to treat the initial conditions as fixed or as parameters? 

(ii) If we treat the initial conditions as parameters, what impact does wrongly 

estimating them have on the other model parameters and the C pools? 

 

3.3 Results 
In this section, we first assess the convergence of the Metropolis algorithm runs before 

examining the diagnostics of the emulators which check that the 17 constructed 

emulators accurately represent the input-output relationship of the Metropolis algorithm, 

where the inputs are the initial conditions of Clit, Clab and Cr, and the LAI observation 

error, and the output is the estimate of each of the 17 parameters in DALEC-D (for 

convenience we name each emulator after the DALEC-D parameter represented as its 

output).  The main sensitivity analysis results are then displayed.  Finally the 

sensitivity analysis results to the additional experiments, as described in subsections 

3.2.10 and 3.2.11, are given. 

 

3.3.1 Checking convergence of the Metropolis algorithm 

As stated at the end of subsection 3.2.4, the convergence of the Metropolis algorithm 

was assessed by monitoring the Gelman criteria statistic Rhat for each of the iterations 

(Gelman, 1995).  The Rhat trajectories for each parameter for 4 of the 40 randomly 

selected runs of the  Metropolis algorithm  used to construct  the emulators is  given in 

figure 3.3.  The remaining 36 runs had very similar plots.  For each subplot, there are 

17 blue lines which represent the Rhat trajectories of each of the 17 DALEC model 

parameters.  For each of the four runs represented by the subplots in figure 3.3, which 

was also true for the other 36 runs, we can see that all of the parameters have converged 

by approximately 2.5 iterations, where convergence is determined by the Rhat values 

going less 1.2 (the dashed red line) (Gelman, 1995).  Moreover, in each of the runs 

most or all of the parameters have converged very early on by around 1 million 

iterations.  The trajectories of the chains for each of the parameters for a randomly 

selected run can be found in Appendix B.   
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Figure 3.3 The trajectory of Gelman criteria statistic (Rhat) values for each of the 17 
parameters for 4 of the 40 runs of the Metropolis algorithm used to the built the 
emulators for the main sensitivity analysis results.   
 

3.3.2 Emulator Diagnostics 

A description of the diagnostics carried out is given in defined in subsection 3.2.8.  

First we check that the assumption of the smoothness of the simulator outputs to its 

inputs (equation 3.3)  is valid by outputting the  roughness parameters  (table 3.3) and 

observing whether any of them are large.  As stated in in subsection 3.2.7, small 

roughness parameters suggest that the smoothness assumption is valid, whereas if the 

parameters are large, and particularly if they are approaching the scaled maximum of 

99, then this assumption may not be appropriate (O’Hagan, 2005).  For practical 

purposes, we require most of the roughness parameters to be less than 10 and all to be 

less than 25, for this assumption is valid.   From table 3.3 we can see that for two of 

the emulators, corresponding to the Tw (turnover of woody carbon) and Flr (fraction of 

labile carbon respired) parameters, the value of one of the roughness parameters is 

greater than 50. Hence the smoothness between the simulator’s inputs and outputs can- 
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Parameter 
 

Croots 
 

Clitter 
 

Clabile 
 

LAI obs. error 
 

 Cross-validation 
RMSSE 

Td  6.59 0.00 15.08 2.72  0.98 
Fg  4.42 1.26 5.37 2.45  1.03 
Fnf 0.31 0.10 5.42 1.81  1.18 
Fnrr 1.37 3.29 6.49 0.59  1.09 
Tr  1.07 6.02 3.75 0.73  1.03 
Tw 62.35 3.02 1.74 0.00   
Tr  0.73 2.91 7.22 1.01  0.89 
Tl  0.88 4.90 0.78 0.14  1.09 
Ts 5.36 2.43 1.08 1.13  0.99 
Et 0.00 4.81 4.23 1.11  1.14 
Pr 1.41 0.62 7.08 1.09  1.05 
Lout 0.39 0.86 12.23 3.40  1.19 
L fall 1.34 3.76 4.27 0.44  0.94 
Fll 0.42 0.98 10.43 1.44  1.24 
Tlab 0.15 0.65 12.07 0.36  0.83 
Flr 1.58 49.03 11.19 0.00   
Cfmax 0.11 0.39 21.48 1.06  0.98 

 

Table 3.3 (left) shows the values of the four roughness parameters for each of the 17 
emulators constructed.  Two emulators (Tw and Flr) had high values of one roughness 
parameter in each case (illustrated by shading).  Table 3.4 (right) shows the cross-
validation root mean squared standardised errors (RMSSE) for each of the 17 
emulators, which are all close to 1.   
 

not be assumed here and so the sensitivity analysis results for these two emulators are 

not shown.   

Table 3.4 shows the cross validation root mean squared standardised errors 

(RMSSE), as described in (1) in subsection 3.2.6, for the remaining 15 emulators.  All 

of them have values close to 1 indicating that the emulators are all performing well.   

Figure 3.4 shows the plots of the standardised prediction errors, as described in (2) in 

subsection 3.2.8, of the Metropolis algorithm’s outputs versus the outputs predicted 

from the emulator for two of the parameters.  We require the prediction errors to be in 

the range (-1.96, 1.96), (i.e. between the 2.5th and 97.5th percentiles of a N(0,1) 

distribution),  though if only a few of the errors  are outside this range these can be 

ignored (Bastos & O’Hagan, 2008).  For twelve of the parameters (e.g. the fraction of 

NPP allocated to fine roots, Fnrr, left panel of figure 3.4) the prediction errors meet this 

requirement.  For the remaining five parameters (e.g. the turnover of litter carbon, Tl, 
right panel of figure 3.4) too many of the prediction errors are outside the interval           

(-1.96, 1.96), suggesting that the emulator is incorrectly estimating the parameter 

estimates from the Metropolis algorithm for too many regions of the input space. 
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Figure 3.4 Plots of the standardised errors of the prediction runs.  For 12 of the 17 
parameters (e.g. Fnrr, left panel) the vast majority of the errors are within the interval 
(-1.96, 1.96), the bounds of which are represented by the red dashed lines.  For the 
remaining 5 parameters (e.g. Tl, right panel) more than a few of the errors are outside 
the interval (-1.96, 1.96).   
 

In summary, the diagnostic checks show that ten of the seventeen emulators 

accurately represent the input-output relationship of the Metropolis algorithm.  The 

remaining seven emulators did not model the input-output relationship of the 

Metropolis algorithm good enough.  For two of these seven, corresponding to the Tl 

(turnover of litter carbon) and Flr (fraction of labile carbon respired) parameters, there 

is insufficient evidence that the assumption of the mean function of the prior being 

linear is valid; this is essential because it is like saying that a linear model (i.e. 

y=ax+b) to represent data which has curvature between the points when plotted is 

more appropriate than say a quadratic model, i.e. y=ax2+bx+c.  For the other five 

(corresponding to the Tf, Tr, Tl, Et and Lfll  parameters), too many of the prediction 

errors are too high.  Therefore these seven poorly performing emulators were 

excluded from the results since the sensitivity of the corresponding parameters to 

changes in the four inputs based on the emulator are likely to be very different than if 

the sensitivity analysis had been performed using just the Metropolis algorithm.   

The fact that seven of the seventeen DALEC-D parameters were excluded 

from the results did not matter because of the twelve parameters which varied among 

the DA schemes in REFLEX, only three were excluded.  Thus using these remaining 

ten emulators still gives us great insight into why the estimates of these twelve 

parameters in REFLEX varied so much among the different DA schemes.   
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3.3.3 Sensitivity analysis  

The sensitivity analysis aims to answer the following questions: 

• Which region of the input space are the parameter estimates are sensitive to 

changes in the inputs? 

• Which region of the input space yield the parameter estimates close to the 

truth? 

The results described below show that changes in the Clab initial conditions have the 

biggest impact on the parameter estimates, with the Clit initial conditions and the LAI 

observational error having some impact, and the Cr initial conditions having little 

effect.  We abbreviate the initial conditions of the three C pools as Clab(0), Clit(0) and 

Cr(0).   

 

INITIAL VALUE OF THE LABILE C POOL  

Of the ten parameters whose emulators passed the diagnostics (subsection 3.3.1), the 

estimates of eight were sensitive to Clab(0) (figure 3.5 and Appendix B).  For six of 

these eight parameters (Td, Fg, Fnrr, Pr, Fll, Lout), the estimates were most sensitive to 

small Clab(0) values but were insensitive for larger values (e.g. Pr and Lout see figure 

3.5a and 3.5c; plots of Td, Fg, Fnrr and Fll are shown in figure B3 of appendix B).  For 

the remaining two parameters (Fnf and Tlab), the estimates were most sensitive to 

larger Clab(0) values (figure 3.5b and 3.5d). 

 The true value of each parameter, sometimes referred to simply as the truth, is 

given by the red dashed horizontal line in figure 3.6 and Appendix B.  We know the 

true values of the parameters because the assimilated data used was synthetic; see 

subsection 3.2.3 for details.  The parameter estimates were closer to the truth for 

larger values of  Clab(0)  for four of the eight parameters  (Td, Fnrr, Pr, Fll) and closer to 

the truth for smaller values of the Clab(0) for two of the parameters (Fg and Fnf).   For 

the  remaining  two parameters (Lout and Tlab),  there is  no specific  range of Clab(0) 

over which the parameter estimates are closest to the truth.  Therefore, if Clab(0) is 

either under or over-estimated, we will get at least some parameters correct, but not 

all.  However, for all parameters except Tlab, the estimates were close to the truth 

when the true Clab(0) value (vertical dashed green line) was used.  For example for Pr, 

Fnf, and Lout see figure 3.5(a)-(c).  This highlights the importance of accurately 

estimating the initial conditions of this particular carbon pool.   
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Figure 3.5 The expected value (blue lines) of the (a) Pr, (b) Fnf, (c) Lout and (d) Tlab 
parameters for different initial values of the Clab pool.  The red horizontal and green 
vertical dashed lines indicate the true values of the parameter and the true initial 
value of the Clab pool respectively. 

 

The two parameters, Ts and Cfmax whose estimates were insensitive to changes 

in Clab(0), this is indicated in figures B4(e) and (f) (appendix B) by the fact that the 

band of blue lines is almost horizontal.   

 

INITIAL VALUE OF THE LITTER C POOL  

The parameter estimates were sensitive to Clit(0) for five of the ten parameters, namely 

Fg, Fnrr, Ts, Pr, Fll (figure 3.6 and figure B5 from appendix B). However this sensitivity 

was, for four of the five parameters (all but Fnrr, figure 3.6c),  much weaker than the 

sensitivity to Clab(0); i.e. the gradient of the blue band of lines for the sensitivity plots 

(e.g. figure 3.6a-b and figure B5 from the appendix B)  are much less than the blue 

band of lines in the Clab(0) sensitivity plots.  For the remaining five parameters their 

estimates were insensitive to changes in Clit(0).   

 For Pr (figure 3.6a) and Fll their estimates were insensitive for smaller Clit(0) 

values.  For the other three parameters, Fg, Ts and Fnrr (e.g. figure 3.6b-c) the estimates 

were insensitive and for larger Clit(0) values.  For Fg, Pr and Fll, when Clit(0) was less 

than 100gC/m² this resulted in parameter estimates closer to the truth (i.e. closer to the  
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Figure 3.6 The expected value (blue line) of the (a) Pr, (b) Ts, and (c) Fnrr 
parameters for different initial values of the Clitter pool.  The red horizontal and 
green vertical dashed lines indicate the true values of the parameter and the true 
initial value of the Clitter pool respectively. 
 

vertical green dashed line). However when the input was greater than 100gC/m² the 

estimates of Ts and Fnrr were closer to the truth.   

For the five parameters which were insensitive to changes in Clit(0), the 

sensitivity plots are not shown but were very similar to figures B5 (e) and (f) 

(appendix B), i.e. the band of blue lines is horizontal.   

 

INITIAL VALUE OF THE FINE ROOTS C POOL  

Only two of the ten parameter estimates (Td and Fnrr) were sensitive to Cr(0) (see 

figure B6 in appendix B).  For Td, the parameter estimates were sensitive for most of 

the range of this input but particularly for values of Cr(0) between 75gC/m² and 

175gC/m².  For values of Cr(0) in the ranges 0–75gC/m² and 175–200gC/m², the 

parameter estimates were approximately constant and were also closest to the truth.  

For Fnrr, its estimate was insensitive to changes in Cr(0) (i.e. the band of blue lines is 

flat) of between 50gC/m² and 125gC/m², but decreased and became further from the 

truth when Cr(0) was less than 50gC/m² and greater than 125gC/m². The parameter est- 

imates were also closest to the truth when Cr(0) was between 50gC/m² and 125gC/m². 

For the eight parameters which were insensitive to changes in Cr(0), the 

sensitivity plots are not shown but were very similar to figures B5(e)-(f) (appendix B).   

 

LAI OBSERVATIONAL ERROR 

Figure 3.7 shows six of ten parameter estimates (namely Td, Fnf, Tlab, Fg, Fnrr and Fll) 

which were sensitive to the LAI observational error.  However the variation in the 

parameter estimates over the range of this input was far less than due to Clab(0).   For  



Chapter 3: Sensitivity of DA to initial conditions and cost function. 

Edmund Ryan                                            - 168 -                                                    2013  
 

 
 

 Figure 3.7 The expected value (blue line) of the Td (a), Fnf (b), Tlab (c), Fg (d), Fnrr (e), 
and Fll (f) parameters for different values of the LAI observational error.  The red 
horizontal and green vertical dashed lines indicate the true values of the parameter 
and the true value of this input respectively. 
 

two of these six parameters (Td and Fnrr), the parameter estimates were mainly 

sensitive to changes to small values (i.e. less than 0.1 m2/m2) in the LAI observational 

error (figures 3.7a,e), while Fll was mainly sensitive to changes in higher values (i.e. 

greater than 0.05 m2/m2).  For the other three, the parameter estimates were sensitive 

for the entire range of the input. 

 The estimates for Td, Fnf, and Tlab are closer to the true value of the parameter 

(red dashed line) when this input is greater than its true value of 0.08 m2/m2 (figures 

3.7a-c), while the other three are closer to the truth when this input is less than 0.08 

m2/m2 (figures 3.7d-f).  In REFLEX, five of the Metropolis algorithms used an LAI 

observational error of between 0.04 and 0.11 gC/m², while the other one used values 

of 0.0005.  Therefore this specification of different LAI observational errors may have 

contributed to the differences observed in the parameter estimation results from the 

REFLEX project.   

 

3.3.4 Additional sensitivity analysis experiments 

We first give  the results of the  two sets of follow-on  experiments, labelled as experi- 
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ment 1 and experiment 2, as described in subsection 3.2.10.  For the additional 20 runs 

of the Metropolis algorithm, two sets of 10 runs for each of experiments 1 and 2, the 

algorithm converged well before 5 million iterations and the Rhat plots were very 

similar to the ones in figure 3.3.   

For experiment 1, all but one of the parameters are sensitive to Clab(0) is an 

almost identical way to the original sensitivity analysis results when the emulators 

were used, for example Fnf  and  Tlab (panels b and h of figure 3.8).    For the remaining 

parameter, Pr, we can see from panel (e) of figure 3.8 that it is closer to the true value 

for a wider range of Clab(0) values  than the original sensitivity plot (panel (d) of figure 

3.8).  For experiment 2, approximately half of the parameters had almost identical 

sensitivity plots to those from experiment 1, e.g. Fnf (panel c of figure 3.8).  For all of 

but one of the remaining parameters, they were further from the truth compared to the 

experiment 1 plots (e.g. Pr, figure 3.8(f)).   For the remaining parameter, Tlab, the blue 

line of sensitivity of this parameter to changes in Clab(0) make a horizontal shift to the 

left such that when the true Clab(0) is used this results in the true value of Tlab being 

estimated by the Metropolis algorithm.  This is significant because in the original 

sensitivity analysis results, this was the only parameters whose estimate was not at or 

very close to the truth when the true Clab(0) was used.  These results are discussed in 

the second half of subsection 3.4.2.   

 

3.3.5 Treating the initial conditions as parameters 

In this final run of the Metropolis algorithm, convergence was once again checked 

using the Gelman criteria as with all previous runs.     As with the runs for experiments 

1 and 2, the Rhat plot was very similar to those from figure 3.3.  Figure 3.9 shows the 

plots of the estimates of the parameters, represented by the modal values from the 

posterior distribution, with the lower and upper bounds of the uncertainty intervals 

represented by the 5th and 95th percentiles.  The parameter estimates and uncertainty 

broadly correspond to those from the 2 year run of the Metropolis algorithm from 

chapter 4, where differences between the two posterior distributions exist because of 

the different site used in each of chapters 3 and 4 and the fact that LAI data are used in 

chapter 3 but not 4.  The fit of the modelled NEE and LAI to the data is very good.  

We can see this in figure 3.10a, where 500 parameter sets were randomly chosen from 

the posterior distribution and the corresponding trajectories of the NEE and LAI were 
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Figure 3.8 Graphical representation of the sensitivity analysis carried out in GEM-SA 
where Clit(0), Cr(0) and the LAI observational error were kept fixed (Experiment 1) 
and where 90 extra LAI observations were also assimilated (Experiment 2). 

 

plotted (shown in black),  plotted alongside the trajectory of the true NEE and LAI 

(shown in red) and the NEE and LAI data used in the Metropolis algorithm (shown by 

the green crosses).  For the NEE, we can see that the fit is very good compared to both 

the true NEE and the data.  For the LAI, the fit is also good although the post-DA LAI 

is not quite reaching the summer maximum values of the true NEE.  This is probably 

due to the fact that there were only a very small number of LAI data used (10), so the 

NEE data (of which were 231 data points) had a much stronger influence on the 

posterior distribution. 

   When the post-DA trajectories of the other C pools are plotted (figure 3.10b), 

we see reasonable correspondence with the true trajectory (i.e. the red line is mostly 

within the black area).  This is encouraging given that for two of the three initial 

conditions treated as parameters, namely Cr(0) and Clab(0), had posterior estimates far 

from the truth and whose posterior intervals did not include the truth.  This is 

discussed in subsection 3.4.6. 
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Figure 3.9 The parameter estimates given by the modal value of the posterior 
distribution along with the corresponding uncertainty bounds given by the 5th and 95th 
percentiles of the posterior distribution. The initial conditions of the root C, labile C 
and litter C pools are included as parameters.  The red line corresponds to the truth. 
 

 
Figure 3.10a The black line are the NEE and LAI trajectories corresponding to 500 
randomly selected parameter sets from the posterior distribution. The red line is the 
corresponding trajectory from using the true parameters and the green crosses are the 
data.  
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Figure 3.10b The trajectories (black lines) of the C pools (except for Cf) obtained 
from forward runs of the model using 500 randomly selected parameter sets from the 
posterior distribution.  The red lines are the corresponding true trajectories.   

 

 



Chapter 3: Sensitivity of DA to initial conditions and cost function. 

Edmund Ryan                                            - 173 -                                                    2013  
 

3.4 Discussion 
Section 3.3 has shown that Clab(0) causes the largest variation for more parameters 

than any of the other three inputs, and that the majority of the parameter estimates are 

close to their true values when the true value Clab(0) is used.  However, some 

important questions arise from these results:  

(i) Why is Clab(0) more important than Clit(0) and Cr(0), and why were Ts and Cfmax 

insensitive Clab(0)?  

(ii)  Is it a coincidence that the range of Clab(0) values for which the parameter 

estimates are close to the truth are either less than or greater than the true value of 

Clab(0)? 

(iii)  What are the consequences when the right value for Clab(0) is not available (which 

is almost always the case)? 

(iv) What other information can we use in order to accurately estimate the parameters 

if Clab(0) is poorly estimated? 

(v) Why were more parameters sensitive to Clit(0) than to Cr(0), and what inference 

can be made from the LAI observational error sensitivity plots? 

(vi) Do these results help to explain the differences in the parameter estimates from 

the different DA schemes used in REFLEX? 

(i)-(iii) is addressed in subsections 3.4.1-3.4.2, and (iv)-(vi) are assessed in 3.4.3-

3.4.6.  Finally, subsection 3.4.7 attempts to interpret the estimates of the parameters 

and uncertainties when Cr(0), Clab(0), Clit(0) are treated as parameters. 

 

3.4.1 Sensitivity of parameters to Clab(0) 

The key reason for greater parameter sensitivity due to Clab(0) (figure 3.5) is that the 

Clab pool is more closely linked to the Cf pool than to any of the other C pools, and Cf 

influences GPP.  Since the Metropolis algorithm operates by optimising the fit 

between the modelled and observed NEE, and since GPP has a strong influence on 

NEE (where NEE  =  Rtot  –  GPP, see figure 3.11), factors that control the size of the 

GPP pool will directly influence the modelled NEE values.   Modelled LAI values are 

also required to fit the observed LAI, since LAI is linearly related to Cf (subsection 

3.2.2).  
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Figure 3.11 Trajectories of Gross Primary Production (GPP) and total respiration 
(Rtot) for 2000-01, using the true parameter set and true initial conditions of the 
DALEC-D model (table 3.1). 
 

    Two parameters, Ts and Cfmax, were completely insensitive to Clab(0).  For Ts, 

the turnover rate of the Csom pool, this is not surprising because it was one the seven 

parameters from REFLEX whose estimates from the different DA schemes were very 

similar.  It is also very small in magnitude, and so it is probably prevented from 

assuming large values otherwise too much C would get respired heterotrophically, 

which would cause a severe conflict between the modelled and observed NEE.  For 

Cfmax, the maximum Cf value, this is probably insensitive to changes in Clab(0) because 

the LAI observations would be dictating the height of the peaks of the trajectory of the 

modelled Cf pool.   

  It is very noticeable that, of the eight parameters sensitive to Clab(0), seven 

were only sensitive for values either less than or greater than the true value of Clab(0).  

For example, in figure 3.5a, Pr is more or less insensitive to Clab(0) when this input is 

greater than its true value, but sensitive otherwise.  In order to make sense of this, we 

plot the trajectories of total respiration, GPP, NEE and all the C pools (figures 3.12-

3.14).  For each of the nine plots, four trajectories are plotted when Clab(0) = 35 gCm-

2, 70 gCm-2 (the true value), 110 gCm-2, and 170 gCm-2, whilst keeping Cr(0) and 

Clit(0) fixed at their true values, and the parameters fixed at their expected value using 

the  emulator using the equation below (equation (3.7) from in subsection 3.2.10),  

∫∫∫= ,).,,(),,,(ˆ]|ˆ[ 43243243211 dxdxdxxxxpxxxxfxyE ii  

but setting where 
1x  (representing Clab(0)) at 35, 70, 110 and 170 gCm-2 where iŷ  is 

the emulator’s estimate of the ith parameters, and 432 ,, xxx  are the other inputs.   
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Figure 3.12 The trajectories of Clab, Cr, and Clit for different values of Clab(0), using 
the emulator’s estimate of the parameters corresponding to the value of Clab(0). 
 

 
Figure 3.13 The trajectories of Cf, Cw, and Csom for different values of Clab(0), using 
the emulator’s estimate of the parameters corresponding to the value of Clab(0). 
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Figure 3.14 The trajectories of GPP, Rtot, NEE, Ra, Rh1, and Rh2 for different values of 
Clab(0), using the emulator’s estimate of the parameters corresponding to the value of 
Clab(0).   
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Figure 3.14 [cont.] The absolute difference between the NEE trajectories 
corresponding to Clab(0)=35, 110 and 170 gCm-2 and the true NEE trajectory. 
 

When Clab(0) = 110 or 170 gCm-2, we can see that the Clit trajectory (figure 

3.12c)  is closest to the  true trajectory (i.e. when Clab(0)  =  70 g C m-2),  whilst for the 

remaining C pools (figures 3.14a-b, 3.13a-c), the trajectories are closest only for Clab(0) 

=  110 gCm-2.  In particular, when Clab(0)=35gCm-2, the Cr trajectory (figure 3.12b) is 

not only furthest from the truth, but its trajectory is completely out of sync, in terms of 

the timings of the peaks and troughs, with the other trajectories.  Despite the 

trajectories for GPP, Rtot and NEE (figure 3.14a-c), being close to the true trajectories 

whether Clab(0) is equal to 35, 110 or 170 gCm-2, they are closer when Clab(0) = 110 

gCm-2  – this can be seen for NEE if the absolute differences between each of the three 

trajectories and the true trajectory is plotted (figure 3.14g).   

      Therefore, although the parameters were not all consistently insensitive to 

changes in Clab(0) either less or greater than the true value of Clab(0), the trajectories of 

the C pools and key model states suggest that over-estimating Clab(0) by a small 

amount (i.e.110 gCm-2) is better than under-estimating it by a similar amount (i.e. 35 

gCm-2) or over-estimating it by a larger amount (i.e. 170 gCm-2).   

 A further interesting observation is that the labile pool in figures 3.10b and 

3.12 appears to be decreasing year on year, both in the truth and the post-DA.  There 

are two plausible explanations for this: (i) the pool stabilises at a pseudo steady state, 

or (ii) it reduces to zero.  Unfortunately, it is not possible to answer this question 

directly by running the model forward because the driving data for the additional 

years is not easily available.  Therefore we use Chuter (2013) to help determine the 

likely answer.  Chuter (2013) showed very clearly that the foliar and labile C pools 

were tightly coupled.  With this in mind and since the foliar C pool trajectories in 

figures 3.10b and 3.12 appear stable, it is reasonable to expect the labile C pool 

trajectory to also be stable and to settle on some pseudo steady state at some point in  



Chapter 3: Sensitivity of DA to initial conditions and cost function. 

Edmund Ryan                                            - 178 -                                                    2013  
 

the future.   

 

3.4.2 Stability and transient issues 

STABILITY 

Although the previous subsection suggested that over-estimating the Clab(0) value by a 

small amount (i.e. 110 gCm-2) is best, an important but overlooked issue is that any 

departure from the true set of parameters results in the results in a departure from 

stability.  This is most clear in the trajectories of Cw and Csom in figure 3.13.  When 

using the true parameters, we see that the system is in a pseudo equilibrium with the 

sizes of the Cw and Csom pools remaining virtually unchanged after a 3 year forward 

run of the model.  Even when Clab(0) is increased from its true value by a small 

amount to 110gCm-2 (green lines of figure 3.13), we that after 3 years there has been 

roughly a 25% reduction in the size of the Cw pool.  This means that either the woody 

part of the trees (which is predominantly the tree trunk and major branches) is 

reducing in size or there are fewer trees present.  Both options are unlikely in the real 

world.  Part of the reason this is happening is because the different values of Clab(0) 

correspond to different parameter sets.  However this may also with the structure of 

the model.  In particular, DALEC or DALEC-D does not incorporate tree allometry, 

that is relations between the height of the tree, width of the tree trunk, the amount of 

foliage, etc….  If it did, as the ACGCA model (Ogle & Pacala, 2009), then it is 

unlikely that we would have the close to same amount of foliage for the 

Clab(0)=110gCm-2 setup (green line of figure 3.13a) as the true amount of foliage 

(black line) but then a significant difference in the amount of woody C.   

 As with the Cw trajectory, we also see that there is an increase in the Csom pool 

by around 20% under the Clab(0)=110gCm-2 setup (green line of figure 3.13c) after 3 

years, compared to the size of the pool at the start.  Like the true Cw pool, the 

trajectory of the size of the true Csom pool remains relatively unchanged during the 3 

year period.  This change the Csom pool size by such a large amount in a relatively 

short amount of time is also unrealistic.   

 One thing that is noticeable is that under the Clab(0)=110 gCm-2 setup (which is  

also true of the other setups), the amount of C lost by the Cw pool over the 3 year 

period is approximately the same as the amount gained by the Csom pool.  Therefore, 

no net C is really lost or gained by the ecosystem it has just been moved from the 
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woody C store to the belowground soil C store.  This is of course unrealistic, and so is 

really an issue of model structure.  However this could also be resolved by 

assimilating data of one of these large C pools.  Without this extra constraint, the 

modelled Rh2 flux of respiration is able to mimic that of the true respiration (panel f of 

figure 3.14), as long as the sum of the C stored in the Cw and Csom stored is 

approximately the same as the true value by the end of the 3 year period.    

Improvements in the model structure can obviously be made so this unrealistic feature 

of the model does not happen, yet when estimating parameters (and uncertainties) in a 

DA scheme like this, assimilating data of one of the large C pools (as stated above) 

will likely enable the parameters controlling the amount of C going in and out of the 

Cw and Csom pools to be closer to their true values.   

 A final point to make about stability in relation to the comment from the 

previous subsection about the cyan line (corresponding to the Clab(0)=35gCm-2) being 

out of sync with the other Cr trajectories in figure 3.12b.  An additional point to make 

is that not only is this trajectory out of sync, but it is also decreasing, so much so that 

after 3 years the size of root C pool is close to 0 gCm-2.  In reality this would 

eventually result in the trees dying as they would have no roots.  This would 

undoubtably therefore result in a loss of woody carbon, as we see by the cyan line in 

figure 3.13b though one would not expect the transfer of woody C to shift to the Csom 

pool quite so dramatically as we do; though it worth realising the Csom pool also 

includes woody debris so as a number of the trees may not be alive it seems 

appropriate that the woody remains would thus be part of the Csom pool.   Despite this, 

we can see that the resulting GPP and respiration trajectories from this 

Clab(0)=35gCm-2 setup (cyan lines of panels a and b from figure 3.14) are similar to 

the true trajectories.  The point of this is that we that the calibrated parameters using 

this Clab(0) value of 35gCm-2  are still able to result in a good fit of the modelled to 

observed NEE despite this evidence that the ecosystem is in severe decline under this 

setup.  This highlights the point that although poorly chosen initial conditions can 

result in a good fit of the observations to the model, the poorly estimated parameters 

can result in many part of the model to behave unrealistically. 

 

TRANSIENT ISSUES 

In figure 3.12(a), we can see that although the labile C pool is initialised from different  
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values, after 3 years using the corresponding sets of parameters, the Clab trajectories 

are very similar to each other, particularly the black, green and red ones.  Therefore, it 

could be suggested the different Clab(0) values make no difference really.  However, 

there are important counter-arguments to consider. First of all the parameters in the 

optimisation were estimated using the NEE and LAI data from the two years whereas 

the plots in figures 3.12 – 3.14 cover an extra year (from days 732 to 1096 in the 

plots).  At day 731, we can see that this is still a reasonable difference between the 

trajectories of Clab under the different Clab(0) setups.  Therefore if a short amount of 

data is being assimilated then knowing the initial conditions of the model are 

important.  More importantly however, by under-estimating Clab(0) by a small amount 

(35gCm-2) or over-estimating it by a large amount (by 100 gCm-2) can result in severe 

deviation of the size of the Cw and Csom pools from the true sizes (red and cyan lines 

of panels b and c of figure 3.13).   This is turn will result in posterior estimates of the 

parameters that could be far from the truths and whose uncertainty intervals are not 

containing the truth.   

 If we were using a longer time-series of data in the optimisation and using 

more types of data, then this transient issue would not be a problem.  This is because 

the parameters would more likely be estimated correctly, with the increased amount of 

data able to constrain more of the model processes thus pin down the parameters that 

control these processes more precisely.  Having a longer time-series of data would 

then mean that there would be more time to move away from the differing initial 

conditions.   

 

WHAT DO THESE STABILITY AND TRANSIENT ISSUES MEAN FOR THIS 

ANALYSIS? 

Under the setup we have, i.e. a short time series (2 years) of NEE and limited LAI 

data, despite slightly over-estimating Clab(0) by a small amount (i.e. by 40 gCm-2) 

resulting in stability issue with the sizes of the Cw and Csom pools decreasing and 

increasing (respectively), it is least unstable in this respect compared to the other two 

Clab(0) setups (i.e. setting Clab(0) to 35gCm-2 or 170gCm-2).  Therefore if Clab(0) is 

wrongly estimated, it is surely better to wrongly estimate by such an amount that there 

is the least deviation from the truth.  In this case, over-estimating Clab(0) by 40gCm-2 

is the best option.  Furthermore, as stated in the previous discussions, if Clab(0) is 
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under-estimated by 35gCm-2 then in this situation it results in the severe instability in 

the plant ecosystem.   

 

3.4.3 Dealing with lack of knowledge of Clab(0) 

The key observation about the results was that for nine of the ten parameters, the 

estimates were close to the truth when Clab(0) took its true value.  However, accurately 

estimating Clab(0)  can  be very difficult to  estimate accurately as it  involves sampling  

tree tissue and determining the soluble starch and sugars in the laboratory (Gough, 

2009), a process which is complex and time consuming.  As a result, measurements of 

labile carbon are rarely available.  In this subsection we assess whether incorporating 

other data and knowledge into the Metropolis algorithm may help to ensure that the 

parameter estimates, particularly Fll, are close to the truth even if the Clab(0) values are 

not.  This could include: 

(1) Knowing the true values of Cr(0) and Clit(0)  

(2) Increasing the number of LAI observations. 

(3) Assimilating other types of observations, such as Cr and Clit. 

(4) Assimilating a longer time series of NEE and/or LAI. 

In this chapter we only considered (1) and (2), while the other two are not 

considered for reasons that follow.  Both Cr(0) and Clit(0) can be measured more 

easily by direct means, but the measuring process can be time consuming, thus 

measurements are typically only made one or two times a year (Williams et al, 2005, 

Richardson et al., 2010).  This means that we should be able to retrieve good estimates 

of Cr(0) and Clit(0) if we began our assimilation when the measurements were made.  

However due to the lack of frequent measurements, assimilating Cr and Clit data is 

unlikely to make a difference to the parameter estimates particularly over a 2 year 

period.  Assimilation of longer time series of observations is discussed in chapter 4. 

Increasing the number of LAI observations, from 10 to 100, is possible if 

synthetic observations from space are included as well as those based at the ground 

level.  On the MODIS sensor on NASA’s TERRA satellite, for example, LAI 

observations are made every 8 days over the entire globe which corresponds to 91 

measurements over a 2 year period.  Including more LAI observations into the DA 

scheme would result in better representation of the model processes surrounding the 

Cf pool (since LAI and Cf are linearly related) and consequently the processes 
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surrounding the Clab pool due to the strong connection it has with Cf (figure 3E from 

appendix).  To test whether knowing the true values of Cr(0) and Clit(0) and increasing 

the number of LAI observations compensates for a poor estimate of Clab(0), the 

sensitivity analysis was repeated with these two changes included.  A description of 

the how this was carried and what the results were, is described next. 

 

ADDITIONAL COMPUTER EXPERIMENTS 

Two computer experiments were carried out to test whether knowing Cr(0) and Clit(0) 

and assimilating more LAI observations would compensate for not having an accurate 

estimate of Clab(0).  For experiment 1, ten extra runs of the Metropolis algorithm were 

carried out, varying the Clab(0) value using a stratified random sample (which is the 

same as a Latin Hypercube design in one dimension), while fixing the other two initial 

conditions and the LAI observational error at their true values.  Experiment 2 was 

exactly the same as experiment 1 except that the number of LAI observations was 

increased from 10 to 100, with the extra 90 observations randomly placed in those 

days which did not have one present.  The value 90 was based on the number of LAI 

observations available if measured from space and from the ground.   

 For all of the ten parameters except Pr, the sensitivity plots from experiment 1 

were almost the same when the emulator was used; for example see figure 3.8(a)-

(b),(g)-(h) for Fnf and Tlab (subsection 3.3.4).  For Pr, the sensitivity plot was almost 

the same except that the lower bound of the range of Clab(0) values for which the 

parameter estimate was close to the true value decreased from 70gC/m² (figure 3.8(d)) 

to around 50gC/m² (figure 3.8(e)).  For seven of the ten parameters, their estimates 

remained close to the truth when Clab(0) was close to its true value.  This means that 

knowing the true values of Cr(0) and Clit(0) does not compensate for poorly estimating 

Clab(0).   

For experiment 2, five of the ten parameters (Fg, Fnf, Ts, Lout and Cfmax) had 

sensitivity plots approximately the same as from experiment 1 (e.g. Fnf, figure 3.8(c)).  

For three of the parameters (Td, Fnrr and Pr), the parameter estimates were further from 

the truth than in experiment 1 (e.g. Pr, figure 3.8(f)).  However the most interesting 

finding was the Tlab sensitivity plot.  In the original results, this parameter was the 

only one not to be close to the truth when the true Clab(0) value was used.   In 

experiment 2 we found that Tlab was now at its true value when Clab(0) was at its true 
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value (figure 3.8(g)-(i)).   This is probably because the extra LAI observations have 

helped the modelled Cf trajectory to be a better fit to the true Cf trajectory.  Due to the 

strong connection between the Cf and Clab pools (figure B7, appendix B), the extra 

LAI observations would have also encouraged a better fit of the modelled Clab 

trajectory to the true Clab trajectory when the true Clab(0) value was used.  This results 

in the right amount of C leaving (and entering) this pool, implying a more accurate 

estimate of Tlab.   

In summary, knowing Clit(0) and Cr(0) made very little difference to the 

sensitivity of the parameter estimates to Clab(0).  For most parameters, knowing these 

initial conditions and assimilating 90 extra LAI observations) did also not change the 

results.  Therefore even if the initial conditions of most of the pools are known and 

even if two types of observations are assimilated, Clab(0) still needs to be right to 

correctly estimate the parameters.  Since estimating Clab(0) correctly is unlikely, as 

explained in subsection 3.4.1, it is important to assess the consequences of when our 

estimate of Clab(0) is far from its true value.  We explore this next. 

 

3.4.4 The consequences of poorly estimating Clab(0) 

For some parameters it does not matter if they are poorly estimated, as a result of 

Clab(0) not being correct, since they  may not have much  influence on the model  

estimate of NEE.   Therefore it is more important to estimate well the parameters 

which have the largest influence.  In chapter four, we determined the sensitivity of the 

fit of the modelled to observed NEE over a period of 1 year for site in Harvard forest.  

Of the nine parameters which control the fast processes of DALEC-D, we found that 

the fraction of GPP respired autotrophically (Fg), the fraction of NPP allocated to 

foliage (Fnf), the turnover of foliar carbon (Tf), the fraction of foliar carbon lost to 

litter (Fll) and the fraction of labile carbon respired (Flr) had the largest influence on 

the NEE fit.  Three of these, namely Fg Fnf and Fll, were among the ten parameters 

which passed the diagnostic checks.  Therefore we assessed whether the sensitivity 

plots associated with these parameters had any common features, in particular if there 

was a common range of Clab(0) values where the parameter estimates are closest to the 

truth.  The Clab(0) sensitivity plots are displayed again for these three parameters in 

figure 3.15(a)-(c).  We can see that for Fg and Fnf values of Clab(0) between 0 and 70 

gCm-2 result in the parameter estimates being closest to the truth (i.e. the horizontal 
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red dashed line), but for Fll this is when Clab(0) is greater 70 gCm-2.  Therefore, 

whatever value of Clab(0) is used we will get at least one of these three important 

parameters wrong.  As an addendum, it is worth including here that by saying we get a 

parameter wrong, we mean that the posterior modal value will be far from the truth 

value in the parameter space, but the uncertainty interval may still include the truth.   

As the estimated parameters and the associated uncertainty distributions are 

normally used in the model (e.g. in chapter four, 200 randomly parameter sets from 

the posterior distribution are used to estimate a distribution of NEE forecasts), it is 

perhaps more important to assess the impact of wrongly estimating Clab(0) on the time 

series of the C pools and other important quantities, such as NEE.  In figures 3.10 – 

3.12, we can see that higher values of Clab(0), i.e. values of 110gCm-2 and 170gCm-2, 

result in the Clab and Cr trajectories being further from the true trajectories.  However, 

these larger values of  Clab(0) result in the trajectories of the Cf pool (the most 

important of the small C pools due to its influence on GPP) and, Cw and Csom, the 

largest C pools where the long term C is stored.  Larger values of Clab(0) also result in 

the GPP, Rtot  and NEE trajectories to be closer to the true trajectories.   For Cf, GPP, 
Rtot  and NEE, this improvement is predominantly around Spring of both of the years.  

However, setting Clab(0) to 35 gCm-2 results in Cw being around 6600 gCm-2 at the end 

of the 2 year period, which is much further away from the true value of 8900 gCm-2 

than 8600 gCm-2, which is the end value of Cw when Clab(0) = 170 gCm-2.  We can see 

from figure 3.11(c) that the value of Csom on the final day of the 2 years period is 

much closer to the true value if Clab(0) = 170 gCm-2 than if Clab(0) = 35 gCm-2.   

 

3.4.5 Sensitivity of parameters to Clit(0), Cr(0) and LAI 

observational error 

The results showed that more parameters were sensitive to Clit(0) (five) than Cr(0) 

(two) (figure 3.7 and figures B5 and B6 from Appendix B)  However, for three of the 

five Clit(0) parameters (namely Pr, Ts, and Lfll ) the sensitivity was very weak (i.e. in 

figure 3.7(a),(b) and figure B5(b), the blue lines are almost flat).  One of the 

remaining two, Fnrr, is strongly sensitive to Cr(0) as well as to Clit(0).  This is of no 

surprise given that Fnrr controls the flow of C leaving the Cr and entering the Clit pools.  

Except for the multiple complex MCMC scheme, all the Metropolis based alg- 
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 Figure 3.15 Panels (a)-(c) show the sensitivity of three of the most important 
parameters in DALEC-D to Clab(0).   

 

orithms in REFLEX used an LAI observational error of 0.05 or 0.11 with this other 

scheme using a value of 0.0005 (see Fox et al., 2009).  The 0.05/0.11 values were 

mostly used because the REFLEX participants were told that the variance of LAI 

errors should be approximated as 10% to 15% of the mean of the LAI observations. 

Four of the Metropolis based DA schemes used 10% while one used 15%, and these 

correspond to a variance of 0.05 and 0.11 respectively.  The multiple complex MCMC 

scheme, on the other hand, used a variance of 1% of the mean of the LAI data which 

equalled 0.0005.  The reasoning for such a low observational error for this scheme 

was to give the 10 LAI observations much greater weight in the cost function since 

there were significantly more (231) NEE observations.  While there are some 

literature to support this idea (e.g. Vrugt et al., 2003), most Metropolis based DA 

schemes do not (e.g. Knorr & Kattge, 2005; Hill & Williams, 2007; Ziehn et al., 

2011).   

The results of this chapter do not appear to favour either option, with half of 

the six sensitive parameters (figures 3.7a-c) closest to the truth for larger LAI 

observational errors, and the other half (figures 3.7d-f) closest to the truth for smaller 

values of the observational error.  However, when the trajectories of the C pools and 

key model states are plotted (figures B8-B10 from appendix B), we find that they are 

consistently close to the true trajectory when we use the parameters estimated from 

the Metropolis algorithm using an LAI observational error of 0.05gCm-2.  

 

3.4.6 Implications for REFLEX 

Of the ten parameters whose corresponding emulators passed the diagnostic checks, 

nine were among the twelve parameters whose estimates varied among the different 

DA schemes in REFLEX.  The results of this chapter suggest that a possible reason 
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could be due to poor estimation of the initial values of the labile carbon pool.  

However, the Clab(0) values are not available for all but one of the Metropolis based 

schemes, because Cr(0), Clit(0) and Clab(0) were treated as parameters and were not 

outputted as part of the individual results.  Given that there were differences in the 

estimates of 12 of the 17 parameters, it is unlikely that the estimates of Clab(0) were 

the same. 

 An interesting observation about the REFLEX results was that one of the 

Metropolis based schemes (the Multiple Complex MCMC method) produced 

noticeably different estimates to the remaining schemes for seven of the parameters, 

four of which (Fnf, Lout, Fll, Cfmax) were a subset of the ten parameters, whose 

emulators passed the diagnostic checks.  This method also had a significantly different 

prescribed variance for the observational error distribution for the LAI part of the cost 

function (0.0005gCm-2) compared to the other Metropolis based schemes (0.04 – 

0.11gCm-2).  Two of the six parameters whose estimates were sensitive to the LAI 

observational error (namely Fnf and Fll) were among the above four parameters, 

however the other two were insensitive to changes in this input.  Therefore, the results 

are inconclusive about whether the lower prescribed LAI observational error is 

causing the observed differences between the parameter estimates of the Multiple 

Complex MCMC method and the other Metropolis based schemes. 

 Finally, it is interesting to note that Cf,max was the only parameter not sensitive 

to Cr(0), Clit(0),  Clab(0) or the LAI observational error, yet two of Metropolis based 

DA schemes from REFLEX produced very different estimates of this parameter 

compared to the other schemes.  Therefore there must be other reasons causing the 

differences. 

 

3.4.7 Treating the initial conditions as parameters 

The results of the optimisation where the initial conditions of the Cr, Clab and Clit pools 

are treated as parameter are given in subsection 3.3.5.  As expected, the NEE and LAI 

trajectories from propagating the model forward using 500 randomly chosen 

parameter sets from the posterior distribution resulted in a good fit to the data and the 

true NEE and LAI.  For each of the other C pools, the trajectories tended to be close to 

the true trajectory.  This is interesting because two of the three initial conditions which 

were treated as parameters, had posterior estimates that were far from the truth and 
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whose posterior intervals did not contain the truth.  This suggests that it does not 

matter if these three initial conditions were wrongly estimated; in particular the Clab(0) 

parameter has a posterior mean value of around 150gCm-2, which is significantly 

higher than the true value, yet this has very little negative impact on other aspects of 

the model, such as the trajectories of the slow C pools which deviated significantly 

from the true trajectory when Clab(0) was treated as fixed and was estimated to be 

around 170gC-2 (figure 3.13).   

 

3.4.8 Implications of emulation of a DA algorithm 

A unique aspect of the work in this chapter is the emulation of a DA scheme, 

something which has not been done before.  This is very noteworthy because it means 

that new insights can be gained into the inner workings of a DA scheme.  In this 

chapter it was used to see how sensitive parameter estimates are to changes in the 

initial conditions of the model.  It could be used to assess the sensitivity of parameter 

estimates or the uncertainty on those estimates to changes in other factors such as 

features of meteorological data which are generally used to drive for terrestrial 

ecosystem models.  DA emulation could also be used for uncertainty analysis which is 

the quantification of uncertainty in an input (e.g. an initial condition or a prior 

estimate of a parameter) propagated forward to an output (e.g. a posterior parameter 

estimate).  Both these sensitivity analysis and uncertainty analysis tools could help the 

implementation of DA algorithms, for example to help determine suitable uncertainty 

bounds on inputs or priors.  Moreover, recent progress on multivariate emulators, such 

as Fricker et al. (2010) and Hankin (2012), will allow emulator outputs to be 

represented by multiple values rather scalars.  With the exception of certain DA 

algorithms, such as variational schemes (e.g. 4D-VAR), most DA algorithms are 

stochastic in nature although behave approximately deterministic (in other words, 

repeating two run of the Metropolis algorithm will result in approximately the same 

posterior estimates of the parameters and uncertainties).  Nonetheless, this extra 

source of uncertainty in needs to be included in the emulation process.  Furthermore 

given that that a run of a DA scheme can be computationally expensive, with the 

exception of some schemes such as the Ensemble Kalman filter, DA emulation may in 

some circumstances be limited in application depending on the size of the model.   
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3.5 Conclusions 
The objectives of this chapter were to determine the sensitivity of the DALEC-D 

model parameters to: (1) the initial conditions of the small C pools and, (2) the LAI 

weighting term of the cost function, when using DA to estimate the 17 parameters of 

the DALEC-D model.  A major novelty of this chapter was the use of emulators to 

carry out the sensitivity analysis.   

It was found that more of the parameters were sensitive to Clab(0) than to any 

of the other three inputs, and the parameter sensitivity was much stronger for Clab(0) 

than for the other inputs.  Furthermore, the majority of the parameter estimates were 

close to their true values when the true Clab(0) value was used.  However, obtaining 

accurate estimates of Clab(0) is very time consuming and so are rarely available.  We 

tested whether this lack of information could be compensated by know the initial 

conditions of the litter and fine roots pools and assimilating more LAI observations.  

For most parameters incorporating this extra knowledge into the assimilation scheme 

did not help with the graphical representation of the sensitivity analysis being very 

similar to the original results.   

As it was very difficult to accurately estimate Clab(0), we assessed the impact 

of wrongly estimating this initial condition on the trajectories of the C pools and key 

model states, using the parameter estimates obtained from the wrongly specified 

Clab(0) values.  We found that over-estimating Clab(0) by a small amount (i.e. Clab(0) = 

110 gCm-2) compared to the true value (i.e. Clab(0) = 70 gCm-2) resulted in the 

trajectories being closer to the true trajectories, than if Clab(0) had been under-

estimated by a similar amount (i.e. Clab(0) = 35 gCm-2) or over-estimated by a 

considerable amount (i.e. Clab(0) = 170 gCm-2).  Thus, even if the parameter estimates 

require the Clab(0) value to be accurately estimated, there is scope for Clab(0) being 

over-estimated by a reasonable amount whilst still being able to estimate the C pools 

and important model states such as NEE to a reasonable level of accuracy.   

In the wider context of this thesis, this chapter has shown that the initial 

condition of the labile carbon pool is a factor which causes variations in the model 

parameters estimated from the Metropolis algorithm.  We have also shown that 

parameter estimates are not consistently robust against a poor estimate of Clab(0), even 

if we assimilate more data and know Cr(0) and Clit(0), i.e. we need to get Clab(0) right  

in order to get the parameters correct.  Assimilating other measurements, particularly 
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ones which are orthogonal to existing ones (Richardson et al., 2010), may compensate 

for not knowing Clab(0), and this should be investigated using synthetic data.  It was 

also shown that treating the initial conditions as parameters is preferable.  Even 

though two of the three initial conditions had posterior estimates far from the truth, 

most of the other parameters were estimated well and the trajectories of C pools were 

in general reasonably consistent with the truth.  In chapter 4, we explore other factors 

which cause parameter estimates to vary, which include the length of the dataset being 

assimilated, the size of the observational error and the level of size and frequency of 

gaps in the dataset; however we treat the initial conditions as parameters.   

  In this chapter we have investigated whether parameter estimates are sensitive 

to changes to various factors.  However it would also be of great interest to examine 

the sensitivity of the error bars (or more specifically, the widths of the marginal 

posterior p.d.f.s) of the parameter estimates as this also varied in REFLEX for the 

different DA schemes amongst the parameters.  Another useful extension to this work 

would be to use emulators which can deal with multi-dimensional outputs (i.e. use one 

emulator where the output is the 17 dimensional vector of parameter estimates, rather 

than using 17 scalar output emulators) once the theory behind these have been 

sufficiently developed – see Rougier (2008), Fricker et al. (2010), Conti & O’Hagan 

(2010), Hankin (2012). 

The main limitations of this chapter are the use of synthetic observations and 

the use of emulators.  Although the observational error and the size and frequency of 

gaps in the synthetic dataset is an accurate representation of reality, the model 

processes used to generate the ‘true data’ may not accurately represent the real world 

processes well enough.  Furthermore, synthetic data does include a representation of 

systematic error.  This is usually ignored because such errors can usually be identified 

resulting the affected parts of the dataset being removed.  However, it is possible that 

it is not identified.  A simple remedy to this would be to assign a probability for each 

time-step of systematic error not being picked up, and then adding on either a 

predetermined or random amount to the affected part of the dataset.   

Although highlighted as a major novelty to this chapter, the use of emulators is 

also a further limitation, because the emulator is usually built to model simulators.  

However, in this chapter it is being used to represent the Metropolis algorithm which 
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is not deterministic (though is approximately so).  This may have resulted in slight 

inaccuracies in the results.   
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Chapter 4 

Sensitivity of estimates of model 

parameters and NEE predictions 

using Data Assimilation to changes 

in the characteristics of an NEE 

dataset. 
 

 

Abstract 
It is becoming increasingly common for Data Assimilation (DA) to be used to 

estimate parameters and states of terrestrial ecosystem models, using land-based 

measurements.  Since the characteristics of a dataset vary for different studies, this 

chapter investigates how the parameter estimates and corresponding forecasts by 

assimilating datasets of different lengths, data density and observational error.  Two 

DA methods were compared, namely the Ensemble Kalman Filter (EnKF) and the 

Metropolis algorithm.  The model used was a simple carbon box model called 

DALEC-D (Data Assimilation Linked Ecosystem model for Deciduous vegetation), 

which models the flow of carbon from photosynthesis through to respiration; and the 

observations assimilated were the net vertical flux of CO2, referred to as NEE or Net 

Ecosystem Exchange, which is measured using eddy-covariance methods.  The 
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assimilation schemes were used to estimate the DALEC-D model parameters and 

Carbon (C) stocks on the final day of the dataset.  These estimates were then used to 

forecast cumulative NEE 10 years into the future.   

The results suggested that at least 5 years of NEE observations are required to 

obtain good estimates of the parameters, final C stocks and cumulative NEE forecasts 

for both DA schemes, with the estimates improving with an increase in dataset length 

and the uncertainty intervals becoming narrower whilst still containing the truth.  For 

the Metropolis algorithm, the runs involving datasets longer than 5 years were 

excluded from the final analysis for reason given below.  The level of observational 

error and density of observations had far less impact on the parameter and C stock 

estimates for the EnKF, but the uncertainty in the estimates did reduce which is 

encouraging.  There is little or no evidence that the slowly changing parameter and 

final C stocks are better constrained by assimilating the longer time-series datasets.   

For the Metropolis algorithm, the corresponding results were excluded from the final 

analysis for reasons described next.   

     These unexpectedly good forecasts for the Metropolis algorithm, given the 

poor parameter estimates, is most likely because that DALEC-D is susceptible to a 

phenomenon called “equifinality”, which in this context is when a parameter set 

which is not similar to the true parameter set can produce an NEE trajectory close to 

the true NEE trajectory.  Equifinality occurs because the modelled NEE is likely to be 

insensitive to changes in a number of “redundant” parameters, with only a certain 

number having significant influence.  To test this, an emulator called GEM-SA 

(Gaussian Emulation Machine for Sensitivity Analysis) was used to see how sensitive 

the root mean squared error (RMSE) of the trajectory of modelled NEE values against 

the true NEE values over 1 year NEE over one year is to changes in the nine 

parameters that control the rapidly changing C pools. It was found that the cumulative 

NEE was very insensitive to changes in 3 of these parameters (the turnover rates of 

fine root carbon, litter carbon and labile carbon), and very strongly sensitive to two 

parameters (the fraction of GPP respired autotrophically and the turnover rate of foliar 

carbon).  The Metropolis algorithm is particularly affected by equifinality because the 

algorithm operates by searching for parameter sets that give a good fit to the 

observations.  As a result the poor parameter estimates resulted in NEE trajectories, 

during the DA period, that were still close to the truth.  The effects of equifinality can 
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be limited by assimilating multiple types of data (Richardson, 2010), though altering 

the structure of the model could also be beneficial. 

However the poor parameter estimates from the Metropolis algorithm did not 

occur for all of the runs.  For the ones which did see poor results, the residuals in the 

cost function used in the Metropolis algorithm were autocorrelated, whereas for the 

other runs where there was good agreement with the EnKF the residuals exhibited no 

autocorrelation.  A critical finding described in the discussion found that for the poor 

runs, the true parameter set had a significantly lower cost function value than those 

corresponding to the posterior parameter space.  This suggested that the posterior 

parameter distribution was not at the global minimum and for this reason among 

others these poor runs were excluded from the final analysis.  The runs from the 

Metropolis algorithm which remained were mainly ones where the dataset length 

varied.  Despite the exclusion of a number of the Metropolis algorithm runs, this 

autocorrelation of the residuals was an interesting finding and serves as a warning to 

other studies where this DA scheme is used with synthetic data.   

 

4.1 Introduction 

4.1.1 Background and Motivation 

A key uncertainty in the global carbon budget is due to poor estimates of the amount 

of carbon naturally taken up by terrestrial ecosystems from the atmosphere each year 

(Denman et al., 2007).  Until recently, this was indirectly estimated as the residual 

when all the other elements of the carbon budget had been accounted for (Denman et 

al., 2007).  Efforts are now being made to measure this atmosphere-land flux of 

carbon, which can be either land based or satellite based observations. Alternatively, 

forward runs of land-surface ecosystem models can be conducted and compared with 

observations.  Data assimilation is a way of absorbing observations into a model, 

rather than making the comparison afterwards.  A key advantage is that the 

uncertainty of observations and the model can be incorporated into the procedure.  DA 

can be used to estimate the states of a model (e.g. how much carbon is stored in 

foliage), over multiple time-steps (chapter 2).  It can also be used to estimate 

parameters of the model.  Two important questions which need to be asked are: (i) 
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What are the strengths and weaknesses of DA? (ii) Under what conditions does DA 

perform well and not so well?   

The REFLEX study (Fox, 2009) showed that the choice of DA algorithm is 

important.  The study found that 8 different DA schemes, using the same model and 

the same datasets, resulted in significantly different parameter estimates.  One 

possible explanation is that the initial conditions of the small carbon (C) pools (i.e. C 

stored in foliage, fine roots, litter and labile C) were estimated separately for each 

scheme.  Chapter 3 showed that increased knowledge of these initial conditions 

improved the parameter estimates.  In this chapter we investigate other factors which 

might affect a DA algorithm’s ability to estimate parameters.   

An important study by Tang and Zhuang (2008), which used a Bayesian 

inference DA scheme, highlighted that assessing a DA scheme’s performance based 

solely on its estimates of the parameters may be misleading.  They found that equally 

good fits to the observations can be achieved using different sets of parameters, a 

phenomenon they termed “parameter equifinality”; this occurs because the 

observations fail to constrain many parameters.  They also found that when site level 

parameterisation is extrapolated to estimate the carbon dynamics on a regional scale, 

parameter equifinality can cause large uncertainty in these regional estimates.  That 

study nonetheless seems flawed since parameters estimated at the site-level are based 

on site-level observations and meteorological data, and it seems inappropriate to use 

these parameters to estimate the carbon dynamics over a much larger spatial scale, 

many parts of which will have different meteorological data and vegetation types.  

However in fairness to the authors, they do state in their conclusion that a more 

sensible approach to estimating regional carbon dynamics would be to aggregate the 

estimates obtained from parameterizations from all sites within the region.  This, 

though, is more computationally expensive.  A further criticism of Tang and Zhuang 

(2008) is that they do not show the posterior distributions of the site-level parameters.  

If they had done, an interesting discussion point would have been whether if greater 

equifinality results in greater uncertainty of the regional carbon dynamics.   

Other work has also considered factors that might affect the performance of 

DA to obtaining unbiased estimates of parameters.  Carvalhais et al. (2008) found that 

when steady state is assumed, the parameter estimates may be biased, and estimates 

improved when this assumption is relaxed.  Specifying different cost functions (to 
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describe the model-data mismatch) whilst using the same model and the same dataset 

can also result in different parameter estimates, as was found by Trudinger et al. 

(2007).  More specifically, if the cost function is specified by the equation below 

(where )(1 itx  and )(2 itx  are the observations at time it  with )(1 itz  and )(2 itz  being 

the corresponding modelled values), they found that if the weights, 
1w  and 

2w , are not 

constant (i.e. functions of time) and vary with noisy observations, this leads to biased 

parameter estimates.   

        ∑ 








 −
+

−
=Θ

i

iiii

w

tztx

w

tztx

2

2
22

1

2
11 ))()(())()((                         (4.1) 

Another interesting finding in the study by Trudinger et al. (2007) was that all 9 DA 

schemes used in that study gave biased estimates when the observational noise was 

treated as temporally correlated or non-Gaussian.  However, only one non-Gaussian 

noise type was used (the lognormal distribution).   It would have been interesting if 

other non-Gaussian noise types had been included, e.g. the double exponential 

distribution as used in Hollinger & Richardson, 2005; Richardson et al., 2006.   

However, there are other possibly influential factors which have not yet been 

considered.  The first is the length of the dataset.  Different DA studies, using 

terrestrial ecosystem models, assimilated different numbers of years of observations; 

for example, the REFLEX study used 2 years (Fox et al., 2009), Quaife (2007) used 3 

years, Mo et al. (2008) used 8 years, and Braswell (2005) used 10 years.  Since more 

information is assimilated, longer datasets might be expected to lead to more accurate 

parameter estimates.  Thus, one of the questions we set out to answer in this chapter is 

whether longer datasets help to constrain more of the parameters.  Other aspects of the 

observations might also be important, such as the observational uncertainty and the 

size and frequency of data gaps, both of which are features of real datasets.  In all of 

the studies mentioned above, these were kept fixed.  Therefore in this chapter, we also 

investigated whether smaller observational uncertainty and greater density of 

observations improved the parameter estimates. 

 

4.1.2 Hypotheses 

This chapter tests five hypotheses: 
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(H1) Increasing the length of the NEE dataset improves parameter and carbon stock 

estimates;  

(H2) Slowly varying C pools and their controlling parameters are only constrained by 

longer datasets;  

(H3) Increases in the density of observations (or decreases in the frequency and size of 

gaps) will result in more accurate estimates of the parameters and carbon stocks;  

(H4) Increases in observational error will result in less accurate estimates of the 

parameters and carbon stocks; 

(H5) Datasets of greater length, with greater data density and with smaller 

observational uncertainty will result in more accurate forecasts. 

H1, H3 and H4 arise from the idea that the greater the amount or quality of 

information contained in the dataset, the better the estimates of the parameters.  H2 

arises from the fact that some of the parameters in the model correspond to fast 

processes (e.g. the fraction of Net Primary Production allocated to foliage), which 

have an approximately periodic annual behaviour, while others relate to slow 

processes, e.g. the turnover rate of C from woody biomass (e.g. tree trunks).   

Therefore, while short datasets may be long enough to constrain the parameters 

related to the fast-changing pools, much longer ones may be required for the 

parameters of the slow-changing pools.   

 

4.1.3 Other considerations 

In testing these hypotheses, it is clear that the DA scheme employed is important, as 

different algorithms may give different results.  In studies which have compared 

different DA schemes (Fox et al., 2009, Trudinger et al., 2007), a large variety of 

different methods were used.  Instead, we here consider two broad groups of DA 

schemes.  The first includes recursive filters and smoothers where the outputs at one 

time-step are used as the inputs of the next (e.g. the Ensemble Kalman Filter or 

EnKF); the second includes batch methods which unlike recursive filters and 

smoothers involve repeated forward runs of the model, e.g. the Metropolis algorithm 

and the Genetic algorithm.  There is also a third group, called variational methods 

(e.g. 4D-VAR), but these are not considered here.  We picked an algorithm from each 

of the first two groups, namely the EnKF and the Metropolis Algorithm.  
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To carry out the experiments, we used the DALEC-D ecosystem model (Fox et 

al., 2009, Williams et al. 2005).  The datasets were based on ground-based 

measurements, for which there was good understanding of how to quantify the 

uncertainty of the observations (Richardson et al., 2007); this is important since one of 

the factors being varied in the experiment is observational uncertainty.  Several types 

of observations could be used, but for this experiment NEE (Net Ecosystem 

Exchange) was chosen, as it is frequently used in studies and is measured continually 

and frequently (half-hourly) in a network of measuring stations around the globe.   

Several complicating factors were not considered including: error covariances, 

non-normal error distributions, the form of the cost functions and systematic and 

selectively systematic biases in observations and models. 

 

4.1.4 Layout of chapter 

The methodology section (4.2) describes the specifics of the model (DALEC-D) and 

two DA schemes used (the EnKF and Metropolis algorithm) to this chapter.  Fifteen 

synthetic dataset types were used, which varied in length, magnitude of observational 

error and size and frequency of gaps.  There were two main stages to the study: (i) 

First, we assimilated the 15 datasets to obtain 15 sets of parameter distributions 

(where the mode was used as the estimate), which were compared with the true 

parameter set; (ii) The second stage involved using each set of parameters to forecast 

cumulative NEE 10 years into the future; this was compared with the true cumulative 

NEE for the forecast period.  Also explained in (4.2) is how the synthetic NEE and 

meteorology data were created.  In the final part of section 4.2, we outline the 

expectations of the results of this chapter, particularly in regard to expectations of 

similarities and disparities between the parameter estimates and uncertainties from the 

two DA schemes.   

The results are displayed and described in section (4.3).  In section (4.4) the 

results are discussed and in particular whether they support or invalidate the 

hypotheses.  The conclusions are given in section 5.5.   
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4.2 Methodology 

4.2.1 Outline of experiment 

We used the DALEC-D ecosystem model (Fox et al., 2009; Williams et al., 2005), 

which includes 7 carbon pools and 17 parameters.  Two data assimilation algorithms 

were used, namely the Markov Chain Monte Carlo (MCMC) Metropolis algorithm 

(Knorr and Kattge, 2005), and the Ensemble Kalman Filter or EnKF (Evensen, 2003).  

Only observations of Net Ecosystem Exchange (NEE) were used in DA.  The 

observations were synthetic, which confers a number of advantages over real data, the 

main ones being: (1) the complications of poor model process representation 

(Abramowitz & Pitman, 2007) and systematic biases in eddy covariance 

measurements (Goulden et al., 1996; Kutsch et al., 2008; Moncrieff et al., 1996) are 

avoided; (2) they can provide as long a time series as needed; (3) any level of 

observational noise and data gaps can be specified.  Section 4.2.6 provides a 

discussion of the use of synthetic data, including the limitations of doing so.  

The synthetic NEE time series data were created by running the DALEC-D 

model forwards in time, with appropriately chosen initial conditions and parameters.  

These are referred to as the true initial conditions and parameters.   To this time-series, 

observational error and gaps were added, based on the characteristics of the eddy-

covariance NEE observations from the Harvard forest site (Munger and Wofsy, 1999).  

The forward run covered 70 years in total, with initial conditions for the C pools being 

appropriate for the site having been recently reforested.  The first 10 years of the 

forward run were used as an initial growth period, the next 50 years for data 

assimilation, and the final 10 years to test the predictions.  The 70 years of 

meteorology data (used to estimate Gross Primary Production by the model) used for 

the forward run were obtained by repeatedly sampling whole years from a total of 7 

years of real meteorology data from the Harvard field site (Boose, 2001)  (see 

subsection 4.2.5).  Seven different lengths of the NEE dataset were assimilated (1, 2, 

5, 10, 20, 30 and 50 years), along with five levels of observational error and five 

levels of data density.  The central levels of observational noise and data density were 

based on real data, as explained in subsections 4.2.5 – 4.2.8.   Each data assimilation 

run ended at the same point in time (rather than starting from the same point).  This 

allowed easier comparison of the NEE time-series during the 10 year prediction 
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period, all of which started from the same point in time but with different sets of 

parameters arising from each of the different runs. 

    The experiment contained two stages. In stage 1, we estimated the model 

parameters and corresponding 90% posterior intervals (defined by the 5th and 95th 

percentiles of the posterior distribution) corresponding to each dataset using the two 

DA algorithms. In stage 2 we used the sets of estimated parameters to predict 

cumulative NEE 10 years into the future.  We were then able to observe how the 

parameter estimates, posterior intervals and predicted NEE varied with dataset length, 

data drop-out level and observational error.   

 

4.2.2 The DALEC-D Model  

The DALEC-D model (Data Assimilation Linked Ecosystem Model for Deciduous 

vegetation) (Williams et al., 2005) is a simple box model that tracks the journey of 

carbon from photosynthesis through to C pools and respiration fluxes.  It is described 

in full detail in subsection 2.4.4 of chapter 2.   

Table 4.1 lists all the parameters and the C pools, with their corresponding 

symbol, together with their lower and upper bounds for this study.  All of the 

parameters were estimated using the two DA schemes.  The true values were used to 

create the synthetic observations (see subsection 4.2.7 for details); they were also used 

to compare the accuracy of the parameter estimates from the two DA schemes.  The 

reasoning behind the choice of the lower and upper bounds given for the parameters is 

the same as that of Fox et al. (2009), who also used the DALEC-D model.   

For this chapter, the initial conditions of the C pools were treated as 

parameters given that chapter 3 found that treating them as fixed could result in biases 

in the posterior parameter estimates for the Metropolis algorithm.   

 

4.2.3 The Metropolis algorithm  

The Metropolis algorithm is a full Markov Chain Monte Carlo (MCMC) algorithm.  It 

uses a numerical least squares approach to find the distribution of model parameters 

that provides optimal fits between model’s output and the observations,  and can avoid 

local minima.  Unlike traditional least squares, which finds a single set of parameters 

(the optimal set), the Metropolis algorithm finds a distribution of parameter sets which  
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Symbol Description 
 

Units True value 
 

Range 
(low/high) 

)(
0,
m

iP  

Td Litter decomposition rate parameter  day-1 5x10-4 1x10-6/0.01 0.000739 
Fg Fraction of GPP respired autotrophically - 0.45 0.2/0.7 0.632 
Fnf Fraction of GPP allocated to foliage - 0.4 0.01/0.5 0.328 
Fnrr Fraction of GPP allocated to roots - 0.4 0.01/0.5 0.293 
Tr Turn over rate of foliage day-1 0.06 1x10-4/0.1 0.0474 
Tw Turn over rate of wood day-1 7x10-5 1x10-6/0.01 1.00E-06 
Tr Turn over rate of roots day-1 0.008 1x10-4/0.01 0.00668 
Tl Turn over rate of litter day-1 0.03 1x10-5/0.1 0.0325 
Ts Turnover rate of CSOM pool. day-1 3x10-5 1x10-6/0.01 3.67E-05 
Et Exponential temperature dependent rate 

parameter 
- 

0.073 
0.05/0.2 

0.148 
Pr Nitrogen use efficiency parameter - 14 5/20 10.53 
Lout Growing degree days for leaf out °C day 240 200/400 345.8 
Lfall Minimum temperature for leaf fall °C 9 8/15 14.09 
Fll Fraction of carbon loss in transfer to litter - 0.48 0.1/0.7 0.7 
Tlab Turn over rate of labile carbon day-1 0.09 1x10-4/0.1 0.0269 
Flr Fraction of labile carbon respired - 0.15 0.01/0.5 0.172 
Cfmax Maximum Cf gCm-2 300 100/500 350.462 
Cf Foliar carbon pool gCm-2 0* 0/100† 0.337 
Cw Wood carbon pool gCm-2 5* 0/30000 1550.2 
Cr Fine root carbon pool gCm-2 5* 0/300 138.37 
Clab Labile carbon pool gCm-2 100* 0/200 92.201 
Clit Fresh foliar and fine root litter carbon 

pool 
gCm-2 

5* 
0/200 

71.292 
CSOM Soil organic matter & coarse woody 

debris carbon pool 
gCm-2 

9900* 
0/40000 

9733.56 
 

Table 4.1 The description of the parameters and C pools of the DALEC-D model. The 
* refers to the initial values for the 70 year forward run which was used to create the 
observations (see subsection 4.2.7).  The † refers to the initial values of the C pools 
also at the start of one of the runs where the dataset being assimilated into the model 
was 50 years in length (the initial values were different depending on the length of the 
dataset for reasons explained in subsection 4.2.7).  These initial values of the C pools 
were treated as parameters for the Metropolis algorithm.  The range column shows 

the lower and upper bounds used for each parameter.  The final column labelled 
)(

0,
m

iP
refers to the best guess of the ith parameter for the EnKF; while for the Metropolis 
algorithm it is where the algorithm was initialised from.   
 

are close to the set that gives the global minimum of the weighted sum of squared 

difference between the observed and modeled NEE.  It is described in full detail in 

subsection 2.2.8 of chapter 2.  As only NEE data is used in this chapter, the likelihood 

function is of the form: 

)exp()( )()( kk JmL −=  
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where k

iNEE
m

,
 is the modelled NEE at the kth iterative step for the ith day when an 

observation is present, and 
)(kJ  is the cost function. The cost function is a weighted 

sum of squared differences between the observations and the corresponding model 

predictions and is given as: 
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where NEEw  is the weight of the cost function, which is represented by the variance of 

the Normally distributed observational errors (denoted 
2
NEEs ).  As described in chapter 

2, the convergence of the Metropolis algorithm is determined formally using the 

Gelman criteria.  A plot of the trajectories of the Gelman criteria statistic, namely 

Rhat, is given for each parameter at the start of the results subsection. 

 

4.2.4 The Ensemble Kalman Filter (EnKF) 

The Ensemble Kalman Filter (EnKF) is a sequential data assimilation algorithm, 

which, like other DA algorithms, is based on Bayes’ theorem (Bayes, 1763).  For 

terrestrial ecosystem models, the EnKF has been successfully used for state and 

parameter estimation (Williams et al., 2005, Quaife et al., 2007).  The formulation of 

the EnKF used in this study is described in detail by Evensen (2003, 2009).  A 

complete a derivation and description of how it is used for state and parameters is 

given in subsection 2.2.4; in particular the ‘posterior’ parameter distributions used 

here are those take from the final day of time-series.   

For this study, we used 500 ensemble members for the EnKF.  As stated in 

step 1 of subsection 2.2.4, before using the EnKF the error covariance matrices of the 

model and observational errors (Qk and R), and the initial conditions (0x̂  and P0) need 

to be estimated:   

(i) R, the observational error covariance matrix, had dimension 1×1, since there was 

only one type of observation being used, namely NEE.  Since observational error was 

one of the factors being varied, R was given different values according to the 

experimental run.  Details about this are provided in subsection 4.2.7. 
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(ii) Qk, the error covariance matrix for the model, was used to represent the model 

uncertainty when propagating the augmented state vector of each ensemble forward 

from the previous time-step.  In previous studies which have used the EnKF with 

DALEC (Williams, 2005, Fox, 2009), the off-diagonal elements of Qk were set to 

zero, since wrongly prescribing them could lead to biases.  As with these two previous 

studies, the standard deviations corresponding to each element of the mean augmented 

state of the mean augmented state vector (i.e. the square roots of the diagonal elements 

of Qk), were expressed as a fraction of the corresponding element.   In other words,  if 

)(

____

m
f
kx   represents the mth  element of the mean augmented  state vector,  and ( ) )(mks  

is the corresponding standard deviation, then ( ) )(mks
)(

____

x m
f
ka×= , where a is a const-  

ant between 0 and 1. For this study a was set to 610− (=0.1%) and 510− (≈0.32%) 

for the model state elements and the parameter elements of the augmented state 

vector, respectively.  In Williams (2005) and Fox (2009), a was set to 20% for most of 

the elements of the state vector (in both cases, state estimation was performed rather 

than parameter estimation, so the parameters were not part of the state vector).  

However, tests carried out in this study showed that 20% caused each ensemble to 

behave almost entirely like a stochastic process with the model having very little 

influence.   This is because a represents the model uncertainty on a day to day basis.  

The tests showed that after propagating the ensembles forward by 1 year, using perfect 

initial conditions and a daily model error with a = 20%, the standard deviation of the 

ensembles was around 450% of the size of the mean ensemble.  In reality, for state 

estimation, whether a is set to 0.1% or 20% does not matter too much when 

observations are frequently assimilated, as in both Williams (2005) and Fox (2009).  

This is because the observations stop the trajectories of the ensembles spreading too 

much.  However, large gaps in the datasets could lead to major problems.  Finally, a 

was set to a lower value for the model formulation than for the parameters, since this 

is a synthetic study, so we treat the model formulation as close to perfect. 

(iii) For the initial conditions, 0x̂  was set to x
t
0+ κ, where x

t
0 is the true initial value 

of the augmented state vector, and κ ~ Nn (0, P0).   

(iv) P0 was chosen to have off-diagonal elements which are zero, for the same reasons  
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as Qk.  Like Qk, the standard deviations of the elements of 0x̂  are represented as a 

fraction b, of 0x̂ , where b = 5.0  ≈ 0.71, so that the relative variance is 0.5.  Chapter 

three showed that some of the variation in the parameter estimates found in the 

REFLEX study (Fox et al., 2009) could be attributed to different initial conditions 

used for the small C pools.  Although this finding is based only on the Metropolis 

algorithm, assigning the level of uncertainty on the initial conditions of the C pools 

also causes difficulty for EnKF.  To take this into account, the dataset length runs 

were repeated using a relative variance on the priors of the initial C pools of 0, 0.25, 

and 1.0, while keeping the relative variance on the prior values of the parameters 

(Metropolis algorithm) and the initial conditions of the parameters (EnKF) at 0.5 

throughout.  The estimates of the parameters and final C stocks were calculated by 

computing the mean, 5th and 95th percentiles corresponding to the ensemble values of 

the final time-step.   

 

4.2.5 Generation of the meteorology data 

To carry out the experiment, a 70-year time-series of minimum and maximum daily 

temperatures, total daily irradiance, and atmospheric CO2 concentration was needed.  

Due to the length of the time-series, it was desirable to avoid real meteorological 

datasets which could contain characteristics from local climate change and therefore 

make it difficult to interpret the results.  Hence, a synthetic dataset was generated, in 

which the variance of the meteorological data does not change across the entire 70 

years of the time-series (in Statistics, this is referred to as a homoscedastic time-

series).  To do this, each year of the 70 year dataset was formed by randomly selecting 

a complete year from 2002 to 2008 of daily observations from the Fisher 

Meteorological Station (HF001), Harvard Forest (Boose, 2001) (Latitude 42.5° North, 

-72.2° West, elevation 340 meters).  This approach maintains the intra-annual 

variability of seasonality of the meteorological data, whilst long term climate changes 

are avoided. 

 

4.2.6 Synthetic NEE generation 

Synthetic studies have several advantages over those which use real data:   
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•   The processes which generated the synthetic NEE data and those in the ecosystem 

model are consistent, avoiding model and/or measurement biases.   

•   A synthetic dataset allows complete control over the factors being varied.   

•   We know the true value of the parameters and the true value of the NEE 

observations.  This allows us to quantify how well each of the DA algorithms 

performs in: (1) estimating the parameters/final stocks and, (2) predicting future 

NEE.  It also tells us which datasets result in the most accurate estimates of the 

parameters and predicted NEE.   

Other studies have also used synthetic observations.  In the OpTIC study (Trudinger et 

al., 2007), pseudo-data from a simplified biogeochemical test model were assimilated 

using 10 different DA algorithms.  One interesting finding was that all DA schemes 

gave biased estimates when the observational noise was treated as temporally 

correlated or non-Gaussian.  A weakness of that study is that only one non-Gaussian 

noise type was used (the lognormal distribution).   It would have been interesting if 

other non-Gaussian noise types had been included.  While, in reality, the distribution 

of errors is unlikely to be Gaussian (as the authors state), there is evidence that it could 

be close to the correct distribution (Hollinger & Richardson, 2005; Richardson et al., 

2006).  In the REFLEX study (Fox, et al., 2009), 3 years of synthetic NEE 

observations were generated using the DALEC and DALEC-D models (subsection 

4.2.2) with temporally uncorrelated Gaussian noise added.  For some parameters, the 

estimates from the 8 different DA algorithms used were consistent with each other and 

close to the true value, whilst for others there was large variation between schemes.  It 

is thought that this was due to different initial conditions for some of the model states 

being used for the different schemes.  Chapter 3 found some evidence of this.   

 It is nonetheless important to realise that there are limitations with using 

synthetic data.  The model processes which are being used to generate the data may 

not relate well to real world processes.   Significant work may be needed to extend the 

work to real datasets which might exhibit complex processes and types of 

observational errors not accounted for in synthetic data.  For example, real datasets 

may contain systematic errors (see subsection 4.2.7), which were not considered in 

this study or REFLEX or OpTIC.  Also, real observations can contain extreme or near 

extreme values which are not always removed. 
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4.2.7 Using site data in the synthetic NEE observations 

The synthetic  observations were  created by adding  synthetic gaps and  observational 

error to the true NEE.  These were constructed to be consistent with real hourly NEE 

measurements, taken from the eddy covariance site  (site reference HF004) at Harvard 

Forest (Munger & Wofsy, 1999).  This site is located approximately 1 mile from the 

Fisher meteorological weather station.  The vegetation of the site is mixed, with 

dominant species including red oak (Quercus rubra), red maple (Acer rubrum), black 

birch (Betula lenta), white pine (Pinus strobus), and hemlock (Tsuga canadensis).   

 

SPECIFYING THE DATASET LENGTH 

Synthetic NEE datasets of length 1, 2, 5, 10, 20, 30 and 50 years are used.  There were 

a number of reasons for choosing these particular lengths.  The model contains fast 

processes (e.g. the amount of carbon stored in foliage changes seasonally), and so it is 

possible that the parameters directly linked to these fast processes may only need a 

few years of data to be estimated well.  This is the reason for including the shorter 

lengths (1, 2 and 5 years), and is consistent with other DA studies which used a 

terrestrial ecosystem model, e.g. the REFLEX study used 2 years (Fox et al., 2009), 

while Quaife et al. (2007) used 3 years.  However, other DA studies involving 

terrestrial ecosystem models used around  a decade of data, e.g. Mo et al. (2008) used 

8 years, and Braswell et al. (2008) used 10 years.  Therefore, we include 10 years as a 

further length.   The motivation for assimilating datasets longer than 10 years was 

from Braswell et al. (2005), who found that using parameter estimates obtained from a 

stochastic Bayesian technique gave a better fit to the variability patterns of NEE at the 

daily and seasonal timescales, and a worse fit at the annual and decadal timescales. 

The authors believed this was because the longer timescales were “governed by more 

complex processes”, and one of the ways they suggested overcoming this was to use 

longer datasets of at least 10 years.  A further reason to use the longer datasets is that 

the model contains slow processes (e.g. the amount of carbon stored in woody 

biomass or soil organic matter) which operate over much longer time-scales, and are 

unlikely to be constrained by short datasets.  By assimilating datasets of lengths 20, 30 

and 50 years, we tested whether it might be possible to constrain the parameters linked 

to the slow processes.  Datasets longer than 50 years are not considered because of the 

length of time needed to run the Metropolis algorithm. Datasets shorter than 1 year 
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were not considered since assimilating such datasets might bias our results depending 

on the period in the year we choose (e.g. summer versus winter).   

 The different datasets were designed in the following way: first, a 70 year 

synthetic dataset was generated using NEE from DALEC-D.  At the start of the 70 

year period, we assumed a young forest with a small woody biomass; the size of the 

soil carbon pool was based on Harvard forest inventory data for a time when the site 

had a young forest. For the first 10 years, the forest was allowed to grow, and none of 

this part of the 70 year period was used for assimilation.  For years 11 to 60, different 

amounts of gaps and observational noise were added to create the synthetic datasets 

which were assimilated into the model to estimate the parameters and final stocks 

(stage 1), with years 61 to 70 used as the prediction period (stage 2).  All of the 

datasets ended at the same point in time to make it easier to compare the forecasts 

made from runs corresponding to different dataset lengths.  For example, the dataset 

of length 1 year will be in year 60, the dataset of length 2 years will cover years 59 

and 60; the 5-year dataset will cover years 56 to 60; etc…  (see figure 4.1).   

 

NEE DATA DROPOUT 

Daily NEE observations were created from the hourly eddy-covariance NEE 

observations.  A day was regarded as a gap if more than two hourly measurements 

were missing.  Thus, to determine the daily gap characteristics of the NEE data from 

the Harvard site, the number and the length of gaps between observations were 

counted.  For example, if on days 5 and 10 observations are present, but none in 

between, then the gap between these two observations has a length of 4 days.  The 

observed gap length is shown figure 4.2(a).   To vary the frequency and size of gaps, 

the probability of there being data at a particular time-step was varied.   The 

probability was determined by the proportion of data present.  This proportion, 

labelled Rg, is defined as: 

{ }
{ }daysofnototal

nsobservatiowithdaysofno
Rg

.

.=                         (4.2) 

When there are data at every time-step in the dataset, Rg = 1, and when there are no 

data at all, Rg = 0.  For the Harvard site, Rg = 0.49, in other words 49% of the days had 

observations.  To generate synthetic gaps, Rg was first fixed, then the following steps 

were used starting with day 1:  
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Figure 4.1: Schematic of the synthetic data usage. For clarity the 1, 2 and 5 year 
periods have been omitted from the diagram.  

 

(1) Generate a random number between 0 and 1 from the uniform distribution.   

(2) If this number is less than Rg then an observation is present for the current day. 

(3) If the random number is greater than Rg, then no observation is present for the  

current day. 

(4) Go to the next day and repeat (1) to (3) until the end of the dataset is reached.   

The probability distribution that describes this distribution of gaps is the Geometric 

distribution.  We can check the accuracy of the method by generating gaps using the 

Rg value from the Harvard forest (0.49).  One can see that the distribution of the 

generated gaps (figure 4.2b) is close to that of the observed gaps (figure 4.2a).   
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   (a)             (b) 
Figure 4.2 (a) The distribution of observed gap lengths from Harvard forest; (b) The 
distribution of generated gaps. 
 

Five levels of data dropout were formed by assigning the values of 0.2, 0.4, 

0.6, 0.8, and 1.0 to Rg.  These correspond to 20%, 40%, 60%, 80%, and 100% of the 

days having data present.  

 

OBSERVATIONAL ERROR 

Observational error in NEE is defined as the difference between the measured and true 

values of NEE.   This can be split into random and systematic elements Goulden et 

al.,1996; Moncrieff et al., 1996).  Systematic errors result from, for example, the 

measuring equipment, if incorrectly calibrated.  The eddy-covariance method has 

various assumptions, the main ones being: (1) the terrain must be flat; (2) the 

environmental conditions are steady (Baldocchi, 2003).  If these assumptions are not 

met, this may cause systematic errors in the measurements.  Another type of 

systematic error can arise from low winds at night-time causing under-estimation of 

NEE (for details of all types of systematic error, see Baldochi (2003)).  Modelling 

systematic errors is difficult due to the variety of different factors that can cause them, 

and the likelihood of them varying from site to site.  Therefore, for simplicity, 

systematic errors were not considered here.  A random error is defined as: 

An error of measurement as a consequence of recording the value 

ε+y  instead of the true value y, with ε being an observation on a 

random variable.  The random error is often assumed to have a 

normal distribution with mean 0 and constant variance (though this 

assumption should always be verified) 

(Oxford dictionary of Statistics, 2004). 
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The distribution of the noise was determined by looking at the variability of hourly 

NEE measurements from the eddy covariance site, which for this study was at 

Harvard Forest.  To do this, we compared hourly NEE measurements taken at exactly 

the same hour in the day and with similar conditions.  A pair of measurements, x1  and 

x
2
, with similar conditions are defined as those where the difference in photosynthetic 

flux densities (i.e. the rate of photosynthesis) is less than 75 µmol s-1m-2, the 

difference in air temperatures is less than 3°C, and the difference in wind speeds is 

less than 1ms-1 (Hollinger & Richardson, 2005; Richardson et al., 2006).  Let x = x*+

ε be a general measurement, where the random error ε is an i.i.d. (identically and 

independently distributed) measurement, distributed with mean zero and variance 

)(2 εσ  and x* is the true value.  These hourly noise term ε, was found to 

approximately follow a Laplace distribution (see subsection 2.5.3 for details), which 

has probability density function:  

1
( ) exp

2

x
f x

b bε
µ − − 

=  
 

,               (4.3) 

where µ  and b are referred to as the location and scale parameters, with the hat 

denoting that they need estimating.  This distribution has a mean and variance given 

by µ  and 2b2.  Using the hourly NEE data from the Harvard site, the Laplace 

distribution with µ̂ =0.002 µmol/m²/s (1 s.f.), and b̂=1.94 µmol/m²/s (2 d.p.) gave the 

best fit to the noise terms.  However, DALEC-D works on a daily time-step, and to 

determine the distribution of random errors in daily NEE observations, the hourly 

random errors were first converted to daily ones.  If the daily noise term is represented 

by 24321 ...~ εεεεφ ++++  where iε  is the noise term for the ith hour of the day, then 

using the central limit theorem,φ is approximately normally distributed (Pólya, 1920).   

 As well as summing up 24 hourly noise terms, it is also necessary to convert 

from the units used for the eddy-covariance NEE measurements (µmol/m²/s) to those 

used in DALEC-D at the hourly time-scale (gC/m²/hr).  First note that there are 12 

grams of carbon for 1 mole, and 1 mole is equal to 1,000,000 micromoles (µmols).  

Thus, letting iX  be the NEE noise term with units µmol/m²/s and iY  with units 

gC/m²/hr calculated on the ith hourly time-step ( 241 ≤≤ i ), the conversion between the 

two is: 
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ii XY
000,000,1

606012 ××=  

We multiply by 60 twice since the units of the units of iX  is per second.  This can be  

simplified to: 

iY =c iX  

where c=0.043 (2 s.f.).  Now let Z be the DALEC-D NEE noise term at the daily time- 

step (i.e. gC/m²/day).  Then,  

∑
=

=
24

1i
iYZ  ⇒      ∑

=

=
24

1i
icXZ  

We assume that iX  and jX  are i.i.d for all 24,1 ≤≤ ji , thus E( iX )=E( jX )=E( X ), 

Var( iX )= Var( jX )=Var(X), and Cov( iX , jX )=0.  Therefore, the expectation and 

variance of Z is: 

             ∑
=

=
24

1

)()(
i

iXcEZE   

  ⇒             )(24)( XcEZE =                 (4.4a)         

        

                 ∑
=

=
24

1

2 )()(
i

iXVarcZVar            

  ⇒          )(24)( 2 XVarcZVar =                   (4.4b) 

        

From the text after equation (4.3), )(XE =0.002, )( XVar =2b²=2×1.94²=7.5272, and 

with c=0.043, equations (4.4a) and (4.4b) become: 

             002.0043.024)(24)( ××== XcEZE   

  ⇒               002.0)( =ZE (1 s.f.)                  (4.5a) 

    

                    5272.7043.024)(24)( 22 ××== XVarcZVar  

  ⇒                    =)(ZVar 0.3340270272… 

  ⇒                =)(Zσ 0.58 (2 s.f.)                   (4.5b) 

    

Thus from equations (4.5a) and (4.5b), the resulting distribution of the NEE noise 

term using gC/m²/day units is Gaussian with mean 0.002gC/m²/day and standard 
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deviation 0.58gC/m²/day.  The observational error was varied by varying the value of 

b over five levels, which were determined by computing 50%, 75%, 100%, 125% and 

150% of b = 1.94, which results in: b = 0.97, 1.455, 1.94, 2.425 and 2.91 µmol/m²/s 

with µ=0.002 µmol/m²/s.  At the daily time-step and using equation (4.4b), this results 

in errors corresponding to Gaussian distributions with standard deviations given by: σ 

= 0.29, 0.43, 0.58, 0.72 and 0.87 gC/m²/day (2 d.p.) with a fixed mean of µ=0 

gC/m²/day. 

 

4.2.8 Design and set-up of the experiment 

Summarising the last three subsections, estimates of parameters and the final C stocks 

were  obtained using the EnKF and Metropolis algorithm DA schemes, and by varying 

three different factors by the following levels: 
 

Dataset length: 1, 2, 5, 10, 20, 30, 50 years. 

Data dropout (Rg): 0.2, 0.4, 0.6, 0.8, and 1.0 (no units). 

Observational error (σ): 0.29, 0.43, 0.58, 0.72 and 0.87 gC/m²/day. 
 

The most thorough type of design is the full factorial design, in which every level of 

each factor is combined with each level of the other factors.  This produces 

7×5×5=175 runs for each DA scheme.   An advantage of this design is that it allows 

one to explore interactions between the different levels of the 3 factors.  For example, 

suppose we did runs corresponding to the values of the 3 factors: {10 years, 0.58 

gC/m²/day, Rg } and {1 year, 0.58 gC/m²/day, Rg } where Rg varies by the 5 specified 

levels.  Then the pattern of estimates for each parameter and final stocks would be 

different, and this may provide some insight into the effect of the dataset length.  

However, the computation time to carry out the full factorial analysis would be too 

long, particularly for the Metropolis algorithm.  For example, carrying out the 50 year 

run takes roughly 1 day.  An alternative, which requires only 15 runs, is to vary the 

levels of one factor, while keeping the other two factors fixed at their central values.  

The resulting 15 runs are displayed in table 4.2.  

Both the EnKF and the Metropolis algorithm needed prior estimates of the 

parameters and the initial carbon pools, but each uses this information in different 

ways.  For the EnKF, since the parameters are treated as states and allowed to evolve,  
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Run Dataset length  
(years) 

Data dropout 
(Rg) 

Observational error, 
σ (gC/m²/day) 

1 1 0.6 0.58 
2 2 0.6 0.58 
3 5 0.6 0.58 
4 10 0.6 0.58 
5 20 0.6 0.58 
6 30 0.6 0.58 
7 50 0.6 0.58 
8 10 0.2 0.58 
9 10 0.4 0.58 

(4) 10 0.6 0.58 
10 10 0.8 0.58 
11 10 1.0 0.58 
12 10 0.6 0.29 
13 10 0.6 0.43 
(4) 10 0.6 0.58 
14 10 0.6 0.72 
15 10 0.6 0.87 

Table 4.2 The 15 different runs which were carried out using both DA schemes.   

 

they needed to be initialised at the start of the time-series, along with the C pools; the 

prior estimates were used for this.  For the Metropolis algorithm, the prior values of 

the parameters were used as a starting location from which the algorithm began its 

search of different parameter sets.  In this DA scheme, the initial values of the C pools 

were treated  as 6 additional parameters,  which were initialized  from the same values 

(i.e. 
)(

0,
m

iP  in model parameter space) as the means of the prior distributions used for 

the C pools in the EnKF.  The prior distribution for model parameteriP  is assumed to 

be Gaussian for the EnKF with a mean denoted by )(
0,
m

iP  (for simplicity we use the 

same notation from the initialization value of model parameter iP  for the Metropolis 

algorithm).  The relative variance and standard deviation of this prior distribution is 

given by ( )2)(
0,5.0 m

ii PV ×=  and  
)(

0,71.0 m
ii PSD ×= .  For the Metropolis algorithm the 

prior distribution of the log-normalized parameters were also assumed Gaussian but 

each had a mean of 1 and a variance 0.5.  The choice of a large relative variance 

reflects the fact it may not be possible, or if possible very infrequently, to make 

measurements directly related to the parameters.  A variance of 50% means that we 

know the correct order of magnitude of the model parameter, which is approximately 
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correct in terms of the turnover rates and sizes of the C pools.  )(
0,
m

iP  was determined 

by generating a random number from the  Gaussian distribution with mean 0 and 

variance iV , and then added to 
)(t

iP , the true value of the parameter.  
)(t

iP  was 

determined arbitrarily by Mat Williams, the creator of DALEC-D.   

 

4.2.9 Analysis of predictive ability  

Estimating the parameters is important, but being able to accurately predict NEE is 

also critical.  Therefore, for each of the 15 runs listed in table 4.2, we used the 

corresponding parameter estimates and final stock estimates to run the DALEC-D 

model 10 years into the future.  To incorporate uncertainty into the forecasts, all 500 

of the ensembles were used for the EnKF, and 500 sets of parameters and 

corresponding final stock estimates were selected at random from the posterior 

distribution for the Metropolis algorithm.   

 

4.2.10 Expectations 

In subsection 2.3.4, expectations  of the EnKF and Metropolis  algorithm for 

estimating parameters and associated uncertainties was given, with direct reference to 

chapter 4.  The purpose of this subsection is to provide a summary of subsection 2.3.4 

in order to outline the key points where we would expect differences and similarities 

in the results from the two algorithms.   

 The two DA algorithms are both based on Bayes’ theorem, yet how they apply 

this theorem is different with the EnKF being sequential in nature (subsections 2.2.2 

to 2.2.7) whereas the Metropolis algorithm is a global search algorithm (subsections 

2.2.8 and 2.2.9).  Despite this difference, they are still solving Bayes’ theorem and so 

theoretically should lead to the same solution or posterior distribution.  In this chapter, 

there are two minor differences in the setup of the two algorithms which potentially 

could result in differences in the resulting posterior distributions.  These include: (i) a 

slightly different prior distribution on the parameters used and (ii) slightly different 

model errors specified.  In subsection 2.3.4, it is explained in detail why these 

differences in setups are very likely to produce insignificant differences in the 

respective posterior distributions.  In summary, for (i) this is because although the 
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model parameters in the case of the Metropolis algorithm are assumed to follow a log-

Normal distribution, the log-normalised parameters as used in the actual algorithm 

follow a Normal distribution.  Moreover the size of the variance used for the Normally 

distributed log-Normalised priors is the same in relative terms to the variance used in 

the prior distribution for the EnKF approach.   For (ii), the Metropolis algorithm 

assumes no model error whereas the EnKF incorporates very small model error.  In 

this chapter, 13 of the 15 runs assimilate datasets with at least 60% of daily data 

present; therefore the gaps between the data points rarely become large for the model 

error to grow to anything beyond insignificant.  As a result of this and due to the 

differences between the two approaches being so minor it is not expected that this will 

yield anything beyond very slight differences in the respective posterior distributions.   

To demonstrate that these slight differences in the setups between the 

Metropolis algorithm and the EnKF result in very similar parameter estimates and 

uncertainties, figure 2.8 in subsection 2.3.4 shows such estimates of the DALEC-D 

parameters from the REFLEX study (Fox et al., 2009) obtained from these two DA 

schemes.  As described in subsection 2.3.4, we can see that for 13 of the 17 

parameters, the estimates from the two schemes are very similar and for 3 of the 

remaining parameters the estimates are fairly close.  The length of the uncertainty 

intervals are also in good agreement between the two schemes, with either good or 

very good agreement for 15 of the 17 parameters. 

In REFLEX, the length of the assimilated dataset was two years, which is the 

same as run 2 used in this chapter except that no LAI data was used here.  Therefore it 

is reasonable to assume that the parameter estimates and uncertainty intervals are 

likely to be the same or similar for the Metropolis algorithm and the EnKF when 

assimilating short datasets (1 to 5 years in length), which correspond to runs 1 to 3 

(table 4.2).  Virtually no terrestrial carbon DA study and no known DA inter-

comparison study has assimilated a dataset 10 years of more in length or under 

varying observational uncertainty or varying data density.  Therefore it is difficult to 

back up any expectation of differences or similarities of the two DA schemes in 

estimating the posterior distribution of the parameters.  Instead we briefly outline 

factors that might result in differences in the solution between the two schemes as a 

result of assimilating a longer time-series of data or data with varying observational 

uncertainty or data density, with more detail given in subsection 2.3.4. 
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Equifinality is a known issue which can cause variations in parameter 

estimates produced by global search algorithms such as the Metropolis algorithm – see 

Mdlyn et al. (2005), Tang & Zhang (2008), Williams et al. (2009) and Luo et al. 

(2011).  Equifinalty occurs when different parameter sets result in similar outputs, in 

this case similar fits of the modelled NEE to the observed NEE.  In DA, one reason 

for its cause is the existence of parameters which may have little impact on the 

resulting NEE, i.e. the NEE is relatively insensitive to variations of these redundant 

parameters.   In the above four studies, equifinality was identified to occur using 

datasets of lengths up to 5 years.  However its impact when longer datasets are used or 

those with varying observational error and data density is unclear.  It is reasonable to 

expect it to occur to the same level for longer datasets at least for synthetic datasets 

used in this chapter where the inter-annual variations in the NEE data is minimal.  In 

other words, a parameter set which results in a good fit of the modelled to observed 

NEE using a short dataset, may be expected to give a similar relative fit if a longer 

dataset was assimilated.  If we vary the density of data in the dataset, it is reasonable 

to expect equifinality to occur for the more sparse dataset because the cost function is 

based on fewer data points.  For example, imagine that the dataset consisted of just 

one data point, then the trajectory of the modelled NEE for the other time points could 

vary immensely as long as the fit of the modelled NEE to the observed NEE and the 

location of the observed NEE was the same.  As we increase the number of data 

points, the trajectory of the modelled NEE is constrained more to a particular shape.  

In a similar way, it is reasonable to expect equifinality to occur more when 

assimilating a noisy dataset compared to a non-noisy one.  

Medley et al. (2005) also states that equifinality could occur as a result of 

model structure (see subsection 2.3.4 for detail), therefore the EnKF may also suffer 

from equifinality for this reason.  However the impact of equifinality is likely to be 

less on the EnKF than for the Metropolis algorithm.  This is because the EnKF is a 

sequential DA scheme, and does operate by trying to improve the fit of the modelled 

to observed NEE.  Instead the EnKF operates by applying Bayes’s theorem one time-

step at a time, rather than all in one go as is the case of the Metropolis algorithm.   

Another possible reason for the differences in the parameter estimates and 

uncertainties between the two DA schemes could be because the residuals between the 

modelled and observed NEE are autocorrelated.  Although the Gaussian noise, added 
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to true NEE when creating the synthetic NEE data, are independent in time the same is 

not guaranteed in the residuals.  As the independence of the residuals is an assumption 

of the likelihood, breaking this could result in biased parameter estimates and 

inaccurate uncertainty estimates.  Therefore, this could potentially cause discrepancies 

in the estimates of the parameters and uncertainties from the two algorithms.   

However in chapter 3, it was found the residuals were not autocorrelated so this is not 

expected to be true in this chapter either.   

A final potential reason is that the Metropolis algorithm fails to converge to 

the posterior distribution.  To ensure that this is not the cause of any potential 

differences, the Gelman criteria is applied as was done in chapter 3.   

 

4.3 Results 

4.3.1 Overview of the results section 

Since the results shown here are very comprehensive and detailed a quick overview of 

the layout of this section is first given.  The results can be split up into four parts: 

Part 1: In subsection 4.3.2, we assess the convergence of the Metropolis algorithm and 

check the Normality of the resulting posterior distributions.   

Part 2: The parameter estimates and the corresponding 90% posterior intervals for 

both DA schemes are then presented in subsection 4.3.3.  In the four subsections that 

follow (4.3.4 – 4.3.7), we assess the performance of the parameter retrievals and 

uncertainties in different ways which include: the proximity of the posterior 

parameter sets to the truth, how many posterior intervals contain the truth, whether 

there was a reduction in the length of uncertainty intervals from the posterior 

compared to the prior, and how well the parameters in the posterior distributions are 

correlated with other.   

Part 3: In subsections 4.3.8 and 4.3.9, we assess the accuracy and robustness of the 

iNEE (cumulative NEE) forecasts.   

Part 4: Finally, results relevant to the discussion section (section 4.4) are given.  These 

include: (i) assessing the sensitivity of modelled NEE (using the DALEC model) to 

changes in the parameters; (ii) assessing the autocorrelation of the residuals in the 
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likelihood function by constructing lag plots; (iii) plotting the Root Mean Squared 

Error between the modelled and observed / true NEE for each of the 15 runs.   

 

4.3.2 Assessing convergence of the Metropolis algorithm and 

assessing Normality of posterior PDFs 

CHECKING CONVERGENCE OF THE METROPOLIS ALGORITHM 

The convergence of the chains in the Metropolis algorithm was assessed by 

monitoring the Gelman criteria statistic Rhat for each of the iterations (Gelman, 1995).  

Figure 4.3 shows the trajectories of Rhat for the length of the chains for four of the 15 

runs used in this chapter, namely runs 1, 6, 11 and 15.  The corresponding plots for the 

remaining 11 runs are very similar to these plots.  Some of the runs converged very 

quickly, for example run 1 converged within 100,000 iterations, whereas others took a 

little longer with all converging before 5 million iterations and in the vast majority of 

cases well before this point.    

 

ASSESSING NORMALITY OF THE POSTERIOR PDFS 

In this section, we describe the estimates of the parameters, final stocks and forecasts.  

For both DA schemes, the mean was used as the estimate of each parameter under the 

assumption that all the posterior distributions were Gaussian.   To check this, quantile-

quantile plots of the marginal distributions for each parameter were plotted for each 

run and for each algorithm.  A quantile-quantile plot, or q-q plot, plots each of the N-

quantiles from the marginal posterior distributions and the theoretical Normal 

distribution.  In this case, we set N to be 100 meaning that we plot each of the 

percentiles from both distributions.  If the posterior distribution is Normal then the 

percentiles from the posterior distribution should match those of the theoretical 

Normal distribution, and this is indicated by the points following the y=x line.  The 

marginal distributions were also plotted alongside the q-q plots.   

For the Metropolis algorithm, most parameters had marginal distributions that 

were approximately Normal for most or all of the runs, for example the marginal 

distribution for the Tl parameter of run 1 is given in figure 4.4a and the corresponding 

q-q plot (figure 4.5a) shows the points following the y=x line very well.  Evidence of 

non-normality for around half of the runs was evident in 7 of the 23 parameters, name- 
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Figure 4.3 Plots of Rhat against the iteration number for 4 of the 15 runs from the 
Metropolis algorithm.  The red dashed line is the y=1.2 line and when the Rhat 
trajectories all fall below this threshold, the chains have converged for the parameters.  
 

 
Figure 4.4 The posterior distributions corresponding to three parameters of the 
Metropolis algorithm: (a) Tl (Turnover of labile carbon) for run 1, (b) Pr (Nitrogen 
use efficiency parameter) for run 5; (c) Cfmax (Maximum Cf value) for run 3. The red 
dotted line is the mean of the distribution. 
 
 
ly Td, Fnf, Tr, Pr, Tlab, Cw,0 and Csom,0. For these parameters, the distributions had a tail 

on one side, but because the mean was close to one of the bounds, there was no tail on 

the other side. A good example of this is the Pr parameter in run 5 with the marginal 

distribution shown in figure 4.4b and the Q-Q plot showing serious deviation away 

from the y=x line for the 100th percentile point.  Evidence of non-normality for most 

of the runs was evident in one parameter and 2 final C stocks, namely Cfmax, Cw  and  
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Figure 4.5 The Q-Q plots corresponding to the corresponding marginal posterior 
distributions given in figure 4.4. 
 

Csom.   Due to the non-normality of some of the parameters, the mode of the posterior 

distribution was used to represent each parameter estimate.  For the parameters which 

had Normal posterior distributions, the mode is the mean so using the mode made no 

difference to the estimate.   

For the EnKF, with the exception of Tlab and Cfmax, all the parameters and final 

C stocks had posterior distributions which were approximately Normal for all or 

virtually all of the 15 runs.  For just under half of the runs for Tlab, the distributions 

were similar to figure 4.4b, and for most of the runs for Cfmax the distributions were 

similar to figure 4.4c (with corresponding Q-Q plot given in figure 4.5c).  For 

virtually all of the forecast runs, the distributions were approximately Normal.   

 

4.3.3 Parameter estimates and their 90th posterior intervals 

The complete set of parameter and final C stock results is displayed in figures 4.6 – 

4.9.  In all of figures 4.6 – 4.8, the upper bound of the Tw parameter is 10% of the 

actual upper bound given in table 4.1.  This was done because using the actual upper 

bound meant that it was difficult to distinguish between the parameter estimates and 

uncertainties from the different runs.  However for completeness, the results for this 

parameter have been plotted again with the actual upper bound from table 4.1 used 

(figure 4.9).    

The behaviour of the parameter estimates can be split into three broad 

categories, exemplified by the behaviour of the three parameters shown in figure 4.10:   

 (i) The parameter estimate improved with dataset length: As dataset length increased, 

(I) the parameter estimate got closer to the true value (red line in figure 4.10), 

and/or (II) the 5th and 95th percentile range became narrower, while still containing 
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the true value.  Lout (growing degree day for leaf out) is an example of this, 

satisfying both (I) and (II) (figure 4.10a).  Note that the blue line is the prior value. 

 (ii) The parameter estimate deteriorated with dataset length: As dataset length 

increased, (I) the parameter estimate got further away from the true value, and/or 

(II) the 90th posterior interval became narrower, while not containing the true 

value, and/or (III) the 90th posterior interval widened, while still containing the 

true value. Flr (the fraction of labile carbon respired) is an example of this, and 

satisfies (I) and (II) (figure 4.10b).  Note that the blue line is the prior value.   

(iii) The parameter changed with dataset length, but with no consistent pattern: As 

dataset length increased, the parameter estimate neither consistently improved nor 

deteriorated.  Pr (the Nitrogen use efficiency parameter for photosynthesis) is an 

example of this (figure 4.10c).  

The parameter estimates can be grouped similarly as observational error decreases and 

the density of observations increases.   

 A convenient way to display these 3 types of performance for parameter 

estimates and final stock estimates is through the colour representation used in tables 

4.3 and 4.4, with green denoting improvement, red representing deterioration and 

yellow for no consistent pattern.   For the EnKF, most of the parameter and final stock 

estimates showed improvement, though this was predominantly true with the dataset 

length runs, i.e. increasing the density of observations and reducing the observational 

error gave only minimal improvement in the estimates.  Moreover, most of the EnKF 

parameter estimates took 5 to 10 years of data to converge to a value close to the truth.  

Interestingly, the only parameter which shows deterioration for the EnKF is Ts. 

In contrast, most of the estimated parameters from the Metropolis algorithm 

deteriorated. Those showing improvement related to 3 parameters and 2 initial C 

pools, namely Fnrr (fraction of NPP allocated to roots), Lout (growing degree day value 

causing leaf out), Cfmax (maximum Cf value), and (0)
wC  and (0)

labC  (initial values of the 

woody and labile carbon pools).   

Finally, an interesting observation from the results is that, for the EnKF runs, 

the posterior uncertainty on the parameters does not appear to increase with an 

increase in observational uncertainty.  This is intriguing and is discussed, along with 

the other observations made, in section 4.4 
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Figures 4.6a (upper panel) and 4.6b (lower panel): The effect of dataset length on 
parameter estimation, with upper and lower panel of plots denoting those from the 
EnKF and the Metropolis algorithm respectively.  Cf0 to Csom0 are the 6 carbon pools 
required by the Metropolis algorithm, while the remaining 17 are the DALEC-D 
parameters.  The cross represents the mean value of the posterior distribution with the 
error bars indicating the 5th and 95th percentiles.  The red and blue lines are the true 
parameter value and the prior values, which vary for the initial carbon pools because 
each of those datasets start from different points in time.  Note that the prior value is 
also denoted by ‘pr’ where the error bar represents the prior uncertainty.  
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Figures 4.6c (upper panel) and 4.6d (lower panel): As for figures 4.6a and 4.6b 
respectively, but showing the effect of time-series length on final carbon stock 
estimation. 
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Figures 4.7a (upper panel) and 4.7b (lower panel): The effect of data density on 
parameter estimation, with upper and lower panel of plots denoting those from the 
EnKF and the Metropolis algorithm respectively.  Cf0 to Csom0 are the 6 carbon pools 
required by the Metropolis algorithm, while the remaining 17 are the DALEC-D 
parameters.  The cross represents the mean value of the posterior distribution with the 
error bars indicating the 5th and 95th percentiles.  The red and blue lines are the true 
parameter value and the prior values.  



Chapter 4: Sensitivity of DA to changes in dataset length, density and error. 

Edmund Ryan - 224 - 2013 

 
 

 
Figures 4.7c (upper panel) and 4.7d (lower panel): As for figures 4.7a and 4.7b 
respectively, but showing the effect of data density out on final carbon stock 
estimation. 
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Figures 4.8a (upper panel) and 4.8b (lower panel): The effect of observational error 
on parameter estimation, with upper and lower panel of plots denoting those from the 
EnKF and the Metropolis algorithm respectively.  Cf0 to Csom0 are the 6 carbon pools 
required by the Metropolis algorithm, while the remaining 17 are the DALEC-D 
parameters.  The cross represents the mean value of the posterior distribution with the 
error bars indicating the 5th and 95th percentiles.  The red and blue lines are the true 
parameter value and the prior values. 
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Figures 4.8c (upper panel) and 4.8d (lower panel): As for Figure 4.8a and 4.8b 
respectively, but showing the effect of observational error out on final carbon stock 
estimation. 
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Figure 4.9 The parameter estimates for all 15 runs and for both DA schemes for the 
parameter Tw, using the actual upper bound from table 4.2.  As with figures 4.6 – 4.8, 
the crosses and error denote the modal value and 5th to 95th percentile interval of the 
posterior distribution, while the red line is the true value of the parameter.    
 

 
      (a)         (b)      (c)  
Figure 4.10: The effect of dataset length on parameter estimation for: (a) Lout 
(Growing degree day for leaf out), (b) Flr (the fraction of labile carbon respired), and 
(c) Pr  (Nitrogen use efficiency parameter for photosynthesis).  (a) and (b) are 
estimates from the Metropolis algorithm, while (c) is an estimate from the EnKF 
(based on the mean of the distribution ensembles on the final time-step).  For each 
dataset length, the dot represents the mean of the posterior distribution, while the 
error bounds represent the corresponding 5th and 95th percentiles (referred to as the 
90th posterior interval). The true parameter values are indicated by red horizontal 
lines. Each of the Metropolis algorithm, the prior mean is represented by the blue 
line.  

 

4.3.4 Accuracy of estimates of the parameters and final stocks  

Here, we assess the accuracy of the parameter and stock estimates by two different 

ways.  In the first we use compute the scaled absolute difference between the modal 

value of the posterior distribution of each parameter and the corresponding true value.  

Using this distance metric makes the results interpretable, but a downside is that the 

posterior intervals are not incorporated into the calculations, nor are correlations 

between the parameters.  However, the posterior uncertainties are taken into account 

in subsection 4.3.5 when we consider the percentage of intervals that contain the true 

value.  To overcome these shortcomings of this metric, an alternative one is also used 

to assess the distance of the parameters to the true values.  An easily applicable one is 

the Mahalanobis distance metric.   A noteworthy advantage of this is that the distances  
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Length       

Data density       

Data noise       

Table 4.3 Behaviour of the parameter estimates for (a) the EnKF, (b) the Metropolis 
algorithm, and for (c) the initial C pools for the Metropolis algorithm.  The exact 
descriptions of the parameters are displayed in table 4.1. 
 
 

(a) fC  wC  
rC  labC  

litC  
somC  

Length       

Data density       

Data noise       
 

(b) fC  wC  
rC  labC  

litC  
somC  

Length       

Data density       

Data noise       
 

Table 4.4 Behaviour of the final stock estimates for: (a) the EnKF, (b) the Metropolis 
algorithm. 
 

are treated as vectors rather than point estimates.  Also correlations between the 

parameters are taken into account.  A downside to this metric is that its actual value is 

difficult to interpret.  We use both distance metrics when assessing the accuracy of the 

parameters. 

 

USING A SCALED ABSOLUTE AVERAGE DIFFERENCE METRIC 

The accuracy of each parameter and final stock estimate, referred to as A, was 

measured by computing the average absolute difference between the parameter 

estimates and their corresponding true values, normalised by the prior range, 

                                 100×=
R

d
A                               (4.6) 
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where d is the absolute difference between the 

parameter estimate (the X in figure 4.11) and the 

corresponding true value (red line), and R is the 

difference between the smallest and largest  possible 

values  the parameter can take, which are listed in 

table 4.1.  For example, for the Metropolis algorithm 

estimate of the Fll parameter (Fraction of leaf loss 

transferred to litter) corresponding to the 1-year run 

(figure 4.11), this gave: 

%3.23100
1.07.0

48.062.0
100 =×

−
−

=×=
R

d
A   

Formula 4.6 was used to calculate the percentage 

difference for all parameters, since all had different 

units and radically different sizes.  The average was 

then taken, so that comparisons between the 15 differ- 

 

Figure 4.11 Plot of the 
Metropolis estimate of the Fll 
parameter (Fraction of leaf 
loss transferred to litter).  X 
= parameter estimate; Red 
line = truth; d = absolute 
difference between 
parameter estimate and the 
truth, for the 1 year run; R = 
range of possible parameter 
values. 

ent runs could be made (e.g. as dataset length increases, are the parameter estimates on 

average getting closer to the truth?).  For example, for the Metropolis algorithm, the 

run corresponding to the 1 year dataset (i.e. run 1 from table 4.2) had an average of 

17%.  This is displayed in the 2nd row of the 1st column of table 4.5a. The remaining 

percentages in table 4.5a are calculated similarly.   

One can see from table 4.5a that for all the runs, the EnKF parameter estimates 

are on average closer to the truth than those from the Metropolis algorithm.  The 

overall average percentage difference between the DALEC-D parameters and the true 

values is around 11% for the EnKF, and around 17% for the Metropolis algorithm.  

The average percentage differences are also computed for the final stock estimates, 

where the truth refers to the true final stock value (table 4.5b).  The EnKF again gave 

estimates closer to the truth for the most part, since all but three of the percentages in 

the EnKF rows were smaller than the corresponding percentages in the Metropolis 

algorithm rows.  The overall average percentage differences between the final stock 

estimates and the true values are 5% for the EnKF and 9% for the Metropolis 

algorithm.   
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(i) Dataset Length        
L (Years) 1 2 5 10 20 30 50 Average 
EnKF (%) 17 13 13 11 10 9 11 12.0 
Metropolis algorithm (%) 17 13 13 15 18 21 26 17.6 
 

(ii) Data density        
Rg 0.2 0.4 0.6 0.8 1 Average   
EnKF (%) 11 9 11 11 7 9.8   
Metropolis algorithm (%) 9 17 15 15 20 15.2   
 

(iii) Dataset Noise        
σ (gC m-2) 0.29 0.43 0.58 0.72 0.87 Average  
EnKF (%) 9 10 11 11 10 10.2  
Metropolis algorithm (%) 19 20 15 15 16 17.0  

 

Table 4.5a The average percentage difference between the parameter estimates and 
the true parameter values.  
 
(i) Dataset Length        
L (Years) 1 2 5 10 20 30 50 Average 
EnKF (%) 10 9 6 4 4 6 12 7.3 
Metropolis algorithm (%) 12 8 7 7 13 11 14 10.3 
 

(ii) Data density        
Rg 0.2 0.4 0.6 0.8 1 Average  
EnKF (%) 3 3 4 3 3 3.2   
Metropolis algorithm (%) 4 8 7 7 11 7.4   
 

(iii) Dataset Noise        
σ (gC m-2) 0.29 0.43 0.58 0.72 0.87 Average  
EnKF (%) 3 3 4 4 3 3.4  
Metropolis algorithm (%) 10 13 7 7 7 8.8  

 

Table 4.5b The average percentage difference between the final stock estimates and the 
true final stocks. 
 

USING THE MAHALANOBIS DISTANCE METRIC 

An alternative method for determining the accuracy of each parameter and final stock 

estimate is to compute the Mahalanobis distance (Mahalanobis, 1930) between a 

sample of parameter sets from the posterior distribution and the true parameter set.  

The metric is defined by the following formula (Mahalanobis, 1930): 

     ( ) ( )2 ( ) ( ) 1 ( ) ( )
( )

Ti t i t
iD p p C p p−= − −                 

Where p(i) is the ith sampled normalised parameter set from the posterior distribution, 

p(t)
 is the true parameter set also normalised, and C is the covariance matrix of the 

parameters.  This results in N distances, i.e. (1)D , (2)D , …, ( )iD , …, ( )ND , where N is  
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(i) Dataset Length        
L (Years) 1 2 5 10 20 30 50 Average 
EnKF 34 28 36 36 39 39 38 36 
Metropolis algorithm 45 78 204 216 241  311 413 217 
 

(ii) Data density        
Rg 0.2 0.4 0.6 0.8 1 Average   
EnKF 32 36 36 37 38 36   
Metropolis algorithm 144 212 216 285 265 223   
 

(iii) Dataset Noise        
σ (gC m-2) 0.29 0.43 0.58 0.72 0.87 Average  
EnKF 38 38 36 35 34 36  
Metropolis algorithm 437 381 216 173 139 279  

 

Table 4.6a The Mahalanobis distances between the posterior parameter sets and the 
set of true parameter values.  
(i) Dataset Length        
L (Years) 1 2 5 10 20 30 50 Average 
EnKF (%) 7 7 8 8 8 8 9 8 
Metropolis algorithm (%) 5 6 7 18 32 32 64 24 
 
(ii) Data density        
Rg 0.2 0.4 0.6 0.8 1 Average   
EnKF (%) 6 8 8 8 8 8   
Metropolis algorithm (%) 5 11 18 19 30 17   
 
(iii) Dataset Noise        
σ (gC m-2) 0.29 0.43 0.58 0.72 0.87 Average  
EnKF (%) 11 8 8 7 6 8  
Metropolis algorithm (%) 38 28 18 14 14 23  

 

Table 4.6b The Mahalanobis distances between the sets of final time-step C stocks 
(determined from posterior parameter sets) and the set of true parameter values.  
 

the number of sampled parameter sets from the posterior distribution.   In this chapter, 

N was set to 1000 for the Metropolis algorithm which was large enough to gain a good 

enough representative of the distribution of Mahalanobis distances between the 

parameter sets of the posterior distribution and the true parameter set.  For the EnKF, 

N was fixed at 500 because this was the number of ensembles used.  The median of 

this distribution of Mahalanobis distances was then calculated.  This process was 

repeated for all 15 runs and for the two DA schemes and the results are displayed in 

tables 4.6a and 4.6b.  We can see from tables 4.6a and 4.6b that overall the 

Mahalanobis distances between the parameter / stock vectors and the corresponding 

true vector remains relatively unchanged amongst the EnKF runs.   However for the 
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Metropolis algorithm, we see that distance increases with increased information.  The 

increase is much more than we see in tables 4.5a and 4.5b. For example as the length 

of the dataset increases from 1 to 50 years the Mahalanobis distance increases almost 

ten-fold from 45 to 413. 

 

4.3.5 Consistency of the 90% posterior intervals with the truth 

The percentage of parameters and final stocks whose 90% posterior interval contains 

the true value is displayed in tables 4.7 and 4.8.  For example, the first number in the 

first row of the first column of table 4.7a means that 76% of the EnKF parameters for 

the 1-year run had 90% posterior intervals containing the truth (the higher the 

percentage, the more consistent the 90% posterior intervals are with the truth). For the 

parameters, the EnKF percentages were higher than those for the Metropolis algorithm 

in all but 4 cases.  Taking the overall average, 88% of all the parameter estimates from 

the EnKF had 90% posterior intervals which contained the truth, as opposed to 40% 

for the Metropolis algorithm (or 46% if averaging over all 23 parameters).  The 

Metropolis algorithm was better at estimating the initial C pools (3rd rows of table 4.7) 

than the parameters (2nd rows of table 4.7), with the initial C pools’ percentages having 

an overall average of 62%.  For the final stock estimates, the EnKF (rows 1 of table 

4.8) was better than the Metropolis algorithm (rows 2 of table 4.8) in all but four 

cases.  Taking the overall average, 87% of all the final stock estimates for the EnKF 

had 90% posterior intervals which contained the truth, as opposed to 53% for the 

Metropolis algorithm.   

The reason why the percentages in tables 4.7 and 4.8 are a lot smaller for the 

Metropolis algorithm is that the posterior intervals are a lot narrower than for the 

EnKF.  Understanding why they are narrower is discussed in section 4.4.   

 

4.3.6 Comparing the sizes of the prior and posterior intervals 

A key aspect of Data Assimilation is that the post-assimilation estimates of the 

quantities we are interested in have a smaller uncertainty that pre-assimilation.  In the 

case of parameter estimation, it is essential that the posterior parameter estimates have 

a small uncertainty than those of the prior estimates.   However when we use real data, 

it is difficult to know whether the resulting posterior uncertainty interval contains the  



Chapter 4: Sensitivity of DA to changes in dataset length, density and error. 

Edmund Ryan - 233 - 2013 

(a) Dataset Length        
L (Years) 1 2 5 10 20 30 50 Average 
EnKF (%) 76 76 82 82 94 88 88 84 
Metropolis algorithm (%) 82 76 76 35 24 18 18 47 
Metropolis initial C pools (%) 67 67 83 67 50 83 17 62 
         

(b) Data density        
Rg  0.2 0.4 0.6 0.8 1.0 Average   
EnKF (%) 88 94 82 94 94 91   
Metropolis (%) 88 35 35 35 18 42   
Metropolis initial C pools (%) 83 50 67 67 67       67   
         

(c) Dataset Noise        
σ (gC m-2) 0.29 0.43 0.58 0.72 0.87 Average   
EnKF (%) 88 88 82 94 94 89   
Metropolis algorithm (%) 18 24 35 35 41 31   
Metropolis initial C pools (%) 17 50 67 67 83 57   

 

Table 4.7 The percentage of the 17 DALEC-D parameter estimates from the Metropolis 
and EnKF inversions that encompass the true parameter values within the 5th and 95th 
percentiles. The Metropolis algorithm treats the six initial carbon pools as parameters; 
these are shown with separate percentages. 
 
(a) Dataset Length        
L (Years) 1 2 5 10 20 30 50 Average 
EnKF (%) 50 67 83 83 83 67 67 71 
Metropolis (%) 83 100 100 50 17 17 17 55 
         

(b) Data density        
Rg  0.2 0.4 0.6 0.8 1 Average   
EnKF (%) 100 100 83 100 100 97   
Metropolis (%) 100 67 50 50 33 60   
         

(c) Dataset Noise         
σ (gC m-2) 0.29 0.43 0.58 0.72 0.87 Average   
EnKF (%) 100 100 83 100 100 97   
Metropolis (%) 33 50 50 50 33 43   

 

Table 4.8 The percentage of final stock estimates from the Metropolis and EnKF 
inversions that encompass the ‘true’ final C stock values within the 5th and 95th 
percentiles.  

 

true value (e.g. Richardson et al., 2010).     By using synthetic data, we can check that 

the resulting reduction of uncertainty from carrying out DA does not result in us being 

over-confident with the parameter estimate.  With this in mind, we deem a reduction 

in uncertainty post-DA credit worthy as long as this post-DA uncertainty interval still 

contains the truth.   
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 For the results here a reduction in uncertainty, in some cases significant, from 

the prior to the posterior estimates was recorded for virtually all of the EnKF 

parameter estimates (see figures 4.6a, 4.7a and 4.8a).  For the Metropolis algorithm, 

we can see from table 4.7 that only the runs which had the 1, 2 or 5 year datasets or 

had a data density of 0.2 (runs 1, 2, 3 and 8 from table 4.2) had the posterior 

uncertainty intervals for most of the parameters containing the truth.  For these four 

runs, we see a reduction in uncertainty for the majority of the parameters whose 

posterior interval contained the truth.   

These findings are discussed in subsection 4.4.5.   

 

4.3.7 Parameter correlations 

The correlations between the parameters in the posterior distribution was determined 

using 50,000 sampled parameter sets for the Metropolis algorithm and the 500 

parameter sets from the 500 ensemble members.  The correlations were highest 

amongst the Metropolis algorithm retrieved parameters, and the runs (see table 4.2) 

could be arranged into 4 groups according to level of correlation.  Group 1 consists of 

runs 3 and 12 and showed the greatest correlations (panel (a) from figure 4.12) with an 

average correlation (in absolute terms) of around 0.15 but a 5th to 95th percentile range 

of around 0.7.  Group 2 consists of by runs 4, 8 and 14 (panel (b) of figure 4.12) and 

the next highest correlations with a median of around 0.11 and a 5th to 95th percentile 

range of 0.6.    Group 3 consisted of runs 6, 9, 10, 11, and 13 with the second lowest 

parameter correlations of around 0.08 on average and a 5th to 95th percentile range of 

0.45 (panel (c) of figure 4.12).  The remaining five runs made up group 4 (panel (d) of 

figure 4.12) and had the lower parameter correlations of around 0.06 on average and a 

5th to 95th percentile range of roughly 0.4.   

The correlations between the parameters from the posterior distribution of the 

EnKF runs were all very similar, with each run having a median absolute correlation 

of around 0.05 and a 5th to 95th percentile range of between 0.2 and 0.3.  The spatial 

representation of the correlation matrix for each of the EnKF runs was therefore 

similar to panel (d) from figure 4.12.   
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Figure 4.12 A graphical representation of the correlations between the parameters in 
the posterior distribution of the Metropolis algorithm.  Panel (a) to (d) represent the 
parameter correlations from runs 3, 8, 11 and 15, which represent the four groups of 
runs which varied in the level of parameter correlations.  Each box represents the 
correlations between two different parameters with the lighter and darker ones 
denoting the higher and lower correlations, respectively.  The order of the boxes, both 
vertically and horizontally is the same as the order of the parameters in table 4.2.   

 

4.3.8 Accuracy of the estimates of the iNEE forecasts 

The parameter and final stock estimates from the Metropolis algorithm and EnKF for 

all 15 runs (table 4.2) were used to predict iNEE (cumulative NEE) 10 years into the 

future.  To incorporate uncertainty into the forecasts, all 500 of the ensembles were 

used for the EnKF, and 500 sets of parameters and corresponding final stock estimates 

were selected at random from the posterior distribution for the Metropolis algorithm.  

Since the EnKF gave parameter and final stock estimates closer to the truth, and 90% 

posterior estimates which contained the truth more frequently, it might be expected 

that the EnKF would outperform the Metropolis algorithm in forecasting iNEE.  This 

was not the case, as can be seen in figure 4.13.  In this figure we can see that, with the 

exception of the 1-year run, the EnKF estimates are only marginally closer to the truth 

than the Metropolis ones, for all the runs.  The root mean square error (RMSE) of the 

15 EnKF forecast estimates is 647 gCm-2 (or 223 gCm-2 if run 1 is not included) 

whereas for the Metropolis algorithm estimate it is 773 gCm-2 (or 310 gCm-2 if run 1 

is not included).  Here the RMSE is given by: 

( )
15

15

1

2)()(
∑

=
−

= i

ti ff
RMSE  

with 
)(if  denoting the forecast estimate for the ith run (table 4.2), and 

)(tf  is the true 

forecast value represented by the red line in figure 4.13.  An alternative way of 

measuring the accuracy of the forecasts is to compute the RMSE of the difference 

between the NEE trajectory produced by each of the 500 parameter sets used in the 

forecast and the true NEE trajectory. This is shown in figure 4.14. Similar to the iNEE 
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Figure 4.13 The predictions of cumulative NEE after 10 years for the EnKF and the 
Metropolis algorithm.  The red horizontal line shows the truth. 
 

 

 
Figure 4.14 The RMSE (root mean squared error) of the predictions of the NEE 
trajectory after 10 years. 
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plots shown in figure 4.13, one can see that there is a sharp improvement in the 

accuracy of the forecasts between 1 and 2 years.  This is probably because, in order to 

get the NEE trajectory of the forecast period to be close to the truth, you need at least 

2 years of assimilated NEE observations in order to model the interannual variability.   

The 5th-95th percentile intervals are much wider for the EnKF than for the Metropolis 

algorithm.  Conversely, the Metropolis algorithm’s posterior intervals appear 

unrealistically narrow in terms of representing real world uncertainty and in fact very 

few contain the truth (though most are close); this is discussed further in section 4.4. 

In terms of trends, increasing the length of the dataset improves the estimates for both 

the Metropolis algorithm and EnKF.   In addition, the Metropolis algorithm estimates 

of iNEE improve with a reduction in observation noise and with an increase in the 

density of observations.  For the EnKF, the RMSE values reduce and/or percentile 

intervals get narrower while still containing the truth with a reduction in observational 

noise and with an increase in the density of observations; however this improvement 

is much less than the effect of increasing dataset length for both DA schemes. 

 

4.3.9 Testing the robustness of the forecasts 

In section 4.4, we discuss the possible reasons into how the Metropolis algorithm in 

general had poor parameter estimates and uncertainties, but its resulting forecasts were 

very accurate with small uncertainties.  It could be argued that this is occurring 

because the Metropolis algorithm operates by finding parameter sets that give good 

fits of the model to the data; since the data is synthetic and is in a pseudo steady state, 

once good fitting parameter sets have been found they are likely to give good fits to 

the resulting forecasts.  A way of disrupting this pseudo steady state is to impose an 

artificial drought (as an example of a natural disturbance) which will serve as a means 

of determining the robustness of the estimated parameter sets in still giving accurate 

forecasts and small uncertainties. 

 The drought was created to be severe and was imposed in years 5 and 6 of the 

forecast period.  Since DALEC-D has no water component to it, this was achieved by 

changing two of the parameters of the ACM (Aggregated Canopy Model), the sub-

model of DALEC-D which estimates Gross Primary Production from the 

meteorological data, which were responsible for stomatal conductance.  These two 

parameters were the soil-water leaf potential different (phid) and the total plant-soil 
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hydraulic resistance (Rtot).  In DALEC and DALEC-D, these two parameters are 

treated as constants and fixed at phid = -2 and Rtot = 1.  In the water version of 

DALEC (Grace, 2005), the water dynamics of the model exists to estimate phid and 

Rtot for each time-step (i.e. they are not constants).  Therefore, a drought can be 

simulated by fixing these two constants at values which would result from low 

precipitation and very low soil water content (i.e. the environmental conditions of a 

drought).  Williams (2010) [personal communication] states that an artificial drought 

can be simulated in DALEC by changing the constants mentioned above to phid = -0.5 

and Rtot = 3.  In real-life, this change corresponds to the stomata in the leaf closing to 

reduce the amount of water transpiring, i.e. to conserve the water available to the 

plant.   

 The drought imposed forecasts are shown in figure 4.15.  Surprisingly, the 

RMSE between the drought-imposed forecasts and to the drought-imposed truth was 

584 gC/m² for the Metropolis algorithm (figure 4.15, top panel), whereas the original 

forecasts had an RMSE of 773 gC/m².  The EnKF’s forecasts showed a similar 

improvement when the drought conditions were imposed, with an RMSE of 496 

gC/m² (figure 4.15, bottom panel) compared to an RMSE of 647 gC/m² for the 

original forecasts.  These findings are discussed in section 4.4.   

 

4.3.10 Other results included as part of the discussion 

In this final subsection of the chapter 4 results, we include additional results to the 

original experiments and results to other modelling exercises.  These were done to aid 

the discussion in section 4.4.    

 

LAG PLOTS 

In subsection 4.2.10, it is suggested that a potential reason why the parameter 

estimates and uncertainties between the two DA schemes may not agree is because the 

residuals between the modelled NEE and the NEE data in the cost function for the 

Metropolis algorithm may be autocorrelated.  The autocorrelation in residuals for all 

15 runs was determined for different lags, and is graphically represented by lag plots.  

Figure 4.16 shows the lag plots for three of the runs and represents the variations in 

the lag plots among the runs. For four of the runs, namely 1, 2, 3 and 8, there was 

close to zero autocorrelation (e.g. run 2, left panel of figure 4.16). For 10 of the remain- 
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Figure 4.15 The forecast estimates and 5th – 95th percentile intervals of the EnKF and the 
Metropolis algorithm with a severe drought imposed in the central 2 years of the forecast 
period. 
 

 

Figure 4.16 Plots showing the autocorrelation for lags going from 1 to 25 for runs 2 
(left panel), 7 (central panel) and 12 (right panel). 
 

ing 11 runs, there was consistently positive autocorrelation which started around 0.25 

at lag 1 and very gradually dropped to between 0.15 and 0.2 after a lag of 25 (e.g. run 

7, central panel of figure 4.16).  For the final run, run 12 (right panel of figure 4.16), 

the autocorrelation was noticeably higher for all the lags starting at around 0.45 at lag 

1 and dropping to around 0.2 at lag 20.   
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An interesting observation from these lag plots is that the four runs which 

showed very little autocorrelation in the residuals (i.e. runs 1, 2, 3 and 8) were the 

same ones where there was most agreement between the parameter estimates and 

uncertainties of the Metropolis algorithm and the EnKF.  This is discussed further in 

section 4.4.  

 

PLOTS OF THE RMSE BETWEEN THE MODELLED & OBSERVED/TRUE NEE 

In addressing the hypotheses in the discussion section, one of the issues assessed was 

whether the fit of the post-DA modelled NEE to the NEE data improves with longer 

assimilated time-series, lower observational error and a greater density of data.  This 

fit for each of the runs is determined by computing the root mean squared error 

(RMSE) of the differences between the modelled NEE and observed NEE.  Thus the 

RMSE is computed for the difference between the modelled NEE to the true NEE.  

These plots are shown in figures 4.17 for the dataset length runs (runs 1 to 7), figure 

4.18 for the dataset density runs (runs 8, 9, 4, 10, and 11) and figure 4.19 for the 

observational error runs (runs 12, 13, 4, 14 and 15).   

 What is interesting about these plots is that for figures 4.17 and 4.18, while the 

RMSE and the 5th – 95th percentile interval remain unchanged for the ‘modelled vs 

observations’ plots for the Metropolis algorithm (panel b) between the different 

dataset length and data density levels, we do not see this for the ‘model vs true’ plots 

(panel a) where the RMSE is noticeably less for runs 1, 2, 3 and 8, the only runs to not 

have autocorrelation in their cost function residuals.  For figure 4.19b, unlike panel (b) 

from the previous two figures, the RMSE and 5th – 95th percentile interval changes 

for different observational error.  In particular, it reduces as the observational error 

gets less.    Extending the line joining the  RMSE median values for the observational 

error runs (12, 13, 4, 14 and 15) as the observational error tends to zero, the RMSE 

appears to extend to a value between 0.3 and 0.4.  This is confirmed when the RMSE 

and percentile interval was computed for an extra run where the observational error 

was 0.05 gCm-2.  One would expect the RMSE to tend to zero as the observational 

error tends to zero, so the fact that it does not is unusual.  Given that the most of the 

runs which had autocorrelated residuals also had poor Metropolis algorithm parameter 

estimates, it is reasonable to assume that this unusual behaviour noted above about 

figure 4.19b is due the autocorrelated residuals.   
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Figure 4.17 The mean, 5th and 95th percentile values of the RMSE between the modelled 
NEE and the true NEE [for (a) & (c)], and, the RMSE between the modelled NEE and 
observed NEE [for (b) and (d)] during the DA period corresponding to 500 randomly 
chosen parameter sets from the posterior distribution (for the Metropolis algorithm) or 
the parameter sets from all 500 ensembles (for the EnKF).  These were calculated for the 
runs where dataset length varied. 
 

 
Figure 4.18 The same as figure 4.17 except the plots correspond to where data density 
varied (i.e. runs 8, 9, 4, 10, 11). 
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Figure 4.19 The same as figure 4.17 except the plots correspond to where observational 
error varied (i.e. runs 12, 13, 4, 14, 15).  An additional run of the Metropolis algorithm 
was carried out with the same length and data density as these 5 runs but the 
observational error was sd=0.05gCm-2.  
 

ENTROPY 

One way to assess the contribution of the observations is to determine how the entropy 

has changed from the prior to the posterior distribution of the parameters.   This 

change in entropy is called Mutual Information (Rodgers, 2000).  As entropy is a 

measure of uncertainty, for a Normal distribution it is connected to the variance in 1 

dimension or the error covariance matrix otherwise.  Eyre (1990) defines entropy and 

Mutual Information (MI) as: 

Entropy = ���� = � ���� ln��� �� = �	�(2
�)�/� +
�

�
ln	|��| 

MI = ���� – ���|�� =
�

�
ln	|���

��| 

where �� is the error covariance matrix of a general multivariate random variable Z of 

dimension n, while matrices B and ��  are the error covariance matrices 

corresponding to the prior and posterior distributions X and X|Y.   In the context of 

this chapter, X and Y are random variables corresponding to the prior parameter 

distribution and data respectively.  Due to dataset length having most impact on the 

parameter estimates and due to the issues surrounding the Metropolis algorithms 
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affecting some of the runs, MI was computed for runs 1 to 7 for the parameters and 

distributions estimated using the EnKF only.  As we are predominantly interested here 

in quantifying the impact of the observations on the parameters and their 

corresponding distributions, the entropy calculated here for the prior and posterior 

distributions, namely ���� and ���|��, the augmented state vectors are shrunk to 

only include the parameter components.   

 A practical interpretation of entropy is that it gives a single value for the 

spread of the distribution, which is very useful for multivariate distributions where the 

spread of the distribution is quantified by the error covariance matrix which can be 

very large.  Therefore the MI quantifies, again as a single number, the change in the 

spread of the posterior distribution relative to that of the prior distribution.  The 

second column of table 4.9 below show MI for runs 1 to 7 which correspond to the 

runs where the dataset length varied from 1 year to 50 years.  We can see that there is 

a marked increase in MI for runs 5 to 7 compared to runs 1 to 4.  Since the entropy for 

the prior distribution of the parameters is fixed, by the formula for MI given above 

this means that the posterior distribution is narrower than the prior distribution to a 

greater extent for runs 5 to 7 compared to runs 1 to 4.   In other words, the effect of 

assimilating a longer dataset is to cause a narrowing of the posterior distribution of the 

parameter space. 

   The third column of table 4.9 shows how far the mean vector of the parameter 

components only of the augmented state vector of the posterior distribution	has moved 

compared to the mean vector of the prior distribution.  To be explicit, if �� and �� 

refer to the mean vector of the prior (or forecast) and posterior (or analysis) 

distributions, and B is the error covariance corresponding to the prior, then the values 

the third column of table 4.9 are calculated using the following formula: 

(��−��)����(��−��) 

With the exception of the 20 year run, we can see in the third column of table 4.7 that 

as the length of the dataset increases, the mean vector of the parameter elements of the 

augmented state vector from the posterior distribution move further away from the 

mean vector from the prior distribution.  These issues are briefly discussed in 

subsection 4.4.6. 
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Run Mutual Information 

 

‘Posterior’ minus ‘Prior’ 

mean vector 

1 (1 year length) 15.53 1.60 

2 (2 year length) 16.48 2.19 

3 (5 year length) 17.34 3.02 

4 (10 year length) 16.18 4.87 

5 (20 year length) 21.64 0.29 

6 (30 year length) 20.71 3.69 

7 (50 year length) 19.58 4.82 
 

Table 4.9 The mutual information of the prior and posterior parameter distributions 
(second column) and the location of the mean vector of the posterior parameter 
distribution standardised against the prior distribution (third column) for runs 1 to 7 
(where dataset length varies). 

 

4.4 Discussion 

4.4.1 Summary of results and layout of discussion section 

SUMMARY OF RESULTS 

The length of the dataset is much more important than the density of the observations 

or the level of observational error when estimating the DALEC-D parameters based 

on NEE observations (subsection 4.3.1).  Datasets of between 5 and 10 years in length 

are required in order to get good parameter estimates for the EnKF, and good forecast 

estimates for both DA schemes.   

The REFLEX project found that different DA techniques can produce 

markedly different parameter estimates and uncertainties even when the same dataset 

and the same model were used (Fox et al., 2009).  The results here showed similar 

behaviour.  The EnKF produced markedly more accurate estimates of the parameters 

and final C stocks than the Metropolis algorithm.  In addition, 88% of all the DALEC-

D parameter estimates and 83% of all the 6 final C stock estimates from the EnKF had 

90% posterior intervals which contained the truth.  For the Metropolis algorithm, the 

corresponding percentages were 40% / 46% (if averaging over 17 / 23 parameters) and 

53%.  For the EnKF, the parameter and final C stock estimates were closer to the truth 

for longer datasets, smaller observational error and a greater density of observations, 
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though the effect of dataset length was greater than the other two factors.  In contrast 

for the Metropolis algorithm, the parameter and final C stock estimates were in 

general closer to the truth for shorter datasets, larger observational error and a smaller 

density of observations (tables 4.3 and 4.4).  When the sets of estimated parameter and 

final C stocks were used to forecast 10 years of cumulative NEE, the Metropolis 

algorithm produced narrower 5th-95th percentile intervals than the EnKF, though the 

estimates were similar (figure 4.13).  For both DA schemes, the effect of dataset 

length on the forecasts was much greater than the other two factors.   

 

LAYOUT OF DISCCUSION SECTION 

The remainder of this section contains three parts:  First of all, in subsections 4.4.2 – 

4.4.4 we discuss why the EnKF was better at estimating parameters while the 

Metropolis algorithm gave more confident forecasts – particular focus is on trying to 

explain why the parameter estimates from the two DA schemes were so different for 

most of the 15 runs.  Subsection 4.4.2 identifies, that for the runs where there are 

differences in the results between the two DA schemes, the global minimum is not 

being reached for the Metropolis algorithm runs; possible reasons why this is 

happening are also included.  Subsections 4.4.3 and 4.4.4 then outline two key 

implications for not reaching the global minimum for these runs, in particular 

parameter equifinality and the autocorrelation of the residuals in the cost function.   

In the second part (subsections 4.4.5 and 4.4.6), we first compare our results 

with our expectations of them.  We then consider more general issues surrounding the 

results, which include: (i) the significance of the unchanging posterior uncertainties 

for varying observational error; (ii) whether we see a reduction in the posterior 

uncertainties on the parameter estimates compared to the prior uncertainties; (ii) trying 

to explain the differences in the posterior uncertainties on the parameter estimates 

between the two DA schemes; (iv) determining the robustness of the forecasts, 

particularly those from the Metropolis algorithm; (v) assessing the entropy of the 

results. 

Finally the third part (subsection 4.4.7) addresses the hypotheses in terms of 

whether these are likely to be correct or not based on the evidence from the results. 
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4.4.2 The reason for the differences in parameter estimates and 

uncertainties between the two DA schemes 

SITUATIONS WHERE THE TWO DA SCHEMES GIVE SIMILAR RESULTS 

Before try to explain the differences, it is first worthwhile outlining where there are 

similarities in the results.  For runs 1, 2, 3 (which correspond to the dataset length 

being 1 year, 2 years and 5 years) and run 8 (where the dataset density was 0.2) we 

find that the Metropolis algorithm gives very similar results to the EnKF.  Table 4.10 

summarises this agreement among the two DA schemes for these four runs (see 

figures 4.6a and 4.7a) and also for the REFLEX (figure 2.11) where the same two DA 

schemes were used.  Of the 17 DALEC-D parameters, there are between 10 and 14 

parameters whose posterior estimates agreed well among the two schemes, and 

between 14 and 15 parameters where there was good agreement with the width of the 

uncertainty intervals.  The dataset used in REFLEX is most similar to the one from 

run 2, as it had similar data density and observational error characteristics and was on 

length two years.  In REFLEX we can see that there are 13 parameters where there is 

good agreement in parameter estimates amongst the two DA schemes, and 13 agree 

well in terms of the uncertainty width.  We would not necessarily expect there to be 

exactly the same numbers of parameters where there was agreement between the 

parameter estimates and uncertainties since the data used was based on a different site 

to what is used here.  However, we nonetheless see a similar number of parameters 

agreeing to those from run 2 in particular, which is encouraging.   

 Furthermore for runs 1 to 3 (where dataset length increased from 1 year to 2 

years to 5 years) we see from the bottom panel of figure 4.6a more of a consistent 

pattern of the parameter estimates moving closer to the true value as the dataset length 

increases, as was seen with the EnKF runs (table 4.4a), compared to when all of the 

dataset length runs are considered.  Furthermore, runs 1, 2, 3 and 8 have the highest 

percentages (76% - 88%) of parameters where the posterior uncertainty interval 

contains the true values compared to the remaining 11 runs where the percentages 

range from 18% to 41%.  

 The question therefore remains as to why these four runs result in more 

consistent parameter estimates and uncertainties between the two DA schemes, are 

more closely matched to what is hypothesised, and are more consistent with the true 

parameter values.   The likely reason is that for these four runs,  there is close to zero 
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         Parameter estimates          Uncertainty interval width 

 Good 

agreement 

Fairly good 

agreement 

 Good 

agreement 

Fairly good 

agreement 

Run 1 10 6  14 3 

Run 2 12 4  15 2 

Run 3 13 3  14 1 

Run 8 14 2  14 1 

REFLEX 13 3  13 4 
 

Table 4.10 The numbers of parameters where there is good or fairly good agreement 
of the parameter estimates and widths of the uncertainty intervals between the 
Metropolis algorithm’s parameter estimates and those determined from the EnKF. 
 

autocorrelation in the residuals of the cost function used for the Metropolis algorithm 

as can be seen in the lag plot for run 2 as an example (left panel of figure 4.16). In 

contrast, the autocorrelation is significantly higher and remains the same sign for the 

different lags of the remaining runs as can be seen in the lag plots for runs 7 and 12 

(central and right panel of figure 4.16).  This is discussed in greater detail in 

subsection 4.4.4.   

 

EVIDENCE FOR THE REMAINING 11 METROPOLIS ALGORITHM RUNS NOT 

AT THE GLOBAL MINIMUM 

The most obvious reason why the Metropolis algorithm’s parameter estimates for the 

11 ‘bad’ runs were mostly far from the true values may have been because the chains 

in each of these runs are not at the global minimum of the parameter space which the 

algorithm was searching.  Evidence for this can be found by determining the value of 

the cost function (the mismatch between the modelled and observed NEE) for a 

sample of parameter sets at the minimum where the algorithm converged to and also 

the value of the cost function corresponding to the true parameter set; this is shown in 

figure 4.20.  

We can see from figure 4.20 that for runs 1, 2 and 3, the mode of the 

distribution of posterior cost function values was lower than that of true parameter set 

(left plot of figure 4.20).  This is extremely interesting because it means that the true 

parameter set is not at the global minimum (although it does lie within the 5th-95th 

percentile range). This suggests that the model or the algorithm is sensitive to the noisy 
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Figure 4.20 The distribution of sum of squared difference values between the 
modelled NEE and the observed NEE for runs 1, 8 and 15 of the Metropolis algorithm 
(table 4.2).  For each run, the distribution was constructed from 500 sum of squared 
difference values, where the modelled NEE was obtained from 500 randomly selected 
parameter sets from the posterior distribution.  The vertical red dotted line is the sum 
of squared difference value between the true NEE (i.e. the NEE trajectory obtained 
from a forward run of DALEC-D using the true parameter set).   
 

observations, i.e. the problem is ill-conditioned.  By this, we mean that although the 

algorithm has converged to the global minimum, this is not where the true parameter 

set is.  This means that it is impossible for the modal value of the posterior distribution 

to be the same as the true parameter values.  This is probably caused by the data being 

too noisy and too sparse thus extracting the ‘true NEE’ is impossible, although we can 

get close since the true parameter set is at least in the posterior distribution.  For one 

of the runs (8), the mode was close to the cost function value of the true parameter set 

(central plot of figure 4.20). 

For the remaining 11 runs, the ‘bad runs’ where we observed the significant 

differences in the parameter results between the two DA schemes, the value of the 

cost function for the true parameter set was significantly less than any of the cost 

function values for the parameter sets in the posterior distribution (e.g. run 15, right 

panel of figure 4.20).    This means that the global minimum is not being reached and 

so the Metropolis algorithm is not functioning as well as it should.  This is very 

unlikely to be the result of any implementation issues as this has been thorough 

investigated and checked (see subsection 2.3.3 and 2.3.4).  It is certainly not a 

convergence issue, as convergence was ensured by the Gelman criteria (subsection 

4.3.2) and by plotting the cost function against the different dimensions of the 

posterior parameter space (subsection 4.4.2) where the we observed a flat line strongly 

indicating that the minimum had been reached.  The only feasible explanation that has 

been explored in the results is that the residuals of the  modelled NEE and the NEE 

data in  the likelihood function are autocorrelated.  This is discussed further in the 
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subsection 4.4.4.  However, because of this unresolved issue with these 11 runs, it is 

difficult to draw any conclusions from them because of the consistent strange and 

poor behaviour resulting from them.  Therefore, it is decided these 11 runs, for the 

Metropolis algorithm runs only, are to be removed from the conclusions to this 

chapter.  This is discussed further in the subsection 4.4.4. 

 

POSSIBLE REASONS WHY THE 11 METROPOLIS ALGORITHM RUNS ARE 

NOT AT THE GLOBAL MINIMUM 

We next discuss four possible reasons for lack of convergence to the global minimum 

for these 11 runs from the Metropolis algorithm: (i) an implementation issue; (ii) the 

Metropolis algorithm is solving a slightly different optimization problem to the EnKF; 

(iii) the type of step-size used; (iv) the initialisation of the algorithm from the same 

locations rather than random locations. 

A possible factor which may be causing or partly responsible for the 

divergence in estimates of the parameters and uncertainties of the Metropolis 

algorithm from the truth is that the algorithm has not been implemented correctly.  

There are two reasons why there is no evidence that this is true.  First of all, if there 

was an implementation issue, we would expect the results from all 15 runs to be 

different and for the other runs not to reach the global minimum.  The fact that the 

results are very similar between the two DA schemes and the Metropolis algorithm 

reaches the global minimum for 4 of the runs suggests that other reasons are causing 

the differences in the remaining runs (subsection 2.3.3).  Secondly, a test run were 

carried out in chapter 2 using both DA algorithms.  In this test run, the data and prior 

distribution were prescribed very low noise and for both DA schemes the vast 

majority of the estimated parameters were very close to the true values, with the 

posterior uncertainty narrow but containing the truth.   

If two DA schemes are being used to estimate parameters and their 

distributions but the setups in each case is slightly different, it could be argued that the 

DA schemes are solving different optimization problems.  We now show that this is 

not true.  Both DA algorithms are based on Bayes’ theorem, although they operate in 

different ways (i.e. the EnKF is sequential and the Metropolis algorithm is a batch 

method) and so under the same assumptions both should result in the same or 

approximately the same posterior distributions.  In this chapter there are two minor 
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differences in the setup of the two algorithms.  First of all the log-Normal distribution 

is used for the prior for the Metropolis algorithm in order to ensure the distribution 

does not cover non-physical parameter values  such as negative values.    It also means 

that all the log-Normalised parameters have the same mean and variance.  In contrast 

the prior distribution used in the EnKF is Normal.  Despite the different prior 

distribution for the model parameters, it is important to note that the log-Normalised 

prior parameters used in the Metropolis algorithm follow a Normal distribution and 

have the same prior variance, relative to the prior mean, to the Normal prior 

distribution used for the parameters in the EnKF.  Therefore we are still in effect 

solving the same optimization problem.  The other minor difference in the setup is that 

the Metropolis algorithm assumes no model error but the EnKF incorporates a very 

small model error.  As stated in subsection 4.2.10, 13 out of the 15 runs used in this 

chapter assimilate datasets with at least 60% of daily data present, and so there are 

never large enough gaps between data points for the model error to grow to anything 

beyond insignificant.  Therefore despite the two DA schemes having slightly different 

setups, there is no evidence that the resulting differences in the posterior distributions 

would be very small if any.  Evidence of this can be seen when the parameter 

estimates and uncertainties from the REFLEX project, where these exact two DA 

methods with the same setups, were used.  The relevant plot can be found in 

subsection 2.3.4, where more detail is given along with subsection 4.2.10.  

A further possible reason for the lack of convergence to the global minimum 

could be the type of distribution used.  The proposal distribution used in the 

Metropolis algorithm for this setup is discrete, as opposed to being continuous as it the 

norm with a more traditional setup of the algorithm.  The chains of the Metropolis 

algorithm were also all initialised from the same location in the parameter space rather 

different locations, and this may have resulted in convergence to a local minimum 

rather than a global one.  However, as with the other possible reasons, a counter-

argument to these final two possibilities is why convergence to the global minimum 

was still reached for four of the runs.  These issues are other types of implementation 

issues, and it is unusual that if these are the reasons why they are not causing the other 

four runs to not convergence to the global minimum. 

Given these four possible reasons, the cause of the lack of convergence to the 

global minimum for these remaining eleven runs is unknown.  An interesting exercise 
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would be to repeat all 15 of the Metropolis algorithm using a more traditional version 

of the algorithm as outlined at the start of subsection 2.2.8. 

 

EFFECTS OF THE METROPOLIS ALGORITHM NOT BEING AT THE GLOBAL 

MINIMUM: EQUIFINALITY AND AUTOCORRELATION OF THE RESIDUALS 

IN THE COST FUNCTION 

Equifinality occurs when different parameter sets result in equally good fits of the 

model outputs and data.  It is known problem and has been investigated or identified 

as a potential reason for causing differences in parameter estimates and uncertainties 

using batch DA schemes such as the Metropolis algorithm, as highlighted in Tang & 

Zhang (2008), Williams et al. (2009), Medley et al. (2005) and Luo et al. (2011). This 

is investigated in detail in relation to the results from this chapter in subsection 4.4.3. 

 Although the noise added to the true NEE data is guaranteed to be independent 

in time, there is no such guarantee for the residuals between the modelled NEE and 

the NEE.  An assumption of the cost function used for the Metropolis algorithm is that 

the residuals are not autocorrelated, therefore if they are this could result in biased 

parameter estimates and uncertainties.  If the residuals are autocorrelated for the 

likelihood function used in the EnKF, this does not matter because unlike the 

likelihood in the Metropolis algorithm which involves all the data, the likelihood for 

the EnKF only involves the data at one time point.  In the results of this chapter the 

residuals were found to be autocorrelated in the 11 of the 15 runs, the same 11 runs 

where there were considerable differences in the parameter results between the two 

DA schemes, compared to the remaining 4 runs where the parameter results were very 

similar.  Therefore, as a result of the lack of convergence to the global minimum, this 

is potentially the cause of the divergence in parameter estimates between the EnKF 

and Metropolis algorithm as observed in the results.  This is discussed further in 

subsection 4.4.4. 

 In subsections 4.4.3 and 4.4.4 that now follow, we go into more detail of the 

evidence and implications of equifinality and autocorrelation of the residuals in the 

cost function. 

 

4.4.3 Equifinality 

The results showed that the Metropolis algorithm was far worse than the EnKF at est- 
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imating parameter and the final C stocks, but gave more accurate forecasts.  The most 

likely reason for this is that the structure of the model introduces “equifinality” (Tang 

and Zhang, 2008; Williams et al., 2009).  This is where a set of parameters that is 

different to the true parameter set can give a near optimal fit to data.  There is strong 

evidence of this affecting the Metropolis algorithm’s results because, although the 

corresponding parameter estimates deteriorate in most cases with longer/more 

dense/less noisy datasets, the fits of the modelled NEE to the observed NEE during 

the DA period remained more or less unchanged, with narrow percentile intervals 

(figure 4.21), although the RMSE is noticeably less for runs 1, 2, 3 and 8 (table 4.2).   

 

EQUIFINALITY AND THE METROPOLIS ALGORITHM 

One reason why equifinality is occurring is because the output of the model (i.e. NEE) 

may be insensitive to changes in a number of the parameters, and in fact only a select 

few have significant influence.  We tested this by performing sensitivity analysis (SA) 

on the DALEC-D model to see how sensitive NEE accumulated over 1 year was to 

changes in the parameters.  The details of this sensitivity analysis are not included 

here because the output used in the sensitivity analysis was chosen to be the root mean 

squared error (RMSE) between the modelled NEE and the true NEE, since the output 

could only be scalar.  This was perhaps a bad choice for the output, and an arguably 

better one would have been the iNEE, i.e. NEE aggregated over all the time points.   

Despite this, the results to this sensitivity analysis did suggest that there are 

some parameters that have the largest influence on the modelled NEE, and that there 

are other ‘redundant’ parameters that have little effect.  If this is true, then as stated in 

the previous subsection, the equifinality observed in the results may in part be due to 

two things: 

(i)  For the parameters that have the largest influence on the modelled NEE, the value 

the Metropolis algorithm chooses is based on which gives the best fit of the 

modelled NEE to the observed NEE.   

(ii)  For the redundant parameters, they can take any value and they will have little 

effect on the trajectory of modelled NEE at any iteration of the Metropolis 

algorithm.  This is because when the Metropolis algorithm searches the parameter 

space for the region resulting in optimal fits to the NEE observations, there is little 

information in the NEE observations to decide what the optimal values of these re- 



Chapter 4: Sensitivity of DA to changes in dataset length, density and error. 

Edmund Ryan - 253 - 2013 

 
Figure 4.21. The mean, 5th and 95th percentile values of the RMSE (root mean squared 
error) between the modelled NEE during the DA period corresponding to 500 
randomly chosen parameter sets from the posterior distribution of the Metropolis 
algorithm and the observed NEE. 
 

 dundant parameters should be.  Therefore, the choice of these parameters is based 

on how correlated they are with the other parameters which have more influence 

on the modelled NEE.   

Inspecting the parameter correlations for the posterior distributions, shown visually 

for four runs in figure 4.12, we see high correlations between many pairs of 

parameters.  Therefore, if equifinality is the cause of the differences in Metropolis 

algorithm’s parameter estimates and uncertainties to the EnKF’s ones, then it is very 

reasonable to suggest that the posterior parameter correlations may be influencing the 

estimations of these ‘redundant’ parameters.  Despite these reasonable arguments 

there is insufficient evidence from the results to support them, therefore we are not 

able to explain the causes of equifinality here.  However, what is undisputed however 

is that it is happening and we see this clearly in the results.   

 

HOW DOES EQUIFINALITY RESULT IN GOOD FORECASTS? 

One important question is: how does equifinality result in the Metropolis algorithm 

producing good forecasts?  Since the meteorological data has no extreme events (e.g. 

droughts) and the atmospheric CO2 levels are constant throughout the 50 year DA 

period and 10 year forecast period, the trajectory of the true NEE is very periodic.  

Although the observations have noise and gaps, the periodicity of the true NEE 

trajectory is preserved.  This periodic nature is continued during the forecast period.  

Therefore, once the Metropolis algorithm has found an optimal fit to these 

observations, it has essentially found an optimal fit to the true NEE.  Thus, it is likely 

that a set of estimated parameters which resulted in a good fit to the NEE observations 

during the DA period will also result in the modelled NEE being close to the true NEE 
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during the forecast period.    

In figure 4.21, we can also see that the 5th – 95th percentile intervals are very 

narrow for all 15 runs.  Thus, it is perhaps expected that the percentile intervals would 

also be narrow for the distribution of values of RMSE of the modelled versus the true 

NEE trajectory during the forecast period, as can be seen in figure 4.14.  Therefore, it 

is no surprise that the distributions of iNEE forecasts for the Metropolis algorithm is 

narrow (figure 4.13).  The exception to this though is the 1 year dataset run, which has 

a very large percentile interval.  As explained in subsection 4.3.4, this is probably 

because in order to get the NEE trajectory of the forecast period to be close to the 

truth, you need at least 2 years of assimilated NEE observations in order to get the 

interannual variability correct. 

Finally, it is important to make the distinction between the uncertainty estimate 

represented by the percentile intervals of the forecasts and real-world representation of 

uncertainty.  As explained above, it is perfectly reasonable that the percentile intervals 

for the Metropolis algorithm are narrow, but this does not mean that the actual 

uncertainty intervals we might expect for such a forecast would be as narrow.  For 

example in run 3, the 10 year forecast estimate is approximately -2200 +/- 200 gC/m², 

i.e. the percentile interval is approximately +/- 10%.  Considering 5 years of 

assimilated data is used to make a 10 year forecast, the interval on this forecast does 

appear unrealistically narrow.  This over-confidence of the Metropolis algorithm is a 

limitation of the algorithm.   

 

THE ENKF 

Equifinality due to the structure of the model can also affect the EnKF parameter 

estimates, but its impact is likely to be less than for the Metropolis algorithm.  This is 

because the EnKF does not try to find the best fit of modelled NEE to the observed 

NEE for the entire dataset, as the Metropolis algorithm does.  Instead it compares 

modelled NEE with the observed NEE one time-step at a time.  This explains why 

most of the parameter estimates improve when assimilating longer, more dense and 

more accurate datasets.   

An interesting observation is that the EnKF’s parameter estimates have 

moderately narrow posterior intervals relative to the parameter estimates, yet the 5th – 

95th percentile intervals of its forecasts are a lot wider than the Metropolis algorithm’s. 
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This is because using the estimated parameters (even though some come from 

assimilating very long datasets) to forecast so far into the future (10 years) is likely to 

result in large spread.  If the forecast period was much shorter, say 1 year, the 

intervals would be a lot narrower. Figure 4.23 shows iNEE annual forecasts for each 

year of the 10 year forecast period,  for run 4 (table 4.2) which had a dataset length of 

10 years, observational noise of 0.58 gC/m², and a data density of Rg = 0.6.   In the 10 

year forecast plots (figure 4.13), the length of the percentile interval for run 4 is 

around 3000 gC/m², which is 300gC/m² on average per year.  In the top panel of figure 

4.22, we can see that the length of the percentile interval is around 150 gC/m² for the 

1st year of the forecast period.  For subsequent years, the interval gets wider and 

wider, which is what would be expected since the forecasts are further into the future.  

This also happens for the Metropolis algorithm (lower panel of figure 4.22), but much 

less so than the EnKF.  Therefore, when one compares the 1 year forecast of the EnKF 

with that of the Metropolis algorithm, the difference in the size of the percentile 

intervals is not as great as for the 10 year forecast (figure 4.13).   

Even when comparing the 1 year forecasts, there is still a large difference is 

percentile interval sizes between the two DA schemes.  Rather than being due to the 

EnKF interval size being too large, it is more likely that the Metropolis algorithm’s 

interval size is too narrow.  As explained, this is because the Metropolis algorithm 

minimises the difference between the observed and modelled NEE; therefore the 

RMSE of the difference between the true and modelled NEE of the parameter sets in 

the posterior distribution is very narrow (figure 4.21). Hence the distributions of iNEE 

forecasts are also narrow (figure 4.13).  As stated earlier, this does not mean that the 

narrow distribution of the forecast estimates from the Metropolis algorithm represents 

the real-world estimate of the uncertainty of such a forecast.   

 

LIMITING THE EFFECTS OF EQUIFINALITY 

Although equifinality amongst the Metropolis algorithm runs was only observed as 

the 11 runs which it is has been decided should be excluded from this chapter, it is still 

worthwhile briefly explaining how equifinality can be avoided.  Equifinality is a 

problem because for the Metropolis algorithm, parameter sets other than the true 

parameter set can produce optimal fits of modelled NEE to the observed NEE.  The 

sensitivity analysis results indicated that it is likely that equifinality may be in part due  
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Figure 4.22 The forecast iNEE for run 4 of the EnKF (upper panel) and the 
Metropolis algorithm (lower panel) (dataset length=10 years, Observational 
error=0.58gC/m², data density (Rg)=0.6), calculated on a year by year basis rather 
than over 10 years.  The lower and upper bounds of the error bars are the 5th and 95th 
percentiles, and the cross is the mean.  The red line is the true iNEE.   

 

to redundant parameters in the model which have minimal effect on the modelled 

NEE.  One way of minimising the effects of equifinality is by constraining more of the 

processes of the model.  This can be done by changing the structure of the model to 

impose more constraints on the model equations.  Additionally, assimilating other 

types of observations is likely to be beneficial.  Richardson et al. (2010) used a variant 

of the Metropolis algorithm to show that when more types of observations are 

assimilated, the uncertainties of the parameters reduce and the predicted states match 

more closely to the observations.   

 

4.4.4 Autocorrelation of residuals 

In the results (subsection 4.3.10), plots of the autocorrelation function (ACF) or lag 

plots were constructed for each of the 15 runs to determine the autocorrelation of the 
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residuals in the cost function used in the Metropolis algorithm.  It was found that runs 

1, 2, 3 and 8 (table 4.2), corresponding to runs where the dataset length was 1, 2 and 5 

years and where the data density was 0.2, had close to zero autocorrelation for the 

different lags (e.g. run 2, left panel of figure 4.16).  For the remaining 11 runs, non-

insignificant and consistent autocorrelation was discovered (e.g. runs 7 and 12, central 

and right panels of figure 4.16). Although it is difficult to determine the effect of 

autocorrelated residuals, a number of patterns have emerged in the results.  For each 

of these 11 runs from the Metropolis algorithm, it was found that: 

(i) Most of the parameter estimates were far from the truth and very few of the 

posterior uncertainty intervals contained the truth.  The converse was true for the 

other 4 runs. 

(ii)  Most of the posterior parameter estimates were very different to the EnKF’s ones.  

The converse was true with the other 4 runs. 

(iii)  The modelled NEE using the parameter sets from the posterior distribution fitted 

the NEE data worse, compared to other 4 runs (figure 4.22).    

(iv) The true parameter set had a cost function value which was significantly lower 

than those computed from the parameter sets in the posterior distribution.  The 

true parameter set was contained in the posterior distribution for the other 4 runs. 

While it is difficult to say for definite that these four poor features of the results in 

these 11 runs are linked to the autocorrelation of the residuals, it seems very unlikely 

that these effects occurred by chance.  Above all, the poor behaviour of the results 

from the Metropolis algorithm for these 11 runs is of great concern and makes it 

difficult to draw any meaningful conclusions from these runs.  Therefore, as stated at 

the end of the previous subsection, it is decided that these 11 runs should be excluded 

from any conclusions to this chapter and in particular when addressing the hypotheses. 

 Autocorrelation in the residuals in the cost function when using the Metropolis 

algorithm has been identified by Vrugt et al. (2005), and Feyen et al. (2007) suggested 

a transformation of the residuals in order to reduce or eliminate the this 

autocorrelation.  An interesting study involving the Metropolis algorithm to estimate 

the parameters of the CASA model also using synthetic data (MacBean et al., 2010) 

used the following likelihood function: 

2( | ( )) ( ) (0, )P D f f D NΘ Θ σ= − =  

where D represents the data, ( )f Θ is the model output using a particular set of param- 
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-eters Θ .  The likelihood is then determined as a random sample from the Normal 

distribution with mean zero and a variance 2σ  calculated from the variance of the 

residuals.  A key advantage of this approach is that it is a simple but effective way of 

eliminating the autocorrelation of the residuals in the likelihood function.    

 

4.4.5 How the results compare with our expectations of them 

In subsection 4.2.10, expectations of the results in this chapter are described.  In 

summary, it is stated there that although the two DA schemes are setup in slightly 

different ways, this was not expected to cause anything beyond insignificant 

differences in the posterior parameter distributions.  This was demonstrated by 

referring to the REFLEX study (Fox et al., 2009) where the same two DA algorithms 

used in this chapter were used there and gave very comparable parameter estimates 

and uncertainties.  As a result of this, we expected the runs corresponding to the 

shorter datasets to have similar results between the algorithms because the data used 

in REFLEX covered only 2 years of daily data.  This turned out to be true.  For the 

runs corresponding to the dataset lengths of 1, 2 and 5 years (runs 1, 2 and 3 from 

table 4.2), the parameter estimates and uncertainties were very similar for both 

schemes as described at the start of subsection 4.4.2.   

For the remaining runs, i.e. where the dataset length was higher and where the 

observational error and dataset density varied, it is stated in subsection 4.2.10 that it is 

unclear what to expect from the results.  Instead, possible factors were considered that 

may result in the results between the two DA schemes being different.  The first was 

equifinality occurring when using the Metropolis algorithm, and certainly evidence 

was seen in the results where the biased parameter estimates and over-confident 

uncertainty intervals resulted in good fits of the modelled NEE to the NEE data during 

the DA period but also during the forecast period.  However, it has been difficult to 

understand why this is happening for certain runs and not others.  The other main 

potential reason given for the differences was one of the assumptions being broken, 

such as autocorrelation of the residuals in the cost function.  For 11 of the remaining 

12 runs from table 4.2, it was found that the cost function residuals as used in 

Metropolis algorithm were indeed autocorrelated for a number of lags.  It was for 

these 11 runs, that the only differences in the results between the two DA schemes 

were observed, as outlined in subsection 4.4.4.  Although no link has been provided 



Chapter 4: Sensitivity of DA to changes in dataset length, density and error. 

Edmund Ryan - 259 - 2013 

between the autocorrelation of the residuals in these runs and the poor results for the 

Metropolis algorithm, it seems unlikely that this happened by chance.   

Further evidence of the autocorrelated residuals resulting in poor parameter 

estimates and uncertainties can be found when the result of the final run, namely run 8 

is considered.  In run 8 the data density is 0.2, in other words the data is most thinly 

spread in the dataset.  As a result of this it is less likely we would see temporal 

correlations of the residuals because the data are so sporadic. This is exactly what 

occurs.  Like runs 1, 2 and 3, run 8 also had close to zero autocorrelation in the 

residuals of the cost function used in the Metropolis algorithm.  As with runs 1 – 3, we 

then also see that the Metropolis algorithm’s results are very comparable to those from 

the EnKF.   

 As stated in the previous subsection the 11 runs, where we saw poor results 

from the Metropolis algorithm, have now been removed from the conclusions of this 

chapter and when addressing the hypotheses.  This is because it is difficult to draw 

conclusions from poor results, which appear to be due to a violation of the 

assumptions of the Metropolis algorithm. 

 

4.4.6 Other relevant issues 

UNCHANGING POSTERIOR UNCERTAINTIES FOR VARYING OBSERVAT-

IONAL ERROR 

As stated at the end of subsection 4.3.3, the results from the EnKF runs indicate that 

the posterior uncertainty remains unchanged with increases in the observational error.  

This is intriguing and potentially important because it suggests that assimilating very 

noisy data is just as good as assimilating non-noisy data.  A practical application of 

this is the florescent data retrieved from the GOSAT satellite (Guanter et al., 2012).  It 

is hoped that this data will be assimilated into a model, however there has been 

concern over this due to the excessively noisy nature of the signal.   The results from 

this thesis suggest that despite this noisy data, assimilating it into a model will still 

result in near optimal solutions to parameters and model states.   

 

POSTERIOR PARAMETER ESTIMATES AND UNCERTAINTIES COMPARED 

TO THE PRIOR 

In subsection 4.3.6 it was found that most of the parameter estimates from the posterior 
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distributions of all of the EnKF runs had a reduced uncertainty interval, whilst still 

containing the truth, compared to the prior uncertainty intervals.  For the Metropolis 

algorithm, the same reduction in uncertainty was found in the runs corresponding to 

the dataset length of 1, 2 and 5 years and a data density of 0.2 (runs 1, 2, 3 and 8 from 

table 4.2).  These reductions in uncertainty in the parameter estimates are encouraging 

to see but also key for DA to be of worth doing.   

 For many of the parameters, the reductions in uncertainties were very large 

(e.g. Fg, Fnf from table 4.6) but this is partly due to the prior uncertainty being large, 

sometimes covering the entire parameter range.  However for other parameters the 

prior uncertainty was narrower, but this narrowness is not necessarily a good thing.  

For example for Tlab (figure 4.6a), the prior uncertainty interval does not contain the 

true value.  One could argue that in reality, as we do not know the true value, the prior 

uncertainty on the parameter estimates may be over-confident since our prior 

knowledge about certain parameters may be limited.  For Tlab, another factor which 

influences whether the prior uncertainty interval contains the truth is the value of the 

prior estimate.  For experiments like this where synthetic data is used, the modal value 

of the prior distribution is determined by randomly choosing a parameter set from a 

multivariate distribution with the true parameter set as the modal value and the same 

variance used for the prior.  While theoretically this method of selecting the prior 

modal values is adequate, in reality the choice would be based on prior knowledge 

rather than randomness.   

 

THE DIFFERENCES IN UNCERTAINTY ESTIMATES BETWEEN THE TWO DA 

SCHEMES 

One feature of the results was that the huge differences in uncertainty estimates of the 

parameters between the two DA schemes for many of the runs.  However, these 

differences only existed in the 11 runs stated on the previous subsection.  Since these 

11 runs from Metropolis algorithm have now been excluded from the analysis and 

conclusions to this chapter, we instead focus on the remaining 4 runs.  For these runs, 

which correspond to the dataset length of 1, 2 and 5 years and a data density of 0.2 

(runs 1, 2, 3 and 8 from table 4.2), there is very good agreement among the 

uncertainties of the posterior parameter estimates.  This can be seen from figures 4.6 

and 4.7, and in table 4.10 we can see that good agreement between the posterior 
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uncertainty estimates of the two DA schemes occurred for between 14 and 15 

parameters.  In REFLEX, where exactly the same two DA schemes were used using 

exactly the same setups, this good agreement occurred for 13 of the parameters.  This 

feature of the results then is as we would expect.   

 

ROBUSTNESS OF FORECASTS 

In subsection 4.3.9, it was found that the forecasts using both DA schemes were 

robust against a synthetic drought that was imposed during the forecast period.  

Moreover the fit of the drought-induced forecasts to the truth was actually improved 

for both DA schemes, although in only a minor way.  This is encouraging particularly 

given the poor parameter estimates and uncertainties for 11 of the Metropolis 

algorithm’s runs.  However, this highlights the need for caution when using solely 

using forecasts as a measure as a measure of algorithm performance as other studies 

have done (e.g. Richardson et al., 2010).   

 

ENTROPY 

In subsection 4.3.10, it was shown that as dataset length increases the entropy or 

uncertainty of the posterior distribution of the parameters, using the EnKF, becomes 

narrower.  In other words the data in the longer datasets are having more of an impact 

on the posterior distribution than the shorter datasets.    This can be seen in table 4.9 

which shows the Mutual information increasing as dataset length increases (if the 

mutual information is zero this implies that there has been no reduction in the entropy 

of the posterior compared to the prior distribution).  It is unsurprising that this 

reduction in entropy is happening as the dataset length increases – with more data 

being assimilated it is perfectly reasonable to expect the uncertainty on the post-DA 

estimates of the parameters to decrease.  What would be interesting would be to see if 

this reduction in entropy would also occur for the Metropolis algorithm.  It is also 

interesting to note from figure 4.9 that the Mutual information is highest for the 20 

year run, not for the 50 year run as might be expected.  However, the MI is only 

slightly less for the 30 and 50 year runs compared to that of the 20 year run.  

Therefore, with the information that we have, a reasonable explanation is that the MI 

begins to level off at the 20 year run onwards.  The slight reduction in MI from the 30 

and 50 year runs could be then just to the stochastic nature of the EnKF.  For example, 
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if we were to repeat the runs we may indeed find that the highest MI value is for the 

30 or 50 year run.   

 In subsection 4.3.10, it was also shown that the mean parameter vector of the 

posterior distribution moved further away from the mean vector corresponding to the 

prior distribution.  Again, this indicates that the data in the longer datasets are having 

more of an impact on the location of the posterior mean of the parameters than the 

data from the shorter datasets.  The exception to this rule was for the 20 year dataset – 

the mean vector of the parameters for the posterior distribution was very close to that 

of the prior.  This is likely to be an anomaly but an interesting extension to this 

problem would be to understand why this is happening. 

 Overall therefore, more information being assimilated results in parameter 

estimates having a lower entropy in the posterior distribution compared to the prior 

and a posterior mean vector that is further from the prior mean.   

 

4.4.7 Hypotheses 

In addressing these hypotheses, an improvement in the parameter and stock estimates 

and uncertainties was determined for an increase in dataset length (H1 and H2), an 

increase in data density (H3), a reduction in observational error (H4) was defined as 

either the parameter/stock estimate moving closer to the true value or the 

corresponding uncertainty interval on that estimate becoming narrower while still 

containing the truth.  The same measure of improvement was used in addressing the 

hypothesis on the forecasts (H5).  Details of this measure are given at the start of 

subsection 4.3.3. 

 

H1: LONGER DATASETS GIVE IMPROVED PARAMETER AND STOCK 

ESTIMATES 

The plots of the EnKF estimates of the parameter and stocks and corresponding 

uncertainties are displayed in figures 4.6a and 4.6c and summarised in table 4.3a and 

table 4.4a.  These show that as dataset length increases these estimates improve for 12 

of the 17 DALEC-D parameters and 4 of the 6 stocks.  For 3 of the remaining 

parameters and 1 of the remaining stocks, there is no improvement with an increase in 

dataset length, while for the final parameter and final stock there is deterioration in the 

estimates with dataset length.   



Chapter 4: Sensitivity of DA to changes in dataset length, density and error. 

Edmund Ryan - 263 - 2013 

 For the Metropolis algorithm 4 of the 7 dataset length runs, which 

corresponded to dataset lengths of 10, 20, 30 and 50 years, were not included as part 

of the conclusion and in addressing the hypotheses because the results from these runs 

are likely to be unreliable most likely resulting from violation of one of the 

assumptions of the Metropolis algorithm (see subsections 4.4.3 to 4.4.5).   However 

for the runs 1 to 3, corresponding to dataset lengths of 1, 2 and 5 years, the results are 

valid and the corresponding plots of the parameter and stock estimates and 

uncertainties is given in figures 4.6b and 4.6d.  From these plots, we see that for 16 of 

the 23 parameters and 3 of the 6 stocks there is an improvement in the parameter and 

stock estimates with dataset length.  For 5 of the remaining parameter and all of the 3 

remaining stocks, there is no improvement with an increase in dataset length, while 

for the final 2 parameters we see deterioration.   

 In conclusion, there is strong evidence from the results that this hypothesis is 

true.  Overall, we find that in most parameters and stocks, longer datasets result in 

improved parameter and stock estimates for both DA schemes.  However, it is 

important to note that the longest dataset for the Metropolis algorithm on which this 

evidence is based is 5 years, whereas for the EnKF it is 50 years.   

 

H2: SLOWLY VARYING C POOLS AND THEIR CONTROLLING PARAMET-

ERS ARE ONLY CONSTRAINED BY LONGER DATASETS 

This hypothesis is based on the idea that the estimates of the parameters and final 

stocks relating to the slowly varying pools (Tw, Ts, Cw and Csom) would move closer to 

their true values or the uncertainty intervals become narrow while containing the true 

value with the assimilation of longer datasets, as these parameters and final stocks 

only have a large impact on the model over long time-scales.  Since the Metropolis 

algorithm runs corresponding to the dataset length of 10 to 50 years are excluded from 

the conclusions to this chapter, this hypothesis cannot be answered for the Metropolis 

algorithm.  However it is interesting to note from figure 4.9 the Metropolis algorithm 

estimate for the Tw parameter moves closer to the true value as dataset length 

increases up to 50 years.   

For the EnKF, figure 4.6c shows that the only one of these slowly varying 

parameter and final C stocks whose estimate is improved under the longest dataset 

length is Cw.  For the other three, figures 4.6a and 4.6c show that Tw remains 
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unchanged with dataset length, whereas Ts and Csom are further from the true value for 

the longer dataset.   The possible reason for this is that these slowly varying 

parameters and final stocks need a far longer datasets to be assimilated since they 

operate over large time-scales.  We see evidence of this from inspecting the Tw 

subplot in figure 4.6a.  As dataset length moves from 1 year to 50 years, we see a very 

slight move towards to the true value which can be seen when this subplot is plotted 

with a larger upper bound on the y-axis (figure 4.9).   

However as mentioned above, we see a deterioration of the EnKF estimates of 

Ts and Csom with an increase in dataset length, which is not very encouraging.  One 

explanation for this is that the Csom pool changes more slowly that the Cw pool, since 

the true values of the turnover rates of the two pools are 3×105−  and 7×10 5−  

respectively.  Therefore while the Tw parameter appears to require longer datasets for 

it to be well constrained, Ts and Csom require datasets several orders of magnitude 

greater.  The probable reason that the Ts and Csom estimates are closer to the truth for 

the shorter datasets is due to the prior, which happens to be very closer to the true 

value.  Since the shorter datasets are very unlikely to have any effect on the posterior 

distributions of Ts and Csom, it is reasonable to assume that Ts reverts to the prior 

distributions, causing the final value of Csom to also do the same.    

In conclusion, we find that there no evidence that this hypothesis is true for the 

EnKF probably because there is not enough information even in the 50 year dataset to 

constrain the slowly varying parameters and final stock estimates.  For the Metropolis 

algorithm, it is not possible to test this hypothesis.   

 

H3: DATASETS WITH A GREATER DENSITY OF OBSERVATIONS GIVE 

IMPROVED PARAMETER AND STOCK ESTIMATES 

Figures 4.7a and 4.7c shows that 13 out of the 17 parameters and 4 out of the 6 final C 

stocks improved with an increase in the density of the data in the dataset, and for the 

remaining parameters and stocks there was no improvement.  These findings are 

summarised in table 4.3a.  Unlike an increase in dataset length, the improvement here 

was mainly due to a reduction in the posterior uncertainty intervals.  The actual 

parameter and stock estimates tended to be close to the true value and remain 

unchanged for all or most levels of the data density.  What it means is that  by 

reducing the density of observations to 20%, we only have a 1/5th of the information 
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yet it is still possible to estimate the parameters just as well (for the EnKF) and 

forecast just as well (both methods) as when we have all the information.  One 

explanation for this is because the denser datasets do not carry as much extra 

information as less dense ones do, since the post-EnKF trajectories of the model states 

of each type of dataset density would have similar paths.  However it is worth bearing 

in mind two things: 

(i) If instead of the gaps being spread out across the dataset, we removed all the data 

for a particular season (e.g. summer), this is more likely to have a greater impact 

on the estimates.  

(ii) If we decreased the decreased the density of observations beyond 20%, e.g. 10%, 

5%, 1%, …, then at some point the parameter estimates would likely deteriorate.   

For the Metropolis algorithm, since four of the five runs where the data density varied 

are excluded from the conclusions of this chapter it is inconclusive whether increasing 

the data density would improve the corresponding estimates of the parameters and 

final C stocks.  What is interesting though is that for the one run which was not 

excluded here, namely run 8 which correspond to the data density of 0.2, 18 out of the 

23 parameters and 4 of the 6 final C stocks are very close to the true value.  For the 

remaining parameters and final C stocks, the Metropolis algorithm estimates are fairly 

close to the truth.  Given that for the 4 Metropolis algorithm runs not excluded from 

the conclusions to this chapter agree well with the EnKF’s estimates, it is reasonable 

to assume that if the remaining 4 Metropolis algorithm runs had not been excluded 

with no autocorrelation in the cost function residuals, we might expect the Metropolis 

algorithms parameter and final C stock estimates to improve with dataset density in 

the same as the EnKF estimates do.  However, the results for the Metropolis for the 

most part remain inconclusive so it is not possible to make that judgement.   

 In conclusion, we find that there is strong evidence that this hypothesis is true 

for the EnKF, since an increase in dataset density results in the majority of EnKF 

parameter and final C stock estimates improving.  It is inconclusive about whether this 

hypothesis is true for the Metropolis algorithm, although it is encouraging that most of 

the parameter and final C stock estimates for the lowest data density level were close 

to the truth with the majority of the uncertainty intervals containing the truth.   
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H4: DATASETS WITH A SMALLER OBSERVATIONAL UNCERTAINTY GIVE 

IMPROVED PARAMETER AND STOCK ESTIMATES 

Figures 4.8a and 4.8c and table 4.3a shows that as the observational error decreases, 

there is an improvement in the EnKF estimates of 14 of the 17 parameters and 4 of the 

6 final C stocks, with the remaining parameters and final C stocks showing no 

improvement.  As with changes in data density, the improvement observed in figures 

4.8a and 4.8c is mainly due to reduction in the uncertainty intervals of the parameter 

and final C stock estimates, with the actual estimates remaining close to the truth and 

relatively unchanged for the different levels of observational error.  As with H3, this 

can be explained by realising that as long as the general trend of true NEE trajectory is 

preserved, the amount of noise added will yield similar sets of estimates.  It is unclear 

if this result would hold if real observations were used where the error on the 

observations will not only have random components but potentially systematic biases 

as well.   

For the Metropolis algorithm, all the runs here are excluded from the 

conclusions to this chapter, so it is inconclusive about whether there would be an 

improvement.  However as commented in the H3 assessment above, given that the 

parameter and final C stock estimates agreed well among the two DA schemes, it 

could be assumed that if the cost function residuals were not correlated we would get 

a similar improvement in the estimates with a reduction in observational error, as seen 

with the EnKF ones.   

In conclusion, there is strong evidence that this hypothesis is true for the 

EnKF, since a reduction in observational error leads to the majority of EnKF 

parameter and final C stock estimates improving.  It is inconclusive about whether this 

hypothesis is true for the Metropolis algorithm,  

 

H5: DATASETS OF GREATER LENGTH, GREATER DATA DENSITY AND OF 

SMALLER OBSERVATIONAL ERROR RESULT IN MORE ACCURATE POST-

DA FORECASTS 

The top panel of figure 4.13 shows that an increase in dataset length and data density  

and a reduction in observational error results in an improvement in the forecasts for 

the EnKF.  As with the parameter plots the improvements were characterised only by 

a reduction in the forecast uncertainty intervals for the data density and observational 
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error levels.  For the dataset length runs, the forecasts also moved closer to the truth.  

For the Metropolis algorithm forecasts, an improvement is evident with an increase in 

dataset length up to 5 years, but beyond this and for the other factors any other 

improvements are inconclusive due to 11 of the runs being excluded from the 

conclusion to this chapter. 

 In conclusion, there is very strong evidence that this hypothesis is true for the 

EnKF, but only partial evidence for the Metropolis algorithm as a result of the 

excluded runs.   

 

4.5 Conclusion 
The length of the dataset is most important when using the EnKF to estimate the 

DALEC-D parameters based on NEE observations, and when using both DA schemes 

to make forecasts of cumulative NEE.  Varying the density of the observations or the 

level of observational error has less impact in terms of the estimates but we do see a 

slight reduction in the uncertainty which is encouraging.  Datasets of at least 5 years in 

length are required in order to get good parameter estimates for the EnKF, and good 

forecast estimates for both DA schemes.  

The Metropolis algorithm and the EnKF gave markedly different estimates of 

the parameters and final C stocks.  The EnKF produced accurate estimates, with a 

high percentage of 90% posterior intervals that contained the truth (88% for the 

parameters and 87% for the final C stocks).  The estimates improved noticeably with 

longer datasets, and only slightly for denser and less noisy datasets.  The Metropolis 

algorithm estimates were on average further away from the truth, had a much lower 

percentage of 90% posterior intervals that contained the truth (40% for the parameters 

and 53% for the final C stocks), and in general deteriorated with longer, denser and 

less noisy datasets.  When the parameter estimates were used to forecast cumulative 

NEE 10 years into the future, both schemes produced forecasts close to the truth for 

runs 5 years or more in length.  However the widths of the corresponding uncertainty 

intervals were very different for the two schemes for 11 of the runs, with the 

Metropolis algorithm producing very narrow ones, and the EnKF having much wider 

ones.  For the remaining 4 runs, namely runs 1, 2, 3 and 8, the parameter and final C 

stock estimates were very similar to those of the EnKF. 
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It was found that DALEC-D is susceptible to equifinality, so that a parameter 

set which is not close to the true parameter set can produce an NEE trajectory which is 

close to the true trajectory.  This means that NEE produced by DALEC-D may be 

insensitive to changes in at least some of its parameters.  The Metropolis algorithm is 

particularly affected by equifinality due to the algorithm trying different parameter 

sets to find a good fit to the observations, which results in the trajectory of forecasted 

NEE being close to the truth as well.  Equifinality can also affect the EnKF, but its 

impact is likely to be less.  To test the robustness of the Metropolis algorithm’s 

forecasts, a severe drought was imposed in the middle 2 years of the forecast period.  

Surprisingly, the forecasts remained very accurate.  Despite this, the Metropolis 

algorithm’s forecasts have uncertainty intervals that appear unrealistically narrow in 

terms of representing real-life uncertainty.  However it is not known if real data had 

been used the Metropolis algorithm’s forecasts would also have such narrow 

percentile intervals which contained (or almost contained) the truth.  Further work 

assimilating more realistic datasets (e.g. modelling systematic error) is therefore 

necessary to determine whether the Metropolis algorithm’s forecasts would remain 

close to the truth and whether its percentile intervals would still be narrow. 

More important than equifinality it was found that for 11 of the runs, the 

residuals in the cost function used for the Metropolis algorithm were autocorrelated 

violating one of the assumptions of the Metropolis algorithm.  It was for these same 

11 runs that the parameter estimates were not only very different to the EnKF’s but 

they were also far from the truth with the uncertainty intervals rarely containing the 

truth either.  Perhaps more importantly is was found that the true parameter set had a 

small cost function value than any of the values corresponding to the parameter sets in 

the posterior distributions.  For these reasons, these 11 runs are excluded from the 

conclusions of this chapter.  Despite this, this autocorrelation of the residuals was an 

interesting finding and serves as a warning to other studies were the Metropolis 

algorithm is used with synthetic data. 

Both equifinality and the autocorrelated residuals are probably the result of the 

11 ‘bad’ runs failing to converge to the global minimum.     
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Chapter 5 

Assimilating satellite observations 

of Leaf Area Index into a 

terrestrial carbon model 

 

Abstract 
Leaf area index (LAI) is an essential climate variable strongly linked with vegetation 

growth, the water cycle and the energy balance (Sellers, 1997; IPPC, 2007).  Thus it is 

important to be able to measure it continuously and globally, which can only be 

achieved using satellites.  The MODIS sensor on NASA’s TERRA satellite offers 

such spatially and temporally frequent measurements of LAI.  In this chapter we 

assess whether assimilating the latest version of the MODIS LAI observations 

(referred to as collection 5) into a simple terrestrial ecosystem model improved the 

estimates of Net Ecosystem Exchange (NEE) when compared to ground observations.  

The study was carried out using MODIS LAI data from three Evergreen sites, namely 

Loobos (Netherlands), Oregon (U.S.A.) and Tharandt (Germany).   

Due to some of the lower valued MODIS LAI observations having very small 

prescribed uncertainties, this resulted in the post-assimilation LAI trajectory being 

dragged down to values close to zero during the growing season of at least one of the 

years for two of the sites.  As a result, the post-assimilation NEE fitted the observed 

NEE much worse than the NEE from a run with no Data Assimilation, particularly 

during the growing season.  The MODIS LAI data have another characteristics which 

are unrealistic, namely they are very noisy in time, varying by around 2–4 m²/m² in 
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only 1 or 2 weeks in some instances.  To overcome these limitations, the MODIS LAI 

observations were processed by smoothing them and increasing the observational 

uncertainty for small observations.  These changes resulted in a significant 

improvement in the fit of the post-assimilation NEE estimates to the observed NEE.  

Assimilating the processed MODIS LAI also resulted in a slightly improved fit of 

NEE compared to the NEE from the run without DA.  The resulting fit of the 

modelled to the observed GPP was substantially improved after assimilating the 

MODIS LAI.  This strongly suggests that assimilating MODIS LAI along with total 

respiration (Re) data (since NEE = Re – GPP) would further improve the fit of 

modelled to the observed NEE.  The results also indicated that the temporal variability 

of the observed NEE could be modelled better if water related observations (e.g. soil 

moisture) were also assimilated.    
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5.1 Introduction 
Leaf Area Index (LAI) is an essential climate variable as it is an indicator of the health 

of vegetation, and is used to estimate evapotranspiration and the accumulation of 

carbon from photosynthesis (Sellers, 1997).  In this chapter we indicate it is important 

to know, how it is used in models, how it is measured from the ground and space, 

what the advantages and limitations are to these two approaches, and why these two 

approaches do not always agree.  We overcome some of the limitations of satellite-

based LAI measurements when using such data to estimate the states of an ecosystem 

model in a Data Assimilation (DA) scheme, and we test whether this helps to improve 

the estimates of Net Ecosystem Exchange. 

 

5.1.1 Background and Motivation 

LAI (m²/m²) is defined as ‘the one-sided green leaf area per unit ground area, in 

broadleaf canopies, and as the projected needle leaf area in coniferous canopies’ 

(Myneni et al., 2002).  It has a strong influence on: (i) the interception of solar 

radiation, (ii) photosynthesis, (iii) transpiration, (iv) respiration, and (v) water 

interception (Breda, 2003). 

(i) & (ii) If LAI is high there is more foliage (i.e. leaves, needles) meaning the total 

surface leaf area will be larger, resulting in more interception of solar radiation and 

more photosynthesis (Clark et al., 2008).  However, the more the leaves clump 

together the less impact LAI has on radiation interception and photosynthesis.  

This is because clumping of the leaves means that solar radiation is less able to 

penetrate to the entire surface of each leaf (Breda, 2003).  Thus, solar radiation 

interception and photosynthesis can be inferred from LAI as long as there is not 

excessive clumping.   

(iii) Transpiration also depends on LAI because transpiration is proportional to GPP 

(i.e. the amount of C accumulated from photosynthesis); this is because the 

stomata guard cells that open to ingest CO2 from the atmosphere release water 

molecules though these same guard cells (Gower et al., 1999).  However, leaf 

clumping reduces the impact of LAI on transpiration because of the reduction in 

GPP due to clumping (Gower et al., 1999).   
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(iv) If the surface of the leaves are horizontal and not greatly clumped together, then 

autotrophic respiration can also depend on LAI since it can be treated as being 

proportional to GPP; for example, in the DALEC model roughly 40-50% of GPP 

is respired autotrophically (Williams et al., 2005).  However if the leaves were for 

example oriented vertically, very little photosynthesis would likely be taking place 

but the leaves would  continue to respire autotrophically.   

(v) The amount of water intercepted can also depend on LAI because the larger the 

surface area of the leaves (i.e. the larger the LAI value) the more water will be 

intercepted.  However, if the leaf angle is orientated vertically and/or there is a lot 

of clumping, water interception may not necessarily increase as LAI increases.   

As a result, LAI is a key climate variable for estimating the growth of 

vegetation and for understanding key components of the water cycle and the energy 

balance.  However, as noted above in points (i) to (v), clumping and leaf angle can 

have an impact when using LAI to infer other quantities of interest such as GPP or 

water inception.  A number of models take this into account leaf angle when using 

LAI to estimate related variables such as GPP; for example the BETHY model (Knorr, 

2000) assumes a uniform distribution of leaf angle among the foliage on the trees.  

However all of the models surveyed in this thesis, listed in subsection 1.2.3, do not 

assume any clumping in the foliage; although all of the more complex ones divide the 

canopy into multiple layers.  Most also use Beer’s law (Law & Wang, 1994) to 

describe the inception of solar radiation within each of the canopy layers.  For 

example, in the SPA model (Williams et al., 1997) the implementation of Beer’s law 

used, as described by Amthor (1994), accounts for leaf level and forest floor 

interception and reflection of incoming solar radiation.  Therefore, although clumping 

is not specifically assumed, it is taken into account by incorporating different layers 

which absorb and reflect radiation by different amounts.  We discuss issues related to 

clumping, leaf angle and multiple canopy layers in relation to the DALEC model, as 

used in this thesis, in the next subsection. 

Once the issues of leaf angle, clumping and multiple canopy layers have been 

taken into account, then as stated above LAI is an important climate variable for 

predicting and estimating vegetation growth and health.  In particular photosynthesis 

and respiration of C, helps us to understand how much CO2 is being taken out of the 

atmosphere by plants.  If we wish to accurately forecast atmospheric CO2 we must 
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know with greater confidence how much is removed by plants.  This loss of CO2 from 

the atmosphere by plants is often referred to as Net Ecosystem Exchange (NEE), 

which is total respiration of C from the plant and soil minus Gross Primary Production 

or GPP (the amount of C amassed from photosynthesis).  Therefore, accurate 

estimates of LAI should improve estimates of NEE, as we now explain in the context 

of carbon models.  

 

5.1.2 LAI in models 

A number of Dynamic Vegetation Models use LAI.  SDGVM is an example of one 

designed to calculate the carbon fluxes and pools in the biosphere – Woodward et al. 

(1995), Woodward & Lomas (2004).  It includes a number of biophysical processes 

which include those linked to evapotranspiration, hydrology, nitrogen cycling, and 

disturbances.  Unlike smaller models like DALEC which can only be used for 

evergreen and deciduous forests, SDGVM can operate in many more types of 

vegetation including specific types of evergreen or deciduous trees, e.g. broadleaf 

evergreen and needleleaf evergreen.  In total it has 14 plant functional types (PFTs).  

Each PFT requires 25 parameters so there are 350 parameters involved; this compares 

with DALEC which uses only 11 parameters for the Evergreen and 17 for the 

Deciduous versions.  The purpose of SDGVM is to estimate carbon fluxes and pools 

globally under a changing climate.  Temporal changes in LAI are an important way in 

which the model responds to this and LAI is determined, using the notation of 

Woodward & Lomas (2004), by: 

LAI = 
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where NPP = Net Primary Production, sa and ra are the allocations of stem (or wood) 

and root carbon, SLA is specific leaf area (i.e. ratio of leaf area to dry weight), uW  is 

the water uptake by roots, P is precipitation, E is evapotranspiration, V is vapour 

pressure deficit of the air, and g is the stomatal and boundary layer conductance.  The 

vegetation dynamics is also more complex in SDGVM, with it having a mechanism 
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for modelling how a plant expands across a spatial scale, for example mid-latitude 

deciduous trees cannot grow in the tundra.  Like DALEC, SGDVM is a point-based 

model, but unlike DALEC it can provide point estimates simultaneously across the 

globe, with a resolution specified by the user.  The Lund-Potsdam-Jena or LPJ model 

(Site et al., 2003) has a similar structure to SDGVM, and although most of the 

processes are common to both of the models, their approaches can be fundamentally 

differently (Kantzaz, E., 2012, [personal communication]).    As a result of this, while 

their estimates of Net Biome Production or NBP (=-NEE+disturbances) may be 

similar, other model outputs (such fire estimates or LAI) may be completely different.   

In DALEC (Williams et al., 2005) – the model used in this thesis – Cf is 

determined only by )1( rs aaNPP ××× , using the notation above, with SLA used to 

scale it to LAI.  In other words, the soil moisture content or precipitation and 

evapotranspiration amounts do not influence LAI.  In Williams et al. (2005) Leaf 

Mass per Area or LMA (units g/m²) which is the reciprocal of SLA (Larcher, 2003) is 

used as the scaling factor.  In other words, LAI is related to foliar Carbon (Cf) by the 

relation: LAI = Cf ÷ LMA.   SLA (or its reciprocal LMA) is a site-specific constant, 

which can be measured in the field by direct means by dividing its area by its mass 

(Meziane & Shipley, 2001).  Measurements of SLA are also stored, and can be 

extracted for modelling purposes, from trait databases like TRY (Kattge et al., 2011).   

In DALEC, Cf is one of the model states and so its value varies with time.  The 

rate of change in Cf is given by: 

dt

dCf  = (1 – Fg)Fnf  × GPP 

where Fg and Fnf  are parameters which refer to the fraction of GPP respired 

autotrophically and the fraction of the remainder which is allocated to foliage.  In the 

deciduous version of DALEC, the change in Cf includes two terms which represent 

the amount leaving this pool to go to the labile Carbon (Clab) pool (during the growing 

season) and the amount coming into this pool from Clab which occurs during the 

Spring bloom.  Cf  is part of a feedback loop in the model since, as its value increases 

so does the value of GPP, since more leaves equate to more photosynthesis.  A 

complete description of DALEC, including schematics of both versions, is given in 

chapter 2.   
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It is important to note that DALEC does not assume foliar clumping, and fixes 

the angle of the leaves so that they are always all facing the sun.  It also only has one 

canopy layer.  Therefore as a result of not making these assumptions, it could be 

argued that DALEC is too simplistic and an unrealistic representation of the real 

world.  As a counter-argument the Aggregated Canopy Model (ACM), the sub-model 

of DALEC which computes the daily GPP estimates, was built as a highly 

computationally inexpensive version of the SPA model (Williams et al., 1997).  

Williams et al. (1997) found that under a broad range of conditions, the ACM was 

able to capture close to 100% of the model behaviour of SPA whilst being many 

orders of magnitude faster.  This accurate representation was tested in a Deciduous 

forest site in North East USA, an tundra site in the Arctic and a range of forest types 

across the OTTER (Oregon Transect Ecosystem Research) transect in Oregon, 

running from coastal Sitka spruce to high-plateau mountain juniper.  However, it is 

important to emphasise that the LAI data inferred from satellites (but also ground LAI 

data too) is ‘true LAI’ because clumping in the multiple canopies has been accounted 

for.  However in DALEC, the ACM which computes GPP is a big leaf and so assumes 

no clumping; therefore the model will not get the interception properties of solar 

radiation correct. As a result the modelled LAI is not strictly speaking true LAI.  

Hence, there is a different interpretation of LAI between what is measured and what is 

modelled.  This limitation to the model could be fixed by including a clumping factor 

in the calculations.   

 

5.1.3 Measuring LAI from the ground and from space 

MEASURING LAI AT GROUND-LEVEL 

Ground measurements of LAI can be made directly or, more commonly, by indirect 

methods.  Direct methods involve stripping the leaves off a tree or collection of trees 

and feeding each leaf through a scanner to determine its one-sided surface area 

(Gower et al., 1999).  Direct methods therefore give very accurate measurements of 

LAI.  However such methods are very rarely used because: (i) they are destructive, 

involving the removal of the leaves of a tree or trees; (ii) they are very time-

consuming, as a tree can contain many thousands of leaves.  As a result, indirect 

methods are normally used.  There are many different approaches, but the most 

common involves estimating LAI by measuring the gap fraction of the canopy using 
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optical techniques (e.g. fish-eye photography) from different zenith angles.  This 

involves inverting the modified Beer-Lambert equation (MacFarlane et al., 2007): 








 +−=
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θΩθθ WLG
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where θ  is the zenith angle,  the angle at which a light beam is directed;  )(θP  is the 

canopy gap fraction; )(θG  is the canopy extinction coefficient, defined as the fraction 

of leaf area that is projected onto a plane perpendicular toθ  (Gower et al., 1999); 

)(θΩ is the clumping index (which equals l when the foliage is randomly distributed 

and is less than 1 when it becomes more clumped).  Finally L and W represent leaf 

area index (LAI) and woody area index (WAI), the latter of which is similar to LAI 

but represents the area of woody material rather than leaves.  Measurements of the 

canopy gap fraction are required to estimate plant area index or PAI (L+W) and )(θG

(which is generally unknown).  To determine LAI, we also need to determine the ratio 

of WAI to PAI.  A variety of different instruments are available to measure the canopy 

gap fraction but a common one is the Li-Cor LAI Plant Canopy Analyzer (Gower et 

al., 1999, Hyer & Goetz, 2004). 

Indirect methods are much less time-consuming than direct methods and have 

become the standard way of measuring LAI at ground-level.  However, they have two 

major drawbacks:  

(1) The difficulty of estimating the errors due to incorrectly accounting for the 

clumping of the foliage in the canopy and this can arise when )(θΩ is incorrectly 

estimated.  For example,  )(θΩ  is sometimes set to 1, to represent no clumping, 

which results in an under-estimation of LAI.  

 (2) The difficulty in distinguishing woody biomass from foliar biomass, which arises 

if no information is available to determine the ratio of WAI to PAI.  As a result, 

measurements of PAI are sometimes used as a proxy for LAI; this often leads to 

LAI being overestimated.  Gower et al. (1999) found, using LAI and PAI data 

from 13 different species of evergreen trees, that LAI is greater than PAI by 12% 

on average, with the smallest and largest increases being 3% and 34% 

respectively.     

If )(θΩ  and the ratio and WAI to PAI can be correctly estimated, these indirect 

ground measurements of LAI can compare well with direct ones (MacFarlane et al, 
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2007) when used in small scale (e.g. site level) studies.  In-situ measurements are 

routinely made only at a limited number of sites worldwide and typically few are 

made annually per site (e.g. 10-20).   Therefore, the only way to obtain frequent global 

measurements is to measure LAI from space.   

 

INFERRING LAI FROM SPACE 

Since 2000, LAI data inferred from space have been made using the MODIS sensor 

on NASA’s TERRA/AQUA satellite.  Data are available from the Oak Ridge National 

Laboratory website (http://daac.ornl.gov/cgi-bin/MODIS/GR_col5_1/mod_viz.html), 

every 8 days across the globe for every 1km×1km land area.  The fraction of 

Absorbed Photosynthetically Active Radiation (fAPAR) can also be inferred from 

MODIS, which is closely related to LAI (Law & Waring, 1994).  Collection 5 LAI 

data or products (as they are commonly known) are derived from the latest version of 

the algorithm used to convert light reflectance (what the sensor measures) into LAI, 

and was first released in 2007.  As stated in subsection 5.1.1, LAI is a dependent of 

many different factors, such as light interception, photosynthesis, transpiration, 

respiration and water interception, but also leaf angle and clumping; these relations 

are all incorporated into the algorithm.  The algorithms used to making indirect in-situ 

ground and satellite measurements of LAI are based on different types of 

observations.  For in situ methods measurements of gap fraction are made, therefore 

LAI is based on the leaf area to a large extent.  However, measurements from space 

are reflections of solar radiation, and these relate to the greenness of the vegetation, 

i.e. how photosynthetically efficient the leaves are, and not simply to the number of 

leaves (Myeni et al., 1997).  In other words, two sites with the same number of leaves 

but different satellite LAI values because the photosynthetic properties of the trees at 

the two sites may be different.  Thus the satellite LAI is more of a radiation measure, 

hence it is potentially a mismatch to vegetation model and to ground based 

observations.  This is important because, while satellites are useful in that they offer 

frequent coverage of the entire earth, what the satellite sensor actually measures is 

very different what is measured from the ground.  Thus, direct comparison of the two 

types of LAI measurements need to be made with caution.  Furthermore LAI 

measurements made from space have a different resolution to those made on ground.  

In situ measurements are made at a resolution of 10-30 m2, whereas from space they 
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are typically at a resolution of 0.5 – 1 km2 – see Yang et al. (2006), Bacour et al. 

(2006) and Baret et al. (2007).  Repeated in situ measurements are sometimes made to 

give an idea of the spatial distribution of LAI over a 0.5 – 1 km2 grid cell (De Kauwe 

et al., 2011).  In such circumstances, direct comparisons of satellite and ground 

measurements can be valid from a resolution point of view.   

 Figure 5.1, taken from Sea et al. (2011) and Ganguly et al. (2008), 

shows the temporal profile of LAI from four sites with varying vegetation types, 

including two savannah forests in Australia and Zambia (panels a and c, respectively), 

and a grassland and deciduous forest in the USA (panels b and d, respectively).  For 

panel a, data from two versions of MODIS LAI are shown, referred to as collections 4 

and 5 (or MC4 and MC5) as well as ground LAI data.  Panels b to d show LAI from 

MODIS collection and another satellite sensor called AVHRR (Holban, 1986), as well 

as ground LAI data.  Figure 5.1a is discussed in the next subsection, but for the other 

subplots it is interesting to note that there is in general good agreement between the 

MODIS and AVHRR LAI, with both also comparing well with the ground based LAI 

data.  For all the plots, it is worth noting to note that for these four sites the temporal 

trajectories of LAI are cyclic in nature.  This is expected due to varying rates of 

growth of the foliage during the different seasons.   

As well as MODIS and AVHRR, LAI is currently inferred from space by a 

number of other different satellite sensors, including MERIS (Bacour et al., 2006) and 

CYCLOPES (Baret et al., 2007), but various validation exercises suggest that MODIS 

LAI products compares best with ground-based measurements than other LAI satellite 

products.  We review these validation exercises next.   

 

VALIDATION OF SATELLITE MEASUREMENTS OF LAI 

Garrigues et al. (2008) compared the performances of LAI derived from four different 

satellite sensors, namely MODIS, ECOCLIMAP, GLOBCARBON and CYCLOPES, 

using ground-based observations of LAI at 41 different sites across the globe.  The 

sites varied in terms of land-use (forests, croplands, grasses, etc…) with LAI values 

varying from 1 to around 6 m²/m².  Comparisons were made between 2001 and 2004, 

and used the internationally recognised VALERI framework (Morisette et al., 2006) 

which was established  to promote consistency  in studies where  satellite observations 
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Figure 5.1 The temporal profiles of LAI for four different vegetation types which 
include a savannah woodland in Howard Springs, in the Northern territory of 
Australia (panel a), grasslands at the Konza site in Kanzas, USA (panel b), a 
savannah at the Mongu site in Zambia (panel c), and a deciduous broadleaf forest at 
the Harvard forest in the USA (panel d).  Panel (a), taken from Sea et al. (2011), 
shows the seasonal variation of LAI for 2000 to 2006 with the lines corresponding to 
24 day moving averages of mean values for 2000 to 2006 and the error bars 
representing +/- 1 standard deviation; MC4 and MC5 refer to collections 4 and 5 of 
the LAI data from the MODIS sensor of the TERRA satellite.  For panels (b) to (d), 
taken from Ganguly et al. (2008), the blue, red and green lines/points correspond to 
AVHRR, MODIS and ground LAI with the error bars refer to the standard deviation 
associated with the data. 
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of land variables (such as LAI) are validated against ground observations.  The 

authors found that the MODIS and CYCLOPES LAI data most realistically depicted 

the spatial variation of LAI  at the continental scale and the temporal variation over 

most vegetation types.  Despite good overall agreement with most vegetation types, 

the MODIS LAI tended to over-estimate the ground-based LAI for Evergreen needle 

leaf forests (the forest type used in this study) by around 1.5 m²/m².  However, a more 

recent version of the algorithm that converts the reflectance from MODIS to LAI is 

available (collection 5), whereas the previous version (collection 4) was used in 

Garrigues et al. (2008).  Collection 5 provides a substantial improvement in the 

quality of LAI derived from MODIS.   It also showed a better accuracy than the 

CYCLOPES LAI when compared to ground LAI data.   Fang et al. (2012) found that 

MODIS collection 5 LAI produced a bias of -0.13 m2/m2 when compared to ground 

measurements of LAI, whereas the bias for CYCLOPES LAI was -0.65 m2/m2.   

Other authors have studied the relation between MODIS and ground based 

estimates of LAI  De Kauwe et al. (2011) compared MODIS collection 5 LAI with 

ground-based measurements using the VALERI protocol, scaled to the same 

resolution as the MODIS data.  This study was carried out using observations from 

May 2006 for a site covering an area of 11km×11km in Oregon, U.S..  The authors 

found very good agreement (a positive bias of around 0.1 m²/m²), although the 

MODIS LAI tended to under-estimate values of the ground observations greater than 

2 m²/m² by around 1 m²/m² on average.  Moreover the spatial distribution of MODIS 

LAI broadly matched that of ground measurements, and collection 5 MODIS LAI 

offered a significant improvement on collection 4 temporally and spatially.  One 

shortcoming of this study was that Plant Area Index (PAI) was used as an 

approximation to LAI for the ground measurements, and the differences between PAI 

and LAI were not properly quantified.  As stated previously, Gower et al. (1999) 

found that that PAI is higher than LAI by 12% on average.  Hence, although the 

MODIS LAI tended to under-estimate ground-based PAI for high values, it is likely to 

be estimating ground-based LAI more accurately.  Although as a consequence, lower 

values of LAI may be fractionally over-estimated.   

Sea et al. (2011) compared MODIS collection 5 LAI to ground based LAI 

during September 2008 at a set of sites in central northern Australia, which mainly 

consisted of Evergreen, Eucalyptus and Aracia forests.  The VALERI procotol was 
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also used for this study.  The fraction of LAI to PAI was estimated using the 

CAN_EYE software package (Baret & Weiss, 2004).  They found very good 

agreement between the MODIS and ground-based LAI measurements, with a positive 

bias of roughly 0.1m²/m².  In particular, the authors found that the most recent version 

of the MODIS LAI products (collection 5 or MC5) compared much for favourably 

with the previous version (collection 4 or MC4).  This can be seen in figure 5.1a, 

where the MC5 LAI is not only much closer to the ground LAI data compared to the 

MC4 LAI but there is far less inter-annual variation, represented in figure 5.1 by the 

smaller error bars, which is also more consistent with the ground LAI data.  It is worth 

noting here though that the ground LAI measured here was 2 or less for all the sites.    

McColl et al. (2011) compared MODIS LAI to ground-based LAI scaled up to 

the same resolution as MODIS  in an 84,000 km² area of New South Wales in 

Australia, during November 2006 and January, February and September 2010.  The 

region has a diverse climate ranging from semi-arid to alpine, and the land was used 

mainly for grazing and crops.  The MODIS LAI observations showed good agreement 

with ground-based measurements, with a mean difference of 0.35 m²/m² and a 

standard deviation of 0.82 m²/m².  Although this was a useful study, the LAI values 

were predominantly small (less than 2 m²/m²) due to the type of land-use.  Also, this 

validation study did not adopt the VALERI protocol.   

These studies suggest the collection 5 MODIS LAI observations offer a 

realistic representation of the spatial and temporal variability of LAI, and compare 

well with ground observations.  Further reasons for using MODIS LAI are: 

(i) It offers a long-term time-series of LAI data, since 2000.  In contrast 

CYCLOPES LAI, which as stated above is the regarded along with MODIS as 

being most accurate when compared to ground observations (Garrigues et al., 

2008), is only available up to 2003 (Weiss et al., 2007).  Therefore even if there 

was a stronger argument to choose CYCLOPES LAI over MODIS LAI, the 

gain in knowledge from this chapter could not be applied for those who wishes 

to use LAI after 2003.   

(ii)  With the exception of the MODIS LAI, it was impossible to be able to access 

the LAI from other satellite products such as CYCLOPES LAI, ECOCLIMAP 

LAI, GLOBCARBON LAI.  Therefore even if there was a preference to use 
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another LAI dataset, it is not possible or at least very difficult to be able to 

access the actual data. 

(iii)  MODIS LAI has been used in a lot of research, and perhaps more than the other 

LAI satellite products, which may be for the reasons given in (i) and (ii) above.  

In the critical review of assimilating satellite LAI/FAPAR data into models 

within subsection 5.1.4, there are references to five studies which have used 

MODIS LAI are given, but there are many more such as Leuning et al. (2008), 

Li et al. (2009) and Clark et al. (2008).  Therefore, even if there was a more 

compelling reason to use another type of LAI dataset, the fact that it is used by 

the research community in a non-insignificant way means that there is great 

value in the knowledge gained from this chapter to those who have or will use 

the MODIS LAI data for their research.   

 

5.1.4 Assimilating satellite observations of LAI 

Assimilating observations into models is better than simply comparing model 

estimates with observations of LAI because we are able to incorporate information on 

how confident we are that the observations and corresponding model estimates are 

correct (see chapter 2).  These are referred to as the observational and model 

uncertainty and are often expressed as probability distributions, for example a Normal 

distribution with zero mean and a specified variance.  However DA is only of real use 

if it results in an improvement of the model estimates of a quantity of interest (in this 

case NEE) against independent observations of that quantity.   

In this subsection we focus on the best way to assimilate satellite observations 

of LAI.  In particular, we address: 

(i) Whether other studies performed DA using LAI observations from MODIS 

or other satellites, and if this resulted in an improvement to the estimate of 

interest (e.g. NEE) when compared to independent observations. 

(ii)  What model and DA scheme should be used. 

(iii)  The problems which have not been addressed when assimilating satellite 

LAI observations, and how these problems should be overcome. 
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(i) CRITICAL REVIEW OF ASSIMILATING SATELLITE LAI/FAPAR/REFLECT-

ANCE DATA INTO MODELS 

DA studies involving fAPAR measurements are also included here as fAPAR, like 

LAI, is an indicator of healthy vegetation (Kaminski, 2011) and is used to estimate 

Gross Primary Production (GPP) from satellite data.  It is also a much more stable 

quantity to estimate because it is closer to what the satellite actually measures, i.e. 

reflection of solar radiation.   

 Spadavecchia et al. (2008) used an EnKF to estimate the parameters and states 

of a version of the DALEC model which included water dynamics.  Data used in the 

DA process included ground observations of NEE and LAI and MODIS collection 4 

LAI data, all collected during 2000-02.  It was difficult to determine if assimilating the 

MODIS LAI improved estimates of NEE since the ground observations of NEE were 

also assimilated.  The post-assimilation LAI was found to significantly underestimate 

the MODIS LAI, though this was probably due to the large uncertainties prescribed to 

the MODIS LAI, resulting in them having little influence.  A weakness of the study 

did not say how the MODIS LAI uncertainties were determined, and did not justify 

the 10% error value ascribed to the ground LAI observations.  

Jarlan et al. (2008) described the assimilation of MODIS LAI collection 4 was 

assimilated into the CTESSEL model (the land surface model of the ECMWF model), 

using a 2D-Variational DA scheme, as part of the GEOLAND project.  This was 

found to improve the model’s estimate of LAI and aboveground biomass when 

compared with ground observations, and to lead to significant improvements in the 

simulated phenology of the vegetation.  The authors also concluded that LAI is an 

important driver for estimating NEE.  However, a limitation with this study is that, 

since collection 4 of the MODIS LAI measurements was used, no estimate of the 

uncertainty was available, as opposed to the collection 5 MODIS LAI (used in this 

chapter) which includes standard deviation values.   Therefore the uncertainties had to 

be estimated, and the authors treated them as fixed at 1 m²/m².   

In another study, Demantry et al. (2007) assimilated 2 years (2000-01) of 

MODIS LAI into the ORCHIDEE dynamic global vegetation model.  This resulted in 

shortening the modelled growing season and consequently reduced the estimates of 

GPP and NPP by 5% and 3% respectively.  There was a 25% improvement in 

estimating GPP, due to the assimilation of MODIS LAI, when compared to in situ 
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GPP measurements.  Again, because collection 4 of MODIS LAI was used, the 

uncertainties had to be estimated, but, unlike Jarlan et al. (2007), the authors here used 

the quality control (QC) values (which give an indicator of the retrieval quality, e.g. if 

there were clouds present). This is erroneous as even values with high QC values (i.e. 

retrieval is of a high quality) may still have large uncertainties.  The DA method 

employed was very simple, and was given by: LAI(c) = QC×LAI(d) + (1–

QC)×LAI(m), where LAI(c), LAI(d) and LAI(m) stand for the corrected, the data and 

the model estimates of LAI.  Finally, although assimilating MODIS LAI improved the 

GPP estimates using in situ measurements, there was an enormous difference in scale 

between the model grid cells (104 km²) and the in-situ GPP measurements (1 km²).   

This is wrong because it assumes that there is no correlation between neighbouring 

pixels of ground-based GPP measurements.    

Dente et al. (2008) assimilated LAI from the ASAR and MERIS sensors on the 

ENVISAT satellite into a crop model, using a variational DA scheme, in order to 

improve estimates of parameters.  The authors found a 25% reduction in the errors of 

wheat yield estimates when LAI was assimilated, compared to when no assimilation 

took place. 

Sus et al. (2012) assimilated MODIS 250m vegetation index (VI) data into 

SPAc, a crop version of the SPA model (Sus et al., 2010), using the Ensemble Kalman 

filter.  The study was unique in that it was the first to assimilate remote sensing time 

series data of field patches into a crop model simulating agroecosystem C exchange, 

where ‘agroecosystem’ refers to agricultural ecosystems excluding managed 

grasslands as defined by Kucharik & Twine (2007).  Before being assimilated into the 

crop model, the modelled LAI were converted to VI using an empirical relationship 

involving an exponential function.  In total, MODIS VI data from 104 field patches 

from 2000-2006 were assimilated, with the flux tower positioned in one of the fields 

providing a validation of the post-DA modelled NEE.  The purpose of the study was 

(i) to provide a framework for estimating cumulative NBP and other useful quantities 

such as sowing dates and crop yields over a wide area, (ii) to also quantify the spatial 

variability of NEE, and (iii) to quantify the cumulative NEE over the entire period   

For (i), there was reasonably good agreement between the post-DA NEE and the 

observed NEE from the flux tower in terms of magnitude and seasonality, with the 

post-DA sowing dates also agreeing well with figures reported by farmers; the 
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agreement with observations for crop yields was also significantly better when the 

MODIS data were assimilated compared to when they were not.  For (ii), averaged 

over the 104 pixels, the annual cumulative NBP was positive for soy-bean crops 

(13gCm-2yr-1) and negative for maze (-58gCm-2yr-1).  Finally for (iii), the spatial 

variability was found to range from around 7% to 18%.   

Doraiwamy et al. (2004) used MODIS surface reflectance data to estimate the 

parameters of a radiative transfer model for multiple 250m by 250m pixels, which in 

turn was used to predict LAI on a daily basis for each of the pixels.  The modelled 

LAI was aggregated for all of the tiles to provide pseudo data in order to calibrate a 

coarser resolution scale for the ARS climate crop model (Muchow et al., 1990).  Not 

only did the simulated LAI, from the radiative transfer model and calibrated with the 

MODIS data, fit the ground based LAI very well but the crop yield predictions of the 

crop model were improved from using the MODIS satellite data. 

Knorr et al. (2010) estimated the parameters of BETHY (a terrestrial biosphere 

model) by assimilating two years of fAPAR measurements for seven sites 

simultaneously from the MERIS sensor of ENVISAT using a 3D-variational scheme.  

The estimated parameter set was used for all seven sites, which include boreal, 

temperate, humid‐tropical, and semiarid climates.  They authors found that not only did the 

uncertainty estimates for 10 of the 38 optimized parameters were each reduced by at 

least 10%, but using the estimate parameter set,  the model was able to reproduce the 

observed fAPAR measurements for the six sites where ground measurements were 

available.  However, the modelled fAPAR, using the estimated parameter set, also 

under-estimated the observed fAPAR during the growing parts of the year for three of 

the sites investigated, including Loobos, one the sites used in this chapter.   

Kaminski et al. (2011) carried out an almost identical study to Knorr et al. 

(2010), using the same model and DA scheme, but assimilating ground-based 

measurements of atmospheric CO2 as well as MERIS fAPAR.  The authors found that 

assimilating both streams of data improved the fit of the modelled NPP to ground 

measurements, more than just assimilating fAPAR ones.  However, others believe that 

assimilating more than one type of observation can be wrong.  Rayner (2010) 

assimilated in situ measurements of fAPAR and flux measurements of CO2 and 

evapotranspiration, and found that while assimilating  fAPAR improved the fit of the 

modelled to the observed NEE, when the fluxes were also assimilated the fit was not 
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as good.  He concluded that the two data types conflicted with one another, but also 

recognised the model did not represent the processes well and this may have biased 

the results.  This problem may also been do with the mis-specification of the 

uncertainties of either or both observations being assimilated, or the accuracy of the 

observations being used for validation.  

An interesting study by Quaife et al. (2007) assimilated bidirectional 

reflectance factor (BDRF) MODIS data into the DALEC model.  BDRF was used 

because is much closer to what the satellite sensor actually measures compared to 

satellite measurements of LAI, hence it is much easier to quantify the observational 

error.  The authors found a better fit to the NEE in situ observations for a test site in 

Oregon, after assimilating BDRF, but for the wrong reasons.  GPP and total 

respiration (Re) were over-estimated by approximately the same amounts, and due 

NEE being the difference between GPP and Re, the estimates of NEE were not over-

estimated.  The process of assimilating BDRF into DALEC involves the observational 

operator (which relates the observation to the model state) becoming very complex, 

since it is based on a radiative transfer model. Most ecosystem modellers who want to 

use satellite observations are likely to prefer the directly relevant LAI product. 

 

(ii) THE MODEL AND DA SCHEME 

In this chapter we use a simple model, namely the Data Assimilation Linked 

ECosystem (DALEC) model (Williams et al., 2005), rather than a complex one such 

as SDGVM.  This is because most complex models were not designed for DA; we 

require a model which is simple enough for computationally efficient DA but complex 

enough to represent the biophysics and essential plant processes (Disney & Quegan, 

2007).  We employ DALEC here as it was created to be used in collaboration with a 

DA scheme.  It was first used in Williams et al. (2005) who used an Ensemble Kalman 

Filter (EnKF) DA scheme and later in Fox et al. (2009) where a number of different 

DA schemes (including the EnKF, the Metropolis algorithm and the Genetic 

algorithm) were employed.  DA schemes fall into two categories: (i) state estimation 

and (ii) parameter estimation (see chapter 2 for details of the difference between the 

two).  For this chapter, state estimation was performed because we are interested in 

how assimilating MODIS LAI observations affects modeled NEE.  Therefore we 

require the parameters to be predetermined and a description about how this was 
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achieved is outlined in subsection 5.2.2.  For state estimation, four commonly used 

DA schemes are the Kalman Filter (KF), 4D-Var, the EnKF, and the Particle filter 

(PF).  The KF cannot be used here as it requires the model to be linear (see chapter 2 

for definition) whereas DALEC is non-linear.  4D-Var is not used as it requires the 

model to be differentiated which, although possible for DALEC, is complicated.  The 

remaining two, the EnKF and the PF, can both operate with a non-linear model.  We 

adopt the EnKF here due to its wide use, particularly in terrestrial ecosystem 

modelling (e.g. Williams et al., 2005, Quaife et al., 2007) and its ease of 

implementation.   

 For state estimation, the EnKF works by correcting the trajectories of each of 

the model states when an observation becomes available.  In essence the trajectory 

will move closer to the observation if the uncertainty measure specified for the 

observation is less than that of the corresponding model state.  The EnKF carries out 

parallel model runs, called ensembles, which all get updated when observations 

become available; at any one time point, the spread of these ensembles gives an 

indication of the uncertainty of the model state vector before and after assimilation of 

the observation.  A vector of error terms (or noise terms as they are sometimes called), 

generated randomly from the error distribution for the model, is added to the state 

vector of each ensemble after the execution of the model (at each time point) in order 

to incorporate model uncertainty.  A vector of noise terms is also added to the 

observations for a similar reason.  More specific details of how the EnKF operates are 

given in subsection 3.2.3.  A potential limitation of the EnKF is its assumption that the 

vector of noise terms for the model and observations should be generated from the 

Normal distribution.  If the model is non-linear then we would find that this noise 

vector is transformed to another distribution once inside the model (Quaife, 2011 

[personal communication]).  However the EnKF forces the distribution of the noise 

vector to be Normal again after observations have been assimilated.  Another 

limitation of the EnKF is to do with its ensemble aspect.  Due to the Normal 

distribution of model noise terms, the trajectory of the ensembles can go to areas of 

the state space which are physically impossible.  Since the DALEC model has only 

two simple non-linear components, it is unlikely that these problems will be 

encountered (Quaife, 2010 [personal communication]).   
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(iii) PROBLEMS WHEN ASSIMILATING MODIS LAI OBSERVATIONS 

When we perform DA to do state estimation using satellite observations of LAI (e.g. 

from MODIS), there are various issues relating to the actual observations which have 

not been addressed in any previous DA study:  

(a) For many sites the MODIS LAI observations are very noisy, i.e. observations can 

vary by around 2–4m²/m² in only 1 or 2 weeks, which is unrealistic.   

(b) For MODIS collection 5 LAI data, a measure of uncertainty (represented by a 

standard deviation value) accompanies each LAI observation.  For small values of 

MODIS LAI (i.e. <1 m²/m²), this s.d. value can be unrealistically small.  In 

addition, the errors are assumed to be symmetric, which is quite likely to be false.   

 A further issue is that for earth observation products of LAI only ‘green’ LAI is 

targeted, rather than total LAI which is what is assumed when determining LAI from 

ground measurements and when using it models.  In other words, if the foliage is non-

green, this may not be registered or completely registered as foliage.  In this way, the 

EO interpretation of LAI is how photosynthetically active the leaf rather than the 

actual area of the leaf, resulting in the actual LAI being under-estimated.  This is an 

issue which all EO products of LAI suffer from, and is a limitation.  Validation with 

ground based LAI data is therefore essential to ensure that the EO data is trustworthy.   

 Another point worth making here concern issues of spatial scale.  Unless the site 

is homogeneous the effective LAI, defined as LAI uncorrected for clumping or the 

amount of woody material present (De Kauwe et al., 2011), will be lower than the true 

LAI.  Therefore it is important to relate the scale of the LAI data used to what is 

expected of the NEE data.  NEE is only measured at one point for a particular site, and 

this is usually near the centre of the central pixel of the 49 1km by 1km pixels where 

MODIS LAI is given for each site.  However, due to the existence of a flux footprint 

(see the third to last paragraph of the subsection 5.2.4), which would be expected to 

cover most of the 1km by 1km pixel where the flux tower is located, the scale of the 

MODIS LAI data approximately corresponds to the scale of the ground based NEE 

measurements.  However, the analysis of this chapter would be improved if NEE was 

formally scaled up to the same spatial scale as the MODIS LAI.  Thus, this is a 

limitation of this work, but it also a limitation of every single other published study 

where EO products like LAI have been used to make inferences on other quantities 

(such as NEE)  involving comparison  with ground based  data of a different  measure- 
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ment scale to the EO data. 

Returning to points (a) and (b) above, we investigated whether modifying the 

MODIS LAI data in order to overcome these limitations improved the model fit of the 

post-DA NEE to in-situ measurement of NEE.  With respect to (a)-(b) above, the 

MODIS LAI data were processed as follows: 

(a) To reduce the temporal noise of the LAI while maintaining its signal, the MODIS 

LAI observations were smoothed.  We adopted a simple 7 point moving average, 

rather than a more complex smoothing technique so as the method could be easily 

applied to other situations.     

(b) We increased the small s.d. values of the MODIS LAI by an amount depending on 

the size of the s.d. value to begin with; 

In making these changes, the aim was to make the MODIS LAI data and uncertainties 

more believable, whilst trying to preserve the features of the MODIS LAI as far as 

possible.     

 

5.1.5 Aims and layout of chapter 

This chapter answers the following questions: (1) Does assimilating MODIS LAI 

observations improve the fit between the modelled and observed NEE?  (2) Does 

processing the LAI dataset to make it more realistic before assimilating it into 

DALEC improve the fit of the modelled to the observed NEE?  In the methodology 

section (5.2) we describe the model (DALEC), the EnKF scheme used, the three sites 

used and why they were chosen, and how the MODIS LAI and ground NEE datasets 

were obtained for each of the sites.  Details are also given on how the MODIS LAI 

was processed and how changes were quantified in terms of the fit of the resulting 

trajectory of post-assimilation NEE to the trajectory of ground NEE observations.  

The results are displayed in the section 5.3, and discussed in section 5.4.  The 

conclusions are given in section 5.5.   

 

5.2 Methodology 

5.2.1 Site Selection 

We focussed on evergreen sites to avoid  the extra implications in both model and data  
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when dealing with deciduous forests (for example the inclusion of a labile carbon 

pool), and to more clearly bring out the issues in using LAI.   

There are 163 sites across the world classified as evergreen forests where 

MODIS LAI and ground NEE observations are both available (ORNL, 2001).  A 

subset was chosen under several criteria:  

(i) Specific site information was required for each site in order for the model to 

operate, e.g. Leaf Mass per Area, Foliar Nitrogen and the initial conditions of the 

C pools;  

(ii)  Calibrated values of the parameters (which are site-specific) are required, perhaps 

from past studies;  

(iii)  The MODIS LAI values from the different sites should ideally exhibit different 

characteristics, e.g. different shape of the LAI trajectories, different amplitudes, 

etc …;  

(iv) Ideally the sites would come from different evergreen biomes.  Three sites 

matched the first three criteria, namely Loobos (Netherlands), the Metrolius 

young ponderosa Pine, Oregon (hereafter referred to Oregon) (U.S.) and Tharandt 

(Germany).  The fourth criterion was partially met because two are from Europe 

and one is from the western part of the USA.  Figure 5.2 shows ground photos of 

the each of the sites. 

The Loobos site (52˚10' N, 5˚44'E) is located approximately 70km east of Amsterdam 

in the Netherlands.  It is almost flat and is at an elevation of 52m.  The forest is 

classified as an Evergreen Needleleaf forest, with the dominant tree species being 

Scots Pine (Pinus sylvestris).  It is a mature forest, around 80 years old in 2000.  In 

2000 there were 620 trees per hectare with a mean tree diameter at breast height of 

27cm, and a mean height of 16.2m.  The forest has a Mediterranean climate with a 

mean air temperature of 10˚C and an annual precipitation of 786mm.   

The Oregon site is located in a Research Natural Area (44˚26’N, 121˚34’W) 

roughly in the centre of Oregon state, U.S.A. The area is nearly flat and at elevation of 

approximately 1200m.   The forest is classified as an Evergreen Needleleaf forest with 

with the dominant tree species being Ponderosa pine (Pinus ponderosa).  The site was 

completely cleared in 1978, but it has grown back since then.  In 2002, there were 431 

trees per hectare, with a mean diameter at breast height of 11.3 cm and mean height 

4.3m.   The site is in  a semiarid region that  experiences warm,  dry summers and wet, 
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Figure 5.2 Photos of the three sites: Loobos (left), Oregon (centre), and Tharandt 
(right).  All photos were obtained from http://fluxnet.ornl.gov/. 
 

cool winters. 

The forest at the Tharandt site (50˚58'N, 13˚34'E) is located 20km SW of 

Dresden, Germany.  The topography is gently sloped and is at an elevation of 380m.  

The forest is classified as an Evergreen Needleleaf forest with the dominant tree 

species being Norway Spruce (Picea abies). It is a mature forest of around 110 years 

old in 2000.  In 2000 there were 480 trees per hectare with a mean tree diameter at 

breast height of 33cm, and a mean height 26m.  The forest has a Mediterranean 

climate with a mean air temperature of 7.5˚C and an annual precipitation of 820mm.  

For Loobos and Tharandt, the MODIS LAI data varied between 1m²/m² and 

4m²/m² during the winter and summer months and were in general very noisy.  For 

Oregon, the trajectory of MODIS LAI data was fairly smooth varying between around 

1m²/m² and 2m²/m².  The MODIS data, along with the in situ data, are described in 

greater detail subsection 5.2.4.  The parameter values available for the three sites 

(Williams et al., 2005; Fox et al., 2009) were calibrated against data from 2000-2002, 

and so these years were the obvious choice of time period to adopt for the study.   

 

5.2.2 The DALEC Model 

The evergreen DALEC model (see chapter 2 for full description) is a simple box 

model that tracks the journey of carbon from photosynthesis through to C pools and 

respiration fluxes, working on a daily time-step.  Figure 5.1 shows it in diagrammatic 

form.  It has five carbon pools namely Cf (foliar), Cr (fine roots), Cw (woody biomass), 

Clit (litter), and Csom/cwd (soil organic matter & coarse woody debris). There is an 

additional pseudo-pool for GPP (Gross Primary Production), which represents carbon 

accumulated from photosynthesis. There are a total of ten fluxes which connect the C 
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pools and also provide a way for C to get into the system (via GPP) and out of it (via 

respiration).  The values of the eleven parameters and five initial conditions are fixed 

and shown in table 5.1.   

For Loobos and Tharandt, the parameters and initial conditions were estimated 

from site inventories and from local knowledge of the site (Fox et al., 2009).  To 

assess the realism of these values for the Loobos site we note that, for 7 of the 11 

parameters, the values used in this chapter agree very well with the means of estimates 

obtained by the participants of the REFLEX project (Fox et al., 2009).  For the 

remaining 4, the values used here are well within the range of the estimates from 

REFLEX.  In REFLEX, Tharandt was chosen because it was considered to be very 

similar to Loobos in terms of climate and vegetation, therefore the same parameter 

values as used in Loobos were used here too.   

For Oregon the parameters were taken from Williams et al. (2005), who 

estimated them by nesting the EnKF within an optimization.  The authors state: 

This routine varied the unknown parameters and initial conditions to find the 

values that minimized the sum of squared differences of the innovations (i.e. 

the difference between model forecast/prediction and observations) for all  

available observations. This approach, in effect, undertakes numerous 

implementations of the EnKF with varied parameters and initial conditions, 

and identifies in which implementation the predictions require the minimum 

correction. This implementation is then assumed to have the optimal 

parameter set and initial conditions. 

This same parameter set was used by Quaife et al. (2007), who assimilated MODIS 

satellite data of surface reflectance to improve modeled estimates of NEE, GPP and 

total respiration, which was then compared against ground based measurements of 

these three data types.  This chapter is different in that MODIS satellite LAI data are 

assimilated, but it is similar to Quaife et al. (2007) in that the same parameter set from 

Williams et al. (2005) is also used and the post-DA NEE states are validated against 

ground data. Thus for the same reasoning as Quaife et al. (2007) we deem it acceptable 

to use the parameter set estimated by Williams et al. (2005) for the Oregon site.  A 

further important point to make here is that DALEC assumes one layer of canopy, 

whereas in reality the trees will contain multiple canopies.  At the end of subsection 

5.1.2 it is stated that in one sense this does not matter because the ACM gives very acc- 
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Symbol Description 
 

Units Value  
(Loobos | Tharandt) 

Value 
(Oregon) 

Td Litter decomposition rate parameter day-1 4.41E-06 
    

4.40E-06   
 

Fg Fraction of GPP respired autotrophically - 0.52  0.47  
Fnf Fraction of GPP allocated to foliage - 0.29  0.31  
Fnrr Fraction of GPP allocated to roots - 0.41 0.43 
Tr Turn over rate of foliage day-1 0.0028 0.0027 
Tw Turn over rate of wood day-1 2.06E-06 2.06E-06 
Tr Turn over rate of roots day-1 0.003 0.00248 
Tl Turn over rate of litter day-1 0.02 0.0228 
Ts Turnover rate of CSOM pool. day-1 2.65E-06 2.65E-06 
Et Exponential temperature dependent rate 

parameter 
- 

0.0693 0.0693 
Pr Nitrogen use efficiency parameter - 7.4 2.155 
Cf,0 

(Foliage) 
Foliar carbon pool gCm-2 

110 110 58 
Cw,0 

(Wood) 
Wood carbon pool gCm-2 

9200 12400 770 
Cr,0 

(Roots) 
Fine root carbon pool gCm-2 

180 102 102 
Clit,0 

(Litter) 
Fresh foliar and fine root litter carbon pool gCm-2 

93 40 40 
CSOM,0 

(Humus) 
Soil organic matter & coarse woody debris 
carbon pool 

gCm-2 
11000 9700 9897 

 

Table 5.1 The description of the parameters and C pools of the DALEC model, 
together with the values used for the individual sites. Loobos and Vielsalm used the 
same parameters but the initial values of the C pools were different. 
 

urate coarse scale estimates of GPP from the SPA model which does include multiple 

canopy layers. Nonetheless, the overall behaviour and response of the understory will 

be different to that of the canopy not just in terms of photosynthesis but also plant 

growth, respiration, and movement of carbon.  This is a limitation of the DALEC 

model, but arguably not one which may bias the overall approximations of vegetation 

dynamics.  For example, it has been shown that it can still give accurate NEE 

estimates at the spatial scale of a site (i.e. 1km by 1km area) (Williams et al., 2005). 

 

5.2.3 The Ensemble Kalman Filter (EnKF) 

The Ensemble Kalman Filter (EnKF) is a sequential data assimilation algorithm which 

like other DA algorithms is based on Bayes’ theorem (Bayes, 1763).  For terrestrial 

ecosystem models the EnKF has been successfully implemented for state and 

parameter estimation (Williams et al., 2005, Quaife et al., 2007, Fox et al., 2009).  The 

formulation of the EnKF used in this study is described in detail by Evensen (2003).  
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The complete description of the EnKF is given in chapter 2, as so is not repeated here.  

However there are some details which need to be described here which are specific to 

the implementation of the EnKF for this chapter.  These are the number of ensemble 

members to use and the specifying the uncertainty on the LAI from a forward run of 

the model (no DA).   

For the number of ensemble members, we first note that the error covariance 

matrix of the distribution of ensembles at the analysis step of the EnKF converges to 

the error covariance matrix used in the Kalman filter (Evensen, 2009).  Therefore it is 

desirable to have the number of ensemble members as high as possible, however not 

so high that the EnKF becomes too computationally expensive, which is a particular 

issue when the EnKF is used for large models.  Two previous studies which used the 

EnKF with DALEC (Williams et al., 2005 and Hill et al., 2012) used N=200 and 

N=500, but for this chapter we use N=1500.  The reason for this is that the model is 

simple and the relatively short dataset is assimilated, so taking N=1500 takes very 

little extra time and has the advantage that the distribution of ensembles more 

accurately resembles a Normal distribution. 

As we are performing DA, as well as specifying the uncertainty associated 

with the LAI data being assimilated (see next subsection), it is also necessary to 

specify the uncertainty on the modelled LAI.  For consistency with Fox et al. (2009) 

and Williams et al. (2005) which assimilated LAI data into the DALEC model using 

the EnKF, this chapter uses the same uncertainty on the modelled LAI as was used in 

those two studies; that is a standard deviation of 20% of the model LAI.    

 

5.2.4 The MODIS LAI observations and ground NEE dataset 

MODIS AND GROUND LAI OBSERVATIONS 

The MODIS LAI product is given as pixels of size 1km×1km,  and are given over the  

same area every 8 days.  The data can be accessed publicly from the NASA MODIS 

website (http://daac.ornl.gov/cgi-bin/MODIS/GR_col5_1/mod_viz.html) and is 

labelled as MOD15A2 (Terra).  The MODIS LAI is derived from an algorithm 

(hereafter referred to as the main algorithm) which uses a three-dimensional radiative 

transfer model (RTM).  The RTM has surface reflectance of solar radiation (or simply 

‘reflectance’) as its output and uses various biophysical parameters, such as LAI, as 

inputs.  The RTM is inverted to find the parameters (LAI, etc…) that produce the best 
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fit between the modelled and observed reflectance (Knyazikhin et al., 1998, Myneni et 

al., 2002).  To avoid multiple solutions (i.e. if there are multiple values of LAI, which 

produce near optimal fits of modelled to observed reflectance) a biome classification 

map is also used in retrieving LAI.   

 An empirical back-up algorithm is used if the main algorithm fails, which can 

result from:  

(i) Low quality reflectance data: the best fit of the observed to modelled reflectance 

is calculated using an RMSE value which must be below a certain threshold,   

otherwise the data are considered low quality (Privette et al., 2002);  

(ii)  Algorithmic error, for example relating to geolocation, calibration or failures in 

the cloud mask (De Kauwe et al., 2011).   

The back-up algorithm estimates LAI using a look-up table of vegetation indices for 

which LAI values are specified.  However Yang et al. (2006) argue that this back-up 

algorithm results in poor quality estimates of LAI.  For this reason it was not used in 

this chapter, and when the main algorithm failed we assume no MODIS LAI 

observation.  Even when the main algorithm was used, the quality of the LAI retrieval 

was reduced slightly when clouds were present, so these observations were also 

removed.   

  For each of the three sites, the MODIS LAI observations were in principle 

available every eight days during 2000-2002 with the caveats above and subject no 

cloud problems.  Figure 5.3 shows the MODIS LAI data for the three sites, along with 

the ground LAI data.  Several interesting observations can be made from these three 

time series plots:  

(1) The MODIS LAI observations appear higher for Loobos than for Tharandt, which 

might be surprising given that the sites are at the same latitude and have a similar 

climate. This can be seen by the observations peaking at a slightly higher level for 

Loobos, and around half of the Loobos observations are 2 m²/m² or, whereas this 

is true for only a quarter at Tharandt.   A possible reason for this might be that the 

leaves of the Norway Spruce trees at Tharandt are not as photosynthetically active 

than the Scots pine trees at Loobos (Myeni et al., 1997).  This is because what 

MODIS actually measures is closely related to the level of photosynthetic activity 

of the foliage.   
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Figure 5.3 Time series of the MODIS LAI collections data for the three sites, Loobos, 
Oregon and Tharandt. The ground LAI measurements are also shown for comparison.  
MODIS LAI is available every 8 days but only those were included where the main 
algorithm in the Radiative Transfer model was used and where there was sufficiently 
low cloud cover (see the first part of this subsection).  The error bars correspond to 
+/- s.d..  The s.d. values accompanied the MODIS LAI data, and the s.d. of the ground 
LAI was determined as a percentage, in this case 10%, of each data point, as done in 
Williams et al. (2005) and Fox et al. (2009).   

 

(2) At day 500, where the only ground LAI data is available for Tharandt, the MODIS 

LAI data is different to this ground observation.  However the difference is not 

great and the ground LAI data point is within the uncertainty interval of the 

neighbouring MODIS data.    
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(3) The LAI at Oregon generally lower (1-2 m²/m²) than at the other two sites (1-4 

m²/m²)? This is due to the forest at Oregon being younger (22 years in 2000) than 

at the other two sites (80 and 110 years in 2000).     The trees also average 4.3m 

in height, which is significantly lower than the trees at the other two sites.  

(4) The peak to peak amplitude of the MODIS LAI data is much larger than that of 

the ground LAI for Loobos, where there are most ground data available compared 

to the other sites.  This is likely to be caused by the fact that ground LAI data 

would include only trees and perhaps shrubs, but the MODIS data infers LAI for 

all vegetation types including bare ground and so a larger range in the MODIS 

LAI is expected.   

(5) The MODIS LAI at Oregon is very flat at around 1.5 m²/m² during most of the 3 

year period, whereas the ground LAI vary between 1 and 1.5 m²/m².  This might 

be because, although there are fewer leaves during Spring, they are more 

photosynthetically active than during summer.   

(6) There are few MODIS LAI observations during the winter months, for all of the 

sites, probably because there is more likelihood of the reflective data being low 

quality such as more cloud (Roy et al., 2006).  

The effects of assimilating the MODIS LAI observations into the model were 

quantified by comparing the modelled NEE, after assimilating the MODIS LAI data, 

with the ground observations of NEE made at the same location as the MODIS and 

ground LAI measurements.  This comparison was possible due to the existence of a 

flux footprint; since the wind is the carrier of CO2, the CO2 measured at the flux tower 

can originate from several kilometres away.  Hence the NEE, or the CO2 vertical flux, 

measured at the site is representative of NEE across an area sometimes several 

kilometres upwind from where the flux tower is located.  The size and of the flux 

footprint can be inferred from the wind direction and wind speed, available from the 

fluxnet database.   

MODIS LAI data from two adjacent 1km×1km pixels were also assimilated 

and the resulting post-assimilation NEE was also compared with same ground NEE 

measurements, even though these were not in the same pixel as the MODIS LAI. 

However the two extra pixels were chosen to be contained in the flux footprint at the 

time the measurements were made. Figure 5.4 shows the location of these pixels (blue) 

relative to the central pixels (red).  For Loobos, the fetch measured 1.5–3.0 km and the 
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     Loobos           Oregon                       Tharandt 

Figure 5.4 For each of the sites, MODIS LAI observations were used from the central 
pixel (red) and two neighbouring pixels (blue).  The numbers relate to the numbering 
from 1 to 49 given for the MODIS LAI data at each of the 49 pixels at a given time 
point (Knyazikhinet et al., 1998, Myeni et al., 2002).  The 9 pixels here are the central 
ones given in the 7 by 7 array of the 49 pixels. 
 

wind direction was from the SW direction at the time the measurements were made, 

and since the flux tower is in the  SE corner of the  central pixel, pixels 31 and 32 

were chosen.  Oregon had a fetch of approximately 1-2km from the West/SW 

direction, thus pixels 24 and 31 were chosen.  Tharandt had a fetch of 0.5km from the 

SW direction thus, given the flux tower is fairly close to the West of the central pixel, 

pixels 24 and 31 were chosen.   These measurements of the flux footprint distance and 

wind direction were made at the same time as the LAI and NEE data.  Note that the 

numbering of the pixels used in figure 5.4 is not 1 to 9 because the MODIS data is 

available for 49 pixels covering an area of 7km×7km, with pixel 25 as the central 

pixel.    

 

GROUND MEASUREMENTS 

Half-hourly measurements of NEE were provided from eddy-covariance 

instrumentation on flux towers at each of the three sites.  The in situ LAI 

measurements were made by field scientists based at the sites using gap fraction 

methods as described in subsection 5.1.3; in particular the ground LAI data here only 

include foliage and do not include woody area index.  These data were obtained from 

the Ameriflux database for Oregon (http://public.ornl.gov/ameriflux/Site_Info/siteInfo 

.cfm?KEYID= us.metoli us_yng.01) and from the GHG Europe database 

(http://www.europe-fluxdata.eu/newtcdc2/GHG-Europe_home/login.aspx for Loobos 

and Tharandt.  The NEE measurements were converted to daily data by converting 

them from the units used  for the eddy-covariance  NEE measurements (µmol/m²/s) to 

those used in DALEC, but at the daily time-scale (gC/m²/day). When the half-hourly 
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measurements were not made (due to, for example, an instrument error or power 

failure) or the quality was not good enough, for example an insect interfered with the 

instrumentation, biasing the data). The measurements were estimated (or gap-filled 

using common terminology) using a statistical model.  For each day the mean of all 48 

half-hourly measurements was used to represent the daily measurement, as long as at 

least 75% of the measurements were not gap-filled.  The daily in situ NEE and LAI 

data are also available from the Carbon Fusion website (http://www.geos.ed.ac.uk/ 

carbonfusion/Reflex.html). 

 

5.2.5 Processing the MODIS LAI datasets 

As stated at the end of subsection 5.1.4 there are two main issues with the MODIS 

LAI data: (i) the data are noisy, (ii) the s.d. (error bar) values are unrealistically small, 

particularly for small LAI values.  These two problems are clearly evident in figure 

5.3.   

For (i) we can see that at Loobos and Tharandt, MODIS LAI can change 

dramatically (1–2 m²/m²) in the space of only a week or two.  Unrealistically small 

error bars are evident at all sites but particularly Loobos and Tharandt; for example, 

the error bar on the MODIS LAI observation near day 425 of Loobos.   

To overcome these problems with the MODIS LAI we performed the 

following operations:  smoothing the noisy observations and increasing the s.d. values 

(where necessary) for the small LAI values; decreasing the peak-to-peak amplitude of 

the MODIS LAI time series to be no more than 2 m²/m²; performing both operations.   

 

OTHER STUDIES WHICH HAVE PROCESSED LAI DATA INFERRED FROM 

SPACE 

The claim that the satellite data need modifying is backed up other studies, although 

all of these studies correspond only to smoothing the data.  One of the first attempts to 

do this was Jonsson & Eklundh (2004), who developed the TIMESAT software for 

smoothing data.  This is done by a choice of different algorithms, such as least square 

fitting, Savitzky-Golay filtering, and the use of harmonic functions and asymmetric 

Gaussian functions.  All of these approaches broadly speaking achieve the same result, 

but individual approaches may be more applicable to particular datasets with specific 

needs about how the data should be processed.  For example the Savitzky-Golay 
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filtering can capture subtle and rapid changes in the time series but at the cost of being 

sensitive to noise (Gao et al., 2008).  All of the approaches weight the data according 

to some measure of uncertainty, for example the amount of cloud present which can 

cause bias and less certain estimation of the satellite product.  The TIMESAT software 

have been used by a number of studies, most notably by Gao et al. (2008) whose 

authors include the team from Boston University responsible for producing the 

MODIS LAI/FaPAR products.  Gao et al. (2008) used assymetric functions to smooth 

MODIS collection 4 LAI data with the weighting determined by the Quality Control 

(QC) information, where the QC information was based on for example whether the 

back-up algorithm was used in the radiative transfer model (RTM) or there was too 

much cloud cover for each data point.  The authors found good agreement with the 

smoothed data points versus the highest quality unsmoothed data.  Yuan et al. (2011) 

did a vertically identical investigation to Gao et al. (2008), apart from specific details 

such as the site, but used MODIS collection 5 LAI data.  Interestingly, Yuan et al. 

(2011) found that the resulting smoothed LAI data agreed better with ground based 

LAI data, compared to the unprocessed data. 

 Quaife & Lewis (2010) offered an interesting alternative way of smoothing 

modelled surface reflectance variability, through inverting linear bi-directional surface 

reflectance (BDRF) models using MODIS satellite data, by imposing a smoothness 

constraint using Lagrangian multipliers.  This is not yet fully operational, but offers a 

novel way of producing more regularized satellite products.   

 While there has been an interest in smoothing satellite products, there is been 

no research found on validating the prescribed data uncertainties, such as those which 

accompany the MODIS collection 5 LAI data, nor on the size of the peak to peak 

amplitude of the LAI signal. However accurate data uncertainties is essential where 

the data is used for data assimilation – certainly having extremely low uncertainties as 

observed with the MODIS data in figure 5.3 is unrealistic and will have a strong 

impact on the post-assimilation model estimates.  In terms of the need to reduce the 

peak to peak amplitude of the MODIS LAI signal, we can clearly see that the ground 

LAI data show a low peak to peak amplitude as we might expect for an Evergreen 

forest (Alton, 2010 [personal communication]), whereas the amplitude of the MODIS 

LAI is noticeably higher.  These arguments form the basis for the need for assessing 
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the impact of modifying of the MODIS LAI in terms of the s.d. values and the peak to 

peak amplitude of its signal. 

 

CREATING THE PROCESSED DATASET 

Figure 5.5 shows the result of this processing for the MODIS LAI for Loobos.    An 

exact description is now given of how each of the processed datasets was created, i.e. 

how the smoothing, scaling of the LAI data and scaling of the uncertainties of the LAI 

data was carried out.   

(i) The MODIS LAI data were modified in two ways: First a 5-point moving average 

was applied to the entire dataset which caused the trajectory to be smoothed.  

Although others have used a moving average to smooth the MODIS LAI data (e.g. 

Sea et al., 2011), it could be argued that a more sophisticated smoothing method 

should be employed here such as the Savitzky-Golay filtering as used in 

TIMESAT  (Jonsson & Eklundh, 2004).   However given the sufficient amount of 

MODIS LAI data used here, except for during the winter months, it was deemed 

appropriate that a moving average was adequate here.  This has two main 

advantages over more sophisticated techniques: first it is simple to implement and 

therefore easy to replicate by others, and second it gives more or less the same 

result as if other smoothing methods had been used instead.  Furthermore, the 

purpose of the smoothing done here was not for the results of this chapter to be 

implemented on a larger scale.  Instead, we wish to demonstrate the biases 

introduced to the post-assimilation model states, particularly NEE, when some sort 

of processing is not implemented.   

(ii)  Next, if the s.d. value of a MODIS observation was less than 0.5m²/m² it was 

changed to 0.5m²/m². If the s.d. was greater than or equal to 0.5m²/m² and less than 

1 m²/m² it was set to min(1.5×s.d., 1) m²/m², and if it was greater than 1 m²/m² it 

remained unchanged.  The rationale for increasing the s.d. values in this way was 

simplicity, and it is noted that there are other perhaps more sensible ways 

increasing the s.d. values in a less ad-hoc way.  This may have been preferable, but 

in truth the purpose of this transformation was not to provide ‘accurate’ estimates 

of the small s.d. values, but rather to observe the effect of increasing these s.d. 

values.    
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Figure 5.5 The processed MODIS LAI data for the central pixel of the Loobos site. 
The data was smoothed and the s.d. values for the smaller LAI values were increased. 
 

It is worth noting here that the processing moves the data some way from their 

original positions and so it could be questionable whether these data should be used 

for DA.  However, studies in the past which have processed data like this before also 

(for example Gu et al., 2006, Gao et al., 2008) have resulted in the same thing.  

Furthermore in the case of smoothing the data, it is important to state that the data 

points which have been moved away the furthest are predominantly those which were 

very close to zero due the dominant winter months of the year, and it is questionable 

whether this is actually true due the vegetation being evergreen.  Finally, as we will 

show in the results, we find that this processing results in the post-assimilation 

modelled NEE being closer to the ground NEE observations in many cases.   

The original MODIS LAI dataset and the processed datasets are hereafter 

referred to as: 

‘LAI-orig’ to denote the original set of observations.   

‘LAI-smsd’ to denote the dataset where the LAI was smoothed and the small s.d. 

values  

 

5.2.6 Experimental Design 

In total, 16 experiments (executions of the EnKF) were performed for each site.  These 

are outlined in table 5.2.  Pixel refers to whether the MODIS LAI from the central or 

one of the adjacent pixels was used (figure 5.4).  The remaining columns correspond 

to what MODIS LAI dataset was assimilated, whether it was the unprocessed one (i.e. 

LAI-orig), or the processed one.  For experiment 1, no dataset was assimilated, i.e. a 

forward run was  carried out.   For experiments 8 to 10  the MODIS LAI-smsd  dataset  
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Experiment Pixel LAI-orig LAI-smsd LAI-ampl 

1 None    

2 Central Yes   

3 Adjacent 1 Yes   

4 Adjacent 2 Yes   

5 Central  Yes  

6 Adjacent 1  Yes  

7 Adjacent 2  Yes  

8 Central  Yes Yes 

9 Adjacent 1  Yes Yes 

10 Adjacent 2  Yes Yes 
 

Table 5.2 The list of executions of the EnKF carried out for each site, based on the 
unprocessed and processed MODIS LAI datasets which were assimilated.  ‘Adjacent1’ 
and ‘Adjacent2’ refer the pixels adjacent to the central pixels (figure 5.4) whose 
MODIS LAI data were used.   
 

and the ground NEE observations were assimilated for the three pixels.  This 

demonstrated the assimilation of more than one dataset using the EnKF, but more 

importantly to helped understand what the modelled LAI should look like since the 

NEE being assimilated is also used to validate the post-DA NEE.   

 

5.2.7 Assessing the results 

The effect of assimilating each of the datasets was determined by computing the 

median and 95% tolerance interval (i.e. an interval with lower and upper bounds given 

by the 2.5th and 97.5th percentiles) of  the absolute differences between the post-DA 

NEE and the observed NEE.  To determine whether assimilating the unprocessed 

MODIS LAI observations improved the estimates of NEE, the medians and lengths of 

the tolerance intervals from experiments 2 – 4 were compared with those of 

experiment 1.    Improvements in the NEE estimates occurred if there was reduction in 

the median and/or the length of the tolerance interval.  Similarly, to determine whether 

assimilating processed MODIS LAI observations gave better estimates of NEE than 

assimilating the  unprocessed ones (i.e.  MODIS LAI orig), the medians and tolerance 

intervals for experiments 5 – 10 were compared with those of experiment 2 – 4.  
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The distribution of absolute differences of the post-DA and observed NEE was 

calculated for periods of 4 months in length rather than the whole 3 year time period. 

This is because the assimilation of the LAI observations has more influence on the 

post-DA NEE during the growing season of the year.  Therefore the biggest 

improvements in the estimates of NEE from assimilating MODIS LAI are more likely 

to be seen during the May-August time periods.  This can be seen clearly in figure 5.7, 

whose top two panels show the time series of LAI and NEE before and after 

assimilating the MODIS LAI data for the central pixel of Loobos. The third and fourth 

panels show the absolute differences for all nine of the 4-montly periods between the 

modelled NEE (red=before assimilation, black = after assimilation) and the observed 

NEE.  Lastly the bottom panel summarises the information in the third and fourth 

panels as medians and 95% tolerance intervals for the four monthly periods during 

2000-02.   

 To complement the sets of plots of the medians and percentile intervals, we 

also plot the trajectories of the LAI and NEE.  As an example, we show such a plot 

after assimilating the unprocessed MODIS LAI (figure 5.6), which is the same as the 

top two panels of figure 5.9a but in an uncondensed form.  

 Included in the assessment of the importance of assimilating MODIS LAI we 

also assess how the uncertainty on the modelled states reduces after assimilation 

compared to the pre-assimilation modelled states.  We do this by plotting the lengths 

of the lengths of the 66% tolerance intervals (equivalent to +/- 1 s.d.) corresponding to 

the pre-DA model states (i.e. the forward run) and post-DA states as two separate time 

series.  We should see that the time series of tolerance intervals for the post-DA 

modelled NEE is consistently less than that of the forward run.    

 

5.3 Results 

5.3.1 Checking the assumption of Normality 

One of the assumptions of the EnKF is that the distribution of ensembles at any time 

step (i.e. on any day) is Normal.  This is checked by choosing nine of the days from 

the three year period at random and, and then for each of these days plotting the 

distribution of ensembles for each of the states was plotted.   As an example, figure 5.8 
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Figure 5.6 The two panels show the time-series of LAI and NEE before and after 
assimilation of MODIS LAI data from the central pixel of Loobos.  The legend on the 
left corresponds to the top panel, which the right one is for the second panel.   
 
 

 
Figure 5.7 The top two panels show the absolute differences between the post-DA and 
observed NEE, and between the NEE from a forward run and the observed NEE.  The 
third panel shows the same information as the first two except the absolute differences 
are summarised using the median (crosses) and 95% tolerance intervals (error bars) 
for each of the 4 monthly periods during 2000-02.   
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Figure 5.8 Histograms of the distribution of NEE from the 1500 ensemble members, 
for nine randomly chosen days, corresponding to the assimilation of the MODIS LAI 
data for the central pixel of Loobos.  The red vertical dashed line indicates the mean. 
 

shows these histograms of NEE after assimilation of MODIS LAI for the central pixel 

of Loobos.   All plots are approximately Normal, and this was true for all elements of 

the state vector and for any randomly chosen set of nine days. Therefore the 

assumption of Normality is valid.   

 

5.3.2 Assessing the impact of assimilating unprocessed MODIS 

LAI observations on estimates of NEE 

In this subsection we show that for Oregon there is some evidence that assimilating the  

original MODIS LAI observations improves the fit of the modelled to the observed 

NEE, but for Loobos there is no consistent evidence that it makes a difference, and for 

Tharandt assimilation of MODIS LAI data actually results in a worse fit.  The results 

were assessed by plotting the post-DA trajectories of the NEE and LAI alongside the 

trajectories of the forward runs and the corresponding observations (figures 5.9a and 

5.9b) and by plotting the median and 95% tolerance interval (97.5th – 2.5th percentile) 

of the distribution of absolute differences between the post-DA and observed NEE and 

between the model-only (no DA) and observed NEE (figure 5.10). The absolute differ- 
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Figure 5.9a Plots of the post-assimilation LAI (left panel) and NEE (right panel) 
(black lines) for Loobos and Oregon, together with the MODIS LAI observations 
and ground NEE observations (blue crosses) and the forward runs.  The 
uncertainty in the post-DA LAI/NEE and the forward run LAI is represented by 
+/- 1 standard deviation. 
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Figure 5.9b As figure 5.9a, except for Tharandt. 
 

 
Figure 5.10 The median and 95th tolerance interval for: (red) the distribution of 
absolute differences between the modelled NEE (no DA) and the observed NEE, and 
(black) the distribution of absolute differences between the NEE after assimilating the 
MODIS LAI orig dataset and the observed NEE.  The 1, 2 and 3 refer to {Jan-Apr}, 
{May-Aug} and {Sept-Dec}. 
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ences were subdivided into three periods of the year (Jan-Apr, May-Aug and Sept-

Dec) for reasons given in subsection 5.2.7.    

For Loobos, in the second year of pixels 25 and 31 (pixel 31 not shown), the 

small standard deviations of the small MODIS observations (top left panel of figure 

5.9a) drag the post-DA LAI (black line) down to unrealistically low levels that are 

much lower than the LAI from the forward run (red line).  During these periods, this 

results in a worse fit of the post-DA NEE to the observed NEE than for the forward 

run (top right panel of figure 5.9a and top row of figure 5.10).  For the other periods, 

we mostly see an improved fit of the modelled to observed NEE due to assimilating the 

MODIS LAI observations (top row of figure 5.10); i.e. the median of absolute 

difference between the post-DA and observed NEE (black) is smaller than the median 

corresponding to the forward run (red), or the 95% tolerance intervals are smaller.   

An interesting point to make here in relation to the top left panel of figure 5.9a, 

which is the same as the top panel of figure 5.6, is that the residuals between the 

MODIS LAI and the DALEC LAI are nearly always positive.  This is interesting 

because in chapter 4 it was thought that this autocorrelation in the residuals was 

influenced to some degree by the fact that the data was synthetic there; but here the 

data are real. 

For Oregon, the post-DA LAI trajectory is similar to the model-only LAI 

(figure 5.9a, bottom left panel), and we find that there is no difference in the fit of the 

modelled NEE to the observed NEE whether the MODIS data is assimilated or not, i.e. 

the medians and lengths of the tolerance intervals are approximately the same (second 

row of figure 5.10). 

  For Tharandt, assimilating the MODIS LAI observations tended to produce 

worse estimates of NEE than assimilating no data.  Due to the small s.d. prescribed to 

the smaller MODIS LAI observations, the post-DA LAI trajectory is dragged to a 

lower than the model-only LAI trajectory, in some places by a large amount (e.g. 

around day 500 of the left panel of figure 5.9b).    This is because the EnKF chooses 

the post-DA LAI to prefer the MODIS LAI observations with small s.d., since these 

are much smaller than the s.d. prescribed for the model.  This causes the post-DA 

NEE to be much higher than the modelled NEE, particularly during the growing 

season (figure 5.9b).   This is because the lower LAI mean than foliar carbon will be 

proportionally smaller, and due to the feedback in the DALEC model, GPP will also 
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become smaller, resulting in NEE getting larger, since NEE = total respiration – GPP.  

The median absolute difference between the post-DA and observed NEE (black 

crosses of the bottom row of figure 5.10) is equal to or greater than for the model-only 

NEE (red crosses). The 95% tolerance intervals for the modulus difference are also 

mostly always wider for the post-DA NEE estimates (black lines of bottom row of 

figure 5.10) than for the model-only NEE estimates (red lines), particularly for most 

of 2000-2002 for pixel 25 and for 2001-2002 for pixel 24.  A final interesting 

observation is that the NEE observations at Tharandt (figure 5.9b, right panel) extend 

down to around -6.5gC/m² during the summer peak, whereas they extend only to 

around -4 g C/m² for Oregon and to around -5 g C/m² for Loobos (top and bottom 

right panels of figures 5.9a).  As a result of this, the 95% tolerance intervals are 

significantly wider (mostly between 4 and 6 gC/m²; bottom row of figure 5.10) than 

for the other two sites (in general between 2 and 3 gC/m²; first two rows of figure 

5.10).   

 

5.3.3 Assessing the impact of processing the MODIS LAI data 

After assimilating the MODIS LAI-smsd dataset, there is a noticeable improvement in 

the NEE estimates compared to assimilating the original MODIS LAI dataset, 

especially for Loobos and Tharandt.  The smoothing increases the very small MODIS 

LAI values from the original dataset (first and third rows of figure 5.12).  This means 

that small LAI observations after smoothing do not have as large an impact and so 

prevents the post-DA LAI trajectory from being dragged down as was the case when 

the original MODIS LAI was used.  For Loobos, the post-DA LAI trajectory during 

the summer, labelled ‘2’ on the x-axis, (e.g. around day 500) of pixels 25 (top left 

panel of figure 5.11a) and 31 (not shown) is now higher than after assimilating the 

original MODIS LAI (top left panel of figure 5.9a).  As a result, the post-DA NEE is 

now extends to a lower level, particularly during the summer, and fits the observed 

NEE much better.  This can be seen most clearly in figure 5.12, where the median 

absolute difference between the post-DA and observed NEE is less when the MODIS 

LAI-smsd dataset is assimilated (green crosses) than when the original LAI dataset is 

assimilated (black crosses), particularly during the summer.  The corresponding 

tolerance intervals are also mostly shorter than those from assimilating the MODIS 

LAI-orig (black bars on figure 5.12).    In contrast, assimilating  the original LAI data,  
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Figure 5.11a Plots of the post-assimilation LAI (left panel) and NEE (right panel) 
(black lines) for Loobos and Oregon, together with the MODIS LAI-smsd 
observations and ground NEE observations (blue crosses) and the forward runs.  
The uncertainty in the post-DA LAI/NEE is represented by +/- 1 standard 
deviation. 
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Figure 5.11b As figure 5.11a, except for Tharandt. 
 

 
Figure 5.12 The median and 95th tolerance interval for: (red) the distribution of 
absolute differences between the modelled NEE (no DA) and the observed NEE; 
(black) the distribution of absolute differences between the NEE after assimilating the 
MODIS LAI-orig dataset and the observed NEE; and (green) differences between the 
NEE after assimilating the MODIS LAI-smsd dataset and the observed NEE.   The 1, 2 
and 3 refer to {Jan-Apr}, {May-Aug} and {Sept-Dec}. 
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we also find that assimilating LAI-smsd data does not result in a worse fit of the 

modelled to observed NEE for any of the 4-monthly periods, either in median 

difference or length of the tolerance interval differences.  

 Similar comments can be made for Tharandt (figure 5.11b), but the reductions 

in the median and the lengths of the tolerance intervals (bottom row of figure 5.12) are 

more  pronounced and occur during the  summer period for two  of the three years for 

all three pixels considered.  Although assimilating LAI-smsd data does on occasion 

result in a worse fit of the modelled to observed NEE, for other periods we see some 

improvement in the fit.  This contrasts with assimilating the original LAI observations 

which results in a worse fit for all the 4-monthly periods during 2000-02.    

 For Oregon (second row of figure 5.11a), there is no noticeable improvement 

from assimilating the LAI smsd dataset, when compared to assimilating the original 

MODIS LAI dataset (central panel of figure 5.12).  Therefore the improvements to the 

fit of the modelled to observed NEE observed when assimilating the MODIS LAI-orig 

data during May-August of the first year and January-April of the third year are also 

true when assimilating the MODIS LAI-smsd data.       

 

5.3.4 Assimilating NEE and LAI observations 

As expected, when in situ NEE observations are assimilated into DALEC in addition 

to the LAI-smsd dataset, there is a far better fit of the post-DA NEE to the observed 

NEE than in any of the previous experiments.  This can be clearly seen from figure 

5.14, where the median  and spread of the  absolute difference of  the post-DA and 

observed NEE is significantly less when the LAI-smsd and NEE are assimilated 

(green) compared to when no data assimilation is carried out, or any of the MODIS 

LAI datasets are assimilated (not shown).   

An interesting observation when assimilating NEE is its effect on the LAI, 

because we can learn what the MODIS LAI ideally would be in order to achieve a 

good fit of the post-DA NEE to observed NEE.   In particular, for Tharandt (left panel 

of figure 5.13b) the post-DA LAI trajectory increases to a much higher maximum 

when assimilating just the LAI-smsd data (bottom left panel of figure 5.11b) although 

the troughs of both are at similar levels. This is caused by the NEE after assimilation 

being smaller.  However, for the other two sites the LAI after assimilation roughly 

corresponds to the LAI obtained from just assimilating the MODIS LAI-smsd data, i.e. 
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Figure 5.13a Plots of the post-assimilation LAI (rows 1 & 3) and NEE (rows 2 & 4) 
(black lines) together with the MODIS LAI-smsd observations and ground NEE 
observations (blue crosses) and the forward runs.  The uncertainty in the post-DA 
LAI/NEE is represented by +/- 1 standard deviation.  The first row corresponds to 
Loobos while the second one correspond to Oregon.   
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Figure 5.13b As figure 5.13a, except for Tharandt. 
 
 

 

Figure 5.14 The median and 95th tolerance interval for: (red) the distribution of 
absolute differences between the modelled NEE (no DA) and the observed NEE; 
(black) the distribution of absolute differences between the NEE after assimilating the 
MODIS LAI-orig dataset and the observed NEE; and (green) differences between the 
NEE after assimilating the MODIS LAI-smsd and NEE datasets and the observed 
NEE.   The 1, 2 and 3 refer to {Jan-Apr}, {May-Aug} and {Sept-Dec}. 

 



Chapter 5: Assimilating satellite observations of Leaf Area Index 

Edmund Ryan - 316 - 2013 

i.e. each has a similar peak to peak amplitude with the peaks and troughs occurring at 

approximately the same time points (figures 5.13a and 5.13b versus figures 5.11a and 

5.11b).  The fit of the LAI after assimilation to the observed is also very similar, 

whether a processed LAI dataset is assimilated on its own or alongside the NEE ones.    

 

5.3.5 Reduction in uncertainty 

Figures 5.15a and 5.15b show how the uncertainty of the LAI from a forward run of 

the model (no DA) and after assimilating the unprocessed and processed MODIS LAI 

data.  When assimilating the unprocessed data the uncertainty from the post-DA LAI 

(black lines of figure 5.15a) is less than the uncertainty of the modelled LAI from the 

forward run of the model for Oregon and Tharandt, but there is no significant 

difference for Loobos.   

However when the processed MODIS LAI is assimilated we find that the 

reduction in uncertainty is not as great for Oregon and Tharandt, and for Loobos the 

uncertainty has in fact increased for the post-DA LAI.  This increase in uncertainty of 

the post-DA when the processed MODIS LAI is used rather than the unprocessed can 

be explained by remembering that the unprocessed MODIS LAI had unrealistically 

low uncertainty at certain points in its dataset (particularly for low data values).  

However for the processed data (in the case of figure 5.15b the MODIS LAI-smsd 

dataset was used), the uncertainty for the very small MODIS LAI values were 

inflated.  This resulted in an improved fit of the modelled to observed NEE, but at the 

cost of causing the uncertainty to slightly increase.  Nonetheless, as stated above, for 

the two of the three sites (Oregon and Tharandt) it is still clear that the uncertainty in 

the modelled LAI is reduced for most or close to all of the time points when the 

processed MODIS LAI is assimilated compared to when no assimilation takes place.   

 

5.4 Discussion 

5.4.1 Advantages of using the processed MODIS LAI 

observations 
We have shown that assimilating any one of the processed MODIS datasets compared 



Chapter 5: Assimilating satellite observations of Leaf Area Index 

Edmund Ryan - 317 - 2013 

 
Figure 5.15a The uncertainty (expressed as a standard deviation) of the modelled LAI 
without DA (red) and with DA (black), corresponding to assimilating the original 
MODIS LAI dataset. 

 
Figure 5.15b The same as figure 5.15a except these plots correspond to assimilating 
the MODIS-smsd LAI data. 
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to assimilating the original MODIS dataset noticeably improves the fit of the modelled 

to observed NEE.  This was most evident during the summer period of 2002 for 

Oregon and Tharandt where the median absolute difference between the post-DA 

model NEE and observed NEE decreases by up to 50% and during most of the other 

summer periods for these two sites there was an improvement of at least 10%.  

Moreover we find that for Loobos and Tharandt, there is evidence of an improved fit 

when compared to the fit from the forward run.  In Tharandt, while there remains 

some 4 monthly periods where fit of the modelled to the observed NEE is worse when 

the processed MODIS data are assimilated compared to the fit from the forward run, 

most of the periods report either a comparable or improved fit (i.e. green crosses and 

error bars versus red ones, for bottom row of figure 5.12) – this is in complete contrast 

to when the original MODIS data was assimilated where the fits were worse for all 4 

monthly periods compared to the forward run (i.e. black crosses and error bars versus 

red ones, for bottom row of figure 5.12). 

 

5.4.2 The oscillating NEE observations 

One feature of the NEE observations is that they oscillate throughout this summer 

period from values greater than -1gC/m² to values below -3.5gC/m² in only a few days 

(figure 5.16).  However, the trajectories of the NEE of the forward run and after 

assimilating solely MODIS LAI (red and black lines, respectively of figure 5.16) 

oscillate much less.  Consequently the difference between the two NEE trajectories is 

not as large when the absolute differences between the modelled and observed NEE 

are calculated.  For example, during the summer period of the first year of Loobos for 

pixel 25, the post-DA NEE being 1.3gC/m² lower on average (figure 5.16), but 

corresponds to a reduction of the average absolute difference of only 0.3gC/m² (i.e. 

black versus red crosses in top left hand panel of figure 5.10).  

 This inconsistency between the improvements we see in the post-DA LAI and 

NEE trajectories relative to the forward run, and the lack of improvement in the fit of 

the resulting modelled to observed NEE can also be seen when the processed  MODIS 

LAI data are assimilated, for  example the summer period of the second year of pixel 

31 of Loobos (central panel of the first row of figure 5.10).  This can also be explained 

by the large oscillation of NEE as described in the previous paragraph.   
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Figure 5.16 Time-series of the post-assimilation NEE states when assimilating the 
MODIS LAI orig dataset (black) and the LAI mod-smsd dataset (green) for the June-
August period of 2000 for Loobos.  The trajectory of the NEE from the forward run 
(red) and the NEE observations (blue) are plotted as well.  
 

EXPLAINING THE OSSCILATORY BEHAVIOUR OF THE OBSERVED NEE 

During the summer periods, such as the first year of Loobos (figure 5.16), while most 

of the NEE observations are significantly negative (e.g. less than -3 gC/m²) it is 

possible for NEE to increase and even become positive and to then drop down to 

values less than -3 gC/m² in the space of only a week.  This variation is controlled 

predominantly by how much  photosynthesis takes place,  on a particular day or over a 

period of days, and the amount of precipitation.   For periods of days where the solar 

radiation remains high and there is enough rainfall, the NEE at the start will remain in 

general less than -3 and -6 gC/m² depending on the weather, the intensity of the solar 

radiation and the available water.  This can be seen by comparing the NEE, solar 

radiation and rainfall data side by side (table 5.3).   

 The NEE can change by larger amounts if there are larger changes in the solar 

radiation or rainfall change.  If the solar radiation drops (or rises), we see a decrease 

(increase) in photosynthesis resulting in a decrease (increase) in GPP and thus an 

increase (decrease) in NEE (since NEE = Total Respiration – GPP).    This can happen 

almost instantly, i.e. within one or two days.  By comparing the NEE, solar radiation 

and rainfall data, we see that throughout the 3 year period, these sudden changes in the 

solar radiation and rainfall almost always correspond to a sudden change in NEE, 

resulting in this oscillatory behaviour.  What is interesting is that, although the 

oscillatory behaviour in the observed NEE (e.g. during May-August of 2000) is not 

matched by the modelled NEE even after assimilating LAI (e.g. figure 5.16), the 

oscillations in GPP in situ measurements are in fact matched extremely well by the 

modelled GPP after assimilating LAI – see top panel of figure 5.17.  We see similar 

behaviour for the second year of Loobos at pixel 25 where, unlike the first year, assim-

ilating the processed LAI resulted in an improved fit of the modelled to observed NEE, 
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Day NEE Rad Precip 
500 No data 15.2355 28.18 
501 No data 19.5106 0.59 
502 -0.544 13.6204 7.1 
503 -2.41 17.7133 0.6 
504 -0.027 9.8978 1.19 

 

Day NEE Rad Precip 
505 -2.731 20.8495 0 
506 No data 22.6781 0 
507 -2.379 25.1535 0 
508 -2.283 28.8958 0 
509 -1.188 28.9483 0 

 

Table 5.3 Days 500-509 of 2000-02 at Loobos, showing in-situ measurements of NEE 
(gCm-2), Solar Radiation or Rad (W/m²) and Precipitation (mm).  Days 505 to 509 are 
highlighted to show the effect of no rainfall on increasing NEE while solar radiation 
remains high.   
 

 

 
Figure 5.17 Time-series of the post-assimilation GPP states when assimilating the 
MODIS LAI orig dataset (black) and when assimilating the MODIS LAI mod-smsd 
dataset (green) for the May-August period of 2000 (top) and the May-August period of 
2001 (bottom) for Loobos.  The trajectory of the GPP from the forward run (red) and 
the in-situ GPP observations (blue) are plotted as well.  
 

than assimilating unprocessed LAI or no assimilation.  These findings suggest that in 

order for the model to be able to replicate the oscillatory behaviour of the observed 

NEE, respiration data needs to be assimilated as well as the MODIS LAI data, since 

NEE = respiration – GPP.    Although satellite measurements of C respiration are not 

available, ground-based ones are.   

 If rainfall drops changes, this also causes a change in photosynthesis (because 

plants needs water to survive), but this is less sudden than changes due to changes in 

solar radiation.  This is because when there is less solar radiation, the plant reacts 

immediately by closing its stomata (guard cells) in order to retain water.   However, 

when rainfall reduces, the stomata remain open for a while as long as solar radiation is 

high enough for photosynthesis to take place until loss of water leads to water stress.  
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The plant will then begin to close its stomata to conserve water, leading to less 

photosynthesis and an increase in NEE.   

 

5.4.3 Assimilating respiration and soil moisture data 

Figure 5.16 shows that assimilating processed MODIS LAI data results in an 

extremely good fit of the modelled GPP to the GPP data.  To further improve this fit, 

assimilating water based measurements (e.g. soil moisture) may be beneficial.  

However more importantly, to obtain a good fit of the modelled to observed NEE, the 

assimilation of respiration data (in addition to processed MODIS LAI data) is 

essential.  Due to time constraints for this thesis it was not possible to assess whether 

assimilating these respiration and soil moisture data into the model would further 

improve our estimates of NEE.  Instead we now describe how such measurements 

would be obtained and what changes to the model would be needed in order for them 

to be assimilated.   

 

MEASUREMENTS OF RESPIRATION AND SOIL MOISTURE 

Measurements of total soil and plant respiration are available, from the fluxnet 

database, by the use of isotopes.  Isotopes enable the NEE, which is essentially the net 

vertical flux of CO2, to be partitioned into its GPP and Re (respiration) components 

(Bowling et al., 2005).  Measurements of the autotrophic and heterotrophic 

components of respiration are also available (Williams et al, 2005).   

 There are various types of water measurements available from ground and 

space and common ones are soil moisture content (Limer et al., 2007) and 

evapotranspiration, both of which are available at ground level from the GHG-Europe 

fluxnet database (http://www.europe-fluxdata.eu/newtcdc2/GHG-Europehome/login 

.aspx).  Precipitation data are also often used to drive models which include water 

dynamics.  From space, a common water based measurement is soil moisture.  A 

number of satellite sensors have become available for measuring this (for example the 

ASCAT and AMSR-E satellites, see Draper et al., 2011), but two highly regarded 

ones dedicated specifically to soil moisture retrieval over land are the satellites from 

the SMOS (Soil Moisture and Ocean Salinity) mission, launched in November 2009, 

and the SMAP (Soil Moisture Active Passive) mission, due to be launched in 2014/15.  

SMOS uses a passive antenna to measure microwave L-band radiation offering global 
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coverage every 3 days at a resolution of 40km (Mecklenburg et al., 2008).  The SMAP 

system is similar in its design to SMOS in many respects, but uses a simpler fixed 

passive microwave antenna allowing only one angle of the ground to be viewed and it 

has an additional active radar antenna which will enable much higher resolution 

measurements (around 1-3km) than are currently available (Gurney et al., 2011).   

 

ASSIMILATING RESPIRATION AND SOIL MOISTURE INTO MODELS 

To date, most data assimilation studies using soil moisture data have involved 

hydrological models. For example, Crow & Ry (2009) assimilated remotely sensed 

soil moisture observations into a hydrological model to improve runoff predictions.  

Moran et al. (2004) assimilated satellite-based soil moisture data into a soil-

vegetation-atmosphere-transfer model and found improvements in the estimation of 

spatially distributed soil profiles, which have watershed applications such as drought 

and flood prediction and crop irrigation scheduling.  Studies have also been also 

carried out to validate post-assimilation estimates of soil moisture.  A good example is 

Draper et al., (2012), who assimilated near-surface soil moisture data from the 

ASCAT and AMSR-E satellite sensors into a catchment land surface model using an 

EnKF.  The resulting modelled soil moisture improved the fit to ground-based 

measurements of soil moisture from 85 sites in the U.S. and Australia.  Soil moisture 

has also been assimilated for agricultural applications.  Nearing et al. (2012) 

assimilated observations of remotely sensed observations soil moisture and LAI into a 

dynamic crop development model using EnKF.  The authors found that the resulting 

estimate of the end-of-season harvest yield agreed well with what was observed. 

There is also a growing number of studies where soil moisture satellite data has been 

assimilated into land surface models (LSMs), such as Kumar et al. (2008) and Tian et 

al. (2007).  For example, Kumar et al. (2008) used the Ensemble Kalman filter to 

assimilate remotely sensed surface soil moisture into the Catchment and Noah LSMs, 

resulting in an improved to both models in the soil moisture estimates.   

 Despite the literature on assimilating soil moisture data, no studies have been 

carried out where satellite measurements of soil moisture have been used in terrestrial 

ecosystem models to improve estimates of Net Ecosystem Exchange.  Therefore it is a 

matter of urgency that this is done, as this will make an enormous difference.  

However, the JULES model has recently been incorporated into a 4D-Var DA 
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scheme, and it is hoped as many global data streams as are available will be 

assimilated into the model (Luke, 2011).  A major challenge for this will be the fact 

that JULES has a huge number of parameters which need to be estimated.  The 

uncertainties on all the data will need to be correctly quantified, which will also be 

extremely difficult given the huge amount of data from across the globe which will be 

used.   

 

5.4.4 Assimilating MODIS LAI-smsd and ground NEE 

Further evidence for the need to assimilate measurements other than LAI, particularly 

respiration data, can be seen when we observe what the LAI trajectory looks like 

when MODIS LAI and NEE data are assimilated.   Figure 5.18a shows the trajectories 

of LAI after assimilating MODIS LAI-smsd both on its own and with in situ NEE.  

For Oregon (second panel of figure 5.18a), the post-DA LAI trajectories match each 

other extremely well, which results from the corresponding post-DA NEE trajectories 

matching each other well (second panel of figure 5.18b).  The slight differences 

observed in the median and spread of the absolute differences for some periods e.g. 

May-August 2001 (figures 5.12 and 5.14) is to do with the increased variability of the 

NEE observations around this period  (e.g. days 500-600 in  second panel of figure 

5.18b); this is picked up when NEE is assimilated (green line of figure 5.18b) but not 

otherwise (black line of figure 5.16b).           

  For Loobos, the post-DA LAI trajectories matched each other fairly well (i.e. 

top panel of figure 5.18a) yet the medians and spreads of absolute differences (green 

symbols in the 1st rows of figures 5.12 and 5.14) are very different for many of the 

periods, particularly May-August.  As for Oregon, this is due to the increased 

variability of the NEE observations during these periods (top panel of figure 5.18b).  

This can be picked up when assimilating the actual NEE observations, but not as well 

otherwise.  This supports the case, as outlined at the end of subsection 5.4.3, that 

assimilating respiration data along with the MODIS LAI data would be extremely 

beneficial.  This is because the respiration data may help in representing the observed 

variability of NEE better than just assimilating MODIS LAI. 

  For Tharandt, assimilating only MODIS LAI data results in an NEE that does 

not match the oscillatory behaviour of the observed NEE (bottom panel of figure 

5.18b).  Thus, as with Loobos, assimilating respiration data is also essential.   Looking 
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Figure 5.18a Time series of the post-DA LAI trajectory for pixel 25 when assimilating 
the MODIS LAI mod-smsd dataset on its own (black) and when assimilating the 
MODIS LAI-smsd and ground NEE datasets.  The three panels correspond to the 
different sites: Loobos (top), Oregon (middle) and Tharandt (bottom). 
 
 

 

Figure 5.18b The same as figure 5.18a except the post-DA NEE is plotted instead. 
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at the bottom panel of figure 5.18a, we also can see that while the assimilated MODIS 

LAI observations need to be at a higher level in order for the post-DA NEE to better 

fit the observed NEE (bottom left panel of figure 5.13b), there are two other 

interesting points worth making:  

(1) It is clear that the two post-DA LAI trajectories (i.e. black and green trajectories of 

bottom panel of figure 5.18a) have different summer maximums particularly in the 

first and third years (i.e. around 200-300 and 900-1000).  This suggests that the 

MODIS LAI dataset may need to be further modified to account for this.   

(2) Between days 475 and 550 (approximately), there are 5 MODIS LAI-smsd 

observations which appear to follow the green post-DA LAI trajectory (i.e. when 

the MODIS LAI-smsd and NEE are assimilated) in the bottom panel of figure 

5.18a.  However the black post-DA LAI trajectory (after assimilating the MODIS 

LAI-smsd data) is at a much lower level.  This is probably due to the relatively 

larger s.d. values prescribed to these MODIS LAI-smsd observations resulting in 

the model having more influence on the post-DA trajectory (top left panel of 

figure 5.11b).  This is unusual because in following the green line the actual values 

of these five MODIS LAI-smsd appear to be a more correct, yet the larger 

uncertainty prescribed to them has prevented them from influencing the post-DA 

trajectory as much as they should.  This implies that either the observational 

uncertainty is too large or the model uncertainty is too low, or perhaps a 

combination of both.  In any case this identifies how critically important it is to 

accurately estimate all uncertainties in a DA scheme.  

 

 

5.4.5 Other issues 

Although unrelated to the rest of the discussion but important to mention here, the 

issue of the parameters being treated as fixed should be briefly discussed.  In a typical 

state estimation problem such as in Williams et al. (2005) and Quaife et al. (2008), the 

parameters are treated as fixed and then the model uncertainty is represented by 

adding stochastic noise to the elements of the state vector.  In this way, we are 

indirectly saying that the parameter set used is uncertain by recognising that the 

resulting model output, i.e. the state vector, is uncertain.  Nonetheless, given what has 

been learnt from the previous chapters, it would be beneficial to additionally treat the 
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parameters as directly uncertain, so that when the model is propagated forward for 

each ensemble member, either the parameters are augmented to the state vector or the 

parameter uncertainty is incorporated in the model execution, during periods of time 

in between data points, in some other way.   

 It is also necessary to mention here how these fixed parameter sets were 

estimated.  For the Loobos and Tharandt sites, the parameters were optimized using 

ground based NEE from a site of similar size and characteristic to these two sites and 

which was reasonably close by (i.e. of similar meteorological  conditions and climate 

etc…).  However for the Oregon site, the parameter values used were adopted from 

Williams et al. (2005); this was because that study also used the EnKF with the same 

model over the same years, therefore it made sense to use the calibrated parameters 

used in that study.  However, the parameters that were optimized in Williams et al. 

(2005) were done so using data, including NEE, which was then used again to 

estimate the states (i.e. using the EnKF for state estimation).  In effect, the data was 

used twice.  Since the same NEE data used in that study was used here, this NEE data 

has also been used twice.  This is therefore a limitation of this study, but also of 

Williams et al. (2005) and also Quaife et al. (2007) who additionally used the NEE 

data twice in this way.    This issue may help to explain why the effect of processing 

the MODIS LAI had little effect on improving the fit of the modelled to the observed 

NEE for Oregon. 

 Finally, it is important to comment how the post-assimilation LAI trajectories 

for the different experiments compare with the ground LAI data.  Focusing on 

Loobos, where there is the most LAI data, it was mentioned in subsection 5.2.4 that 

the ground LAI data have a much lower peak to peak amplitude than the MODIS LAI, 

which is one of the reasons for modifying the MODIS LAI to reduce this amplitude.  

However in figure 5.5, it is interesting to note that all of the modified MODIS LAI 

datasets have a noticeably reduced peak to peak amplitude compared to the original 

dataset.  This reduction in the peak to peak amplitude is also present in the post-DA 

LAI trajectory when the modified MODIS LAI data are assimilated (e.g. the black line 

of the top left panel of figure 5.11a).  However comparing the ground LAI data with 

this post-DA LAI (i.e. comparing the green points with the black line of the top left 

panel of figure 5.11a) we see that there is a horizontal offset between the post-DA LAI 

and the ground LAI data.  If we believed it is necessary to reduce this offset, this 
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could be done in numerous ways: first we could further modifying the MODIS LAI, 

but it would be hard to properly justify this; the DALEC parameters used to produce 

the non-DA modelled LAI (i.e. the red line in the top panel of figure 5.11a), could be 

calibrated against the ground LAI data; alternatively the ground LAI data could be 

assimilated along with the MODIS LAI, however it would then be more appropriate to 

use a DA scheme such as the Ensemble Kalman Smoother as using the EnKF would 

result in the ground LAI not informing the post-DA LAI in 2002 where there are no 

ground LAI data.  For Tharandt, we can see in the left panel of figure 5.11b that the 

only ground LAI data point in 2001 is significantly higher than the post-DA LAI 

trajectory; this is perhaps slightly worrying.  This is happening, despite the uncertainty 

intervals on this ground observation and the neighbouring MODIS LAI data do 

overlap, because of the large uncertainty intervals on the MODIS LAI data.  Given the 

MODIS LAI and ground LAI tend to broadly agree with the higher level of LAI in 

2001 compared to the other two years, it is concerning that we do not see this higher 

level of LAI with the post-DA LAI (i.e. the black line of the left panel of figure 

5.11b).  As was suggested above at the Loobos site, one way to take this into account 

is to assimilate the ground LAI alongside the MODIS LAI.   

 

5.5 Conclusions 
This chapter investigated whether processing MODIS LAI observations, to make them 

more realistic, before assimilating it into DALEC improved the fit of the modelled to 

the observed NEE.  The processing involved smoothing the LAI signal and increasing 

the unrealistically small standard deviation values.  While these changes made the 

MODIS LAI more realistic, it was unclear whether this processing made a difference 

when assimilating the LAI into the model.  If we were to find out that it did not, then 

this would have suggested that DA is insensitive to the unrealistic features of the 

dataset being assimilated.  We found the opposite, i.e. processing the MODIS LAI 

resulted in a significant improvement in the modelled NEE estimates after 

assimilation.   

 We found that, for Loobos and Tharandt, assimilating the original MODIS 

LAI resulted in a worse overall fit of the modelled to observed NEE.  This was due to 

small uncertainties (expressed as standard deviations) prescribed to some of the 
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MODIS LAI observations, predominantly the small LAI data values.  This resulted in 

the post-assimilation trajectory of LAI being dragged down to unrealistically low 

values.  For the third site, there was no difference, but this was mainly because the 

MODIS LAI was very similar to the LAI from the forward run of the model.   The 

assimilation of the processed MODIS LAI data resulted in vast improvements to the 

fit of the modelled to observed NEE, for Loobos and Tharandt, mainly because the 

small MODIS LAI standard deviations were now larger and not dragging the LAI, 

after assimilation, to unrealistically low values.  For Oregon, there was no 

improvement in the fit of the modelled to the observed NEE when the processed 

MODIS LAI was used; this was mainly because the original MODIS LAI was far less 

noisy, had a smaller peak-to-peak amplitude and did not have contain as much data 

with small s.d. values, compared to the other two sides.   

The results also revealed an interesting anomaly.  They showed that where 

there was a large difference between the trajectories of the NEE from the forward run 

(no DA) and the NEE from assimilating the MODIS LAI data, this difference did not 

appear to be as large when comparing the fit of the each of the two NEE trajectories to 

the observed NEE.  This was due to the oscillatory behaviour of the observed NEE 

which was only slightly evident in the two modelled NEE trajectories (figure 5.16).  

However, when we plotted GPP from the forward run and after assimilating the 

processed LAI, we found an incredibly improved fit of the modelled to observed GPP 

as a result of assimilating the processed MODIS LAI (figure 5.17).  This suggests that 

the oscillating behaviour seen in the observed NEE could be replicated by the model if 

respiration data were assimilated with the processed MODIS LAI data.  Further 

evidence for the need to also assimilate respiration data was realised when the NEE 

and MODIS LAI-smsd data were assimilated.   

 There were two main limitations with this chapter.  First, there were not as 

many ground NEE observations in many of the nine 4-monthly periods.  For Loobos 

the mean percentage of days with NEE observations present was 47%, with a 

minimum and maximum of 8% and 72% respectively.  For Oregon the problem was 

worse: the mean was only 11% with a minimum and a maximum of 2% and 24%.  For 

Tharandt the mean, minimum and maximum were 51%, 33% and 71% respectively.  

As a result of the lack of enough NEE observations, the plots of the medians and 90% 
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tolerance intervals for the absolute differences between the post-DA and observed 

NEE (figures 5.10, 5.12 and 5.14) may suffer from minor inaccuracies.  

 Secondly, the ground LAI observations may have been able to be utilized 

better in this study.  A direct comparison with ground measured LAI and MODIS LAI 

is not generally advisable due to the different scales the two types of observations (10-

20m and 1km scales, respectively) are measured at, and also the fact that they are 

measuring two different quantities from ground and space.  For the scaling problem, if 

enough ground based LAI measurements are available for in a certain 1km×1km pixel 

then it may be possible to upscale the ground LAI measurements for a meaningful 

comparison with the MODIS LAI ones (De Kauwe, 2011).  For this chapter, the few 

ground LAI observations available were made at different points in time, so this 

upscaling was not possible. 
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Chapter 6  

Conclusion 
 

6.1 Addressing the Thesis Aims 
We first address the two aims of this PhD thesis, as stated at the end of chapter 2. 

Aim 1: When using Data Assimilation (DA) to estimate parameters using ground 

observations: 

(i) To understand the limitations of DA and the conditions under which it 

performs best. 

(ii)  To determine likely factors that cause parameter estimates to vary. 

Aim 2: To assess the impact of assimilating satellite observations of leaf area index to 

improve the model states, and whether DA is robust against unrealistic features of the 

satellite data.  

 

Aim 1 (i) To understand the limitations of DA and the conditions under which it 

performs best. 

Correctly estimating the parameters is important if we wish to use them to forecast 

(for example) not only NEE but also other important quantities such as GPP, Ra 

(autotrophic respiration) and Rh (heterotrophic respiration).  This is because although 

many different sets of parameters may result in a good fit of the modelled to observed 

NEE, if the model suffers from parameter equifinality, only the correct parameter set 

is likely to result in the other important quantities such as GPP, Ra and Rh being 

modelled well.  In this thesis, we found many circumstances when DA wrongly 

estimated the parameters, or could only correctly estimate them under strict 

conditions.  In other situations, DA could be robust and correctly estimate parameters 

with not much information.  We summarise the main findings below: 
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• In chapter 3, we found that if only two years of daily NEE observations and a 

small number of LAI observations are assimilated into DALEC-D using the 

Metropolis algorithm, then the parameter estimates are biased if the initial value 

of the labile carbon (Clab(0)) is not at its true value.  However, if the initial value 

of the labile carbon pool is over-estimated by a reasonable amount (110gCm-2) 

compared to its true value (70gCm-2), then the modelled trajectories of the C 

pools and NEE are reasonably close to their true trajectories (figures 3.12-3.14, 

subsection 3.4.1), although the deviations away from the true trajectories increase 

with time for the Cw and Csom pools (figure 3.13).  Nonetheless this deviation 

away from the true trajectory is significantly greater when Clab(0) is under-

estimated (35gCm-2) or greatly over-estimated (170gCm-2).  Moreover when 

Clab(0) is under-estimated, the Cr trajectory is not only completely out of phase 

with the true trajectory, unlike the other trajectories which remain in phase (figure 

3.12b, subsection 3.4.2), but after 3 years Cr decreases to zero, meaning that the 

trees are essentially dead.  This suggests that Clab(0) should be greater than 35 

gCm-2 and less than 170 gCm-2 although based on these results it is difficult to 

give accurate estimates of exact lower and upper bounds Clab(0) should lie 

between in order for all of the C trajectories of the model to be close to the true 

trajectories. 

      The results also indicated that even if Clab(0) is wrongly estimated, by the 

end of 3 years the trajectories of the fast C pools (using the different sets of 

estimated parameter sets) in fact converge towards each other (figure 3.12), so the 

effect of wrongly estimating Clab(0) may only be transient, and the issue could be 

resolved by assimilating a time series greater than 2 years.  However, this 

‘transient’ argument does not apply to the slowly changing C pools or if the 

Clab(0) is under-estimated (35gCm-2) where the trajectories are completely out of 

phase with the true trajectory.   
 

• In chapter 4, we found that when assimilating a stream of daily NEE data, if the 

data period is 1 year this is likely to give biased estimates of parameters for 

EnKF and biased forecasts for EnKF and the Metropolis algorithm.  We found 

that at least between 2 and 5 years of data was needed for unbiased estimates 

(figure 4.6a, subsection 4.3.3); however Metropolis algorithm runs for a dataset 

length of 10 years or greater were not included in the results because the runs 
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were not at the global minimum and produced strange behaviour, in particular the 

residuals between the model and observations in the cost function were 

autocorrelated, which is likely to be the reason for the corresponding parameter 

estimates being biased (see next bullet point for details).  Nonetheless for the 

EnKF it is astonishing that, using only 2 years of noisy NEE data of which 60% 

is gap free, it can accurately estimate 15 of the 17 unknown parameters (figure 

4.6a, subsection 4.3.3).   
 

• In chapter 4, we found that when a stream of NEE data is assimilated using the 

Metropolis algorithm, the estimated parameters can be far from their true values 

whilst still resulting in a near optimal fit of the modelled to observed NEE.  

However, the forecasts produced using this wrong parameter set were found to 

not only be very accurate but robust against a severe drought imposed during the 

forecast period.  While it is difficult to give concrete evidence from the results as 

to why this parameter equifinality is occurring, it is probable that the poor 

parameter estimates for 11 of the 15 runs is due to the residuals in the cost 

function being autocorrelated.  These is for two reasons:  

(i) One of the assumptions of using the Likelihood function in DA schemes like 

the Metropolis algorithm is that these residuals are independent; a violation of 

this in probability terms means if we have two events A and B and wish to 

compute P(AnB), using the expression P(A) × P(B) is only permissable if events 

A and B are independent.  Therefore if the residuals are correlated but in the 

Likelihood function they are treated as being independent then the Likelihood 

function will be wrong, and it is therefore perfectly reasonable to expect the 

resulting parameter estimates to be biased.  

(ii) Of the 15 runs of the Metropolis algorithm, 11 had Likelihood functions 

whose residuals were autocorrelated and the same 11 runs exhibited parameter 

estimates far from the truth and uncertainty intervals which in general did not 

include the truth (figures 4.6b, 4.7b, 4.8b, 4.16, chapter 4).  For the remaining 4 

runs where the residuals were independent in time, the results contained the 

following features which were not present in the results to the other 11 runs: (I) 

the parameter estimates were close to the truth and the majority of the uncertainty 

intervals included the truth (figures 4.6c, 4.7b, 4.8b, 4.16, chapter 4); (II) the 

parameter estimates and uncertainties matched up fairly well with the EnKF 
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ones; (III) the modelled NEE using the parameter sets from the posterior 

distribution fitted the NEE data much better compared to the other 11 runs 

(figure 4.22); (IV) the true parameter set had a cost function value which was 

contained in the distribution of the cost function values corresponding to those 

parameter sets from the posterior distribution.  The probability of all these 

features occurring by chance for these 4 runs is likely to be close to zero. 

Subsection 6.3 summarises ways to modify the Likelihood function to take 

account of autocorrelated residuals.  

 

Aim 1 (ii): To determine likely factors that cause parameter estimates to vary. 

It was found the following factors caused variations in the parameter estimates: 

• The initial value of the labile C pool, and to a lesser extent the initial value of the 

litter C pool and the LAI weighting term in cost function, when using the 

Metropolis algorithm and when not treating the initial conditions as parameters. 

• The length of dataset being assimilated for the EnKF and the Metropolis 

algorithm.  The Metropolis algorithm runs also showed that there were variations 

in the parameter estimates when there were variations in the data density or 

observational error, but these runs were excluded from the results because the 

autocorrelated residuals in the cost function for most of these runs as described 

previously.   

 

Aim 2: To assess the impact of assimilating satellite observations of leaf area 

index to improve the model states, and whether DA is robust against unrealistic 

features of the satellite data.  

Here we were interested in understanding the utility and pitfalls of assimilating 

satellite observations into a model in order to improve the estimates of its states, 

using a fixed parameter set.  We found that the LAI observations from the MODIS 

sensor of the TERRA satellite contained unrealistic features.  In particular: (1) they 

contain excessive temporal variation, with the MODIS LAI changing by 2–4m²/m² in 

only 1 or 2 weeks in some instances; (2) the prescribed uncertainty on these LAI 

measurements is excessively low at certain time points, especially when LAI is 

small; As a result the fit of the modelled to observed NEE after assimilating the LAI 

data into DALEC was much worse than not assimilating any data.  However if the 



Chapter 6: Conclusion 

Edmund Ryan - 335 -  2013 

MODIS LAI is processed prior to assimilation, to remove these unrealistic features, 

the fit of the modelled to observed NEE is vastly improved, with an even better fit 

for GPP.   

 

6.2 Limitations 
Here we outline three limitations of this thesis which are: (i) the use of synthetic data; 

(ii) an arguably poor assessment of the model uncertainty; and (iii) the lack in the 

model of a water dynamics representation.   

(i) Synthetic data:  While the model processes used to generate the ‘true data’ may 

approximate real-world processes, the complexity and multi-dimensionality of 

these processes may not be captured in DALEC, or even a more complex model.  

Nonetheless synthetic data are still of great value as they do offer a good 

approximation to real data, and can be used in ways real data cannot – for example 

obtaining real datasets which are identical except for the size of their observational 

errors would be impossible.  Furthermore, the quantification of observational 

errors is an active area of research and as this work develops, it will enable 

synthetic data to be an even more accurate representation of real data. 

(ii)  New DALEC parameters: Despite the arguments for treating Leaf Mass per Area 

(LMA) and foliar Nitrogen as constants, it is recognised that they should really be 

treated as parameters; this is a limitation to this work but also to all other studies 

that have used the DALEC model.  Chuter (2013) found that NEE as simulated by 

DALEC is most sensitive to one of the existing model parameters but also to 

LMA.  Therefore, wrongly estimating it could result in biases to the resultant 

modelled NEE.  Chapter 5 discussed the inclusion of a further parameter to 

improve process representation, namely a clumping parameter.  DALEC assumes 

no clumping and so the modelled LAI are not attempting to simulate ‘true LAI’, 

unlike satellite and ground based inferred data of LAI where clumping is taken 

into account.  This creates a theoretical problem when LAI data is being 

assimilated into the model or compared with modelled LAI.  Including an 

additional parameter to take account of foliar clumping in the tree canopy would 

therefore help to overcome this problem. 
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(iii) Simulating water dynamics: Despite a growing number of DA studies have used 

DALEC, in particular Williams et al. (2005), Quaife et al. (2007), Fox et al., 

(2009), DALEC does not contain a representation of the water dynamics; in 

particular it does not simulate evapotranspiration or how water flows through the 

soil.  This is important to include in a model, because a plant’s ability to 

photosynethesise is dependent not only on the amount of solar radiation, but also 

on the amount of available water.  DALEC was used because: (i) it is very fast to 

run (as a result of being simple), whilst containing an accurate representation of 

key processes of C dynamics in evergreen and deciduous vegetation (e.g. the GPP 

submodel used in DALEC is a simplified but accurate version of the more 

complex SPA model); (ii) it was also designed for DA.  Furthermore, we were 

able to include a pseudo water representation in chapter 4, by artificially changing 

two of the fixed parameters in the GPP submodel, responsible for stomatal control, 

in order to simulate a drought.  

 

6.3 Implications for terrestrial ecosystem 

knowledge 
Although the findings in this thesis are informative and interesting, they need to relate 

to the larger scientific questions laid out in chapter 1.    The motivation for this thesis 

was to improve estimates of the terrestrial carbon sink in terms of accuracy and 

reduction of uncertainty, as described at the end of section 1.1 (pages 13/14).  This 

thesis assesses ways in which Data Assimilation (DA) obtains the optimal estimate of 

the terrestrial C sink, which on the daily to seasonal time scale is NEE, by combining 

the information from the two sources of knowledge, namely observations and models.  

A key advantage of DA is that the post-DA estimate of the terrestrial C sink, typically 

has a lower uncertainty than either the model or the observations.  The purpose of this 

thesis was an exploratory analysis of how DA works in different situations, and so the 

knowledge gained from this thesis was intended to indirectly improve terrestrial C 

cycle representation by highlighting how DA should be optimally used, rather than 

providing actual estimates of the terrestrial C cycle on the global scale.  It should be 

further added that the increase in knowledge gained from this thesis to help answer the 
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questions that arise at the bottom of page 13 / top of page 14 only relate to (i) and (iii).  

Question (ii), although not directly answered, is still addressed in the same way as (i) 

and (iii) are; as this thesis will help to further improve and constrain estimates of NEE 

globally, it will become clearer with this improved knowledge as to the response of 

the land-atmosphere flux of C to elevated CO2.    

In the following, we describe six ways in which this thesis has improved our 

understanding of the terrestrial C cycle through DA. 
 

(1) Using synthetic datasets for DA can be inappropriate.  The advantage of 

assimilating synthetic data is that we know the answer, i.e. the true parameter set, 

and this enables one to assess to some degree the accuracy of the parameter 

estimates and whether the uncertainty intervals are realistic.  However as 

explained earlier, for 11 of the 15 Metropolis algorithm runs from chapter 4 – 

namely those corresponding to the datasets 10 years or more in length, all the ones 

where the observational error varied, and most of those where the data density 

varied – the residuals between the synthetic NEE data and the modelled NEE as 

used in the cost function were autocorrelated.  An assumption of DA algorithms 

such as the Metropolis algorithm is that the residuals in the Likelihood are 

independent, and if they are not but treated as though they are this is likely to lead 

to biased parameter estimates as demonstrated in chapter 4 (figure 4.6).  To date, 

no-one has properly addressed this issue but this has potentially large implications 

because of the fact that many terrestrial C modelling DA studies involve synthetic 

data such as Fox et al. (2009), McBean et al. (2011), and Trudinger et al. (2005). 

There are two main ways of eliminating or reducing to acceptable levels this 

autocorrelation: 

(i) One is to use a modified cost function which can deal with synthetic data of this 

kind; a good example is McBean et al. (2011) who used the Metropolis algorithm 

to estimate model parameter and used the following Likelihood function: 

P(D|f(ϴ)) = f(ϴ) – D = N(0,σ2) 

where f(ϴ) is the model, ϴ represents the parameters, D is the data and σ
2 

represents the error or variance of the data.  As can be seen in the above formula, 

McBean et al. (2011) ensured that the residuals in the Likelihood were 

independent.   
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(ii) The other is to reduce the density of points in the dataset; evidence that this 

results in independent residuals can be seen from run 8 of the Metropolis 

algorithm runs in chapter 4, which corresponded to a dataset with only 20% of 

data present and whose parameter estimates were unbiased and whose uncertainty 

intervals encompassed the truth.   

              The convergence to a local minima for the 11 ‘bad’ runs from the 

Metropolis algorithm in chapter 4 could also be overcome by other means.  First 

of all widening the domain of the starting locations of the chains, as opposed to 

them starting from the same location in the parameter space, may help; for 

example if the starting location all happen to be near a local minima this may be 

problematic.  Secondly, using a continuous proposal distribution, rather than a 

discrete one, when stepping around the parameter space may also be beneficial.   
 

(2) The novelty of chapter 3 was that it demonstrated for the first time the emulation 

of a DA scheme.  This is significant because it offers a way of gaining insight into 

the performance of a DA scheme and in chapter 3 was used to assess how 

sensitive the parameter estimates were to changes in the initial conditions.  Other 

uses of DA emulation include: (i) sensitivity analysis with other types of inputs or 

outputs, e.g. the length of the error bars on parameter estimates; (ii) uncertainty 

analysis, that is quantifying how uncertainty in an input (e.g. an initial condition or 

a prior estimate of a parameter) propagates forward to an output (e.g. a posterior 

parameter estimate).  Both these sensitivity analysis and uncertainty analysis tools 

could help the implementation of DA algorithms, for example to help determine 

suitable uncertainty bounds on inputs or priors.  The caveat of emulating a DA 

scheme is that an extra source of uncertainty needs to be included in the emulation 

process, and that is the fact that the DA algorithm is not deterministic, although in 

most cases approximates a deterministic function.  
 

(3) Chapter 3 demonstrated that wrongly estimating the initial conditions of the model 

can have a large impact on correctly estimating model parameters.  In particular if 

the initial value of the labile C pool is under-estimated by a reasonable amount or 

severely over-estimated, the resulting trajectories of the C pools tend to be much 

further from the truth than if this initial condition is over-estimated by a smaller 

amount (see section 6.1 for details).  Treating these initial conditions as parameters 

overcomes these problems – in particular we found that although two of the three 
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initial conditions treated as parameters had modal values far from the truth and 

whose uncertainty intervals did not contain truth, this had no detrimental impact 

on the posterior estimates of the other model parameters.  Moreover the 

trajectories of the C pools were not comprised unlike when these initial conditions 

were not treated as parameters (figures 3.10a and 3.10b).  Whilst treating initial 

conditions as parameters is reasonably common, no known study had compared 

the effect on the posterior parameter distributions of treating the initial conditions 

as fixed versus treating them as parameters, using the same DA scheme.   
 

(4) Chapter 4 showed that for the EnKF algorithm, increasing the length of the dataset 

improves parameter estimates and/or reduces the corresponding uncertainty whilst 

still containing the truth; this is also true for the estimates of the parameters and 

uncertainties from the Metropolis algorithm but there is less evidence to support 

this because the runs corresponding to dataset length of 10 years or more were 

discarded.  For DALEC, between 2 and 5 years of daily NEE data was sufficient 

for good parameter estimates and NEE forecasts.  For models of greater 

complexity than DALEC, the results do not indicate whether between 2 and 5 

years of data at the daily time-step would be sufficient.  However, what has been 

presented here is a first step in estimating the length of data needed for good 

parameter estimates and forecasts for more complex models.   

(5) Chapter 4 also indicated that the posterior uncertainty of the model parameters 

remains unchanged with increases in the observational error.  This is intriguing 

and potentially important because it suggests that assimilating very noisy data is 

just as good as assimilating non-noisy data.  A practical application of this is the 

florescent data retrieved from the GOSAT satellite (Guanter et al., 2012).  It is 

hoped that this data will be assimilated into a model, however there has been 

concern over this due to the excessively noisy nature of the signal.   The results 

from this thesis suggest that despite this noisy data, assimilating it into a model 

will still result in near optimal solutions to parameters and model states.   
 

(6) Chapter 5 demonstrated that unrealistic features of the MODIS LAI dataset can 

have negative impacts (such as being out of phase or far from the truth) on the 

post-assimilation estimation of important quantities, such as NEE.  Processing the 

data, in order to reduce the impact of these unrealistic features such as smoothing, 

improved the accuracy of modelled NEE and GPP.    The probable reason why the 
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s.d. values for the MODIS LAI are small at times is because when the radiative 

transfer model (RTM) is inverted to produce these estimates, all of the other 

ecological quantities within the RTM and within each 1km by 1km pixel are kept 

fixed.  At the moment the s.d. in the RTM output (i.e. the LAI) is derived from the 

propagating the uncertainty from the inputs (the reflectance) through to the 

outputs.  This is fine if the vegetation is homogeneous within the 1km by 1km 

pixel, but if not then this lack of representation of variation could cause a bias in 

the LAI uncertainty.  It is therefore recommended that the RTM is modified to 

account for this extra source of uncertainty in the MODIS LAI s.d. calculation.  

 

6.4 Unanswered questions / future work 
The work in this thesis could be extended in many different ways.   

(1) Taking account of the stochastic nature of a DA scheme when emulating it.  In 

chapter 3 the Metropolis algorithm was assumed to be deterministic, because it is 

approximately so, but in reality it is stochastic.  Therefore, when emulating a 

stochastic DA scheme such as the Metropolis algorithm for practical purposes, it is 

important that the additional variation in the parameter estimates arising from this 

stochastic feature is taken into account. 

(2) Assessing the sensitivity of parameter estimates to varying data lengths and data 

density using real data.  In chapter four, the main reason for using synthetic data 

was because flux sites typically have no more than 10 years of measurements and 

there would be no way of creating sets of real measurements which would be 

identical except for their level of observational error.  However the study could be 

partially replicated using real data by comparing the estimates of parameters using 

1, 2 and 5 year subsets of a 10 year dataset (as well as the complete dataset itself) 

and by creating duplicate datasets with different percentages of measurement-free 

days. 

(3) Repeating the MCMC runs from chapter using a more traditional variant of the 

Metropolis algorithm.  The primary reason for doing this is to assess whether we 

would get the same lack of convergence to the global minimum for the same 11 

runs as was observed in the results in chapter four.  The following two features are 
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aspects of a traditional variant of the Metropolis algorithm not adopted for this 

thesis: 

a. The chains of the algorithm being initialised from random and different 

locations in the parameter space; 

b. The proposal distribution being continuous, so as a movement around the 

parameters space are not multiples of the step-size but rather that step-size 

acts as a parameter in the distribution, e.g. a variance type term if the 

proposal is a Normal distribution.  

(4) Assessing the effect of assimilating a dataset to estimate parameters and 

uncertainties and prescribing the wrong observational uncertainty.  In chapter 

four we assessed the effect of varying the observational uncertainty on estimates 

of parameters and uncertainties from two DA schemes.  It is relevant and 

important to determine the impact of wrongly prescribing the observational error 

in a similar type of parameter estimation scenario.  This kind of experiment could 

apply to state estimation DA problems as well. 

(5) Testing a modified version of a radiative transfer model where the other variables 

are not kept fixed when the RTM is inverted to estimate LAI.  In light of the 

findings of chapter five, it is suggested that the radiative transfer model is 

modified in this way in order to provide improved estimates of the s.d. term.  

Furthermore, perhaps a more Bayesian framework could be incorporated?  Ideally 

there would be two s.d. values for each LAI data point: one which describes the 

variation in LAI spatially within the 1km by 1km grid square (i.e how 

homogeneous the landscape is) and one which describes the uncertainty.  At the 

very least, this would provide a clearer interpretation for the s.d. value than is 

currently provided. 

(6) Replicating the experiment in chapter five but estimate parameters as well as 

states. A shortcoming of the work in chapter five is that the parameters were kept 

fixed.  It would be relevant and interesting to understand the effects on the 

unrealistic features of the MODIS LAI data to DA estimates of parameter and 

uncertainties.  In light of the results of chapter four, we wouldn’t necessarily 

expect the parameter estimates and uncertainties to be affected too greatly by the 

temporal variability as long as the LAI dataset was long enough.   
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(7) Addressing the implications of the observational error results from chapter four.  

Chapter four found that the DA parameter estimates and uncertainties are 

insensitive to varying observational error.  This has huge implications, in 

particular for the GOSAT fluorescent data (Guanter et al., 2012), this means that 

when assimilating it into a model, it does not matter if it is noisy.  Other more 

sophisticated pieces of work would help to build on whether this ‘insensitivity to 

observational error’ claim is reliable: 

a. Repeating the observational error runs, but with synthetic data generated 

using another model, e.g. DALEC-water or SIPNET.  

b. Replicating observational error runs with real data if possible. 

c. Repeating the observational error runs but using less than 10 years, e.g. 

2.5 years and 5 years.  This would determine whether we see the same 

parameter results as the original done in chapter four which used 10 years.  

This would help determine what length of dataset one needs in order to get 

this insensitivity to large observational error. 

 

6.5 Recommendations 
As a consequence of the findings of this thesis, the following recommendations are 

made: 

• Unknown initial conditions of a model should be treated as parameters.  While it 

is reasonably common for this to be done, the results presented here show the 

consequences of treating these unknown as fixed and estimated by other means 

such as from site inventory data or from model spin up.  In particular, treating the 

initial conditions as fixed imposes the strict condition that they must be estimated 

very precisely in order for the DA derived parameter estimates to be close to their 

true values, and within a specific range in order to the trajectories of the 

modelled C pools to be accurate.  In contrast if the initial conditions are treated as 

parameters, wrongly estimating them has no noticeable negative impact on other 

parts of the model (chapter 3).  

• There is strong evidence for the EnKF and some evidence for the Metropolis 

algorithm that these are good DA scheme to use for accurately estimating model 

parameters and predicting future states, from assimilating only one stream of 
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daily NEE data.  However, it is better to assimilate longer datasets, particularly 

ones greater than one year (chapter 4). 

• When using the Metropolis algorithm to estimate the parameters of a model using 

synthetic data, it is essential to check that the residuals between the data and the 

model in the cost function are independent in time.  For the DALEC model we 

found that when the dataset was longer than 5 years or when more than 20% of 

the data were present in the dataset, the residuals were autocorrelated which 

resulted in biased parameter estimates with unrealistic uncertainties (chapter 4). 

• It is strongly recommended that the MODIS LAI observations should be 

processed to account for unrealistic features, such as excessive variation and 

unrealistic errors, before being assimilated into a model to improve the estimates 

of its states (chapter 5).  This processing, to at least provide more realistic s.d. 

values, should be done by the research group from Boston University 

(Knyazikhin et al., 1998, Myneni et al., 2002) responsible for the radiative 

transfer model in providing the MODIS LAI estimates for general use.  This 

would require modifying the current version of the radiative transfer model so as 

the other variables are not kept fixed when the RTM is inverted to estimate LAI; 

further details can be found in point (5) of the previous section.   
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Appendix A 
APPENDIX A1 
I need to prove that: 
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For reasons not given here, we assume that ( ) 0)( =− T
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This can be simplified to: −= kkk PSP , which is best explained by looking at the scalar 

case of the KF.  In equation (2.6), recall that 2
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+
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2)1( fsK− , where K is the Kalman gain given by )/( 222
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To derive the formula for −

kP , we first note that: 
t
kkk xxe −= −− ˆ  

 )(ˆ 11111 −−−−− +−= k
t
kkkk wxMxM   

[using the observation equation in subsection 2.2.1 and where 

11 ˆˆ −−= kkk xMx  is our prior estimate]. 

So,  111 −−−
− −= kkkk weMe  
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Now, −
kP  is defined as ( )T
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APPENDIX A2 
Derivation that the Kalman gain matrix is: 1)( −−− += k
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Recall that T
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kkkk KRKSPSP += − .  We choose kK  such that the sum of the 

elements of the leading diagonal of kP (i.e. the variances) are minimised.   
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To minimise the trace of kP with respect to kK , we need to minimise the trace of each 
of the four terms.  We do this by differentiating each of the four terms with respect to 

kK .  The rules for differentiating matrices are similar to traditional differentiation.  

So for the first term, −
kP , since it does not involve a kK , it will become zero after 

differentiation.  For the second and third terms which involve just one kK  each, we 
use the following result: 
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For the last of the four terms of the kP , which involves two kK  matrices, we use the 
following result, where C is assumed to be a symmetric matrix: 
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Combining all these results, we get: 
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In order to minimise the trace of kP , the left-hand side of (B1) needs to set to zero.  
So, the equation becomes: 
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For eR , recall the expression in subsection 2.2.4 for a general k: 
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Again for consistency with notation of other authors, we use a D instead of an Y and 
drop the subscripts.  We also write it in a slightly different way, ie: 
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In a similar way to f
eP , eR  is defined as: 
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Appendix B 

R script for implementing the MmLHD 
z=seq(from=0, to=1-1/40, length=40) 
u1=z+runif(40,0,1/40) 
u2=z+runif(40,0,1/40) 
u3=z+runif(40n,0,1/40) 
u4=z+runif(40,0,1/40) 

 
 
 

x1=qunif(u1,20,200) 
x2=qunif(u2,20,200) 
x3=qunif(u3,20,200) 
x4=qunif(u4,0.0005,0.20) 
x=cbind(x1,x2,x3,x4) 
x.matrix=matrix(x,ncol=4) 
order1=read.table("G:/Ch3_REFLEX_followup_study/3Results/1Inputs/LHD_order.t
xt",header=F) 
#order1 is a text file which gives the Maximin Latin Hypercube design for n=40 
design points #consisting of 4 inputs, obtained from http://www.spacefillingdesigns.nl 
(Husslage et al., 2006) 
order=as.matrix(order1) + 1 
Croots=x.matrix[,1][order[,1]] 
Clitter=x.matrix[,2][order[,2]] 
Clabile=x.matrix[,3][order[,3]] 
LAIobserr=x.matrix[,4][order[,4]] 
inputs=cbind(Croots,Clitter,Clabile,LAIobserr) 
 
 

 

Figure B1 The estimates of the parameters and confidence intervals for the eight DA 
algorithms used in REFLEX.  The DA schemes are the Genetic algorithm (1), the Ensemble 
Kalman filter (2), Metropolis algorithm (3), the SCEM-UA algorithm (4), Metropolis 
algorithm with spin-up (5), Metropolis algorithm with initial exploration (6), Combined 
Metropolis-Genetic algorithm (7), Metropolis algorithm with a beta prior (8). 
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Figure B2 The trajectories of the three chains from the Metropolis algorithm for each of the 
17 DALEC-D parameters.   
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Figure B3 The expected value (blue lines) of Td (a), Fg (b), Fnrr (c) and Fll (d) for 
different values of the Clab(0) value.  The red horizontal and green vertical dashed 
lines indicate the true values of the parameter and the true value of this input 
respectively. 
 
 

 
Figure B4 The expected value (blue lines) of Ts (e) and Cf,max (f) for different values of 
the Clab(0) value.  The red horizontal and green vertical dashed lines indicate the true 
values of the parameter and the true value of this input respectively. 
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Figure B5 The expected value (blue lines) of Fg (a) and Fll (b) for different values of 
the Clit(0) value.  The red horizontal and green vertical dashed lines indicate the true 
values of the parameter and the true value of this input respectively. 
 
 

 
Figure B6 The expected value (blue lines) of Td (a) and Fnrr (b) for different values of 
the Cr(0) value.  The red horizontal and green vertical dashed lines indicate the true 
values of the parameter and the true value of this input respectively.  
 
 

 
Figure B7 A scatter plot of daily values of Cf and Clab from the DALEC-D model 
using the true set of initial conditions and parameters as specified in table 3.1.  
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Figure B8 The trajectories of Clab, Cr, and Clit  for different values of the LAI 
observational error using the emulator’s estimates of the parameters corresponding to 
the values of the LAI observational error.   
 

 
Figure B9 The trajectories of Cf, Cw, and Csom  for different values of the LAI 
observational error, using the emulator’s estimates of the parameters corresponding 
to the values of the LAI observational error. 
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Figure B10 The trajectories of GPP, Rtot, and NEE  for different values of the LAI 
observational error, using the emulator’s estimates of the parameters corresponding 
to the values of the LAI observational value.  Panel (d) shows the absolute difference 
between the NEE trajectories corresponding to LAI observational errors of 0.016, 
0.05 and 0.11 m2/m2 and the true NEE trajectory. 
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Appendix C 
 

 

Plots of NEE trajectories for the Metropolis algorithm 
 

Below are displayed the plots of NEE trajectories for all 15 of the runs for the 
Metropolis algorithm.  For each run, DALEC-D is run forward using 500 randomly 
selected parameter sets from the posterior distribution.  These are represented by the 
black lines.  The red line shows the true NEE trajectory, and the green crosses are the 
observations.  In each case, only one year of the trajectory is shown, for example for 
run 2, only the 2nd year is shown.  This is because if the entire trajectory was 
displayed, much of the detail would be lost.  For each run, the year that was chosen 
corresponds to a year representative of all the other years.   
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Plots of NEE trajectories for the EnKF 

Below are displayed the plots of NEE trajectories for all 15 of the runs for the EnKF.  
For each run, DALEC-D is run forward using the parameter sets corresponding to the 
500 ensembles.  These are represented by the black lines.  The red line shows the true 
NEE trajectory, and the green crosses are the observations.  In each case, only one 
year of the trajectory is shown, for example for run 2, only the 2nd year is shown.  This 
is because if the entire trajectory was displayed, much of the detail would be lost.  For 
each run, the year that was chosen corresponds to a year representative of all the other 
years.  
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Appendix D 
(A) Post-DA plots after assimilating LAI MODIS-orig dataset 

 
Figure D-A1 Plots (Loobos) of the post-assimilation LAI and NEE states (black lines) plotted 
alongside the MODIS LAI-orig observations / ground NEE observations (blue crosses) and 
the forward runs.  The uncertainty in the post-DA LAI/NEE is represented by +/- 1 s.d. 
 

 
Figure D-A2 The same as figure D-A1 except the plots correspond to Oregon. 
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Figure D-A3 The same as figure D-A1 except the plots correspond to Tharandt. 

    

(B) Post-DA plots after assimilating LAI MODIS-smsd dataset 

 
Figure D-B1 Plots (Loobos) of the post-assimilation LAI and NEE states (black lines) plotted 
alongside the MODIS LAI-smsd observations / ground NEE observations (blue crosses) and 
the forward runs.  The uncertainty in the post-DA LAI/NEE is represented by +/- 1 s.d..  



Appendix 

Edmund Ryan -       - 2013 365

 
Figure D-B2 The same as figure D-B1 except the plots correspond to Oregon. 
 

 
Figure D-B3 The same as figure D-B1 except the plots correspond to Tharandt. 
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(C) Post-DA plots after assimilating LAI MODIS-smsd dataset and the 
ground NEE dataset 

 
Figure D-C1 Plots (Loobos) of the post-assimilation LAI and NEE states (black lines) 
plotted alongside the MODIS LAI-smsd observations / ground NEE observations (blue 
crosses) and the forward runs.  The uncertainty in the post-DA LAI/NEE is 
represented by +/- 1 s.d.   
 

 
Figure D-C2 The same as figure D-C1 except the plots correspond to Oregon. 
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Figure D-C3 The same as figure D-C1 except the plots correspond to Tharandt. 
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