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Abstract 

 

Methods which allow for construction of flow feature aligned meshes in two- and 

three-dimensions have been developed in this thesis to investigate their potential for 

improvements in the numerical solution relative to globally refining the mesh. Of particular 

interest in the work is the generation of high-quality quadrilateral and hexahedral elements 

aligned with the dominant flow features. The two-dimensional techniques are applied on 

unstructured quad-dominant meshes, whilst the three-dimensional problems involve 

embedding high-quality hex-dominant mesh blocks into a hybrid volume mesh to improve 

their ability to capture anisotropic flow features such as shock waves, trailing shear 

layers/wakes and wing tip vortices. 

A method involving the medial axis has been studied to provide a geometric 

representation of two-dimensional flow features to allow feature-aligned meshes to be 

generated. Due to the flexibility of the approach, a range of complex features can be 

represented as simple geometric entities. These curves are embedded into the domain as 

virtual geometries to force alignment of unstructured quad-dominant surface mesh 

elements. The mesh locally mimics the attributes of a structured grid and provides high 

quality numerical solutions due to the alignment of the cell interfaces with the flow 

features. 

To improve the capability of hybrid meshes to resolve anisotropic flow physics, a 

method involving the extrusion of quad-dominant surface meshes has been developed. 

Surface meshes are extruded in the direction of extracted flow features, yielding feature-

aligned semi-structured hex-dominant mesh blocks which can be embedded into the hybrid 

volume mesh. The presence of feature-aligned hexahedra has been shown to greatly 

enhance the resolution of anisotropic flow features compared with both isotropic and 

anisotropic tetrahedral elements, due to a significant reduction in numerical diffusion. 

Furthermore, improvements in the numerical solution have been also been obtained in a 

more efficient manner than isotropically refining the hybrid mesh. The results indicate that 

the type, orientation and size of the elements are significant contributing factors in the 

resolution of the dominant flow features. 
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CHAPTER I:  

Introduction 

 

1.1 Background  

Mesh or grid generation can be considered an essential pre-requisite of any 

numerical simulation of physical field phenomena described by partial differential 

equations. The mesh provides a means to discretise the governing equations in space to 

allow an approximate numerical solution to be obtained. Over the past two decades, 

considerable effort has been devoted to the development of a variety of meshing techniques 

for computational fluid dynamics (CFD). The increasing maturity of the available 

techniques has provided a great level of flexibility for the discretisation of increasingly 

complex geometries. Despite this flexibility, for some techniques a number of deficiencies 

still persist and therefore offer scope for further improvement. Ultimately, the domain 

geometry and the physical problem being modelled determine the most suitable mesh 

generation technique. Furthermore, the quality and behaviour of the numerical solution can 

be greatly affected by the choice of mesh type. 

 

Meshing can be considered as a bottleneck in the CFD process from two 

viewpoints. Firstly, as an essential stage of any numerical simulation process, failure to 

generate a valid mesh renders any simulation impossible. Secondly, for increasingly 

complex and realistic geometries, successful generation of an initial mesh may consume a 

vast period of time. This essentially delays obtaining a solution of the flow problem. 

Typically, for three-dimensional problems, it is likely that the mesh is composed of millions 

of elements; thus the required solution time to reach a converged state may also be 

considerably large. It is obvious that robust and flexible meshing techniques are required, 

not only to successfully generate valid meshes, but also to produce that mesh with a 

minimum amount of effort. From an industrial viewpoint this is extremely important. Not 

only does alleviating the bottleneck associated with meshing shorten the duration of a 

design cycle, but also allows the designer or engineer to better spend their knowledge and 

time modifying, assessing and improving designs in a shorter timeframe.  

 

Robust meshing techniques are not the only requirement for successful CFD 
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simulations. Solution fidelity is closely linked to mesh quality and the appropriateness of a 

particular mesh for a given problem. Strong gradients in the solution can become a source 

of error that may contaminate the solution if the mesh local to these regions is not suitable 

[1, 2]
. Global refinement of the mesh allows a reduction in the discretisation error but, 

particularly in the context of three-dimensional problems, such an approach will quickly 

exhaust computational resources. Modifying the mesh locally based on knowledge and 

experience alone is not sufficient: the flow features are part of the solution and often 

difficult to predict. Methods to automatically refine the mesh in the regions which 

contribute to the solution error have found extensive use in CFD to improve the solution in 

a cost-efficient manner. Consideration can also be given to the type of elements which are 

being employed to capture the flow physics. Before considering these aspects in more 

detail, a brief discussion on types of mesh generation techniques will be given. 

  

1.2 Mesh Classification 

The simplest form of mesh classification is based upon the connectivity of the 

mesh; i.e. whether it is structured or unstructured
[3, 4]

. Structured meshes possess a regular 

connectivity that may be expressed in two- or three-dimensional arrays. Due to this 

regularity, the connectivity is implicit in the sense that neighbour information can be 

identified based on the storage of the mesh points in the computer memory. This allows for 

efficient mesh storage, which combined with the high quality of the actual mesh itself, 

contributes to efficient and accurate application of numerical schemes. Unfortunately, direct 

use of structured meshes is usually limited to simple geometries, restricting widespread 

application. For more complicated geometries, structured mesh generation may still be 

possible, but will usually be accompanied by the penalty of a lengthy period of user 

interaction in order to construct the mesh through domain decomposition, e.g. multi-block 

structured mesh methods. 

 

Unstructured meshes are composed of an arbitrarily connected collection of 

elements (sometimes of multiple cell types – these meshes are often referred to as ‘hybrid’) 

which fill the domain space. This leads to a greater overhead in terms of mesh storage as 

the connectivity of the mesh must be explicitly stored to allow the flow solver access to the 

neighbourhood of a mesh element. However, the primary advantage of unstructured meshes 
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is their flexibility – modern algorithms can automatically produce valid meshes for highly 

complex geometries. In addition, unstructured meshes lend themselves to a variety of 

powerful solution-based adaptation algorithms that can improve the capability of 

unstructured elements to capture highly anisotropic flow physics and provide accurate and 

efficient solutions to common CFD problems. 

 

Beyond the simple classification of mesh types described above, a more specific 

and useful classification can be carried out based on the actual methods used to generate the 

mesh. Mesh generation methods can be classified based on their intrinsic properties
[4]

 

leading to the definition of several main categories. In the context of CFD, the classes of 

methods that most commonly find use include: 

 

 Parameterisation or mapping methods:  An inverse transformation maps a regular 

grid of points from a parametric space into the physical space, creating a structured 

mesh. The first of two main approaches is algebraic interpolation, where a mesh is 

generated through transfinite interpolation from discretised curves or surfaces.  The 

second approach involves numerically solving a system of partial differential 

equations in order to fill the domain
[5-9]

. 

 

 Domain decomposition methods: the global domain is split into smaller sub-

domains. Two main approaches exist; the primary difference being the nature of the 

resulting mesh which covers the sub-domains. 

 

o Block-decomposition methods: These methods involve decomposition of the 

domain into smaller blocks. Within each block, a structured mesh generation 

technique (such as one of the mapping methods described previously) is 

applied. Manual decomposition of the domain can be an extremely time-

consuming task which has led to a number of algorithms being developed to 

allow for automatic decomposition
[10-13]

. 

o Spatial-decomposition methods: each domain is progressively decomposed 

into a collection of disjoint mesh elements creating an approximation of the 

domain (i.e. the mesh will not conform to the boundaries). The techniques 
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applied to generate such a mesh are more specifically referred to as quadtree 

and octree methods
[14-21]

, and can automatically generate Cartesian type 

meshes (which may be considered as an unstructured type of mesh), 

triangular and tetrahedral meshes, and have also been used to create 

unstructured hexahedral meshes, with the latter most commonly appearing in 

the context of finite element applications for computational solid mechanics.  

 

 Point insertion & element creation methods: After discretisation of boundary curves 

or surfaces, nodes or elements are gradually inserted into the empty domain until the 

entire space is filled with the mesh. Delaunay-based
[22-31]

 mesh generators insert 

points based on the Delaunay criterion, whilst advancing-front methods generate the 

mesh by advancing mesh points outwards from a discretised boundary
[32-37]

. 

Application of these methods will yield unstructured meshes. These techniques are 

usually applied to generate simplicial elements. Some methods allow for conversion 

of triangular elements into quadrilateral elements
[122, 123, 128]

. Other element insertion 

methods have been developed for quadrilateral or hexahedral-dominant meshes, 

although again, usually with finite element applications in mind
[38-43]

. 

 

As mentioned previously, the complexity of the geometry and type of physical 

phenomena that is required to be modelled is likely to be a determining factor in not only 

the type of mesh, but also the method that is applied to generate it. The initial mesh also 

influences the potential types of adaptation schemes available. The second aspect, namely 

the type of physical phenomena required to be captured, is of particular relevance to the 

present project. 

 

1.3 Generation of Flow Feature Aligned Meshes 

From a mathematical point of view, one can consider the convergence of the 

approximate numerical solution to the exact solution of the system of partial differential 

equations as the mesh element size tends to zero. However, from an engineering point of 

view, this is not particularly meaningful due to limitations of computer resources. A 

compromise must therefore be made in terms of the mesh size (i.e. the total number of 

points or elements present) and the desired accuracy of the simulation. It would be expected 
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that coarser meshes, whilst computationally cheap, would provide less accurate results 

compared with a finer mesh due to a greater level of discretisation error. The sensitivity of 

the converged solution to the mesh element density is often referred to as mesh-

dependence. As part of the CFD process, it is usually necessary to carry out mesh 

sensitivity studies in order to approach a grid independent solution.  

 

As part of the solution of the partial differential equations describing the flow 

problem of interest, a number of flow features may exist. For a standard mesh1 to accurately 

capture flow features such as shock waves, boundary layers, wakes and vortical flows, a 

large number of mesh points will be required. Flow features such as shock waves and shear 

layers are highly anisotropic in nature, that is, the gradient of the flow variables has a 

dominant direction which is usually normal to the feature in question. To accurately capture 

anisotropic flow features using a standard mesh without some form of adaptation will 

require excessive refinement of the mesh throughout the entire domain - this is a highly 

inefficient approach. 

 

From a basic understanding of the flow field and general CFD experience, one may 

attempt to generate a more efficient grid a priori to resolve the flow features. This is 

possible for flow features such as boundary layers in high-Reynolds number flows which 

are captured near the wall. In order to resolve the high gradients present in the shear layers 

normal to the wall, one common approach is to construct a structured or prismatic mesh 

which is clustered towards the surface in the normal direction. Since the element spacing 

along the boundary in the streamwise direction will be several orders higher than the 

spacing in the normal direction, these cells are considered anisotropic, and are therefore 

ideal for the capture of the anisotropic flow physics. 

 

Whilst this is possible for solution features such as boundary layers, other flow 

features are generally solutions of the problem and therefore are unknown a priori. The 

location and extent of shock waves and wakes can only be determined from the solution 

itself. Even for the near wall meshes used to capture the boundary layers, the extent or 

thickness of the boundary layer, along with the optimal distribution of points in that region 

                                                             
1
‘Standard’ or ‘initial’ mesh refers to a mesh which has been generated with no a priori knowledge 

of the location or extent of the flow features 
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cannot be known prior to the generation of a solution. To remedy this, a range of mesh 

generation and adaptation schemes have been developed over the past few decades to allow 

for automatic refinement of the mesh in these flow feature regions. However, simply 

applying refinement in the vicinity of the feature is not sufficient. Alignment of the mesh 

with strong features in the numerical solution can be considered as important an attribute of 

an adapted mesh as small spacing
[44]

.  

1.4 Importance of Mesh Alignment 

For compressible flow problems, the finite volume formulation allows the solution 

of the local Riemann problem to be constructed. When the governing equations are 

discretised across the mesh, the numerical fluxes are generally computed for each face of 

the control volume by using an approximate Riemann solver for the face. These fluxes are 

usually calculated in a reference frame that is aligned with the mesh. The approximate 

Riemann solver is applied in a quasi-one-dimensional fashion normal to the cell interface. 

This leads to a problem, particularly for unstructured meshes, where the physical features 

can be misrepresented and this degrades the potential for high accuracy, since the control 

volume faces are at arbitrary angles to the flow feature
[44-46]

. Minimum error should occur 

when the normal of the control volume interface coincides with the normal to the flow 

feature, and the distance is small. A well-fitted and designed structured mesh can possess 

faces which are either tangent or normal to the flow features with small spacing, but 

construction of such a mesh can be labour-intensive. Unstructured meshing algorithms are 

usually automatic, but the aforementioned accuracy problems exist due to the lack of 

alignment of the mesh elements which must be addressed. 

 

In an attempt to deal with these difficulties in unstructured meshes, one approach 

aims to improve the discretisation scheme by developing multi-dimensional approximate 

Riemann solvers. Such a solver would be insensitive to the orientation of the control 

volume faces. Mavriplis
[45]

 reports that whilst progress has been made in this area, it 

remains a difficult problem. Another approach involves the use of rotated Riemann 

solvers
[47, 48, 51]

. Rather than apply the Riemann solver aligned with the grid, an upwinding 

angle is determined based on the physical features present, usually from the flow gradients. 

The finite differencing then occurs normal to the wave fronts to provide better resolution of 

discontinuities. However, van Leer
[49]

 suggests that such methods are not particularly robust 
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when used with higher order schemes. The use of higher-order schemes to reduce 

numerical diffusion on coarse non-aligned meshes is also an option.  

 

An alternative approach, and the method that will be focused on in this thesis, is the 

application of mesh modification techniques which allow for alignment of the mesh with 

the flow features. The alignment can be achieved with two methods, either applied together 

or in isolation. The first method is to develop specialised mesh generation techniques which 

use different element types, such as the use of prismatic and / or hexahedral elements in the 

flow feature regions. The other approach is to adaptively refine an existing mesh based on 

the corresponding solution, such that the mesh becomes aligned with the flow features. 

Mesh adaptation requires computation of a suitable error estimate which in itself can affect 

the final solution, since it will drive the adaptation scheme to refine the mesh in different 

locations. Error estimation is the subject of extensive study
[50, 52-56]

. Most CFD problems 

have no analytical solution which means determining the formulation of appropriate error 

estimates, and in turn their effect on the numerical solution offers a significant challenge. 

The relative benefits of using one error estimator over another are not considered in the 

present work. 

 

Adaptation schemes are usually based on some anisotropic metric which seeks to 

refine and stretch the mesh in the physical space where necessary. The anisotropic elements 

are more suitable for the efficient capture of anisotropic flow physics. MacCormack (cited 

by McRae
[44]

)  noted that dispersion in a solution is reduced to a local minimum when the 

centre of a shock transition is located at the midpoint between two mesh lines. In fact, the 

schemes should be able to capture a shock wave within a one- or two-cell width, provided 

suitable alignment is present. Most adaptation schemes in the context of CFD have been 

developed for use with unstructured triangular and tetrahedral meshes. As a result of the 

adaptation, these elements become extremely skewed in the flow feature regions. Whilst 

providing improved resolution of the discontinuities and quite often improved accuracy, the 

skewed cells have been observed to cause some problems. Qin and Liu
[57]

 report the 

detrimental effect of the highly stretched triangular elements on the flow solver behaviour, 

preventing robust convergence and affecting solution accuracy. Mavriplis
[45, 46]

 discusses 

similar issues with stretched simplicial meshes, and that an optimal shape needs to be 

defined. In particular, spanwise grid stretching, widely used in CFD, may have effects on 
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overall solution accuracy. It could therefore be expected that highly stretched triangular 

elements may also have a negative impact. Babushka and Aziz
[58]

 show how the accuracy 

of a two-dimensional finite element degrades as the maximum angle of the element 

increases, suggesting that prevention of obtuse angles is necessary in an adaptive scheme. 

Marcum and Gaither
[101]

 also support this viewpoint: angles approaching 180
o
 can reduce 

stability and convergence rates, leading to significantly increased CPU time. Even if 

constraints are imposed on the mesh generation or adaptation process, yielding nearly right-

angled triangles in the flow feature regions with the shortest edge normal to the feature 

direction, the diagonal edge will remain non-aligned with the flow feature.  

 

Quadrilateral, prismatic and hexahedral elements on the other hand may have their 

edges or faces directly aligned with the flow. This became the primary reason for the 

development of hybrid mesh technologies
[59-65]

 to at least provide more efficient and 

accurate resolution of boundary layers. Unfortunately, adaptation schemes applied to 

quadrilateral and hexahedral meshes are less flexible than those for triangular and 

tetrahedral meshes, and are usually restricted to nodal redistribution methods. The 

techniques available for different types of mesh are discussed in more detail in the literature 

review following the present chapter. The development of methods to allow for the use of 

quadrilateral and hexahedral elements in the flow feature regions forms the basis of this 

thesis. 

 

1.5 Aims & Objectives 

The present work can be considered as an extension to the structured block insertion 

method of Qin and Liu
[57]

. In particular, issues with the approach will be addressed in terms 

of eliminating user-interaction and attempting to extend to three-dimensions for a range of 

flow features. Of primary interest is the generation of high-quality quadrilateral and 

hexahedral elements aligned with the flow features. With this in mind, the following are the 

main aims of the thesis: 

 

 Surface meshing: generation of feature-aligned surface meshes comprising of 

quadrilateral elements 

 Develop an automatic and general geometric representation approach for 
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complex flow features 

 Use the flow feature curves as virtual geometries to force alignment of the 

quadrilateral mesh elements 

 Implement adaptation schemes to further optimise the mesh based on the 

solution 

 

 Volume meshing: improving the ability of hybrid meshes to capture anisotropic 

flow physics by embedding hex-dominant mesh blocks in the flow feature regions 

 Transonic shock waves:  

o Generate quadrilateral surface meshes aligned with transonic shock 

footprints 

o Develop a means to extrude quadrilateral surface meshes aligned 

with the shock wave to form aligned hexahedral mesh blocks 

 Trailing shear layers/wakes and wing tip vortices: 

o Development of a method to allow suitably located quadrilateral 

surface meshes to be extruded through the extent of the extracted 

shear layers and / or vortices to form a feature-aligned hexahedral 

mesh block 

 Implement adaptation schemes to further optimise the feature-aligned 

hexahedral mesh blocks based on the solution. 

 

 Demonstrate the benefits of the presence of feature-aligned quadrilaterals and 

hexahedra on the numerical solution compared with triangular and tetrahedral 

elements. 

 

1.6 Thesis Outline 

Due to the nature of the work undertaken during this project, it became apparent 

that the most logical way to write the thesis was to combine the methodology with the 

results. The main reason for this is that the developed feature-alignment techniques which 

will be described require information from the CFD solution, and therefore the presentation 

of the methodology makes more sense in the context of actual flow solutions. Dividing the 

thesis in such a way also allows a clearer demonstration of the development and 
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progression of these feature-aligned mesh generation techniques over time.  

 

Chapter I presents an introduction to mesh generation, with brief details on 

common mesh types and generation techniques. A discussion on the importance of aligning 

the mesh with flow features present in the solution is provided which forms the motivation 

for the work undertaken in this thesis. Aims and objectives for the project are defined and 

described. 

 

Chapter II is the literature review and discusses classic published literature and 

state of the art within the field of mesh generation, particularly those techniques which 

allow meshes to be generated aligned with flow features. Also of interest are methods 

related to mesh adaptation, which allow the mesh to be manipulated based on the 

underlying solution. 

 

Chapter III presents the basic governing equations for fluid dynamics, along with 

the discretisation and numerical schemes which have been employed to obtain approximate 

numerical solutions to the flow problems of interest. The flow feature extraction and 

solution-based adaptation techniques which are exploited in the present work are also 

discussed.  The two main pieces of software used throughout the thesis are introduced: the 

mesh generation tool SOLAR and the flow solver TAU. 

 

Chapter IV is the first combined methodology and results chapter. It focuses on 

two-dimensional flow features of varying complexity, including shock waves and wakes. 

The development of a new technique to automatically represent flow features of varying 

complexity as geometric entities to influence the surface mesh generation is presented. This 

is in contrast to other geometric representation methods already established which are 

limited to simple flow physics and / or require significant user interaction. The technique 

involves the use of the medial axis as means to compute a geometric representation of flow 

features and is applied on unstructured quad-dominant surface meshes.  

 

Chapter V shifts the focus onto three-dimensional shock waves. Of primary interest 

are transonic shock waves, where the medial axis approach is used to generate feature 

curves which provide a representation of the shock footprint on the wing surface. After 
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generation of a shock-aligned quad-dominant surface mesh, a novel extrusion method is 

applied to allow for the generation of a high quality shock-aligned hex-dominant mesh 

block, which is applicable for viscous transonic problems. Due to the complexity of 

transonic shock waves and their proximity to the wing surface, such flow problems had not 

been considered before with other mesh block insertion approaches. Furthermore, the 

majority of three-dimensional adaptation schemes established in the literature are 

applicable to inviscid flows only, due to the difficulty in adapting the boundary layer mesh 

in viscous computations. The method is applied to several test cases and the feature-aligned 

mesh performance is compared with standard hybrid meshes and adaptive hybrid meshes. 

 

Chapter VI describes a modified extrusion process to allow feature-aligned meshes 

to be generated for three-dimensional problems involving trailing shear layers and wing tip 

vortices. After embedding surfaces into the domain which can be meshed like any other 

surface of the CAD model, the surface meshes are extruded along the feature direction to 

provide feature-aligned hex-dominant mesh blocks. These mesh blocks are then embedded 

into the hybrid volume mesh to improve the resolution of the trailing shear layers and wing 

tip vortices. 

 

Chapter VII is the final results chapter and revisits previous test cases which have 

undergone all the aforementioned feature-alignment techniques. The performance of these 

meshes is compared with hybrid meshes which have been adapted based on an anisotropic 

metric. The suitability of the embedded hex-dominant mesh blocks to be optimised based 

on the solution through application of a nodal-movement adaptation technique is also 

presented. 

 

Chapter VIII presents a brief summary of the techniques developed during this 

project, and some general concluding remarks regarding the numerical solutions. Finally, 

recommendations for future work are suggested. 
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CHAPTER II  

Literature Review 

 

2.1 Introduction 

Chapter I highlighted the motivation for the development of methods to achieve 

mesh alignment with flow features present in the solution. Specifically, the desire to align 

the mesh with flow features using anisotropic quadrilateral or hexahedral elements was 

described. The purpose of the present chapter therefore is to review and discuss current 

trends and previous work in the field of flow feature aligned mesh generation and 

adaptation; with attention particularly given to methods which allow for alignment of 

quadrilateral and hexahedral elements. General mesh generation techniques are not of 

particular interest here and only referred to where relevant, but thorough reviews on mesh 

generation technologies may be found in the references
[3, 4, 46, 66]

. 

 

There are a wide range of different feature-aligned mesh generation and adaptation 

techniques established in the literature. A feasible method for a particular flow problem 

depends on the type of mesh used to obtain the initial solution. For the purposes of this 

discussion, the possible approaches have been classified into three main categories. The 

first of these groups involve general adaptation techniques: these methods locally or 

globally modify the mesh based on some error estimate and include operations such as 

refinement, coarsening, edge or face swapping, nodal redistribution and complete mesh 

regeneration. The second group include specialised mesh generation techniques, such as 

mesh block insertion, after which mesh regeneration around the block (in a local or global 

sense) yields a new mesh which is aligned with the flow features. The final group includes 

miscellaneous methods which involve automatic domain decomposition and the overset 

grid / chimera approach.  

 

The order of the discussion is as follows: adaptation techniques will be considered 

first, followed by methods which require mesh regeneration (at local or global levels) and / 

or some form of mesh block insertion process; and finally other miscellaneous methods 

which are not so easily classified. Within each category, the methods will be assessed based 
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on their relative abilities to produce high quality feature-aligned meshes in a robust and 

efficient manner, whilst minimising user interaction, as well as their abilities to provide 

improvements in the numerical solution accuracy.  

 

The final part of the review will provide a summary of the findings described in the 

review. Following this discussion, the relative merits and shortcomings for each method 

will have been determined, including areas which have received little attention in the 

literature. This allows for the identification of potential directions for the research 

undertaken in the present thesis. 

 

2.2 Mesh Adaptation  

Mesh adaptation methods provide a means to optimise the mesh based on the 

solution to reduce the numerical error in a computationally efficient way, with minimum 

effort from the user. All mesh adaptation methods, regardless of how they actually change 

the mesh, have one aspect in common: they all require the determination of some error 

estimate. If the mesh fails to meet some prescribed accuracy, the chosen mesh optimisation 

scheme will modify the mesh based on the error estimate in order to better capture the 

physics of the problem and thus reduce the solution error. The process iteratively continues 

until the numerical error has dropped to a satisfactory level. 

 

2.2.1 Classifying Mesh Adaptation Techniques 

A short description on the main classes of mesh adaptation methods is in order since 

they will be referred to in the subsequent discussion. The three main types are h-methods, 

r-methods and p-methods. Other operations which swap edges and faces may also be 

applied to in order to change mesh topology and improve geometric properties of the mesh 

elements based on some quality metric. These types of mesh adaptation techniques modify 

the mesh in local regions of the domain. However, other adaptation techniques are global in 

the sense that at each iteration step, the entire mesh will be regenerated. In some situations, 

combinations of these types of mesh refinement and modification techniques are combined 

into a single mesh optimisation strategy. 
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h-methods modify the mesh by changing its connectivity. Common strategies 

include simple subdivision of cells as well as insertion or removal of nodes to change the 

overall mesh topology. The refinement operation will increase the density of the mesh in 

high-error regions, such as in the vicinity of a shock wave, whilst a coarsening operation 

leads to a reduction of the density of the mesh where the flow variations are more uniform 

in nature. The algorithms which allow the refinement or coarsening to occur differ 

depending upon the type of mesh element and whether it is necessary for the mesh to 

remain conformal (i.e. no hanging nodes or faces).  

 

The r-method allows deformation of the mesh whilst maintaining element 

connectivity by redistributing nodes to more optimum locations. Thus, the computational 

demands remain constant throughout the adaptive process. The nodal-redistribution method 

will increase or decrease the vertex density depending on the local behaviour of the flow. 

Care must be taken in the application of this method that the deformed elements are not 

only valid, but also of an acceptable quality. 

 

The final class of method are p-methods. These are primarily of interest in Finite 

Element Modelling (FEM) for computational structural mechanics; however recent efforts 

have allowed application of the techniques to computational aerodynamics problems
[67, 68]

 . 

The method adaptively varies the degree of the polynomial across each element in the 

mesh, and therefore the order of the numerical approximation, whilst keeping the mesh size 

constant. p-methods are usually combined with a h-method to combine the attributes of 

both approaches. Due to the current lack of widespread application of these methods in the 

context of CFD, and the fact they do not involve mesh alignment with flow features, they 

will not be considered within this review. 

 

2.2.2 A Remark on Error Estimators 

Any discussion on mesh adaptation also requires consideration for the error estimate 

chosen to drive the adaptation scheme. This aspect will be considered briefly in the present 

section as some details may be referred to in the subsequent text. The error estimation 

techniques which are most commonly applied in CFD problems, and those considered in 

detail for the present review, fall under two main categories: solution-based and adjoint-

based. Solution-based techniques may involve the use of reconstructed gradients to drive 
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the adaptation scheme, but such methods are generally considered inappropriate and can 

lead to unreliable results
[50, 52, 69-72]

. Other solution-based techniques, such as curvature-

based methods, use the Hessian of a flow variable to construct an anisotropic metric. These 

methods have found more widespread application and success for complex two- and three-

dimensional flow problems on a variety of different types of mesh over the decades and 

will be considered in more detail in the subsequent discussion.  

 

There are some distinct problems with the solution-based error estimators, 

particularly gradient-based, which one should be aware of. These methods focus on 

resolving discontinuities or strong gradients in the flowfield. Quite often however, features 

such as shock waves can be predicted to be in the incorrect location
[69, 70]

 due to numerical 

errors which are convected downstream from regions of the flow where the solution varies 

in a more continuous fashion: these regions are ignored by a feature-based error indicator. 

In turn, this leads to the mesh becoming overly refined in the wrong location and, despite 

the resolution of the shock wave improving, incorrect lift and drag quantities are obtained. 

As discussed by Dwight
[52]

 one of the most obvious examples of this occurring is for the 

fishtail shock wave from high transonic flow over the NACA0012 aerofoil. The location of 

the normal shock is highly sensitive to mesh resolution elsewhere in the flowfield, leading 

to inconsistencies between the shock location for a feature-based adapted mesh and a 

globally refined mesh. 

 

The curvature-based method shares some of the aforementioned drawbacks of 

gradient-based methods in that it targets regions of the domain where discontinuities exist, 

with little regard to regions where the flow varies in a more continuous manner. However, 

it also takes into account the natural anisotropy of physical phenomena. Anisotropic 

adaptation is vital for the accuracy of many CFD simulations.  The application of these 

methods allows for a reduction in the numerical dissipation in flow feature regions. When 

coupled with a suitable adaptation strategy, the mesh becomes aligned with the dominant 

flow features. This alignment allows for more effective application of approximate 

Riemann solvers in the flux computations, leading to a reduction in discretisation error. 

 

The relatively recent advent of the adjoint solver has allowed a more rigorous error 

indicator to be developed based on the adjoint solution
[71-79]

. Adjoint-based indicators have 
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highlighted severe shortcomings in feature-based approaches for the computation of 

engineering quantities of interest, such as lift and drag. The adjoint approach estimates the 

local contribution of each mesh element to the error, and therefore refines the mesh in 

regions which will influence the output functional. The regions of refinement do not 

necessarily correspond to the regions refined for feature-based methods. As an example, for 

an inviscid transonic flow over an aerofoil as presented in the paper by Dwight
[52]

 , the 

gradient-based method refines in the shock and wake regions only. The adjoint-based error 

indicator also adapts the mesh to features such as acoustic waves above the aerofoil, as well 

as near the aerofoil surface, particularly near the leading edge.  It is these regions of the 

domain which are influencing the outputs of interest. 

 

The distinct differences between pure Hessian and adjoint-based error estimators are 

demonstrated by Venditti and Darmofal
[71, 72]

 for a range of two-dimensional inviscid and 

viscous flows.  Loseille et al.
[73]

 provide a similar scheme in three-dimensions for inviscid 

flows featuring supersonic shock waves and wing tip vortices. Both techniques have 

formulated the adjoint error problem to include the natural anisotropy based on the Hessian 

of the solution, allowing for application of the adjoint error estimate for adapting to 

anisotropic features. This allows direct comparisons to be made between the two different 

types of error estimates. Both papers highlight the greater ability of the adjoint-based 

method to refine the mesh in the correct locations to provide improvements in the quantities 

of interest.  In other words, the adjoint method defines an optimal distribution of the 

degrees of freedom for the specified target. On the other hand, Hessian-based adaptation 

provides non-optimal results with less appropriate distribution of mesh resolution for 

accurate evaluation of the desired functional. Both studies have shown a greater level of 

accuracy can be achieved with significantly less numbers of mesh nodes through use of the 

adjoint error estimate.  

 

There are some drawbacks associated with adjoint methods however. The methods 

can be complex and relatively expensive to compute, since the error estimator requires a 

dual solution: both the original flow solution and its corresponding adjoint solution. The 

original flow solution must also be well converged. Fidkowski and Darmofal
[74, 75]

 suggest 

other areas where the adjoint approach may be lacking. One issue is that coarse initial 

meshes can sometimes be unsuitable for capturing the output of interest, leading to the 
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error-estimate being severely unreliable. This is problematic since an inaccurate error 

estimate on a coarse mesh may cause an automatic adaptation process to terminate 

prematurely before the functional has been sufficiently resolved.  

 

The application of some adjoint-based methods
[76, 77]

 on Cartesian meshes can only 

be applied to construct adapted isotropic meshes for the Euler equations. The main benefit 

of using a Cartesian mesh is that the mesh does not need to conform to the geometry 

boundary, allowing for complex geometries to be automatically handled. Refinement and 

coarsening schemes are also relatively simple to implement with no restrictions on 

conformity. However such approaches lead to hanging nodes or faces which are not 

suitable for some flow solvers. Whilst the mesh is refined in regions which contribute to the 

error, the solution anisotropy cannot be taken into account, meaning the application of such 

techniques will be unsuitable for viscous simulations and the associated solution features 

which may be present. The development of Cartesian mesh generation with prismatic layers 

around the geometry to allow for viscous computation has become an active area of 

research. Relevant work in this field will be discussed in more detail later in the review. 

 

Another aspect to consider in anisotropic metric construction for mesh adaptation is 

the norm in which the metric is computed. Alauzet et al.
[109]

 demonstrate and discuss the 

effects of error estimators in controlling the interpolation error in different L
p
 norms. 

Depending on the value of p, the mesh adaptation will react to different variations in the 

solution. For example, in the L
∞
 norm (i.e. p = ∞), the adaptation reacts strongly to regions 

of steep gradient, such as across a shock wave, with little regard to regions where there are 

smaller variations in the solution. On the other hand, lower values of p, or ‘weaker’ norms, 

such as the L
2
 norm, the adaptation becomes more sensitive to smaller variations in the 

solution. It is shown for a range of analytical cases that metrics constructed in the weaker 

norms lead to a more rapid reduction in the solution error as the number of mesh vertices 

increases. As observed with the adjoint-based research previously described, this work 

suggests that it is not just the regions of steep gradient that contribute to the solution error. 

 

It is clear from the preceding discussion that associated with each of the error 

estimators are a number of distinct advantages and disadvantages. The field of error 

estimation remains an active area of research, but it would appear from the related literature 
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that an adjoint approach, which combined with the Hessian anisotropic metric information, 

is starting to become the most efficient way to accurately compute engineering quantities of 

interest. Furthermore, metrics based on weaker norms (i.e. L
p
 with p = 1, 2) are potentially 

a more appropriate choice than the more traditional L
∞ 

norms, as previously discussed. 

However, one is unable to ignore the range of problems for which traditional error 

estimators based on purely on the Hessian in the L
∞
 norm, have been put to good use for 

aligning the mesh with dominant flow features.   

 

For the purposes of the present thesis, the focus will not be on the relative benefits 

of one error estimator over another. Of more interest is the adaptation scheme which is 

coupled with the chosen error estimator. As previously stated, adaptation or feature-

alignment schemes which involve quadrilateral and hexahedral meshes are of primary 

interest – avoiding the generation of highly skewed triangular or tetrahedral elements is of 

primary importance. The estimation of error and the chosen adaptation scheme can be 

considered as independent problems. Given then, some error estimator or indication of flow 

activity which allow subsequent manipulation of the mesh, the goal is therefore to 

determine how the type of element present in the flow feature regions can influence the 

numerical simulation.  

 

2.3 Mesh Adaptation Methods for Feature-Alignment 

As mentioned previously, the type of adaptation scheme available to the user 

depends strongly on the type of the underlying mesh used to compute the initial solution. In 

the following discussion, the most common types of grid employed in computational 

aerodynamic problems will be considered in turn. The applicable adaptation techniques for 

each will be reviewed in order to determine their respective abilities in providing feature-

alignment within the mesh. 

 

2.3.1 Structured Meshes 

Adaptation on structured meshes is usually limited only to nodal redistribution 

methods, in order to maintain the topology of the quadrilateral or hexahedral cells. Both the 

connectivity of the mesh and the number of nodes remain unchanged throughout the 

adaptation process, leading to a constant demand on computational resources. It is a method 
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whereby the error is equi-distributed over all the edges of the mesh, i.e. it is directionally 

based and can produce highly stretched meshes in the vicinity of flow features, as discussed 

by Tam
[80]

. The quadrilateral cell interfaces eventually become aligned with the flow 

features, providing excellent resolution of the features for a variety of problems in two- and 

three-dimensions
[81-86]

. The more reasonable grid distribution allows for resolution of 

important viscous interactions such as shock-boundary layer interactions
[87]

. Application of 

nodal redistribution methods have also been applied effectively for unsteady problems such 

as shock-induced combustion
[88]

.  

 

The limitation and inflexibility of this form of adaptation becomes obvious for more 

complicated geometries and flow features due to the structured nature of the grid. Care 

must be taken that the redistribution does not distort the grid in such a way that the 

quadrilateral or hexahedral elements become invalid. Maintaining the topology of elements 

is quite often an important consideration in a scheme which implements nodal 

redistribution alone. The inability of nodal movement techniques on structured meshes to 

capture features such as vortices was discussed in some length by Ait-Ali-Yahia et al.
[85]

. 

 

Another general drawback of structured meshes is that even for some two-

dimensional geometries, structured mesh generation can be a time-consuming task, 

requiring manual decomposition of the domain into small sub-regions for individual 

meshing. The requirement for a high level of user interaction makes these techniques 

somewhat unattractive, despite the potential for a highly efficient grid. However, efforts 

have been made to attempt to reduce the user interaction involved in the process. For 

example, the medial object of a flow domain provides a means to construct a 

decomposition automatically
[10-13, 89]

 and has been the subject of extensive research. Other 

techniques include the buffer or zipper method
[90, 91]

 where two multi-block meshes are 

joined together using a small layer of unstructured elements to yield a conformal mesh. 

 

2.3.2 Unstructured Meshes 

2.3.2.1 Triangular and Tetrahedral meshes 

The majority of mesh adaptation techniques for CFD have been implemented for 

unstructured triangular and tetrahedral meshes, regardless of the chosen error indicator. 

There are several reasons for this. Firstly, the algorithms which generate unstructured 
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meshes comprising of these types of elements can be generalised to allow automatic 

meshing of complex configurations. This somewhat alleviates the bottleneck associated 

with the mesh generation process, which is prevalent for the structured mesh generation 

methods previously discussed.  Furthermore, the inherent flexibility of simplicial elements 

means that they lend themselves to a variety of adaptation strategies, including the 

aforementioned r- and h-methods, along with edge / face swapping operations, complete 

mesh regeneration or even a combination of all these strategies. The application of these 

methods for unstructured triangular and tetrahedral meshes in aerodynamic problems is 

therefore widespread
[92-118]

. One drawback of unstructured meshes relative to structured 

grids is that they require larger overheads for computation time, and also for memory since 

the connectivity must be explicitly stored.  

 

Provided that a suitable anisotropic error estimator is coupled with the adaptation 

strategy, the coupled process should construct a mesh which will allow for the resolution of 

anisotropic flow physics in an efficient manner. Habashi et al.
[92]

 proposed a scheme which 

combined refinement, coarsening and nodal movement based upon the previously discussed 

Hessian-based error estimator. Dompierre et al.
[93]

 used these fully automatic adaptation 

strategies effectively for a wide range of two-dimensional flow problems. Frey and 

Alauzet
[94]

 presented a method involving complete mesh regeneration after construction of 

an anisotropic metric map which allowed for information on element stretching and 

orientation to be used in the meshing process. This was successfully applied to three-

dimensional test cases featuring shock waves, but was limited to inviscid flows since the 

technique is unsuitable for constructing boundary layer meshes. 

 

 

 

Figure 2.1: Comparison of structured vs. unstructured adaptation in capturing the von 

Karman street about a NACA 0012 airfoil
[85]
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Figure 2.2: Anisotropic surface adaptation for inviscid transonic M6 case
[94]

 

 

Whilst the previously described methods work well in two-dimensions for a range 

of flows and for inviscid three-dimensional simulations, transonic viscous simulations for 

fully tetrahedral meshes are more problematic to address. This is pointed out by Loseille 

and Lohner
[102]

, who have developed a scheme using cavity-based operators to alleviate the 

problems associated with boundary layer creation from highly anisotropic surface meshes 

when using an iterative adaptive scheme. 

 

Despite the inherent flexibility of unstructured triangular and tetrahedral meshes, 

there are a number of distinct drawbacks. One of the major problems with purely 

anisotropic adaptation on these types of mesh is that the elements can become extremely 

skewed as they are clustered towards the regions of high gradient. In two-dimensions, the 

flow feature will only be aligned with one of the edges of the triangular elements. Such 

stretched elements can be considered to be of poor quality in a geometric sense. Depending 

on whether there are any restrictions on the internal angles of the triangles, quite often only 

one of the triangular edges can be aligned with the flow feature. The resulting mesh can, in 

some cases, degrade the potential for high resolution and high-order reconstruction of the 

flow variables, as discussed in Chapter I. The numerical solution can then suffer from a 

number of issues which include oscillations, slow convergence and loss of accuracy. Such 

an effect has been presented by Qin and Liu
[57]

 where purely anisotropic adaptation on a 

triangular mesh has caused convergence problems and loss of accuracy despite being fully 

automatic.  
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2.3.2.2 Quadrilateral and Hexahedral Meshes 

Unstructured quadrilateral meshes represent an alternative to triangular meshes, but 

in the context of CFD they have not received the same level of attention, with notable 

exceptions 
[119-124]

. For surface meshing, the advancing front or paving algorithm
[43]

 can 

offer a similar level of flexibility as its triangular counterpart. Given a number of points, an 

unstructured quadrilateral mesh will contain significantly fewer elements than the triangular 

mesh, leading to the quadrilateral mesh being more computationally efficient. This fact also 

extends to the three-dimensional case, where a number of tetrahedra are required to fill the 

void which one hexahedral element would occupy. A wide range of hex-dominant meshing 

techniques have been developed with varying levels of robustness, although usually with 

finite element analysis for computational structural mechanics in mind
[38-40, 125-127, 132]

. 

 

Perhaps one of the reasons unstructured quadrilateral meshes do not frequently 

appear in the context of CFD, is due to the lack of maturity of their associated adaptation 

techniques. For example in two dimensions, if a mesh is to remain conformal, certain 

restrictions must be placed on the quadrilateral element to maintain its topology and 

convexity. The relative lack of flexibility quadrilateral meshes possess due to these 

geometric restrictions has led to a greater level of application of triangular and tetrahedral 

adaptation methods for aerodynamic problems. The level of maturity for the triangular / 

tetrahedral methods is clear to see from the related literature. Any initial unstructured mesh 

suffers from a lack of alignment of the mesh elements with potential flow features; thereby 

degrading the mesh performance and highlighting the necessity for some form of adaptation 

scheme to be applied. 

 

 Another aspect to consider is that robust hexahedral meshing is only just starting to 

become possible for complex geometries of interest in aerodynamics. Now hexahedral 

meshing algorithms are maturing, this calls for a new breed of conformal methods to allow 

solution-based refinement of such meshes. The development of these techniques will allow 

the full benefits of using unstructured quadrilateral / hexahedral meshes to be realised: not 

only in terms of their greater level of efficiency, but their potential for the cell interfaces to 

be fully aligned with the flow features of a CFD solution. 
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There has been some research into adaptation methods applied on unstructured 

quadrilateral meshes. Zheng et al.
[124]

 present a cell-based anisotropic adaptive solution for 

the Euler equations for quadrilateral cells. Due to the anisotropic refinement, the resolved 

flow features become aligned with the quadrilateral mesh structure. The technique allows 

for efficient and accurate capture for a range of problems involving complex shock 

structures. Furthermore, the adaptation strategy also allows for coarsening so that mesh 

resolution is not wasted in regions where it is not needed. The quality of the quadrilateral 

elements is always maintained since the refinement and coarsening operations do not distort 

the mesh structure in the way nodal redistribution methods can. 

 

Tchon el al.
[119]

 implement a different approach which allows for conformal 

refinement,  based on a strategy referred to as pillowing or buffer insertion. According to an 

anisotropic control metric, regions for refinement are located and a scheme following that 

of Schneiders
[129]

, which uses layers of contiguous elements known as a ‘shrink set’. As the 

name implies, this small selection of elements is shrunk in order to generate a gap between 

the shrink set and the surrounding element set. The two elements sets are then reconnected, 

bridging this narrow gap, forming a new sheet of elements. The algorithm is explained in 

detail within the paper, but figure 2.3 provides a simple demonstration of the effect of the 

refinement in two-dimensions. The algorithm also naturally extends to three-dimensions. 

 

 

Figure 2.3: Refinement algorithm steps for the pillowing method
[119]

 

 

The technique is applied to an unsteady viscous laminar flow around a NACA0012 

aerofoil, and adapts well to the shocks and trailing vortex street. Note that this is the case 

for which Ait-Ali-Yahia et al.
[85]

 demonstrated that nodal movement adaptation alone on 

structured grids failed to adapt to the vortices. However, the pillowing method has not 
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provided the same level of mesh resolution in the wake region as the unstructured triangular 

refinement methods described by Dompierre et al.
[93]

. This could be due to the use of 

different formulations of the metric which drives the adaptation. Figure 2.4 shows an image 

of the adapted mesh from Tchon et al.
[119]

. Whilst the algorithm has worked well to force 

alignment of the mesh with the flow features for this case, there are a few issues with the 

quality of the mesh elements, particularly in the vicinity of the shock waves.  

 

 

Figure 2.4: Pillowing method applied to an unsteady viscous laminar case after 

smoothing
[119]

 

 

A slightly different approach is considered by Borouchaki et al.
[122, 123]

, where the 

adaptive quadrilateral mesh is indirectly obtained by using a scheme which converts the 

triangular mesh to a quadrilateral one. The triangular mesh is adapted based upon an 

anisotropic metric until the lengths of the edges in the Riemannian space are almost unity. 

This mesh is then converted into a quadrilateral mesh by considering merging individual 

pairs of triangles, if the resulting quadrilateral quality will be sufficient. However, the 

method cannot guarantee the mesh is entirely made up of quadrilaterals, and can 

occasionally lead to a mixed mesh composing of both types of elements. The proportion of 

triangles is relatively small however. The technique is applied to a supersonic aerofoil case 

and the resulting unstructured quad-dominant mesh is aligned with the shock waves and 

wake with high-quality elements. As the majority of the elements in the new mesh are 

primarily quadrilaterals, this mesh is inherently more efficient than the equivalent fully 

triangular mesh. 

 

Merkley et al.
[130]

 describe the concept of sheet insertion, upon which all hexahedral 

based refinement techniques, which include the aforementioned pillowing approach, 

depend on. A hexahedral sheet can be viewed as a dual to a layer of hexahedral elements, 
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and these can be inserted into an existing mesh. The new elements therefore will directly 

correlate with the shape of the sheet, as shown in figure 2.5. If a sheet is restricted to be 

refined along a particular direction influenced by its shape, then such an approach could 

prove useful in the context of feature-alignment. Indeed, this is pointed out by Merkley et 

al.
[130]

. A mesh could be roughly aligned with the feature shape, such as a bow shock, using 

a simple r-method. This essentially changes the shape of the sheets, meaning sheet insertion 

along the relevant sheets allows refinement to occur along the shock wave.  

         

Figure 2.5: Rows of quadrilaterals and sheet pathways
[130]

 

 

 

Figure 2.6: Application of sheet insertion for a bow shock type feature after approximate 

alignment
[130]

 

 

One problem with sheet insertion is that refinement will occur along the entire sheet 

length, and propagate towards the boundary. In an unstructured hexahedral mesh, the 

pathway for a sheet is unlikely to be regular, resulting in a rather unpredictable refinement 

path. Whilst the example presented in figure 2.6 would be suitable for this refinement to the 

boundaries, for other flow features, such as transonic shocks, it is not desirable to have this 

refinement propagating throughout the domain. One method which allows the sheet 

propagation to be terminated in a conformal manner is through the use of refinement 

templates. 

 

Usually with quadrilateral refinement, non-conformity arises whereby local 

refinement introduces non-conformal nodes that lie on edges of neighbouring elements. The 
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majority of recent work
[133-136]

 is an extension of some of the best known work on the topic, 

albeit with finite element solids modelling in mind, by Schneiders et al.
[129]

. Garimella 
[131]

 

describes a technique similar to Tchon et al.
[119]

 to refine unstructured quadrilateral meshes 

such that the resulting mesh maintains conformity throughout and prevent hanging nodes.  

 

 

Figure 2.7: Examples of quadrilateral refinement templates
[131]

 

 

The refinement methods discussed in these papers are carried out utilising a set of 

defined templates (see figure 2.7 for some examples).  Application of such refinement 

methods alone may be unsuitable in the context of feature-aligned adaptation. In order to 

achieve alignment of the cell interfaces, some form of smoothing will also be required. 

However, the unstructured methodology by Garimella
[131]

 may have potential in terms of 

increasing the element density in an isotropic manner (figure 2.8) necessary for the capture 

of vortex shedding for example. A range of three-dimensional refinement templates has 

also been defined for hexahedral meshes.  

 

 

 

Figure 2.8: Isotropic refinement of an unstructured quadrilateral grid
[131]

 

 

2.3.2.3 Cartesian Meshes 

Cartesian grids do not require body-fitting in contrast to structured and unstructured 

meshes. This means that the mesh is independent of the geometry discretisation, leading to 

generation methods which are fully automatic and robust. This allows meshes to be 

generated for complex three-dimensional configurations with relative ease
[137-142]

. The 
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actual geometry is carved out from the interior of the mesh, leaving a set of irregular cells 

at the boundaries. However, the majority of the domain is made up of completely regular 

cells. This leads to highly efficient and accurate finite volume scheme application
[66]

. 

Despite these benefits the majority of Cartesian-based mesh methods are only suitable for 

inviscid flows, since the cells cut at the boundaries are unsuitable for resolving viscous 

boundary layers.  

 

 

Figure 2.9: Example of isotropic Cartesian refinement in shock wave region
[76]

 

 

Combining such meshes with boundary-fitted prismatic cells is one method to allow 

Cartesian type meshes to be applicable for viscous flows, and allow predictions of the same 

quality with other types of boundary fitted meshes. Recent advancements in this technology 

have made this possible
[139, 140]

, with the development of the BOXER software. The 

ultimate goal of the research is to unify all aspects of the CFD process into a single piece of 

software, all implemented in parallel to allow for robust and automatic design analysis, 

particularly important for industrial design loops. As the references show, this approach has 

been applied to extremely complex geometries with a minimum of user effort, something 

other mesh generation methods would struggle to achieve. Furthermore, the resulting mesh 

is extremely efficient as it is essentially a hex-dominant mesh. One major drawback is that 

for three-dimensional problems where small geometric features are present, a high density 

of cells will be required leading to extremely large meshes being generated. 

 

From a feature-alignment point of view, other than the prismatic cells in the 

boundary layer, anisotropic refinement may be difficult to achieve for other flow features 

such as shock waves. In fact, without some form of refinement template (as considered in 
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section 2.3.2.2) which will allow transition of the mesh size from smaller regions to the 

larger regions, any form of refinement whether that be isotropic or anisotropic will lead to 

hanging nodes or faces. Even anisotropic types of refinement still prevents full alignment of 

the cell interfaces with the flow feature, particularly if the feature possesses some form of 

curvature – the feature will continue to pass through the cells at an angle. As previously 

discussed, McRae
[44]

 suggests that both small spacing and alignment are important 

attributes to an effective adaptive scheme.  However, an exception to other Cartesian 

methods is the work of Wintzer
[138]

 where the initial Cartesian mesh is aligned with the 

shock direction and therefore the subsequent refinement occurs aligned with the shock 

waves, displayed in figure 2.10. As the application of the work is for sonic boom 

prediction, this refinement allows for excellent resolution of the supersonic shock waves.  

 

Figure 2.10: Aligned Cartesian mesh refined in shock wave region for sonic boom 

prediction
[138]

. 

 

Whilst the previously described types of refinement have been shown to be effective 

for the capture of a range of flow phenomena
[76, 77, 141, 142]

, the lack of conformity is not 

suitable for some flow solvers.  

 

2.4 Mesh Insertion, Regeneration and Specialised Generation Techniques 

An alternative approach that has evolved in recent times is to represent solution 

features as geometric entities. After flow feature extraction using some feature detector, a 

geometric representation technique is applied to approximate the flow feature topology as a 

means to influence the mesh generation process
[57, 101, 143-146]

. Since the flow feature 
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geometry is computed from an initial solution, these techniques usually require that the 

mesh is regenerated to obtain the feature-alignment. The solution may then continue on this 

new mesh. 

 

The earliest form of geometric-representation techniques for aerospace applications 

was described by Marcum and Gaither
[101]

. A pseudo-pattern recognition technique allowed 

for extracted regions to be reduced to groups of simple geometric entities. For example, 

shock waves and wakes are reduced to lines, whereas expansion or stagnation regions are 

reduced to points. The process allowed unstructured adaptive grids to be constructed 

automatically to capture the features of interest. Singular points are treated as adaptive 

sources which allow for localised isotropic refinement, which reflects the isotropic nature 

of the physics in those regions. The lines are embedded dual-sided boundaries which allow 

high-aspect ratio cells to be generated aligned with the anisotropic features. Whilst the 

technique can be applied to fairly complex two-dimensional flow features, such as cases 

where shock waves cross each other, the technique is applied to triangular meshes only. 

Extension to three-dimensions is also problematic. The pattern recognition technique may 

be applicable in three-dimensions, but generation of surfaces to represent flow features 

poses a significant challenge. 

 

Ito et al.
[143]

 present another geometric representation process for steady-state 

problems. After using feature detectors, the medial axis of the flow feature is extracted 

using either a least-square approach or a Delaunay triangulation method. The method 

embeds the medial axis within the two-dimensional domain and removes a section of 

unstructured mesh around the flow feature. The advantage of this approach is that the entire 

domain does not need to be regenerated, only the void created by mesh removal. However, 

the approach is only suitable for simple flow features, requires user interaction to smooth 

medial axis and also only allows for isotropic refinement, which as previously discussed is 

unsuitable for anisotropic flow physics. 

 

One problem with fully unstructured meshing is that for the inclusion of viscous 

computations, the boundary layer must be captured by extremely skewed triangular or 

tetrahedral elements. Such cells are generally not desirable in the boundary layer. This led 

to the development of hybrid meshes
[59-65]

, which feature structured or semi-structured 
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meshes near the boundary consisting of quadrilateral, prismatic or hexahedral elements. 

Triangular or tetrahedral elements are employed to cover the rest of the domain, with an 

interface region, sometimes referred to as the ‘buffer’ mesh comprising of pyramids and 

tetrahedra. These meshes can provide more efficient and accurate capture of near-wall 

physics, since the hybrid mesh can possess significantly less elements in the boundary 

layer, which are also not severely skewed.  

 

 

Figure 2.11: Structured block insertion method prior to nodal movement adaptation
[57]

 

 

 

 

Figure 2.12: Structured block mesh after application of anisotropic adaptation method used 

for feature-alignment with shocks and trailing wakes
[57]

 

 

The term ‘hybrid’ mesh is therefore applied for those meshes which contain a 

mixture of elements and have seen application for a range of two- and three-dimensional 

viscous flows. Some methods have emerged which exploit the ability of the hybrid mesh to 

be comprised of different elements types in the context of feature-aligned meshing. 

Burgos
[147]

 presents a method which allows for the embedding of semi-structured mesh 

blocks aligned with the wake region downstream of aerofoil sections in turbo-machinery 

applications.  Qin and Liu
[57]

 proposed a two-dimensional feature-aligned mesh generation 

and adaptation method by inserting structured blocks of mesh into the flow feature regions 
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(figure 2.11), using a geometric curve to guide the placement of the mesh block. The 

remainder of the domain is made up of triangular elements. The mesh can then be adapted 

using an anisotropic redistribution method, displayed in figure 2.12. This prevented the 

generation of highly skewed anisotropic triangular elements in the flow feature regions. 

Compared with standard anisotropic adaptation on triangular grids, the structured-block 

insertion method provided superior accuracy, convergence properties and resolution of the 

flow features. Unfortunately there were several issues with the approach. Most notably, the 

process is semi-automatic and remains significantly challenging to extend to three-

dimensional problems.  

 

Ito et al. and Shih et al.
[144-146]

 have developed and extended feature-alignment 

techniques for three-dimensional hybrid meshes. Surfaces are generated after feature 

detection and these surfaces allow construction of feature-aligned prismatic layers which 

provide improved solution of bow shocks for complex geometry (figure 2.13). Whilst some 

high-quality feature-aligned meshes have been constructed, the approach is limited to 

capture of bow shocks. Other shock structures must be resolved by isotropic refinement. 

The refinement approach is also applied for wing tip vortex capture in a viscous case, 

where there is significant improvement in the resolution of the vortex. However, the 

isotropic refinement in the wake region can be considered sub-optimal, where ideally an 

anisotropic form of refinement would be more appropriate. Consideration to three-

dimensional shock waves within the transonic range has not been given by any of the 

authors who have adopted the geometric representation approach. This is most likely due to 

the complexity of the shock structure and its proximity to the body, leading to a need for 

modification of the surface mesh. 

 

Figure 2.13: Prismatic layer mesh insertion into hybrid mesh using embedded surfaces
[146] 
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2.5 Miscellaneous Techniques: Overset Grid ‘Chimera’ Approach 

 

A wide variety of complex fluid problems can be dealt with through the use of this 

approach. As previously eluded to, not all geometries will be able to be easily meshed with 

a single contiguous mesh. The use of structured overset grids allows simplification of the 

mesh generation process since the grid zones are allowed to overlap, rather than be aligned 

with their neighbours, as in multi-block structured mesh generation. However, the overset 

grid approach does require the domain connectivity to be determined so that adjacent 

overset grids can share information. Information is interpolated from solutions in the 

overlapping region of adjacent grids. This approach is claimed to be able to enjoy the 

advantages associated with unstructured meshes, whilst retaining the computational 

benefits of structured grid data
[66]

. Craft el al.
[148]

 discuss the ease with which meshes can 

be generated aligned with the flow direction. 

 

Since adjacent domains do not need to conform means that overset grids are able to 

be used in adaptive methods, such as the method described by Berger and Oliger
[149]

 and 

Berger and Jameson
[150]

. Starting with a coarse mesh to resolve the uniform regions of the 

flow, shock and other steep gradient regions are adaptively resolved by overlaying a series 

of finer grids onto the coarse mesh. Other practical examples
[66]

 involve a grid generation 

approach for a flapped-wing configuration. A convenient set of topologies can be used to 

fill the farfield domain, in this case a Cartesian grid. Then, a hyperbolic approach which is 

ideal for near-body grids in generation of suitable boundary layer meshes is used around the 

flapped-wing geometry. These grids can be combined to cover the entire computational 

domain. Since each grid generated was defined individually, any changes to geometry will 

require only modification of those particular grid sections, relieving the need of remeshing 

an entire domain. This ultimately gives a reduction in the time required to plan and generate 

the grid.  

 

The fact that only local regeneration is required and that the mesh blocks can 

therefore be generated around moving components mean that such methods could be 

applied for transient flow features, such as moving shock waves. This technique was 

investigated by Chawla and Banks
[151]

 who use the method to track features such as moving 
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shock waves and vortices. Figure 2.14 has been taken from work by Meaking
[152, 153]

 where 

the individual domain blocks can be observed for the near-wall physics and transonic 

shock.  

 

Typical problems encountered however include the complexity of more than two 

grids overlapping, particularly three-dimensions, and the resulting complex interpolation of 

data between the overlapping zones may prevent accurate solutions. Indeed, Guerrero
[154]

 

discusses that the main issue for the chimera approach is successful interpolation of the 

variable fluxes, particularly in terms of ensuring that conservation of the variables is 

maintained. However, good results have been achieved through the use of the chimera 

method. It is certainly a method worth considering in the context of feature-aligned mesh 

generation, but obviously is restricted for flow solvers designed with this kind of mesh in 

mind. 

 

 

Figure 2.14: Example of the chimera approach applied to resolve a transonic shock 

wave
[153]

 

 

2.6 Summary 

 The majority of mesh adaptation schemes in the context of computational 

aerodynamics have been developed for triangular and tetrahedral meshes due to the 

inherent flexibility of such meshes. 

 Structured meshes are usually limited to r-methods (nodal redistribution) to 

maintain element connectivity. These methods work well for capturing shock waves 

and shear layers as full alignment of the cell interfaces can be achieved, but cease to 

be effective for flows involving vortices. 
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 Anisotropic adaptation methods on triangular and tetrahedral meshes lead to 

extremely skewed elements which can affect solution quality. Such elements are 

inappropriate to capture near wall shear layers efficiently, meaning anisotropic 

methods are usually restricted to inviscid flows. 

 During the advent of CFD, unstructured quadrilateral and hexahedral meshes have 

not received the same level of attention as triangular / tetrahedral meshes. Whilst 

robust quadrilateral meshing algorithms have been developed, reliable and robust 

conformal hex-dominant meshing in three-dimensions has only recently become 

feasible. Further reasons for the lack of such meshes being applied in the context of 

CFD is that the associated adaptation schemes have not yet reached the same level 

of maturity as those developed for triangular and tetrahedral meshes. 

 Cartesian mesh generation can be applied to automatically create meshes for 

complex geometry due to the removal for the requirement of body-fitted cells. This 

has restricted their application to inviscid flows for the majority of cases. However, 

recently the emergence of methods to connect the Cartesian mesh to a body-fitted 

prismatic layer has allowed for viscous problems to be considered. The resulting 

meshes are essentially hex-dominant. For conformal adaptation on such meshes, the 

use of refinement templates is necessary.  

 To alleviate some the restrictions of tetrahedral meshes in terms of viscous 

simulations, hybrid meshes were developed which allow prismatic or hexahedral 

elements to be grown from the boundary surface. Some methods further exploit that 

hybrid meshes can be comprised of multiple element types by using methods such 

as geometric representation techniques to allow for the embedding of high quality 

regions of mesh aligned with flow features. Drawbacks of geometric representation 

methods include that user interaction is usually required at some stage in the 

process, and they are limited to two-dimensional or very simple three-dimensional 

flow features. 

 Chimera approaches allow for complex geometries to be dealt with and offer 

efficiency improvements compared with unstructured meshes. In the context of 

feature-alignment, structured mesh blocks can be placed in regions of high error and 

aligned with flow features to improve resolution. Such techniques also offer the 
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advantage of being applicable to problems with moving geometry and unsteady 

flow features. 

The considerations above have allowed for identification of areas where research is 

currently lacking in terms of feature-alignment techniques for CFD applications. As 

described in Chapter I, one aspect of this thesis is to address some of the drawbacks of the 

structured mesh block insertion method
[57]

. In particular, development of a method to 

reduce, if not eliminate, user interaction is required. Application to more complex flow 

features would also be desirable. The limitations of geometric representation approaches 

have been described, and addressing these problems represents a potential challenge to be 

undertaken. Furthermore, development of mesh modification techniques for quad-dominant 

meshes such that they become viable alternatives to triangular meshes is required. This will 

allow the greater efficiency and potential accuracy of quadrilateral meshes to be fully 

realised in the context of CFD. 

 

As previously discussed, for three-dimensional flows, hexahedral or prismatic cells are 

desirable to provide non-skewed alignment with flow features. Ito et al. and Shih el al.
[144-

146]
 have already made some progress towards this goal by embedding prismatic elements 

into a hybrid volume mesh for supersonic bow shocks. However, bow shocks are relatively 

simple structures which are detached from the geometry surface. Representing complex 

features such as transonic shock waves which are attached to bodies offer a significant 

challenge. Wing tip vortices and steady trailing wakes also offer themselves to hex-

dominant block insertion. Due to current limitations of the available software (discussed in 

Chapter III), hex-dominant meshing is not available. Therefore for the purposes of this 

thesis, methods will be developed which allow for feature-aligned hex-dominant mesh 

blocks to be inserted into the hybrid volume mesh for a range of flow features and 

geometries. 
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CHAPTER III  

Governing Equations and Numerical Methods 

 

3.1 Introduction 

 Computational Fluid Dynamics (CFD) is fast becoming one of the most important 

aspects of design processes within a range of industrial contexts from aerospace to 

automotive to energy and process engineering. CFD applies mathematical models of fluid 

flow phenomena in order to provide a numerical approximation to the governing equations 

of fluid motion. More specifically, CFD aims to accurately predict fluid flow behaviour, 

heat transfer and in some cases, chemical reactions, for increasingly realistic systems or 

configurations.  

 

In the context of computational aerodynamics, the main goals in aircraft design 

typically include calculation of lift, drag and moment characteristics. Recent advancements 

in computational capabilities, numerical schemes and the mathematical models which 

describe the flow have allowed improved solutions to be obtained in a more efficient 

manner. However, a number of assumptions and simplifications persist in the models 

applied to solve the flow problems. This means that besides the most simple of flows, it can 

be difficult to achieve a high level of confidence in the final result. Despite finding 

increasing application in the aerodynamic design process, CFD is currently a tool which 

will, at best, only complement wind tunnel testing. It will be some time before CFD has 

matured to a stage where it will be able to replace physical experiments. 

 

 A typical CFD process usually starts with a physical description of the problem in 

physical space. A mesh is then generated, which is usually a division of the problem 

domain with a collection of non-overlapping elements. The governing fluid equations can 

be written in conservation and integral form, which allow both space and time to be 

discretised through application of the Finite Volume Method (FVM) across the mesh 

elements. After application of suitable boundary conditions, the resulting system of 

equations can be solved with numerical schemes to provide the approximate values of the 

flowfield variables. 
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The governing equations are the result of applying the fundamental laws of nature 

to a physical model.  The fluid medium is assumed to be compressible (changes in density 

are not negligible) and Newtonian (stress is proportional to the time rate of strain). Another 

assumption made is that the fluid is a continuum, that is, the flow quantities vary 

continuously from one point to another. This allows the physical properties of the medium 

to be described mathematically as functions of space and time. The numerical methods 

employed throughout this project in order to provide approximate solutions to these 

governing equations, forms the basis of the present chapter.  

 

3.2 The Unsteady Navier-Stokes Equations    

For an arbitrary control volume V fixed in space with a differential surface 

boundary dS contained in a surface boundary   with outer normal vector n, the governing 

equations, known as the unsteady Navier-Stokes equations, can be written in integral and 

conservation form for a three-dimensional flow as 
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where W is the vector of conserved quantities and given as  
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and F and G are the inviscid and viscous flux vectors respectively     
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In the equations above ρ is the fluid density; u, v and w are the Cartesian 

components of the velocity vector  ⃑  in the x, y and z directions respectively, and E is the 
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total energy per unit mass. Fx, Fy and Fz are the inviscid flux vector components in the 

three Cartesian directions, with Gx, Gy and Gz representing the viscous flux vector 

components in the three Cartesian directions. The inviscid and viscous flux components can 

be decomposed in more detail as 
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The inviscid flux F may be further decomposed into convection and pressure terms 

as follows 
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where 

 p   static pressure; 

       viscous stress tensor; 

       heat transfer flux vector; 

 E    total energy. 

 

In the above definitions, the subscripts i, j = x, y, z. 

The viscous stress components     are given by 
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where μ is dynamic viscosity, and is a function of temperature        . The dynamic 

viscosity can be calculated using Sutherland’s law which is based on kinetic theory of ideal 

gases: 

                (
 

  
)

 

     

   
                                            (3.5) 

where 

    is the reference viscosity, with a value for air of     = 1.7894 x 10
-5

 kg m
-1 

s
-1

; 

    is the reference temperature with a value of    = 288.15K; 

 S is Sutherland’s temperature with a value of S = 110.4K. 

 λ is the second coefficient of viscosity, given by the Stokes hypothesis: 

          
 

 
 .            (3.6) 

The heat flux term    may be given from the thermal conductivity relation  
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where κ is the thermal conductivity and can be expressed as a function of μ as 
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with Cp as the specific heat at constant pressure and Pr as the Prandtl number. The total 

energy E may be written as a function of the total enthalpy H and temperature T 
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In order to close equation 3.1, the equation of state for an ideal gas, which gives the density 

of air as a function of the pressure and temperature          , is required: 

    
 

  
                                     (3.10) 

where R is the gas constant with, for air, a value of R = 287.05 J Kg
-1 

K
-1

. 
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3.3 Preconditioning  

The performance of compressible codes which were originally implemented for 

transonic or supersonic problems will degrade as the Mach number of the flow field tends 

to zero. For these ‘density-based’ methods, the lower the freestream Mach number, the 

higher the potential for degradation of both solution accuracy and iterative convergence. It 

is necessary to allow flow solvers to deal with engineering problems that may involve low 

Mach number flows or locally compressible flows. Generally, compressible schemes 

without any form of modification will become impractical for Mach numbers lower than 

about 0.3. A typical example of such a configuration in aerodynamics is the subsonic flow 

over a multi-element aerofoil at high angle of attack. Whilst the Mach number of the 

oncoming flow is low, there exist regions in the vicinity of the aerofoil which exhibit 

significant compressibility effects.  

 

Steady and transient compressible flows can be solved using time-marching 

schemes. However, for low speed flows, there is a large difference between the acoustic 

wave speed and the waves convected at fluid speed. The dominance of the convection 

terms in the system of equations renders the system numerically stiff leading to slow 

convergence
[155]

. For explicit methods, the time-step must be extremely small to maintain 

the numerical stability of the system. In the case of implicit methods, the stiffness arises 

due to the wide variation in the order of magnitude of the system eigenvalues, leading to an 

ill-conditioned system, thus leading to a time consuming iterative process.  

 

Preconditioning methods have been developed to alleviate the aforementioned 

problems associated with the numerical stiffness that appear in low Mach number flows. By 

pre-multiplying the time derivative term in equation 3.1 by a preconditioning matrix, the 

eigenvalues become rescaled to form a well-conditioned system. This allows the 

convergence to be accelerated towards a steady-state solution. However, this modification 

to the governing equation leads to it no longer being valid for transient problems. An 

implicit time-stepping method (dual-time formulation) allows the solution of time-

dependent flows, where a fictitious pseudo-time τ is added, so that the governing equation 

takes the following form 
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where Q is the vector of primitive variables and Γ represents the preconditioning matrix. 

The preconditioning is applied only to the pseudo-time term. During a physical time step, 

the pseudo time is advanced such that as τ → ∞, equation 3.1 is recovered, and the pseudo-

time term vanishes. For steady-state problems, the physical time term vanishes, but the 

pseudo-time will remain to allow the solution to advance in the preconditioned artificial 

time τ. 

 

3.4 Turbulence Modelling 

The governing flow equations were presented in detail in section 3.2 which express 

the fundamental concepts of conservation of mass, momentum and energy. CFD is a means 

to simulate fluid flows by solving these equations after appropriate application of boundary 

conditions using numerical techniques.  Solving the Navier-Stokes equations in their full 

form requires direct numerical simulation (DNS). Using such a method, no turbulence 

model will be employed and so resolution of all the spatial and temporal scales of 

turbulence is necessary. This soon becomes computationally unfeasible due to the excessive 

memory and solution time requirements, even for relatively simple flows. The high cost 

associated with the DNS method has led to methods such as Reynolds averaging to reduce 

the scales of motion through averaging of the momentum equation. The resulting set of 

equations is referred to as the Reynolds-Averaged Navier-Stokes (RANS) equations, which 

allow for use in practical engineering applications. 

 

The averaging process results in additional terms known as Reynolds stresses, 

which represent the transport of momentum caused by turbulent fluctuations. The Reynolds 

stresses cannot be determined from first principles which is a consequence of turbulence 

being a property of the flow itself, rather than the fluid. The additional quantities have 

increased the number of unknowns in the system of equations. Since there are greater 

unknowns than equations, this leads to the ‘closure problem’. A range of turbulence models 

have therefore been developed to approximate the Reynolds stresses through the 

introduction of extra equations to close the system.  
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3.4.1 Reynolds-Averaged Navier-Stokes (RANS) Simulation  

Reynolds averaging of the Navier-Stokes equations was introduced by Osborne 

Reynolds, which provides time-averaged equations describing an incompressible fluid. The 

averaging occurs by Reynolds decomposition where an instantaneous flow variable is 

decomposed into its time-averaged (indicated by a bar over the variable) and fluctuating 

quantities (indicated by a single prime), and essentially separates the turbulent fluctuations 

from the mean flow.  

 

A different form of averaging is used for the compressible Navier-Stokes equations. 

Favre-averaging is applied in this case, which is a density-weighted averaging procedure. 

The instantaneous flow variable        is decomposed into a Favre-averaged term 

(indicated by a tilde symbol) and a Favre-averaged fluctuating term (indicated by a double 

prime (  )) as follows 

                   ̃                          (3.12) 

The Favre-averaged part is given by 

 ̃       
 

 ̅ 
∫               

   

 

 

where  ̅ is the Reynolds averaged density. The instantaneous primitive variables of the 

fluid flow may be decomposed as 

     ̃      
   

    ̅     

    ̅     

    ̅      

and inserted into equation 3.1 without changing the form of the averaged variables. As a 

result, two extra terms are generated which leads to the closure problem described 

previously. The first term appears in the momentum equation and is referred to as the 

Reynolds stress tensor 

          
    

  ̅̅ ̅̅ ̅̅ ̅̅ ̅          (3.13) 

and the second term is the turbulent heat flux vector which appears in the energy equation 

   
       

     ̅̅ ̅̅ ̅̅ ̅̅ ̅             (3.14) 

where    
 is the turbulent heat flux. The equation of state after averaging may be written as  



44 

 ̅    ̅̅ ̅̅ ̅̅ ̅̅     ̅      ( ̃     )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅          (3.15) 

so 

 ̅    ̅  ̃ 

In order to close this system of equations, a range of turbulence models have been 

developed so that the Reynolds stress, turbulent heat flux and mean flow variables can be 

resolved. Almost all turbulence models are based upon the Boussinesq eddy viscosity 

hypothesis, which allows the Reynolds stress tensor to be formulated as  
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                        (3.16) 

where     is the turbulent eddy viscosity and κ is the turbulent kinetic energy. To 

approximate the turbulent heat flux tensor    
, Reynolds momentum heat transfer analogy 

is applied which yields 

   
     

  

   

  ̃

   
          (3.17) 

where     is the turbulent Prandtl number. 

 

3.4.2 Spalart-Allmaras Turbulence Model 

In order to close the system of RANS equations, Spalart-Allmaras (S-A)
[156]

 

proposed a one-equation turbulence model. It is one of the most successful and widely used 

eddy viscosity based model for external aerodynamic flow simulation. The model has good 

numerical stability and robustness compared with other turbulent models. It solves a single 

partial derivative transport equation to obtain the turbulent eddy viscosity,    . The most 

popular form of the S-A model includes a wall destruction term which will reduce the eddy 

viscosity in both the log layer and laminar sub-layer. The equation is described as  
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    (3.18) 

 

where d is the wall distance,   is the molecular kinematic viscosity and  ̃ is the modified 

kinematic eddy viscosity. The turbulent eddy viscosity    is related to the kinematic eddy 

viscosity    by 
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     ̅                   ̃              
  

      
              

 ̃

 
                         (3.19) 

 

The definitions of the production and destruction terms depend on the version of the 

S-A model being used. During this project, the original S-A model was employed for all 

turbulent flows considered. The remaining constants and relationships for the model are as 

follows 

   ̃      
 ̃

                          
 

       
                    (3.20) 

where S refers to the vorticity which may be represented in terms of the mean rotation rate 

tensor     

            | |   √                  (3.21) 

where  
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)           (3.22) 

 The wall-blockage function    needed for formulation of the destruction term is 

    [
      

 

       
 ]

  ⁄

                     (3.23) 

with the limiter function  : 

          
             (3.24) 

and  

         
 ̃

 ̃    
           (3.25) 

where d is the near wall distance. The following empirical coefficients are used in the 

above equations: 
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     0.1355 

     0.622 

                 
   

    
     

 
                        (3.26) 
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For the S-A model, the turbulent kinetic energy  
 

 
 ̅     in the Boussinesq eddy 

viscosity hypothesis (equation 3.16) is ignored. Computation of the turbulent kinetic energy 

is performed in other turbulence models, such as the two-equation k-ω model. However, for 

the purposes of the present section, the closure of the RANS equations can be considered 

complete.  

 

3.5 Discretisation and Numerical Schemes 

The flow solver used for all the simulations in the present work is TAU developed 

by DLR
[157]

. It implements a cell-vertex Finite Volume Method (FVM) to solve the RANS 

equations. A range of methods are available for computation of the fluxes depending on 

whether an upwind or central scheme has been selected. For an upwind scheme, the 

possible options for flux computations include Van Leer FVM, a number of variations of 

Advection Upstream Splitting Methods (AUSM) and also the Roe method. The central 

scheme is available with both scalar and matrix dissipation models.  

 

For time accurate computations global time-stepping and dual time-stepping 

schemes are implemented. The global time-stepping scheme is based on the explicit multi-

step Runge-Kutta method. Alternatively, a dual time formulation with first, second and 

third order backward difference formula can be used, where a higher order implies an 

increased overhead.  

 

Particularly important for three-dimensional problems, TAU is linked with the 

Massage Passing Interface (MPI) library which allows multiple processors to be used to 

solve the flow in parallel after partition of the mesh into a suitable number of domains.  

 

3.5.1 Spatial Discretisation 

The first step in the FVM is to divide the computational domain into a small number 

of elements which are often referred to as control volumes. The governing flow equations 

are discretised over each control volume using the FVM which allows them to be cast into 

algebraic form. The control volumes may be of arbitrary shape, but only set types of 

intersections between elements are allowed, with no overlapping. 
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Figure 3.1: Numerical flux calculation    for a hexahedral cell face f   

 

Equation 3.11 is an example of a conservation law, and these types of equations 

allow relations to be written which relate the volume integral to the surface fluxes of the 

control volume using the divergence theorem. Thus the governing equations can be 

integrated over each control volume and the values of the variables can be obtained. 

Equation 3.11 can be discretised using FVM to obtain  

 

     

  
     

  

  
   ∑ [      ]     

𝑛 
                        (3.27) 

 

where the summation is a loop over the number of faces nf which belong to the cell. Figure 

3.1 shows the flux calculation    for a single face f belonging to a hexahedral element 

where n dS represents the area normal vector. 

 

3.5.2 The Primary Grid 

The primary grid data (i.e. the mesh), is generated by the software SOLAR
[65]

, a 

program developed jointly by Aircraft Research Association (ARA), BAE Systems and 

Airbus. This industrial level meshing tool is designed and written using Object Oriented 

Programming (OOP) concepts with the C++ language.  

 

For two-dimensional problems, an advancing front technique is employed to 

generate unstructured quad-dominant meshes. These meshes are primarily made up of 

unstructured quadrilateral elements, but a small proportion may be triangles. In the case of 

   [      ]      
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a viscous simulation, an advancing layer approach is applied to grow highly anisotropic 

semi-structured quadrilateral cells from the discretisation of the bounding curves 

representing the geometry. The generated surface mesh is extruded by one cell in the span-

wise direction to create a quasi-two-dimensional flow domain, which is necessary for the 

TAU pre-processing and solver codes. 

 

For three-dimensional problems, a quad-dominant surface mesh is generated on the 

geometry surfaces. From this surface mesh, the boundary layer mesh is grown by 

advancing layers, yielding a nearfield mesh made up of hexahedral and prismatic elements. 

A buffer region consisting of pyramids is then generated around the prismatic nearfield 

mesh. This buffer region is necessary to allow a conformal interface between the prismatic 

nearfield and the tetrahedral farfield, which is created through the use of a Delaunay 

tetrahedra generation algorithm. The result is a fully conformal hybrid mesh which is 

suitable for the TAU flow solver.  

 

The primary grid is used by the TAU pre-processor in order to generate all the 

necessary grid data for the flow solver, for example information about control volumes and 

their connectivity. Some of the pre-processing routines are too expensive to be carried out 

during an iterative calculation of the flowfield, which means the pre-processing module is 

run prior to the flow solver is started.  Some of the routines performed by the pre-processor 

include checking that the surface and volume elements are orientated correctly, the 

generation of data structures to allow efficient access to the components of each element 

(i.e. points, edges and faces), and partitioning of the primary grid into domains for multi-

processor solver runs. 

 

The primary grid consists of unstructured polyhedral elements which can possess 

triangular and quadrilateral surfaces, which do not necessarily need to be planar. The grid 

must be conformal, that is, only certain element intersection cases are allowed in order to 

prevent hanging nodes or faces. The possible elements which are permitted to appear in the 

mesh are hexahedra, prisms, pyramids and tetrahedra. This flexibility is made possible by 

the fact that TAU uses an edge-based data structure, meaning that it can be applied on 

meshes of any type. Meshes made up of a mixture of different types of elements are often 
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referred to as hybrid grids. The philosophy behind this choice of types of elements can be 

summarised as follows: 

 

 Hexahedra allow all three space directions to be resolved accurately to different 

length scales. 

 Prismatic elements allow two directions to be resolved isotropically, with the third 

direction resolving in a different length scale. 

 Tetrahedra allow only isotropic resolution, however they enable a wide range of 

adaptation schemes to be applied in order to capture anisotropic flow features. 

 Pyramids allow a conformal bridge between the different elements. 

 

 

Figure 3.2: Types of elements permitted in the primary grid: Hexahedra, prisms, pyramids 

and tetrahedra 

 

Related to the third point above, tetrahedra find frequent use in mesh generation due 

to the fact that the algorithms which produce such elements are flexible and easily 

automated. However, standard tetrahedral element generators will provide only isotropic 

elements, which are numerically diffusive in flow feature regions since none of the cell 

interfaces will be aligned with the flow feature, and this degrades the potential for high 

resolution when applying the approximate Riemann solvers. To remedy this, a wide range 

of anisotropic generation and adaptation algorithms for tetrahedral elements have been 

developed to allow for the resolution of steep variable gradients. However such adaptation 

schemes usually lead to highly skewed elements in the flow feature regions, which can in 

some cases affect the flow solver behaviour and performance. 
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The main benefit of using hybrid meshes is that they allow a mixture of elements to 

be present in the mesh. It is this property of a hybrid mesh that will be exploited in the 

development of feature-aligned meshes during the present project.  

 

3.5.3 The Secondary Grid 

The secondary grid is constructed from the primary grid and contains all the 

necessary data required for the flow solver, such as number of points, vertex information, 

control volume sizes, edge or face connectivity, boundary face information and so on. For 

the cell-vertex FVM, the flow variables are associated with the vertices of the elements of 

the primary grid. Therefore, the primary and secondary grids share the same points in 

physical space, but the secondary grid consists of control volumes surrounding each grid 

point. 

 

3.5.4 Flux Discretisation 

In TAU, the computation of both inviscid and viscous fluxes can be carried out with 

an upwind or central type scheme. The scheme and the various associated solution 

parameters were chosen depended on the performance of the solver for a given problem. 

For the majority of cases presented in this thesis, the inviscid flux solver chosen is the 

AUSMDV
[159]

 which is recognised as an improved version of the Advection Upstream 

Splitting Method (AUSM) as proposed by Liou and Steffen
[165]

. The development of the 

AUSMDV came from the need to remove numerical dissipation of Van-Leer type flux 

vector splitting methods at discontinuities. It also eliminates the slight numerical overshoot 

which can appear immediately behind shock waves which are observed when using the 

original AUSM. For viscous flows, the AUSM has been slightly modified
[158]

 to improve 

the capability of the method to give accurate viscous flow prediction. The modifications 

guarantee accurate viscous shear layer resolution without the generation of spurious 

oscillations. 

 

3.5.5 Higher-Order Reconstruction 

If the solution is assumed to be piecewise constant across the control volume, only 

first order accuracy can be achieved for the inviscid and viscous flux calculations. To 

obtain second order accuracy, the solution can be assumed to vary in a piecewise linear 

fashion across the control volumes. A Taylor series expansion, based on the work by 



51 

Barth
[160]

 is applied for all the primitive variables in order to obtain the higher order 

reconstruction. The Taylor expansion is written from some local point to each of the 

neighbouring points, rather than metric terms such as the face normals or volumes of local 

control volumes as would be used in the Green-Gauss method.  

 

Consider an arbitrary function   which may be expressed by a Taylor expansion for 

a local point including the neighbouring points (in this case written for point P0 to P1) 

 

               
   

  
    

   

  
    

   

  
                            (3.28) 

 

A system of linear equations can then be written by considering the Taylor series 

expansion for each neighbouring point Pi of the local source point P0. For higher order 

reconstruction of the primitive variables, the values are extrapolated to the faces of the 

control volume from the points where the variables are stored leading to 

 

                               (3.29) 

 

where    and    are the values on the face and points respectively,    is the gradient and 

   is the displacement vector between a point of the grid and the face of the control 

volume. A limiter, ψ, as proposed by Venkatakrishnan
[161]

, reduces the scheme down to 

first order at discontinuities to avoid oscillations of the gradient. The only remaining 

unknowns are the gradients    which is the subject of the following section.  
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P0 

 

 

Figure 3.3: Surrounding points used for the least squares algorithm 

 

3.5.6 Evaluation of the Gradient 

For reconstruction of the gradient in both inviscid and viscous flux calculations, a 

least-squares method composing of a QR decomposition and Gram-Schmidt 

orthogonalisation is used, as first proposed by Anderson and Bonhaus
[162]

. From figure 3.3 

a system of linear equations for all the neighbouring points n can be constructed as follows 
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which can be written more concisely as  

 

    [      ]                   (3.31) 

Or 
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with  

   [

   
   

 
 

 
 

     

  
  
 
 

 
 𝑛

] 

 

The introduction of a weighting factor, which is related to the geometry, allows 

computation at very high cell aspect ratios. The weighting factor is defined as  

 

          
 

√   
      

      
 
                                       (3.33) 

 

After computation of the weights for each point in equation 3.33, the elements of 

the matrix A and vector b are multiplied by these values, as shown in equation 3.30 (the 

weighting matrix has been dropped from the subsequent equations). The solution of the 

matrix A requires a QR decomposition with a Gram-Schmidt orthogonalisation. Q is an 

orthogonal matrix       𝑛    , and R is an upper triangular matrix            . This 

solution process can be written as 

 

                          

          

                                            

           

 

with the matrix entities defined as 
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]                 (3.34) 

 

The entries of the matrix R can be computed with 
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With the methodology described above, each component of the gradient can be 

computed. The reconstruction of the gradients with a least-square approach has shown to 

provide more accurate gradient capture and better robustness compared with the Green-

Gauss theorem. Furthermore, it allows reconstruction of linear functions exactly on mixed 

grids.  

  

3.5.7 Temporal Discretisation 

For steady state flow problems, one of the main purposes of time stepping schemes 

is to accelerate the convergence to steady state. Since the flow problems that will be 

considered in this thesis will be steady this implies that the physical time derivative term in 

equation 3.11 vanishes as a time-independent solution exists. For the present work, 

equation 3.11 is marched towards steady state in the fictitious pseudo-time τ with a dual-

time stepping scheme. A second order backward difference formula is employed to 

discretize the pseudo-time derivative. Both explicit and implicit schemes can be applied in 

order to solve the backward difference formula. TAU implements both explicit multi-stage 

Runge-Kutta scheme and an implicit Lower-Upper Symmetric-Gauss-Seidel (LUSGS) 

method
[164]

. For the test cases in this thesis, the LUSGS method is chosen to provide the 

iterative solution. 

 

3.6 Flow Feature Extraction 

In order to extract flow features it is necessary to define criteria which allow 

identification of the regions in the flow domain where the flow features are present. The 

feature extraction is performed within the meshing software SOLAR after reading in the 

mesh and corresponding solution. Filters have been developed as part of this project within 

SOLAR which take the mesh vertices and flow information as input, performs some 

defined operation, and outputs the processed data set. Typically the processed data set will 

be smaller than the original data set, and can be piped into another filter for further 

processing. Sensible application of these filters can allow a gradual reduction of the total 
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number of data points such that a clean extraction of the flow feature(s) can be made. The 

extracted points are then used to create an approximate geometric representation of the flow 

feature topology. The flow features of interest in this work are shock waves, wakes and 

wing tip vortices. 

 

3.6.1 Shock Waves 

There are two approaches which have been followed in the present work for shock 

wave extraction depending on the flow regime.  

 

3.6.1.1 Transonic Flows 

For transonic flows in two- or three-dimensions, there are pockets of locally 

supersonic flow above and / or below the geometry surface. These regions of supersonic 

flow are terminated by a shock wave which is in close proximity to the surface. Based upon 

this knowledge of the physics, the approach to extract the shock wave starts with 

application of a filter which extracts these supersonic regions. In this simple extraction, the 

entire data set is processed with points possessing a Mach number greater than 1.0 output in 

the resulting data set. This reduces the data set down to a smaller region, reducing the 

memory overhead and speeding up the filtering process, but more importantly also reduces 

the risk of spurious points appearing in the data set allowing a clean extraction to be made. 

 

To actually extract the shock waves from the supersonic regions, the method 

proposed by Lovely
[166]

 has been employed to identify their location and extent. Shock 

waves in a solution can be difficult to determine because they do not necessarily exist 

where the Mach number is unity. From the consideration of the geometry of a shock wave, 

it can be shown that the direction of the shock surface is aligned with the pressure gradient 

vector. The normal Mach number is defined as the Mach number in the direction of this 

vector. Since the normal Mach number has a value of at least one just before the shock, it 

can be tested for and used to extract regions where the shock front exists.  The normal 

Mach number Mn is defined as 

 

       𝑀𝑛  
 

 
 

  

|  |
            (3.36) 
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where points which satisfy Mn = 1.0 exist at the shock front. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Geometry of a stationary shock wave and computation of the normal Mach 

number 

 

3.6.1.2 Supersonic Flows 

A different approach is required for supersonic flows since the previously described 

method is not suitable when the freestream Mach number is supersonic. A different 

sequence of filters is applied in order to extract the supersonic shock waves.  

 

Shock waves lead to regions of high compression of the fluid. Therefore, if these 

compression regions can be identified and extracted, this should lead to an indication of 

shock waves present in the solution. To this end, an extraction technique described by 

Marcum and Gaither
[101]

 is employed to find these compression regions by considering the 

dot product of the normalised velocity vector with the density gradient 

 

   (
 

| |
)              (3.37) 

 

where the scalar value f is computed for every vertex in the active data set.  

 

Note that the extracted data set will also include any regions of compression that 

may be present at the leading edge of the geometry. Therefore, to extract only the shock 
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waves, the normal Mach number filter is applied on the reduced data set to obtain the points 

corresponding to the shock fronts only. 

  

3.6.2 Wakes and Wing Tip Vortices 

Boundary layers eventually separate from the body and trail downstream to form a 

wake. A loss of momentum appears in the wake region with a reduction in the velocity. The 

velocity profile changes with increasing distance downstream. The size and intensity of the 

trailing wake provide an indication of the profile drag.  

 

Wing tip vortices appear as a three-dimensional effect of fluid travelling around 

wing tips. The physical mechanism for generating lift is due to the contrasting pressures on 

the upper and lower surfaces of the wing. The imbalance of the pressure distribution the 

fluid is not only responsible for the lift, but has another effect on the wing: the fluid has the 

tendency to curl around the tip as it is driven by the high pressure region towards the low 

pressure region on the upper wing surface. This causes the fluid to enter a circulatory 

motion and thus establish a vortex which trails downstream. The formation of these vortices 

creates the induced drag component of total drag. 

 

3.6.2.1 Steady Wakes 

For viscous computations it is necessary to extract trailing shear layers. There are 

two possible approaches which have been implemented and used for wake extraction in the 

current work which are applicable in both two- and three-dimensions. In two-dimensions, 

only steady wakes are considered at high Reynolds number which does not include 

unsteady wake physics such as vortex shedding. For three-dimensional flows, the physics 

of a finite wing mean that the trailing wake extraction will usually include the wing tip 

vortex embedded within the extracted data set. Other extraction techniques are required to 

extract the vortex core alone. 

 

This first wake extraction approach simply considers the eddy viscosity variable 

calculated directly by the TAU flow solver. Any mesh points (beyond the trailing edge of 

the geometry) with a non-zero eddy viscosity actually give an approximate indication of the 

wake extent and orientation. Note that due to numerical dissipation on an original non-

aligned unstructured mesh, the wake eventually disappears within a very short distance, 
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usually several chord lengths. However this approach usually gives enough information 

about the orientation of the wake for use in the feature-aligned meshing process.  

 

Another method which can be used to extract wakes is to compute the magnitude of 

some flow property in all directions normal to the velocity vector 

 

         |    ((
 

| |
)    )

 

| |
|                      (3.38) 

 

where the density gradient is again chosen as the suitable flow property. A lower threshold 

may be computed using a method described by Marcum and Gaither
[101]

.  

 

3.6.2.2 Wing Tip Vortices  

For the present work, the λ2 criterion of Jeong and Hussain
[167]

 is used. The λ2 

criterion has been found to be successful for clean extraction of the vortex even when the 

farfield mesh is particularly coarse and not aligned with the vortex core. Application of this 

technique will extract only the vortex and not the shear layers emanating from the trailing 

edge of the wing. 

 

Pressure tends to have a local minimum on an axis of swirling motion as the 

centrifugal force is balanced by the pressure force. Jeong and Hussain argue that simply 

taking the local pressure minimum is not sufficient for a general detection criterion, since 

well-defined pressure minima can exist in unsteady irrotational motion, which may not 

correspond to a vortex. It was found that this inconsistency arose from two main effects. 

The first is unsteady straining, which can create a pressure minimum without involving any 

form of swirling motion. The second is due to viscous effects, which can serve to eliminate 

pressure minima in vortical flows. This alternative definition therefore discards these 

effects in order to allow a better indication of the vortex presence. The specific derivation 

details can be found in the paper by Jeong and Hussain
[167]

, but a brief description is 

included here.  

 

In order to locate the pressure minimum, the velocity gradient tensor (Jacobian) is 

split into its symmetric part, S, the mean strain rate tensor, and its anti-symmetric part, Ω, 
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the vorticity tensor. Since unsteady irrotational straining and viscous effects are ignored, 

only S
2
 + Ω

2 
is considered to determine the local pressure minima due to vortical motion. A 

vortex core is then defined as a connected region with two negative eigenvalues of S
2
 + Ω

2
. 

Since this expression is symmetric, three real eigenvalues       and    can be computed. If 

          , the requirement that    < 0 will lead to the identification of the pressure 

minimum in a plane perpendicular to the vortex axis, and therefore the vortex core. 

 

3.7 Mesh Adaptation Schemes 

3.7.1 Construction of Anisotropic Metric for Adaptation 

It remains to discuss the construction of the anisotropic metric which is used to 

drive the adaptation schemes employed in the current work.  The anisotropic metric is 

based on finite element interpolation theory. The derivations of interpolation error estimates 

from basic principles are widely available in the literature where more in-depth discussions 

are available
[80, 92]

. In summary, it can be shown from one-dimensional analysis that the 

interpolation error across linear finite volume cells is proportional to the product of the 

characteristic length of the mesh cell and the second derivative. For a given problem, a 

mesh may be considered optimised (not necessarily ‘optimal’) if it allows the error to be 

equally distributed across all the edges. This implies that the product should be constant, 

which will ensure that the mesh satisfies the equi-distribution principle
[80]

. 

 

These ideas are readily extended to two- and three-dimensions. The second 

derivative term is now replaced by a symmetric Hessian matrix H(x). The error estimate 

represents the length of an edge in a Riemannian metric which can be deduced from the 

Hessian of some flow variable q. The tensor is made up of the following entries 

 

            
   ̂

      
            (3.39) 

 

where  ̂ is an approximation of the flow variable q.  

 

The Hessian matrix can be diagonalised using the matrix of eigenvectors R(x) and 

the diagonal matrix of eigenvalues Λ(x) 
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                                (3.40) 

 

The Hessian is also required to be symmetric and positive-definite by the length of a 

curve in the defined Riemannian metric. This is achieved by taking the absolute values of 

the eigenvalues as follows 

 

             |      |                   (3.41) 

 

where M(x) is the symmetric positive-definite matrix that defines the Riemannian metric, 

since the matrix is a function of the position vector x, with a transformation    √|    |. 

The ultimate goal is to construct the mesh in this space such that all the elements are 

equilateral. A unit circle (sphere in three-dimensions) in the metric M would be an ellipse 

(ellipsoid), rotated through an angle α, with its principal axes possessing lengths inversely 

proportional to the square roots of the eigenvalues. In three-dimensions the transformation 

will yield three separate eigenvalues. Figure 3.5 shows the stretching applied due to the 

transformation S in two dimensions, where only two eigenvalues will be present. 

 

 

Figure 3.5: Mapping of a unit circle to an ellipsoid in the metric space where the two 

spacings act parallel and perpendicular to the axis rotated by an angle α 
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The modified Hessian M(x) is computed and stored on a background mesh which 

serves as the initial mesh for each adaptation loop. In the present work, the Hessian 

matrices are computed and stored for each node of the current mesh. The error estimates 

could also be defined on a much coarser background mesh, with the values for each mesh 

vertex of the current mesh interpolated from this background mesh. A decision was made to 

simply store the Hessian values at each mesh vertex to remove the need for the 

interpolation calculation. However, this of course leads to higher memory requirements 

with the requirement of the Hessian components being stored at every mesh vertex. 

 

From elemental differential geometry, the length of a parametric curve d in the 

Riemannian space is given by 

 

  ∫ √                 
 

 
               (3.42) 

 

where s’(t) is the derivative of the line s about t, with t   [0, 1]. For an edge of an element 

in the mesh, this length becomes 

 

          ∫ √       
                 

 

 
        (3.43) 

 

with the value d representative of the error along the edge in the Riemannian metric, and 

calculated for each edge of an element in the mesh. The error estimate will have been equi-

distributed when the error estimate is the same across all edges in the mesh, i.e. the length 

of the mesh edges in the transformed space are equal.  

 

In order to compute d the method described by Castro-Diaz et al.
[95]

 is used. It is 

shown that the value can be calculated from 

   
 

 
 
  
         

 

     
          (3.44) 

where 

         √                                     (3.45) 
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For the present method, the entries of the Hessian matrix which are used to compute 

the Riemannian metric are computed by twice applying a least squares method to compute 

the gradient of the flow variable  ̂. Equation 3.43 can then be numerically evaluated for 

each edge in the mesh. 

 

3.7.2 Nodal Movement 

Using the error estimate described in section 3.7.1 as a guide, the nodal movement 

strategy aims to redistribute the nodes to increase the mesh density in the regions of highest 

error. This should provide a more equal distribution of error across the edges in the adapted 

mesh, and thus provide improvements to the accuracy of the numerical solution. The 

anisotropic metric that is defined through the error estimate allows the mesh cells to 

become stretched in the physical space (as the mesh sizing approaches unity in the 

transformed metric), to give high aspect ratio cells in the regions of the solution where the 

gradient of the flow variables is high. 

 

The nodal movement algorithm makes use of a spring based analogy (see figure 

3.6). The mesh is considered as a network of springs which possess a stiffness constant that 

is proportional to the edge-based error estimate.  Interpreting the situation as an energy 

minimisation problem, the ideal position of the vertices may be calculated. This analogy 

also readily extends to three-dimensions. 

 

Figure 3.6: Spring analogy for a node in the mesh 

 

kij 

Node i 

Node j 
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The stiffness constant can be calculated by dividing equation 3.43 by the 

corresponding edge length in the Euclidean metric. This is computed for each edge 

connected to the current node i 

 

         √               ⁄           (3.46) 

 

By considering the neighbouring vertices j of the current vertex i, the position of 

node i is updated according to 

 

  
       

     [
   (  

    
 )    

 

     
 ]                     (3.47) 

 

where ω is the relaxation factor. More detailed implementation details can be given in the 

references
[85, 92, 93]

 where these methods were developed. The nodal movement adaptation is 

applied for the two-dimensional quadrilateral and triangular meshes considered in the 

thesis. A three-dimensional implementation is also investigated and applied within the hex-

dominant mesh blocks to improve the mesh alignment with the flow physics. 

 

3.7.3 Adaptation in TAU 

The TAU flow solver incorporates an adaptation module which allows modification 

of any hybrid or tetrahedral mesh (the process will not work for two-dimensional grids). A 

brief description of the adaptation process in TAU is described in the present section. 

With the aid of refinement sensor functions, the code determines which edges of the 

mesh are to be bisected, giving consideration to the desired dimensions of the resulting 

adapted mesh. For all edges the value of  

             ‖  ‖ 
                (3.48) 

is calculated, where Ie is an indicator value for the current edge e with             , α 

is an edge length scaling factor, which is set to 1, and  

          (   
 

   

        
)                            (3.49) 
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where n is the number of selected solution values for the sensor function, and    
 is the user 

defined scaling value for variable φ.  The maximum of all the user defined scaling values is 

determined by 

                                .                                (3.50) 

There are a number of different sensor functions available within the adaptation 

module; the sensor chosen for the present work is based on differences of the gradients of 

flow variables 

          |    ( (   ))      (  (   ))|          (3.51) 

This refinement scheme is applicable everywhere in the mesh, including the 

prismatic boundary layer. The schemes are used in conjunction with a separate anisotropic 

Hessian-based nodal movement and face and edge swapping techniques
[168-172]

, which are 

applied to the tetrahedral elements only. 
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CHAPTER IV  

Using the Medial Axis to Represent Complex Flow Features for 

Feature-Aligned Unstructured Quad-Dominant Surface Mesh 

Generation 

4.1 Introduction 

Unstructured meshes generally perform quite poorly in resolving highly directional 

flow physics without some form of adaptation, due to the lack of alignment of the cells with 

any flow features present. As was identified in the literature review, the majority of mesh 

generation and adaptation techniques are tailored towards triangular and tetrahedral 

meshes, mainly due to their inherent flexibility of such elements. Development of adaptive 

methods for unstructured quadrilateral meshes (the default type of surface mesh generated 

by the meshing software SOLAR) have not received the same level of attention. 

 

As the work is in a similar vain to the structured-block insertion method of Qin and 

Liu
[57]

, it became apparent that a method was required to force alignment of the 

quadrilateral elements with the flow features. This could not be achieved by simply 

applying a nodal movement technique, which is typically carried out for structured 

quadrilateral meshes. The unstructured nature of the quadrilateral cells and the requirement 

to maintain element topology places severe restrictions on the possible locations nodes can 

be moved to. The arbitrarily positioned quadrilaterals in the initial mesh are therefore 

problematic to align in an anisotropic fashion whilst maintaining element quality. 

Fortunately prior to this thesis, some fairly basic functionality existed within SOLAR to 

allow for curves to be embedded into the domain as a means to influence the surface mesh 

generation. In particular, it forced the local quadrilaterals to be aligned with the embedded 

curve. However, the technique was fairly limited in ability and thus offered itself for 

extension. A more sophisticated means to generate the curves was also required. 

 

SOLAR allows arbitrary curves (referred to as ‘virtual geometry’) to be connected 

to any surface of the CAD model. The functionality was originally designed to allow curves 

to be connected to trailing edges of aerofoils so that during the advancing layer process, the 
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layers would be grown not only from the geometry, but also from the connected wake 

curve. This is ideal for cases where trailing wakes are required to be resolved, which are 

usually captured very poorly on standard unstructured quad-dominant meshes. The curve 

would be connected to the trailing edge and defined towards the farfield boundary. 

Furthermore, the curve could be easily orientated with the true direction of the wake, 

determined from the numerical solution. 

 

Whilst this is acceptable for features such as wakes, a different approach is required 

for flow features such as shock waves. In this case, it is not necessary or desirable to have a 

refined mesh of the same order as the boundary layer or wake mesh. Therefore, 

modifications were made as part of the current project to allow the curves representing 

shock waves to be treated differently, so that the advancing layers were not grown from 

these curves.  

 

In processing the input geometry prior to mesh generation, SOLAR recognises 

closed boundary loops made up by the geometry curves. This functionality was altered such 

that lines in isolation can also be identified. A further step was required to prevent the 

advancing layer mesh to be grown from the isolated curve. A list of curves is defined which 

specifies the curves from which the advancing layer mesh will be grown from. Any isolated 

curves are appended to an ignored zones list and will be ignored by the layer generator. 

Whilst the curves are now ignored, their presence is still acknowledged and respected by 

the advancing front algorithm. This results in the unstructured quad-dominant mesh being 

forced to be locally aligned with the curve(s).  

 

Once the dominant features have been extracted from the flow solution, they may be 

represented by simple virtual geometries which are then appended to the standard physical 

geometry which describes the model. These geometries are virtual in the sense that whilst 

they are present in the domain for the purpose of influencing the mesh generation, they will 

not appear as a physical boundary in the final mesh. 

 

However, there are a number of issues with adopting an approach involving 

geometric representation of the flow features. Even for two-dimensional problems, flow 

features such as shock waves can possess extremely complex structures which means 
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attempting to generate a geometric representation of the feature can pose a serious 

challenge.  This means that geometric representation will either not be possible, or at best 

require some form of user-interaction. Such issues need to be addressed if geometric 

representation techniques will ever be considered as viable and attractive alternatives to 

other adaptation techniques already established which are usually fully automatic.  

 

It quickly became apparent in the early stages of the present project that simply 

applying curve fitting techniques directly to extracted point cloud data was sufficient for 

simple flow features, but if complexities appeared, for example the bifurcation of a shock 

wave, such an approach was not appropriate. This provided motivation for a new and more 

general approach to the problem. The idea was to make use of the medial axis which has 

gained popularity in other contexts
[10-13, 173-177]

 due to its ability to provide useful 

information on shape and topology. 

 

The main subject of the present chapter is therefore to describe the process which 

has been developed during this project to provide a means to represent complex two-

dimensional flow features as geometries. After extraction of the flow feature as a set of 

points in space, the ‘concave hull’ is found which provides a hollow representation of the 

point set. It is necessary to point out that the concave hull of a group of points is distinctly 

different to the convex hull. The convex hull refers to the boundary of a minimal convex set 

which contains a finite set of points. In other words, the convex hull envelops the entire 

point set, and is unique. The convex boundary does not always fully reflect the topology or 

shape of the point cloud, as shown in figure 4.1. From figure 4.1(b) it can be observed that 

the convex hull edges connect only the exterior points, and cannot take into account the 

‘void’ region in the centre of the data set. In contrast, the concave hull shown in figure 

4.1(c) provides a better approximation of the shape of the point cloud, identifying both 

interior and exterior points. However, the concave hull is not unique, hence a set of possible 

concave hulls will exist for a given point cloud. More details on the construction of concave 

hulls and the α-shape are given later in the chapter. 

 

The concave hull can be used to construct a constrained Delaunay triangulation 

which allows an approximation of the medial axis to be made, which essentially provides a 

description of the shape and topology of the extracted point cloud and hence the flow 
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feature. The word ‘approximate’ is used since the construction of the initial medial axis 

from an unstructured point cloud will be noisy, and also different concave hulls will give 

slightly different constrained Delaunay triangulations and resulting medial axes.  Following 

extraction of the medial axis, it must then be smoothed in order to be of use in the mesh 

generation.  

 

The present chapter will describe each part of the process in detail starting with 

concave hull construction, followed by building, cleaning and decomposing the medial 

axis, recombining medial branches and fitting smooth polynomials through each branch. 

The mechanism through which SOLAR controls mesh spacing is then described. The 

approach is then applied to a range of two-dimensional test cases to demonstrate its ability 

to generate high-quality feature-aligned surface meshes. 

 

Figure 4.1: (a) Arbitrary point cloud, (b) convex hull and (c) a possible concave hull 

 

4.2 Building the Medial Axis 

4.2.1 Concave Hull Construction 

After extraction of an initial two-dimensional point cloud from the solution using a 

feature extraction technique described in section 3.6, the concave hull may be computed 

using the α-shape. Edelsbrunner and Mücke
[178, 179]

 provided the notion and formal 

definition of the α-shape, which can be considered as a generalisation of the convex hull of 

a point set. The α-shape of a point set S defined in two- or three-dimensional space, with α 

defined as a real number, 0 < α < ∞, is a polytope which is neither necessarily convex nor 

connected. For α = ∞, the α-shape is defined as the convex hull of S. In figure 4.1(b) the 

convex hull for a point set is given, and corresponds to an α-shape with α = ∞. As α 

decreases, cavities start to appear in the α-shape. As α → 0, the α-shape degenerates to the 

original point set S. 

(a) (b) (c) 
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Figure 4.2: Identification of a possible point cloud through computation of the α-shape. The 

green circles represent the circular ‘eraser’ 

 

When α becomes small enough, a circle in two-dimensions with radius α can be 

present in space without enclosing any point in the set S. The shape of S is then carved out 

from the point cloud by this circular ‘eraser’ at all positions where it does not enclose any 

of the points in S. For suitable values of α, the original point set is reduced to a concave hull 

(see figure 4.2). This allows the points on the boundary of S to be extracted, leading to a 

hollow representation of the set. A range of values of α yields a family of different α-shapes 

for the same point cloud i.e. the concave hull is not unique. It is likely that different values 

of α will generate valid non-intersecting polygons to build the constrained triangulation.  

 

A less formal and perhaps more intuitive description of the α-shape is provided by 

Edelsbrunner and Mücke
[178] 

which can aid the understanding of the α-shape. Imagine a 

mass of styrofoam which makes up the space   , containing the points which represent 

some other material, like rock. A sphere-shaped eraser (circular shaped in two-dimensions) 

then carves away all parts of the styrofoam block that can be reached without colliding into 

the pieces of rock. This allows regions within the interior of the point set to be carved 

away, and eventually an object which provides a description of the shape of the point set S, 

is constructed. The value of α represents the squared radius of the carving eraser. As α → 0, 

all of the styrofoam surrounding the rock pieces is carved away (since α is smaller than the 

distance between the pieces of rock and can move freely to carve away styrofoam without 

collision) and the α-shape degenerates to the original point set. On the other hand, as α → 

∞, the eraser becomes too large and it can no longer be moved between points to carve 

away styrofoam on the interior (since α is larger than the distance between points, the 
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eraser cannot be moved freely without colliding into them), leading to the convex hull of 

the point set S.  

 

In terms of the algorithm to compute the α-shape, a Delaunay triangulation is 

constructed for the entire point set. The α-shape is then defined as the union of all the 

triangles whose circumradius is less than the given value of α. After this operation, the 

facets which are referenced by a single triangle (i.e. an edge on the boundary of the shape 

will belong to only one triangle) are found. As output, the algorithm returns a list of ordered 

pairs of points which can be used to form edge segments which represent the boundary of 

the point set, if a suitable value of α has been chosen. 

 

In the present work, in order to compute a suitable value of α, the average and 

maximum edge lengths are computed from the underlying mesh structure which makes up 

the point cloud. An initial guess for α is obtained by considering the average edge length 

and gradually increasing α in small increments, up until the maximum edge length, until a 

valid non-intersecting polygon is formed. It is likely that increasing α far beyond the 

maximum edge length will cause essential shape information to be lost. For each computed 

α-shape, a check is made to ensure it forms a non-intersecting polygon. If a suitable 

polygon has been constructed, the process will stop. 

 

4.2.2 Medial Axis Approximation 

The medial axis of a domain is defined as the locus of the centres of the circles of 

maximum radius that can be inscribed inside the domain
[180]

. Based on this definition, the 

medial axis or the skeleton of a polygonal domain may be found from its boundary 

discretisation. A constrained Delaunay triangulation may be constructed where the only 

vertices present are the points of the edges making up the polygon boundary. The medial 

axis may be approximated by joining the circumcentres of all the triangles within this 

Delaunay triangulation. For the current application, the boundary of the polygon will not be 

smooth and therefore the medial axis will also be non-smooth. In particular, a variety of 

triangles with varying sizes and internal angles can appear in the triangulation which leads 

to inconsistent circumcentre location. This is the cause for the jagged appearance of the 

initial unprocessed medial axis. The medial axis requires to be smoothed in some way in 

order to allow it to be of use in the mesh generation step. 
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Properties of the underlying Delaunay triangulation which defines the medial axis 

approximation may be exploited in order to split the medial axis into its constituent 

branches. Each branch is then fitted with a smooth polynomial curve.  

 

4.2.3 Constrained Delaunay Triangulations 

Considering a constrained Delaunay triangulation, one may define three types of 

triangle which each possess properties that can be exploited in processing the medial axis. 

A similar notation as presented by Frey and George
[4]

 is used. The three types of triangles 

are simply classified based upon the number of boundary entities they possess. The three 

possible cases are (see figure 4.3): 

 Type-0 triangle: Three bounded edges (yellow). These are defined as triangles 

which have all three edges bounded by adjacent triangles. The circumcentre of this 

particular triangle is a junction node - it represents the start of three branches in the 

medial axis approximation. 

 Type-1 triangle: Two bounded edges (blue). These are defined as the triangles 

which have only two edges bounded by adjacent triangles, with the third edge part 

of the polygon boundary. Successive combinations of these types of triangles 

contribute to the main branches of the medial axis approximation. 

 Type-2 triangle: One bounded edge (red). These are defined as the triangles which 

have only one edge bounded by an adjacent triangle, with two edges part of the 

polygon boundary. The circumcentre of such a triangle is defined as a termination 

node – this indicates the end point of a medial axis branch. 

 

Figure 4.3: Types of triangle in a constrained Delaunay triangulation, Type-0 (yellow), 

Type-1 (blue) and Type-2 (red) 
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The above definitions provide some properties which may be exploited to 

automatically process the medial axis. By itself, the approximation of the medial axis is not 

particularly of much use in the representation of flow features. However, using the 

definitions described above, the medial axis may be broken down into its corresponding 

branches to allow further processing. As the point cloud is extracted from an unstructured 

mesh, it is unlikely that the splitting process can be carried out straight away. Prior to the 

splitting of the medial axis, it must be cleaned to remove false junction and termination 

nodes which may have been generated in the constrained triangulation. Small branches 

which do not represent important shape detail are also removed. 

 

The medial axis processing algorithm takes as input constrained triangulation data 

and circumcentre coordinates. Whilst only the circumcentres are necessary to construct the 

medial axis, the underlying triangulation is required to construct a suitable data structure to 

allow queries to be made about the number of boundary entities for each triangle; which in 

turn provides a means to clean the medial axis and then decompose it at the branch 

junctions. 

 

 

Figure 4.4: Example constrained triangulation and medial axis approximation for a simple 

shape with smooth boundaries 

 

4.2.4 Cleaning the Medial Axis 

4.2.4.1 False Junction Nodes 

Since the point cloud is extracted directly from an unstructured mesh, the polygon 

boundary will be non-smooth leading to a chance of Type-0 triangles being constructed 

which do not represent true junction nodes. These false triangles can be easily identified, 

since one of its adjacent neighbours will be of Type-2, highlighted as green triangles in 

figure 4.5. True junction nodes belong to Type-0 triangles with three bounded edges which 
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are bounded by Type-1 triangles. By considering the neighbouring triangles of each Type-0 

triangle, if a Type-2 triangle is encountered, it is removed from the triangulation leading to 

a new Type-1 triangle being defined. The triangulation and neighbour information is 

updated to reflect this change. This process is summarised in algorithm 4.1. 

 

 

Figure 4.5: Cleaning the medial axis 

 

4.2.4.2 Small Branch Removal 

Other small branches may also occur in the medial axis. These usually appear in 

regions where the polygon boundary approximates a convex corner. At a convex corner, a 

Type-0 triangle will always appear, indicating the junction of three branches as usual. One 

of these branches will converge towards the convex corner point. Figure 4.4 shows an 

example of this occurring for a smooth polygon. This shape features four sharp convex 

corners which lead to Type-0 triangles appearing at the locations where the medial axis 

changes direction. For a non-smooth boundary, an example of which is displayed in figure 

4.6, these triangles may also appear where the boundary approximates a convex corner. 

These small branches do not represent important shape detail and their inclusion in the 

polynomial fitting step is unnecessary.  

 

Although the medial axis behaviour in specific regions of a shape has been 

identified, it can be difficult to determine whether the small branch converging into a 

convex corner requires to be removed for an irregular polygon. For a simple smooth shape 

it is clear which these branches are since convex corners are easier to identify. However for 

the current application, the formation of the medial axis depends entirely on the underlying 

point cloud and the resulting α-shape, which is in turn dependent upon the original mesh 

density. The randomness of the point cloud leads to a variety of triangles with varying 

internal angles being generated in the constrained Delaunay triangulation. The 

unpredictability and inconsistency of these angles for different problems means that 
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identifying convex corner regions (see figure 4.6) in the triangulation is extremely difficult. 

In the smooth square ring case displayed in figure 4.4, the termination triangles at convex 

corners can easily be seen to be 90
o
. This cannot be guaranteed to be true for a flow feature 

α-shape polygon, where the angle between the two unbounded edges of a termination 

triangle is not necessarily less than or equal to 90
o
. Therefore, even if the branch does 

appear to converge into a convex corner, an angle test is not guaranteed to work. Currently, 

a method to successfully determine such regions has yet to be implemented.  

 

In order to remove the small branches, they can be recognised by their relatively 

low branch count. For the cases tested in the present work, this approach appeared to work 

satisfactorily. In the event that an important shape feature is missed however, two options 

have been implemented. Firstly, the ‘trimming’ value can be modified by the user to change 

the size of the branches removed. Secondly, the small branch removal process can be 

switched off entirely, which means every single branch of the medial axis decomposition is 

output. Whilst this may mean some user-interaction is then required to check the 

decomposition (or the user can let the process continue with all medial branches), the 

unwanted branches can be easily visualised and removed since they are simply lists of 

points.  

 

Algorithm 4.1:  Cleaning the Medial Axis (pseudo code) 
 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

     

 

 

function medialAxisClean() 

for each triangle t 

 if(type (t) == type0) 

  for each neighbouring triangle nt 

   if(getType(nt) != type1) 

    deleteTriangle(nt) 

    updateTriangulation()  

   end if 

  end for 

 end if 

end for 
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Figure 4.6: Removal of small branches from medial axis 

 

4.2.5 Splitting the Medial Axis 

The algorithm considers all Type-0 triangles (the junction nodes) and will travel 

along each branch storing all the circumcentres of Type-1 triangles, until either a 

termination node or another junction node is encountered. The algorithm keeps a check on 

circumcentres already considered to prevent duplication of branches, in the event of 

multiple junction nodes appearing in the medial axis which are connected to the same 

branch. The branch identification process is demonstrated in figure 4.7. The algorithm 

starts at triangle jt which represents a junction point (Type-0 triangle), and is bounded by 

three neighbouring Type-1 triangles (nt01, nt02 and nt03). The neighbouring triangles of 

nt01 are nnt01 and nnt02. The triangle index of jt is the same as nnt01, and since jt will 

have already been checked, this means nnt01 has already been checked. nnt02 is therefore 

added to the list of points for that particular branch. These checks are made while the 

number of boundary entities of a triangle is equal to two. The effect of this is to allow the 

algorithm to travel along each branch, storing all the unchecked circumcentres, until it 

encounters either a junction or termination triangle. 
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nnt02 

jt 

nnt01 

nt01 

 

 

Figure 4.7: Neighbouring triangle query to allow travel across each medial branch (see 

Algorithm 4.2) 

 

Medial branches may also be merged together if their recombination will lead to a 

higher quality curve being generated (i.e. it makes more sense to represent two or more 

branches of the medial axis as a single curve, rather than a number of piecewise curves). 

These aspects are considered in more detail in the following subsections. 

 

4.2.6 Recombining Medial Axis Branches 

It may be desirable in some cases to recombine adjacent branches of the medial 

axis, as this can allow smoother representation of the flow feature. The algorithm uses the 

identified junction points of the medial axis branches in order to perform the check. 

 

The neighbouring junction or termination nodes of each junction node are found 

from the neighbour information constructed from the underlying triangulation. Vectors 

pointing from each junction node to its neighbours are then determined, as displayed in 

figure 4.8. A junction point is the start of three branches in the medial axis approximation, 

and therefore three vectors are calculated. These vectors give an indication of the direction 

the medial axis branches will emanate from each junction node. Next, for each junction 

node, the angles between each vector are computed. Three angles are therefore associated 

with each junction node. 

nt02 

nt03 
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Figure 4.8: Branch recombination: comparison of vectors from junction points to 

surrounding junction / termination points. Angle      falls within the desired range; 

branches belonging to vectors    and    are merged to form a single branch 

 

 

Algorithm 4.2: Splitting the Medial Axis (pseudo code) 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

function medialAxisSplit() 

for each junction triangle jt // type-0 triangles 

 for each neighbouring triangle nt 

  // travel along branch 2 bounded edges -> 2 neighbours (type-1 triangle) 

  // while loop will terminate when type-0 or type-2 triangle encountered 

  considered [ nt ] = true 

  while ( numNeigh[ nt ] == 2 ) 

   get indices of neighbouring triangles nnt01, nnt02  

   if ( considered[ nnt01 ] ) 

/*  triangle nnt01 has already been considered, so get circumcentre of 

nnt02 */ 

    add circumcentre of nnt02 to branch list 

   else if ( considered[ nnt02 ] ) 

    add circumcentre of nnt01 to branch list 

   end if 

  end while 

 end for 

end for 
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As the angle between two branches approaches 180
o
, this increases the likelihood 

that the two branches are suitable candidates for recombination. A check is made to see 

which of the three angles is the largest, and that it is in the range 160 – 220
o
 (this range can 

be modified by the user if required). If the angle meets this criterion, then the two branches 

are combined as a single branch. To combine branches, the lists of circumcentre points 

obtained from the medial axis split are merged together. Generally if the angle is acute then 

curve recombination is not appropriate since the small angle represents an abrupt change in 

the direction of the medial axis. 

 

It should be noted that there will only ever be a maximum of one merge per junction 

point. Also an individual branch can be merged to a maximum of two other branches, since 

the maximum number of junction nodes which bound an individual branch is two. 

 

 

Figure 4.9: Smoothed medial axis after recombination of branches (see Figure 4.8) and 

polynomial fitting for each remaining branch 

 

4.2.7 Fitting Polynomials 

After the automatic decomposition of the medial axis into its constituent branches, 

smooth curves can be fitted through the resulting points. Polynomial coefficients for each 

branch can be calculated with a simple least squares approach. In order to fit suitable curves 

through the points, a goodness of fit value is calculated for each branch curve.  

 

Initially each branch is fitted with a linear polynomial. If the R
2
 value falls below a 

certain value, (for example, fitting a linear curve through a curved branch which would be 

better suited by a quadratic or cubic polynomial) then the order of the polynomial is 

increased and a new fit is made until the R
2
 value meets the specified requirements. R

2
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values close to 1.0 indicates a high quality polynomial fit through the medial axis branch. 

An example of the branch curve fitting for an arbitrary shape is shown in figure 4.9. 

 

Algorithm 4.3: Recombining Medial Branches (pseudo code) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A least-squares approach is used which allows the topology of the medial axis 

branch to be represented by a simple mathematical expression. For a set of data points (xi, 

yi), the resulting expression is a linear combination of any m specified functions of x, where 

m-1 is the order of the polynomial. Generally, the form of the least squares model can be 

given by 

 

       ∑        
   
                (4.1) 

 

function recombineBranches() 

/* loop over junction points and compute vectors pointing to neighbour junction / termination points */ 

for each junction triangle jt  

 for each neighbouring junction or termination triangle nt 

  compute and store vectors from jt to nt 

 end for 

end for 

/* compare angles: the index that vec1 is stored in corresponds to the same index as branch 1 and so on, 

meaning a comparison between vec1 and vec2 is comparing the angle between branches 1 and 2 */ 

angle_1 = compareVectorAngles(vec1,vec2) 

angle_2 = compareVectorAngles(vec2,vec3) 

angle_3 = compareVectorAngles(vec1,vec3) 

if( in_range(angle1) )  

/* combine branches which correspond to vec1 and vec2 i.e. branch1 and branch2 */ 

 combinePointLists (branch1,branch2) 

else if( in_range(angle2) )  

 combinePointLists(branch2,branch3) 

else if( in_range(angle3) ) 

 combinePointLists(branch1,branch3) 

end if 
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where X0(x), … ,Xm-1(x) are the basis functions. For the present work, a simple linear 

combination of increasing powers of x were used as the basis functions 

 

                  
         

   .               (4.2) 

 

The least-squares problem is then to compute suitable values for ak such that a 

polynomial is generated which best represents the given data set. The points across the 

resulting curve are used as the locations for the application of background sources, and this 

information is appended to the mesh generator input files prior to regeneration of the mesh. 

 

4.3 Controlling Mesh Spacing 

To control the mesh spacing in the domain, SOLAR uses the concept of background 

sources which are a set of basis functions that provide a continuous distribution of mesh 

spacing throughout the domain. Essentially, these functions allow control of the mesh 

spacing and in some cases the orientation of the elements at any location in the 

computational domain; whether that be on the surface of the geometry or in the field 

surrounding the geometry. There are three different types of sources available to be used in 

the generation of a mesh. These are point sources, line sources and triangle sources. Each 

type of source has a different effect on the formation of the mesh. Given a Cartesian 

background grid, the spacing parameters specified at each source is propagated to the nodes 

of this background grid. During the actual generation of the mesh, the spacing parameters 

are interpolated to determine the local mesh size. All the sources are taken into account 

during the mesh generation in order to determine the new element created. This is achieved 

through the interpolation of all the spacing parameters from the sources and the Cartesian 

background grid. An intuitive analogy of these mesh sources is that they act rather like heat 

sources conducting through a continuous medium. 

 

Point sources are essentially piecewise linear radial basis functions, with a spacing 

value s, and two radii which define the source strength r1 and r2 with r1 < r2. The strength of 

a source controls its intensity – determining how far the effect of a source is felt in the field. 

Consider a point source defined at a point p, then the spacing s at an arbitrary point x is 
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 )       

           (4.3) 

 

where    ‖   ‖. The spacing remains constant for the distance r1 and will start to 

decay linearly beyond this, and the rate of decay is such that the mesh spacing has doubled 

at the distance r2. Point sources can also be set to decay in an exponential fashion as 

follows: 

            

{
 
 

 
 

       
          

  (     
    
       )       

          (4.4) 

 

where b is a user-defined exponent base. Figure 4.10 shows graphically how point sources 

typically work to influence the mesh spacing across a region in the domain with several 

different types of spacing philosophies.  

 

 

 

 

Figure 4.10: Mesh spacing decay for linear, exponential and linear-exponential spacing 

philosophies 
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Line sources are defined by two point sources. These sources are evaluated by 

projecting a point x onto the line segment (i.e. the closest point in the line to point x) 

joining the two positions of the two point sources, and then computing a point source at that 

point, constructed by linearly interpolating the source spacing and strength between the two 

segment end points (see figure 4.11). Spacing defined by triangle sources are evaluated in a 

similar manner, with the point x projected to the triangle with the necessary quantities 

interpolated from the nodal values defining the triangle source.  

 

 

 

Figure 4.11: Line source with the interpolation of the spacing for a point x 

 

Line sources can also be defined as anisotropic, in which case a stretching value is 

calculated and the elements will become elongated along the spacing direction with the 

specified spacing value. The anisotropic spacing distribution requires a mechanism to make 

the evaluation of a source dependent not only on x, but also on a direction d. Anisotropic 

line sources are evaluated by applying this stretching to the usual spacing value. Let S 

represent the stretching value, with the angle α defined between a point x and the direction 

of the source line d. The stretching S is simply defined as the reciprocal of the sine of this 

angle α. Multiple sources are required to control the mesh density, but the final spacing at 

some point in the domain is computed as the minimum of all the sources which may 

influence that particular region. 

 

The sources are also applied across the final flow feature curves in order to 

influence the spacing of the mesh in the flow feature regions. Using anisotropic line sources 

provides local regions of high-quality mesh which almost mimic the attributes of a 

structured mesh, despite still being defined as a globally unstructured mesh. In contrast 

with anisotropic adaptation on triangular meshes, the process avoids the generation of 

x 
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highly skewed elements in the flow feature regions which can affect the performance of 

some flow solvers
[57]

. 

 

4.4 Global Mesh Refinement 

Mesh refinement studies are carried out in order to obtain grid independent 

solutions. Not only is it important for grid sensitivity studies to be carried out when 

performing a CFD calculation, but also turbulence models can often give varying shock 

locations compared with experimental observations. There is a degree of uncertainty with 

experimental data due to errors in measurement, and the simulation must usually use 

corrected values for the freestream conditions, for two-dimensional cases. It was therefore 

decided to compare the solution obtained from the feature-aligned adaptive solution with 

the grid independent solution of the particular mathematical model used to solve the flow, 

rather than with experimental data. This section briefly describes how the global mesh 

refinement on unstructured quad-dominant meshes is carried out using the background 

sources. 

 

As described in section 4.3 sources possess a spacing value and two radii which 

represent the source strength and influence the distance over which the mesh spacing will 

decay. Figure 4.12 shows a typical set up of sources for a simple two-dimensional aerofoil, 

with an example of global refinement in figure 4.13. The lengths of the arrows are 

indicative of the distance across which the particular spacing value will exist. At the 

leading and trailing edges two point sources exist which influence the mesh spacing in 

these regions. The spacing is much smaller than those of the surrounding sources, which 

increases the density of the mesh points generated at the leading and trailing edges. A line 

source exists to influence the distribution of points on the aerofoil surface in the streamwise 

direction. Another source influences the density of points in the wake region, and finally a 

global point source influences the global point density. All these sources will affect the 

mesh density in an isotropic manner. 

 

To modify all the sources for a given problem, a simple program was written to read 

in the spacing file and modify each spacing value by multiplying by a constant factor which 

is set by the user. The radii of influence for each source remain constant. This allows the 
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user to easily refine or coarsen the mesh without having to manually modify each source. 

The use of this spacing-modification routine is particularly necessary for three-dimensional 

problems where the spacing file may contain several hundred sources. 

 

 

 

Figure 4.12: Example sourcing philosophy for simple aerofoil case 

 

 

 

Figure 4.13: Two-dimensional surface global mesh refinement example 

 

Boundary layers were generated such that valid y
+
 values were obtained when 

solving on all meshes. Once a suitable first cell height had been tested and yielded suitable 

y
+ 

values, this first cell height was applied for all subsequent mesh generation.  As 

Global point source 

Wing line source 

Leading edge point source 
Trailing edge point source 

Wake line source 
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mentioned in Chapter III, the turbulence model of choice was the Spalart-Allmaras model 

for all viscous computations, requiring a y
+
 value of approximately 1.0. 

 

4.5 Identifying Multiple Regions of Points  

Another important consideration, particularly in the development of an automatic 

process, is the separation of multiple flow features extracted with the same feature detector. 

For example, in a supersonic flow around an aerofoil, there are likely to be a number of 

shock waves present, including a strong bow shock as well as shock waves emanating from 

the trailing edge due to flow recompression. The filter which extracts these shock waves 

will only return a collection of points which belong to all of the shocks detected.  There is 

no direct way of telling which point belongs to a particular shock wave. 

 

One possible method to address this problem involves considering the connectivity 

of the underlying mesh to determine which points are physically connected to each other. A 

simple algorithm has been implemented such that these separate regions of points can be 

identified, and this allows each region to be dealt with separately in the feature 

representation step. Note that the developed algorithm presented here has been designed to 

work only in two-dimensions, but it may lend itself to extension to a three-dimensional 

version. 

 

This advancing front style algorithm works by initially finding the faces in the mesh 

which are made up by the extracted points. Using this face format makes navigating the 

different regions less complicated and also has the added benefit of removing any spurious 

unconnected points which may exist. Starting with the face stored in the first element of the 

original face list, the bounding faces of this face are found. If any of these bounding faces 

are part of the original face list, they form a face front which allows propagation throughout 

a region by considering all the bounding faces of the faces in the current front. The 

considered bounding faces, provided they are in the original list, form the updated front and 

these faces are flagged as part of that particular region.  

 

Each face that has been visited is removed from the original face list. The 

propagation of the front through a region continues until the front contains no faces. When 
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the front is empty, it is an indication that all the faces in that particular region have been 

checked, and there are no new faces for that region. If the original face list is not empty, the 

process restarts with the face index now stored in the first element of the original face list. 

The algorithm continues until the original face list is empty, which indicates all faces have 

been visited and there are no more regions to consider. 

 

A diagrammatic display of the algorithm working on a simple region of faces is 

shown in figure 4.14. The blue region indicates the original collection of unvisited faces, 

and the current face front is coloured orange. A visited face is coloured green. It can be 

seen how the front propagates throughout the region of unvisited faces until all faces 

forming the extracted region have been checked.  

 

 

Figure 4.14: Process to identify a region of connected points in two-dimensions 

 

The algorithm provides an effective way to automatically identify separate regions. 

It will detect every single region provided an initial front can be formed. Small regions of 

points which cannot form an initial front or possess a low face count are considered as 

noise and discarded. 

 

4.6 Mesh Adaptation 

4.6.1 Determining Local Mesh Spacing 

Since the mesh is required to be regenerated after the feature curves have been 

created, it made sense to use the error estimate and attempt to determine a better mesh 

spacing in important regions around the geometry. In order to define a more optimal mesh 

for a given degree of accuracy, the approach described by Peraire and Peiro
[114]

 is adopted. 

Here it is desirable to generate a mesh where the root mean square error for each element is 
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distributed along the local eigendirections. From these considerations, it can be shown that 

the spacing values at each point are 

 

           
 |  |     

 |  |                 (4.6) 

 

where C is a user-specified positive constant. The nodal spacings in the eigendirections can 

be calculated from 

          √
 

  
                 (4.7) 

The value of therefore C influences the number of elements in the regenerated mesh, which 

is set to 1.0. In the present process, the mesh is regenerated only once, and from that point 

on the mesh node numbers are fixed. The nodal movement algorithm then seeks to 

redistribute those points to more appropriate locations in the domain to reduce the error. 

 

For the existing point sources, as presented in figure 4.12, each source possesses a 

radius of influence which is set to r1, a value which is determined heuristically. The spacing 

values are computed for every node which lies within this radius of influence. This yields, 

based on equation 4.7, two spacing values for each node. The average of the minimum 

spacing values δi for the group of nodes within a particular radius of influence is calculated, 

and this new constant spacing value is applied to that particular point source (each source in 

SOLAR may possess one spacing value only). The radius values remain unchanged 

throughout this process (i.e. identical to those used in the original mesh generation). All the 

existing point and line sources used are isotropic, and therefore will influence the local 

mesh spacing in an isotropic manner.   

 

The process is applied only to the sources which affect the resolution of the mesh 

near the geometry, i.e. at leading and trailing edges, as well as the source which affects the 

streamwise distribution of points. Application to the sources which affect the resolution in a 

more global fashion is unsuitable as it can create excessively fine meshes, and therefore 

these sources remain unchanged. Whilst this approach was followed for the aerofoil cases 

presented, a distinct disadvantage quickly became apparent when using sources in this 

fashion - unfortunately the spacing mechanism in SOLAR was not particularly designed 

with the potential for linking with error estimates in mind. Furthermore, whilst mesh 
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resolution can be improved in local regions of the geometry, e.g. at the leading edge, due to 

large eigenvalues being computed (and hence small spacing according to equation 4.7) the 

number of points in those regions is not necessarily optimal. For anisotropic flow features, 

in its current implementation, the spacing cannot be applied along the direction of the 

eigenvectors to align the mesh; instead the flow feature curves are necessary to give the 

guidance of the mesh direction, with local spacing applied along the curves computed from 

equation 4.7. It is the author’s opinion that it would be useful if the sourcing philosophy 

was modified in some way to allow the natural anisotropy of the solution to be taken into 

account. Furthermore, the development of refinement and coarsening strategies within 

SOLAR would also be desirable to compliment the sourcing approach.  

 

For anisotropic flow features, the spacing values are computed for all the nodes 

which have been extracted based on the particular feature extraction technique. The spacing 

value is calculated as before. The sources applied across the feature curve were not present 

in the original mesh generation, and therefore suitable radius values are supplied based on 

the particular flow feature under consideration. These sources are also set to be anisotropic 

(see section 4.3) such that the mesh is locally aligned with the feature curves when the 

mesh is regenerated with anisotropic cells. 

 

In some cases, the final shock location can be sensitive to the mesh resolution. In 

order to ensure the shock wave is still captured within the high quality region of mesh, the 

radius values are set such that the structured-like region of mesh exists over a fairly wide 

area. In the event that the shock position does slightly move away from the original 

extracted shock location, the refined region is large enough such that there is still a high 

quality local mesh which can then be adapted to the final shock location. 

 

The success of an adaptation scheme comprising only of nodal-movement is 

strongly related to the topology of the original mesh. The initial feature-alignment step aims 

to give a better starting point for the node movement, by approximately aligning the mesh 

with the flow features. It essentially reduces the amount of work the adaptation scheme is 

required to do and improves element quality in the adapted mesh. A standard quad-

dominant mesh could also be adapted, but the quality of the adapted cells is likely to be 

very poor. This is particularly true for unstructured quadrilateral meshes, where there are 
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greater restrictions on element quality than for triangular meshes (e.g. avoiding non-convex 

elements). 

 

4.7 Splitting Bad Quadrilateral Elements 

Due to the unstructured nature of the quadrilateral elements in the mesh, it is likely 

that bad elements are formed as no restrictions are placed upon the movement of the nodes 

during the adaptation. Typically these bad elements are ‘chevron’ quadrilaterals, i.e. non-

convex. This type of element is unacceptable in the mesh and will lead the flow solver 

TAU to reject the mesh during an element quality check, meaning no further solution can 

be obtained. Rather than place restrictions on node movement to prevent these elements 

from forming, the implemented approach is to split these non-convex quadrilaterals into 

triangles. Usually only several quadrilateral splits occur during the entire adaptive process. 

However if a large number of splits occur, it is usually an indication that the relaxation 

factor ω (see section 3.7.2) has been given a value which is too large.        

 

 

 

Figure 4.15: Splitting of quadrilateral elements 

 

In order to determine if a quadrilateral is non-convex, four separate triangles can be 

defined by considering the two possible orientations of the diagonal. For a simplex k the 

surface area S can then be simply computed using the following expression 

 

                  
 

 
|
          

          
|.            (4.8) 

 

If all four surface areas are positive then the quadrilateral is convex. If any of the 

area calculations returns a negative value, then the quadrilateral is non-convex. This 

quadrilateral is then split into two triangles by inserting an edge along the diagonal of the 

quadrilateral that resulted in the two triangles with positive surface areas. The mesh is then 
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updated with the new element face and the data structures (which are edge-based) required 

for the nodal movement adaptation are updated. 

 

4.8 Test Cases 

4.8.1 Double Wedge Supersonic Inviscid Flow,    = 3.0 

 

 

Figure 4.16: Schematic of the double wedge geometry 

 

The geometry for this case is presented in figure 4.16 (not to scale). As the flow 

reaches the double wedge the reduction in the flow area causes the shock waves to appear, 

one for each part of the wedge. These two shocks then coalesce and the resulting final 

shock structure is quite complex. However, the medial axis process can efficiently and 

automatically deal with this complexity to allow the final shock curves to be obtained. 

After extraction of the structure using the normal Mach number computation, the medial 

axis process can begin. Figure 4.17 shows the initial mesh and pressure contour solution. 

The raw unprocessed medial axis and identification of junction and termination points is 

displayed in figure 4.18. After the medial axis process, the final smoothed feature curves 

are displayed in figure 4.19. In this case the medial axis process identifies three separate 

branches around a single junction point. The junction point appears where the shock waves 

have intersected. Three termination points are also identified. The angle between two of the 

medial branches emanating from the junction point falls within the desired range, and 

therefore the two medial branches (highlighted in figure 4.18) are automatically detected as 

candidates for recombination. The algorithm also determines that simple linear polynomials 

are sufficient to represent each branch based on the computed R
2 
values. 

 

13
o
 

4
o
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Figure 4.17: Initial mesh and corresponding pressure contours indicating shape of shock 

wave 

 

 

Figure 4.18: Extracted medial axis of shock wave with identification of junction (green) 

and termination (blue) points. The split at the junction point leads to three separate 

branches being defined, after which two can be recombined based on the angles between 

the branches to form a single branch 

 

After application of anisotropic background sources across the smoothed curves, the 

mesh may be regenerated. The feature-aligned mesh is displayed in figure 4.20, which also 

includes a zoomed view of the mesh in the shock region to clearly show the high-quality 

anisotropic cells which may be generated using the current approach. Figure 4.21 shows the 

resolution of the shock structure using pressure contours. It can be observed that the 

feature-aligned mesh provides much sharper resolution of the shock wave compared with 

the original mesh. 

 

Curve recombination 

Medial axis split 
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Figure 4.19: Processed medial axis curves appended to original geometry 

 

   

Figure 4.20: Feature-aligned mesh and zoom of high quality mesh in shock region 

 

 

Figure 4.21: Pressure contours on feature-aligned mesh 
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4.8.2 NACA0012 Aerofoil 

 

 

Figure 4.22: Original mesh used for the NACA0012 cases 

 

Three separate flow conditions are simulated using the original mesh shown in 

figure 4.22 to obtain the initial solution. For the presented cases in this section, the only 

flow features of interest are shock waves. 

 

4.8.2.1 Inviscid Transonic Flow: M∞ = 0.75, α = 1.25
o 

 

 

Figure 4.23: Original mesh Mach number contours 

 

The flow features present in the solution for this case are two shock waves, one on 

both the upper and lower surfaces of the aerofoil. The original solution is displayed in 

figure 4.23. It can be seen that the shock waves are relatively simple in shape. Despite the 

simplicity of the flow features, this case does allow demonstration of the connectivity 

algorithm, described in section 4.5, since multiple shock waves exist in the domain. After 
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application of the normal Mach number filter, an array of points which satisfied the normal 

Mach criterion is returned. There is no way to directly determine from this list which points 

correspond to either shock wave. The connectivity filter automatically determines this 

information and groups the points according to which shock region they lie in, assigning 

each point a region ID. Figure 4.24 shows how the points have been grouped, the different 

colours representing a separate group of points. 

 

 

Figure 4.24: Extracted shock waves coloured by region ID 

 

Figure 4.25: Shock curves embedded into domain 

 

The medial axis approach is applied on each group of points in order to generate the 

shock curves. Due to the simplicity of the shock topology, single curves are generated for 

each shock wave which can then be embedded into the domain, as displayed in figure 4.25 

(note that the shock curves are not connected to the original aerofoil geometry). Anisotropic 

background sources are applied across the shock curves, new spacing values are computed 
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for the existing sources and the surface mesh is regenerated to yield the initial feature-

aligned mesh (figure 4.26(a)). The original solution can then be interpolated onto the new 

mesh, and the solution continues to evolve. Since the feature-alignment step can only 

guarantee approximate alignment with the shock wave, the nodal movement adaptation 

scheme is applied based on the Hessian of the Mach number in order to shift the mesh 

nodes towards the shock waves. 

 

 The resulting mesh is fully aligned with both shock waves in figure 4.26(b), 

leading to an improved resolution of the Mach number contours compared with the original 

mesh, displayed in figure 4.27 and 4.28. In particular, figure 4.28(a) shows that the shock is 

excessively smeared across many cells. The non-aligned cells increase the numerical 

diffusion in the shock region. In comparison, the feature-aligned adaptive solution in figure 

4.28(b) provides much sharper shock resolution across the width of a couple of cells due to 

the near perfect alignment of the mesh cells. 

 

  

 

Figure 4.26: (a) Initial feature-aligned mesh and (b) final feature-aligned adaptive mesh 

 

(a) 

(b) 
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Figure 4.27: Mach number contours for feature-aligned adaptive mesh 

 

 

Figure 4.28: Filled Mach number contours - zoom of shock region for (a) original mesh and 

(b) feature-aligned adaptive mesh 

 

4.8.2.2 Inviscid Transonic Flow:    = 0.95, α = 0
o
 

The flow conditions for this case correspond to case AGARD03
[193]

. This case 

presents more of a challenge for the geometric representation process due to the complex 

structure of the flow feature – this particular shock wave is often referred to as a ‘fishtail’ 

shock. The current approach deals with this complexity such that the shock curves can 

easily be extracted for the feature-alignment process. The connectivity filter is not required 

for this case since only one group of points is detected. 

(a) (b) 
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Figure 4.29: (a) Original Mach number solution and (b) extracted shock wave 

 

        

Figure 4.30: Medial axis process applied to the fishtail shock structure, (a) concave hull, (b) 

constrained Delaunay triangulation, (c) unprocessed medial axis and (d) final smoothed 

medial axis 

 

The original solution and extracted fishtail structure is shown in figure 4.29. The 

concave hull polygon, constrained triangulation, unprocessed medial axis and final 

(a) 

(b) 

(a) (b) (c) (d) 
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smoothed curves after application of the medial axis process are displayed in figure 4.30. 

For this case, after the medial axis cleaning is complete, three junction nodes are identified 

with two termination points. Two pairs of these branches are identified as candidates for 

recombination after consideration of the angles between the medial branches, resulting in a 

total of three branches for the polynomial fitting. The medial axis processing algorithm 

starts with linear polynomials for all three curves but increases the polynomial order for 

two of the branches to improve the R
2
 value of the fit. The resulting quadratic polynomials 

can be seen to fit the branches well, as indicated in figure 4.30(d). A linear fit is deemed 

sufficient by the algorithm for the normal shock which appears downstream of the aerofoil 

trailing edge. 

 

 

Figure 4.31: Initial feature-aligned mesh prior to nodal movement 

 

 

Figure 4.32: Final feature-aligned adaptive mesh 
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Figure 4.33: Mach number contours for (a) original and (b) feature-aligned adaptive meshes 

 

The initial feature-aligned mesh is displayed in figure 4.31, with the final adaptive 

mesh in figure 4.32. The Hessian of the Mach number is once again used to adapt the mesh. 

A comparison of the Mach number contours for both original and feature-aligned adaptive 

mesh is displayed in figure 4.33. Once again, due to the full alignment of the cell interfaces 

with the shock wave, the resolution of the shock is much improved compared with the 

original mesh. A quantitative comparison of the mesh performances is given in Table 4.1. 

The values obtained from the feature-aligned adaptive mesh are in closer agreement with 

the results reported in the literature compared with the original unstructured quad-dominant 

mesh. 

 

 Original Mesh Feature-aligned 

adaptive mesh 

Ait-Ali-Yahia et 

al.
[85]

 

Lift 0.012 0.0002 0.0001 

Drag 0.1098 0.1093 0.1092 

 

Table 4.1: Comparison of lift and drag coefficients for NACA0012 fishtail shock case 

 

 

 

 

(a) (b) 
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4.8.2.3 Inviscid Supersonic Flow:    = 1.2, α = 10
o
 

 

 

Figure 4.34: Original Mach number solution 

 

Whilst the shock structures in this case are relatively simple, there are multiple 

shocks to be resolved. A strong bow shock which is detached from the leading edge exists 

with a weaker shock emanating from the trailing edge due to flow recompression. 

Numerical diffusion on the initial mesh causes the resolution of the shock waves to be quite 

poor. The aim for this case is to improve the resolution of the shock waves such that they 

are resolved to the domain boundaries. Figure 4.34 shows the original solution in terms of 

Mach number contours. 

 

The shock structure is obtained which yields two main point clouds representing the 

two shock waves. The connectivity filter is then applied to group the separate regions of 

points so that the curve fitting process can occur. The original mesh is too coarse to 

accurately resolve the shocks far into the domain, so the curves are extrapolated towards 

the domain boundaries (figure 4.35). Associated with the extrapolation is a degree of 

uncertainty with the exact location of the shock waves. To ensure the shock waves remain 

captured within the high-quality portion of mesh, the radii of influence of the background 

sources applied along the curves are progressively increased so that the structured-like 

mesh is generated over a wider area. The region of mesh ahead of the bow shock is not 

required for a supersonic simulation and therefore the domain shape can be changed. This 



101 

reduces the initial solution domain and indicates an improvement in efficiency through 

application of the feature-alignment process. 

 

Figure 4.35: Supersonic shock wave geometry 

 

To achieve full alignment of the cell interfaces with the shock wave, the nodal 

movement is applied again based on the Hessian of the Mach number. Figure 4.36(b) 

illustrates the final adaptive mesh achieved after interpolating the solution onto the initial 

feature-aligned mesh. The corresponding Mach number contours in figure 4.37 indicate a 

substantial improvement in the resolution of the bow and trailing edge shocks towards the 

domain boundaries. Such resolution is not possible with a standard quad-dominant mesh. 

Resolving shock waves towards the domain boundaries is important for some applications 

such as for the study of sonic boom ground signatures generated by aircraft flying at 

supersonic speeds. 

 

            

Figure 4.36: (a) Initial feature-aligned mesh and (b) final feature-aligned adaptive mesh  

 

(b) (a) 
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Figure 4.37: View of entire domain to show resolution of shock wave to farfield boundaries 

 

 

Figure 4.38: Zoom of mesh in lower portion of bow shock 

 

Figure 4.38 shows a zoomed in view of a portion of high quality adapted mesh in 

the bow shock region, indicating effectiveness of the nodal movement scheme in shifting 

the points to where the shock wave actually exists in the solution.  

 

4.8.3 RAE2822 Aerofoil Transonic Viscous Flow:    = 0.730, α = 2.79
o
, Re = 6.5 x 10

6
 

 

The flow conditions for this problem correspond to case 9 in the AGARD 

report
[181]

, where the angle of attack used in the present computation is a corrected value. 

However, rather than compare the computational results with the reported wind tunnel data, 

the grid independent solution is obtained in order to observe the quality of the numerical 

solution of the feature-aligned adaptive mesh. This method provides a more appropriate 
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means to assess the solution quality. Different turbulence models can predict different 

shock positions which can often fail to match the experimental data. The matching of the 

turbulence model with experimental data is not an indicator of the ability of an adaptive 

mesh strategy to reduce the solution error in a numerical sense, since the assumptions and 

simplifications in the physical modelling can cause discrepancies with the physical data. 

Instead, the present approach provides an indication in the reduction of the numerical error 

through application of the adaptive feature-alignment process. The solution of the feature-

aligned adaptive mesh is also compared with an anisotropically adapted triangular mesh in 

order to demonstrate the potential benefits in solution accuracy and efficiency using 

quadrilateral meshes rather than triangular meshes. 

 

   

Figure 4.39: Initial RAE2822 unstructured quad-dominant mesh and Mach number 

contours 

 

For this case the flow features are relatively simple, but since a viscous simulation 

is being considered, the feature alignment process is also required to represent the trailing 

wake. A transonic shock exists above the upper surface of the aerofoil which interacts with 

the boundary layer. The initial mesh and corresponding Mach number solution is shown in 

figure 4.39. 

 

The shock wave and wake are separately extracted using the extraction filters 

described in Chapter III. The curves generated for these flow features are shown in figure 

4.40. After application of background sources across the curves, the mesh is generated to 

yield the initial feature-aligned mesh, as displayed in figure 4.41. After interpolation of the 

original solution onto this mesh, the nodal-movement adaptation strategy can be employed 

to align the cell interfaces with the flow features.  
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The Mach number is chosen to compute the Hessian matrix components which 

define the anisotropic metric, as it is sensitive to both shock waves and shear layers, 

whereas for a variable such as pressure, the mesh will only adapt to the shock waves. 

Figure 4.42(a) shows the final feature-aligned adaptive quad-dominant mesh, where it can 

be observed that the mesh has adapted to the shock wave, thickening of the boundary layer 

towards the trailing edge, as well as the trailing shear layers which flow downstream. 

 

 

 

 

 

Figure 4.40: Flow feature geometry for extracted shock wave and wake 

 

  

Figure 4.41: Initial feature-aligned quad-dominant mesh 

 

In order to demonstrate that the current method can provide improved results 

compared with an unstructured anisotropic adaptation on a triangular mesh, the flow is 

calculated again using the latter method.  This mesh is generated with a similar number of 

points as the feature-aligned quad-dominant mesh, but contains approximately double the 

number of cells. The feature-alignment step is not carried out on this mesh, but the mesh 

contains the same density of points as the original feature-aligned mesh around the 

geometry in both the normal and streamwise directions. The anisotropic adaptation on this 

mesh leads to much improved capture of the shock, boundary layer and wake, compared 

with the original quad-dominant mesh. The adapted triangular mesh has adapted in a 
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similar fashion to the quad-dominant mesh (figure 4.42(b)), which would be expected since 

the anisotropic error estimate indicates the same flow feature regions requiring adaptation. 

 

    

(a) 

    

(b) 

Figure 4.42: (a) Final feature-aligned adaptive quad-dominant mesh and (b) adaptive 

triangular mesh 

 

The results in Table 4.2 show that the adapted triangular mesh gives slightly 

improved lift and drag compared with the original quad-dominant mesh, but does not quite 

yield the same level of accuracy as the feature-aligned quad-dominant mesh and the grid 

independent solution. This difference could be due to the highly skewed cells affecting the 

accuracy of the solution, and also that the solution usually failed to converge properly. The 

adaptive triangular mesh may actually perform better in combination with other 

unstructured mesh adaptation techniques such as refinement, coarsening and edge 

swapping. Due to time constraints, these methods were not implemented for the current 

study. However, even the inclusion of these techniques in the adaptive strategy would still 

lead to the highly skewed elements present in the flow feature regions. One of the edges of 

the triangular elements will also not be fully aligned with the shock, degrading the potential 

for the same quality of resolution observed on the adaptive quad-dominant mesh in figure 

4.43(c), which is perfectly aligned with the shock wave. 
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Figure 4.43: Mach number contours in shock region (a) refined mesh 3, (b) adaptive 

triangular mesh and (c) feature-aligned adaptive quad-dominant mesh 

 

In Table 4.2, the drag value for the feature-aligned adaptive quad-dominant mesh is 

within a tenth of a single drag count to the grid independent solution. There is a slight 

under prediction of the lift coefficient, but significant improvement compared to the 

original and triangular meshes. This is also reflected in the pressure distributions in figure 

4.45. The differing lift values appear to be a result of the shock position being predicted 

slightly upstream compared with the grid independent solution. The solution improvements 

of the feature-aligned adaptive mesh however, have been obtained at a fraction of the 

computational cost associated with generating an extremely fine mesh and corresponding 

solution. This indicates that aligning the cells with the dominant flow features using 

solution-based adaptation can lead to the solution improvements in a more efficient manner 

than using isotropic global refinement.  

 

Case Nodes Cells Lift Drag 

Original Mesh 119204 119300 0.76713 0.015677 

Refined Mesh 1 305654 305885 0.78686 0.015971 

Refined Mesh 2 489274 489671 0.80144 0.016233 

Refined Mesh 3 700130 700647 0.80643 0.016387 

Refined Mesh 4 924186 924840 0.80643 0.016385 

Feature-aligned adaptive quad mesh 200602 200762 0.80093 0.016375 

Adaptive triangular mesh 201196 401683 0.78511 0.015718 

 

Table 4.2: Comparison of lift and drag coefficients 

(b) (a) (c) 
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Adaptation on both types of grid can provide the high aspect ratio cells which are 

desirable for the accurate capture of flow features with strong gradients. However, only 

adaptation on the feature-aligned adaptive quad-dominant mesh can provide the low 

skewness of the cells in the most important regions of the mesh, which has appeared to 

provide a more robust convergence compared with the adapted triangular mesh. For 

comparison, the convergence histories are plotted against CPU time in figure 4.44. 

 

For the adaptive triangular case the residual starts to oscillate around a constant 

value. The presence of excessively skewed elements in the flow feature regions, 

particularly in the boundary layer part of the mesh may be the cause for this convergence 

problem. It can be observed that the feature-aligned adaptive quad-dominant mesh 

converges much more robustly than both the adaptive triangular mesh and globally refined 

quad-dominant mesh. This implies that for an efficient process, both quadrilateral cells and 

adaptation are necessary to align the cells with the feature in question. The first spike in the 

residuals for the feature-aligned adaptive quad-dominant mesh occurs due to the solution 

interpolation onto the newly generated feature-aligned mesh. The adaptation for the 

triangular mesh occurs at a similar residual level, but since the triangular mesh contains a 

much larger number of cells it therefore takes longer to reach this point. The globally 

refined mesh presents slow convergence in terms of CPU time due to greater number of 

computations required.  

 

A comparison of the shock resolutions for the globally refined mesh, triangular 

mesh and feature-aligned adaptive quad-dominant mesh is shown in figure 4.43. It can be 

observed that both quad-dominant and triangular adaptive meshes have given improved 

resolution of the shock wave. Both adaptive meshes also resolve the trailing shear layers 

towards the farfield boundaries, whereas the globally refined mesh fails to provide the same 

level of resolution. This is due to the numerically diffusive nature of the isotropic cells 

present in the wake. 
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Figure 4.44: Convergence histories for Feature-aligned mesh, adaptive triangular mesh and 

isotropically refined mesh 

 

Figures 4.45 and 4.46 show the surface pressure and skin friction distributions 

respectively for the original mesh, feature-aligned adaptive quad-dominant mesh, triangular 

mesh and isotropically refined meshes. The grid independent solution is indicated by the 

overlapping of the distributions in both plots. It can be observed that the feature-aligned 

adaptive quad-dominant mesh gives results for both surface pressure and skin friction close 

to a global refinement which generated approximately 3.5 times the number of nodes, 

indicating a significant computational saving. The skin friction plot obtained from the 

adaptive triangular mesh demonstrates some strange behaviour with a noisy distribution 

across the aerofoil surface. Again, this is most likely due to the highly skewed elements 

present in the boundary layer, and could be ultimately contributing to the loss of accuracy 

compared with the adaptive feature-aligned quad-dominant mesh which contains almost the 

same number of nodes. 
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Figure 4.45: Surface pressure distributions  

 

 

Figure 4.46: Skin friction distributions 
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4.8.4 L1T2 Multi-Element Aerofoil Subsonic Viscous Flow:    = 0.197, α = 4.01
o
, Re 

= 3.52 x 10
6  [197]

 

This two-dimensional high lift configuration is a three-element aerofoil which 

consists of a main element, a slat forward to the main element with a deflection angle of 

25
o
, and a Fowler flap aft of the main element which has a deflection angle set to 20

o
. This 

test case is dominated by viscous flow phenomena and the main flow physics of interest are 

strong interactions between the boundary layers and wakes of the three individual elements. 

The interaction between a wake and a boundary layer downstream can lead to a thickening 

of the boundary layer.  It is therefore important that these features are adequately resolved. 

The original mesh is displayed in figure 4.47, with the initial Mach number contours in 

figure 4.51(a). For this particular case, there are two ways to capture the wakes using the 

feature-alignment approach since there will be wakes trailing from each component. The 

first method involves generating a region of aligned mesh which covers all three wakes, 

and the second method generates an aligned mesh for each individual wake.  

 

 

Figure 4.47: Initial unstructured quad-dominant mesh 

 

For the first method, after the initial feature-aligned mesh has been generated, it can 

then be adapted to each individual wake using the nodal movement algorithm. The benefits 

of the first approach include that the process does not need to extract each wake 

individually, which can be a difficult task. Also the approach takes into account the fact 

that at some point downstream the wakes will eventually merge to form one wake. The 

second approach involves representing each wake individually. Unfortunately, in order to 

successfully generate the mesh using the second approach, some user interaction is 

required. The reason for this is that after extraction of the wakes it can be difficult to 
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identify individual wakes due to their proximity in the mesh – the connectivity algorithm 

will usually only detect one region of points, since the extracted points for each individual 

wake are connected at some location. This means that the curve representation process fails 

to produce three separate curves.  A more suitable technique to generate the individual 

wake curves is to trace streamlines emanating from the trailing edge of each component. 

This tracing provided the curves necessary to generate the individual wake meshes. 

Therefore with this second approach, the medial axis method is not suitable. For 

comparison purposes, both approaches have been included to observe the effects on the 

numerical solution. Figures 4.48 and 4.49 show the wake geometry for the two approaches. 

 

     

Figure 4.48: Embedded wake geometry for the single wake approach 

 

 

Figure 4.49: Embedded wake geometries for multiple wake approach 

 

Figure 4.50(a) shows the initial feature-aligned mesh and adapted feature-aligned 

mesh for the single wake approach, with the multiple wake approach shown in figure 

4.50(b).  The adaptation is performed using the Hessian of the Mach number once again 

due to its sensitivity to shear layers. It can be observed that the multiple wake approach 

allows for anisotropic refinement downstream of each trailing edge, whereas the single 

wake approach covers a more general wake region which can then be adapted. The wake 

region for the single approach thickens as the mesh adapts to the shear layers detected in 

the solution. 
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Figure 4.50 (a) Initial feature-aligned mesh for single wake approach and final adaptive 

mesh (b) feature-aligned mesh using multiple wake approach 

 

 

 

Figure 4.51: Mach number contours (a) original mesh, (b) single wake approach with 

adaptation and (c) multiple wake approach 

 

 

(a) 

(b) 

(b) 

(a) 

(c) 
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Figure 4.52: Comparison of velocity deficits at the first station for both feature-alignment 

approaches and a range of progressively refined meshes (cut line coordinates – point 1: 

0.082, 0.029, point 2: 0.06, 0.072) 

 

Figure 4.53: Comparison of velocity deficits at the second station for both feature-

alignment approaches and a range of progressively refined meshes (cut line coordinates – 

point 1: 1.07, -0.04, point 2: 1.11, 0.068) 
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Figure 4.54: Comparison of velocity deficits the third station for both feature-alignment 

approaches and a range of progressively refined meshes (cut line coordinates – point 1: 

1.45, -0.219 point 2: 1.48, 0.02) 

 

 Figure 4.51(a), (b) and (c) compare the resolution of the Mach number contours for 

the original mesh, single wake approach and multiple wake approach respectively. The 

contours indicate that both feature-alignment methods improve the resolution of the trailing 

shear layers downstream of each element. Both the single wake and multiple wake 

approaches have improved the resolution of the shear layers downstream of each 

component in comparison with the original mesh. 

  

 For a quantitative comparison of the mesh performance, figures 4.52, 4.53 and 4.54 

show the x-component of velocity deficits at three locations for both feature-aligned 

meshes. A range of progressively isotropically refined meshes are also considered. The cuts 

are made across lines (the coordinates are given in the figure titles) defined within the 

program ParaView. Across the three locations, both single and multiple wake approaches 

predict slightly higher velocity deficits compared to the most refined isotropic mesh.  
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It is difficult to determine from the present results whether the single or multiple 

wake approach provides the most physically realistic results. A more extensive grid 

independence study is required, as only a small range of meshes were considered. It does 

appear that both single and multiple wake approaches predict large velocity deficits across 

the three stations compared with the isotropic meshes. This indicates that the anisotropic 

elements present are more effective at resolving this effect. However, which result is 

physically ‘correct’ is unknown at this stage. Whilst at station 2 (figure 4.53) both 

approaches appear to be in close agreement, at station 3 (figure 4.54) the multiple wake 

approach is resolving a second peak in the velocity deficit which is not evident with any of 

the other meshes. Comparison with experimental data would be necessary for a proper 

validation of such behaviour. 

 

4.8.5 Wind Tunnel with Forward Facing Step, Inviscid Supersonic Flow, M = 3.0 

This test case has become a bench mark for validation of computational and 

numerical schemes and was investigated in detail by Woodward and Colella
[182]

. The 

problem involves a uniform Mach 3 flow through a wind tunnel containing a step. The 

original quad-dominant mesh is shown in figure 4.55. 

 

 

Figure 4.55: Initial unstructured quad-dominant mesh 
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Figure 4.56: Original Mach number contours 

 

This particular flowfield is interesting and presents a challenge for the medial axis 

process due to the way the shock wave develops around the step and then interacts and 

reflects off the walls of the tunnel. The flow structure changes throughout the time 

evolution of the flow. The solution at time t = 4 is shown on the original mesh in figure 

4.57. Whilst the flow at this time is still unsteady, it has been chosen due to the complexity 

in the flow structure, which provides a challenge for the robustness of the medial axis 

approach due to the fact that the shock fronts cross each other. The steady state flow is 

established at t = 12 but the resulting feature is not as interesting or complex. 

 

 

Figure 4.57: Extracted shock structure 

 

The resulting point cloud after the shock structure extraction is shown in figure 

4.57. This case actually highlights one of the issues with using the normal Mach number in 

that it can occasionally pick up structures which are not true shocks. Figure 4.57 shows that 

the extraction has picked up the expansion region around the corner. However, the 
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inclusion of this structure actually provides a more complex point cloud to test the 

robustness of the medial axis approach. The concave hull and unprocessed medial axis are 

displayed in figure 4.58 and 4.59 respectively. For the medial axis processing this case 

presents slightly more of a challenge compared with the previously presented external 

flows.  

 

 

Figure 4.58: Concave hull of extracted shock structure 

 

 

Figure 4.59: Constrained Delaunay triangulation with medial axis approximation 

 

It can be seen from the original solution and the corresponding extraction that the 

shocks cross over and intersect at a point. A zoomed-in image of this region is shown in 

figure 4.60.  This crossover initially appears represents a point where the medial axis 

branches out in four separate directions from a junction point. However, this is impossible 

since the medial axis approximation is based upon a triangulation where branches may only 

cross edges of the triangles.  
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Figure 4.60: Zoom of junction points at cross over region 

 

Figure 4.60 displays the type of scenario which occurs whenever a crossover 

appears in the extracted flow structure. It must be dealt with in a slightly different manner 

than a usual junction because, as the figure shows, this crossover point actually possesses 

two junction points in close proximity. The split of the medial axis allows the small 

bridging curve between the two points to be isolated and removed automatically. Such a 

scenario can easily be detected since the considered branch will be bounded by two 

junction points, and of small size. One other difficulty that appears in this case is that in the 

locations where the shock wave is reflected off the wall, the medial axis changes direction 

without a junction node appearing. This prevents a split from occurring using the 

previously described methods in Chapter IV. In an attempt to remedy this, after the 

polynomials are fitted, points of inflection are computed and the curve is then split at this 

location to indicate the change of direction. New polynomials are then fitted through the 

separated data. 

 

Since the SOLAR surface mesh is likely to fail during meshing if multiple curves 

actually intersect, the first and last points in each curve list are deleted to prevent this from 

occurring. This can be observed in the smoothed geometry curves in figure 4.61 where 

small gaps exist between each individual curve (the size of the gap is exaggerated for the 

purposes of the diagram). For this particular test case, the curve recombination is switched 

off as it resulted in a better quality set of final curves. The final flow feature curves are then 

appended to the geometry file prior to surface mesh regeneration. Figure 4.62 displays the 

resulting feature-aligned mesh. 
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Figure 4.61: Processed medial axis curves 

 

Figure 4.62: Feature-aligned mesh 

 

 

(a) 

 

(b) 

Figure 4.63: (a) Original Mach number contours and (b) Feature-aligned adaptive Mach 

number contours 
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 The medial axis process has allowed for a feature-aligned mesh to be generated 

which has improved the resolution of the flow structure considerably compared with the 

initial mesh, as observed in figure 4.63. It should be noted that generally this process of 

feature-alignment through mesh regeneration is not particularly suitable for unsteady 

problems, since the medial axis and mesh would be required to be regenerated at each time 

step. However, the case does provide a demonstration that the medial axis process can be 

used for considerably complex flow structures which occur for internal flows. It has also 

highlighted some limitations of the existing approach which were not evident for the 

previously presented external flows, leading to a number of general improvements in the 

medial axis process to allow different levels of complexity to be dealt with. 

 

4.9 Conclusions 

 A method to represent complex flow features as geometric entities using the medial 

axis has been described in this chapter. The feature curves are used to guide the location of 

background sources which influence mesh spacing and orientation of the mesh elements 

during the generation of unstructured quad-dominant meshes. The resulting feature-aligned 

meshes possess high-quality local regions of mesh which mimic the attributes of a 

structured mesh. This feature-aligned mesh can serve as a suitable starting point for a nodal 

redistribution scheme, which fully aligns the cell interfaces with the flow features based on 

the solution. The final meshes are aligned with the flow features to give high resolution in 

the feature normal direction. 

 

 The process has been demonstrated for a range of two-dimensional test cases with 

multiple types of flow features of varying complexity. As an extension of the structured 

block insertion method
[57]

, the present work aimed to address the issues regarding the 

reduction and removal of user interaction for the feature-alignment step and has made 

significant steps towards achieving this; as well as extending the range of application to 

more complicated cases. Improved solution accuracy is obtainable by the increased 

suitability of the mesh for the schemes which capture and resolve the flow features. Mesh 

efficiency is also improved through the use of high-quality non-skewed anisotropic 

triangular elements applied in the vicinity of highly directional flow features.  
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CHAPTER V 

Feature-Aligned Hex-Dominant Mesh Block Insertion: Part I: 

Shock Waves 

 

5.1 Introduction 

At transonic flow conditions, shock waves can possess extremely complex 

structures and in close proximity to the object surface. This means that any adaptation 

scheme must be applied on both surface and volume meshes. In the context of unstructured 

meshes, the anisotropic adaptation for a fully tetrahedral mesh will lead to highly skewed 

surface and volume elements. In hybrid meshes, different regions of elements must be 

identified in order to apply a suitable adaptation scheme. For either type of unstructured 

mesh, part or all of the shock wave will be resolved by anisotropic tetrahedra. Techniques 

which have been established in the literature for embedding blocks of prismatic elements 

have been applied to supersonic shock waves only. This is primarily due to a supersonic 

shock wave such as a bow shock around a rounded leading edge, lends itself more readily 

to geometric representation. Furthermore, the bow shock is also not attached to the 

geometry. The complexity of transonic shock waves has meant development and 

application of feature-aligned mesh generation methods has not been considered before - 

standard adaptation schemes are usually implemented instead, but even they may be 

problematic for adaptive surface meshing in viscous computations. 

The present chapter describes a method to allow for a hex-dominant mesh block to 

be embedded into the hybrid volume mesh which is aligned with complex transonic shock 

waves. The generation of shock aligned surface meshes is first considered, which makes 

use of the medial axis functionality described in the previous chapter. A method to 

decompose the extracted three-dimensional point cloud is described which allows growth 

information to be calculated for each part of the shock. An extrusion process which grows 

selected surface mesh faces in the shock wave region to grow beyond the nearfield mesh, 

aligned with each portion of the shock wave is then presented. The approach is applied to a 

couple of test cases to demonstrate its effects on the numerical solution. 
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5.2 Generating Shock-Aligned Surface Meshes 

   

Figure 5.1: Extracted shock wave point cloud for ONERA M6 wing 

The main subject of the present chapter is generation of shock-aligned mesh blocks 

which are embedded into a hybrid volume mesh. This section will focus on a particular 

shock wave, namely the ‘lambda’ shock which manifests itself during transonic flow 

around an M6 wing. The actual flow results are discussed in section 5.4.1, but the main 

shock structure obtained from this test case is presented and discussed here to allow for an 

introduction to the shock-aligned mesh insertion technique developed as part of this thesis. 

Figure 5.1 displays the extracted shock structure. The main lambda shape is evident, 

with a weaker shock towards the leading edge emanating from the main shock. There are 

also some complexities in the structure at the wing tip, where the shock wave bifurcates. 

The figure also displays that the extracted shock point cloud is not at a constant height, and 

the mesh block growth process will attempt to take this into account. 

As discussed previously, SOLAR generates unstructured quad-dominant surface 

meshes for three-dimensional problems. The process described in Chapter IV which 

allowed for curves to be embedded into the surface also applies for non-planar surfaces. 

This means that provided suitable curves can be generated, the unstructured quad-dominant 

surface mesh can be aligned with the shock wave footprint. For transonic problems, the first 

task is to therefore represent the shock footprint as a series of curves to allow the surface 

mesh alignment to occur. 

The medial axis process can be applied to generate these curves, as shown in figures 

5.2 and 5.3. After extraction of a three-dimensional shock point cloud, it is transformed to a 

two-dimensional problem by setting the z-coordinate values to zero. This is tantamount to 

considering the footprint of the shock wave. After creation of the smoothed shock curves, 
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they are projected onto the upper wing surface to obtain the correct z-coordinates. 

Anisotropic background sources are then applied along the shock curves, just as in the two-

dimensional cases, and the mesh is regenerated. The result is a quad-dominant surface mesh 

aligned with the shock curves with high-quality structured-like elements. 

 

Figure 5.2: (a) Extracted shock footprint, (b) concave hull and (c) constrained Delaunay 

triangulation 

 

Figure 5.3: (a) Extracted medial axis and (b) final smoothed medial axis curves projected 

onto wing surface 

(a) (c) 

(a) (b) 

(b) 
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After generation of a shock-aligned surface mesh (figure 5.4), a standard SOLAR 

run will maintain this alignment through the nearfield region only. It became apparent that 

it would be useful if the advancing layer mesh was allowed to continue to grow beyond the 

nearfield mesh, aligned with the shock wave. This would avoid the generation of isotropic 

tetrahedra in the shock region which are generally unsuitable for resolution of anisotropic 

flow features. 

 

Figure 5.4: Surface mesh aligned with shock footprint 

5.3 Volume Mesh Generation  

SOLAR generates hybrid volume meshes which are composed of a mixture of 

elements. The types of element allowed in the mesh are hexahedra, prisms, pyramids and 

tetrahedra. After generation of an unstructured quad-dominant surface mesh, advancing 

layers are grown yielding a nearfield mesh comprising of hexahedral and prismatic 

elements, which are suitable for the resolution of viscous layers. A buffer mesh is then 

generated around the nearfield, made up of pyramids and tetrahedra in order to provide a 

conformal interface for the farfield tetrahedra created using a Delaunay point insertion 

method. The farfield tetrahedra are isotropic in nature, that is, they are only suitable for 

capturing regions of the flow where the solution behaves in a uniform manner.  

The present section describes the methods developed during the project which allow 

extrusion of unstructured-quad dominant meshes, leading to the generation of hex-
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dominant meshes aligned with transonic shock waves. The resulting mesh blocks should 

provide higher quality resolution of the shock wave and thus allow improvements in the 

numerical solution to be obtained. 

5.3.1 Generation of Shock-Aligned Mesh Blocks 

During the project two approaches were implemented for the generation of shock-

aligned mesh blocks for transonic problems. The block growth process is essentially the 

same for each, but the method to identify faces to extrude from is distinctly different. The 

first approach involved extrusion of a target surface mesh (i.e. the upper wing surface 

mesh). The implementation of such an approach was much simpler to carry out, but carried 

two distinct disadvantages. The extrusion of the surface mesh led to an extremely high 

number of mesh cells being generated, particularly for a refined surface mesh. This method 

also led to the potential for a large number of poor quality elements in the buffer region of 

the mesh block, after extrusion of faces near the leading and trailing edges. More 

importantly, the block can only grow aligned with one part of the shock wave and therefore 

the alignment of the block with other parts of the shock wave was not particularly good. 

This method was tested, and presented by the present author
[194]

 but eventually discarded in 

favour of the second technique. A slice of the volume mesh after application of the original 

approach is displayed in figure 5.5. 

     

Figure 5.5: Original technique involving extrusion of the entire surface mesh
[194]

 

The second approach exploits the presence of the medial axis curves representing 

the shock footprint in the CAD model to create the mesh block. The resulting mesh block 

matches the shape of the shock wave. The medial axis curves allow the surface mesh faces 

in the vicinity of the shock footprint to be identified, as well as providing a means to 

decompose the extracted three-dimensional shock point cloud. This allows portions of the 
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mesh to grow aligned with each section of the shock and to varying heights. The following 

section will describe this particular process in more detail. 

Stage 1: Decomposition of Shock Wave 

A transonic shock wave possesses a complex structure which can prove problematic 

for the insertion of feature-aligned hex-dominant mesh blocks. Different shock branches 

may have dissimilar heights and curvatures (figure 5.1) making the alignment for all parts 

of the shock wave by extruding the entire surface mesh impossible. The medial axis curves 

can be exploited to allow a decomposition of the shock wave to occur in both a two- and 

three-dimensional sense.  

For each medial curve a simple polygon enclosing the curve is constructed, as 

displayed in figure 5.7(a). Then, by considering the x and y coordinates of the shock points, 

a ray casting algorithm can be used to identify which points exist in each polygon. The ray 

casting algorithm is a simple test which computes the number of times a ray, passing from 

the exterior of a polygon to the point under consideration, intersects an edge of the polygon. 

If the number of intersections is odd, then the point exists inside the polygon. For an even 

number of intersections, the point lies outside the polygon. This process is displayed in 

figure 5.6, where the ray has intersected the polygon a total of five times, and therefore 

must exist within the polygon. 

 

Figure 5.6: Ray casting algorithm – a ray emanating from the exterior of the 

polygon to the test point intersects the polygon an odd number of times, indicating that the 

point is on the interior 

Whilst the decomposition algorithm is implemented in two-dimensions for the 

shock wave footprint points, it also allows for decomposition of the shock wave in a three-
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dimensional sense (since the point indices remain the same – only the z-coordinate was set 

to zero to transform the point cloud into two-dimensions). In figure 5.7(b), each shock 

portion is associated a label ‘A’, ‘B’ and ‘C’. With this data, information such as estimated 

shock heights for each part of the shock wave can be identified, which will assist in the 

generation of the mesh block. In the regions where polygons intersect, points may appear in 

more than one polygon after application of the ray casting algorithm. For simplicity, in the 

current implementation, these points are simply discarded. Figure 5.7(a) shows an example 

of the polygons constructed and a result of the decomposition algorithm, where the points 

are coloured based on the polygon they exist in.  

                              

Figure 5.7: (a) Construction of polygons around each medial curve and (b) resulting 

decomposed point sets 

Stage 2: Compute growth information for each portion of the shock 

After decomposing the shock, information about each portion can be collected. Of 

initial interest is the height of the shock portion, which can be found by searching for the 

point with the highest z-coordinate. If the height of the shock portion is within the 

estimated height the nearfield mesh will grow, then the associated medial curve is discarded 

for the extrusion process (the shock will already be approximately aligned within the 

nearfield due to the surface mesh alignment). Note that for the shock wave displayed in 

figure 5.2, the shock bifurcation at the wing tip (shock portion ‘C’ in figure 5.7(b)) has 

been discarded since this portion of the shock curve is below the estimated final nearfield 

height. For each remaining portion, a target number of layers are computed based on the 

portion height. To ensure the shock wave is completely enclosed by the mesh block, the 

computed maximum z-coordinate is slightly increased by 10%.  

(a) (b) 

A 
B 

C 
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Referring to figures 5.1 and 5.7, the maximum height of shock portion B is some 

fraction of shock portion A. Therefore, if the user requests that the maximum number of 

layers is 20, the set of faces associated with medial curve A will grow 20 layers, whereas 

the set of faces associated with medial curve B will grow some proportion of this number, 

corresponding to the calculated ratio of the heights. For example, if the maximum height of 

shock portion B is computed to be 60% of shock portion A, then shock portion B will grow 

12 layers. Since all shock portions grow at the same time, the height of a particular layer 

will be the same throughout the entire mesh block. 

For each remaining curve (‘A’ and ‘B’ – recall that ‘C’ has been discarded) the mid-

point is calculated and a surface is constructed at this position, perpendicular to the curve as 

shown in figure 5.8. The three-dimensional shock points associated with that particular 

medial curve are projected onto these virtual surfaces if they are in the vicinity of the 

surface. The aim of this process is to simplify the problem and allow approximate growth 

vectors to be calculated for each shock portion. Figure 5.8(b) shows a typical result of the 

projection. For the projected points, a least-square fit is made to obtain a polynomial 

expression describing the curvature of the shock at the midpoint of the medial curve. This 

polynomial can then be differentiated at discrete points (the number of points corresponds 

to the number of layers that are required to be grown) to allow computation of the tangent 

vectors. This provides the directions that each portion of the mesh block will grow. 

 

Figure 5.8: (a) Projection of nearby shock points onto surface defined at medial curve mid-

point, (b) projected points on surface and (c) polynomial fit through projected shock points 

 

(a) (b) (c) 
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Stage 3: Identification of the faces of the surface mesh that will be extruded 

The medial axis curves prove useful not only for generating the alignment of the 

surface mesh in the first instance, but also providing a means to automatically identify the 

surface mesh faces which will form the base of the mesh block. Furthermore, due to the 

almost structured-like nature of the quadrilateral elements in the vicinity of the curves, the 

resulting mesh block surface follows the shape of the medial axis curves.  

The method to identify a suitable set of faces for the extrusion is as follows. The 

surface mesh generator will force some of the nodes to lie precisely along the shock curves. 

These nodes can be identified, which then allow the mesh faces attached to these nodes to 

be found. The resulting rows of faces (one row either side of the curve) are then expanded 

into the surface mesh, row by row, until a suitable thickness of surface mesh has been 

obtained (the number of expansion layers is configurable by the user and influences the 

block thickness). This process is carried out for each medial curve, resulting in a set of 

faces associated with each curve. After obtaining each individual set, the union and 

intersection of these sets are found. The intersection set contains faces belonging to 

multiple medial curves. For faces which appear in the intersection set (figure 5.9(c)), they 

are removed from the set which belongs to the shortest medial curve. After this operation, 

the number of faces in the union set must be equal to the number of faces in each of the 

individual sets.  

 

Figure 5.9: Face set identification from the medial axis shock footprint curves (a) individual 

face sets, (b) union of the faces and (c) intersection set of the faces  

(a) (b) (c) 
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 Whilst the medial curves allow for the quadrilateral surface mesh to exhibit some 

structured-like qualities, the mesh is still inherently unstructured. This means that the 

exterior boundary of the selected mesh faces may be irregular in some locations. This 

eventually will manifest itself as an irregular mesh block boundary. Another problem is that 

the local mesh in the vicinity of two medial curves in close proximity is usually of poor 

quality, as indicated in figure 5.10. Preventing these elements from appearing in the surface 

mesh is difficult to control, and is again due to the inherently unstructured nature of the 

mesh. However, the resulting set of faces still approximately follows the shape of the 

underlying medial curves i.e. allows for a lambda-shaped set of faces to be identified. 

 

Figure 5.10: Poor quality quadrilaterals generated at the intersection region 

Stage 4: Nearfield mesh block growth 

The node marching directions and layer heights are computed for each node of the 

faces identified in Stage 3. It is important that the layer growth is consistent with the 

standard advancing layer algorithm in SOLAR to ensure nearfield mesh quality later on. 

The new node locations are calculated and a layer of cells is added to the mesh block. 

 

Figure 5.11: Nearfield growth for selected surface mesh faces 
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Stage 5: Modification of the growth direction 

After the required number of nearfield layers has been grown, the growth direction 

and layer height is changed to the computed values obtained from stage 2 to allow the mesh 

block to continue growing in order to cover the extent of the shock wave. The cell indices 

of the elements generated in this stage are recorded for use in the buffer mesh creation in 

the next step.  

During the loop over the targeted faces (i.e. the union set), the process will check 

which individual set the face belongs to (portion ‘A’ or portion ‘B’), and apply the 

corresponding growth vectors that are associated with that particular shock portion to the 

nodes of that face. If the current layer number is below the target number of layers 

computed for that particular set of faces, the layer will grow, otherwise it will stop. This 

allows the mesh portions to grow to different heights, as shown in figure 5.12. 

 

Figure 5.12: Mesh block growth beyond the nearfield to enclose the shock wave 

Stage 6: Generation of the buffer mesh  

The cells which were found in the previous step are considered in turn. If a cell is 

found to be on the exterior the mesh block (i.e. one or more of the cell’s faces will not have 

a neighbouring cell) then it is flagged as a buffer cell. These cells are split by inserting a 

new point at the centroid of the cell and connecting this point to the existing cell vertices. 

For a hexahedral element, this leads to the creation of six new pyramids elements per cell 

considered. For the triangular prism cells (recall that the surface mesh is quad-dominant – 

there is a chance triangular elements may be present), the resulting split leads to two 

tetrahedra and four pyramids. Another cell splitting function will replace each boundary 

pyramid with two tetrahedral cells by splitting along the diagonal of the quadrilateral 
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boundary face. This provides the conformal interface required for the surrounding farfield 

tetrahedral mesh. 

 

Figure 5.13: Generation of the buffer mesh for outer layer of cells above the nearfield mesh 

Mesh conformity is guaranteed since the boundary cells will always be hexahedra or 

prisms and their boundary faces will always be quadrilateral (i.e. the prisms will never have 

their triangular faces on the boundary) after construction of the mesh block. Once the 

splitting operation is complete, the external shell of the mesh block comprises of two 

distinct sections: the nearfield (quadrilateral faces - green) and the buffer mesh (triangular 

faces - blue) – see figure 5.13. 

Stage 7: Growth of the nearfield from the remaining surface mesh faces  

The remaining surface mesh of the model is constrained to grow along the 

quadrilateral faces of the extruded mesh block. The layers continue to grow until a 

triangular face (i.e. the start of the buffer mesh) is encountered. Essentially, as the mesh is 

grown the nodes ‘snap’ to the pre-existing quadrilateral layers, shown in figure 5.14. This is 

the reason for ensuring the nearfield section of the mesh block was grown consistently with 

the standard advancing layer algorithm in order to preserve mesh layer quality. The process 

continues to grow layers until an exterior triangular face is encountered, i.e. the start of the 

buffer mesh, essentially concealing all the boundary quadrilateral faces.  After constructing 

a buffer mesh for the new nearfield, the outer shell of the whole mesh block is now entirely 

made up of triangular faces (figure 5.15). 
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Figure 5.14: Constrained nearfield growth from remaining faces 

Stage 8: Generation of the farfield mesh.  

The global triangulated surface mesh is updated by adding the external triangular 

faces of the mesh block shell. This new global surface mesh provides the necessary input 

for the farfield meshing process which generates Delaunay tetrahedra with a point insertion 

method. After the tetrahedra have been constructed, a boundary recovery process must 

occur. Delaunay point insertion methods start with a tessellation of the surfaces, and it is 

required that the internal tetrahedra respect the original tessellation. In three-dimensions, 

there is no guarantee that the surface triangulation will be satisfied. A boundary recovery 

process must occur to perform a number of edge and face operations to recover the surface 

triangulation, such that it appears in the final volume mesh. If the boundary recovery is 

successful, the mesh block is then merged into the final global volume mesh. The result is a 

fully conformal hybrid volume mesh suitable for the TAU flow solver. A typical result of 

the process is displayed in figure 5.16. 
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Figure 5.15: Triangulated outer shell of lambda-shaped mesh block merged into nearfield 

shell around wing 

 

Figure 5.16: Slice of final hybrid volume mesh including the shock aligned mesh block 

5.3.1.1 Summary of Process 

 Generate surface mesh aligned with shock footprint 

 Construct polygons for each medial curve and apply ray casting algorithm to 

decompose shock wave point cloud 

 Compute growth information for each shock wave portion 

 Determine sets of surface mesh faces attached to each medial curve 

 Loop over the target faces and grow the nearfield portion of the mesh block  

 Change the growth direction: identify the set the current face belongs to and grow 

face nodes in the direction associated with that face set. Record cell indices. 

 Create buffer mesh for cells flagged in the previous step 
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 Grow nearfield from remaining surface mesh faces, the mesh is constrained to grow 

along the quadrilateral faces of the extruded mesh block 

 Update the global surface mesh and generate the farfield tetrahedral mesh 

5.4 Test Cases 

5.4.1 ONERA-M6 Wing: 3D Viscous Transonic Flow,    = 0.8395, α = 3.06
o
, Re = 

11.72x10
6
 
[183]

 

 

Figure 5.17: Slice of the original hybrid mesh at wing mid-span 

A slice of the original hybrid mesh is displayed in figure 5.17, with pressure 

coefficient contours at four different spanwise stations across the wing in figure 5.18. The 

application of the medial axis process and hex-dominant mesh block insertion for this test 

case have been presented in the previous section (figures 5.6 to 5.16). The medial axis 

approach is employed to initially align the surface mesh with the shock footprint. The 

extrusion functionality is then applied to generate a high-quality hex-dominant mesh block 

through extrusion of selected surface mesh faces attached to the medial curves. 

The shock wave footprint in this case is quite complex, particularly at the wing tip. 

After treatment of the shock footprint as a two-dimensional problem, the medial axis curves 

are generated and then projected onto the upper wing surface. The intermediate steps of the 

medial axis process are displayed in figures 5.2 and 5.3: the extracted point cloud, concave 

hull polygon, constrained Delaunay triangulation, unprocessed medial axis and final 

projected curves. It can be observed that the approach has captured all the complexities of 

this particular shock footprint. The resulting shock-aligned surface mesh is shown in figure 

5.4. The surface mesh can be seen to be made up of high-quality structured-like 

quadrilaterals which are aligned with the feature curves that had been previously generated.  
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Figure 5.18: Pressure coefficient contours for original mesh at four spanwise stations across 

wing (a) y/b = 0.2, (b) y/b = 0.5, (c) y/b = 0.8 and (d) y/b = 1.1 

After the shock decomposition process, only two of the three shock portions are 

deemed to be above the estimated boundary layer height. The bifurcation of the shock at the 

wing tip is therefore not considered when constructing the face sets. The surface mesh 

alignment will be maintained throughout the standard nearfield mesh to allow for alignment 

with the part of the shock wave closest to the wing surface.  

The process provides good alignment of the cells with the shock wave in the final 

mesh. However the current implementation will still only provide approximate alignment 

with the shock wave, in a similar fashion to the two-dimensional initial feature-aligned 

meshes presented in Chapter IV. A three-dimensional implementation of the nodal 

movement algorithm could be used within the mesh block in order to provide full 

alignment of the shock wave with the cell interfaces. However, during the present study it 

was found to be very difficult to successfully adapt within the mesh block without 

distorting the buffer mesh of pyramids. Furthermore, adapting the nearfield layers 

particularly those closest to the wing surface also caused problems. This was because some 

nodes were displaced by distances greater than their proximity to neighbouring nodes, 

causing inverted elements to appear in the mesh. 

To assess the quality of the solution of the feature-aligned meshes, a study of drag 

coefficients is performed for a range of standard (i.e. no feature-alignment) hybrid meshes 

(a) (b) 

(c) (d) 
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with different levels of global mesh refinement. Experimental drag coefficient data is not 

available for this particular test case. Due to computational resources (the version of 

SOLAR was only available on a local workstation) the maximum number of elements was 

set to six million. The data from these progressively refined meshes are used for the 

purpose of assessing the performance of the feature-aligned mesh. For further comparison, 

the original mesh is adapted using an anisotropic metric and refined in the nearfield mesh 

region using the TAU adaptation module. The mesh is refined until the number of elements 

reached a similar number as that for the feature-aligned mesh. As the present feature-

alignment method only refines the mesh in the shock region, in order to attempt to make a 

fair comparison, the Hessian of the pressure variable is used to define the anisotropic 

metric. This is because the adaptation will only be sensitive to the presence of the shock 

wave and will not adapt to the shear layers in the trailing wake. 

Figure 5.19 and Table 5.1 displays data collected from the drag coefficient study. 

One can observe the convergence of the drag coefficient as the number of elements 

increases towards the upper limit. Note that whilst this grid independence study has given a 

converged drag coefficient value for the purposes of comparison, which is assumed as the 

‘exact’ solution for the set of partial differential equations describing this particular flow, 

whether the value is ‘correct’ in the physical sense is unknown due to the lack of 

experimental data. It should also be noted that further isotropic refinement of the mesh may 

in turn lead to further variations in the drag coefficient, but of course such simulations will 

become increasingly expensive to compute. The data presented in figure 5.19 and Table 5.1 

can be used however to verify that the presence of the shock-aligned mesh block has a 

favourable impact on the numerical solution, relative to the isotropic refinement.  

On the chart four individual meshes have been highlighted. The most refined mesh 

containing around 5.9 million elements is considered as the grid-independent drag 

coefficient for these flow conditions. The base mesh for feature-alignment, comprising of 

approximately 0.9 million elements, is the mesh upon which the feature-extraction, medial 

axis and extrusion processes are applied. This is the coarsest mesh considered for the 

present study. Other than the addition of background sources along the shock wave curves 

to cluster and force alignment of the surface mesh elements, the background spacing files 

for the base mesh and feature-aligned mesh are identical. This means that the spacing of 

both meshes in regions such as at the leading edge or in the wake will be the same. 
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Figure 5.19: Drag coefficient study 

The generation of the hex-dominant mesh block aligned with the shock wave has 

introduced approximately an extra 0.8 million elements into the mesh, leading to a total of 

1.74 million elements for the feature-aligned mesh. The resulting final drag has dropped by 

approximately 5.0 drag counts, matching a drag coefficient which was obtained with an 

isotropically refined mesh of 3.7 million elements. These results indicate that the feature-

alignment process has enhanced the ability of the hybrid mesh to capture and resolve the 

shock wave, leading to improved accuracy in a more efficient manner. The adapted mesh 

has also provided an improved drag coefficient, with a decrease of approximately 2.0 drag 

counts. Improvement on the solution in terms of the drag coefficient is not of the same 

magnitude as the feature-aligned mesh. This could be due to the highly stretched elements 

in the shock region degrading the potential for accurate capture of the shock wave and thus 

substantial improvement in the final drag coefficient.  
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Mesh Number of Elements 

(x 10
6
) 

Drag Coefficient Lift Coefficient 

Original mesh 0.94 0.013757 0.2032 

Refined mesh 1 1.02 0.013602 0.2035 

Refined mesh 2 1.64 0.013502 0.2035 

Refined mesh 3 1.91 0.013395 0.2034 

Refined mesh 4 2.55 0.013304 0.2031 

Refined mesh 5 3.73 0.013267 0.2033 

Refined mesh 6 4.95 0.013231 0.2031 

Refined mesh 7 5.57 0.013195 0.2035 

Isotropically refined mesh 5.91 0.013193 0.2034 

Feature-aligned mesh 1.74 0.013259 0.2044 

Adaptive mesh 1.71 0.013544 0.2048 

 

Table 5.1: Comparison of drag and lift coefficients  

Further improvements in the drag coefficient may be possible through adaptation of 

the feature-aligned mesh. The feature-aligned mesh has only modified the original mesh in 

the shock wave region, and since it has been observed that the resolution of the mesh at the 

leading and trailing edges can substantially affect the final result, intuitively one might 

expect that subsequent refinement of the feature-aligned mesh in these regions could further 

improve the solution. 

Unfortunately, for the feature-aligned meshes, the TAU refinement techniques for 

prismatic and hexahedral cells are unable to be employed. This is because the refinement 

algorithms were not designed to work on these new types of mesh which SOLAR can now 

generate. For example, TAU identifies different regions of elements such that the 

appropriate refinement or coarsening template, based on the type of element, is applied. 

Currently TAU identifies prism and hexahedra piles adjacent to body surfaces which 

represent the nearfield mesh, but will fail to recognise the mesh block which has grown 

beyond the nearfield to cover the shock wave, or the mesh blocks present in the wake / 

vortex region. Therefore the TAU adaptation module is currently not applicable within the 

feature-aligned mesh blocks. The nodal movement scheme implemented in SOLAR during 
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the period of this thesis is therefore applied within the hex-dominant mesh blocks (with 

care to avoid distorting the buffer mesh). Unfortunately, the present nodal movement 

scheme is unsuitable for the viscous transonic shock cases, due to the difficulty to adapt the 

nearfield mesh in three-dimensions. The proximity of adjacent nodes in the hexahedra piles 

means it can be difficult to maintain the validity of the elements when the nodes are 

displaced. Furthermore, adapting the surface mesh and the volume mesh separately is 

difficult for hybrid meshes. However, the nodal movement scheme was successfully 

implemented and tested for the feature-aligned hexahedral mesh blocks for wakes and wing 

tip vortices, presented in Chapter VII. The tetrahedral adaptation schemes implemented in 

TAU are only valid for the surrounding farfield tetrahedra, but could also be applied on the 

feature-aligned meshes outside of the hex-dominant mesh blocks if desired. 

Figure 5.20 compares the shock resolution at four spanwise stations for the feature-

aligned mesh. The feature-aligned mesh provides better resolution of the shock, compared 

with the original mesh (figure 5.18), due to the nature of the high-quality cells within the 

mesh block. The resolution of the weaker shock wave near the trailing edge is also 

significantly improved. The adaptive mesh also improves the shock resolution compared 

with the original mesh, as shown in figure 5.21.  Figure 5.22 displays the adaptation on the 

surface of the wing. Above the nearfield portion of mesh, the highly stretched tetrahedra 

can be observed, which have failed to provide the same level of resolution of the shock 

compared with the feature-alignment approach.  

Finally, a comparison of the convergence histories for the feature-aligned mesh, 

adaptive mesh and the refined mesh that gave the closest drag coefficient to the feature-

aligned mesh (i.e. refined mesh 5) are shown in figure 5.23. The small spike in the feature-

aligned and adaptive mesh residuals occur when restarting the solution after interpolation of 

the original solution onto the new mesh. Both the feature-aligned and adaptive meshes 

converge considerably faster than the refined isotropic mesh. There is not a considerable 

difference between the convergence rates for the feature-aligned and adaptive meshes. The 

adaptive mesh residual can be seen to temporarily oscillate during the adaptive cycles, due 

to the interpolation step associated with every cycle. After the adaptation is complete, the 

residual converges at a slightly slower rate than the feature-aligned mesh. However, the 

skewed elements of the adaptive mesh in this case appear to have no detrimental effect on 

the convergence as was observed in Chapter IV for the two-dimensional triangular adaptive 
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case. It must be pointed out that the nearfield mesh for the present case is fully hexahedral / 

prismatic, whereas the two-dimensional mesh was completely triangular. The convergence 

behaviour of a fully anisotropic adaptive tetrahedral mesh therefore remains to be seen, 

although it is unlikely that a three-dimensional viscous simulation would be run using a 

fully tetrahedral mesh. The use of such a mesh would be more appropriate for an inviscid 

case where near-wall viscous effects do not need to be resolved. 

It is necessary to make a comment about the relation between mesh resolution, 

pressure distributions and the lift coefficient. In the construction of progressively refined 

meshes it became apparent that the resolution of the mesh, particularly at the trailing and 

leading edges, had a significant impact on the converged shock location, hence the pressure 

distribution and the computed lift coefficient. The resolution of the original mesh also 

affects the ability of the mesh to capture all of the shock complexities. This is an important 

consideration for geometric representation approaches, which require a fairly well resolved 

flow feature on the initial mesh. 

The current process seeks to refine the mesh in the shock wave regions only. The 

resolution of the mesh everywhere else in the domain remains the same as the original 

mesh. Therefore, the initial mesh resolution must be sufficient to predict an accurate shock 

structure and location. If this is not the case, the refinement may lead to the shock location 

changing and the refined region being in the incorrect location. Whilst the extrusion process 

itself is automatic, it is not currently aimed at being an iterative process due to the fact that 

the entire mesh must be regenerated and this can be time consuming.  

Over the range of meshes presented in figure 5.19, the variation of lift coefficient is 

particularly small and also shows no convergence as the mesh size decreases. These values 

are presented for each mesh in Table 5.1. The feature-aligned mesh and adaptive mesh 

provide slightly higher lift coefficients (although the actual difference is about 0.5% which 

could be considered negligible) compared with any of the isotropically meshes, although 

the reasons for this small difference are unclear. The only differences between the adaptive 

and feature-aligned mesh compared with the other meshes are the number and type of 

elements in the shock wave region. 
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Figure 5.20: Pressure coefficient contours for feature-aligned mesh at four spanwise 

stations across wing (a) y/b = 0.2, (b) y/b = 0.5, (c) y/b = 0.8 and (d) y/b = 1.1 

 

 

 

(a) 

(b) 

(c) 

(d) 
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Figure 5.21: Pressure coefficient contours for adaptive mesh at four spanwise stations 

across wing (a) y/b = 0.2, (b) y/b = 0.5, (c) y/b = 0.8 and (d) y/b = 1.1 

Whilst the pressure distributions from the coarsest mesh to the finest isotropically 

mesh are essentially the same, the resolution of the shock waves away from the nearfield is 

particularly poor, even for the most refined isotropic mesh, due to numerical diffusion 

smearing the shock. This may explain the range of values observed for the drag coefficient, 

since the presence of shock waves contributes to the overall drag. How well the numerical 

solution resolves this feature can therefore be expected to have an effect on the final value. 

Isotropic refinement will eventually increase the number of points in the shock region to 

(a) 

(b) 

(c) 

(d) 
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improve the shock resolution, but this approach is computationally expensive. The focus of 

the present approach is therefore on reducing the error at the shock through the use of more 

suitable elements, thus ultimately improving the resolution of the shock and final drag 

coefficient in a numerically efficient manner. 

Drag prediction is an important area of computational aerodynamics. The range in 

the drag coefficient from the coarsest mesh to the finest mesh is almost 6.0 drag counts 

(where one drag count is equal to 10
-4

). A drag decrease can be equated to decreasing the 

aircraft weight that is required to carry a specified payload over the required distance. 

Minor changes in the drag can therefore be extremely important: a single drag count can in 

some cases be the equivalent to the weight of a couple of passengers
[184]

. In order to 

accurately assess designs, the computational methods employed to predict the drag must be 

reliable. The application of the shock-aligned mesh block insertion method has indicated 

that improvements in the predicted drag coefficient can be obtained at a fraction of the 

number of elements associated with isotropic refinement. 

 

Figure 5.22: Adaptation of the nearfield mesh in the shock region 



145 

 

Figure 5.23: Convergence history comparison for feature-aligned mesh, adaptive mesh and 

isotropically refined mesh  

 

5.4.2 DLR-F4, Transonic Viscous Flow:    = 0.75, α = 2.0
o
, Re = 3.0 x 10

6
 

Figure 5.24 shows the extracted shock structure for this case. It is also lambda-

shaped, but does not include the bifurcation at the wing tip. The points corresponding to the 

branching shock are at a lower height than the points within the main shock wave, which 

the mesh block growth process attempts to take into account after decomposition of the 

extracted shock wave point cloud. 

Due to the setup of the geometry for this case, the application of the surface mesh 

alignment process and extrusion process is not as trivial as it was for the M6 wing case 

presented previously. The topology of the shock wave is simpler as there is no bifurcation 

of the shock wave at the wing tip. However, the generation of the surface mesh becomes 

more complicated as the upper wing surface is made up of multiple zones which are 

meshed independently, instead of a single zone as with the M6 wing. This means that the 

medial curves had to be manually split where they passed from one surface to another – 

they cannot intersect or cross the common curve that the two surfaces share at their 

intersection. The two zones must also be meshed individually. In order to allow the 
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extrusion process to be applied across the entire wing surface, the two upper wing surface 

zones are first merged together to form a single surface mesh, the result of which is 

displayed in figure 5.25. 

 

Figure 5.24: Extracted shock structure  

Whilst generation of a feature-aligned volume mesh for this case appears to have 

been successful, there were problems in generating a mesh that TAU will accept. The mesh 

initially appears to be suitable for TAU input, and as indicated by figures 5.26 and 5.27 it 

can be visualised by post processing software. However, during the TAU element validity 

and quality checks which are carried out prior to the solution, the mesh is rejected due to a 

number of invalid elements. The reason for the invalid elements occurring in the mesh has 

yet to be determined. Due to time constraints unfortunately this issue was not able to be 

resolved within the timeframe of the PhD and writing of this thesis.  

As the mesh was successfully output by SOLAR, the size of the mesh can be 

reported. The original, non-aligned mesh possessed 2.4 million elements. After application 

of the feature-alignment process, the mesh block was made up of around 1.4 million 

elements in total. This includes all the hexahedra and prisms, as well as the pyramids and 

tetrahedra within the buffer mesh. After generation of the surrounding nearfield mesh and 

generation of the farfield tetrahedra, the final mesh contained approximately 3.9 million 

elements. Whilst no solution was obtainable, it is envisaged that similar effects as those 
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observed for the M6 wing case, certainly in terms of shock wave resolution. The effects on 

aerodynamic quantities such as the drag coefficient remain to be seen. 

   

Figure 5.25: View of extracted shock structure and merged upper-wing surface meshes 

aligned with shock footprint 

   

Figure 5.26: Shock aligned surface mesh and embedded shock-aligned mesh block 

 

Figure 5.27: Surface aligned mesh and shock-aligned mesh block embedded in hybrid 

volume mesh  
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5.5 Conclusions 

A method to grow shock-aligned hex-dominant mesh blocks which can be 

embedded in a conformal manner into a hybrid volume mesh has been presented for 

transonic shock waves. The method initially involves aligning the surface mesh using the 

medial axis curves representing the shock footprint. The medial curves allow construction 

of polygons which are used to decompose the extracted shock data into portions. For each 

portion of the shock wave, heights and growth curves can be estimated. After identifying 

sets of surface mesh faces attached to each medial curve, the faces are extruded beyond the 

nearfield mesh to be grown aligned with the shock wave using the previously computed 

growth information. The result is a mesh which includes semi-structured regions of 

hexahedral elements aligned with the complex transonic shock structure. 

 Compared with global isotropic refinement of the mesh, the inclusion of the shock-

aligned mesh block has been shown to provide improvements in shock resolution and drag 

prediction with significantly lower number of elements. This is due to the increased 

suitability of the mesh for the approximate Riemann solvers applied across the cell 

interfaces. An indication of the improved efficiency can be observed from the comparison 

of the convergence histories, where the feature-aligned mesh converges more rapidly than 

the isotropically refined mesh. The method also provided improved results compared with 

the anisotropic adaptive hybrid mesh, relative to the most refined isotropic case.  
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CHAPTER VI:  

Feature-Aligned Hex-Dominant Mesh Block Insertion: Part II: 

Wing Tip Vortices and Wakes 

  

6.1 Introduction 

 Predicting the behaviour and lifetime of wing tip vortex flows offers a significant 

challenge in computational aerodynamics and has been the subject of a number of 

studies
[73, 186-170, 195, 196]

. Wing tip vortices can persist for long periods of time and can 

present safety concerns for following aircraft. It is therefore important that such features 

can be effectively modelled and resolved by simulations. Successful resolution of the 

vortices can also allow assessment of different wing tip devices to be effectively made. 

From a numerical point of view, the capture and resolution of a vortex is challenging from 

two perspectives – capturing the boundary layer over the wing which eventually rolls up to 

form the vortex, and then resolving the vortex downstream
[186]

. Whilst advancements have 

been made to allow for improved vortex preservation in CFD solutions, it can be 

considered to be an on-going challenge since artificial diffusion can be difficult to prevent, 

particularly at large distances downstream of the vortex source
[73]

. The accurate capture of 

wing tip vortices will require a suitable mesh and turbulence model in combination. Grid 

size, cell aspect ratio and skewness of the mesh are contributing factors in vorticity 

capturing
[187, 188]

. Therefore, aligning the mesh with the vortices as much as possible is 

necessary.  

 In the context of standard hybrid meshes, the prismatic or hexahedral elements in 

the nearfield can provide excellent resolution of the boundary layer and therefore provide 

suitable initial conditions for the vortex development. Whilst the high density regions of 

isotropic tetrahedra close to the surface will continue predicting the development of the 

vortex, as the tetrahedra grow in size, the rate of numerical diffusion also increases. This 

causes the trailing vortex to quickly disappear from the solution. The lack of alignment of 

the unstructured cells with the shear layers also contributes to this diffusive behaviour. It is 

therefore necessary to apply adaptation or specialised mesh generation techniques to 

improve the capability of the mesh to capture the vortices present and resolve them deep 

into the farfield. 
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 The present chapter describes a method to embed semi-structured hex-dominant 

mesh blocks into the domain through extrusion of quad-dominant surface meshes. These 

surfaces are embedded at suitable locations within the domain and the extrusion direction 

can be determined from the extracted data in the original solution. The approach is applied 

on the two transonic cases presented in the previous chapter and finally a transonic Delta 

wing case at a high angle of attack. Note that the methodology is the main subject of this 

chapter, with some preliminary results. The performance of the feature-aligned meshes with 

isotropically refined meshes and anisotropically adapted meshes is presented and discussed 

in Chapter VII. 

6.2 Surface Mesh Extrusion 

The extrusion process for wing tip vortices and wakes is similar in some respects to 

the previously described approach applied to shock waves. After definition of suitable 

surfaces at the desired locations, the resulting quad-dominant surface meshes can be 

extruded along the vortex or wake path. Unfortunately, whilst the extrusion process in itself 

is an automatic process, the user must initially define suitable locations for the surfaces 

which serve as the source of the extrusion. Since some user-interaction is required to set up 

the geometry for a SOLAR-TAU process anyway, a little more time invested in the 

construction of these surfaces (which once constructed for a particular geometry can simply 

be copied for other similar problems), can yield significant improvements in the resolution 

of the wing tip vortices and wakes due to the high quality semi-structured hex-dominant 

mesh block present. After generation of the source surface mesh, the direction and 

expansion of the extrusion is determined automatically using extracted data from the 

solution.  

6.3 Defining Source Surfaces 

Suitable surfaces need to be defined prior to the extrusion taking place. The way the 

surfaces are set up depends on the flow feature under consideration. 

6.3.1 Wing Tip Vortices 

For the wing tip vortex case, a simple circular surface is created and embedded 

close to the wing tip as shown in figure 6.1 (note that the surface can be an arbitrary shape 
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but a circular form is the most appropriate in this instance).  The surface is treated like any 

other by the surface mesh generator, and as such the feature curve functionality which has 

been used extensively for surface mesh alignment can be applied again. In this case, the 

feature line is simply a concentric circle which is connected to the source surface. The 

effect of this is to create rows of high quality quadrilateral elements in the radial direction.  

 

Figure 6.1: Typical source surface setup for capture of wing tip vortex 

6.3.2 Trailing Wakes 

For simple wing geometries, a typical source surface could be as simple as a 

rectangle which covers the length of the trailing edge, as shown in figure 6.2. The surface is 

extended a small distance beyond the wing tip to also ensure capture of the vortex when it 

forms. For more complex wing geometries with multiple trailing edge surfaces, the 

definition of two or more surfaces may be required. Any number of surfaces can be 

connected, and despite being meshed separately they will be extruded as a single zone. 

Once again, the feature curve functionality can be exploited to improve the quality of the 

source surface mesh to allow semi-structured quadrilateral elements to be generated. For 

wakes, a curve aligned with the longest edges of the surfaces, along with appropriate choice 

of spacing values for the background sources can yield a surface mesh which almost 

completely resembles a structured quadrilateral mesh. 
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Figure 6.2: Example source surface setup for capture of trailing wake for simple wing 

geometry 

 

6.4 Determining the Extrusion Direction 

After a solution has been obtained with the original mesh and the source surfaces 

have been defined, the flow features of interest may be extracted using the techniques 

described in Chapter III. The direction of the extrusion is simply defined by a three-

dimensional growth vector. As the extrusion always occurs downstream (i.e. along the x-

axis) the x component of the vector is always 1. Therefore all that remains is to compute the 

other two components. This is achieved by projecting the extracted data set firstly onto the 

xz-plane followed by the xy-plane to form two-dimensional point sets. Straight lines are 

fitted through the extracted data. In the xz-plane, the minimum and maximum y-coordinate 

values of the line are found, whilst in the xy-plane, the minimum and maximum z-

coordinates are found. It is trivial to then determine the other two components of the 

extrusion vector using this information. This process is displayed in figure 6.3. 
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Figure 6.3: Determining the extrusion direction in the planes  

 

For wake block extrusion only one component is required to be computed since the 

extrusion must occur downstream and parallel with the symmetry plane. This is in contrast 

with the vortex case where the extrusion does not need to be aligned with the symmetry 

plane. Whilst it is the user’s responsibility to ensure the source surface has been set up in 

the appropriate location, the extrusion process will automatically warn the user if the block 

intersects any existing geometric entity. When this occurs, the extrusion process will cease 

adding more layers, but the volume meshing will continue.  

6.5 Mesh Block Growth and Expansion 

The user chooses a suitable number of layers for each of the mesh blocks. The layer 

size is constant. An expansion factor can also be defined which is applied to each 

component of the growth vector to allow the block to expand in that direction. Since a 

separate factor can be applied to each component of the growth vector, the block can 

expand at different rates in different directions. For all extrusions, the extrusion direction is 

downstream i.e. along the x-axis. However, the type of surface used (circular for wing tip 

vortex or rectangular for wake and wing tip vortex), will affect the directions the mesh 

block is allowed to expand.  

Δx 
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For wing tip vortices (circular surfaces), the expansion factor can be applied in the y 

and z directions. Expanding the block excessively in one direction only can be detrimental 

to final mesh block quality. Whilst different expansion factors can be applied to each 

component of the growth vector, once an expansion factor has been calculated, it remains 

constant for each component. The expansion functionality is useful for capturing wing tip 

vortices which grow in size with increasing distance downstream as displayed in figure 6.5. 

This allows the entire vortex to be captured throughout the mesh block.  

For rectangular wake surfaces, which are embedded to capture both the trailing 

shear layers and the wing tip vortex (see figure 6.2), the source surface is constrained to 

expand along the z-axis only. This is due to the fact that expansion in the y direction may 

cause the mesh block to intersect existing geometric entities, such as the symmetry plane or 

fuselage. Such a constraint is not necessary for the vortex extrusion as the vortex mesh is 

unlikely to collide with other entities. 

 

Figure 6.4: Determining the expansion factor 

The expansion rate is determined from the extracted data set by considering 

distances between points at the extremities of the data set. Using information from the 

previous step, i.e. the identification of the extrusion direction, a group of points are 

identified at the minimum and maximum x locations. To identify these points, bounding 

boxes are placed in the vicinity of these identified locations, as displayed in figure 6.4. The 

bounding box functionality is a class in SOLAR that includes a test to see if a point exists 

within the box. In terms of the box dimensions, the x-coordinate is some Δx from the xmin 

(see figure 6.3) and the y and z-coordinates of the box are bound by the farfield surfaces of 

Bounding boxes 

x 

z 

zmin 

Zmax 
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the domain. Each bounding box can therefore be imagined as a slice of the domain, with a 

small region of points enclosed within.  

 After identification of the bounding box points, the maximum distance between 

points in the z-direction are estimated by simply comparing the coordinates of pairs of 

points. The ratio of these values obtained from the two bounding boxes, i.e. zmax / zmin is 

used to estimate an expansion factor. This operation provides an approximate expansion in 

one direction only, i.e. along the z-axis. However, as previously described, to maintain the 

quality of the mesh block it must expand at the same rate in the y direction also. The 

expansion is therefore applied in both directions. 

 

Figure 6.5: Expansion of mesh block with increasing downstream distance 

 The current method is fairly simplistic in that the extrusion and expansion can only 

occur along linear directions. However, the methods described above worked satisfactorily 

for the cases tested. As an alternative approach, the user may also provide extrusion and 

expansion data in the SOLAR control file. The extruded mesh can also be written out 

independently of the rest of the mesh for visualisation purposes. 

6.6 Merging the Mesh Block into the Hybrid Volume Mesh 

As with the shock wave extrusion process described in the previous chapter, after 

generation of the hex-dominant mesh block, a buffer mesh is required to allow for a 

conformal interface with the surrounding tetrahedra. This is done by adding a layer of 

pyramids to the exterior of the mesh block, followed by tetrahedra which connect the 

apexes of the pyramids and form a fully triangulated outer surface. Once the farfield has 
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been generated, the boundary recovery process must occur in order to force the tetrahedra 

to conform to the surface tessellation so that it appears in the final volume mesh. 

6.7 Test Cases 

6.7.1 M6 Viscous Transonic Flow:  M = 0.8395, α = 3.06
o
, Re = 11.72x10

6 [183]
 

6.7.1.1 Wing Tip Vortex Extrusion 

The initial mesh provides extremely poor resolution of the trailing shear layers and 

vortex when visualising slices of different flow variables at various downstream locations - 

an example is shown in figure 6.6 for eddy viscosity. Within a short distance downstream 

of the trailing edge of the wing, the shear layers have almost completely disappeared.  This 

numerical diffusion has prevented the wing tip vortex from properly forming and being 

resolved, so it is difficult to visualise. These problems occur despite a high quality nearfield 

mesh which exists to resolve the viscous layers attached to the wing surface. Figure 6.6 

shows that the shear layers are well resolved near the wing surface, but the transition from 

hexahedra to tetrahedra, which quickly grow in size, enhances the effect of numerical 

diffusion. However, despite the relatively large tetrahedra in the farfield, the λ2 criterion has 

been found to work effectively in extracting the vortex region to allow extrusion 

information to be computed. Figure 6.7 displays the result of the vortex extraction 

operation on the original mesh. Due to the size of the tetrahedra in the farfield, this 

extraction process may not provide a ‘true’ indication of the vortex core, but the data 

provided is sufficient to allow the embedded surface mesh extrusion to occur. 

The source surface shape chosen for wing tip vortices is circular, as displayed in 

figure 6.8. As previously mentioned, the surface itself could be any shape, but a circular 

form is the most appropriate. The surface is located a small distance away from the wing tip 

at the trailing edge. Since SOLAR treats this surface like any other surface, the previously 

described approaches of embedding curves (described in Chapter IV) within the surface to 

influence the formation of the surface mesh can be employed. Whilst figure 6.9(a) shows a 

standard unstructured quad-dominant surface mesh, the inclusion of an embedded circle can 

allow for greater control of the mesh formation in the radial direction. This method is 

employed for all circular surface meshes to ensure a high quality source surface mesh for 

extrusion. 
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Figure 6.6: Resolution of the trailing shear layers for the original mesh – eddy viscosity 

contours 

 

Figure 6.7: Extraction of the trailing vortex using the λ2 criterion 

 

 

Figure 6.8: Circular source surface insertion at the wing tip 

The extrusion expands with increasing downstream distance to account for the 

increase in the size of the vortex. Figure 6.10 shows the tube of hex-dominant mesh 

embedded into the hybrid volume mesh. The resulting improvement in the resolution of the 
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vortex and its preservation downstream is displayed in figure 6.11. It can be observed that 

the method has worked well in capturing the roll up of the shear layers at the tip to form the 

initial vortex structure and eventually the formation and preservation of the vortex core. 

Unfortunately, the majority of the wake region is still resolved by isotropic tetrahedra. The 

presence of these elements causes the shear layers across the rest of the wing to quickly 

dissipate. To remedy this, the source surface used for extrusion can simply be changed to a 

rectangular surface embedded across the length of the wing trailing edge. This is considered 

in the next sub-section. 

 

              

Figure 6.9: (a) Standard quad-dominant source surface mesh, (b) mesh control curve 

embedded in source surface, (c) resulting surface mesh 

 

(a) 

(b) (c) 
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Figure 6.10: Embedded block of hex-dominant mesh for wing tip vortex 

 

Figure 6.11: Resolution of wing tip vortex on feature-aligned mesh – eddy viscosity 

contours 

6.7.1.2 Wing Tip Vortex and Wake Extrusion 

 The wake in this case is extracted by considering points in the mesh with an eddy 

viscosity greater than a small non-zero value, 10
-4

 for example. As a result, the extracted 

data set shown in figure 6.13 corresponds to the shear layers and possibly part of the wing 

tip vortex. In a similar fashion to the surface insertion for the wing tip vortex case, a 
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rectangular surface is now embedded across the length of the trailing edge region, as shown 

in figure 6.14, where the surface overlaps the wing tip. This is necessary so that the hex-

dominant block also eventually covers the wing tip vortex region downstream of the wing.  

Extruding two separate surfaces to cover the extent of the wake and vortex 

separately is more difficult to implement with the current approach. The main reason for 

this is that extrusion of the two surfaces separately can lead to eventual intersection of the 

mesh blocks. The approach adopted for the present study was initially to merge both 

surfaces and extrude the resulting surface mesh. However, a problem became apparent if 

the surfaces were of different shapes, as displayed in figure 6.12. This set up was originally 

intended for capture of both wake and wing tip vortex. The problem is that since the 

rectangular surfaces are constrained to expand in the z-direction only to avoid collision with 

other geometric entities such as the symmetry plane or fuselage, the circular surface must 

also expand in this direction. The resulting circular portion of the mesh block is then 

excessively stretched in the z-direction, resulting in poor quality elements. As the 

subsequent examples show, use of suitably located rectangular surfaces alone for the 

capture of both wake and wing tip vortices has appeared to improve the resolution of both 

features significantly. 

 

Figure 6.12: Combined rectangular and circular surfaces – expansion of the circular surface 

in the z-direction only leads to an excessively stretched mesh block and poor mesh quality 

 To allow for high quality formation of the quad-dominant surface mesh, a curve can 

be embedded into the surface in a similar fashion to previously presented cases. After 

application of suitable anisotropic sources, a refined region within the source surface mesh 

can be obtained, as displayed in figure 6.15. This refinement will be maintained throughout 

the extrusion to allow for capture of the trailing shear layers throughout the entire trailing 

edge region of the wing.  

 



161 

 

Figure 6.13: Extracted wake points from original mesh 

 

 

Figure 6.14: Source surface insertion along the trailing edge for capture of wing tip vortex 

and wake  

 

 

Figure 6.15: Extruded hex-dominant wake block prior to generation of the farfield mesh 
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Figure 6.16: Slice of the hex-dominant mesh block embedded in the hybrid volume mesh 

for the ONERA-M6 wing case 

 

Figure 6.17: Preservation of the wake and wing tip vortex downstream using the feature-

aligned mesh – eddy viscosity contours 
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The resulting feature-aligned mesh is displayed in figure 6.16, and the refined 

region is clearly visible, as well as the expansion of the mesh block downstream to allow 

for capture of the vortex as it grows. Figure 6.17 displays the preservation and resolution of 

the entire trailing shear layer rolling over to form the wing tip vortex using the feature-

aligned mesh. Finally, the eddy viscosity contours of the vortex structure approximately 

fifteen chord lengths downstream of the wing trailing edge can be observed in figure 6.18. 

The quality of the feature resolution is clear. Such resolution would be impossible on 

standard hybrid meshes at such a distance downstream of the vortex formation. 

 

Figure 6.18: Eddy viscosity contour at approximately fifteen chord lengths downstream of 

trailing edge 

6.7.2 DLR-F4, Transonic Viscous Flow: M = 0.75, Re = 3.0 x 10
6
, α = 2.0

o 
 

For the present test case the extrusion process for the wing tip vortex alone is not 

performed. The reason for this is that the effect of the insertion of a wing tip vortex mesh 

by itself has already been presented in section 6.7.1, where it was observed that the vortex 

resolution was considerably improved, but the trailing wake rapidly disappeared from the 

solution. Instead, a rectangular source surface is embedded to capture the entire free shear 

layer region and wing tip vortex. The extracted data set is displayed in figure 6.19. Since 

the wing geometry is different in this case, the setup of the surfaces is modified and 

requires two surfaces. The orientation of the two surfaces is aligned with the wing trailing 

edge as displayed in figure 6.20. After generation of the high-quality semi-structured 

quadrilateral source surface mesh, shown in figure 6.21, the extrusion can occur through the 
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extracted wake. The quad-dominant surface mesh can be observed to be generally semi-

structured, which aids with the alignment of the mesh block with the trailing shear layers. 

Figure 6.22 shows the hex-dominant mesh block prior to generation of the volume mesh. 

 

Figure 6.19: Extracted wake points from the original mesh 

 

 

 

Figure 6.20: Source surface insertion at wing trailing edge 
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Figure 6.21: Source quad-dominant surface mesh 

 

Figure 6.22: Extruded hex-dominant wake block prior to generation of the farfield mesh 

A slice of the final hybrid volume mesh is displayed in figure 6.23. The presence of 

the mesh block can be observed to extend far downstream which will allow for preservation 

of the shear layers for a considerable distance into the domain, towards the farfield 

boundary. 

 

Figure 6.23: Slice of the hex-dominant mesh block embedded in the hybrid volume mesh 

for the DLR-F4 case 
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Figure 6.24 shows slices of the trailing shear layers at various downstream 

locations. The structured mesh block has allowed the formation of the wing tip vortex to be 

captured, as well as preservation of the wake downstream of the trailing edge. In a similar 

manner to the M6 case, the feature-aligned mesh is again allowing both evolution and 

preservation of the entire shear layer, in particular the vortex core, which increases in 

intensity with distance downstream. This is also indicated by the spanwise slice displayed 

in figure 6.25. The eddy viscosity contours at a slice location approximately fifteen chord 

lengths downstream of the trailing edge is presented in figure 6.26, further indicating the 

level of shear layer preservation achievable by using the feature-aligned mesh. Such 

resolution of the flow features at this distance downstream of the trailing edge using a 

standard hybrid mesh would not be possible. 

 

Figure 6.24: Preservation of the wake and wing tip vortex downstream using the feature-

aligned mesh –eddy viscosity contours 
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Figure 6.25: Spanwise slice of eddy viscosity contours indicating the preservation of the 

wake using the feature-aligned mesh 

 

Figure 6.26: Eddy viscosity contour at approximately fifteen chord lengths downstream of 

trailing edge 

6.7.3 Delta Wing, Transonic Viscous Flow, M = 0.75, α = 15.0
o
, Re = 2x10

5
 

The concept of the delta wing has been exploited extensively in the design of 

supersonic aircraft. At moderate to high angles of attack the formation of leading edge 

vortices occur, which can provide a beneficial effect in terms of lift generation. The flow 

over a delta wing depends primarily on the geometry and the flow conditions. At low 

values of α the flow remains attached to the wing, however as α increases from moderate to 

high values, three-dimensional boundary layer separation takes place as the flow curls 

around the leading edge.  This separation in the flow causes a large primary vortex to be 
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formed and trail downstream. A secondary vortex is also formed underneath the primary 

vortex, which rotates in the opposite sense, as displayed in figure 6.27.  

                    

Figure 6.27: Schematic showing formation of primary and secondary vortices 

around delta wing leading edge (flow direction out of page) 

For a certain range of angles, these leading edge vortices are steady, symmetric and 

regions of high energy, high-vorticity flow which induce regions of low static pressure. The 

low pressure regions form on the wing below the vortices which give rise to increases in lift 

even at high angles of attack which would cause stall for conventional wing planforms. 

However, as α is increased to very high values, the vortices continue to be shed, but the 

flow system is now accompanied by a distinct loss of stability, leading to asymmetry and 

unsteadiness. In some cases the vortex may ‘burst’ above the wing surface which can have 

undesirable effects on the wing performance due to the sudden increase in pressure. 

 

Figure 6.28: Vortex extraction and identification of vortex structures 

Nearfield primary and secondary vortices 

Farfield primary vortex 

Farfield secondary vortex 

Secondary vortex 

Primary vortex 
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Figure 6.29: Grouping of the extracted vortex structure point clouds into nearfield (green) 

and farfield (orange) portions 

Of interest in the present work is a case where the flow is stable and symmetric. The 

geometry is defined analytically
[192]

 where a delta wing with a slightly rounded edge is 

chosen. This means that the vortices will start to develop a small distance downstream of 

the apex of the leading edge. The extrusion process is applied to generate hex-dominant 

mesh blocks in the vortex region both above the nearfield mesh around the wing, as well 

downstream of the trailing edge. As observed in the other test cases, the standard hybrid 

mesh cannot resolve the vortices far downstream due to the increased numerical diffusion 

by the isotropic tetrahedra in the wake region. The poor resolution is shown in figure 6.30. 

   

Figure 6.30: Total pressure contours for initial mesh at 120% and 160% chord  

The delta wing is somewhat of a special case. At these flow conditions, there are 

multiple vortex structures to be considered in the extrusion process. The difficulty in 

applying the extrusion is that one of the vortex structures exists in close proximity to the 
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geometry itself; meaning that care is required to ensure the extrusion will not intersect the 

nearfield mesh.  

 

 

Figure 6.31: Source surfaces insertion for primary and secondary vortices along leading 

edge and the wake / trailing vortex downstream of trailing edge  

 

Figure 6.32: Extrusion of nearfield mesh block to capture primary and secondary vortices 

around leading edge of delta wing  

Figure 6.28 shows the extracted vortex structures, obtained through application of 

the λ2 criterion. Despite the poorly resolved vortex shown in figure 6.30, the λ2 criterion has 

again worked well in capturing the vortex in the farfield mesh. One can observe the 

development of the primary vortex around the leading edge, which begins to develop 

around 20% chord due to the rounded leading edge of this particular delta wing geometry. 

The secondary vortex is also present, but for the majority of the leading edge is 

Nearfield surface 

Farfield surface 
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indistinguishable and is extracted with the primary vortex point cloud. Beyond the trailing 

edge, the primary vortex suddenly changes direction and the secondary vortex can be seen 

to persist for a short distance. Since the current extrusion functionality may only occur in 

linear directions, the primary vortex structure must be considered in separate portions – one 

above the nearfield, which will cover the nearfield primary and secondary vortices and 

another which will capture the vortices in the farfield. The partition of the datasets is 

displayed in figure 6.29.  

 

Figure 6.33: Slice of the farfield hex-dominant mesh block embedded in the hybrid volume 

mesh for the delta wing case 

 

Figure 6.34: Slice of the nearfield hex-dominant mesh block embedded in the hybrid 

volume mesh for the delta wing case 

Figure 6.31 shows the set up for the source surfaces. The source surfaces for the 

nearfield vortices are semi-circles and inserted a small distance above the expected height 

of the nearfield mesh. However, SOLAR implements a process to automatically pull back 

the advancing layers of the nearfield based on their proximity to other mesh or geometric 

entities. This automatically prevents collision of the layers with the mesh blocks, but may 
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in some cases affect nearfield mesh quality. The farfield mesh block is rectangular in shape 

such that the wake emanating from the trailing edge can also be captured. Figures 6.32, 

6.33 and 6.34 show the resulting mesh blocks. The nearfield extrusion expands in the y and 

z directions to allow the vortices to be captured within the mesh block as they develop 

around the trailing edge.  

Figure 6.35 compares slices of total pressure for the original mesh and the feature-

aligned mesh to emphasise the improvement in the vortex capture on the feature-aligned 

mesh. In particular, the secondary vortex at 120% chord is clearly visible before it starts to 

rotate around the primary vortex.  The feature-aligned mesh is still able to resolve the 

secondary vortex on the periphery of the primary vortex at 160% chord. Further 

downstream, whilst the secondary vortex has almost dissipated, the hex-dominant mesh 

block allows preservation of the primary vortex deep into the farfield. 

  

  

  

Figure 6.35: Comparison of total pressure contours for original mesh and feature-aligned 

mesh at various downstream locations (a) 80% chord, (b) 120% chord and (c) 160% chord 

(a) 

(b) 

(c) 



173 

Figure 6.36 provides further indication of the vortex development and preservation 

in the form of streamlines coloured by eddy viscosity. The streamlines change colour with 

increasing distance downstream due to the formation of the vortex core. For the original 

mesh, the streamlines do not exhibit this behaviour, and do not follow any form of spiral 

pattern beyond the nearfield because the vortex core is never established. It can be observed 

that the vortex does start to develop around the delta wing on the original mesh due to high 

quality hexahedral elements in the nearfield, which resolve the separation of the near-wall 

viscous layers round the leading edge. However, once the mesh type changes to tetrahedra 

the flow feature formation ceases quite abruptly. This is again due to the dissipation of the 

vortex from the solution across the isotropic tetrahedra downstream of the trailing edge. 

  

   

Figure 6.36: Streamlines coloured by eddy viscosity for (a) original mesh and (b) feature-

aligned mesh 
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6.8 Conclusions 

 A method to embed hex-dominant mesh blocks aligned with wakes and wing tip 

vortices into hybrid meshes, through extrusion of quad-dominant surfaces meshes, has been 

presented. The process computes the extrusion direction from the extracted data set and 

allows for semi-structured hex-dominant mesh blocks to be embedded into the domain. The 

feature-aligned meshes allow for both evolution and preservation of the free shear layers 

for a great distance downstream of their origin. Resolution of the vortex core is particularly 

improved using the feature-aligned mesh. This is again due to the increased suitability of 

the semi-structured hexahedral mesh elements for the resolution of anisotropic flow 

physics. Standard hybrid meshes which possess isotropic regions of tetrahedra in the wake 

lead to high levels of numerical dissipation, particularly when the spacing of the elements 

increases in the farfield. However, the ability of the tetrahedra to resolve the wake and 

vortices can be improved through the use of some suitable adaptation scheme. The 

performance of anisotropically adapted tetrahedra in resolving these features is considered 

in detail in the next chapter. 
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CHAPTER VII 

Feature-Aligned Hex-Dominant Mesh Block Insertion: Part III:  

A Comparison with Anisotropic Adaptation Techniques 

 

7.1 Introduction 

 

The current chapter revisits previously presented test cases for which the feature-

alignment processes were applied for different flow features in turn. These techniques are 

combined so the hex-dominant mesh blocks for each flow feature exist in the same mesh. 

The performance of the feature-aligned meshes is then compared with hybrid meshes which 

have undergone anisotropic adaptation techniques as a means to improve the flow feature 

resolution, as briefly demonstrated in Chapter VI for the shock wave case. This comparison 

will allow the relative benefits of certain types of elements in the flow feature regions to be 

determined in both a qualitative and quantitative sense.  

7.2 Test Cases 

7.2.1 Delta Wing, Transonic Viscous Flow, M = 0.75, α = 15.0
o
, Re = 2x10

5
 

 After definition of an anisotropic metric using the Hessian of the Mach number, the 

adaptation schemes described in Chapter III can be applied on the tetrahedral part of the 

hybrid mesh. This allows the mesh to adapt to the shear layers to improve the capability of 

the original mesh to resolve them. The original mesh used for the purposes of adaptation 

consists of approximately 3.0 million elements. It was carefully constructed based on the 

initial mesh presented in the previous chapter, with addition of sources in the wake region 

only to increase the number of elements generated in this region. Note that including the 

tetrahedral optimisation algorithms which perform edge and face swapping, along with 

nodal movement, the mesh is also refined. The final adaptive mesh contains approximately 

4.0 million elements.  

Figure 7.1 shows a spanwise slice of the final adapted mesh where it can be 

observed that the mesh has adapted to the trailing wake of the delta wing in an anisotropic 

fashion. Figure 7.1 also shows two streamwise slices at 80% and 120% chord. The adaptive 
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tetrahedra become a means to observe the flow behaviour itself, with the tetrahedra 

following the shape of the both primary and secondary vortices.. 

 

      

Figure 7.1: Anisotropic adaptive mesh (a) spanwise wake adaptation and downstream 

adaptation at (b) 80% chord and (c) 120% chord 

 The resolution of the flow features are indicated with total pressure contours. Figure 

7.2 compares the adaptive and feature-aligned meshes at various streamwise locations. 

Whilst the adaptive mesh does significantly improve the vortex resolution compared with 

the original mesh, the feature-aligned mesh still provides a smoother representation of the 

total pressure contours, even at 160% chord. It is also interesting to observe the spanwise 

eddy viscosity contours in figure 7.3. The magnitude of the eddy viscosity for both 

approaches is included. Application of the adaptive schemes has allowed the adaptive mesh 

to resolve the vortex development which is indicated by the raise in eddy viscosity in the 

vortex core. However, the eddy viscosity magnitude for the feature-alignment approach is 

much higher which indicates that the vortex development, and hence the intensity of the 

resolved vortex, is significantly increased within the hex-dominant mesh block compared 

with the anisotropic tetrahedra. This has occurred despite the greater number of elements 

present in the adaptive mesh. Whilst the tetrahedra are aligned with the flow, there is likely 

to still be a level of numerical diffusion present which is preventing the same level of 

(a) 

(b) (c) 
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intensity within the vortex being predicted. This is likely due to some faces of the 

tetrahedra still not being aligned with the features and thus degrading the potential for high 

quality resolution. Note that again, it is difficult to determine from the present study which 

of these solutions are ‘correct’ without other data to validate or verify the results. 

     

   

   

Figure 7.2: Comparison of total pressure contours for adaptive mesh and feature-aligned 

mesh at various downstream locations (a) 80% chord, (b) 120% chord and (c) 160% chord 

 

(a) 

(b) 

(c) 
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Figure 7.3: Comparison of spanwise eddy viscosity contours (a) anisotropic adaptive mesh 

and (b) feature-aligned mesh 

7.2.2 M6 Viscous Transonic Flow, M = 0.8395, Re = 11.72x10
6
, α = 3.06

o [183]
 

 The feature-alignment process is applied for the wake / wing tip vortex region 

through extrusion of a rectangular surface on the original hybrid mesh, which consisted of 

approximately 1.86 million elements. The feature-aligned mesh consists of 3.4 million 

elements. For comparison purposes, a standard hybrid mesh is generated with application of 

sources throughout the wake region to get a similar number of elements. This mesh, 

referred to as the isotropically refined mesh, will also undergo the anisotropic adaptation 

(edge/face swapping and nodal movement only) to assess the effect of anisotropic 

tetrahedra on the wake resolution. These meshes contain approximately 3.4 million 

elements. For the feature-aligned mesh, an anisotropic nodal movement algorithm, 

described in section 3.7.2 is applied within the hexahedral mesh block to deform the mesh 

(b) 

0.350 

0.200 

0.000 

(a) 

0.088 

0.040 
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to the flow features. The feature-aligned mesh is not adapted in the region outside of the 

mesh block. It is necessary to point out that the resolution of the surface mesh and 

boundary layers around the wing are the same for each case. The difference between the 

three meshes will therefore be the type of element appearing in the wake region – isotropic 

tetrahedra (original), anisotropic tetrahedra (adaptive) and finally anisotropic hexahedra 

(feature-aligned). 

The anisotropic adaptation based on the Hessian of the Mach number is applied 

once again to adapt the isotropically refined mesh to the flow features.  Figures 7.4 and 7.5 

display the effect of the adaptation on the mesh in the shear layer regions and the 

generation of highly anisotropic tetrahedra. The mesh has clustered in the trailing wake 

region and is also adapting to the rolling-over of the free shear layers to form the wing tip 

vortex.  

 

 

Figure 7.4: Various streamwise slices of anisotropic adapted mesh near the trailing edge 
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Figure 7.5: Spanwise slice of anisotropic adapted mesh 

 

Figure 7.6 shows various slices of the adaptive feature-aligned mesh and the 

anisotropic adaptive mesh. The convergence of the adaptive scheme for the feature-aligned 

mesh is fairly rapid, since the mesh points are already approximately aligned with the flow, 

leading to a reduced amount of work necessary to adapt the mesh (convergence in this case 

refers to the positions of the nodes no longer changing due to the scheme having already 

identified the optimum position for that particular adaptation cycle). Furthermore, the nodal 

movement scheme is applied locally within the hex-dominant mesh block only, not across 

the entire mesh. As previously discussed, it is essential that during local adaptation of the 

mesh block that the buffer region of pyramids which provide the conformal interface 

between the hexahedral cells and the tetrahedra are not modified, as distortion of these 

elements can be detrimental to the overall mesh validity. For the anisotropic adaptive mesh, 

a greater level of work is required on the mesh since none of the initial tetrahedra are 

aligned with the features, and they also require use of a wider range of adaptation schemes 

(edge/face swapping, edge collapsing as well as nodal movement) to provide alignment, 

which can be time consuming to perform on a large mesh to convergence. 

 

Figure 7.7 shows the anisotropic adaptive mesh has improved the resolution of the 

trailing shear layers and vortex in terms of eddy viscosity contours compared with the 

original hybrid mesh. This is due to the formation of anisotropic tetrahedra in the free shear 

layer regions. However, even though a reduction in numerical diffusion is present across 

these anisotropic tetrahedra, the mesh still does not predict as high eddy viscosity values as 

the adaptive feature-aligned mesh. In particular, the vortex core is very strongly resolved 

within the hexahedral mesh block. 
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Mesh Number of Elements (x 10
6
) CD CL 

Original 1.86 0.01345 0.2033 

Isotropically refined 3.4 0.01344 0.2033 

Feature-aligned 3.4 0.01360 0.2044 

Adaptive 3.4 0.01342 0.2039 

 

Table 7.1: Comparison of lift and drag coefficients for the ONERA M6 case 

 

     

     

 

Figure 7.6: Comparison of mesh at multiple downstream wake locations for the feature-

aligned adaptive mesh and anisotropic adaptive mesh at two, four and eight chord lengths 

downstream 
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Figure 7.7: Eddy viscosity ratio contours ten chord lengths downstream for (a) original 

mesh, (b) adaptive mesh and (c) adaptive feature-aligned mesh 

Table 7.1 displays the lift and drag coefficients for each of the meshes. Whilst the 

lift and drag show marginal differences between original, isotropically refined and adaptive 

meshes, the feature-aligned mesh predicts slightly different results. The feature-aligned 
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mesh drag values are also inconsistent with the shock-aligned mesh presented in Chapter V, 

and the reasons for this are unclear. Since the ‘correct’ solution is unknown, only an 

estimation of a grid independent solution was made, it is difficult to draw conclusions on 

the values presented in this section. It may be possible that the refinement study presented 

in Chapter V would continue to display variations in the drag coefficient if the mesh was 

refined further. For three-dimensional problems, grid refinement studies can quickly 

exhaust the available computational resources, which meant a limit had to be placed on the 

mesh size for the studies in this thesis. 

 

7.2.3 DLR-F4, Transonic Viscous Flow: M = 0.75, Re = 3.0 x 10
6
, α = 2.0

o
 

 The final case considers the feature-aligned mesh for the wake and wing tip vortex 

region only. For comparison purposes, the meshes have again been carefully constructed 

such that a similar number of elements exist in the wake region, as with the M6 case 

presented previously. The total number of elements for each mesh is approximately 3.5 

million.  

 

Figure 7.8: Various downstream slices of the anisotropic adaptive mesh 
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Figure 7.9: Slice of the adaptive feature-aligned mesh 

Figure 7.8 displays a slice of the anisotropic adaptive mesh at various downstream 

locations. As expected, the mesh adapts to the shear layers and vortex, including the shear 

layers trailing from the fuselage. Figure 7.9 shows a slice of the adaptive feature-aligned 

mesh. As with the previous case, the mesh block deforms to the shear layers and the vortex 

downstream of the wing (the mesh downstream of the fuselage remains unchanged since 

the nodal movement is applied within the hexahedral mesh blocks only – the tetrahedral 

modification techniques are not applied on the feature-aligned meshes). The convergence of 

the adaptive scheme within the mesh block is once again fairly rapid, as with the M6 case, 

since the mesh cells are already approximately aligned with the flow feature and only 

several cycles are necessary. On the other hand, convergence of the anisotropic adaptation 

algorithms on the tetrahedra for the adaptive mesh is a time consuming process, and a large 

number of adaptive cycles are required to yield the final adaptive mesh. 

The magnitude of the eddy viscosity ratio contours for each mesh at fifteen chord 

lengths downstream is shown in figure 7.10. Whilst the adaptive mesh does improve the 

resolution of the shear layers and increases the eddy viscosity ratio values in this region, the 

resolution of the vortex core is only marginally improved. This could be an issue with the 

present error estimator’s ability to identify the vortex region. Other error estimators, or 

even different flow variables used to construct the present error estimator, may lead to 

different effects. Generally, the adaptive feature-aligned mesh displays significantly greater 

values of eddy viscosity, primarily due to the much improved resolution of the vortex core. 
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Figure 7.10: Eddy viscosity ratio contours fifteen chord lengths downstream for (a) original 

mesh, (b) adaptive mesh and (c) adaptive feature-aligned mesh 
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Mesh Number of Elements (x 10
6
) CD CL 

Original 2.40 0.02865 0.4171 

Isotropically refined 3.50 0.02927 0.4206 

Feature-aligned 3.50 0.03519 0.4538 

Adaptive 3.50 0.02869 0.4177 

 

Table 7.2: Comparison of lift and drag coefficients for the DLR-F4 case 

Table 7.2 compares the lift and drag coefficients for the range of meshes considered 

for the study. As with the M6 case, it can be observed that the lift and drag are in close 

agreement for all the meshes apart from the feature-aligned mesh. The coefficients obtained 

from the feature-aligned solution are substantially different to the other meshes. Again, the 

surface and nearfield meshes are the same for each mesh considered. It is difficult to 

determine which of the results presented in Table 7.2 is correct without comparison to 

experimental data or grid independence studies. The results appear to indicate that whilst 

the presence feature-aligned mesh block can substantially improve the resolution of the 

flow features in a qualitative sense, they also have an effect on the final lift and drag 

coefficients. The reasons for this remain unclear. 

The general trend that can be observed across all the cases presented in this chapter 

is that the isotropically refined mesh generally provides very poor resolution of the wake 

and wing tip vortex. The adaptive mesh improves the resolution somewhat, due to 

alignment of the tetrahedra with the feature. It provides good resolution of the shear layers 

within a few chord lengths downstream of their formation. However, there still appears to 

be significant dissipation across the mesh that is preventing resolution of the vortex core at 

further distances downstream. One possible reason for this is that whilst the tetrahedra are 

aligned, the size of the elements tend to increase further downstream, as indicated by figure 

7.8. For the feature-aligned mesh, the hexahedral mesh elements are constantly spaced, 

since the embedded surface mesh is grown with a constant layer size. This has led to very 

high eddy viscosity values predicted within the wake region. The studies suggest therefore 

that element type and orientation, as well as element spacing will have a great effect on the 

resolution of these features and their preservation in the CFD solution. 
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7.3 A General Comment on the Reliability of Results 

 The author feels it is necessary to point out that whilst the feature-aligned 

hexahedral mesh blocks have significantly improved the resolution of the flow features, 

which has been indicated by preservation of solution quantities like eddy viscosity for vast 

distances downstream, the solution given by these particular meshes is not necessarily 

‘correct’. Whilst the meshes used for the results in this chapter were carefully constructed 

so that similar numbers of elements in the flow feature regions were compared, the main 

conclusion that can be drawn is that the presence of the hexahedral mesh blocks improves 

the flow feature resolution, compared with the isotropic or anisotropic tetrahedra. However, 

without extensive validation with real experimental data, or further verification through 

grid independence studies or studies on other types of mesh (for example, comparing with a 

structured multi-block mesh), the results presented in this chapter should not currently be 

assumed to be reliable by the reader. This could be one aspect of future work to further 

demonstrate that the present feature-alignment methods are worthwhile additions to hybrid 

mesh generation technology. 

 

7.4 A Discussion on Feature-Alignment for Wakes and Vortices 

In an industrial context, it is likely that the designs under consideration are more 

complex than those presented in this thesis. For example, a wing-fuselage configuration 

could be modified to include flap-track-fairings, pylons, nacelles, winglets and so on. The 

source surface used for the extrusion need not change. The hex-dominant mesh block will 

be present to capture the complex wake flow structures that manifest themselves. Whilst in 

the current implementation there is a narrow gap of isotropic tetrahedra between the 

geometry trailing edge and the hex-dominant mesh block, this appears to have minimal 

effect on capturing the development of the flow structures downstream. However, 

generation of wake blocks attached to the nearfield mesh would be desirable in the future 

since it would negate the requirement for a source surface to be embedded in the domain. In 

terms of current capability in SOLAR such a method would require extensive modification 

of the nearfield growth functionality. Tests were made during the period of this thesis in an 

attempt to connect these wake blocks to the nearfield, in a similar vain to the method 
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presented for embedding shock-aligned mesh blocks, but the complexity of nearfield 

growth at trailing edge junctions caused the attempts to fail. 

SOLAR generally provides good resolution of boundary layers and flow structures 

in the nearfield region due to the high-quality hexahedral and prismatic elements present. 

However, resolving the viscous flow phenomena in the wake of the geometry sufficiently, 

where the element type suddenly changes to isotropic tetrahedra is not possible. The most 

straight-forward way to improve the resolution of the wake in a standard SOLAR mesh is 

to add sources in the wake region as a means to increase the density of the mesh in an 

isotropic fashion. However, even local sources can drastically increase the number of 

elements present in the entire mesh, thus placing strains on computational resources with no 

guarantee of worthwhile improvements in the feature resolution. 

The placement of the mesh blocks at suitable locations improves the capability of 

the mesh to capture the wake and vortex structures in an efficient manner. These flow 

features are resolved far downstream due to the reduction in numerical diffusion that one 

would usually observe in a tetrahedral farfield. The embedded hex-dominant mesh blocks 

are semi-structured and may provide similar resolution as an actual structured mesh – 

although a direct comparison has yet to be made. However, the present method inherits 

several distinct advantages of unstructured meshes which are worth reiterating. Firstly, 

unstructured mesh generation techniques are flexible and automatic, allowing for 

generation of meshes for complex geometries. Secondly, it exploits the fact that hybrid 

meshes can be comprised of a mixture of elements.  

The other benefit of the inserted mesh blocks is the ability of the mesh to capture 

the flow physics without applying many cycles of adaptation (as demonstrated in Chapter 

VI) which can be expensive for large meshes and possibly unattractive in an industrial 

context (although the suitability of the hex-dominant mesh blocks to undergo a nodal 

movement scheme has been presented in this thesis). Many adaptation schemes (such as the 

TAU adaptation module) are unable to be run in parallel, meaning that for parallel jobs, 

application of the adaptation scheme requires substantial extra work during the solution. 

For these problems, the original mesh is partitioned to allow the solution to be run in 

parallel. When the adaptation is required to take place, the solution and mesh files must be 

‘gathered’ together so that the adaptation metrics can be constructed and applied on the 
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unified mesh. The original solution file must then be interpolated onto the new mesh, 

followed by a re-partition to allow the solution to continue in parallel. Whilst the extrusion 

method does require regeneration of the entire mesh after determination of an extrusion 

direction, for low angles of attack where the orientation of the wake will be essentially 

tangential to the downstream direction, the extrusion direction can easily be estimated prior 

to the solution. This means that the mesh would not need to be regenerated, and requires 

partitioning only once prior to the start of the simulation. 

Finally, it is worth pointing out that whilst the present flow solutions have been 

obtained using a RANS solver, these meshes are not restricted to such models. It would be 

interesting to observe the potential improvement in the performance of DES or LES solvers 

to resolve the flow structures in wakes downstream of complex configurations. 

7.5 Conclusions 

 The present chapter compared two methods for improving the capability of hybrid 

meshes to resolve anisotropic flow physics. Both techniques significantly improved the 

mesh performance compared with that of standard or isotropically refined hybrid meshes. 

In particular, the adaptive schemes have allowed the mesh to become aligned with features 

in the solution such as the roll-over of the shear layers during the formation of the wing tip 

vortex. Whilst improved resolution of the flow features has been obtained using the 

adaptive mesh, the results have shown that the resolution is not at the same level as the 

adaptive feature-alignment approach. This has been indicated by considering eddy viscosity 

magnitude and eddy viscosity ratios in the wake regions. The adaptive feature-aligned mesh 

appears to capture the evolution of the trailing shear layers and vortex, and also allows for 

the preservation of these flow structures at a great distance downstream. This is due to a 

smaller amount of numerical diffusion across the semi-structured hex-dominant mesh block 

compared with the anisotropic tetrahedra. 
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8 Conclusions  

8.1 Achievements and Concluding Remarks 

The main target of this project was to develop mesh generation and adaptation 

methods which allow for the use of high-quality quadrilateral or hexahedral elements 

aligned with flow features in the CFD solution. Such elements can be aligned with highly 

anisotropic flow physics more effectively than their triangular and tetrahedral counterparts. 

As hex-dominant meshing software was not available for the project, a decision was made 

to exploit one of the primary advantages of hybrid meshes: their ability to include a mixture 

of different elements. This ultimately allowed for the development of methods to embed 

blocks of hex-dominant mesh into the domain, aligned with the flow features, in an attempt 

to improve the capability of hybrid meshes to resolve the flow physics. 

 

 For the generation of high-quality unstructured quad-dominant surface meshes, a 

novel method involving the medial axis as a means to construct a geometric representation 

of complex flow structures has been developed. The technique allows for a smooth 

estimation of the flow feature topology as a series of curves, which are treated as virtual 

geometries and after embedding into the geometric domain, can influence the formation of 

the two-dimensional or three-dimensional surface mesh. Due to the flexibility of the 

approach, a range of complex features can be considered with a minimum of user 

interaction. After mesh regeneration, the quadrilateral elements are aligned in an 

anisotropic fashion with the feature curves. The locally aligned mesh actually mimics the 

attributes one would observe in a typical structured mesh. Due to this alignment, the mesh 

readily lends itself to a simple anisotropic nodal redistribution technique to further optimise 

the mesh based on the solution, allowing the cell interfaces to be fully aligned with the 

feature. This represents the ideal scenario for the application of the approximate Riemann 

solvers in the finite volume formulation. The approach has been applied on a wide variety 

of test cases in two-dimensions. The resulting high-quality regions of mesh have been 

shown to significantly improve the resolution of the flow features and solution accuracy 

(relative to a globally refined mesh) compared with the standard unstructured quad-

dominant mesh. Performance of the approach has been compared to that of an anisotropic 

adaptive triangular mesh. The results have indicated that improved solution accuracy and 
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efficiency can be obtained through the use of the developed method applied on the 

unstructured quadrilateral mesh. 

 

 The medial axis approach also lent itself for application to creating high-quality 

quad-dominant surface meshes aligned with shock footprints in three-dimensional transonic 

problems. This allowed for the development of a process which became the next major 

achievement in the present project. A new method which allows for embedding of semi-

structured hex-dominant mesh blocks, by extruding regions of surface mesh aligned with 

transonic shock wave regions, has been developed. The medial curves allow for 

decomposition of the extracted shock wave which in turn allow for growth heights and 

directions to be computed for each portion of the shock wave. After identification of a 

suitable set of surface mesh faces, the hex-dominant mesh block grows from the surface 

beyond the nearfield mesh aligned with each portion of the shock wave. The resulting mesh 

block is then embedded into the hybrid volume mesh and drastically improves the 

capability of the mesh to resolve the transonic shock across the entire span of the wing. 

Comparisons of the mesh performance with isotropically refined hybrid meshes and other 

adaptive techniques were made. The shock-aligned mesh performance has appeared to be 

much improved compared with an adaptive mesh and isotropically refined meshes, in terms 

of feature-resolution and accuracy for drag prediction.  

 

 The final main achievement in the project was to apply a similar surface mesh 

extrusion idea to improve hybrid mesh ability to capture wing tip vortices and wakes. A 

source surface is defined at the desired location by the user. This surface is treated like any 

other surface in the domain, and therefore a high-quality semi-structured quadrilateral mesh 

can be generated. After extraction of the relevant data from the solution, an extrusion 

direction and expansion factor is computed for the surface to allow for growth of the 

quadrilateral surface mesh through the detected flow feature. The resulting semi-structured 

hex-dominant mesh block can then be embedded into the hybrid volume mesh. For the 

presented test cases, the improvement of the resolution of trailing shear layers and in 

particular the wing tip vortex, compared with standard hybrid meshes, was substantial. This 

is due to the structured-like nature of the mesh that now exists downstream of the trailing 

edge of the geometry. Preservation of the trailing free shear layers further into the farfield 

was possible for each of the presented test cases. A comparison with anisotropic adaptation 
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schemes was carried out, to compare the semi-structured hexahedral cells with highly 

stretched tetrahedra. Whilst the anisotropic tetrahedra also significantly improved the 

hybrid mesh capability to resolve the features, they did not provide the same level of 

resolution as the hexahedra present in the feature-aligned meshes. The results suggest that 

element type, orientation and spacing influence the quality of shear layer and vortex 

resolution. 

 

 Generally, whilst the presence of the feature-aligned mesh blocks appear to have 

had favourable impacts on the numerical solution, these improvements have been observed 

relative to an isotropically refined mesh, under the assumption that as mesh size decreases, 

the set of partial differential equations that are being solved will converge to an ‘exact’ 

value. It is worth reiterating that which of these results are ‘correct’, particularly those 

presented in Chapter VII, is difficult to determine without further verification and / or 

validation.  

 

8.2 General Concluding Remarks 

 Isotropic elements of any type are generally unsuitable for resolving anisotropic 

flow features. 

 Quadrilateral meshes can be more effectively aligned with flow features than 

anisotropic triangular elements, avoiding highly skewed elements. 

 Isotropic tetrahedra generally provide poor resolution of anisotropic flow features, 

but application of anisotropic adaptation can improve the mesh performance.  

 Feature-aligned hexahedral mesh blocks can substantially improve flow feature 

resolution, particularly wakes and wing tip vortices 

 Whilst the presence of the mesh blocks appear to have a favourable impact on the 

numerical solution, further verification and / or validation of the results is required. 

 

8.3 Suggestions for Future Work 

 In terms of the medial axis approach presented in Chapter IV, there is potential for 

extending the process into three-dimensions, but such an approach presents a significant 

challenge. Three-dimensional α-shapes can be computed for arbitrary point clouds and 

constrained tetrahedralization of this data set should be possible. The centres of the 
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circumspheres will then approximate the medial object in three-dimensions. The main 

difficulty however is that, as with the two-dimensional case, the boundary of the α-shape 

will be non-smooth and irregular, leading to a non-smooth medial object. Processing the 

medial object becomes distinctly less trivial in three-dimensions since the medial object 

will possess surfaces which intersect at curves, rather than curves intersecting at points. 

 

 Currently the process requires regeneration of the entire mesh. A more suitable 

approach would involve only local regeneration of the mesh. Using the medial curves to 

form surfaces which allow intersecting tetrahedra to then be identified to form a void region 

is one potential idea. The mesh block can then be grown into this void and the gap region 

remeshed. However, since the surface mesh must be regenerated to be aligned with the 

shock wave, the advancing layers must also be completely regenerated. Application of this 

technique in combination with other general adaptation methods could also prove useful 

and extend the applicability and effectiveness of the developed approach. 

 

 Currently for the extrusion techniques presented in Chapter VI a level of user 

interaction is required to add the surfaces into the geometry. One means to remove this 

requirement is to modify the nearfield growth functionality such that the wake mesh block 

can be connected to the nearfield mesh. This would prevent the need for the addition of the 

embedded surface into the geometric domain in the first instance. The extrusion process for 

the wakes and wing tip vortices also requires regeneration of the entire hybrid mesh. 

Extending the process to allow for local regeneration around the mesh blocks would also be 

useful to carry out in order to improve the efficiency of the method. Insertion of mesh 

blocks into hybrid meshes has been considered by Ebeida et al.
[191]

 Developing a means to 

allow for extrusion along more complex vortex paths rather than a linear direction would 

also be desirable. More complicated wing configurations including winglets or nacelle and 

pylons, flaps and so on could also be considered using the present methods. The source 

surface(s) used for the extrusion would not necessarily need to change, but still ultimately 

provide a quality resolution of the complex wake flow structures. Comparison of the 

present methods with the performance of multi-block structured meshes may also be 

interesting. Finally, the feature-aligned meshes are not restricted to RANS solvers. The 

performance of DES or LES solvers are likely to be much improved through application on 
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the feature-aligned meshes compared with standard hybrid meshes. This aspect is certainly 

worthy of investigation. 
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