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Abstract

Model based predictive control (MPC) is well established and has gained widespread ac-

ceptance in the industry and the academic community. The success of earlier industrial

heuristic MPC algorithms motivated the research community to develop several algo-

rithms with improved performance and enlarge the region of attraction. All proposed al-

gorithms to some extent form a trade off between a region of attraction, performance and

inexpensive optimisation. This thesis makes contributions in the area of MPC algorithm

design and in particular examines to what extent different methods for parameterising

the degrees of freedom within the input trajectories can improve aspects of the region of

attraction, performance and inexpensive optimisation.

Kautz functions are explored to parameterise the input sequences in optimal model pre-

dictive control (OMPC). It is shown that this modification gives mechanisms to achieve

low computational burden with enlarged region of attraction and without too much detri-

ment to performance. The proposed algorithm based on Kautz function parameterisation

guarantees stability and recursive feasibility. It is further explored and a general class

of function parameterisation is proposed using higher order orthonormal basis functions.

A generalised function based MPC algorithm is formulated with guaranteed convergence

and recursive feasibility. The efficacy of the proposed parameterisations within existing

MPC algorithms are demonstrated by examples.

The general class of function parameterisation is further explored by looking at system-

atic choices for a particular problem. Systematic mechanisms are discussed to choose the

best tuned alternative parameterisation dynamics. The numerical examples demonstrate

the efficacy of the systematic mechanisms. It is also shown that generalised function

parameterisations are computationally efficient when used to achieve an approximately

global region of attraction as compared with OMPC, there is a reduction in number of

inequalities to represent the region of attraction, the number of multiparametric solutions

(and therefore computational complexity and memory storage) and also the computa-
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tional time using active set methods.

Another avenue explored is the efficacy of generalised function parameterisation of the

degree of freedom within a robust MPC algorithm. It extends the work of nominal case

to the robust scenario and shows that similar benefits accrue. An algorithm is proposed

for the robust MPC using the generalised function parameterisation that enables the use

of robust control invariant set to enlarge the region of attraction.

Finally, the parameterised solution extends to triple mode approaches to simplify the

offline computations. In triple mode MPC algorithms, the first novelty is to propose ex-

plicit choices of middle mode using generalised function dynamics as a pragmatic choice

without demanding offline computations. The second novel contribution is to parame-

terise the input sequences for both explicit and implicit choices of the middle mode within

triple mode MPC algorithms. The improvements, with respect to existing algorithms,

are demonstrated by examples.
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Chapter 1

Introduction

Today, the process industry is characterised by product quality specifications which be-

come more and more tight, increasing productivity demands, new environmental regu-

lations and fast changes in the economic market. As a consequence process industry is

nowadays confronting a strongly competitive environment and extracting greater value

from manufacturing assets is a major challenge. One of the main reasons of all these

changes is the globalisation of the market.

Nowadays, companies seeking to increase profitability are shifting from a supplier driven

market to customer-centric, demand-driven manufacturing environments where product

quality and customer service is becoming essential for success. In many cases the require-

ments are contradictory for example, there is always a constant push towards a higher

quality of products with lower manufacturing costs [1]. In this context, nowadays, the

role of the engineer is to design, within budget and available time, a controller which

is guaranteed to meet the client’s specifications subject to energy costs, environmental

and safety demands in the presence of changes in the characteristics of the process and

variable demands.

The rapid development of control technology has an impact on the process industry. New

theory, new controllers, actuators, sensors, new industrial process, computer methods,

new applications, new philosophies, new challenges are proposed in the area of control

discipline. The control technology offers a potential to implement more advanced control

algorithms but often the preferred strategy of many industrial engineers is to design a

robust and transparent process control structure that uses simple controllers. This is one

reason why the PID controller remains industry’s most implemented controller; however,

this approach can create limitations on the process efficiency [2]. One such limitation is
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1.1 Model Predictive Control

the possible lack of a systematically achieved performance within the process hierarchy.

For example in the case of reference tracking, PID control might be too short- sighted

for the tracking performance. Another is the omission of a facility to accommodate and

handle process operational constraints.

All industrial systems have inputs and outputs which are limited in size due to the

presence of safety or physical constraints. Furthermore, an industrial process design

might also require a certain level of performance, which can be translated into additional

constraints on the controlled system. Excluding these constraints in the controller design

phase may lead to a control action that could result in constraint violations. Depending

on the underlying application, a violation might result in system failure, which in turn

could possibly become a human hazard.

The current interest in the industry due to the emergence of advanced control techniques

provides a great opportunity to improve process efficiency and optimality in the presence

of constraints. Advanced control includes a vast number of methods which provide im-

portant ways in which the production situation can be improved; model based predictive

control is one of the most successful solutions for an appropriate operation.

1.1 Model Predictive Control

Model (Based) Predictive Control (MPC) or receding horizon control (RHC) or moving

horizon or embedded optimisation or real time optimisation or predictive control [3–6],

are general names for different computer control algorithms that use past information of

the inputs and outputs and a mathematical model of the plant to optimise its predicted

future behaviour. During the last few decades, MPC has become a leading industrial

control technology mainly due to the ease with which constraints can be included in the

controller formulation.

MPC approaches determine a sequence of optimal control actions (inputs) over a future

time horizon in order to optimise the performance of the controlled system, expressed in

terms of a cost function. The optimisation is based on an internal mathematical model

which, given the current measurements, predict the future behaviour of the real system

with respect to changes in the control inputs. Once the sequence of optimal control inputs

has been determined, only the first element is actually implemented and the optimisation

is repeated at the next time interval with the new measurements and over the shifted

horizon. This feedback mechanism of the MPC compensates for the prediction error due

to structural mismatch between the internal model and the real system as well as for

disturbances.

25



1.2 Motivation

The main advantages which make MPC industrially desirable are that it can address the

control problem with constrained optimisation.

• The possibility to express constraints explicitly in the problem formulation offers a

natural way to state a broad class of control problems.

• Often the best performance, which may correspond to the most efficient or prof-

itable operation, is obtained when the system is made to operate near the con-

straints.

• In the presence of actuator saturations, a control approach that is aware of the

constraints never generates control inputs beyond the saturation values, and this

removes the wind-up problem.

In addition, MPC approaches have the advantage of naturally handling multivariable

control problems and systems with complex dynamics (like systems with time delays, for

example). MPC approaches are powerful and robust in comparison with standard PID

control, and their relative ease to configure and tune allows a remarkably short pay back

time [7–9].

The basic principle of MPC is illustrated in Figure 1.1 where a single input single output

system is considered. At each sampling time k, finite horizon optimal control problem is

solved over a prediction horizon, using the current state of the process as the initial state.

The output is required to follow a set point r. The figure also gives the previous history

of the output trajectory and of the implied input at time instant k, which is subject

to a saturation constraint. The online optimisation problem takes account of system

dynamics, constraints and control objectives. The optimisation yields an optimal control

sequence (represented as control horizon in Figure 1.1), but only the control action for

the current time is applied while the rest of the calculated sequence is discarded. At the

next time instant the horizon is shifted one sample and the optimisation is restarted with

the information of the new measurements, using the concept of the receding horizon.

1.2 Motivation

MPC is well established and widely used both in the process industry and the control

research community, but nevertheless there are still some theoretical and practical issues

which have non-satisfactory answers. MPC algorithms have been successfully applied

to many real systems [9], including multivariable systems, because it builds constraint
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Figure 1.1: Graphical illustration of Model Predictive Control strategy

handling in from the outset. There are five aspects of MPC algorithm design, which

have direct impact on the performance and complexity of the controller implementation.

It will become clear that some of these goals are conflicting, which will illustrate the

need for improved algorithms and this forms the main motivation for this thesis. The

challenge relies on choosing the best balance according to the application needs.

1. Stability

One of the most important aims is obviously to obtain a controller that stabilises
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the underlying system according to some stability measure. MPC control design

includes the notion of stability [6, 10, 11]. A common requirement is to guarantee

stability in a sense relevant to the control objectives, i.e. stabilisation, tracking or

disturbance rejection.

2. Region of attraction

An issue related to stability is the region of attraction. It is defined as the re-

gion of the state space for which the system is stable. In MPC algorithm design,

there is a need for the algorithm to be feasible, at every sampling instant. This

requirement is called recursive feasibility. Within MPC, feasibility should really be

defined as recursive feasibility. Typically, the region of attraction is also region for

which stability is guaranteed. Consequently, another important aim is to obtain

a region of attraction that is as large as possible. However, in combination with

ensuring stability [6, 10, 11], the region of attraction may be small unless one uses

a prohibitively large number of control moves (or degrees of freedom).

3. Performance

One of the major selling points of MPC is its ability to do online constraint han-

dling in a systematic way, hopefully retaining to some extent the stability margins

and performance subject to constraint satisfaction. MPC controllers are used when

the constraints play a determinant role in the control problem and as such, typ-

ically, improves the obtainable control performance significantly compared to the

unconstrained case. However, when operating in regions away from the constraints,

it is desirable that the MPC controller closely achieves an optimal unconstrained

controller behaviour e.g. Linear Quadratic Regulator or LQR controller. Typically

optimal tuned terminal control laws (e.g. the LQR optimal) lead to a relatively

conservative region of attraction, whereas large regions of attraction typically cor-

respond to suboptimal terminal controllers. Another way of improving optimality

is increasing the degrees of freedom.

4. Computational Complexity

An important issue for real time implementation of MPC is to find the fastest ways

of optimisation as the time required for solving online optimisation may be very lim-

ited. Therefore, the computational efficiency of an algorithm in this aspect becomes

critical when the algorithm is designed. The computational complexity is mainly

determined by the number of optimisation variables, the number of constraints, the

length of the horizon and the class of optimisation problems. Therefore, a trade off

has to be made between performance, region of attraction and the computational

burden when choosing from the currently available algorithms. Due to the com-

putationally expensive online optimisation which is required, historically there has
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been some limitation to the applications on which MPC has been used.

5. Robustness

Finally, another important aim of MPC controller design is its robustness with

respect to differences between the prediction model and the plant model and ro-

bustness with respect to external disturbances that act upon the system. If the

effect of the uncertainty in the model is not taken into account, then the actual

and theoretical behaviour of the system will differ. It is possible that a controller

which does not take account of uncertainty would cause the control performance to

be sluggish, overly conservative or in the worse scenario, would drive the system in

an unsafe region. As with stability properties, adding mechanisms to improve ro-

bustness results in a typical trade off between computational complexity and region

of attraction.

These design goals are conflicting and often not obtainable simultaneously, using classical

MPC algorithms. Within the MPC community, there are now well accepted approaches

which give the user confidence in the closed-loop performance and indeed it is easy to

give a priori stability guarantee in the nominal case [6]. The most popular approach uses

a dual mode prediction whereby one assumes some flexibility in the input predictions for

some horizon, say nc, and then assumes the input predictions follow a known fixed form in

the longer horizon; usually this terminal assumption is equivalent to some fixed stabilising

feedback law [5, 11]. The terminal assumption allows a straightforward definition of a

feasible terminal set [12], that is a set within which the predictions are known to satisfy

constraints. The overall region of attraction may be larger than this due to the control

horizon nc allowing some flexibility in transients and, in general up to some limit, one

can grow the region of attraction by increasing the control horizon. Herein however lies

a key trade off [13]:

• If the terminal law is well tuned, the terminal region may be small and hence a

large nc is required to get a large region of attraction. A large nc could imply a

large computational load and/or a more complex optimisation.

• If the terminal law is less well tuned, one may get a large region of attraction with

a relatively small nc, however one has embedded into the predictions a significant

portion which is based on suboptimal dynamics and thus this will impact on the

achievable performance.

If the user wishes to use the standard optimal MPC (OMPC) algorithm [5, 11] then

the trade off is not easy to handle because the optimal control law is embedded as the
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terminal law and therefore a relatively large nc is required; however one could argue that

at least the associated problem has a regular structure.

Some recent work has looked at very different prediction structures based on interpolation

between two different strategies, say one with improved performance and one which en-

larges the region of attraction e.g. [14–16] and other possible parameterisation approaches

also exist [17–19]. Also, some authors have proposed blocking as means of extending the

control horizon without increasing the number of d.o.f. [20]. However, this thesis does

not pursue any of these approaches, instead, this thesis proposes to stick with a more

conventional MPC structure, that is one based on a single set of predictions and a sin-

gle terminal control law as for these, guarantees of stability and recursive feasibility are

‘automatic’ and asks whether alternative ways of selecting the input prediction profiles

is beneficial. The specific constraint adopted in this thesis which facilities convergence

guarantees is that the prediction profiles have a recursive property that within the predic-

tion class, one can automatically choose the same profile as was selected at the previous

sample. On the other hand the paper [21,22], uses ellipsoidal constraints approximation

to formulate an MPC Law, which provides robustness to model uncertainty. This type

of approach was extended in [23] and [24] by allowing the parameters of the dynamic

feedback law to be variables in the offline optimisation. These formulations can reduce

the suboptimality in the size of stabilisable set associated with the MPC law of [21, 22],

but leads to a nonconvex optimisation formulation with no guarantee of convergence to a

solution. In [25], a convex formulation of the optimisation of prediction dynamics is pro-

posed to enlarge the region of attraction using as highly tuned a terminal control law as

is possible in combination with any detuned law. The proposed optimisation formulation

simplifies the trade off between a region of attraction, performance and computational

burden with following limitations:

• The proposed optimisation formulation is only convex for a prediction horizon which

is equal (or exceeds) the system dimension.

• It was shown that there is no further gain in the region of attraction when the

prediction horizon exceeds the system dimension and thus gives artificially tight

limits on the gain in the region of attraction.

• The proposal is based on ellipsoids and hence it may be conservative in volume for

non-symmetric constraints (This is consistent with the fact that ellipsoidal invariant

set algorithms work best with symmetric constraints).

• The convex formulation may increase the prediction horizon for higher order system

dimensions and hence although the region of attraction may be enlarged this is at

the expense of a greater computational burden.
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Therefore, the trade off between region of attraction, performance and computational

burden requires further study.

The focus of this thesis is on the choice of the d.o.f. in a conventional OMPC type of

algorithm. Historically the d.o.f. have been taken to be the individual control moves

within the control horizon, however this is noted as being quite inefficient when the

control horizon is by necessity large to ensure feasibility. Hence, an alternative approach

is to consider combinations of different sequences of moves, where these sequences could

in principle be over a relatively short horizon or in fact as in this thesis, sequences which

evolve over an infinite horizon. As a means of convincing the reader of this concept,

engineering commonsense already tells us that a sequence based on the unconstrained

optimal control is likely to be a good one [11]. A set of sequences known to have been

effective in earlier studies [18, 26] are the Laguerre polynomials which are a special case

of the generalised prediction framework was proposed in [25] and thus a logical route of

further study was to investigate this class of functions in more detail. This thesis develops

this concept further and investigates the efficiency of more flexible functions along with

systematic design guidelines for choosing appropriate functions to overcome the trade

offs within MPC design goals. The efficacy of the proposed algorithms is considered for

both nominal and robust scenarios.

1.3 Aims and objectives

The main aim of this thesis is to make contributions in the area of predictive control

design and in particular to examine to what extent different methods for parameterising

the degrees of freedom within the input trajectories can improve aspects of feasibility,

performance and optimisation complexity. In order to do this, the proposed alternatives

must preserve the benefits of the conventional algorithms such as constraint handling

and high performance.

Particular objectives

To achieve the main aim, a number of particular objectives can be listed:

1. Propose flexible functions as an effective alternative/modification to the standard

basis set for parameterising the degrees of freedom within MPC.
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2. Generalise the parameterisation approaches to predictive control based on more

flexible and Laguerre functions in a format to simplify the trade off between the

region of attraction, performance and inexpensive optimisation.

3. Propose a systematic mechanism to choose the best tuned flexible function param-

eterisation dynamics.

4. Investigate the computational efficiency of using generalised function parameteri-

sations for implicit and explicit solutions to MPC.

5. Demonstrate the efficiency of more flexible parameterisations of the degrees of free-

dom within a robust MPC algorithm.

6. Propose a polyhedral robust invariant set of an augmented system using generalised

function parameterisation.

7. Propose Laguerre and Kautz function dynamics as a pragmatic choice within a

triple mode MPC to simplify the offline computations.

8. Propose more flexible function parameterisations within a triple mode approaches

to significantly enlarge the region of attraction.
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1.5 Thesis overview

The present document consists of 10 chapters and 1 appendix divided into 3 parts. A

summary of each of them is presented next.

Part I Background and Literature review

In Chapter 2, the theoretical foundation and a brief history of the MPC algorithms are

presented. A brief overview of nonlinear MPC with possible real time implementations,

weaknesses and an overview of robust MPC is also presented. Thereafter real time

implementation challenges are discussed in detail for the explicit and implicit solutions

of MPC with their strengthens and weaknesses. Subsequently, the goals and challenges

of any MPC implementation are discussed, along with a review of the most efficient MPC

algorithms relevant to this thesis to establish state of the art approaches.
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Chapter 3, provides a common theoretical framework necessary for arguments in this

thesis. It introduces the class of system descriptions considered, the class of linear and

linear parameter varying system with constraints, which is probably the most important

and widely used one in practice. An overview of the problem formulation and stability in

MPC is given. The chapter thereafter discusses MPC algorithms. A dual mode paradigm

with an optimal MPC is discussed in detail, then the Laguerre function parameterisation

with an optimal MPC is given. Triple mode MPC is presented using both polyhedral

and ellipsoidal sets. Finally, an overview of robust MPC is given.

Part II Generalised function parameterisations within model predictive con-

trol

This part presents the contributions of the thesis to linear time invariant systems. The

first two chapters (i.e. Chapter 4 and 5) propose alternative algorithms to simplify the

trade off between the region of attraction, performance and computational load within

the MPC. The last two chapters (i.e. Chapter 6 and 7) in this part discuss systematic

tuning and the computational analysis of the proposed algorithms.

In Chapter 4, Kautz functions are presented as an alternative way to parameterise the

input predictions in dual mode MPC. It is shown that Laguerre functions are a special

case of Kautz functions. Specifically, a simple but efficient MPC algorithm that uses

Kautz functions give a mechanism to achieve a low computational burden with enlarged

the region of attraction and without degrading the performance is presented. This mod-

ification indeed may be more effective than the already proposed Laguerre functions as

they offer more variety in the key characteristics. It is also shown that the proposed al-

gorithms have standard convergence and feasibility guarantees. The improvement, with

respect to the existing algorithm that uses a Laguerre parameterisation, is demonstrated

by numerical examples.

In Chapter 5, generalised orthonormal basis functions are proposed to generalise ap-

proaches to predictive control based on Laguerre and Kautz functions. Laguerre and

Kautz functions are presented as a special case of generalised functions. This chap-

ter provides a possible alternative using orthonormal functions like Laguerre and Kautz

functions. An algorithm based on a generalised function is presented with standard

convergence and feasibility guarantees. The efficacy of the proposed parameterisation

within existing predictive control algorithms that use a similar strategy (e.g. Laguerre

and Kautz functions), is demonstrated by numerical examples.

So far generalised functions (i.e. Laguerre, Kautz and higher order orthonormal func-
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tions) have been shown to be effective within predictive control design, but without giving

explicit design guidelines. Chapter 6 extends that work by looking at systematic choices

for generalised functions. Systematic mechanisms are discussed to choose the best tuned

alternative parameterisation dynamics. The efficacy of the proposed parameterisation

within existing predictive control algorithms are demonstrated by examples.

In Chapter 7, the aim is to consider the computational efficiency of generalised func-

tion parameterisation for implicit and explicit solutions to MPC. It is shown that the

generalised function parameterisation still uses a standard quadratic programming opti-

misation problem, this does not have the regular structure that one would desire. This

chapter considers the compact problem formulation rising from removing any redundant

constraints. Extensive numerical simulations are presented to show the computational

analysis of the proposed algorithms using multi-parametric quadratic programming and

active set method.

Part III An Efficient Robust model predictive control using generalised func-

tion parameterisation

This part presents the second part of the contribution of the thesis for uncertain dynamics.

Chapter 8 uses dual mode prediction and Chapter 9 uses triple mode prediction.

In Chapter 8, the efficacy of flexible function parameterisation is extended to robust

MPC algorithms and shown that similar benefits accrue as in the nominal cases. It is

shown that increases in complexity of the robust case as compared to the nominal case

is much less than might be expected. There are two key contributions, firstly to propose

a polyhedral robust invariant set using flexible function parameterisation and secondly

to introduce a robust MPC algorithm based on the proposed polyhedral robust invariant

set to enlarge the region of attraction. It is also shown that the proposed algorithm

has standard convergence and feasibility guarantees. To finish the chapter, numerical

examples demonstrate the efficacy of the proposed algorithm.

InChapter 9, the efficacy of more flexible function parameterisation is extended to triple

mode approaches. It is shown that more flexible function parameterisation may signif-

icantly enlarge the region of attraction. There are many cases where such an approach

is an improvement on earlier work and simplifies offline computations. The proposed

algorithms are based on both ellipsoidal and polyhedral invariant sets. It is also shown

that proposed algorithms have standard convergence and feasibility guarantees. To finish

the chapter, numerical examples demonstrate the efficacy of the proposed algorithms.

35



1.5 Thesis overview

Part IV Conclusion and Future directions

Finally, in Chapter 10, the original contributions of the thesis are summarised and the

overall conclusions are presented. At the end of the chapter, the proposed future work is

discussed.

Part V Appendix

In Appendix A, complementary information of Chapter 4 and 5 is given.
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Background and Literature review
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Chapter 2

Literature review

This chapter presents the literature review of predictive control in order to identify the

key issues. Intentionally, the presentation of ideas and concepts in this chapter is kept at

a rather colloquial level, rather than being mathematically rigorous. The chapter starts

reviewing the foundation of model predictive control in optimal control theory, this is

presented in Section 2.1. Then, in Section 2.2, the first few model predictive control algo-

rithms are summarised in a historical context. Section 2.3, discusses briefly the nonlinear

formulation of predictive control with possible real time implementation weaknesses. An

overview of robust model predictive control is considered in Section 2.4. Section 2.5,

presents a review of explicit MPC and implicit MPC along with their strengthens and

weaknesses. In Section 2.6, a few MPC algorithms with their the potential to be imple-

mented for fast applications are presented with possible limitations. Finally Section 2.7

concludes the chapter.

2.1 Theoretical foundation of Model Predictive Control

Model Predictive Control (MPC), also referred to as receding horizon control (RHC) or

moving horizon or embedded optimisation or predictive control, has been widely adopted

in industry as an effective means to deal with multivariable constrained control optimi-

sation problems [3, 5, 6, 9, 27–32]. Several publications provide a good introduction to

theoretical and practical issues associated with MPC technology, to name a few: in the

area of textbooks there are [3–5, 32–35] as well as the survey papers [6, 9, 28–31, 36–41].

A complete MPC toolbox with different versions have been available since 1998 for

Maltlabr [42, 43], showing the interest of the academic community in this field. This
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toolbox incorporates different model representations, the ability of constraints handling

and the extension to the multivariate case.

The theoretical development of MPC is normally related to the work done around opti-

mal control theory [6]. The relevant literature to the development of MPC deals with

the existence of solutions of optimal control problems, characterization of optimal solu-

tions in terms of necessary and sufficient conditions of optimality, Lyapunov stability,

and algorithms for the computation of optimal open loop and closed loop feedback con-

trollers [44,45]. The development of optimal control theory concepts can be traced to the

work of Kalman in the early 1960’s, who determined when a linear control system can be

said to be optimal [46, 47]. There are several seminal ideas from optimal control theory

literature that are central to MPC. The first two of them are: Hamilton Jacobi Bellman

theory (Dynamic Programming) [48], which provides sufficient optimality conditions for

determining an optimal feedback controller and the maximum principle [49], which pro-

vides necessary optimality conditions to determine an open loop optimal controller given

an initial conditions. Other ideas are linear programming which was proposed in the early

1960’s by Zadeh and Whalen for solving optimal control problems [50], and the receding

horizon concept which was proposed by Propoi [51] in the open loop optimal feedback,

who perhaps conceived the first idea of MPC. Later [51], only a few other authors have

investigated MPC based on linear programming e.g. [52,53], where the performance index

is expressed as the sum of the ∞−norm or 1−norm of the input command and of the

deviation of the state from the desired value. Now, there is a comprehensive literature

on MPC using linear programming. One motivation is that the resulting optimal control

problem is cast as a linear program, which can be computationally less demanding than

the corresponding solution of a quadratic program [54,55].

Solving an infinite horizon, open loop, optimal control problem is computationally ex-

pensive (apart from the standard unconstrained case control of linear systems). So it is

a relative concern to formulate a receding horizon open loop optimal control problem to

solve an infinite horizon problem which provides a stabilising control. The early results

were presented in [56] and [57]. Further extensions to these results where provided in [58]

and [59]. These extensions show that, implementations of MPC differ from other control

methods. Maybe the most important issue for real time implementation is to solve the

open loop optimal control problem within a time determined by the sampling instant of

the application.
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2.2 A brief history of Model Predictive Control

The basic idea of receding horizon control was already indicated by the theoretical work

of Propoi [51] in 1963, although it did not gain much attention until the mid 1970’s, when

Richalet et al. proposed a technique called Model predictive control Heuristic Control

and later known as Model Algorithm Control (MAC) [27,60]. The solution software was

referred to as IDCOM, an acronym for Identification and Command. This algorithm

employs a finite horizon pulse response (linear) model, a quadratic cost function, and

input and output constraints. Engineers at Shell Oil developed their own independent

MPC technology in the early 1970’s, with an initial application in 1973. Cutler and

Ramaker presented details of an unconstrained multivariable control algorithm which

they named Dynamic Matrix Control (DMC) at the 1979 National AIChE meeting [61]

and at the 1980 Joint Automatic Control Conference [62]. In a companion paper at

the 1980 meeting Prett and Gillette [63] described an application of DMC technology

in which the algorithm is modified to handle nonlinearities and constraints. The DMC

algorithm employs a step response model of the process for the predictions and had huge

success in the petro-chemical industry.

These algorithms were heuristic and represent the first generation of predictive controller.

Both algorithms provided excellent control of unconstrained multivariable process, but

constraint handling, was still somewhat ad hoc. This limitation was overcome in the

second generation program, quadratic dynamic matrix control (QDMC) in [64], where

quadratic programming is employed to solve the constrained open loop optimal control

problem. The third generation of MPC technology, distinguishes between several levels of

constraints (soft, hard, ranked), provides some mechanism to recover from an infeasible

solution and provides a wider range of process dynamics and controller specifications

[9]. Shell multivariable optimising control (SMOC) algorithm is one of the example,

which allows for state space models, general disturbance models and state estimation via

Kalman filtering [65]. MPC has had a substantial impact on industry that make it a

multi million dollar industry with probably exceeding 2000 applications [6].

Industrialist did not address MPC stability theoretically, but achieve stability by restrict-

ing attention to stable plants and choosing a large horizon to avoid constraint violations.

On the other hand, according to [6], academic research commenced on the theoretical

investigation of stability. Initially, stability had to be addressed within the restricted

framework of linear analysis because Lyapunov theory was not employed. Research

mainly focused on the effect of control and cost horizon on stability when the system is

linear, a quadratic cost is used, and hard constraints are absent. Some early approaches

proposed by the academic community include Predictive Based Self Tuning Control [66],
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Extended Horizon Adaptive Control [67], Multistep Multivariate Adaptive Control [68]

and Extended Predictive Self Adaptive Control [69] (i.e., the approaches are not aca-

demic, but they were proposed by academics). The Lyapunov function for establishing

stability of MPC was first employed in [70], thereafter, the value function was employed

as a Lyapunov function for stability analysis of MPC.

Some years later [71,72] Generalized predictive control (GPC) was presented, which uses

some ideas of the generalised minimum variance control [73] and nowadays is one of the

most popular predictive control algorithms in academia. This controller uses a CARIMA

(Controlled Auto Regressive Integrated Moving Average) model to predict the output of

the process and has the characteristics that could be adaptable using a recursive least

square parameter estimation. Although at first sight the ideas underlying DMC and

GPC are similar, DMC was conceived for multivariable constrained control, while GPC

is primarily suited for single variable, and possibly adaptive control [30].

There is another formulation that has had success in the process industry: the Predic-

tive Functional Controller (PFC) developed in [37]. PFC is the product of a company,

ADERSA, which had the main aim of maximising the takeup of MPC within industry.

It achieved this partially by keeping the algorithm as simple as possible. This algorithm

uses a simple optimisation procedure by only taking a subset of points of the control

horizon (coincidence points), making for a faster calculation of the control input. An-

other characteristic of this algorithm is the use of basis functions to structure the control

signal that allows the controller to track different set points.

Earlier versions of MPC and GPC did not automatically ensure stability, thus in the

1990’s lots of attention was devoted to this topic. There are different proposals and

formulations of MPC to ensure stability [6]. One of the standard guidelines to ensure

guarantees of feasibility and/or stability are now commonly accepted, that is, many

authors use the dual mode prediction paradigm [11, 74] in connection with an infinite

horizon. The dual mode prediction is one whereby the predictions have two modes:

(i) a transient phase containing degrees of freedom (d.o.f.) and (ii) a terminal mode

with guaranteed convergence. The first mode is set up so that a standard prediction

mode is assumed, with constraints, up to a particular horizon. Beyond this horizon an

unconstrained asymptotically stabilising state feedback control law is assumed with an

optimal feedback gain K. However, for a tightly tuned K, regions of attraction (and

terminal set) may not be large and the control law may not be robust. In this thesis

the standard dual mode prediction set [6, 10, 11, 13] will be adopted as this enables the

guarantee of asymptotic stability and recursive feasibility.

MPC is well established and widely used both in industry and control research community
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and has reached a high degree of maturity in its linear variant. According to [30, 75]

hundreds of papers are reported on predictive control for the years 1991-1998. Currently

research is focused on stochastic, nonlinear, large scale, hybrid system and robustness

issues as well as fast optimisation or related computational aspects. Nevertheless there

are still some theoretical and practical issues which have non-satisfactory answers. For

instance, one well understood conflict is how to obtain a large region of attraction, that is

the operating region within which the closed loop input, output and state do not violate

constraints, and at the same time retain optimum performance. The algorithms that

are giving large regions of attraction often give suboptimal performance and vice versa.

A simple example of this trade off is the observation that detuning a control law will

typically result in smaller input variations so consequently inputs are less aggressive and

less likely to violate constraints.

2.3 Nonlinear Model Predictive Control

Nonlinear Model Predictive Control (NMPC) implies controlling a nonlinear plant by

means of an MPC control algorithm, where the nonlinearities of the plant are taken into

account in some way. Though many manufacturing processes are nonlinear, the majority

of MPC applications are based on linear models. This is justified by different reasons.

Linear models are usually easy to identify with standard system identification techniques.

In addition, MPC have been mostly applied in the oil industry for regulatory control and

usually a well identified linear model is detailed enough in order to maintain the process

at a desired steady state. Finally, linear MPC converges to an optimal solution in short

time, which is the requirement of many manufacturing applications [39,40,76].

In [9] several successful applications of fully nonlinear MPC technologies are reported.

However, the application of NMPC has not been widely implemented despite a significant

amount of research effort having been put into this area. One of the main difficulties

facing the transition from MPC to NMPC is the fact that NMPC requires the repeated

online solution of a nonlinear optimal control problem. The optimisation problem is

generally nonconvex because the model equations are nonlinear, and therefore compu-

tationally expensive [76]. The problem of the existence of an online solution of the

nonlinear program is crucial one. This is one of the key limiting factors for successful

practical applications of NMPC.
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2.4 Robust Model Predictive Control

The success of MPC depends on the degree of precision of the plant model. In practice,

modelling real plants inherently include uncertainties that have to be considered in the

controller design, that is a control design procedure has to guarantee robustness properties

such as stability and performance of the closed loop system in the whole uncertainty

domain. Two typical descriptions of uncertainty, state space polytope and bounded

unstructured uncertainty are extensively considered in the field of robust model predictive

control.

Two common approaches to robustness have been considered in the MPC literature.

The first aspect is the inherent robustness of nominal MPC algorithm design, i.e. on

the MPC algorithm that is not specifically designed for robust aspects (like stability

and performance) [77, 78]. The second aspect is the explicit inclusion of robustness

requirements into the design of an MPC algorithm has received attention in the MPC

literature. MPC algorithm design based on including the uncertainty information in the

model is referred to as robust MPC [21,79–83].

Traditionally robust MPC requires the solution of a min-max optimisation problem,

where an optimisation over all possible control moves is performed in order to minimise a

worst-case (over all possible uncertainty realisations) cost function [79, 84–86]. Further-

more, constraint satisfaction also has to be guaranteed for all possible future trajectories.

In general, solving a min-max problem subject to constraints, one has to optimise over

a sequence of control strategies rather than a sequence of fixed control moves, all these

elements contribute to make robust MPC often intractable for online optimisation [87].

However, most robust MPC can be classified into open-loop min-max MPC [84,88,89] and

feedback min-max MPC [21, 79, 80, 87, 90, 91]. An open-loop model formulation usually

overestimates the uncertainty in the closed-loop process because it does not consider the

effects of feedback that will occur in the future to reduce the effect of model mismatch.

Therefore, most of the proposed robust MPC algorithms optimise the worst case cost

function over a sequence of feedback control laws. This improvement over the open-loop

MPC approach is achieved at a considerable increase in computational complexity. The

robust stability of the closed-loop min-max MPC is achieved either directly by enforcing a

type of robust contraction constraint such as a robustly invariant sets [92,93], or by min-

imising the case worst performance over a specified uncertainty range; the corresponding

min-max performance optimisations lead to robust stability [30,38].

The contractive MPC was first introduced in [94] and a stability proof was developed by

the authors in [95]. The main idea in this approach is to add contractive constraints to

the usual formulation of the MPC which enforces the actual state to contract at discrete
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intervals in the future. The system behaviour will converge as long as there exist solutions

which satisfy the contraction constraint. Stability can be established using a Lyapunov

function [38]. For robust MPC, the necessary and sufficient conditions for robust stability

are proposed in [92] using contraction properties of MPC. The paper [96] showed how to

determine the weights such that robust stability can be guaranteed, however the proposed

technique can be very conservative because it assumed an independent uncertainty bound

on the FIR model coefficients.

Furthermore a dynamic programming problem is formulated in [90] to minimise the

worst case cost but the approach suffers from a large computational burden and non-

convexity [38]. Consequently this approach is intractable except the low order systems

with simple uncertainty descriptions. Other formulations [90,97] approximated the prob-

lem by simplifying the objective and the uncertainty description to reduce the online

computational burden [38]. All these approaches are conservative for certain problems.

In [93], the authors propose the use of nominal performance and robust stability is

achieved by enforcing robust contraction constraints. Another suggestion with a cost

contraction constraint is proposed in [98] to formulate a convex optimisation problem.

However, various alternative robust MPC algorithms have been proposed to approximate

solutions of the max-min problem but with a reduced computational burden. In [79] a

classical result is presented by directly incorporating the plant uncertainty into the MPC

formulation. The existence of a feedback law minimising an upper bound on the infinite

horizon objective function and satisfying the constraints is reduced to a convex optimi-

sation using linear matrix inequalities (LMI). The main disadvantages are that the use

of LMI-based optimisation can be computationally demanding because the optimisation

problem needs to be solved on-line at each sampling instant and contains many decision

variables and constraints. Moreover the methods use conservative constraint handling.

Since, the algorithm is derived by using a single Lyapunov function, the algorithm turns

out to be very conservative.

To simplify the computational complexity, many robust MPC algorithms approximate

the future controller behaviour with affine feedback control laws [21,79,99–102]. By using

control invariant sets and LMIs, a broad class of model uncertainty can be addressed with

guaranteed robust closed-loop stability. In order to improve the control performance and

decreased the computational burden at the same time, many synthesis approaches of

MPC were proposed in [103–106]. Based on the concept of the invariant set several papers

[10, 87, 107, 108] separated the computational load into off-line (construct a sequence of

explicit control laws corresponding to a sequence of invariance sets) and online (calculate

the control input with low computational burden). Recently the authors of [109–111]

have proposed a systematic way to derive a sequence of state feedback control laws to

44



2.5 Real time implementation

enlarge the size of the region of attractions.

Another suggestion which is little considered in the literature is the concept of triple

mode control [112, 113]. In this strategy one recognises that a large region of attraction

in conjunction with good performance often implies a nonlinear or linear time varying

(LTV) prediction dynamics. The challenge is to find a suitable and LTV control law

which enlarges the region of attraction without too much detriment to performance.

In [114], the authors proposed robust triple mode MPC using prediction dynamics in [25]

to enlarge the region of attraction for robust MPC. In [25], the authors proposed a convex

formulation of prediction dynamics and showed that the resulting maximal ellipsoidal set

is equal to the maximal invariant ellipsoidal set under any linear feedback law. They

employed a nonlinear transformation of variable to allow for polytopic uncertainty in the

model parameters and linear input/state constraints. In robust triple mode MPC, the

computational burden is further simplified using the reduced-complexity invariant sets

in [115] for the case of quasi-infinite horizon closed loop MPC. The reduced-complexity

invariant sets may result in a decrease in the number of on-line optimisation variables

[115]. This invariant set structure is used in the design of robust MPC and this thesis

will pursue this type of approach to including uncertainty information in the model.

2.5 Real time implementation

MPC approaches determine a sequence of optimal control (input) over a future time

horizon in order to optimise the performance of the controlled system, expressed in terms

of a cost function. The optimisation is based on an internal mathematical model which,

given the current measurements, predicts the future behaviour of the real system with

respect to changes in the control inputs. Once the sequence of optimal control inputs

has been determined, only the first element is actually implemented and the optimisation

is repeated at the next time interval with the new measurements and over the shifted

horizon. This feedback mechanism of MPC compensates for the prediction error due

to structural mismatch between the internal model and the real system as well as for

disturbances.

One important issue for real time implementation is to solve an optimisation problem

within the time determined by the sampling instant of the application and therefore the

computational efficiency of an algorithm becomes critical. A trade off has to be made

between performance, region of attraction and the computational burden when choosing

from the currently available algorithms; in simple terms a larger region of attraction

usually implies a higher computational load or worse performance. It is also recognised
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that the range of industrial applications of MPC has been restricted in practice due to the

computationally expensive online optimisation which is required. There are essentially

two popular ways to solve the finite horizon optimal control problem, namely explicit

and implicit.

2.5.1 Explicit MPC

Explicit MPC formulations [116–121], based on multiparametric programming [122,123],

move much of the optimisation effort offline and obtain the optimal control as an ex-

plicitly defined piecewise affine (PWA) function with dependence on the current state

vector. The domain of the PWA function is the set, which is partitioned into convex

regions. This allows the online computational effort to be reduced to a series of function

evaluations, eliminating the need of a real-time optimisation solver. Therefore, explicit

MPC represents a promising approach to extend the scope of applicability of MPC to

situations where the computations required for the online optimisation are restrictive,

and/or where insight into the control behaviour is necessary for performance analysis

(like safety verification). These situations are common, for example, in the medical,

automotive and aerospace industries [124, 125]. MPC functionality can, with this, be

applied to applications with sampling times in the milliseconds range, using low cost

embedded hardware [126]. Software complexity and reliability is also improved, allowing

the approach to be used in safety-critical applications.

However, an explicit MPC implementation may still be prohibitively costly for large

optimisation problem. In fact the major drawback with these approaches is that the

storage requirements, and online search, may grow exponentially with the optimisation

variables, states and input dimensions, so that the ‘explicit solution’ is often only actually

efficient for small problems (where dimension is no more than around 5) [127]. Several

authors have proposed various research directions to solve this problem. These proposals

are mainly based on post processing the feasible set partitions to reduce the complexity of

the PWA function. Some authors [128] have accepted that there could be no reduction in

the number of regions, but there may be more efficient ways to identify the active regions.

In [129, 130] authors proposed the explicit PWA solution is post processed to generate

search trees that allow efficient online evaluation. In [131], the feasible set partition

regions were merged with the same feedback law and thereby reducing the complexity of

the PWA function. A few authors in [132–134] have considered a suboptimal parametric

solution in the hope that such a solution may be far simpler, but with a small loss in

performance. They defined regions as hypercubes as this allowed a very efficient search.

An even less explored avenue is the potential to use interpolation [16] to give a convex
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blend from nearby points, thus reducing the number of point/regions required while

ensuring feasibility. Another less explored avenue is to base the parametric solution on

points rather than regions [135,136]. A different approach was discussed in [137] and [138]

to enlarge the region of attraction with only a small detriment to optimality but in such

a way that the resulting predictions class can be combined with parametric programming

to give far simpler solutions.

The possible advantages deriving from explicit MPC approaches have attracted a lot

of interest in the research community and considerable effort has been put into the

development of techniques to deal with the entailed disadvantages.

2.5.2 Implicit MPC

Until the 90s MPC was only used for plants with slow dynamics. It was widely applied

in petrochemical and related industries where satisfaction of constraints was particularly

important because efficiency demands operating points on or close to the boundary of

the set of admissible states and control. One of the primary advantages of this technique

is its explicit capability to handle constraints. However, the fact that the optimisation

procedure is to be repeated every time step, is the reason that the application of the MPC

has been limited to the slow dynamics of systems in the process industry until recently.

The boom in MPC started in 1990s when faster computers became available together with

the rapid development of optimisation algorithms. These days MPC applies to various

types of plants with fast dynamics such as airplanes, satellites, robotics, automotive etc.

In MPC, the control action at each step is computed by solving an online optimisation

problem. The optimisation problem resulting due to the linear model, polyhedral con-

straints, and a quadratic objective is a quadratic program (QP). Solving the QP using

standard techniques can be slow, and this has traditionally limited MPC to applications

with slow dynamics, with sampling time measured in seconds or minutes. The computa-

tional efficiency of an algorithm in this aspect becomes critical. There is a collection of

methods that can be used to speed up the computation of MPC control law, using online

optimisation.

Two approaches to solving the QP problem are generally used: Active Set Methods

(ASMs) [139–141] and Interior Point Methods (IPMs) [127, 142–145]. The historical

perspective of the computational complexity of ASMs and IPMs is described in [146].

The computational complexity of the ASM is exponential in the worst case [147], while

in practice they are efficient and the number of iterations required is typically a small

polynomial function of the dimensions [143]. Average-case computational complexity
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analysis has shown the discrepancy between practice and the worst-case behaviour of

ASMs [148]. For IPMs, the theoretical bound is polynomial in the sizes of the matrices

in the QP, and in practice the number of iterations these methods perform is essentially

independent of the number of system dimension and number of constraints [149–151].

They perform large amount of work per iteration, the ratio of work to communication

is quite large compared to ASM. Thus, they are able to exploit the advance computing

architectures, as well as sparse linear solvers and including parallel methods to solve

linear systems. ASMs, which perform a small amount of work per iterations but the

ratio of work to communication is small [151,152].

The ASM gives a systematic means of selecting a potential active set and iterating

through these potential sets to find the global optimum. It generates a sequence of

approximate solutions and maintains and updates a prediction of the optimal sets of

active and inactive constraints. A warm start strategy [143, 153] can be used to exploit

an advanced starting point for solving the QP and thus to further improve the computa-

tional efficiency. This strategy may significantly reduce the number of iterations required

and thus improve the computational effort. ASMs are generally more efficient than IPMs

for small or medium scale problems involving few constraints [152]. In [154], a sampling

time of the order of millisecond is achieved in MPC using online active set strategy for

real world diesel engine problems.

IPM is becoming more popular within MPC implementation because they are suited to

large, sparse problems where the linear algebra can be done fast. However, the associated

optimisation at each iteration is more demanding. In [155], IPM has proven to be an

efficient way of solving linear, quadratic, and nonlinear programming problems compared

to ASMs especially for large scale problems. However, they cannot exploit the solution

of the preceding problem using warm start active set methods proposed in [143, 156]. A

warm start of an IPM with the solution of the preceding problem if it is close to the

boundary of the region of attraction, usually leads to the blocking the search direction,

which means that the step length becomes very small, and the next iteration will be

very close to the previous one. In the last decade, a number of attempts have been

made to improve warm start strategies in IPMs. A warm start strategy for Linear

programming (LP) problem was discussed in [157, 158], where a worst case estimate on

the number of a perturbed LP is determined. Their estimate mainly depends on the

size of the perturbation and on the conditioning of the original problem. It is concluded

in [158] that most of the strategies are effective in reducing the computational time for

small perturbations. Recently, a new unblocking strategy was proposed by [156]. This

is based on a sensitivity analysis of the search direction with respect to the current

point. Numerical test shows that, on average the computations can be simplified in a
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range of LP and QP problems varying from small scale to large scale problems when

this unblocking strategy is combined with other warm-start strategies. In [159], warm-

starting and early termination of the QP problem is proposed.The early termination

significantly reduces the computations, but on the other hand it may compromise either

guaranteed feasibility or stability under specified fixed runtime for the general case of

state and input constraints [160]. An extension to design warm-start strategy was also

proposed in [160–163].

In recent years, attempts have been made to use predictive control in fast processes

with a short sampling time. To reduce the computational efforts new techniques have

emerged. Even though modern advances in computing technology allow faster sampling

rates, a critical that issue remains concerns the reliability and verifiability of the control

algorithm. Moreover, the implementations via real time solvers are not well suited for

all the situations which require portable and/or embedded control devices. Depending

on the particular problem properties and implementation restrictions, the user then has

to decide for one of the two approaches (explicit or implicit MPC). Authors in [163,164],

proposed different strategies to overcome an existing gap of problem sizes and types,

which are either intractable for explicit MPC or implicit MPC solution to meet the

required online computation times.

2.6 Efficient MPC algorithms

The development of dual mode paradigms/infinite horizon algorithms solved a theoretical

problem for the academics and hence gave MPC some analytical rigor. The insight gained

is invaluable in understanding better the strengths and weaknesses of more typical MPC

implementations. All algorithms to some extent allow a trade off between performance,

MCAS volume and the computational burden when choosing from the currently available

algorithms. It is recognized that the range of industrial applications of MPC has been

restricted in practice due to the computationally expensive online optimisation which is

required.

Several authors have looked at this problem, although less so in recent years, where

the focus has moved more to nonlinear systems, robust and parametric solutions. This

section presents a review of a selection of existing proposals along with their strengths

and weaknesses.

49



2.6 Efficient MPC algorithms

2.6.1 Optimal MPC (OMPC)

The standard dual mode prediction set up [10,11] has two tuning parameters. The most

obvious is the number of degrees of freedom (d.o.f. or nc) but the second and in practice

equally important is the selection of the terminal control gain (i.e. K). One logical

choice [10, 11, 165] for K is in fact that which minimises the infinite horizon cost in the

constraint free case. Define such an algorithm as linear optimal MPC (OMPC). The

advantage of such a choice is that for any nc, if the unconstrained optimum is feasible,

then the dual mode algorithm will find that solution; that is no prediction mismatch in

the unconstrained case. Moreover, if nc is large enough, then the dual mode algorithm

can find the optimal for the constrained infinite dimensional optimisation. In practice,

for computational (and sometimes robustness) reasons, this nc may not be very large [5].

However, the major weakness is that for a well-tuned K to give high performance often

have relatively small regions of attraction (regions where the class of predictions satisfy

constraints) unless one uses a prohibitively large number of d.o.f. (or nc).

2.6.2 Interpolation

Interpolation methods have looked for alternative ways to formulate the d.o.f. for opti-

misation [14, 15, 166, 167]. These methods are based on two control laws; these are the

desired (highly tuned) control law and a detuned control law. It seeks to combine the at-

tributes of control strategies with known properties, for instance, one with enlarging the

region of attraction and one with improved performance, while utilising a small number

of d.o.f.; however, early stability and convergence results [15, 16] are weak. A later sug-

gestion, GIMPC or generalised interpolation MPC [166], was focused on the uncertain

cases and thus restricted to ellipsoidal regions, although later extended to polyhedral

regions [168, 169]. GIMPC and GIMPC2 [170], includes sufficient and necessary details

to remove the conservatism of early proposed strategies.

However, interpolation methods do not currently extend well to large dimensional systems

and, as they do not fit as conveniently into a normal paradigm, more work is required to

encourage take up by colleagues and industry [171].

2.6.3 Move blocking MPC

Some authors [20, 172, 173] have proposed blocking as means to deal with the computa-

tional burden of optimal control. It is common practice to reduce the d.o.f. by fixing the
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input or its derivatives to be constant over several time steps. This policy is referred to

as ‘move blocking’.

However, the feasibility and convergence analysis of such algorithms are not straight-

forward due to the prediction dynamics. This is because the prediction dynamics do

not automatically retain the prediction tail (i.e. Bellman’s principle of optimality - any

segment of optimal trajectory is also optimal [48]). In order to retain recursive feasibility

guarantees, the blocking strategy must be time-varying [17,174], or additional constraints

need to be enforced on the first prediction step [20,175].

2.6.4 Triple mode MPC

Some interesting work considered the so-called triple mode MPC [25,112–114,176], where

one embeds a smooth transition between a controller with enlarging the region of attrac-

tion and another with improved performance into a single mode model and uses the

decision variables to improve performance/region of attraction further. This strategy of-

ten implies nonlinear or time varying (LTV) prediction dynamics [177]. Hence, a sensible

objective is to find a suitable and fixed LTV control law which enlarges the region of

attraction without too much detriment to performance.

The further study needs to make the algorithm handle non-symmetric constraints bet-

ter, and to develop triple mode algorithms for uncertainty classes with bounded state

disturbances.

2.6.5 Laguerre Optimal MPC

A general prediction framework was proposed in [25] to enlarge the region of attraction.

Laguerre functions were proposed as a special case of this framework deploying a partic-

ular lower triangular structure in [26]. The simpler structure can be explored to come up

with an optimisation of the volume of polytopic controller sets. This special structure

also allowed only one tuning parameter to generate the prediction framework.

Laguerre functions were first used in the context of a GPC type of algorithm [2,18], but

more recently it was noted that they provide a possible solution to the volume/complexity

trade off in OMPC [26]. Conceptually the key point is to parameterise the future values of

input perturbations in terms of Laguerre functions and this means that the values do not

go to zero after nc steps, but rather converge asymptotically. Therefore, this removes the

need for the state prediction to enter the terminal control region (i.e. maximal admissible
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set MAS [12]) in nc steps because the input parameterisation does not revert straight

back to the unconstrained optimal, but rather approaches the unconstrained optimal

gradually as the perturbation terms reduce in size.

Nevertheless, it needs further study to identify systematic ways of choosing the best

‘Laguerre function parameterisations or indeed any alternative choices to improve the

trade off within an OMPC formulation.

2.7 Conclusion

In this chapter, the literature overview of model predictive control beginning from its

theoretical foundations in optimal control theory and the early model predictive control

approaches in an historical context were presented. This was followed by a brief discussion

about nonlinear model predictive control strategies with implementation limitations. One

of the important aspects of real time implementation is the robustness of the design

algorithm in presence of model uncertainties. A brief overview of already proposed robust

design schemes was discussed. For real time implementation, there are essentially two

popular ways to implement the model predictive control algorithms, an explicit and an

implicit solution of the finite horizon optimal control problem. A review was conducted

for both implementation solutions. It has been noted that there is a well understood

trade off between the region of attraction, performance and inexpensive optimisation

implementation of model predictive control algorithms. Finally, a quick overview of

efficient algorithms was given, which was already in the mainstream journals to simplify

this trade off along with their strengths and weaknesses.

The next two parts of this thesis will develop solutions to enlarge the region of attraction

and improve performance further using low computational complexity model predictive

control algorithms. The efficient algorithms including Optimal MPC, Laguerre optimal

MPC and triple mode MPC will be considered as underlying algorithms with recursive

feasibility and asymptotic stability in nominal cases. Both linear and robust analyses

will done in part II and part III respectively. The next chapter will discuss in detail

the mathematical formulation of the model predictive control problem, dual mode model

predictive control, optimal MPC, Laguerre optimal MPC and triple mode MPC for both

linear and robust scenarios.
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Chapter 3

Overview of Model Predictive

Control Algorithms

Model predictive control (MPC) is an advanced technique that has had a great impact on

industrial control engineering. This chapter overviews some standard MPC algorithms

with emphasis on efficient algorithms in order to identify the gaps within the literature.

It provides the mathematical formulation needed for the successive chapters. Most of

the definitions and results are well established and can be found in the literature. Other

definitions are slightly adapted in the framework of this thesis.

The chapter starts with the problem formulation of standard predictive control and sta-

bility in MPC is presented in Section 3.1. A dual mode prediction paradigm with an

optimal MPC (OMPC) is presented in Section 3.2. Section 3.3 presents the Laguerre

functions and Laguerre optimal MPC (LOMPC) algorithm. The triple mode prediction

paradigm is presented in Section 3.4. Section 3.5 presents a robust MPC problem for-

mulation using linear parameter varying system with constraints. A robust dual mode

algorithms using polyhedral and ellipsoidal invariant sets are presented in Section 3.6. It

is further extended in Section 3.7 to consider triple mode prediction paradigm. Section

3.8 summaries the key points and discusses the limitation in already proposed algorithms.

Finally, Section 3.9 gives the conclusion of the chapter.
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3.1 Problem formulation for Predictive Control

This section introduces the assumptions used in this thesis and background information,

but omitting the well-known algebra that does not add to concepts.

3.1.1 Model and constraints

This thesis consider a discrete time, controllable and observable, linear time invariant

state space model of the form

xk+1 = Axk +Buk, k ∈ N (3.1)

where x ∈ Rnx is the state vector and u ∈ Rnu is the control input, A ∈ Rnx×nx and

B ∈ Rnx×nu are matrices defining the actual behaviour of the system. Model uncertainty

can be added to this formulation (e.g. [115]) but is omitted in this section to ensure the

presentation of key steps and concepts are as clear and straightforward as possible 1.

Assume that the states and inputs at all time instants should fulfill the following con-

straints.

xk ∈ X ⊂ Rnx

uk ∈ U ⊂ Rnu (3.2)

The sets X and U are considered to be described by linear inequalities on the respective

variables.

X = {xk ∈ Rnx | x ≤ xk ≤ x}

U = {uk ∈ Rnu | u ≤ uk ≤ u} (3.3)

In further sections it will assume that U,X are convex, compact sets containing the origin

in their interior.

1Full state measurement and no disturbance are assumed.
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3.1 Problem formulation for Predictive Control

3.1.2 Cost function

In the context of predictive control, it is common to take the following quadratic cost

function as the objective to be minimised at each sample

J(xk, uk) =

∞∑
i=0

{xTk+i+1Qxk+i+1 + uTk+iRuk+i}, (3.4)

where Q = QT ≽ 0 and R = RT ≻ 0 are the state and input cost weighting matrices

respectively. When no constraints are considered, the infinite horizon objective function

(3.4) is minimised by the time-invariant feedback [178]

uk = −Kxk. (3.5)

When constraints on the state, input and outputs (3.2) are considered, an analytical form

of the optimal control law such as (3.5) does not exist. Therefore, to achieve feedback the

(open loop) minimisation of the cost function needs to be performed at each sampling

instant when xk is available, and apply the corresponding uk, that is the first part of the

optimal input sequence. The main issue here is that the resulting optimisation problem

is generally intractable due to the infinite number of optimisation variables.

Remark 3.1.1. This thesis avoids the detail associated to non zero set points and dis-

turbances [179, 180] which can be incorporated by using the feedback law [uk − uss] =

−K(xk −xss) where uss, xss are the states expected to give offset free tracking. Incorpo-

rating integral action into a state feedback is equivalent to finding consistent estimates of

the steady-state values of the state and input; that is, xss, uss using disturbance estimate.

A good discussion of this can be found in [179].

However, it has been shown [181, 182] that it is possible only for nc large enough to

optimise the cost function over the infinite horizon with a finite number of optimisation

variables if the cost function is viewed as composed by two parts

∞∑
i=0

{xTk+i+1Qxk+i+1 + uTk+iRuk+i} =

nc−1∑
i=0

{xTk+i+1Qxk+i+1 + uTk+iRuk+i}

+
∞∑

i=nc

{xTk+i+1Qxk+i+1 + uTk+iRuk+i} (3.6)

where nc < ∞ corresponds to a chosen horizon. It is noted that after some time the

55
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constraints are satisfied naturally 2, and assuming nc horizon, the control inputs in the

first part are the only optimisation variables that need to be considered, since the control

inputs in the second part are given by linear quadratic regulator (LQR). Therefore second

part is given by

∞∑
i=nc

{xTk+i+1Qxk+i+1 + uTk+iRuk+i} = xnc+kQfxnc+k (3.7)

where xnc+kQfxnc+k is known as the terminal cost function and Qf is determined from

Lyapounov equation [5].

(A−BK)TQf (A−BK) = Qf − (A−BK)TQ(A−BK)−KTRK (3.8)

The presence of the constraints in the optimisation problem results in the concepts of

feasible set [142].

Definition 3.1 (Feasible set). The feasible set X is defined as the initial states x0 for

which constrained optimisation of cost function in (3.6) subject to (3.3) and (3.1) with

nc horizon is feasible i.e.

X = {x0 | ∃ {u0, . . . , unc−1} satisfying (3.3) and (3.1)}. (3.9)

An optimal input satisfying the constraints is guaranteed to exist for any initial state

inside the feasible set.

One of the advantages of having an infinite horizon is that if the initial set is chosen inside

the feasible set, the nominal closed loop (exponential) asymptotic stability is ensured [6].

As infinite horizon cost function can be written as (3.6) which allows the formulation

of a tractable optimisation problem in the presence of constraints. It guarantees the

asymptotic stability as long as constraints will not be violated after the end of the chosen

horizon nc.

One possibility to achieve feasible solution after nc is to select a long enough horizon to

guarantee that constraints will be satisfied afterwards [182]. However, this may result in

an expensive optimisation to solve the corresponding open loop optimisation problem. A

2It is assumed that the state meets the constraints.
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preferred approach is to introduce a terminal state constraint

xnc ∈ X0 (3.10)

where X0 is called the terminal set. With the introduction of terminal set, asymptotic

stability can be guaranteed for any horizon length. After introducing the terminal set the

length of horizon nc sets the number of degrees of freedom in the optimisation formulation.

The feasible set is then directly dependent upon nc.

3.1.3 Problem formulation

A generic MPC problem can be formulated using (3.1), (3.3) and (3.6) as:

min
u0,...,unc−1

{J(xk, uk) = xnc+kQfxnc+k +

nc−1∑
i=0

{xTk+i+1Qxk+i+1 + uTk+iRuk+i}} (3.11)

Subject to

xk+1+i = Axk+i +Buk

xk+i ∈ X ⊂ Rnx

uk+i ∈ U ⊂ Rnu

xnc ∈ X0

i = 0, . . . , nc − 1.

3.1.4 Stability in MPC

The MPC optimisation problem formulation (3.11) in the presence of constraints makes

the closed loop system nonlinear and hence, the stability analysis is more complex; typ-

ically the use of Lyapunov stability theory [183] is effective. The main idea is to modify

the MPC concept such that the cost function can be used as Lyapunov function to es-

tablish stability [6]. The terminal cost and the terminal constraints are introduced to

explicitly ensure stability and recursive feasibility [4–6,11,70,181,182,184]. The stability

proof can be found in [6] using terminal cost and terminal constraints set using [12].
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3.2 Dual mode MPC

The dual mode terminology was originally proposed by Sznaier in [184] but now most

authors accept the usefulness of a dual mode paradigm for guaranteeing nominal stability

for MPC as done in previous section [4–6,11,181,182]. Consider MPC predictions to have

two modes [5]

1. A transient phase containing degree of freedom (d.o.f.); typically in this case of

prediction the state could be some distance from steady state.

2. A terminal mode with guaranteed convergence. It is normal for mode 2 behaviour

to be given by a known control law (3.5).

In terminal mode, it is now common practice to make use of positive invariant sets

in order to establish recursive feasibility of the proposed optimisation and the region

of attraction within which the chosen algorithm can operate reliably. The subsequent

section establishes the concept of the maximum admissible sets (MAS) as the largest

possible positive invariant set to be used as a terminal set.

Definition 3.2 (Positive invariant set). Given a dynamical system xk+1 = f(xk) and x0

is the initial point. The set X0 is said to be positively invariant if

x0 ∈ X0 =⇒ xk ∈ X0, k = 1, 2, . . . (3.12)

Intuitively, this means that once a trajectory of the system enters X0, it will never leave

it again [185].

3.2.1 Maximum Admissible Set (MAS)

Assume a stabilising linear state feedback gain K, which is applied as a control law to

regulate (3.1) to the origin and yielding closed loop state transition matrix Φ = A−BK.

Then the MAS can be defined as [12]

Definition 3.3 (Maximum Admissible Set (MAS)). Let X0 (maximal admissible set

MAS) be the polytopic control invariant set for which all constraints are satisfied [12]

X0 = {x ∈ Rnx | Φix ∈ X, −KΦix ∈ U,∀i ≥ 0}. (3.13)
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Although consideration of constraints on an infinite horizon appears to be intractable for

stable systems where steady state does not lie on constrained boundary there will exist a

finite horizon such that the further future constraints are redundant [12]. An algorithm

for computation of the MAS assuming Lyapunov stability can be found in [12].

3.2.2 Optimal MPC (OMPC)

There are two main tuning parameters affecting dual mode control. The most obvious is

the number of d.o.f. but the second and in practice equally important one is the selection

of the terminal control law (3.5). The choice of terminal control law has a significant

impact on unconstrained and constrained performance for a small number of d.o.f.. One

logical choice [5, 10, 11, 181] for terminal control gain K is in fact that which minimises

the infinite horizon cost in constraint free case. Define such an algorithm as an optimal

MPC (OMPC).

The input predictions are defined as follows

uk+i =

{
−Kxk+i + ck+i ∀i = 0, . . . , nc − 1 Mode 1

−Kxk+i ∀i ≥ nc Mode 2
(3.14)

where the perturbations ck are the d.o.f. (or control moves) for optimisation; conveniently

summarised in vector form as c−→k = [cTk , . . . , c
T
k+nc−1]. In essence c−→k are the perturba-

tions about the unconstrained optimal input trajectory required to meet constraints.

3.2.3 Closed loop prediction implementation of dual mode OMPC

For completeness this section gives the closed loop predictions which can be deployed in

MPC algorithms [5]. The state space form using the prestabilised loop (during predic-

tions) with xk|k = xk are

xk+i|k = Axk+i−1|k +Buk+i; uk+i = −Kxk+i|k + ck+i (3.15)

Removing the dependent variable uk+i one gets

xk+i|k = [A−BK]xk+i−1|k +Bck+i; uk+i = −Kxk+i|k + ck+i (3.16)
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Simulating these forward in time with Φ = A−BK one gets

x−→k =


Φ

Φ2

Φ3

. . .


︸ ︷︷ ︸
Pcl

xk +


B 0 0 . . .

ΦB B 0 . . .

Φ2B ΦB B . . .
...

...
...

...


︸ ︷︷ ︸

Hc

c−→k (3.17)

u−→k =


−K
−KΦ

−KΦ2

. . .


︸ ︷︷ ︸

Pclu

xk +


I 0 0 . . .

−KB I 0 . . .

−KΦB −KB I . . .
...

...
...

...


︸ ︷︷ ︸

Hcu

c−→k (3.18)

or in compact form

x−→k =Pclxk +Hc c−→k (3.19)

u−→k =Pcluxk +Hcu c−→k (3.20)

Similarly including constraints
x

x
...

 ≤ x−→k ≤


x

x
...

 ;


u

u
...

 ≤ u−→k ≤


u

u
...

 ; (3.21)

Finally, from prediction class (3.19), (3.20) and (3.21) can be presented as

Mclxk +Ncl c−→k ≤ dcl (3.22)

for suitable Mcl, Ncl and dcl prediction matrices with finite number of rows [5, 12]. Two

standard sets can be define as

Definition 3.4 (Maximum Control Admissible Set MCAS). Let Xc (maximal control

admissible set MCAS) be the set of initial states xk for which the prediction parameteri-

sation (3.14) is feasible (that is satisfies constraints), then

Xc = {xk ∈ Rnx | ∃ c̃−→k ∈ Rncnu ,Mxk +N c̃−→k ≤ d} (3.23)
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and MAS can be define in compact form as

X0 = {xk ∈ Rnx | M0xk ≤ d0}. (3.24)

Remark 3.2.1. The open loop paradigm and closed loop paradigms give an identical

prediction class [5]. The closed-loop paradigm uses perturbations of the unconstrained

optimal control law as d.o.f.. This gives good insight into the impact of constraints on

performance [5].

3.2.4 Cost function using closed loop paradigm

The derivation of the cost function is similar to that provided in Lemma 4 in [186].

Consider the closed loop state predictions using (3.1) and (3.14)

xk+i =

{
Φxk+i +Bck+i ∀i = 0, . . . , nc − 1

Φxk+i ∀i ≥ nc
(3.25)

Substituting definitions (3.14) and (3.25) into (3.11)

Jk =
∥∥∥xk+nc

∥∥∥2
Qf

+

nc−1∑
i=0

[∥∥∥xk+1+i

∥∥∥2
Q
+
∥∥∥−Kxk+i + ck+i

∥∥∥2
R

]
=
∥∥∥Φxk+nc−1 +Bck+nc−1

∥∥∥2
Qf

+
∥∥∥xk+nc

∥∥∥2
Q
+
∥∥∥−Kxk+nc−1 + ck+nc−1

∥∥∥2
R

+

nc−2∑
i=0

[∥∥∥xk+1+i

∥∥∥2
Q
+
∥∥∥−Kxk+i + ck+i

∥∥∥2
R

]
=
∥∥∥xk+nc−1

∥∥∥2
ΦTQfΦ+KTRK+Q

+
∥∥∥ck+nc−1

∥∥∥2
BTQfB+R

+ 2xk+nc−1(Φ
TQfB −KTR)ck+nc−1

+

nc−2∑
i=0

[∥∥∥xk+1+i

∥∥∥2
Q
+
∥∥∥−Kxk+i + ck+i

∥∥∥2
R

]
=
∥∥∥xk+nc−1

∥∥∥2
Qf

+
∥∥∥ck+nc−1

∥∥∥2
BTQfB+R

+ 2xk+nc−1(Φ
TQfB −KTR)ck+nc−1

+

nc−2∑
i=0

[∥∥∥xk+1+i

∥∥∥2
Q
+
∥∥∥−Kxk+i + ck+i

∥∥∥2
R

]
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3.2 Dual mode MPC

where Qf = ΦTQfΦ+KTRK +Q. Note that

ΦTQfB −KTR = (A−BK)TQfB −KTR

= (A−B(R+BTQfB)−1BTQfA)
TQfB − ((R+BTQfB)−1BTQfA)

TR

= ATQfB −ATQfB(R+BTQfB)−1BTQfB −ATQfB(R+BTQfB)−1R

= ATQfB
[
I − (R+BTQfB)−1(R+BTQfB)

]
= ATQfB [I − I]

= 0

using K = (R+BTQfB)−1BTQfA.

Then

Jk =
∥∥∥xk+nc−1

∥∥∥2
Qf

+
∥∥∥ck+nc−1

∥∥∥2
BTQfB+R

+

nc−2∑
i=0

[∥∥∥xk+1+i

∥∥∥2
Q
+
∥∥∥−Kxk+i + ck+i

∥∥∥2
R

]

Similarly for the next sample

Jk =
∥∥∥xk+nc−2

∥∥∥2
Qf

+
∥∥∥ck+nc−1

∥∥∥2
BTQfB+R

+
∥∥∥ck+nc−2

∥∥∥2
BTQfB+R

+

nc−3∑
i=0

[∥∥∥xk+1+i

∥∥∥2
Q
+
∥∥∥−Kxk+i + ck+i

∥∥∥2
R

]

consequently

Jk =
∥∥∥xk∥∥∥2

Qf

+

nc−1∑
i=0

∥∥∥ck+i

∥∥∥2
BTQfB+R

(3.26)

=
∥∥∥xk∥∥∥2

Qf

+

nc−1∑
i=0

∥∥∥ck+i

∥∥∥2
S

(3.27)

where
∥∥∥x∥∥∥

A
is defined as

√
xTAx, S = BTQfB + R and S > 0. The term

∥∥∥xk∥∥∥2
Qf

in

(3.27) does not depend on the decision variable and can be ignored in minimising this

cost, giving

Jc,k =

nc−1∑
i=0

∥∥∥ck+i

∥∥∥2
S
= c−→

T
k Sc c−→k. (3.28)

where Sc = diag(S, . . . , S).
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3.2 Dual mode MPC

If the constraints are expressed in terms of c−→k then a quadratic programming (QP) can

be formulated using dual mode predictions.

Algorithm 3.1. Optimal MPC (OMPC) using closed loop paradigm

1. At each sampling instant, perform the optimisation:

Jc,k =

nc−1∑
i=0

∥∥∥ck+i

∥∥∥2
S

Subject to

Mxk +N c−→k ≤ d.

for suitable M , N and d prediction matrices with finite number of rows.

2. Implement the first component of c−→k, that is ck in the control law of (3.14).

3. If unconstrained control law is satisfying the constraints (i.e. xk ∈ X0),the optimis-

ing c−→k is zero so the control law is uk = −Kxk.

The weakness of OMPC is the trade off between MCAS volumes, that is the volume of

MCAS Xc and the number of d.o.f. nc; this is because the MAS can be quite small for

well tuned feedback K and feasibility of the input parameterisation (3.14) require that

one adopts the unconstrained law after nc steps. Consequently, several authors have

shown that well tuned optimal feedback gain K can result in a requirement for a large

nc in order to achieve reasonable MCAS volumes (e.g. [13]). A large nc can imply a

demanding optimisation, even with algorithms that exploit structure; this is one reason

for the recent popularity of parametric methods [116].

Remark 3.2.2. It is well known that stability and recursive feasibility of OMPC can be

shown using conventional arguments which deploy Jc,k from (3.28) as a monotonically

non-increasing function. The essence of the argument is that at sample instant k + 1,

one can re-use the remainder of the sequence c−→k from the previous sample, and thus

the new Jc,k is upper bounded by a value that is smaller than at the previous sample,

unless ck is repeatedly zero. Once c−→k = [0, . . . , 0], note that all states inside the MAS

(i.e. xk ∈ MAS), the unconstrained optimal law uk = −Kxk will feasible. Hence, the
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3.3 Laguerre function parameterisation

Laypunov stability of the origin follows from the fact that the MAS contains the origin

in its interior.

3.3 Laguerre function parameterisation

This section gives a quick overview of how the associated Laguerre OMPC algorithm [26]

was formulated.

3.3.1 Laguerre functions and predictions dynamics

Laguerre functions are defined as follows [18]

li(z) =
√

(1− p2)
(z−1 − p)i−1

(1− pz−1)i
= li,0 + li,1z

−1 + · · · ; 0 ≤ p < 1. (3.29)

where pole ‘p’ is the parameter which determines convergence rate. The corresponding

sequences of terms li,k for the first n functions can also be determined from an equivalent

n-dimensional state-space model.


l1,k+1

l2,k+1

l3,k+1

...

 = Lk+1 =


p 0 0 . . .

1− p2 p 0 . . .

−p(1− p2) (1− p2) p . . .
...

...
...

. . .


︸ ︷︷ ︸

AL

Lk,

L0 =
√

(1− p2)
[
1 −p p2 . . .

]T
. (3.30)

3.3.2 Laguerre optimal MPC (LOMPC)

Laguerre OMPC (LOMPC) is a dual mode MPC algorithm [15] where the input per-

turbation ck are parameterised in terms of Laguerre functions. Input perturbations are
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3.3 Laguerre function parameterisation

parameterised as follows:



ck

ck+1

...

ck+n−1

...


=



LT
0

LT
1
...

LT
n−1
...





ηk

ηk+1

...

ηk+n−1

...


=



LT
0

LT
0A

T
L

...

LT
0A

n−1
L

T

...


η
−→k = HL η−→k (3.31)

where ηk is a parameterised decision variable and it is noted that the perturbations con-

verge to zero only asymptotically and thus this is a very different parameterisation to

OMPC. The HL matrix has a large number of rows (technically infinite) to capture the

asymptotic behaviour whereas the number of columns represents the number of d.o.f..

Substituting input perturbations (3.31) using compatible dimensions into the cost func-

tion of (3.28) for an infinite nc, the prediction cost can be represented in term of η
−→k

as:

JL,k = η
−→

T
k

(∑∞
i=0A

i
LL0SL

T
0A

i
L
T
)
η
−→k = η

−→
T
k SL η−→k (3.32)

with ck+i = LT
i η−→k and Li = ALLi−1. Constraints (or equivalently the new MCAS) are

parameterised as

Mxk +NHL η−→k ≤ d, (3.33)

for appropriate M,N,HL and d.

Algorithm 3.2. Laguerre Optimal MPC (LOMPC)

Off-line

1. Determine the predicted cost, in terms of perturbations ck as

Jc,k =
∞∑
i=0

cTk+iSck+i. (3.34)

Substitute for infinite nc from (3.30) and (3.31) the LOMPC predictions of ck+i =

LT
i η−→k to give

JL,k =

∞∑
i=0

η
−→

T
kLiSL

T
i η−→k. (3.35)
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3.3 Laguerre function parameterisation

Finally, substitute Li = ALLi−1 and hence

JL,k = η
−→

T
k

[∑∞
i=0A

i
KL0SL

T
0 (A

i
L)

T
]
η
−→k = η

−→
T
k SL η−→k. (3.36)

2. Define the constraint inequalities associated in the form

Mxk +NHL η
−→k ≤ d. (3.37)

On-line

1. At each sampling instant, perform the optimisation:

η
−→

∗
k = arg min

η
−→k

JL,k

s.t. Mxk +NHL η
−→k ≤ d. (3.38)

2. Define c−→k = [LT
0 , . . . , L

T
nc−1] η−→

∗
k.

3. Implement the first component of c−→k, that is ck in the control law of (3.14).

4. If the unconstrained control law is satisfying the constraints (i.e. xk ∈ X0),the

optimising c−→k is zero so the control law is uk = −Kxk.

Within LOMPC, the user has a handle to trade off between MCAS volumes and the

number of d.o.f., that is the parameter ‘ p’; although no generic guarantees can be given,

examples have shown that in many cases slowing convergence by increasing ‘p’ above zero

(p = 0 is equivalent to OMPC) can improve MCAS volumes, possibly at some expense

to performance. Nevertheless, one key question was still left unanswered: is there a

systematic way of choosing the best ‘Laguerre function’ or indeed is there an alternative

to Laguerre which is better still? These questions are tackled in this thesis.

Remark 3.3.1. LOMPC has a guarantee of stability and recursive feasibility, in the

nominal case [138,187]. This follows the conventional arguments Section 3.1.4, [6,10,11]

whereby one can show that the cost function JL,k is monotonically non-increasing so long

as the optimisation at sample k reuse the trajectory computed at the previous sample.

Finally, note that for all states inside the MAS, the unconstrained optimal control law
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3.4 Triple mode MPC

uk = −Kxk will feasible, i.e. c−→k = [LT
0 , . . . , L

T
nc−1] η−→k = 0. Hence, the Laypunov

stability of the origin follows from the fact that the MAS contains the origin in its

interior. Recursive feasibility uses the similar argument.

3.4 Triple mode MPC

Predictive control has been developed widely both in the process industry and control

research community and has reached a high level of maturity in its linear variant. A

major remaining obstacle is to balance, for given nc: (i) the desirable volume of maximal

region of attraction Xc with (ii) complexity and hence the available computational power

as well as (iii) achievable performance.

• If nc is large enough, one can show that Xc is the largest feasible invariant set

possible and moreover the control law is the global optimum [11].

• In general, for computational (and sometimes robustness) reasons, nc is chosen

small.

• If nc is small, then the volume of Xc maybe dominated by the implied state feedback

K, hence a highly tuned (in terms of performance) K could give rise to small Xc

and a lesser tuned K could give much larger Xc.

• Conversely, if K is poorly tuned, then the cost function is dominated by poorly

performing predictions and the closed loop control may also be severely suboptimal.

The designer has to get a balance between the volume of the maximal region of attraction

(affected by K and nc), the computational load (implied by nc) and the implied perfor-

mance (affected by K and nc). One suggestion that has been little considered in the

literature is the concept of triple mode control [113]. In this strategy one recognises that

large regions of attraction in conjunction with good performance often implies nonlinear

or linear time varying (LTV) prediction dynamics [176].

So, instead of the dual mode predictions structure of (3.14), some authors have proposed

terminal controls such as
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3.4 Triple mode MPC

Mode 1 uk+i = −Kxk+i + qk+i + ck+i, i = 0, . . . , nc − 1

Mode 2 uk+i = −Kxk+i + qk+i, i = nc, . . . , nc + nq − 1 (3.39)

Mode 3 uk+i = −Kxk+i, i ≥ nc + nq

where the notable change is the introduction of terms qi, i = 0, . . . , nq − 1 and hence

the addition of a 3rd mode into the prediction control law. Here, ci are the d.o.f. to

be optimised online, whereas, ideally, the qi could be inferred online based on offline

or previous optimisations (it is mentioned in [114] that occasionally this needs to be

reseeded). For example, in [113,188], the second model control moves are defined as

q =
[
qT0 , . . . , q

T
nq−1

]
= Hxnc (3.40)

that is, the qi values depend only on the predicted state at the commencement of mode

2. Then, with trivial algebra (simulating the model (3.1) with (3.39) and (3.40)), one

can show that the Mode 2 predictions take the form of LTV feedback,

uk = −Kk−ncxk, k = nc, . . . , nc + nq − 1, (3.41)

where Ki depend on K, H, A and B.

The cost function Jk for the triple mode predicted feedback structure can be written as

Jk = c−→
T
k ST c−→k + c−→

T
k VTxk + pT , (3.42)

for suitable ST , VT and pT [113] with constraint of the form

MTxk +NT c−→k ≤ dT (3.43)

The matrix H is chosen such that it implies a maximal feasible invariant set. The next

section will discuss earlier ellipsoidal based algorithms developed for selecting the best

H to use in triple mode MPC.

68



3.4 Triple mode MPC

Triple mode MPC using Ellipsoidal Invariant sets

Early triple mode MPC algorithms were motivated by the robust case and thus began

with the work of [79] and ellipsoidal invariant sets, e.g.

XE = {x | xTPex ≤ 1}; Pe > 0 (3.44)

where ΦTPeΦ ≼ Pe and constraints (3.3) are always satisfied with the control law uk =

−Kxk. However, ellipsoidal invariant sets are conservative in volume and thus give

artificially tight limits on feasibility; points outside the set may still be feasible. Within

triple mode algorithms, the ellipsoidal sets are used as a systematic but interim step to

finding a suitable H and are not deployed in the final algorithm.

Dual mode control is so effective because one is able to make implicit assumptions on

the terminal mode and hence only compute the initial mode explicitly using polytopic

constraints. Similarly, to form an efficient triple mode algorithm, it is necessary to make

implicit assumptions for the terminal mode and mode 2 while selecting the initial mode

explicitly using polytopic constraints.

The offline problem of ERPC [21] and GERPC [24] can be used to specify the second

mode control moves for linear time invariant triple mode MPC, that is finding the matrix

H in (3.40).

The invariant set Ez in zk = [xTk q
−→

T
k ]

T – space is defined as

[
xTk q

−→
T
k

] [P11 P12

P T
12 P22

]
︸ ︷︷ ︸

Q−1
z

[
xTk
q
−→

T
k

]
≤ 1. (3.45)

Now, the projection onto x-space is given by Ex = {xk : ∃ q
−→k s.t. xTk P11xk ≤ 1 −

q
−→

T
k P22 q−→k − 2xTk P

T
12 q−→k}. It is maximised when q

−→k = −P−1
22 P21xk and for nominal case,

−P−1
22 P21 is a possible choice for H, as first suggested in [113].

Before discussing the robust predictive control, the following definition summarise the

concept of polyhedral set:

Definition 3.5 (Polyhedral Set). A set P ⊂ Rn is a polyhedron if there is a system of

finite many inequalities Mxk ≤ d such that P = {xk ∈ Rn | Mxk ≤ d}.
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3.5 Robust predictive control

3.5 Robust predictive control

Largely, one can divide the literature on robust linear MPC into two groups, based on

which uncertainty class they study: Either LTI systems with unknown, bounded distur-

bances (see e.g. [82, 189]), or, linear systems with polytopic uncertainty, as which will

be considered in this thesis (see e.g. [21, 79]). Another important feature distinguishing

different approaches to robust MPC, is which class of online optimisations they utilise.

In robust MPC, the closed-loop paradigm improves the control performance and compu-

tational burden [83,105,115]. Reduced-complexity invariant sets were introduced in [115]

for the case of quasi-infinite horizon closed loop MPC. The reduced-complexity invariant

sets may result in a decrease in the number of online optimisation variables [115]. This

invariant set structure is used in the design of [83, 167, 190] robust MPC and this thesis

pursues this type of approach to including uncertainty information in the model.

Problem formulation for robust MPC

This thesis considers a time linear parameter varying (LPV) state space model of the

form:

xk+1 = Akxk +Bkuk, k ∈ N (3.46)

with polytopic uncertainty description (see [169,191])

[Ak, Bk] ∈ Co{[A1, B1], ..., [Am, Bm]}, (3.47)

or equivalent

[Ak, Bk] ∈
{ m∑

j=1
λj [Aj , Bj ] | λ1(k) ≥ 0, . . . , λm(k),

m∑
j=1

λj(k) = 1

}
, k ∈ N. (3.48)

Assume that the states and inputs at all time instants should fulfill the following con-

straints (the mixed state and input constraints are considered in line with the proposals

in [25] from (3.2)):

Lxx+ Luu ≤ l. (3.49)

Next section reviews robust dual mode algorithm followed by a triple mode variant for
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3.6 Robust dual mode MPC algorithms

the uncertain case.

3.6 Robust dual mode MPC algorithms

The robust mode approaches model will use the dual mode prediction structure (3.14),

where K should be stabilising for (3.46), and preferably optimising in some sense (for

instance unconstrained optimal for some nominal model). Algorithms are based on both

ellipsoidal and polyhedral invariant sets.

3.6.1 Robust dual mode MPC based on invariant polyhedral set

Typical robust MPC algorithms which deal with this case suffer a number of limitations.

It is generally assumed that one cannot form the entire class of predictions due to the

combinatorial explosion in the required number of terms [83, 192]. As a consequence

the vast majority of work has made use of low complexity invariant sets, in particular

ellipsoidal sets [79] or very simple polyhedral sets [193]. But the use of low complexity

invariant sets implies a corresponding restriction to the region of attraction. Some authors

tackled this limitation by augmenting the state dimension [21,194] and in effect allowing

a time varying control strategy. However, the inherent restriction on ellipsoidal sets

remains in those work.

Polyhedral invariant set for LPV systems

One can extend nominal MPC to the robust case if one can determine a suitable feasible

invariant polyhedral set; such work was given [115] for the standard dual mode algorithm.

The key idea used is not dissimilar to the one step sets popularised in [195], that is to use

backwards predictions rather than forwards prediction. This simple change eliminates the

combinatorial explosion in the possible number of predictions terms and hence creates

a tractable problem. A feasible invariant polyhedral set can be computed using the

algorithm proposed in [115].
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3.6 Robust dual mode MPC algorithms

Robust MPC using polyhedral invariant set

It was shown that [83], subject to a quadratic stabilising criterion, the robust maximal

feasible invariant set Xr takes the same form as Xc, but different matrices. i.e.

Mrxk +Nr c−→k ≤ dr. (3.50)

An algorithm was introduced in [115], that allows the construction of polyhedral invariant

sets for LPV systems with polytopic uncertainty description. The algorithm iteratively

adds constraints to the imposed constraint sets until robust invariance is obtained. Due to

the fact that only non-redundant constraints are added and that redundant constraints

are regularly removed, a large efficiency increase can be obtained compared to other

algorithms. This algorithm is used to calculate the polyhedral invariant set for LPV

systems and it avoids the combinational explosion in the number of terms.

After computing the polyhedral set, the online optimisation consists of minimising the

upper bound on the infinite horizon cost. A predicted cost can be constructed as a

quadratic function i.e. c−→
T
k Sc c−→k [114, 188]. It can be shown [22] that c−→

T
k Sc c−→k and the

infinite cost differ by a bias term, thus minimising the two indices is equivalent [24].

At each sample solve the following optimisation problem

min
c−→k

c−→
T
k Sc c−→k

s.t. Mrxk +Nr c−→k ≤ dr.

Use the first block element of c−→k in the control law uk = −Kxk + ck.

3.6.2 Robust dual mode MPC based on invariant ellipsoids

The idea of augmenting the system dynamics with the ‘nc’ future d.o.f. was proposed

in [21]. By doing this, feasibility in robust dual mode MPC could be handled offline

by optimising the size of an ellipsoid subject to constraints and invariance for the aug-

mented dynamics. A convex SDP problem, denoted as generalised ERPC (GERPC), is

formulated in [25] with ERPC proposed in [21] as a special case.
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Generalised Efficient Robust Predictive Control (GERPC)

Consider the autonomous state space model created by augmenting the state vector with

the future ‘d.o.f.’ [21]. Letting c−→k denote the vector of future perturbations away from

optimal control, over the control horizon, nc, the dynamics of (3.46) can be described as

zk+1 = ψkzk, zk =

[
xk

c−→k

]

ψk ∈ Co{ψj , j = 1 . . . ,m}, ψj =

[
Φi BiD

0 Gc

]
, (3.51)

where z ∈ Rnx+nunc , c−→
T
k = [cTk , c

T
k+1, . . . , c

T
k+nc−1] , D and Gc are variables that are

used to optimise size and shape of the associated feasible invariant ellipsoid. ERPC used

Gc = IL, D = E and

Φi = Ai −BiK, E =
[
Inu , 0, . . . , 0

]
, IL =



0nu Inu 0nu . . . 0nu

0nu 0nu Inu . . . 0nu

...

0nu 0nu . . . 0nu Inu

0nu 0nu . . . 0nu 0nu


. (3.52)

Here zk is the augmented state vector, ψ is the augmented transition matrix, Inu is the

identity matrix, and 0nu is a matrix of zeros, both of dimension nu × nu. The IL matrix

simply accommodates the time recession of c−→k. Note that the structure of IL ensures

ck+nc+i = 0 ∀i ≥ 0. (3.53)

The associated constraints (3.49) ∀k are represented as:

[
Lx − LuK LuD

]
zk ≤ l. (3.54)

In GERPC, f
−→k defines future control perturbations through the dynamics uk = −Kxk+

D f
−→k, c−→k = D f

−→k f−→k+1 = Gc f−→k.

D and Gc are chosen to ensure robust invariance of the ellipsoid Ez =
(
z : zTQ−1

z z ≤ 1
)
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in conjunction with maximising the size of projection of Ez to x-space, Ex:

min
Qz ,D,Gc

ln det(TQzT
T )−1

s.t.

[
Φj BjD

0 Gc

]T
Q−1

z

[
Φj BjD

0 Gc

]
−Q−1

z

< −1

γ

[
I 0

−K D

]T [
Q 0

0 R

][
I 0

−K D

]
, j = 1, . . . ,m.[

W [Lx − LuK LuD]

[Lx − LuK LuD]T Q−1
z

]
> 0,Wii ≤ l2i . (3.55)

This problem can be solved by SDP packages [196], where γ provides a tuning parameter

for the size of region of attraction verses online cost trade off for GERPC [25].

Robust MPC using invariant ellipsoids

Given design parameters nc, Q, R and γ, calculate D, Gc and Qz from (3.55). The

predicted cost can be constructed as c−→
T
k Γ c−→k where Γ is the positive definite solution of

the discrete Lyapunov equation GT
c ΓGc − Γ = −DTScD. This turns the online problem

into minimising a quadratic function subject to ellipsoidal constraints.

At each sample solve the following optimisation problem

min
c−→k

c−→
T
k Γ c−→k

s.t. zTQzz ≤ 1.

Use the first block element of c−→k in the control law uk = −Kxk + ck.

3.7 Robust triple mode MPC

This section shows how the solutions of a suitable robust G(ERPC) offline problem can

be used to specify a robust triple mode MPC algorithm deploying polyhedral sets.

Mode 1 uk+i = −Kxk+i + qk+i + ck+i, i = 0, . . . , nc − 1,

Mode 2 uk+i = −Kxk+i + qk+i, i = nc, . . . , nc +mc − 1,

Mode 3 uk+i = −Kxk+i i ≥ nc +mc (3.56)
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3.7 Robust triple mode MPC

where ck will be the d.o.f. chosen directly and qk will define from the (G)ERPC offline

solution as q
−→k = D f

−→k, f−→k+1 = Gc f−→k [114, 188]. The prediction dynamics are defined

as [114,188]

Xk+1 = ΨkXk, Xk =


xk

f
−→k

c−→k

 , (3.57)

Ψk ∈ Co{Ψj , j = 1 . . . ,m},

with IL as shift matrix. These dynamics should fulfill the constraints given by

[
Lx − LuK LuD LuE

]
Xk ≤ l, ∀k (3.58)

uncertain description of augmented dynamics is given by [114,188]

Ψj =

Aj −BjK BjD BjE

0 Gc 0

0 0 IL

 . (3.59)

3.7.1 Cost for triple mode predictions

A predicted cost J(xk, f−→k, c−→k) that bounds the infinite horizon cost of (3.57) initialised

at (x0, f−→0, c−→k) (that is, the infinite horizon cost of (3.46) using the prediction setup

(3.56)) should be found:

J(x0, f−→0, c−→k) ≥ max
[Ak,Bk]∈Co{[A1,k,B1,k],...,[Am,k,Bm,k]}

∞∑
k=0

xTkQxk + uTkRuk. (3.60)

Such a cost can be constructed as [114,188]

J(xk, f−→k, c−→k) = [xk f
−→k c−→k]

TP [xk f
−→k c−→k] (3.61)

where P > 0 satisfies

P −ΨT
j PΨj ≥ [I 0 0]TQ[I 0 0]

+[−K D E]TR[−K D E], j = 1, ....,m. (3.62)
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3.8 Summary

The matrix P can be efficiently calculated by the SDP

min
P

tr(P ) s.t. (3.62). (3.63)

3.7.2 The robust triple mode algorithm

Given designed parameters nc, Q, R and γ, calculate first D and Gc from (3.55), then

M , N1, N2 and d using algorithm in [115], and finally P from (3.63).

At each sample solve the following optimisation problem

min
c−→k

J(xk, f−→k, c−→k)

s.t. Mxk +N1 f−→k +N2 c−→k ≤ d.

for appropriate M,N1, N2, d. Implement uk = −Kxk + D f
−→k + E c−→k to the plant.

Calculate f
−→k+1 = Gc f−→k.

3.8 Summary

This section summaries the key point and discusses the limitation in already proposed

algorithms.

Optimal MPC

The weakness of OMPC is the trade off between MCAS volumes, that is the volume

of MCAS Xc and the number of d.o.f. nc; this is because the MAS can be quite small

for well tuned feedback K and feasibility of the input parameterisation (3.14) requires

that one adopts the unconstrained law after nc steps. Consequently, several authors have

shown that well tuned optimal feedback gain K can result in a requirement for a large

nc in order to achieve reasonable MCAS volumes (e.g. [13]).

Laguerre OMPC

In LOMPC, the user has a handle to trade off between MCAS volumes and the number of

d.o.f., that is the parameter ‘ p’; although no generic guarantees can be given, examples
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have shown that in many cases slowing convergence by increasing ‘p’ above zero (p = 0

is equivalent to OMPC) can improve MCAS volumes, possibly but not necessarily at

some expense to performance. Nevertheless, one key question was still left unanswered:

is there a systematic way of choosing the best ‘Laguerre function’ or indeed is there an

alternative to Laguerre which is better still?

Triple mode MPC

The concept of triple mode control was proposed to overcome the conflict between perfor-

mance and the region of attraction. The main weakness in triple mode MPC is linked to

the efficiency of the middle mode, can this be computed implicitly or explicitly and also is

the offline optimisation for identifying a suitable Gc overly complex? Should polyhedral

sets or ellipsoidal sets be deployed to define the middle mode?

3.9 Conclusion

This chapter provided a common theoretical background necessary for arguments in this

thesis. Constrained stable MPC was formulated by a dual mode scheme in the predic-

tions, whereby the first mode can be used for constraint handling with the constraint

that the state at the end of the control horizon enters a terminal invariant set, com-

monly chosen to be the MAS to maximise the solution space, which has the property

that constraints are not violated in this set for a given terminal control law. An optimal

MPC algorithm was formulated using dual mode predictions, Laguerre function param-

eterisations within an optimal MPC, and triple mode approaches using ellipsoidal and

polyhedral sets. Thereafter robust MPC was formulated for both dual mode and triple

mode approaches using a linear parameter varying system. Finally, it was highlighted

that there is a well understood trade off between the region of attraction, performance

and computational burden within already proposed algorithms.
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Chapter 4

Kautz functions to enlarge the

region of attraction within

predictive control

This chapter presents an original contribution to the thesis. It develops the recently

published Laguerre optimal model predictive control by proposing a more flexible param-

eterisation of the degrees of freedom in order to further increase the region of attraction

of model predictive control (MPC). Specifically, a simple but efficient algorithm that uses

Kautz functions to parameterise the degrees of freedom in Optimal MPC is presented.

It is shown that this modification gives a mechanism to achieve low computational bur-

den with enlarged region of attraction and improved performance. The improvement,

with respect to the existing algorithm that uses a Laguerre parameterisation [18, 26], is

demonstrated by examples. It is also shown that the proposed algorithms have standard

convergence and feasibility guarantees.

The chapter is organised as follows: Section 4.1 presents the introduction and motivation

of the chapter; Section 4.2 presents the necessary background on Optimal MPC formu-

lation and Laguerre optimal MPC; Section 4.3 presents the basic properties of Kautz

functions and compares them with Laguerre functions; Section 4.4 develops the novel

Kautz OMPC (KOMPC) algorithm using Kautz functions to parameterise the input

predictions; Section 4.5 presents numerical examples; and finally, Section 4.6 gives the

conclusion of the chapter.
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4.1 Introduction

4.1 Introduction

One key conflict in linear predictive control is that between a region of attraction and

performance. If a dual-mode MPC controller, that is tuned to give high performance, it

will often have relatively small regions of attraction [11,13] unless one uses a prohibitively

large number of decision variables (or degrees of freedom, d.o.f.). There is a pragmatic

limit to increase the d.o.f. for the global region of attraction as this compromises the

computational burden. A strategy with the same number of d.o.f. giving a larger region of

attraction might be achieved through detuning of terminal mode but hence has relatively

worse performance [113].

Laguerre functions in Section 3.3 have been proposed as a means of parameterising the

input predictions in [26] as a simple way of improving the performance and region of

attraction. The main idea is to form the predictions as a combination of Laguerre func-

tions. Specifically it was shown that in many cases changing the parameterisation allowed

substantial improvements in region of attraction with little or no detriment to perfor-

mance. Nevertheless, one key question was still left unanswered: is there an alternative

to Laguerre function or is this the only choice?

This chapter assumes that the terminal mode is well tuned and therefore this parameter

is not available for influencing the size of the region of attraction. Thus the only way to

enlarge the region attraction is with d.o.f. within or parameterisation of the predictions.

Specifically the intent is to answer the question about Laguerre OMPC, that is, how else

can the designers increase the region of attraction or indeed is there an alternative to

Laguerre function which is better still? Hence, in line with the proposals of [26], here

Kautz functions are tested as these are more flexible than Laguerre functions. Kautz

functions are also a special case of generalised prediction framework in [25] with a lower

triangular structure as already discussed for Laguerre functions in Section 2.6.5. This

chapter will demonstrate that Kautz functions are an effective alternative to the standard

basis set for parameterising the d.o.f. within MPC and indeed may be more effective that

Laguerre functions as they offer more variety in the key characteristics.

4.2 Background

This section will introduce the basic algorithms [11, 13], underneath the proposal in the

chapter and background information, but omitting well known algebra that does not add

to the concepts. The main aspects of formulating a linear MPC problem as a Laguerre
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function parameterisation will be repeated here for convenience (see Section 3.2 for further

details).

4.2.1 Optimal MPC

Consider a generic MPC problem formulation [11,13]

min
uk

xTnc
Qfxnc +

nc−1∑
k=0

xTkQxk + uTkRuk

s.t. xk+1 = Axk +Buk,

xk ∈ X, uk ∈ U,

xnc ∈ X0, (4.1)

with Q = QT ≥ 0 and R = RT > 0 are state and input cost weighting matrices and

X0 = {xk ∈ Rnx |Φixk ∈ X, −KΦixk ∈ U,∀i ≥ 0} [12] is a terminal region. Assuming

that state-feedback uk = −Kxk is the optimal unconstrained feedback as nc → ∞, then

with appropriate choice of Qf X0 the MAS to match this K, optimisation (4.1) defines

the Optimal MPC (OMPC) algorithm [5, 11, 13] which is able to match the constrained

optimal control, as long as nc is large enough. However, for transparency, it is common to

emphasise that the associated input predictions take the following parameterisation where

vector c−→k = [cTk , . . . , c
T
k+nc−1] compromise the d.o.f.; in essence c−→k are the perturbations

about the unconstrained optimal input trajectory required to meet constraints

uk+i = −Kxk+i + ck+i, i = 0, . . . , nc − 1,

uk+i = −Kxk+i, i ≥ nc. (4.2)

An equivalent compact formulation for OMPC with suitable S, M , N and d prediction

matrices and vectors [5] is

min
c−→k

c−→
T
k S c−→k

s.t. Mxk +N c−→k ≤ d. (4.3)

The weakness of OMPC is the trade off between a region of attraction, that is the volume

of the MCAS Xc = {xk ∈ Rnx |∃ c−→k ∈ Rncnu ,Mxk +N c−→k ≤ d} and the number of d.o.f.

nc; this is because the MAS can be quite small for well tuned feedbacks K and region of

attraction of the input paramaterisation (4.2) requires that one adopts the unconstrained
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4.3 Kautz Functions

law after nc steps. Consequently, several authors have shown that well tuned optimal

feedback gain K can result in a requirement for a large nc in order to achieve reasonable

volumes of region of attraction (e.g. [13]). A large nc can imply a demanding optimisation,

even with algorithms that exploit structure; this is one reason for the recent popularity

of parametric methods [118].

4.2.2 Laguerre optimal MPC

Laguerre functions in Section 3.3 were used to provide a possible solution to the MCAS

volume/complexity trade off in OMPC [26]. Conceptually the key point is to parame-

terise the future values of input perturbations c−→k in (4.2) in terms of Laguerre func-

tions. Specifically it was shown that in many cases changing parameterisation allowed

substantial improvements in the region of attraction with little or no detriment to per-

formance [26]. The input perturbations are parameterised as follows

c−→k = [LT
0 , . . . , L

T
0A

nc−1
L

T
, . . . ]T η

−→k,

η
−→k+1 = HL η−→k, HL = [LT

0 , . . . , L
T
0A

nc−1
L

T
, . . . ]T (4.4)

where AL from (3.31) is a Laguerre dynamic matrix, hence an equivalent compact for-

mulation similar to (4.3) with suitable prediction matrices and vectors is

min
η
−→k

η
−→

T
k [

∞∑
i=0

Ai
LL0SL

T
0A

i
L
T
] η
−→k

s.t. MLxk +NLHL η−→k ≤ dL. (4.5)

HL = [LT
0 , . . . , L

T
0A

nc−1
L

T
, . . . ]T .

This section summarised algorithms already in the literature which introduced the con-

cept of reparameterisating the input trajectory d.o.f., but did not explore this potential

in any depth. This chapter will further explore more flexible parameterisation techniques

based on Kautz functions.

4.3 Kautz Functions

Laguerre functions [2, 18, 26] have been popular in filtering, system identification and

control design because few parameters are enough to describe the behaviour of the sys-
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4.3 Kautz Functions

tem. Its property depends upon the selection of a scaling factor (i.e. ‘p’ in (4.6)) and

its complexity and accuracy of the description increases as the number of Laguerre net-

works increases. The application of Laguerre networks [2, 18] is limited to a single pole

selection (i.e. between 0-1). This limitation may be overcome by introducing Kautz

networks which allow the selection of two poles (real or complex) which consequently

may approximate system behaviour better than using a single real pole as in Laguerre

networks.

The Kautz function model was used for system identification of lightly damped systems to

design robust predictive control [197,198]. A predictive functional control strategy based

on the incremental Kautz model has been presented in [199], which does not require a

correct model of the system before undertaking control design. In [200], five stochastic

search algorithms were designed to optimise the adaptive parameter in predictive func-

tional controller based on Kautz model. The continuous-time Laguerre functions and

Kautz functions were discussed in [2] and were utilized in the design of continuous time

model predictive control. In this chapter Kautz functions are used to parameterise the

input trajectory to simplify the trade off between performance, region of attraction and

computational burden.

4.3.1 Kautz Network

Kautz networks were first proposed by Kautz [201]. The discrete time Kautz network

was generated from the discretisation of continuous time Kautz network (a more detailed

discussion on continuous time Kautz functions can be found in [18]).

The Laguerre network has a first order dynamics where as the Kautz network has second

order dynamics. Laguerre functions are defined as follows [18]

li(z) =
√

(1− p2)
(z−1 − p)i−1

(1− pz−1)i
; 0 ≤ p < 1. (4.6)

where pole ‘p’ is the parameter which determines the convergence rate.

The Kautz network is defined as follows

ki(z) =
√
(1− a2)(1− b2)

(z−1 − a)i−1(z−1 − b)i−1

(1− az−1)i(1− bz−1)i
; (4.7)

0 ≤ a < 1; 0 ≤ b < 1

where ‘a’ and ‘b’ are poles of the discrete-time Kautz network. The free parameters, ‘a’
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4.3 Kautz Functions

and ‘b’ is selected by the user; these are also called the scaling factors. However, the

inverse z-transforms of the Kautz networks do not lead to a compact expression of the

Kautz functions in the time-domain so state-space representation is preferred and derived

briefly.

4.3.2 Orthonormality of Kautz functions

The z-transforms of the discrete-time Kautz functions are written as

k1(z) =

√
(1− a2)(1− b2)

(1− az−1)(1− bz−1)

k2(z) =

√
(1− a2)(1− b2)

(1− az−1)(1− bz−1)

(z−1 − a)(z−1 − b)

(1− az−1)(1− bz−1)

...

kn(z) =
√

(1− a2)(1− b2)
(z−1 − a)n−1(z−1 − b)n−1

(1− az−1)n(1− bz−1)n
(4.8)

where 0 ≤ (a, b) < 1 for stability of the functions. The Kautz functions are well known

for their orthonomality. In the frequency domain, this orthonormality is expressed in

terms of the orthonormal equations for km(m = 1, 2, . . . ) as

1

2π

∫ π

−π
km(ejw)kn(e

jw)∗dw = 1; m = n (4.9)

1

2π

∫ π

−π
km(ejw)kn(e

jw)∗dw = 0; m ̸= n (4.10)

where (.)∗ denotes the complex conjugate of (.).

4.3.3 State space representation of Kautz functions

In the design of predictive control, Kautz functions are used in time domain. The discrete-

time Kautz functions are obtained through the inverse z-transform of the Kautz discrete

network. However, taking the inverse z-transform does not lead to a compact expression

of the Kautz functions in the time domain. A more straightforward way to find these
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4.3 Kautz Functions

discrete-time functions is based on a state space realisation of the polynomials.

ki(z) = ki−1(z)
(z−1 − a)(z−1 − b)

(1− az−1)(1− bz−1)
; (4.11)

0 ≤ a < 1; 0 ≤ b < 1

with k1(z) =

√
(1−a2)(1−b2)

(1−az−1)(1−bz−1)
. The discrete-time Kautz functions are expressed in a

vector form as

kn = [kn,1, kn,2, . . . ]
T . (4.12)

Taking advantage of the network realization in equation (4.11), the set of discrete-time

Kautz functions satisfies the following difference equation

Kk+1 = AKKk (4.13)

where matrix size of AK is N ×N and is a function of parameters α1 = ab, β1 = (1− ab)
and ς =

√
(1− a2)(1− b2), and the initial condition is given by K0 (see Section A.1 for

further details), which yields to



k1,k+1

k2,k+1

k3,k+1

k4,k+1

k5,k+1

...


=Kk+1 =



b 0 0 0 0 . . .

β1 a 0 0 0 . . .

−bβ1 β1 b 0 0 . . .

α1β1 −bβ1 β1 a 0 . . .

−bα1β1 α1β1 −bβ1 β1 b . . .
...

...
...

...
...

. . .


︸ ︷︷ ︸

AK

Kk; K0 = ς



1

−a
α1

−aα1

α2
1
...


. (4.14)

The dimension of the state space prediction (4.14) can be taken as large (or small) as

needed to capture the desired function sequence.

The orthonormality expressed in (4.9) and (4.10) also exists in the time domain as

∞∑
n=0

kn,ikn,j = 1; i = j (4.15)

∞∑
n=0

kn,ikn,j = 0; i ̸= j (4.16)
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Figure 4.1: Coefficient of four Kautz and Laguerre functions

4.3.4 Special cases

Laguerre function as a special case when (a, b) = (p, p)

A Kautz function with a = p, b = p where p is real, gives

Ki = Li

which demonstrate that Laguerre functions are a special case of Kautz functions. Clearly

therefore, Kautz functions have more flexibility in terms of dominant dynamics than

Laguerre functions and it is this flexibility that is explored in this chapter.

For completeness and to improve insight, Figure 4.1, shows the coefficients of the first

four Kautz (with poles at 0.8 ± 0.4j) and Laguerre functions (p = 0.8). In both cases

the speed of convergence is linked with the poles. In Figure 4.1 the convergence of

Kautz polynomials are slower than that of Laguerre functions due to the poles being

closer to the unit circle, but the oscillatory behaviour still allows the capture of some

faster dynamics; hence it is expected that Kautz functions to offer more functionality

than Laguerre functions by both facilitating slower convergence (to enlarge the region of

attraction) in conjunction with more rapid transitions if required in near transients to

improve performance.
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4.4 Kautz functions as an alternative parameterisation within MPC

Special case when (a, b) = (0, 0)

When a = 0, b = 0, the AK matrix in (4.14) becomes

AK =



0 0 0 0 . . .

1 0 0 0 . . .

0 1 0 0 . . .

0 0 1 0 . . .
...

...
...

...
...


(4.17)

and the initial vector becomes

K0 =
[
1 0 0 0 . . .

]T
. (4.18)

Then, Kautz function become standard basis matrix with a set of pulses when (a, b) =

(0, 0). This property of Kautz is important because the previous work in the design

of predictive control essentially uses this type of description for the incremental control

trajectory, thus the MPC design using Kautz functions with (a, b) = (0, 0), becomes

equivalent to the traditional approach but it is also true for Laguerre function.

4.4 Kautz functions as an alternative parameterisation within

MPC

Conventional algorithms use d.o.f. (or perturbation ck) signals that have an impact on

the region of attraction. Essentially adding nc or d.o.f. expands the region of attraction

to one where the state is able to enter the MAS with c−→k = 0 in at most nc steps; such an

expansion may therefore be smaller in conventional algorithms. The region of attraction

is dominated by the choice of feedback gain K in terminal mode. This limitation is

overcome in GERPC or optimisation dynamics MPC [25] which shows that one can use

a highly tuned K and never the less obtained the region of attraction which is as large as

can be obtained by using any detuned feedback gain. Despite significantly increasing the

maximal stabilisable set, this formulation is based on ellipsoidal sets and needs nc ≥ nx.

Laguerre functions have been proposed as a special case of GERPC to simplify the

tradeoff between computational burden, region of attraction and performance [26, 202].

Laguerre functions with p > 0 evolve over an infinite horizon and the speed of conver-

gence is linked directly to the time constant ‘p’. When a small number of simple input
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4.4 Kautz functions as an alternative parameterisation within MPC

perturbations are not sufficient to regain feasibility using OMPC, Laguerre functions [26]

provide an alternative trajectory for improving the feasibility with the same number of

d.o.f..

As Laguerre functions are a special case of Kautz functions (i.e. for real p, a = p, b = p).

Clearly therefore, Kautz functions have more flexibility in terms of parameter dynamics

than Laguerre functions and it is an alternative parameterisation of the d.o.f. in order

to further increase the region of attraction of OMPC algorithms. This section explores

Kautz functions as an alternative parameterisation within OMPC algorithm.

4.4.1 Using Kautz functions within OMPC

A fundamental weakness of the OMPC algorithm is infeasibility when nc steps are insuffi-

cient to move the initial state into the MAS. This weakness can be overcome by increasing

the d.o.f. to allow more steps for reaching the MAS, but obviously at the expense of an

increased computational burden. Another way of increasing the region of attraction is

by detuning the terminal mode which may compromise performance. However, an al-

ternative highlighted in [26] is to parameterise the d.o.f. differently so that the impact

on the input predictions is over a longer horizon, thus relaxing the time requirement for

entering the MAS. This section derives an algorithm which uses Kautz functions for this

parameterisation, whereas the next section will compare these with the earlier Laguerre

based approach.

There are two poles (real or complex) ‘a’ and ‘b’ that define the time scale for the input

predictions using a combination of Kautz functions. The algorithm associated using

Kautz functions is denoted as KOMPC for Kautz OMPC. Kautz functions can easily be

used to redesign DMC/GPC achieving good performance and enlarge region of attraction,

but here the focus is on dual-mode algorithms with guaranteed stability.

4.4.2 Kautz OMPC or KOMPC

Kautz functions are used to parameterise the perturbations ck around the unconstrained

optimal. The prediction using decision variables used in OMPC and KOMPC are put
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side by side ( γ
−→k denotes the KOMPC d.o.f.)

c−→k =


ck
...

ck+nc−1

...


︸ ︷︷ ︸

OMPC

or c−→k =


KT

0
...

KT
nc−1
...




γk
...

γk+nc−1

...

 = HK γ
−→k︸ ︷︷ ︸

KOMPC

(4.19)

The key difference here from OMPC is that the HK matrix has large number (in fact

infinite) of rows. The number of rows of HK can be truncated using the number of

samples require to retain the steady state of Kautz functions (e.g. as shown in Figure

4.1). The performance index Jc,k can be computed in terms of perturbation ck as

Jc,k =
∞∑
i=0

cTk+iSck+i. (4.20)

However, from equation (4.19) note that ck+i = KT
i γ−→k and from equation (4.13) the new

performance index becomes

JK,k =

∞∑
i=0

γ
−→

T
kKiSKT

i γ−→k

= γ
−→

T
k [

∞∑
i=0

Ai
KK0SKT

0 (A
i
K)T ] γ

−→k (4.21)

The MCAS can also be rewritten in the form

Xc = {xk ∈ Rnx |∃ γ
−→k ∈ Rncnu ,MKxk +NKHK γ

−→k ≤ dK}. (4.22)

for suitable MK , NK , HK and dK prediction matrices.

Algorithm 4.1. Kautz OMPC (KOMPC)

Off-line

1. Determine the predicted cost, in terms of perturbations ck is

Jc,k =
∞∑
i=0

cTk+iSck+i. (4.23)

Substitute in from (4.13) and (4.19) the KOMPC predictions of ck+i = KT
i γ−→k to
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give

JK,k =

∞∑
i=0

γ
−→

T
kKiSKT

i γ−→k. (4.24)

Finally, substitute Ki = AKKi−1 and hence

JK,k = γ
−→

T
k

[∑∞
i=0A

i
KK0SKT

0 (A
i
K)T

]
γ
−→k = γ

−→
T
k SK γ

−→k. (4.25)

2. Define the constraint inequalities associated to (4.3) in the form

MKxk +NKHK γ
−→k ≤ dK . (4.26)

On-line

1. At each sampling instant, perform the optimisation:

γ
−→

∗
k = arg min

γ
−→k

JK,k

s.t. MKxk +NKHK γ
−→k ≤ dK . (4.27)

2. Define c−→k = [KT
0 , . . . ,KT

nc−1] γ−→
∗
k.

3. Implement the first component of c−→k, that is ck in the control law of (4.2).

4. If unconstrained control law is satisfying the constraints (i.e. xk ∈ X0), the opti-

mising c−→k is zero so the control law is uk = −Kxk.

Theorem 4.1. If the values of ck are restricted by (4.19), then nevertheless, it is always

possible to choose ck+i+1|k+1 = ck+i|k ∀i > 0.
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Proof. Define the predictions at two consequent samples as follows

ck|k

ck+1|k

ck+2|k
...

ck+n|k
...


=



KT
0

KT
0 (AK)T

KT
0 (A

2
K)T

...

KT
0 (A

n
K)T

...


γ
−→k;



ck|k

ck+1|k+1

ck+2|k+1

...

ck+n|k+1

...


=



past

KT
0

KT
0 (AK)T

...

KT
0 (A

n−1
K )T

...


γ
−→k+1; (4.28)

in order to make ck+i|k+1 = ck+i|k ∀i > 0, it is sufficient to make

KT
0 (A

i
K)T γ

−→k = KT
0 (A

i−1
K )T γ

−→k+1. (4.29)

This is easily done by choosing γ
−→k+1 = AK γ

−→k.

Theorem 4.2. KOMPC has a guarantee of stability and recursive feasibility, in the

nominal case.

Proof. From Theorem 4.1, it is known that at time k+1, a shifted version of the optimal

offset sequence ck can be found if γ
−→k+1 = AK γ

−→k. So, substituting γ
−→k and γ

−→k+1 =

AK γ
−→k for time-steps k and k+1 respectively, in the cost function (4.21). At time k+1

the cost function will be less than that at time k ∀x0 ̸= 0, i.e.

JK,k+1 − JK,k ≤ − γ
−→

T
k [K0SKT

0 ] γ−→k ≤ 0.

Since JK,k is bounded below and JK,k+1 ≤ JK,k:

=⇒ JK,k+1 − JK,k → 0; k → ∞,

therefore this implies that JK,k is Lyapunov function. Finally, note that for all states

inside the MAS, the unconstrained optimal control law uk = −Kxk will feasible, i.e.

ck = KT
0 γ−→k is repeatedly zeros. Hence, the Lyapunov stability of the origin follows from

the fact that the MAS contains the origin in its interior. Recursive feasibility uses the

same arguments.
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4.5 Numerical Examples

This section will illustrate the efficacy of the proposed KOMPC algorithm in comparison

with LOMPC and OMPC using numerical examples. The main focus is to compare

the trade off between feasibility gain and closed loop performance. The results will be

presented in a way that is suitable for any number of state dimensions.

The aim is to compare two aspects

• The closed-loop performance for a range of initial conditions or, when feasible, how

does the performance of a given algorithm compare to the global optimum.

• The region of attraction.

The global optimum Jopt is computed using OMPC with high nc (nc = 20 is used for

numerical examples), it is used as a measure of how far the algorithms are from optimal.

4.5.1 Explanations of feasibility and performance comparison

This section used a very simple way of displaying relevant feasibility and performance

information that does extend to arbitrary dimensions, does not require the computations

burden.

The closed loop performance is measured by computing the performance index Jk in

(3.27) over the time span where the system converges. The optimal performance index

Jopt is computed using OMPC with high nc = 20. The plots in Figure 4.4, 4.7, 4.9 and

4.11 show the normalised performance index for comparison. The regions of attraction

in general are difficult to compare visually when larger than 2D plots. The region of

attraction is computed by selecting different state directions and computing, how far out

in these directions a feasible solution exists. The maximum distance point for various

directions is denoted by σ (i.e. the distance from the origin to the boundary of MCAS),

the various algorithms are then tested for x0 = λσ (∀λ, 0 ≤ λ ≤ 1). Clearly the

larger the λ for which they are feasible, the larger the region of attraction in that specific

direction, hereafter denoted as radius. Infeasibility is denoted by a zero in the normalised

performance index plots.

The regions of attraction are also compared in Figure 4.3, 4.6, 4.8 and 4.10 using nor-

malised radii obtained with OMPC using nc = 20 as a function of nc for OMPC, LOMPC

and KOMPC.
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Figure 4.2: Comparison of MCAS for nc = 2 for KOMPC,LOMPC,OMPC algorithms

4.5.2 Example 1 - x ∈ R2

The discrete-time state-space model and constraints are

A =

[
0.6 −0.4

1 1.4

]
; B =

[
0.2

0.05

]
; C =

[
1 −2.2

]
; (4.30)

∆u = 0.4 = −∆u; u = 0.8; u = −1.5; x =

[
5

5

]
= −x

The tuning parameters are Q = I2×2, R = 2, nc = 2, p = 0.8, a = 0.8 + 0.45j,

b = 0.8 − 0.45j and 116 state directions are chosen for the initial states. The pole

locations of Laguerre and Kautz function dynamics are using the poles of closed loop

system.

Figure 4.2 shows the region of attraction from which it is clear that KOMPC has a larger

MCAS than both LOMPC and OMPC for the same number of d.o.f. i.e. nc = 2. Figure

4.3 shows that the average MCAS radii as a function of nc. For nc = 3, KOMPC reach

85 % of MCAS for Global MPC. The plots of normalised cost against λ for a number

of different state directions are plotted in Figure 4.4 for OMPC, LOMPC and KOMPC.
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Figure 4.3: Comparison of normalised distance to global MCAS (i.e. OMPC with
nc = 20) as a function of nc for OMPC, LOMPC and KOMPC.

The global optimal is computed with OMPC using nc = 20 (i.e. Global MPC).

OMPC gives the global optimum performance for states well within the MCAS, but

feasibility is severely restricted as the plots drops to zeros for small λ.

LOMPC enlarges the region of attraction as compared with OMPC, but a detriment

to performance compared to the global optimum near its own MCAS boundary.

KOMPC enlarges the region of attraction as compared with LOMPC, but a detriment

to performance compared to the global optimal near its own MCAS boundary.

KOMPC has improved performance as compared with LOMPC near its own MCAS

boundary.

4.5.3 Example 2 - x ∈ R2

The discrete-time state-space model and constraints are

A =

[
0.90133 −0.1426

0.04752 0.9964

]
; B =

[
0.2752 0.6243

0.1121 0.9471

]
; C =

[
0.4543 0.5623

0.0776 0.4545

]
; (4.31)
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Figure 4.4: Normalised performance index JOMPC/JOPT , JLOMC/JOPT , JKOMPC/JOPT

for various state directions.

∆u =

[
1

1

]
= −∆u; u =

[
5

5

]
; = −u; x =

[
20

15

]
= −x

The tuning parameters are Q = CTC, R = I, nc = 2, p = 0.5, a = 0.6. b = 0.7 and 196

state directions are chosen for the initial states.

Figure 4.5, 4.6 and 4.7 show the feasibility/performance results for OMPC, LOMPC

and KOMPC algorithms. It is clear that KOMPC has a larger MCAS than both LOMPC

and OMPC for the same number of d.o.f. i.e. nc = 2. Figure 4.6 shows that for nc = 2,

KOMPC reaches 99% and LOMPC reaches 90% of MCAS for Global MPC. For nc = 3,

both KOMPC and LOMPC reach, to within less than 1%, the MCAS for Global MPC.

Figure 4.7 shows that:

OMPC gives improved performance for states well within the MCAS as comparison

with LOMPC and KOMPC, but feasibility is severely restricted as the plots drops

to zeros for small λ.

LOMPC enlarges the region of attraction as compared with OMPC, but a detriment

to performance compared to the global optimum.

KOMPC enlarges the region of attraction and gives practically the same performance

as the global optimum.
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Figure 4.5: Comparison of MCAS for nc = 2 for KOMPC,LOMPC,OMPC algorithms

4.5.4 Example 3 - x ∈ R3

For this example the discrete-time state-space model and constraints are given by

A =

1.4000 −0.1050 −0.1080

2 0 0

0 1 0

 ; B =

0.20
0

 ;

C =
[
5 7.5 0.5

]
. (4.32)

∆u = 0.02 = −∆u; u = 0.04 = −u; y = 1.2 = −y.

The tuning parameters are Q = CTC, R = 2, nc = 2, p = 0.8, a = 0.8 + 0.26j,

b = 0.8−0.26j and 296 state directions are chosen for the initial states. Figure 4.8 and 4.9

show the feasibility/performance results for OMPC, LOMPC and KOMPC algorithms.

Figure 4.8 shows that for nc = 3, KOMPC reaches 100% of MCAS for Global MPC,

whereas LOMPC requires 4 d.o.f.. Figure 4.9 shows that:

OMPC has improved performance but very limited feasibility.
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Figure 4.6: Comparison of normalised distance to global MCAS (i.e. OMPC with
nc = 20) as a function of nc for OMPC, LOMPC and KOMPC.

LOMPC has noticeably enlarge the region of attraction than OMPC, but with a small

performance loss in the mid ranges of λ.

KOMPC has improved region of attraction and performance than LOMPC, but a detri-

mental to performance in the mid ranges of λ.

4.5.5 Example 4 - x ∈ R4

For this example the discrete-time state-space model and constraints are

A =


0.9146 0 0.0405 0.1

0.1665 0.1353 0.0058 −0.2

0 0 0.1353 0.5

−0.2 0 0 0.8

 ; B =


0.0544 −0.0757

0.0053 0.1477

0.8647 0

0.5 0.2

 ;

C =

[
1.7993 13.2160 0 0.1

0.8233 0 0 −0.3

]
. (4.33)
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Figure 4.7: Normalised performance index JOMPC/JOPT , JLOMC/JOPT , JKOMPC/JOPT

for various state directions.

∆u =

[
0.5

0.5

]
= −∆u; u =

[
1

2

]
= −u; x =


10

10

10

10

 = −x.

The tuning parameters are Q = I4×4, R = I2×2, nc = 2, p = 0.8, a = 0.5, b = 0.8 and

1040 state directions are chosen for the initial states. The pole locations of Laguerre and

Kautz function dynamics are using the poles of closed loop system.

Figure 4.10 and 4.11 show the comparison results of performance/feasibility for OMPC,

LOMPC and KOMPC algorithms for the chosen state directions. Figure 4.10 shows that,

KOMPC gets to within 100% of the global MCAS with just 3 d.o.f. whereas, LOMPC

requires 4 d.o.f.. Figure 4.10 shows that KOMPC is detrimental to performance but less

in comparison with LOMPC.

4.5.6 Regions of attraction

The numerical examples show that the Kautz function parameterisation is more flexible

than previously proposed Laguerre function as a means of enlarging the region of attrac-
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Figure 4.8: Comparison of normalised distance to global MCAS (i.e. OMPC with
nc = 20) as a function of nc for OMPC, LOMPC and KOMPC.

tion when the number of d.o.f. are limited and with little detriment to the closed loop

performance. There is an anticipated benefit to feasibility because if the initial state is

far away from the MAS, then nc steps (nc small) will be insufficient and thus OMPC be-

comes infeasible. The restriction in feasibility may be regained using the Kautz function

parameterisations.

For completeness, Table 4.1 shows the volume of MCAS for the numerical examples

presented in this section. The MCAS volume is calculated using the Multi-Parametric

Toolbox (MPT) [123]. This data is an objective measure of MCAS and the observation

is that the KOMPC may enlarge the region of attraction by utilising the d.o.f. more

effectively.

4.5.7 Closed loop performance and computational load

Performance comparisons will be based on computing performance ratio (i.e. JOMPC/Jopt,

JLOMPC/Jopt and JKOMPC/Jopt) over the closed loop responses. The lower the perfor-

mance ratio i.e. JKOMPC/Jopt ≤ 1, the better the performance. The comparison of

all numerical examples is plotted in Figure 4.4, 4.7, 4.9 and 4.11 with different initial

conditions. It is observed that the KOMPC may improve the feasibility with little or no
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Figure 4.9: Normalised performance index JOMPC/JOPT , JLOMC/JOPT , JKOMPC/JOPT

for various state directions.

Table 4.1: Volume comparison for nc = 2

OMPC LOMPC KOMPC

Example 1 1.3841 2.2723 2.8871
Example 2 174.8301 745.9069 939.7816
Example 3 0.0526 0.2712 0.2945
Example 4 71.6438 73.1401 73.3729

detriment to close loop performance.

The computational load comparison will be based solely on the number of d.o.fs.. The

d.o.f is similar for all the algorithms, thus KOMPC has the same computational load as

compared with OMPC and LOMPC.

On the other hand, KOMPC provides two tuning parameters i.e. ‘a’ and ‘b’ for the

size of the region of attraction and closed loop performance. Thus one could even en-

visage changing these parameters to improve the trade off between region of attrac-

tion/performance where required and thus deploying no extra d.o.f..

Remark 4.5.1. The parameterised matrix HK in (4.19) is generated using (4.8). It is

easy to use network realisation for complex poles.
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Figure 4.10: Comparison of normalised distance to global MCAS (i.e. OMPC with
nc = 20) as a function of nc for OMPC, LOMPC and KOMPC.

4.6 Conclusion

The chapter has argued for the potential benefits of Kautz functions as more flexible pa-

rameterisation for maximising the region of attraction in conventional MPC algorithms

with a fixed number of d.o.f.. It has been shown through examples that the region of

attraction can be maximised without too much degrading the closed loop performance.

It has also been shown that a simple re-parameterisation of the degrees of freedom within

the input predictions can achieve improved performance and enlarge MCAS. However, of

more significance, the chapter has tackled the question concerning the earlier proposed

use of Laguerre functions to parameterise the d.o.f. in the predictions and clearly demon-

strated that obvious alternatives do exist and in fact, this chapter indicates that Kautz

functions may indeed be preferable to Laguerre in general.

This chapter focussed on just one possible parameterisation and coming chapters will

tackle the question of whether there exists other more flexible alternative choices and

a ’systematic’ method for choosing the best parameterisation for any given problem.

Moreover, it has been noted that computational burden is linked not only to the number

of d.o.f. but also the optimal structure and thus the next step is to consider computational

benefits using more flexible parameterisation.
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Figure 4.11: Normalised performance index JOMPC/JOPT , JLOMC/JOPT , JKOMPC/JOPT

for various state directions.
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Chapter 5

Generalised parameterisation for

optimal predictive control

This chapter presents an original contribution to the thesis. It generalises approaches

to predictive control based on Laguerre and Kautz functions in a format to simplify the

trade off between region of attraction, performance and inexpensive optimisation. It is

shown that Laguerre and Kautz are special cases of generalised functions and thus one

can give a more general parameterisation using higher order functions. Specifically, a

simple but efficient algorithm that uses generalised functions to parameterise the degrees

of freedom in an optimal predictive control is presented. The efficacy of the proposed

parameterisation within existing predictive control algorithms that use a similar strategy

including GERPC using [25], is demonstrated by examples. It is also shown that the

propose algorithm has standard convergence and feasibility guarantees.

This chapter is organised as follows: Section 5.1 presents the introduction and motivation

of the chapter; Section 5.2 presents the generalised functions and its properties; Section

5.3 presents the algorithms that uses generalised functions; Section 5.4 presents numerical

examples; and finally Section 5.5 gives the conclusion of the chapter.

5.1 Introduction

Dual mode MPC allows simple guarantees for stability and recursive feasibility [11] and

thus is a mechanism much favoured in academia. Dual mode MPC prescribes the use of
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transient degrees of freedom (d.o.f.) followed by a terminal control law tuned to give high

performance, however this will often result in a relatively small region of attraction [13].

One strategy to increase the volume of the region of attraction while retaining good per-

formance is to increase the number of d.o.f.; of course this increases the computational

burden which will have a limit. To overcome this limitation, [25] optimises prediction

dynamics to enlarge the region of attraction using a highly tuned terminal control law

based on ellipsoidal sets and the prediction horizon needs not exceed the system dimen-

sion. The proposal is based on ellipsoidal sets, which may result in conservative polytopic

regions. This chapter proposes an alternative approach based on generalised function pa-

rameterisation to simplify the trade off between the region of attraction, performance and

computational burden. The numerical results are compared with optimisation dynamics

in [25].

Kautz functions in Section 4.3, have been proposed as an effective mean of parameter-

ising the input predictions using Kautz functions. Specifically it was shown that such a

parameterisation of the d.o.f. in dual mode MPC can enlarge the region of attraction

without too much compromise to the performance and computational burden. Neverthe-

less, one key question was still left unanswered: is there a generalisation or indeed is there

an alternative to Laguerre and Kautz functions which is better still? These questions are

tackled in this chapter.

Laguerre and Kautz are 1st and 2nd order parameterisations and thus it is logical to

consider whether higher order or generalised parameterisation techniques further improve

the region of attraction while maintaining performance. Specifically, the intent is to

explore the generalisation of the parameterisation using orthonormal basis function [2,

18,26,138,202] based approaches that have been developed recently in Section 4.3 and [26].

Hence, in line with the proposals in Section 4.3, higher order basis functions are tested as

these are generalisation of Laguerre and Kautz functions. It is demonstrated that higher

order orthonormal basis functions are an effective alternative to the standard basis set

of Laguerre and Kautz functions for parameterising d.o.f. within an optimal MPC and

moreover may be more effective and offer more variety in the key characteristics. The

higher order orthonormal basis functions are also a special case of generalised prediction

framework in [25] and deploying the particular lower triangular structure. The numerical

details for generalisation using higher order basis functions are provided but the issue of

how to make a systematic choice of ‘function order’ and parameter to best meet a specific

objective is left for coming chapters.
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5.2 Generalised Orthonormal Basis functions

Orthonormal basis functions [18,26] like Laguerre and Kautz functions have been popular

in filtering, system identification and control design where a few parameters are enough

to describe the behaviour of the system. The properties depend upon the selection

of scaling factors and the complexity and accuracy of the description increases as the

network dimension increases. In a similar way, Laguerre and Kautz functions can be

used for the parameterisation of the d.o.f. in MPC to enlarge the region of attraction

and improve performance. This section explores generalised basis functions for enlarging

the region of attraction and without detriment to performance of an Optimal MPC

algorithm.

5.2.1 Generalised higher Order Network

The higher order network is defined as follows

gi(z) =
√

(1− a2i ) . . . (1− a2n)
(z−1 − a1)

i−1 . . . (z−1 − an)
i−1

(1− a1z−1)i . . . (1− anz−1)i
(5.1)

0 ≤ ak < 1, k = 1, . . . , n,

where ‘a1, . . . , an’ are poles of the ‘nth’ order discrete time generalised network. The free

parameters, ‘a1, . . . , an’ are selected by the user; these are also called the scaling factors.

However, the inverse z-transform of the higher order networks do not lead to a compact

expression of the orthonormal functions in the time-domain so, as in equation (5.1), a

state-space type of representation is preferred and derived briefly here

gi(z) = gi−1(z)
(z−1 − a1)

i−1 . . . (z−1 − an)
i−1

(1− a1z−1)i . . . (1− anz−1)i
(5.2)

0 ≤ ak < 1, k = 1, . . . , n,

with g1(z) =

√
(1−a21)...(1−a2n)

(1−a1z−1)...(1−anz−1)
. The discrete time orthonormal functions are expressed

in a vector form as

gn = [gn,1, gn,2, . . . ]
T . (5.3)

Taking advantages of the network realisation in equation (5.2), the set of discrete time

orthonormal functions satisfies the following difference equation (see Section A.2 for
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5.2 Generalised Orthonormal Basis functions

further details)

Gk+1 = AGGk, (5.4)

let the size of AG is N × N and is a function of parameters ‘a1, . . . , am’, where ‘m’ is

order of dynamics and ‘N ’ is the dimension of prediction matrix AG.

State space representation of 4th order network

For example, in case of m = 4 with N = 6 state space is given by

g1,k+1

g2,k+1

g3,k+1

g4,k+1

g5,k+1

g6,k+1


= Gk+1 =



a2 0 0 0 0 0

a2 a3 0 0 0 0

a2 a3 a4 0 0 0

−a1a2 −a1a3 (1− a1a4) a1 0 0

a1a
2
2 a1a2a3 −a2(1− a1a4) (1− a1a2) a2 0

−a1a22a3 −a1a2a22 a2a3(1− a1a4) −a3(1− a1a2) (1− a1a2) a3


︸ ︷︷ ︸

AG

Gk,

G0 =
√

(1− a21) . . . (1− a24)
[
1 1 1 −a1 a1a2 −a1a2a3

]T
. (5.5)

5.2.2 Orthonormality of generalised higher order functions

The orthonormality of generalised higher order functions may be proved in both frequency

and time domain similarly as proved for Kautz functions. In the frequency domain, this

orthonormality is expressed in terms of the orthonormal equations for gm(m = 1, 2, . . . )

from (5.1) as

1

2π

∫ π

−π
gm(ejw)gn(e

jw)∗dw = 1; m = n (5.6)

1

2π

∫ π

−π
gm(ejw)gn(e

jw)∗dw = 0; m ̸= n (5.7)
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5.3 Using generalised orthonormal functions in OMPC

where (.)∗ denotes the complex conjugate of (.). Similarly in time domain, using network

generalisation sequence from (5.3) as

∞∑
n=0

gn,ign,j = 1; i = j (5.8)

∞∑
n=0

gn,ign,j = 0; i ̸= j (5.9)

5.2.3 Laguerre and Kautz function as a special case

A higher order orthonormal function with aj , ∀j = 1, . . . , n gives

Gk = Lk if aj = p,

Gk = Kk if aj = [a, b], (5.10)

which demonstrates that Laguerre and Kautz functions are a special case of higher order

orthonormal functions. This may be proved using equation (5.1) and (5.5) similarly as

done in previous chapter Section 4.3.4.

Clearly therefore, Gk has more flexibility in terms of dominant dynamics than Laguerre

and Kautz functions and it is this flexibility that is explored in this chapter.

Remark 5.2.1. If generalised higher order network uses aj = 0, then G0 = [1, 0, . . . ] and

AG becomes a shift matrix, that is ones on the lower diagonal. In this case generalised

functions are equivalent to standard basis function.

5.3 Using generalised orthonormal functions in OMPC

The basic concept of dual mode MPC and indeed LOMPC are preserved where input

perturbation ck is parameterised in terms of generalised functions. Hence the input

prediction perturbation using a generalise function is given by:

c−→k =


ck

ck+1

...

 =


GT

0

GT
1
...

 ρ
−→k = HG ρ−→k (5.11)
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5.3 Using generalised orthonormal functions in OMPC

where ρ
−→k is the nG dimension decision variable when using the first nG column of

HG. In fact, the only conceptual difference between Laguerre OMPC (LOMPC), Kautz

OMPC (KOMPC) and generalised OMPC (GOMPC) is the definition of the HG matrix

but otherwise the conceptual steps and algebra is essentially the same; in consequence

the presentation of GOMPC next is deliberately concise. The prediction cost using

generalised function parameterisation in terms of ρ
−→k is given by

JG,k = ρ
−→

T
k

( ∞∑
i=0

Ai
GG0SG

T
0A

i
G
T
)
ρ
−→k = ρ

−→
T
k SG ρ−→k (5.12)

with ck+i = GT
i ρ−→k and from Gi = AGGi−1. The MCAS is calculated in a similar manner

to LOMPC, the main difference in the calculation is the use of transformation matrix

HG instead of HL (more efficient/precise computations do exist but are not interesting

enough to discuss here).

Algorithm 5.1. Generalised OMPC (GOMPC)

Off-line

1. Select the order of prediction dynamics, that is the number of poles aj in AG.

2. Select specific values for the poles aj.

3. Determine the predicted cost, in terms of perturbations ck is

Jc,k =

∞∑
i=0

cTk+iSck+i. (5.13)

Substitute in from (5.5) and (5.11) the GOMPC predictions of ck+i = GT
i ρ−→k to

give

JG,k =
∞∑
i=0

ρ
−→

T
kGiSG

T
i ρ−→k. (5.14)

Finally, substitute Gi = AGGi−1 and hence:

JG,k = ρ
−→

T
k

[∑∞
i=0A

i
GG0SG

T
0 (A

i
G)

T
]
ρ
−→k = ρ

−→
T
k SG ρ−→k. (5.15)
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5.3 Using generalised orthonormal functions in OMPC

4. Define the constraint inequalities associated to (4.20) in the form

MGxk +NGHG ρ
−→k ≤ dG, (5.16)

for suitable MG, NG and dG prediction matrices.

On-line

1. At each sampling instant, perform the optimisation:

ρ
−→

∗
k = arg min

ρ
−→k

JG,k

s.t. MGxk +NGHG ρ
−→k ≤ dG. (5.17)

2. Define c−→k = [GT
0 , . . . , G

T
nc−1] ρ−→

∗
k.

3. Implement the first component of c−→k, that is ck in the control law of (4.2).

4. If unconstrained control law is satisfying the constraints (i.e. xk ∈ X0), the opti-

mising c−→k is zero so the control law is uk = −Kxk.

Theorem 5.1. The GOMPC algorithm has a guarantee of stability and recursive feasi-

bility in the nominal case.

Proof. The essence of the proof is to show that the cost function JG,k is monotonically

decreasing. First, assume that at sample k and k+ 1 the optimal sequence of prediction

input perturbations are given as:

c−→
T
k = [cTk , c

T
k+1|k, c

T
k+2|k, · · · ]; c−→

T
k+1 = [cTk+1|k+1, c

T
k+2|k+1, · · · ]

Also note that JG,k =
∑∞

i=0 c
T
k+iSck+i. Consequently, if one were to choose that ck+i|k+1 =

ck+i|k then

JG,k+1 = JG,k − cTk Sck

In other words, it is sufficient to show that if one can choose at each sampling instant

the same input predictions as selected at the previous sample, then convergence follows;
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5.3 Using generalised orthonormal functions in OMPC

it is well known in the literature that recursive feasibility in the nominal case also follows

automatically from this [5, 6]. Hence the proof is confirmed if one can show that the

choice [0T , c−→
T
k+1] = c−→

T
k is always possible. From the definitions in (5.11) this requires

that there exists a ρ
−→k+1 such that:


GT

1

GT
2

...

 ρ
−→k =


GT

0

GT
1

...

 ρ
−→k+1; (5.18)

However, it has already been established that Gk+1 = AGGk and thus (5.18) can be

represented as:


GT

0A
T
G

GT
0 [A

T
G]

2

...

 ρ
−→k =


GT

0

GT
0 [AG]

T

...

 ρ
−→k+1; ⇒ AT

G ρ−→k = ρ
−→k+1 (5.19)

which can be satisfied because AG is full rank by definition. Finally, note that for all

states inside the MAS, the unconstrained optimal control law uk = Kxk will feasible i.e.

ck = GT
0 ρ−→k is repeatedly zeros. Hence, the Lyapunov stability of the origin follows from

the fact that the MAS contains the origin in its interior. Recursive feasibility uses the

same arguments.

Remark 5.3.1.GOMPC gives the most flexibility in the shapes of the input predictions,

but at the price of a more involved prediction structure. Where less flexibility is required,

a designer may choose to use KOMPC, LOMPC or even OMPC. The key point is that this

suite of parameterisations offers a systematic path to follow when for example, OMPC

is not giving adequate feasibility for reasonable values of nc.

Remark 5.3.2. For multivariable signals, one can easily modify the above algebra, this

detail is omitted.
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5.4 Numerical examples

5.4 Numerical examples

This section will illustrate the efficacy of the proposed GOMPC algorithm in comparison

with ERPC [21], GERPC [25], LOMPC, KOMPC and GOMPC using numerical examples

for the linear time invariant case. The main focus of this section is a comparison based on

performance, region of attraction and computational burden. The comparison is based

on the highly tuned GERPC algorithm with suboptimal choices of LOMPC, KOMPC

and GOMPC. The pole locations of parameterised dynamics are selected to be equal to

or in the vicinity of pole(s) of the of the closed loop stable system, that is the one that

arises from the terminal control law. All numerical examples are implemented using both

symmetric and non-symmetric constraints. The region of attraction is calculated using

Multi-Parametric Toolbox (MPT) [123].

5.4.1 Example 1 - x ∈ R2

For this example the discrete-time state-space model and constraints double integral used

in [24], [25] is given as follows

A =

[
1 Ts

0 1

]
; B =

[
T 2
s

Ts

]
; C =

[
1 0

]
; (5.20)

with Ts = 0.05.

Example 1 (a)

u = 1 = −u; x =

[
1

1

]
= −x.

Example 1 (b)

u = 1; u = −0.5; x =

[
1

1

]
= x = −

[
1

1.5

]
.

The tuning parameters are Q = CTC,R = 1, nc = 2, nG = 2, Laguerre parameter

p = 0.92, Kautz parameters (a, b) = (0.92, 0.7) and γ = ∞.

Table 5.1, Figure 5.1 and 5.2 show the region of attraction from which it is clear that

KOMPC has a larger MCAS than LOMPC, GERPC and ERPC for the same number

of d.o.f. i.e. nc = 2. This increase comes at the price of an increase in the number of

constraints in the online QP problem, as can be seen in the first and second row of Table
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Figure 5.1: Comparison of MCAS for nc = nG = 2 for KOMPC, LOMPC, GERPC
and ERPC algorithms for Example 1(a).
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Figure 5.2: Comparison of MCAS for nc = nG = 2 for KOMPC, LOMPC, GERPC
and ERPC algorithms for Example 1(b).
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5.2. However, the number of inequalities for KOMPC and LOMPC are less than GERPC

algorithm. The KOMPC is tuned using LOMPC parameter selection (i.e. a = p), so

it is observed that there is an insignificant difference between the resulting region of

attractions. For non-symmetric constraints in Example 1(b), the region of attractions

for KOMPC and LOMPC are significantly enlarged compared to GERPC.

5.4.2 Example 2 - x ∈ R2

For this example the discrete-time state-space model and constraints are

A =

[
0.6 −0.4

1 1.4

]
; B =

[
0.2

0.05

]
; C =

[
1 −2.2

]
; (5.21)

Example 2 (a)

u = 1 = −u; x =

[
1

1

]
= −x.

Example 2 (b)

u = 1 = −u; x =

[
1

1.5

]
= −x.

The tuning parameters are Q = CTC,R = 1, nc = 2, nG = 2, Laguerre parameter

p = 0.38, Kautz parameters (a, b) = (0.38, 0.3) and γ = ∞.

Figure 5.3 and 5.4 show the region of attraction for KOMPC, LOMPC, ERPC and

GERPC for the same number of d.o.f. i.e. nc = 2. Figure 5.3 shows that KOMPC has

a larger MCAS than LOMPC, GERPC and ERPC. Whereas in Figure 5.3, there are

some initial points in the GERPC MCAS which are infeasible for LOMPC and KOMPC

algorithms. Table 5.1 shows the MCAS volume comparison for nc = 2, it is clear that

KOMPC and LOMPC enlarge the region of attraction. The number of inequalities to de-

scribe the MCAS are shown in Table 5.2. The number of inequalities with parameterised

algorithms (i.e. LOMPC and KOMPC) is insignificantly larger than for the ERPC and

GERPC algorithm. Similarly to the previous Example 1(b), for the non-symmetric case,

KOMPC and LOMPC enlarge the region of attraction significantly more than GERPC.
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Figure 5.3: Comparison of MCAS for nc = nG = 2 for KOMPC, LOMPC, GERPC
and ERPC algorithms for Example 2(a).

5.4.3 Example 3 - x ∈ R3

For this example the discrete-time state-space model and constraints are

A =

1.4 −0.10504 −0.1080

2 0 0

0 1 0

 ; B =

0.20
0

 ; C =
[
5 7.5 0.5

]
; (5.22)

Example 3 (a)

u = 0.04 = −u; x =

11
1

 = −x.
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Figure 5.4: Comparison of MCAS for nc = nG = 2 for KOMPC, LOMPC, GERPC
and ERPC algorithms for Example 2(b).

Table 5.1: MCAS volume comparison for nc = 2

KOMPC LOMPC GERPC ERPC

Example 1(a) 3.8957 3.8813 3.8370 2.8388
Example 1(b) 4.6880 4.6859 2.7247 2.3444
Example 2(a) 2.6913 2.6812 2.6908 2.0914
Example 2(b) 4.1421 3.5964 2.6634 2.1473

Example 3 (b)

u = 0.04; u = −0.08; x =

11
1

 = −x.

The tuning parameters areQ = CTC,R = 1, nc = 3, nG = 3, Laguerre parameter p = 0.5,

Kautz parameters (a, b) = (0.5, 0.49), GOMPC (3rd order) (a1, a2, a3) = (0.5, 0.49, 0.48)

and γ = ∞.

Table 5.3 shows the MCAS volume comparison for nc = 3, it is clear that GOMPC

using 3rd order dynamics enlarge the region of attraction for both symmetric and non-
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Table 5.2: Comparison of number of inequalities to describe MCAS for nc = 2

KOMPC LOMPC GERPC ERPC

Example 1(a) 83 117 124 18
Example 1(b) 105 120 170 30
Example 2(a) 29 34 22 23
Example 2(b) 39 46 44 28

symmetric cases. The number of inequalities to describe MCAS is shown in Table 5.4, for

both cases, the number of inequalities for GOMPC, KOMPC and LOMPC algorithms

are insignificantly larger than ERPC algorithm.

5.4.4 Example 4 - x ∈ R4

For this example the discrete-time state-space model and constraints are

A =


0.900 −0.105 −0.108 0.200

0.600 0 0 −0.100

0 0.800 0 0.300

0 0 0.800 0

 ; B =


0.2

0

0

0.5

 ; C =
[
1 0 0 0

]
; (5.23)

Example 4 (a)

u = 1 = −u; x =


10

10

10

10

 = −x.

Example 4 (b)

u = 1; u = −2; x =


10

10

10

10

 = −x.

The tuning parameters are Q = CTC,R = 1, nc = 4, nG = 4, Laguerre parameter p =

0.7458, Kautz parameters (a, b) = (0.3251, 0.7458), GOMPC (3rd order) (a1, a2, a3) =

(0.321, 0.7458, 0.6595), (a1, a2, a3, a4) = (0.321, 0.7458, 0.6595, 0.7755) and γ = ∞.
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Table 5.3: MCAS volume comparison

GOMPC GOMPC KOMPC LOMPC GERPC ERPC nc
(4th order) (3rd order)

Example 3(a) 3.9998 2.3469 1.8449 0.8877 0.1366 3
Example 3(b) 4.0 3.1812 2.7025 0.8880 0.3072 3
Example 4(a) 158030 157830 157670 157660 144150 99931 4
Example 4(b) 158030 157930 157930 157930 152840 128700 4

Table 5.4: Comparison of number of inequalities to describe MCAS

GOMPC GOMPC KOMPC LOMPC GERPC ERPC nc
(4th order) (3rd order)

Example 3(a) - 32 24 26 29 24 3
Example 3(b) - 28 22 26 22 26 3
Example 4(a) 49 52 54 66 41 34 4
Example 4(b) 50 56 57 63 36 35 4

Table 5.3 shows the MCAS volume comparison for nc = 4, it is clear that GOMPC

using 4th order dynamics enlarges the region of attraction for both the symmetric and

non-symmetric cases. However, calculating the polyhedra using the GOMPC algorithm

reduces the number of constraints compared to both KOMPC and LOMPC. The number

of inequalities to represent the MCAS of GOMPC is larger as compared to GERPC and

ERPC.

Regions of attraction

Regions of attraction are compared in Figure 5.1, 5.2, 5.3 and 5.4, and MCAS volume

is compared in Table 5.1 and 5.3 using the Multi-Parametric Toolbox (MPT) [123].

Alternative parameterisations (i.e. LOMPC, KOMPC & GOMPC) noticeably enlarged

the region of attraction compared to GERPC and ERPC. For non-symmetric constraints,

alternative parameterisation enlarges region of attraction significantly even compared to

GERPC with γ = ∞.

The LOMPC is tuned using the eigenvalues of the closed loop stable system, that is the

one that arises from the feedback gain K in (4.2). The Kautz dynamics are selected to be

equal or in the vicinity of LOMPC pole, 3rd order dynamics are selected to be equal are in

vicinity of Kautz dynamics and similarly 4th order using 3rd order dynamics. Therefore

it is observed from Figure 5.1, 5.2 and 5.3 that there is not much difference in the
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Table 5.5: Comparison of performance index

Example Initial states GOMPC GOMPC KOMPC LOMPC ERPC
(4th order) (3rd order)

1(a) (-0.4,0.5) - - 18.20 18.20 18.20
1(b) (-0.4,0.1) - - 16.60 16.60 16.60
2(a) (0.7,-0.9) - 18.26 18.26 17.38
2(b) (-0.2,-0.6) - 35.93 36.07 35.04
3(a) (-0.1,0.2,-0.9) - 126.55 126.10 125.97 125.84
3(b) (-0.1,-0.7,0.9) - 256.68 256.15 256.15 256.13
4(a) (9,5.7,-9,-9) 26.51 26.51 26.51 26.51 26.51
4(b) (9,7.9,-8.2,9) 47.44 47.44 47.44 47.44 47.44

resulting region of attractions between LOMPC and KOMPC. Systematic mechanisms

will be discuss in Chapter 6 to choose the best tuned alternative dynamics to further

enlarge the region of attraction.

Closed loop performance comparison

Closed loop performance comparison is based on computing performance Jk =
∞∑
i
[xTk+i|kQxk+i|k+

uTk+i|kRxk+i|k] for all algorithms, where {xk+i|k, i ≥ 0} is a predicted trajectory of

xk+1 = Axk + Buk with xk|k = xk. The performance of the algorithms is contrasted

for different initial states. To make the comparison more meaningful therefore it is ad-

visable to consider the initial conditions which lie inside the regions of attraction of

the all the algorithms under consideration. In Table 5.5, for example 1, performance is

calculated near the boundary of the region of attraction of the ERPC algorithm. It is

interesting to observe that GOMPC, KOMPC, LOMPC and LOMPC enlarge the region

of attraction without too much degrading the closed loop performance.

Computational load comparison

The computational load comparison is based on the number of inequalities with similar

d.o.fs.. Table 5.2 and 5.4 shows the number of equalities using nc = nx d.o.f. for GOMPC,

KOMPC, LOMPC, GERPC and ERPC algorithms. The alternative algorithms enlarge

the region of attractions at the price of an increase in the number of inequalities. In many

cases, the number of inequalities for the alternative algorithms are slightly larger than

the ERPC algorithm. The number of inequalities may be reduced without compromising
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the region of attraction using higher order dynamics however it is recommended that

nG ≤ nc.

Summary

The GOMPC provides a higher dynamic parameterisation than LOMPC and KOMPC

which can be use to improve the trade off between the region of attraction, performance

and computational load. There are few pros and cons of GOMPC.

• GOMPC provides a generalised function parameterisation within existing predictive

control algorithms.

• It tackles the question related to possible alternative choices, what are they and

how are they introduced into existing algorithms?

• It improves the region of attraction as compared with ERPC, GERPC, LOMPC

and KOMPC without increasing nc.

• GOMPC provides an alternative proposal to the existing systematic approach de-

veloped in [25].

• GOMPC provides designers with more tuning choices as compared with KOMPC

and LOMPC. The next chapter will propose a systematic selection of generalised

function parameterisation.

• The computational burden introduces a hard limit on the selection of order of

higher order function parameterisation i.e. nG ≤ nc. The generalised function

parameterisation enlarges the region of attraction without increasing the number

of d.o.f. (or nc).

• The higher order function parameterisation also introduces more parameter vari-

able(s) to tune, to simplify the trade off between region of attraction and perfor-

mance.

5.5 Conclusions

This chapter has argued for the potential benefits of generalised functions as an alter-

native parameterisation for maximising the region of attraction in conventional MPC

algorithms. Laguerre and Kautz functions are presented as a special case of generalised
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functions. The mathematical representation of the generalised network is presented using

a state space model with an example. It has been shown through numerical examples

that in many cases the region of attraction can be improved without too much degrad-

ing performance. However, of more significance, the chapter has tackled the question

concerning the earlier proposed use of Laguerre functions to parameterise the d.o.f. in

the prediction and in fact, this chapter indicates that in many cases the higher order

functions may indeed be preferable in general. This benefit cannot be proven generally

and in some cases it is not required. The next chapter will tackle the question of whether

there exists a ‘systematic’ method for choosing the best parameterisation dynamics for

any given problem.
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Chapter 6

A systematic selection of an

alternative parameterisation

This chapter presents an original contribution to the thesis. The focus of this chap-

ter to make contributions in the area of predictive control and in particular examines

to what extent different methods for parameterising the degrees of freedom within the

input trajectories can improve aspects of the region of attraction and performance. A

few earlier papers [2, 18, 26] have suggested the potential for the Laguerre functions to

be effective within a predictive control design, but without giving explicit design guide-

lines. This chapter extends that work by looking not only at systematic choices for the

Laguerre parameters but also other choices of orthonormal functions. Systematic mecha-

nisms are discussed to choose the best tuned alternative parameterisation dynamics. The

efficacy of the proposed parameterisations within existing predictive control algorithms

are demonstrated by examples.

This chapter is organised as follows: Section 6.1 presents the introduction and motiva-

tion of the chapter; Section 6.2 proposes schemes to identify the best tuned parame-

terised dynamics based on multi-objective optimisation and on pragmatic selection rules.

Numerical simulations and the results are in Section 6.3 and the chapter finishes with

conclusions in Section 6.4.
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6.1 Introduction

6.1 Introduction

All MPC algorithms to some extent allow a trade off between performance, the regions

of attraction and the complexity of the optimisation, and require further study to handle

this trade off. One important issue for real time implementation on low cost processors

(with limited processing capabilities) is the computational burden [203]; it is simply not

possible to code and implement an extensive optimisation algorithm and thus simpler

optimisers need to be used. In recent years research in this area has focused on parametric

solutions [118] or fast optimisation [127]. However, this chapter follows a different route

and instead considers the underlying structure of MPC algorithm. Conceptually the

main question is whether changing the structure may simplify the associated optimisation

e.g. [171]. Specifically, this chapter proposes a systematic selections of parameterisations

for the input predictions with the specific goal of enabling a large region of attraction

without requiring large numbers of degrees of freedom, and obviously without a significant

detriment to closed loop performance.

The focus of this chapter is on the choice of the d.o.f. in a conventional OMPC type of

algorithm. A set of sequences known to have been effective in earlier studies [18, 26] are

the Laguerre functions and thus a logical route of further study was to investigate this

class of functions in more detail. Previous chapters demonstrated the potential of higher

order orthonormal functions and thus this chapter will bring all the findings together

and also propose systematic guidelines for choosing appropriate orthonormal functions

for use in MPC design.

The key question left to be resolved is, what are the possible choices and how to select a

best alternative parameterisation to allow for a large region of attraction without detri-

ment to the performance and computational burden? This chapter focusses on Laguerre,

Kautz and higher order orthonormal functions. A generalised selection algorithm based

on this suite of parameterisations is proposed and thus extends earlier studies. Some dis-

cussion is also given to the difference between ‘optimal selection’ methods and pragmatic

choices which can be made without an associated offline computation.

6.2 The best parameterisation selection

Having proposed that a generalised parameterisation offers a systematic tool for creating a

flexible prediction structure that works well within optimal MPC, the remaining question

is how does one best deploy this flexibility to achieve the desired trade off between MCAS

volume, complexity and performance? Worded another way, what is the optimal choice

122



6.2 The best parameterisation selection

of parameterisation dynamics HG, which of course also implies the need to define what

we mean by optimal choice. From equation (5.5), in generalised parameterise dynamics

there are two main choices within the future input predictions.

1. Select the order of prediction dynamics that is the number of poles ai in AG.

2. Select specific values for the poles ai.

This chapter, in the following sections, proposes two systematic approaches for selecting

and tuning the parameterisation dynamics.

6.2.1 Dynamic order selection

The main focus of parameterised optimal MPC is to improve the region of attraction with

limited number of d.o.f. or with inexpensive optimisation. Higher order parameterised

dynamics have more flexibility in choosing dynamic parameters to overcome the trade off

between the region of attraction and closed loop performance loss. However, there is a

commonsense observation that nc ≥ m, that is to fully utilise the flexibility in having m

poles of generalised function dynamics, one should use at least m d.o.f.. Consequently,

where one knows that a given value of nc is sufficient, it is not recommended to use a

higher number of poles. Having said that, the normal value of nc in OMPC required

to get close to global region of attraction is relatively high (in this thesis approximated

using nc = 20) and thus in practice the expected choices of dim(AG) are much smaller

and an objective choice can only be made with some offline analysis - as discussed in the

next subsection.

6.2.2 Selection of parameterisation poles using a multi-objective ap-

proach

The proposal here is to use analysis tools from the multi-objective optimisation commu-

nity [204]; this is because there are multiple objectives of performance, MCAS volumes

and computational burden. Each of these objectives needs to be quantified in terms

of the parameterisation parameters α = [a1, . . . , am] (where 0 ≤ ai < 1) and then the

optimisation is formulated in terms of trade off between the region of attraction and

performance with a limited number of d.o.f.. For simplicity, this chapter considers the

trade off with a fixed value of nc and thus asks what is the best one can get for a given

123



6.2 The best parameterisation selection

order of optimisation. Clearly increasing or decreasing nc will have an obvious impact

and one could judge, for a given nc, whether the best available is satisfactory.

This multi-objective optimisation is defined in terms of maximising the MCAS volume

ν and closed loop performance β using a monte-carlo sampling approach. Consequently

computations are based on choosing a number of points x = (x1, . . . , xn) equi-spaced

(by solid angle for 2-dimensional systems) or random selection or chosen uniformly on

the unit hyper-sphere and then scaling to be on the appropriate outer boundary of the

MCAS.

1. Define Popt = {(x, c)|Mxk + N c−→k ≤ d} as the Global MCAS (OMPC for a large

nc, notionally this is taken to be about nc = 20 for the examples in this chapter

but in principle could be any appropriate value). This is taken to represent the

global ‘largest’ possible region of attraction.

2. Define the MCAS for the proposed parameterisation using PH = {(x, ρ)|Mxk +

NHG ρ−→k ≤ d}, that is the polytope sliced by the parameterised matrix HG. [Note

for clarity there has been some abuse of the terms M,N here as they can be the

same for Popt,PH only if in non-minimal form.]

3. vol(πPopt) and vol(πPH) represent the MCAS volumes, where πP = {x|∃u (x, u) ∈
P} is the projection operation. As these can be somewhat time consuming to

compute for high dimensional polyhedrals, they are approximated by the average of

the distance from the origin to the boundary of the associated MCAS is determined

by solving a linear programming (LP), for each chosen point xi; clearly the larger

the distance better the feasibility.

4. The predicted performance, for given points xi are represented by the optimised val-

ues of Jopt,k(xi), JH,k(xi) from equations (4.20,5.12) for Global OMPC and GOMPC

respectively. To ensure fairness, the comparison uses the scaling of a given direction

xi which is feasible for all methods being compared.

5. Define ν and β as:

ν =
vol(πPH)

vol(πPopt)
, β =

1

n

n∑
i=1

Jopt,k(xi)

JH,k(xi)
, (6.1)

The multi-objective optimisation can now be summarised as:

Jk(nc, n) := min
α
β,max

α
ν s.t. Mxk +NHG ρ−→k ≤ d,

α = [a1, . . . , am], 0 < ai < 1, m ≤ nc, (6.2)
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6.2 The best parameterisation selection

This optimisation results in a pareto surface between the d.o.f. nc, the resulting size

of region of attraction ν and the average performance β. These curves may be used to

identify the best parameterisation selection with tuned parameter(s).

Remark 6.2.1. Average performance comparison β has limited value because one can

only contrast within the MCAS of all algorithms to be compared, as once beyond its

region of attraction, an algorithm is undefined. The OMPC value is used to assess

JH,k(xi) for fair comparison.

There are some limitations using multi-objective optimisation:

• A systematic design rule is proposed to choose the best tuned generalised function

parameterisation dynamics using multi-objective optimisation. The multi-objective

optimisation has inherent issues like heuristic algorithms, non-convexity, conver-

gence etc.

• Solution uniqueness is an open question regarding multi-objective optimisation, as

it is typical for the result of the optimisation to be a pareto-optimal family of

solutions.

• The multi-objective optimisation requires more offline computational effort to sim-

plify the trade off between performance, region of attraction and computational

load.

• An approximation of Global MPC (OMPC with for a large nc) is used to represent

the global ‘largest’ possible region of attraction. It provides a bound on how much

enlargement of the region of attraction can be obtained for a given system.

• The closed-performance comparison is contrasted for initial conditions which lie

inside the regions of attraction of all algorithms, since the region of attraction

differ in size for different algorithms.

• The computation of ν is approximated using the mean distance not the volume of

projections i.e. vol(πP ).

6.2.3 Pragmatic Selection

It is recognised that multi-objective optimisations can been intractable, albeit offline. So,

although these offer good insight into the trade offs and thus what can be achieved, it may

not be a useful tool for the average engineer who wants more simplistic but effective design
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6.3 Numerical examples

guidance. This section proposes some pragmatic selections to identify the parameterised

dynamics which, albeit with sub optimal parameter value(s), are likely to be close enough

to the best choices to be almost equivalent in a real uncertain scenario.

These selections are based on the underlying closed loop stable system, that is the one

that arises from the feedback K in (4.2). The pole location(s) of parameterised dynamics

can be selected to be equal to or in vicinity of pole(s) of the optimal closed loop system;

this may provide a good starting point. The author makes no claim that this can be

proven in any objective sense, but it is based on observation results from numerous tests

using the multi-objective approach.

Remark 6.2.2. Pragmatic selection is based on closed loop stable system poles, so this

selection assumes that the parameterisation dynamics are of lower order or equal to the

system dynamics. If lower order, one would focus on the dominant poles.

6.3 Numerical examples

In this section numerical examples are presented to illustrate how the proposed ap-

proaches to the parameterisation of the input predictions within OMPC perform. The

aim is to compare the trade off between average MCAS volume gain, average perfor-

mance and the number of d.o.f. (or computational burden). The OMPC algorithm

with an equivalent number of d.o.f. is used as a benchmark for comparison, along with

the Global OMPC (global optimum achieved using OMPC with nc = 20). For conve-

nience LOMPC assumes one parameterised pole, KOMPC two parameterised poles and

GOMPC three parameterised poles; although higher numbers are possible with more

dynamics involved.

The efficacy of the pragmatic selection for LOMPC, KOMPC and GOMPC algorithm

in comparison with ERPC [21] and GERPC [25] is presented using randomly selected

numerical examples for the linear time invariant case. The main focus is to present a

statistical analysis based on the enlargement of the region of attraction. The comparison

is based on the highly tuned GERPC algorithm with pragmatic choices of LOMPC,

KOMPC and GOMPC. The pole locations of parameterised dynamics are selected to be

equal to or in the vicinity of pole(s) of the of the closed loop stable system, that is the

one that arises from the terminal control law.
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6.3 Numerical examples

6.3.1 Optimal selection based on multi-objective optimisation solution

The goal is to produce trade off curves between the resulting average MCAS volume

gain ν and the average performance β as a function of the different parameterisation

parameter(s) and d.o.f. or nc. In simple terms the best strategy has a high value of

ν and β. The multi-objective procedure was run for different initial conditions x =

[x1, . . . , xn] (i.e. for 2nd order example n = 36, 3rd order example n = 100 and 4th order

example n = 200), which were chosen uniformly on the unit hyper-sphere. The resulting

trade off plots and the parallel coordinates are shown to represent different variation of

parameter(s) α and effect on both β and ν.

Parallel coordinate plots in Figure 6.1, Figure 6.6, and Figure 6.10 are a common way

for visualising a set of points in higher dimensional space consisting of parallel lines

(i.e. a1, a2, a3, ν, and β) using multi-objective optimisation analysis, typically vertical

and equally spaced. The vertical parallel axis containing α varies from 0 ≤ ai < 1, the

average MCAS volume gain ν varies from 0 ≤ ν ≤ 1 and average performance β varies

from β > 0. The parallel coordinates are used to identify the best tuned parameter(s)

dynamics with β ≥ 1 and ν u 1. Simulation results with fewer parameter(s) selection

lines are shown in the figure for GOMPC (3rd order), KOMPC and LOMPC only for

nc = 3, but there are similar results for different variation of nc. The parallel plots in

Figure 6.1, 6.6, and 6.10 shows the results of the optimisation in terms of parameter

variations to be a pareto-optimal family of solutions. The multi-objective optimisation

is done using NSG-II Matlab toolbox.

Figure 6.2, Figure 6.7, and Figure 6.11 show the pareto points between ν and β for

GOMPC (3rd order), KOMPC and LOMPC as a function of different parameter(s) with

nc = 3. The trade off between ν and β represents the effect of different parameter(s)

selection on both performance and MCAS volume, the optimal solution is selected from

the pareto-optimal family solutions with maximum MCAS volume gain (i.e. ν u 1)

and minimum performance drop (i.e. β ≥ 1). The colour circle on the trade off plot

represents the pragmatic selection based on closed loop stable eigenvalues. The resulting

optimal selection for GOMPC (3rd order), KOMPC and LOMPC are compared for both

ν and β in Figure 6.3, Figure 6.4, Figure 6.8, Figure 6.9, Figure 6.12 and Figure 6.13 as

a function of nc = [2, . . . , 8].

6.3.2 Pragmatic selection

The pragmatic selection of parameterisation dynamics uses the closed loop eigenvalues.

The selection of parameterisation dynamics dimension has an upper limit based on the
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6.3 Numerical examples

closed loop eigenvalues. A colour circle shown on the trade off plots represent the prag-

matic selections. It is clear from Table 6.1, Figure 6.2, Figure 6.7, and Figure 6.2 that

in many cases pragmatic choice is a suboptimal solution, it is in vicinity of an optimal

pareto solution.

6.3.3 Example 1

A =

[
0.9 −0.1

0.05 1

]
; B =

[
0.3

0.1

]
; C =

[
0 1

]
;

− 0.5 ≤ uk ≤ 1; |∆uk| ≤ 0.4; −

[
5

10

]
≤ xk ≤

[
5

5

]
; Q = diag(1, 1); R = 0.1.

Figure 6.1 shows the parallel coordinates between different parameter(s) selection, β and

ν using nc = 3 for GOMPC (3rd order), KOMPC and LOMPC. Figure 6.2 shows the

parameter variations for all alternative algorithms achieve global MCAS volume with

negligible performance loss on average. The trade off plot also shows the pragmatic

choice with 96% of the global MCAS with negligible performance loss (less than 1% worse

on average). This trade off and parallel coordinates plot may be used as parameter(s)

selection criteria. Figure 6.5 shows the pareto-optimal family of solutions for Laguerre

and Kuatz parameterisation dynamics using nc = 2 to simplify the trade off between the

region of attraction and improved performance.

The optimal parameter(s) were selected with global MCAS volume using parallel coor-

dinates and pareto points (with ν u 1 and β ≥ 1) in Figure 6.2. The LOMPC (with

p = 0.8080), KOMPC (with a = 0.8740, b = 0.0373) and GOMPC (with a1 = 0.9224, a2 =

0.0289, a3 = 0.5430) was run with optimal tuning parameters by varying nc = (1, . . . , 8)

and results are shown in Figure 6.3 and Figure 6.4 for a set of 36 feasible initial con-

ditions. Alternative algorithms (i.e. LOMPC, KOMPC and GOMPC) achieved global

MCAS volume with 3 d.o.f. with maximum 0.29% performance loss on average. For

nc = 2, GOMPC reach, to within less than 4%, both KOMPC and LOMPC reach, to

within less than 8%, the MCAS for OMPC with nc = 20. KOMPC and GOMPC enlarge

the region of attraction with negligible performance loss and less number of inequalities

as compared to LOMPC.
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Figure 6.1: Comparison of parallel coordinates for Example 1.

6.3.4 Example 2

A =

0.9146 0 0.0405

0.1665 0.1353 0.0058

0 0 0.1353

 ; B =

 0.054 −0.075

0.05 0.147

0.8647 0

 ; C =

[
1.799 13.216 0

0.823 0.5 0.1

]
;

|uk| ≤ 1; |∆uk| ≤ 0.5; |xi,k| ≤ 1; Q = diag(1, 0, 0); R = I.

This example seems to be quite simple to achieve both global MCAS and near optimal

solutions with low degree of freedom. Figure 6.8 and Figure 6.9 show the average MCAS

gain and average performance by varying d.o.f. for a set of 100 feasible initial conditions.

The resulting parallel coordinates and trade off curves are shown in Figure 6.6 and

Figure 6.7. The parameter(s) variation for KOMPC and GOMPC achieve 100% of global

MCAS with approximately global optimal performance on average. LOMPC achieves

approximately global MPC with less than 1% worst performance on average. Whereas

the pragmatic selection also achieves 100% of global MCAS with 1% worst performance

on average.

The LOMPC (with p = 0.6306), KOMPC (with a = 0.6651, b = 0.0438) and GOMPC

(with a1 = 0.7616, a2 = 0.6317, a3 = 0.0938) was run with optimal tuning parameters by

varying nc = (2, . . . , 8) and results are shown in Figure 6.8 and Figure 6.9. It is observed
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Figure 6.2: Comparison of pareto front for Example 1.

from Figure 6.8 and Figure 6.9 that optimal tuning may achieved low dimensional param-

eterisation dynamics with improved trade off. GOMPC (3rd order) and KOMPC gets

within global region of attraction with just 3 d.o.f.. GOMPC (3rd order) and KOMPC

are good choices with global MCAS and approximately optimal performance with less

number of inequalities as compared with LOMPC.

6.3.5 Example 3

A =


−1.80 0 0 0.9

0.386 −0.406 0 0.9

0 0 −0.60 0

0.81 −0.770 0.45 −0.406

 ; B =


−0.4326 0

0 1.1909

0.1253 1.1892

0.2877 −0.0376

 ;

C =

[
−0.9080 0.6967 0.2899 −0.1285

0.8901 −0.5394 0 −0.7538

]
; |ui,k| ≤ 1; |∆ui,k| ≤ 0.5; |xi,k| ≤ 5;

Q = diag(1, 1, 1, 1); R = I.

The parameter(s) variations using trade off curves and parallel coordinates are shown

in Figure 6.10 and Figure 6.11 achieves 96% of global MCAS volume with improved

performance on average. Whereas the pragmatic selection achieves 95% of the global
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Figure 6.3: Comparison of average MCAS volume for Example 1.

MCAS with β = 0.98. It is observed from Figure 6.11 that for parameterised algorithms

the pareto-optimal family of solutions are similar and Laguerre parameterisation dynam-

ics are enough to simplify the trade off between the region of attraction and improved

performance.

The LOMPC (with p = 0.1808), KOMPC (with a = 0.013, b = 0.4188) and GOMPC

(with a1 = 0.013, a2 = 0.0294, a3 = 0.4428) was run with optimal tuning parameters

by varying nc = (2, . . . , 8) and results are shown in Figure 6.12 and Figure 6.13 for a

set of 200 feasible initial points. It is interesting to observe from Table 6.1 that the

parameterised algorithms achieved little more as compared to OMPC using optimal tun-

ing. Similarly as in the previous examples, GOMPC (3rd order) is a good choice with

improved performance and a larger MCAS compared to LOMPC and KOMPC.

6.3.6 Computational load and performance comparisons

The computational load is assumed here to depend upon the number d.o.f. and the

number of inequalities1. It is assumed that the MCAS representations are reduced to

minimal form which in itself is a major computational load; without such a step one would

expect the number to be similar in all cases. The number of inequalities is compared for

all algorithms with nc = 3 and are summarised in Table 6.1.

1Investigations into the impact of structure on the computational loading are ongoing
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Figure 6.4: Comparison of average performance for Example 1.

The alternative parameterised algorithms (that is with different numbers of poles ai) have

similar numbers of inequalities, but notably these are more than for OMPC. However,

KOMPC and GOMPC have a nearly same number of inequalities.

Performance comparisons will be based on computing average performance β over the

closed loop responses. The lower the performance drop i.e. β ≥ 1, the better the perfor-

mance. However, comparisons are meaningful only if the initial conditions are within the

region of attraction of all algorithms to be compared as once beyond its region of attrac-

tion, an algorithm is undefined. Therefore average normalised closed loop performance

for all algorithms with nc = 3 are summarised in Table 6.1; normalisation is done against

Table 6.1: Number of inequalities and normalised average runtime cost using nc = 3
required by OMPC, LOMPC, KOMPC and GOMPC applied to all examples models.

Algorithm Example 1 Example 2 Example 3

Ineq. β ν Ineq. β ν Ineq. β ν

OMPC 90 1 0.3 173 0.9865 0.8541 122 0.9717 0.9500
LOMPC 172 0.9971 1 309 0.9910 0.9996 184 0.9845 0.9586
KOMPC 160 0.9985 1 305 0.9979 1 203 0.9881 0.9625
GOMPC 160 0.9997 1 310 0.9981 1 206 0.9902 0.9645
Pragmatic 157 0.9980 0.96 320 0.9906 1 217 0.9885 0.9500
Selection
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Figure 6.5: Comparison of pareto front for Example 1 using nc = 2.

Global OMPC. In Example 1 and 2 alternative parameterisations have achieved global

MCAS with less than 1% performance drop on average, whereas in Example 3 there is

little more achieved as compared to OMPC. In Example 3, GOMPC achieved more than

96% of global MCAS with less than 1% worst performance on average.

6.3.7 Summary

The numerical examples show that in many cases alternative parameterisations enlarge

the region of attraction with little detriment to the closed loop performance.

• Systematic selection mechanisms (using multi-objective optimisation and pragmatic

selection) of the parameterisation provide a tool to overcome a trade off between

performance, region of attraction and inexpensive optimisation.

• For higher order generalised function parameterisations have more flexibility in

parameter selection to overcome the trade off between the region of attraction and

closed loop performance. However there is a limit on the selection of a higher

order as from (5.5), nc ∝ nG. If nG > nc, then this selection will compromise the

computational burden.

• In many cases, pragmatic selection provides a good way to select the order of

generalised function with suboptimal parameter(s) choice.

133



6.3 Numerical examples

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Coordinate

C
oo

rd
in

at
e 

V
al

ue

 

 
LOMPC
KOMPC
GOMPC (3rd order)

ν βa
2

a
3

a
1

Figure 6.6: Comparison of parallel coordinates for Example 2.

An interesting observation from the trade off curves and parallel coordinates plots in Fig-

ure 6.2, 6.1, 6.7, 6.6, 6.11 and 6.10 is that systematic parameterisation selections often

improve the trade off between the region of attraction, performance and computational

burden. Another interesting observation is about the pragmatic selection, it is not an op-

timum choice but in many cases provides a good starting point to tune the parameterised

dynamic.

6.3.8 Statistical analysis of pragmatic selection

The pragmatic selection is analysed further in this section using a statistical analysis

for alternative parameterisation algorithms (i.e. LOMPC, KOMPC and GOMPC). The

prime interest is to compare the enlargement of the region of attraction using LOMPC,

KOMPC, GOMPC, GERPC [25] and ERPC [21] algorithms. The comparisons are based

on 500 random systems with x ∈ R2, x ∈ R3, and x ∈ R4 (total of 1500 systems) using

nc = nx.
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Figure 6.7: Comparison of pareto front for Example 2.

Example 4 – x ∈ R2

Consider 500 single input single output 2nd order (i.e. x ∈ R2) random systems subject

to input and state constraints

−1 ≤ uk ≤ 1; −

[
4

1.5

]
≤ xk ≤

[
4

1.5

]
. (6.3)

The tuning parameters areQ = CTC, R = 1, nc = 2 and γ = ∞. For this example, Kautz

and Laguerre dynamics are used as alternative parameterisation dynamics (because nG ≤
nc) and tuned using the pragmatic selection. The region of attractions are calculated

using the Multi-Parametric Toolbox (MPT) [123].

Figure 6.14 shows the histograms of the MCAS volume for KOMPC, LOMPC, GERPC

and ERPC. The histogram suggests that in many cases KOMPC and LOMPC have

a larger MCAS volume than GERPC. Table 6.2 shows some statistics regarding the

simulations. As shown, KOMPC has a larger MCAS volume on average than LOMPC,

GERPC and ERPC.

This is further analysed using a box and whisker diagram in Figure 6.15 for MCAS

volume comparison. In box and whisker diagram, the length of the box represents the

inter quartile range (IQR), this is difference between the 25th and 75th percentiles of

MCAS volume and horizontal lines in the box represent the median MCAS volume for
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Figure 6.8: Comparison of average MCAS volume for Example 2.

random systems. The line outside the box represent the maximum and minimum values

of MCAS volume (i.e. 1.5 times IQR range from the top and bottom of the box) and

outliers are shown using ‘+’ symbol. The box and whisker plot suggests that KOMPC

and LOMPC enlarge the region of attraction further than GERPC. The outlier suggests

that in some cases GERPC may be better than both LOMPC and KOMPC.

Table 6.2: Statistical results for MCAS volumes.

Algorithm Example 4 Example 5 Example 6

Mean Median Mean Median Mean Median

ERPC 18.962 22.073 2.344 2.434 1.856 1.910
GERPC 20.812 23.852 2.556 2.640 1.938 1.995
LOMPC 21.139 24.000 2.553 2.648 1.928 1.974
KOMPC 21.701 24.000 2.562 2.650 1.932 1.978
GOMPC (3rd) - - 2.598 2.674 1.947 1.997
GOMPC (4th) - - - - 1.949 1.997
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Figure 6.9: Comparison of average performance for Example 2.

Example 5 – x ∈ R3

Consider 500 single input single output 3rd order (i.e. x ∈ R3) random systems subject

to input and state constraints

−1 ≤ uk ≤ 1; −

 4

1.5

2

 ≤ xk ≤

 4

1.5

2

 . (6.4)

Table 6.3: Percentages comparison of MCAS volumes with GERPC for all random
systems.

Algorithm Example 4 Example 5 Example 6

Greater Equal Less Greater Equal Less Greater Equal Less
than/to GERPC

LOMPC 40.4% 40.4% 19.2% 56.8% 23.4% 19.8% 21.2% 11.2% 67.6%
KOMPC 44.4% 42.2 % 13.4% 58% 24.2% 17.8% 25.2% 13.2% 61.6%
GOMPC (3rd) - - - 61.6% 27.4% 11% 36.6% 31.6% 31.8%
GOMPC (4th) - - - - - - 41 % 27.2% 31.8%
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Figure 6.10: Comparison of parallel coordinates for Example 3.

The tuning parameters are Q = CTC, R = 1, nc = 3 and γ = ∞. For this example,

GOMPC (3rd order), Kautz and Laguerre dynamics are used as alternative parame-

terisation dynamics and tuned using pragmatic selection. The region of attractions are

computed by selecting 200 state directions and computing, relatively, how far out in these

directions a feasible solution exists.

Figure 6.16 shows the histograms of the MCAS volume for GOMPC (3rd order), KOMPC,

LOMPC, GERPC and ERPC. The histogram suggests that in many cases GOMPC (3rd

order), KOMPC and LOMPC have a larger MCAS volume than GERPC. Table 6.2 shows

some statistics regarding the simulations. As shown, GOMPC (3rd order) has a larger

MCAS volume on average than KOMPC, LOMPC, GERPC and ERPC. The box and

whisker plots in Figure 6.17 also shown that GOMPC (3rd order) enlarges the region of

attraction as the minimum value of MCAS volume is greater than KOMPC, LOMPC,

GERPC and ERPC. The outliers suggests that there are some random systems where

all algorithms may have a conservative region of attraction.
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Figure 6.11: Comparison of pareto front for Example 3.

Example 6 – x ∈ R4

Consider 500 single input single output 4th order (i.e. x ∈ R4) random systems subject

to input and state constraints

−1 ≤ uk ≤ 1; −


4

1.5

2

1

 ≤ xk ≤


4

1.5

2

1

 . (6.5)

The tuning parameters are Q = CTC, R = 1, nc = 4 and γ = ∞. For this example,

GOMPC (4th order ), GOMPC (3rd order), Kautz and Laguerre dynamics are used as

alternative paremetrisation dynamics and tuned using pragmatic selection. The region

of attractions are computed by selecting 500 state directions and computing, relatively,

how far out in these directions a feasible solution exists.

Figure 6.18 shows the histograms of the MCAS volume for GOMPC (4th order), GOMPC

(3rd order), KOMPC, LOMPC, GERPC and ERPC. The histogram suggests that in

many cases GOMPC (4th order ) and GOMPC (3rd order) has a larger MCAS volume

than GERPC. However, GERPC enlarges the region of attraction compare to KOMPC

and LOMPC. Table 6.2 shows some statistics regarding the simulations. As shown,

GOMPC (4th order) has a larger MCAS volume on average than GOMPC (3rd order),

KOMPC, LOMPC, GERPC and ERPC. The box and whisker plots in Figure 6.19 also
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Figure 6.12: Comparison of average region of attraction volume for Example 3.

show that GOMPC (4th order) enlarges the region of attraction as the minimum value

of MCAS volume is greater than GOMPC (3rd order), KOMPC, LOMPC, GERPC and

ERPC. Similarly as seen in Example 5, the outliers suggests that there are some random

systems where all algorithms may have a conservative region of attraction.

6.3.9 Mann-Whitney U test

The MCAS volume for GOMPC, KOMPC, LOMPC and GERPC are further analysed

using two sample hypothesis tests. Figure 6.14, 6.16 and 6.18 show that the histogram

of the MCAS volume is representing a non-normally distributed data. Therefore the

non-parametric test can be used to test the null hypothesis (i.e. have the same median)

between alternative algorithms (i.e. GOMPC, KOMPC and LOMPC) and GERPC or

alternatively, whether the MCAS volume of alternative algorithms tend to be larger than

GERPC [205]. The Mann-Whitney U test (also called the Wilcoxon rank-sum test) [206]

is used and results are shown in Table 6.4.

Table 6.4 shows the statistical significance level using a P -value; this is the probability

that the null hypothesis is true. The null hypothesis is rejected when significance level

is less than 5%. The rejection of hypothesis is represented using h-value. If h = 0, it

indicates the failure to reject the null hypothesis, whereas h = 1 indicates that the result

would be highly unlikely under the null hypothesis.

It is shown that in Example 4, LOMPC and KOMPC enlarge the region of attraction

140



6.3 Numerical examples

3 4 5 6 7 8
0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

Number of d.o.f (n
c
)

β

 

 

OMPC
LOMPC
KOMPC
GOMPC (3rd order)

Figure 6.13: Comparison of average performance for Example 3.

as compared to GERPC as for both algorithms the P -value is less than 5% and h = 1.

KOMPC has significantly enlarged the region of attraction as significant level is less

than 1%, whereas LOMPC has 2% significant level. In Example 5, the significance level

test shows that both GOMPC (3rd order) and KOMPC enlarge the region of attraction

compared to GERPC as the P -values are less than 5% and h = 1. However, LOMPC

fail to reject the null hypothesis as significance level is 15% and h = 0. In Example

6, the significance level test indicates that for both GOMPC (4th order) and GOMPC

(3rd order) fail to reject the null hypothesis test with 72% and 99% significance level.

However, KOMPC and LOMPC reject the null hypothesis test and as shown in Figure

6.18 that GERPC has a larger MCAS volume. It is also shown in Table 6.2 that there is

not much difference between the MCAS median using GOMPC and GERPC.

The significance test indicates that GOMPC, KOMPC and LOMPC enlarge the region

of attraction as compared to GERPC using pragmatic parameter(s) selection. For higher

dimensional system, it is interesting to observe that there is not much difference between

the MCAS median using GOMPC and GERPC also shown in Table 6.2.

6.3.10 Summary

Table 6.3 shows the percentage comparison of the MCAS volume of random system

with GERPC algorithm. It is shown that in Example 4, for 80.8 % random systems

LOMPC has an equal or larger MCAS volume than GERPC, whereas for 19.2 % random
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Figure 6.14: Histogram comparison of MCAS volume for Example 4.

systems LOMPC has a more conservative volume than GERPC. Similarly for KOMPC,

for 86.6% random systems it gives an equal or larger MCAS volume than GERPC and

there are 13.4% random system for which GERPC has a larger MCAS volume. In

Example 5, LOMPC has 80.2% random systems, KOMPC has 82.2% random systems and

GOMPC (3rd order) has 89% random systems with equal or larger MCAS volume than

GERPC. Whereas, there are 19.8% random systems for LOMPC, 17.8% random systems

for KOMPC and 11 % random systems for GOMPC (3rd order) for which GERPC has a

larger MCAS volume. Similarly in Example 6, for LOMPC has 32.4% random systems,

KOMPC has 38.4 % random systems, GOMPC (3rd order) has 68.2 % random systems,

GOMPC (4th order) has 68.2 % random systems with equal or larger MCAS volume

Table 6.4: Mann-Whitney U test of MCAS volume between alternative algorithms
and GERPC for random systems.

Algorithm Example 4 Example 5 Example 6

P h P h P h
with GERPC

LOMPC 0.0203 1 0.1482 0 1.89 ×10−8 1
KOMPC 8.12 ×10−5 1 0.0331 1 0.0031 1
GOMPC (3rd) - - 1.89 ×10−8 1 0.9906 0
GOMPC (4th) - - - - 0.7198 0
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Figure 6.15: Box and whisker comparison of MCAS volume for Example 4.

than GERPC. There are 67.8% random systems for LOMPC, 61.6% random systems for

KOMPC, 31.8% random systems for GOMPC (3rd order), 31.8% random systems for

GOMPC (4th order) for which GERPC has a larger MCAS volume.

The statistical analysis shown in Table 6.2, Figure 6.14, 6.16 and 6.18 demonstrate that in

many cases alternative parameterisations enlarge the region of attraction using pragmatic

selection. From Table 6.3 and the outliers in Figure 6.15, 6.17 and 6.19 suggest that

for some randomly selected system GERPC may be a better choice than alternative

algorithms (i.e. LOMPC, KOMPC and GOMPC) using pragmatic selection. This is

expected as the pragmatic choice is a suboptimal choice which provides a good starting

point to tune the parameterisation dynamics.

6.4 Conclusion

The main contribution of this chapter is to extend the alternative parameterisation tech-

niques available for shaping predicted input trajectories within predictive control and

hence to give a more general class. The chapter then proposes a systematic mechanism

to select the best parameterisation dynamics from this class. It is shown through nu-

merical examples that alternative parameterisations using Laguerre, Kautz and higher
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Figure 6.16: Histogram comparison of MCAS volume for Example 5.

order orthonormal functions can give significant feasibility benefits without a significantly

degradation of closed loop performance and while facilitating lower dimensional optimi-

sations than possible with a standard OMPC approach. While this benefit cannot be

proven generically and for some cases is small, there is sufficient evidence to encourage

users to try this out as, at times, the benefits can be very significant.

Two techniques for selecting the parameterisation dynamics were discussed based on opti-

mal selection and a pragmatic approach based on stable closed loop poles. It is relatively

straightforward to form an optimal selection procedure using a multi-objective optimi-

sation based on trade off curves between MCAS volumes, performance and numbers of

d.o.f.. Examples demonstrate that proposed trade off curves are clear and give good

insight to the choices available; naturally, the definition of ‘best’ is somewhat subjective.

Where such an offline analysis is not realistic, a pragmatic and simple selection method

was demonstrated, by examples, to be highly effective in many cases.

The next chapter considers the computational efficiency of the generalised function pa-

rameterisation for OMPC. The computational efficiency is considered using both explicit

and implicit solutions.
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Figure 6.17: Box and whisker comparison of MCAS volume for Example 5.
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Figure 6.18: Histogram comparison of MCAS volume for Example 6.
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Figure 6.19: Box and whisker comparison of MCAS volume for Example 6.
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Chapter 7

Computational analysis of

generalised Optimal MPC

This chapter presents an original contribution to the thesis. The aim of this chapter

is to consider the computational efficiency of using generalised function parameterisation

for implicit and explicit solutions to MPC. The generalised function parameterisation

facilitates substantial enlargement in the region of attraction with little or no detriment

to performance while not increasing the number of optimisation variables. However, it

is shown that some of the structure of the optimisation problem is lost when using an

alternative parameterisation. This chapter considers the dense problem structure rising

from removing any redundant constraints and then considers the online computational

efficiency using the minimal sets.

Multi-parametric quadratic programming (mp-QP) is an alternative means of imple-

menting conventional predictive control algorithms whereby one transfers much of the

computational load to offline calculations. However, coding and implementation of this

solution may be more burdensome than simply solving the original QP. This chapter

also shows how generalised function parametrisations can be used in conjunction with

mp-QP to achieve a large decrease in both the online computations and data storage

requirements while increasing the region of attraction of the optimisation problem. Ex-

tensive simulation results which suggest there can still be benefits from using generalised

function parameterisation.

This chapter is organised as follows: Section 7.1 presents the introduction and motivation

of the chapter; Section 7.2 presents the necessary background about multi-parametric
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programming. Section 7.3 proposed multiparametric QP based algorithm for GOMPC

(mpGOMPC). Section 7.4 proposed active set method based algorithms for GOMPC

with computational analysis. Simulation results are discussed in Section 7.5 and 7.6,

showing the efficacy of the proposed algorithms and this is followed by conclusions in

Section 7.7.

7.1 Introduction

Explicit solutions for the constrained MPC problem formulation [116] significantly in-

crease the potential application areas for MPC. Explicit solutions to MPC problems are

not intended to replace traditional implicit MPC, but rather to extend its area of appli-

cability. MPC functionality can, with this, be applied to applications with low embedded

hardware and with fast sampling rates [126, 207]. Software complexity and reliability is

also improved, allowing the approach to be used in safety-critical applications.

The basic idea of the explicit solution is to solve, offline, all possible QP problems that

can arise online. Within certain regions, the optimum predicted input trajectory has

a known affine dependence on the state; mp-QP finds all possible active sets and the

associated regions and affine dependence. The online optimisation can then replaced by

set membership tests; if the state is inside a particular region, the control law is made

of the associated control trajectory. However, although mp-QP is transparent, it may

not reduce either coding complexity or computational effort as the number of computed

regions, and hence, data storage, may grow exponentially in the prediction horizon [116].

Thus mp-QP could be unsuitable for large dimensional problems, or indeed any problem

requiring a large number of regions.

Alternatively implicit solutions to MPC may be used with a collection of methods to

greatly speed up the computation of the control action in MPC, using online optimisation.

A number of researchers aimed to achieve a speed up online optimisation through the

development of customized optimisation algorithms. These algorithms are exploiting the

particular structure of the MPC problem to speed up the online computations [207]. The

scenario considered in this chapter is one in which a QP problem has been solved by

an active set method at the previous step and thus one only needs to solve a slightly

perturbed QP from the preceding QP at the current time instant. In this case, active set

methods are effective and the number of iterations required is typically a small polynomial

dimension [151]. For active set methods, the initial seed is computed either solving Linear

programming or the big M method [151].

The aim of this chapter is to consider the computational efficiency of generalised function
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parameterisations within a predictive control algorithm using both explicit and implicit

solutions. Conceptually the main question is whether changing the structure may im-

prove the computational efficiency. Firstly to reduce the number of regions in the explicit

MPC using generalised function parameterisations and therefore reduce the online com-

putational burden (as this correlates to the number of online set-membership tests). A

lot of the literature discusses how to reduce the number of on-line set-membership tests

but there is little has appeared in the literature which reformulates the underlying op-

timisation problem in order to give significant reductions in complexity. In [208] the

authors reduce data storage requirements by using an evaluation of a value function for

the set-membership test, but the number of regions is not reduced. In [119] an efficient

binary search tree introduced, but the offline computation of this can be prohibitive

for complex controller partitions and the storage requirement may even increase. Other

groups reduce the number of regions by allowing some suboptimality [117, 209] either

in the performance index or the terminal region, although preliminary results are as

yet unconvincing. Another alternative is to specify regions as hypercubes [133] to al-

low for efficient online search algorithms; however, as the structure of the controller is

user-defined, it may not cover the entire controllable set. In [16] the authors interpolate

two different laws achieving a large decrease in the number of regions but degrading the

performance. This chapter develops a recent contribution [138] to this problem which

used Laguerre MPC by proposing an alternative parameterisation of the d.o.f. in order to

reduce the necessary online computations of optimal MPC. Specifically, the aim here is to

extend this to generalised function parameterisations to consider how one can reduce the

data storage requirements and the online implementation time for the associated mp-QP

solution. The proposed procedure is based on Kautz and generalised function param-

eterisation in Section 4.4 and 5.3 of the d.o.f. which enlarges the region of attraction

and without too much degradation in the performance of the closed-loop system; these

procedures will henceforth be referred to as multi-parametric KOMPC (mpKOMPC) and

multi-parametric GOMPC (mpGOMPC) respectively.

Secondly the focus of this chapter is to explore the implicit computational efficiency of

generalised function parameterisation within an optimal MPC, using both a generic opti-

miser and an active set method. The computational efficiency using online optimisation

may be obtained by using a warm start strategy and exploiting the structure of the QPs

that arise in the MPC problem formulation. Nevertheless, one key question was still

left unanswered: what is the computational efficiency using the online optimisation as

the reduction in the number of d.o.f. may be compromised by a loss of structure in the

optimisation? It is shown that some of the structure of the optimisation problem is lost

when using alternative parameterisation. In contrast, Optimal MPC (OMPC) has strong

structure which can be exploited in the active set method allowing relatively inexpensive
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optimisation with a large number of d.o.f.. The aim is to consider a more holistic picture

which allows the reduction of data storage requirements and the online computation time

by removing any redundant constraints. The proposed procedure is based on standard

OMPC, LOMPC, KOMPC and GOMPC.

7.2 Background

This section will introduce the background information on multi-parametric quadratic

programming.

7.2.1 Multi-parametric Quadratic Programming (mp-QP)

Explicit solutions to constrained linear MPC problems can be obtained by solving a mp-

QP where the parameters are the components of the state vector. In this thesis, the

solutions to mp-QP problems are obtained using the Multi-Parameteric Toolbox [123].

In this section, the basic multi-parametric programming approach is summarised and

for an in-depth discussion of multi-parametric programming the reader is referred to

[116,118,119,208,210].

Background on mp-QP

Consider the following quadratic programming problem

J∗(x) = arg min
u

uTSGu+ xTW1u

s.t. Mx+Nu ≤ d (7.1)

SG > 0

where u ∈ Rnu is the optimisation variable, x ∈ Rnx is the parameter, with N ∈ Rq×nu ,

d ∈ Rq and M ∈ Rq×nx . In mp-QP, the main objective is to obtain the optimum value

u∗ for the whole range of parameters x, i.e. to obtain u∗(x) as an explicit function of the

parameter x.
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The optimisation problem (7.1) can by some algebraic manipulation be reformulated as

J∗(x) = arg min
z

zTSGz

s.t. Ĝx+Nz ≤ d (7.2)

where z = u + S−1
G W T

1 x and Ĝ = M − NS−1
G W T

1 . A mp-QP consists of the following

steps [118]

Active constraint identification

A feasible x̂ is determined and the associated QP (7.1) is solved. This will yield the

optimiser z and active constraints A(x̂) defined by the inequalities that are active at

solution, i.e.

A(x̂) = {i ∈ {i, 2, . . . , q} | Ĝ{i}x̂+N{i}z − d{i} = 0} (7.3)

where Ĝ{i}, N{i} and d{i} denotes the ith row of the matrices Ĝ, N and d respectively

of q number of constraints. The active constraints form the matrices ĜA, NA and dA.

Region computation

As shown in [118], the mp-QP problem (7.2) can be solved by applying the Karush-Kuhn-

Tucker (KKT) conditions to obtain an explicit representation of the optimum value u∗(x̂)

which is valid in some neighbourhood of x̂.

SGz +NTλ = 0 (7.4)

λT (Nz + Ĝx̂− d) = 0 (7.5)

λ ≥ 0 (7.6)

Ĝx̂+Nz ≤ d (7.7)

The optimised variable z∗ can be solved from

z∗ = −S−1
G NTλ. (7.8)

Constraints in condition (7.5) can be separated into active and inactive constraints. For

inactive constraints the Lagrange multipliers λ = 0, whereas for active constraints λ > 0
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and inequality constraints are changed to equality constraints. Substituting for z from

(7.8) into the equality constraints gives

−NAS
−1
G NT

Aλ− dA + ĜAx̂ = 0, λ > 0 (7.9)

and yields expressions for the active Lagrange multipliers

λ = −(NAS
−1
G NT

A)
−1(dA − ĜAx̂). (7.10)

The optimum value z∗ and optimal control trajectory u∗ are thus given as affine functions

of x̂

z∗(x̂) =S−1
G NT

A(NAS
−1
G NT

A)
−1(dA − ĜAx̂) (7.11)

u∗(x̂) =z∗(x̂)− S−1
G W T

1 x̂

=S−1
G NT

A(NAS
−1
G NT

A)
−1(dA − ĜAx̂)− S−1

G W T
1 x̂

=K̂rx̂+ tr (7.12)

where

K̂r =− S−1
G NT

A(NAS
−1
G NT

A)
−1ĜA − S−1

G W T
1 (7.13)

tr =S
−1
G NT

A(NAS
−1
G NT

A)
−1dA. (7.14)

In the next step, the set of states is determined where the optimiser u∗(x̂) satisfies

the same active constraints and is optimal. Specifically the control regions Pr = {x ∈
Rnx | M̂rx ≤ d̂r} is computed for

M̂r =

[
N(K̂r + SGW

T
1 )− Ĝ

(NAS
−1
G NT

A)
−1ĜA

]
(7.15)

d̂r =

[
d− Ĝtr

−(NAS
−1
G NT

A)
−1dA

]
. (7.16)

State-space exploration

Once the controller region is computed, the algorithm proceeds iteratively until the entire

feasible state Xnu is covered with controller regions Pr, i.e. Xnu =
∪rn

r=1 Pr.
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7.3 Generalised OMPC solved by mp-QP or mpGOMPC

The solution of the optimisation problem using mp-QP can be applied to KOMPC and

GOMPC as they all take the form of standard quadratic programming; this section

summarises the key points for completeness.

If the optimisation problem is solved parametrically as an explicit function of the initial

conditions x0, the optimal feedback law u = f(x0) takes a form of a lookup table. The

online optimisation of such table then reduces to a simple set membership test, also

known as the point location problem. Here, the table has to be searched through and

the element which contains the current state measurement has to be found.

It is obvious that the KOMPC cost function (4.21) and GOMPC cost function (5.12) are

in the form of (7.1), with W1 = 0 and therefore z = u. The algorithm based on mp-QP

for GOMPC is presented in Algorithm 7.1.

Algorithm 7.1. mpGOMPC

Off-line

1. Select the order of prediction dynamics, that is the number of poles ai in AG (5.5).

2. Select specific values for the poles ai.

3. Determine the predicted cost, in terms of perturbations ck is

Jk =

∞∑
i=0

cTk+iSck+i. (7.17)

Substitute in from (5.5) and (5.11) the GOMPC predictions of ck+i = GT
i ρ−→k to

give

JG,k =
∞∑
i=0

ρ
−→

T
kGiSG

T
i ρ−→k. (7.18)

Finally, substitute Gi = AGGi−1 and hence:

JG,k = ρ
−→

T
k

[∑∞
i=0A

i
GG0SG

T
0 (A

i
G)

T
]
ρ
−→k = ρ

−→
T
k SG ρ−→k. (7.19)
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4. Define the constraint inequalities associated to (4.3) in the form

Mxk +NHG ρ
−→k ≤ d. (7.20)

5. Solve parametrically the following QP.

ρk = arg min
ρk

JG,k

s.t. Mxk +NHG ρk ≤ d (7.21)

6. Store the optimal predicted input trajectories ρk (which implies CG = GTρk) and

associated regions.

On-line

1. Find the corresponding solution (CG) of the optimisation problem (7.21) associated

to the current state xk.

2. Implement the control law uk = −Kxk + eT1 CG, where e1 is the standard basis

vector.

Remark 7.3.1. Note that the procedures in [119,208] may be used in combination with

mpGOMPC to obtain even greater reductions in complexity.

7.4 Generalised function parameterisation in MPC using

active set methods

This section considers the optimisation for LOMPC, KOMPC and GOMPC in detail

and in particular the potential, or not, to exploit any structure for an efficient active set

method.

7.4.1 Optimisation Structure of GOMPC

The generalised function parameterisation approaches choose generic ‘stable’ basis vectors

to enlarge the region of attraction. These approaches reduce the d.o.f. to overcome the
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trade off between the region of attraction and performance. The active set method (ASM)

requires a computational time which is cubic in d.o.f. to solve the dense formulation in

(4.3) and (7.21). To obtain both good performance and a large MCAS, OMPC might

require a large nc (d.o.f.) which thus would compromise the computational efficiency of

an ASM. Various methods can be used to speed up the computation, for example one

strategy is to exploit the structure of the QP that arises in a simple MPC formulation

which includes all the constraints [127], that is including the redundant ones. Of course

this may require more storage space with a large nc for computations.

OMPC is a special case of an alternative parameterisation as shown in Section 4.3 and

5.2. It has a lower shift dynamic matrix, whereas alternative parameterisations (i.e.

Laguerre, Kautz and higher order orthonormal function parameterisation) have lower

triangular dynamic matrices. This is the main difference which compromises the QP

structure resulting from alternative parameterisations.

In generalised function parameterisation approaches the QPs become dense and the prob-

lem structure is less obvious, and thus a tailored ASM method is as yet not available with

a consequent increase in computation operations per step for the same nc as OMPC. In

terms of online computation, OMPC requires more d.o.f. to improve the region of attrac-

tion and the question is, should we use a parameterised MPC with a low nc or add more

d.o.f. to a conventional OMPC approach? In this chapter focus will given to compar-

ing the computational efficiency of the OMPC and parameterised algorithms. Critically

however, as the formulation with GOMPC is already dense and there is no structural

advantage in retaining redundant constraints and thus it makes sense to remove all the

redundant constants before moving to the online computation load. This also reduces

the storage requirement.

7.4.2 Computational complexity using online optimisation

In GOMPC 5.1, an offline computational burden required to perform an alternative pa-

rameterisation is expressed by giving the total number of floating point operations or

flops. The number of flops count required is in terms of generating the prediction ma-

trix HG, NHG and calculating the parameterised cost HT
Gdiag(S)HG. Using mth order

prediction dynamics with nρ rows of HG required m3(nρ − 1) flops. The prediction cost

requires 2n2c + ncnρ and NHG requires (nx + nu)n
3
ρ flops. Hence generalised function

parameterisations require m3(nρ − 1)+ 2n2c +ncnρ +(nx +nu)n
3
ρ extra offline flops. The

online computational complexity of OMPC algorithm using IPM is linear in the hori-

zon and cubic in the state and input dimensions [145], [159]. However, all the proposed

parameterisations will be cubic in the number of d.o.f., the state and input dimensions.
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Table 7.1: Computational burden using IPM

Algorithm Flops

Offline (extra) Online

OMPC nc + n3x + n3u

GOMPC m3(nρ − 1) + 2n2c + ncnρ + (nx + nu)n
3
ρ n3c + n3x + n3u

Table 7.1 shows the computational burden using online optimisation. In terms of online

implementation computation OMPC requires more d.o.f. to improve the region of at-

traction as compared to alternative parameterisation techniques (i.e. LOMPC, KOMPC

and GOMPC). Alternative parameterisations have however give a systematic approach

for handling feasibility/performance trade offs in general.

7.4.3 Active set method applied to GOMPC

An active set method (ASM) is introduced here to solve the optimisation problem in

(7.21). An Active set method converts the proposed optimisation into a sequence of

equalities problems (EPs), involving only equality constraints, which are solved to gen-

erate a sequence of iterates converging to the solution. At each iteration an active set

method solves a Karush-Kuhn-Tucker (KKT) system defined by the ‘proposed’ active

constraints. Consequently, when a significant number of constraints are active, the ‘sys-

tem’ is much smaller in terms of constraints than in an interior point method.

The algorithm uses offline computations to remove the redundant constraints to reduce

the online computational load. This is especially desirable since the constraint matrices

are by necessity dense (because the structure of the optimisation is lost when using

function parameterisation). This becomes advantageous as the problem size decreases

and the overall online computational effort involved is comparable with that of lower

dimensional problems. This chapter demonstrates the resulting improvements in both

computational burden and size of stabilisable sets (or MCAS).

The following gives a brief description of an active set solver for the QP (7.21) and

provides details of the computation involved in each step. Introducing the Lagrangian

associated with the problem (7.21) can be defined as:

L(ρ, λ) =
1

2
ρTk SGρk + λT (Mxk + N̂ρk − d) (7.22)
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where N̂ = NHG. The KKT conditions of (7.21) are given similarly as in (7.4),(7.5),

(7.6) and (7.7)

SGρk + N̂Tλ = 0,

d−Mxk − N̂ρk ≥ 0,

(Mxk + N̂ρk − d)Tλ = 0,

λ ≥ 0. (7.23)

At each iteration, an active set method solves a KKT system (7.23) defined by the active

constraints. The null space method is used to calculate the solution of the KKT system

(7.23), the QR factorisation is introduced in order to calculate a null space basis matrix,

which improves the computational efficiency. The procedure is summarised in algorithm

7.2 [211].

Algorithm 7.2. GOMPC using ASM

Off-line

1. Set Âs =
[
M NHG

]
, d̂s = d and X =

x
ρ

. The problem is to remove all re-

dundant inequalities in ÂsX ≤ d̂s to obtain an irredundant description description

AsX ≤ ds with same set results.

2. Set i = 1, As = [ ] and ds = [ ].

3. If maxX ÂsiX > d̂si, then set As =

As
Âsi

 and ds =

ds
d̂si

.
4. If i < length of As then set i = i+ 1 and goto step 3, else terminate;

5. The irredundant description is given by AsX ≤ ds.

The maximisation in step 3 is a linear programming (LP).

M = As(:,1:nx), N̂ = As(:,nx+1:end) and d = ds.

On-line tasks:

1. Set W0 as set of active constraints. The set of active constraint Wk at iteration k
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for point xk can be defined as

Wk = {Mxk + N̂ρk = d}. (7.24)

2. At first, check whether ρk is optimal in the subspace defined by Wk (initial seed is

computed using linear programming).

Then, define a move direction p̂ and express JG,k as a function of p̂:

f(ρk + p̂) =
1

2
(ρk + p̂)TSG(ρk + p̂)

=
1

2
p̂TSGp̂+ p̂TSGρk + const.

Take a small step in direction p̂ defined by the QP with equalities

min
p̂

1

2
p̂TSGp̂+ p̂TSGρk

s.t. N̂T
k p̂ = 0 (7.25)

The solution of the sub-problem (7.21) is given by the solution of the KKT system

SGk
N̂T

k

N̂k 0

p̂
ζ

 =

−SGk
ρk

0

 (7.26)

(a) If the solution of (7.21) is p̂ = 0 then ρk is optimal in the current subspace.

Proceed to stage 3 below

(b) Otherwise,

ρk+1 = ρk + α̂p̂, 0 < α̂ ≤ 1. (7.27)

The step size α̂ must be chosen to maintain feasibility. So

α̂ = min

(
1, min

nT
i p̂>0

di −mT
i xj − nTi ρk

nTi p̂

)
(7.28)

A constraint i which would yield α̂ < 1 in (7.28) is a blocking constraint. Add
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blocking constraint to the working set Wk to form Wk+1 and update the iterate

by (7.27). Otherwise, α̂ = 1 in (7.28), then working set, Wk+1 = Wk.

3. An optimal ρk has been found for Wk, check optimality: set ζki = 0 ∀ i /∈ Wk, the

other Lagrange multipliers at this point are known from (7.26).

(a) If ζ ≥ 0 then all KKT conditions hold and the optimal point has been found.

(b) Otherwise, there is a component ζq < 0. Then Wk+1 is formed by dropping q

constraint from Wk, and iteration repeated.

7.5 Numerical Examples

The purpose of this section is to compare the explicit implementation (i.e. mp-QP

solution) and active set methods for the alternative parameterisation algorithms (i.e.

LOMPC, KOMPC and GOMPC) and OMPC algorithm. The prime interest is to com-

pare three aspects: (i) the MCAS; (ii) the number of inequalities to describe MCAS;

(iii) the complexity of the different algorithmic solutions (in essence the number of re-

gions and computation time) so that some comments can be made about the potential

implementation of GOMPC.

7.5.1 Simulation setup using multiparametric solution

The OMPC algorithm with nc = nx is used as a basis for comparisons. All algorithms

(OMPC, LOMPC, KOMPC and GOMPC) provide stability and feasibility properties

but the region of the maximum controller admissible control admissible set (MCAS)

for each of them varies. Hence, it is necessary to compare both the complexity of the

algorithms and the region of the associated MCAS. The comparisons are based on 500

random systems with x ∈ R2, x ∈ R3, and x ∈ R4 (total of 1500 systems).

The 2nd order (x ∈ R2) random systems are subject to input and state constraints as:

−1 ≤ uk ≤ 1, −

[
4

1.5

]
≤ xk ≤

[
4

1.5

]
, (7.29)

with the performance objective weighting matrices as R = 1 and Q = diag(1, 0) for

nc = 2, and 200 state directions are chosen for the initial states.
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For the 3rd order (x ∈ R3) random systems, the input and state constraints are:

−1 ≤ uk ≤ 1, −

 4

1.5

2

 ≤ xk ≤

 4

1.5

2

 , (7.30)

with the performance objective weighting matrices as R = 1 and Q = diag(1, 0, 0) for

nc = 3 using 200 different state directions.

Similarly, the inputs and states constraints for 4th order (x ∈ R4) random systems are:

−1 ≤ uk ≤ 1, −


4

1.5

2

4

 ≤ xk ≤


4

1.5

2

4

 , (7.31)

with the performance objective weighting matrices as R = 1 and Q = diag(1, 0, 0, 0) for

nc = 4 using 500 different state directions.

The Laguerre, Kautz and generalised function dynamics are tuned using the pragmatic

selection.

7.5.2 Simulation setup Using Active Set Methods

A simple implementation of the active set method is developed in MATLAB, which

handles the case of a quadratic objective and box constraints. The main purpose is to

compare the timing results for the alternative parameterisation algorithms and standard

OMPC algorithm using ASM and quadprog.m methods (using large-scale algorithm)

on a 3.26 GHz Intel Core 2 Duo running Microsoft Window XP. The prime interest is

to compare the complexity of the different algorithm solutions (in essence computation

time).

The OMPC with nc = 3 is used as a basis for comparisons. The comparison is based on

4 random systems with following dimensions x ∈ R4, x ∈ R10, x ∈ R16 and x ∈ R30. The

inputs and states for all systems were constrained to −0.08 ≤ u ≤ 0.08 and −2.4 ≤ xj ≤
2.4, (j = 4, 10, 16, 30) with performance objective weighting matrices R = I and Q = I.
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Figure 7.1: Comparison of the MCAS radius for 500 random systems (x ∈ R2)

7.5.3 MCAS comparisons with nc = nx

The MCAS is estimated using a large number of different directions in the state space. For

each direction, the distance from the origin to the boundary of the MCAS is determined;

the larger the distance, better the feasibility. Finally the mean is calculated for all state

directions to represent the MCAS radius. Here the MCAS comparison is presented for

completeness.

The MCAS radii are compared in Table 7.2, 7.3, 7.4 and Figure 7.1, 7.5, 7.8 for 500

random systems. In the figures, the x-axis serves as MCAS radius variations and the y-

axis indicates the random systems. For x ∈ R2 using the statistical analysis in Table 7.2,

the mean and minimum value shows that KOMPC results in larger regions of attraction

than LOMPC and OMPC algorithms. Similarly from Table 7.3 and 7.4 for 3rd and

4th dimensional systems, GOMPC results in larger regions of attraction than KOMPC,

LOMPC and OMPC algorithms. Alternative parameterisations noticeably results in

larger regions of attraction than OMPC and it is clear that the generalised dynamics

with nG = nx has a larger MCAS than OMPC, and nG ≤ nc as already shown in the

previous chapters.
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Figure 7.2: Comparison of number of regions for explicit MPC solution for 500
random systems (x ∈ R2)

7.5.4 Complexity comparisons using number of regions in the explicit

MPC with nc = nx

The computational complexity is compared by finding all possible active set and the

associated regions and control trajectories using a solution of the mp-QP. The online

computational load for the set membership test is less than or equal to the total number

of regions.

Figure 7.2, 7.6, 7.9 and Table 7.2, 7.3, 7.4 give a statistical comparison of the number of

regions in the explicit MPC of mpOMPC, mpLOMPC, mpKOMPC and mpGOMPC ver-

sus 1500 random systems. It is noted that in many cases the average storage requirements

of mpOMPC are less but with a smaller MCAS.

Table 7.2 shows the statistics for 2-dimensional random systems, on average KOMPC,

LOMPC and OMPC requires 5 explicit MPC regions. In the worst case, KOMPC requires

53 and LOMPC requires 29 regions, whereas OMPC requires 21 regions. Figure 7.2 shows

the histogram for the number of regions using the explicit MPC solution, it is seen that

for OMPC most of occurrence is on the lower number of the regions. For second order

dynamics, alternative function (LOMPC and KOMPC) parameterisation (in the worst

case) requires a large number of regions for the explicit MPC solution as compared to

OMPC.
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Figure 7.3: Comparison of number of inequalities for 500 random systems (x ∈ R2)

For 3-dimensional systems (3rd order dynamics), the statistical analysis is shown in Ta-

ble 7.2. It is shown that on average GOMPC requires 25 regions, KOMPC and LOMPC

require 15 regions whereas, OMPC requires 14 regions. In the worst case, the alternative

parameterisation requires a large number of regions than OMPC. The maximum number

of regions required using GOMPC, KOMPC and LOMPC are 139, 131 and 99 respec-

tively, whereas, OMPC required only 73 regions. Figure 7.6, shows the histogram of the

number of regions using 500 random systems. It is noted that, KOMPC, LOMPC and

OMPC have more occurrences on the lower number of regions than GOMPC.

In the case of the 4-dimensional systems, on average the GOMPC, KOMPC, LOMPC

and OMPC requires 176, 75, 61 and 43 numbered of regions respectively whereas, the

maximum number of regions requires are 1187, 1042, 1075 and 247 respectively as shown

in Table 7.4. Similarly to 3rd order system, the use of alternative parameterisation

typically increased the storage requirements of mp-QP partitions. The histogram in

Figure 7.9 shows that OMPC has more occurrences with fewer regions compared to

alternative parameterised algorithms. It is concluded that for a higher order dynamic

system, the alternative parametrisation increases the number of the regions of the explicit

MPC.
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Figure 7.4: Comparison of number of inequalities for 500 random systems (x ∈ R2)
with inequalities ≤ 60

7.5.5 Number of inequalities to describe the MCAS

Figures 7.3, 7.4, 7.7 and 7.10 show the histogram comparison of the number of inequalities

to describe the MCAS for 500 random systems. The statistics are shown in Table 7.2,

7.3 and 7.4 for GOMPC, KOMPC, LOMPC and OMPC algorithms. It is shown that

on average parameterised algorithms increase the number of inequalities to describe the

MCAS compared to OMPC, whereas OMPC has a smaller MCAS than parameterised

algorithms.

For second order random systems using nc = 2, on average KOMPC, LOMPC and OMPC

require 16, 23, and 16 numbers of inequalities respectively whereas, the maximum number

of inequalities are 25, 263 and 34 respectively as shown in Table 7.2. From Figure 7.3

and 7.4, the number of inequalities using KOMPC and OMPC is less than 50. However,

the number of inequalities using LOMPC varies from 10 to 263, but there are only few

random system for which the number of inequalities is more than 50. KOMPC slightly

increases the number of inequalities and enlarges the region of attraction compared to

OMPC. From statistical analysis, KOMPC is preferred in general over LOMPC for 2-

dimensional systems.
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Figure 7.5: Comparison of the MCAS radius for 500 random systems (x ∈ R3)

For 3rd order random systems using nc = 3, on average GOMPC, KOMPC, LOMPC and

OMPC require 38, 43, 47 and 33 inequalities respectively whereas, the maximum number

of inequalities are 67, 108, 151 and 45 respectively as shown in Table 7.3. The histogram is

shown in Figure 7.7; the number of inequalities of most of the random systems is less than

70, but there are few random system for which the number of inequalities is more than

70 using KOMPC and LOMPC. GOMPC slightly increases the number of inequalities

compared to OMPC and enlarges the region of attraction compared to KOMPC, LOMPC

and OMPC. From statistical analysis, GOMPC using 3rd order dynamics are preferred

in general over KOMPC and LOMPC for 3-dimensional systems.

Similarly, for 4th order random systems using nc = 4, on average GOMPC, KOMPC,

LOMPC and OMPC require 68, 61, 66 and 49 inequalities respectively whereas, the

maximum number of inequalities are 139, 157, 182 and 64 respectively as shown in Table

7.4. From a statistical analysis similarly to the 3rd order random analysis, GOMPC using

4th order dynamics are preferred in general over KOMPC and LOMPC for 4-dimensional

systems.

The number of inequalities is compared for 500 random systems using 2nd, 3rd and 4th
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Figure 7.6: Comparison of number of regions for explicit MPC solution for 500
random systems (x ∈ R3)

order dynamics. An interesting observation is that the higher order function parameteri-

sation may reduce the number of inequalities using parameterised algorithms. In general

parameterised algorithms enlarge the region of attraction at the price of an increase in

the number of inequalities compared to OMPC.

7.5.6 Sensitivity of result using different parameter choices

The sensitivity of the result using different parameter choices is presented using 500 single

input single output 2nd and 3rd order dynamic systems. Figure 7.11, 7.12 and 7.13 show

the mean MCAS radius, mean inequalities represent MCAS and region in the solution

of the explicit MPC respectively using Laguerre parameter variations i.e. 0 ≤ p < 1. All

plots start from the OMPC results because for p = 0, LOMPC becomes equivalent to

OMPC. Here the only Laguerre parameter variation is presented and similar results can

be applied to the higher order parameter variations because all parameters vary between

0 and 1.
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Figure 7.7: Comparison of number of inequalities for 500 random systems (x ∈ R3)

The number of inequalities and the number of regions in the solution of explicit MPC

increases as the value of p moves away from the origin (i.e. 0 to 1). For both 2nd and 3rd

order dynamic random systems, the inequalities increase with higher rate when p ≥ 0.8.

For 2nd order dynamic random systems, the number of regions in the explicit MPC varies

from 5 to 7, whereas for 3rd order system it increases as p varies from 0 to 1 and varies

with higher rates as p ≥ 0.6. The number of inequalities and the number of regions for

2nd order dynamic systems are comparatively less than 3rd order dynamic systems.

Figure 7.11 shows the variation of mean MCAS radius for both 2nd and 3rd order dy-

namics. The mean MCAS radius increases as p varies up to a certain value of p, after

that it starts decreasing. It is interesting to note that for all variations of p, the mean

MCAS radius of LOMPC is equal or larger than OMPC.
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Figure 7.8: Comparison of the MCAS radius for 500 random systems (x ∈ R4)

7.5.7 Complexity comparisons using computational time with nc = 3

Table 7.5 lists the computational time required to compute the control law for a fixed

number of d.o.f. (i.e. nc = 3) for all randomly generated examples of different sizes

using the active set method (ASM) and the generic optimiser solver (quadprog.m from

MATLAB). The mean computational time is computed using initial states which are

feasible for all algorithms. Table 7.5 shows that alternative parameterisation approaches

require an insignificant difference in the number of inequalities (except 4-dimensional

example) and computational time using the active set method.

It is well known that the primary factor to affect the computational time is due to

the number of constraints using the similar number of d.o.f.. It is already shown in

Section 7.5.5 using statistical analysis that in general parameterised algorithms increase

the number of inequalities which may compromise the computational time.

7.6 MCAS radius vs computational load

In many cases, the use of generalised functions in predictive control has proven to be a

very effective for enlarging the region of attraction, while keeping the number of d.o.f.

the same. However, the key question is whether the strategy is computationally better
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Figure 7.9: Comparison of number of regions for explicit MPC solution for 500
random systems (x ∈ R4)

than just increasing the number of d.o.f. available to a standard OMPC algorithm. The

QPs in OMPC have a lot of structure and, by exploiting this structure, one is able to

compute the control action faster than using a generic optimiser.

In terms of computational load, in general the global region of attraction using GOMPC

requires fewer d.o.f. as compared with the OMPC algorithm and this is a useful benefit

given any practical limitations on the number of d.o.f. for real time implementation. A

4th dimensional example is considered to compare the global region of attraction vs the

computational load.

Example – (x ∈ R4)

Consider a 4th dimensional (i.e. x ∈ R4) linear system

A =


0.9146 0 0.0405 0.1000

0.1665 0.1353 0.0058 −0.2000

0 0 0.1353 0.5000

0 0 0.1353 0.8000

 ; B =


0.0544 −0.0757

0.0053 0.1477

0.8647 0

0.5000 0.2000

 ;

C =

[
1.7993 13.2160 0 0.1000

0.8233 0 0 −0.3000

]
; Q = CTC; R = I2×2. (7.32)
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Figure 7.10: Comparison of number of inequalities for 500 random systems (x ∈ R4)

The system is subject to input and state constraints

|uk| ≤

[
1

1

]
; |∆uk| ≤

[
2

2

]
; |xk| ≤


10

10

10

10

 . (7.33)

The parameterisation dynamics i.e. LOMPC with p = 0.55, KOMPC with (a, b) =

(0.55, 0.5), and GOMPC (3rd order) with (a, b, c) = (0.6, 0.55, 0.5) are selected in the

vicinity of the underlying closed loop stable system poles.

The results of the 4th dimensional system are shown in Figure 7.14 and Table 7.6. Figure

7.14 shows the normalised MCAS radius increases as varying d.o.f. for all algorithms. It

is clear that GOMPC has a larger MCAS than OMPC, LOMPC and KOMPC for the

same number of d.o.f.. Moreover, GOMPC gets to within 100% of the global MCAS with

just 3 d.o.f. whereas, KOMPC requires about 4 d.o.f., LOMPC requires 5 d.o.f. and

OMPC requires 10 d.o.f.. Clearly alternative parameterisation algorithms required fewer

d.o.f. to have global region of attraction.

The computational load is compared with the global region of attraction in Table 7.6. The

computational load is compared in terms of number of d.o.f., number of regions, a number

of constraints and computational time using both active set method and quadprog.m to

achieve the global regions of attraction. The GOMPC has fewer d.o.f. and slightly more
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Table 7.2: Statistical Analysis of 2nd dimensional Example for nc = 2

MCAS radius

Algorithm minimum maximum mean median std

OMPC 1.493 24 18.96 22.07 6.015
LOMPC 2.598 24 21.14 24 4.752
KOMPC 3.032 24 21.7 24 4.203

Number of regions in the explicit MPC

Algorithm minimum maximum mean median std

OMPC 1 21 5.216 5 2.959
LOMPC 1 29 5 5 3.203
KOMPC 1 53 5.624 5 4.282

Number of inequalities to describe MCAS

Algorithm minimum maximum mean median std

OMPC 10 25 16.47 17 2.62
LOMPC 10 263 23.32 19 19.16
KOMPC 10 34 15.87 15 3.776

constraints as compared with KOMPC, LOMPC and OMPC.

7.6.1 Implicit implementation

In terms of implicit implementation, alternative function parameterisation including La-

guerre, Kautz and 3rd order function requires few d.o.f. to represent the global region

of attraction. GOMPC requires just 3 d.o.f. to achieve global region of attraction while

utilising a computational inexpensive optimisation.

7.6.2 Explicit Implementation

The number of regions required to represent the global region of attraction using alterna-

tive (i.e. Laguerre, Kautz and 3rd order) function parameterisation is less as compared

with OMPC. GOMPC reduce the number of regions and therefore reduce the online com-

putational burden (as this is correlated to the number of online set membership tests).
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Table 7.3: Statistical Analysis of 3rd dimensional Example for nc = 3

MCAS radius

Algorithm minimum maximum mean median std

OMPC 0.6151 2.681 2.344 2.4341 0.3431
LOMPC 1.172 2.681 2.551 2.633 0.195
KOMPC 1.009 2.681 2.552 2.636 0.1976
GOMPC 1.252 2.681 2.575 2.659 0.1771

Number of regions in the explicit MPC

Algorithm minimum maximum mean median std

OMPC 1 73 14.08 13 8.085
LOMPC 1 99 14.98 13 11.29
KOMPC 1 131 14.82 11 13.57
GOMPC 1 139 24.47 21 18.84

Number of inequalities to describe MCAS

Algorithm minimum maximum mean median std

OMPC 23 45 33.31 33 3.498
LOMPC 23 151 47.01 45 13.46
KOMPC 24 108 43.34 43 10.02
GOMPC 20 67 38.38 38 7.118

7.6.3 Summary

The computational load is compared with the global MCAS radius in Table 7.6. An

interesting observation is that the primary factor to affect the computational load is due

to the number of constraints. It appears from Table 7.6 that alternative (i.e. Laguerre,

Kautz and generalised function) parameterisation approaches require insignificant dif-

ference in computational time and reduce the number of regions but with a few d.o.f.

as compared with OMPC. However generalised parameterisation may have a tall-skinny

matrix (as shown in Table 7.6 with global MCAS using few d.o.f.) which improves the

storage requirement.

7.7 Conclusion

This chapter has shown the potential benefits of generalised functions as an alternative

parameterisation for improving the computational burden in optimal MPC algorithms

with a fixed number of d.o.f.. The computational analysis is done for both implicit and

explicit implementations. Extensive simulation examples clearly re-affirm the message

172



7.7 Conclusion

Table 7.4: Statistical Analysis of 4th dimensional Example for nc = 4

MCAS radius

Algorithm minimum maximum mean median std

OMPC 0.3623 2.054 1.859 1.909 0.1834
LOMPC 0.8066 2.054 1.928 1.977 0.1367
KOMPC 0.5378 2.054 1.933 1.978 0.1407
GOMPC 1.396 2.054 1.95 1.999 0.1236

Number of regions in the explicit MPC

Algorithm minimum maximum mean median std

OMPC 5 247 43.2 35 28.46
LOMPC 5 1075 60.52 43 71.05
KOMPC 7 1042 75.27 55 75.76
GOMPC 11 1187 176 145 122.5

Number of inequalities to describe MCAS

Algorithm minimum maximum mean median std

OMPC 36 64 49.04 49 4.805
LOMPC 37 182 65.94 63.5 14.65
KOMPC 29 157 60.94 60 11.66
GOMPC 31 139 67.99 67 13.4

that for a fixed and low number of d.o.f., GOMPC, KOMPC and LOMPC enlarge the

region of attraction than OMPC. However, in the case of the same number of d.o.f. for

both explicit and implicit implementations, then one finds that OMPC may still be com-

petitive in terms of computational load but may have a small region of attraction. In

contrast, for the case of the global region of attraction, and using as many degrees of free-

dom as are required, then GOMPC, KOMPC and LOMPC are computationally efficient.

For a number of case studies, all alternative algorithms may enlarge the region of at-

traction using few numbers of d.o.f., number of regions and slightly larger computational

time as compared with OMPC.
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Table 7.5: Computational time for nc = 3

4-Dimensional Example

Algo. Ineq. ASM (ms) Quadprog (ms)

OMPC 64 28 252
LOMPC 150 31 255
KOMPC 149 31 255
GOMPC 127 31 253

10-Dimensional Example

Algo. Ineq. ASM (ms) Quadprog (ms)

OMPC 118 39 254
LOMPC 126 40 257
KOMPC 126 40 259
GOMPC 144 41 267

16-Dimensional Example

Algo. Ineq. ASM (ms) Quadprog (ms)

OMPC 198 42 292
LOMPC 192 41 303
KOMPC 191 39 305
GOMPC 202 40 327

30-Dimensional Example

Algo. Ineq. ASM (ms) Quadprog (ms)

OMPC 206 39 257
LOMPC 206 32 213
KOMPC 206 34 210
GOMPC 206 34 213

Table 7.6: Computational Complexity Vs Global MCAS radius

4-Dimensional Example

Algo. Ineq. ASM (ms) quadprog.m (ms) Number of regions nc
OMPC 150 67.6 419 301 10
LOMPC 171 74.9 429 265 5
KOMPC 164 66.5 416 149 4
GOMPC 168 74.1 424 105 3
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Figure 7.11: Comparison of mean MCAS radius for 500 random systems (for x ∈ R2

and x ∈ R3) using Laguerre parameter variations.
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Figure 7.12: Comparison of mean inequalities to represent MCAS for 500 random
systems (for x ∈ R2 and x ∈ R3) using Laguerre parameter variations.
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Figure 7.13: Comparison of mean regions in the explicit MPC for 500 random sys-
tems (for x ∈ R2 and x ∈ R3) using Laguerre parameter variations.
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Chapter 8

Robust predictive control using

generalised function

parameterisation

This chapter demonstrates the efficacy of more flexible parameterisation of the degrees of

freedom within a robust MPC algorithm. Flexible parameterisation has been shown to

simplify the trade off within MPC algorithms for the nominal case. This chapter extends

that work to the robust scenario and shows that similar benefits accrue and moreover, the

increase in complexity of the robust case as compared to the nominal case is much less

than might be expected. There are two key contributions: firstly to propose a polyhedral

robust control invariant set of an augmented system using generalised function parame-

terisation; Secondly to propose an algorithm for the robust MPC using the generalised

function parameterisation that enables the use of polyhedral robust control invariant set

to enlarge the region of attraction. It is also shown that the proposed algorithm has

standard convergence and feasibility guarantees. The improvements, with respect to a

conventional algorithm, are demonstrated by numerical examples.

This chapter is organised as follows: Section 8.2 gives the necessary background about

nominal MPC, generalised function parameterisation for an optimal MPC and robust

MPC. Section 8.3 discusses alternative parameterisations within Robust MPC using a

generalised function. An algorithm is proposed for Robust MPC using the generalised

function parameterisation. Section 8.4 discusses two observations which may help to

design an efficient generalised based robust MPC algorithm. Comparisons between the
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existing Robust MPC (RMPC) and the new proposed algorithms are given in Section 8.5

using numerical examples. Finally Section 8.6 gives the conclusion of the chapter.

8.1 Introduction

There is substantial interest within the MPC research community how to develop algo-

rithms to deal with nonlinearity or uncertainty, in particular because formal consideration

of these issues can lead to substantial computation and/or complexity. The main aim

of this chapter is to contribute to research which enlarge the region of attraction while

tackling the robust case, perhaps at some small loss of optimality. Specifically, the focus

is on the potential of more flexible parameterisation of the degrees of freedom (e.g. Sec-

tion 5.3) to enable enlargement of the regions of attraction in the uncertain case without

too much detriment to performance, optimality and the computational burden.

In the nominal case, Laguerre [26], Kautz and generalised parameterisations are able

to achieve large regions of attraction while maintaining insignificant performance drop

and a relatively low computational burden. This chapter extends the earlier studies in

Section 4.4 and 5.3 to the case of parameter uncertainty by using the algorithm of [115]

for constructing polyhedral robust positive invariant sets; this enables the online robust

MPC algorithm to be based on a standard quadratic program while adding the benefits

of improved feasibility due to the change in the parameterisation.

8.2 Background

This section will introduce the background information on dual mode robust MPC and

assumptions used in this chapter.

8.2.1 Polyhedral invariant sets for LPV Systems

One can guarantee robust feasibility/stability if one can determine suitable robust con-

trol invariant sets 1(or robust feasible invariant polyhedral sets). The choice of invariant

set type (polyhedral vs. ellipsoidal) is largely determined by the computational com-

plexity and the resulting region of attraction. Polyhedral invariant sets lead to regions

1This chapter only considers the polyhedral positive invariant sets
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of attraction that are guaranteed to be larger than those obtained with their ellipsoidal

counterparts and lead to an on-line optimisation class (QP) that can be solved efficiently.

Before discussing the robust dual mode MPC, the following two definitions summarise

the concept of robust control set invariance:

Definition 8.1 (Robust Positive Invariance Sets). [185,195] Given a LPV system (3.46),

Xr ∈ Rnx is a robust positively invariant if and only if

xk ∈ Xr =⇒ xk+1 ∈ Xr, ∀[Ak, Bk] ∈ Co{[A1, B1], ..., [Am, Bm]}. (8.1)

Definition 8.2 (Robust Control Invariant Set). [195] The set Xr is a robust control

invariant set of the LPV system (3.46) if and only if there exists a feedback uk such that

Xr is a robust positive invariant set for the closed loop system and uk ∈ U, ∀xk ∈ Xr,

[Ak, Bk] ∈ Co{[A1,k, B1,k], ..., [Am,k, Bm,k]}.

In other words, a set Xr is a robust control invariant if and only if

xk ∈ Xr =⇒ ∃ uk ∈ U | xk+1 ∈ Xr, (8.2)

∀[Ak, Bk] ∈ Co{[A1,k, B1,k], ..., [Am,k, Bm,k]}.

This chapter proposes to make use of a maximal feasible robust control invariant poly-

hedral set for LPV system that can found for (3.46) subject to (3.49) using an algorithm

described in [115].

8.2.2 Robust MPC (RMPC): Dual mode MPC for LPV case

Suppose the infinite horizon linear quadratic performance index is given as

Jk =
∞∑
i=0

[
xTk+i|kQxk+i|k + uTk+i|kRuk+i|k

]
, (8.3)

with Q = QT ≥ 0 and R = RT > 0 are state and input cost weighting matrices. Then

the worst case performance index to be minimised is

J̃k = max
[Ak+i,Bk+i]∈Co{[A1,k+i,B1,k+i],...,[Am,k+i,Bm,k+i]}i=0,1...

Jk (8.4)
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subject to system dynamics for prediction

xk+i+1|k = Ak+i|kxk+i|k +Bk+i|kuk+i|k. (8.5)

In order to guarantee closed loop stability, constraints (3.49) must be satisfied along

predicted trajectories for all possible future model uncertainty. Mathematically, this

requirement can be written as [25]

Lxxk+i|k + Luuk+i|k ≤ l,

∀ [Ak+j , Bk+j ] ∈ Co{[A1, B1] , . . . , [Am, Bm]},

j = 0, 1 . . . , i− 1. (8.6)

The system will be pre-stabilised with a state feedback controller K as was done in

[21,24,25].

The nominal performance index corresponding to system dynamic at the centre of the

Co ∈ {[A1, B1] , . . . , [Am, Bm]} is defined as [25]

J0,k =

∞∑
i=0

[
xTk+i|kQxk+i|k + uTk+i|kRuk+i|k

]
(8.7)

where x0,k+i|k is the predicted trajectory of the central system dynamic for i ≥ 0.

Consider the autonomous state space model [25]

zk+i+1|k = ψk+i|kzk+i|k, zk|k =

[
xk

c−→k

]
,

ψk+i|k ∈ Co{ψj , j = 1 . . . ,m}, ψj =

[
Φj BjD

0 Gc

]
,

Φj = Aj −BjK, Gc ∈ Co{Gc,j , j = 1, . . . ,m},

xk+i|k = [I 0] zk+i|k, uk+i|k = [K D] zk+i|k (8.8)

where zk ∈ Rnx+nunc , c−→
T
k = [cTk , c

T
k+1, . . . , c

T
k+nc−1], D and Gc are variables that are used

to optimise the size of the associated region of attraction. In [21], D = E and Gc = IL are

given in (3.52) and known as Efficient Robust Predictive Control (ERPC). This approach

is improved in [24] by varying parameters in the dynamic feedback law and known as

generalised ERPC (GERPC). However the formulation in [24] is non-convex and hence

there is no guarantee of convergence to solution. In [25] the dynamic feedback law is

further optimised and formulated into a convex problem.
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8.3 Using generalised function parameterisation within RMPC

A convex formulation is derived in [25] for optimising dynamic feedback laws for con-

strained linear systems with polytopic uncertainty and need nc = nx. The generalised

prediction dynamics in (8.8) are based on maximal invariant ellipsoidal set which may

be conservative in volume for nonsymmetric constraints as shown in Section 5.4. This

section further studies the trade off between performance, region of attraction and com-

putational burden using generalised function parameterisation.

The alternative parameterisations proposed in [18, 26], Section 5.3 for the nominal case

showed an enlargement in the region of attraction, for the same number of d.o.f.. There-

fore, this section seeks to extend the use of the generalised parameterisations to the

robust case and thus explore whether similar feasibility benefits are possible or likely.

This section will show how such parameterisation can be used to form robust invariant

sets and thus deployed in the appropriate robust MPC algorithm. Examples in the next

section are used to demonstrate the impact on the maximal stabilisable set.

There are two main ingredients that are necessary to formulate an efficient robust algo-

rithm using generalised function parameterisation. These ingredients are:

1. The first ingredient is the definition of a robust control invariant set based on

generalised function parameterisation.

2. The second ingredient is the definition of the predicted cost.

8.3.1 Generalised function based polyhedral robust control invariant

set

As in the nominal case, it was noted earlier (e.g. (5.5)) that using the generalised function,

one can define the input predictions as ck+i = GT
i ρ−→k where Gi = AGGi−1. Unpacking

this into a different format one gets

ρ
−→k+1 = AT

G ρ−→k, c−→k = [GT
0 , . . . , G

T
nc−1]

T ρ
−→k (8.9)

uk = −Kxk +D c−→k. (8.10)

It is clear therefore that this is equivalent to the autonomous system (8.8) where the

choice of D = GT
0 . From (8.8), the autonomous formulation using generalised function
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parameterisation is defined as

zk+1+i|k = ψk+i|kzk+i|k, zk|k =

[
xk

ρ
−→k

]
, (8.11)

ψk+i|k ∈ Co{ψj , j = 1 . . . ,m},

[AG, G0] ∈ Co{[AG,j , G0,j ] , j = 1, . . . ,m},

ψj =

[
Φj BjG

T
0

0 AT
G

]
.

These dynamics should fullfill the constraints (3.49) ∀k,

[
Lx − LuK LuG

T
0

]
zk|k ≤ l. (8.12)

Robust constraint handling is represented by an MCAS or Xrg which is calculated offline

with the methodology of [83, 115], but deploying alternative functions, that is equations

(8.11, 8.12) within the update model. The key idea used is not dissimilar to the one-

step sets popularised in [195], that is to use forwards prediction rather than backwards

predictions. This simple change eliminates the combinatorial explosion in the possible

number of prediction terms and hence creates a tractable problem as discussed earlier

in Chapter 3. This is illustrated in the algorithm 8.1, for further details the reader is

referred to [115].

Algorithm 8.1. Polyhedral Robust Control Invariant Set

Given a LPV system (8.11) subject to linear constraints (8.12).

1. Set the initial values for AS and bS to

AS :=
[
Lx − LuK LuG

T
0

]
; bS := l. (8.13)

2. Initialise the index i := 1.

3. Repeat until i is not strictly larger than the number of rows in AS.

(a) Select row i from (8.13) (i.e. AS,i and li), check whether adding any of the

constraints AS,iψjzk ≤ li, j = 1, . . . ,m to AS , bS would decrease the size of
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Xr, by solving the following linear programming (LP) for j = 1, . . . ,m

cj = max
zk

AS,iψjzk − li

s.t. ASzk ≤ bS . (8.14)

If cj > 0, then add the constraint to AS , bS as follows:

AS :=

 AS

AS,iψj

 ; bS :=

bS
li

 . (8.15)

(b) Increment i.

4. End.

Remark 8.3.1. Algorithm 8.1 will terminate in finite steps and only adds constraints

and never removes constraints. The algorithm convergence and invariance of the resulting

set Xgr = {zk|k : ASzk|k ≤ bS} is proved similarly as in [115]. After terminating, it is

recommended to remove any redundant constraints.

Remark 8.3.2. MAS or Xr0 is calculated using the above algorithm with [x, c] = [x, 0]

or using algorithm defined in [115].

8.3.2 Generalised function parameterisation within RMPC

The worst case prediction cost is defined similarly as in (8.4)

J̃G,k = max
[Ak+i,Bk+i]∈Co{[A1,k+i,B1,k+i],...,[Am,k+i,Bm,k+i]}i=0,1...

Jk, (8.16)

using (3.28) and (5.12) the worst cost can be written as

J̃G,k = max
[Ak+i,Bk+i]∈Co{[A1,k+i,B1,k+i],...,[Am,k+i,Bm,k+i]}i=0,1...,nc−1

ρ
−→

T
k+i|kSG ρ−→k+i|k, (8.17)

where SG =
∞∑
i=0

Ai
GG0SG

T
0A

i
G
T
.
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For completeness, the MCAS is calculated offline using algorithm 8.1 as

Xrg = {xk : ∃ ρ
−→k s.t. ASzk ≤ bS , zk = [xk, ρ−→k]

T }, (8.18)

and associated MAS is defined as

X0g = {xk : ∃ ρ
−→k = 0 s.t. ASzk ≤ bS , zk = [xk, 0]

T }. (8.19)

After calculating the inequalities for invariant set the following RGMPC algorithm 8.2

can be implemented.

Algorithm 8.2. Robust generalised MPC (RGMPC)

Off-line

• Determine the polyhedral robust control invariant set can be found in (8.8) subject

to (3.49) using the algorithm 8.1 [115], in the form

ASzk ≤ bS . (8.20)

On-line

1. At each sampling instant, solve the following optimisation problem:

min
ρ
−→k

J̃G,k s.t. ASzk ≤ bS . (8.21)

2. Reconstitute the first value of the predicted input trajectory uk using

c−→k = [GT
0 , . . . , G

T
nc−1]

T ρ
−→k and (3.14).

3. If the unconstrained control law is satisfying the constraints (i.e. xk ∈ X0g), the

optimising c−→k = [GT
0 , . . . , G

T
nc−1]

T ρ
−→k is zero so the control law is uk = −Kxk.

4. End.

Theorem 8.1. The RGMPC algorithm has a guarantee of stability and recursive feasi-

bility.
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Proof. Recursive feasibility: The key to RGMPC algorithm is the requirement that

xk ∈ Xrg =⇒ xk+1 ∈ Xrg (8.22)

and in fact to be more precise, one requires that an augmented state including the tail

of c−→k = [GT
0 , . . . , G

T
nc−1]

T ρ
−→k remains feasible, that is:

AS

 xk

ρ
−→k

 ≤ bS =⇒ AS

 xk+1

ρ
−→tail|k

 ≤ bS (8.23)

where ρ
−→tail|k = [ρTk+1|k, . . . , ρ

T
k+nc−1|k, 0]

T . Such a guarantee can be established by defin-

ing AS and bS as robust invariant set using algorithm 8.1 using [115]. Finally note that

for all states inside the MAS i.e. ρ
−→k = [0, . . . , 0]T , the unconstrained optimal control

law uk = −Kxk will feasible.

Prediction cost: The stability proof follows a well accepted route of showing that the

tail of the optimum from sampling instant k is a valid choice at sampling instant k + 1;

as this implies a reduction in J̃G,k. A possible choice at the next sampling instant is

ρ
−→k+i|k+1 = ρ

−→k+i|k and hence J̃G,k+1 ≤ J̃G,k−ρTkG0SG
T
0 ρk. Hence one can prove conver-

gence using theorem 5.1 that J̃G,k is monotonically non-increasing ∀k and if ck = GT
0 ρ−→k

is repeatedly zeros, which implies that the state is already inside the terminal region and

J̃G,k = 0. Hence, the Lyapunov stability of the origin follows from the fact that the MAS

contains the origins in its interior.

8.4 Observations

There are two observations which may be helpful for the design engineers to propose an

efficient generalised based robust MPC.
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8.4.1 Order selection of the generalised parameterisation dynamic

In generalised parameterisations, the higher order prediction dynamics have more flexi-

bility to improve the region of attraction with a limited number of d.o.f.. So there is a

clear choice of selecting the order of the parameterisation dynamics.

From the autonomous formulation using generalised parameterisation in (8.11), to fulfill

the algebraic relations the dimension of the AG must be the same as nc using the same

number of d.o.f.. Moreover, the key observation from the augmented model in (8.11)

is that dim(AG) = nc is an upper bound on the maximum parameterisation dynamics

order. The generalised function parameterisation dynamics remove the limitation on the

selection of nc i.e. nc ≥ nx.

8.4.2 Selection of parameterisation poles using closed loop dynamics

In uncertain cases, the optimal selection of using multiobjective optimisation is compu-

tationally demanding due to the computations of the robust control invariant set. In this

chapter the parameterisation dynamics are selected in the vicinity of the closed loop sta-

ble system (i.e. the closed loop stable central system of the Co ∈ [A1, B1], . . . , [Am, Bm])

pole(s). This is a pragmatic selection similar to the nominal case, albeit with sub op-

timal parameter value(s). For further discussion on parameter(s) selection the reader is

referred to Chapter 6.

8.5 Numerical Examples

This section will illustrate the efficacy of the alternative parameterisation (i.e. Laguerre,

Kautz and generalised functions) within the robust MPC algorithm in comparison with

GERPC [25] and ERPC [21] using numerical examples. The aim is to compare three

aspects: (i) the size of the regions of attraction; (ii) the number of inequalities required

to describe the robust MCAS; (iii) closed-loop performance. For the purposes of visu-

alisation, figures are restricted to second order systems for which it is possible to plot

regions of attraction. The comparisons are based on 4 systems with x ∈ R2, x ∈ R3 and

x ∈ R4. The alternative parameterisarions are based on Laguerre, Kautz and generalised

functions (using 3rd order dynamics).
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8.5.1 Example 1

Consider a linear uncertain system representing a double integrator with an uncertainty

polytope defined by the following two vertices (used in [114] and [83]):

A1 =

[
1 0.2

0 1

]
, B1 =

[
0

1

]
,

A2 =

[
1 0.1

0 1

]
, B2 =

[
0

1.5

]
, (8.24)

Q = I, R = 1, nc = 2, γ = 1010, p = {0.9, 0.8}, (a, b) = {(0.9, 0.5), (0.8, 0.2)}.

The system is subject to input and state symmetric and non-symmetric constraints

Example 1 (a)

− 1 ≤ uk ≤ 1; −

[
5

5

]
≤ xk ≤

[
5

5

]
; (8.25)

Example 1 (b)

− 0.5 ≤ uk ≤ 1; −

[
7

7

]
≤ xk ≤

[
5

5

]
. (8.26)

Figure 8.1 and 8.2 shows the regions of attraction for RKMPC, RLMPC, GERPC and

ERPC for the same number of d.o.f. i.e. nc = 2. For the symmetric case in Example 1

(a), RKMPC has a larger MCAS volume than RLMPC, GERPC and ERPC. Whereas in

Figure 8.1, GERPC has a larger region of attraction than RLMPC and ERPC. Similarly

as in the nominal case in Section 5.4, for non-symmetric case in Example 1 (b), RKMPC

and RLMPC enlarge the region of attraction significantly compared to GERPC.
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8.5.2 Example 2

Consider another 2nd order (i.e. x ∈ R2) linear uncertain system representing an uncer-

tainty polytope defined by the following two vertices:

A1 =

[
0.6 −0.4

1 1.4

]
, B1 =

[
0.2

0.05

]
,

A2 =

[
0.6 −0.5

1 1.4

]
, B2 =

[
0.2

0.5

]
, (8.27)

Q =

[
1 0

0 1

]
, R = 0.2, nc = 2, γ = 1010, p = 0.8, (a, b) = (0.8, 0.78).

The system is subject to input and state symmetric and non-symmetric constraints

Example 2 (a)

− 1 ≤ uk ≤ 1; −

[
2

2

]
≤ xk ≤

[
2

2

]
; (8.28)

Example 2 (b)

− 1.5 ≤ uk ≤ 1; −

[
1

2

]
≤ xk ≤

[
2

2

]
. (8.29)

Figure 8.3 and 8.4 show the regions of attraction for RKMPC, RLMPC, GERPC and

ERPC for the same number of d.o.f. i.e. nc = 2. For both symmetric and non-symmetric

cases, RKMPC has a larger MCAS volume than RLMPC, GERPC and ERPC as shown

in Table 8.1. Whereas in Figure 8.3 and 8.3, there are some initial points in GERPC

MCAS which are infeasible for RLMPC and RKMPC algorithms. Similarly as in the

nominal case in Section 5.4, for non-symmetric case in Example 1 (b), RKMPC and

RLMPC enlarge the region of attraction significantly compared to GERPC.
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8.5.3 Example 3

Consider a 3rd order (i.e. x ∈ R3) linear uncertain system represented with an uncertainty

polytope defined by the following two vertices:

A1 =

1.4 −0.1050 −0.1080

2 0 0

0 1 0

 , B1 =

0.20
0

 ,

A2 =

1.5 −0.2050 −0.1080

2 0 0

0 1.5 0

 , B2 =

0.30
0

 , (8.30)

Q = I, R = 1, nc = 3, γ = 1010, p = 0.68, (a, b) = (0.68, 0.05), (a1, a2, a3) = (0.65, 0.52, 0.5).

The system is subject to input and state symmetric and non-symmetric constraints

Example 3 (a)

− 1 ≤ uk ≤ 1; −

55
5

 ≤ xk ≤

55
5

 ; (8.31)

Example 3 (b)

− 0.5 ≤ uk ≤ 1; −

74
3

 ≤ xk ≤

55
5

 . (8.32)

Table 8.1 shows MCAS volume for RGMPC (3rd order) RKMPC, RLMPC, GERPC

and ERPC for the same number of d.o.f. i.e. nc = 3. Alternative parameterisations

(i.e. RGMPC and RKMPC) enlarge the region of attraction compared to GERPC and

ERPC.
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8.5.4 Example 4

Consider a 4th order (i.e. x ∈ R4) linear uncertain system representing an uncertainty

polytope defined by the following two vertices:

A1 =


0.900 −0.105 0.108 0.200

0.600 0 0 −0.100

0 0.800 0 0.300

0 0 0.800 0

 , B1 =


1

0

0

0

 ,

A2 =


0.900 −0.105 0.108 0.2

0.600 0 0 −0.150

0 0.900 0 0.300

0 0 0.800 0

 , B2 =


2

0

0

0

 , (8.33)

Q = I, R = 0.5, nc = 4, γ = 1010, p = 0.5, (a, b) = (0.5, 0.2),

(a1, a2, a3) = (0.5, 0.2, 0.1), (a1, a2, a3, a4) = (0.5, 0.45, 0.2, 0.1).

The system is subject to input and state symmetric and non-symmetric constraints

Example 4 (a)

− 1 ≤ uk ≤ 1; −


10

10

10

10

 ≤ xk ≤


10

10

10

10

 ; (8.34)

Example 4 (b)

− 0.5 ≤ uk ≤ 1; −


15

7

4

5

 ≤ xk ≤


10

10

10

10

 . (8.35)

Table 8.1 shows MCAS volume for RGMPC (4th order), RGMPC (3rd order), RKMPC,

RLMPC, GERPC and ERPC for the same number of d.o.f. i.e. nc = 4. For symmetric
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Table 8.1: Comparison of robust MCAS volume and number of inequalities

Symmetric Constraints

Algorithm Example 1 Example 2 Example 3 Example 4

Vol. Ineq. Vol. Ineq. Vol. Ineq. Vol. Ineq.

ERPC 67.21 22 1.3651 18 140.06 38 1.53 ×105 80
GERPC 94.74 40 3.3058 40 210.78 76 1.54 ×105 42
RLMPC 94.51 34 3.8180 74 201.20 50 1.54 ×105 54
RKMPC 95.00 30 4.667 116 220.08 32 1.54 ×105 32
RGMPC - - - - 221.74 56 1.54 ×105 45

(3rd order)
RGMPC - - - - - - 1.54 ×105 43

(4th order)

Non-symmetric Constraints

Algorithm Example 1 Example 2 Example 3 Example 4

Vol. Ineq. Vol. Ineq. Vol. Ineq. Vol. Ineq.

ERPC 63.18 21 2.1281 18 56.84 43 3.92 ×104 75
GERPC 102.18 97 3.5304 37 78.03 80 4.12 ×104 90
RLMPC 135.50 57 3.8908 76 99.19 96 5.07 ×104 90
RKMPC 136.59 30 4.4557 109 99.91 58 5.19 ×104 79
RGMPC - - - - 102.97 53 5.56 ×104 81

(3rd order)
RGMPC - - - - - - 5.56 ×104 76

(4th order)

constraint, alternative parameterisations and GERPC have the same volume of MCAS

and RKMPC is the best choice with fewer inequalities. Similar to the previous exam-

ples, for non-symmetric constraints alternative paramterisations enlarge the region of

attraction with fewer number of inequalities compared to GERPC.

8.5.5 Regions of attraction

The regions of attraction for Examples 1 and 2 are plotted in figure 8.1, 8.2 and 8.3,

8.4 respectively. It is clear from the figures that the use of alternative (Laguerre, Kautz

function) parameterisation techniques within robust MPC algorithms enlarge the re-

gion of attraction for non-symmetric constraints. Table 8.1 shows the MCAS volume

(volume of projection) comparisons for Examples 1-4 using ERPC, GERPC, RLMPC,

RKMPC, RGMPC (3rd order) and RGMPC (4th order) algorithms. Alternative (Kautz

and generalised function) parameterisations enlarge the region of attraction significantly

(specifically for non-symmetric constraints) and thus, based solely on volume considera-
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Figure 8.1: Robust MCAS regions for model (8.24) with symmetric constraints

tions and as expected, alternative parameterisation based algorithms are to be preferred

in a robust scenario.

From Table 8.1 and Figure 8.2 and 8.4 shows that for non-symmetric constraints, alter-

native parameterisations significantly enlarge the region of attraction than GERPC.

8.5.6 Closed-loop performance

The closed-loop performance of RGMPC, RKMPC, RLMPC and ERPC algorithms is

contrasted for 200 random initial states. To make the comparison meaningful therefore all

consider the initial conditions which lie in the ERPC region of attraction. Table 8.2 shows

the average of J̃k using (8.4) for a set of 200 random initial points. Table 8.2 represents

an average cost comparison for both symmetric and non-symmetric constraints.

For example 1, ERPC, RKMPC and RLMPC provide 36.26 and 32.36 cost on average

for both symmetric and non-symmetric constraints respectively. In example 2, ERPC,

RKMPC and RLMPC provide 5.07, 5.57 and 5.73 cost on average respectively for sym-

metric constraints. For non-symmetric constraints, ERPC, RKMPC and RLMPC pro-

vide 4.70 cost on average.

For example 3, ERPC, RLMPC, RKMPC and RGMPC provide 21.30, 31.17, 31.23 and
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Figure 8.2: Robust MCAS regions for model (8.24) with non-symmetric constraints

31.53 cost on average for symmetric constraints respectively. For non-symmetric con-

straints, ERPC, RLMPC, RKMPC and RGMPC provide 15.28, 16.77, 16.78 and 16.77

cost on average respectively.

In example 4, ERPC, RLMPC, RKMPC, RGMPC (3rd order) and RGMPC (4th order)

provide 42.70, 43.06, 43.06, 43.05 and 45.53 cost on average using symmetric constraints.

For non-symmetric constraints, ERPC, RLMPC, RKMPC, RGMPC (3rd order) and

RGMPC (4th order) provide 19.52, 19.53, 19.53, 19.67 and 19.74 cost on average respec-

tively.

Table 8.2 shows for both symmetric and non-symmetric constraints, alternative algo-

rithms (i.e. RGMPC, RKMPC and RLMPC) enlarge the region of attraction without

too much degradation to the closed loop performance as compared to ERPC.

8.5.7 Computational Complexity

For completeness, it is important to compare the number of inequalities required to

describe the robust MCAS as the complexity of these set descriptions has an impact

on the online computational burden, the more inequalities the higher the computational
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Figure 8.3: Robust MCAS regions for model (8.27) with symmetric constraints

burden in solving the associated QP optimisation (this chapter does not discuss issues

linked to the exploitation of structure and efficient QP optimisers). The number of

inequalities to define Xr is compared with the same number of d.o.f. in Table 8.1. The

number of inequalities with parameterisation based algorithms are more in comparison

with ERPC algorithm. However, it is notable that for non-symmetric constraints, the

number of inequalities for GERPC algorithm is a slightly larger in comparison with

RGMPC (3rd order), RKMPC and RLMPC algorithms.

It is clear from Table 8.1 that alternative function parameterisations (i.e. RGMPC,

RKMPC and RLMPC) enlarge the region of attraction without too much compromise

the computational benefits in terms of number of inequalities.

8.5.8 Summary

The results shown in Figure 8.1, 8.2, 8.2, 8.4 and in Table 8.1 make it clear that RGMPC,

RKMPC and RLMPC provide an alternative proposal to [25] to further enlarge the region

of attraction. In [25], optimisation dynamics are calculated using maximal ellipsoidal

invariant sets and can therefore only cope with asymmetric constraints in a conservative
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Figure 8.4: Robust MCAS regions for model (8.27) with non-symmetric constraints

way. Figure 8.2, 8.4 and Table 8.1 show that the resulting region of attraction is also

conservative for non-symmetric constraints. From Table 8.2, it concluded that alternative

parameterisatons enlarge the region of attraction without too much degradation to the

closed-loop performance.

These results are based on pragmatic choices for the parameters in RGMPC, RKMPC

and RLMPC. Further improvements both in the region of attraction and number of

inequalities are possible by tailoring these parameters in the context.

8.6 Conclusion

The main contribution of this chapter was to extend robust MPC algorithms to make

use of alternative parameterisations of the d.o.f. and to consider the impact of doing so.

Different alternative parameterisation functions including Laguerre, Kautz and higher

order functions are embedded within the robust MPC approach; the main requirement

for this is to show how a robust control invariant set can be computed with different

parameterisations of the d.o.f.. The examples demonstrate that, for a fixed number of

d.o.f., in many cases much parameterisation may enlarge the region of attraction without
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Table 8.2: Comparison of average runtime cost

Symmetric Constraints

Algorithm Example 1 Example 2 Example 3 Example 4

ERPC 36.2647 5.0694 21.2959 42.6982
RLMPC 36.2647 5.5739 31.1691 43.0642
RKMPC 36.2647 5.7324 31.2278 43.0642
RGMPC - - 31.5264 43.0499

(3rd order)
RGMPC - - - 43.5258

(4th order)

Non-symmetric Constraints

Algorithm Example 1 Example 2 Example 3 Example 4

ERPC 32.3604 4.6973 15.2774 19.5238
RLMPC 32.3604 4.6973 16.7714 19.5336
RKMPC 32.3604 4.6973 16.7800 19.5338
RGMPC - - 16.7664 19.6738

(3rd order)
RGMPC - - - 19.738

(4th order)

any significant change to the number of inequalities required to describe the robust control

invariant set than GERPC.
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Chapter 9

Robust triple mode predictive

control using flexible function

parameterisation

This chapter presents an original contribution to the thesis. It reviews triple mode

Predictive control of linear time invariant and uncertain systems, considers the analogies

with new approaches to conventional dual mode MPC algorithms deploying more flexible

function parameterisation. It is shown that there are strong analogies and moreover, that

using the Laguerre, Kautz and generalised functions insights within a triple mode MPC

approach may significantly enlarge the region of attraction. There are many cases where

such an approach is an improvement on earlier work and thus this avenue of research is

worth pursuing for both nominal and robust scenarios. The improvements, with respect

to an existing algorithm, are demonstrated by numerical examples.

This chapter is organised as follows: Section 9.1 presents the introduction and motivation

of the chapter; Section 9.2 presents the background and brief overview of the triple

mode MPC algorithms; Section 9.3 presents novel triple mode MPC algorithms using

the generalised function dynamics; Section 9.4 presents a novel robust triple mode MPC

using generalised functions parameterisation for both implicit and explicit selection of

middle mode; Section 9.5 presents numerical examples; and finally Section 9.6 gives the

conclusion of the chapter.
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9.1 Introduction

In the early days of MPC it was noted that MPC included some inherent robustness

and indeed this is sufficient for many of the widespread industrial applications, albeit the

applications come without formal guarantees or a more systematic robust design [77,78].

Later authors considered how to include robustness requirements explicitly; generally

these require quantification of the uncertainty into formal bounds, for example on param-

eter variation and the magnitude of disturbance signals. Given these bounds, min-max

types of optimisation design are feasible and many algorithms have been proposed; this

chapter will develop the type of robust MPC approach used in [83, 115] which uses a

linear parameter varying (LPV) model to represent parameter uncertainty.

One suggestion that is still relatively underexplored in the literature is the concept of

triple mode control [112–114]. In this strategy one recognises that large regions of attrac-

tion in conjunction with good performance often imply nonlinear or linear time varying

(LTV) prediction dynamics [177]. In fact it is known that the optimal law is piecewise

affine, but that introduces a directional dependence which is a further complication this

chapter wishes to avoid to achieve simplicity. Hence, a sensible objective is to find a

suitable and fixed LTV control law which enlarges the region of attraction without too

much detriment to performance.

The first triple mode controller [112, 113] used the algorithm of [21] to specify the ad-

ditional mode of the MPC control law. In [21] ellipsoidal feasible invariant sets were

computed for a conventional dual mode MPC setup and the implied LTV law was ex-

tracted from these. Recently, the extension of these results in [24,25] was used in [188] to

specify a more flexible triple mode algorithm, but still for the nominal case. However, as

the algorithm in [21,24,25] were originally developed for the robust case, later work [114]

proposed a robust triple mode MPC algorithm; this is the base algorithm that will be

used for comparisons in this chapter.

Specifically, the intention is to consider the potential benefits of more flexible parameter-

isation based approaches that have been deployed within dual mode MPC in Section 4.4,

5.3 and 8.3 because it is known that in many cases changing the parameterisation allows

substantial improvements in the region of attraction with little or no detriment to per-

formance. The algorithms for selecting the mode 2 dynamics in the original robust triple

mode papers [114] are challenging and hence this chapter will consider to what extent a

more automated approach of using more flexible function dynamics will be appropriate

for the robust case.

The main contributions of this chapter are to extend the more flexible parameterisation
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to the triple mode algorithm with comparison to the earlier proposed approaches. This

will give a new insight into the potential of the more flexible function parameterisation

for enlarging the region of attraction, improving the optimality and computational loads

within robust MPC. The contributions of chapter are twofold: Firstly to give a new

avenue for the use of more flexible function parameterisation (i.e. Laguerre, Kautz and

generalised function) to select the middle mode as an intuitive choice. Secondly, using

the insight gained from this to use the generalised function parameterisation to obtain a

large region of attraction for both nominal and robust cases.

9.2 Background

This section will summarise the background information related to robust triple mode

MPC for convenience (see Section 3.5, 3.7 and 3.4 for further details).

9.2.1 Triple mode MPC algorithm

The triple mode approach to finding the best compromise between a region of attraction

and good performance is underexplored in the literature. It is recognised that a large

number of free (before resorting to the terminal law) control moves may be required

to get close to the global optimal region of attraction whereas one may not desire this

large number of degrees of freedom. In triple mode an additional mode is introduced

into the predicted class to increase the region of attraction; originally, for computational

convenience, this choice was based on the analysis of invariant ellipsoidal sets. However,

to form an efficient triple mode algorithm, that is with few optimisation variables, it

is necessary to make implicit assumptions for the terminal mode and the middle mode

while selecting the initial mode explicitly using polytopic constraints.

In order to select an implicit choice for middle mode, different choices based on ellipsoidal

sets with only few parameters were proposed in [113] and [21]. The main idea that is,

to define an augmented system model incorporating the mode 1, 2 d.o.f. was proposed

in [21] to handle the feasibility maximisation in [24] and [25]. For more details see Section

3.4.

In [114], the triple mode prediction setup is modified in conjunction with GERPC to for-

mulate a robust triple mode MPC algorithm. The proposed algorithm allows a tractable

QP-based MPC algorithm for the robust case, it allows a large region of attraction with
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just a small number of online optimisation variables. However, further research remain-

ing is to make the algorithm handle non-symmetric constraints better. This chapter

proposes flexible function parameterisation to better handle non-symmetric constraints

with simplified offline computations.

9.3 Selection of Middle mode within a robust triple Mode

MPC

The fundamental weakness of the conventional triple mode algorithm is linked to the

efficiency of the middle mode; can this be computed implicitly or explicitly and also is the

offline optimisation for identifying a suitable dynamic Gc in (3.57) overly complex? This

section explores a more intuitive technique based on predefined dynamics in the middle

mode; in this section generalised function dynamic is proposed as these have been shown

to be effective within dual mode MPC to enlarge the region of attraction without too

much detriment to performance. This section shows how generalised function dynamics

is analogous to the mode 2 of GERPC based triple mode and thus can be deployed in

the middle mode for a triple mode MPC. This section can equally be reworked for the

nominal case.

This section provides an alternative proposal to GERPC [25] to handle non-symmetric

constraints better as shown in Section 8.5. It is shown that for the robust case, using

generalised function dynamic insights within a robust triple MPC may enlarge the re-

gion of attraction and provide a pragmatic choice for selecting the middle mode, thus

simplifying offline design by removing the need for demanding optimisations.

9.3.1 Selection of Middle mode using generalised function dynamic

Robust triple mode MPC based on generalised function dynamics introduces a middle

mode using generalised functions. The generalised functions give a pragmatic choice for

selecting the middle mode within the robust triple mode MPC and without the need for

a LMI/BMI optimisation. In terms of model (3.57), the choice for robust triple mode

using generalised functions are modified as described below.

The predicted cost (3.61) can be represented in terms of perturbation ρk, that is:

JG(xk, ρ−→k, c−→k) = [xk f
−→k c−→k]

TP [xk f
−→k c−→k] (9.1)
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with fk+i = GT
i ρ−→k and Gi = AGGi−1. Constraint handling requires a suitable MCAS

or Xr and this is calculated using similar ideas to that in [115], but modified to allow for

the triple mode prediction structure, as explained next.

Extension to the robust case requires the use of appropriate invariant sets and inequal-

ities representing constraints which allow for parameter uncertainty. An autonomous

prediction formulation, using the generalised function dynamic for the middle mode, is

defined as:

Xk+1+i|k = Ψk+i|kXk+i|k, Xk|k =


xk

ρ
−→k

ck

 , (9.2)

Ψk+i|k ∈ Co{Ψj , j = 1 . . . ,m},

[AG, G0] ∈ Co{[AG,j , G0,j ] , j = 1, . . . ,m},

Ψj =

Φj BjG
T
0 BjE

0 AT
G 0

0 0 IL

 .
All possible evolutions of these dynamics must meet the constraints (3.58), and thus

[
Lx − LuK LuG

T
0 LuE

]
Xk ≤ l. (9.3)

After calculating the robust invariant polyhedral set of (9.2) subject to (9.3) using al-

gorithm 8.1 in [115] as ASXk ≤ bS the following generalised function based RTMPC

(GRTMPC) algorithm 9.1 is implemented.

Algorithm 9.1. Generalised function based RTMPC (GRTMPC)

Off-line

• Given design parameters nc,m, a1, . . . , am and R, calculate GT
0 and AG from (3.30),

where m is order of generalised function dynamics.

• Calculate P from (3.63) using fk+i = GT
i ρ−→k.

• Determine the polyhedral robust control invariant set (i.e. ASX ≤ bS) which can

be found for (9.2) subject to (9.3) using algorithm 8.1.

On-line
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1. At each sampling instant,

2. k=0; if xk ∈ X0g (8.19) implement terminal mode control law i.e. uk = −Kxk else

3. Solve the optimisation problem

min
ρ
−→k, c−→k

JG(xk, ρ−→k, c−→k)

s.t. ASXk ≤ bS .

4. Implement uk = −Kxk +GT
0 ρ−→k +E c−→k to the plant.

5. Set k = k + 1, repeat until converges.

6. End.

Remark 9.3.1. Recursive feasibility and robust asymptotic stability of GRTMPC can be

proved similarly as in [114].

Remark 9.3.2. Generalised function based algorithms can be tuned using a pragmatic

selection based on closed loop system poles (see Chapter 6 for further discussion on pa-

rameter selection).

9.3.2 Triple mode MPC or generalised function triple MPC – a com-

parison

The previous sections have shown that generalised functions are an alternative to GERPC

[114] for generating mode 2 dynamics in triple mode MPC algorithms using polytopic

constraints. The triple mode MPC algorithm takes dual mode predictions as a base and

increases the region of attraction by adding a third mode (in fact what is denoted as

mode 2 is the additional mode). The motivation is to enlarge the region of attraction

without too much detriment to performance and preferably with little impact on the

computational burden.

Triple mode is known to be effective in maximising the region of attraction and without

detriment to performance so the key question to discern is whether the strategy is better

than just increasing the number of d.o.f. available to a standard RMPC algorithm.

Secondly, there is interest in whether the proposed generalised function approach has
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benefits over the earlier GERPC based approaches. It should be noted that all cases

lead to a quadratic programming (QP) problem - the number of inequalities required to

describe the resulting MCAS is investigated.

In terms of offline computations, the proposed approach is a significant improvement

on the GERPC based approach: (i) GERPC requires a SDP in order to determine the

dynamic Gc whereas (ii) the generalised function algorithm requires only the choice of

poles(s) i.e. ‘aj , j = 1, 2, . . . ,m’, where in general ‘aj ’ improves region of attraction

but slows predicted responses and thus this is an intuitive design parameter and a prag-

matic choice. Nevertheless GERPC appears more systematic, but because it is based

on ellipsoidal rather than the polytopic sets, it may be conservative for non-symmetric

constraints. For GERPC, d.o.f. should be chosen equal or greater to system dimension

i.e. mc ≥ nx and it is not known how to specify a convex offline problem when mc < nx.

Therefore, generalised function allow an alternative proposal to design the middle mode

when mc ≤ nx.

The pragmatic choice is a suboptimal selection of prediction dynamics using generalised

function dynamics but in many cases, as shown in Section 8.5 may enlarge the region of

attraction compared to GERPC for both symmetric and non-symmetric constraints. This

chapter will focus on comparing the efficacy of the GERPC approach and the generalised

function approach within triple mode MPC.

9.4 Robust triple mode MPC using generalised function

parameterisation

This section looks at the efficiency of the generalised function parameterisation of the

d.o.f. within robust triple mode MPC algorithm. In Chapter 8, it was shown that gen-

eralised function parameterisations are an effective alternative to the standard basis set

for parameterising the d.o.f. in the prediction set deployed by robust MPC. Specifically

it was shown that in many cases changing the parameterisation similar to the nominal

case allowed substantial improvements in the region of attraction with a slightly greater

number of inequalities.

There are two extensions to formulate an efficient triple mode algorithm using generalised

function parameterisation.

• Firstly to define the mode 2 implicitly using an ellipsoidal set while selecting the

mode 1 control moves c−→k explicitly using the generalised function parameterisation.
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• Secondly to define the mode 2 explicitly using Laguerre or Kautz or higher order

function dynamics as a pragmatic choice and the mode 1 control moves c−→k using

the generalised function parameterisation.

9.4.1 Generalised function parameterisation based robust triple mode

MPC using ellipsoids

The offline problems of ERPC and GERPC can be used to implicitly specify the second

mode control moves for LTI and robust triple mode MPC, [113,114,188]. It is tempting to

use the first control move of the middle mode control fk+i = Hxnc , where H = −P−1
22 P21.

The P22 and P21 are corresponding to Qz in (3.55).

As mention earlier (3.55), the Qz is the matrix defining the augmented invariant ellipsoid

Ez =
(
zk : zTk Q

−1
z zk ≤ 1

)
, with size to some degree decided by the choice of γ. The Ez

in zk = [xTk cTk ]
T can be written as [113,114]:

zTk

[
P11 P12

P T
12 P22

]
︸ ︷︷ ︸

Q−1
z

zk ≤ 1. (9.4)

This fixed control law ensures robust invariance [25,114] and could be used as first control

move in a terminal mode in lieu of the optimised feedback uk = −Kxk.

Hence, define middle mode varying terminal state feedback control law as

uk = (−K +DH)xk, (9.5)

which has the same (robust) region of attraction as (G)ERPC, a dual mode robust MPC

algorithm can be constructed by the method [115] using this state feedback as a terminal

control (defining a terminal set and cost). The augmented dynamics using generalised

function parameterisations are defined as

Ψ̃j =

[
Aj −BjK +DH BjE

0 AT
G

]
(9.6)
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where ck = GT
0 ρ−→k and ρ

−→k+1 = AT
G ρ−→k. These dynamics should fulfill the constraints,

[
Lxk − LuK + LuDH LuGT

0

]
zk ≤ l. (9.7)

A robustly invariant polyhedral set can be found in (9.6) subject to (9.7) using the

algorithm 8.1 described in [115], in the form

Mrxk +Nr ρ−→k ≤ dr. (9.8)

A predicted cost can be constructed as [114,188]:

J(xk, ρ−→k) = [xk ρ
−→k]

T P̃ [xk ρ
−→k] (9.9)

where P̃ > 0 satisfies

P̃ − Ψ̃j
T
P̃ Ψ̃j ≥ [I 0]TQ[I 0]

+[−K +DH GT
0 ]

TR[−K +DH GT
0 ], j = 1, ....,m. (9.10)

The matrix P̃ can be efficiently calculated by the SDP

min
P̃

tr(P̃ ) s.t. (9.10). (9.11)

Although this approach will enlarge the region of attraction over and above a more con-

ventional dual mode approach, even one based on a generalised function parameterisation

the size and cost tunable with γ. The online cost will be suboptimal since the cost (for

small nc) will be dominated by the (G)ERPC state feedback designed for maximum

stabilisable region. Sub-optimality can be tuned by decreasing γ.

However, this extension reduces the computational complexity by embedding a middle

mode with no optimisation variables while still tackling the robust case and thus is a

good base for adding an additional mode to give a robust triple mode MPC.

Algorithm 9.2. Generalised function based robust triple mode MPC using an ellipsoidal

set (GR(E)TMPC)

Off-line

• Given design parameters nc, γ,m, a1, . . . , am, Q and R, calculate GT
0 and AG from

(5.5) where m is order of generalised function dynamics.
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• Calculate H = −P−1
22 P21 from (9.4) and finally calculate P̃ from (9.11).

• Determine the invariant polyhedral set (i.e. Mr, Nr and dr) can be found for (9.7)

using algorithm 8.1.

On-line

1. At each sampling instant,

2. k=0; if xk ∈ X0g , implement terminal mode control law i.e. uk = −Kxk else

3. Solve the optimisation problem

min
ρ
−→k

[xk ρ
−→k]

T P̃ [xk ρ
−→k]

s.t. Mrxk +Nr ρ−→k ≤ dr.

4. Implement uk = (−K +DH)xk +GT
0 η−→k to the plant.

5. Set k = k + 1, repeat until converges.

6. End.

9.4.2 Robust triple mode MPC using generalised function parameter-

isation

The generalised function parameterisation (i.e. Laguerre, Kautz or higher order dynamic

function) may be used to enlarge the region of attraction of robust triple mode MPC.

As in the robust dual mode case, the input perturbations ck are parameterised using

generalised functions in (9.2) and the predicted cost can be represented in terms of the

perturbations ρ̃k in (9.1), hence

JG(xk, ρ−→k, c−→k) = [xk f
−→k ρ

−→k]
TP [xk f

−→k ρ
−→k], (9.12)

with fk+i = GT
i ρ−→k, ck+i = G̃T

i ρ̃−→k, Gi = AGGi−1 and G̃i = ÃGG̃i−1. Different gen-

eralised function dynamics can be used for middle mode and parameterisation of input

perturbations.
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From (9.2), the triple mode augmented dynamics can be modified by replacing IL by ÃG

where

[ÃG, G̃0] ∈ Co{[G̃, j, G̃0,j ], j = 1, . . . ,m}. (9.13)

These dynamics should fulfill the constraints,

[
Lx − LuK LuG

T
0 LuG̃

T
0

]
Xk ≤ l. (9.14)

Robust constraint handling is represented by an MCAS or Xr which is calculated offline

with the methodology of [83, 115], but deploying alternative functions, that is equations

(9.3), (9.13, 9.14) within the updated model; this is illustrated in the algorithm 8.1. After

calculating the inequalities which describe the invariant set the GRTMPC algorithm 9.1

is equally reworkable using generalised function parameterisation in (9.12), (9.13) and

(9.14).

For completeness define the MCAS for GRTMPC as

Xrg = {x : ∃( ρ
−→k, ρ̃−→k) s.t. ASX ≤ bS , X = [x, ρ

−→k, ρ̃−→k]
T }, (9.15)

and associated MAS is defined as

X0g = {x : ∃( ρ
−→k, ρ̃−→k) = (0, 0) s.t. ASX ≤ bS , X = [x, 0, 0]T }. (9.16)

Remark 9.4.1. Although not discussed here to avoid tedious but straightforward algebra,

the Laguerre and Kautz dynamics equally reworkable for all proposed algorithms as a

special case of generalised function.

Remark 9.4.2. All these algorithms can equally be reworked for the nominal case.

9.4.3 Selection of Middle mode using generalised function dynamic

In robust triple mode MPC, it was noted [23, 24] that much larger ellipsoids could be

obtained for smaller mc in (3.56) if one allowed dynamics in the predictions, but at

the cost of a non-convex (Bilinear Matrix Inequality - BMI ) offline problem. Shortly

after [25], it was shown that if mc ≥ nx, it is possible to specify an equivalent convex

semi-definite programming problem, and moreover, that in terms of the size of regions

of attraction, there is no advantage in choosing mc > nx.
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The generalised dynamics can be selected with mc ≤ nx and the region of attraction en-

larges further using the generalised function parameterisation in (9.13). The generalised

function dynamics allow a pragmatic selection for the middle mode when mc ≤ nx,

whereas, in GERPC it is not known how to specify a convex offline problem when

mc < nx. The generalised function parameterisation can be used to further enlarge

the region of attraction with a pragmatic selection of middle mode using generalised

function dynamics and even with a systematic selection of middle mode using GERPC.

Theorem 9.1. The GRTMPC algorithm has a guarantee of stability and recursive fea-

sibility.

Proof. Recursive feasibility: Given an optimal c−→k = [GT
0 , . . . , G

T
nc−1]

T ρ
−→k at time k, it is

clear from the key requirement of GRTMPC algorithm that is

xk ∈ Xrg =⇒ xk+1 ∈ Xrg (9.17)

and in fact to be more precise, one requires that an augmented state including the tail of

c−→k = [GT
0 , . . . , G

T
nc−1]

T ρ
−→k remains feasible, that is ρ

−→tail|k = [ρTk+1|k, . . . , ρ
T
k+nc−1|k, 0]

T

is a feasible first mode control sequence at time k + 1. Repeating this argument proves

recursive feasibility. Such a guarantee can be established by defining a robust invariant

set using algorithm 8.1 using [115].

Asymptotic stability: Asymptotic stability has followed since JG,k := JG(xk, ρ̃−→k, ρ−→k) is

positive definite and monotonically non-increasing (thus it is a Lyapunov function): Using

the optimal input at time k to construct a feasible input for time k + 1 using recursive

feasibility, it is clear from [6] that JG,k+1 ≤ JG(xk+1, ρ̃−→k+1, [ρ
T
k+1|k, . . . , ρ

T
k+nc−1|k, 0]

T ) <

JG,k for xk ̸= 0.

9.5 Numerical Examples

This section will illustrate the efficacy of the parameterisation within robust triple mode

MPC algorithms by numerical examples given next. The aim is to compare two aspects:

(i) the size of the regions of attraction; (ii) the number of inequalities required to describe

the robust MCAS. For the purposes of visualization, figures are restricted to second order

system for which it is possible to plot the regions of attraction. The robust and nominal

209



9.5 Numerical Examples

cases are simulated using both symmetric and non-symmetric constraints. The nominal

dynamics are given by A = 0.5(A1 +A2) and B = 0.5(B1 +B2).

Example 1

Consider a linear uncertain system representing a double integrator with an uncertainty

polytope are defined by the following two vertices:

A =

[
1 ζ1

0 1

]
; B =

[
0

ζ2

]
; ζ1 = (0.1, 0.2),

ζ2 = (1, 1.5) Q = I,R = 0.1,mc = 2, γ = 1010. (9.18)

The system is subject to input and state symmetric constraints

− 1 ≤ uk ≤ 1; −10 ≤ xik ≤ 10; i = 1, 2; (9.19)

and non-symmetric constraints

− 1.5 ≤ uk ≤ 1; −15 ≤ xik ≤ 10; i = 1, 2; (9.20)

The alternative dynamics i.e. Laguerre and Kautz dynamics are selected in the vicinity

of closed loop stable pole(s). These dynamics are selected as a combination to define both

mode 1 and 2 respectively. Laguerre dynamics are p = (0.6, 0.7) and Kautz dynamics

are (a, b) = ((0.7, 0.1), (0.6, 0.1)).

Example 2

Consider another 2nd order (i.e. x ∈ R2) linear uncertain system representing an uncer-

tainty polytope are defined by the following two vertices:

A =

[
0.6 ζ1

1 1.4

]
; B =

[
0.2

ζ2

]
;C =

[
1 0

]
; ζ1 = (−0.4,−0.5),

ζ2 = (0.05, 0.5) Q = CTC,R = 1, γ = 1010,mc = 2. (9.21)

The system is subject to input and state symmetric constraints

− 1 ≤ uk ≤ 1; −10 ≤ xik ≤ 10; i = 1, 2; (9.22)
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and non symmetric constraints

− 1.5 ≤ uk ≤ 1; −15 ≤ xik ≤ 10; i = 1, 2; (9.23)

The alternative dynamics i.e. Laguerre and Kautz dynamics are selected similarly as

in the previous example: Laguerre dynamics are p = 0.6 and Kautz dynamics are

(a, b) = (0.6, 0.1).

Example 3

Consider a 3rd order (i.e. x ∈ R3) linear uncertain system representing an uncertainty

polytope are defined by the following two vertices:

A1 =

ζ1 −ζ2 −0.1080

2 0 0

0 ζ3 0

 ; B1 =

ζ40
0

 ;

ζ1 = (1.4, 1.5), ζ2 = (0.105, 0.205), ζ3 = (1, 1.5), ζ4 = (0.2, 0.3);

Q = I,R = 1, γ = 1010,mc = 3. (9.24)

The system is subject to input and state symmetric constraints

− 1 ≤ uk ≤ 1; −1 ≤ xik ≤ 1; i = 1, 2, 3; (9.25)

and non-symmetric constraints

− 0.5 ≤ uk ≤ 1; −1.5 ≤ xik ≤ 1; i = 1, 2, 3; (9.26)

The alternative dynamics are selected as: Laguerre dynamics are p = 0.5, Kautz dynamics

are (a, b) = (0.5, 0.1) and 3rd order generalised function dynamics are (a1, a2, a3) =

(0.5, 0.1, 0.1).

9.5.1 Robust triple mode MPC – using explicit selection of middle

mode

The middle mode within the robust triple mode MPC is introduced using GERPC

(RTMPC), Laguerre (LRTMPC), Kautz (KRTMPC)and generalised function dynamics

(GRTMPC). The selection of generalised function dynamics is made in line withmc ≤ nx.
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Figure 9.1: Regions of attraction for model (9.18) using Robust triple mode MPC,
nc = 2, mc = 2, γ = 1010 – for symmetric constraints

The simulations are done using middle mode same as the dual mode MPC and using the

d.o.f.. The d.o.f. within the robust triple MPC is introduced using ERPC, Laguerre and

Kautz function parameterisation for Algorithm 9.1. The results for all examples using

both symmetric and non-symmetric constraints are presented in Table 9.1. The d.o.f.

shown in Table 9.1 is the sum of mc and nc.

In Example 1, Figure 9.1, and 9.2 show the regions of attraction using GERPC, Kautz

and Laguerre function dynamics for mc = 2 and nc = 2 for uncertain case, whereas, the

region of attraction using mc = 2 are shown in Figure 9.3, and 9.4 for symmetric and

non-symmetric constraints respectively. The region of attraction for both Laguerre and

Kautz dynamics are similar in volume and larger than GERPC, utilising the different

number of inequalities as shown in Table 9.1.

For Example 2, Figure 9.5 and 9.6 show the region of attraction for symmetric and non-

symmetric constraints respectively using mc = 2 and nc = 2 for the uncertain case. The

Kautz function dynamic has a larger region of attraction than Laguerre and GERPC

dynamics as shown in Table 9.1 for both symmetric and non-symmetric constraints.

For Example 3, the middle mode dynamics are introduced using mc = 3 for GERPC,

Laguerre, Kautz and 3rd order generalised function dynamics and the d.o.f. in mode

1 is parameterised using Laguerre function dynamics for nc = 1. Laguerre, Kautz and

generalised function dynamics enlarge the region of attraction compared to GERPC for

both symmetric and non-symmetric constraints, whereas, Laguerre, Kautz and 3rd order

dynamics have similar MCAS volume with different number of inequalities as shown
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Figure 9.2: Regions of attraction for model (9.18) using Robust triple mode MPC,
nc = 2, mc = 2, γ = 1010 – for non-symmetric constraints

in Table 9.1. The Kautz and 3rd order dynamics have fewer inequalities compared to

Laguerre function. The higher order dynamics with similar region of attraction can be

used to simplify the computational burden with fewer inequalities as shown in Table 9.1.

The Laguerre, Kautz and generalised function dynamics used within the robust triple

mode MPC enlarge the region of attraction for both symmetric and non-symmetric con-

straints. From the simulation results, the selection of algorithms based solely on MCAS

volume indicated that the alternative parameterisation with dynamic equal to system

dimension is preferred in general.

9.5.2 Nominal triple mode MPC – using explicit selection of middle

mode

In nominal cases, the simulation results for all examples using symmetric and non-

symmetric constraints are shown in Table 9.2. Similar to the robust case, Laguerre, Kautz

and generalised function enlarge the region of attraction compared to GERPC for 2nd or-

der dynamic systems. For Example 3, TMPC (using GERPC), LTMPC (using Laguerre

dynamics), KTMPC (using Kautz dynamics) and GTMPC (using generalised dynam-

ics) has the similar region of attraction with different number of inequalities, whereas,

GTMPC with 3rd order generalised function dynamic has fewer inequalities than the

other algorithms.

Similarly for the robust case, the generalised function dynamics equal to the system
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Figure 9.3: Regions of attraction for model (9.18) using Robust triple mode MPC,
mc = 2, γ = 1010 – for symmetric constraints

dimension are preferred to enlarge the region of attraction with simplified computational

burden.

9.5.3 Robust triple mode MPC – using implicit selection of middle

mode

The ellipsoidal based approaches to define middle mode varying terminal control law

(i.e. uk = (−K + DH)xk) enlarge the region of attraction using generalised function

parameterisation. The middle mode dynamics are implicit within the prediction and not

present in the prediction set as fk only tend to zero asymptotically [188]. The simulation

results are shown in Table 9.3 and 9.4 for uncertain and nominal cases respectively.

In Example 1, Laguerre and Kautz function parameterisation enlarge the region of at-

traction significantly using both symmetric and non-symmetric constraints compared to

ERPC using nc = 2. For Example 2 and 3, there is not much difference between the

volume of MCAS using parameterised (i.e. Laguerre and Kautz function) compared to

ERPC using nc = 2, whereas in Example 3, the MCAS volume is similar for all algo-

rithms i.e. LR(E)TMPC (using Laguerre dynamics), KR(E)TMPC (using Kautz dynam-

ics), GR(E)TMPC (using generalised dynamics) and R(E)TMPC (using GERPC) using

nc = 3 with a different number of inequalities.
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Figure 9.4: Regions of attraction for model (9.18) using Robust triple mode MPC,
mc = 2, γ = 1010 – for non-symmetric constraints

The parameterised algorithms enlarge the region of attraction at the price of an increase

in the number of inequalities as shown in Table 9.3. It is interesting to observe from the

Table 9.3 that the Kautz function parameterisation has fewer inequalities than Laguerre

and generalised function parameterisation algorithms.

9.5.4 Nominal triple mode MPC – using implicit selection of middle

mode

The nominal triple mode MPC with the middle mode varying terminal control is simu-

lated using symmetric and non-symmetric constraints. The simulation results are com-

pared in Table 9.4 using MCAS volume and number of inequalities.

In Example 1, similarly to the uncertain cases, Laguerre and Kautz function parameteri-

sation enlarge the region of attraction with a slight increase in the number of inequalities

compared to ERPC using nc = 2, whereas in Example 2, there is slightly improvement

in the MCAS volume using parameterised algorithms compared to ERPC for both sym-

metric and non-symmetric constraints.

In Example 3, the simulation results are compared using both nc = 2 and nc = 3. For

nc = 2, there is a slight enlargement in the region of attraction using parameterised

algorithm, whereas for nc = 3, all algorithms have the similar MCAS volume with dif-
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Figure 9.5: Regions of attraction for model (9.21) using Robust triple mode MPC,
nc = 2, mc = 2, γ = 1010 – for symmetric constraints

ferent number of inequalities. The number of equalities using 3rd order function pa-

rameterisation is similar to the ERPC algorithm, so in this case ERPC is preferred over

parameterised algorithms.

9.5.5 Closed loop performance

A fair comparison of closed loop performance would require the same initial conditions

for all algorithms. To demonstrate how the proposed algorithm performs, the closed loop

performance of KRTMPC, LRTMPC, GERPC and ERPC is contrasted for 200 initial

conditions near the boundary of the region of attraction of ERPC. Figure 9.7 shows the

region of attractions and 200 feasible initial conditions which are contrasted for symmetric

constraints using (9.1) and (9.12).

For Example 1, Table 9.5 represents an average cost comparison for both nominal and

robust cases. LRTMPC enlarge the region of attraction with insignificant performance

degradation as compared to ERPC for nominal case, whereas an improvement in the

performance is obtained for robust cases. KRTMPC has an improvement in the closed

loop performance despite having a similar region of attraction as compared to LOMPC

for both nominal and robust cases.

Table 9.5 shows that in both cases, ERPC significantly outperforms GERPC for γ = 1010.

Tuning GERPC for better performance (reducing γ) gives small region of attraction, but
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Figure 9.6: Regions of attraction for model (9.21) using Robust triple mode MPC,
nc = 2, mc = 2, γ = 1010 – for non-symmetric constraints

the cost gets closer to the ERPC cost. KRTMPC and LRTMPC enlarge the region

of attraction as compared to GERPC (as shown in Figure 9.7) without insignificant

performance degradation.

9.5.6 Computational complexity

For completeness, it is important to compare the number of inequalities required to

describe the robust MCAS as the complexity of these set descriptions has an impact

on the online computational burden, the more inequalities the higher the computational

burden in solving the associated QP optimisation (this chapter does not discuss issues

linked to the exploitation of structure and efficient QP optimisers). The number of

inequalities to define the MCAS is compared with the number of d.o.f. in Table 9.1, 9.2,

9.3 and 9.4.

The alternative algorithms (i.e. using Laguerre, Kautz and generalised function dynam-

ics) enlarge the MCAS volume at the price of an increase in the number of constraints

in the online problem using an implicit or an explicit choice of triple mode MPC. The

higher order function dynamics can be used to reduce the number of inequalities, but it

cannot be proved generally.
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Table 9.1: Comparison of MCAS volume and number of inequalities for Robust triple
mode MPC

Symmetric constraints

Example 1 Example 2 Example 3
Algorithm vol. Ineq. d.o.f. vol. Ineq. d.o.f. vol. Ineq. d.o.f.

RTMPC 344.94 227 4 3.18 144 4 1.75 78 4
307.39 36 2 2.62 92 2 1.75 76 3

LRTMPC 380.00 130 4 6.87 190 4 1.78 150 4
338.24 88 2 2.64 98 2 1.75 142 3

KRTMPC 380.00 130 4 7.06 178 4 1.78 104 4
338.24 34 2 2.67 98 2 1.75 71 3

GRTMPC - - - - - - 1.78 104 4
- - - - - - 1.75 71 3

Non-symmetric constraints

Example 1 Example 2 Example 3
Algorithm vol. Ineq. d.o.f. vol. Ineq. d.o.f. vol. Ineq. d.o.f.

RTMPC 505.44 140 4 4.67 166 4 3.10 97 4
436.68 65 2 3.85 115 2 3.01 77 3

LRTMPC 592.50 122 4 9.15 198 4 3.47 138 4
456.22 89 2 3.87 111 2 3.01 76 3

KRTMPC 592.50 113 4 9.42 207 4 3.47 76 4
453.72 37 2 3.88 124 2 3.01 70 3

GRTMPC - - - - - - 3.47 76 4
- - - - - - 3.01 67 3

9.6 Conclusion

The main contribution of this chapter is to present the applicability of the generalised

functions to triple mode MPC. The generalised functions are embedded within the middle

mode of both nominal and robust triple mode MPC. These provide a pragmatic choice

to enlarge the region of attraction which simplifies the offline design. The generalised

function also used to parameterise the degree of freedom within the triple mode MPC.

The examples demonstrate that in many cases such a parameterisation may improve

the robust region of attraction but possibly with an increase in number of inequalities

required to describe the corresponding robust MCAS compared to a more conventional

robust approach. Consequently, the use of the generalised function parameterisations

within a robust triple mode MPC provides an avenue worth pursuing further.
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Table 9.2: Comparison of MCAS volume and number of inequalities for nominal
triple mode MPC

Symmetric constraints

Example 1 Example 2 Example 3
Algorithm vol. Ineq. d.o.f. vol. Ineq. d.o.f. vol. Ineq. d.o.f.

TMPC 351.34 62 4 12.92 22 4 2.50 22 4

LTMPC 380.99 110 4 364.83 28 4 2.50 28 4

KTMPC 385.00 32 4 400 22 4 2.50 20 4

GTMPC - - - - - - 2.50 20 4

Non-symmetric constraints

Example 1 Example 2 Example 3
Algorithm vol. Ineq. d.o.f. vol. Ineq. d.o.f. vol. Ineq. d.o.f.

TMPC 593.48 72 4 21.03 23 4 4.37 21 4

LTMPC 600.62 32 4 532.02 29 4 4.37 27 4

KTMPC 600.62 28 4 537.94 21 4 4.37 22 4

GTMPC - - - - - - 4.37 20 4

Table 9.3: Comparison of MCAS volume and number of inequalities for Generalised
function based robust triple mode MPC using an ellipsoidal set (GR(E)TMPC)

Symmetric constraints

Example 1 Example 2 Example 3
Algorithm vol. Ineq. d.o.f. vol. Ineq. d.o.f. vol. Ineq. d.o.f.

R(E)TMPC 152.21 24 2 2.77 58 2 1.77 28 2
1.78 56 3

LR(E)TMPC 359.08 50 2 3.1625 88 2 1.78 30 2
1.78 70 3

KR(E)TMPC 366.48 40 2 3.19 74 2 1.78 22 2
1.78 32 3

GR(E)TMPC - - - - - - 1.78 40 3

Non-symmetric constraints

Example 1 Example 2 Example 3
Algorithm vol. Ineq. d.o.f. vol. Ineq. d.o.f. vol. Ineq. d.o.f.

R(E)TMPC 237.54 23 2 3.67 67 2 3.44 25 2
3.47 48 3

LR(E)TMPC 557.61 50 2 4.65 93 2 3.47 30 2
3.47 68 3

KR(E)TMPC 565.82 40 2 4.67 90 2 3.47 24 2
3.47 34 3

GR(E)TMPC - - - - - - 3.47 54 3
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Table 9.4: Comparison of MCAS volume and number of inequalities for nominal
G(E)TMPC

Symmetric constraints

Example 1 Example 2 Example 3
Algorithm vol. Ineq. d.o.f. vol. Ineq. d.o.f. vol. Ineq. d.o.f.

(E)TMPC 194.83 14 2 6.70 16 2 2.53 16 2
2.56 18 3

L(E)TMPC 367.92 28 2 8.92 26 2 2.55 18 2
2.56 24 3

K(E)TMPC 374.83 24 2 9.03 24 2 2.56 16 2
2.56 18 3

G(E)TMPC - - - - - - 2.56 18 3

Non-symmetric constraints

Example 1 Example 2 Example 3
Algorithm vol. Ineq. d.o.f. vol. Ineq. d.o.f. vol. Ineq. d.o.f.

(E)TMPC 304.01 14 2 3.67 67 2 4.95 15 2
4.99 19 3

L(E)TMPC 572.17 29 2 4.65 93 2 4.99 19 2
5 27 3

K(E)TMPC 582.39 24 2 4.67 90 2 5 16 2
5 20 3

G(E)TMPC - - - - - - 5 19 3

Table 9.5: Comparison of average runtime cost for Example 1 using nc = 2

Robust triple MPC

Constraints ERPC GERPC γ = 102 GERPC γ = 1010 LRTMPC KRTMPC

Symmetric 267.25 367.47 432.25 263.98 251.11
Non-symmetric 315.29 435.73 514.44 311.58 296.04

Nominal triple MPC

Constraints ERPC GERPC γ = 102 GERPC γ = 1010 LTMPC KTMPC

Symmetric 263.62 281.34 431.70 271.76 257.34
Non-symmetric 313.14 334.52 511.01 320.28 305.35
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Figure 9.7: Regions of attraction for model (9.18) using Robust triple mode MPC,
mc = 2, γ = 1010 – for symmetric constraints
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Chapter 10

Conclusions and Future Work

This final chapter is organised as follows: Section 10.1 presents the conclusion of the

proposed work in this thesis. This is followed by the summary of the original contributions

in Section 10.2 and finishes with the proposed future work in Section 10.3.

10.1 Conclusions

MPC approaches have the advantage of naturally handling multivariable control prob-

lems and systems with complex dynamics. These approaches are powerful and robust

(more than the standard PID control), and easy to configure and tune. During the past

three decades, MPC has proved enormously successful in the industry, mainly because it

addresses the constraints in an systematic way. There are several successful theoretical

approaches but few of them are implemented commercially by the real time implemen-

tation. One important issue for real time implementation is to solve an optimisation

problem within a time determined by the sampling interval of the application and there-

fore computational efficiency of an algorithm becomes critical. A trade off has to be made

between performance, region of attraction and the computational burden when choosing

from the currently available algorithms. Due to the computationally expensive online

optimisation which is required, there has been some limitation to which processes MPC

has been used on.

Although computational speed and optimisation algorithms are continuously improv-

ing, traditionally such solvers have only been able to handle relatively low control input

update rates. However, explicit solutions for the constrained MPC problem formulation
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significantly increase the potential application area with low dimensional systems. There-

fore conventional MPC applications have been limited to situations which, in some sense,

justify the cost of such hardware and software and which allow a sufficient time span for

solving the overall optimisation problem. Moreover, the implementations via real time

solvers is not well suited for all situations which require portable and/or embedded con-

trol devices. Thus, there is a requirement to propose an algorithm which simplifies the

trade off between performance, region of attraction, and optimisation complexity. This

thesis explored alternative parameterisations to simplify this trade off and thus increase

the commercial implementation of MPC algorithms.

The first part of the thesis provides the theoretical foundations and a brief historical

perspective of MPC algorithms. Thereafter, it briefly discussed nonlinear MPC with

implementation limitations. Lack of robustness may compromise the performance of

real time implementations of MPC algorithms. A detailed overview of robustness within

MPC was presented. In real time implementation, two popular ways to implement the

MPC algorithms are explicit and implicit solutions of the finite horizon optimal control

problem. An overview of both explicit and implicit solutions was given with real time

implementation limitations. Subsequently, a quick overview of efficient algorithms along

with challenges for real time implementations was given in Chapter 2. After that Chapter

3 provided a common theoretical background necessary for arguments in this thesis. It

introduced a problem formulation, stability within the dual mode prediction, Laguerre

function parameterisation, and triple mode approaches using ellipsoidal and polytopic

sets. Thereafter robust MPC was formulated for both dual mode and triple mode ap-

proaches using a linear parameter varying system. Finally, it was highlighted that there

is a well understood trade off between region of attraction, performance and inexpensive

optimisation.

The second part of the thesis proposed an alternative parameterisation technique using

orthonormal basis functions for shaping the predicted input trajectories within MPC

and hence to give a more general class. The first contribution was to present the Kautz

function as an alternative way to parameterise the input predictions in dual mode MPC.

It was shown that Laguerre functions are a special case of Kautz functions. Laguerre

functions are generated from a 1st order dynamic (i.e. with a single pole) whereas

Kautz functions are generated from 2nd order dynamics (i.e. with two poles). It was

shown through examples (refer to Figure 4.4, 4.7, 4.9, 4.11 and Table 4.1) that feasibility

can be improved without too much degradation of the performance. However, of more

significance, Chapter 4 has tackled the question concerning the earlier proposed use of

Laguerre functions to parameterise the d.o.f. in the predictions and clearly demonstrated

that obvious alternatives do exist.
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The potential benefits of more flexible parameterisations were further explored in Chapter

5 to give a more general class of more flexible function parameterisation. The mathe-

matical representation of the generalisation network was formulated using a state space

model. Laguerre and Kautz functions were presented as a special case of generalised

functions. The proposed general class was aligned with the standard basis set for an

optimal MPC that can be formulated using the generalised function dynamics having all

poles at the origin (i.e. all poles equal to zero). It has been shown through numerical

examples (refer to Figure 5.1, 5.2, 5.3 and 5.4; and Table 5.3) that in many cases the

generalised function parameterisation may give significant feasibility benefits without too

much detriment to closed loop performance and while facilitating much lower dimensional

optimisations that is possible with a standard optimal MPC approach. While this bene-

fit cannot be proven generally and in some cases is small, there is sufficient evidence to

encourage users to try this out as, at times, the benefits can be significant.

GOMPC as a special case of GERPC in [25] gives the most flexibility in the shapes of

the input predictions then KOMPC, LOMPC and OMPC, but at the price of a more

involved prediction structure. Where less flexibility is required, a designer may choose

to use KOMPC, LOMPC or even OMPC. The key point is that this suite of param-

eterisations offers a systematic path to follow when for example, OMPC is not giving

adequate feasibility for reasonable values of d.o.f. or nc. In Chapter 6, two systematic

techniques were proposed for selecting the parameterisation dynamics based on optimal

selection and a pragmatic approach based on stable closed loop dynamics. An optimisa-

tion selection was proposed using a multiobjective optimisation based on trade off curves

between MCAS volumes, average performance and number of d.o.f.. It is recognised that

multiobjective optimisations can be very demanding, albeit offline. So, although these

offer good insight into the trade offs and thus what can be achieved, it may not be a useful

tool for the average engineer who wants more simplistic but effective design guidance. A

pragmatic and simple selection method was demonstrated to identify the parameterised

dynamics which, albeit with sub optimal parameter value(s). Further in Chapter 7, the

computational analysis was done for both implicit and explicit solutions using generalised

function parameterisation. It was shown that in the case of the same number of d.o.f. for

both explicit and implicit implementations, then one can find that OMPC may still be

competitive in terms of computational load but the feasibility is severely restricted. In

contrast, for the case of the global region of attraction, and using as many d.o.f. as are

required, then generalised function parameterisation approaches in many cases were com-

putationally efficient. It was concluded in the case of linear time invariant system using a

systematic selection of proposed generalised function parameterisation may simplify the

trade off within MPC algorithms.
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The third part extends the efficacy of generalised function parameterisation to robust

MPC algorithms. There is a typical trade off between computational burden and region

of attraction. In Chapter 8, generalised function parameterisation was proposed to en-

large the region of attraction while tackling the robust case, perhaps at some small loss

of optimality and without compromising the computational burden. Different flexible

function parameterisation including Laguerre, Kautz and higher order functions were

embedded within the robust MPC approach. A modified augmented formulation was

proposed to compute a robust control invariant set, which guaranteed recursive feasibil-

ity and convergence. Numerical examples demonstrate (refer to Table 8.1) that in many

cases where such parameterisation may enlarge the region of attraction, although with

a slight increase in the number of inequalities within a dual mode paradigm. The more

flexible function parameterisation was further extended in Chapter 9 to the triple mode

paradigm and showed similar benefits accrue. In triple mode approaches, the main mo-

tivation was to enlarge the region of attraction without detriment to performance and

preferably with little impact on the computational burden. The main weakness of the

conventional triple mode approaches was linked to the efficiency of the middle mode;

can this be computed implicitly or explicitly and offline optimisation for identifying a

suitable dynamic for middle mode may be overly complex. Laguerre and Kautz func-

tions were embedded and evaluated in the middle of both nominal and robust scenarios.

These provided a pragmatic choice to enlarge the region of attraction and simplifying

the offline computation. A combination of Laguerre and Kautz functions were utilised

to define the middle mode as well as parameterising the d.o.f.. The numerical examples

demonstrate (refer to Table 9.1 and 9.3) that in many cases such a parameterisation may

enlarge the region of attraction but possibly with an increase in number of inequalities

required to describe the corresponding robust maximal admissible set compared to a

more conventional robust approaches.

As a final remark this thesis proposed a general class of parameterisation functions to sim-

plify the trade off between region of attraction, performance and computational burden

consider for both nominal and uncertain cases. The higher order function parameterisa-

tion provides more flexibility to shape the input predictions, but at the price of increase

in number of d.o.f.. As there is a direct relationship between the order of generalised func-

tion dynamics and d.o.f. or nc within the MPC formulation. A systematic mechanism

was proposed for a designer to choose the generalised function dynamics or even OMPC.

The key point for the designer is to follow a systematic path to overcome the trade off

within the MPC algorithm. In this thesis the underlying MPC problem formulation was

considered and proposed generalised function parameterisation to enhance the real time

implementation using the advance implementation techniques.
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10.2 Original Contributions

The novelty and original contribution of the work presented in this thesis is to propose

efficiently parameterised solutions of predictive control. The specific contributions in this

work can be summarised as follows:

⋆ A novel parameterisation for the input sequences in optimal predictive control was

proposed. An improvement of the region of attraction of the algorithm was achieved

when Kautz functions were used in combination with LOMPC and OMPC with-

out too much detriment to performance and retaining fundamental properties of

the OMPC algorithm such as stability and recursive feasibility. It was further ex-

plored and a general class of function parameterisation was proposed. A generalised

function based MPC algorithm was formulated with guaranteed convergence and

recursive feasibility. It was also shown that the OMPC algorithm can be formu-

lated using general class function parameterisation with all dynamic poles place

at the origin. The generalised function parameterisation accrues benefits without

increasing nc which simplifies the computational burden.

⋆ Two novel techniques for selecting the parameterisation dynamics of the general class

were proposed based on multiobjective optimisation and a pragmatic choice based

on a stable terminal mode control law. These approaches provided a good insight

into the choices available. The multiobjective optimisation was formulated using

trade off between region of attraction, performance and the number of d.o.f.. Where

such an offline analysis is not realistic in some applications, a pragmatic and simple

selection method was demonstrated to be effective.

⋆ The generalised functions were used to parameterise the input sequences in OMPC to

achieve an approximately global region of attraction, there was reduction in number

of inequalities to represent the region of attraction, the number of regions (and

therefore computational complexity and memory storage) using multiparametric

QP and also the computational time using active set methods.

⋆ The parameterised solutions were extended to robust MPC algorithms. A robust

control invariant set was proposed using the generalised function parameterisation.

The generalised function parameterisation was embedded within the dual mode

robust MPC approach using the proposed robust invariant set. The proposed al-

gorithm provided guaranteed convergence and recursive feasibility. It was shown

that the proposed algorithm in many cases may improve the region of attraction

without any significant change to the number of inequalities required to describe

the robust control invariant set which simplifies the online computations.
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⋆ Finally, the parameterised solution was extended to triple mode approaches to simplify

the offline computations. The first novelty was to propose explicit choices of the

middle mode using generalised functions as a pragmatic choice without demanding

offline computations. The second novel contribution was to parameterise the input

sequences for both explicit and implicit choices of the middle mode within triple

mode MPC algorithms.

10.3 Directions for Future Research

There are a number of research directions that stem from the work described in this

thesis. These future areas of research are recommended below

1. The order of general class function dynamics has a direct relationship with the

number of d.o.f. or nc. In most of the cases, the higher order function parameteri-

sation improves the trade off within OMPC as it was observed from the simulation

results (in Chapter 5). An interesting future direction is to formulate HG using

higher order function parameterisation without increasing nc.

2. In Chapter 6, there is a limitation on the comparison of closed loop performance

due to the infeasibility of different algorithms, in the author’s view further work

need to be done to propose a robust scenario to overcome this and thus improve

the multiobjective optimisation.

3. The proposed multiobjective optimisation can include further objectives e.g. order

of parameterisation dynamics, number of inequalities etc.

4. Another interesting future direction is to optimise the parameterised matrix HG

directly using multiobjective optimisation.

5. The proposed multi-objective optimisation can be simplified to single objective

optimisation using a prior specification of β and γ.

6. There is a need to consider the associated quadratic programming problems in

more detail and in particular to consider to what extent the general class of param-

eterisations either restrict or enable highly structured optimisations which thus are

amenable to efficient coding; it is known that OMPC does have a good structure

that can be exploited.

7. This thesis considers parameter uncertainty only for robustness in chapter 8 and 9.

Some interesting future research directions are the extension of the algorithms to

systems subject to bounded disturbances using augmented dynamics.
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8. In general, introducing robustness within the MPC problem formulation is com-

putationally too demanding for practical implementation. It will be an interest-

ing future direction to consider the computational efficiency for multiparametric

quadratic programming (mp-QP) solutions to propose algorithms using a general

class of function parameterisation. This can further extend to a systematic selec-

tion of generalised function parameterisation based on the region of attraction and

the resulting number of regions for parametric solution.

9. It is strongly recommended to test all the proposed algorithms in standard hard-

ware.
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Appendix A

State space form of generalised

functions

This appendix presents the state space form of Kautz and generalised function.

A.1 State space form of Kautz function

The Kautz network is defined as follows

ki(z) =
√
(1− a2)(1− b2)

(z−1 − a)i−1(z−1 − b)i−1

(1− az−1)i(1− bz−1)i
; (A.1)

0 ≤ a < 1; 0 ≤ b < 1

where ‘a’ and ‘b’ are poles of the discrete-time Kautz network. However, the inverse

z-transform of the Kautz networks do not lead to a compact expression of the Kautz

functions in the time-domain so state-space representation is preferred and derived briefly.
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A.1 State space form of Kautz function

The z-transforms of the discrete-time Kautz functions are written as

k0(z) =

√
(1− a2)(1− b2)

1− az−1

k1(z) =
1

(1− bz−1)
k0(z)

k2(z) =
z−1 − a

(1− az−1)
k1(z)

...

kN (z) =
(z−1 − b)

(1− bz−1)
kN−1(z) (A.2)

where 0 ≤ (a, b) < 1 for stability of the functions.

The discrete time network (A.2) can be expressed in difference equation as

k0(n) = ak0(n− 1) +
√

(1− a2)(1− b2)

k1(n) = bk1(n− 1) +
√

(1− a2)(1− b2)

k2(n) = ak2(n− 1) + (1− ab)k1(n− 1)− a
√

(1− a2)(1− b2)

k3(n) = bk3(n− 1) + (1− ab)k2(n− 1)− b(1− ab)k1(n− 1) + ab
√

(1− a2)(1− b2)

k4(n) = ak4(n− 1) + (1− ab)k3(n− 1)− a(1− ab)k2(n− 1) + ab(1− ab)k1(n− 1)

− a2b
√

(1− a2)(1− b2)

k5(n) = bk5(n− 1) + (1− ab)k4(n− 1)− b(1− ab)k3(n− 1) + ab(1− ab)k2(n− 1)

− ab2(1− ab)k1(n− 1) + a2b2
√

(1− a2)(1− b2)

k6(n) = ak6(n− 1) + (1− ab)k5(n− 1)− b(1− ab)k4(n− 1) + ab(1− ab)k3(n− 1)

− ab2(1− ab)k2(n− 1) + a2b2(1− ab)k1(n− 1)− a3b2
√

(1− a2)(1− b2) (A.3)

...
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In state space form

Kn =



k1(n)

k2(n)

k3(n)

k4(n)

k5(n)

k6(n)
...


=



b 0 0 0 0 0

(1− ab) a 0 0 0 0

−b(1− ab) (1− ab) b 0 0 0

ab(1− ab) −b(1− ab) (1− ab) a 0 0

−ab2(1− ab) ab(1− ab) −b(1− ab) (1− ab) b 0

a2b2(1− ab) −ab2(1− ab) ab(1− ab) −b(1− ab) (1− ab) a
...

...
...

...
...

...


︸ ︷︷ ︸

AK

Kn−1

K0 =
√

(1− a2)(1− b2)



1

−a
ab

−a2b
a2b2

−a3b2
...


(A.4)

A.2 State space form of generalised function

The generalised network for example, in case of 4th order orthonormal basis function is

given by

gi(z) =
√

(1− a2i ) . . . (1− a24)
(z−1 − a1)

i−1 . . . (z−1 − a4)
i−1

(1− a1z−1)i . . . (1− a4z−1)i
(A.5)

0 ≤ aj < 1, j = 1, . . . , 4,
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The z-transforms of the discrete-time Kautz functions are written as

g0(z) =

√
(1− a21) . . . (1− a24)

1− a1z−1

g1(z) =
1

(1− a2z−1)
g0(z)

g2(z) =
1

(1− a3z−1)
g1(z)

g3(z) =
1

(1− a4z−1)
g2(z)

g4(z) =
z−1 − a1

(1− a1z−1)
g3(z)

g5(z) =
z−1 − a2

(1− a2z−1)
g4(z)

g6(z) =
z−1 − a3

(1− a3z−1)
g5(z)

...

gN (z) =
(z−1 − a1)

(1− a1z−1)
gN−1(z) (A.6)

The discrete time network (A.6) can be expressed in difference equation as

g0(n) =
√

(1− a21) . . . (1− a24)

g1(n) = a2g1(n− 1) +
√

(1− a21) . . . (1− a24)

g2(n) = a3g2(n− 1) + a2g1(n− 1) +
√

(1− a21) . . . (1− a24)

g3(n) = a4g3(n− 1) + a3g2(n− 1) + a2g1(n− 1) +
√

(1− a21) . . . (1− a24)

g4(n) = a1g4(n− 1) + (1− a1a4)g3(n− 1)− a1a3g2(n− 1)− a1a2g1(n− 1)

− a1

√
(1− a21) . . . (1− a24)

g5(n) = a2g5(n− 1) + (1− a1a2)g4(n− 1)− a2(1− a1a4)g3(n− 1) + a1a2a3g2(n− 1)

+ ab2g1(n− 1) + a1a2

√
(1− a21) . . . (1− a24)

g6(n) = a3g6(n− 1) + (1− a2a3)g5(n− 1)− a3(1− a1a2)g4(n− 1) + a2a3(1− a1a4)g3(n− 1)

− a1a2a
2
3g2(n− 1)− a1a

2
2a3g1(n− 1)− a1a2a3

√
(1− a21) . . . (1− a24) (A.7)

...
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In state space form

Gn =



g1(n)

g2(n)

g3(n)

g4(n)

g5(n)

g6(n)
...


=



a2 0 0 0 0 0

a2 a3 0 0 0 0

a2 a3 a4 0 0 0

−a1a2 −a1a3 (1− a1a4) a1 0 0

a1a
2
2 a1a2a3 −a2(1− a1a4) (1− a1a2) a2 0

−a1a22a3 −a1a2a23 a2a3(1− a1a4) −a3(1− a1a2) (1− a1a2) a3
...

...
...

...
...

...


︸ ︷︷ ︸

AG

Gn−1

G0 =
√

(1− a21) . . . (1− a24)



1

1

1

−a1
a1a2

−a1a2a3
...


(A.8)
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