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Abstract

Colorectal cancer remains the second most prevalent cancer in the world.  Novel treatment 

strategies are necessary, especially for the treatment of metastatic disease.  Reovirus is a 

naturally occurring oncolytic virus which acts by both direct and immune-mediated 

mechanisms.  Having shown promise in early clinical trials, its therapeutic potential may be 

limited by inactivation following systemic delivery.  This study addressed whether reovirus 

can be shielded from neutralising antibodies by cell carriage, and whether virus-loaded blood 

or hepatic innate immune effector cells are activated to kill colorectal cancer cells metastatic 

to the liver in human systems.  Reovirus induced oncolysis of SW480, SW620, LoVo and 

LS174T tumour cells and the mode of cell death was apoptosis.  Direct tumour cell killing by 

neat virus was significantly reduced in the presence of neutralising serum. Reovirus was 

protected from neutralisation when loaded onto peripheral blood mononuclear cells and 

could be handed off to tumour targets for direct oncolytic killing.  Moreover, NK cells within 

reovirus-loaded patient blood mononuclear cells were stimulated to kill tumor targets but not 

normal hepatocytes; similarly, NK cells within liver mononuclear cells became selectively 

cytotoxic towards tumour cells when activated by reovirus.    This blood cell carriage has the 

potential to instigate both direct and innate immune-mediated therapy against human 

colorectal cancer which has metastasised to the liver.
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1 Introduction

1.1 Colorectal Cancer

1.1.1 The Clinical Problem

Colorectal cancer is the third most prevalent cancer in the world.  In 2008, an estimated 1.24 

million new cases were diagnosed world-wide and it is now the fourth most common cancer 

in men and the third in women (Ferlay et al., 2010).  Survival estimates at 5 years currently 

stand at 65% in North America, 54% in Western Europe, 34% in Eastern Europe and 30% in 

India. The global distribution of the disease is similar, although greater variations between 

countries have been noted for colon cancer than for rectal cancer (Parkin, 2005).  The 

incidence of the disease appears to be increasing across Europe, although survival rates 

have doubled over the past 30 years, with the overall 5 year survival for colorectal cancer 

now standing at approximately 50% in the United Kingdom (UK) (www.nice.org.uk).   Despite 

this, 16,000 people die from colorectal cancer in the UK annually 

(www.cancerresearchuk.org), with around 20% of patients still presenting with advanced 

disease.  Of those who undergo complete surgical resection of all macroscopic disease,

approximately 50% will relapse (Fong et al., 1999). 

Around 50% of all patients with colorectal cancer will develop metastatic disease in the liver 

over the course of their illness (Scheele et al., 1991).  Left untreated, the prognosis for 

these patients is extremely poor, with a median overall survival of approximately 12 months 

(Altendorf-Hofmann et al., 2003).  No surgical randomised control trial data exists to direct 

therapeutic strategy and to date surgical resection of hepatic metastases remains the only 

possibility of cure.  Currently, 5 year overall survival rates of between 36% and 58% have 

been reported in several large retrospective case series (Fong et al., 1999; Abdalla et al.,

2004; Scheele et al., 1990; Choti et al., 2002; Adson et al., 1984; Schlag et al., 1990).

However, relapse rates of up to 70% have been described and there is little data available 

on the patterns or rates of recurrence following curative intent surgery (de Jong et al.,
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2009). Novel techniques such as metastasectomy, non-anatomical resections and portal 

vein embolisation have increased the number of patients suitable for such surgery (Abdalla 

et al., 2006; Berri et al., 2009) and there are an increasing number of reports where 

favourable outcomes have been achieved after more than one liver resection (Adair et al., 

2012a). In the UK, fluoropyrimidines such as fluorouracil and its pro-drug, capecitabine, as 

well as the topoisomerase inhibitor, irinotecan, and the DNA synthesis inhibitor, oxaliplatin,

are the current standard cytotoxic drugs used in treating metastatic colorectal cancer 

(Seymour, 2007).  In the United States, bevacizumab, a humanised monoclonal antibody

(mAb) against vascular endothelial growth factor (VEGF), combined with fluoropyrimidine-

based chemotherapy is now the standard first-line treatment for metastatic colorectal 

cancer.  Combination chemotherapy may further improve survival by rendering patients with 

inoperable metastatic disease operable.  Such patients have achieved similar survival to 

their operable counterparts in recent studies (Nordlinger et al., 2008a); however long term 

toxicity remains problematic.  

Cetuximab is a chimeric immunoglobulin (Ig) G1 mAb which blocks epidermal growth factor 

receptor (EGFR) and therefore abrogates EGFR-dependent cell proliferation. It has efficacy 

in Kirsten rat sarcoma (Kras) wild type metastatic colorectal cancer as a monotherapy and in 

combination with irinotecan in irinotecan-resistant patients (Cunningham et al., 2004).    The 

main evidence base for the use of cetuximab stems from two randomised control trials.  

CRYSTAL, a phase III, multicentre, open-label randomised controlled trial, comparing 

cetuximab in combination with folinic acid and irinotecan (FOLFIRI) with FOLFIRI alone,

examined progression-free survival as the primary outcome. OPUS (n = 336), a phase II, 

multicentre, open-label randomised controlled trial, compared cetuximab in combination with 

folinic acid, fluorouracil and oxaliplatin (FOLFOX) with FOLFOX alone, and examined 

response rate as the primary outcome. The National Institute for Health and Clinical 

Excellence (NICE) now recommends the use of cetuximab as first line treatment in patients 
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who present with a resectable primary colorectal cancer and unresectable colorectal liver 

metastases (CRLM).

The CRYSTAL trial demonstrated a statistically significant increase in progression-free 

survival in the Kras wild-type subgroup, with a median progression-free survival of 9.9 

months.  The OPUS trial showed a statistically significant increase in progression-free 

survival, with a median survival of 7.7 months in the Kras wild-type subgroup.  Cetuximab in 

combination with FOLFOX was also associated with a statistically significant increase in 

response rate compared with FOLFOX alone (Van Custem et al., 2009).

The absence of mutation in the proto-oncogene Kras appears to be a reliable marker for 

predicting cetuximab efficacy. Other factors, such as EGFR amplification (Moroni et al.,

2005; Personeni et al., 2008), tumour expression of nuclear factor-kB (NF-kB) (Scartozzi et 

al., 2007), PTEN (Frattini et al., 2007), BRAF (Di Nicolantonio et al., 2008) or PIK3CA 

(Loupakis et al., 2009) may also predict response to cetuximab but these have not been 

validated and have not therefore been fully incorporated into clinical practice. Cetuximab’s 

effect is thought to be due to the direct anti-proliferative and apoptotic capabilities of the 

antibody; however, a further mechanism of action may be through antibody-dependent cell-

mediated cytotoxicity (ADCC) by Natural Killer (NK) cells, macrophages and 

polymorphonuclear leukocytes.

Despite significant therapeutic advances and improvements in overall survival for colorectal 

cancer from 22% to 50% in the last 10 years in the UK (www.cancerresearchuk.org), the 

high proportion of patients presenting with advanced disease means that novel, systemic, 

therapeutic options are warranted.   Oncolytic viral therapy has shown promising results in 

various types of tumour.   One particular type of oncolytic virus currently under investigation 

in clinical trials is reovirus.  Reovirus therapy has been targeted towards tumours with Kras

mutations and as approximately 50% of colorectal tumours have Kras oncogene mutations 
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(Forrester et al., 1987), colorectal cancer seems a suitable target for reovirus-based 

oncolytic therapy. 

1.2 Cancer and the Immune System

1.2.1 Background

The role of the immune system in cancer has been the subject of debate for many years. 

Numerous accounts of spontaneous tumour regression have been reported and almost all of 

these have coincided with acute, concomitant infections, including gonorrhoea, hepatitis, 

influenza, malaria, measles, smallpox, syphilis and tuberculosis, as well as various other 

pyogenic and non-pyogenic infections  (Nauts et al., 1990). These reports, in turn, led to the 

practice of deliberately encouraging sepsis following surgical procedures in the latter part of 

the 19th century, resulting in various early accounts of delayed tumour recurrence (Thiery, 

1909).  Consequently, by the early 1900s, active immunotherapies were being readily 

pursued.  

William Coley, an American surgeon, was the first to undertake a systematic approach to the 

concept of immunotherapy.  He observed tumour regression in a patient with a streptococcal 

infection in an ulcerated tumour (Coley, 1893).  Based on this, he developed a “vaccine”

containing Gram-positive Streptococcus pyogenes and Gram-negative Serratia marcescens, 

which later became known as “Coley's Toxins”. Injected directly into tumours or metastatic 

deposits, these produced the local and systemic effects of bacterial infection without the 

pathogenicity. As a result, spontaneous regression was noted in several different tumours,

including lymphoma and sarcoma (Coley, 1928).  However, with the advent of widespread 

antibiotic use, surgical asepsis, as well as chemotherapy and radiotherapy, interest in the 

use of Coley’s Toxins faded in the 1950s.

A more contemporary appraisal of the importance of the role of the immune system in 

preventing cancer can also be demonstrated in numerous series of solid organ transplant
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patients where follow-up studies have consistently demonstrated a higher incidence of a 

variety of cancers (London, 1995). In a large study of Norwegian kidney transplant patients, 

a 2- to 5-fold increase in cancers of the colon, larynx, lung and bladder were seen in both 

sexes, as well as an increase in cancers of the prostate and testes in men. Up to a 30-fold 

increase in non-melanomatous skin cancers was noted in both sexes. Moreover, a higher 

incidence of non-Hodgkin's lymphoma was also reported, as were cancers of the cervix and 

vulva in women (Birkeland et al., 1995).  Further evidence of the involvement of the immune 

system in cancer can be seen in the higher incidence of Kaposi’s sarcoma in immune-

compromised patients with Human Immuno-deficiency Virus (HIV) (Moss et al., 1989).

1.2.2 Immune Recognition of Tumours

Historically, it has been argued that tumour cells are not sufficiently “foreign” for successful 

immunotherapy.  The concept of the immune system being able to discriminate “self” from 

“non-self” was first postulated in 1959 (Burnet et al., 1959).  It followed, therefore, that 

differences in the antigenic make-up of tumours and normal tissue were seen as a crucial 

element in the development of effective immune responses against cancer. 

1.2.2.1 The Danger Theory

This model proposes that immune activation is dependent upon the release of “danger 

signals” from stressed or dying cells (Matzinger et al., 1994). These immunogenic danger 

signals include heat shock proteins (HSP), interferon (IFN)-α, uric acid, hyaluronic acid and 

high mobility group box-1 (HMBG-1), which can stimulate antigen presenting cells (APC).  

These activated or mature APC such as dendritic cells (DC), macrophages or B cells,

subsequently produce the required co-stimulation to invoke a naive T cell response.  Based 

on this concept, cancer cells do not appear “dangerous” to the immune system and therefore 

an effective T cell response cannot be generated.  
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1.2.2.2 The Immune Surveillance Theory 

According to the immune surveillance theory, tumours expressing antigens are regarded as 

“non-self” by the immune system. A major function of the immune system is surveillance for 

the development of malignancy with the elimination of tumour cells as they arise.  The initial 

immune surveillance theory relied upon the “activation only” state of mature lymphocytes and 

their ability to recognise tumour-associated antigens (TAA) as foreign and much of our 

understanding of immune surveillance has come about by removing specific components of 

the innate and adaptive immune systems in mouse models.  For example, mice lacking 

perforin have been shown to develop disseminated lymphoma (Smyth et al., 2000). Those 

lacking recombination activating genes (RAG) have deficiencies in Natural Killer T (NKT), T 

cells and B cells and have been shown to develop sarcomas (reviewed by Dunn et al., 2004).  

Mice lacking signal transducer and activator of transcription-1 (STAT-1), with resultant 

deficiencies in IFN-γ production, have a preponderence towards developing mammary 

carcinomas (Chan et al., 2012).  

1.2.2.3 Immunoediting

Cancer immunoediting describes a process whereby highly immunogenic tumour cells can 

be removed by the immune system.  The concept has evolved from the immune surveillance 

theory to incorporate the tumour prevention functions of the immune system as well as its 

ability to modify developing tumours (Dunn et al., 2002). Cancer immunoediting 

encompasses three processes: elimination, equilibrium and escape. Elimination equates to 

the historical concept of immune surveillance and can result in the complete removal of 

tumour cells without progression to the other phases of the editing process.  Equilibrium 

occurs when the immune system and any tumour cell variant which may have survived the 

elimination process enter into a state of dynamic balance and tumour growth is controlled.  

Existing tumour variants may be destroyed and lymphocytes and IFN-γ can exert a restrictive 

effect upon, but not fully clear, existing tumour cells.  It is thought that equilibrium may persist 

for anything up to three years (Dunn et al., 2002).  In the final stage, escape, un-eliminated 
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tumour cell variants that have undergone genetic changes and acquired resistance to 

immunogenic detection, proliferate and expand in an uncontrolled manner and lead to 

increased tumour burden and eventually host death if left unchecked.    

1.2.3 Tumour Immune Evasion Strategies

Dysfunction in the host immune response represents one of the most fundamental ways in 

which tumours evade immune detection.  However, both host and tumour-related 

mechanisms can lead to a failure to mount an effective anti-tumour immune response and 

these are frequently the key factors limiting the efficacy of anti-cancer immunotherapy.    

1.2.3.1 Low Immunogenicity

The instability seen in the genome of tumour cells can enable the loss of antigen expression 

leading to a reduction in their overall immunogenicity.  As well as this, genetic mutations may 

lead to a passive loss of Major Histocompatability Complex (MHC) -I expression.  Loss of all 

MHC-I molecules, seen in some colorectal and prostate adenocarcinomas, renders tumour 

cells unrecognisable to cytotoxic T cells (CTL) but make the tumour more susceptible to NK 

cell-mediated killing (Browning et al., 1992; Rees et al., 1999).  However, the loss of all 

MHC-I is rare.  More commonly, a reduction in the level of Human Leucocyte Antigen (HLA) 

protein expression by up to 50% can occur, which may in turn confer a survival advantage for 

the tumour (Rees et al., 1999).  In losing only some MHC-I expression, tumours avoid 

recognition by specific CTL, whilst at the same time remaining relatively resistant to NK-

mediated killing. 

1.2.3.2 Antigenic Modulation

Antigenic modulation is a dynamic process where antibody-induced internalisation and 

degradation of antigens or variation in the expression of antigens on the tumour cell-surface 

can lead to a selective advantage to the tumour when recognised by lymphocytes specific for 

an antigen.  For example, binding of Type I mAb to CD20 on the surface of B cell lymphomas 

is 5 times less effective than the Type II mAb, rituximab, despite both operating exclusively 
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via activatory Fc Receptor (FcR)–expressing macrophages. Type I mAb induces a profound 

modulation of CD20, resulting in a reduction in effector cell-mediated clearance of B cells by 

the internalisation of CD20 and the consumption of CD20/mAb complexes (Beers et al.,

2010).  Whilst the process of antigenic modulation is more common in haemopoetic 

malignancies, the modulation of antigens which act as growth factors for solid tumours, such 

as VEGF, represents a further potential strategy for therapy.

1.2.3.3 Resistance to Immune Cell Killing

Immune cell killing of tumour cells occurs by three main processes: i) ligation of death 

receptors (e.g. Fas Ligand (FasL) to Fas Receptor (FasR)); ii) binding of tumour necrosis 

factor-related apoptosis-inducing ligand (TRAIL) to tumour necrosis factor-related apoptosis-

inducing ligand receptor (TRAIL-R) and iii) the release of granules containing perforin and 

granzymes.  However, some tumours develop resistance to these mechanisms, enabling 

tumours cells to escape immune detection.

A variety of tumours, including hepatocellular cancer (HCC), colon cancer and melanoma 

show decreased or mutated expression of FasR, TRAIL-1 and TRAIL-2 on their cell-surface 

(Strand et al., 1996; Higaki et al., 1996; Möller et al., 1994; Das et al., 2000; Lee et al., 1999; 

Sjostrom-Mattson et al., 2009; Chatzitolios et al., 2010; Lee et al., 2001).  Whilst 

transcriptional mechanisms are likely to account for the majority of this down-regulation, 

oncogenic Kras has also been implicated (Peli et al., 1999). However, the complete loss of 

FasR is rarely seen in human cancers (Peter et al., 2005).   In fact, many tumours actually 

express large quantities of FasR and are highly susceptible to Fas-mediated apoptosis

(Elnemr et al., 2001).  It now seems that FasR may actually promote tumour growth through 

its non-apoptotic activities and that inhibition of its activity, rather than enhancement, may 

prove more beneficial in cancer therapy (Chen et al., 2010).  

A further method by which tumour cells can avoid immune-mediated cell death is by 

shedding NK ligands into the tumour microenvironment.  This enables them to avoid NK cell 
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recognition. Soluble NKG2D ligands have been demonstrated in tumour samples from 

neuroblastoma, colorectal, prostate, melanoma and ovarian cancer patients (Raffaghello et 

al., 2004; Doubrovina et al., 2003; Wu et al., 2004; Paschen et al., 2009; Wang et al., 2008). 

1.2.3.4 Tumour Counter-attack

Tumour counter-attack relates to the active killing of Fas-sensitive tumour-infiltrating 

lymphocytes (TIL) by tumour-derived FasL.  FasL is a type II trans-membrane protein which 

belongs to the tumour necrosis factor (TNF) superfamily.  It signals through the tri-merisation 

of FasR, which spans the membrane of the target cell and can trigger apoptosis upon binding 

with it.  FasL has been associated with sites of immune privilege.  High levels are seen in the 

eye, testes and in neurons and Fas/FasL interactions are thought to explain the high 

percentage of corneal transplants which are accepted without tissue typing or 

immunosuppression (Niederkorn, 2003).  A variety of tumour cells have been shown to 

express FasL and can induce apoptosis in Fas-sensitive TIL (Hahne et al., 1996; Strand et 

al., 1996; Niehans et al., 1998; Bennett et al., 1998).  Inhibition of FasL on colon cancer cells 

has been shown to improve anti-tumour immunity and reduce tumour growth in vivo (Ryan et 

al., 2005).  Higher levels of FasL expression have also been demonstrated on CRLM when 

compared with their matched primary tumours (Mann et al., 1999).  It seems apparent, 

therefore, that FasL-expressing tumour cells counter-attack TIL and establish sites of 

immune privilege around the tumour. 

In addition to this, membrane-bound FasL may be cleaved from the surface of cells by matrix 

metalloproteinase-like enzymes and presented in a soluble form (sFasL), which retains an 

extracellular region for binding to FasR (Tanaka et al., 1996).  Serum sFasL has been shown 

to be significantly elevated in colorectal cancer patients and this, in turn, corresponded to 

higher levels of apoptotic tumour-infiltrating and peripheral blood lymphocytes (Song et al.,

2001).  
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1.2.4 Tumour-induced Immune Tolerance

The tumour micro-environment promotes a variety of inhibitory networks that normally 

function to prevent auto-immunity. These inhibitory networks include the promotion of 

conditions in which APC are unable to generate an appropriate immune response and 

therefore enable tolerance to TAA. One method of achieving this is through the release of 

inhibitory soluble factors such as VEGF.  These inhibitory networks also include regulatory T

cells (T-reg) and other inhibitory cells such as myeloid-derived suppressor cells (MDSC) 

(Murdoch et al., 2008). 

1.2.4.1 Soluble Suppressive Factors

Tumour cells and surrounding stromal cells can produce a variety of immunosuppressive 

cytokines and soluble factors, including transforming growth factor (TGF)-β, VEGF, 

interleukin (IL)-10, and prostaglandin E2 (PGE2). Mutations in TGF-β signalling pathways in 

tumour cells can overcome the inhibitory effects of TGF-β on cell growth.  Moreover, TGF-β 

can convert naïve T cells into T-reg, having the overall effect of suppressing effective T cell 

responses (Chen et al., 2003).  

VEGF has been shown to promote angiogenesis (reviewed by Ferrara, 2002) and is 

produced by almost all tumours.  It has been shown to prevent haemopoietic progenitor cells 

from differentiating into functional DC (Oyama et al., 1998). As well as this, it can recruit 

immature myeloid cells into the tumour microenvironment, enriching it with tolerogenic 

immature DC (iDC), macrophages and B cells (Gabrilovich et al., 1998).  Further, VEGF 

production by stromal macrophages can further suppress DC differentiation and function,

resulting in an ineffective immune response. 

PGE2 is a pro-inflammatory bioactive lipid produced by a variety of human solid tumours, 

including colorectal cancer, stomach, and breast cancers (Rigas et al., 1993; Uefuji et al.,

2000, Rolland et al.; 1980). PGE2 has been shown to down-regulate T helper (Th) 1 

cytokines (Harris et al., 2000) and up-regulate Th2 cytokines such as IL‐4, IL‐10, and IL‐6 
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(Shreedhar et al., 1998; Huang et al., 1998; Della Bella et al., 1997). PGE2 has also been 

shown to modulate immune function by inhibiting DC differentiation (Yang et al., 2003) and T 

cell proliferation (Goodwin et al., 1983).  In other instances, cytokines may also act on 

stromal cells to instigate structural changes within peri-tumoural tissue which act as a 

physical barrier to immune cell entry, thereby blocking any potential anti-tumour immune 

response (Mantovani et al., 2008).

1.2.4.2 Regulatory T cells

T-reg are essential for sustaining self-tolerance and immune homeostasis.  Whilst they 

suppress a wide variety of physiological and pathological immune responses against self and 

non-self-antigens, the exact mechanism for T-reg-induced anti-tumour immune suppression 

is not fully understood.  Two functionally distinct subsets are thought to exist: i) natural T-reg 

which develop in the thymus gland and express CD4 and CD25 and suppress in a cell to cell,

contact-dependent manner and ii) adaptive T-reg which are dependent upon IL-10 and/or 

TGF-β for their suppressive functions (Tang et al., 2004). 

The most physiologically relevant T-reg population are CD25+ CD4+ T-reg, which make up 

approximately 10% of all CD4+ T cells and express the forkhead box P3 transcription factor 

(Foxp3).  Foxp3 controls expression of several genes for cell-surface molecules including the 

α chain of the IL-2 receptor, CD25 and other co-stimulatory molecules such as 

glucocorticoid-induced TNF receptor (GITR) family regulated gene and CTL-associated 

antigen-4 (CTLA-4) (Shevach, 2009). It also inhibits T cell receptor (TCR) activation-

dependent production of effector cytokines such as IL-2 and IFN-γ.  Moreover, Foxp3+ T-regs 

are also able to secrete immunosuppressive cytokines such as IL-10, TGF-β and IL-35 

(reviewed by Tran, 2011). Several tumour types have been shown to actively recruit Foxp3+ 

T-reg into the tumour micro-environment and in some cases to the draining lymph node via 

chemokine receptor (CCR) 6 (Curiel et al., 2004; Chen et al., 2011).  Moreover, the presence 

of T-reg within human tumours is associated with poor prognosis (Leffers et al., 2008; Bates 
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et al., 2006) and systemic depletion of T-reg and their removal from the tumour micro-

environment has been shown to enhance anti-tumour responses that have led to the 

inhibition of tumour growth in murine models (Attia et al., 2005; Dannull et al., 2005).  

1.2.4.3 Myeloid-derived Suppressor Cells

MDSC consist of myeloid progenitor cells and immature myeloid cells which have the ability 

to suppress immune responses by depleting L-arginine (L-Arg) from the tumour 

microenvironment.  L-Arg is required for T cell proliferation, ζ-chain peptide and TCR 

complex expression as well as the development of T cell memory (Bronte et al., 2003; Ochoa 

et al., 2001).  

1.2.4.4 Tumour-associated Macrophages

Tumour–associated macrophages represent approximately 50% of solid tumour mass 

(reviewed by Solinas et al., 2009).  They promote tumour progression and invasion as well 

as tumour cell migration, angiogenesis and tumour-associated immunosuppression. Two 

main phenotypes exist: the M1 polarised (IL-12high/IL-10low high APC function) and the M2 

polarised (IL-12low/IL-10high low APC function). Those expressing the M2 phentotype are the 

most predominant within the tumour microenvironment.  Here, they produce a variety of 

immunosuppressive factors including IL-10, TGF-β and PGE2 (Sica et al., 2006). As well as 

this, T-regs have been shown to induce B7-H4 expression on tumour-associated 

macrophages which negatively regulates T cell proliferation and cytokine production (Galani 

et al., 2010).

1.2.5 Promotion of Cancer Growth

Despite the evidence supporting the role of the immune system in the prevention of cancer, it 

has been shown that it can, in fact, alternatively promote the development of cancer.  

Chronic inflammation has been shown to promote carcinogenesis; the risk of developing 

HCC is related to the duration of the inflammatory response generated by Hepatitis B and C 

infection (Karin, 2006).  Inflammation as a result of Helicobacter pylori infection is now 
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recognised as a major cause of gastric cancer (de Martel et al., 2009). The release of pro-

inflammatory cytokines, including VEGF and TNF-α, can promote tumour development and 

mast cell infiltration in lung tumours is associated with poorer outcomes (Imada et al., 2000).  

Evidence for the role of chronic inflammation in cancer development can also be seen in 

epidemiological studies where inhibiting chronic inflammation in patients with pre-malignant 

disease had a preventative effect (Giardiello et al., 1993; Phillips et al., 2002). These studies 

demonstrated that long-term usage of anti-inflammatory drugs, such as aspirin and selective 

cyclooxygenase-2 (COX2) inhibitors, significantly reduced cancer risk, indicating that COX2 

or other key molecules that are involved in prostaglandin biosynthesis might be effective anti-

cancer targets.

1.3 Cellular Components of Anti-tumour Immunity

Innate immunity is the host first line of defence against pathogens and transformed cells.  It 

does not require prior antigen stimulation and its main cellular effector populations are: 

neutrophils, macrophages, NK cells, NKT cells, gamma delta (γδ) T-cells and DC.  The 

adaptive immune response consists of antigen-specific reactions of both the humoral (B cell) 

and cellular (T cell) type.  These result in the development of immunological memory.  Both 

systems are intimately linked and play integral roles in the recognition and destruction of 

primary tumour and metastatic cells.

1.3.1 Natural Killer Cells

First isolated in mice in 1975 (Kiessling et al., 1975), NK cells are a distinct subset of 

lymphocytes of the innate immune system which monitor the cell surfaces of autologous cells 

for aberrant expression of MHC-I molecules and cell stress markers.  In humans, NK cells 

are defined as CD3-/CD56+ lymphocytes and constitute approximately 5-20% of the 

peripheral blood lymphocytes.  They can be divided into two broad categories: CD56bright and 

CD56dim.  CD56dim NK cells predominate in the blood and at sites of inflammation and make 

up approximately 95% of total blood NK cells (Cooper et al., 2004).  They are highly cytotoxic 

and express MHC-I inhibitory receptors such as killer-cell immunoglobulin-like receptors
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(KIR) and leukocyte inhibitory receptors (LIR).  The CD56bright subset makes up 

approximately 75% of total lymph node NK cells.  They display limited cytotoxicity but 

produce a variety of immuno-regulatory cytokines upon activation, such as IFN-γ, TNF-β, 

GMCSF, and IL-13 (Cooper et al., 2001).  They also express high levels of the low-affinity 

FcR for IgG (FcγRIII or CD16) which enables them for ADCC (Ljunggren et al., 2007).  NKT 

cells are a heterogeneous population of T cells which exhibit properties of both T and NK 

cells.  Initially thought to have a protective role in cancer, they are now known to also exhibit 

inhibitory effects on tumour immune-surveillance and cancer immunotherapy.  This is due to 

different sub-sets of NKT cells which impact on different immune cells including DC, MDSC 

and NK cells (reviewed by Terabe et al., 2008)

1.3.1.1 Activation and Effector Function of NK Cells

In addition to recognising lack of MHC-I molecules, NK cells must be stimulated by target cell 

ligands which bind to specific activating receptors on the NK cell-surface.  Healthy cells 

express low levels of NK activatory ligands on their cell-surface, whereas some malignant 

cells can up-regulate NK activatory ligands and express low levels of MHC-I making them 

susceptible to NK-mediated killing.  NK cell target recognition is a closely regulated balance 

between activatory and inhibitory signalling.  It is also apparent that NK cells do not possess 

one dominant activating receptor.  Instead, they rely on the integration of signals from 

various activating and inhibitory receptors and ligands (Table 1).

It appears that a critical threshold of signalling which exceeds the influence of the inhibitory 

receptors must be achieved before NK activation occurs.  With the exception of CD16, no 

activating receptor can activate an NK cell in isolation.  Instead, different pairs or 

combinations of receptors must be cross-linked before effector functions can occur.  The 

recognition of this led to the phrase “co-activating receptors” to be used in the description of 

the interplay between different activatory NK cell receptors (Bryceson et al., 2006).
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NK cells can also be stimulated by several types of exogenous cytokines, including IL-12, IL-

15, IL-18 and IL-2 (Fehniger et al., 1999).  In humans, CD56bright NK cells in particular, once 

activated by these cytokines, proliferate and secrete IFN-γ, TNF-α and GM-CSF, thus 

stimulating inflammatory responses. Upon contact with an appropriate target and suitable 

receptor ligation, cytotoxic granules move into the synapse between effector and target cells 

and fuse with the plasma membrane of the target cell.  Effector molecules, such as perforin, 

a membrane-disrupting protein, as well as proteolytic serine proteases known as granzymes 

are subsequently released into the synaptic cleft by a process of polarized delivery (Tschopp 

et al., 1987). This ensures delivery of the effector molecules only via the immune synapse 

and in turn leads to target cell membrane perforation and subsequent induction of apoptotic 

cell death by granzymes.  CD56bright NK cells express lower levels of perforin than their more 

mature, CD56dim counterparts and are therefore less cytotoxic (Bryceson et al., 2011).

Table 1 Human NK Cell Receptors and Ligands

Activating Receptor(s) Ligand(s)

NKp30, 44, 46 Viral haemagglutins 

NKG2D MICA/B and ULBP 1-5

DNAM-1 CD112 and CD155

CD16 IgG

NKG2DC HLA-C (low affinity)

Inhibitory receptor(s) Ligand(s)

KIR MHC-I (HLA-A,B,C)

NKG2A/CD94 HLA-E
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As well as this, cytokine secretion by activated NK cells influences adaptive immune 

responses by promoting growth and differentiation of DC, macrophages and monocytes 

(Raulet et al., 2004).  For example, NK-derived IFN-γ has been shown to stimulate DC,

resulting in the production of IL-12 which promoted a CD8 anti-tumour response (Adam et 

al., 2005).  NK cells which reach terminal differentiation upon activation by cytokines i.e. 

CD56dim CD62L+ CD57+ NK cells, exhibit high levels of perforin, efficient cytotoxicity, and the 

ability to produce ample amounts of cytokines in response to target cell recognition (Cooper 

et al., 2001).  

1.3.1.2 NK Cell-mediated Immuno-surveillance of Cancer

NK cell anti-tumour activities may directly lead to tumour eradication by means of cytolysis or 

IFN-γ secretion but may also indirectly contribute to tumour control by inducing an efficient T

cell-mediated anti-tumour response.  In humans, low NK-like cytotoxicity of peripheral blood 

lymphocytes correlates with an increased lifetime risk of developing cancer and several 

studies report improved outcomes in tumours with high levels of NK cell infiltration (Takeuchi 

et al., 2001; Imai et al., 2000; Sconnochia et al., 2011; ).  Perhaps the most striking evidence 

of the importance of NK cells in the control of human malignancies comes from studies 

where allo-reactive NK cells were given to leukaemia patients during haemopoetic stem cell 

transplantation and significant improvements in survival and relapse rates were seen in 

patients lacking MHC-I ligands for donor-inhibitory KIR (Hsu et al., 2005; Ruggeri et al.,

2007). 

1.3.2 Dendritic Cells

DC are professional APC that play a vital role in co-ordinating the innate and adaptive 

immune systems.  Derived from bone marrow progenitor cells, they can prime naïve T and B

cells and are also known to recruit and reciprocally interact with NK cells.  The classic model 

of DC maturation states that they exist in two functional forms: immature and mature 

(Steinman, 1991).  iDC are characterised by their high endocytic activity and low T cell

activation potential.  They reside mainly in peripheral tissues and constantly sample their 



33

surrounding environment for antigen and danger signals, utilising pattern recognition 

receptors (PRR) such as toll-like receptors (TLR). 

iDC are in a constant state of migration between the peripheral tissues and secondary 

lymphoid tissue (Huang et al., 2000a).  They capture antigen using a variety of methods,

including phagocytosis and receptor-mediated endocytosis.  Antigen uptake with co-

stimulation results in DC activation and maturation, characterised by up-regulation of DC cell-

surface markers such as CD40, CD86 and CD80.  Mature DC (mDC) then present antigen in 

the context of MHC molecules to T cells to initiate an adaptive immune response.  

DCs have been shown to play a key role in the induction of tumour-specific immune 

responses by the presentation of TAA to T cells (Armstrong et al., 1998).  However, in trials 

utilising DC in patients, clinically relevant responses have been disappointing (Engell-

Noerregaard et al., 2009; Rosenberg et al., 2005; Robson et al., 2010).  Despite these 

disappointing clinical outcomes, around 200 DC-based clinical trials have been conducted in 

cancer patients.  The lack of efficacy seen in early trials can be explained by well-defined 

tumour escape mechanisms and more recent trials have attempted to address these by 

combining DC vaccination with other approaches, such as CTLA-4 (Ribas et al., 2009), 

CD25 blockade (Dannull et al., 2005) or loading DC with autologous tumour lysates in 

combination with agents such as GM-CSF, pegylated IFN, and cyclophosphamide (Alfaro et 

al., 2011).

Further limitations of the numerous DC trials which have been conducted have been the 

heterogeneity of trial protocols, the use of non-standardised cellular products and the lack of 

an established method of measuring clinical and immune responses; these have made it 

impossible to draw valid conclusions from individual clinical trials.  A recent meta-analysis of 

29 trials involving 906 prostate and renal cancer patients has shown, as proof of principle, a 

statistically significant association between cellular immune response and clinical benefit 

(Draube et al., 2011).  It seems likely therefore, that Phase III trials utilising DC-based 
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immunotherapies warrant further exploration; however, standardised vaccines, trial protocols 

and criteria for the assessment of immunological and clinical responses must be 

implemented in a similar manner to those for other drugs.

1.3.3 T Cells

T cells play a central role in cell-mediated immunity.  They possess a TCR on their cell-

surface and require presentation of antigen in the context of MHC molecules. Abnormal or 

foreign proteins can be presented to the TCR of CD8+ cytotoxic T cells bound to MHC-I 

molecules.  If appropriate co-stimulation is provided, once activated, antigen specific, CD8+

cytotoxic T cells undergo clonal expansion, mediated by IL-2.  In contrast, CD4+ T cells 

recognise MHC-II molecules on APC. The genetic instability associated with tumour cells 

can result in the expression of particular peptides and their subsequent presentation on MHC 

molecules. These TAA can be broadly classified into six main categories:

i. Tumour specific antigens: these are generally a result of point mutations 

during the process of oncogenesis.  These point mutations may allow binding 

of the resulting peptide to MHC-I de novo or augment MHC-I binding to an 

existing peptide.  An example is Carcinoembryonic Antigen (CEA) in 

colorectal cancer.

ii. Germ cell antigens: these are expressed on germ cells which do not express 

MHC-I.  The antigens are found on melanoma, breast and glioma tumours 

and because germ cells cannot present peptides to T cells, they are 

effectively tumour specific.

iii. Differentiation antigens: these are expressed only in particular types of tissue 

and best demonstrated by the differentiation antigens expressed in normal 

melanocytes and malignant melanoma.

iv. Abnormal gene expression: these antigens are overexpressed in tumours 

compared to their normal counterparts. An example is HER2/neu which is 

homologous to EGFR.
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v. Abnormal post translational modifications: an example of these is cosylated 

mucin (MUC-1) expressed on several tumours including breast and pancreas.

vi. Oncoviral proteins: expressed on tumours with a known viral aetiology. 

Examples include Epstein Bar Virus Nuclear Antigen (EBNA) 1, 2 and 3 

antigens on Burkitt’s and Hodgkin’s lymphomas, the Hepatitis B virus (HBV) 

antigens on hepatomas and the Human Papilloma virus (HPV) E6 and E7 

antigens presented on cervical cancers.

Whilst each category of TAA may provoke an anti-tumour immune response in vitro or in 

vivo, the spontaneous regression of established tumours remains extremely rare and it is this 

apparent failure of the immune system to recognise tumours that poses an immense 

challenge for contemporary tumour immunologists.  Vast numbers of TAA are now 

recognised prompting the National Cancer Institute to define criteria for prioritising which 

molecules should be trialled for vaccine-based therapy (Cheever et al., 2009).   

Despite several early clinical trials using ex vivo expanded TIL in combination with IL-2 

resulting in tumour regression (Topalian et al., 1988; Rosenberg et al., 1988), lack of 

specificity of many TAA has prompted concern as to the therapeutic benefits.  Many 

immunotherapy regimes have shown early promise but have failed to confer long-lasting anti-

tumour immunity. As well as this, antigen-targeted therapy has the potential to trigger the 

autoimmune destruction of normal tissues.  The fact that a wide range of tumours can 

develop in immune-competent hosts despite a huge array of TAA has led to the formation of 

several models of immune recognition in an attempt to gain some understanding of why the 

immune system fails to clear cancer cells.
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1.4 Oncolytic Viruses

1.4.1 Background

Viruses with cytotoxic anti-cancer properties are known as oncolytic viruses.  They replicate 

selectively in, and lyse, cancer cells and this property can be inherent or genetically 

engineered.  The association between viral infection and human cancer therapy dates back 

to the early part of the 20th century where early anecdotal accounts of spontaneous tumour 

regression in association with concomitant viral infection with an unrelated virus were 

described (Dock, 1904). Based on these accounts, an interest in the treatment of human 

cancers with naturally occurring viruses developed in the 1950s and several clinical trials 

were undertaken.  Out of technological necessity, these early studies focused on naturally 

occurring viruses such as poliomyelitis virus, coxsackie virus and adenovirus (Pond et al.,

1964; reviewed by Kunin 1964). Outcomes were poor, however, with limited anti-tumour 

efficacy demonstrated. Overwhelming infection caused significant morbidity and mortality 

and it was quickly apparent that not all tumours were responsive to viral therapy.  In those 

that did respond, the effects were not sustained, with the recipient’s anti-viral immune 

response often abrogating any therapeutic benefit (Huebner et al., 1955; Huebner et al.,

1956).   It was for these reasons that oncolytic viral therapy was all but abandoned until the 

late 1970s. 

The advent of genetic engineering brought about the ability to modify existing viruses or 

create novel ones and sparked renewed interest in viral therapy for cancer.  Genetic 

modification enables manipulation of the viral strategies which control host cell response 

and govern viral replication.  By altering these, better tumour selectivity can be achieved or 

replication in normal cells prevented.  As well as this, the addition of tumour-specific 

promoters may also enable selective tumour replication.  Several viruses, including 

adenoviruses, influenza viruses, herpes viruses (HSV) and vaccinia viruses (VV) have all 

been genetically modified to enhance tumour selectivity or to promote an anti-tumour 
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immune response (Suzuki et al., 2001; Bergmann et al., 2001; Martuza et al., 1991; McCart 

et al., 2001). 

1.4.2 Naturally Occurring Oncolytic Viruses

Inherently tumour-selective, wild-type viruses, such as reovirus, Newcastle disease virus 

(NDV), vesicular stomatitis virus (VSV) or autonomous parvovirus depend upon the host for 

replication.  They can specifically target cancer by exploiting cellular aberrations that occur in 

tumour cells, such as surface attachment receptors, activated ras and Akt, or via defective 

IFN pathways. As well as this, cellular changes which occur upon infection, including 

increased cell cycling, oncogene activation and signalling pathway alterations, have been 

shown to enhance the ability of some viruses to replicate in malignant cells (O’Shea et al., 

2005; Shmulevitz et al., 2005). They are capable of destroying tumours and even lymph 

node metastases in immuno-deficient animals (Prestwich et al., 2009c).  However, in 

immuno-competent animals, the anti-viral immune response has been shown to inhibit viral 

dissemination (Fulci et al., 2003; Altomonte et al., 2008).  Currently, one of the main aims of 

viral therapy is to improve this ratio between the anti-tumour and the anti-viral immune 

response.

1.4.3 Engineered Tumour-selective Viruses

Engineering viruses to become more tumour-selective involves modification of cellular 

tropism at the viral replication level.  This makes the virus dependent upon specific 

characteristics of the tumour cell for replication.  Various viruses have also been engineered 

to express immuno-stimulatory molecules including cytokines, HSP and other co-stimulatory 

molecules.  One of the earliest examples of genetic engineering is the adenovirus, Onyx-015, 

which was modified by removing two DNA elements.  It was initally thought that removing the 

E1B 55�kDa fragment would facilitate replication of Onyx-015 in cells with a defective p53

pathway.  It became apparent, however, that the virus was not specific for p53-null cells 

(Lechner et al., 1992).  Recently, a follow-up agent, H103, an adenovirus over-expressing 

HSP70, has been tested as an intra-tumoral vaccination in a phase I clinical trial in patients 
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with advanced solid tumours.  Distant, un-injected tumours demonstrated regression in three 

patients (Li et al., 2009).

A further technique for improving the anti-tumour immunogenicity of viruses includes 

expressing GM-CSF in viruses with the aim of improving antigen presentation by DC.  

OncoVEXGM-CSF, an HSV virus expressing GM-CSF, showed anti-tumour effect when 

delivered i.t. to a range of cutaneous tumour deposits from breast, gastrointestinal and head 

and neck primaries as well as nodules of malignant melanoma (Hu et al., 2006); this virus 

has now been tested in a complete Phase III trial.  JX594, a VV expressing GM-CSF with a 

deletion of the thymidine kinase (tk) gene, has also demonstrated anti-tumour efficacy and 

an alleged statistically significant benefit in overall survival in a recently completed Phase II 

trial in patients with advanced liver cancer (www.jenerex.com).  In an earlier Phase I trial 

utilising i.t. injection, tumour responses were seen in both injected and un-injected tumours 

(Park et al., 2008).

Engineering viruses to express other cytokines for improved immunogenicity has also been 

carried out.  IFN-β, expressed by Measles virus (MV) (Li et al., 2010) and VSV (Wang et al.,

2010) caused an influx of immune cells into the tumour microenvironment and in the case of 

VSV, reduced tumour angiogenesis in murine models.  IL-12 and IL-18 have also been used 

to promote anti-tumour activity by inducing NK and T cell proliferation in the context of an 

oncolytic adenovirus expressing these cytokines (RdB/IL-12/IL-18) (Choi et al., 2011). 

Despite initial safety concerns associated with the use of genetically modified viruses in the 

clinical setting, Phase I/II studies have been undertaken and have shown favourable results 

with good safety profiles (Park et al., 2008; Xu et al., 2003). All have been manufactured 

according to Good Manufacturing Practice (GMP) and unlike most Phase I drug trials, the 

majority of virus studies have never reached a maximum tolerated dose (MTD).   Whilst this 

may be due to technical restriction on the quantity of virus produced, it is also the case that 

replication competent viruses have unclear dosing regimens, with no clear correlation 
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between dose and efficacy or toxicity.  For this reason, many concurrent trials are ongoing 

with the same agent and the primary outcome measure remains safety and MTD. The 

rationale for this is that the interactions between replication competent viruses, host and 

environment are difficult to predict.  

It is now abundantly clear however, that virus-based therapies have shown anti-tumour 

efficacy and it is likely that their acceptance into mainstream clinical use will occur in 

combination with other current treatment modalities.  The resurgence of oncolytic viral 

therapy is reflected by the huge increase in publications- around 200 per month- on the topic.  

In August 2012, a search of the U.S National Institutes of Health- www.clinicaltrials.gov

revealed 36 ongoing or completed Phase I and II clinical trials using thirteen different 

oncolytic viruses in the United States.  Some agents have reached the Phase III testing, such 

as Reolysin®, a clinical grade reovirus which is currently under investigation for the treatment 

of platinum-refractory head and neck cancers in combination with paclitaxel and carboplatin.

1.4.4 Obstacles to Effective Viral Therapy

Systemic delivery of oncolytic viruses represents the most clinically pragmatic method of 

administration.  However, several host strategies are utilised to clear viral particles from the 

circulation in immuno-competent animals and can eliminate viral particles before they reach 

the site of the tumour.  These include the uptake of virus by non-blood cells, binding to 

erythrocytes and viral neutralisation by complement (Lyons et al., 2001; Shashkova et al.,

2008).  Prior exposure to virus can prompt the release of neutralising IgM, preventing viral 

binding to the cell-surface receptors necessary for infection (White et al., 2008). Whilst 

several mechanisms to overcome the humoral anti-viral immune response are currently the 

focus of clinical investigation, some of these strategies may have immunotherapeutic 

consequences.   

The tumour itself can also represent a significant barrier to effective viral therapy.  The 

structure of tumour tissue is not conducive to viral spread.  The vasculature is disordered and 
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the basement membranes of tumours are irregular (Jain et al., 2007). Areas of necrosis also 

pose problems for viral delivery and the relatively hypoxic and acidotic environment within 

many tumours may have deleterious effects on viral entry, transcription and the induction of 

apoptosis.  As well as this, fibrillar collagen in the extra-cellular matrix of many tumours 

differs from normal tissue and has been shown to hamper the spread of HSV within human 

xenograft models (McKee et al., 2006).

1.4.4.1 Enhancing Viral Delivery

Numerous mechanisms for enhancing viral delivery and anti-tumour efficacy have been 

investigated. Immuno-suppressive drugs, such as cyclophosphamide and cyclosporine A 

reduce the ability of the immune system to mount effective anti-viral responses and clear the 

virus. Pre-conditioning with the alkylating agent, cyclophosphamide and IL-2 prior to i.v.

reovirus infusion has been shown to enhance reovirus localisation and therapy in C57Bl/6 

mice bearing subcutaneous B16 tumours (Kottke et al., 2008).  This may, in part, be due to a 

reduction in circulating neutralising antibodies, a reduction in T-reg numbers (Di Paolo et al.,

2006), reduced vascular tumour permeability (Kurozumi et al., 2007) or by causing a 

reduction in innate immune cell infiltration (Fulci et al., 2006). 

It seems reasonable to assume, therefore, that suppression of the anti-viral immune

response will enhance oncolytic virus efficacy. However, cyclophosphamide also exhibits 

immuno-stimulatory effects by the induction of cytokines and has been shown to promote 

homeostatic proliferation of lymphocyte populations (Bracci et al., 2007).  Therefore, the 

immunosuppressive effects of cyclophosphamide may in fact represent only one component 

of the multiple pleiotropic effects attributable to cytokine induction within the tumour 

microenvironment.

Cyclosporine A, a calcineurin inhibitor used following solid organ transplantation, has been 

shown to enhance reovirus therapy for CRLM in murine models (Smakman et al., 2006a).  In 
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other pre-clinical studies its use led to reduced tumour burden and improved outcomes when 

used in combination with anti-CD4 and anti-CD8 antibodies (Hirasawa et al., 2003).

Cell carriage of virus particles may represent a further mechanism by which oncolytic viruses 

can be delivered to tumours in hosts with prior immunity.   It has recently been demonstrated 

that reovirus-loaded mDC can deliver the virus to lymph node B16tk melanoma metastases 

in immune C57Bl/6 mice (Ilett et al., 2009).  Monocytes (Iankov et al., 2007) and tumour cells 

(Power et al., 2007) have also been shown to prevent viral elimination by carriage. Cells 

used in this process may simply deliver their viral cargo at the site of the tumour - a process 

known as “hitch-hiking” - or, in some cases, they promote viral replication during carriage, 

thus amplifying delivery.  Other strategies involve the use of hitch-hiking cells which are 

themselves active against tumour such as lymphokine activated killer (LAK) cells. The exact 

mechanism of viral “hand-off” once these cells reach the tumour remains unclear but may 

include enzymes such as heparinases in the tumour micro-environment (Cole et al., 2005).  

Whilst many of these observations may be virus specific, it is likely that future clinical trials 

will have to focus on the equilibration of the humoral anti-viral immune response and anti-

tumour immunity.

Several attempts have been made to enhance the delivery of virus to tumours using agents 

such as proteases which target the extracellular matrix (Kuriyama et al., 2001).  In this 

human glioblastoma multiforme-derived, xenograft model, significantly higher levels of 

tumour regression were noted on pre-treatment with a mixture of collagenase and dispase 

prior to the administration of a recombinant adenovirus encoding HSV thymidine kinase (Ad-

HSV-tk).

As well as this, attempting to modify the extra-cellular matrix of the tumour by inducing 

apoptosis has been shown to improve viral delivery.  The creation of “void spaces” within the 

tumour architecture using cytotoxic agents such as doxycyline, paclitaxel and TRAIL has 

been shown to induce heterogeneous areas of apoptosis and the formation of channel-like 
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structures, which enhance the initial viral penetration in human breast carcinoma xenograft 

models (Nagano et al., 2008). It seems likely, therefore, that combination therapies within 

clinical trials may show promise in overcoming some of the mechanical barriers within the 

tumour to viral dissemination and efficacy.

1.5 Reovirus

1.5.1 Background

Reovirus (Respiratory Enteric Orphan virus) is a member of the Reoviridae family and was 

first isolated from the gastrointestinal and respiratory tracts of humans (Sabin, 1959).  

Found predominantly in stagnant water and untreated sewage, reovirus is ubiquitous in the 

natural environment.  Reovirus exposure is common, with up to 100% of the population 

demonstrating sero-positivity (Selb et al., 1994). Virtually all mammals, including humans, 

serve as hosts, with infection normally occurring before the age of 5. Reovirus-induced 

disease in humans is limited to the very young; however, its pathogenicity in new born mice 

has established its use as an experimental model for viral infection and replication (Forrest 

et al., 2003).  Little is known about the natural history of reovirus infection in humans and 

this is possibly as a result of its lack of pathogenicity. A few longitudinal studies have tried to 

address the issue of virulence and pathogenicity and have found several peaks of sero-

prevalence at various ages, suggesting that re-infection occurs from late childhood through 

to old age (Douville et al., 2008). 

1.5.2 Structure of Reovirus

Reovirus has a non-enveloped, icosahedral capsid consisting of an inner and outer protein 

shell.  This stable structure is partly responsible for the ubiquity of the virus.  It replicates 

within the cytoplasm of cells and its genome consists of 10 segments of dsRNA, arranged in 

3 distinct size classes, designated Lambda (λ), Mu (μ) and Sigma (σ).  These 10 segments 

encode 12 viral proteins; 8 structural and 4 non-structural (Chandran et al., 2001).
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Three serotypes of reovirus have been defined, based on their antibody neutralisation and 

haemagglutination inhibitory activities: Type 1 Lang, Type 2 Jones and Type 3 Abney, as 

well as Type 3 Dearing (Rosen et al., 1960).  All three serotypes utilise junctional adhesion 

molecule-A (JAM-A) as a serotype-independent, cell-surface receptor and infection is 

initiated with the attachment of the σ1 protein (Campbell et al., 2005).  Sigma 1 is a homo-

trimer consisting of a fibrous tail and an externally facing, globular head at the C terminus.  

The σ1 proteins of the T1 Lang strain and the T3 Dearing contain an independent receptor 

domain which binds JAM-A.The fibrous tail also contains further receptor domains which bind 

α-linked sialic acid (Chappell et al., 2000).  

1.5.3 Replication of Reovirus

Following host infection, reovirus cellular binding occurs via a multi-step process.  Initially, 

the tail portion of σ1 on the virion binds with low affinity to the target cell via surface sialic 

acid (Chandran et al., 2001; Barton et al., 2001; Chappell et al., 1997).  Subsequently, the 

head of the virus binds to JAM-A and virions are internalised by a process of receptor-

mediated endocytosis (Barton et al., 2001).  The virus then undergoes proteolytic 

disassembly within the endosome, resulting in the loss of the outermost capsid protein, σ3 

(Alain et al., 2007).  The σ1 portion is then shed with the underlying viral proteins μ1/μ1c 

undergoing structural rearrangement.  As well as this, changes in the conformation of the 

outer tail take place. This process culminates in the production of infectious sub-virion 

particles (ISVP; Figure 1-2) (reviewed by Lemay, 1988).  

It is believed that ISVP are intermediates, capable of penetrating endosomes, lysosomes or 

plasma membranes (Alain et al., 2007). They have the ability to deliver cores capable of 

transcription into the cytoplasm of the infected cell, where replication of reovirus can take 

place.  Inhibiting proteolytic disassembly by blocking endosomal acidification or the 

endosomal proteases has been shown to prevent apoptosis in both in vivo and in vitro

reovirus-infected systems, highlighting that viral un-coating and disassembly are crucial for 
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apoptosis to occur (Marcato et al., 2007).  Furthermore, the addition of an RNA synthesis 

blocker to cells infected with reovirus does not prevent apoptosis occurring.  In addition to 

this, viral particles lacking dsRNA are also capable of inducing apoptosis indicating that the 

initiating event in apoptosis precedes and is independent of, viral replication (Connolly et al.,

2002).

Figure 1-1 Schematic of the Reovirus Infective Cycle

(1) Cellular entry occurs through interaction between the virion, JAM-A and sialic acid 
residues on the cell membrane.   (2) The virus is internalised in an endosomal 
compartment to form the ISVP. (3) dsRNA escapes from the endosome.  (4) In ras
wildtype cells, the presence of dsRNA leads to phosphorylation of PKR (5) and 
subsequent activation of eukaryotic initiation factor 2α (eIF2a).  (6) This leads to 
shutdown of viral protein synthesis, thus aborting a productive infection.  (7) In cells 
with mutant ras or an activated ras pathway, PKR remains in a hypo-phosphorylated 
form and viral RNA species are able to direct synthesis and assembly of new virions 
(8) (Adapted from Harrington et al., 2010).                      

                                                                                                                        

1.5.4 Junctional Adhesion Molecule-A

Junctional adhesion molecule-A, formerly known as JAM-1, was first recognised as the main 

reovirus receptor as recently as 2001 (Tyler et al., 2001). It is a broadly expressed, trans-
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membrane protein which belongs to the cortical thymocyte marker of Xenopus protein (CTX) 

family of the Ig superfamily of adhesion molecules (Forrest et al., 2003). The protein consists 

of two Ig-like domains: a trans-membrane section and a short cytoplasmic tail (Kostrewa et 

al., 2001; Prota et al., 2003). In humans, it is localised to epithelial and endothelial tight 

junctions and is found on the surface of platelets and leucocytes.

Homophilic JAM-A interactions play a role in peri-cellular permeability and leucocyte 

transmigration in response to inflammation.  During an inflammatory response, JAM-A 

redistributes from the tight junctions to the apical surface and engages leucocytes in 

preparation for diapedesis through the endothelium. Neutralisation of JAM-A has been 

shown to reduce both monocyte and neutrophil transmigration across brain endothelium in a 

mouse meningitis model (Del Maschio et al., 1999) and more recently the receptor has been 

reported to play a role in breast cancer invasion (Naik et al., 2008).  Whilst JAM-A-

independent cellular entry by reovirus can occur, it has been shown that both JAM-A and 

sialic acid binding, in combination with proteolytic disassembly of the viral capsid, are 

required for the induction of cellular apoptosis (Alain et al., 2007).

1.5.5 The Activated ras Pathway

ras proteins are low-molecular-weight GTP-binding proteins and make up a large 

superfamily.  Three members of the ras family, Hras, Kras and Nras are closely related, with 

85% of their amino acid sequence being identical (reviewed by Downward, 2003). Kras is 

expressed in almost all cell types and has been shown to be essential for normal cell 

development in mice (Johnson et al., 1997).  Human tumours frequently express ras proteins 

that have been activated by point mutation. It is estimated that approximately 30% of all 

tumours have undergone at least one activating mutation in one of the ras genes. They occur 

most frequently in pancreatic cancer (90%), colorectal cancer (50%), lung cancer (40%) and 

myeloid leukaemia (30%) (reviewed by Bos,1989). Constitutive changes in ras signalling,

brought about by oncogenic changes in the signalling pathway upstream and downstream of 

ras, are even more prevalent in human cancers (reviewed by Downward, 2003). In these 
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tumours, the activated ras protein contributes to several aspects of the malignant phenotype, 

including tumour-cell growth, inhibition of apoptosis, the promotion of invasiveness, and 

angiogenesis (Shields et al., 2000).

In normal cells, viral infection induces activation and phosphorylation of dsRNA-dependent 

protein kinase (PKR) (Strong et al., 1998). Activated PKR inhibits translation of viral 

transcripts via phosphorylation of eIF2α which halts protein synthesis and therefore 

abrogates viral replication. The addition of a chemical inhibitor of PKR phosphorylation to 

normal cells induces susceptibility to reovirus infection. In ras-transformed cells, PKR is not 

phosphorylated in response to reovirus infection, allowing viral transcription to occur, 

leading to replication and accumulation of newly synthesised virus and eventual release of 

the progeny through cell lysis.  This “activated ras pathway” has been proposed as the 

mechanism underlying the selective oncolysis exhibited by reovirus and it has been 

demonstrated that reovirus killing is enhanced in cells which over-express Hras  (Coffey et 

al., 1998; Strong et al., 1998).  

Exactly how activation of ras signalling leads to the inhibition of PKR phosphorylation 

remains unclear, however the ral guanine nucleotide exchange factor (RalGEF) signalling 

pathway appears to be important for allowing selective reovirus replication (Norman et al.,

2004).  Downstream of RalGEF, p38, a signalling element, has been shown to regulate viral 

protein synthesis in ras transformed cells (reviewed by Shmulevitz et al., 2005).  Despite 

this, the precise mechanisms by which RalGEF and ras promote reovirus replication remain 

unclear.  

The impairment of the PKR-mediated inhibition of viral protein translation by ras

transformation was previously thought to fully explain the selective tumour oncolysis by 

reovirus.  More recent studies, however, have found factors other than the absence of PKR 

phosphoylation which may account for the susceptibility to reovirus infection seen in cells 
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with an activated ras pathway.  It is now known that ras transformation promotes three steps 

in viral replication, which results in substantial amplification of virion yield after one cycle of 

viral replication (Marcato et al., 2007).  Firstly, ras transformation enhances viral un-coating 

which is thought to be due to up-regulation of lysosomal cathepsins in ras transformed 

tumours.  Secondly, transformed cells facilitate the production of new virions which are 

highly infectious.  Whilst the reasons for this are not fully understood, it is has been 

proposed that ras transformation may confer subtle structural changes during virion 

assembly which increase their infectivity.  Finally, ras activated tumour cells are more 

sensitive to reovirus-mediated apoptosis and deletion of Kras in colorectal cell lines has 

been shown to block apoptosis but not replication (Smakman et al., 2005).

Murine and human tumour models have also demonstrated that the presence of an 

activated ras pathway may facilitate the induction of reovirus-induced apoptosis (Smakman 

et al., 2005, Smakman et al., 2006b). In these studies, neither reovirus protein synthesis 

nor yield of virions were reduced by the knockdown of ras, however reovirus-induced 

tumour cell apoptosis was abrogated.  This suggests that the mechanism underlying 

reovirus induced oncolysis may involve the sensitization of tumour cells by a ras-dependent 

pathway and that reovirus replication is not ras-dependent per se.  For example, reovirus is 

known to induce apoptosis via the activation of the cellular stress kinase, c-Jun N-terminal 

kinase (JNK), and NF-κB (Clarke et al., 2004; Connolly et al., 2000; Pruitt et al., 2002). 

Since ras transformation results in JNK and NF-κB activation, these pathways may play a 

role in the enhanced sensitivity of ras transformed cells to reovirus-induced apoptosis. 

The inhibition of PKR phosphorylation, whilst important, is only one of many functional 

consequences of activated ras signalling utilised by reovirus and may not be as critical as 

once thought in determining susceptibility of tumour cells to reovirus infection.  Moreover, a 

recent study suggested that reovirus infection of cancer cells is not dependent upon ras

status at all.  No clear correlation between levels of activated PKR, ras status or reovirus-
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induced apoptosis was found across multiple cell lines (Song et al., 2009).   Instead, it has 

been suggested that tumour cell susceptibility to reovirus infection is dependent upon its 

expression of JAM-A.  This was demonstrated by transducing glioma cells which do not 

express JAM-A which were resistant to infection with lentiviral vectors encoding JAM-A.  

This in turn led to reovirus infection and cell death (Song et al., 2009).   

1.5.6 Reovirus Activation of Nuclear Factor κ B

The Nuclear Factor κB family of transcription factors plays a key role in cell growth and 

survival. In quiescent cells, NF-κB is prevented from migrating and binding to DNA by the IkB 

family of inhibitory proteins.  Several stimuli, including TNF-α, IL-1, and lipopolysaccharide 

(LPS) activate NK- kB via a mechanism of site-specific phosphorylation and proteasomal 

degradation of IkB (Brown et al., 1995).  Reovirus infection has been shown to activate NF-

kB in a variety of cell lines by electrophoretic mobility shift assays.  It appears that the 

activation is as a result of targeted degradation of IkB and the accumulation of nuclear p65

(Steele et al., 2011).  The inhibition of NF-kB by the addition of protease inhibitors has been 

shown to abrogate reovirus-induced apoptosis, as have targeted disruptions in the genes 

encoding several subunits of NF-kB (Connolly et al., 2000).  It now seems likely that the 

detection of dsRNA by PKR induces the activation of NF-κB-dependent chemokines and 

cytokines in tumour cells rather than reovirus transcription or translation being a prerequisite 

for activation, as was previously thought.

Reovirus activation of NF-kB, like apoptosis induction, requires both sialic acid and JAM-A 

binding, in addition to viral disassembly (Connolly et al., 2000).  Exactly how receptor binding 

and viral disassembly activate NF-kB remains elusive, however several theories have been 

put forward. It has been postulated that the conformational change in σ1 that occurs during 

disassembly may increase the affinity of it for the receptors, or that proteolytic processing of 

μ-1/μ-1C during disassembly influences virus-receptor interactions, causing receptor 

aggregation and the stimulation of intra-cellular signalling.  A further theory is that JAM-A 

acts as an intra-cellular binding partner of the ras target postsynaptic density protein, disc-
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large, zo-1 (PDZ) domain protein, AF-6, and that NF-kB activation occurs via a ras-mediated 

signalling pathway (reviewed by Clarke et al., 2003). 

1.5.7 Apoptosis is Independent of Reovirus Replication

The addition of ribavirin, a RNA synthesis inhibitor to cultures of HeLa cells infected with 

reovirus inhibits reovirus replication but not apoptosis (Connolly et al., 2002).  Ultra-violet

(UV) light- inactivated virions, which contain σ1 but not σ1s and are transcriptionally-inactive,

have been shown to induce cell death, but higher numbers of virions- up to 100 fold - are 

required.  This suggests that it is the S1 gene product, σ1, which is responsible for apoptosis 

induction.  The necessity for higher multiplicity of infection (MOI) of UV-inactivated virions to 

induce apoptosis, suggests that at low MOI, replication may be necessary to raise the viral 

inoculum to a threshold level before apoptosis is induced.  The higher MOI required for UV-

inactivated induction of apoptosis appear to trigger a faster kinetic of apoptosis as initial 

replication is not necessary for viral amplification (Tyler et al., 1995).

1.5.8 Reovirus and the Immune System

Despite vigorous investigation of the direct cytotoxic effects of oncolytic viruses, including 

reovirus, it is only recently that the role of the immune system in viral therapy has been 

studied.  The majority of animal experiments investigating oncolytic viruses have been 

performed using xenografts and immuno-deficient mouse models, precluding assessment of 

the role of the immune system in therapy.  Whilst initially it was thought that the immune 

system must inevitably be detrimental to oncolytic viral therapy by the neutralisation of virus 

and abrogating direct tumour cell killing, it has become clear that viral therapy may 

alternatively support priming of anti-tumour immune responses, which can contribute 

significantly to tumour regression (Prestwich et al., 2009a).

Reovirus replicates in and lyses several human melanoma cell lines as well as freshly 

resected melanoma samples (Errington et al., 2008a).  This study also demonstrated that 

reovirus-induced cell death was associated with the release of a number of chemokines and 
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pro-inflammatory cytokines.  Macrophage inflammatory protein (MIP) -1α, MIP-1β, IL-8 and

Regulated upon Activation, Normal T cell Expressed, and Secreted (RANTES) were all 

found, as well as the pro-inflammatory cytokine, IL-6.  Moreover, reovirus-nduced 

phenotypic maturation of DC in the absence of tumour cells and these activated DC 

secreted a number of cytokines, including IL-6, IL12p70, IFN-α and TNF-α. Additionally, 

reovirus-infected melanoma cell lines loaded onto purified DC induced NK-mediated

cytotoxicity against melanoma targets (Prestwich et al., 2009b). This process was 

modulated by IFN-β.  These findings raise the possibility of utilising reovirus infection to 

generate a pro-inflammatory cytokine response with the induction of innate anti-tumour 

immunity.   

Reovirus also has the ability to generate adaptive anti-tumour immune responses.  In a 

murine model, intravenous delivery of the virus resulted in the generation of a melanoma-

specific, T cell response towards tyrosinase-related protein (TRP) -2 and B16 antigens 

(Prestwich et al., 2009b).  As well as this, reovirus-infected melanoma cell lines not only 

matured DC in a reovirus dose-dependent manner, but when cultured with autologous

peripheral blood mononuclear cells (PBMC), DC loaded with reovirus-infected human 

Mel888 melanoma cell antigens cross-primed CD8+ T cells specific against the human 

tumour-associated antigen Melanoma-associated antigen recognised by T cells (MART-1) 

(Prestwich et al., 2009b).  Moreover, reovirus loaded T cells purged murine melanoma, 

B16ova lymph node and splenic metastases in C57BL/6 mice. B16ova is resistant to direct 

reovirus oncolysis, highlighting, for the first time that the immune system was vital for 

reovirus therapeutic efficacy and that viral replication was not essential.   As well as this, 

reovirus-infected tumour cells have been shown to induce a chemotactic response resulting 

in the recruitment of CTL in the absence of live virus (Steele et al., 2011).

In the several clinical trials which have been completed using reovirus, an increase in 

neutralising antibodies in recipients has been a consistent finding (White et al., 2008; 
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Harrington et al., 2010).  Suppressing this anti-viral immune response to avoid rapid viral 

clearance is likely to be crucial in maximising the efficacy of reovirus in vitro. One possible 

way in which viral elimination may be abrogated, is the use of cell carriers such as T cells, 

DC or monocytes (Qiao et al., 2008a; Iankov et al., 2007; Power et al., 2007; Ilett et al.,

2009).

1.5.9 Reovirus in Clinical Trials

In order to ascertain the clinical features of reovirus infection, one study was undertaken in 

1963 during which each of the 3 serotypes of reovirus were inoculated into adult volunteers 

(Rosen et al., 1963). In this study, male participants were given intra-nasal inoculations and 

followed up for 23 days for signs of symptomatic illness.  This study confirmed that reovirus 

may cause minor upper respiratory tract illnesses and diarrhoeal symptoms, as had been 

previously suggested (Jackson et al., 1961; Jarudi et al., 1973).  The wild type, Dearing 

strain of Reovirus has been manufactured to clinical grade (Reolysin®) by Oncolytics Biotech 

Inc. (Calgary, Canada). Thirty clinical trials have been completed or are ongoing as of May 

2012. The first 3 studies were conducted at the University of Calgary, Alberta, Canada with 

others being undertaken at several centres internationally.

In the first Phase I cancer related study, 19 patients with clinically evident metastatic or 

recurrent non-lymphoma solid tumours that were accessible for injection and measurement 

by direct observation or palpation were enrolled.  Intra-tumoural injection of the virus was 

undertaken at escalating dose levels ranging from 107 plaque forming units (pfu) to 1010 pfu. 

The patients had a variety of end-stage tumour types, including head and neck cancer, 

melanoma, breast adenocarcinoma and sarcoma. Only minor illnesses such as flu-like and 

diarrhoeal symptoms were noted. The best responses at 10 or 14 weeks included 3 partial 

responses and two with stable disease in the primary tumour.  One patient had a complete 

response, 1 a partial response and 8 more patients had no measurable progression in their 

disease.  Perhaps more significantly, 3 patients had responses noted in synchronous 
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lesions distant from the site of the primary lesion (www.oncolyticsbiotech.com/clinical-

trials/27). 

Having shown promise via direct i.t. delivery and that the virus was well tolerated, further 

investigations of reovirus therapy using differing routes of administration, either alone or in 

combination with other agents, were undertaken.  Pre-clinical studies have shown that 

reovirus in combination with ionising radiation acts synergistically to promote apoptosis in cell 

lines (Twigger et al., 2008).  On this basis, a Phase Ia/Ib study was undertaken where 

radiotherapy was given in conjunction with i.t. injection of the virus (Harrington et al., 2010).  

Partial responses were again seen in several different tumour types including colorectal and 

oesophageal adenocarcinomas. REO 008, a phase II study, evaluating radiation with i.t.

Reolysin® injection in 16 heavily pre-treated patients with a variety of malignancies,

demonstrated a total disease control rate of 93% in the treated lesions 

(http://www.oncolyticsbiotech.com/clinical-trials/20).

REO 05, a phase I study of i.v.-delivered Reolysin® in patients with advanced cancer, found

evidence of anti-tumour activity (Vidal et al., 2008). All patients had evidence of progressive 

disease prior to entry. At least 4 of 18 patients in the completed cohorts had stable disease 

with varying degrees of tumour regression. One patient with metastatic prostate cancer 

treated in the 3x109 Tissue Culture Infectious Dose- 50 (TCID50) cohort had a 50% decrease 

in Prostate Specific Antigen (PSA) levels with evidence of reovirus replication in tumour and 

tumour necrosis on Computerised Tomography (CT) scanning. Two patients with metastatic 

colorectal cancer in the 1x109 and 3x109 TCID50 cohorts had 60% and 27% reduction in CEA 

levels, having received 6 and 3 courses of treatment respectively. All patients demonstrated 

reovirus sero-positivity prior to receiving the infusion.  Titres increased approximately 1 week 

after treatment, eventually reaching a plateau. 
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REO 013, a biological endpoint trial which recently completed, studied the effects of i.v.

reovirus administered to patients undergoing curative intent surgery for CRLM (Adair et al.,

2012b).  Ten patients received 1 cycle of 1x1010 TCID50 reovirus, 6-28 days prior to elective, 

curative-intent hepatic resection.  Despite the presence of neutralising antibody (NAB) before 

viral infusion, replication-competent reovirus was recovered from PBMC.  Moreover, 

recovered virus retained cytotoxicity towards target cells and assessment of the surgical 

specimens demonstrated greater expression of reovirus σ3 in tumour cells than in 

surrounding normal liver parenchyma.  As well as this, replicating virus was isolated from 

tumour tissue only. These findings suggest for the first time, that reovirus may be protected 

from NAB after systemic administration by immune cell carriage of the virus and that these 

cells could in turn deliver reovirus to intra-hepatic tumour sites.  Although not the direct 

subject of this thesis, as I was the lead author on this trial and its findings relate to the 

preclinical data presented here, the publication from this study is included in the Appendix 

(Adair et al., 2012b).

Reo 018, the first randomised, two-arm, double-blind, multicentre, two-stage, adaptive Phase  

III trial of carboplatin/paclitaxel, plus reovirus or placebo, in patients with relapsed or 

metastatic, platinum-refractory, squamous cell cancer of the head and neck is on-going.  All 

patients receive 3 weekly (21 day cycles) of paclitaxel and carboplatin and either i.v. placebo 

or intravenous Reolysin®.  All dosing takes place in the first 5 days of each cycle, with 

patients receiving standard i.v. doses of paclitaxel and carboplatin on day 1 only.  On days 1

to 5, they receive either i.v. placebo or Reolysin® at a dose of 3 x 1010 TCID50.  Patients 

continue to receive the trial combination therapy for up to 8, 21-day cycles and, thereafter, 

blinded placebo or Reolysin® until the patient either develops progressive disease or meets 

other criteria for removal from the trial. The primary endpoint for the trial is overall survival 

(OS) with secondary endpoints including progression free survival (PFS), objective response 

rate, duration of response, and safety and tolerability of Reolysin®, when administered in 

combination with paclitaxel and carboplatin. The first non-adaptive stage of the trial is 
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designed to enrol 80 patients, with the second adaptive stage designed to enrol between 100 

and 400 patients.  Results are eagerly awaited.  
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2 Aims of the Study

The aim of this study was to examine the therapeutic potential of reovirus for the treatment of 

colorectal cancer.  The direct cytoxic effects of the virus, as well as well its ability to generate 

an innate anti-tumour immune response were investigated.  In particular, this study focused

on:

1. The cell suface expression of JAM-A on colorectal cancer cell lines and human 
PBMC.

2. The cytotoxicity of reovirus against colorectal cancer in vitro.

3. The mode of reovirus-induced cell death.

4. Examining the deleterious effect of NAB on direct reovirus cytotoxicity.

5. Investigating the potential of human PBMC to act as viral carriers.

6. The effect of reovirus infection on NK cells within whole PBMC.

7. Reovirus-activated NK cell-mediated cytoxicity towards colorectal cancer.

8. The isolation of liver mononuclear cells from fresh human resection specimens. 

9. The effect of reovirus infection on hepatic NK cells.
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3 Materials and Methods

3.1 General 

Tissue culture was performed under aseptic conditions using NuAire Class II Microbiological 

Safety Cabinets (NuAire Inc., Plymouth, UK).  The cabinets were routinely cleaned before 

and after each use with 2% (w/v) Virkon (Scientific Laboratory Supplies (SLS), Nottingham, 

UK), then 70% (v/v) ethanol (Sigma-Aldrich Ltd., Dorset, UK).  All plasticware used was 

purchased as pre-sterilised sealed packages from Corning Costar (High Wycombe, UK) or 

BD Biosciences (Oxford, UK).  Cells were incubated in vented flasks (25 cm2 – 150 cm2

sizes) or 6-well tissue culture plates in Sanyo incubators (Sanyo Inc., Loughborough, UK) at 

37oC, in a humidified atmosphere of 5% CO2 in air.  All pipettes used were produced by 

Gilson Inc. (supplied by Anachem Ltd., Bedfordshire, UK).   Centrifugations were carried out 

at room temperature (RT), using an Eppendorf 5810R centrifuge (Eppendorf, Leicestershire, 

UK). All centrifugations were done at 400g for 5 mins at RT, unless stated otherwise.  An 

Olympus CKX41 light microscope (Olympus UK Ltd., South-end-on-Sea, UK) was used for 

routine cell observations and cell counts were performed using 0.2% (v/v) Trypan Blue 

(Sigma) and a standard haemocytometer (Weber Scientific Int., West Sussex, UK).

3.2 Cell Culture and Primary Cell Isolation

Cell lines and primary cells were maintained in either Dulbecco’s Modified Eagle’s Medium 

(DMEM) or Roswell Park Memorial Institute (RPMI) -1640 (both Sigma) and supplemented 

as indicated in Table 2.  Foetal calf serum (FCS) and pooled human AB serum (HS) (both 

Biosera, Ringmer, UK) were heat-inactivated at 56 oC for 30 mins prior to use.  L-glutamine, 

sodium pyruvate, HEPES, non-essential amino acids and 2β-mercaptoethanol were all 

purchased from Sigma.  All cell lines were routinely passaged or harvested at or near 

confluence using trypsin-EDTA (Sigma).
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Table 2: Cell Lines, Primary Cells and Culture Media

Cell Line / Primary Cell Culture Medium

LoVo

Human colorectal adenocarcinoma

DMEM + 10% (v/v) FCS + 2 mM L-
glutamine

(10% DMEM)

LS174T

Human colorectal adenocarcinoma
10% DMEM

SW480

Human colorectal adenocarcinoma
10% DMEM

SW620

Human colorectal adenocarcinoma
10% DMEM

L929

Murine fibrosarcoma
10% DMEM

Primary colorectal metastatic cells 10% DMEM

Primary hepatocytes 10% DMEM

PBMC RPMI-1640 + 7.5% HS + 2 mM L-
glutamine + 1% (v/v) sodium 
pyruvate + 1% (v/v) HEPES +1% 
(v/v) non-essential amino acids +  
20 µM 2β-mercaptoethanol

(lymphocyte culture medium)

Liver-derived mononuclear cells 
(LMNC)

Lymphocyte culture medium

3.2.1 Isolation of PBMC by Density Gradient Separation

Peripheral blood was collected from healthy donors and patients with colorectal cancer 

metastatic to the liver.  Written, informed consent was obtained from all patients in 

accordance with local institutional ethics review and approval.  Samples were diluted 1:1 with 

Hank’s Balanced Salt Solution (HBSS) (Sigma) and then slowly layered at a 2:1 ratio onto

Lymphoprep© (Axis Shield, Cambridgeshire, UK).  Tubes were centrifuged at RT for 25 mins 
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at 800g with no brake, before excess plasma was pipetted off and discarded.  The white cell 

layer was collected using a wide-tipped Pasteur pipette (SLS).  50 ml HBSS was added and 

cells were pelleted by centrifugation at 400g for 10 mins at RT.  Cells were washed again in 

50 ml HBSS and centrifuged at 300g for 5 mins at RT.  PBMC were cultured at 2 x 106 / ml.

3.2.2 Primary Tissue Collection

Tumour and normal hepatic parenchyma samples were taken from patients undergoing 

routine, planned resection of colorectal cancer metastatic to the liver. Written, informed 

consent was obtained from all donors in accordance with institutional ethics review and 

approval.  Samples were collected under sterile conditions (Geoffrey Giles Theatre Suites, 

SJUH, Leeds, UK), preserving margins for histological diagnosis and confirmation of the 

adequacy of resection.  Immediately following resection, the tissue was transported back to 

the laboratory in sterile, 150 ml screw-topped pots (SLS) containing either cold physiological 

saline or HBSS and processed at once.   

3.2.3 Isolation of Primary Colorectal Metastatic Cells

Tumour samples were placed in a Petri dish containing 10 ml 10% DMEM and dissected into 

5mm cubes, removing any fatty or necrotic tissue.  Cubes were then disaggregated using a 

60 µm Cell Dissociation Sieve & Tissue Grinder Kit (Sigma). This cell suspension was 

passed through a 70 µm cell strainer (BD Biosciences) and any debris removed by 2 large 

volume washes and centrifugations. The resulting CRLM single cell suspension was cultured 

at 2 x 106 / ml.

3.2.4 Isolation of Liver-derived Mononuclear Cells and Primary Hepatocytes

Freshly resected normal liver tissue was collected and a single cell suspension was prepared

as described above.  Cells were then diluted in 30 ml HBSS, layered slowly over 15 ml 

Lymphoprep© and centrifuged at RT for 25 mins at 800g with no brake.  Supernatant was 

pipetted off and discarded before LMNC were collected from the resulting layer using a wide-

tipped Pasteur pipette.  Hepatocytes were isolated from directly above the red blood cell 
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pellet, again using a wide-tipped Pasteur pipette.  50 ml HBSS was added and cells were 

pelleted by centrifugation at 400g for 10 mins at RT.  Cells were washed again in 50 ml 

HBSS and centrifuged at 300g for 5 mins at RT.  Both cell populations were cultured at 2 x 

106 / ml.

3.3 Reovirus

Reovirus Type 3 Dearing Strain was provided by Oncolytics Biotech Inc. Stock virus titre was 

determined using a standard plaque assay protocol on L929 cells as described in section

3.3.6.  Aliquots of 1x109pfu/ml were stored in the dark at 4oC for up to 1 month or -80oC for 

longer term storage.

3.3.1 Assessment of Direct Reovirus-induced Cytotoxicity in Colorectal Cancer Cell 

Lines 

LoVo, LS174T, SW480 and SW620 cells were seeded into 6-well plates at a density of 2x105

cells in 3 ml culture medium.  Cells were incubated for 4 hr to allow them to adhere and then 

treated with 0, 1 or 10pfu/cell reovirus.  Following incubation for 24-72 hr, cells were 

harvested and their viability was determined using the Live/Dead® Cell Viability Assay (Life 

Technologies, Paisley, UK) (section 3.4.5) and flow cytometry.  Where the effect of NARA 

was to be determined, cells were also cultured in DMEM supplemented with 1-2% (v/v) HS

and 1% (v/v) L-glutamine.

3.3.2 Assessment of Reovirus Replication in Colorectal Cancer Cell Lines

SW480 and SW620 cells were seeded into 6-well plates at a density of 2x105 cells in 3 ml 

culture medium.  Cells were incubated for 4 hr to allow them to adhere and then treated with 

0, 1 or 10pfu/cell reovirus.  Following incubation for 24-72 hr, cells/supernatants were 

harvested using a wide-tipped Pasteur pipette and stored at -80 oC prior to use.  Lysates 

were then prepared by means of 3 cycles of freezing/thawing (10 mins in methanol/dry ice 

followed by 10 mins in a water bath at 37ºC).  The reovirus titre in each sample was 

determined by plaque assay (section 3.3.6).
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3.3.3 Assessment of Apoptotic Intracellular Active Caspase-3 Production

SW480 and SW620 cells were seeded into 6-well plates at a density of 2x105 cells in 3 ml 

culture medium.  Cells were incubated for 4 hr to allow them to adhere and then treated with 

0 or 10pfu/cell reovirus.  After 72 hr, cells were harvested and active caspase-3 production 

was measured using the PE-conjugated Active Caspase-3 Apoptosis Kit (BD Pharmingen, 

Oxford, UK) (Section 3.4.6) and flow cytometry.

3.3.4 Assessment of Inhibition of Apoptosis 

SW480 and SW620 cells were seeded into 6-well plates at a density of 2x105 cells in 3 ml 

culture medium.  Cells were incubated for 4 hr to allow them to adhere and then treated ± the 

irreversible pan-caspase inhibitor, Z-VAD-FMK (Calbiochem, Nottingham, UK) at a 

concentration of 50 µM.  Cells were incubated for 1 hr prior to the addition of 0 or 10pfu/cell

reovirus.  After 72hr, cells were harvested and viability was determined using the Live/Dead®

Cell Viability Assay (section 3.4.5) and flow cytometry.

3.3.5 Assessement of Reovirus Replication in PBMC

PBMC were cultured at 2 x 105 cells/ml and treated with 1pfu/cell reovirus.  Following 24-72 

hr of incubation, cell/supernatants were harvested and stored at -80 oC prior to use. Lysates 

were then prepared (section 3.3.2) and reovirus titre in each sample was determined by 

plaque assay (3.3.6).

3.3.6 Measurement of Reovirus Titre by Plaque Assay

The reovirus-sensitive, L929 cell line was used to determine the plaque forming activity of 

reovirus-treated samples.  L929 cells were seeded in 6-well plates at a density of 1×106

cells in 2 ml culture medium and incubated for 4 hr to allow cells to adhere.   Serial dilutions 

between 2×10-2 and 2×10-9 of sample lysates and reference virus stock were prepared in 

DMEM + 2mM L-glutamine (virus dilution media).  Culture medium was removed from L929 

cells and replaced with 500 µl of diluted viral samples in triplicate, taking care not to disturb 

the cell monolayer.  Cells were then incubated for 4 hr, rocking occasionally to ensure even 
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coverage of the viral sample.  Melted, 2% (w/v) agar (Sigma) and overlay medium 

(2×DMEM (Gibco), sterile filtered and supplemented with 10% (v/v) FCS + 2mM L-

glutamine) were prepared and pre-incubated in a waterbath at 46°C for 30 mins prior to use.  

Virus samples were gently removed from the wells, before the agar and overlay medium 

were mixed at a 1:1 ratio and 3 ml was added immediately to each well, pipetting slowly to 

avoid the formation of bubbles. After solidification, plates were incubated at 37°C for 96 hr.  

500 μl 0.02% (v/v) Neutral Red solution (Sigma) was added to each well and plates were 

incubated for 1 hr before excess dye was removed.  Plates were then placed back in the 

incubator for a further 3 hr.  A light box was used to visualise and count the clear plaques 

where reovirus-induced L929 cell lysis had occurred.  Virus concentration in each sample 

was calculated using the following formula:

pfu/ml = average number of plaques x 2

dilution

and fold increase in viral titre was determined by comparison with levels of input virus.

3.3.7 Reovirus Activation of Cells

PBMC, LMNC, SW480 or SW620 cells were cultured at 2 x 106 cells/ml.  0 or 1pfu/cell 

reovirus was added and cells were incubated overnight at 37ºC.  PBMC and LMNC were 

then used in either CD107 degranulation assays (section 3.4.7), chromium release assays 

(section 3.5), analysed for phenotypic changes (section 3.4.2) or culture supernatants were 

collected and analysed by ELISA (section 3.6 and section 3.7).   Reovirus-treated colorectal 

cancer cell lines were analysed for phenotypic changes (section 3.4.1).

3.3.8 Reovirus Binding on PBMC

PBMC were cultured at 2 x 106 cells/ml and 0, 1 or 10pfu/cell reovirus was added before cells 

were incubated for 4 hr.  Cells were then harvested and 20 ml phosphate-buffered saline 

(PBS) (Oxoid, Hampshire, UK) added before cells were pelleted by centrifugation.  After 

supernatant was discarded, this washing procedure was carried out twice more to remove 
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any unbound reovirus.  Cells were stained for cell-surface expression of reovirus as 

described in section 3.4.3.

3.3.9 Assessment of Reovirus Hitch-hiking on PBMC and Hand off to Colorectal 
Cancer Cell Lines

SW480 and SW620 cells were seeded in 6-well plates at a density of 1x105 cells in 2 ml 10% 

DMEM and incubated for 4 hrs to allow cells to adhere.  PBMC were isolated before 5-

10x106 were placed in Universals tubes (Sterilin Ltd., Caerphilly, UK).  Cells were 

centrifuged, the resulting pellets resuspended in 1 ml of lymphocyte culture medium and 

treated with 0 or 1pfu/cell reovirus.  After 4 hr incubation at 4oC, any unbound virus was

removed by 3 washes and centrifugations in 20 ml PBS.   Cell pellets were resuspended in 

lymphocyte culture medium at 1x105/ml and, once 10% DMEM had been removed from 

tumour targets, 1 ml of each PBMC condition was added to duplicate wells.  Plates were 

incubated for 4 hr, rocking occasionally to ensure good coverage of PBMC over tumour 

targets.  PBMC were then removed and wells were gently washed down with 1 ml PBS.  3 ml 

lymphocyte culture medium was added to each well and cells were incubated for 48-120 hr.  

Separate SW480 and SW620 targets were directly infected with 0.005pfu/cell reovirus (the 

dose equivalent to that with is hitch-hiked on PBMC) and cultured in 3 ml lymphocyte culture 

medium for 120 hr.  After incubation, SW480 and SW620 cells were harvested for 

assessment of their viability by propidium iodide (PI) staining (section 3.4.4) or 

cells/supernatants were collected and stored at -80oC until plaque assays were performed to 

determine their viral titre (section 3.3.6).

3.4 Flow Cytometry- Fluorescence-activated Cell Sorter (FACS)

All flow cytometry was performed using a FACSCalibur machine and data analysed using 

the CellQuest©Pro Software package (v4.0.1) (both Becton Dickinson, Oxford, UK).
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3.4.1 Phenotypic Analysis of Colorectal Cancer Cell Lines, Primary Metastatic 
Tumour Cells and Primary Hepatocytes

Cells (see sections 3.3.7 and 3.2.3-4) were harvested and aliquoted into FACS tubes (BD 

Biosciences) at a density of 1×105-1×106 per tube.  2 ml FACS buffer (PBS + 1% (v/v) FCS 

and 0.1% (w/v) sodium azide) was added and cells were centrifuged at 400g for 5 mins at 

4oC in a Sorvall RT6000B refrigerated centrifuge (Kendro Lab Products, Hertfordshire, UK).  

After supernatants were discarded, fluorescently-conjugated antibodies were added (Table 

3) and cells incubated for 30 mins at 4oC in the dark.  2 ml FACS buffer was then added to 

each tube and cells pelleted by centrifugation.  Cells were resuspended in 100-200 µl 1% 

(w/v) paraformaldehyde (PFA) (Sigma) and stored at 4oC for up to 1 week prior to 

acquisition.   
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Table 3 FACS Antibodies Used for Colorectal Cancer Cell Lines, Primary Metastatic 
Tumour Cells and Primary Hepatocytes

Target 

Molecule
Fluorochrome

Volume 

Added per 

5x105 Cells

Species 

of Origin
Clone Manufacturer

JAM-A PE 3 µl Mouse 43
Santa Cruz 

(Calne, UK)

MHC-I PE 3 µl Mouse
G46-

2.6
BD Biosciences

ULBP-1 PE 3 µl Mouse 170818
R & D Systems

(Abingdon, UK)

ULBP-2 PE 3 µl Mouse 165903 R & D Systems

ICAM-1 PE 3 µl Mouse 3E2 BD Pharmingen

CD112 PE 3 µl Mouse R2.525 BD Pharmingen

MIC A/B PE 3 µl Mouse 6D4 BD Pharmingen

BerEp4 FITC 5 µl Mouse MCF7
Dako Cytomation 

(Stockport, UK)

CEA FITC 5 µl Mouse B1.1 BD Pharmingen

IgG1 

Isotype 

Mix

FITC, PE, 

PerCP
5 µl Mouse

DAK-

G01
Dako Cytomation 
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3.4.2 Phenotypic Analysis of PBMC/LMNC

The phenotype of NK cells within PBMC/LMNC and the JAM-A expression of PBMC sub-

populations was determined using 3-colour flow cytometry.  PBMC/LDMC (section 3.3.7) 

were harvested, stained and stored as described in the above section, using the antibodies 

detailed in Table 4. 

Table 4  FACS Antibodies Used for PBMC/LMNC

Target 

Molecule
Fluorochrome

Volume 

Added per 

5x105 Cells

Species 

of Origin
Clone Manufacturer

CD3 FITC 5 µl Mouse SK7 BD Biosciences

CD3 PerCP 3 µl Mouse SK7 BD Biosciences

CD4 PerCP 3 µl Mouse SK3 BD Biosciences

CD8 PerCP 3 µl Mouse SK1 BD Biosciences

CD8 PerCP 3 µl Mouse SK1 BD Biosciences

CD14 PerCP 3 µl Mouse MΦP9 BD Biosciences

CD16 FITC 3 µl Mouse 3G8 BD Pharmingen 

CD19 FITC 5µl Mouse 4G7 BD Biosciences

CD56 FITC 5 µl Mouse
NCAM 

16.2
BD Biosciences

CD56 PE 2 µl Mouse C5.9
Serotec 

(Kidlington, UK)
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CD69 FITC 10 µl Mouse FN50 BD Pharmingen

CCR7 PE 10 µl Mouse 150503 R & D Systems

DNAM-1 PE 3 µl Mouse DX11 BD Pharmingen

JAM-A PE 3 µl Mouse 43 Santa Cruz

NKG2D PE 3 µl Mouse ID11 BD Pharmingen

NKp30 PE 3 µl Mouse P30-15 BD Pharmingen

NKp44 PE 3 µl Mouse P44-8.1 BD Pharmingen

NKp46 PE 3 µl Mouse 9E2

Miltenyi Biotec 

(Gladbach, 

Germany)

IgG2a, Κ PE 3 µl Mouse
G155-

178
BD Pharmingen

IgG2b, Κ PE 3 µl Mouse 27-35 BD Pharmingen

IgG1 

Isotype 

Mix

FITC, PE, 

PerCP
5 µl Mouse

DAK-

G01
Dako Cytomation 

3.4.3 Cell-surface Binding of Reovirus on PBMC

Cell-surface binding of reovirus σ3 capsid protein on sub-populations of PBMC was 

determined by 3-colour flow cytometry, using both directly-conjugated and un-conjugated 

antibodies (Table 5).  PBMC (see section 3.3.8) were harvested, washed in 2 ml FACS buffer 
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and pelleted by centrifugation.  After supernatants were discarded, anti-reovirus σ3 antibody 

was added and cells incubated for 20 mins at 4ºC in the dark.  Cells were then washed in 2 

ml FACS buffer and pelleted by centrifugation. Supernatants were discarded and FITC-

labelled secondary antibody was added for 20 mins at 4ºC in the dark.  After a further wash 

and centrifugation in FACS buffer, supernatant was poured off and cells were subjected to a 

stain with directly conjugated antibodies (as described in section 3.4.1) to allow for 

identification of PBMC sub-populations.  Cells were fixed in 1% (w/v) PFA and stored for up 

to 1 week before acquisition.
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Table 5  FACS Antibodies Used to Determine Reovirus Binding on PBMC Sub-
populations

Target 

Molecule
Fluorochrome

Volume 

Added per 

5x105 

Cells

Species 

of Origin
Clone Manufacturer

CD3 PE 3 µl Mouse SK7 BD Biosciences

CD3 PerCP 3 µl Mouse SK7 BD Biosciences

CD4 PerCP 3 µl Mouse SK3 BD Biosciences

CD8 PerCP 3 µl Mouse SK1 BD Biosciences

CD14 PerCP 3 µl Mouse MΦP9 BD Biosciences

CD19 PE 3 µl Mouse HIB19 BD Pharmingen 

CD56 PE 2 µl Mouse C5.9 Serotec 

Reovirus 

σ3
Un-conjugated 1 µl Mouse 4F2

DSHB 

(University of 

Iowa, USA)

Ig (2o Ab) FITC

100 µl of 

1:50 

dilution

Goat Polyclonal BD Pharmingen

IgG1 

Isotype 

Mix

FITC, PE, 

PerCP
5 µl Mouse DAK-G01

Dako 

Cytomation 
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3.4.4 Measurement of Cell Viability by PI Staining

Cells were harvested into FACS tubes, washed in 2 ml FACS buffer and pelleted by

centrifugation.  Supernatant was discarded and 0.05 mg/ml PI (Sigma) was added per tube.   

Cells were incubated at RT for 15 mins in the dark and analysed by flow cytometry 

immediately.

3.4.5 Measurement of Cell Viability Using the Live/Dead® Cell Viability Assay

Cells were harvested into FACS tubes, washed with 1 ml PBS and pelleted by 

centrifugation.  Supernatant was discarded and cells were resuspended in 1 ml PBS 

containing 1µl of supplied PE-conjugated, fluorescently-activated dye.  Cells were incubated 

for 30 mins at RT in the dark, before being washed with 1 ml PBS and pelleted by 

centrifugation. A further wash with 1 ml PBS/1% (v/v) FCS and centrifugation was 

performed before cells were fixed in 100-200 µl 1% (w/v) PFA.  Cells were stored at 4°C for 

up to 1 week prior to acquisition. 

3.4.6 Measurement of Apoptosis Using the Intracellular Active Caspase-3 Apoptosis 
Kit

Cells were harvested into FACS tubes, washed in 2 ml cold PBS and pelleted by 

centrifugation.  Cells were resuspended in 500 µl supplied Cytofix/Cytoperm buffer™ and 

incubated on ice in the dark for 20 mins.  After centrifugation and the removal of excess 

buffer, cells were subjected to a further 2 centrifugations in 500 µl supplied BD 

Perm/Wash™ buffer.  20 µl of anti-caspase-3 antibody was then added per tube and cells 

incubated at RT for 30 mins in the dark.  1 ml of supplied BD Perm/wash™ buffer was 

added and cells were pelleted by centrifugation.  Supernatant was discarded before cells 

were resuspended in 500 µl of BD Perm/wash buffer™ and stored at 4oC for up to 1 week 

prior to acquisition.

3.4.7 CD107 Degranulation Assay

SW480 and SW620 tumour target cells and effector cells (PBMC/LMNC ±reovirus treatment; 

see section 3.3.7) were harvested, washed in PBS and pelleted by centrifugation.  Cells were 
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then resuspended in lymphocyte culture medium before effector cells were added to FACS 

tubes either alone or with each tumour target at a 1:1 ratio, in a final volume of 400 μl. After 1 

hr incubation, 5 μl each of anti-CD107a FITC and anti-CD107b FITC antibodies (both BD 

Biosciences) as well as 10 μg/ml Brefeldin A (Sigma) was added to each tube, before a 

further 4 hr of incubation.  Cells were then washed with 2 ml FACS buffer and pelleted by 

centrifugation before being stained with anti-CD3 PerCp and anti-CD56 PE (section 3.4.1 ) 

for 30 mins at 4°C (to allow identification of NK cell populations).  Cells were washed in 2 ml 

FACS buffer, centrifuged and fixed in 200 μl 1% (w/v) PFA.  Cells were stored at 4oC for a 

maximum of 1 week prior to acquisition.

3.5 51Chromium (51Cr) Cytotoxicity Assay

SW480 and SW620 tumour target cells and effector cells (PBMC ± reovirus treatment; see 

section 3.3.7) were harvested, washed and pelleted by centrifugation.  Target cells were 

labelled with 50 μCi 51Cr (Perkin Elmer, Cambridgeshire, UK) per million cells and incubated 

for 1 hr. Excess 51Cr was then removed by 3 centrifugations in 50 ml PBS. Cells were 

resuspended in lymphocyte culture medium at 1x105 cells/ml.  Effector cells were 

resuspended in lymphocyte culture medium at a concentration that would provide known 

effector to target (E:T) cell ratios.  Serial dilutions of effectors cells were seeded out in 

triplicate into round-bottomed 96-well plates (Nunc Nalgene, Loughborough, UK) in a final 

volume of 100 µl per well, before 50 µl of 51Cr-labelled target cells were added to each 

appropriate well.  Maximum and spontaneous target release plates were set up as controls, 

consisting of either target cells alone or treated with 1% (v/v) Triton-X (Sigma).  Following 4 

hr of incubation, plates were centrifuged and 50 μl of supernatant from each well was 

transferred onto Luma scintillation plates (Perkin Elmer) before being left to dry at RT 

overnight.  51Cr release in cell supernatants was measured in counts per minute (cpm), using 

a 1450 MicrobetaJet Scintillation Counter (Wallac EG & G Ltd., Milton Keynes, UK).   Results 

were expressed as percent tumour cell lysis, using the formula: 

    % lysis = 100 x (sample cpm – spontaneous cpm) / (maximum cpm -spontaneous cpm).
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For NK depletion experiments, effector PBMC were harvested from culture, washed in 50 ml 

MACS buffer (PBS + 2% (v/v) FCS + 2 mM EDTA) and pelleted by centrifugation.  Cells were 

then treated with CD56 microbeads (Miltenyi) as per the manufacturer’s instructions.  Briefly, 

microbeads were added at 10 µl per million PBMC and incubated at 4°C for 15 mins.  50 ml 

of MACS buffer was then added and, following a centrifugation at 300g for 10 mins, cells 

were resuspended in MACS buffer and passed through a MACS LS separation column 

(Miltenyi) attached to a magnetic stand.  CD56-depleted cells (those that passed freely 

through the column) were collected and used as effectors as described above.

3.6 Measurement of IL-28 and IFN-α Production by Enzyme-linked 
Immunosorbant Assay (ELISA)

Flat-bottomed 96-well Maxisorp® plates (Nunc) were coated with 100 μl optimised

concentrations of capture antibodies, diluted in PBS.  Plates were wrapped in foil and stored 

at 4°C overnight.  Plates were then washed 3 times with PBS-T (PBS + 0.05% (v/v) Tween20 

(Sigma)), using the SkanWasher300 (Molecular Devices, Berkshire, UK). 200 μl of blocking 

solution (PBS + 10% (v/v) FCS) was added to each well and plates left, wrapped in foil, for 2 

hr at RT.  Following a further 3 washes in PBS-T, 100 μl of recombinant protein standard (in 

serial dilution) and sample supernatants were added to the plates in triplicate.  Plates were 

then wrapped in foil and stored at 4°C overnight, before being washed 6 times with PBS-T. 

Optimised concentrations of biotinylated detection antibodies, diluted in blocking solution, 

were added at 100 µl/well and plates were left, wrapped in foil, at RT for 2 hr.  Plates were 

then washed 6 times with PBS-T before 100 μl Extravidin®-alkaline phosphatase conjugate 

(Sigma), diluted 1:5000 in PBS-T, was added per well.  After 1 hr incubation at RT, the plates 

were washed 3 times with PBS-T and 3 times with double-distilled water.  Sigmafast™ pNPP 

alkaline phosphatase substrate (Sigma) was prepared according to the manufacturer’s 

instructions and added at 100 µl per well.  Plates were allowed to develop in the dark for 10-

30 mins.  A Multiscan EX plate reader (Thermo Fisher Scientific, Surrey, UK) was used to
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measure optical density at a wavelength of 405nm.  Details of all ELISA antibodies and 

standards are given in Table 6.

Table 6 ELISA Antibodies and Protein Standards

Target 

Molecule
Role

Dilution / top 

standard 

concentration

Species 

of Origin
Manufacturer

IFN-α Capture 1:180 Mouse
Mabtech AB 

(Buro, Germany)

IFN-α Detection 1:180 Goat Mabtech AB

IFN-α Standard 5000 pg/ml Human Mabtech AB

IL-28 Capture 1:250 Mouse R & D Systems

IL-28 Detection 1:1000 Mouse R & D Systems

IL-28 Standard 8000 pg/ml Human R & D Systems

3.7 Measurement of IFN-β Production by ELISA

IFN-β production was measured using the Verikine™ Human IFN-β ELISA Kit (PBL 

InterferonSource, New Jersey, USA), following the manufacturer’s instructions.  All reagents 

were supplied with the kit and all incubations were performed at RT.  Briefly, 50 µl of sample 

supernatants and serial dilutions of protein standards (at a top concentration of 4000 pg/ml) 

were added in triplicate to pre-coated 96 well plates. Plates were incubated for 1 hr then 

washed 3 times with Wash Buffer. Antibody Concentrate was diluted in Concentrate Diluent 

and 100 µl added per well before 1 hr incubation, followed by 3 washes in Wash Buffer.  100 

µl Horseradish peroxidise (HRP), diluted in Concentrate Diluent, was added per well before 
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plates were incubated for 1 hr then washed a further 3 times with Wash Buffer.  100 µl TMB 

substrate was added per well and plates were allowed to develop in the dark.  After 15 mins, 

100 µl Stop Solution was added to each well and optical densities read at a wavelength of 

405nm, using a Multiscan EX plate reader.

3.8 Statistical Analysis

p values were calculated using paired student’s t test with 2-tailed distribution or  2-way 

ANOVA with Bonferroni post hoc testing.  Statistical significance was taken as p<0.05.
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4 Results

4.1 The Cytotoxic Effect of Direct Reovirus Infection on Human 
Colorectal Cancer Cell Lines

4.2 Aims

1. To assess the cell-surface expression of the reovirus receptor, JAM-A, on human 

colorectal cancer cell lines.

2. To examine the cytotoxic effect of direct reovirus infection on human colorectal cell 

lines in vitro.

3. To elucidate the mechanism of reovirus-induced cell death.

4. To determine the level of reovirus replication in human colorectal cell lines in vitro.

5. To demonstrate the effect of NAB on reovirus-induced cell death.
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4.3 Introduction

As previously discussed, reovirus has proven cytotoxic effect against a wide range of tumour 

types and has been shown to have an acceptable safety profile in a number of Phase I/II 

studies.  Whilst the initial focus on the importance of ras status has shifted in recent years, 

there is no doubt that in colorectal cancer mutant ras status promotes apoptosis in the 

context of reovirus oncolysis (Smakman et al., 2006b). The finding that approximately 50% of 

human colorectal cancers display mutant ras status therefore makes reovirus a viable 

therapeutic option in the treatment of colorectal cancer.  This chapter examines the direct, 

oncolytic potential of reovirus, using a number of human colorectal cell lines in vitro. 

4.3.1 Cell-surface expression of JAM-A on human colorectal adenocarcinoma cell 
lines

Reovirus utilises JAM-A as a serotype-independent, cellular receptor and infection is initiated 

with the attachment of the σ1 protein. The membrane-distal Ig-like D1 domain of JAM-A is 

required for homodimerization and binding to reovirus attachment protein σ1.  In order to 

assess the potential susceptibility of human colorectal cancer cells lines to reovirus infection, 

a panel of ras mutant human colorectal cancer cell lines was screened for cell-surface 

expression of JAM-A using flow cytometry.     
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Figure 4-2  Reovirus-induced Cell Death in Colorectal Adenocarcinoma Cancer 
Cell Lines

LoVo, LS174T, SW480 and SW620 cells were treated with 0, 1 or 10pfu/cell for 24-72 hr.  At 
each time point, cells were harvested and stained using the Live/Dead® cell viability assay.  
The percentage of cell death was then determined by flow cytometry.  Graphs show mean 
percentage cell death + SEM of 3 separate experiments.  Statistical significance is denoted 
by *p<0.05 (two-way ANOVA, Bonferroni post hoc test).

Figure 4-2 demonstrates that LoVo, LS174T, SW480 and SW620 colorectal cell lines were 

all susceptible to direct reovirus-mediated cell death.  The level of death seen in each cell 

line was both time and dose dependent and reached statistically significant levels in all 

cases. LoVo and SW480 cells exhibited the greatest sensitivity, with the mean level of cell 

death reaching 87% and 81% respectively at the latest time points and highest dose of 

reovirus.  The SW620 cell line exhibited the lowest level of sensitivity across all time points, 

with the mean level of death only reaching 43% at the latest time point and highest dose of 

virus.  

Having established the direct cytotoxic potential of reovirus in colorectal cancer cell lines in 

vitro, the focus of further work centred upon the SW480 and SW620 lines.  These cells 
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represent an in vitro model of both primary (SW480) and metastatic (SW620) colorectal 

cancer and were derived from the same patient, prior to any adjuvant therapy.  SW480 cells

were established from a resected primary large bowel cancer specimen and the SW620 line 

from an intra-abdominal lymph node metastasis resected six months later. 

Figure 4-3 shows photographs taken of both cell lines during in vitro culture.  The SW480 

cells (Fig 4-3A) displayed an epithelial-like morphology and were larger in size than the 

SW620 cells (Fig 4-3B) which exhibited rounder, more spindle-like characteristics.  The 

metastatic SW620 cells were also observed to grow at a much faster rate than the SW480 

cells.   

A        B

Figure 4-3 Photographs of SW480 and SW620 Human Colorectal 
Adenocarcinoma Cell Lines in vitro

SW480 (A) and SW620 (B) cell lines were cultured in DMEM supplemented with 10% FCS 
and routinely passaged at or near confluence.  Cells were visualised using a C7070 Canon 
camera and light microscope at x10 magnification.
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4.3.3 Reovirus Activates Caspase-3 in SW480 and SW620 Cell Lines

Reovirus has been shown to induce apoptotic cell death in a variety of human tumour cell 

types in vitro (reviewed by Clarke et al., 2000).  Reovirus-induced apoptosis involves the 

release of TRAIL from infected cells and the activation of TRAIL-associated death receptors 

(DR) 4 and 5. DR activation is followed by activation of caspase-8, cleavage of the Bcl-

family protein Bid, and the subsequent release of pro-apoptotic mitochondrial factors 

(reviewed by Clarke, 2003).  Caspases-8 and -9 also contribute to the activation of the 

effector caspases such as caspase-3.  Caspase-3 acts on intracellular substrates and is 

essential for dismantling cellular structures and the formation of apoptotic bodies, the 

hallmark of apoptosis. 

In order to confirm that apoptosis was the main mechanism of reovirus-induced cell death in 

colorectal cancer cells, SW480 and SW620 cells were cultured in the presence of 0 or 

10pfu/cell reovirus for 72 hr.  Cells were then harvested and the level of intracellular, active 

caspase-3 was measured using flow cytometry. 

Fig 4-4 shows that reovirus infection induced significant levels of active caspase-3 production 

in SW480 and SW620 cell lines.  A higher percentage of SW480 cells expressed intracellular 

caspase-3 after reovirus infection when compared to SW620 cells (60% vs 43% 

respectively).  This is in keeping with the level of cell death observed in these cell lines upon 

infection with reovirus (Fig 4-2) and suggests that SW480 cells are more susceptible to 

reovirus-induced apoptosis than the metastatic SW620 line.  
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Figure 4-4 Intracellular Active Caspase-3 Production Following Direct 
Reovirus Infection of SW480 and SW620 Cells Lines

SW480 and SW620 cells were treated with 0 or 10pfu/cell for 72 hours.  Cells were then 
harvested and stained using the PE-conjugated Active Caspse-3 Apoptosis Kit.  The 
percentage of cells expressing intracellular caspase-3 was then determined using flow 
cytometry.  Graph shows mean + SEM of 3 independent experiments. Statistical significance 
is denoted by *p<0.05 (two-way ANOVA, Bonferroni post hoc test).

To confirm the role of apoptosis in the reovirus-induced oncolysis of SW480 and SW620 

cells, Z-VAD-FMK, a cell permeant, pan-caspase inhibitor which binds irreversibly to the 

catalytic site of caspase proteases and inhibits apoptosis induction, was added to the cell 

cultures prior to the addition of reovirus.  The subsequent level of cell death was then

determined using the Live/Dead® cell viability assay and flow cytometry.  The results are 

shown in Fig 4-5.
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Figure 4-5  Effect of Z-VAD-FMK on Reovirus-induced SW480 and SW620 Cell 
Death

SW480 and SW620 cells were treated ± 50µM Z-VAD-FMK 1 hour prior to the addition 0 or 
10pfu/cell reovirus. Cells were harvested at 72 hr and the level of cell death was assessed 
using the Live/Dead® cell viability assay and flow cytometry. Graph shows mean percentage 
cell death + SEM of 3 independent experiments. Statistical significance is denoted by 
*p<0.05 (two-way ANOVA, Bonferroni post hoc test).

The addition of ZVAD-FMK prior to infection with reovirus significantly decreased reovirus-

induced cell death in SW480 and SW620 cultures and confirms the role of apoptosis in this 

process.  The level of reduction in cell death induced by the addition of ZVAD-FMK to the 

cultures was more marked in the SW480 cell line (79% vs 29%) than in the SW620 cells 

(42% vs 15%).

4.3.4 SW480 and SW620 Cell Lines Support Reovirus Replication 

Several in vitro studies have demonstrated reovirus’ predilection for replication in ras

activated cells. NIH3T3 cells are naturally resistant to reovirus infection; however, when 

transformed with the v-erb oncogene, a truncated, EGFR-lacking, ligand-binding, 

extracellular domain, containing a constitutively active tyrosine kinase cytoplasmic domain 

which activates the ras signalling pathway, they become highly permissive to reovirus 

infection (Strong et al., 1998).
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The mutation status of Kras, however, has been shown not to predict sensitivity to reovirus 

oncolysis in a panel of colorectal cell lines (Smakman et. al., 2006b).  In that study, viral 

replication was observed in all cell lines tested regardless of Kras status and was not 

affected by the deletion of endogenous mutant Kras.   Deletion did, however, affect reovirus-

induced apoptosis, suggesting that oncolysis is not dependent upon viral replication but on 

tumour cells’ susceptibility to apoptosis.  Ras-transformed cells demonstrate increased 

susceptibility to Type 3 Dearing Strain reovirus via the inactivation of the dsRNA-activated 

protein kinase phosphorylation pathway (Coffey et al., 1998; Strong et al., 1998).  Importantly 

in the context of this study, SW480 and SW620 were shown to express JAM-A (Fig 4-1) and 

are known to express a ras codon 12 mutation (Bos, 1989).   

Having demonstrated that SW480 and SW620 cells expressed cell-surface JAM-A and were 

permissive to reovirus-induced cell death, their ability to support viral replication upon 

infection was investigated.  SW480 and SW620 cells were infected with 1pfu/cell reovirus for 

24-72 hr and standard plaque assays were performed using L929 cells. 

Figure 4-6  Replication of Reovirus in SW480 and SW620 Cells

SW480 and SW620 cells were treated with 1pfu/cell reovirus for 24-72 hr.  At each time 
point, cells and supernatants were harvested, before lysates were prepared and the viral titre 
determined by plaque assay. The graph shows fold increase in reovirus titre compared to 
input level and is representative of 3 separate experiments. 
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Figure 4-6 demonstrates the fold increase in reovirus titre compared to the initial viral input 

dose for each cell line. SW480 and SW620 cells supported reovirus replication in a time 

dependent manner.  Whereas SW480 cells permitted replication of the virus as early as 24 hr 

after infection, SW620 cells did not begin to promote replication until 48 hr.  Moreover, the 

fold increase in viral titre was much greater in the SW480 cell line than the SW620 cells at 

each time point examined (213- fold increase vs 42-fold increase at 72 hr, respectively).  This 

result is consistent with the levels of both cell death (Fig 4-2) and intracellular active 

caspase-3 production (Fig 4-3) in each cell line following direct infection with reovirus, with 

SW480 being more susceptible than SW620 cells.

4.3.5 Effect of Human Serum on Direct Reovirus-induced Cytotoxicity 

Several studies have demonstrated the inhibitory effect of neutralising anti-reovirus antibody

on oncolysis (White et al., 2008).  Blunting the effect of NAB using immunomodulatory 

agents such as cyclophosphamide has been shown to improve the efficacy of systemically 

delivered oncolytic viruses (Kottke et al., 2009, Lun et al., 2009).  Whilst NAB certainly 

antagonises the oncolytic activity of reovirus, it has also been shown in murine models that 

complete abrogation of NAB may lead to significant toxicities, with viral replication occurring 

in normal tissues (Qiao et al., 2008a).

To investigate the effect of NAB on the direct oncolytic potential of reovirus, SW480 and 

SW620 cells were treated with 0 or 10pfu/cell reovirus in the presence (human serum, HS) or 

absence (FCS) of NAB.  Cell viability was then measured using the Live/Dead® cell viability 

assay and flow cytometry.  The results are shown in Fig 4-7.



84

Figure 4-7 Effect of NAB on Reovirus-induced Cytotoxicity

SW480 and SW620 cell lines were cultured in the presence of either 10% FCS or 1- 2% HS.  
Reovirus was added at 0 or 10pfu/cell for 72 hours.  Cells were then harvested and the level 
of cell death was measured using the Live/Dead® cell viability assay and flow cytometry. 
The graph shows the mean percentage of cell death + SEM of 3 independent experiments.
Statistical significance is denoted by *p<0.05 (paired Student’s t test).   

The addition of NAB to the cultures significantly reduced the level of reovirus-induced 

cytotoxicity in both cell lines.  In the SW480 cell line, the level of reovirus-induced cell death 

in the absence of NAB was 81%, whereas in the presence of 1% NAB-containing HS, the 

level of cell death reached only 17%.  In the SW620 cell line, the presence of NAB in the 

cultures reduced the level of cell death from 43% to 8%.  These findings highlight the 

deleterious effect of NAB on the cytotoxic potential of direct treatment with reovirus.      

4.4 Discussion 

This chapter examined the direct effects of clinical grade reovirus on the human colorectal 

cell lines, LoVo, LS174T, SW480 and SW620.  These cell lines were all found to express 

JAM-A, the main reovirus receptor, on their cell-surface (Fig 4-1).  In addition, all cell lines 

demonstrated susceptibility to infection and the levels of cell death observed were both time 

and dose dependent (Fig 4-2).  The differential susceptibility of SW480 and SW620 to direct 

reovirus killing, as well as the differences in JAM-A expression between the two cell lines, 
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demonstrates not only the heterogeneity of the cell lines themselves, but also the differing 

tumour biology between primary and metastatic tumour cells.  

It is well known that JAM-A plays an essential role in tight junction integrity (Mandell et al.,

2005).  Disruption of tight junction integrity has been implicated in cancer cell metastasis by 

inducing epithelial mesenchymal transition (EMT) (Gumbiner et al., 2000), and down-

regulation of JAM-A in breast cancer has been shown to serve as a key negative regulator in 

cellular invasion and migration (Naik et al., 2008).  It is therefore possible that the lower level 

of JAM-A expression seen on the metastatic SW620 cell line (Fig 4-1) could have a 

deleterious effect on the level of reovirus binding and subsequent cellular entry.

Aberrant expression of cell-surface JAM-A by tumour cells is likely to represent a significant 

barrier to meaningful direct oncolysis.  Whilst low level cellular entry can occur via sialic acid

binding and there are reports of JAM-A-independent cellular entry by reovirus (Danthi et al.,

2006), it is the reovirus-JAM-A interaction which has proven the most efficient method of 

cellular entry.  A further confounding factor is the mislocalisation of JAM-A on the surface of 

CRLM. It has been shown that both primary colorectal cancers and, to a greater extent 

CRLM, express JAM-A throughout the cell cytoplasm and not on the cell-surface.  Moreover, 

the addition of reovirus to single cell suspensions and to small fragments of colorectal 

metastasis tissue did not result in any reduction in cell viability, suggesting a lack of oncolytic 

efficacy (van Houdt et al., 2008).  

The finding that reovirus infection of SW480 and SW620 cells promoted the activation of 

caspase-3 confirmed that the predominant mode of cellular death following infection was 

apoptosis (Fig 4-6).  This correlates with previous reports that apoptosis is a critical 

mechanism for inducing cell death upon host infection (reviewed by Clarke et al., 2003). 

More recently, it has been shown that caspase-3 gene deletion in mice not only resulted in 

reduced central nervous system toxicity but also enhanced survival rates in mice that had 

been delivered a potentially lethal intra-cerebral dose of reovirus (Beckham et al., 2010). 
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Further evidence for the role of apoptosis in colorectal cancer cell line death following 

reovirus infection was seen by addition of the pan caspase blocker, ZVAD-FMK to in vitro

cultures (Fig 4-7).  Here, a significant reduction in the level of reovirus-induced cell death 

was observed.  However, the addition of ZVAD-FMK did not completely abrogate cell death 

at 72 hr post-infection (Fig 4-7), suggesting that a longer time course is needed to see 

complete cell death in the cultures.  This is in-keeping with previous findings (Smakman et 

al., 2005). 

It is well documented that activated ras signalling significantly enhances reovirus replication 

and spread.  Both SW480 and SW620 cell lines express a ras mutation on codon 12 (Bos et 

al., 1988).  Whilst the levels of reovirus-induced cell death in the SW480 and SW620 cell 

lines correlated with their levels of reovirus replication, this cannot be explained by activated 

ras status alone.  The differential level of replication between the two cell lines may in part be 

explained by the higher level of JAM-A expression seen on SW480 cells (Fig 4-1).  It is likely, 

however, that the differing susceptibility is due to a number of complex molecular changes 

which have occurred as part of the process of developing metastatic capability.    

As Fig 4-7 demonstrates, the presence of very low levels of NAB-containing HS led to 

significant blockade of direct reovirus-induced cytotoxicity.  This deleterious effect of NAB on 

direct oncolysis by reovirus has led to concerns over the clinical efficacy of systemically 

administered reovirus.  Given that the level of HS in these cultures was significantly less than 

the phyisiological level (~30%), concerns regarding the lack of anti-tumour effect due to viral 

neutralisation would seem valid.    In contrast, however, several studies have demonstrated 

the presence of virus in tumour tissue following i.v. administration (Vidal et al., 2008; Comins 

et al., 2010).  Furthermore, in the REO 013 Phase I clinical trial of patients undergoing i.v.

infusion of Reolysin® prior to curative resection of CRLM, viral factories within tumour were 

identified and replicating virus was recovered from tumour tissue despite pre-existing anti-

viral immunity (Adair et al., 2012b).
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These findings raise interesting questions about how the virus might evade NAB in the 

circulation after systemic delivery.  Recently, purified populations of ex-vivo-loaded, human 

DC and T cells have been shown to be capable of delivering reovirus to Mel-888 melanoma 

targets for effective killing in the absence of human serum (Ilett et al., 2009).  Only DC, 

however, acted as efficient cell carriers in the presence of NAB but with lower efficacy than in 

the absence of HS.  Viral carriage on a clinically relevant population of immune cells provides 

one interesting mechanism by which reovirus may evade the deleterious effects of NAB in 

the systemic circulation, to be delivered to tumour targets in vivo and forms the basis of the 

work shown in the following chapter. 
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5 Results

5.1 Cellular Carriage of Reovirus by Immune Cells, Protection from NAB
and ‘Hand-off’ to Colorectal Tumour Cell Targets

5.2 Aims

1. To assess cell-surface expression of the reovirus receptor, JAM-A, on human PBMC.

2. To examine the level of reovirus cell-surface binding on human PBMC in the 

presence of NAB.

3. To determine the ability of human PBMC to support reovirus replication.

4. To demonstrate the ability of PBMC to ‘hitch-hike’ and hand-off reovirus to SW480 

and SW620 cell line targets.

5. To assess the replication competence of reovirus which has been hitch-hiked on 

PBMC and handed off to SW480 and SW620 cell line targets.
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5.3 Introduction

The use of cell carriers with inherent tumour-trafficking properties appears an attractive 

strategy in enhancing viral delivery.  Immune cells such as antigen-specific T cells and 

cytokine-induced killer cells have been used for this purpose (Cole et al., 2005; Thorne et al.,

2006).  As well as this, reovirus-loaded mDC and T cells can be used to deliver reovirus to 

melanoma in murine models (Ilett et al., 2009).  Furthermore, DC internalise reovirus in the 

presence of NAB and can subsequently deliver the virus to melanoma targets in vitro.  

Moreover, these reovirus-loaded DC remain capable of both phagocytosis and T cell priming 

(Ilett et al., 2011).

Whilst the most clinically pragmatic mode of delivery of reovirus to patients remains the 

systemic, i.v. route, factors such as complement proteins, antibodies and immune scavenger 

cells have been shown to eliminate viral particles almost instantly upon systemic 

administration of virus.  Within two minutes of i.v. injection into an immuno-competent 

mouse, VSV has been shown to be almost entirely cell-associated (Willmon et al., 2009a).  

Whilst much of this cellular uptake is likely to be by cells equipped for viral clearance, 

opportunistic adhesion to the surface of cells may occur with subsequent viral dissociation at 

distant sites (Cole et al., 2005).  

5.3.1 Cell-surface Expression of JAM-A on Human PBMC

To establish the potential of immune cells within whole PBMC to bind and carry reovirus, 

PBMC were isolated from the peripheral blood of healthy donors and the level of cell-surface 

JAM-A expression in the constituent cell populations was measured by flow cytometry.
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Figure 5-1 Cell-surface Expression of JAM-A on Human PBMC 

PBMC were isolated from healthy donor peripheral blood.  Cells were stained with anti-
human: CD3, CD8, CD4, CD56, CD14 and CD19 antibodies in the presence of JAM-A 
antibody. The cell-surface expression of JAM-A within each sub-population was then 
measured using flow cytometry (black line: JAM-A; shaded grey: isotype-matched control).  
Data is representative of 3 independent experiments.

Figure 5-1 demonstrates that the main subpopulations which make up human PBMC express 

cell-surface JAM-A.  High levels of expression (95-100%) were seen on the cell-surface of 

CD8 and CD4+ T cells, B cells as well as NK cells.  Monocytes (CD14+) demonstrated 100% 

cell-surface expression of JAM-A.  This highlights the potential for human PBMC to bind 

reovirus to their cell-surface. 

5.3.2 Cell-surface Binding of Reovirus on PBMC

Having demonstrated high levels of JAM-A expression on the surface of several PBMC sub-

populations, suggesting a potential pathway for viral binding and carriage, the ability of these 

cells to bind reovirus to their surface was then assessed.  An antibody specific to the reovirus 

capsid protein σ3 was used to detect reovirus binding to the surface of PBMC sub-

populations in vitro using flow cytometry.  Cells were cultured in the presence of reovirus and 

HS (to ensure the presence of NAB and mimic the situation in vivo in patients), for 4 hr.  
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Having washed off unbound virus, anti σ3 antibody was then added. Reovirus binding to 

each PBMC sub-population was then determined using flow cytometry.

Figure 5-2  Cell-surface Binding of Reovirus on Human PBMC

PBMC were isolated from healthy donor blood and treated with 0, 1 or 10pfu/cell reovirus for 
4 hr in the presence of HS.  Excess virus was then washed off and the cells were  stained for 
cell-surface binding of reovirus σ3 within the CD4+, CD8+, CD3-CD56+, CD14+ and CD19+

PBMC sub-populations. σ3 positive cells within each sub-population were then determined 
using flow cytometry (black line: 10pfu/cell; grey line: 1pfu/cell; shaded grey: 0pfu/cell).  Data 
is representative of 3 independent experiments.

Figure 5-2 demonstrates that the major cellular constituents of human PBMC can all bind 

reovirus to their cell-surface in the presence of NAB and that virus is detectable by flow 

cytometry after 4 hr of culture.  With the exception of B cells, all other sub-populations 

exhibited increased levels of surface binding with the higher dose of virus.  

5.3.3 Replication of Reovirus in Human PBMC

Having established that PBMC not only expressed cell-surface JAM-A, but also that reovirus 

can bind to their cell-surface, the potential of PBMC to support reovirus replication and 

therefore act as viral amplification factories, was investigated.  PBMC were isolated from 

healthy volunteers, treated with reovirus and cultured in presence of NAB for 24-72 hr.  

Plaque assays using L929 cells were then performed to quantify viral titre.
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Figure 5-3 Replication of Reovirus in Human PBMC

PBMC were isolated from the peripheral blood of healthy donors. 2x105 cells were treated
with 1pfu/cell reovirus for a total of 72 hr in the presence of HS.  At each time point, cells and 
supernatants were harvested and lysates were made. Viral titre was determined using 
standard plaque assay.  

As 2x105 PBMC were treated with 1pfu/cell reovirus, Figure 5-3 demonstrates that whole 

PBMC do not support reovirus replication.  A reduction in the overall viral yield was 

demonstrated in 2 of the 4 donors and no net increase in yield was demonstrated in the 

remaining 2.  Although the levels of virus yielded from donor 4 were slightly higher than the 

initial treatment dose, it is likely that this represents a margin of error in the initial stock virus 

titre or the plaque assay, rather than true replication.  It is also important to note that reovirus 

did not exhibit cytotoxicity towards PBMC at a dose of 5pfu/cell (data not shown).  
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5.3.4 Human PBMC can Hitch-hike and Hand-off Reovirus to SW480 and SW620 Cell 
Targets in the Presence of NAB

Three critical, sequential phases are required for successful carrier cell-based delivery of 

oncolytic viruses: ex vivo loading, stealth delivery and virus production at the tumour site 

(reviewed by Power et al., 2008).  In the first of these phases, carrier cells are exposed to 

virus for a sufficient time to allow viral binding to occur. Following this, the carrier cells must 

pass through the systemic circulation avoiding destruction by complement proteins, 

phagocytes or cytotoxic cells.   The third phase involves viral delivery to the tumour and the 

exact mechanism of how this process occurs is dependent upon the type of carrier cells 

used.  By using carriers which permit viral replication, delivery of high numbers of virions due 

to viral amplification may be possible.  Having established that PBMC expressed the main 

reovirus receptor, JAM-A and that reovirus could bind to the cell-surface of the sub-

populations making up human PBMC in the presence of HS, the potential for PBMC to carry 

reovirus and deliver it to tumour cell targets in vitro was investigated. 

To this end, PBMC were loaded with 0 or 1pfu/cell reovirus for 4 hr in the presence of HS 

(i.e. NAB).  Following this, the cells were washed in PBS to remove any unbound virus and 

then co-cultured with adherent SW480 and SW620 cell targets. After 4 hr, PBMC were 

removed and the targets cultured for 48-120 hr. Concomitantly, separate targets cells were 

pulsed directly with 0.005pfu/cell reovirus (this dose represented the equivalent ‘direct’ virus 

dose to that retained and hitch-hiked on PBMC, as determined by plaque assay (data not 

shown).  All cultures were performed in the presence of neutralising HS.  The level of tumour 

target cell death was then measured using PI staining and flow cytometry.
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Figure 5-4 Death of SW480 and SW620 Cells After Virus Hitch-hiking and 
Hand-off by PBMC

PBMC were isolated from healthy donor peripheral blood.  Cells were  treated with 0, or 1 
pfu/cellreovirus for  4 hr in the presence of HS.  Cells were then washed to remove unbound 
virus and co-cultured with SW480 or SW620 targets for a further 4 hr.  PBMC were then 
removed from the cultures before targets were incubated for 120 hr.  All cultures were 
performed in the presence of NAB-containing HS.Killing by an equivalent dose of ‘direct’ 
virus under these conditions was also tested.  The percentage of target cell death was 
measured by PI staining and flow cytometry. Histograms are representative of 5 donors.

Figure 5-4 demonstrates the ability of human PBMC to hitch-hike reovirus on their cell-

surface in the presence of NAB.  Furthermore, these cells were able to hand-off the virus to 

both SW480 and SW620 targets.  Moreover, reovirus that had been handed-off to tumour 

target cells remained cytotoxic, as determined by PI positivity of SW480 and SW620 cells 

after culture.  Interestingly, the level of PI positive tumour targets after hitch-hiking was found 

to be greater in both cell lines than the level seen upon direct infection with an equivalent 

direct dose of reovirus in the presence of NAB (60% vs 37% in SW480 and 35% vs 17% in 

SW620 cells).  

5.3.5 Hitch-hiked Virus Remains Replication-competent

This study has demonstrated that PBMC can bind reovirus to their cell-surface in the 

presence of neutralising anti-reovirus antibodies. As well as this, they have been shown to

deliver cytotoxic virus to SW480 and SW620 colorectal cancer cell line targets.  Moreover, 
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viral carriage by PBMC resulted in higher levels of anti-tumour efficacy than the equivalent 

direct dose of the virus. 

In order for reovirus-induced apoptosis to occur, binding of σ1 to both JAM-A and sialic acid 

must occur (Connolly et al., 2002) and reovirus oncolysis is dependent upon proteolytic 

disassembly of the outer capsid to create ISVP (Alain et al., 2007).  In order to confirm that 

viral carriage on PBMC had not altered the ability of reovirus to undergo disassembly or to 

bind to tumour cell-surface JAM-A, we aimed to assess the replication competence of 

reovirus which had been handed off to tumour cell targets. Plaque assays were therefore 

undertaken to determine viral replication in SW480 and SW620 tumour cell line targets which 

had received virus via the hitch-hiking process.

Figure 5-5 Reovirus Replication in SW480 and SW620 Cells Following Hitch-
hiking and Direct Reovirus Infection

Cells and supernatants from SW480 and SW620 culutres treated as in Fig 5-4 were 
collected at 48-120 hr post viral hand-off and stored at -80oC until required.  Lysates were 
then prepared, before the viral titre in each sample was assessed by standard plaque assay.  
Graphs show mean fold increase in virus titre compared to input dose + SEM of 3 separate 
experiments.  Statistical significance is denoted by *p<0.05 (paired Student’s t test).   

Reovirus which has been hitch-hiked by PBMC in the presence of HS and has been handed 

off to colorectal cell line targets retains the ability to replicate, as demonstrated in Fig 5-5.

Higher levels of replication were seen in SW480 cells than in SW620 cells following hand-off,

which correlates with the pattern of replication seen in Fig 4-6.  Moreover, viral hand-off by 
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PBMC facilitated significantly higher levels of replication in SW480 cells than ‘direct’ virus at 

120 hr, with a maximum fold increase of 100,000, compared to just 5000 in the directly 

infected cells.  Whilst statistical significance was not reached in the SW620 samples, a 

maximum fold increase of 10,000 was demonstrated in the hitch-hiked conditions, compared 

to a 1000-fold increase in the directly infected cultures. 

5.4 Discussion

One of the first descriptions of cell-based carriage for oncolytic viral therapy utilised human 

teratocarcinoma PA-1 as carrier cells for the i.p. delivery of a replication competent HSV in a 

murine, xenograft, ovarian cancer model (Coukos et al., 1999).  Here, carrier cells 

successfully delivered the virus and resulted in a reduction in tumour burden with larger 

areas of tumour infection evident on immunohistochemistry than those treated with direct 

virus.  Further evidence for the use of immune cells as carriers to deliver virus to tumour 

targets was demonstrated using syngeneic C26 murine colorectal cancer cells infected with 

VSV.  In this study, anti-tumour efficacy against established lung metastases was observed 

despite the presence of NAB (Power et al., 2007).  

Several differing approaches, aimed at protecting viral particles from neutralisation by IgG 

within the systemic circulation and ensuring tumour delivery, have been investigated. These 

have included techniques such as viral coat modification with lipid encapsulation and 

polymer coating (Kangasniemi et al., 2011; Fisher et al., 2007; Engelmann et al., 1999). 

Other approaches have included serotype switching to evade specific antibody neutralisation 

(reviewed by Bangari et al., 2006).  Pre-clinical studies have shown that carriage by purified 

T cells, (Qiao et al., 2008a) monocytes, and endothelial cells (Iankov et al., 2007) can 

prevent viral elimination. These cells may simply act as carriers and deliver virus to the target 

tumour in a process known as hitch-hiking, or the virus may actively replicate within the cell, 

facilitating amplified viral delivery.  Cellular migration within the tumour environment can also 

improve micro-distribution after direct delivery, thereby improving bio-distribution (Power et 
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al., 2007).   Utilising clinically relevant, circulating immune cells as viral carriers or “Trojan 

horses” in the context of systemic delivery, however, has not been examined in detail. 

The main constituents of human PBMC were found to express JAM-A (Fig 5-1), highlighting 

their potential to bind reovirus on their cell-surface.  Indeed, when these PBMC sub-

populations were stained for expression of the reovirus capsid protein σ3, they were all found 

to be capable of binding reovirus, even in the presence of NAB (Fig 5-2).    Although PBMC 

did not support reovirus replication (Fig 5-3) and could not therefore act as viral replication 

factories, there was no evidence of reovirus-induced cytotoxicity towards PBMC (data not 

shown).   

As demonstrated in Fig 5-4, PBMC were capable of hitch-hiking and handing-off reovirus to 

SW480 and SW620 cell targets in the presence of NAB.  Furthermore, the level of tumour 

target death following this process was greater than that seen in the equivalent to hitch-hiked 

dose of directly added virus.  This implies that the process of viral hitch-hiking on, and hand-

off by, PBMC affords a protective effect against NAB in human serum.  This finding has 

important clinical implications.  As mentioned previously, several studies have demonstrated 

reduced oncolytic efficacy upon systemic administration of virus because of circulating NAB.  

Whilst techniques to abrogate this anti-viral immune response  have been reported (Kottke et 

al., 2009), this is the first account of a physiologically relevant population of immune cells 

acting as potential chaperones for reovirus to evade the anti-viral immune response in the 

context of systemic delivery.

The substantially higher levels of reovirus replication in both tumour cell targets observed 

following hitch-hiking (Fig 5-5) compared with an equivalent directly infected dose, highlights 

a further potentially useful clinical characteristic of immune cell carriage of reovirus.  

Although the MTD has not been reached in any of the clinical trials using Reolysin® to date, 

this finding implies that giving even low systemic doses may result in substantial anti-tumour 

efficacy following hand-off by autologous immune cells. In the clinical setting, data from the 
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recently completed REO 013 trial have shown that PBMC, granulocytes and platelets, though 

not red blood cells, collected from treated, NAB-positive patients, effectively hitch-hiked and 

protected reovirus for hand-off and killing of target cells ex vivo.  Furthermore, in 4 of 4

patients tested, replication-competent reovirus was recovered from tumour samples (but not 

normal liver) and evidence of viral factories was observed in the metastases, implying that, 

even in the presence of NAB, virus can be delivered to tumour sites in patients (Adair et al.,

2012b).
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6 Results

6.1 The Effects of Reovirus on Innate Immune Cells within PBMC in the 
Presence of Neutralising Human Serum

6.2 Aims

1. To assess the cytokine/chemokine response of reovirus-treated PBMC.

2. To examine the effects of reovirus on the activation status of NK cells within whole 

PBMC.

3. To investigate the level of NK ligand expression on SW480 and SW620 colorectal cell 

lines.
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6.3 Introduction

It has been shown that reovirus infection activates isolated DC with the production of IFN-α, 

TNF-α, IL-12p70, and IL-6 (Errington et al., 2008b).  Interactions between purified reovirus-

activated DC and autologous NK cells have been shown to induce the production of IFN-γ 

upon co-culture with PBMC in a cell-to-cell contact-dependent manner (Prestwich et al.,

2009b).  Furthermore, melanoma-loaded DC, cultured in reovirus-infected tumour cell-

conditioned media, primed an adaptive anti-tumour immune response (Steele et al., 2011).  

These findings suggest that reovirus-activated DC can trigger innate immune cell activation 

and that the pro-inflammatory cytokines and chemokines produced in response can recruit 

adaptive immune effectors to the tumour microenvironment.  

NK cells are an important cell population in the development of an anti-tumour immune 

response. The ability of isolated NK cells to produce IFN-γ upon contact with reovirus-

activated DC demonstrates the importance of cellular cross-talk. Moreover, the ability to 

activate NK cells by the administration of reovirus to provoke innate immune cell killing of 

tumour cells may have significant clinical benefits. For this reason, the focus of further study 

centres on the NK cell response to reovirus treatment of whole PBMC in the presence of HS.

NK cells express an array of receptors that modulate their cytotoxicity against tumours and 

infected cells.  These include NK-specific receptors known as natural cytotoxicity receptors 

(NCRs). NKp30, NKp44 and NKp46 make up the NCRs and these are complemented by 

other receptors, including NKG2D and the cell-surface receptor DNAM-1, for inducing NK cell 

activation.  DNAM-1 is expressed on the surface of healthy cells and has been implicated in 

the recognition of target cells by cytotoxic cells (Shibuya et al., 1996).  Two ligands for 

DNAM-1 are known: nectin 2 (CD112) and nectin-like molecule 5 (CD155), which is also the 

receptor for poliovirus (Bottino et al., 2003; reviewed by Fuchs et al., 2006).  DNAM-1 has 

been shown to regulate NK cell-mediated killing of a number of tumour types, including 

myeloid and lymphoblastic leukaemia (Pende et al., 2005), ovarian carcinoma (Carlsten et 

al., 2007) and myeloma (El-Sherbiny et al., 2007).
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NKG2D is expressed on virtually all NK cells and binds to a number of cell-surface ligands,

including MICA/B, ULBP 1-5 and isoform proteins (Bauer et al., 1999; Cosman et al., 2001).  

As the most prominent activating receptor, it mediates immune responses that are important 

in NK-mediated surveillance against cancer and infection (reviewed by Raulet et al., 2003).  

CD69 is a glycoprotein, membrane receptor which is transiently expressed on the activation 

of all bone marrow derived cells with the exception of erythrocytes (reviewed by Testi et al.,

1994).  It is not usually detected on resting lymphocytes, and is selectively expressed in 

chronic inflammatory infiltrates and at the sites of active immune responses in vivo (Sancho 

et al., 2005). Once activated, NK cells rapidly express CD69 (Borrego et al., 1993) and its 

importance in NK cell-mediated cytotoxicity has been demonstrated (Moretta et al., 1991).  

As well as this, CD69 regulates NK cell proliferation, TNF-α production and the expression of 

other, functionally relevant, activation molecules, including CD25 and intracellular adhesion 

molecule-1 (ICAM-1) (Borrego et al., 1999). More recenlty, CD69 has also been shown to 

mediate TGF-β production and to down-regulate auto-immunity (Sancho et al., 2003). 

A small subset of NK cells- CD56bright CD16– KIR– NKG2A+- express CCR7, which plays a 

pivotal role in the migration of NK cells to lymph nodes and participates in their proliferation 

and activation (Robertson et al., 2000).  NK cells are largely excluded from lymph nodes 

unless those nodes are undergoing an immune response.  They may, however, acquire 

CCR7 from other CCR7-expressing cells via cell to cell contact and subsequent CCR7 

receptor uptake from them.  This process is regulated by the interaction of MHC-I and NK 

inhibitory ligands and occurs prior to cytolysis (Marcenaro et al., 2009).   

Having demonstrated that reovirus can be carried on immune cells in the presence of HS

and that those carrier cells could deliver the virus to colorectal cancer cell line targets which 

support replication in vitro, the effect of reovirus infection on the innate immune cells within 

whole PBMC was next examined.  
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hemokine Release by Reovirus-infected PBMC 
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oncolytic VSV sensitised B16ova melanoma cells to NK killing in vivo (Wongthida et al.,

2010).  
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Figure 6-2  IL-28 Release from Reovirus-treated PBMC

PBMC were isolated from the peripheral blood of healthy donors.  Cells were teated with 0 or 
1pfu/cell reovirus and cultured overnight in the presence of HS.  Supernatants were collected 
and analysed by ELISA for the presence of IL- 28. Graph shows mean concentration of 
cytokine + SEM for 3 separate donors.

Figure 6-2 demonstrates that IL-28 was not induced from PBMC in response to overnight 

treatment with 1pfu/cell reovirus.  Moreover, the type II IFN, IFN-γ, was also not produced by 

reovirus-treated PBMC, in keeping with previous reports (Prestwich et al., 2009b).  As well as 

this, no significant increase was seen in the levels of the pro-inflammatory 

cytokines/chemokines MIP-1α, MIP-1β, RANTES or TNF-α (data not shown).    

6.3.2 Activation of NK Cells within PBMC by Reovirus

In order to quantify the effect of reovirus on NK cell activation receptors and molecules, 

PBMC were infected with 0 or 1pfu/cell reovirus overnight and the cell-surface expression of 

each molecule on CD3- CD56+ NK cells was assessed by flow cytometry.
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Figure 6-3 Expression of NK Cell-surface Activation Markers on Reovirus-
activated PBMC 

PBMC were isolated from healthy donor peripheral blood.  Cells were treated with 0 or 
1pfu/cell reovirus and cultured overnight in the presence of HS.  Cells were then stained with 
anti-human CD3 and CD56 (to identify NK cells), alongside anti-human: CD16, CD69. 
NKG2D, CCR7, DNAM-1, NKp30, NKp44 and NKp46 antibodies.  The cell-surface 
expression of each activation marker on CD3-CD56+ NK cells was then determined by flow 
cytometry.  Graph shows percentage of cells positive for each marker + SEM of 5 separate 
experiments.  Statistical significance is denoted by *p<0.05 (paired Student’s t test).   

Figure 6-3 demonstrates that reovirus infection of whole PBMC induced up-regulation of the 

NK cell-surface glycoprotein, CD69, and that the increase in mean percentage expression

(43% vs 96%) seen in 5 separate, healthy, donors reached statistical significance. Reovirus 

treatment of PBMC also induced significant up-regulation of the migratory receptor, CCR7, 

on NK cells (22% vs 42%). No significant change was noted, however, in the levels of the Fc 

receptor, CD16, or in the NCRs, NKp30 and NKp46.  Likewise, the NK cell surface 

expression of DNAM-1 and NKG2D did not alter after overnight treatment with reovirus.  This

may be the result of the background levels of expression being very high. Cell-surface 

expression of NKp44 was negligible both before and after virus treatment.
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6.3.3 Cell-surface Expression of NK Ligands on SW480 and SW620 Tumour Targets

Having demonstrated the ability of reovirus to cause activation of NK cells by the up-

regulation of CD69 and CCR7 within a mixed population of PBMC, the cell-surface 

expression of NK ligands on SW480 and SW620 cells was examined, to explore their 

potential as targets for killing by reovirus-activated NK cells.  SW480 and SW620 cells were 

cultured in the presence or absence of 1pfu/cell reovirus to determine any changes in the 

expression of the NKG2D ligands, ULBP-1, ULBP-2 and MICA/B and the DNAM ligand, 

CD112. Changes in the level of cell-surface MHC-I expression were also examined (Fig 6-

4).
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Figure 6-4 Cell-surface Expression of NK Ligands on SW480 and SW620 Cells 

SW480 (A) and SW620 (B) cells were treated with 0 or 1pfu/cell reovirus overnight.  Cells 
were then stained with anti-human: MHC-I, ULBP-1, ULBP-2, ICAM-1, CD112 or MICA/B 
antibodies and the percentage cell-surface expression was determined by flow cytometry 
(blue line: 0pfu/cell; green line: 1pfu/cell; shaded grey: isotype control).  Data is 
representative of 3 independent experiments.

Fig 6-4 demonstrates the cell-surface expression of NK ligands on SW480 and SW620 cells 

in response to 0 or 1pfu/cell reovirus treatment, overnight.  Both cell lines were found to 

MHC-1     ULBP-1 ULBP-2

ICAM-1 CD112 MICA/B

MHC-1 ULBP-1 ULBP-2

ICAM-1 CD112 MICA/B
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express MHC-I, although lower levels of expression were seen on the metastatic SW620 cell 

line than on SW480 cells.  Moreover, reovirus infection caused a small increase in the level 

of SW620 MHC-I expression, whereas no increase was noted in the SW480 cell line.  Both 

cell lines also expressed the stress ligands ULBP-1 and ULBP-2; however reovirus infection 

had no effect on the level of ULBP-1 expression.  A minimal increase in the level of ULBP-2 

expression was seen on the SW620 cell line following incubation with reovirus.  

Whilst SW480 cells were observed to have a higher basal level of cell-surface ICAM-1 than 

SW620 cells, they did not increase its expression after reovirus treatment, unlike the 

marginal increase seen on SW620 cells.  Similarly, higher levels of expression of the DNAM-

1 ligand, CD112, were noted on the SW480 cell line; however reovirus exposure did not 

result in an increase in CD112 expression on either tumour cell line.  Higher baseline levels 

of MICA/B expression were noted in the SW480 cell line, and reovirus infection resulted in a 

small increase in its surface expression on this tumour cell line only.  

6.4 Discussion

The finding that reovirus infection stimulates significant levels of IFN-α and IFN-β production 

by PBMC (Fig 6-1) is potentially beneficial for cancer therapy.  Type I IFNs are secreted by 

normal cells in response to viral infection.  They govern a number of immune-regulatory 

functions which alter both innate and adaptive immune responses (reviewed by Biron et al.,

1999), including phenotypic and functional changes on DC (reviewed by Le Bon et al., 2002).  

IFN-α has been shown to have anti-tumour effects.  It can cause growth inhibition via Jak-

STAT signalling in renal cancer cells (Shang et al., 2011) and has been shown to exert an 

anti-angiogeneic effect via the inhibition of VEGF gene transcription (von Marschall et al., 

2003).  IFN-β production by reovirus-infected, Mel888-loaded, DC has been shown to 

activate NK cells and enhance cytotoxicity towards Mel888 cell targets (Prestwich et al.,

2009b).  As well as this, IFN-β release may prove functionally significant within the 

immunosuppressive tumour microenvironment.  IFN-β has been shown to suppress the 

growth of pulmonary metastases in murine breast cancer and melanoma models (Studeny et 
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al., 2004) and, when given in combination with ionising radiation, demonstrated synergy for 

the treatment of alveolar rhabdomyosarcoma (Sims et al., 2010).  As well as this, IFN-β 

appears to be capable of inducing an anti-tumour phenotype in neutrophils (reviewed by Di 

Carlo et al., 2001).   To capitalise on this, IFN-β has been genetically engineered into a 

number of oncolytic viruses in an attempt to improve their tumour cell specificity and to 

support priming of anti-tumour immunity (Kirn et al., 2007; Willmon et al., 2009b); moreover 

the expression of IFN-β by such oncolytic viruses may increase protection of normal cells. 

It is worth highlighting that no IFN-γ was produced on overnight infection of PBMC, despite 

significant increases in the levels of CD3- CD56+ NK cell surface expression of CD69. This is 

in-keeping with previous findings, where reovirus infection of PBMC, as well as co-culturing 

PBMC with reovirus-infected Mel888 cells, failed to induce a significant IFN-γ response 

(Prestwich et al., 2009b).  One implication of this finding is that IFN-γ has been shown to be 

critical for the generation of tumour-specific T cells (Kelly et al., 2002).  It is likely, therefore, 

that the production of IFN-γ and the subsequent generation of tumour-specific CTL will 

depend upon complex tumour/DC/NK cell interactions, which will involve the secretion of 

chemokines and IL-12 (Prestwich et al., 2009b), resulting in the recruitment of NK cells into 

the tumour microenvironment.

It has already been demonstrated that reovirus infection does not activate isolated NK cells 

in vitro.  It does, however, induce phenotypic maturation of isolated DC with the production of 

inflammatory cytokines and these DC in turn activate autologous NK cells upon co-culture 

(Errington et al., 2008b). However, the effect of reovirus infection on whole PBMC, a more 

physiologically relevant cell population, had not previously been explored.  The finding that 

reovirus infection up-regulated CD69 expression on CD3-CD56+ NK cells in the context of 

whole PBMC and in the presence of HS is, therefore, an interesting finding.  The up-

regulation of CD69 expression on NK cells can be brought about by the production of IFN-α 

(Gerosa et al., 1991) and by the cross-linking of FcγRIII (CD16). Therefore, this finding likely 
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highlights the complex interactions within the inflammatory milieu of whole PBMC upon 

reovirus infection between DC, multiple inflammatory cytokines and NK cells.

A further interesting observation is the ability of reovirus to cause up-regulation of CCR7 on 

NK cells (Fig 6-3). To date, this finding has not been reported previously. CCR7 is 

expressed by CD56bright NK cells but not on CD56dim NK cells (Berahovich et al., 2006).  KIR+

NK cell populations can express CCR7 de novo upon co-culture with mDC and become 

capable of lymph node migration in response to the endogenous CCR7-specific ligands,

CCL19 and CCL21 (Marcenaro et al., 2009).  Therefore, administering an agent which 

promotes the migration of activated NK cells to lymph nodes containing metastatic tumour 

has obvious potential clinical benefits.  This must be tempered however, by the finding that 

protein expression for CCL19 and CCL21 does not differ in CRLM tissue when compared to 

surrounding normal tissue and therefore represents one obstacle to the recruitment of 

activated NK cells to intra-hepatic CRLM (Rubie et al., 2006).

The lower levels of MHC-I expressed on the surface of SW620 cells represents a further 

significant finding with regards to NK-mediated killing (Fig 6-4). It follows, therefore, that 

SW620 cells may be more susceptible to NK-induced cytotoxicity.  Given the propensity of 

metastatic colorectal cancer cells to invade loco-regional lymph nodes, their low MHC-I 

expression, coupled with high levels of CCR7 expression on reovirus activated NK cells, 

provides an interesting basis for investigating further the anti-tumour cytotoxic role of 

reovirus-activated NK cells.

The NKG2D ligands, MICA/B are structurally similar to MHC-I and are expressed by normal 

gastrointestinal epithelium, endothelial cells, and fibroblasts (Bahram et al.,1994; Zwirner et 

al., 1999). As well as this, MICA/B is expressed on the surface of a range of haematological 

and solid tumours, including colorectal cancer (Pende et al., 2002).  Whilst the processes 

which regulate the expression of NKG2D ligands on the surface of cancer cells are not 

widely understood, DNA damage response pathways and BCR/ABL oncogene expression 
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have been implicated (Boissel et al., 2006).   Expression of MICA/B is up-regulated in 

response to cellular stress such as viral infection (Groh et al., 2001) and the slight increase in 

MICA/B expression by SW620 cells (Fig 6-4) in response to reovirus infection supports this 

finding.  ULBP-1/2 are distantly related to MHC-I and are expressed on normal human 

epithelium and show no increased expression on tumour cells (Kubin et al., 2001).   The up-

regulation of ULBP-2 by both SW480 and SW620 cells (Fig 6-4) in response to reovirus 

infection may increase their susceptibility to NK cell-mediated cytotoxicity. 

As discussed previously, cancer cells may develop ways to evade anti-tumour immunity 

through immuno-editing.  There are now a number of recognised mechanisms which enable 

tumours cells to evade NKG2D-mediated immune responses. These include processes 

which lead to persistent expression of NKG2D ligands, which in turn results in the down-

regulation of NKG2D expression (Oppenheim et al., 2005; Groh et al., 2002). As well as this, 

some tumours can shed soluble NKG2D ligands or secrete immunosuppressive cytokines,

such as, TGF-β which has been shown to down-regulate NKG2D expression (Crane et al.,

2010).  Ras activation has also been implicated in the disruption of the antigen presenting 

system, controlling immune recognition in colorectal cancer cells through co-suppression of 

MHC I, NKG2D ligands and peptide transporter and proteosomal genes (Sers et al., 2009).

NK cell to target cell adhesion is mediated by two integrins, LFA-1 and Mac-1, on NK cells 

and ICAM-1 on target cells (reviewed by Orange et al., 2008).   ICAM-1 mediates cell to cell 

and cell to matrix interactions and is expressed on a variety of haematopoietic and non-

haematopoietic cells (reviewed by van de Stolpe et al., 1996). It is rapidly up-regulated in 

response to inflammatory stimuli, including viral infection and pro-inflammatory cytokine 

release (van de Stolpe et al., 1996).  In some tumour types, high surface expression of 

ICAM-1 is associated with increased risk of metastasis (Johnson et al., 1989; Sun et al.,

1999).  It seems likely, therefore, that ICAM-1 expression on SW480 and SW620 cells should 

facilitate NK cell-induced cytolysis (Fig 6-4).  For instance, ICAM-1 expression by oral 

neoplastic cell lines demonstrated increased levels of adhesion to PBMC and LAK cell-
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mediated cytotoxicity (Huang et al., 2000b).  The findings described in this chapter suggest

that reovirus pulsing of PBMC can activate NK cells within them, even in the presence of 

neutralising anti-reovirus antibodies, and that colorectal cancer may be a target for killing by 

these reovirus-activated innate effectors.
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7 Results

7.1 The Cytolytic Activity of NK Cells Following Activation by 
Reovirus in the Presence of Neutralising Human Serum

7.2 Aims

1. To assess the cytolytic effects of reovirus-activated peripheral blood NK cells (PBNK) 

against SW480 and SW620 colorectal cancer cell line targets, using 51Cr-release and 

CD107 degranulation assays.

2. To confirm that NK cells are the main anti-tumour effector cells within reovirus-

activated PBMC. 
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7.3 Introduction 

The previous chapter demonstrated that reovirus activated NK cells within a mixed PBMC 

population, as shown by a significant increase in the cell-surface expression of the early NK 

activation marker, CD69 (Fig 6-3).  NK cells are known to acquire potent cytotoxicity in 

response to acute viral infection (reviewed by Biron et al., 2001).  It is likely that this occurs in 

response to Type I IFN production, in concert with IL-12 release and the subsequent 

production of IFN-γ.  As well as this, interactions between cytokine receptors, adhesion 

molecules, and the recognition of ligands by activating receptors, all contribute to NK cell 

activation.  

The exact mechanism by which reovirus activates NK cells has not been fully elucidated; 

however, it is has been shown that isolated NK cells are not activated by direct reovirus 

infection (Errington et al., 2008b).   DC have previously been reported to activate NK cells 

through the release of pro-inflammatory cytokines such as IFN-γ, TNF-α, IL-15 and IL-12 

(Gerosa et al., 2005; Ferlazzo G et al., 2004).  It is likely therefore, that reovirus infection 

leads to the phenotypic and functional maturation of DC and the subsequent activation of NK 

cells in whole PBMC. 

NK cells exert their cytotoxic effects by a range of different mechanisms, including exocytosis 

of perforin/granzyme and via interactions between the TNF superfamily death receptors and 

their ligands, such as Fas/FasL.  NK cells contain high concentrations of cytolytic granules in 

their cytoplasm as they circulate in the periphery (Cooper et al., 2001). These vesicles 

contain a number of cytolytic proteins, such as perforin and granzyme, uniquely designed to 

induce death in target cells upon release (Cooper et al., 2001; Tschopp et al., 1990).  

Following activation, NK cells rapidly release these granules at the immunological synapse,

inducing apoptotic death of the target cell (Cooper et al., 2001; Moretta et al., 2002). 
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The lysosomal-associated membrane protein-1 and lysosomal-associated membrane 

protein-2 (LAMP-1 and LAMP-2, also known as CD107a and CD107b, respectively) line the 

membrane of cytotoxic granules (Winchester, 2001; Peters et al., 1991).  The flow cytometry-

based CD107 release assay detects the surface expression of CD107a and CD107b which 

occurs upon NK cell degranulation.  CD107 expression has been shown to correlate well with 

both cytokine release from, and cell-mediated lysis of target cells, by NK cells (Mittendorf et 

al., 2005). 

7.3.1 Reovirus-activated NK Cells are Cytolytic Against SW480 and SW620 Targets

The previous chapter established that SW480 and SW620 colorectal cancer cells expressed

ligands for the NK receptors, DNAM-1 and NKG2D (Fig 6-4), and that reovirus treatment led 

to the activation of NK cells within PBMC (Fig 6-3).  Coupled with the known ability of NK 

cells to lyse transformed cells, the cytolytic potential of reovirus-activated NK cells within 

PBMC (PBNK) against SW480 and SW620 targets was next assessed. PBMC were cultured 

overnight in the presence of HS with or without 1pfu/cell reovirus.  These cells were then co-

cultured with SW480 and SW620 cells in a CD107 assay and the level of NK cell 

degranulation in response to target cells was measured by flow cytometry.
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Figure 7-1 Degranulation of PBNK in Response to SW480 and SW620 Targets. 

PBMC were isolated from healthy donor peripheral blood and cultured overnight with 0 or 
1pfu/cell reovirus in the presence of HS. PBMC were then co-cultured with SW480 and 
SW620 targets at a 1:1 ratio for 4 hr,in the presence of anti-human CD107a and CD107b 
antibodies. After subsequent staining with anti-human CD3 and CD56 antibodies, cell-
surface expression of CD107 within NK cells was then determined by flow cytometry.   
Graph shows mean percentage of CD107 degranulation + SEM of 3 separate experiments.  
Statistical significance is denoted by *p<0.05 (paired Student’s t test).   

Fig 7-1 demonstrates that reovirus-activated PBNK degranulated against both SW480 and 

SW620 cell line targets.  The level of degranulation in the reovirus–activated PBMC was

significantly higher than that seen in non reovirus-treated PBMC (5% vs 15% against the 

SW480 cell line and 14% vs 23% against the SW620 cell line).   The overall level of 

degranulation seen was higher against the SW620 cells than against the SW480 line (23% 

vs 15%). No degranulation was seen in response to targets by either NKT cells or CD3+ 

cells within reovirus-activated PBMC (data not shown).

In order to confirm that CD107 release by reovirus-activated PBNK did in fact correlate with 

innate immune-mediated cell killing of colorectal target cells, standard 4hr 51Cr release 

assays were undertaken. Untreated and reovirus-treated effector PBMC were co-cultured 

with 51Cr-labelled SW480 and SW620 target cells and the level of target cell lysis was

measured.  
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Figure 7-2  Cytolytic Activity of Reovirus-activated PBNK against SW480 and 
SW620 cells

PBMC were isolated from healthy donor peripheral blood and cultured overnight with 0 or 
1pfu/cell reovirus in the presence of HS.  PBMC were then co-cultured with 51Cr-labelled 
SW480 (A) and SW620 (B) cell targets at different E;T cell ratios for 4 hr.  Culture 
supernatants were then harvested onto luma scintillation plates and the level of tumour cell
lysis was determined using a MicrobetaJet scintillation counter.  Graphs show mean 
percentage target cell lysis +/- SEM of 3 separate experiments.  Statistical significance is 
taken as <0.05 (paired Student’s t test).   

Fig 7-2 demonstrates that significantly higher levels of SW480 (A) and SW620 (B) target cell 

lysis occurred after co-culture with reovirus-treated PBMC than when compared with 

untreated controls, even in the presence of neutralising HS.  Higher percentages of cell lysis 

were observed in the SW620 cell line than the SW480 cells (59% vs 37% at an E:T ratio of 

100:1).  These findings correlate with the higher level of NK cell degranulation seen against 

the SW620 cell line compared to SW480 cells seen in Fig 7-1; a noteable point as it differs 

from the pattern of target cell death seen after SW480 and SW620 cells were infected with 

direct reovirus (Fig 4-2).  

7.3.2 NK Cells are the Main Effectors in Reovirus-activated PBMC

In order to confirm that the cytolytic activity against SW480 and SW620 cell targets 

demonstrated above was due to the activity of NK cells within the whole reovirus-activated 

A    B
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PBMC population, NK depletion experiments were performed. PBMC were treated with 0 or 

1pfu/cell reovirus in the presence of HS overnight, before some PBMC were depleted of 

CD56+ cells and 51Cr-release assays were carried out.

Figure 7-3  Cytolytic Activity of NK-depleted Reovirus-activated PBNK Against 
SW480 and SW620 cells

PBMC were isolated from healthy donor peripheral blood and cultured overnight with 0 or 
1pfu/cell reovirus in the presence of HS.  PBMC were then co-cultured with 51Cr-labelled 
SW480 (A) and SW620 (B) cell targets at different E:T cell ratios for 4 hr. Where depletions 
were performed, PBMC were treated with CD56 microbeads before 51Cr assays were set up.  
Culture supernatants were then harvested onto luma scintillation plates and the level of 
tumour cell lysis was determined using a MicrobetaJet scintillation counter.  Graphs show 
mean percentage target cell lysis +/- SEM of 3 separate experiments.  Statistical significance 
was taken as p<0.05 (paired Student’s t test).   

Fig 7-3 demonstrates a significant reduction in the levels of cytolytic activity of CD56-

depleted reovirus-activated PBMC against both SW480 (A) and SW620 (B) target cells, 

when compared to whole reovirus-activated PBMC.  The mean levels of killing were reduced 

to 15% from 46% in SW480 cells and 16% from 54% in SW620 cells, at an E:T ratio of 

100:1.  This confirms that the NK cell population within reovirus-activated whole PBMC are 

the likely main cytolytic effector cells.
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Taken together, the data in this chapter confirm that healthy donor PBMC be activated by 

reovirus to degranulate in response to, and lyse, colorectal cancer cell line targets, even in 

the presence of HS containing neutralising anti-reovirus antibodies. Furthermore, it 

demonstrates that it is the NK cell population within the reovirus-activated PBMC which are 

the main effector cell population. 

7.4 Discussion

Reovirus-activated, healthy donor PBMC were demonstrated in this chapter to have cytolytic 

activity towards colorectal cancer cell lines even in the presence of human serum, which is 

known to contain NAB.  CD107 is a marker of NK cell degranulation (i.e. release of cytotoxic 

granules) in response to target cells.  Significant levels of CD107 was observed on the 

surface of NK cells within reovirus-treated PBMC when co-cultured with SW480 and SW620 

cells, compared with untreated controls (Fig 7-1). Moreover, reovirus-activated PBMC also 

demonstrated significant levels of cytolytic activity against the tumour cell targets when 

measured via 51Cr release (Fig 7-2).  The confirmation that NK cells represented the main 

cytolytic component of reovirus-activated whole PBMC (Fig 7-3) provides an interesting focus 

for further investigation, as much of the work examining reovirus-activation of immune cells 

has been conducted using purified or isolated cell populations (Errington et al., 2008b).

The discovery that reovirus-treated PBMC led to more NK cell degranulation in response to, 

and cell lysis of, SW620 cells than SW480 cells was interesting.  When infected directly with 

virus, SW480 cells consistently displayed higher percentages of reovirus-induced cell death 

than SW620 cells (Fig 4-2).  Although both cell lines express MHC-I (a negative regulator of 

NK-mediated cytotoxicity), its level was demonstrated to be lower on SW620 cells than 

SW480 cells (Fig 6-4).  This would be consistent with a potential role for MHC-I in the 

sensitivity of these cell lines to NK-mediated cytotoxicity. In the clinical setting, metastatic 

colorectal cancers have been shown to express less MHC-I than primary tumour (Lopez-



119

Nevot et al., 1989).  Hence, class I-low tumour cells, if resistant to direct oncolysis, may 

alternatively be killed by reovirus activation of innate immune effectors.

The finding that reovirus can activate innate immune cells within whole PBMC to lyse cancer 

cell targets has potentially important clinical implications.  As discussed previously, the direct 

oncolytic effects of reovirus can be abrogated in the presence of neutralising antibodies, 

which the majority of patients will possess after exposure to the ubiquitous virus.  Using 

PBMC to “carry” and protect reovirus from neutralisation for delivery at the site of the tumour 

(Fig 5-4) represents one method of circumventing the deleterious effects of NAB and 

enabling direct oncolysis.  However, concomitant reovirus-activation of NK cells which 

become cytotoxic to tumour targets (i.e the generation of an innate anti-tumour immune 

response), represents an additional bystander mechanism for enhancing the overall efficacy 

of reovirus therapy via cell delivery.  The following chapter investigates the potential for 

reovirus to activate and promote degranulation of NK cells within the whole PBMC, as well as 

liver, of patients with metastatic colorectal cancer. 
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8 Results

8.1 The Effect of Reovirus on Colorectal Cancer Patient PBNK and 
Liver-derived NK Cells (LNK) and their Cytolyic Potential Against 
Autologous Metastatic Cells

8.2 Aims

1. To assess the effects of reovirus on colorectal cancer patients’ PBMC.

2. To examine the functionality of reovirus-treated patient PBNK against SW480 and 

SW620 cell line targets using CD107 degranulation assays.

3. To isolate and characterise single cell suspensions of CRLM and hepatocytes from 

freshly resected surgical specimens.

4. To examine the functionality of reovirus-treated patient PBNK against autologous 

CRLM and hepatocytes using CD107 degranulation assays.

5. To isolate and characterise liver mononuclear cells (LMNC) from freshly resected 

liver tissue

6. To examine the functionality of reovirus-treated patient LNK against SW480, SW620 

cell line targets as well as autologous CRLM and hepatocytes, using CD107 

degranulation assays.
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8.3 Introduction

The NK cells of cancer patients have been shown to differ in phenotype to those of healthy 

donors and it seems likely that the production of soluble NK ligands by tumours may, in part,

account for some of the reduced cytolytic activity seen (Fuertes et al., 2008).  As well as this, 

lower levels of the activating receptors CD16, NKp46 and NKp30 have been demonstrated in 

the peripheral NK cells of human melanoma patients (Konjević et al., 2009).  Furthermore, in 

one study examining the NK cells from the ascites of ovarian cancer patients, reduced levels 

of DNAM-1 and CD16 were observed, with lower levels of ADCC exhibited when compared 

with autologous peripheral blood NK cells (Carlsten et al., 2009).

NK cells are known to be scarce in colorectal cancer specimens, despite MICA/B expression 

on the tumour cells’ surface and the production of a variety of chemokines and cytokines 

(Halama et al., 2011).  Moreover, reduced NK cell gene expression has been highlighted as 

one of the major immune characteristics in the peripheral blood of colorectal cancer patients 

(Xu et al., 2011).  This scarcity of tumour-infiltrating NK cells, coupled with the technical 

difficulties in isolating them effectively, has hampered ex-vivo expansion and functional 

analysis; however it is reasonable to assume that the altered functionality of NK cells in 

cancer patients may pose a potential barrier to effective activation and cytolytic activity by 

reovirus.   

Having established that reovirus could activate the NK cells within PBMC of healthy donors 

and that those cells demonstrated cytotoxicity towards SW480 and SW60 cell targets, even 

in the presence of NAB, the functionality of NK cells from patients with CRLM was 

investigated.  

8.3.1 The Effect of Reovirus Treatment on PBNK Isolated from CRLM Patients

The effects of reovirus on the PBNK cells of patients undergoing liver resection for CRLM 

was next assessed.   PBMC were isolated from three patients prior to resection and treated

with 0 or 1 pfu/cell reovirus overnight in the presence of HS.  The cells were then stained for 
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cell-surface expression of the same activation markers and surface molecules as healthy 

donors (Fig 6-3) and the percentage expression of each marker on NK cells within the PBMC 

population was determined by flow cytometry. 
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Figure 8-1 Effect of Reovirus Treatment on CRLM Patient PBNK 

PBMC were isolated from patients with CRLM the night before hepatic resection and 
cultured overnight with 0 or 1pfu/cell reovirus in the presence of HS.  Cells were then stained 
with anti-human CD3 and CD56 (to identify NK cells), alongside anti-human: CD16, CD69. 
NKG2D, CCR7, DNAM-1, NKp30, NKp44 and NKp46 antibodies.  The cell-surface 
expression of each activation marker on CD3-CD56+ NK cells was then determined by flow 
cytometry.  Graph shows percentage of cells positive for each marker + SEM of 3 separate 
experiments.  Statistical significance is denoted by *p<0.05 (paired Student’s t test).   

Fig 8-1 demonstrates that NK cells isolated from patients with CRLM were activated by 

reovirus in the presence of HS.  Significantly higher levels of surface CD69 were seen on the 

surface of NK cells in the reovirus-treated PBMC (93% vs 58%).  As with the healthy donor 

group (Fig 6-3), no significant increase was noted in the levels of NKG2D, NKp30, NKp44, 

NKp46 or DNAM-1 expression in response to reovirus infection.  Similarly to healthy donors, 
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an increase in the level of cell-surface CCR7 (21% vs 46%) was observed on patient PBNK 

in response to reovirus treatment, although the levels did not reach statistical significance.

8.3.2 Cytolytic Activity of Reovirus-activated Patient NK cells

Having demonstrated the ability of reovirus to activate patient PBNK by up-regulation of 

CD69, the cytolytic capability of reovirus-activated patient PBNK was assessed using CD107 

release assays.  The level of CD3-CD56+ NK cell degranulation in reovirus-treated and 

untreated PBMC against SW480 and SW620 cell targets was assessed.

Figure 8-2 Degranulation of Patient PBMC Against Colorectal Cell Line Targets

PBMC were isolated from the peripheral blood of patients with CRLM the night before 
hepatic resection and cultured overnight with 0 or 1pfu/cell reovirus in the presence of HS. 
PBMC were then co-cultured with SW480 (A) and SW620 (B) targets at a 1:1 ratio for 4 hr,in 
the presence of anti-human CD107a and CD107b antibodies. After subsequent staining with 
anti-human CD3 and CD56 antibodies, cell-surface expression of CD107 within NK cells was 
then determined by flow cytometry.   Graph shows mean percentage of CD107 
degranulation + SEM of 3 separate experiments.  Statistical significance is denoted by 
*p<0.05 (paired Student’s t test).   

Fig 8-2 confirms that reovirus-activated, patient PBNK did not degranulate to a significant 

level against SW480 cells (8% vs 9%) in the presence of HS.  This may be due to 

immunosuppression in patients with CRLM.  Degranulation against SW620 cells did occur,

however, and the level seen was statistically significant (9% vs 19%). 

A B
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8.3.3 Isolation of Primary CRLM Cells and Hepatocytes

Obtaining representative cells from freshly resected tissue is technically difficult.  Numerous 

studies have documented the difficulty in establishing colorectal cancer cell lines from 

primary bowel cancers (Namba et al., 1983; Oh et al., 1999).  Well characterised, low 

passage, cell lines are rare and their generation from resected specimens remains important 

for the study of oncogenic mechanisms in colorectal cancer, as well as new therapeutic 

strategies.  Recognising these challenges, having utilised an in vitro primary and metastatic 

colorectal cancer cell line model for the investigation of the anti-tumour and immune effects 

of reovirus, we nevertheless next tried to test if the findings correlated with cells derived from 

freshly resected tissue taken from patients with colorectal liver metastases. First, single cell 

suspensions of primary metastatic cells and hepatocytes were isolated from liver tumour and 

normal tissue, respectively. Fig 8-3 shows the microscopic appearance of isolated 

hepatocytes (A) and colorectal liver metastasic cells (B) at x20 magnification.  Flow 

cytometry plots demonstrating the size, granularity and gating strategies of hepatocytes (C) 

and tumour cells (D) are also shown.  Whilst hepatocytes were observed to remain viable in 

culture for up to 96 hr, death of primary CRLM was seen to occur after approximately 24-48 

hr (data not shown).
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Figure 8-3  Microscopic and Flow Cytometric
Hepatocytes and CRLM

Single cell suspensions of hepatocytes (A) and tumour cells (B) were 
resected normal liver parenchyma and colorectal liver metastases
photographed using an Olympus C
Representative flow cytometry dot plots, showing size, granular
hepatocytes (C) and tumour cells (D)

8.3.4 Phenotypic Characterisation of 

Having successfully isolated both tumour cells and hepatocytes from freshly resected 

specimens, phenotypic characterisation was carried out.  

adhesion and expressed on a variety of epithelial tumour cells but not on the surface of 
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Microscopic and Flow Cytometric Appearances of 

Single cell suspensions of hepatocytes (A) and tumour cells (B) were isolated from freshly 
resected normal liver parenchyma and colorectal liver metastases, respectively.
photographed using an Olympus C-7070 camera and light microscope at x20 magnification.  

flow cytometry dot plots, showing size, granularity and gating strategies of 
hepatocytes (C) and tumour cells (D) are also shown.   

Phenotypic Characterisation of Primary Hepatocytes and CRLM 

Having successfully isolated both tumour cells and hepatocytes from freshly resected 
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normal hepatocytes was used.  The monoclonal antibody, BerEp4, directed against an

epitope on human epithelial cells was also used to discriminate epithelial cells from 

hepatocytes. BerEp4 is not expressed on the surface of adult hepatocytes and exhibits 

highly conserved expression on carcinomas (Latza et al., 1990).  Cells were also assessed 

for the presence of the reovirus receptor, JAM-A, on their cell-surface and the results are 

shown in Fig 8-4.

Figure 8-4 Cell-surface Expression of BerEp4, CEA and JAM-A on Primary 
CRLM and Hepatocytes.

Freshly resected tumour and liver tissue were disaggregated into single suspensions.  Cells 
were then stained with anti-humanBer-Ep4, CEA or JAM-A antibodies and the level of cell-
surface expression was determined by flow cytometry (black line: surface marker 
expression, shaded grey: isotype control).  Data is representative of 3 independent 
experiments.

Fig 8-4 demonstrates the cell-surface expression of Ber-Ep4, CEA and JAM-A on the surface 

of freshly resected CRLM and hepatocytes. A clear distinction can be made on the basis of 

this analysis between the two cell populations, with tumour cells shown to express high 
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levels of the epithelial marker Ber-Ep4 and the TAA, CEA.  In contrast, hepatocytes did not 

express either cell-surface Ber-Ep4 or CEA.  Futhermore, whilst primary CRLM were shown 

to express high levels of the reovirus receptor, JAM-A, hepatocytes were observed to 

express it at only relatively low levels on their cell-surface.  

8.3.5 Cytolytic Activity of Patient PBNK against Autologous CRLM cells and 
Hepatocytes

Having demonstrated that discrete populations of tumour cells and hepatocytes could be 

isolated from freshly resected surgical specimens, the cytotoxic potential of reovirus-

activated patient PBNK against autologous freshly isolated CRLM cells and hepatocytes was 

next examined.

  

Figure 8-5 Degranulation of Patient PBNK against Autologus CRLM cells and
Hepatocytes

PBMC were isolated from the peripheral blood of patients with CRLM the night before 
hepatic resection and cultured overnight with 0 or 1pfu/cell reovirus in the presence of HS.  
Single cell suspensions of hepatocytes and CRLM cells were isolated from freshly resected 
normal liver parenchyma and colorectal liver metastases, respectively.  PBMC were then co-
cultured with CRLM (A) or hepatocytes (B) at a 1:1 ratio for 4 hr in the presence of anti-
human CD107a and CD107b antibodies. After subsequent staining with anti-human CD3 
and CD56 antibodies, cell-surface expression of CD107 within patient PBNK was then 
determined by flow cytometry.   Graph shows mean percentage of CD107 degranulation + 
SEM of 3 separate experiments.     

A B
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Fig 8-5 highlights a general trend of increased cytolytic activity of reovirus-activated patient 

PBNK against autologous tumour cells, however the difference in the level of activity did not 

reach statistical significance.  There was background PBNK degranulation in response to 

primary hepatocytes (approximately 5%) but reovirus treatment had no effect on the level 

seen.  Chromium release cytotoxicity experiments were not possible using these samples as

primary tumour cells did not label with 51Cr despite repeated attempts.  This is likely to be a 

reflection of their low metabolic activity. 

8.3.6 Isolation of Liver Mononuclear Cells

NK cells account for around one third of the total lymphocyte population of the liver, making 

them crucial in the innate immune defence against microbial infection. As well as this, they 

have been shown to act as adaptive immune response regulators involved in cross talk 

between DC and T cells (Ferlazzo et al., 2002; Zingoni et al., 2004).  They therefore play not 

only a central role in innate immunity, but also shape the adaptive immune response within 

the liver microenvironment.  

In order to assess the effect of reovirus on innate cells within the liver, LMNC were isolated 

from freshly resected liver tissue.    Autologous peripheral blood was also collected from the 

patients at the time of resection and PBMC prepared for comparison.  Cells were then 

stained with anti-human CD3 and CD56 antibodies and the relative NK cell populations of 

both LMNC (LNK) and PBMC (PBNK) from a representative patient are shown in Fig 8-5.
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Figure 8-6 Characterisation of NK Cell Populations within PBMC and LMNC

PBMC and LMNC were isolated from the peripheral blood and liver parenchyma of patients 
with CRLM, respectively.  Cells were stained with anti-human CD56 and CD3 antibodies and 
cell-surface expression of each marker was determined byflow cytometry.  Dot plots are 
representative of 3 separate donors.

Fig 8-6 demonstrates the distinct populations of CD3-CD56+ NK cells within matched PBMC 

and LMNC.  Higher numbers of both NK and NKT (CD3+/CD56+) cells were seen in LMNC 

compared to peripheral blood, whereas the number of CD3+/ CD56- cells was observed to be 

higher in PBMC.

8.3.7 Reovirus Activation of LNK

Having isolated LMNC from patients and identified the NK cells within them (LNK), the effect 

of reovirus treatment on LNK phenotype in the presence of human serum was next 

assessed.

PBNK    LNK
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Figure 8-7 Effect of Reovirus on CRLM Patient LNK Cells

LMNC were isolated from the liver parenchyma of patients and cultured overnight with 0 or 
1pfu/cell reovirus in the presence of HS.  Cells were then stained with anti-human CD56 and 
CD3 antibodies (to identify LNK cells), alongside anti-human CD69 and CCR7 antibodies.  
Percentage cell-surface expression of each marker was determined by flow cytometry.  
Graph shows mean percentage expression + SEM from 2 independent experiments.

Fig 8-7 demonstrates up-regulation of CD69 on the surface of LNK after activation with 

reovirus when compared to controls (59% vs 98%).  In contrast to levels seen in healthy 

donor and patient PBMC, overnight infection with reovirus resulted in a decrease in the 

expression of CCR7 on the cell-surface of   LNK  within LMNC (36% vs 7%).

8.3.8 Cytolytic Activity of LNK 

Having shown that the NK population of LMNC could be isolated and that they demonstrated 

up-regulation of the early NK activation marker, CD69, upon treatment with reovirus, the 

cytolytic activity of patient LNK cells against SW480 and SW620 colorectal cancer cell 

targets was examined. Cell-surface expression of CD107 from LNK in response to SW480 

and SW620 cell line targets was determined by flow cytometry. 
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Figure 8-8  Degranulation of Patient LNK Against Colorectal Cell Line Targets

LMNC were isolated from the liver parenchyma of patients with CRLM and cultured overnight 
with 0 or 1pfu/cell reovirus in the presence of HS.  LMNC were then co-cultured with SW480 
and SW620 target cells at a 1:1 ratio for 4 hr in the presence of anti-human CD107a and 
CD107b antibodies. After subsequent staining with anti-human CD3 and CD56 antibodies, 
cell-surface expression of CD107 within patient LNK was then determined by flow cytometry.   
Graph shows mean percentage of CD107 degranulation + SEM of 2 separate experiments.  

Fig 8-8 demonstrates that reovirus-activated LNK cells are cytolytic towards SW480 and 

SW620 cell line targets in the presence of HS.  Similar to healthy donor PBMC (Fig 7-1), 

higher levels of degranulation were again seen against the SW620 cells compared with 

SW480 cell line (15% vs 25% at 1pfu/cell). 

Having demonstrated that reovirus-activated patient PBNK (Fig 8-5) and LNK (Fig 8-8) cells 

exhibited cytolytic activity against SW480 and SW620 cell targets, their cytotoxic potential 

against autologous tumour was next assessed.    
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Figure 8-9 Cytolytic Activity of Reovirus-activated Patient LNK against 
Autologous CRLM and Hepatocytes

LMNC were isolated from the liver parenchyma of patients with CRLM and cultured overnight 
with 0 or 1pfu/cell reovirus in the presence of HS.  Single cell suspensions of hepatocytes
and CRLM cells were isolated from autologous freshly resected normal liver parenchyma 
and colorectal liver metastases, respectively. LMNC were then co-cultured with CRLM or 
hepatocyte at a 1:1 ratio for 4 hr in the presence of anti-human CD107a and CD107b 
antibodies. After subsequent staining with anti-human CD3 and CD56 antibodies, cell-
surface expression of CD107 within patient LNK was then determined by flow cytometry.   
Graph shows mean percentage of CD107 degranulation + SEM of 2 separate experiments.  
Statistical significance is denoted by *p<0.05 (paired Student’s t test).   

Fig 8-9 demonstrates the cytolytic activity of LNK cells against autologous CRLM cells and 

hepatocytes.  Whilst low levels of background degranulation were seen against autologous 

tumour, a possible trend towards higher levels of degranulation against tumour by reovirus-

activated LNK was seen (2.5% vs 5%).  It is worth noting, however, that the levels of LNK 

degranulation in response to autologous tumour were lower than those seen in patient PBNK 

(Fig 8-5)  Very low levels of cytolytic activity were demonstrated against hepatocytes (1.5% 

vs 3.5%).  This graph also includes degranulation against SW480 and SW620 (as shown in 

Fig 8-8) for comparison; again further chromium release assays were not possible due to 

inefficient labelling of primary tumour and hepatocyte samples.
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8.4 Discussion

Colorectal cancer has been shown to be immunosuppressive in its own right, with tumour 

tolerance beginning in the local peri-tumoural environment.  As the disease progresses, this 

suppression gradually involves the entire immune system (reviewed by Zou, 2005).  A 

reduction in the rate of PBMC proliferation and reduced production of Th1 cytokines, such as 

IFN-γ, IL-2 and TNF-α seen in patients with Stage III/IV disease, represents a systemic 

suppression of cell-mediated immunity (Evans et al., 2010).  The reduced levels of cytolytic 

activity seen in the NK cells isolated from patients with CRLM when compared to healthy 

donors (Figs 8-2 and 7-1) may be a reflection of gene variations and alterations in NK cell 

signalling described in cancer patients.  It has been demonstrated that NK cell activity 

against K562 and DLD-1 colorectal cancer cells is reduced in patients with metastatic 

colorectal cancer (Nüssler et al., 2007).  

Reovirus treatment of PBNK isolated from CRLM patients induced significant up-regulation of 

CD69 in the presence of HS, albeit at lower levels that those seen in healthy donor PBNK 

(Fig 8-1).  As with healthy donors, no significant increase in the level of the Fc receptor,

CD16 or in the NCRs NKp30, NKp44 and NKp46, was demonstrated after reovirus 

treatment.  Likewise, the level of DNAM-1 expression following overnight co-culture with 

reovirus did not significantly increase.  The finding that CCR7 did not significantly increase 

after culture with reovirus differs from the healthy donor group.  This serves as further 

potential evidence of the heterogeneity of genes associated with NK cell signalling and 

cytotoxicity in patients with advanced colorectal cancer (Xu et al., 2011).   

The cytolytic activity demonstrated by patient PBNK cells after activation with reovirus does,

however, have important potential clinical implications, particularly in the context of 

metastatic disease.  Up to 50% of those undergoing curative intent resection for CRLM 

develop intra-hepatic recurrence (Nordlinger et al., 1996; Kin et al., 1998).  Hepatic micro-

metastatic disease, defined as discrete microscopic tumour cells or clusters of cells within 

the hepatic parenchyma or portal tracts surrounding the dominant macroscopic hepatic 



134

tumour, have been implicated as one of the main causes of recurrence.  As well as this,

numerous studies have focused on the detection of circulating epithelial tumour cells in the 

peripheral blood of patients diagnosed with colorectal cancer (Wyld et al., 1998; Zhang et al.,

2005).  More recently, circulating tumour cells have been shown to predict progression-free 

and overall survival for both ovarian and colorectal cancer (Poveda et al., 2011; Cohen et al.,

2009). The potential, therefore, to activate PBNK cells with i.v. reovirus in patients with 

metastatic colorectal cancer to kill circulating tumour cells represents a further interesting, 

potential, therapeutic strategy.  

The successful disaggregation of tumour and liver tissue to provide ex-vivo CRLM and 

hepatocytes enabled phenotypic evaluation of these cell populations (Fig 8-3).  It is 

noteworthy that freshly resected tumour cells expressed lower levels of cell-surface JAM-A 

than the SW480 and SW620 cell lines (Figs 8-4 and 4-1, respectively).  This reduced surface 

expression correlates with a previous report where primary colorectal tumours and CRLM 

displayed aberrant distribution of JAM-A (van Houdt et al., 2008).  This poses an obvious 

problem; lower cell-surface expression of JAM-A will potentially reduce the ability of reovirus 

to bind to the cell surface, thereby lowering any direct oncolytic potential.  Therefore, the 

immune-mediated effects of reovirus infection, particularly in the context of NK cells, 

represent a further strategy for increasing anti-tumour efficacy.

In the liver, JAM-A has been shown to modulate E-cadherin in hepatocytes, playing a critical 

role in tight junction integrity and hepatocyte adhesion (Konopka et al., 2007).  One area of 

concern regarding the use of reovirus as an oncolytic agent has been hepatotoxcitiy.  

Tissues which can undergo de-differentiation and replication, such as the liver, have been 

shown to be more susceptible to reovirus infection (Piccoli et al., 1990).  In murine models, 

reovirus replication within hepatocytes and Kuppfer cells is enhanced with concomitant 

hepatic insults such as surgical trauma or the use of hepatotoxins but the pattern of 

replication seen has been shown to be dependent on the timing of the inoculum (Rubin et al.,

1990).  Hepatocytes were shown to express very low levels of JAM-A (Fig 8-4); however 
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reovirus-induced cell death was not demonstrated upon infection (data not shown). 

Moreover, none of the early clinical trials utilising reovirus have demonstrated significant 

hepatotoxicity, although the combination of surgical insult associated with hepatic resection, 

coupled with the hepatoxic effects of chemotherapy agents such as oxaliplatin, will need to 

be considered carefully if reovirus is to be administered concomitantly with cytotoxic agents 

in any future clinical trials prior to liver resection.

In keeping with previous reports, LNK cells were demonstrated to differ in comparison to 

PBNK.  They are more numerous and the proportion of NKT cells was also shown to be

higher (Fig 8-6).  NKT cells have previously been described as featuring in the millieu of 

immune cells within the liver. This group of heterogeneous T lymphocytes recognise the lipid 

antigens presented by the non-classical MHC class I-like molecule, CD1, and express αβ or 

γδ TCR as well as various NK receptors, such as CD16, CD69 and CD161 (Gao et al.,

2009).  In human liver, NKT cell numbers vary greatly, accounting for approximately 5-25% 

of hepatic lymphocytes (Doherty et al., 2000).  They play an important role in regulating both 

innate and adaptive immunity by the production of cytokines such as IFN-γ.  It is the close 

interaction between these immune cells as well as the enrichment and activation of NK and 

NKT cells within normal healthy liver that are likely to play a key role in immune surveillance 

and tumour cell clearance within the liver. 

It has also been shown that LNK cells show marked phenotypic and functional differences to 

PBNK cells, possessing higher cytotoxicity against tumour cells, higher numbers of vesicles 

and granules, along with higher levels of TRAIL, perforin and granzyme B (Vanderkerken et 

al., 1990; Tu et al., 2011; Vermijlen et al., 2002).  A large population of LNK cells also 

express DC markers such as CD11c and these cells display increased cytotoxicity against 

tumour cells and a greater IFN-γ response, compared with CD11c– NK cells (Burt et al.,

2008; Taieb et al., 2006).  The finding that LNK cells demonstrated reduced surface 

expression of CCR7 upon reovirus infection may be a reflection of their role as in situ innate 

immune cells (Figure 8-7), whereas PBNK cells migrate to lymph nodes to exert their 
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immune effects.  Further evidence of the migratory capacity of peripheral NK cells is seen in 

the ability of bone marrow-derived NK cells to migrate to the liver where they can undergo 

further differentiation into liver specific NK cells (Vanderkerken et al., 1993).

The ability of reovirus to activate LNK cells in patients with CRLM (Fig 8-7) has not been 

described previously.  Indeed, little is known about how LNK cells respond to viral infection.  

Much of the work examining LNK cells has focused around hepatitis infection and in this 

context, activated LNK cells have been shown to inhibit hepatic fibrosis by their cytotoxic 

effect against hepatic stellate cells, the major cell type implicated in the development of 

hepatic fibrosis (reviewed by Gao et al., 2007).  It has also been shown that Fas/Fas ligand 

and NKG2D/NKG2D ligand-mediated killing of LNK cells contributes to hepatocyte necrosis 

in virus-induced liver failure (Zou et al., 2010).  

The finding that reovirus can activate LNK cells (Fig 8-7) without seemingly causing 

significant hepatotoxicity as demonstrated in patients undergoing hepatic resection following 

reovirus infusion (Adair et al., 2012b), has important clinical applications.  Increasing the 

cytolytic potential of LNK cells using reovirus may prove beneficial for the treatment of 

micrometastatic disease which is not detectable using contemporary radiological imaging.  It 

is important to note that neither patient reovirus-activated LNK nor PBNK degranulated 

significantly against autologous hepatocytes (Figs 8-5 and 8-9, respectively), suggesting that 

there may be a useful therapeutic index between reovirus-mediated innate immune 

stimulation against tumour and surrounding normal cells within the liver.  It is also noteworthy 

that primary hepatocytes were observed to express very low levels of the reovirus receptor,

JAM-A, whereas almost 100% of primary metastatic tumour cells expressed the receptor on 

their cell surface (Fig 8-4).

Taken together, these data highlight that, despite the acknowledged immunosuppression 

associated with cancer (reviewed by Kim et al., 2006), both circulating and hepatic innate 
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effector cells from patients with CRLM can be activated by reovirus, even in the presence of 

neutralising anti-reovirus antibodies, to become potentially cytotoxic against tumour cells.
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9 Conclusion

Colorectal cancer remains a significant clinical problem, with approximately 600,000 people 

dying from the disease worldwide in 2008 (www.who.int/en/).  Whilst survival rates have 

undoubtedly improved in recent decades, the morbidity associated with surgery, radiotherapy 

and contemporary cytoxic agents remains a significant problem (reviewed by Ooi et al., 

1999).  The development of biological response modifiers for the treatment of colorectal 

cancer has been the focus of recent investigation.  Cetuximab is now recommended as first 

line treatment for resectable primary colorectal cancer and inoperable CRLM where the 

primary tumour is resectable and the metastatic disease is confined to the liver 

(www.nice.org).  Given the finding that overall survival following resection for CRLM is not 

influenced by chemotherapy (Nordlinger et al., 2008), the development of new agents for the 

treatment of systemic disease is crucial.  

Oncolytic viruses such as reovirus represent a promising new class of anti-cancer agents, 

which have undergone extensive testing in Phase I and II clinical trials (reviewed by Donnelly 

et al., 2011).  These early results have been encouraging enough for reovirus to enter into 

Phase III testing in combination with carboplatin and paclitaxel chemotherapy in platinum-

resistant head and neck cancer.  The high incidence of ras mutations makes colorectal 

cancer a promising target for reovirus, and the recently reported REO 013 trial of i.v. reovirus 

prior to liver resection for CRLM has demonstrated repilciation competent virus in resected 

tumour specimens (Adair et al., 2012b).  On the basis of these findings, a Phase I, dose 

escalation study combining i.v. Reolysin® with FOLFIRI chemotherapy in patients with 

advanced metastatic colorectal cancer is ongoing. (http://oncolyticsbiotech.com/clinical.html).

The current study initially focused on the direct cytopathic effect of reovirus infection upon 

colorectal tumour cells in vitro and demonstrated a dose-dependent cytotoxic effect (Fig 4-2)

which was mediated by apoptosis (Fig 4-4 and Fig 4-5).   The presence of NAB in human 

serum has been a consistent, confounding factor in the efficacy of many oncolytic virus trials 

including reovirus-based studies; however several studies also report anti-tumour effect 
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following systemic delivery (Vidal et al., 2008; Comins et al., 2010). Having demonstrated 

significant levels of reduction in reovirus-induced cell death against SW480 and SW620 cells 

when cultured in the presence of NAB (Fig 4-7), we examined peripheral blood samples from 

the REO 013 trial.  These suggested that a reovirus signal could be detected using rtPCR 

from the PBMC of patients having had a Reolysin® infusion 1 hour previously.  This

prompted the investigation of the potential of immune cells within human PBMC to act as

viral carriers which could theoretically shield the virus from the deleterious effects of NAB.

Although several blood components (e.g. red cells, platelets and granulocytes) may transport 

viruses, we focused on the potential of mononuclear cells to act as carriers as this fraction 

contained both the recognised carriers (DC, T cells) and innate immune effector cells (DC, 

NK cells).  Innate effector cells have been shown previously to be involved in the efficacy of 

reovirus treatment (Prestwich et al., 2009b; Qiao et al., 2008b).  PBMC components were 

found to express JAM-A (Fig 5-1) and more importantly could bind reovirus to their cell-

surface (Fig 5-2).  PBMC did not, however, support viral replication (Fig 5-3).

Significantly, reovirus-loaded PBMC could ‘hitch-hike’ reovirus to SW480 and SW620 target 

cells (Fig 5-4) and virus which had been “handed off” to these target cells remained capable 

of replication and tumor cell killing even in the presence of HS (Fig 5-5).  This suggests that 

reovirus carried by immune cells in patients following i.v. injection may be protected from 

neutralisation by NAB and can be successfully delivered to tumours in patients (Vidal et al., 

2008; Comins et al., 2010).  This theory is further supported by the REO 013 trial, where 

successful reovirus delivery to CRLM was demonstrated following i.v. administration (Adair et 

al., 2012b).

The current study also demonstrated that reovirus-loading of whole PBMC can exert 

immune-mediated anti-tumour effects.  Reovirus treatment induced the production of pro-

inflammatory cytokines and chemokines (Fig 6-1 and Fig 6.2) and led to an activated NK cell 

phenotype (Fig 6-3).  Moreover, NK cells within whole PBMC were capable of degranulation 
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against (Fig 7-1), and causing lysis of (Fig 7-2 and Fig 7-3), SW480 and SW620 cell line 

targets in the presence of NAB.  These findings were also demonstrated in PBMC isolated 

from patients with CRLM (Fig 8.2).

In addition to activated peripheral blood innate effector cells accessing the tumour as carrier 

cells, the liver itself contains virus-sensitive cells which have the potential to be activated in 

situ by reovirus, with the subsequent stimulation of anti-tumour immune effector function.  

The potential of this therapeutic mechanism is supported by clinical data showing a mild,

transient, elevation of liver transaminases in patients treated with i.v. reovirus (Gollamudi et 

al., 2009; Vidal et al., 2008).  The activation of resident innate immune effector cells may be 

particularly effective for targeting micro-metastatic tumours within the liver which are 

undetectable using conventional radiological imaging.  

This study highlights that LNK from patients with CRLM, similar to patient and normal donor 

PBNK, are activated by reovirus to target SW480 and SW620 tumour cells and that again, 

the metastatic SW620 cells were more susceptible than the primary SW480 cell line (Fig 8-

8).  Importantly, neither patient reovirus-activated LNK nor PBNK degranulated significantly 

against autologous hepatocytes, suggesting that there may be a useful therapeutic index 

between OV-mediated innate immune stimulation against tumour and surrounding normal 

cells within the liver. These data also show that, despite the acknowledged general 

immunosuppression associated with cancer (Kim et al., 2006) both circulating and hepatic 

innate effectors from these patients with CRLM can be activated by reovirus to become 

cytotoxic.

In summary, this work confirms that colorectal cancer is a viable target for reovirus therapy 

mediated both by direct cytoxic and innate immune cell killing.  Although serum can 

neutralise reovirus, this data demonstrates a model in which blood cells can protect and 

transport reovirus for delivery to target tumour cells following i.v. injection. These cell 

carriers, as well as hepatic immune cells, are activated in response to reovirus and 
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demonstrate an innate anti-tumour effect with no detriment to normal hepatic parenchyma.  

As well as supporting the further development of reovirus as a systemic treatment for CRLM, 

this study suggests that the rapid clearance of reovirus from the circulation which has 

restricted therapy in murine models, may not inevitably apply in patients treated with i.v.

reovirus, where immune cells may act both not only as protective cell carriers but also as 

peripheral therapeutic effectors against tumour cells.
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