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Abstract 

Abstract 

Over the past fifteen years there has been increasing interest in the environmental 

occurrence, fate and effects of substances used as pharmaceuticals or personal care products. 

While the understanding of the environmental fate and ecotoxicity of pharmaceuticals is now 

well developed, less information is available on the uptake of pharmaceuticals and personal 

care products into aquatic organisms and, in particular, into sediment-dwelling organisms. 

This study was therefore performed to develop an understanding of the factors and processes 

affecting the uptake of pharmaceuticals and personal care products into the sediment 

dwelling oligochaete worm, Lumbriculus variegatus. The study combined experimental 

studies into the distribution of a range of pharmaceuticals and personal care products in 

sediment-water systems and studies into the uptake of the study compounds under a range of 

conditions. The results were used to parameterize and evaluate a model for estimating uptake 

of pharmaceuticals and personal care products into benthic organisms. 

Adsorption of the study compounds from water to sediment solids increased in the order 

diclofenac < chloramphenicol < salicylic acid < naproxen < caffeine < sulfamethazine < 

triclosan < fluoxetine. Comparison of the sorption results with estimations from available 

models for predicting sorption from chemical properties indicated that relationships 

developed for neutral organic chemicals were not appropriate for use on ionisable 

pharmaceuticals and personal care products. While predictive models, developed specifically 

for ionisable chemicals, produced improved predictions of sorption, even these predictions 

were not perfect. 
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Bioconcentration factors for the study compounds from water into L. variegatus were found 

to increase in the order chloramphenicol < diclofenac < salicylic acid < fluoxetine < 

naproxen < triclosan. The differences in bioconcentration factors could not be explained by 

differences in log Kow and log Dow which are descriptors that have previously been used to 

predict the uptake of neutral organic substances and ionisable substances in other species of 

invertebrates. There was also disagreement between the uptake measurements and 

predictions obtained from models developed for estimating the uptake of ionisable chemicals 

into aquatic organisms. 

The uptake of four of the study compounds (caffeine, diclofenac, fluoxetine and triclosan) 

was further evaluated at different water pH values. For three of these compounds 

(diclofenac, fluoxetine and triclosan), the potential for metabolism by L. variegatus was also 

assessed as was the uptake and route of uptake from whole sediments. Uptake of diclofenac 

and fluoxetine was found to be highly sensitive to changes in pH with bioconcentration 

factors varying by over two orders of magnitude (diclofenac) and four orders of magnitude 

(fluoxetine) across three pH units. Tissue analysis indicated that while diclofenac is not 

metabolized by the worms, fluoxetine and triclosan are heavily metabolized. The whole 

sediment studies demonstrated that uptake of diclofenac and fluoxetine occurs primarily 

from the sediment pore-water whereas for triclosan, sediment ingestion provides a small 

contribution to the uptake. 

Results from the different components of the study were used to parameterize and evaluate a 

model for estimating uptake of pharmaceuticals and personal care products from sediments 

into benthic organisms. Comparison of predictions from this model for diclofenac, fluoxetine 

and triclosan were compared to measurements from whole sediment studies. While the 

model was found to under-predict the uptake of triclosan, good predictions were obtained for 

diclofenac and fluoxetine.  With further development and evaluation, the uptake modeling 

approach could provide a valuable tool for use in the risk assessment of ionisable compounds 

such as many pharmaceuticals and personal care products. 

Abstract 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1 Ionisable chemicals in the aquatic environment 
 

Ionisable chemicals are chemicals that possess either weak acidic or basic functional groups 

that have the potential to protonate or deprotonate and thereby give positive or negative 

charges to the molecules. Ionisation of chemicals is described in more detail in Section 3.3.  

Ionisable chemicals are found ubiquitously amongst the different chemical categories  used 

in our everyday life, including pharmaceuticals, personal care products, house hold 

chemicals and pesticides. For example, Franco et al. 2010 showed that out of a subsample of 

1510 out of 17000 of the chemicals pre-registered and due for registration within the 

European chemical legislation REACH, 33 % were ionised at pH 7.  

 

In addition to the chemicals pre-registered within REACH, a large proportion of substances 

used as pharmaceuticals and personal care products, which are commonly referred to as 

PPCP’s, are ionisable (Daughton, 2001).The environmental fate and effects of human 

pharmaceuticals, personal care products and house hold chemicals has only recently come to 

the attention of the scientific community (Boxall et al. 2012). Nevertheless, extensive 

reviews addressing the environmental impact of these groups of chemicals have been 

produced over the last 15 years (Halling-Sorensen et al, 1998; Daughton and Ternes 1999; 

Monteiro and Boxall, 2010; Brausch and Rand, 2011).  In the following sections, an 

overview is given of the environmental exposure and effects of mainly pharmaceuticals but 

also a few active ingredients in personal care products in the environment. 

  



Chapter 1 - Introduction 

   17 
 

1.1.1 Environmental exposure routes 

 

The major exposure route of down the drain chemicals into the aquatic environment is via 

the discharge of sewage waters from hospitals and households into the municipal waste 

water system (Carballa et al. 2004). Following use, the chemicals may be metabolized by the 

human body and then the parent compounds and any metabolites will be released to and 

transported via the sewerage system to a wastewater treatment plant.  Once they enter the 

sewage treatment plants they can either associate with the sewage sludge or remain in the 

aqueous phase (Carballa et al. 2004). The fraction remaining in the aqueous phase can 

undergo degradation, either biotically (Onesios et al. 2009) or abiotically (Andreozzi et al. 

2003) resulting in the formation of degradation products. A mixture of parent compounds, 

metabolites and degradation products will then be released into receiving waters (Stülten et 

al. 2008; Lee et al, 1998).  

An additional exposure route that has recently been shown to be of major importance, 

predominantly in the developing world, is the intended and unintended discharge of 

substances from pharmaceutical manufacturing sites (Larsson et al. 2010). Veterinary 

pharmaceuticals may be released to the aquatic environment either directly, when used in 

aquaculture, or indirectly when manure and slurry from treated livestock is applied to land as 

a fertilizer (Boxall et al., 2004). Following addition to land, veterinary pharmaceuticals can 

be transported to the aquatic environment via runoff from agricultural lands to adjacent 

streams and ditches (Boxall et al. 2004). 

1.1.2 Occurrence of PPCPs in the aquatic environment 

 

As a result of their continuous use by society and the fact that selected PPCPs are not 

removed by wastewater treatment, a range of PPCPs and their metabolites and 

transformation products have been detected in aquatic systems around the world (e.g. 
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Monteiro and Boxall, 2010; Brausch and Rand, 2011). Different classes of pharmaceuticals 

and active ingredients in personal care products are frequently detected in surface waters and 

sewage effluents at concentrations up to low µg/L levels; concentrations are slightly higher 

in effluents (Daughton and Ternes, 1999; Monteiro and Boxall, 2010; Brausch and Rand, 

2011). Pharmaceuticals have also been detected in freshwater sediments at ng/g 

concentrations (Nilsen et al. (USGS); Vazquez-Roig et al. 2010). At manufacturing sites, the 

concentrations of pharmaceuticals can be much higher. For example, Larsson et al. (2007) 

measured concentrations of a range of broad spectrum antibiotics in waste water effluent in 

Hyderabad, India. The maximum detected concentration of ciprofloxacin, a fluoroquinolone 

antibiotic, was 31,000 µg/L which is higher than the highest therapeutic dose in human 

plasma and several orders of magnitude higher than concentrations where ecotoxicological 

effects have been reported in bacteria and aquatic plants. 

1.1.3 Reported effects of PPCPs in the aquatic environment. 

 

As many pharmaceuticals and active ingredients in personal care products are biologically 

active molecules, concerns have been raised over the potential impacts of PPCPs in surface 

waters on aquatic organisms (e.g. Halling-Sorensen et al. 1998; Daughton and Ternes, 1999; 

Fent et al. 2006). A range of pharmaceuticals have been shown to effect aquatic organisms at 

low concentrations. For example, several studies have reported effects on the reproduction of 

non-target organisms following exposure to ethinyl estradiol (EE2), the active ingredient in 

the contraceptive pill, at the individual level (Schultz et al. 2003; Nash et al. 2004) and also 

at the population level (Jobling et al. 2006; Kidd et al. 2007). EE2 has also shown to have 

effects not only related to reproductive endpoints but also on developmental endpoints. For 

example, Soares et al. (2009) observed effects on embryonic development in Zebra fish 

when exposed to low and environmentally relevant concentrations of EE2. Effects of 

pharmaceuticals with other mechanisms have also been reported. Porsbring et al. (2009) 

reported effects on sterol synthesis in marine microalgae when exposed to concentrations as 
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low as 50 pM of the fungicide clotrimazole. Exposure to diclofenac, a non-steroidal anti-

inflammatory drug (NSAID), has been shown to alter the histology of the kidney (Schwaiger 

et al. 2004). Reported histological effects included hyaline droplet degeneration of the 

tubular epithelial cells and the occurrence of an interstitial nephritis. In the gills of fish, 

exposure to diclofenac results in necrosis of pillar cells leading to damage of the capillary 

wall within the secondary lamellae. (Schwaiger et al. 2004). Fluoxetine, a selective serotonin 

reuptake inhibiter which is used in the treatment of depression, has been shown to cause 

effects on behaviour such as decreased activity, aggression, and changes in avoidance 

behaviour in both vertebrates and invertebrates (De Lange et al. 2006; Perreault et al. 2003; 

Painter et al. 2009). The high use of antibiotics has led to effects that may have impacts on a 

global scale (Sarmah et al. 2006; Cabello 2006; Fricke et al. 2008). When bacteria are 

exposed to a selection pressure in the form of an antibiotic, a common response of the 

bacterial population is to develop resistance to the antibiotic (Wellington et al., 2013). The 

genes associated with the resistance can then possibly be transferred via horizontal gene 

transfer into pathogenic bacteria, creating resistant pathogens which may have substantial 

ecological and economic outcomes (Kristiansson et al. 2011). However, the impact of 

antibiotics present in the aquatic environment on the frequency of resistance transfer is a 

topic of considerable debate. The information available to date suggests that the input of 

resistant bacteria into the environment from different sources seems to be the most important 

source of resistance in the environment and that exposure to antibiotics in the environment 

plays a limited role in the selection of resistance (Kummerer, 2009).  

Pharmaceuticals have also been shown to have catastrophic effects in the terrestrial 

environment. For example, in the Indian subcontinent, the Oriental white-backed vulture was 

once one of the most common raptors (Ali and Ripley in Oaks et al. 2004). In the 1990s, 

population numbers declined by >95% (Pain et al. in Oaks et al. 2004). Since then, 

catastrophic declines in the population of two other species of vulture have also been  

observed (Pain et al. in Oaks et al. 2004). Oaks et al. (2004) showed a correlation between 
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renal failure, visceral gout and mortality in the vultures. The visceral gout was associated 

with residues of the anti-inflammatory drug diclofenac in the vulture tissues. The vultures 

are thought to have been exposed to diclofenac as a result of the consumption of carcasses of 

livestock that had been treated with diclofenac. The use of diclofenac in farm animals in the 

Indian subcontinent has now been banned and efforts are being made to re-establish the 

vulture populations.  

1.1.4 Assessing risks of PPCPs in the environment and the importance of 
understanding chemical uptake. 

 

A number of regions of the world require an environmental risk assessment for a PPCP to 

protect the natural environment from harm from these products. For example in Europe, the 

European Medicines Agency (EMA; previously called the European Medicines Evaluation 

Agency (EMEA)) requires an environmental risk assessment for all new human 

pharmaceuticals as part of the marketing authorization process. These assessments typically 

involve the performance of studies to assess the environmental mobility and persistence of a 

substance as well as ecotoxicological studies to assess the potential effects of the substance 

on aquatic and terrestrial organisms (EMEA, 2006). Similar requirements are in place in 

Europe for compounds used in veterinary medicine (VICH, 2000; VICH, 2005) or in 

personal care products (REACH, 2006). 

In the risk assessment process, knowledge of the uptake of a substance from the environment 

into organisms as well as the factors determining uptake can be invaluable. An 

understanding of uptake allows an assessment of: the bioaccumulation potential of an 

organism; the potential for a substance to cause secondary poisoning; and can also help to 

support extrapolation of toxicity data from one species to another or from one environmental 

situation to another (Williams, 2005). For example, due to the fact that many organisms have 

the same receptors as humans, it has been suggested that pharmacological data could be used 

to inform the environmental risk assessment of a pharmaceutical product (Huggett et al. 
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2003; Berninger and Brooks 2010). The next section therefore provides an overview of how 

chemicals are taken up into organisms and reviews the current knowledge on the uptake of 

PPCPs into aquatic organisms 

1.2 Uptake 
 

A contaminant that accumulates in biota can under long term exposure and concentrate 

higher up in the food chain and as a consequence lead to secondary poisoning, an example is 

the decline of the populations of the Oriental white-backed vulture caused by the feeding on 

livestock treated with diclofenac, described in the previous section (Oaks et al, 2004). To 

better understand the effects caused by direct exposure or secondary poisoning from a 

contaminant in the aquatic environment it is therefore crucial to have knowledge about the 

uptake and depuration of contaminants in organisms. Due to many pharmaceuticals having 

enzyme and receptor based modes of actions, processes which are intensively studied during 

drug development, it has also been suggested to use pharmacological data in the 

environmental risk assessment process (Huggett et al. 2003; Berninger and Brooks 2010). 

However, to utilise this source of information, knowledge on how to estimate internal 

concentrations in non-target organisms is essential.    

1.2.1 Bioconcentration, bioaccumulation and biomagnification. 

 

In the current literature, the use of the terms bioconcentration, bioaccumulation and 

biomagnification are often used interchangeably. In this thesis the terms used are those 

defined in the Technical Guidance Document, TGD (2002). Bioconcentration is defined as 

the net result of uptake, distribution and elimination of a chemical from waterborne 

exposure. Bioconcentration is expressed in terms of the bioconcentration factor (BCF) which 

can be calculated either statically or dynamically. A static bioconcentration factor is the ratio 

between the concentration in the organism (Corganism) and the concentration in the surrounding 
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waters (Cwater) at steady state. A dynamic bioconcentration factor can be calculated using 

uptake and depuration kinetics from the quotient of the uptake (Kin) and elimination (Kout) 

rate constants see Eq 1 (van Leeuwen et al. 2007).  

out

in

water

organism
organism K

K
or

C

C
BCF =          Eq 1. 

Bioaccumulation is the net result of the uptake, distribution and elimination of a chemical 

from all exposure routes i.e. water, sediment, soil, air and food. Biomagnification is the 

accumulation of a chemical via the food chain and can be defined by a biomagnification 

factor (BMF), which is the relative concentration in a predatory animal compared to the 

concentration in its prey: 

prey

predator

C

C
BMF =   Eq 2. 

 

1.2.2. Uptake from sediment and sorption. 

 

Sediment can act both as a sink through sorption of a chemical to particles and a source 

through resuspension of environmental contaminants. Sediment dwelling organisms have the 

potential to accumulate chemicals either passively via uptake from the water column or the 

pore water in the sediment or actively via ingestion of a food source. Therefore sediment 

associated contaminants may pose a threat to sediment dwelling organisms that are not 

predictable from concentrations in the water column alone. Measuring or estimating 

bioconcentration is a fairly standard procedure to assess the risks posed to sediment dwelling 

invertebrates by environmental contaminants and the uptake of contaminants via a food 

source is often discarded (Wenning et al. 2005) . However, for deposit feeding organisms, 

that live in and ingest sediment, to obtain nutrients from particles suspended in the sediment, 
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the risks from environmental contaminants may be underestimated if only uptake from pore 

water alone is considered. This is especially true for chemicals that strongly associate to 

sediment particles (Leppänen et al. 2000). There are examples of studies where the uptake of 

contaminants into sediment associated organisms has focused on the exposure from water 

only (Wildi et al. 1994; Artola-Garicano et al. 2003). However, most studies measuring 

uptake into sediment living organisms have exposed them to spiked sediment (Comber et al. 

2007; Leppänen and Kukkonen 1998; Lu et al. 2004; Weston and Gulmann, 2000). Only a 

few studies have explored the importance of different uptakes routes of chemicals into 

sediment dwelling invertebrates and the results are inconclusive. Comber et al. (2007) and 

Leppänen and Kukkonen (1998) showed that uptake via ingestion of sediment into 

Lumbriculus variegatus was the main uptake route of uptake for some surfactants and 

polycyclic aromatic hydrocarbons whilst Lu et al. (2004)  showed that the main uptake into 

oligochaetes is via the pore water. Weston and Gulmann (2000) showed that the importance 

of uptake routes into the polychaete Abarenicola pacifica is time dependent. To gain better 

understanding of the uptake of contaminants into sediment living organisms it is therefore 

crucial to have knowledge of the bioconcentration from the water exposure, the importance 

of the different uptake routes as well as the sorption behaviour of the chemical to sediment 

particles.  

Sorption behaviour can be described by a solid/water distribution coefficient, Kd (mL/g). Kd 

is defined as the ratio of the concentration of a chemical in two different phases i.e. 

sediment/water, soil/water or sludge/water at equilibrium. Sorption is often normalised for 

organic carbon and expressed as a Koc value. The purpose of Koc is to reduce the variability 

in the sorption coefficient for a substance when applied to soils and sediments with varying 

organic carbon fraction. The formulae for calculating Kd and Koc are shown in equation 3 

and 4.  

aq

s
d C

C
K =   Eq 3. 
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OC

K
K d

oc

100⋅
=   Eq 4. 

Where Cs (mg/g) is the concentration of a chemical in a solid phase i.e. soil/sediment/sludge 

and Caq (mg/mL) is the concentration in the aqueous phase. The Koc assumes that there is 

only partitioning to the organic matter by hydrophobic interactions and may consequently 

not be a good descriptor for sorption of ionisable chemicals. 

1.3. Equilibrium partitioning 

1.3.1. Theory 

 

To experimentally measure the environmental fate as well as toxicity to non-target 

organisms for all new chemicals that enter the market is a challenging and time consuming 

task.  Equilibrium partitioning aims to predict the ratios of a chemical that will associate to 

soil or sediment particles and how much that will be freely dissolved in the pore water and 

consequently may be taken up into biota and possibly have an effect in the organism. A 

schematic figure of equilibrium partitioning is shown in Figure 1. By using equilibrium 

partitioning, variability in uptake between sediments is removed. Di Toro et al (1991) 

showed for neutral organic chemicals that by using pore water concentrations, to remove 

sediment variability, alongside effect data from water only studies, it is possible to predict 

the effects of these substances to sediment organisms. Di Toro also suggests that for neutral 

organics chemicals in an equilibrated sediment system, the effective exposure concentration 

is the same regardless of exposure route. However there are a few assumptions made when 

assessing risks of environmental contaminants in sediments using equilibrium partitioning 

(TGD; 2002): 

- Sediment dwelling organisms are equally sensitive to the chemical as pelagic 

organisms.  
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- Concentrations in the sediment, the interstitial pore water and in the benthic 

organism are at thermodynamic equilibrium. 

- Sediment-water partitioning can be measured or derived from chemical 

properties and sediment characteristics. 

 

 

Figure 1. Diagram showing the exposure routes from a water only exposure (left) and a 
sediment system at equilibrium (right). Koc is the partition coefficient describing the 
distribution of a chemical between the pore water and the organic carbon fraction (di 
Toro et al. 1991). 

 

1.3.2. Application of Equilibration Partitioning in  Environmental risk 

assessment for chemicals in sediment. 

 

In the Technical Guidance document, TGD, the European chemical bureau recommends the 

use of equilibrium partitioning when experimental data are missing for risk assessment of 

environmental contaminants in sediments. Chemicals that have a partition coefficient 

normalised for organic carbon, Koc < 1000 L/Kg are not likely to sorb to sediment, therefore 
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a trigger value for sediment effects assessment of log Koc or log Kow ≤ 3 is used to avoid 

extensive testing. To decide whether a chemical will have the potential to cause harmful 

effects in the environment a Risk quotient (RQ) is calculated by comparing a Predicted 

Environmental Concentration (PEC) with the Predicted No Effect Concentration (PNEC), 

the concentration below which unacceptable effects are not likely to occur. The RQ is 

calculated as follows:  

sed

sed

PNEC

PEC
RQ=   Eq 5. 

sed

sed

PNEC

MEC
RQ=   Eq 6. 

If the PEC/PNEC is greater than 1, then there are indications of risks to non-target organisms 

in the sediment. If measured environmental concentrations are available, these can be used in 

calculating the RQ, shown in Eq 6. If measured (MEC) or predicted (PEC) sediment 

concentrations are absent the risk assessment for the aquatic compartment also has to cover 

the sediment compartment for substances with a log Kow < 5. For substances with a log 

Kow > 5 an assessment factor of 10 is applied since equilibration partitioning only considers 

exposure via the water. This is inconsistent with the recommendations in Di Toro et al. 1991 

where it is stated that the exposure route is not of importance for a neutral chemical in an 

equilibrated sediment / water system.  

For most chemicals that enter the market, sediment toxicity data are not available. Therefore 

equilibration partitioning is used as an initial screening approach to assess a potential risk of 

sediment associated chemicals. The Predicted No Effect Concentration (PNEC) for the 

sediment compartment is calculated as follows: 
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1000⋅⋅= −
water

susp

watersusp
sed PNEC

RHO

K
PNEC   Eq 7. 

Table 1. Explanation of symbols 

PNECwater Predicted No Effect Concentration in water [mg / l] 

RHOsusp bulk density of wet suspended matter [kg / m3] 

Ksusp water partition coefficient suspended matter water [m3 / m3] 

PNECsed Predicted No Effect Concentration in sediment [mg / kg] 

 

 

If the first screening, using equilibration partitioning, indicates a potential risk, an 

experimental study with spiked sediment is recommended. When experimental data is 

scarce, assessment factors must be applied. The size of the assessment factors (1-1000) 

depends on the uncertainty of the data and the quantity of extrapolation needed, i.e. inter- 

and intra-laboratory variations of data, inter- and intra-species variations, short term to long 

term exposures and laboratory to field study extrapolations.  

 

1.3.3. Equilibration Partitioning of Ionisable Chemicals, Dissociation and log 

D 

Equilibrium partitioning can be applied to non-ionic organic chemicals, but the use for 

ionised chemicals is not recommended (TGD 2003; Di Toro et al. 1991).  The reason is due 

to their chemistry. As stated previously, ionisable chemicals possess either weak acidic, 

basic or both acidic and basic functional groups which have the potential to dissociate in the 

natural environment depending on the pH. The dissociation of a weak acid is is described by 

equation 8 and illustrated in Figure 2. The dissociation of a weak base is described by 

equation 9. The degree of ionisation is described by the dissociation constant, Ka or Kb, and 

is defined in Eq 10 and 11. The measurement of the strength of an acid or a base in solution 
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is described by their pKg or pKb which is the pH at which the chemical is present in equal 

amounts of its neutral and ionic species (Figure 3).  

 +− +↔ HAHA  Eq 8. 

 BHHB +↔ ++  Eq 9. 

 
][

][][

HA

HA
K a

+− ⋅=  Eq 10. 

 
][

][][
+

+ ⋅=
HB

BH
Kb  Eq 11. 

The protonation or deprotonation of a chemical with either acidic or basic or both acidic and 

basic functional groups can change the chemical properties and as a consequence also the 

fate and toxicity of the chemical in the environment (Franco et al. 2008). Several studies 

have reported a changing fate and toxicity of a chemical with a changing pH, see section 4.1. 

 

Figure 2. Ionisation of acetyl salicylic acid, a weak acid. Acetyl salicylic acid has a pKa 
of 3.1 (SPARC  calculator) and is present predominantly in its neutral form (to the left) 
at pH < 3.5 and in its anionic form at pH > 3.5 (to the right). 
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Figure 3. Dissociation of a weak acid. The neutral form is displayed in red and the 
dissociated anionic form is displayed in blue. 

 

Lipophilicity of ionisable chemicals can be described by the Log D. Log D is defined as the 

ratio of the sum of the concentrations of all forms of the compound (ionised plus unionised) 

in each of the two phases e.g. octanol and water at a specific pH. Since Log D is pH 

dependent, one must specify the pH at which the log D was measured or calculated using Eq 

12 (acids) or Eq 13 (bases). 

 )101log(loglog pKapHKowD −+−=  Eq 12. 

 )101log(loglog pHpKaKowD −+−=  Eq 13. 
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1.4. What chemical, environmental and biological properties 

affect uptake of chemicals. 

1.4.1. Chemical properties  

1.4.1.1 Log Kow 

It is generally recognised that the bioaccumulation of a chemical is related primarily to its 

lipophilicity and several studies support this (Mackay 1982, Chiou 1985). The Technical 

Guidance Document on risk assessment (2002) uses lipophilicity (expressed by the Log 

Kow) as a trigger value for secondary poisoning. A substance with a Log Kow > 3 is referred 

to as bioaccumulative and substances with a Log Kow > 4.5 as highly bioaccumulative and 

are subjects for higher tier testing (TGD, 2002). However, for chemicals that have the 

potential to ionise, e.g. pharmaceuticals, at environmentally relevant pH, Log D was 

suggested as a better descriptor for bioaccumulation in aquatic invertebrates (Meredith-

Williams et al. 2012).   

1.4.1.2 pKa 

The pKa describes the degree of dissociation of a chemical at a particular pH value. If a 

chemical has a pKa in the range of environmentally relevant pH values it is very likely that 

will have an effect on the uptake into organisms due to protonation or deprotonation of 

ionisable chemicals, this is discussed further in section 4.2.1.  

1.4.1.3 Molecular weight and steric effects 

Molecular weight has been shown to influence the uptake of organic chemicals in soils. Topp 

et al. (1986)  and Shaw and Connell (1980)  showed that steric effects, e.g. due to 

chlorination, have an influence on the uptake of polychlorinated biphenyls (PCB's) in sea 

mullet. Lohner and Collins (1987) studied the uptake of six organochlorines in midge larvae 

(Chironomus riparius) and discovered a correlation between molecular weight, uptake 

constants and Log Kow.  
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1.4.2. Environmental properties 

1.4.2.1 pH 

Despite the variability of pH in waters, sediments and soils, only a few studies have 

investigated the effects pH have on the fate and toxicity of organic environmental pollutants. 

The bioconcentration of pyrene was studied in midge larvae (Chironomus riparius) at three 

different pH values, 4, 6 and 8. A correlation between an increased pH and an increased 

uptake was shown. However, exposing the midges at pH 4 induced an abnormal mucus 

secretion. Thus, it was hypothezised that this response to an acidified environment caused 

the reduced biconcentration (Wildi et al. 1994). Nakamura et al. (2008) investigated the 

toxicity and bioconcentration of fluoxetine in japanese medaka (Oryzias latipes) at three 

different pH values, 7, 8 and 9. They found that LC50 values ranged from 0.2 mg/L (pH 9) 

to 5.5 mg/L (pH 7). The difference in toxicity was explained by differences in 

bioconcentration at different pH values. BCF values ranged from 13 (pH 7) to 330 (pH 9), 

explained by a higher fraction of the lipophilic nonionised species at the higher pH. Another 

study investigated the sorption to natural sediments with varying pH (Zhang et al. 2010). 

The study showed that the sorption of the antibiotic, tetracycline, to sediment was dependent 

on a range of environmental factors and that sorption was facilitated at lower pH via a cation 

exchange mechanism. 

1.4.2.2 Sediment characteristics 

Several studies have investigated the influence of sediment characteristics on the sorption 

behaviour of chemicals. Organic matter has been shown to increase the sorption of phenolic 

chemicals (Isaacson and Frink 1984), as has the presence of cadmium and copper on the 

sorption of tetracycline to sediments and soils (Zhang et al. 2011). Particle size has also been 

shown to have an influence on the distribution of chemicals in sediments, hence also the 

bioavailabilty of organic xenobiotics (Kukkonen and Landrum 1996).  
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1.4.2.3 Food quality / quantity 

Granberg et al. (2006) investigated the effects of sediment organic matter quality on the 

uptake of pyrene into the mud snail Hydrobia ulvae by using two different food sources, one 

high quality microalgae, Tetraselmis sp and a low quality lignin. Pyrene was accumulated 

into the organisms to a larger extent when a high quality food source was used compared to 

the low quality food. Gilek et al. (1996a) investigated the effects of algae concentration on 

the accumulation of PCBs in the Baltic mussel Mytilus edulis and observed a decreasing 

bioaccumulation when algae concentration increased. 

1.4.2.4 Temperature 

Uptake of a series of moderate to very hydrophobic PAHs was measured in L. variegatus at 

three different temperatures, 5, 12 and 24 ° C. Results showed that the uptake was an 

enthalpy driven process and that bioconcentration decreased with an increasing temperature 

(Muijs and Jonker 2009). The bioconcentration of anthracene was also measured in 

chironomids at three different temperatures, 16, 25 and 30 ° C. Results showed that 

anthracene was taken up to the greatest extent at 25 ° C, lesser at both 16 and 30 ° C 

(Gerould et al. 1983). Wang et al. (2011) saw increasing sorption behaviour with a 

decreasing temperature of five different PAHs to three different sorbents, two natural 

sediments and a treated inorganic fraction which consequently changes the bioavailability 

and the potential for uptake into biota.  

1.4.3. Biological properties – size, feeding behaviour and metabolic pathways 

 

The accumulation of environmental contaminants in aquatic organisms can vary between 

organisms due to several species specific traits, e.g. feeding behaviour, size and the presence 

or absence of metabolic pathways within an organism. The impact of ecological processes 

such as competition and predation on the uptake of environmental contaminants have been 
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less studied, however it is likely that they might influence the bioaccumulation into aquatic 

organisms.  

1.4.3.1 Size 

One can assume that an organism’s body size will affect the bioconcentration of chemicals 

mainly as a result of two factors. A smaller organism has a higher surface/volume ratio and 

thus has the potential to accumulate chemicals passively to a higher extent than a larger 

organism (Arnot et al, 2012). However, a larger organism is more likely to have a longer gut 

which increases the gut passage time and the potential for accumulation via a food source. 

Ahrens et al. (2001) observed that larger individuals of Nereis succinea had a higher 

adsorption efficiency of food and sediment bound organic contaminants compared to smaller 

individuals which were explained due to a longer gut passage time. The influence of body 

size on the uptake, depuration, and bioaccumulation of polychlorinated biphenyl congeners 

was studied in the mussel, Mytilus edulis, by Gilek et al. (1996b). It was found that an 

increasing body weight resulted in a decreasing bioaccumulation that could not be explained 

simply by equilibrium partitioning.  

1.4.3.2. Feeding behaviour 

Gaskell et al. (2007) measured the bioaccumulation of DODMAC, a cationic surfactant, in 

four freshwater macroinvertebrates (Asellus aquaticus, Chironomus riparius, Gammarus 

pulex, Lumbriculus variegatus). Chironomus accumulated the DODMAC to the highest 

degree and the observed bioaccumulation pattern was Chironomus > Gammarus > Asellus = 

Lumbriculus. The results could not be explained only by gut passage time. Another study 

measured the bioaccumulation of PCBs and PAHs in three different marine species with 

different feeding behaviour: Arenicola marina which feeds by ingestion of sediments; 

Macoma balthica, a deposit feeder; and Mytilus edulis, a filter feeder. The contaminants 

were accumulated as follows: Arenicola > Macoma > Mytilus and the study concluded that 

the feeding does have an impact on the uptake behaviour (Kaag et al. 1997). 
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1.4.3.3. Ecological processes 

In the study of Kaag et al. (1997), it was also observed that Macoma balthica accumulated 

the chemicals more than in the presence of Mytilus edulis. This was thought to be due to M. 

edulis preventing the blooming of phytoplankton which resulted in a decreased overlying 

food source (Kaag et al. 1997).  Time could also be an important factor that might influence 

the uptake of chemicals into aquatic organisms. Several studies refer to bioconcentration and 

bioaccumulation factors as the ratio of the tissue concentration and the surrounding matrix. 

However, in many cases tests are not run until equilibrium and BCF and BAF should be 

referred to as pseudo BCF or BAF.  Without equilibrium being reached, dynamic factors 

must be calculated based on uptake and depuration rates. Time can also influence the 

fraction of a contaminant that sorbs irreversibly to the sediment (Löffler et al. 2005). This is 

likely to influence the uptake of contaminants into sediment dwelling organisms. 
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1.5. A conceptual model for estimating uptake into sediment 

dwelling organisms 

To estimate the uptake of sediment associated pharmaceuticals or active ingredient in 

personal care products into sediment dwelling organisms, there are some fundamental 

knowledge gaps that need to be filled.  For example, we must have knowledge on the 

distribution of the contaminant between the sediment particles and the sediment porewater, 

e.g. by measuring a distribution coefficient such as Kd. We must also have knowledge on the 

degree of uptake and depuration from the pore water and of how environmental properties 

might affect this. For example, for ionisable chemicals, pH could be very important in 

determining the uptake of a compound.  Additionally, we must have knowledge on the 

metabolism of the compound since metabolism can affect the uptake and depuration kinetics 

of contaminants.  Last but not least, the additional uptake of contaminant via contaminated 

sediment must be addressed.  A conceptual model illustrating the inter-linkages of all these 

process is shown in Figure 4.  

 

Figure 4 A conceptual model for estimating uptake into sediment dwelling organisms. 
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1.6. Aim and objectives of thesis. 

 

The overall aim of this thesis was to develop an understanding of the factors and processes 

affecting the uptake of PPCPs into sediment dwelling organisms and to explore whether the 

conceptual framework described above is suitable for assessing the uptake of sediment-

associated ionisable substances into benthic organisms. This was achieved using the 

following specific objectives: 

 

1. To explore the sorption behaviour of ionisable compounds in natural sediment and to 

assess whether this behaviour can be predicted based on the physico-chemical properties of a 

substance (Chapter 2); 

2. To explore the uptake and depuration behaviour of a range of ionisable compounds, 

in order to understand the relationships between uptake and the physicochemical properties 

of a molecule and to evaluate existing models for estimating uptake of ionisable substances 

into benthic organisms (Chapter 3); 

3. To explore the effects of varying pH on the uptake of selected ionisable compounds 

from water into benthic invertebrates (Chapter 4); 

4. To assess the degree of metabolism of selected ionisable compounds in benthic 

organisms (Chapter 4); 

5. To determine the importance of feeding as a route of uptake for ionisable 

compounds (Chapter 5); and 

6. To use the information, produced by Objectives 1-5, to model uptake of a selection 

of ionisable compounds from sediment into benthic organisms and to provide 

recommendations on how to better to assess the risks of sediment-associated ionisable 

substances (Chapter 6). 
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The work focused on the oligochaete worm, Lumbriculus variegatus and a range of 

compounds used as pharmaceuticals or ingredients in personal care products. An overview of 

L. variegatus and more detailed information on the study compounds is given in the 

following Sections. 

1.7. Study organism 

Lumbriculus variegatus 

Phylum: Annelida 

Class: Oligochaeta 

Order : Lumbriculida 

Family: Lumbriculidae 

Genus sp: Lumbriculus 
variegatus 

Common names: California 
blackworms; blackworms; 
mudworms 

L. variegatus are found in North America and Europe. Preferred habitats are at the edges of 

ponds, lakes, slow flowing rivers or marshes where it feeds on decaying vegetation, 

microorganisms and sediment (Brinkhurst and Gelder 1991, Penttinen et al. 1996). L. 

variegatus inhabits both the sediment and water compartment simultaneously, dwelling with 

the head first in the sediment and keeping the tail in the water, where respiration and 

photoreception occurs (Penttinen et al. 1996). L. variegatus reproduces both sexually and 

asexually via autotomy into two fragments (Drewes and Fourtner, 1990). Both fragments can 

regenerate into two individuals. Sexual reproduction is very rarely observed in the 

laboratory, however asexual reproduction is commonly observed (Drewes and Brinkhurst 

1990). Recent genetic work on the speciation of L. variegatus reveals that L. variegatus was 

found to consist of at least two distinct clades (I and II), both of which occur in Europe as 

Photo: Neil Phillips 
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well as North America. The authors concluded that clades I–II are separately evolving 

lineages, and that they should be regarded as separate species (Gustavsson et al. 2009). 

Lumbriculus variegatus and other benthic macroinvertebrates are the prey of various 

secondary consumers, e.g. crabs, bottom-feeding fish and birds eating sediment dwelling 

organisms. (Wootton, 1984; Wallace and Webster, 1996). Thus, transfer of accumulated 

contaminants to predators may occur and result in secondary poisoning.  

L. variegatus has been commonly used for measuring bioaccumulation of sediment 

associated contaminants into sediment dwelling organisms. For instance, the uptake of PAHs 

into Lumbriculus variegatus has been well studied, and a number of publications on uptake 

routes, feeding behaviour, trophic transfer are available in the open literature (Kukkonen and 

Landrum, 1994; Leppanen, 1995; Conrad et al. 2002; Leppanen and Kukkonen, 2008; 

Navarro et al. 2013).  Other groups of substances whose uptake has been studied in L. 

variegatus are chlorinated hydrocarbons, metals and surfactants (Phipps et al. 1993; Ankley 

et al. 1994, Comber et al. 2008). Although, more scarce, data on the bioaccumulation of 

PPCPs into L. variegatus are also available (Leibig et al. 2005; Higgins et al. 2009)  

 

1.8. Study compounds 

The study used a range of compounds used as either pharmaceuticals or as ingredients in 

personal care products. The compounds were selected to cover a range of physico-chemical 

properties and included acidic, neutral and basic substances. An overview of the structure 

and properties of the study compounds is given in Table 2 and an outline of the use, 

properties and environmental effects of the study compounds is given below 

Caffeine 

Caffeine (3,7-dihydro-1,3,7-trimethyl-1h-purine-2,6-dione) is a crystalline alkaloid that in 

humans act as a stimulant of the central nervous system. Caffeine has been reported to be the 
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most commonly consumed stimulant by humans (Lawrence et al. 2005) and human 

consumption has been estimated to average 70 mg caffeine/person/day (Buerge et al. 2003). 

Medicinally it is used as a cardiac, cerebral, and respiratory stimulant, and it also functions 

as a diuretic (Buerge et al. 2003).  Caffeine mainly acts as an antagonizer to adenosine and 

increases activity in neurotransmission (Daly et al. 1981). 

As a result of its high consumption, caffeine is a commonly detected substance in surface 

waters around the world (Kolpin et al. 2002; Weigel et al. 2002; Buerge et al. 2003; 

Metcalfe et al. 2003; Sankararamakrishnan and Guo 2005; Thomas and Foster 2005). 

Previous research has shown effects of caffeine on several non-target species in the 

environment with LC50 values of below 100 mg/L being reported for fish, aquatic 

invertebrates and insects (Moore et al. 2007). Bantle et al. (1994) found that relatively low 

caffeine concentrations in water affected Xenopus laevis egg development when exposed for 

96 hours (LC50 = 0.22 to 0.37 mg/mL).  

Chloramphenicol 

Chloramphenicol (2,2-dichloro-N-[1,3-dihydroxy-1-(4-nitrophenyl)propan-2-yl]acetamide) 

is a broad spectrum antibiotic that became available in 1949. Chloramphenicol prevents 

protein chain elongation by inhibiting the peptidyl transferase activity of the bacterial 

ribosome. It specifically binds to A2451 and A2452 residues in the 23S rRNA of the 50S 

ribosomal subunit, preventing peptide bond formation (Jardetzky, 1963) 

Chloramphenicol has been detected in both sewage effluents and surface waters (Stolker et 

al. 2004; Choi et al. 2008). Effects of chloramphenicol have been observed in fresh water 

and marine species of algae at high µg to low mg per liter concentrations (Campa-Cordova et 

al. 2006; Sanchez-Fortun et al. 2009). Concerns have also been raised over the potential for 

chloramphenicol residues in the environment to select for resistance in gram negative 

bacteria (Kelch and Lee, 1978). 

Diclofenac 
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Diclofenac is a non-steroidal anti-inflammatory (NSAID) pharmaceutical which acts via 

inhibition of the prostaglandin synthesis pathway (Gan, 2010). Diclofenac is commonly 

detected in sewage treatment effluents and surface waters (Remberger et al. 2009; Buser et 

al. 1998). The most documented case of the environmental effects of diclofenac is the 

decline of vultures in the Indian subcontinent (Oaks et al. 2004). Diclofenac has also shown 

to have effects in the aquatic environment. For example, Schwaiger et al. (2004) reported 

histopathological alterations in rainbow trout following exposure to diclofenac. 

Fluoxetine 

Fluoxetine is a selective serotonin uptake inhibitor (SSRI); a class of anti-depressants that 

during the last decade has become one of the most prescribed pharmaceuticals (Vetulani et al 

2010). Fluoxetine has been detected in surface water at low ng/L concentrations (Zorita et al. 

2009). Several reports of toxic effects due to fluoxetine are available in the open literature. 

Brooks et al (2003), Laville et al. (2004) and Perreault et al. (2003) reported behavioral 

responses as well as physiological responses following exposure to fluoxetine.  

Naproxen 

Naproxen is a NSAID which acts by inhibiting the enzyme cyclooxygenase; an enzyme 

responsible for the biosynthesis of the prostaglandins. Prostaglandins are lipid compounds, 

derived enzymatically from fatty acids, which are secreted into the bloodstream, causing 

fever, inflammation, muscle contraction and which affect other processes in the human body 

(Segre, 1980). Naproxen has been detected in sewage effluents and surface waters across the 

globe (Tixier et al. 2003; Lee et al. 2003; Nakada et al.. 2005). Ecotoxicological effects of 

naproxen in the aquatic environment have been reported in e.g. fish, where naproxen 

exposure has been shown to influence oxidative metabolism in liver cells leading to 

oxidative damage. Exposure of mussels to naproxen results in reduced cell adherence and 

lipid peroxidation (Gagne et al. 2006a; Gagne et al. 2006b) 

Salicylic acid 
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Salicylic acid is a NSAID that directly and irreversibly inhibits the activity of both types of 

cyclo-oxygenases (COX-1 and COX-2) to decrease the formation of precursors of 

prostaglandins and thromboxanes from arachidonic acid. Salicylic acid is also a key 

ingredient in many skin-care products for the treatment of acne, psoriasis, calluses, corns, 

keratosis pilaris, and warts (Drugbank). Acetyl salicylic acid, a precursor to salicylic acid, 

has been detected in drinking water, ground water and surface water (Stolker et al. 2004) 

Sulfamethazine 

Sulfamethazine belongs to the antibiotic class of sulfonamides. Sulfonamides inhibit the 

enzymatic conversion of pteridine and p-aminobenzoic acid (PABA) to dihydropteroic acid 

by competing with PABA for binding to dihydrofolate synthetase, an intermediate of 

tetrahydrofolic acid (THF) synthesis. THF is required for the synthesis of purines 

(Drugbank).  Sulfamethazine has been detected at ng/L concentrations in sewage effluents 

and surface waters. (Alder et al. in: Daughton and Jones-Lepp, 2011; Kolpin et al. 2002)  

Triclosan 

Triclosan is an antibacterial and antifungal agent. Triclosan acts as a biocide, with multiple 

cytoplasmic and membrane targets (Russel et al. 2004). Triclosan has been detected in 

sewage effluents, surface waters and sediments (Singer et al. 2002; Kolpin et al. 2002; 

Kookana et al. 2011). Effects of triclosan in the aquatic environment have been fairly well 

studied with a range of acute and chronic effects being reported in algae, macrophytes, 

daphnids and fish (Orvos et al. 2002; Kookana et al. 2011). 
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Table 2 Structures and properties of the pharmaceuticals and personal care products studied in the thesis. 

Compound Acid / Base Cas Chemical structure Molecular weight 

(g/Mol) 

Log Kow1 pKa1 Radioactive 
activity 

(GBq/mmol) 

Caffeine Weak Base 58-08-2 

 

194.2 1.03 0.05 1.894 

Chloramphenicol Weak Acid 56-75-7 

 

323.1 -0.02 8.6 2.220 
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Diclofenac Weak Acid 15307-86-5 

 

296.1 4.13 4.1 2.321 

Fluoxetine Weak Base 54910-89-3 

 

309.3 4.16 10.1 2.035 

Naproxen Weak Acid 22204-53-1 

 

230.3 3.36 4.5 2.035 
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Salicylic acid Weak Acid 69-72-7 

 

138.1 2.30 3.1 1.739 

Sulfamethazine Zwitterionic1 57-68-1 

 

278.3 2.30 1.6; 6.0 0.303 

Triclosan Weak Acid 3380-34-5 

 

289.6 5.42 8.1 2.431 

1 Molecule includes both acidic and basic functional groups. 
2 Estimated using SPARC
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 CHAPTER 2  

SORPTION OF PHARMACEUTICALS AND PERSONAL 

CARE PRODUCTS TO AQUATIC SEDIMENTS 

 

2.1 Introduction 

To predict the fate and bioavailability of a chemical in aquatic sediment, an understanding of 

its sorption behaviour is vital. Sorption involve two processes: adsorption which is the 

process by which molecules of a substance attach onto the surface of a solid such as soil or 

sediment; and absorption which is the process by which molecules of a substance are taken 

into a solid phase (Schwarzenbach et al. 2002). Sorption behaviour can be described by a 

solid/water distribution coefficient, Kd (mL/g) which is defined as the ratio of the 

concentration of a chemical in the aqueous and solid phases of a system e.g. sediment/water, 

soil/water or sludge/water at equilibrium (Schwarzenbach et al. 2002). 

The sorption behaviour of neutral organics in sediment-water systems has been well studied 

(Calvet, 1989). The main sorption mechanism for neutral organic chemicals is via weak (2-4 

kJ/mol) hydrophobic interactions (i.e. Van der Waals forces) and results from interactions 

between organic matter in the sediment particles (OM) and the hydrophobic moieties of a 

chemical (Schwarzenbach et al. 2002). Factors that affect the sorption of neutral organics 

chemicals therefore include chemical properties such as hydrophobicity and environmental 

properties such as the organic carbon content of the sediment and the nature of the organic 

carbon (Karickhoff 1981; Briggs, 1981; Sabljic et al. 1995). As sorption of neutral organic 

compounds is so dependent on the organic carbon content of a solid matrix, sorption is often 
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expressed in terms of the organic-carbon normalized sorption coefficient (Hamaker and 

Thompson, 1972).  

A range of predictive models is available for estimating Koc values for neutral organics (e.g. 

Karickhoff 1981; Bintein and Devillers, 1994; EPI suite, March, 2013). These models 

typically estimate sorption of a substance based on its octanol-water partition coefficient 

(e.g. Karickhoff 1981; Bintein and Devillers, 1994) or on molecular connectivity indices, 

which describe the shape and degree of branching of a molecule (EPI suite, March, 2013). 

As the models only need information on the chemical structure to run, predictions of sorption 

of neutral organic chemicals can be performed without the need for experimental testing.  

Although we have a fairly good understanding of the factors and processes that influence the 

sorption of neutral organic chemicals in the environment, less is known about ionisable 

chemicals, especially in sediments. Whilst hydrophobic interaction are the main sorption 

mechanism for neutral chemicals the mechanisms involved in the sorption of ionisable 

chemicals are more complex and include not only hydrophobic interactions and Wan der 

Waals-interactions but also hydrogen bonding, covalent bonding and the formation of cation 

bridges (Tolls, 2001, Pan et al. 2009). Due to the complexity of the sorption behaviour of 

ionisable chemicals their sorption behaviour is likely to be not only influenced by chemical 

properties such as lipophilicity, polarity, charge and the degree of dissociation of a molecule 

(Karickhoff, 1981; Kah and Brown, 2006) but also by the sediment characteristics such as 

sediment pH, sediment and pore water organic carbon content and cation exchange capacity 

(Kah and Brown, 2006; Ter Laak et al. 2006) and the nature of the sediment components 

such as the type of humic acid present (Pan et al. 2009). The degree of sorption of an 

ionisable compound to sediment may also change with time (Conkle et al. 2012). Many 

compounds can also bind irreversibly to soils and sediments. These are referred to as non-

extractable residues or bound residues (IUPAC 1984). Von Oepen et al. (1991) showed that 

polar chemicals are more likely to form bound residues than neutral chemicals since they 
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often contain OH- or NH2-groups, similar to those in humic substances, are more easily 

incorporated into humic substances.  

Most studies exploring the sorption of ionisable chemicals to solid matrices have focused on 

pesticides in soils (Ogram et al. 1985; Gevao et al. 2000; Kah and Brown 2006). Over the 

past decade, more information on the fate and behaviour of PPCPs in soil has become 

available. Classes of PPCPs where Kd or Koc have been measured include antibiotics (ter 

Laak 2006; Tolls 2001; Thiele-Bruhn et al. 2003); estrogens (Yu and Huang, 2005); 

anticonvulsant and NSAIDs (Maoz and Chefetz, 2010). Pan et al. 2009 reviewed available 

studies on sorption of PPCPs in sediments, sludge, soils and other matrices. A majority of 

the reported Kd values ranged from 0 up to 500. Tetracycline and oxytetracycline showed to 

be highly sorptive with Kd values up to above 300 000 (Sassman and Lee, 2005). The 

sorption behaviour of pharmaceuticals in sediment has been less studied than in soil (Loffler 

2005; Yamamoto 2009 ; Pan et al. 2009).  

Due to the complexity of  the sorption mechanisms for ionisable compounds and that 

sorption is affected by a range of soil and sediment properties, application of the predictive 

models for sorption of neutral organics to ionisable compounds can lead to either an over- or 

under-estimation of the sorption behaviour for polar compounds (Tolls, 2001). Several 

studies have attempted to develop improved approaches for predicting sorption of ionisable 

chemicals using different parameters than used for neutral organic substances (ter Laak et al. 

2006; Franco et al. 2008). In addition, methods have also been proposed for estimating the 

sorption of pharmaceuticals based on pharmacological properties with correlations being 

derived between the drug volume of distribution (VD) in humans and soil sorption 

coefficients (Williams et al. 2006; 2009).  

 

As an understanding of sorption is essential to understand uptake of pharmaceuticals into 

sediment-dwelling organisms, this study therefore explored the partitioning behaviour of 
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eight PPCPs in a sediment-water system. The results of the studies were then used to 

evaluate whether a range of relationships, which have been developed for estimating the 

sorption behaviour of both neutral and ionisable compounds, are able to estimate the sorption 

of PPCPs in sediment systems.  

2.2 Methods 

2.2.1 Test chemicals 

Test compounds were 14C-labelled and had a specific activity ranging from 1.74 to 2.43 GBq 

mmol-1. Chloramphenicol, diclofenac, naproxen and salicylic acid were obtained from Perkin 

Elmer (Boston, USA), fluoxetine was obtained from American Radiolabelled Chemicals (St 

Louis, USA), and triclosan was obtained from Unilever (Colworth, UK). Compounds were 

chosen to represent a wide range of chemical properties. Information on the structures and 

properties of the study compounds is given in Chapter 1 and data on the label position and 

specific activity of the study compounds is given in Table 3.  

Table 3 Test chemicals, their specific activity and position of the 14C label. 

Test compound Labell ing 
Specific activity 
[GBq/mmol] 

caffeine methyl-14C 1.894 

chloramphenicol dichloroacetyl-1,2-14C 2.220 

diclofenac U-14C 2.321 

fluoxetine methyl-14C 2.035 

naproxen methyl-14C 2.035 

salicyl ic acid methyl-14C 1.739 

sulfamethazine Phenyl-14C 0.3034 

triclosan U-14C 2.431 
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2.2.2 Test sediment 

Sediment was sampled from the top 10 cm of the benthos at a river site near Buttercrambe, 

North Yorkshire, UK (SE 73499 58510) on the 5th of February, 2009 (sediment 1) and on the 

9th of March, 2010 (sediment 2). After sampling, sediment was sieved (2 mm) and stored at 5 

± 1 ˚C. Studies were performed within six months of sediment collection. Sediment was 

analyzed by Laboratoire d’analyses des sols (INRA Arras, France) for the following 

properties: water content; clay (<2 µm), silt (2-50 µm) and sand (50-2000 µm) content; total 

organic carbon (ISO 10694); total nitrogen (ISO 10694); pH (ISO 10390); CaCO3 content 

(ISO 10693); cation exchange capacity (NF X 31-130); and for Al, Ca, Fe, Mg, K and P. 

Sediment properties are listed in Table 4. 

Table 4 Sediment properties 

Parameter Sediment 1 Sediment 2 

pH: 7.33 7.67 

OC [g/kg] 24.2 5.51 

CEC [cmol+/kg] 15.8 4.65 

Grain size [g/kg]   

- Clay: 124 42 

- Silt: 157 27 

- Sand: 719 931 

 

2.2.3 Sorption studies 

Test methods followed the OECD guideline Adsorption/Desorption using a Batch 

Equilibrium Method (OECD 106; 2000). Prior to the main study, a preliminary study was 

performed using sediment 1 to determine the optimal sediment/solution ratios, equilibration 

time and adsorption of the test substances to the surfaces of the test vessel. All tests were 

performed in the dark at 4 ºC to minimize degradation. The experimental methods for the 

preliminary study and the main study are described below. 
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2.2.3.1 Preliminary study 

Water content was measured in the sediments before each experiment. In order for the 

sediment solution slurries to equilibrate, sediments (1, 2 or 4 g) were mixed with 20, 30, or 

40 ml 0.01 M CaCl2 in 50 ml centrifuge PTFE tubes (Oak Ridge centrifugation tube, FEP by 

Nalgene Nunc International) 18 h prior to spiking of the test chemicals. Three sediment 

solution ratios were used: 1:5, 1:10 and 1:20 or, for the chemicals known to sorb strongly to 

soil, ratios of 1:20, 1:30 and 1:40 were used. Samples were spiked with radiolabelled 

substances at concentrations ranging from 15 to 162 nmol/L and placed on a shaker (200 

rpm) in the dark at 4 ºC for 72-96 hours. Controls containing only 20 ml 0.01M CaCl and the 

test chemicals were incubated as well in order to check for possible adsorption to test 

vessels. Three replicates of each ratio were taken for analysis at 2, 4, 8, 24, 48, 72 and 96 h. 

At sampling, tubes were centrifuged at 3500 g for 10 minutes (Hermle Z 513K Bench Top 

Centrifuge) and 1 mL of the supernatant was then taken and mixed with 10 mL Ecoscint A 

scintillation cocktail. Test substances remaining in the aqueous phase were then measured 

using a Liquid Scintillation Counting, LCS, (Liquid scintillation Counter LS 6500, Beckman 

Coulter Inc., Fullerton, USA). Samples were counted three times for 5 min. Counts were 

corrected for background activity by using blank controls. Counting efficiency and colour 

quenching were corrected using the external standard ratio method. 

2.2.3.2 Main study 

The main study was performed to investigate the sorption of all test compounds to sediment 

1 and three compounds, diclofenac, fluoxetine and triclosan, to sediment 2. The study was 

performed under the same conditions as the preliminary study. Sediment-solution ratios were 

chosen to meet the criteria recommended in the OECD guidelines (OECD 106: 2000). The 

chosen sediment-solution ratios and equilibration times are shown in Table 5. Triplicate 

samples were left shaking at 200 rpm throughout the test and after equilibration, samples 

were taken and analysed as described in the preliminary study. 
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Table 5 Experimental setup for the main sorption study 

Test compound 
Applied 
radioactivity 
[Bq] 

Concentration [nM] 
Sediment : 
solution ratio 

Equilibration 
time [h] 

caffeine 982 ±19 25.9 1:5 48 

chloramphenicol 1024±47 23.1 1:2 96 

diclofenac 977±46 22.6 1:2 48 

Fluoxetine 922±40 15.1 1:30 48 

Naproxen 869±42 21.4 1:5 48 

Salicylic acid 1015±14 29.2 1:5 48 

Sulfamethazine 984±40 162 1:10 96 

triclosan 1319±45 18.1 1:30 48 

 

Estimation of sorption coefficients 

The concentration of each PPCP adsorbed to the solid phase was calculated using Equation 

14: 

 

C� =
�(����	
)

�

 Eq 14 

 

Where: Ci is the concentration of pharmaceutical in the control treatment; Caq is the 

concentration in the aqueous phase; V (mL) is the volume of solution in the suspension; and 

ms is the mass of soil (g). Soil sorption coefficients (Kd (mL/g)) for each study chemical 

were then calculated using equation 15. 

K� =
�

�	


  Eq 15 



 Chapter 2 – Sorption of PPCPs to Aquatic Sediments 
 

52 

2.2.4 Evaluation of predictive methods for estimating sorption of PPCPs 

Six different models were evaluated to assess their suitability for estimating the sorption 

behaviour of PPCPs. The models are presented in Table 6. Chemical properties used as input 

parameters (i.e. pKa and log Kow) were derived from SPARC (Carreira et al. 1994). 

Predicted Koc values were then compared with experimental which were derived using 

Equation 16. 

��� =
��

���
 Eq 16 

Table 6 Relationships between chemical properties and sorption that were evaluated in 
the study. 

Model Equation 

EPI 
suite 

MCI Log Koc = 0.5213· MCI + 0.60 + Σ Pf N 

Kow 

Non-
polar 

Log Koc = 0.8679· log Kow – 0.0004 

Polar Log Koc = 0.55313· log Kow + 0.9251 + Σ Pf N 

Karickhoff Log Koc = 0.989· log Kow- 0.346 

Di Toro log Koc = 0.00028 + 0.983· log Kow 

Bintein & Devillers 
log Kd= 0.93· logKow+1.09· log foc+0.32· CFa - 
0.55· CFb + 0.25 

MAMI 

Acids 
log Koc = log(φn · 100.54·  log Kow+1.11 +φ ion 
· 100.11· log kow+1.54) 

Bases 
log Koc = log(φn · 100.37·  log Kow+1.70 + φ ion 
· 10pKa^(0.65) ·  f^(0.14)) 

Amfoters 
log Koc = log(φn · 100.50·  log Kow + 1.13 + φ- · 100.11·  
log Pn+1.54 + φ+ · 10pKa^0.65 ·  f^ 0.14) 

TGD Hydrophobics log Koc = 0.81 log Kow + 0.10  

MCI – Molecular Connectivity Index; Σ Pf N - Sum of the products of all the applicable correction factorcoefficients 
(Pf)multiplied by the number of times that factor is accounted for (N); Kow – Octaol-water partitioning coefficient; foc – 
Fraction organic carbon in sediment; CFa / b – Correction factor to quantify the variation of dissociated acids and bases in the 
system; φn / ion – Fraction of neutral and ionic species; φ- /+ - Fraction of negatively and positively charged molecules; f - is 
Kow/(Kow + 1). 
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2.3 Results and discussion 

2.3.1 Partitioning of PPCPs between water and sediment 

Prior to the main experiment a set of preliminary experiments were performed in accordance 

with the OECD 106 guidelines (OECD 106). The preliminary study showed that, with the 

exception of sulfamethazine and chloramphenicol, all compounds reached equilibrium 

between the sediment and water phases within 48 hours (Figure 5). Sulfamethazine and 

chloramphenicol did not appear to have reached equilibrium by the last sampling time point. 

Studies with sulfamethazine and chloramphenicol were therefore run for 96 hours in the 

main study. According to the OECD 106 guideline, a sorption percentage above 20 % is a 

requirement whilst a percentage above 50% is preferable. This was achieved for all 

compounds in at least one of the sediment-solution ratios. All compounds, except for 

fluoxetine, showed an increasing proportion of sorbed chemical with increasing 

sediment:solution ratio. For chosen equilibration times and ratios, see table 3. Controls 

showed that compounds were stable and that no sorption to the test vessel occurred during 

the study. 
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Figure 5. Sorption behaviour of the study compounds to sediment 1, Buttercrambe, in 
the preliminary test. Mean (n=3 ±SD) sorption of different sediment:solution ratios: 
dashes=1:2, circles=1:5, squares=1:10, triangles=1:20.  
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In the main experiment, sorption increased in sediment 1 in the following order: diclofenac < 

chloramphenicol < salicylic acid < naproxen < caffeine < sulfamethazine < triclosan < 

fluoxetine. Kd values ranged from 2.3 ml/g (diclofenac) to 1789.7 ml/g (fluoxetine) (Table 

7). In sediment 2, sorption increased in the following order: diclofenac < triclosan < 

fluoxetine. Kd values ranged from 4.2 (diclofenac) to 422 (fluoxetine). Although Kd values 

for fluoxetine and triclosan were considerably higher than the other study compounds, these 

values are not exceptionally high in comparison with previously reported literature. 

Previously reported Kd values for triclosan are in the same range, 1272-1573 ml/g (Lin et al. 

2011). Fluoxetine (pKa 10.1) is a highly sorptive chemical in environments below its pKa 

due to sorption of the positively charged species via cation exchange and charge transfer to 

organic matter and clay minerals. This mechanism has previously been suggested as the 

reason for high sorption observed for cationic pesticides (Kah and Brown, 2007). Previously 

reported Kd values of Fluoxetine confirms this. Kwon and Armbrust (2008) reported Kd 

values of 785-12 546 ml/g when investigating the sorption behaviour of fluoxetine in two 

sediments and three soils. In the soil where the highest Kd was estimated (12 546 ml/g), the 

organic carbon content was slightly lower than the organic carbon content of sediment 1 in 

the present study. However, the CEC was higher suggesting that ionic sorption is an 

important process in sorption of cationic substances. Based on the lipophilicity of diclofenac 

(log Kow 4.13), a higher sorption was expected than seen in the current study. The 

diclofenac results do however agree with previous data showing low sorption of diclofenac 

to natural sediments with reported Kd values ranging from 1.9 – 4.7 ml/g (Scheytt et al. 

2005). A possible explanation for the low sorption of diclofenac is that the majority of the 

diclofenac in the sediment exposure is in anionic form and that the negatively charged 

species will thus be repelled by the negatively charged surfaces of the sediment. This 

mechanism has previously been suggested as the reason for low sorption of anionic 

pesticides (Kah and Brown, 2007). Kd values for caffeine, sulfamethazine and salicylic acid 

were within one order of magnitude of what has previously been reported in soils and 
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sediments (Dubus et al. 2001; Gao and Pedersen, 2005; Accinelli et al. 2007; Lin et al. 

2010)  

Table 7 Mean percentage of study compound sorbed to the sediment and the resulting 
sediment-water distribution coefficients. Standard deviations are shown in the 
parentheses. 

 Sediment 1  Sediment 2  

Compound 
Sorption % 
(SD) 

Kd (SD) 
Sorption % 
(SD) 

Kd (SD) 

Naproxen 72.8 (2.1) 13.4 (1.4) - - 

Sulfamethazine 81.9 (0.5) 45.6 (1.1) - - 

Chloramphenicol 72.9 (0.1) 5.6 (0.0) - - 

Caffeine 73.4 (0.3) 27.7 (0.5) - - 

Diclofenac 61.5 (2.4) 2.34 (0.2) 59.4 (1.3) 4.2 (0.2) 

Salicylic acid 69.7 (0.8) 11.4 (0.4) - - 

Fluoxetine 97.5 (0.1) 1789.7 (61.4) 93.7 (0.4) 422.5 (31.9) 

Triclosan 97.1 (0.2) 1527.8 (120.7) 89.5 (0.8) 241.2 (20.0) 

 

2.3.2 Evaluation of predictive models 

The six models that were evaluated predicted the Koc values for the study compounds with 

varying degrees of success (Figure 6 and 7). None of the models predicted Koc to within one 

order of magnitude for all eight compounds. Models were divided into models using Kow to 

estimate Koc (Figure 6) and models including other descriptors more representative for 

ionisable organics (Figure 7).  

The models using Kow to predict Koc worked fairly well for acidic compounds with the 

exception of chloramphenicol where all models underestimated Koc and diclofenac where all 

models overestimated the Koc. For the basic substances (caffeine and fluoxetine) all models 

underestimated the sorption to sediment. This would be expected since basic compounds can 

be present as cations and thus additional processes such as cation exchange would be 

involved in the sorption to soils and sediments (Vulava et al. 2000). For sulfamethazine, 
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which is the only zwitterionic, all models underestimated the sorption with approximately 

one order of magnitude. 

The models including additional factors and processes other than lipophilic sorption 

predicted Koc slightly better than the models discussed above. Especially, the MAMI model 

and EPI Suite (MCI) that resulted in fair predictions of Koc for chloramphenicol, caffeine 

and diclofenac; the substances whose Koc values were poorly estimated by the Kow-based 

models. 

None of the models evaluated against experimental data in this study predicted the Koc 

values within one order of magnitude. However, the MAMI model predicted the sorption 

fairly well for the majority of the study chemicals. It should also be noted that the MAMI 

model is not applicable for ionisable compounds with a pKa < 2 (caffeine).  

 

Figure 6 A comparison between experimental Koc values and estimated using models 
developed for neutral organics. 
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Figure 7 A comparison between experimental Koc values and estimated using models 
developed for ionisable organics. 

2.4 Conclusions 

This study has generated baseline data on the distribution behaviour of the study compounds 

in sediment-water systems. The experimental results in this chapter will be used in Chapter 6 

to better understand the uptake from sediments into sediment dwelling invertebrates. 

Knowledge on the distribution of the study compounds are also valuable input in Chapter 5 

where the importance of the different uptake routes into L. variegatus will be investigated. 

Based on the results in this study it can be concluded that none of the predictive models for 

sorption is able to adequately predict the sorption behaviour of all of the compounds studied. 

Overall, the best predictions were made by the MAMI model which estimated the sorption of 

the study compounds with an error factor of maximum 25 whilst other models under- or 

overestimated the sorption of at least some of the compounds by several orders of 

magnitude.  
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It should also be noted that the MAMI model underestimated the sorption behaviour of all 

the study compounds except for diclofenac where the model predicted the Koc very well. If 

the main uptake route of chemicals to sediment dwelling organisms is via the pore water, the 

model will likely overestimate the exposure (and therefore risks) to such organisms. 
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CHAPTER 3 

EFFECTS OF CHEMICALS PROPERTIES ON THE 

UPTAKE OF PHARMACEUTICALS AND PERSONAL 

CARE PRODUCTS INTO LUMBRICULUS VARIEGATUS 

 

3.1 Introduction 

An understanding of the internal concentration of a substance in an organism in the 

environment can provide valuable information for understanding the effects of chemicals on 

organisms and help in extrapolating from effects in standard laboratory studies to effects 

across the wider environment (e.g. Van Wezel et al., 1995; Escher et al., 2004). For 

example, for active pharmaceutical ingredients (APIs), it has been suggested that, by 

understanding internal concentrations in organisms in the natural environment as well as the 

presence or absence of the target receptors and pathways that the API is designed to interact 

with in humans, it may be possible to predict the potential effects of pharmaceuticals on the 

natural systems using preclinical and clinical pharmacological data, produced in the drug 

development process (e.g. Huggett et al., 2003).  

A number of studies have explored the uptake, depuration and metabolism of APIs and 

substances used in PCPs into aquatic and terrestrial organisms. Uptake has been shown in 

plants (e.g. Boxall et al., 2006; Dolliver et al., 2007; Kumar et al., 2005), earthworms 

(Kinney et al., 2008), and in fish and aquatic invertebrates (Dussault et al., 2009; Mimeault 

et al., 2005; Nakamura et al., 2008; Paterson and Metcalfe, 2008; Ramirez et al., 2009; 

Rendal et al., 2011; Meredith-Williams et al., 2012). For aquatic organisms, the degree of 

uptake is highly dependent on the traits (e.g. size and mode of respiration) of a test organism, 
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the physico-chemical properties (e.g. pH-corrected lipophilicity) of the test substance, and 

the characteristics of the test environment such as pH (e.g. Meredith-Williams et al., 2012; 

Nakamura et al., 2008; Kim et al., 2010; Valenti et al., 2009; Rendal et al., 2011).  

Several attempts have been made to predict the uptake of chemicals from water based on 

chemical properties (Mackay 1982, Chiou 1985, Veith et al. 1979). This work has focused 

mainly on neutral organic chemicals but more recently approaches for estimating uptake of 

ionisable organic chemicals have also been proposed (Trapp and Horobin, 2005; 

Neuwoehner and Escher, 2011). For neutral organic chemicals, most models predict the 

uptake into aquatic organisms based on the lipophilicity of the chemical i.e. based on a 

compounds’ Kow (Mackay 1982, Chiou 1985, Veith et al. 1979). For example, the European 

Commission Technical Guidance Document on Risk Assessment (TGD; 2003), suggests that 

uptake is estimated using the linear relationship between the lipophilicity of a chemical and 

the bioconcentration into organisms developed by Veith et al. (1979). The method is 

however not recommended for ionising substances since the water solubility of the ionisable 

form of a chemical can be orders of magnitude higher than the neutral species. Instead, the 

TGD suggests correcting the Log Kow in order to take only the neutral fraction of the 

compound into account at a given pH.  

Other models have been suggested for estimating environmental fate and toxicity of 

ionisable chemicals.  For example, Meredith-Williams et al. (2012) suggested that uptake of 

APIs into invertebrates (Gammarus pulex and Notonecta glauca) based on a compounds pH-

corrected liposome-water partition coefficient (Log Dlip-water). Models have also been 

developed that predict the uptake of ionisable chemicals into both human cells (Trapp and 

Horobin 2005) and algae cells (Neuwoehner and Escher 2011). These models not only 

account for the uptake driven by hydrophobic interaction but also consider electrostatic 

interactions and ion trapping as important processes in the uptake of ionisable chemicals. 

These models have been applied to understand the toxicity of APIs. For example, 

Neuwoehner and Escher (2011) measured the toxicity of five basic pharmaceutical in 
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Scenedesmus vacuolatus at five pH values between 6.5 and 10 and found that the toxicity 

increased with an increasing pH. By using a toxico-kinetic ion trapping model, the authors 

showed that the differences in toxicity were explained by differences in uptake of the 

pharmaceuticals. What distinguishes this model to other models predicting the uptake into 

aquatic organisms (e.g. use of Log D or taking only the neutral form into consideration) is 

how it not only calculates the degree of dissociation outside the organism but also inside the 

cytosole. The dissociation inside the cell affects the depuration as well as uptake and 

sorption to organelles in the cell and will have an overall effect on the bioconcentration of 

ionisable chemicals in aquatic organisms. A similar approach has previously been published 

for the development of a model for selective accumulation of chemicals in tumour cells 

(Trapp and Horobin 2005). 

While an increasing amount of data are now becoming available on uptake into organisms 

from the water column and into soil-dwelling organisms, an understanding of uptake of APIs 

and PCPs into sediment dwelling organisms is still less-well developed than for other 

chemical classes such as pesticides and neutral organic compounds. This study therefore 

explored the uptake and depuration of five APIs and one PCP, which covered a range of 

chemical properties (Table 8), into the sediment dwelling oligochaete, Lumbriculus 

variegatus. The study explored uptake from the water-phase as this uptake route is 

considered the main uptake route for many sediment-associated chemicals. The results of 

were used to explore the relationships between chemical properties and uptake and also to 

evaluate some of the existing models, described above, for estimating bioconcentration of 

neutral and ionisable substances.  

3.2 Methods 

3.2.1 Test organisms  

Lumbriculus variegatus were reared in 20 L glass aquaria containing artificial pond water 

(APW, Naylor et al. 1989), at 20 ±2 °C, using a 16:8 h light:dark cycle. Shredded 
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unbleached tissue paper was used as a substrate and the culture water was renewed once a 

week. The cultures were fed with ground fish food (Tetramin, Tetra Werke, Melle, 

Germany) twice a week.  

3.2.2 Lipid analysis of test organism 

Three replicates containing approximately 25 mg of L. variegatus were weighed and dried 

overnight in an oven at 60 ° C. After the dry weights were determined, samples were 

transferred to a pre-weighed test tube and ground with a glass rod. 1.6 ml of 2-propanol, 2.0 

ml of cyclohexane and 2.2 ml of deionised water were then added to the test tubes and the 

samples were vortexed for 30 s and sonicated for 5 minutes. After extraction, samples were 

centrifuged for 5 minutes at 3000 rpm and the upper cyclohexane layer, which contained the 

lipids, was transferred to a pre-weighed glass vial. The extraction was repeated a second time 

and the cyclohexane layer was added to the first extract. Extracts were concentrated to 

dryness under a gentle stream of nitrogen and the vials then weighed to determine the mass 

of lipid content in the tissues. Extraction recoveries were tested using a known amount of 

external liposome reference (1,2 – distearoyl-sn-glycero-3-phospocholine) dispersed in 

water.  

3.2.3 Test chemicals 

Test compounds were 14C-labelled and had a specific activity between 1.74 and 2.43 GBq 

mmol-1. Chloramphenicol, diclofenac, naproxen and salicylic acid were obtained from Perkin 

Elmer (Boston, USA), fluoxetine was obtained from American Radiolabelled Chemicals (St 

Louis, USA), and triclosan was obtained from Unilever (Colworth, UK). Compounds were 

chosen to represent a wide range of chemical properties. Compounds used are listed in Table 

8. For further detailed information on the test chemicals, see Chapter 1. 

Table 8. Test chemicals used in the uptake studies 

Test compound Labell ing 
Specific activity 
[GBq/mmol] 

chloramphenicol dichloroacetyl-1,2-14C 2.220 
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diclofenac U-14C 2.321 

Fluoxetine methyl-14C 2.035 

Naproxen methyl-14C 2.035 

Salicylic acid methyl-14C 1.739 

triclosan U-14C 2.431 

 

3.2.5 Uptake and depuration test 

Uptake and depuration studies were carried out using a similar approach to that described by 

Ashauer et al. (2006). L. variegatus were acclimatized to the test conditions for 18 h in 

APW. For the uptake studies, animals were then exposed in groups of 10 animals contained 

in 40 ml APW to between 3 – 10 nmol/L of test compound for 3, 6, 12, 24 or 48 h. Exposure 

concentration were chosen to represent environmentally realistic concentrations and fall 

below the toxic threshold of the study organisms (exposure and effect concentrations are 

discussed in Chapter 1). For the depuration studies, groups of animals were exposed to the 

test chemical for 48 h after which time they were transferred to clean APW for 3, 6, 12, 24 or 

48 h. Three replicates per time point were used, the study pH was set to 8.1±0.1 and the 

study temperature was 20 ±2 °C. Studies were performed in the dark to avoid 

photodegradation of the test compounds. Control beakers, containing APW and radio-

labelled substances, were used to assess whether there was any sorption to the jars during the 

test period.  

At each sampling time, 1 ml of test media was taken, placed into a 20 ml scintillation vial 

and 10 ml Ecoscint A scintillation cocktail (National Diagnostics) was added. Worms were 

rinsed in distilled water and blotted dry on a tissue before being put into a 20 ml scintillation 

vial. Worm samples were then weighed, 2 ml of tissue solubilizer (Soluene®-350, Perkin 

Elmer, Waltham, Massachusetts) was added to the vials and the vials were then left for 24 h 

to allow the worm tissue to dissolve completely. Prior to analysis, 10 ml of Hionic Fluor 

scintillation cocktail (Perkin Elmer) was added to the vials.  
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Concentrations of the study compounds in test media and worm extracts were determined 

using Liquid Scintillation Counting (LSC) using a Beckman LS 6500 LSC counter 

(Beckman Coulter Inc., Fullerton, USA). Samples were counted three times for 5 min. 

Counts were corrected for background activity by using blank controls. Counting efficiency 

and colour quenching were corrected using the external standard ratio method. 

  

3.2.6 Derivation of uptake and depuration rate constants and 

bioconcentration factors 

A first order one compartment model was used to estimate the uptake and depuration rates 

for each test compound. The change of concentration in the organism was estimated 

according to Branson et al. (1975) using Equation 17. The parameters were estimated using 

the software OpenModel (v. 1.2) downloaded on the 24th of June 2011). The model was 

parameterized using residual sum of squares with the Levenberg-Marquardt algorithm 

followed by Monte-Carlo Markov-Chain (MCMC) with the results from the Marquardt fit as 

input values. Confidence intervals were characterized by the 95% percentile of the simulated 

variables. Bioconcentration factors were calculated by setting the water concentration to 1 

and by running the model until equilibrium was reached. Bioconcentration factors and their 

confidence intervals could then be read directly from the internal concentrations. The method 

is described in full in Ashauer et al. (2010).  

 

�����
��

= K�� ⋅ C� �!" − K$%� ⋅ C$"& Eq 17 
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3.2.7 Evaluation of relationships between properties and uptake and existing 

models for estimating bioconcentration factors for ionic substances. 

Linear regression analysis was used to explore relationships between bioconcentration 

factors (BCF) and Log Kow and Log Dow. Log Kow and pKa were calculated using the 

SPARC online calculator (archemcalc.com/sparc August 2011 release w4.6.1646-s4.6.1646). 

Log Dow for the mean experimental pH was derived from the Henderson Hasselbach 

equation (Henderson 1908). The fraction of the unionised and the ionised species was 

calculated using Eq 18 and the Log D was then estimated using Eq 19. 

 

α�$� = α�!%�" ( ⋅ 10�(+,�+- ) Eq 18 

D$� = f�$� ⋅ K$�(�$�) + f�!%�" ( ⋅ K$�(�!%�" () Eq 19 

 

In addition, two existing models for predicting bioconcentration factors of ionic substances 

were evaluated by comparing predictions obtained using these models with experimental 

bioconcentration factors. The first approach followed the method described by Trapp and 

Horobin (2005) adapted to the experimental parameters in this study. The calculations were 

performed using Microsoft Excel 2010. A template for the use of the model was kindly sent 

by Stefan Trapp of the Danish Technical University. Parameter data for generic cells were 

applied as suggested in Trapp and Horobin (2005). The inserted outside pH values in the 

model were adjusted to correspond with the measured outside pH values in this study. 
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Figure 8 The cell. Compartments, molecular species, pH and charges in a cell shown for 
a weak base. From Trapp and Horobin (2005). 

 

To predict the bioconcentration for ionic substances Neuwoehner and Escher (2011) 

developed a combined model using information on the fraction of dissociation, the 

lipophilicity of the different chemical species of a substance and the ion trapping model 

described in Neuwoehner et al (2011). The ion trapping model is described in Figure 9 and 

the combined model is described by Equations 20 and 21. Chemical properties used as input 

parameters in the model are displayed in Table 2 in Chapter 1.  Lipid content was 1.2 % wet 

weight and measured as described above. pH values in the cytosol were adopted from Trapp 

and Horobin (2005) giving pH values in the cytosol for mammalian cells.  

 

123 =
�4∙(�67,9:;<�7=,9:;)<�>9?∙�>9?,9:;

�67,@A;<�7=,@A;
 Eq 20. 
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Which is equal to: 

 

= BC ∙ D<DE
F?69:;=?GHI

D<DE(?6@A;=?GH)
+ BJKL ∙ MJKL�CNOPQ Eq 21. 

 

Where fw is the water content of the organism, flip is the lipid content of the organism, CHA 

and CA
- is the concentration of the uncharged and charged species internally (int) and 

externally (ext) respectively. Dlip-water is the liposome water partitioning coefficient corrected 

for pH which was calculated according to Equation 22 (Escher et al. 2009). 

 

RST	MJKL�CNOPQ = 0.904 ∙ RST	�YC + 0.515 Eq 22. 

 

 

 

Figure 9 Ion trapping model by Neuwoehner and Escher (2011) 
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3.3 Results and discussion 

3.3.1 Uptake and depuration in L. variegatus 

No mortality was observed either in the treatments or in the controls during the uptake or 

depuration phases. The pH values during the exposure period ranged between 7.0 and 8.3, 

(Table 9). With the exception of salicylic acid, concentrations of all study compounds in 

control treatments, containing radioactive test compound and water only, were stable for the 

duration of the study (Figure 10). The concentration of salicylic acid at 48 h was 75 % of the 

initial start concentration. Salicylic acid has previously been reported as being degradable in 

constructed wet land systems designed for removal of pharmaceuticals and personal care 

products in waste water. Removal efficiencies were as high as 90% (Hijosa-Valsero et al. 

2010; Reyes-Contreras et al. 2011). Degradation of salicylic acid in the environment has 

been reported to be temperature and pH dependant in waters (Alibrandi et al. 2003).  

Figure 10 Mean concentrations (± 1 SE) of the study chemicals in the stability controls. 
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In the uptake beakers, concentrations of chloramphenicol, diclofenac and naproxen in the 

exposure solutions remained constant over the 48 h uptake phase while concentrations in 

treatments containing fluoxetine, salicylic acid and triclosan decreased during the 48h uptake 

phase (Figure 11a-f). For fluoxetine and triclosan, the reduction in concentration in the water 

column was explained by uptake of the compounds into the study organisms whilst for 

salicylic acid, reduction in the water columns is most likely due to abiotic degradation as a 

similar degree of reduction was also observed in the water only controls. A mass balance 

was performed and is presented in Table 1 in Appendix 1. 

The first order one compartment model was successfully fitted to the uptake and depuration 

measurements for all compounds (Figure 11 a-f). The resulting uptake and depuration 

parameters and the bioconcentration factors are provided in Table 9. BCFs in the study 

ranged from 2 (chloramphenicol) to 700900 (triclosan) and increased in the order 

chloramphenicol < diclofenac < salicylic acid < fluoxetine < naproxen < triclosan.  
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Figure 11 a,b. Uptake and depuration graphs for chloramphenicol and diclofenac into 
L. variegatus. Filled circles are measured tissue concentrations. Empty circles are 
measured water concentrations. Thick line is the Markov Chain Monte Carlo modelled 
mean and thin lines are 95% CIs using M. 

  

Chloramphenicol

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100

Time [hours]

In
te

rn
a

l 
co

n
ce

n
tr

a
ti

o
n

 [
p

m
o

l 
/ 

g
]

0

1

2

3

4

5

6

7

8

W
a

te
r 

co
n

ce
n

tr
a

ti
o

n
 [

p
m

o
l 

/ 
m

l]

Diclofenac

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90 100

Time [hours]

In
te

rn
a

l 
co

n
ce

n
tr

a
ti

o
n

 [
p

m
o

l 
/ 

g
]

0

2

4

6

8

10

12

14

16

W
a

te
r 

co
n

ce
n

tr
a

ti
o

n
 [

p
m

o
l 

/ 
m

l]



Chapter 3 – Effects of Chemical Properties on the Uptake of PPCPs into L. variegatus 

72 

 

Continue Figure 11 c,d. Uptake and depuration graphs for fluoxetine and naproxen 
into L. variegatus. Filled circles are measured tissue concentrations. Empty circles are 
measured water concentrations. Thick line is the Markov Chain Monte Carlo modelled 
mean and thin lines are 95% CIs. 
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Continue Figure 11 e,f. Uptake and depuration graphs for salicylic acid and triclosan 
into L.variegatus. Filled circles are measured tissue concentrations. Empty circles are 
measured water concentrations. Thick line is the Markov Chain Monte Carlo modelled 
mean and thin lines are 95% CIs. 
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Table 9. Uptake and depuration rate parameters along with water concentrations, pH intervals estimated BCF values and estimated time to 
equilibrium. 

      Kin Kout   

Time 
to Eq 
[days] 

Chemical 
Cw  
[nmol l -1]  pH  RSS Mean ± SD RSS Mean ± SD BCF (LCI - UCI) 

 

Chloramphenicol 6.42 ± 0.14 
7.0 - 
7.4 2.11E-02 1.87E-02 ± 1.99E-03 1.08E-02 1.25E-02 ± 2.58E-03 

2  
(1 – 2) 40 

Diclofenac 12.4 ± 1.81 
7.6 - 
8.3 1.49E+00 1.58E+00 ± 1.55E-01 2.64E-02 2.63E-02 ± 3.80E-03 

60  
(46 – 73) 16 

Fluoxetine 8.18 ± 0.73 
7.5 - 
7.6 7.20E+00 7.61E+00 ± 7.02E-01 8.35E-03 1.00E-02 ± 2.84E-03 

911  
(742 - 1097) 46 

Naproxen 5.39 ± 0.39 
7.2 - 
7.3 3.81E+00 3.90E+00 ± 8.55E-02 5.40E-05 6.69E-04 ± 1.94E-04 

72 240  
(69 100 – 75 300) 5 948 

Salicylic acid 5.85 ± 1.36 
7.2 - 
7.9 4.73E-01 6.55E-01 ± 1.20E-01 7.94E-03 1.97E-02 ± 6.45E-03 82 (65 – 99) 45 

Triclosan 3.19 ± 0.79 
7.9 - 
8.3 4.52E+01 4.65E+01 ± 1.14E-00 6.64E-05 6.70E-04 ± 2.07E-04 

700 900 
(665 000 – 738 800) 4 875 
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The very high bioconcentration factors obtained for naproxen and triclosan are explained by 

the very slow or non-existent depuration of these compounds from the worms. Similar slow 

depuration has been found for APIs (fluoxetine and carvedilol) in the fresh water shrimp, 

Gammarus pulex (Meredith–Williams et al. 2011). Another possible explanation to the very 

high BCF values may be due to metabolism of the compounds. Metabolism of phenolic 

compounds has previously shown to have large impacts on the bioaccumulation kinetics 

(Ashauer et al. 2012). This could explain the very high BCF for triclosan. Naproxen has also 

shown to be easily degraded in fish (Brozinski et al. 2011).   

Literature data on the uptake of pharmaceuticals and personal care products into fresh water 

organisms are limited. With the exception of fluoxetine and diclofenac, all measured BCF 

values in this study are greater than previously reported BCF values from the literature for 

other test organisms.  Studies with fluoxetine have reported BCFs of 185,900 in aquatic 

invertebrates (Meredith-Williams et al., 2012) and 8.8 – 260 in fish (Nakamura et al. 2008; 

Paterson and Metcalfe, 2008).  For diclofenac, BCFs of <11, 12 – 2732 and 320 – 950 have 

been reported for plasma, liver and bile of rainbow trout (Oncorhynchus mykiss) respectively 

(Schwaiger et al. 2004; Kallio et al. 2010; Brown et al., 2007). BCFs of 500 – 2300 have 

been obtained for naproxen in bile from O. mykiss (Brozinski et al. 2011) and BCFs of <2 – 

56 have been reported in fish plasma (Brown et al., 2007). Palenske et al. (2010) measured 

the uptake of triclosan in three different amphibian larvae. The highest reported BCF values 

were measured in Bufo woodhousii woodhousii and ranged between 243 and 740.  

Differences in BCFs for L. variegatus and other species might be explained by differences in 

species traits (such as physiological and morphological traits, reproduction, ability to 

metabolise contaminants) and differences in the test conditions used in the different studies 

(e.g. pH or the presence/absence of food). Organism size has proven to be an important 

factor in determining the uptake of chemicals. Several studies have shown a negative 

correlation between size and bioconcentration (Hendriks et al. 2001; Rubach et al. 2010a; 

Meredith-Williams et al. 2012). L. variegatus, which is significantly smaller than the other 
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organisms where uptake of the study compounds have previously been explored, would 

therefore be anticipated to show greater uptake.  

Respiratory strategy can also affect the bioaccumulation of compounds (Buchwalter et al. 

2003; Baird and Van den Brink, 2007; Rubach et al. 2010a). Buchwalter et al. (2003) 

proposed that species with a relatively large exchange epithelial surface are more vulnerable 

to uptake of contaminants. L. variegatus, which uses diffusion alone as a respiratory strategy, 

would therefore be expected to be more vulnerable to uptake of contaminants than fish, 

amphibians and gammarids.  

Whether there is a correlation between bioaccumulation of contaminants and lipid content is 

disputable. There are studies where a positive correlation has been shown (Hendriks et al. 

2005) as well as studies where no such correlation was found (Rubach et al. 2010b; 

Meredith-Williams et al. 2012). The measured Lipid content in L. variegatus was 1.26 ± 

0.08 % wet weight. (9.86 ± 0.63 % dry weight). Recoveries for the external liposome 

reference were 100 ± 0.6 %. Since L. varieagatus has a relatively low lipid content compared 

to e.g. G. pules (2.03%) and N. glauca (11.1%) (Meredith-Williams et al. 2012) a lower 

uptake might be expected, however this was not the case for fluoxetine which was the only 

compound tested for all three species. For this compound, uptake increased in the order N. 

glauca < L. variegatus < G. pulex.  

L. variegatus showed very small tendencies to depurate the study compounds and for 

fluoxetine, naproxen and triclosan the depuration from the study organism was very slow 

(Figure 11c, d, f). A similar lack of depuration has previously been observed for fluoxetine 

and carvedilol in G. pulex. Since the study compounds have the potential to ionise, there is a 

possibility that the lack of depuration is due to the compounds being trapped in the 

organisms by ion trapping. Several studies have previously suggested ion trapping to be 

involved in the fate and effects of ionisable chemicals (Trapp and Horobin 2005; de 

Carvalho et al. 2007; Neuwoehner and Escher 2011). To what extent the chemicals is subject 

to ion trapping is dependant on the pKa and the pH in the test media. At the pH tested (see 
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Table 9), ion trapping alone could not explain the lack of depuration for fluoxetine, naproxen 

and triclosan. However, it is possible that if using an default internal cell pH of 7.5 

(Neuwoehner and Escher 2011) ion trapping could interfere with the depuration of triclosan 

out of the organism since triclosan inside the cell is present at a higher proportion of its 

neutral species than it is outside the cell (mean test pH value = 8.1).  

Another possible explanation to the lack of depuration out of the organisms is the lack of 

organic matter in the test vessels. The study compounds that displayed a very low depuration 

were the three compounds with the highest lipophilicity. It is possible that in a natural 

environment where organic matter is present, the body burden would be smaller due to a 

larger sorption of the chemical to organic matter which facilitates the depuration out of the 

test organism based on a fugacity model approach. McCarthy (1983) observed a reduction in 

the uptake and accumulation of polycyclic aromatic hydrocarbons in Daphnia magna with 

97 % in the presence on natural organic matter in the form of humic acids.  

When estimating a bioconcentration factor dynamically with modelled uptake and 

depuration parameters, a minor change in the uptake and depuration rate, either due to 

changing environmental conditions or lack of metabolism, can have large consequences. If 

there is no apparent depuration in the organism, the modelled time to reach equilibrium i.e. 

the state where the bioconcentration factor is reached can be very long. For the study 

compounds, the predicted equilibration time ranged from 16 days (diclofenac) up to 16 years 

(naproxen)(Table 9). Based on this knowledge one might question the use of 

bioconcentration factors, derived from kinetic experiments, in short lived organisms, 

especially for chemicals that tend to depurate insignificantly or very slowly. 

Despite the many advantages of using radiolabelled chemicals in uptake studies (e.g. low 

detection limits, labour efficient) there are also shortcomings in the method. Since total 

radioactivity was measured, any possible metabolites formed in the organisms were not 

identified. Data on the metabolism of substances used as pharmaceuticals or in personal care 

products in aquatic invertebrates is scarce. The metabolism of fluoxetine and several other 
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APIs has been characterised in the fresh water shrimp G. pulex (Meredith-Williams et al. 

2012). In these studies, no metabolism was seen for fluoxetine and most of the other 

pharmaceuticals tested.  

3.3.2 Evaluation of predictive models for estimating bioconcentration 

Several attempts have been made to develop methods for estimating uptake of APIs and 

PCPs based on chemical properties and environmental properties. For neutral compounds, 

uptake is strongly correlated with lipophilicity (Brock Neely et al. 1974, Mackay 1982, 

Barron 1990), hence, most models predicting bioconcentration are based on relationships 

with Log Kow. Relationships between the measured bioconcentration factors of the study 

compounds in L. variegatus and measures of lipophilicity were therefore investigated. In 

Figure 12 a and b, comparisons have been made between the measured bioconcentration 

factors, the lipophilicity (Log Kow) and the lipophilicity corrected for pH (Log Dow). 

Correlations between BCF and Log Kow gave an r2 = 0.59 (p= 0.073) and between BCF and 

Log Dow gave an r2 = 0.50 (p= 115) were found suggesting that additional processes are 

involved in the uptake of ionisable PPCPs. 
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Figure 12 Correlations between bioconcentration (BCF) into L. variegatus and Log 
Kow (A) and Log Dow (B) for the study pharmaceuticals and personal care products. 

 

B 
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In addition, there are two models that have been developed specifically to predict the uptake 

of ionisable chemicals into both human cells (Trapp and Horobin 2005) and algae cells 

(Neuwoehner et al. 2011) that not only accounts for the uptake driven by hydrophobic 

interaction but also account for effects of electrostatic interactions and ion trapping as these 

are believed to be important processes in the uptake of ionisable chemicals. The cell model 

developed by Trapp and Horobin has previously been evaluated successfully in fish (Fu et al. 

2009). A comparison between experimental bioconcentartion factors in L. variegatus and 

bioconcentration factors estimated using the model by Trapp and Horobin (Figure 13) 

demonstrates that the cell model underestimated the bioconcentration for all six compounds. 

For two of the compounds, the BCF values were heavily underestimated (naproxen and 

triclosan). Possible explanations are that additional processes involved are not accounted for 

in the model and possibly also due to the metabolism of test compounds resulting in very 

high experimental bioconcentration factors (see discussion above).  

Figure 13 A comparison of the experimental BCF into L. variegatus and BCF predicted 
by the cell model by Trapp and Horobin (2005). 
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A similar pattern was observed in the evaluation of the combined model of Neuwoehner and 

Escher (2011). The model underestimated the bioconcentration of the test compounds into L. 

variegatus, especially for naproxen and triclosan (Figure 14). These results highlight the 

importance of understanding not only the dissociation and the varying lipophilicity of 

ionisable substances with varying pH values but also additional factors and processes such as 

environmental properties, electrostatic interactions, ion trapping and and metabolism of 

PPCPs.  

 

Figure 14 A comparison of the experimental BCF and BCF predicted by the cell model 
by Neuwoehner and Escher (2011). 

 

3.4 Conclusions 

Despite the knowledge available on what chemical properties affect bioconcentration of 

organic substances in the aquatic environment there is still a lot to discover. As for many 

neutral organic substances, there is a weak correlation between the lipophilicity of the study 
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compounds and the uptake into Lumbriculus variegatus. Since many PPCPs are ionisable 

substances, Log Dow has been suggested to better described the fate and effects of ionisable 

substances. However, the correlation between Kow, Dow and BCF was not very strong 

suggesting that other mechanisms are involved in the bioconcentration of PPCPs. Due to the 

nature of ionisable substances, environmental pH is likely to have large impact on the uptake 

and depuration kinetics of such substances. Also, since metabolism has been shown to have 

an effect on the uptake and depuration kinetics of contaminants, it is crucial to have 

knowledge on the metabolism to accurately estimate the bioconcentration of chemicals into 

non-target organisms. Therefore, in the next chapter, the focus will be on exploring the 

importance of varying environmental pH for the bioconcentration of four of the study 

chemicals. In addition, the metabolism of three of the study chemicals in Lumbriculus 

variegatus will be investigated. These data will then be used to further assess the 

applicability of the available models for estimating uptake. 
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CHAPTER 4 

EFFECTS OF pH AND METABOLISM ON THE UPTAKE 

OF IONISABLE CHEMICALS INTO LUMBRICULUS 

VARIEGATUS 

4.1 Introduction 

In the previous chapter, it was suggested that environmental factors such as pH and 

biotransformation have large effects on the uptake and thus also the toxicity of ionisable 

substances in aquatic organisms. Therefore, this chapter will focus on the effects of a varying 

pH on the uptake of three ionisable substances into L. variegatus. In addition, the Chapter 

describes an attempt to investigate whether metabolism of the study compounds is occurring 

in L. variegatus. 

 

4.1.1 Effects of pH on fate and uptake of ionisable substances 

As discussed previously, a large proportion of the chemicals that we use today are ionisable. 

For example, an evaluation of 1510 chemicals preregistered in REACH showed that 49 % 

were ionisable and at a pH of 7, 33 % of these chemicals would be in an ionised state 

(Franco et al., 2010). The proportion of ionized chemicals within certain classes of 

chemicals is even higher. For example, between 84.6 and 95% of compounds used as active 

pharmaceutical ingredients (APIs) are thought to be ionisable (Manallack et al. 2007). As the 

degree of dissociation of an ionisable compound is affected by the pH of the environment in 

which it resides (Franco et al. 2009) and as ionized and unionized species of a compound 

behave differently in terms of their environmental fate and bioaccumulation into organisms, 
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the behaviour of a substance will be significantly affected by the pH of the environment in 

which it resides.  

The pH of water bodies, soils and sediments in the natural environment can vary 

significantly. However, despite the known variability of pH values in surface waters (pH 2.2-

9.8), sediments and soils (pH 3.4-7.6) (FOREGS-EuroGeoSurveys Geochemical Baseline 

Database) only a few studies have investigated the effects pH have on the fate and toxicity of 

ionisable organic environmental pollutants especially for PPCPs (Nakamura et al. 2008; 

Valenti et al. 2009). Nakamura et al. (2008) investigated the toxicity and bioconcentration of 

the weak base fluoxetine in japanese medaka (Oryzias latipes) at three different pH values, 

7, 8 and 9. They found that LC50 values ranged from 0.2 mg/L (pH 9) to 5.5 mg/L (pH 7). 

The differences in toxicity were explained by differences in bioconcentration at different pH 

values which ranged from 13 (pH 7) to 330 (pH 9). The differences in BCF were explained 

by a higher fraction of the lipophilic non-ionised species being present at the higher pH 

value. For general chemicals and pesticides, the available data is somewhat more extensive. 

Research into the bioaccumulation and toxicity of the weak acidic compound 

pentachlorophenol was done on gold fish (Carrasias auratus). The bioconcentration factors 

at 1 h exposure to 0.1 ppm PCP-media at pH 5.5, 6, 7, 8, 9 and 10 were 131, 120, 56, 24, 12 

and 2, respectively. Uptake and toxicity of four acidic sulfonylurea herbicides (metsulfuron-

methyl, chlorsulfuron, triasulfuron and tribenuron-methyl) to the freshwater microalga 

Chlorella fusca have been investigated under different pH (Fahl et al. 1995). The 

bioconcentration of the four sulfonylureas in Chlorella did not exceed a factor of 9 at pH 6.0 

but was significantly increased at pH 5.0, with a maximum value of 53 for chlorsulfuron. 

The authours suggested that the sulfonylureas penetrate the algal cell membranes primarily 

in their undissociated form and accumulate through an ion trapping mechanism. The 

influence of pH and humic acids on bioaccumulation and bioavailability of tributyltin 

chloride (TBT) was studied in Daphnia. Uptake rates and bioaccumulation of TBT in 

Daphnia were significantly higher at pH 8.0, where TBT predominates as neutral TBTOH 
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species compared to pH 6.0, where it predominates as the cationic species. The authors 

concluded that chemical speciation is an important factor for determining the bioavailability, 

and thus bioconcentration, of TBT (Fent and Looser, 1995) 

The sorption of ionisable compounds to natural sediments can also be affected by pH (Zhang 

et al. 2010). For example, sorption of the antibiotic tetracycline to sediment depends on a 

range of environmental factors and sorption can be facilitated at lower pH values via a cation 

exchange mechanism (Zhang et al., 2010). The soil sorption of three antimicrobial agents-

sulfachloropyridazine, tylosin, and oxytetracycline, was investigated over a range of pH 

values. The sorption coefficients in two agricultural soils ranged from 1.5 to 1,800 L/kg and 

sorption coefficients were greater under acidic conditions (ter Laak et al. 2006). The effects 

of pH on the sorption of ionisable pesticides was investigated by Kah and Brown (2009) in 

nine temperate soils. They investigated the sorption behaviour of six acidic and four basic 

compounds. For the acidic substances, adsorption was negatively correlated with soil pH. 

However, for basic compounds, the behaviour was more complex, and approaches specific to 

each compound seemed to be required. 

Difference in pH can also affect the behaviour of non-ionised substances. For example, the 

bioconcentration of pyrene was studied in midge larvae (Chironomus riparius) at three 

different pH, 4, 6 and 8 and uptake was found to increase with increasing pH. The 

differences were thought to be due to an abnormal mucus secretion at lower pH values which 

could have reduced the degree of biconcentration (Wildi et al. 1994).  

 

4.1.2 Implications of metabolism for uptake of compounds 

Metabolism of a compound is a key factor that affects the potential effects of a compound in 

non-target organisms (Lewis et al. 1998; Brooks and Huggett 2012). Metabolism or 

biotransformation is the process whereby a substance is changed from one chemical to 

another by a chemical reaction within an organism. Metabolism of xenobiotics normally 
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consists of two phases. Phase I reactions are generally reactions which modify the chemical 

by adding a functional structure. This allows the substance to "fit" into the Phase II enzyme 

so that it can become conjugated with another substance. The conjugated products are larger 

molecules than the substrate and generally polar in nature Thus, they can be readily excreted 

from the body. Metabolism of PPCPs in humans are typically detoxified via the cytochrome 

P450 system and then excreted as more polar compounds (Guengerich, 2001). Many of the 

phase I reactions typical of human metabolism are also abundant in the environment (Perez 

and Barcelo 2007). As a result, biotransformation products in environment have been 

detected in a number of organisms e.g. (Brooks et al. 2005; Lahti et al. 2011; Meredith-

Williams et al. in preparation). However, in some organisms, human pharmaceutical target 

enzymes are not conserved. As a consequence, toxicity data that are generated from a species 

that lack the human target ortholog might not be protective for a species with a conserved 

target (Gunnarsson et al. 2012 in Brooks and Huggett; Connors et al. 2013). 

Metabolism of a compound does not only decrease the sensitivity of organisms to 

environmental pollutants, it can also directly alter the toxicokinetics or bioconcentration of a 

chemical. A study by Ashauer et al. (2012) investigated the effects of metabolism of fifteen 

organic xenobiotics. The metabolite enrichment factors of 14 out of 19 identified metabolites 

were higher than the bioaccumulation factor of the parent compound.  Thus, extrapolating 

toxicokinetics of chemicals in between organisms without knowledge of the metabolism is of 

low value.  

4.1.3 Aim 

This Chapter reports the results of a series of studies to understand the effects of changing 

environmental pH on the uptake of ionisable chemicals into Lumbriculus variegatus. The 

study looked at four of the compounds used in Chapter 2 and 3: caffeine, diclofenac, 

fluoxetine and triclosan. These were selected as they include a neutral compound, two acidic 

compounds and a basic compound. Investigations were also performed to understand 

whether these test compounds are metabolized by L. variegatus or not. These results were 
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than used to better understand and evaluate the model by Trapp and Horobin (2005) and 

Neuwoehner and Escher (2011) described in Chapter 3. 

 

4.2 Methods  

4.2.1 Oligochaete cultures 

Cultures of L. variegatus were obtained from Blades biological (www.blades-bio.co.uk, 

Cowden,UK) and cultured using the method described in Chapter 3. Cultures used for the 

metabolism study were cultured at CSIRO (Adelaide, Australia), using a similar approach as 

described in Chapter 3.  

 

4.2.2 Chemicals 

The study explored the uptake of diclofenac (weak acid, CAS 15307-79-6), fluoxetine (weak 

base, CAS 59333-67-4) triclosan (weak acid, CAS 3380-34-5) and caffeine (neutral 

molecule, CAS 58-08-2. Caffeine, diclofenac, fluoexetine and triclosan were the same as 

used in Chapter 2 (See Table 3). Caffeine was used to determine whether or not the pH 

manipulations had any stress-related effect on uptake of neutral organic substances into L. 

variegatus. For the metabolism studies, non-radiolabelled compounds were used, these were 

purchased from Sigma Aldrich (Sydney, Australia) and had a purity of ≥ 98%. Further 

detailed information on the study chemicals is provided in Chapter 1.  

 

4.2.3 Uptake and depuration at different pH values 

Uptake and depuration studies were carried out using the general approach described in 

Chapter 3 (Section 3.2.5) but were performed using different exposure media with different 

pH values. Soft standard reference water (SRW) (40-48 mg / L as CaCO3, total alkalinity = 

30-35 mg/L as CaCO3) was used throughout the tests and pH was set to 5.5, 7 and 8.5 using 
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chemical reagents as recommended for buffering according to USEPA (1975). KH2PO4 was 

substituted for NaH2PO4 for buffering the pH since KH2PO4 has previously been shown to be 

toxic to aquatic invertebrates (Fischer et al. 1991). Minor adjustments of pH during the test 

were made no more than every 24 h using either 0.1 M HCl or NaOH. pH was measured at 

each sampling point and values in test beakers were kept at the target pH value ± 0.3 

throughout the test.  

L. variegatus were acclimatized to the test conditions for 18 h in SRW. For the uptake 

studies, animals were then exposed in groups of 10 animals contained in 40 ml of SRW of 

which had been adjusted to pH 5.5, 7 or 8.5 to between 5 – 12 nmol l-1 of test compound for 

3, 6, 12, 24 or 48 h. Caffeine studies were run at higher water concentrations (~55 nmol l-1). 

All test concentrations were below toxicological thresholds. For the depuration studies, 

groups of animals were exposed to the test chemical for 48 h after which time they were 

transferred to pH-adjusted SRW for 3, 6, 12, 24 or 48 h. pH did not differ more than 0.3 pH-

units throughout the test. Three replicates per time point and pH treatment were used. The 

study temperature was 20 ±2 °C and the beakers were kept in darkness throughout the test to 

minimize degradation of the test compound. Control beakers containing SRW and radio-

labelled substances were used to monitor sorption to the jars.  

4.2.4 Metabolism of diclofenac, fluoxetine and triclosan.  

Alongside the uptake study using radiolabelled chemicals, a more simplistic uptake study 

was performed to facilitate the understanding of metabolism of diclofenac, fluoxetine and 

triclosan and to determine what effects it has on the uptake of the study chemicals in L. 

variegatus. The study was performed using the method described above with the exception 

that only uptake at one pH value and one time point was tested, i.e. 48 h. Test conditions 

such as nominal concentrations, test waters, temperature and dark/light conditions were 

chosen to mimic the parameters in the study with radiolabelled test compounds. pH 

throughout the test was kept at 7 ± 0.3.  
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4.2.5 Extraction and analyses  

Samples from the pH studies were extracted and analysed using the methods described in 

Chapter 3 (section 3.2.5). For the metabolism studies, water samples were cleaned up and 

concentrated using solid phase extraction. Cartridges (HLB Waters) were conditioned with 2 

x 4 ml of methanol and and 4 ml of MQ water before 50 ml samples were loaded onto the 

cartridges and allowed to flow through at a rate of 5 ml /min. Samples were then dried under 

vacuum for 30 minutes before put in a -18 ˚C freezer for storage until analysis. Prior to 

eluting, cartridges were defrosted for 30 min. Samples were eluted into a 15 ml test tube 

using 2 x 3 ml of methanol and 2 x 3 ml of dichloromethane. The eluted samples were 

evaporated under a gentle stream of nitrogen and reconstituted in 1 ml of methanol prior to 

analysis. Saples were kept at -18 °C prior to extractions, which were performed within two 

weeks of test termination. At sampling, samples were weighed in glass test tubes and frozen 

at -18 ˚C for a minimum of 24 hours before freeze dried for 48 hours. After freeze drying, 

dry weight of samples were determined before a glass rod was used to grind samples. 

Samples were extracted three times with 5 ml of methanol acidified with 0.1 M acetic acid. 

In the extraction procedure, samples were vortexed for 30 s and sonicated for 10 minutes 

before centrifuged for 45 minutes at 1500 rpm. Supernatants from the three extractions were 

pooled into a 15 ml test tube and evaporated under a gentle stream of nitrogen. Samples were 

reconstituted with 1 ml of methanol and filtered into an LCMS vial using a 0.2 µm 

hydrophilic PTFE filter.  

Instrumental analysis was performed by high pressure liquid chromatography triple 

quadrupole-tandem mass spectrometry (HPLC-QqQ-MS/MS) using a TSQ Quantum 

Discovery Max, (ThermoFischer Scientific). Chromatographic separation was carried out 

with a Phenomenex C18 Kinetex column (2.1x100mm, 2.6 µm particle size) with solvents 

used for chromatographic separation were acetonitrile (A) and (B) 0.1% formic acid. Mobile 

phase conditions were as follows: 95% B (0-3 minutes), 20% B (4-5 minutes), 2% B (6-11 
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minutes) 95% B (12-15 minutes), with a total 15 minute run-time. Analysis of fluoxetine was 

undertaken in positive electrospray ionisation (ESI), while diclofenac  and triclosan were 

analysed in negative ESI mode. Fluoxetine and diclofenac were identified by multiple 

reaction monitoring (MRM), monitoring two transitions per compounds (one for 

quantification and the other one for confirmation), while triclosan was identified using its 

parent ion only with the 37Cl isotope used as a confirmation ion. To account for recovery of 

analytes during extraction and from matrix interference during HPLC-QqQ-MS/MS analysis, 

stable isotopes of each analyte was spiked at an equivalent final concentration in solution of 

100 µg/L. The stable isotopes used were fluoxetine d5, diclofenac d4 and triclosan C13. 

Quantification of each analyte was undertaken by comparing the peak area ratio between that 

of the analyte and its respective isotope and with that in calibration standards prepared in 

10% acetonitrile. A list of target compounds analysed and their corresponding MRM 

conditions are indicated in Table 10. 

Table 10 Target compounds analysed and their corresponding MRM conditions. 
Details of the internal analytical standards are also provided. 

Compound Retention 
time 

(minutes) 

Quantifying 
ions transition 

(Coll ision 
energy) 

Confirmation 
ions transition 

(Coll ision 
energy) 

LOQ 

(µµµµg/L) 

 

Fluoxetine 
6.94 310 -> 44 (20 

V) 
310 -> 148 (20 V) 

1 

Fluoxetine d5 
6.94 315 -> 44 (20 

V) 
315 -> 156 (20 V) 

1 

Diclofenac 
7.86 294 -> 214 (20 

V) 
294 -> 250 (20 V) 

1 

Diclofenac d4 
7.86 298 -> 217 (20 

V) 
298 -> 254 (20 V) 

1 

Triclosan 
8.33 287 -> 287 (2 

V) 
289 -> 289 (2 V) 

10 

Triclosan 13C13  
8.33 300 -> 300 (2 

V) 
302 -> 302 (2 V) 

10 
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4.2.6 Data analysis 

Derivation of uptake and depuration rate constants and calculations of bioconcentration 

factor were performed using the method described in Chapter 3 (Section 3.2.6). Models 

fitted to the data are shown in Equation 23 and 24. The method is described in full in 

Ashauer et al. (2010). The caffeine data could only be fitted to a Levenberg-Marquardt 

algorithm and therefore no confidence intervals could be estimated around the 

bioconcentration factors. Equation 2 was used to calculate the caffeine bioconcentration 

factors. 

 

[��\]
[O

= �K^ ⋅ 2CNOPQ − �Y_O ⋅ 2YQ` Eq 23 

 

123 = �9:

��a;
 Eq 24 

To determine to effects metabolism have on the uptake, the internal concentrations was 

compared with the concentrations from the radiolabelled study. Bioconcentration factors 

were calculated using Equation 25. 

123bcd =
��\],efg
�4H;@\,efg

 Eq 25 

4.2.7 Evaluation of existing models for estimating bioconcentration factors for ionic 

substances. 

The two models developed for ionizing substances described in Chapter 3 (Trapp and 

Horobin 2005; Nuewoehner and Escher, 2009) were evaluated by comparing estimated 

model bioconcentration and experimental data using the approach described in Chapter 3 

(Section 3.2.7). 
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4.3 Results and discussion 

4.3.1 Uptake and depuration in Lumbriculus variegatus 

No mortality was observed in the treatments or in the controls.  The pH values throughout 

the test were successfully kept at test pH ± 0.3 pH units in the treatments with a pH of 5.5 

and 7 (Figure 15). However in the treatments with a pH of 8.5, pH decreased by up to one 

pH unit during the uptake and depuration phase. pH values in the test (Figure 15). 

Concentrations of all study compounds in chemical controls containing radioactive test 

compound and water only were stable for the duration of the study. In the uptake beakers, 

concentrations of caffeine in water remained constant over the 48 h uptake phase whilst 

concentrations in the treatments containing triclosan decreased with approximately 80 % 

disappearing over the study period at all pH values (Figure 16B and 19B). Declines in 

concentrations of diclofenac and fluoxetine in the test solutions were pH-dependant. The 

diclofenac concentration in the pH 5.5 treatment decreased by approximately 30 % whilst the 

treatments at the higher pH values remained stable for the 48 h uptake phase (Figure 17B). 

The opposite pattern was observed for fluoxetine. In the treatments with pH 7 and 8.5 the 

concentration decreased with approximately 15 and 70 % respectively whilst the 

concentration in the pH 5.5 treatment remained stable (figure 16-19B). All losses of study 

compounds in the water phase could be explained by uptake into the study organisms. A 

mass balance was performed and is attached in Appendix 1. 
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Figure 15 pH measurements for the different pH treatments (pH 5.5 - orange, 7.0 - green and 8.5 - blue) for the four study compounds
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The first order two compartment model was successfully fitted to the uptake and depuration 

measurements for diclofenac, fluoxetine and triclosan (Figures 16-19) and the resulting 

uptake and depuration parameters and the bioconcentration factors are provided in Table 11. 

The MCMC model could not be fitted to the caffeine data using Open Model. A possible 

explanation for this could be due to the relatively low concentrations observed in the tissue 

compared to the surrounding media, something that has previously been observed when 

Open Model has been used to estimate uptake and depuration parameters in earthworms 

(Carter et al. unpublished). Therefore, the uptake and depuration parameters presented in 

Table 11 were estimated with a Marquardt fit only. However since the water concentration in 

the caffeine treatments remained stable and the internal concentrations in the worms reached 

equilibrium within the 48 hour uptake phase a static BCF could be calculated.  

BCF values in the study ranged from 1 to 568400 at pH 5.5 and increased in the order 

caffeine < fluoxetine < diclofenac < triclosan. At pH 7, BCF values ranged from 1 to 646400 

and increased in the order caffeine < diclofenac < fluoxetine < triclosan. At pH 8.5, BCF 

values ranged from 1 to 559300 and increased in the same order as for pH 7. All BCF values 

are presented in Table 11. The very high bioconcentration factors obtained for triclosan and 

fluoxetine (pH 8.5) are explained by a very slow or non-existent depuration of these 

compounds from the worms. Similar slow depuration was observed for fluoxetine and 

triclosan in L. variegatus in the experiments described in Chapter 3 (Section 3.3.1) and in 

previous uptake studies using the fresh water shrimp, Gammarus pulex (Meredith–Williams 

et al. 2012).  
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Figure 16 A- Uptake and depuration of caffeine at three different pH values; 5.5 
(orange), 7 (green) and 8.5 (blue). Smooth lines represent the model fitted to the 
measured data (diamonds) and dotted lines represent the 95% confidence intervals. B- 
Corresponding water concentration. 

B 

A 
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Figure 17 A- Uptake and depuration of diclofenac at three different pH values; 5.5 
(orange), 7 (green) and 8.5 (blue). Smooth lines represent the model fitted to the 
measured data (diamonds) and dotted lines represent the 95% confidence intervals. B- 
Corresponding water concentrations. 

A 

B 
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Figure 18 A- Uptake and depuration of fluoxetine at three different pH values; 5.5 
(orange), 7 (green) and 8.5 (blue). Smooth lines represent the model fitted to the 
measured data (diamonds) and dotted lines represent the 95% confidence intervals. B- 
Corresponding water concentrations. 

A 

B 
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Figure 19 A- Uptake and depuration of triclosan at three different pH values; 5.5 
(orange), 7 (green) and 8.5 (blue). Smooth lines represent the model fitted to the 
measured data (diamonds) and dotted lines represent the 95% confidence intervals.  B- 
Corresponding water concentrations. 

A 

B 
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Table 11. Concentrations of test compound, uptake and depuration rate constants and bioconcentration factors with 95% confidence 
intervals. 

   Kin Kout   

  Cwater 0 h [nmol·L -1] pH RSS Mean (n=3) ± SD RSS Mean (n=3) ± SD BCF (LCI - UCI) 

Diclofenac 9.64 ± 1.71 5.5 2.01E+01 2.11E+01 ± 1.92E+00 3.39E-02 3.61E-02 ± 4.25E-03 623 (525 - 747) 
 12.08 ± 0.44 7 1.80E+00 1.91E+00 ± 1.92E-01 6.43E-02 6.85E-02 ± 7.59E-03 30 (24 - 36) 

 12.10 ± 0.50 8.5 2.43E-01 3.20E-01 ± 6.14E-02 3.93E-02 5.43E-02 ± 1.19E-02 8 (6 - 12) 

Fluoxetine 7.82 ± 0.77 5.5 4.78E-01 5.39E-01 ± 6.39E-02 1.10E-02 1.50E-02 ± 3.88E-03 49 (39 - 61) 

 7.45 ± 0.84 7 5.49E+00 5.80E+00 ± 4.70E-01 1.03E-02 1.20E-02 ± 2.40E-03 562 (482 - 665) 

 5.54 ± 1.97 8.5 2.27E+01 2.33E+01 ± 9.33E-01 1.07E-04 7.05E-04 ± 2.10E-04 218 500 (200 900 – 236 600) 

Triclosan 6.47 ± 3.71 5.5 4.50E+01 4.63E+01 ± 1.28E+00 8.14E-05 5.12E-04 ± 2.48E-04 568 400 (536 200 – 597 900) 

 6.36 ± 4.04 7 5.67E+01 5.84E+01 ± 1.97E+00 9.03E-05 7.07E-04 ± 2.02E-04 646 400 (609 300 – 682 300) 

 7.16 ± 3.88 8.5 4.70E+01 4.86E+01 ± 2.00E+00 1.06E-04 6.49E-04 ± 2.27E-04 559 300 (515 500 – 603 800) 

Caffeine* 55.50 ± 2.20 5.5 1.23E+00 1.23E+00 ± 2.36E-01 1.18E+00 1.18E+00 ± 2.27E-01 1 (N.A.) 

 54.76 ± 2.57 7 7.98E-01 7.98E-01 ± 1.35E-01 6.93E-01 6.93E-01 ± 1.20E-01 1 (N.A.) 

 53.95 ± 2.20 8.5 6.67E-01 6.67E-01 ± 1.14E-01 6.19E-01 6.19E-01 ± 1.10E-01 1 (N.A.) 

* BCF and confidence intervals could not be determined using the same approach as diclofenac, fluoxetine and triclosan. Instead, BCF was 
determined using the ratio of the uptake and depuration parameters Kin and Kout. 
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4.3.2 Effects of pH on the bioconcentration  

As expected, pH had no effect on the uptake of caffeine (Figure 16 a). Therefore, any 

physiological response in the L. variegatus in response to pH that could affect the uptake 

behaviour can probably be excluded. At pH 5.5, 7 and 8.5 BCFs for diclofenac were 623, 30 

and 8 respectively. The BCF values between the high and the low pH differed by a factor of 

approximately 80. Uptake of fluoxetine was also affected by pH. The BCF values calculated 

were 49, 562 and 219000 at pH 5.5, 7 and 8.5, a difference of approximately a factor of 4500 

between the high and the low pH. The higher uptake at the higher pH value is consistent with 

previous data on bioconcentration of fluoxetine in fish (Nakamura et al. 2008). The BCF of 

fluoxetine in Japanese medaka, Oryzias latipes was reported at three different pH values, 7, 8 

and 9 and BCF values were calculated to 8.8, 30 and 260. Changes in pH had no effect on 

the uptake of triclosan. Based on the pKa of triclosan (8.1) an effect due to a changing pH 

would have been expected since the proportion of neutral species increases at lower pH 

values. This could suggest that there are additional mechanisms involved in the limitations of 

the uptake and depuration of triclosan in L. variegatus. Although, to our knowledge, there is 

no available information in the open literature, possible explanations might include 

degradation or biotransformation mechanisms that are dependent on pH.  

When correlating the uptake and depuration rate constants, Kin and Kout, with test pH, a 

clear negative correlation between Kin of diclofenac was observed whilst the correlation 

between fluoxetine uptake rates and test pH was positive (Figure 20 a and b). For triclosan, 

no such positive or negative correlation was observed (Figure 20 c). For diclofenac, no 

correlation between pH and Kout was observed indicating that the differences in uptake due 

to a varying pH is related to differences in uptake rather than differences in the depuration of 

the test chemicals. For fluoxetine, there was a negative correlation between Kout and pH 

(Figure 20). P-values for linear regressions are reported in Table 12. 
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Figure 20 Uptake and depuration parameters (Kin and Kout) derived from studies n 
L.variegatus in correlation to test pH. A Diclofenac; B- Fluoxetine; C- Triclosan. 

 

Table 12. Significance linear regression between pH and modelled uptake and 
depuration parameters for diclofenac, fluoxetine and triclosan into L. variegatus.   

Test compound Parameter r2 p-value 
Diclofenac Kin 0.997 0.034 

Kout 0.049 0.858 

Fluoxetine Kin 0.977 0.097 

Kout 0.761 0.325 

Triclosan Kin 0.031 0.887 

Kout 0.985 0.078 

 

A A 

B B 

C C 
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4.3.3 Metabolism 

To investigate whether metabolism could have an effect on the uptake study a simplified 

non-radiolabeled study was run parallel to the radiolabelled study. Concentrations of the 

study compounds were determined at 0 h and 48 h and the internal tissue concentrations 

were measured at 48 h only. To determine the effects metabolism have on the uptake, the 

internal concentrations in the non-radiolabeled study was compared with the internal 

concentrations in the radiolabelled study and the bioconcentration factors at 48 hours were 

determined in both the radiolabelled study and the cold study. Results are presented in Table 

13. 

Water concentration for diclofenac and triclosan at 48 h were within 80-120% of the water 

concentrations at 0 hours. The concentration of fluoxetine at 48 h were approximately 65% 

of the concentration at 0 hours. In laboratory tests, fluoxetine has previously been shown to 

be hydrolytically and photolytically stable in aqueous solutions (Kwon et al. 2006). For 

diclofenac the estimated internal concentration was 210 ± 120 nmol /kg which is fairly close 

to the internal concentrations derived from the radiolabelled study (318 ± 39.0 nmol /kg) 

suggesting that only limited metabolism occurred in the worm tissue. Thus, metabolism 

should not have a significant effect on the uptake and depuration of diclofenac in L. 

variegatus. The concentration of fluoxetine detected in the worm tissue was low, 8.68 ± 0.74 

nmol/kg. This is much lower than the internal concentrations detected when using 

radioactive analyses (1281 ± 73 nmol /kg). A possible explanation could be due to 

metabolism of fluoxetine in the worm tissue. The metabolism of fluoxetine and several other 

APIs has been characterised in the fresh water shrimp Gammarus pulex using Ultra 

Performance Liquid Chromatography (UPLC)-ToFMS (Meredith-Williams et al. In prep). In 

the study by Meredith-Williams et al no metabolites were detected in the tissue extracts. The 

metabolites of fluoxetine have also been detected in trout where norfluoxetine was detected 

at concentrations higher than the parent compound (Brooks et al. 2005; Chu and Metcalfe 
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2007). In humans, fluoxetine undergoes extensive metabolic conversion, leading to the 

active metabolite norfluoxetine and multiple other metabolites (Figure 21; Hiemke and 

Härtter 2000). However, studies with fish microsomes and fluoxetine indicates that hepatic 

metabolism of pharmaceuticals is much less than has been reported for mammals (Smith et 

al., 2010). 

 

 

Figure 21. Simplified schematic of fluoxetine metabolism in humans (Hiemke and 
Härtter, 2000). 

 

Results from the analyses of triclosan should be treated with caution since triclosan was only 

detected in the worm tissue of one of the replicates. As for fluoxetine, the concentration of 

triclosan was much lower in the tissue in the cold study (1.03 µmol/kg) than in the 

radiolabelled study (8.51 ± 0.47 µmol/kg). If this difference is due to metabolism of triclosan 

in the tissue, it could explain the very high bioconcentration factors observed for triclosan in 

the radiolabelled studies. Metabolism of phenolic compounds has previously been suggested 

to have an effect on the bioaccumulation kinetics into aquatic invertebrates (Ashauer et al. 
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2012). Available information on triclosan metabolism in aquatic organisms is scarce. In 

humans and other mammals, triclosan is extensively metabolized via glucuronide and sulfate 

conjugation (Fang et al. 2010). The metabolic pathway of triclosan is presented in Figure 22.   

 

Figure 22. Simplified schematic of triclosan metabolism. P450; Cytochrome P450; 
UGTs; UDP-glucuronosyltransferases; SULTs; Sulfotranserases. Fang et al. (2010). 

 

While metabolites and transformation products are usually less hazardous than the parent 

compound,  some active pharmaceuticals ingredients are active mainly in the metabolized 

form e.g. fluoxetine (Sommi et al. 1987), in addition, some data for pesticides indicates that 

degradation products can be more toxic than the parent compound (Sinclair and Boxall 

2003). Since degradates of environmental pollutants can either have a different toxicity to 

the parent compound or directly alter the toxicokinetics or bioconcentration of chemicals, it 

is crucial to have knowledge of the metabolism when assessing risks to non-target organisms  

from environmental pollutants. 
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Table 13 Test conditions and results from parallel study with cold test compounds. 

  Cwater 48 h 

labelled 

study 

[nmol·l-1] 

Cwater 48 h 

[nmol·l-1] 

Measured 

pH values 

Temperature Cinternal 48 

h labelled 

study 

[nmol·kg-1] 

Cinternal 48 

h [nmol·kg-1] 

Static BCF at 

48 h radio- 

labelled 

study1  

Static BCF at 

48 h1 

Diclofenac 12.29±0.48 14.54±1.21 6.92 20±2 ˚C 318.2±39.0 210.0±120.0  25.9 14.4 
Fluoxetine 6.62±1.35 5.35±0.47 6.85 20±2 ˚C 1 281±73.4 8.68±0.74 193 1.62 

Triclosan 1.12±0.56 15.2±4.23 6.87 20±2 ˚C 8 514±466 1 033
2 7 602 922 

1Chemical equilibrium was not reached in the tissue. BCF was calculated by dividing the average internal concentration with average water concentrations at 48 
h.  
2No standard deviations could be calculated since triclosan was only detected in one of the replicates.
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4.3.4 Evaluation of existing models for predicting bioconcentration of ionisable 

chemicals 

The data from the pH studies were used to evaluate the models described in Chapter 3. 

Bioconcentration factors of all of the study compounds were underestimated by the cell 

model of the Trapp and Horobin (2005) (Figure 23a). The mismatch between model 

predictions and experimental results for triclosan and fluoxetine could be due to metabolism 

of the study compounds. However, metabolism would not explain the under-prediction of 

uptake for diclofenac. The cell model may not therefore be applicable to aquatic 

invertebrates. The Neuwoehner and Escher (2011) performed better with predictions of the 

bioconcentration factor for diclofenac, fluoxetine (pH 5.5 and pH 7) and caffeine being 

within one order of magnitude of the experimental bioconcentration factors. Predictions of 

bioconcentration factors for triclosan and fluoxetine (at pH 8.5) were greatly underestimated. 

The large differences of the predicted BCF and experimental BCF are likely to be due partly 

to metabolism of triclosan as discussed in the section above.  
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Figure 23. A comparison of the experimental BCF and BCF predicted by: A- the cell 
model by Trapp and Horobin (2005) and B- the combined model by Neuwoehner and 
Escher (2011). 

 

B 

A 
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In addition to the models described here for predicting bioconcentration of ionisable 

pollutants, recent work has developed a mechanistic mass balance bioconcentration model 

which has been parameterized for ionogenic organic chemicals (IOCs) in fish and evaluated 

against a compilation of empirical bioconcentration factors (BCFs). Key aspects of model 

development include revised methods to estimate the chemical absorption efficiency of IOCs 

at the respiratory surface (EW) and the use of distribution ratios to characterize the overall 

sorption capacity of the organism. Model prediction errors appear to be largely the result of 

uncertainties in the biotransformation rate constant (kM) estimates and the generic 

approaches for estimating sorption capacity (Armitage et al. 2013). Due to insufficient input 

parameter data available, evaluation of the model against experimental data on L. variegatus 

is not possible at this time.  

 

4.4 Conclusions 

The results from the studies described in this chapter highlight the importance of thoroughly 

investigating the impacts of environmental parameters such a pH as well as metabolism 

when trying to understand the uptake of ionisable chemicals in the environment. These 

factors and processes have a large impact on the bioconcentration of a compound. By 

altering the pH by two units, the BCF of diclofenac and fluoxetine were increased by a factor 

of nearly 80 and 4500 respectively! It can also be concluded that without knowledge on the 

metabolism of a substance, bioconcentration cannot be determined satisfactorily. 

The main focus of the thesis so far has been on investigating the bioconcentration of 

ionisable chemiclas from the water phase. To further investigate what processes affect the 

bioaccumulation of sediment associated substances into sediment dwelling invertebrates, we 

must determine the potential uptake via ingestion of contaminated sediment.  Therefore, in 

the next chapter, the focus will be on determining what the main uptake routes are for three 

of the study compounds (diclofenac, fluoxetine and triclosan) in L. variegatus. 
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CHAPTER 5 

IMPORTANCE OF FEEDING FOR THE UPTAKE OF PPCPs 

INTO LUMBRICULUS VARIEGATUS 

5.1 Introduction 

The work described in previous chapters focused on understanding the uptake of 

pharmaceuticals and personal care products from the water phase into sediment dwelling 

organisms. In the real environment, these organisms will not only be exposed substances via 

the water phase but may also be exposed to chemicals associated with sediment particles. It 

is therefore important to have an understanding of the uptake of chemicals from whole 

sediments into benthic invertebrates. The risk assessments of sediment associated 

contaminants are likely to be more effective if they are built upon knowledge of from where 

and how organisms take up contaminants (Hare et al. 2003 ). 

Previous research of the uptake of pharmaceuticals and personal care products from 

sediments into sediment-dwelling organisms is scarce. However, there are data on a few 

pharmaceuticals classes. Liebig et al. (2004) measured the bioaccumulation of a synthetic 

steroid 17α-ethinylestradiol (EE2) into L. variegatus. The accumulation factor normalised to 

worm lipid content and sediment TOC (AFlipid/OC) was 75 at the end of the uptake period, 

however, a steady state was not reached. There are also available studies on the anti-

depressant fluoxetine. Bringolf et al. (2010) investigated the occurrence, distribution and 

bioaccumulation of fluoxetine near a municipal waste water treatment facility. They reported 

a BCF of 1347 ng/g and a Kd value of 178 ml/g 100 m downstream of the effluent discharge. 

From these figures a BSAF of 7.6 can be calculated. The occurrences of ten different anti-

depressants were also investigated in surface waters, sediments and in brain tissue of native 

white suckers (Catostomus commersoni) (Schultz et al. 2010). The highest BSAF range from 
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approximately zero to ten with the highest values reported for the selective serotonin 

reuptake inhibitor sertraline. 

Available research has shown that feeding as a route of bioaccumulation of sediment 

associated contaminants can be of major importance. Contaminated sediments can have 

direct toxic effects on aquatic life, such as the development of liver neoplasms and other 

liver lesions in bottom-feeding fish exposed to polynuclear aromatic hydrocarbons (PAHs) in 

sediments (Malins et al. 1987). This has also been shown in sediment dwelling invertebrates. 

Leppanen and Kukkonen (2004) showed that when L. variegatus was exposed to tetrabromo 

diphenylether both via contaminated water and contaminated water and sediment, the worms 

that did not ingest sediment had clearly lower influx rates than sediment-ingesting worms. 

Also, the estimated BSAF was statistically different from that of the sediment-ingesting L. 

variegatus. Both these findings support the significance of feeding behaviour in 

bioaccumulation.  

In the Technical Guidance document, TGD, the European Chemical Bureau recommends the 

use of equilibrium partitioning when experimental data are missing for risk assessment of 

environmental contaminants in sediments. For substances with a log Kow > 5 an assessment 

factor of 10 is applied since equilibration partitioning only considers exposure via the water. 

(TGD; 2003). For deposit feeding organisms that live in and ingest sediment to obtain 

nutrients from particles suspended in the sediment the uptake via both pore water and 

ingestion of sediments are likely to contribute to the exposure of sediment-associated 

contaminants. It is known that the importance of different uptake routes is influenced by 

sediment and chemical characteristics and also the organisms themselves (Landrum and 

Robbins, 1990). For neutral compounds with log Kow < 5, the major route for the 

accumulation is pore water (Thomann et al. 1992; Belfroid et al. 1968). For more 

hydrophobic compounds, the contribution of ingested material in accumulation increases 

(Landrum et al. 1990). In addition to hydrophobic interactions affecting the distribution of 

chemicals, many of the active ingredients in pharmaceuticals and personal care products are 
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ionisable and will be affected by sorption mechanisms such as chemical dissociation and 

ionic sorption (Kah and Brown, 2007).  

There is limited consistency across the literature regarding the importance of different 

uptakes routes of chemicals into sediment dwelling invertebrates. Comber et al. (2007) and 

Leppänen and Kukkonen (1998) showed that uptake of pyrene via ingestion of sediment into 

Lumbriculus variegatus was the main uptake route whilst Lu et al. (2004) showed that the 

main uptake of PAHs into a sediment dwelling oligochaete is via the pore water. Weston and 

Gulmann (2000) showed that the importance of uptake routes of benzo[a]pyrene (BaP) into 

the polychaete Abarenicola pacifica is time dependent.  

The aim of the work described in this chapter therefore was to gain knowledge of the relative 

importance of the uptake of three PPCPs into a sediment-dwelling oligochaete, Lumbriculus 

variegatus, via pore water and via ingestion of contaminated sediments. Three PPCPs with 

relatively similar lipophilicity but different pKa values were used in the study, diclofenac, 

fluoxetine and triclosan. To determine the relative uptake via pore water and ingested 

sediment into L. variegatus, the approach described by Conrad et al. (2000) was used. 

 

5.2 Method 

5.2.1 Test sediment 

Sediment was sampled from the top 10 cm of the benthos at a clean river site near 

Buttercrambe, North Yorkshire, UK (SE 73499 58510). The sediment was characterised 

using the methods described in Chapter 2 (Section 2.2.2). Sediment properties are listed in 

Table 13.  
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Table 14 Properties of the sediment used in the uptake studies with L. Variegatus 

Parameter Value 

pH: 7.67 

OC [g/kg] 5.51 

CEC [cmol+/kg] 4.65 

Grain size [g/kg]  

- Clay: 42 

- Silt: 27 

- Sand: 931 
 

5.2.2 Test compounds  

Three different substances commonly used as pharmaceuticals or personal care products, 

were chosen for the experiment, diclofenac, fluoxetine and triclosan. Purities for all study 

chemicals were > 98%. Further information on the test substances are found in Chapter 1 and 

Chapter 2. Acetonitrile (99.9 %), methanol (99.9 %) and phosphoric acid (99.9%) were 

obtained from Fisher Scientific (Loughborough, UK). 

 

5.2.3 Oligochaete cultures  

Cultures of L. variegatus were maintained using the methods described in Chapter 3, Section 

3.2.1. Approximately two weeks prior to test initiation, tissue paper was replaced with 

sediment (depth of approximately 4 cm) identical to the sediment used in the uptake study to 

allow acclimation of the test organism to the test conditions.  

 

5.2.4 Evaluation of extraction of test compounds from sediment. 

Duplicate replicates of wet sediments (3.0 g dw corresponding to approximately 4.5 g ww) 

were spiked with approximately 1000 Bq and left to shake for 2 h. Samples were extracted 

twice by adding 10 ml of solvent; methanol, acetonitrile and a 7:3 mixture of acetonitrile: 

water. An additional set of acidified solvents were tested as well. Acidification was 
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performed using 0.1 % H3PO4. In total six different solvents. Samples were shaken at 250 

rpm for 2 hours and then centrifuged at 3000 rpm for 10 min. (Hermle Z 513K Bench Top 

Centrifuge). The procedure was repeated and samples pooled prior to analyses. Samples 

were analysed with LSC using the method described above. The solvent resulting in the 

highest recovery for each test substance were evaluated using the same procedure with three 

replicates at three concentrations, 0.1, 0.5 and 1 µg/g. The solvents chosen for extraction of 

diclofenac, fluoxetine and triclosan were acidified methanol, an acidified 7:3 mixture of 

acetonitrile:water and methanol respectively. The average recovery, standard deviation and 

coefficient of variance were calculated.  

 

5.2.5 Uptake studies 

Prior to introduction of  L. variegatus to the test system, 3 g (dw) of sediment, 15 ml of 

APW and test substances dissolved in 10 – 20 µL methanol were added to 50 ml centrifuge 

PTFE tubes (Oak Ridge centrifugation tube, FEP by Nalgene Nunc International). Chemicals 

were then equilibrated between the water and sediment phases by shaking for 2-12 hours at 

300 rpm. Concentrations of test compounds ranged from 25 to 750 nmol kg-1 dry sediment. 

After equilibration, tubes were kept in an upright position in tube racks allowing the 

sediment to settle before adding the worms to the tubes. 

Prior to treatment, half of the L. variegatus were cut in half with a razor blade according to 

the method of Conrad et al. (2000) to produce a set of ‘non-feeding’ worms. The uptake of 

the study compounds into either ‘feeding’ or ‘non-feeding worms was then studied. Ten 

worms were added to each replicate. Three replicates were prepared for each timepoint and 

treatment. Tubes were then kept in the dark at 20 ±2 °C throughout the test.  To determine 

the uptake rate, samples of water, sediment and worms were taken at 3, 6, 12, 24 and 48h 

from the beginning of exposure. To assess depuration depuration L. variegatus were exposed 

to the chemicals for 48 h and then transferred to tubes with clean sediment for sampling at 



Chapter 5 – Importance of Feeding for the Uptake of PPCPs into L. variegatus 

114 

either 3, 6, 12, 24 or 48 h after transfer. At samplings, worms were retrieved from the test 

tubes using a modified spatula and transferred to 80 ml glass jars containing 40 ml artificial 

pond water to purge their guts of any remaining sediment. They were left there for 6 h as this 

timeframe had previously been reported as a sufficient time for L. variegatus to purge their 

guts (Mount et al., 1999 ). After purging their guts, worms were rinsed in distilled water, 

blotted dry on a tissue, weighted and dissolved in 2 ml of Soluene®-350 (Perkin Elmer, 

Waltham, Massachussets) in a 20 ml glass scintillation vial. Worms were left to dissolve for 

24 h before 10 ml Hionic Fluor scintillation cocktail (Perkin Elmer) was added prior to 

analyses.  

Sediment and overlying water was centrifuged at 3000 rpm for 10 min (Hermle Z 513K 

Bench Top Centrifuge). A 1 ml aliquot of the supernatant was then sampled and placed into 

a 20 ml scintillation vial and 10 ml Ecoscint A was added. The remaining supernatant was 

disposed of and sediment samples were kept at -18 °C until extractions. Sediment samples 

were extracted within 14 d of collection by shaking the sediment with 10 ml solvent for 1 h 

at 300 rpm. Fluoxetine was extracted with an acidified mixture of acetonitrile:water (0.1 % 

H3PO4, 7:3), diclofenac was extracted with 0.1 % H3PO4 in methanol and triclosan was 

extracted with methanol. After shaking, the tubes were centrifuged at 3000 rpm and a 1 ml of 

aliquot was taken for analyses. Ecoscint A was used as a scintillant. Recoveries ranged 

between 85 to 105 %. Analyses were made using Liquid Scintillation Counting, LCS, 

(Liquid scintillation Counter LS 6500, Beckman Coulter Inc., Fullerton, USA). Samples 

were counted three times for 5 min. Counts were corrected for background activity by using 

blank controls. Counting efficiency and colour quenching were corrected using the external 

standard ratio method.  
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5.2.6 Data analysis 

A Student’s T-tests were used to determine the statistically significant differences between 

the uptake of the feeding worms and the non- feeding worms at each time point. Data were 

checked for normality using Shapiro-Wilk Test using the software SPSS Statistics v21.0.0. A 

first order one compartment model was used to estimate the uptake and depuration rates for 

each test compound. The change of concentration in the organism was estimated according 

to Branson et al. (1975) using Equation 1. The parameters were estimated using the software 

OpenModel (v. 1.2 downloaded on the 24th of June 2011). The model was parameterized 

using residual sum of squares with the Levenberg-Marquardt algorithm followed by Monte-

Carlo Markov-Chain (MCMC) with the results from the Marquardt fit as input values. 

Confidence intervals were characterized by the 95% percentile of the simulated variables. 

Biota Sediment Accumulation Factors, BSAF were calculated by setting the sediment 

concentration to 26 and running the model until equilibrium. BSAF and their confidence 

intervals could then be read directly from the internal concentrations. The method is 

described in full in Ashauer et al. (2010).  

 

[�9:;
[O

= 2hP[ ∙ �D − 2K^O ∙ �i	 Eq. 26 

 

5.3 Results and Discussion 

5.3.1 Analytical recoveries for sediment 

The average recovery in percent were for diclofenac: 129%; for fluoxetine: 73.5 % and for 

Triclosan: 90.1 %. Results from the evaluation of the extraction method are presented in 

Table 16. 
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Table 14. Recoveries of study chemicals from screening of extraction methods from 
sediments 

 Extraction solvent Mean Recovery (%) 
Diclofenac H+ Methanol 115 
 ACN 93 
 H+ACN 111 

Fluoxetine 

ACN 60 
H+ Methanol 41 
ACN:H2O 7:3 65 
H+ACN:H2O 7:3 75 

Triclosan Methanol 92 
 H+ Methanol 87 
 ACN 90 
 

Table 15 Recoveries of study chemicals from validating extractions from sediments 

 Extraction solvent Recovery (%) St dev CV 
Diclofenac H+ Methanol 129 13.6 10.5 
Fluoxetine H+ACN:H2O 7:3 73.5 2.34 3.2 
Triclosan Methanol 90.1 2.9 3.2 
 

5.3.2 Uptake and depuration in L. variegatus 

No mortality was observed either in the treatments or in the controls during the uptake or 

depuration phases. Concentrations of all study compounds in control treatments, containing 

radioactive test compound and water only, were stable for the duration of the study (Figure 

25).  
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Figure 24 Concentration in the water and sediment compartments without worms 
present. Diclofenac in sediment (solid diamonds); in water (clear diamonds); Fluoxetine 
in sediment (solid triangles); in water (clear triangles); Triclosan in sediment (solid 
circles); in water (clear circles). 

 

In the uptake beakers, concentrations of fluoxetine and diclofenac in the water phase 

remained constant over the 48 h uptake phase while concentrations in treatments containing 

triclosan decreased during the 48 h uptake phase (Figure 28-30). The reduction in 

concentration in the water column was explained by uptake of the compounds into the study 

organisms. These findings agree with the results on the water concentrations in the study on 

uptake into L. variegatus from water only in Chapter 3. The measured concentrations of 

diclofenac and fluoxetine remained stable in the sediment throughout the uptake phase whilst 

the concentration of triclosan decreased slightly over the 48 h uptake phase. This could be 

explained with a mass balance calculation by an uptake of triclosan into study organisms. 

Diclofenac has previously shown to be degradable in sediments both via biodegradation 

(Gröning et al. 2007), see Figure 30, and via photolysis (Buser et al, 1998; Petrovic and 

Barcelo, 2007).  
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However, due to the position of the radioactive labelling (U-ring labelled) of diclofenac in 

this study, degradation of diclofenac might occur, although not be observed. The fate of 

fluoxetine in waters and water-sediment systems was investigated under laboratory 

conditions by Kwon and Armbrust (2006). No evidence of degradation, biotic or abiotic, was 

found. 

 

 

Figure 25. Suggested pathway for degradation of diclofenac in sediments. (Gröning et 
al. 2007) 

 

Triclosan is known to be subject to photodegratdation (Singer et al. 2002; Aranami and 

Readman 2006; Buth et al. 2010). Half-lives of triclosan due to photodegradation was 

reported to be as low as 4 days (Aranami 2007). To avoid photodegradation of the study 

compounds, the study was performed in darkness. However, although all radioactivity from 

triclosan was recovered from mass balances, due to the position of the labelling (U-ring 

labelled) it is possible that some of the radioactivity recovered could derive from degradation 

products according to the figure below.  
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Figure 26. Chlorination and photochemical transformations of triclosan leading to 
polychlorinated dibenzo-p-dioxins (Buth et al. 2010). 

 

The first order one compartment model was fitted to the uptake and depuration 

measurements with varying results. Overall, the model slightly underestimated the uptake 

and slightly overestimated the depuration of the study compounds (Figure 28-30). During the 

parameterisation for diclofenac, only a small number of accepted samples was generated 

which resulted in a coarse model fit. This phenomenon has previously been observed in 

Open Model for chemicals with a low uptake rate constants (e.g. caffeine, see Chapter 3). 

The resulting uptake and depuration parameters and the Biota Sediment Accumulation 

Factors are provided in Table 17.  

The order of the biota sediment accumulation factor of the compounds was as follows: 

fluoxetine < diclofenac < triclosan. The BSAF ranged from 1.4 to 292 for the feeding worms 

and from 1.9 to 288 for the worms taken up study compounds only via the epidermis. Water 

and sediment concentrations, uptake and depuration rate constants and Biota Sediment 

Accumulation Factors, BSAF, are reported in Table 16. Although there are available data on 

uptake of PPCPs into aquatic organisms, not much work has been done using sediment 

organisms. To date, to the best of our knowledge, there is no data on the bioaccumulation of 
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diclofenac into sediment dwelling organisms. A BSAF of fluoxetine in the freshwater mussel 

Elliptio complanata has been measured at 4.5 in the effluent channel of a sewage treatment 

plant. The BSAF reported in the literature for fluoxetine are in line with the findings in this 

study. 

Uptake of triclosan from sediments into aquatic organisms has been studied slightly more.  

Measured concentrations of triclosan in sediments and in a fresh water clam Corbicula 

fluminea resulted in BSAF (wet weight) of less than 1 (Edziyie, 2011). In addition, the 

BSAF (mass in tissue lipid OC / mass in sediment OC) of triclocarban, a similar compound 

was determined in L. variegatus to be 1.6 ± 0.6 (Higgins et al. 2009).. The values for 

triclosan are less than 2 orders of magnitude lower than the BSAF measured in this study. 

Possible explanations for the differences between the results of the current study and 

previous studies could be due to sediment characteristics, environmental pH (discussed in 

Chapter 1), metabolism of triclosan (discussed in Chapter 4) or degradation of triclosan into 

more lipophilic degradation products (see discussion above).  

Table 16. Mean initial water and sediment concentrations, uptake and depuration 
parameters and BSAF values 

Test 
Compound Treatment 

Water 
concentration 
(nmol/L) 

Sediment 
concentration 
(nmol/kg) 

Kin Kout BSAF 
(95% CI) 

Diclofenac 
Head 23.5 27.2 0.094 0.026 

2.7             
(2.1 - 3.0) 

No head 24.2 25.3 0.085 0.014 
3.5          
(3.2 - 3.9) 

Fluoxetine 
Head 5.3 736 0.044 0.002 

1.4             
 (1.1 - 
1.7) 

No head 5.6 759 0.031 0.002 
1.9          
(1.6 - 2.2) 

Triclosan 

Head 3.5 547 0.786 0.039 
292            
(248 - 
356) 

No head 3.9 574 0.499 0.026 
288          
(245 - 
363) 
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Figure 27. A- Uptake and depuration of diclofenac into L. variegatus. Red data 
represents feeding worms and blue data represents non-feeding worms. Solid line is the 
average model fit and broken lines are the 95% CI. B - Concentrations in sediment 
(filled squares) and water (open squares).

A 

B 



Chapter 5 – Importance of Feeding for the Uptake of PPCPs into L. variegatus 

122 

Figure 28A- Uptake and depuration of fluoxetine into L. variegatus. Red data 
represents feeding worms and blue data represents non-feeding worms. Solid line is the 
average model fit and broken lines are the 95% CI. B - Concentrations in sediment 
(filled squares) and water (open squares) 

A 

B 
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Figure 29A- Uptake and depuration of triclosan into L. variegatus. Red data represents 
feeding worms and blue data represents non-feeding worms. Solid line is the average 
model fit and broken lines are the 95% CI. B - Concentrations in sediment 

 

A 

B 
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5.3.3 The relative importance of feeding as an uptake route into L. variegatus 

During the first 24 hours, the study compounds were generally taken up to a greater extent into 

the worms that bioaccumulated compounds both via the epidermis and via ingestion of 

contaminated sediment than in worms taking up the compound via the epidermis only. However, 

after the first 24 hours of the uptake phase and during the depuration phase, no statistically 

significant differences were observed between the worms ingesting sediment and the worms that 

did not. Consequently, there was no significant difference between the BSAF calculated for the 

non-feeding and feeding treatments. The BSAF for the worms taking up study compounds via 

the epidermis ranged from 1.9 to 288. The BSAF for the worms taking up study compounds both 

via the epidermis and ingestion of sediment ranged from 1.4 to 292  

Hence, from these results in can be concluded that the uptake via ingestion of contaminated 

sediment is not of major importance for the uptake of the study compounds. This is in line with 

the results from Lu et al (2004) who concluded that the major uptake route of PAHs into 

sediment-dwelling oligochaetes is via the pore water. However, Comber et al. (2007) and 

Leppänen and Kukkonen (1998) obtained contradictory results and showed that uptake of pyrene 

via ingestion of sediment into Lumbriculus variegatus was the main uptake route. 

Aging of sediment has previously been shown to have an effect on the bioavailability of 

sediment associated contaminants to sediment dwelling organisms. Leppänen et al. (2000) 

investigated the effects of sediment-chemical contact time on the bioaccumulation of two PAH 

into L. variegatus. The results were varying, the ratio of uptake via ingestion:uptake via 

epidermis increased for the more lipophilic compound (Benzo[a]pyrene) with an increasing 

sediment-chemical contact time whilst the ratio for the less lipophilic compound (pyrene) were 

stable. The authors suggested that these results were due to the bioavailability of the more 

lipophilic compound which changed to a greater extent due to sediment-chemical contact time 

than the less lipophilic compound. The author also concluded that the importance of feeding as a 
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route of bioaccumulation is dependent on sediment characteristics such as organic carbon and 

particle size distribution. These are all factors that might explain the lack of consistency among 

available data. In addition, feeding behaviour has also shown to have an impact on the 

bioaccumulation into sediment dwelling invertebrates. Gaskell et al. (2007) measured the 

bioaccumulation of DODMAC, a cationic surfactant, in four freshwater macroinvertebrates 

(Asellus aquaticus, Chironomus riparius, Gammarus pulex, Lumbriculus variegatus). 

Chironomus accumulated the DODMAC to the highest degree and the observed 

bioaccumulation pattern was Chironomus > Gammarus > Asellus = Lumbriculus. The results 

could not be explained only by gut passage time. Another study measured the bioaccumulation 

of PCB and PAH in three different marine species with different feeding behaviour, Arenicola 

marina which feeds by ingestion of sediments, Macoma balthica, a deposit feeder and Mytilus 

edulis, a filter feeder. The contaminants were accumulated as follows: Arenicola > Macoma > 

Mytilus and the study concluded the feeding does have an impact on the uptake behaviour (Kaag 

et al. 1997). Thus extrapolating results observed in this study to other sediment dwelling 

invertebrates is not recommended without knowledge on how the feeding behaviour affects the 

importance of feeding as a route of uptake into sediment dwelling organisms.  

5.4 Conclusion 

Determining the importance of different uptake routes into sediment dwelling organisms is a 

complicated task with many contributing factors affecting the uptake via feeding. The uptake of 

the three study chemicals into L. variegatus was shown to be mainly a result of the uptake via 

the epidermis. However, extrapolating in between different sediment types and different 

organisms with different feeding behaviour should be done cautiously. However, for the 

evaluation of the conceptual model of uptake of PPCPs into L. variegatus described in Chapter 

1, feeding as a route of uptake appears to be negligible. In the next Chapter, this conceptual 

model will be evaluated using the results from Chapter 2-5.  
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CHAPTER 6 

GENERAL DISCUSSION AND CONCLUSIONS 

6.1 Introduction 

Over the past 15 years that has been increasing interest in the occurrence, fate and effects of 

substances used as either pharmaceuticals or personal care products in the natural 

environment (Boxall et al., 2012). A large amount of knowledge is now available on the 

levels of pharmaceuticals and personal care products in aquatic and terrestrial systems and 

their uptake and effects in aquatic and terrestrial organisms. A number of studies have 

explored the uptake, depuration and metabolism of pharmaceuticals and personal care 

products into aquatic and terrestrial organisms including plants (e.g. Boxall et al., 2006; 

Dolliver et al., 2007; Kumar et al., 2005), earthworms (Kinney et al., 2008), and in fish and 

aquatic invertebrates (Dussault et al., 2009; Mimeault et al., 2005; Nakamura et al., 2008; 

Paterson and Metcalfe, 2008; Ramirez et al., 2009; Rendal et al., 2011; Meredith-Williams 

et al., 2012). Studies with aquatic organisms have tended to focus on assessing uptake of 

substances from the water column and only limited work has been performed to understand 

the uptake of pharmaceuticals and personal care products from sediment; even though 

sediments have been shown to be a sink for selected compounds (Vazquez-Roig et al. 2010). 

The studies described in this thesis were therefore performed to develop an understanding of 

the potential for sediment-associated pharmaceuticals and personal care products to be taken 

up from sediments into benthic invertebrates. This Chapter begins with a brief summary of 

the findings of the different components of the thesis and then moves on to discuss the 

implications of the findings for understanding and managing the risks of pharmaceuticals 

and personal care products in the environment. 
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6.2 Key findings of the experimental chapters 

 

A series of studies was performed to understand that fate and uptake of a range of substances 

used as pharmaceuticals or personal care products in sediment systems. In order that the 

study results could be applied more generally, study substances were selected to cover a 

range of physico-chemical properties and included acidic, neutral and basic substances. An 

overview of the results obtained for the study compounds is provided in Table 17. 

It is generally recognised that an important route of uptake of many sediment-associated 

contaminants into benthic organisms occurs via the sediment pore water. Experimental 

studies therefore focused initially on understanding the distribution of pharmaceuticals 

between sediment and water and understanding uptake from the aqueous phase. 

The sorption behaviour of eight of the study substances in sediment-water systems was 

explored using a batch equilibrium method (Chapter 2).  Sorption was found to increase in 

the order diclofenac < chloramphenicol <salicyclic acid < naproxen < caffeine < 

sulfamethazine < triclosan < fluoxetine. Comparison of calculated Koc values for the study 

compounds with a recommended trigger value (Koc > 1000) for sediment risk assessment 

(Maund et al., 1997) indicate that of the eight study compounds, only fluoxetine and 

triclosan are likely to be of concern in the sediment compartment.   

Only limited data are available on the partitioning behaviour of compounds used as 

pharmaceuticals and personal care products in sediment-water systems. To experimentally 

assess the partitioning behaviour of all compounds used as pharmaceuticals or personal care 

products would be a mammoth task. Therefore, in Chapter 2, the sorption measurements for 

the study compounds were used to evaluate available predictive models for estimating 

sorption behaviour of organic compounds in sediments. Both ‘traditional’ models used for 

estimating sorption of neutral organic chemicals and models developed specifically for 

ionising substances were evaluated. None of the models tested were found to accurately 
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estimate sorption behaviour and in general models underestimated the sorption behaviour 

more frequently than they overestimated the sorption. Similar conclusions have been 

obtained in evaluation exercises for models for estimating sorption behaviour of 

pharmaceuticals in soils (Tolls, 2001). The mismatch between model predictions and 

sorption measurements probably reflects the complexity of the interactions that occur 

between ionisable compounds and sediment particles. 

The uptake behaviour of six of the study compounds from the aqueous phase into L. 

variegatus was then explored. Bioconcentration factors (BCF) of the six substances ranged 

from 2 (chloramphenicol) to 700900 (triclosan).  The very high BCF values for triclosan and 

naproxen resulted from extremely small depuration rates for these two substances. 

Comparison of the results with recommended trigger values for bioconcentration indicate 

that naproxen and triclosan would be classified as very bioaccumulative (ECHA, 2012). To 

try and explain the observed differences in the BCFs of the study compounds, the uptake 

data were compared to physic-chemical property data for the substances.  Unlike, many other 

classes of organic contaminant, there was only a weak correlation between lipophilicity (Log 

Kow) of the test substances and the BCF (r2 = 0.59). Log D, which has been previously been 

suggested as a better descriptor for the fate and behaviour of ionisable (Nakamura et al., 

2008; Kim et al., 2010; Valenti et al., 2009; Meredith-Williams et al., 2012), was also 

weakly correlated with uptake data (r2 = 0.50).  

The BCF results were also used to assess the performance of two models which had been 

specifically developed for estimating the uptake of ionising substances. Both of these models 

were found to underestimate the bioconcentration of the study compounds. One possible 

reason for the differences between the model predictions and measurements was that some of 

the study compounds were metabolised following uptake into the organism, this would not 

have been picked up in the radiolabelled uptake studies. In Chapter 4, the potential for 

selected study compounds to be metabolised was therefore assessed. The impact of 

environmental pH on uptake was also studied.  



 

Table 17. Summary of sorption and uptake parameters for the study pharmaceuticals and personal care products 

 Kd (l/kg) Koc (l/kg) BCF BSAF 

Compound   APW SW pH 5.5 SW pH 7.0 SW pH 8.5  

Caffeine 27.7 113 - 1 1 1 - 

Chloramphenicol 5.6 22.8 2 - - - - 

Diclofenac 2.34 – 4.2 17.1 - 42 60 623 30 8 2.7 

Fluoxetine 423 – 1790 7303 - 7614 911 49 562 218500 1.4 

Naproxen 13.4 547 72240 - - - - 

Salicyclic acid 11.4 46.5 82 - - - - 

Sulfamethazine 45.6 186 - - - - - 

Triclosan 241.2 - 1528 4312 - 6234 700900 568400 646400 559300 292 
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Chapter 4 focused on three substances with similar lipophilicity but varying pKa values. As 

previous studied have indicated that pH changes can alter the physiology of an organism and 

affect uptake of neutral organic compounds (Wildi et al. 1994), caffeine was also employed as a 

neutral ‘control’ compound. There were distinct differences in the uptake of the weak acid 

diclofenac and the weak base fluoxetine at pH values of 5.5, 7 and 8.5 with BCF values differing 

by more than 2 (diclofenac) to 4 (fluoxetine) orders of magnitude across the pH range tested. 

These findings are significant as the pH range in natural waters across Europe is reported to 

range from 2.2 to 9.8 (FOREGS-EuroGeoSurveys Geochemical Baseline Database). Our data 

therefore indicate that there could be very large differences in the uptake (and also toxicity) of 

ionisable pharmaceuticals and personal care products across the European aquatic landscape. 

Results from the studies in Chapter, where pH was much more tightly controlled than in Chapter 

3, were correlated with uptake predictions obtained using the model of Neuwoehner and Escher 

(2011). However, uptake of triclosan was greatly underestimated by the model. Metabolism has 

previous been suggested as reason for unexpectedly high bioconcentrations (Aschauer et al. 

2012). Significant metabolism of triclosan was confirmed by a simplified study using non-

labelled substances ran parallel to the uptake and depuration study. While no attempt was made 

to characterise the transformation products of triclosan, previous studies have indicated that this 

compound can be metabolised to conjugates (glucuronidated  triclosan and triclosan sulphate) 

and to hydroxyl triclosan, catechol and 2,4-dichlorophenol (Fang et al., 2010). While the parent 

compound may have been metabolised in the worms, it is important not to overlook the potential 

risks of these transformation products as previous studies have demonstrated that transformation 

products of synthetic compounds can sometimes be more toxic than the parent compound and 

exhibit different fate characteristics (Sinclair and Boxall, 2003; Boxall et al., 2004).  

In Chapter 5, uptake of three of the study compounds from natural sediments was explored. The 

biota sediment accumulation factors for diclofenac and fluoxetine were low. The low BSAF for 
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fluoxetine, which had a high bioconcentration factor for water-based exposure, resulted from the 

compound having a high sediment sorption coefficient – uptake into the organism was offset by 

sorption to the sediment solids. Triclosan had a BSAF of around 300 indicating that this 

substance (and/or its metabolites) would be bioconcentrated from sediment into benthic 

organisms.  

Chapter 5 also explored the relative importance of different routes of uptake from sediment into 

benthic organisms. Both feeding and non-feeding worms were exposed to diclofenac, fluoxetine 

and triclosan contaminated sediments and uptake and depuration was measured over 96 h. It was 

concluded that for diclofenac and fluoxetine, there was no difference in uptake in non-feeding 

worms and feeding worms. For triclosan, feeding worms accumulated slightly more of the study 

compound than the non-feeding organisms (although not statistically significant). These findings 

agree with previous studies where neutral compounds with log Kow values < 5, have been 

shown to be primarily accumulated from pore water (Thomann et al. 1992, Belfroid et al. 1995). 

For more hydrophobic compounds, the contribution of ingested material in accumulation may be 

more important (Landrum et al. 1989) so it is possible that feeding could be an important uptake 

route for other substances used as pharmaceuticals or in personal care products. 

In the next sections, we discuss the implications of the findings of the work described in this 

thesis for the assessment and management of the risks of pharmaceuticals and personal care 

products in the natural environment. 
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6.3 Implications for regulatory assessment of uptake of 

pharmaceuticals and personal care products into benthic organisms 

An assessment of the risks of sediment associated contaminants is required by many regulatory 

risk assessment schemes (e.g. REACH). In instances where experimental data are not available 

the use of the Equilibrium Partitioning approach is recommended (Di Toro et al., 1991). In this 

approach, either measured sorption coefficients and bioconcentration factors or estimated 

sorption coefficients and bioconcentration factors (estimated based on Log Kow values) are used 

alongside ecotoxicity data for pelagic organisms to estimate toxicity to benthic species. 

However, it is debatable whether this approach can be applied to ionisable substances (Di Toro 

et al., 1991).   

In the following section, we therefore use the data generated in the different Chapters in this 

thesis to evaluate whether it is possible to estimate uptake of ionisable substances into benthic 

organisms based on uptake data from aqueous exposures and batch sorption studies using the 

conceptual model described in Chapter 1 (Figure 31). To evaluate the model, estimations of 

tissue concentration over time are compared to uptake measurements from the whole sediment 

study. 
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Figure 30 A conceptual model for estimating uptake into sediment dwelling organisms 
(repeated from Chapter 1). 

 

For the model simulations we assumed that uptake via feeding is not important based on the fact 

that diclofenac and fluoxetine appeared to be only accumulated via the sediment pore water and 

that feeding only had a small effect on the uptake of triclosan (Chapter 5). As information was 

not available on rates of metabolism or on the concentrations of parent compounds and 

metabolites over time in the uptake studies, we used a whole residue approach (i.e. parent 

compound and metabolites are considered together).  

For the modelling, concentrations in the sediment pore water were estimated from measured 

whole sediment concentrations using Equation 27. To estimate concentrations in the organism 

over time from the pore water concentrations, the one compartment first order model described 

in Chapter 3 was used. The modelling was performed using ModelMaker version 4.0 (developed 

by Cherwell Scientific Ltd). 
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 Eq. 27 
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The model was run using measured sediment concentrations of the study compounds (Chapter 5) 

and the sediment sorption coefficients for Sediment 2 which was the sediment used in the whole-

sediment uptake studies (Chapter 2). Uptake and depuration rate constants for diclofenac and 

fluoxetine were estimated at pH 7.67 (the pH of the sediment used in the whole-sediment uptake 

studies) using the relationships between rate constants and pH described in Chapter 4 (Equations 

28 and 29). As pH had a limited effect on the uptake and depuration of  triclosan and the 

depuration of diclofenac and fluoxetine, a mean of the Kin and Kout values measured at pH 5.5, 7 

and 8.5 was taken. A summary of the uptake and depuration rate constants used for the 

evaluation of the modelling is shown in Table19. 

�pq	r�s = 61527 ∙ w�D.bxi∙y Eq. 28 

�pq	sz{ = 0.0005 ∙ wD.ic|c∙y Eq. 29 

Table 19. Uptake and depuration rate constants used for the evaluation of the sediment 
uptake model. 

Compound Kin  Kout 

Diclofenac 0.769 0.046 

Fluoxetine 9.67 0.0071 

Triclosan 49.6 0.000093 

 

 Figures 32-34. Modeled internal concentrations for fluoxetine and diclofenac agreed well with 

measured concentrations (Figures 32 and 33). For triclosan, however, modelled concentrations in 

the worms were lower than measured concentrations.  
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Figure 31 Modeled concentrations in comparison with measured concentrations of 
diclofenac over 96 hours. Smooth line is the modeled concentration whilst filled circles 
represent measured data. Empty circles represent non-feeding worms. 

 

Figure 32 Modeled concentrations in comparison with measured concentrations of 
fluoxetine over 96 hours. Smooth line is the modeled concentration whilst filled circles 
represent measured data. Empty circles represent non-feeding worms. 
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Figure 33 Modeled concentrations in comparison with measured concentrations of 
triclosan over 96 hours. Smooth line is the modeled concentration whilst filled circles 
represent measured data. Empty circles represent non-feeding worms. 

 

In addition to a comparison of modelled and measured internal concentrations over time, BSAF 

values were also calculated for the feeding worms. This is because small variations in the uptake 

and depuration rates can have large implications for the BSAF at steady state. Modelled BSAFs 

for diclofenac and fluoxetine agreed well with values derived from the whole sediment studies 

(Table 20). For triclosan, the modelled BSAF was approximately one order of magnitude larger 

than the measured BSAF even though uptake over 96 h was underestimated by the model.  

Table 20. BSAF values obtained using the model and derived from whole sediment 
studies.Substance 

 CSed 
(nmol/kg) 

K d CWater 

(nmol/L) 
BCFa BSAF  

(Eq Part) 
BSAF 

Diclofenac 27.2 4.2 6.47 16.8 4.0 2.7 
Fluoxetine 736 422.5 1.74 1 355 3.2 1.4 
Triclosan 547 241.2 2.27 535470 2 220 292 
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A possible explanation for the large difference in BSAF for triclosan might be the increased 

depuration that was observed in the presence of sediment compared to the depuration in a water 

only system (Chapter 3 and 4). It is possible that in the presence of sediment where organic 

matter is present, the body burden over prolonged periods would be smaller due to a larger 

sorption of the chemical to organic matter which facilitates the depuration out of the test 

organism based on a fugacity model approach. McCarthy (1983) observed a reduction in the 

uptake and accumulation of PAH in D. magna with 97 % in the presence on natural organic 

matter in the form of humic acids. 

While there was disagreement between model predictions and experimental observations for 

triclosan, the results for diclofenac and fluoxetine are very encouraging. These data indicate that 

if information is available on the sorption behaviour of an ionisable substance in sediment and 

on the relationships between pH and uptake and depuration from the water phase, it is possible 

to estimate internal exposure to a fair degree of accuracy. In the future, the model described here 

could be used to assess the spatial risks of substances such as diclofenac and fluoxetine to 

benthic organisms across the European landscape. 

 

6.4 Implications for existing models for estimating sorption and 

bioconcentration 

Many regulatory risk assessment schemes recommend the use of quantitative structure-activity 

relationships(QSARs)  and quantitative structure-property relationships (QSPRs) for estimating 

the fate, uptake and toxicity of a chemical in the environment. For pharmaceuticals, for example, 

if experimental data are not available, the European Medicines Agency indicate that 

bioconcentration and soprtion can be predicted based on chemical properties (EMEA, 2006).  

The log Kow is typically used as the chemical descriptor of hydrophobicity in QSARs and 
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QSPRs for sorption, bioaccumulation and toxicity (Schwarzenbach et al. 2003; Nendza and 

Russom 1991; Hansch and Leo 1995) in many regulatory frameworks. The results of the current 

study clearly show that Kow-based models are inappropriate for estimating the environmental 

properties and effects of ionisable substances such as many pharmaceuticals and personal care 

products.  

The findings of this study also show that even models developed specifically for estimating the 

fate and effects of ionisable compounds (e.g. Trapp and Horobin , 2005; Franco et al., 2008; 

Neuwoehner and Escher, 2011) may not perform well for compounds such as pharmaceuticals 

and personal care products. More work is therefore needed to develop and parameterise models 

for estimating the fate properties and uptake of ionisable compounds.  

 

6.4 Implications for ecotoxicity testing of pharmaceuticals and personal 

care products 

In Chapter 4, a clear negative correlation between the bioconcentration of the weak acid 

diclofenac and pH was observed as well as a positive correlation between the bioconcentration 

of the weak base fluoxetine and pH. Bioconcentration factors at the different pH values tested 

were found to vary by more than two orders of magnitude for diclofenac and four orders of 

magnitude for fluoxetine. These effects of pH on are not only likely to affect the uptake of the 

compounds but also the toxicity to organisms in the environment. Other studies also have 

demonstrated the importance of pH in determining the ecotoxicity of ionisable compounds. Both 

Nakamura et al. (2008) and Neuwoehner and Escher (2011) explained the pH dependant toxicity 

of fluoxetine to fish and green algae respectively based on differences in the uptake behaviour at 

different environmental pH values. In Japanese medaka the difference in toxicity ranged 

between 0.2 and 5.5 mg/L, a factor of > 25 at pH 7 and 9 respectively (Nakamura et al. 2008).  
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However, pH effects on toxicity are not currently considered in standard regulatory risk 

assessment schemes for organic compounds. Ecotoxicity tests are typically performed in 

standard media whose pH values range from 6.2 (OECD algal media) to 7.98 (EPA soft 

water)(Park et al., submit). Therefore, when assessing the risks of an ionisable compound based 

on standard ecotoxicity test data, e.g. using the guideline on environmental risk assessment for 

medicinal products for human use (EMEA, 2006), there is a possibility that the risks to aquatic 

organisms could be greatly over- or underestimated. In the future, it may be appropriate to assess 

toxicity at environmentally relevant pH values where greatest uptake into an organism is 

expected. For example, for a weak base like fluoxetine, it may be appropriate to test at higher pH 

values (e.g. 8.5) whereas for a weak acid such as diclofenac, it may be appropriate to test at a 

lower pH value (e.g. 5.5). 

The findings of this study also demonstrate the need to consider environmental metabolites of a 

substance in the risk assessment process. The importance of environmental metabolites has also 

been shown by Ashauer et al. (2012). Most pharmaceuticals are readily metabolized and/or 

excreted by humans, the reason why they have to be taken regularly (Jakoby et al. 1990). There 

is very little information available of the metabolism of pharmaceuticals in aquatic invertebrates, 

however it is rather well established that many of the detoxification enzyme responsible for the 

metabolism of e.g. pharmaceuticals in mammals are also present in fish (Goksør and Förlin, 

1991). These metabolites could well affect organisms in the environment so it is important that 

their toxicity is established.   

 

6.5 Conclusions 

This study is one of the first to explore the factors and processes affecting the uptake of 

substances used as pharmaceuticals or in personal care products into benthic organisms. The 
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results show that distribution between sediment solids and pore water varies for different 

compounds. Differences are also seen in uptake from pore water into lumbricid worms. Unlike 

neutral organic chemicals, the differences in behaviour and uptake cannot be explained by a 

compounds’ lipophilicity. Available models for predicting fate and uptake of ionisable 

compounds also do not appear to be at an advanced enough state to accurately predict the 

partitioning behaviour and uptake of pharmaceuticals and personal care products in aquatic 

organisms. Studies into the effects of pH on uptake demonstrate that this parameter is very 

important in determining the degree of uptake of some pharmaceuticals and personal care 

products and show that bioconcentration factors can differ by up to more than four orders of 

magnitude across a range of environmentally relevant pH values. Evaluation of a sediment 

uptake model demonstrates that for selected pharmaceuticals and personal care products, by 

combining information on uptake and depuration rate constants from water-only studies and on 

sorption behaviour from batch experiments, it is possible to estimate uptake into benthic 

organisms over time. The results of the model predictions are very promising and indicate that it 

may be possible to apply an approach, analogous to the equilibrium partitioning method, in the 

environmental risk assessment process for pharmaceuticals, personal care products and other 

ionisable compounds. 

 

6.4 Recommendations for further research 

While the work described in this thesis has generated novel information on the fate and uptake of 

compounds used as pharmaceuticals or personal care products in sediment environments, it also 

highlights a number of areas where future research is needed. In the future work should focus on 

the following aspects: 
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Development of new methods for estimating the sorption behaviour of ionisable compounds in 

sediments – This thesis has demonstrated that currently available models for estimating sorption 

of organic chemicals perform poorly for estimating sorption of pharmaceuticals and personal 

care products in sediment systems. There is a need to develop improved methods for estimating 

the sorption behaviour of these compounds to sediments which take into account the different 

interactions that occur between ionisable compounds and sediment solids. These relationships 

should be developed to also account for changes in sediment properties.  

Development of new approaches to estimate the uptake of ionisable compounds in aquatic 

organisms – While models are available for estimating uptake of ionisable compounds into 

aquatic organisms, these did not perform well for the study compounds and L. variegatus.  

Future work should focus on understanding the mechanisms of uptake of ionisable organic 

compounds (both passive and active) as well as the metabolism of compounds within organisms 

with a view to developing and parameterising improved models for a range of species with 

different traits. These models should be able to account for the effects of differences in 

environmental parameters (e.g. pH) on uptake. 

Understanding the formation and effects of metabolites of pharmaceuticals and personal care 

products – Data for triclosan indicate that this compound is extensively metabolised in the 

worms. Future uptake studies should ideally employ methods that allow the differentiation 

between parent compounds and transformation products of the parent compound (e.g. Radio 

HPLC, LC-MS, GC-MS) as well as the identification of metabolites (e.g. TOF-MS). 

Consideration should be given to assessing the hazard of any major metabolites and approaches 

developed to allow the risks of parent compound/metabolite mixtures to be assessed. 

Understanding the linkages between internal residues of pharmaceuticals and personal care 

products and toxicity – This thesis has focused on uptake as an endpoint. In order to use this 
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information to understand risks in the environment, information is needed on the relationship 

between internal concentrations and effects (e.g. through the critical body residue approach). 

Questions that require answering include: do differences in uptake of an ionisable compound at 

different pH values correlate with differences in toxicity? and how do benthic organisms vary in 

terms of their sensitivity to exposure to an ionisable compound? 

By addressing these issues, in the future it should be possible to develop a much better 

understanding of the overall risks of an ionisable compound across broad landscapes. 
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Appendix 1 
 

Table 1. Mass balance calculations at 0-48 h from uptake study presented in Chapter 3. 

  Timepoint (h) Test compound Concentration Volume test Sum recovery Mean test % of spiked  

Naproxen 

0 0 10.8 40 430.255     
0 0 9.1 40 364.715 405.695 100 
0 0 10.6 40 422.115     
3 5.6 11.9 40 479.8391667     
3 5.4 11.39 40 458.8448333 468.4945 115 
3 4.8 11.59 40 466.7995     
6 
6 

7.9 10.8 40 440.0726667     
12.2 11.9 40 488.415 454.8419444 112 

6 6.2 10.7 40 436.0381667     
12 11.5 11.675375 40 478.49     
12 10.4 11.20370833 40 458.553 472.2323333 116 
12 12.1 11.68904167 40 479.654     
24 19.5 10.010875 40 419.9176667     
24 22.9 10.225375 40 431.8723333 445.421 110 
24 27.3 11.42954167 40 484.473     
48 29.7 9.106375 40 393.9241667     
48 35.7 10.31604167 40 448.3775 439.1561111 108 
48 44.5 10.76654167 40 475.1666667     

Fluoxetine 
 

0 0 18.92675594 40 757.0702376     
0 0 19.64754167 40 785.9016667 771.5045236 100 
0 0 19.28854167 40 771.5416667     
3 25.75941667 18.70970833 40 774.14775     
3 17.64841667 18.12304167 40 742.5700833 761.2859722 99 
3 19.06508333 18.701875 40 767.1400833     
6 45.54841667 18.220875 40 774.3834167     
6 49.32725 17.21754167 40 738.0289167 754.8048611 98 
6 57.12725 17.371875 40 752.00225     

12 77.30941667 16.98304167 40 756.6310833     
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  Timepoint (h) Test compound Concentration Volume test Sum recovery Mean test % of spiked  
12 0.00 10.76 40.00 430.26   97 
12 0.00 9.12 40.00 364.72 405.70   
24 0.00 10.55 40.00 422.12     
24 5.63 11.86 40.00 479.84   95 
24 5.35 11.34 40.00 458.84 468.49   
48 4.78 11.55 40.00 466.80     
48 7.90 10.80 40.00 440.07   91 
48 12.15 11.91 40.00 488.42 454.84   

Triclosan 
 

0 6.20 10.75 40.00 436.04     
0 11.48 11.68 40.00 478.49   100 
0 10.40 11.20 40.00 458.55 472.23   
3 12.09 11.69 40.00 479.65     
3 19.48 10.01 40.00 419.92   91 
3 22.86 10.23 40.00 431.87 445.42   
6 27.29 11.43 40.00 484.47     
6 29.67 9.11 40.00 393.92   91 
6 35.74 10.32 40.00 448.38 439.16   

12 44.51 10.77 40.00 475.17     
12 0.00 18.93 40.00 757.07   87 
12 0.00 19.65 40.00 785.90 771.50   
24 0.00 19.29 40.00 771.54     
24 25.76 18.71 40.00 774.15   100 
24 17.65 18.12 40.00 742.57 761.29   

Chloramphenico
l 
 

0 19.07 18.70 40.00 767.14     
0 45.55 18.22 40.00 774.38   100 
0 49.33 17.22 40.00 738.03 754.80   
3 57.13 17.37 40.00 752.00     
3 77.31 16.98 40.00 756.63   101 
3 76.75 17.04 40.00 758.52 746.40   
6 66.07 16.45 40.00 724.05     
6 106.86 15.71 40.00 735.12   99 
6 112.77 15.51 40.00 733.03 734.32   

12 111.58 15.58 40.00 734.82     
12 105.68 15.64 40.00 731.40   100 
12 120.33 14.92 40.00 717.12 698.42   
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  Timepoint (h) Test compound Concentration Volume test Sum recovery Mean test % of spiked  
24 101.59 13.63 40.00 646.74     
24 0.00 12.64 40.00 505.58   102 
24 0.00 11.62 40.00 464.96 494.72   
48 0.00 12.84 40.00 513.62     
48 33.29 10.01 40.00 433.70   100 
48 57.22 10.83 40.00 490.34 450.99   

Salicylic acid 
 

0 47.42 9.54 40.00 428.94     
0 140.75 7.76 40.00 451.17   100 
0 126.51 8.80 40.00 478.32 451.58   
3 100.90 8.11 40.00 425.24     
3 121.52 5.88 40.00 356.90   98 
3 155.38 8.86 40.00 509.62 428.35   
6 148.68 6.75 40.00 418.52     
6 299.76 5.22 40.00 508.64   77 
6 254.71 6.09 40.00 498.22 495.47   

12 270.15 5.24 40.00 479.56     
12     40.00 0.00   69 
12     40.00 0.00 0.00   
24     40.00 0.00     
24 0.00 14.12 40.00 564.67   62 
24 0.00 14.46 40.00 578.39 569.62   
48 0.00 14.15 40.00 565.82     
48 0.23 14.60 40.00 584.40   55 
48 0.14 13.77 40.00 551.02 573.06   

Diclofenac 
 

0 0.14 14.59 40.00 583.76     
0 0.19 14.41 40.00 576.60   100 
0 0.22 13.97 40.00 559.07 562.05   
3 0.24 13.76 40.00 550.50     
3 0.35 14.02 40.00 561.08   85 
3 0.33 14.40 40.00 576.19 570.78   
6 0.50 14.36 40.00 575.06     
6 0.54 14.83 40.00 593.55   101 
6 0.35 14.18 40.00 567.49 579.15   

12 0.52 14.40 40.00 576.40     
12 0.72 14.35 40.00 574.59   102 
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  Timepoint (h) Test compound Concentration Volume test Sum recovery Mean test % of spiked  
12 0.80 13.92 40.00 557.66 569.88   
24 0.81 14.41 40.00 577.39     
24 0.00 14.31 40.00 572.31   103 
24 0.00 13.99 40.00 559.42 567.66   
48 0.00 14.28 40.00 571.24     
48 0.37 13.57 40.00 542.98   99 
48 0.24 14.10 40.00 564.04 558.79   
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Table 2. Mass balance calculations at 0-48 h from uptake study presented in Chapter 4. 
pH Time Test compound in Concentration test Volume test Sum recovery Mean test % of 

Diclofenac 5.5 

0 0.00 26.96 40.00 1078.35     
0 0.00 27.52 40.00 1100.96 1093.31 100 
0 0.00 27.52 40.00 1100.63     
3 62.35 25.65 40.00 1088.51     
3 79.38 24.60 40.00 1063.40 1084.34 99 
3 64.48 25.92 40.00 1101.12     
6 115.60 24.80 40.00 1107.43     
6 141.19 24.35 40.00 1115.13 1113.37 102 
6 161.39 23.90 40.00 1117.56     

12 244.58 21.84 40.00 1117.99     
12 245.01 21.01 40.00 1085.45 1108.62 101 
12 293.51 20.72 40.00 1122.44     
24 377.32 17.75 40.00 1087.24     
24 240.17 20.75 40.00 1070.09 1091.03 100 
24 395.77 18.00 40.00 1115.77     
48 490.29 13.39 40.00 1026.05     
48 340.41 18.23 40.00 1069.52 1075.10 98 
48 335.30 19.86 40.00 1129.74     

Diclofenac 7 

0 0.00 29.74 40.00 1189.73     
0 0.00 29.85 40.00 1193.96 1149.78 100 
0 0.00 26.64 40.00 1065.65     
3 7.49 27.22 40.00 1096.29     
3 8.82 27.82 40.00 1121.60 1110.50 97 
3 8.98 27.62 40.00 1113.62     
6 15.78 27.93 40.00 1133.11     
6 15.91 28.55 40.00 1157.72 1145.79 100 
6 12.37 28.35 40.00 1146.54     

12 21.39 27.10 40.00 1105.20     
12 21.72 27.49 40.00 1121.30 1129.94 98 
12 20.87 28.56 40.00 1163.34     
24 26.88 26.16 40.00 1073.13     
24 25.47 28.63 40.00 1170.71 1124.36 98 
24 24.60 27.62 40.00 1129.24     
48 34.21 27.67 40.00 1141.17     
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pH Time Test compound in Concentration test Volume test Sum recovery Mean test % of 
48 23.99 29.78 40.00 1215.29 1172.87 102 
48 36.59 28.14 40.00 1162.14     

Diclofenac 8.5 

0 0.00 29.57 40.00 1182.77     
0 0.00 27.92 40.00 1116.97 1139.93 100 
0 0.00 28.00 40.00 1120.06     
3 1.46 28.35 40.00 1135.38     
3 1.27 28.49 40.00 1140.74 1150.20 101 
3 1.08 29.34 40.00 1174.48     
6 1.12 29.77 40.00 1191.78     
6 1.87 29.11 40.00 1166.43 1168.85 103 
6 1.15 28.68 40.00 1148.34     

12 1.95 26.40 40.00 1057.89     
12 1.63 28.73 40.00 1150.72 1107.53 97 
12 1.91 27.80 40.00 1113.99     
24 3.55 27.65 40.00 1109.59     
24 2.32 27.88 40.00 1117.66 1129.74 99 
24 2.39 28.99 40.00 1161.96     
48 7.66 27.03 40.00 1088.72     
48 8.34 25.52 40.00 1029.16 1059.70 93 
48 6.07 26.38 40.00 1061.21     

Fluoxetine 5.5 

0 0.00 15.67 40.00 626.95     
0 0.00 14.40 40.00 576.00 606.79 100 
0 0.00 15.44 40.00 617.42     
3 1.97 13.65 40.00 547.83     
3 2.88 16.16 40.00 649.37 612.38 101 
3 1.21 15.97 40.00 639.96     
6 7.31 17.05 40.00 689.16     
6 3.36 17.25 40.00 693.24 687.11 113 
6 5.83 16.83 40.00 678.94     

12 5.85 17.09 40.00 689.46     
12 8.65 17.06 40.00 690.91 693.83 114 
12 11.10 17.25 40.00 701.11     
24 9.10 17.53 40.00 710.35     
24 9.18 15.77 40.00 640.04 694.20 114 
24 14.45 17.94 40.00 732.23     
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pH Time Test compound in Concentration test Volume test Sum recovery Mean test % of 
48 12.32 11.78 40.00 483.70     
48 14.76 14.98 40.00 613.83 567.05 93 
48 14.17 14.74 40.00 603.62     

Fluoxetine 7 

0 0.00 14.27 40.00 570.72     
0 0.00 16.05 40.00 641.85 638.63 100 
0 0.00 17.58 40.00 703.32     
3 19.13 17.09 40.00 702.73     
3 21.38 16.86 40.00 695.69 703.50 110 
3 23.37 17.22 40.00 712.09     
6 47.21 15.39 40.00 662.63     
6 38.89 15.40 40.00 654.74 657.51 103 
6 31.84 15.58 40.00 655.16     

12 62.21 14.89 40.00 657.64     
12 68.96 14.69 40.00 656.60 663.69 104 
12 28.03 16.22 40.00 676.84     
24 112.59 13.45 40.00 650.43     
24 130.55 13.86 40.00 684.96 665.15 104 
24 100.01 14.00 40.00 660.05     
48 126.84 10.80 40.00 558.70     
48 151.86 13.36 40.00 686.07 675.09 106 
48 129.12 16.28 40.00 780.50     

Fluoxetine 8.5 

0 0.00 16.22 40.00 648.92     
0 0.00 16.51 40.00 660.37 665.72 100 
0 0.00 17.20 40.00 687.86     
3 37.35 14.97 40.00 636.03     
3 64.37 14.14 40.00 629.93 649.46 98 
3 95.26 14.68 40.00 682.41     
6 168.41 11.68 40.00 635.55     
6 164.33 12.82 40.00 677.24 668.60 100 
6 176.70 12.91 40.00 693.02     

12 303.24 10.13 40.00 708.62     
12 234.24 10.83 40.00 667.44 659.01 99 
12 183.99 10.42 40.00 600.95     
24 299.00 7.27 40.00 589.68     
24 333.74 9.38 40.00 708.83 656.14 99 
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pH Time Test compound in Concentration test Volume test Sum recovery Mean test % of 
24 303.66 9.16 40.00 669.92     
48 341.62 4.13 40.00 506.96     
48 421.99 5.10 40.00 626.04 590.29 89 
48 411.55 5.66 40.00 637.86     

Triclosan 5.5 

0 0.00 27.59 40.00 1103.74     
0 0.00 25.51 40.00 1020.54 1076.24 100 
0 0.00 27.61 40.00 1104.44     
3 181.74 24.21 40.00 1150.10     
3 147.15 23.41 40.00 1083.38 1140.36 106 
3 231.79 23.90 40.00 1187.61     
6 285.26 21.23 40.00 1134.33     
6 369.64 20.92 40.00 1206.32 1162.10 108 
6 364.31 19.53 40.00 1145.66     

12 655.34 12.09 40.00 1138.88     
12 571.41 13.59 40.00 1114.96 1138.51 106 
12 634.91 13.17 40.00 1161.70     
24 879.83 7.06 40.00 1162.39     
24 845.17 6.81 40.00 1117.69 1146.09 106 
24 872.65 7.14 40.00 1158.20     
48 1036.72 3.17 40.00 1163.47     
48 1013.47 2.77 40.00 1124.33 1111.61 103 
48 919.00 3.20 40.00 1047.03     

Triclosan 7 

0 0.00 28.83 40.00 1153.13     
0 0.00 28.94 40.00 1157.46 1155.97 100 
0 0.00 28.93 40.00 1157.32     
3 288.76 22.07 40.00 1171.59     
3 322.68 20.75 40.00 1152.61 1170.56 101 
3 215.36 24.30 40.00 1187.47     
6 253.45 22.44 40.00 1151.14     
6 395.63 20.61 40.00 1219.87 1183.43 102 
6 289.08 22.25 40.00 1179.28     

12 795.15 10.47 40.00 1214.14     
12 737.48 9.80 40.00 1129.52 1168.89 101 
12 643.08 13.00 40.00 1163.01     
24 845.88 7.09 40.00 1129.36     
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pH Time Test compound in Concentration test Volume test Sum recovery Mean test % of 
24 961.64 4.58 40.00 1144.78 1143.31 99 
24 910.08 6.14 40.00 1155.77     
48 1011.08 2.00 40.00 1090.97     
48 979.29 4.31 40.00 1151.54 1133.66 98 
48 1083.74 1.87 40.00 1158.47     

Triclosan 8.5 

0 0.00 29.07 40.00 1162.94     
0 0.00 29.33 40.00 1173.23 1194.02 100 
0 0.00 31.15 40.00 1245.90     
3 205.11 25.34 40.00 1218.54     
3 269.43 22.14 40.00 1154.99 1204.16 101 
3 138.37 27.51 40.00 1238.95     
6 369.13 20.87 40.00 1203.93     
6 235.69 23.54 40.00 1177.36 1167.05 98 
6 283.43 20.91 40.00 1119.85     

12 734.37 10.89 40.00 1169.80     
12 685.61 13.30 40.00 1217.70 1191.02 100 
12 526.53 16.48 40.00 1185.55     
24 761.62 11.86 40.00 1235.90     
24 803.55 11.62 40.00 1268.30 1215.40 102 
24 736.31 10.14 40.00 1142.02     
48 1080.64 2.43 40.00 1177.80     
48 968.28 3.72 40.00 1117.26 1175.58 98 
48 1110.01 3.04 40.00 1231.66     

Caffeine 5.5 

0 0.00 106.71 40.00 4268.50     
0 0.00 113.09 40.00 4523.57 4328.90 100 
0 0.00 104.87 40.00 4194.65     
3 3.44 104.34 40.00 4177.07     
3 5.48 102.58 40.00 4108.88 4165.50 96 
3 3.38 105.18 40.00 4210.55     
6 5.40 100.02 40.00 4006.28     
6 6.05 109.32 40.00 4378.85 4169.05 96 
6 5.49 102.91 40.00 4122.02     

12 4.36 98.13 40.00 3929.66     
12 5.29 113.13 40.00 4530.38 4218.18 97 
12 5.29 104.73 40.00 4194.50     
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pH Time Test compound in Concentration test Volume test Sum recovery Mean test % of 
24 4.78 106.66 40.00 4271.37     
24 6.58 102.21 40.00 4094.96 4180.08 97 
24 5.18 104.22 40.00 4173.90     
48 7.16 101.09 40.00 4050.71     
48 4.93 102.89 40.00 4120.58 4197.94 97 
48 4.39 110.45 40.00 4422.52     

Caffeine 7 

0 0.00 102.16 40.00 4086.56     
0 0.00 101.58 40.00 4063.16 4074.01 100 
0 0.00 101.81 40.00 4072.31     
3 4.85 96.96 40.00 3883.26     
3 3.95 106.39 40.00 4259.57 4166.67 102 
3 4.65 108.81 40.00 4357.19     
6 4.72 101.68 40.00 4071.81     
6 5.21 101.88 40.00 4080.41 4096.09 101 
6 4.09 103.30 40.00 4136.04     

12 4.45 104.68 40.00 4191.60     
12 6.26 106.78 40.00 4277.28 4347.85 107 
12 4.19 114.26 40.00 4574.67     
24 6.09 101.88 40.00 4081.12     
24 5.44 102.35 40.00 4099.47 4220.30 104 
24 7.02 111.83 40.00 4480.31     
48 7.93 93.17 40.00 3734.77     
48 8.75 102.57 40.00 4111.49 4020.55 99 
48 9.97 105.14 40.00 4215.38     

Caffeine 8.5 

0 0.00 100.53 40.00 4021.31     
0 0.00 100.03 40.00 4001.03 4071.56 100 
0 0.00 104.81 40.00 4192.36     
3 4.64 108.39 40.00 4340.20     
3 4.02 104.95 40.00 4202.03 4153.67 102 
3 3.59 97.88 40.00 3918.78     
6 4.16 107.40 40.00 4300.25     
6 3.77 101.07 40.00 4046.76 4148.80 102 
6 4.58 102.37 40.00 4099.39     

12 4.53 103.86 40.00 4158.86     
12 4.77 106.03 40.00 4246.15 4184.02 103 
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pH Time Test compound in Concentration test Volume test Sum recovery Mean test % of 
12 4.89 103.55 40.00 4147.04     
24 6.30 106.30 40.00 4258.26     
24 4.56 102.62 40.00 4109.53 4169.21 102 
24 6.20 103.34 40.00 4139.84     
48 8.60 94.57 40.00 3791.33     
48 6.21 93.23 40.00 3735.28 3827.71 94 
48 4.24 98.81 40.00 3956.51     
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Table 3. Mass balance calculations at 0-48 h from uptake study presented in Chapter 5. 

 Head Time-point Test compound Concentration Volume test Bq /ml Sum recovery Mean test % of 

Diclofenac y 

0 0 50.07 20.00 1001.42 
0 0 53.09 20.00 1061.72 1029.03 100 
0 0 51.20 20.00 1023.97 
3 0.54 53.08 15.14 268.63 1072.99 
3 0.72 55.53 15.15 269.85 1111.96 1092.79 106 
3 0.76 54.96 15.13 260.92 1093.43 
6 1.62 48.65 15.15 255.43 994.08 
6 1.30 55.39 15.15 279.75 1119.90 1057.28 103 
6 1.09 51.45 15.14 277.84 1057.86 

12 3.09 52.73 15.13 277.07 1077.93 
12 2.95 54.19 15.14 282.63 1105.98 1082.76 105 
12 2.40 51.42 15.14 283.59 1064.37 
24 3.54 52.72 15.13 287.02 1088.35 
24 3.62 52.77 15.15 296.46 1099.65 1044.19 101 
24 3.02 44.85 15.13 263.10 944.56 
48 4.70 49.37 15.13 291.95 1043.43 
48 5.36 50.25 15.14 288.86 1055.10 1054.93 103 
48 4.25 50.04 15.13 305.00 1066.27 

Diclofenac n 

0 0.00 50.07 20.00 0.00 1001.42 
0 0.00 53.09 20.00 0.00 1061.72 1029.03 100 
0 0.00 51.20 20.00 0.00 1023.97 
3 0.22 59.42 15.13 278.82 1177.77 
3 0.33 53.32 15.12 251.85 1058.54 1109.14 108 
3 0.15 55.60 15.14 249.02 1091.12 
6 0.71 55.21 15.15 278.27 1115.15 
6 0.45 51.76 15.15 258.38 1042.74 1061.69 103 
6 0.75 50.94 15.15 254.90 1027.18 

12 1.12 50.38 15.15 278.34 1042.43 
12 1.71 48.71 15.14 264.89 1003.94 1015.87 99 
12 1.53 49.08 15.14 256.61 1001.25 
24 2.38 51.38 15.15 270.73 1051.35 
24 1.84 48.44 15.13 263.88 998.55 1033.06 100 
24 2.56 49.64 15.13 295.81 1049.29 
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 Head Time-point Test compound Concentration Volume test Bq /ml Sum recovery Mean test % of 
48 3.85 48.91 15.15 286.44 1031.11 
48 4.91 48.45 15.14 286.49 1024.77 1044.86 102 
48 5.68 51.10 15.14 299.38 1078.70 

Fluoxetine y 

0 0.00 304.74 15.00 0.00 4571.03 
0 0.00 362.30 15.00 0.00 5434.53 5098.12 100 
0 0.00 352.59 15.00 0.00 5288.80 
3 27.00 11.43 15.01 4524.06 4722.51 
3 27.33 10.31 15.01 4566.44 4748.47 4738.29 93 
3 30.57 10.67 15.00 4553.18 4743.89 
6 41.06 11.06 15.00 4611.72 4818.60 
6 45.72 11.20 15.01 4617.99 4831.80 4787.60 94 
6 33.82 11.05 15.01 4512.74 4712.40 

12 54.58 11.75 15.00 4715.71 4946.59 
12 45.26 11.09 15.01 4782.11 4993.87 4945.88 97 
12 45.48 10.89 15.00 4688.29 4897.19 
24 49.52 12.71 15.00 4763.02 5003.27 
24 59.39 11.48 15.01 4507.42 4739.06 4952.72 97 
24 86.23 12.08 15.00 4848.46 5115.84 
48 82.15 11.83 15.00 4421.59 4681.15 
48 68.56 11.84 15.00 4450.65 4696.80 4588.69 90 
48 89.90 11.87 15.00 4120.10 4388.11 

Fluoxetine n 

0 0.00 304.74 15.00 0.00 4571.03 
0 0.00 362.30 15.00 0.00 5434.53 5098.12 100 
0 0.00 352.59 15.00 0.00 5288.80 
3 22.08 11.81 14.99 4724.02 4923.21 
3 20.52 11.56 15.01 4525.24 4719.21 4862.49 95 
3 18.61 10.90 15.00 4762.87 4945.05 
6 35.37 11.15 14.99 4686.31 4888.82 
6 33.31 11.26 15.01 4702.74 4904.98 4882.23 96 
6 33.63 11.48 15.00 4647.12 4852.90 

12 46.27 12.07 15.00 4842.31 5069.59 
12 41.04 11.30 15.00 4702.19 4912.75 4998.55 98 
12 35.66 12.49 15.00 4790.29 5013.32 
24 78.83 12.22 15.00 4562.02 4824.17 
24 67.98 12.33 15.01 4706.87 4959.79 4899.39 96 
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 Head Time-point Test compound Concentration Volume test Bq /ml Sum recovery Mean test % of 
24 67.48 11.80 15.00 4669.73 4914.22 
48 98.16 13.51 14.99 4439.04 4739.76 
48 87.20 12.82 14.99 4559.03 4838.40 4725.53 93 
48 92.08 13.44 15.01 4304.69 4598.42 

Triclosan y 

0 0.00 324.83 15.00 0.00 4872.38 
0 0.00 322.30 15.00 0.00 4834.45 4807.27 100 
0 0.00 314.33 15.00 0.00 4714.98 
3 526.37 8.97 16.14 4091.92 4763.02 
3 601.42 8.36 16.14 4011.70 4748.08 4700.90 98 
3 550.65 8.22 16.16 3908.05 4591.61 
6 870.56 7.41 16.15 3818.84 4809.04 
6 843.16 7.63 16.15 3851.46 4817.84 4747.80 99 
6 870.65 7.42 16.15 3626.09 4616.51 

12 1247.69 6.51 16.16 3562.35 4915.26 
12 1403.40 5.75 16.16 3264.33 4760.73 4856.02 101 
12 1392.15 6.32 16.15 3397.80 4892.08 
24 1475.95 6.00 16.14 3195.53 4768.38 
24 1419.35 5.58 16.15 3332.28 4841.82 4814.27 100 
24 1248.38 6.24 16.16 3483.38 4832.61 
48 2257.59 3.98 16.15 2503.09 4824.95 
48 2332.85 3.55 16.16 2501.00 4891.22 4887.02 102 
48 2007.04 4.47 16.14 2865.77 4944.90 

Triclosan n 

0 0.00 324.83 15.00 0.00 4872.38 
0 0.00 322.30 15.00 0.00 4834.45 4807.27 100 
0 0.00 314.33 15.00 0.00 4714.98 
3 232.83 9.69 16.16 4195.88 4585.23 
3 246.84 9.37 16.14 4158.43 4556.59 4587.14 95 
3 161.46 9.55 16.14 4303.89 4619.59 
6 417.13 9.08 16.16 3978.63 4542.44 
6 616.24 9.43 16.16 3899.26 4667.79 4584.20 95 
6 409.74 8.79 16.15 3990.70 4542.38 

12 529.66 7.51 16.16 3889.35 4540.45 
12 736.51 7.41 16.16 3850.63 4706.89 4658.35 97 
12 622.35 7.75 16.14 3980.22 4727.70 
24 1013.88 6.52 16.14 3545.35 4664.42 
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 Head Time-point Test compound Concentration Volume test Bq /ml Sum recovery Mean test % of 
24 1236.32 5.99 16.14 3577.29 4910.28 4805.78 100 
24 1241.17 5.95 16.16 3505.31 4842.64 
48 1849.99 4.57 16.14 3205.38 5129.20 
48 1727.95 4.39 16.15 2921.95 4720.82 4965.17 103 
48 1853.78 4.18 16.14 3124.21 5045.48 
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