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Abstract 

 

The overall aim of the research work reported in this Thesis was to study a variety of 

aspects of dog faeces in relation to public health, their fertilizer potential and possibility 

that such faeces might be remediated using larvae, ultimately to provide a source of 

biodiesel. The results can be summarized as follows: 

 1) Dog faeces were shown to be source of pathogenic bacteria, notably Escherichia. 

coli and Salmonella. These bacteria were shown to be transferred to the soil of a local 

playing field by direct, in situ, transfer from dog faeces undergoing weathering. E. coli 

and Salmonella enterica were isolated from all four sites while no such isolates were 

obtained from the fifth location which was uncontaminated with dog faeces 

2) It was shown here that “common or garden” slugs can transfer potentially pathogenic 

bacteria from dog faeces to lettuce.  

3) The feeding of Black Soldier Fly Larvae on faeces led to a statistically significant 

increase in the number of bacteria inside the BSFL gut and the same trend was seen in 

relation to dog faeces fed Fruit Beetle Larvae. This trend of increasing bacterial 

numbers in larvae fed on dog faeces is particularly worrying in relation to the potential 

feeding of these larvae to animals- post exposure to faeces.  

4) Dog faeces were shown to have potential inherent fertilizer content; the nutrients 

present being released over a time period mimicking the natural weathering of dog 

faeces in the environment.  

5)  As a generalization, the addition of both types of larvae to dog faeces significantly 

reduced the concentration of indigenous plant nutrients over the entire four week 

incubation period; exceptions to this were nitrate and phosphate concentrations in BSFL 

treated faeces, where significant increases were seen at week 4 and 3 respectively and in 

faeces treated with FBL, where ammonium concentrations were significantly increased 

at weeks 2-4, and phosphate at week 4. While the addition of both larvae therefore 
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initially decreased levels of indigenous plant nutrients there was a trend in some of the 

nutrients to increase the longer the incubation went on. This suggests that perhaps a 

longer term exposure of dog faeces to the two larvae might have lead to increase in 

ammonium, nitrate, sulphate and phosphate concentrations. The addition of ammonium, 

elemental sulphur an insoluble phosphate to dog faeces which had been modified by the 

two larvae led to significant increases in nitrate, sulphate and plant-available phosphate, 

results which shows that that dog faeces contains the indigenous microflora required for 

the transformation of these amendments (which simulate fertilizer addition). The results 

suggest the possibility that larval modified dog faeces could be used as compost 

additive fertilizer, or perhaps even be used as an agricultural soil fertilizer.   

6) The potential for using fly larvae for the bioremediation of dog faeces was 

investigated. Black Soldier Fly (BSFL) and Fruit Beetle (FBL) Fly larvae were shown 

to dramatically improve the physical nature of canine faeces, even after only a short 

exposure period, giving a bioremediated product which is markedly improved in terms 

of texture, reduced odour and overall reduced offensiveness. The bioremediated dog 

faeces product was also found to be suitable as potting compost when “diluted” with 

proprietary potting compost.  

7) The haemolymph and total body extracts of BSFL and FBL were shown to be 

antibacterial.  

 8) The potential for using dog faeces and dog faeces which had been treated with BSFL 

and FB as a source of biodiesel was determined. It was shown that potential biodiesel 

precursors) (mainly fatty acids) were present both in the raw dog faeces and in faeces 

which were treated with the two different larvae.  

9) The number of bacteria present in dog faeces disposed of in plastic bags dramatically 

increased over exposure to the UK summer, when temperatures were recorded between 

10-27
0
C.  
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1.1. The environmental problem of canine faeces  

 

     The Dog (Canis lupus familiaris) is a member of the Canidae family of the 

mammalian order "Carnivora. Dogs have been adapted for economic usefulness and are 

loyal and generally protective of humans, being used as guide dogs for the blind and 

disabled; their keen sense of smell is also used to detect bombs or drugs (Kim, 2008; 

Murray, 2007). In contrast, dogs are a source of danger to humans through their bites, 

and because they transmit zoonotic diseases such as rabies, toxoplasmosis, 

echinococcosis, trypanosomiasis, filariasis, spirocerosis, hydatidosis, larva migrans etc. 

(WHO, 1959; Oduyemi and Olayemi, 1977; Hill et al., 1985) resulting in death. Canine 

waste which is not removed from the local environment due to the irresponsible 

behaviour of dog owners may represent a source of potential pathogens. Pathogenic 

bacteria can survive in canine faeces for a long period and can be spread by wind and 

vehicular traffic. Faeces can also be carried inside dwellings via contaminated shoes 

(Tarsitano et al., 2010). The interactions between plants and other animals including 

invertebrates in the field may also be an important means of transmission of pathogenic 

bacteria to crops.    

     Contamination of the urban environment by dog faeces continues to be a growing 

problem around the world. While in the UK societal changes in thinking about the dog 

dirt problem has led more people to pick up the waste products of their pets, our streets 

continue to be polluted with dog faeces. 

 

1.2. Microbiology of dog faeces 

 

     Dog faeces present two major problems. Firstly they smell and are generally 

offensive, secondly, and more importantly, they spread microbial and parasitic diseases. 

Since dog faeces often contaminate parks and playing fields, children are likely to be 
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frequently exposed to the likelihood of catching such damaging and potentially fatal 

infections. The disease spread to humans by dog faeces include: 

Campylobacteriosis and Yersiniosis, dogs which eat raw pork are infected with 

Yersinia enterocolitica which can cause enteritis in dogs and cats; the organism is also 

shed in the faeces for several weeks after infection, even in the absence of clear 

symptoms (Fredriksson-Ahomaa, et al., 2001), Dogs may therefore be an obvious 

source of human infection and this  has shown to be high amongst children under six 

years of age, so dog faeces may provide a transmission link for pathogenic bacteria 

between pigs and young children. Campylobacteriosis is a bacterial infection causing 

diarrhoea in humans. Wright et al. (1982) found that for dog faeces collected in urban 

parks Campylobacter were isolated from 260 collected samples, while Salmonella 

species were found in only three. Most of the Campylobacter were isolated during the 

warm months of June and July, i.e. they were present when children are most likely to 

be at play outside. 

Salmonellosis, represent a very large group of rod-shaped, gram negative bacteria 

including more than 2000 known serotypes which belong to the family of 

Enterobacteriaceae. All these serotypes are human pathogens and can cause various 

symptoms from mild gastroenteritis to severe illness or death. In 1890 more than 30 

people out of every 100,000 in the United State died of typhoid caused by S. typhi. 

Salmonella can cause food poisoning from eggs, pork, chicken and beef (Jacquelyn, 

1999; Blancou et al., 2005) and is the most common bacterial infection transmitted to 

humans, symptoms include, fever, muscle aches and vomiting and diarrhoea.  

Escherichia coli is a gram-negative rod of the family Enterobacteriaceae and is found 

in the gastrointestinal of all warm-blooded animals. All strains of E. coli are spread by 

the faecal-oral transmission route. Many strains can cause gastroenteritis; among these 
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are the enterotoxgenic (ETEC), enteropathogenic (EPEC), enteroinvasive (EIEL), or 

enterohemorragic (EHEC) E. coli. (Maier et al., 2009). 

Shigella flexneri is an intestinal bacterium responsible for severe diarrhoea in people 

and non-human primates (monkeys); it is also found in dogs (Wang et al. 1996). About 

25,000 cases are reported in people in the United States every year. Many monkeys 

carry this bacterium without symptoms, while people are also commonly carriers. Small 

children at child care facilities and people who handle monkeys are most at risk. The 

diarrhoea produced in people exposed to human or monkey waste is never life 

threatening but during the two to three weeks the diarrhoea lasts, the victim is quite ill. 

The chief danger from this disease is dehydration. 

Streptococcus and Staphylococci these bacteria are found on all animals that typically 

associate with humans. In the great majority of cases they cause no disease in the 

animal. However, in pets, eye infections are occasionally associated with Streptococci 

and skin infections with Staphylococci. Both bacteria can spread from pets to humans 

on contaminated hands and objects. Infections are generally limited to the skin and eyes. 

Faecal coliforms cause dysentery herpes, typhoid fever and ear infections in humans. 

Not surprisingly these bacteria are well represented in dog and other animal faeces 

(Whitlock et al., 2002). 

 

1.3. Parasites and diseases associated with canine faeces  

 

1.3.1. Toxoicariasis  

 

    Toxoicariasis is the main medical problem relating to dog faeces. It is an infection of 

the round worm Toxocara canis (Gillespie, 1988) and is a zoonotic disease spread via 

unwashed vegetables and dog faeces (Karadam et al., 2008); young people are 

particularly at risk due to their weaker immune systems and because of their likely 

increased exposure by ingesting the eggs (Thompson et al., 1986). Puppies, which are a 
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major source of environmental contamination, can pass up to 15,000 eggs per gram of 

faeces. Each T. canis female can lay up to 700 eggs a day and these are excreted when 

the dog defecates; they can survive in soil for as long as three years. After two to three 

weeks of warm weather the eggs develop into an embryo state, containing larvae which 

are infective to dogs and people. The larvae attempt to migrate throughout the human 

body like they would do in a dog's, but the human body regards them as foreign and 

reacts leading to tissue damage  (Overgaauw and Nederland, 1997). Two types of 

toxocariasis exist, namely: visceral larva migrans (VLM) and ocular larva migrans 

(OLM). In VLM, the larvae reach the liver, causing inflammation and symptoms 

including abdominal pain and pyrexia; most people however, recover spontaneously. 

OLM occurs when a migrating larva reaches the eye where it causes the formation of a 

granuloma on the retina which leads to significant visual impairment and in severe 

cases, blindness; around 12 new cases of OLM are diagnosed annually in the UK 

(Despommier, 2003). 

1.3.2. Toxoplasma contamination of dog faeces 

 

     Toxoplasma gondii is an obligate intracellular protozoan with worldwide distribution 

(Frenkel 1990, Wallace, 1973), where it can cause blindness in humans. It is found in 

the Americas, including southern Mexico, Central America, South America, and the 

West Indies. Infections with Toxoplasma are very common in Panama, although most 

infections are asymptomatic. Antibodies titres to Toxoplasma are high in children, 

notably where cats and dogs are numerous, sanitation is bad and there is high shade and 

high humidity. Cats are the main hosts of Toxoplasma, but the parasite is also found in 

dogs (Barutzki and Schaper, 2003). Pets become infected by consuming rodents and 

birds, which are intermediate hosts that contain cysts (bradyzoites) that help to continue 

the chronic infection. When pets eat infected animals, the bradyzoites develop into the 
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enteroepithelial stages and the shedding of oocysts in the cat or dog faeces. The oocysts 

then sporulate in the soil and then lie dormant from up to weeks or months, especially 

when in moist, shaded areas. Sporozoites within the oocysts are then infectious to 

humans and other mammals after being passed by hand to mouth, after which 

tachyzoites and bradyzoites (multiplying asexual stage) continue to induce active 

infection. Dogs have only recently been considered a factor in the spread of 

toxoplasmosis (Frenkel, 1996). Interestingly, by eating or rolling in cat faeces, dogs 

probably play an important role in the mechanical transmission of Toxoplasma oocysts 

(Lindsay et al., 1997) and it is likely that dogs excrete oocysts near human habitats, 

promoting Toxoplasma transmission to humans.  

 

1.3.3. Other protozoan livestock parasite disease related to dog faeces 

 

     There is a growing link between two specific protozoan diseases in livestock and the 

fact that faeces, from infected dogs, is increasingly found on grazing land (Dubey and 

Lindsay, 2006). The two main diseases in question are:  

 

1.3.3.1. Neosporosis 

 

     This disease caused by the parasite Neospora caninum is responsible for the highest 

rate of all cattle abortions reported in the UK. Once this disease occurs in cattle it can 

remain in the herd as a result of vertical transmission of the parasite between cows and 

their calves. Neospora eggs are produced by infected dogs and then excreted into their 

faeces. Cattle then become infected when they eat food or drink water contaminated 

with the eggs. Infection in cattle is common and generally ill effects are not clear, either 

for the cow or the calf (Williams et al., 2000) The disease becomes obvious when 

Neospora multiplies in the cells of the developing calf and its placenta and causes 

damage sufficient to bring about abortion or stillbirth. Control of Neospora abortion is 

difficult and there are no drugs available at present to control this disease in cattle or to 
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cure the infected animals. Similarly, no vaccine is currently licensed in the UK to 

prevent cattle-neosporosis. Fortunately, current evidence shows that Neospora is not a 

major problem for humans . (Anderson et al., 1995) 

    The vertical transmission of neosporosis is a main cause of long standing infection 

within a herd, although spread of the disease between females which are not related 

only occurs where a dog acts as host to the parasite. The parasite can be picked up by 

dogs through the consumption of contaminated livestock material, including placentas 

from newly calved cows, or by being fed contaminated raw meat, faeces from infected 

dogs then contaminate pasture and also cattle feed, water or bedding (Anderson et al., 

1997); (Davison et al., 1999).                                                          

   Only a small number of infected dogs develop the disease, which produces 

progressive lameness and paralysis in pups younger than 6 months of age. Infected 

bitches can pass the parasite to their young during pregnancy by transplacental 

infection. If dogs do develop symptoms, then the results are usually fatal or lead to 

euthanasia (Reichel et al., 2007). This disease is very important since it impacts farm 

economics due to infected cows being more likely to abort and the occurrence of 

premature culling and reduced milk yields. Since there is no way to prevent (through 

vaccination), or an effective treatment of neosporosis, a farmer‟s main defence against 

the disease is to take action against any likely Neospora contamination (Dubey, 2003). 

  1.3.3.2. Sarcocystosis 

     This is a disease which is also caused by a parasite, in this case Sarcocystis spp, 

which employs a number of intermediate hosts, including dogs. Sarcocystis eggs are 

produced by infected carnivores and are excreted in their faeces, and sheep become 

infected when they eat food, or drink water contaminated with Sarcocystis eggs. In 

many cases, infected livestock show no disease symptoms (Traub et al., 2002). The 
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disease can be transmitted from ewe to lamb during pregnancy, but vertical transmission 

is not believed to be important. Dogs can pick up the parasite through the ingestion of 

contaminated material from carcasses, or by consuming contaminated raw sheep meat. 

Faeces from infected dogs can also contaminate pasture as well as animal feed, water or 

bedding. In contrast to neosporosis, no transmission of the Sarcocystis parasite occurs 

between bitch and puppy. The link between infected dogs and sarcocystosis in sheep is 

compelling, but the disease is generally regarded as less of a problem than neosporosis. 

No vaccine is available against sarcocystosis in sheep and although there are some 

treatments available, the high cost and practicality of administration of these prevents 

their spread use. As with neosporosis, the most feasible option for the farmer is to 

reduce infection risks. In addition to, round worms, giardiosis, tuberculosis, 

gastroenteritis and cryptosporidiosis and Cystercercosis, is a human disease involving 

larval tapeworms.   Although parasitic infections are important in relation to dog faeces, 

no attempt was made here in this thesis to study these infectious agents . (Dubey and 

Williams, 1980) 

1.4. Chemical composition of dog faeces 

 

     Dog faeces (and those of cats) contains about 0.7% nitrogen, 0.25% phosphate and 

0.02% potasium. As a result, dog faeces are not a particularly good plant fertilizer; they 

are offensive and often oderous and contain pathogens, as well as Toxoplasma. In it its 

unweathered state therefore dog faeces are not a useful, let alone, ideal organic 

fertilizer. 

     Currently most dog waste is allowed to breakdown naturally in the environment 

where it is deposited, and where collected it is usually incinerated. Dog faeces are not 

ideal additives to composting plants and as a result, their addition to municipal 

composters is generally avoided. Similarly, because of their low nutrient and high 
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pathogen content they are not regarded as ideal or safe fertilizers for agricultural, garden 

or allotment use. 

    The problems relating to dog faeces and the environmental pollution they cause has 

been largely overlooked and surprisingly little research work has been published in this 

area.  

     Here are some facts about dog ownership and the resultant waste problem relating to 

the UK: There are around 24 million UK households and, in 2002, the number of 

households owning dogs was 4.8 million. Some 21% of households with dogs have 

more than one. There are around 6.8 million dogs in the UK, the highest levels of dog 

ownership being among the 45 to 54 year-old age group - around 30%. It has been 

calculated that the UK dog population produces some 900 tonnes of faeces every day 

and over a ten-year lifetime, a dog can produce up to half a ton of faeces. 

     There are an estimated 41 million and 60.7 million dogs in Europe and the USA 

respectively. Australia has one of the highest rates of pet ownership in the world, with 

almost 36% of Australian households having a dog (Australian Companion Animal 

Council 2010). 

     In the UK, the legal position relating to dog fouling is covered by the following 

statutes: 

     The Dog (Fouling of Land) Act 1996 in England and Wales. The Dog Fouling 

(Scotland) Act 2003. The Litter (Animal Droppings) Order 1991 - Made under section 

84 (14) of the Environmental Protection Act 1990 and Statutory Instruments Numbers 

2762 and 2763.DoE Circular No 18/96 (Welsh Office No 54/96). 

     These Acts require that the owner should immediately clean up after his or her dog, 

should it foul what is termed 'designated land'. Designated areas are usually defined as 

places where dog faeces have the potential to cause a health hazard to people, including 

children's play parks, public greens and parks, residential areas, cycle paths and 

http://www.hmso.gov.uk/acts/acts1996/1996020.htm
http://www.scotland-legislation.hmso.gov.uk/legislation/scotland/acts2003/20030012.htm
http://www.scotland-legislation.hmso.gov.uk/legislation/scotland/acts2003/20030012.htm
http://www.legislation.hmso.gov.uk/si/si1991/Uksi_19910961_en_1.htm
http://www.hmso.gov.uk/acts/acts1990/Ukpga_19900043_en_1.htm
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walkways etc. Individual local authorities can use these Acts as a basis to create bylaws 

(which allow for instant fixed-penalty fines) and nominate the designated areas in the 

appropriate borough. The fines begin at around £40, rising to a maximum of £1,000. 

Dog wardens may be employed to patrol these areas and catch those irresponsible dog 

owners who fail to remove their dog‟s faeces. 

    The Government recommends that the dog faeces-related disease problem can be 

reduced by the following actions:  

a) Poop scooping on each occasion your dog makes a mess.  

b) Dogs should be wormed regularly-every three to six months, using a wormer 

recommended by a veterinary surgeon. 

c) Dogs should be exercised in dedicated areas of parks where available. 

d) Dogs should be discouraged from parks having children's playgrounds. 

e) Pregnant women and individuals who suffer from impaired immunity should use 

additional extra precautions when cleaning up the faeces, for example by wearing 

disposable gloves. 

   

1.5. Transmission of pathogenic bacteria from dog faeces to human food 

 

      Because of immunization and the use of  litter boxes and flea treatments, the transfer 

of pet diseases to humans has greatly been reduced over the years, but  still some dog 

related diseases infect people; most troubling of all when people are infected by their 

pet, they usually are unaware of it. Besides the risk of bites, scratches and allergies, 

several infections can be transmitted to the human as zoonosis. These pathogenics have 

an oral-faecal transmission cycle and humans can be infected either by faecal 

contamination of food, water or the environment (gardens, sandpits and playgrounds) or 

by direct contact (Overgaauw et al., 2009). Outbreaks of diseases caused by infective 

bacteria as well as parasites have been documented to occur as a result of consumption 
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of contaminated salad and vegetables. The studies described in this Thesis relating to 

this problem focus in the potential consumption of contaminated lettuce. Sources of pre-

harvest contamination of produce include manure, from livestock operations, and 

domestic animals (Beuchat, 2006). 

     Diseases caused by pathogenic bacteria, such as Salmonellosis and 

Campylobacteriosis are the most frequently reported zoonotic diseases transmitted from 

animals to humans via food (Norrung and Buncic, 2007). Infections with verotoxin-

producing E. coli O157 are comparably less frequent but of considerable public health 

concern as they are associated with life-threatening human diseases such as 

haemorrhagic colitis (HC) and haemolytic uraemic syndrome (HUS) (Roldgaard et al., 

2004). Although a variety of foods may serve as vectors of food borne illness, the farm 

is the original source of all of these pathogens and there is strong association between 

prevalence in food production and other animals and post-harvest prevalence on 

carcasses (Elder et al., 2000). 

 

1.6. Slugs and snails as intermediate host-vectors of pathogenic bacteria  

 

     Slugs (Mollusca: Gastropoda) are a major pest of fruits and vegetables (Godan, 

1983; South, 1992), with the Grey Garden Slug Deroceras reticulatum 

(Stylommatophora Agrioimacidae) being the most widespread and most serious pest 

(Wilson et al., 1993). Slugs, by serving as intermediate hosts for many bacterial 

diseases mainly found in animals faeces (South, 1992), present a risk to plants, animals 

and humans. Slugs ingest soil bacteria during feeding and as a result, they become hosts 

of many bacteria including pathogens like such as E. coli O157. These can be picked up 

from dog faeces or from animal faeces which have been spread in open fields (Figure 

1.1) (Walker et al., 1999). 

     Emma et al. (2006) conducted research on the Yellow Slug (Limax flavus) and the 

Great Gray Slug (Limax maximus), and confirmed that both species can carry E. coli 
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O157, both on the surface and internally. The persistent slug species Deroceras 

reticulatum can carry E. coli on its external surface for 14 days (Emma et al., 2006). 

Slugs which ingest E. coli also pass viable bacteria to their faeces and E. coli was found 

to persist for more than 3 weeks in excreted slug faeces (Hogan, 1985). In a similar 

study Emma et al. (2006) showed that E. coli, through contact and/or ingestion can 

survive for many days both internally and externally. 

                   

 

Fig 1. 1: Anticipated transfer pathways of E. coli O157 by slugs from an environmental 

source to vegetable crops. 

 

1.7. Waste composting   

 

      Increases in the human population and the expansion of large cities have lead to 

marked increase in the volume of all kinds of waste. The search for modern approaches 

to waste management, notably composting has recently gained momentum (Pascual et 

al. 1997;   Bhattacharyya et al. 2001a and b; Smith and Hughes 2004). Composting is 

now often a preferred approach to waste management (Lee et al. 2004; Sharholy et al. 

2008) and is defined as the biological oxidative decomposition of organic matter 
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(Stoffella and Kahn 2001) based on the catalytic activity of environmental organisms 

which are responsible for organic matter decomposition. Under optimum conditions, 

three stages of traditional composting have been identified: 1) mesophilic, or moderate 

temperature phase; 2) thermophilic, or high temperature phase and 3) cooling or 

maturing phase (Kostov et al. 1996; Trautmann and Olynciw 2000). The duration of 

these phases relates to the type of organic matter under compost and its efficiency,     

which is largely determined by aeration and humidity (McKinley and Vestal, 1985; 

Strom 1985 , Strom et al. 1983; Butler et al. 2001).  

 

1.8. Composting and recycling of dogs waste  

 

     The risk of canine waste accumulation in the urban environment and agro-ecosystem 

is an increasing problem. Recycling is a sustainable approach for disposing of waste, 

and composting can be an important component of recycling approaches. The microbes 

involved oxidize carbon as an energy source for growth and take in nitrogen for protein 

synthesis (Taylor, 2004). The correct carbon to nitrogen ratio in composting systems is 

required for the efficient decomposition of wet dog waste  contains 0.7% nitrogen (N), 

0.25% phosphate,  compared to wet cattle manure, dog waste which contains 40% more 

nitrogen, the same amount of phosphate, and a twentieth of the amount of potash (Hall 

and Schulte 1979). Dog waste composting reduces the amount of waste being sent to 

landfills (Sequi, 1996) and also reduces the amount of methane being released into the 

atmosphere (Peigne and Girardin 2004, Albaladejo et al. 2000). Because of the high 

nitrogen content of dog manure, a rich source of carbon is required for composting, 

such as wood chips, shavings or sawdust (C:N ratio of 560-641:1) (Rynk 1992, Miller 

1996). 
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1.9. Bio-conversion of putrescent waste using BSFL 

 

     After seven years of research, a patented bioconversion process that effects a 95% 

reduction in the weight and volume of food waste within a matter of just a few hours 

has been developed using the Black Soldier Fly. This unique approach to bioconversion 

requires no energy, no electricity, no chemicals, not even the addition of water. It is 

totally self-contained and does not produce effluent and, while it produces a small 

amount of carbon dioxide, it does not produce any other greenhouse gases, such as 

methane (Craig Sheppard et al., 2002).  

     The Black Soldier Fly BSF ( Hermetia illucens) is a tropical fly (Craig Sheppard et 

al., 2002) indigenous to the whole of the Americas, from the south of Argentina to 

Boston and Seattle, and in World War II, the fly also spread into Europe, India, Asia as 

well as Australia.  

     As a result, the currently discussed bioconversion process does not require the 

introduction of a foreign or exotic species, involving as it does an organism which is 

indigenous to the Americas, and now Europe. It is also not associated with the 

transmission of disease. The BSF has the ability to thrive in the presence of salts, 

alcohols, ammonia and a various food-based toxins and can process food waste as well 

as swine, human and poultry waste. Upon reaching maturity, the larvae of the BSF 

migrate out of the bioprocessing unit into a collection bucket without any human or 

mechanical intervention and thereby provide a self-harvested grub which is rich in 

nutrients and is food source which rivals in commercial value the finest fish meal. 

Unlike many other flies, BSF adults do not enter dwellings and since they do not have 

functional mouth parts, they do not eat waste and cannot (like the House Fly) 

regurgitate on human food, and therefore are not involved with disease transmission. 

Black Soldier Fly adults do not, in any way, bite, bother or annoy humans.     
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 1.9.1. The Black Soldier Fly life cycle  

 

     Soldier fly adults come together in small numbers near an isolated bush or tree in 

order to find and choose a mate. After mating, the female finds an ideal place to lay her 

eggs, and lays about 900 eggs in 5 to 8 days lifespan. Housefly adults, by contrast, often 

live for 30 days, and during this long period, they eat, and as result actively spread 

disease.  

     Male BSF do not go near wastes since they do not lay eggs. The females in fact, 

prefer to lay their eggs not upon the waste, but either above or to the side of it, thereby 

allowing the eggs a far better chance of survival. The eggs are relatively slow in 

hatching (102 to 105 hours). The newly hatched larvae then crawl or fall onto the waste 

and begin to eat it with unbelievable rapidity. It takes about two weeks for the larvae to 

become mature a period which may extend to 6 months if  the temperature is not right, 

or if there is not enough food. This ability of BSF larvae to extend its life cycle under 

conditions of stress is very useful when using it waste bioprocessing.  

    Black Soldier Fly larvae pass through 5 stages or instars. When mature, pre-pupal 

larvae are about 25mm long, 6mm in diameter, and weigh around 0.2 grams. These 

larvae are extremely tough and robust and can survive under conditions of extreme 

oxygen starvation. They can be also subjected to several 1000 gs of centrifugation 

without being harmed (Lord et al., 1994). 

1.9.2. Bioconversion of dog faeces using Black Soldier Fly larvae (BSFL) 

 

     Black Soldier Fly larvae have been used to dramatically reduce food waste and 

manure, and convert the nutrients from food waste and manure into insect larval 

biomass containing over 40% protein and over 30% crude fat (Newton et al. 2005).    

As a result, BSF larvae are potentially excellent source of protein and therefore as a 

high energy meal for chicken, fish and other domestic animals. As an added benefit, 
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BSF larvae also aerate and dry manure, thereby increasing rates of breakdown and 

reducing odours. BSF larvae add value to soil composition as a result of digesting 

organic material and the release of larval faeces into the soil, which promotes plant 

growth (Jeon et al., 2011). 

 

 1.9.3. The Texas Experimental BSF Composting Research Programme  

 

     In an experiment conducted in Texas over a period of one year, it was found that 

BSF larvae are able to digest over 15 kilograms per day of restaurant food waste per 

square meter of feeding surface area, or roughly 3 lbs per square foot per day, leading to 

a 95% reduction in the weight and volume of such waste. As a result, for every 100 lbs 

of restaurant food waste placed into a bio-processing unit, only 5 lbs of a black, friable 

residue remain. Over 100,000 active larvae can be found in a typical waste disposal 

unit, and they can eat and digest just about any type of putrescent waste, including meat 

and dairy products. The instant waste is deposited into the unit, the larvae begin to 

secrete enzymes into the waste long before it begins to rot and smell. Since thermophilic 

and anaerobic bacteria play no role in this process, the larvae can conserve and recycle 

the majority of the nutrients and energy within the waste (Alvarez, 2012). 

1.9.4. Rates of bioconversion 

 

      Over a period of one year, approximately 20% by weight of the fresh food waste 

is converted into fresh larvae. This food waste had an average dry matter content 

of 37%, and the pre-pupae has an average dry matter content of 44%, i.e., on a dry 

matter basis, the bioconversion of food waste situates at almost 24%. An input of 

100 kg of food waste per day can be handled by three 6-foot bioconversion units. 

   The BSF pre-pupa is composed of:  

42.1% crude protein, 34.8% ether extract (lipids), 7.0% crude fibre, 7.9% moisture, 

1.4% nitrogen free extract (NFE),14.6% ash, 5.0% calcium and 1.5% phosphorus.  
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      Live BSF pre-pupae have been successfully fed to bull frogs, tropical fish, reptiles, 

snakes and many other creatures that have a strong preference for living food, and the 

value of fresh BSF larvae ranges from $4 to $20 /lb. Chickens are especially fond of the 

live larvae (Amatya, 2009). 

1.10. Does winter pose a problem to composting? 

 

     In winter, bioprocessing using BSF can be maintained by simply placing a styrofoam     

sheet on top of the larval residue to retain the heat generated by larval movement. If this 

heat is not allowed to escape, the temperature on the surface of the residue easily 

exceeds 35 degrees C. During summer, the conversion rate of fresh food waste into 

fresh larvae runs as high as 20%, but during winter, this conversion drops to less than 

5%, in spite of the fact that the larvae digest roughly the same daily quantity of food 

waste per unit surface area. Under the right ideal summer conditions, it takes about two 

weeks for newly hatched larvae to reach the mature pre-pupal form, but during the cold 

of autumn and winter, this two-week period may last as long as six months. Well-

insulated, BSF technology units can be introduced into some of the coldest regions of 

Earth. During the hot summer months, overcrowding can often occur, a process which 

leads to relatively high temperatures within the unit; so as to cool the unit down, some 

actively feeding larvae are forced to exit the unit (Craig Sheppard et al., 2002). 

1.11. Slugs as agents of disease transmission   

    

     Slugs (Mollusca: Gastropoda) are the major pests of large varieties of vegetables and 

fruits in fields, home gardens, landscapes, greenhouses, (Godan, 1983; South, 1992). 

Slugs can also present a risk to plants, animals and humans because they serve as 

intermediate hosts for many bacterial diseases which predominate in animal faeces 

(South, 1992). Slugs usually ingest bacteria in soils as an important source of food. 

Consequently, they become hosts of many bacterial strains, such as E. coli O157, either 
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via direct contact or being contaminated with animal faeces spread in open fields 

(Walker et al., 1999).  Emma et al. (2006) showed that both the Yellow Slug (Limax 

flavus) and the Great Gray Slug (Limax maximus) carry E. coli O157 both on the 

surface and internally, and that slugs are contaminated with E. coli through contact 

and/or ingestion. Elliot (1969) also suggested that slugs possibly carry E. coli O157, and 

Dawkins et al. (1986) showed that four slug species transmit the agent of bacterial soft 

rot of potatoes (Erwinia carotovora) although this was considered to be accidentally 

rather than obligatory. 

 

1.12. Transfer of bacterial species via slugs and snails to lettuce. 

 

     The enteric tract of dogs, like mammals, possesses a complex microbial ecosystem, 

including several bacteria such as Streptococci, Bifidbacteria, Lactobacilli, Bacteroides 

and Clostridium (Drasar and Hill, 1974; Drasar and Barrow, 1985). Acinetobater 

baumannii isolated from a number of dogs and cats, is spread (Thierry et al., 2008)  

nosocomially, a fact which explains the occurrence of several strains of A. baumannii in 

the veterinary hospital environment among dogs. 

   Some invertebrates may be responsible in transmission of the E. coli and other 

bacteria to field crops either by direct contact or contamination with animal faeces. The 

greatest concerns to human pathogens on fresh vegetables and fruits is represented by 

the enteric pathogens (e.g. E. coli O157:H7 and Salmonellae), which can grow before 

being eaten.   

 

1.13. Detection and confirmation of Mycoplasma in dog faeces 

                                                                              

     The first documented occurrence of Mycoplasma in dogs was in 1934. During the 

last 70 years, 15 known species of Mycoplasma have been recognised and several have 

been isolated from or detected in dogs (Chalker, 2005). The isolation of a Mycoplasma 

from a human was first reported in 1937 (Taylor-Robinson, 1996; Kudva et al., 1998).   
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Four species, M. hominis, M. orale, M. pneumoniae, M. salivarium  have been isolated 

in humans as well as dogs  (Colaizy et al., 2003).     

   Culture techniques remain the most commonly used approaches to the detection of the 

presence of Mycoplasma in environmental samples such as canine samples. However, 

there are now a wide variety of indirect test methods available for Mycoplasma 

detection, including PCR- based kit, DNA fluorochrome staining, autoradiography, 

ELISA (McGarrity et al., 1985; Lincoln and Gabridge, 1998; Rottem and Barile, 1993)                                                                           

     The most widely used recommended indirect test is DNA fluorochrome staining 

(McGarrity et al., 1983), an easy and relatively fast procedure which stains DNA using 

a fluorescent dye. When stained and fixed cells are examined under a UV microscope 

equipped with the proper filter package, DNA fluoresces brightly and negative control 

slides should always be used to help interpret staining results. These positive and 

negative Mycoplasma control slides are commercially available. The best overall testing 

approach is a combination of both methods: direct culture can be provided very high 

sensitivity while DNA fluorochrome staining can detect any fastidious Mycoplasma. 

1.14. Nitrification  

 1.14.1. The Nitrogen Cycle 

 

     Nitrogen is essential for life, it is the main component of amino acids which are the 

building blocks of peptides and protein, and is found in important biological 

components such as chitin and mucopeptides; it  is also an integral part of the genetic 

material of cells, the nucleic acids. Plant growth in soils throughout the world is often 

restricted by the supply of available N and, as a result, it is nitrogen supply, more than 

any other soil nutrient which limits UK and world crop production. Because of this 

large amounts of nitrogen are applied globally as fertiliser in order to increase crop 

productivity (Lam et al., 1996) 
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.    In agricultural systems, the need to understand the nitrogen cycle is of extreme 

importance if maximum crop yields are to be achieved. In natural ecosystems, no 

additional, fertiliser nitrogen is applied, but the need to understand the soil N-cycle is 

just as critical. 

 

1.14.2. Ammonification 

 

     The great bulk (95-99%) of the soil nitrogen is in organic compounds which are 

largely unavailable to higher plants (Pate, 1973). When soil microorganisms degrade 

these compounds, simple amino compounds (R-NH2-) are formed. Many soil 

microorganisms are able to deaminate amino acids (e.g. bacteria, actinomycetes and 

fungi) with the resultant release of ammonia. Any NH4-N that accumulates in soil 

represents the quantity of substrate nitrogen in excess of microbial requirements 

(Richards, 1987). Ammonium production is referred to as ammonification and the   fate 

of the ion varies, depending upon conditions in the soil. Ammonia as a gas is volatile 

and leaves the soil; however, if dissolved in soil water the ion-NH4 is formed. 

Ammonium can be accumulated and utilized by plants and microorganisms and under 

favourable conditions can be oxidized to nitrate. 

   The flow of nitrogen in the soil is intimately tied to flow of carbon and the processes 

involved in the nitrogen cycle bring about changes to the soil environment that also 

have an influence on other soil processes and cycles 

   Recently, the definition of nitrification has extended to refer to the biological 

oxidation of any reduced of nitrogen to a more oxidised form (Killham, 1994).  
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                                      NH4
+ 

 

  

 

                                    Nitrification 

                                                                        Rhizosphere heterotrophs 

               

                                                                                   Root uptake 

                                              NO3
-  

 

 

 

 

1.14.3. Autotrophic nitrification in soil. 

 

     It is generally accepted that the major type of nitrification in most agricultural soils is 

chemoautotrophic, largely carried out by the Gram-negative bacteria Nitrosomonas and 

Nitrobacter. (Killham,1994). The reactions carried out are summarised below 

 

                               Nitrosomonas 

NH4
+
  +  O2 + 2e

-
                          NH2 OH  + H2 O 

 

Ammonium                                      hydroxylamine 

 

 

NH2 OH  + H2 O                           NO2
-
  + 5H  +4e 

Hydroxylamine                              nitrite  

 Nitrobacter 

NO2
-
  + 5H  +4e                         H2O.NO2

-
                 NO3

-
 + 2H 

    nitrite nitrate 

 

In the case of Nitrosomonas, the oxidation state of nitrogen is changed from 
-
3 to 

+
3, 

and in the cases of Nitrobacter from
-
3 to 

+
5. The energy yields to the chemoautotrophs 

are approximately 65 kcal (or 8.8 ATP molecules) per mole for Nitrosomonas and l8 

kcal (or 2.5 ATP molecules) per mole for Nitrobacter, energy yields which are 

somewhat low compared with heterotrophic metabolism. A mole of glucose can for 

example optimally give an aerobic microbe 280 kcal (or 38 ATP molecules). This partly 

explains why autotrophic nitrifiers grow relatively slow in the soil and even in 
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laboratory culture where conditions for growth are optimised. Natural generation times 

for nitrifying bacteria of the order of 20-40 h, together with their low numbers in most 

soils however, gives a highly misleading impression of their vital contribution to 

nitrogen cycling and to soil ecology in general (Killham,1994). 

1.14.4. Nitrate reduction 

 

     Once nitrate is formed in soil, it is subjected to the following fates; 

1- It can undergo microbial denitrification to gaseous oxides of nitrogen 

to dinitrogen-N2. 

2- It can be utilized as a source of N for plants and microorganisms. Assimilation of 

NO3 is followed by its reduction to NH4
+
, which is then utilized (i.e. assimilatory 

reduction) (Alexander, 1977, Paul and Clark, 1989). 

3- In the absence of O2, nitrate can be used by microorganisms as an electron acceptor 

and as a result be reduced to NH4
+
 (dissimilatory reduction) (Paul and Clark, 1989). 

4- Being a negatively charged ion, NO3
-
 is easily leached through soil and into ground 

water and soil nitrate leaching has several consequences. When nitrate is leached, it 

reduces the base saturation of a soil and increases exchangeable acidity. High 

concentrations of nitrate in surface waters can also lead to eutrophication and fatal 

diseases such as gastric cancers and methaemoglobinaemia (Alexander 1977). 

 

1.14.5. Nitrogen losses from soil 

 

     Of all the nutrients required for plant growth, N is by far the most mobile and subject 

to greatest loss by physical, chemical, and/or biological processes from the soil-plant 

system (Knowles 1981, 1982). Even under the best circumstances, no more than two 

thirds of the fertilizer-N is accounted for by crop removal or recovered in the soil at the 

end of the growing season and nearly one-half of the applied amount can be lost. Five 

main processes for N loss occur, including microbial denitrification, chemo-
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denitrification, NH3 volatilization, leaching, and erosion. There are two biological 

processes for reduction of oxidised N forms (e.g., NO3
-
 and NO2

-
). One of these, 

assimilatory NO3
-
 reduction, the other process is dissimilatory NO3

-
  reduction , more 

commonly known as denitrification (Alexander 1977, Cooper, and Smith, 1963, Lynch 

1983, Payne 1981). 

 

1.14.6. Assimilatory nitrate reduction 

 

     In assimilatory nitrate reduction N is incorporated into cell biomass of  plants, 

bacteria, cyanobacteria, and fungi all of which reduce NO3
-
 to NH4. in the biosynthesis 

of amino acids and proteins (Atlas and Bartha 1993). The process needs energy and 

several enzyme systems, including nitrate and nitrite reductases to form ammonia, 

which is subsequently converted into amino acids. As a result, this process is regulated 

by the availability of nitrogen, and nitrate utilization occurs when energy exceeds the 

concentration of ammonium or organic-nitrogen compounds (Atlas and Bartha l998).  

 

1.14.7. Dissimilatory nitrate reduction 

 

     Dissimilatory nitrate reduction is a process, in which the N is not utilized and in the 

absence of O2.  Nitrate ions acts as a terminal electron acceptor.  The process is also 

known as nitrate respiration, or dissimilatory nitrate reduction (Atlas and Bartha 1998). 

Respiratory denitrification is usually the major dissimilatory process occurring in soils 

which reduces nitrate and under anaerobic conditions nitrate-respiring bacteria reduce 

nitrate to nitrite. Facultative anaerobes are often involved and many of these can also 

further reduce nitrite to ammonium: 

NO3
-
 + 4H2+ 2H4           NH4

-
 + 3H2O. 

The following genera are involved: 

 



24 

 

 

Table 1.1: Bacteria that can dissimilate nitrate to ammonium Based on Tiedje (1988) 

Genus Typical habitat 

 

Clostridium Soil, sediment 

Desulfovibrio Sediment 

Selenomonas  Rumen 

Veillonella Intestinal tract 

Wolinella  Rumen 

Facultative anaerobes  

 

 

Citrobacter  Soil, wastewater 

Enterobacter  Soil, wastewater  

Erwinia  Soil  

Escherichia  Soil, wastewater  

Klebsiella  Soil, wastewater  

Photo bacterium  Seawater  

Salmonella  Sewage  

Serratia  Sediment  

Vibrio  sediment 

Microaerophiles  

 

 

Campylobacter  Oral cavity  

Aerobes   

Bacillus  Soil, food  

Pseudomonas  Soil, water  

Neisseria  Mucous membranes  

 

 

 

 

 

 

 

 

 



25 

 

 

Fig 1. 2: The Nitrogen Cycle 

Abbreviations; d, denitrification; dan, dissimilatoryand assimilatory nitrate reduction to 

ammonium; I, immobilisation; m, mineralisation; n, nitrification and subsequent 

leaching 1; p, plant; r, root exudation and turnover (Killham , 1994) 

 

1.15. The Sulphur cycle 

 

     Sulphur is an essential element which in plants, it is an important component of 

amino acids methionine and cysteine. Plants contain as much sulphur as phosphorus, 

and sulphur is as important in the formation of protein. Despite this, sulphur has 

traditionally been regarded as a plant nutrient of secondary importance to nitrogen, 

phosphorus and potassium.  
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1.15.1. Forms of S in soil 

 

     It is generally accepted that well over 90% of the sulphur in most non- calcareous, 

non-tropical, surface soil is in organic forms, about half in the form of sulphate esters 

and esters with C-O-S linkage (Tisdale, Nelson and Beaton 1985); about 20% of the 

sulphur directly bonded to carbon such as S-containing amino acids (Biederbeck 1978), 

and the remainder in a variety of largely inert organic compounds. 

 

1.15.2. Biological and biochemical S-mineralisation 

 

     The mineralisation of organic sulphur in soil occurs by two main processes, 

biological and biochemical. Carbon-bonded sulphur is mineralised biologically during 

the oxidation of carbon by soil organisms to provide energy, whereas non-carbon 

bonded organic sulphur is mineralised through enzymatic catalysis outside the cell 

(Killham, l994). An example of this latter biochemical release of sulphur, the form of 

sulphates-catalysed by cleavage of sulphate esters, Sulphur is released into the inorganic 

pool in various oxidation states from sulphide (oxidation state-2) to sulphate (oxidation 

state in 
+
6). 
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Fig 1. 3: The Sulphur Cycle 

 

Abbreviations: I, immobilisation; m, mineralization; p, plant uptake; r, root exudation 

and turnover; so, oxidation and subsequent, leaching 1; sr , reduction  (Killham, 1994). 

 

1.15.3. Soil ecology and S-mineralization 

 

     The rate of S-mineralisation in soil is influenced by similar environmental factors 

which control N-mineralisation, including water potential, temperature, and pH, the 

presence of plants, drying/heating cycles and the form and quantity of organic sulphur 

have the most important influence on rates of soil S-mineralisation. 

    In most soils, the inorganic S-pool is very small and biological uptake, both as 

microbial immobilization and plant uptake depends upon an adequate rate of 

mineralisation. Some soils cannot meet the sulphur demands of all crops in this way, 
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and this S-deficiency is sometimes not offset by fertilizer, pesticide and atmospheric S-

inputs (Hoque and Killham 1987). 

    The great similarities between the cycling of sulphur and nitrogen (notably with 

regard to mineralisation from organic matter) suggest a fundamental involvement of soil 

animals in S-mineralisation. Until further information becomes available, it can be 

assumed that the quantitative involvement of soil animals in the cycling of sulphur is 

approximately similar to that for the cycling of N. The atmosphere contains 

considerable amounts of sulphur released by the burning of fossil fuels and by 

microbiological sulphate reduction. Plants meet most of their sulphur needs from 

sulphate, but they may obtain some sulphur directly from the atmosphere. When plants 

and animals are incorporated into the soil their proteins are hydrolysed to form amino 

acids, which together with other sulphur containing compounds are further oxidized by 

microorganisms to form sulphate, while in anaerobic soils H2S is formed partly from 

sulphate reduction and partly from the mineralization of organic sulphur. A number of 

intermediates are produced during S-oxidation, including thiosulphate, polythionates 

and sulphate. These ions do not generally persist however, and their concentration in 

nature is as a result, usually low. 

1.15.4. Microorganisms involved in the S-Cycle 

 

Microorganisms are responsible for: 

(1) The mineralization of organic sulphur to sulphate. 

(2) The oxidation of reduced forms of inorganic sulphur to sulphate. 

(3) The aerobic reduction of sulphate to sulphides. 

(a) The immobilization of sulphate as organic sulphur. 
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1.15.5. S-Mineralization 

 

     Sulphur mineralization is the conversion of organic sulphur into inorganic forms, 

notably sulphate; it provides a substantial source of soil sulphate, notably in forest 

ecosystems Johnson (1932). Sulphur mineralization is therefore an important way in 

which sulphate is mobilised in soils (it also provides a source of H
+
 ions) (Tabatabai 

1985).  Sulphur mineralization increases in the presence of oxygen, temperature (in the 

mesophilic range, Tabatabai and Al-Khafaji (1980), moisture level and the addition of  

lime to acid soils (Williams 1967). 

 

1.15. 6. Sulphate reduction 

 

     Bacteria of the genus Desulfuvibrio are the main microorganisms concerned with the 

reduction of sulphate. They use sulphate as an electron acceptor for growth. While few 

microorganisms are able to reduce sulphate to sulphide many bacteria, actinomycetes 

and fungi can reduce partially reduced inorganic sulphur compounds such as 

thiosulphate, tetrathionate and sulphite to sulphide (Alexander, 1977).   

 

1.15.7. Sulphur oxidation 

 

     The oxidation of reduced sulphur in soil is generally regarded as a microbial process 

(Wainwright, 1978 Burns 1967), although some non-biological oxidation of the element 

has been shown to occur in autoclaved soils (Wainwright and Killham 1980, Nor and 

Tabatabai 1977). 

     During the microbial decomposition of organic sulphur compounds, sulphides and 

other incompletely oxidised substances are formed, such as elemental S, thiosulphate, 

and polythionates; these reduced substances are the available for oxidation.  The 

oxidation of some sulphur compounds, such as sulphites (SO3
2-

) and sulphides (S
2-

) can 
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occur by strict chemical reactions (Brady and Weil 1974) and such abiotic oxidation can 

occur to a limited extent in soils, but microbial reactions are clearly dominant:  

S
o                

             S2O3
2-                    

        S4 O6
2-

                    SO4
2-

 

Elemental       Thiosulphate         Tetrathionate       Sulphate sulphur 

 

     The microorganisms involved in S-oxidation can be divided into: chemoautotrophs 

(lithotrophs), including species of the genus Thiobacillus 

1- Photoautotrophs, including species of purple and green sulphur bacteria, and 

2- Chemoheterotrophs (organotrophs), including a wide range of bacteria and fungi 

 

1.15.8. Heterotrophic sulphur-bacteria 

 

     The ability of heterotrophic bacteria to oxidise sulphur was initially studied by 

Guittoneau (1927) and confirmed by Starkey (1934) who showed that soil heterotrophic 

bacteria can oxidise thiosulphate to sulphate via tetrathionate. A wide range of 

heterotrophic bacteria, fungi and actinomycetes (Yagi, 197l) can oxidise a variety of 

reduced forms of sulphur in vitro. Bacterial species of the genera Arthrobacter, 

Achromobacter, Bacillus, Beggiatoa, Flavobacterium, Micrococcus, Mycobacterium, 

Pseudomonas and Sphaerotilus can oxidize sulphur; unlike the S-oxidising autotrophs, 

heterotrophic bacteria do not seem to obtain energy from the process (Trudinger , 1967, 

Schook and Berk, 1978).  

 

1.15.9. Chemotrophic sulphur bacteria 

 

     The chemotrophic sulphur bacteria vary in both morphology and physiology, ranging 

from specialist obligate chemolithotrophs through facultative chemolithotrophs which 

can grow mixotrophically, to specialist heterotrophs, some of which may not benefit 

directly from the oxidation of reduced sulphur compounds (Kuenen and Beudeket,1982; 

Table, 1.2); the most widely studied in this group belong to the genus Thiobacillus. The 
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thiobacilli are rod shaped organisms which can obtain energy from oxidizing inorganic 

sulphur compounds, using oxygen as an electron acceptor, while CO2 or bicarbonate 

supplies the carbon for chemoautotrophic growth (London and Rittenberg 1967). 

Additionally, they can be subdivided into those growing on neutral pH and those, which 

live at acidic pH. They can also grow both at acidic and alkaline pH values. Vitolins and 

Swaby (1969) pointed out that that Thiobacilli are important sulphur oxidisers only at 

pH values below 7, while heterotrophs are the primary sulphur oxidisers in neutral to 

alkaline soils (pH 6.0-7.5). The reduction in pH resulting from sulphuric acid formation 

by thiobacilli may also control some diseases of plants including potato scab (Brown, 

1982). 
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Table1. 2:  Colourless sulphur oxidising bacteria. (Modified after Kuenen and 

Beudeker, 1982) 

 

 

Obligate chemolithotrophic  

S-bacteria 

 

Facultative chemolithotrophic  

S-bacteria 

(a)  Aerobic bacteria     

Thiobacillus thiooxidans T. novellus 

T. neapolianus T. intermedius 

T. ferrooxidans T. acidophilus 

T. kabobis  T. organoparus 

T. tepidarius* Sulfolobus acidocaldarius 

Thiomicrospira pelophila Sulfolobus brierleyi 

(b) Facultative anaerobic bacteria 

T. denitrificans Thiobacillus A2 

T. thioparus Thermothrix thiopara 

Thiomicrospira denitrificans Paracoccus denitrificans 

 Thiosphaera pantotropha ** 

Chemolithoheterotrophs Heterotrophs Unclassified 

T. permetabolis Beggiatoa Thiovulum 

Pseudomonas sp Pseudomonas sp Thiophysa 

 Thiothrix 

Thiospira 

Thioploca 
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1.15.10. The phototrophic sulphur bacteria 

 

The phototrophic sulphur bacteria are found in anaerobic environments, (e.g. in H2S 

rich mud, and stagnant waters), which remain exposed to light; since they are not found 

in most agricultural soils they need not be discussed further here.  

 

1.16. Phosphorus cycling 

 

Phosphorus is second only to nitrogen as an inorganic nutrient required by plants and 

microbes and is important for the accumulation and release of energy during cell 

metabolism. Phosphorus is added to the soil as a fertilizer, or is produced during the 

breakdown of plant residues or animal remains. Microorganisms are involved in a 

number of transformations of the element including: 

 (l) Solubilization of inorganic insoluble phosphorus compounds. 

(2) Mineralization of organic compounds to form inorganic phosphate. 

(3) Immobilization of inorganic phosphate into cell components. 

(4) Oxidation and reduction of inorganic phosphorus compounds. 

Some 15-85% of phosphorus in soil is organic, notably as minerals existing as insoluble 

phosphates. These insoluble inorganic compounds are largely unavailable to plants. 

Microorganisms including fungi and bacteria can solubilize this insoluble phosphate. 

These phosphate-solubilizing fungi include species of Penicillium, Sclerotium, 

Fusarium and Aspergillus (Alexander 1977). This process involves the production of 

organic acids and/or chelating agents (Wainwright 1981). The mineralization of organic 

phosphorus is an important soil process due to the existence of a large reservoir of non-

plant available organic phosphorus which is converted to inorganic forms by enzymes 

collectively known as phosphatases.  The microbial immobilization and assimilation of 

phosphorus may depress crop yields and the resultant phosphorus shortages can be 

overcome by adding phosphorus fertilizers to the soil. Fungi are also able to oxidize 
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reduced phosphorus compounds eg. phosphite to phosphate and can use these 

compounds as sole phosphorus source. There is the possibility of a reductive phosphate 

pathway occurring in soils with phosphate being reduced to phosphate and 

hypophosphate; fungi however, have not been implicated in this pathway (Alexander, 

1977). 

1.16.1. P-Mineralization and immobilization 

 

The maintenance of soluble phosphate in the soil solution depends to some extent on the 

magnitude of the two opposing processes 

                       Mineralization 

Organic P                                       Pi (e.g., H2 PO4
-
. HPO4

-
) 

                          Immobilization 

 

 

Phosphorus mineralization is an enzymatic process. As a group, the enzymes involved, 

called phosphatases, catalyze a variety of reactions which release phosphate from 

organic phosphorus compounds.  

 

1.16.2. P-solubilization 

 

Phosphate solubilising microorganisms (fungi and bacteria) include species of 

Pseudomonas, Mycobacterium, Microococctts, Bacillus, Flavobacterium, Penicillium, 

Sclerotium, Fusarium,and Aspergillus (Alexander,1977). Many common 

microorganisms, including species of Pseudomonas, Achromobacter, Flavobacterium, 

Streptomyces, and especially Aspergillus and Arthrobacter, are able to solubilize 

insoluble inorganic phosphates in soil. The rhizosphere often has a particularly high 

proportion of such organisms, for example, having found that 20 - 40% of the bacteria, 

actinomycetes and fungi isolated from the rhizospheres of many plants are able to 

dissolve hydroxyapatite, compared with l0 - 14% from non-rhizosphere soil.  
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1.17. Aims of the Work Reported in this Thesis 

 

The overall aim of the work reported in this Thesis is to attempt to correct this 

deficiency by providing research data relevant to: 

a) The composition of bacterial populations found in dog faeces 

b) The distribution of bacteria in playing field soils exposed to dog faeces 

c) The fertilizer potential of dog faeces and its potential to be used as additive to potting 

composts. 

d) The question of whether slugs can act as vectors of bacterial disease, transmitting 

pathogenic bacteria from dog faeces to lettuce.   

d) The potential use of Black Soldier Fly and Fruit Beetle larvae to increase the rate of 

composting of dog faeces. 

e) The ability of slugs, snails and earth worms to carry and transfer Mycoplasmas to 

lettuce from dog faeces. 

f) The potential use of dog faeces as a source of biofuels. 
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Chapter Two: Transfer of Bacteria by Invertebrate 

Slugs from Canine Faeces to Lettuce 
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2.1. Introduction 

 

     Several bacterial species, by being associated with a variety of invertebrates, can 

infect humans, plants and animals; either via vectors (such as mosquitoes, the malaria 

disease carrier) or through infecting the food chain with bacteria, notably vegetables 

crops and fresh fruits. 

     Food poisoning outbreaks are frequently associated with cross contamination from 

insects, such as houseflies, to meat products; however, direct contamination of foods, 

notably of vegetables and lettuce in the field is also highly. Many field crops are prone 

to be contaminated with remains of faeces from farm and domestic animals which are in 

contact with manure contaminated soil or dust, and this is the major source of pre-

harvest contamination. Indirect sources of contamination also result from the interaction 

between vegetables and fruits and phytophagous birds, mammals, and insects. 

     Pets and farm animals have been shown to be effective vectors of pathogenic 

bacteria, either in the visceral or on their remains and animal faeces have been shown to 

contain bacteria such as Salmonella, E. coli O157, and Listeria monocytogenes 

(Beuchat, 1996). 

     Dog faeces are likely to be a major a source of bacterial contamination of vegetable 

and lettuce crops especially where these are produced in allotments, small-holdings, or 

agriculture land located close to housing estates where dogs are common. The canine 

enteric tract, like most mammals, has a complex microbial ecosystem, which includes 

several bacteria such as species of Streptococci, Bifidobacteria, Lactobacilli, 

Bacteroides and Clostridium (Drasar and Hill, 1974; Drasar and Barrow, 1985).    

Acinetobater baumannii has also been isolated from a number of dogs and cats, and 

according to Thierry et al. (2008) the molecular typing of samples with limited 

polymorphisms of ribosomal DNA provided confirmation of nosocomial spread of this 
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pathogen as well as for the occurrence of several strains of A. baumannii in dogs in 

veterinary hospitals. 

     Slugs (Mollusca: Gastropoda) are major pests of large varieties of vegetables and 

fruits in fields, domestic gardens, allotments, landscaped areas and greenhouses, 

(Godan, 1983; South, 1992). Slugs present a risk to plants, animals and humans because 

they often serve as intermediate hosts for many bacterial diseases found in animals‟ 

faeces (South, 1992). Slugs usually ingest bacteria in soils as an important component 

of their food. Consequently, they become hosts to many bacteria, such as E. coli O157, 

either via direct contact or by being contaminated with animal faeces spread in open 

fields (Fig. 1.1), (Walker et al., 1999).   Emma et al. (2006) carried out a study on both 

yellow slug (Limax flavus) and great gray slug (Limax maximus), and confirmed that 

both species can carry E. coli O157 both on the surface and internally.     

      Emma et al. (2006) also showed that once a slug has become contaminated with E. 

coli through contact and/or ingestion, the bacterium can survive for many days 

internally and externally, thereby providing adequate time for successful transmission. 

Elliot (1969) also suggested that slugs possibly carry E. coli O157. However, the 

laboratory study of Dawkins et al. (1986) demonstrated that in four slug species i.e. 

Arion hortensis, Deroceras reticulatum, Milax budapestensis and Limax maculatus 

tested to see if they transmit bacterial soft rot of potatoes Erwinia carotovora, the 

association between the pathogen and its slug vectors was considered to be accidental, 

rather than obligatory. Invertebrates then may be responsible for the transmission of the 

E. coli O157 and other bacterial strains to fruits and vegetables either by direct contact, 

or following contamination with animal faeces. Human pathogens present on fresh 

fruits and vegetables, notably enteric pathogens (e.g. E. coli O157:H7 and Salmonella), 

have the ability to grow before being eaten and bacterial pathogens have been isolated 

from a large number of vegetables and fruits. Many strains of food poisoning bacteria 
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have also been isolated from soils including Vibrio cholera, E. coli, Campylobacter 

jejuni and Shigella. In addition, Enterococci have been found in soils, and their 

distribution is generally associated with animal faeces. 

    The aim of the work reported in this Chapter was to determine if bacteria can be 

transferred from canine faeces to vegetable crops (in this case lettuce) by slugs 

indigenous to the UK. 

 

2.2. Materials and Methods 

 

2.2.1. Slug culturing 

 

     One hundred slugs were used in this research. They were divided into small groups; 

sets of twenty slugs were placed in five sterilised plastic boxes (of size 20cm × 30cm × 

10 cm). The grey garden slug Limax maximus was obtained from Blades Biological Ltd. 

In order to maintain the slugs alive, wet tissues were placed in the bottom of the boxes 

and changed every 3 days. Fresh lettuce was introduced to the slugs twice a week as 

their only food source. All slug-containing boxes were left at room temperature. 

 

2.2.2. Isolation of bacteria from dog faeces 

 

     Samples were collected from fresh dog faeces. Portions (1g) were added to 99 ml of 

distilled water and were shaken at 70 g for 15 min. Aliquots of the shaken samples were 

spread onto the surface plates containing Chromagar medium, and left overnight in  

an incubator at 37
o
C (Samra et al., 1998).  
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Fig. 2. 1: Bacterial colonies isolated from dog faeces using Chromagar medium 

 

 

2.2.3. Isolation of bacteria from slugs 

 

    The slugs were starved for 2 days and then exposed to fresh dog faeces (which was 

collected locally) as their sole food source. Bacteria were then isolated from both the 

outside and inside of the animal.  

     Samples were collected from inside slugs in sterile deionised water as follows: Slugs 

were killed using formalin (90% v/v in a Petri-dish), and then dissected. Portions of 2 

ml of (dH2O) were directly injected into the digestive track of the slugs, and the samples 

were collected using sterile syringes (Fig.2.2). Samples (1 ml) were then added to 9 ml 

of distilled water and were shaken at 100 g for 15 min, Surface samples were obtained 

directly from the surface secretion of the slugs. Both collected samples were spread onto 

the surface of Chromagar media (e.g. Orientation media); and the inoculated plates were 

incubated at 37
o
C for overnight.  
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Fig. 2. 2: Section of digestive track of slug from where the samples were taken  

 

 

 

 

 

  

Fig. 2. 3: Isolation of Bacteria from slugs: (a) colonies inside slugs, and (b) colonies 

from the outside of slugs. 

 

 

 

 

(b) (a) 
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2.2.4 Isolation of bacteria from lettuce 

 

     Bacteria were initially isolated from fresh lettuce leaves as controls. Slugs previously 

fed on dog faeces were then fed lettuce. After two days, the suspension was prepared 

from both control and contaminated lettuce leaves, by immersing small pieces of lettuce 

leaves in 50 ml of liquid Nutrient Agar. The samples were incubated overnight at 25
o
C 

under continuous shaking (250 g). In order to obtain different isolation batches, four 

dilution series (e.g. 10
-1

, 10
-2

, 10
-3

 and 10
-4 

were used in this experiment, followed by 

spreading the samples (100µl) onto Chromagar plates which were then incubated for 

18-24 hours. 

 

2.2.5 Bacterial identification 

 

2.2.5.1 Identification of bacteria using Chromagar medium 

 

     Chromagar Orientation medium was prepared as recommended by the 

Manufacturer‟s instructions (Chromagar Company, Paris, France). The medium was 

made up as follows: (per litre) 15 g of agar, 16 g of peptone, (1.3 g of chromogen mix) 

meat extract, and yeast extract, pH 7. The species of bacteria were presumptively 

identified on the basis of the colour of the colonies produced when growing on 

Chromagar.  The colour is produced by the reaction of enzymes, produced by a 

specified genus or species, with certain chromogenic substrates. Chromagar Orientation 

media contains two chromogenic substrates used for the detection of B-D glucosidase  

and B-D-glucosidase enzyme activity, together with 1- pyrolidonyl-B-naphtylamide 

hydrololysis (PYR) which is described for the identification and differentiation of 

Enterococci from other bacteria (Merlino, 1997). See appendix two (Fig, 2. 2) 
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2.2.5.2. Extraction of Genomic DNA 

 

     Genomic DNA (gDNA) was extracted from the bacterial strains (JS1, JS2, JS3 and 

JS4) which were grown on LB nutrient solid medium for overnight at 37
o 

C, DNA was   

isolated using Key Prep-Bacterial DNA Extraction kit by following procedure. 4 ml of 

culture grown overnight in LB medium was centrifuged at 6,000×g for two minutes at 

room temperature. The supernatant was decanted completely. The cell pellet was then 

washed with TE buffer and completely suspended in 100μl of buffer R1 by pipetting it 

up and down. Then 10μl of lysozyme (50mg/ml) was added to the cell suspension and 

mixed thoroughly. After 20 minutes incubation at 37°C, the digested cells were 

collected by centrifugation at 1000×g for 3 minutes and the supernatant was decanted 

immediately. The collected pellet was then re-suspended in 180μl of Buffer R2 and 20μl 

of Proteinase K, mixed thoroughly and incubated at 65°C for 20 minutes in a shaking 

water bath. In order to obtain a RNA-free DNA, 20μl of RNase A (DNase-Free, 

20mg/ml) was added and followed by incubation at 37°C for 5 minutes. Homogeneous 

solution was obtained by adding 2volumes of Buffer BG to the previous mixture and 

mixed thoroughly by inverting tube several times then incubated at 65°C for a further 

10 minutes, immediately 200μl of absolute ethanol was added and mixed carefully. The 

samples were transferred into a column assembled in a clean tube and centrifuged for 1 

minute at 10,000×g, supernatants were discarded. The column was then washed with 

750μl of the wash buffer and centrifuged twice for 1 minute at 10,000×g in order to 

remove the residual ethanol, supernatants were also discarded. Finally, the column was 

placed into a clean microcentrifuge tube and 100μl of preheated Elution Buffer, TE 

buffer or sterile water was added directly onto column membrane and left for 2 minutes 

which then centrifuged at 10,000×g for 1 minute to elute DNA. To verify DNA 

presence and purity, 10μl of each resultant DNA was mixed with 2μl of Blue/Orange 6x 
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loading dye and electrophoresed using 1% agarose gel. The checked DNA was stored at 

-20°C 

 

2.2.5.3. Agarose preparation 

 

     To separate DNA, RNA or protein. Nucleic acid molecules are separated by size. 

This is achieved by moving negatively charged nucleic acid molecules through an 

agarose matrix with an electric field (electrophoresis) where shorter molecules move 

faster and migrate farther than longer ones due to the sieving effect of the gel. The 

presence, size and quantity of the DNA were checked and determined by 

electrophoresis in 1% agarose gel which was prepared as follow: 0.5g of molecular 

biology grade agarose was dissolved in 1ml of 50x TAE buffer and 40ml distilled water. 

The agarose was completely dissolved by heating in a microwave oven. The solution 

was mixed gently and allowed to cool to 55°C, and then 2.5μl ethidium bromide was 

added. After mixing, the solution was poured into a sealed gel rack and a comb was 

inserted at one side of the gel and allowed to stand in room temperature for 20 minutes. 

Then the comb and seal were removed and gel was placed into an electrophoresis tank 

and submerged in 1x TAE buffer. 10μl of the DNA sample was mixed with 2μl of 

Blue/Orange 6x loading dye and loaded into the wells. 6μl of Hyper Ladder was loaded 

as well into one of the wells as a reference. The samples were electrophoresed for 40 

minutes at 80V to allow DNA to migrate toward the anode. The DNA fragments were 

visualised under a UV transilluminator and the images were captured using a connected 

digital camera 

 

2.2.5.4. PCR amplification 

 

     The 16S rRNA gene was amplified with the universal bacterial forward primer (5` 

CCG AAT TCG TCG ACA ACA GAG TTT GAT CCT GGC TCA G 3`) and universal 

reverse primer (5` CCC GGG ATC CAA GCT TAC GGC TAC CTT GTT ACG ACT T 
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3`) according to Weisburg et al., (1991). A typical PCR mixture (50 μl in volume) 

contained the following components: 39μl sterile distilled water, 5μl 10× Buffer , 2.5μl 

50 mM MgCl2, 0.5μl   forward Primer, 0.5μl Reverse primer, 1.0μl  dNTPs, 1ul  

genomic DNA  and 0.5μl  Bioline Taq. The PCR reaction mixture, after incubation at 

94°C for 3 minutes as an initial denaturation, were cycled 30 times through the 

following temperature profile: denaturation for 1 minute at 94°C; annealing for 1 

minute at 60°C; and elongation for 5 minutes at 72°C with final incubation for 5 

minutes at 75°C, after which 10 μl of each PCR amplification mixture was mixed with 

2μl of Blue/Orange 6x loading dye and analysed by 1% agarose gel electrophoresis. In 

addition, 6μl of 1 Kb Hyper ladder I loading was used to confirm the correct sized 

product (Fig. 2.4). All PCR products were analyzed on agarose gels to check for the 

successful amplification 16S rRNA gene in the samples 

 

2.2.5.5. Phylogenetic identification of unknown bacteria 

 

     All samples sent to Sheffield University Medical School Core Genetics Unit for 

sequencing.  BLAST was used to compare the sequence. Finch TV software was used to 

correct the sequence then compared it with BLAST to look for the closest matches  

(Fig. 2.5) 

 

2.2. 6. Mycoplasma identification 

2.2.6.1. Samples description 

 

     A variety of samples were tested here for the presence of Mycoplasma spp, namely: 

a) Earthworms, b) both the internal organs and outer slime of slugs and snails) dog 

faeces, d) control and contaminated lettuce. 

   The earthworms were placed in polystyrene boxes together with a sterilized soil. A 

number of earthworms (10) were then placed in 40 ml of distilled water and then 
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centrifuged at 5000 g for 10 minutes. A 1 ml of the suspension was then taken to test for 

Mycoplasma. Slugs and snails were collected from the local area. 

 

 

 

 

 

 

 

 

 

 

Fig. 2. 4: Standard hyperladder I with 14 lanes indicates higher intensity bands, 1000 

and 10,000 and each lane (5μl) provides 720ng of DNA (BIOLINE supplier). 

 

 

Fig. 2. 5: FinchTV software that manually adjusts errors of consensus sequences 

before BLASTn NCIMB database 
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2.2.6.2. Detection of Mycoplasma 

  

    The followed procedure to detect the presence of Mycoplasma or not was using EZ-

PCR Mycoplasma Test Kit (Gene flow Ltd, Cat No.20-700-20). 

 

2.2.6.3 Test samples preparation for PCR 

 

     A quantity  of 1.0 ml  of sample was transferred to 1.5 ml sterile Eppendoff tube and 

centrifuged at 10000 g for one 1 minute to sediment the Mycoplasma. The supernatant 

was transferred to a fresh 1.5 ml tube and centrifuged at 15000 g once again for 10 

minutes to sediment the Mycoplasma. The supernatant was carefully discarded and 

removed then re-suspended the pellet (not always visible) in 50µl of buffer solution and 

mixed thoroughly using a micro- pipette samples were heated at 95
o
C for 3 minutes 

then stored at -20
 o
C. 

 

2.2.6.4 PCR amplification 

 

     PCR amplification of Mycoplasma DNA was performed as described by the 

manufacturer. For the test sample, positive and negative control a reaction mixture of 

the following was prepared ( no ice in  PCR tube) by addition of the PCR mixture 

containing sdH2 O, reaction mix and the test sample (Table 2.1). The tube was placed in 

a thermal cycle and the Mycoplasma programme was run. After PCR amplification, the 

PCR tube moved from the thermal cycler and 4 µl of 5x loading dye was added to each 

tube. For the positive control, the DNA template control (270bp) was provided by 

manufacturer whereas for negative control, the DNA template was replaced with 

double-distilled water. 
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Table.2. 1: PCR reaction mixtures for the amplification of Mycoplasma-DNA fragment. 

 

Reaction/Component Volume 

Sterile deionized water (sdH2O) 35 µl 

Reaction Mix 10 µl 

Test sample 

Positive control 

Negative 

 

5 µl 

 

 

 

     The reaction procedure (Table 2.2.) consisted of the initial denaturation step at 94
o
C 

for 30 sec followed by 35 cycles of denaturation at 94
o
C for 30 sec., primer annealing at 

60
o
C for 120 sec, and extension at 72

o
C for 60 sec, and was ended by 1 cycle of 

denaturation at 94
o
C for 30 sec., primer annealing at 60sec for 120 sec., and extension at 

72
o
C for 5 min. 

 

Table.2. 2: PCR amplification protocol of Mycoplasma DNA fragment 

Step Time Temperature Number of cycle 

Initial denaturation 30 sec 94
 o
C 1 

Denauration 30 sec 94 
o
C  

35 

 

Annealing 2 min 60 
o
C 

Extensions/ Elongation 1 min 72 
o
C 

Final denaturation 30 sec 94 
o
C  

1 Final annealing 2 min 60 
o
C 

Final extension 5 min 72 
o
C 

Hold  4 
o
C  
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2.2.6.5. Agarose gel electrophoresis 

 

     The amplified  producers (10µl), including positive and negative control, (2µl) 5x 

loading dye were separated in a 2% agarose gel in TAE for 45 minutes at a constant 

voltage of 80 V. Amplified produce by UV transillumination with ethidium bromide 

staining. A 200 bp Ladder (Bioline, UK) was used as a molecular size standard. 

 

2.2.7. Detection and identification of fungi 

 

2.2.7.1. Samples isolation on PDA and Czapek-Dox media 

 

     To determine fungal species in dog faeces samples (0.1 g) of fresh dogs faeces were 

inoculated onto PDA (Potato Dextrose Agar), while 0.l g inoculated into CDA (Czapek 

Dox Agar) then incubated at 25
 o

C for 3 to 5 days. (Figs, 2.6 a, 2.6 b).  Identification of 

fungi was achieved by extraction of genomic DNA and using 18S rRNA primers 

samples were  0.5- 1 ml of an overnight Potato Dextrose Broth culture. 

 

2.2.7.2.  Extraction of gDNA from pure cultures of fungi for PCR using 18S rRNA 

 

     Fungi /Yeast Genomic DNA Isolation Kit, Model 27300 from Sigma was used to 

extract genomic DNA from fungal isolates using the following procedure:  

1. Lysate preparation; 5 ml of  pure culture grown 3 days on PDA  broth medium was  

centrifuged at 14,000 (g) for 1 minute to pellet the cell. The supernatant was decanted 

then 500µl of Lysis Solution added to the cell pellet. The suspended pellet was mixed 

with gentle vortexing , RNase 20µl was added to the cell suspension then the mixture 

transferred to a provided Bead Tube and vortexing again for 5 minutes at maximum 

speed. The bead Tube was incubated with lyaste at 65C
o
 for 10 minutes, the lysate 

mixed 2 times during incubation by inverting the tube. The lyaste including cell debris 

was transferred to DNase-free microcentrifuge tube by pipetting, and the tube 

centrifuged for 2 minutes at 14,000 ×g. The supernatant transferred carefully to a new 
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DNase-free microcentrifuge tube without disturbing the pellet. An equal volume of 96% 

-100% ethanol was added to the lysate collected above (1µl of ethanol: 1µl of lysate) 

then vortexe to mix, 300µl of binding solution was added briefly to the suspension 

which was mixed by vortexing. 

 2. Binding of nucleic acid.  Lysate (650 µl) was applied with ethanol to the column 

and centrifuged for 1 minute at 8,000 ×g, the spin column was reassembled with the 

collection tube, while the flow was discarded. This step was repeated with remaining 

lysate.  

3. Column wash. 500µl of wash solution was next added to the column and centrifuged 

for 1 minute at 8,000 ×g.  

4. Nucleic Acid elution. The column was transferred  into a fresh 1.7 ml Elution tube 

which is provided with the kit and 100µl of elution buffer was added to the column and 

centrifuged for 2 minutes at 8,000 ×g;  again the column was spin at 14,000 ×g for 1 

minute.  

5. Storage of DNA; the purified nucleic acid was stored -20
0
C

 
for a few days, while it 

is recommended that samples be placed at -70
o
C for long term storage.  

 

2.2.7.3. PCR amplification of fungal gene  

 

      The 18Sr RNA gene was amplified with the ITS1 fungi forward primer (5` TCCGT 

AGGTGAACCTGCGG 3`) and ITS4 reverse primer (5` TCCTCCGCTTATTGAT 

ATGC3`) (see appendix). A representative  PCR mixture 50 μl  included the following 

reagents: 35 µl sterile distilled water, 5 µl of PCR buffer (10 mM  Tris-HCl,  pH 8.3, 50 

mM KCl, 1.5 Mm), 2.5µl of MgCl2, , 1μl forward Primer (ITS1), 1 μl Reverse primer 

(ITS4), 1.0 μl  dNTPs, 4µl  genomic DNA  and 0.5 μl  of Taq polymerase . The 

following thermal cycling conditions were performed in a thermal cycler BIO Rad 

57BR0200; an initial denaturation step at 95
o
C was conducted for 2 minutes and a 
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thermocycle for 30 cycle, where each cycle consisted of 30 second at 95
o
C

 
followed by 

30 second at 58
o
C for annealing , and 30 second at 72

o
C elongation; and a final 

extension cycle of 7 minutes at 72
o
C.  The amplified  product (10µl) was added to 2 µl 

6× loading dye visualized on a 2% (w/v) agarose gel made up in Tris-Borate- EDTA 

buffer (0.09 M Tris base, 0.09 M boric acid, 2 mM EDTA pH 8.0) containing 0.5 mg 

ethidium bromide ml
-1

 to confirm the presence of amplified target DNA in the PCR 

mixture. In addition, 6μl of Hyper Ladder was loaded into one of the wells as a 

reference. Samples were run at a constant voltage of 80 V for 45 minutes.  Twenty 

microlitres of the remaining PCR product was used for the electrochemical assay (Muir 

et al., 2011) 

 

2.2.8. Identification of unknown fungi 

 

     All samples were sent to the Medical School Core Genetics Unit for sequencing. 

BLAST was used to compare the sequences and Finch TV software was used to correct 

the sequence with BLAST and look for the closest matches.  
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Fig. 2. 7: Purification of fungi species; a) green mould; b) black mould on  

 PDA medium 

 

a b 

a b 

Fig. 2. 6: Fungi isolated from dog faeces grown on a) PDA medium b) 

Czapek Dox  

medium 
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2.3. Results and Discussion 

   

2.3.1. Transfer of bacteria by slugs to lettuce 

 

     All isolated bacteria were grown on Chromagar (Orientation) media and incubated at 

37
o
C for overnight. Cultures shown in (Fig. 2.1) showed different colonies grown on 

Chromagar media. Chromagar information sheets (reference) were used to identify 

genera and species of the grown bacterial colonies. There was a consistent colour 

reaction observed for some species or genus, according to colony colour. For instance, 

Enterococcus sp, from all isolations, appeared as blue (turquoise) colonies, while, other 

colonies from different isolates showed a variety of colours as shown in Table 2.3.     

Previous studies on  slugs have shown no relationship between E. coli transfer and  

animals faeces (Elliot. 1969) or have failed to detect the presence of pathogens 

(Shrewsbury and Barson, 1947). On the other hand, field studies by Sproston et al. 

(2006) provided evidence that E. coli can be transferred to vegetables from sheep faeces 

via contaminated slugs. 

2.3.2. Bacteria isolated from dog faeces 

 

     A number of colonies developing colours on Chromagar media were isolated from 

dog faeces based on colony-colour blue turquoise, beige, metallic blue, pink-red, cream 

is shown in Table (2.3)  Based on the colour identification coding catalogues for 

Chromagar (Orientation) media, the genera and species identification of the isolates are: 

Entercoccus sp, Salmonella sp, Staphylococcus lentus, E. coli, Proteus sp and 

Acinetobacter sp. 

 

 

 



54 

 

2.3.3. Bacteria isolated from slugs 

 

2.3.3.1. Bacteria isolated from control slugs 

 

Blue bacterial colonies grew from cultures of both the internal and external parts of 

slugs; these were identified as an Enterococcus sp. Bacterial colonies of a metallic blue 

colour were found to grow from the outside secretion of slugs and these were identified 

as Enterobacter amnigenes, a finding which was confirmed using 16S rRNA sequence 

gene anlaysis  (i.e.. 99% confirmed). 

 

Table.2. 3: Analysis of coloured bacterial strains which require further 16S rRNA 

tests for their identification confirmation to the species level. 

 

 

Colonies colour on 

Chromagar medium 

 

Presence of bacteria species in different Samples 

Dogs 

faeces 

Slugs Vegetable   (Lettuce) 

Control 

Fed on 

faeces Control Contaminated 

In Ex In Ex 

Enterococcus spp Blue Turquoise + + + + + + + 

Enterobacter 

amnigenus 

Metallic blue - - + - - - - 

Staphylococcus                              

lentus     

Metallic blue + - - + - - + 

Acinetobacter sp Beige + - - + + - - 

Comamonas sp Blue - - - - + - - 

Delftia sp Beige + - - +  - + 

Proteus sp Beige with brown  Halo + - - + - - - 

E. coli Pink-red + - - + - - + 

Salmonella sp Creamy +    + - - 

In = Internal samples       Ex=
 
External samples 

Grey shading indicates bacteria that were transferred to lettuce 
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2.3.3.2. Bacteria isolated from slugs fed on faeces 

 

     The results showed that five species of bacteria were grown from the inside/ outside 

of slugs fed on dogs faeces. All five species were isolated from the internal secretions 

and two out of five species grown from the surface of slugs. Staphylococcus lentus 

exhibited a metallic blue colony colour, while Acinetobacter sp was beige and identify 

confirmed (100%) using 16SrRNA analysis. Salmonella sp and Proteus sp appeared as 

cream and beige with a brown halo, respectively, and E. coli as a light red colour.  

Externally isolated species were identified as Acinetobacter sp (99%) using 16SrRNA 

(Table 2.3) and Comamonas sp showing a blue colony was also confirmed by 16S 

rRNA analysis is (91%). 

 

2.3.3.4. Fungi isolated from dog faeces 

 

    Several species of fungi and yeasts were isolated from dogs faeces using PDA and 

Czapek Dox media (Fig 2.5), some of colonies were purified on a number of occasions 

(Fig 2.6). Results of g DNA and PCR-18SrRNA analysis are respectively shown in gel 

Fig.2.12 and Fig. 2.13. One fungal isolate was identified using 18SrRNA analysis, 

namely Trichoderma asperellum (99% similarity). 

 

2.3.4. Transmission of bacteria from dog faeces to lettuce 

 

     Based on the colour of the developed colonies on Chromagar media, three groups of 

bacteria dominated the contaminated lettuce leaves, i.e. blue turquoise, metallic blue 

and beige, whereas only one bacterial species (i.e. Enterococcus) was grown from the 

control lettuce leaves. Enterococcus Spp. bacteria were regularly isolated using 

Chromagar from the control lettuce leaves. Contaminated lettuce samples gave two 

colonies which were coloured differently from Enterococcus,. The colonies were 

initially identified using colony-colour references as E. coli and Salmonella sp (Table 
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2.3); these were not however, confirmed by 16SrRNA analysis.  The results of genomic 

DNA and PCR amplification (Figs 2.8 and 2.9) showed that Enterobacter amnigenus. 

Acinetobacter sp, Comamonas sp and Acinetobacter sp were isolated from 

contaminated lettuce (samples, JS1, JS2, JS3 and JS4 respectively (Table 2.4) in 

addition to Delftia sp, Staphylococcus lentus  and E. coli (samples MS1, MS2 and MS3) 

were also genomic  DNA and PCR amplification achieved (Figs 2.10 and 2.11).   

 

Table.2. 4: Bacterial identification using 16SrRNA 

S/No S/ source Species S % 

JS1 From outside control slugs  (C) Enterobacter amnigenus 99% 

JS2 From inside slugs fed on faeces (C) Acinetobacter sp 99% 

JS3 From outside slugs fed on faeces (B) Comamonas sp 91% 

JS4 From outside slugs fed on faeces (C.) Acinetobacter sp 100% 

MS1 From contaminated lettuce (B) Delftia sp 99% 

MS2 From inside slugs fed on faeces (MB) Staphylococcus lentus 100% 

MS3 From inside slugs fed on faeces (P) E. coli 100% 

C = Cream or Beige colony, B= Blue colony, MB= Metallic blue colony, P= Pink-red colony 
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Fig.2.8:.Extraction of genomic DNA of isolated bacterial species; (lane JS1)  

Enterobacter amnigenus; (lane JS 2) Acinetobacter sp; (lane JS3) Comamonas sp; (lane 

JS 4) Acinetobacter sp( lane L); hyper ladder and( lane JS5) Delftia sp 
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Fig. 2. 9: PCR- 16Sr RNA, amplification products of four isolated bacterial species   

analyzed by electrophoresis in agarose gel lanes represent; ( lane L); hyper ladder;(lane 

JS1)  outside control slugs (Metallic blue); (lane JS 2) inside slugs fed on faeces (B); 

(lane JS3) outside slugs fed on faeces( B); (lane JS 4) outside slugs fed on faeces (C); 

(lane 5) contaminated lettuce(Pink-red). 

1.5 kp 

1.5 kp 
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Fig. 2. 10: Extraction of genomic DNA of isolated bacterial species; (lane L); hyper 

ladder and (lane MR1) Delftia sp ; (lane MR 2) Staphylococcus lentus; (lane MR3)      

E. coli   
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Fig. 2. 11: PCR-16Sr RNA, amplification products of  isolated bacterial species 

analyzed by electrophoresis in agarose gel lanes represent; ( lane L); hyper ladder;(lane 

MR1),  contaminated lettuce (Blue); (lane MR 2) Inside slugs fed on faeces (Metallic 

blue ); (lane MR3), Inside slugs fed on faeces ( Pink-.red) 

1.5 kp 
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2.3.5. Mycoplasma detection 

 

2.3.5.1. Attempts to isolate Mycoplasma from various samples 

 

     Samples were examined for the presence of Mycoplasma contamination using the 

EZ- Polymerase Chain Reaction (PCR) assay. The samples were obtained from the 

inside and outside of slugs and snails, whole body of earthworm, dog faeces samples 

and lettuce control and following exposure to slugs fed on dog faeces (Table 2.5).  

 

Table.2. 5: Presence of Mycoplasma in various samples 

Samples Symbol Reaction 

Outside  slug SR1 Positive 

Inside slugs SR2 Negative 

Earthworm SR3 Positive 

Control lettuce AZ1 Negative 

Contaminated lettuce AZ2 Positive 

Control snail AZ3 Negative 

Outside contaminated  slug AZ4 Negative 

Inside contaminated slug AZ5 Positive 

Inside contaminated snail AZ6 Positive 

Outside contaminated snail AZ7 Negative 

Dog faeces AZ8 Positive 

 

   

   The PCR technique (Figs 2. 14, 2.15 and 2.16) was successful at detecting 

Mycoplasma species from dog faeces and from slugs and earthworm collected from 

local areas of Sheffield. The main finding of the work reported here is that Mycoplasma 

was transmitted from dog faeces to slugs or snails which they, ingested or carried, and 

then in turn transferred to lettuce. Earthworms were also shown to carry Mycoplasma 

from soil on or in their bodies, a fact which presumably reflects contamination from 

animal faeces, mainly dogs. 
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L             6      7   

  

Fig. 2. 12: Extraction of genomic DNA fungi species ; ( lane L); hyper ladder and (lane 

6 and 7) fungi isolated from dog faeces  

 

      L  

  

5 6    

.  

Fig. 2. 13: PCR-18SrRNA, amplification products of  fungal  species  analyzed by 

electrophoresis in  agarose gel lanes represent; ( lane L); hyper ladder; (lane5)  

Trichoderma asperellum (lane 6) no result. 

 

 

 

2500 bp 

2500 bp 
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       L     1      2      3      4 

 

 

 

Fig. 2. 14:  Polymerase chain reaction (PCR) detection of Mycoplasma species in Earth                

worm samples, EZ-PCR-Mycoplasma test analyzed by electrophoresis in 2% agarose 

gel; the lanes represent  ( lane M); 1kb hyper ladder, ( lane 1); negative control(distilled 

water). ; (lane 2); earth worm sample; (lane 3); negative result; (lane 4) positive control  

 

 L   1   2    3    4   5    L 

 

Fig. 2. 15:  Polymerase chain reaction (PCR) detection of Mycoplasma species in Dog 

faeces and lettuce samples, EZ-PCR- Mycoplasma test analyzed by electrophoresis in 

2% agarose gel; the lanes represent ( lane L); 1kb hyper ladder, ( lane 1); negative 

control (distilled water).; (lane 2); negative result; (lane 3); dog faeces samples ; (lane 4) 

control lettuce; (lane 5); contaminated lettuce 

270 bp 

270 bp 
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        L   1   2   3  4  5  6  7   8  9 

 
 

Fig. 2. 16:  Polymerase chain reaction (PCR) detection of Mycoplasma species in Dog 

faeces and lettuce samples, EZ-PCR- Mycoplasma test analyzed by electrophoresis in 

2% agarose gel; the lanes represent  ( lane L); 1kb hyper ladder, ( lane 1); Outside  

control  slug (negative result) (lane 2); Outside  contaminated slug; (lane 3); Outside 

control  snails (lane 4) Outside contaminated snails (lane 5); Inside  control slugs; (lane 

6); Inside contaminated slugs; (lane 7); inside control snails (lane 8); Inside 

contaminated snails (lane 9) negative control (distilled water) 

 

 

 

 

 

 

 

270 bp 
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2.3.5.2. Comments on the detection of Mycoplasma using PCR procedure 

 

In this study the EZ-PCR technique was used to detect culturable-independent 

Mycoplasma DNA. This kit can detect a range of Mycoplasma species such as (M. 

fermentans, M. hyorhinism, M. arginini, M. orale, M. salivarium, M, hominis, M, 

pulmonis, M, arthitidis, M. bovis, M, pneamoniae, M. pirum and M. carpricolum) in 

addition to Acholeplasma and Spiroplasma, all with a high degree of sensitivity and 

specificity. The main aspect of this method is that rRNA gene sequences of  

prokaryotic,  including  Mycoplasma, are   well conserved, whereas, the sequences and 

length of the spacer region in the rRNA  operon (e.g. the region between 16S and 23S 

gene) differ from species to other. Two primers were used to amplify the conserved 16S 

ribosomal DNA (rDNA) coding region. The primer sequences allow for the detection of 

Mycoplasma DNA but not any other bacterial DNA that may contaminate sample 

preparations or solutions used for the PCR. Therefore, amplification of the gene 

sequence with PCR using this primer set enhances not only the sensitivity, but also the 

specificity of detection. Amplified products are then detected by agarose gel 

electrophoresis.  Although our study was focused on domestic dogs, several species of 

Mycoplasma found in dogs have also been found in humans and other animals which 

means the potential of transition several species of pathogenic Mycoplasma from canine 

and amongst animal species (e.g. M. arginini) has been isolated from a range of hosts 

which are associated with canines, including goats, sheep, cattle, healthy cats (Tan et 

al., 1974 and 1977), and camels suffering from pneumonia.  
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Chapter Three: Reduction in Bacterial Numbers in 

Dog Faeces Using Black Soldier Fly and Fruit Beetle 

Larvae 
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3.1 Introduction 

 

     Animal faeces is known to contain pathogens such as Escherichia coli and 

Salmonella spp, recent research has shown that waste production from animals is 

increasing annually as a result of population growth and human  activities (Mawdsley et 

al.,1995; Pell,1997). Around a million tons of hen waste is produced annually 

worldwide (Turnell et al., 2007), while approaching up to one billion tons of cow 

wastes is produced annually in the United State alone (Islam et al., 2005). This type of 

waste leads to the pollution of water sources, soils, crops and the air by animal wastes. 

Factors such as temperature, moisture, aeration and pH value, in addition to manure 

composition and animal health together influence the population of pathogens present 

prior to, and during manure storage (Erickson et al., 2004). Escherichia coli  normally 

grow over the range of pH 5 to 9 but under laboratory condition  can survive several 

hours at pH 2 to 3 (Small et al., 1994). In order to manage animal wastes a variety of 

experimental treatments have been attempted, e.g. the mixing of animals manure with 

carbon sources in order to accelerate the biological oxidation of wastes (Kashmanian 

and Rynk, 1996). Such a treatment makes the resultant manure more effective for use in 

agricultural  and also kills pathogenic bacteria by the production of high temperature 

(40-55
0
C) during the primary  stages  of  composting (Jiang et al., 2003). However, 

failure to maintain this heat for long periods may allow bacteria to survive (Prysor 

Williams et al., 2006; Nemiroff and Patterson, 2007). Consequently, the possibility 

exists that insufficiently treated manure will lead to bacterial contamination of soil and 

agricultural crops (Cekmecelioglu et al., 2005). As well as biological treatments, 

chemical approaches can successfully reduce pathogens in manure, examples include: 

gassing with ammonia and the application of sodium carbonate (Himathongkham, 1999; 

Park and Diez-Gonzalez, 2003). 
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      Invertebrate larvae have also been evaluated in the treatment of animal wastes and 

manures; saprophagous or polyphagous larvae can take up as important elements during 

benefaction of animal waste and increase their protein and carbohydrate contents as a 

result; in this way, not only is the manure improved for fertilizer use, but the nutrient 

content of the larvae is increased, making them ideal as food sources for, for example 

poultry chicken and egg production (Erickson et al., 2004).  Black Soldier Fly (BSF) 

larvae, Hermetia illucens L. (Diptera:Startiomyidae) have been widely evaluated for this 

purpose. The life cycle of BSF has four stages; egg, larva, pupa and adult. The larvae 

range in size from (3– 9 mm) and usually have five larval instars. Black Soldier Fly 

larvae have been used to bioremediate  livestock manure in studies by Sheppard et al, 

(1994) and Sheppard and Newton, (2001) and a number of studies have shown that  

BSF larvae  can  reduce the  pathogenic bacteria in waste, e.g. E coli and Salmonella 

Spp in chicken manure (Erickson et al., 2004; Jeon et al., 2011). Black Soldier Fly 

larvae can  also dry and aerate manure in addition to reducing odours by eating and 

ingesting of bacterial and fungicidal compound, as a results BSF larvae can modify the 

microflora of manure and reducing the number of harmful species (Jeon et al., 2011). 

     The studies reported here were aimed at  using BSF larvae and Fruit Beetle grubs 

(Sun Beetle larvae, FB) Pachnoda marginata peregrina (Coleoptera: Scarabaeidae) to 

reduce the bacterial population of dog waste and also to improve texture and fertilizer 

nutrient content in the hope that treated dog faeces might be converted from an 

offensive waste into a useful compost material. 
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3.2. Materials and Methods 

 

3.2.1 Methods for bacterial isolation and identification 

 

Several broth and agar-based media and selective media based on colony coloration 

were used:  

    HiCrome E. coli (TM) Agar is a selective medium obtained from Fluka-Sigma-

Aldrich Company (see media in Appendix). The medium was used to isolate and 

enumerate E. coli as recommended by Hansen and Yourassowsky, (1984). Most of the 

Escherichia coli strains can be differentiated from other coliforms by presence of the 

enzyme glucuronidase which is highly specific for E. coli (see medium composition in 

Appendix). The chromogenic agent X-glucuronide used in this medium detects 

glucuronide activity. Escherichia coli cells absorb X-glucuronide and the intracellular 

glucuronidase splits the bond between the chromophore and the glucuronide. The 

released chromophore then gives a blue colouration to the colonies (Fig. 3.6 a) of E. 

coli. Brilliance E. coli/Coliform agar from Oxoid, on the other hand, gave a purple 

colour with E. coli (Fig.; 3. 6 b). 

     A highly selective XLT-4 Agar CM 1061 (Xylose Lactose Tergitol™ 4) agar 

medium obtained from Oxoid was used to isolate and identify Salmonella sp., as 

recommended by Mallinson et al., (2000). Differentiation on this medium is facilitated 

by the fermentation of xylose, lactose and sucrose as well as the decarboxylation of 

lysine. Salmonella appear as black or red colonies with a black centre (Fig. 3. 7), due to 

their ability to reduce thiosulphate to hydrogen sulphide, which then causes the colony 

to blacken (as there are ferric ions present in the medium). The makers instruction for 

the preparation of this medium are as follows: Suspend 59g of  XLT-4 Agar Base in 1 

litre of distilled water, then 4.6ml of XLT-4  SR0237  selective supplement was added 

to the medium and brought  to the boil. The medium was not autoclaved. After cooling 
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to approximately 50°C, the medium was poured into sterile Petri-dishes (Tate et al., 

1990). 

    A range of media including Luria-Bertani (L.B) , Plate Count Agar (Fig. 3.8) and  

Mueller Hinton (M.H) and Nutrient Broth or Agar were also prepared for routine 

isolation and growth studies. Bacteria were also identified using 16s rRNA analysis; 

DNA was extracted according to the instructions of the Anachem Key prep-Bacterial 

DNA Extraction kit, and then bacterial 16S rRNA gene was amplified and sequenced 

using PCR. After checking, the purified PCR products were sent to the Medical School, 

(University of Sheffield) to be sequenced. 16SrRNA gene sequences were adapted 

using the Finch TV software and then exported into The Basic Local Alignment Search 

Tool (BLAST), available from the website of National Centre for Biotechnology 

Information (NCBI)http://www.ncbi.nlm.nih.gov, to identify matches with existing 

characterized reference sequences 

 

3.2.2. Dog faeces and insects larvae collection 

 

Dog faeces (from an Alsatian) were collected with the cooperation of a dog owner in 

Sheffield. The fresh dog faeces samples were distributing onto two small boxes 

(30×20×15 cm) and placed at laboratory condition whereas the first box treated with 

Black Soldier Fly larvae (Fig.3.1). One hundred larvae per 100g dog faeces 

approximately were used, as suggested by Li et al., (2011). The second box included 

100g of dog faeces (without larvae) as the control. Fruit Beetle larvae were treated in 

the same manner, except that 10 FB larvae (Fig.3.3) were added to 100 g of dog faeces; 

controls were also set up. The larvae were purchased online from Ricks LiveFood. 

Black Soldier flies were reared to the adult stage (Fig.3.2) and Fruit Beetle stages from 

larvae (Fig. 3.3) pupa (Fig. 3.4) and adults (Fig. 3.5) to the next generation. 
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3.2.3. Bacterial isolation from dog faeces 

 

Bacteria were isolated at weekly intervals over a 28 day incubation period. Samples 1g  

were diluted in 9 ml of  sterilized water then a serial dilution from 0.1 to 10
6
 was 

performed; the 0.1 ml of each diluted samples  were then spread  on E. coli agar ,  

XLT4,   L.B and count  plate media, and incubated  between 18 and 24 h at 37
0
C. In this 

case, both the control and treatment dog faeces were sampled from control and 

treatment (with larvae) boxes in triplicate at each sampling day (0, 7, 14, 21or 28) 

 
3.2.4. Bacterial isolation from the larval gut 

 

Bacteria were isolated from BSF and FB larvae gut and surface after being fed on 

faeces. For internal isolation, the outer surface was rinsed three times in sterilized water. 

The larvae were then anaesthetized using a piece of cotton  wool  wetted with 

chloroform (100%), placed with  the larvae in  Petri-dishes for few minutes. The 

anterior end, near the cephalopharyngeal skeleton, was opened and the abdominal 

contents were squeezed gently to collect 1g of  the gut contents.  A serial dilution was 

then prepared for BSF and FB larvae to determine  the number  and type of  bacteria, 

and 0.1 ml of each  diluted samples was taken for both control and treatment larval gut 

and  spread  onto the E. coli agar ,  XLT4,   and count  plate media and incubated  

between 18 and 24 h at 37
o
C; triplicates were used throughout. 

 

3.2.5. Determination of pH 

 

The pH of the dog faeces was determined as follows; 5 g of dog faeces were dissolved 

in 50 ml deionised water (Erickson et al., 2004); suspension were shaken for 15 min on 

a reciprocal shaker at 100 g until the suspension became homogenous, The pH of the 

final solution was measured weekly using a calibrated Jenway 3310 pH meter 

(Bogdanov et al., 2002). 
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3. 2. 6. Statistical analyses 

 

All observations are presented as Mean ±SD (Standard deviation). Bacterial populations 

were converted to log CFU/g before statistical analysis. Statistical analyses were 

performed on experimental datasets using the t-Test and three way ANOVA at >0.05 

probability level compared significance of means of three replication. Results were 

analysed using Sigma Plot 11.0
©

 software. 

 

 

 

 

 

 

 

 

Fig. 3. 1: Black Soldier Fly larvae, 1
st
 instar 

 

 

Fig. 3. 2: A Black Soldier Fly adult 
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Fig. 3. 3: Fruit Beetle larvae 3
rd

 instar 

 

 

Fig. 3. 4:.Fruit Beetle pupae 

 

 

Fig. 3. 5: Fruit Beetle adults 
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3.3. Results and Discussion 
 

3.3.1. Identification of bacteria associated with dog faeces and larvae 

 

     Several species of bacteria were isolated from dog faeces and intestinal tract (gut) of 

both the Black Soldier Fly and the Fruit Beetle FB larvae using the chromogenic media, 

Hicrome E. coli and Brilliance E. coli/ Coliform agars.  XLT-4 agar was used to isolate 

and identify Salmonella Spp. The results (Table 3.1) show that E. coli produced a blue 

or pink/purple colony (Fig. 3.6), while Salmonella enterica produced a black colony on 

these media (Fig. 3.7). Bacteria growing on Plate Count Agar were not identified (Fig. 

3.8).  Scanning Electron Microscope (SEM) confirmed that the morphology of bacteria 

isolated from dog faeces and gut of larvae agreed with E, coli and Salmonella enterica 

(Fig. 3.9 a) while some of bacteria species were cocci, e.g. MRSA(Fig. 3.9 b). 

Molecular identification of gDNA using 16S rRNA results confirmed the species 

isolated as Escherichia coli and Salmonella enterica. The samples were sent to Medical 

School Core Genetics Unit for sequencing, and then we used (BLAST) to compare the 

sequence. Finch TV software was used and compared with BLAST to look for the 

closest matches.  The results show the species isolated from dog faeces were: E. coli 

and Salmonella enteric 100% and 99% respectively see appendix 2 bacteria sequences 

Table. 3. 1: Media used to detect and identify E. coli and S. enterica from dog faeces, 

BSF and FB larvae gut 

Sample 
Bacterial 

species  

Appearance of 

the colony 

SEM / Cell 

morphology 

Media 

name 

Gram 

nature 

DNA 

Similar 

Dog faeces E. coli Blue or purple Bacillus 
HiCrome or 

Brilliance 

Gram 

negative 
100% 

BSFL gut E. coli Blue or purple Bacillus 
HiCrome or 

Brilliance 

Gram 

negative 
100% 

FBL gut E. coli Blue or purple Bacillus 
HiCrome or 

Brilliance 

Gram 

negative 
100% 

Dog faeces S. enterica Black Bacillus XLT-4 
Gram 

negative 
99% 

BBSFL gut S. enterica Black Bacillus XLT-4 
Gram  

negative 
99% 

FBL gut S. enterica Black Bacillus XLT-4 
Gram  

negative 
99% 
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Fig. 3. 6: Escherichia coli grown on selective chromogenic agar E. coli media isolated 

from dog faeces and larvae fed on dog faeces; a) Brilliance E. coli /Coliform agar 

showing blue colonies,  b) HiCrome E. coli agar showing purple/pink coloured colonies 

. 

 

 

Fig. 3. 7: Salmonella Spp grown on XLT-4 selective Salmonella agar medium 

 

 

 
 

a b 
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Fig. 3. 8: Colonies of bacteria grown on plate count agar medium 

 

    

Fig. 3. 9: Two bacterial isolates showing different external morphology; a) cocci, b) 

bacillus, observed by SEM. 

a b 
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Fig. 3. 10: Bacterial numbers in dog faeces grown on; a) plate count medium, b)HiCore  

E. coli in and c) Salmonella medium after treatment with Black Soldier Fly larvae 

 (Means of triplicate (±) SD log CFU/g (*significantly different from control) 
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Fig. 3. 11: Bacterial numbers from dog faeces, bacteria grown on; a) plate count 

medium, b) HiCore E. coli medium and c) Salmonella medium by Fruit Beetle Larvae. 

 (*Significantly different from control) 
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    Figure 3.10a shows that the “total heterotrophic bacterial count” in the faeces treated 

with BSFL were markedly and statistically reduced. The same trend was found in 

relation to numbers of E.coli  (Fig.3.10b) and Salmonella (Fig.3.10c). Figure 3.11a 

shows that the total number of heterotrophic bacteria in faeces treated with FBL, as was 

the case with BSFL declined compared to the control, at least for the first 14 days; the 

numbers in the control then declined rapidly so that numbers in the treated faeces then 

exceeded the control at days 21 and 28. This marked decline in bacterial numbers 

following BSF treatment was also seen in relation to treatment with E.coli and 

Salmonella (Figs.3.11b,c). 

   The overall trend following BSF larval treatment was a reduction in numbers for the 

first 14 days, followed by an increase over the control for days 21 and 28. The increase 

in numbers after 14 days may however, have been anomalous due to a rapid and 

unexplained fall in numbers in the control. The results show that BSFL can be used to 

reduce the numbers of bacteria, including some important pathogens in dog faeces. The 

findings relating to the use of FBL are in agreement with this trend up to day 14 but 

increases in bacterial population then occur which, if the control‟s rapid decline is not 

anomalous is worrying in relation to the potential use of FBL as a compost additive or 

fertilizer. 
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Fig. 3. 12: Numbers of bacteria; a) E. coli, b) Salmonella enterica and bacterial species 

grown on plate count medium isolated from gut of BSF larvae 

Means of triplicate (±) SD log CFU/g (*Significantly different from control). 
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Fig. 3. 13: Numbers of total “heterotrophic bacteria” in gut of FB larvae; a) E. coli  b) 

Salmonella enterica and c) bacterial species grown  on plate count medium 

Means of triplicate (±) SD log CFU/g  (*Significantly different from control). 
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Figure  3.12 shows the number of bacteria, including pathogens inside the gut of BSFL 

following feeding on dog faeces. The overall trend is obvious, namely feeding leads to a 

statistically significant increase in the number of bacteria inside the BSFL gut. The 

same trend is seen in relation to dog faeces fed FBL (Fig 3.13). This trend of increasing 

bacterial numbers in larvae fed on dog faeces is particularly worrying in relation to the 

potential feeding of these larvae to animals-post exposure to faeces. Black soldier Fly 

larvae in particular are currently being produced for use as animal feed (mainly to 

chickens) following feeding on restaurant food waste. It is unlikely then, considering 

the high pathogen content of larvae fed on dog faeces that these could be safely used as 

animal feed following feeding on dog faeces. The only reference seemingly available on 

the effect of feeding BSFL on animal faeces was reported by Erickson et al. (2004),who  

found that they reduced the pathogenic bacteria population, including E. coli and 

Salmonella in chicken and hogs manure.  
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Chapter Four: Modification of Canine Faeces by Black 

Soldier Fly and Fruit Beetle Larvae in relation to Plant 

Nutrient Release and Potential Use of Modified Faeces 

as a Compost Additive 
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4.1   Introduction  

 

     The digestive tract of animals contains a wide range of microorganisms and as a 

result, their faeces may also contain these organisms which include a variety of 

pathogenic and saprophytic faecal bacteria (Mawdsley et al., 1995; Pell, 1997).  

     The accumulation of dog faeces in the urban environment poses a major threat to 

animals, plants, human health and water sources (Rippy et al.1997). In the United States 

alone, dog faeces contamination is estimated to be around ten million tons annually   

(Brinton and Storms 2004) and the disposal of dog faeces is a major problem in regions 

of high-density dog populations.  Dog populations vary worldwide; in the city of  

Quebec for example, approximately 25% of residents own at least one dog (Marketing, 

2002). The estimated dog population of Quebec is 742,728, with 432,000 being found in 

Montreal alone (Institute de la statistique Quebec 2005a). A European survey showed 

that 44,000,000 domestic animals, including 6,900,000 dogs, were living in Italy in 

2002.  In 2007 a random study in the UK revealed that dogs were owned by 26% of 

households, while the 2006 dog population was around 10.5 million. The average daily 

faecal production of a dog is approximately 100 grams and open spaces, public gardens, 

pathways, arcades, pedestrian precincts and roadways are the sites with the highest 

pollution (Tarsitano et al., 2010). Canine faeces, are often not removed from the urban 

environment, due to the bad habits of the owners and they clearly  represent a source of 

potential pathogens in addition to being an unsightly inconvenience (Nemiroff and 

Patterson, 2007). 

     In the past, series of treatments have been used to reduce the  pathogenic bacteria 

content of animals manures; the mixing of animals manure with various carbon sources 

being the most common method used to activate the biological oxidation process. 

(Kashmanian and Rynk, 1996). In this treatment method, pathogenic bacteria are killed 

by the high temperature (40-550C) produced in the primary stages of the composting 
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process (Jiang et al., 2003). However, the failure to maintain such high temperatures  

for long periods may allow pathogens to survive (Prysor-Williams et al., 2006, 

Nemiroff and Patterson, 2007) Consequently, the possibility for bacterial contamination  

of soil and agricultural crops resulting from the of inefficiently composted manure is a 

concern (Cekmecelioglu et al., 2005). In addition,  chemical treatments that have been 

used with success to reduce pathogens in manure (including gassing with ammonia and 

the application of sodium carbonate (Himathongkham, 1999) may  introduce further 

environmental risks. 

    Many insect species depend completely on animals manure as organic materials as 

their main food source, so that a number of insects (Saprophagous) can be used to help 

recycle and improve the fertilizer quality of animal manures (Erickson et al., 2004).   

     Recently, a range of studies on animal waste benefaction have been conducted in 

China, United States, Mexico, Eastern Europe, Australia and Central and South 

America, aimed at treating animals faeces with insects to produce manure and animal 

feed in the form of larvae; insect larvae were found to reduce the nutrient concentration 

and mass of the manure residue, thereby reducing the pollution potential of the waste by 

50-60% or more. (Newton et al., 2005) 

     A novel approach involves the use of black Soldier Fly (BSF) larvae Hermetia 

illucens L. (Diptera: Startiomyidae). The life cycle of BSF has four stages; egg, larva, 

pupa and adult. The larvae range in size from (3– 9 mm) and usually have five larval 

instars. Female adults do not need to feed and lay around 900 eggs in their short life of 5 

to 8 days; adults surviving on the large fat body stored from the larval stage. The black 

Soldier Fly is not recognized as a pest since the adult Fly is not attracted to human 

habitation or foods, nor does it bite or sting (Newton et al., 2005) 

     The larva of the black Soldier Fly is an common sight is some countries in decaying 

organic matter including kitchen waste, spoiled feed and the larval stage of BSF and its 
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use has been suggested as a means of reducing livestock manures (Craig Sheppard et 

al., 1994; Sheppard and Newton, 2001) a number of studies  have demonstrated the 

ability of BSF larvae  to recycle  animals manure and  reduce the number of pathogenic 

bacteria which they contain; E coli and Salmonella spp populations have, for example, 

been reduced in chicken manure (Erickson et al., 2004). Previously, several studies have 

also reported on the possibility of recycling the dog faeces using physical and chemical 

approaches whereas some have utilized BSF larvae to reduce the bacterial population 

from animals manure such as hogs, cows and poultry.  The work discussed in this 

Thesis focuses on using the BSF larvae to treat dog faeces. In addition, Fruit Beetle 

larvae FBL Cotinis mutabilis (Scaraaeidae: Coleoptera) were investigated and compared 

with BSFL in relation to their ability to reduce populations of E. coli and Salmonella 

Spp. 

   The aim of this study therefore was also to investigate changes in the concentration of 

ammonium and nitrate, and sulphur oxidation and phosphate solubilisation during larval 

treatment of dog faeces with of BSF and FB larvae in the hope of converting the 

biomass of these wastes dog faeces from a toxic, unsightly waste-product, into a safe 

and useable fertilizer and compost additive.  
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4.2. Materials and Methods 

 

4.2.1. Sample collection  

 

4.2.1.1. Samples collection from canine waste 

 

     Samples of fresh dog faeces were collected from a single dog (Alsatian) owned by a 

local family. The collected samples were distributed into eight plastic boxes (15x 20× 

10 cm), each box containing 100 g of dog faeces with or without larvae. Three 

replicates were used and the results compared using T-Test at 0.05 probability level and 

ANOVA to determine levels of significance using Sigma Plot 11.0.   

 

4.2.1.2. Samples collected from treated dog faeces   

 

     After 28 days, the treated dog faeces (now compost) were collected, weighed and 

then divided into control and treatment without added larvae. Samples (100g) of the 

treated and control faeces for each element were then placed in polythene bags. Treated 

samples were amended by addition ammonium, nitrate, sulphur and insoluble phosphate 

regents while the control no elements regents  were added  to the samples . Sample were 

taken a weekly to measure the elements.    

 

4.2.1.3. Effect of larvae on the nutrient content of dog faeces.  

 

   A number of first instar Black Soldier Fly (BSF) and Fruit Beetle (FB) larvae were 

bought from a commercial company (Ricks Live-Food) in UK. Dog faeces (100)were 

were placed in the plastic boxes and 100  larvae of BSF and 10 larvae of FBL were 

added; a control with no larvae was also set up. The treatments were left for 28days 

under laboratory conditions and sampled at 7 day intervals for the following plant-

fertilizer ions: ammonium, nitrate, sulphate and phosphate. 
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4.2.3. Nutrient transformations in modified dog faeces amended with ammonium 

nitrate, sulphur and insoluble phosphate    

 

   Samples of dog faeces which had been modified by treatment with either BSFL or 

FBL and the larvae were removed. The two types of modified samples (100g) were then 

amended, in triplicate (in polythene bags) with ammonium (5ml of a 100ug per ml 

solution of NH4SO4) and ammonium and nitrate was measured; elemental sulphur (1g) 

and sulphate was measured; insoluble calcium phosphate (Ca3O8 P2,1g) and soluble 

phosphate was measured. Controls lacking amendment were also set up. Then 20 ml of 

water was added to each bag, which were closed to allow a small hole to allow for gas 

exchange; the samples were then incubated at 25
o
 C for 7, 14. 21 and 28 days elements 

determined as follows.  

 

4.2.3.1. Determination of ammonium–N (NH4
+
-N) in dog faeces 

      

     Ammonium was extracted from both control(without larvae) and treatment (with 

larvae) dog faeces as well as to the modified control and treatment  dog faeces ( dog's 

compost) by adding solution of (15% w/v) of KCL in the ratio;(1g) of samples : (10 ml) 

KCL. The dog faeces were shaken for 30 min at 70 g then, in order to determine the 

concentration of ammonium N(NH4
+
-N) 2 ml of filtrate was mixed with (1ml) of EDTA 

(6% w/v), then (7ml) of distilled water, (5ml)of phenolate reagent (see appendix), and 

(3ml) of sodium hypochlorite solution (10%v/v). The mixture was then incubated at 

25C
0 

for 20 min in the dark. The volume was made up to 50 ml and mixed then the 

concentration of the indophenol-blue ammonium complex was measured at 630 nm 

(Wainwright and Pugh, 1973), the concentration of ammonium intensity was 

determined by reference to a standard curve(10-100µg NH4
+
-N) prepared from a 

standard solution of ammonium sulphate (see Appendix). Urea (0.5g) was added to the 

treatment samples (amended) dog faeces then while control was set-up lacking urea. 
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4.2.3.2. Determination of Nitrate – N (NO3
-
-N) 

 

     Samples were extracted (1g) of each and shaken for 15 min with 20ml of water then 

the samples were filtrated through Whatman No 1 filter paper. Nitrate was determined 

using the method of (Sims and Jackson, 1971). Chromotropic acid: 7ml was mixed with 

3ml of the filtrate then incubated at 40C
0
 in water bath for 45 min; the producer yellow 

colour was measured at 410 nm and the concentration of nitrate was determinate by 

reference to a standard curve of nitrate concentration. 

 

4.2.3.3. Determination of Sulphate-SO4
2-

-
 
S 

 

      Samples (1g) were shaken with 10 ml of water then shaken at 70 g using an orbital 

shaker for 15 min the samples were filtrated through Whatman No.1 filter paper. 

Sulphate-S was determined using turbidimetric method to analysis the sulphur element  

(Hesse, 1971) as follows: Filtrate  (10 ml) was transferred into a 250 ml volumetric 

flask, 1g of barium chloride BaCl2, and 2 ml of gum acacia (0.25% w/v) were added and 

mixed well then the volume increased up to 25 ml of water. The white suspension 

resulting from precipitation of BaCl2 was measured at 470 nm using a 

spectrophotometer and the concentration if of 
SO42-

-
S
 was determined by reference to a 

standard curve (0- 100µg sulphate ml) prepared from a standard solution of Na2SO4. 

(see Appendix).  

 

4.2.3.4. Determination of phosphate solubilisation PO4
3-

-P 

 

     Samples (10g) were placed into screw capped glass bottle containing 100 ml of 0.5 

N NaHCO3 and all the bottles were shaken for 30 min at 70 g, using an orbital shaker, 

the contents were then filtered through Whatman No. 1 filter paper. Phosphate ions 

were determined as described by Falih, (1995) as follows: Filter (3 ml) was mixed with 

7 ml of work solution (see Appendix) then the mixture incubated at 37C
0
 for 1 hour. A 
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serial dilution were taken up to log  10
-3

  for the blue colour reaction then was measured 

at 820 nm using a spectrophotometer and the amount  of PO4-P were determined by 

reference to a calibration curve(0- 8 µg PO4-P ml
-1

. 

 

4.2.4.Measurement of the pH of dog faeces samples 

 

     The pH of the dog faeces was determined  each from zero time until 28 days, using a  

1:1 distilled water suspension , shaken for 15 min on a reciprocal shaker (100 revolution 

min
-1

), and a pH meter fitted with a glass electrode. 

 

4.2.5. Determination of the effects of modified dog faeces as a compost additive on 

plant seed germination and growth 

 

     The two types of modified dog faeces (BSFL and FBL) mixed with a local grassland 

soil, which had not recently been fertilized, in the ratio 25%, 50% and 75%. Controls 

consisted of modified and unmodified dog faeces. Samples (100g) of each mixed 

proportions were planted with turnip or lettuce. The treatments were set up in triplicate 

and watered twice a week and left under laboratory condition and plant growth was 

observed. 
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4.3. Results and Discussion 

 

4.3.1. Effect of larvae on the texture of dog faeces 

 

     Untreated dog faeces were greasy and tightly packed (Fig.4.1) and possessed an 

offensive odour. Treatment of fresh dog faeces with Black Soldier Fly and Fruits Beetle 

larvae reduced two 100g sample to 38g and 43g of modified dog‟s faeces within 4 

weeks (62% and 57% reduction using BSF and FB larvae respectively. The modified 

dog faeces were more friable and loosely textured and had lost their faecal structure and 

their offensive odour (Fig.4.2).  

 

Fig. 4. 1: Untreated dog faeces after 28 days incubation 

 

 

 

Fig. 4. 2: Modified faeces:  a) treated with FBL;  

b) treated with BSFL after 28 days 

 

 

A B 
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Fig. 4. 3: The effect of BSFL activity on indigenous; a) ammonium, b) nitrate, c) 

sulphate and d)  phosphate concentration  in dog faeces(* Significantly different from 

control, p=0.05).  
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Fig. 4. 4: The effect of FBL activity on a indigenous a) ammonium, b)  nitrate, c) 

sulphate and     d) phosphate concentration  in dog faeces (* Significantly different from 

control, p=0.05)  
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Fig. 4. 5: The effect of length of incubation on a) ammonium concentration following  

addition of (10µg/ (NH4)2SO4-N g) ,  b) nitrate concentration following  the addition of 

(10µg/ (NH4)2SO4-N g),  c)  S
0
  oxidation following the addition of (1% w/w) S

O 
and 

 
d) 

phosphate solubilisation following the addition of (1% w/w)calcium phosphate to dog 

faeces modified with BSFL(* Significantly different from control, p=0.05)  
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Fig. 4. 6: The effect of length of incubation on a) ammonium concentration following  

the addition of (10µg/ (NH4)2SO4-N g),  b) nitrate concentration following  the addition 

of (10µg/ (NH4)2SO4-N g) , c) S
0
 oxidation following the addition of (1% w/w) S

O
 , d)  

phosphate solubilisation following the addition of (1% w/w) of calcium phosphate to  

dog faeces modified with FBL (* Significantly different from control, p=0.05)  
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     Fig.4.3 shows the effect of BSFL activity on the concentration of the indigenous dog 

faeces-related plant nutrients: ammonium, nitrate, sulphate and phosphate. Fig (4.3a) 

shows that there was a significant reduction in ammonium concentration ever the entire 

incubation period, while  (Fig.4.3b) shows a similar decrease in nitrate concentration up 

to week three, followed by a significant increase at week 4. Sulphate concentration in 

the dog faeces also decreased following BSFL treatment over the entire incubation 

period (Fig.4.3c), while phosphate concentrations were significantly reduced up to week 

three and then significantly increased at week 4 (Fig.4.3d) 

  Fig.4.4 shows the effect of FBL on the indigenous plant nutrients in the dog faeces. 

Ammonium concentrations were reduced to week 2, but significantly increased at weeks 

3 and 4 (Fig.4.4a). Nitrate concentrations, in contrast were significantly reduced over 

the entire incubation period (Fig.4.4b), as were sulphate concentrations; phosphate 

concentrations were significantly reduced up to week 3, but significantly increased at 

week 4 (Fig4.4d). 

  The effect of amendment with BSFL modified dog faeces with a source of plant 

nutrients (ammonium, sulphate and insoluble phosphate) is shown in Fig.4.5. The 

concentration of all of the released nutrients (ammonium, nitrate, sulphate and 

phosphate) was generally significantly increased over the control, over the entire 

incubation period. The same trend was seen in nutrient-amended faeces modified by the 

addition of FBL (Fig.4.6). 

  As a generalization, the addition of both types of larvae to dog faeces significantly 

reduced the concentration of indigenous plant nutrients over the entire four week 

incubation period; exceptions to this were nitrate and phosphate concentrations in BSFL 

treated faeces, where significant increases were seen at week 4 and 3 respectively and in 

faeces treated with FBL, where ammonium concentrations were significantly increased 

at weeks 2-4, and phosphate at week 4. While the addition of both larvae therefore 
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initially decreased levels of indigenous plant nutrients there was a trend in some of the 

nutrients to increase the longer the incubation went on. This suggests that perhaps a 

longer term exposure of dog faeces to the two larvae might have lead to increase in 

ammonium, nitrate, sulphate and phosphate concentrations. While this would generally 

be advantageous to the fertility of soils surrounding dog faeces, the potential long term 

increase in nitrate could at first sight be considered detrimental as nitrate can be readily 

leached to ground waters (where, when present in drinking water, it can cause blue baby 

disease and gastric cancer in humans). However, the relatively small amounts of dog 

faeces which are present, spread over large areas of soil, would likely make such 

increased nitrate contributions to drinking water relatively insignificant. 

    The addition of ammonium, elemental sulphur and insoluble phosphate to dog faeces 

which had been modified by the two larvae led to significant increases in nitrate, 

sulphate and plant-available phosphate, results which shows that that dog faeces 

contains the indigenous microflora required for the transformation of these amendments 

(which simulate fertilizer addition). The increased friability and therefore increased 

aeration of the dog faeces following larval modification is also like to result in   

enhanced rates of nitrification, S-oxidation and phosphate solubilisation. Clearly the 

microflora of dog faeces can act to modify added fertilizers and convert them to the 

plant available form.    
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4.3.5. Determination of the effects of modified dog faeces as a compost additive on 

plant seed germination and growth 

 

 

     Table 4. 1 shows that none of the seeds used germinated or grew in raw, untreated 

dog faeces (Control DF), but all grew in untreated compost (control compost). Of the 

seeds used only turnip germinated/grew in potting compost: modified dog faeces (FBL) 

at a ratio of 25:75. At a ratio of 50:50 lettuce seed failed to grow in BSFL modified 

faeces, but 80% of turnip seeds grew in this mix; 20 % of lettuce seeds grew in 50:50 

FBL: compost and 40% of turnip seeds. At a ratio of 25:75 BSFL modified dog faeces: 

compost 20% of lettuce seeds grew and 100 % of turnip seeds grew. The growth figures 

for FBL modified faeces were relatively, lettuce 40%, and turnip, 80%.  The results 

given in Table 4.1 are shown visually in Figs. 4.7 and 4.8 

 

 

Table. 4. 1: The percentage seed germination and growth planted in different ratios of in 

modified dog faeces (treated with BSF and FB larvae) and potting compost   

Planted seeds Control 

Modifies    

DF 

 75%  

DF 

 50% 

DF 

 25% 

DF 

 Control 

compost 

 

      

Lettuce seeds planted in dog faeces 

treated with BSFL 

0% 0% 0% 20% 80% 

Turnip seeds planted in dog faeces 

treated with BSFL 

0% 0% 80% 100% 60% 

Lettuce seeds planted in dog faeces 

treated with FBL 

0% 0% 20% 40% 60% 

Turnip seeds planted in dog faeces 

treated with FBL 

0% 40% 40% 80% 80% 

DF= Dog faeces 
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Fig. 4. 7: Shows a) the seeds  planted in larval treated  dog faeces; from 1 to 3 - turnip 

seeds, from 4 to 6 is lettuce seeds; b) the seeds planted in compost ; 7 to 9 - turnip 

seeds, from 10 to 12 is lettuce seeds.  

 

Fig. 4. 8:  Shows; a) the lettuce seeds  planted in different concentration of larval  

treated dog faeces with BSFL No; 1, control dog faeces 2, 3 and 4 are 75, 50 and 25% 

of dog faeces concentration  and 5 is a control compost. From 6 to 10 are the turnip 

seeds planted at the same concentration b) the lettuce seeds  planted in different 

concentration of treated dog faeces with FBL No; 1, control dog faeces 2, 3 and 4 were 

75, 50 and 25% of dog faeces and 5 is a control compost. From 6 to 10 showing turnip 

seeds planted at the same concentration 
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   Clearly, by increasing the ratio of compost to modified faeces the inhibitory effect of 

raw dog faeces on plant growth was “diluted out”, thereby suggesting the possibility 

that larval modified dog faeces could be used as a compost additive fertilizer, or perhaps 

even be used as an agricultural soil fertilizer. These possibilities are however, limited by 

the fact that dog faeces are widely separated in the environment, so that it would be 

difficult to economically collect large amounts, making unviable it industrial use. 

Domestic dog pounds and dog racing kennels might on the other hand provide a 

sufficiently large source of faeces to make such use economic.     
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Chapter Five: The Antibacterial Activity of the 

Haemolymph and Whole Body Extracts from BSFL 

and FBL against Four Species of Bacteria 
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5. 1 Introduction  

 

     Like many other organisms, insects exhibit an efficient immunity response allowing 

them  to survive in environment and it is known that insects have various levels of 

internal defence against microbial invasion (Cociancich et al., 1994), including the 

ability, in some species, to externally secrete antibacterial compounds. Internal 

components of Green Blow Fly maggots for example, have been used with success, 

since 1930 (Simmons, 1935) to treat wounds infected with bacteria (Thomas et al., 

1999). In medicine, larvae of the Green Blow Fly (Lucilia sericata Meigen) are well-

known for having the ability to reduce and eradicate bacteria in human wounds 

(Thomas et al., 1996); they can both ingest and digest such bacteria or may produce 

active antimicrobial substances. A study by Murry and Hinckley (1992) showed that 

earthworms (Eisenia foetida) can also reduce the population of Salmonella enterica in 

horse manure. 

     The published work above shows a variety of results relating to the antibacterial 

activity of larval extracts against several species of bacteria.  Bexfield et al., (2004) 

established that Lucilia sericata excretions/secretion inhibit growth of E. coli. Similarly, 

they showed that Lucilia sericata extracts inhibit the growth of P. aeruginosa over a 24-

hour period ,whereas Jaklič et al., ( 2008) reported a prolonged lag phase of more than 

5-hours, and Thomas et al., (1999) found only limited inhibition.  

       More recently, Mumcuoglu et al., (2001) found green fluorescent protein (GFP)–

producing E. coli in the alimentary canal of Fly larvae and found a decreasing intensity 

of this marker during passage through the digestive tract. A battery of defence proteins 

synthesized by insects in response to bacterial challenge may be responsible for this 

decrease. Cecropins, and lytic proteins for example, have been isolated from larvae of 

blow flies (Calliphora vicina) (Crowley and Houck, 2002). Another antibacterial 

substance, p-hydroxycinnamaldehyde, isolated from the larvae of the Saw Fly, 
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Acantholyda parki S., has also been found to have a broad antibacterial spectrum 

against both gram-negative and gram-positive bacteria (Leem et al., 1999).  

     The Black Soldier Fly, Hermetia illucens, is a beneficial insect because its larvae 

feed on organic material, including the remains of plants, animals and humans. Such 

larvae can degrade large amounts of waste quickly and efficiently than any other known 

species of fly due to their potent mouthparts and digestive enzymes (Tomberlin et al., 

2002),  The effect of larval excretion/ secretion (ES) against some common species of 

bacteria found in dog faeces was studied in relation to determining how larvae can resist 

bacterial invasion. Based on these findings, similar antibacterial substances might be 

present in BSF and FB larvae. 

   The investigations reported in this Thesis were aimed at determining the ability of 

Black Soldier Fly and Fruit Beetle larvae to reduce the number of pathogenic bacteria, 

such as E. coli, Salmonella enterica and Staphylococcus aureus MRSA, in dog faeces. 

Few studies have reported the ability of Black Soldier Fly or Fruit Beetles to 

demonstrate immunity or the ability of their internal and external secretion, as 

antibacterial agents. 

    The aims of the work reported in this Chapter was to investigate the presence of 

antibacterial activity in the body extracts of  BSF and FB larvae and their inhibitory 

effects against four species of  bacteria.  

 

5.2. Materials and Methods 

5.2.1. Culture of larvae   

 

     The two species of insects (larvae of Soldier Fly and Fruit Beetle) used in this study 

were obtained from a commercial company (Ricks, Livefood.Co.UK), the third instar of 

BSF larvae was purchased, while large sized FB larvae were used.  
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5.2.2. Antibacterial properties of BSF and FB larvae 

 

5.2.2.1. Collection of excretion/secretion (ES) from larval whole-body and 

haemolymph  

 

     Samples were placed separately in small boxes (10×15x30 cm) under laboratory 

conditions. In order to collect the whole body and haemolymph extraction, samples 20g 

of each larval species (approximately 200 larvae of BSF and 10 larvae of FB) were left 

unfed for 4 days until they were free from gut residues. For whole body extracts and 

larval secretions, larvae were washed with sterile deionised water (dH2O) and placed in 

Petri-dish at -4
o
C for a few days. The larvae were then ground manually, using a mortar 

and pestle, until they became homogenous. Haemolymph was collected from larvae by 

clipping the anterior end near the cephalopharyngeal skeleton. The abdomen was then 

squeezed gently to force the haemolymph to flow from the wound. The resultant 

suspensions were then filtered (0.2µm) to remove any large particles and bacteria. The 

excretion/secretion ES from each group of insect larvae were dissolved in 0.1 μ g/ml 

protein in 0.1% trifluoroacetic acid (TFA) 1: 10 v/v. The suspension was placed on ice 

for 6 hours and centrifuged four times at 14000 g for 30 min. The supernatant was then 

harvested and separated into 15 ml centrifuge tubes; samples were used fresh or kept  

frozen at -80°C for a few days until required (Sahalan et al., 2006; Huberman et al., 

2007).    

  5.2.2.2. Antibacterial assay 

 

     Antibacterial activity was determined as follows: Viable counts: the effect of BSF 

and FB extract on the viability of  E. coli, Salmonella enteric, Serratia marcescens and 

S. aureus MRSA cells were monitored by inoculating 1ml of an overnight 5.0 x10
6
 cfu/ 

ml , into 9 ml nutrient agar  with and without both extracts and incubating with shaking 

at37°C (250g). Samples (100 μl) were removed at intervals, diluted serially and 100μl 
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of the diluted samples were placed on nutrient agar plates and incubated at 37°C for 24 

hours. The colonies were then counted after overnight incubation and the results 

expressed as colony forming units (CFU/ml). Turbidimetric analysis: bacterial cells 

were incubated the extracted haemolymph and whole body; the final optical density of 

the treated and untreated cultures were then measured at 600 nm.  

 

5.2.3. Time killing curves for testing the bacterial activity 

 

     The time kill assays were prepared by inoculating one or two colonies of overnight 

test bacteria into 9 ml of Mueller–Hinton broth and incubating for 18-24 hours  at 37°C 

with shaking, adjusting to a 0.5 McFarland 5 x 10
6
 CFU ml

-1
. Haemolymph and whole 

body were prepared separately by adding 4ml of haemolymph to 16 of ml of Mueller–

Hinton broth in 100 ml flasks, solutions lacking haemolymph acted as controls.  

Treatments and control were incubated with shaking at 37°C and samples were 

transferred to nutrient agar at 0, 2, 4, 6 and 8 hours. Viable counts were performed by 

serially diluting each sample 10-fold in PBS and spreading 100 μml volumes from the 

appropriate dilutions onto nutrient agar. After incubation at 37°C, for 20–24 h, viable 

counts (CFU ml
-1

) were determined to provide a quantitative determination of bacterial 

growth colony forming units. To confirm the sterility of samples of ES prior to bacterial 

inoculation, a loop (10 µl) of haemolymph and whole body secretions from each larvae, 

TSB, and sterile dH2O were spread separately onto nutrient agar and incubated at 37°C 

for 24 h .This procedure was repeated at four, eight and 24 h to ensure the media used to 

prepare dilutions for viable counts was contamination-free. 
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5.2.4. Bacterial culture  

 

     Four species of bacteria were used in this study. Three species were Gram negatives 

(Escherichia coli, Salmonella enterica and Serratia marcescens) were obtained from 

previous works, whereas the forth, Staphylococcus aureus was a Gram positive. The 

organisms were obtained from the Departmental Culture Collection. 

     Bacteria were maintained on nutrient agar at 4
o
C. New subcultures were prepared as 

required (Alexander and Strete, 2001). In order to test that the colonies were viable, the 

plates were incubated overnight at 37
o
C to allow growth.  

 

5.2.5. Transmission Electron Microscopy of Bacteria treated with haemolymph or 

whole body secretions of the two larvae 

 

    For transmission E/M, harvested cells were fixed in 3% glutaraldehyde and 0.1M 

phosphate buffer overnight at 4°C, and then washed twice times with 30 min intervals at 

4°C in 0.1M phosphate buffer. Cells were subjected to a secondary fixation with 2% 

osmium tetroxide aqueous for 2 hour at room temperature and the previous wash step 

was repeated. After this, cells at room temperature were serially dehydrated with 75%, 

95%, and three times using 100% ethanol, the last one was dried over anhydrous copper 

sulphate for 15 min. The cells were then placed in an intermediate solvent, propylene 

oxide, for two changes of 15 min duration. Infiltration was accomplished by placing the 

cells in a 50/50 mixture of propylene oxide/Araldite resin. The cells were then left in 

this 50/50 mixture overnight at room temperature. Once this incubation was finished the 

cells were transferred into full strength Araldite resin and left for 6-8 hours at room 

temperature after which time they were embedded in fresh Araldite resin for 48-72 

hours at 60°C. Semi-thin sections approximately 0.5 μm thick were cut on a Reichert 

Ultracut E ultramicrotome and stained with 1% toluidine blue in 1% borax. Ultrathin 

sections, approximately 70-90nm thick, were then cut using a Reichert Ultracut E 
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ultramicrotome and stained for 25 mins with 3% uranyl acetate in 50% ethanol followed 

by staining with Reynold‟s lead citrate for 25 min. The sections were examined using a 

FEI Tecnai Transmission Electron Microscope at an accelerating voltage of 80Kv. 

 

 5.2.6. Statistical analysis  

 

All data were presented as means ± SD. (Standard deviation). The data was analyzed by 

SigmaPlot
©

 11.0. P<0.05 was considered as significant. 

 

5.3. Results and Discussion  

 

     Figures 5.1 and 5.2 show the effects of the haemolymph and whole body extract of 

the BSFL and FBL respectively on the growth of E. coli. Both the BSFL extracts had 

only a minor effect on the growth of E. coli from 2-8h (Fig 5.1). After 8h however, 

BSFL haemolymp had a marked effect on E. coli. In contrast the addition of the 

haemolymph and whole body extracts of the FBL produced an increase in numbers of 

E. coli compared to the control, from hour 2-8 (Fig.5.2). 
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Fig. 5. 1: The effect of BSFL haemolymph and whole body extract on E. coli, growth 

curve over 8 h. 
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Fig. 5. 2: The effect of FBL larvae haemolymph and whole body extract E.coli , growth 

curve over 8 h. 
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Fig. 5. 3: The effect of BSFL haemolymph and whole body extract on S.enterica growth 

curve over 8 h. 
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    Both the haemolymph and whole body extract of  the BSFL inhibited the growth of 

S. enterica at hour 2 of the incubation period, although by hour 4, there was little impact 

of both extracts on bacterial numbers; the inhibition trend for both bacteria then 

resumed from hours 6-8 (Fig5.3). 

   Haemolymph of the FBL had a general slight stimulatory impact on numbers of 

Salmonella enterica over the entire incubation period, with the effect being at its lowest 

in the middle of the 8 hours. The whole body secretion in contrast, reduced bacterial 

numbers over the entire incubation period (Fig.5.4). 
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Fig. 5. 4: The effect of FBL haemolymph and whole body extract on S.enterica growth 

curve over 8 h. 
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Fig. 5. 5:  The effect of BSFL haemolymph and whole body extract on S.aureus MRSA, 

growth curve over 8 h. 

 

     Both of the extracts from the BSFL had a general inhibitory effect on the growth of 

S. aureus, the effect being most marked with the haemolymph, which inhibited growth 

over the entire incubation period (Fig.5.5). The haemolymph extract from the FBL 

inhibited the growth of MRSA between 4 and 8 hours (Fig.5.6), while the whole body 

extract increased numbers at 6hours. 
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Fig. 5. 6:  The effect of FBL haemolymph and whole body on Staphylococcus aureus 

MRSA, growth curve over 8 h. 
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Fig. 5. 7: The effect of BSFL haemolymph and whole body on Serratia marcescens, 

growth curve over 8 h. 
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     Both the haemolymph and whole body extract of BSFL inhibited the growth of         

S .marcescens over the entire incubation period, the effect of the haemolymph extract 

being most marked at the end of the growth period  ((Fig.5.7).  The whole body extract 

of the FBL had less effect on the growth of S. marcescens over the entire incubation 

period, while the haemolymph had a slight, and very transient stimulatory effect, at the 

6h point only; the haemolymph increased numbers at the end of the incubation period 

(Fig.5.8). 
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Fig. 5. 8: The effect of FBL haemolymph and whole body extract on Serratia 

marcescens, growth curve over 8 h. 
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Table. 5.  1:The effect of the two species of larval haemolymph and whole body 

secretions on the four species of bacteria.  

 

Bacterial  strains  Gram strain 

BSF larvae 
FBL larvae 

 

Haemolymph 
Whole 

 body 
Haemolymph 

Whole 

body 

E. coli Gram -ve + + - - 

Salmonella  enterica Gram-ve  - - - + 

S. aureus MRSA Gram +ve + - + - 

Serratia  marcescens Gram -ve + + - - 

 

 

Table. 5.1 shows that the effect of the extracts on bacteria varied with different species 

of larva and with different types of extracts used. Clearly, no overall generalization can 

be made about the effects of BSFL and FBL extracts on bacteria can be observed.   
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Fig. 5. 9:  The effect of larval components on the morphology of E. coli observed by 

TEM, a) control for BSFL, b) whole body extract of BSFL, c), haemolymph of BSFL; 

d) control for FBL, e) whole body extracts for FBL and g) haemolymph of FBL. 

               

               

Fig. 5. 10: The effect of larval components on the morphology of S.aureus observed by 

TEM, a) control for BSFL, b) whole body extract of BSFL, c), haemolymph of BSFL; 

d) control for FBL, e) whole body extracts for FBL and g) haemolymph of FBL. 
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   The effects of the two larval extracts on E.coli and S. aureus as observed under the 

transmission electron microscope are respectively shown in Figs. 5.9 and 5.10. The 

haemolymph extract of BSF is the only one which has a readily observed, and marked, 

effect on the morphology of E.coli (Fig.5.9c); note that the cells are seen to lose some of 

their electron dense structure, but that cell lysis is not evident. In the same way, the 

haemolymph of BSFL is the only fly body extract which has an effect on the cell 

structure of S. aureus; again there is no obvious evidence of cell lysis (Fig.5.10c).  

    Interest in the possible antibacterial activity of the body extracts of the two flies used 

here was based on two possibilities. Firstly that an antibacterial agent, possibly a protein 

might be obtained from either or both of the extracts and secondly that BSFL or FBL 

might be used in infected wounds in the same way that larvae of the Green Blow Fly ( 

Lucillia sericata) are used in maggot therapy (Boxfield et al.,2004). The latter 

possibility is perhaps unlikely based on the large size of the two fly larvae compared 

with maggots, a fact which would restrict their application to open wounds. Maggot 

therapy is extremely effective, so it is unlikely that the two larvae studied here would 

replace this approach to wound treatment. Similarly while extracts from the two larvae 

have been shown to inhibit the growth of bacteria, their effectiveness is unlikely to be 

comparable to antibiotics like penicillin.  

     Conclusion: In conclusion, whole body extracts and the haemolymph of the two fly 

species used here do have antibacterial effects, but such inhibitory effects are not 

consistent, both in relation to the individual fly species, or in relation to the type of 

bacterium investigated. The addition of the fly larvae to faeces is likely however, to lead 

to reduction in overall bacterial numbers. It seems unlikely that BSFL or FB larvae 

could be usefully applied to the control of bacterial infections in human or animal 

wounds. 
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Chapter Six: The Number of Bacteria in Grassed Soil 

of Public Parks Contaminated with Dog Faeces and 

Effect of Faeces-Volatiles on Plant Growth. 
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6. 1. Introduction  

 

     The number of dogs in the UK has increased dramatically in recent times especially 

in cities, and their waste represents a considerable source of pollution in relation to 

humans and the environment (Carvalho et al., 2009). Dog faeces are known to carry a 

large and various microbial and parasite population which can cause diseases and 

public-health problems (Baxter and Leck, 1984). Dog waste is linked with more than 60 

zoonotic diseases and provides a serious public-health problem (Rinaldi et al., 2006). 

Irresponsibility on the part of dog owners in relation to the disposal the dog waste 

represents a source of potential pathogens in public areas such as playgrounds, parks, 

gardens, public squares and sandpits (Schantz, 1994; Rubel and Wisnivesky, 2005); the 

risks to young children being particularly obvious. Children may, by accident consume 

contaminated soil or grass, or touch their mouths or eyes with hands contaminated with 

dog faeces or otherwise handle bags left hanging outdoors on trees branches and in 

parks (Fig.6.1) ; people using hand activated wheelchairs and active sports players may 

also be at risk (Jackson, 1995). Viable pathogens present in dried canine faeces can also 

be spread by the wind and are carried into dwellings and workplaces on soiled shoes. 

      The aim of the work reported in this Chapter was to study faecal contamination 

accumulation in a local public park, a problem which is likely to be a risk to the health 

of young children and parks visitors. In addition, the work focuses on the extremely 

undesirable  habit of some dog owners to remove dog faeces from the environment and 

leave them in a plastic bag on the parks, a habit which contributes to a potentially bigger 

problem than does exposed faeces. The effect of dog faeces volatiles on plant growth 

will also be touched upon. 
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6.2. Materials and methods 

 

6.2.1. Samples collection from public parks   

 

     The following protocol was used to determine the presence of E. coli and Salmonella 

enterica in addition to other heterotrophic bacteria (as determined using Plate Count 

Agar) in soil samples collected from a public park in Sheffield UK (a grassed area of 

playing field behind the former Lodge Moor Hospital). Four samples of soil were taken 

(0 - 3 cm) from under surface grassed soil contaminated with dog faeces (samples were 

taken directly from soil which had long exposure to faeces and not from under fresh 

material); the last sample was taken from an area not contaminated with faeces, i.e. an 

uncontaminated control. Samples (1 g) were suspended in (9 ml) autoclave-sterilised 

water in sterile 15 ml tubes and shaken at 70 g for 30 min. A serial dilution was 

performed, then  dilutions from 10
3 

to 10
6
 were taken and (100 ml) of this suspension 

was then spread onto the surface of selective media for E. coli and Salmonella Spp. 

XLT4 and Plate Count Agar; the plates were then incubated in triplicate at 37
o
C  

overnight. Presumptive isolation was based on the use of selective media such as E. coli 

and XLT4 Salmonella Spp. agar media, followed by use of the Gram stain. In addition, 

the 16s rRNA gene dependant technique was used; DNA being extracted according to 

the Anachem Key prep-Bacterial DNA extraction kit; bacterial 16SrRNA gene was then 

amplified and sequenced. 

 

6.2.2. Effect of incubation of dog faeces in plastic bags left under ambient outside 

conditions  

 

     A variety of fresh dog faeces were collected from dog bins from Weston Park. 

Samples were placed in black plastic bags and left exposed to ambient weather 

conditions on the roof of the Firth Court building from the middle of May until the 

middle of June, 2012.  Samples (1 g) of the faeces were diluted in (9 ml) in sterilised 
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water. Then a serial dilution from 10
3
 to 10

7
 was performed and (100 µl) of the final 

suspension was then spread onto plates contained the selective media: HiCrome E. coli 

agar and   Salmonella Spp XLT4, as well as Plate Count Agar. Plates were incubated in 

triplicate at 37
o
C for 18-24 h. 

 

   

 

 

 

 

 

 

 

Fig. 6. 1: Plastic bags containing dog faeces bags obtained from Sheffield parks 

 

6.2.3 The effect of gasses (odour) from dog faeces on plant growth 

 

    Two plastic containers were prepared, one contained compost soil  divided to two 

parts each one include 200 g of compost into which was planted lettuce seeds, and the 

other turnip; controls not receiving faeces-gasses were also set up. The gasses were 

transferred, using a pump, from a large Erlenmeyer flask containing 200g dog faeces. 

The gasses then passed through holes in the bottom of the plant growth container and 

passed over the growing seedlings (Fig. 6.2). Seeds (50 each of lettuce and turnip) were 

planted and watered twice a week and left at room temperature in the light. The 

experiment was continued for two weeks when the growth was visually assessed, i.e. for 

four weeks. The samples were aerated and suspended with unoccupied space under 

natural conditions.   
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Fig. 6. 2: Airtight container contains 200 g of fresh dog faeces, the dog faeces gases 

were pumped via the tube into the plastic box containing compost planted with lettuce 

or turnip seeds. 
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6.3 Results and Discussion 
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Fig. 6. 3: The presence and population density of E. coli and Salmonella sp in five 

locations in public areas of Sheffield (location 5 is the uncontaminated grass sample). 

 

 

 

6.3.1. Occurrence of E. coli and S. enterica in dog faeces contaminated grassed-soil   

 

     Escherichia coli and Salmonella enterica were isolated from all four sites (Fig. 6.3), 

while no isolates were obtained from the fifth location which was uncontaminated with 

dog faeces. The number of E. coli varied from site to site (from 10
4
 to 10

5
 CFU/g); E. 

coli was isolated in highest numbers. The isolation of these pathogenic bacteria from 

playing fields frequented by children is obviously a major public health concern since 
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pathogenic bacteria could be picked up from these soils, either on shoes, or by transfer 

from contaminated skin to the ears, eyes or mouths of infected  children (and of course, 

people in general) from where they could cause disease.   

      Several studies have concluded that there is a high potential risk to human health of 

contaminated soil and animal faeces, and direct or indirect contact with dog faeces has 

been implicated in several human infections with E. coli and Salmonella enterica 

(Kudva et al., 1998). The risk of the transfer pathogenic bacteria to young children from 

dog faeces in public areas-notably gardens, parks and playing-field probably is critical 

because people do not always know that they have been exposed to contamination and 

can touch their eyes or mouth with faeces without realising it.  Contaminated garden 

and park soils could possibly influence the health of large number of adults and children 

and it is therefore important that research and development is carried out on risk 

assessment and also to develop measures to mitigate such contamination (Alloway, 

2004). 

 

6.3.2 Effect of leaving dog faeces in plastic bags on bacterial numbers 

 

     An undesirable and unhygienic habit has recently developed amongst some dog 

owners in Sheffield (and presumably other parts of the country) of picking up their dog 

waste, transferring it to polythene bags and then leaving the filled bags in the 

environment as litter, rather than depositing them in dedicated dog-waste containers.   

   A wide range of potentially pathogenic bacteria were isolated from dog faeces left at 

ambient conditions in plastic bags (Fig.6.4). The results presented in Fig.6.5 show that 

numbers of  E.coli and S. enterica increased in the dog faeces, left in sealed plastic bags, 

over the 28 day incubation period; as did the  number of total heterotrophic bacteria. 
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 Fig. 6. 4: Bacterial species isolated from dog faeces left in polythene bags; a) red 

colonies of E. coli, and  blue Enterococcus Spp, b) E. coli, c)  Salmonella enterica, d) 

Staphylococcus aureus.  
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Fig. 6. 5: Numbers of E. coli, Salmonella enterica and total heterotrophic bacteria 

(grown on plate count media) isolated from dog faeces left in plastic bags.  

 

     This study shows that the numbers of “total bacteria”, as well as those of two 

important human bacterial pathogens increase in dog faeces left under ambient 

conditions in sealed plastic bags. It would have been interesting to continue the 

exposure period for longer than the one month used here , since numbers of pathogenic 

bacteria are likely to have increased even further under such circumstances. 

 

6.3.3 The effect of the gasses (odour) released from dog faeces on the plant growth 

 

    Fig.6.6 shows that gasses from dog faeces have a marked detrimental effect on the 

growth of lettuce and turnip from seed, with seedling growth obviously visually reduced 

in treated samples when compared to the controls. The question could be asked- why 
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was the effect of dog faeces volatiles on plant growth determined, and not the direct 

effect of the faeces themselves? The answer is that it would have been difficult the 

separate the likely toxic effects of dog faeces, on plant growth, from the positive 

fertilizer effect resulting from the fact that the faeces are rich in plant nutrients like 

ammonium and nitrate. Although the nature of the dog faeces gases and volatiles was 

not determined, the observed inhibitory effects presumably result from the inhibition of 

seed germination or  shoot growth, following the production of a cocktail of toxic gases, 

including ammonia in high concentration (Van der Eerden, 1982). Several studies have 

discussed emissions from animals and researchers have obtained varying results; clearly 

research is needed to discover the impact of gases, emitted from animal manures (such 

as ammonium) on plants (Kebreab et al., 2006).  The effect of ammonia on vegetation 

has been noticed since 1896, when König observed injuries to the surrounding 

vegetation near a soda factory where ammonia was accidentally released. Garber (1935) 

appears to have been the first to expose plants to NH3 and to prove its phytotoxic effects 

(Fangmeier et al., 1994). Ammonia can cause various types of injury, including 

necrosis, growth reduction, growth stimulation and increased frost sensitivity. Several 

plant species have been assessed for sensitivity to ammonia. Some conifer species were 

relatively sensitive to low concentrations in the long term; some cultivars of cauliflower 

and tomato were relatively sensitive to somewhat higher concentrations for a short term.  

Special attention has been paid to plant injury around intensively managed livestock. 

The emission from these sources consists of a large number of compounds, ammonia 

proving to be the main toxic component (Van der Eerden, 1982). 

http://www.sciencedirect.com/science/article/pii/0304113182900157
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Fig. 6. 6: The effect of gas (odour) emission from dog faeces on vegetable growth; a) 

turnip treated with dog faeces gasses and, b) lettuce treated with dog faeces gasses c) 

control turnip seeds d) control lettuce seeds.  

     

     Dog faeces represent a potential source for spreading pathogenic bacteria such as E. 

coli and Salmonella enterica, bacteria which represent an obvious risk human health. 

Bacterial pathogens from dog faeces could infect young children and others playing, or 

using, parks etc (including of course dog owners). Dog faeces have also been shown 

a     D b     

c   

d     
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here to produce gasses which are injurious to plant germination and/ or growth, and are 

also likely to be directly inhibitory to plant growth. 

   There has been a welcomed trend of late for dog owners to act responsibly by picking 

up waste from their dogs, placing this in plastic bags and than putting these bags into 

special local council run dog-waste containers, from where they are transported and 

incinerated (Fig.6.7). 

 

Fig. 6. 7: A typical dog waste bin used in public parks in the UK (author‟s photograph). 

  

    Unfortunately there is another increasing trend, namely the discarding of such bags 

filled with dog faeces into the local environment. The results presented here show that 

this practise potentially increases the problem of dog faeces because the sealed 

polythene bags provide an environment where pathogenic bacteria (and presumably 

other pathogens, like viruses) can rapidly increase. Such an increase in pathogen 

numbers was seen during a relatively cool UK summer and could be much greater 

where summer temperatures are higher. In addition, the possibility exists that the 

environment inside the bags could become anaerobic and select for, or otherwise 

encourage the growth of anaerobic, pathogenic bacteria, such as species of Clostridium. 

Clearly this habit should be discouraged. In fact it would be better to encourage dog 
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owners to leave dog faeces in the open air, where they can break down naturally (with 

pathogens being outcompeted by saprophytic microbes) than to allow them to discard 

the faeces in sealed bags which, when broken (by for example a child sliding on them) 

could release an increased, and potentially more dangerous, pathogen load. 

    The survival of bacteria in animals waste under environmental condition has been 

studied by, amongst others, LaGoy, (1987), who  showed that E. coli in cattle manure 

survived for 42 to 49 days at 37°C, for 49 to 56 days at 22°C, and for 63 to 70 days at 

5°C (LaGoy, 1987) Another study of E. coli in manure commutation  revealed that the 

pathogen may survive for up to 47 days, 4 months, and 21 months in bovine, aerated 

ovine, and non-aerated ovine manure, respectively (Kudva et al., 1998).  

Himathongkham et al, (1999) based on their research findings, recommended that cow 

manure should be survive for 105 days at 4°C or 45 days at 37°C to achieve a 5-log10 

reduction of both E. coli  and Salmonella enterica serovar (Himathongkham et al., 

1999). These results indicate that E. coli can continue in bovine faeces for an extended 

period of time and that bovine faeces are a potential vehicle for transmitting the 

pathogen to cattle, food, and the environment (Jiang et al., 2003). However, pathogenic 

bacteria such as E. coli and Salmonella Spp. can survive in animals manure or soil up to 

70 days under 14
0
F (McLaughlin, 2002). A study by Kudva et al, (1998) reported that 

E. coli survived in the manure for 21 months, and the numbers of bacteria recovered 

ranged from <10
2
 to 10

6
 CFU/g at different times over the course of the experiment.  

   Conclusion: In conclusion dog faeces represent an important means of transfer of 

bacterial pathogens from dogs to humans via the soil. The reprehensible recent habit 

amongst some dog owners of leaving faeces in sealed plastic bags is likely to greatly 

exacerbate this problem.  
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Waste by BSF and FB Larvae- A Potential Solution To 
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7.1. Introduction 

 

    Biodiesel is receiving increased attention as a renewable source of fuel. Biofuels can 

be made from a variety of feedstocks including starch, vegetable oil, or animal fats as an 

fuel alternative to help reduce consumption of petroleum. Alternatively cheap waste, 

such as dairy manure can be used to produce bioethanol (Liao et al., 2008; Predojevic 

2008) and is  hoped that, as well as producing biofuels, a reduction can be made in the 

amount of waste which has to be disposed of  to the environment (Ann et al., 2002). In 

addition to biodiesel, other fuels can be obtained from wastes as is discussed below.   

 

7.1.1. Fuels from wastes 

 

     Many fuels can be derived from waste refuse can be combusted directly in an 

incinerator to provide power and chicken litter can (Ferrer et al., 2005) , like dog faeces, 

be dried and directly combusted (Li et at., 2011). 

 

7.1.2. Anaerobic digestion to methane 

 

     The anaerobic fermentation of animal fats, vegetable oil, starch and sugar can be 

achieved using conventional technology and results in the production of methane, i.e. 

biogas (Demirbas, 2008). Digestate, a solid by-product which can be used as a fertilizer 

is also produced. Dog faeces can fuel an anaerobic digester and produced methane. This 

might be done in a large centralized facility, but it is more likely that it will be done on 

a more local scale. Methane is of course a more potent green house gas than carbon 

dioxide and when burnt its releases CO2; any treatment will however solve the direct 

problem of dog waste removal. In the US, and increasingly world-wide, dog waste is 

being turned into a local energy source (Demirel et al,. 2010). Dog owners throw the 

waste into a feeding tube, turn on a hand crank, so that the anaerobic biogas digester can 

decompose the faeces and make it into a burnable methane gas. The gas is then used to 

http://www.biogas.psu.edu/basics.html
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power the local street. i.e. the so-called “Park Spark Project”. A criticism of this 

approach is that during methane production, pathogens are not removed content 

completely a potentially harmful product will remain after digestion; such residues can 

however, be treated in the conventional sewage treatment system (Demirel et al,. 2010). 

      Biofuel or agrofuel is obtained from biomass and may be produced in a solid, liquid 

or gaseous form. The utilization of waste biomass as a source of energy can decrease 

problems relating to waste management , pollution, greenhouse gaseous emissions and, 

as a result, the burning  of fossil fuels. Some 19 million tons of oil equivalents could be 

derived from biomass, with some 46% being obtained from bio-wastes like farm waste, 

agricultural waste, municipal solid waste and other biodegradable waste streams 

(Demirbas., 2008) 

 

7.1.3. Landfill methane  

 

    Landfill waste undergoes anaerobic digestion to landfill gases (LFG). Such gases can 

be burned and looked up to as a source of renewable energy (Themelis and Ulloa., 

2007). The LFG is made of around 50% methane and since it is equivalent to natural 

gas can be used to generate electricity for public consumption or alternatively it can be 

burned for heat. If LFG is not used properly, it would be released to the atmosphere. and 

since methane is a greenhouse gas, it has a global warming potential of 23 times carbon 

dioxide, i.e. one ton of methane results in the greenhouse gas equivalent of  23 tons of 

carbon dioxide. Harvesting and burning LFG reduces the global warming potential by a 

factor of 23 and energy is provided for heat and power. A typical landfill power plant 

can supply power to 1900 homes and avoid 6000 tons of methane per year from 

entering the atmosphere. As well as eliminating 18,000 tons per year of carbon dioxide 

by fossil fuel replacement (De Montfon, 2012) 
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7.1.4. Biodiesel from waste cooking oils 

 

    Each week the UK population uses in excess of 1,500 tonnes of cooking oil. Large 

scale producers of waste oil like restraints, chip shops and industrial food producers 

have their waste oil removed by licensed collectors, and around 100,000 tonnes of 

recoverable waste oil produced each year within the UK (Phan and Phan., 2008). 

Currently most of this recovered oil is treated and added to animal feed. The EU 

however, its use for pig feed due to several food scares related to vegetable oil and a 

similar ban may soon apply to cattle also. Such oilcan however, be converted into 

biodiesel (Silvis, 2006).  The waste vegetable oil currently used to produce UK 

biodiesel is mostly rapeseed oil, whose trans-esterification produces RME (Rape Methyl 

Ester), or more properly, FAME (Fatty Acid Methyl Ester) which is the correct 

chemical term for biodiesel produced from any oil or fat using methanol as the alcohol 

for the production process (Zhang et al., 2003). 

7.1.5. Methane from anaerobic digestion 

 

     Anaerobic digestion (or gasification) is the use of bacteria to decompose organic 

matter in the absence of oxygen to produce a gas containing  60% methane, 40% carbon 

dioxide together with a mix of  solid and liquid fertiliser, and since anaerobic digestion 

does not produce anymore carbon dioxide than would be produced by the natural 

decomposition of the waste, it regarded as being „carbon neutral‟ In this process, waste 

is pumped once a day into the digester, and remains there for about 10 to 40 days, when 

the internal of the  digester must reach between 30 and 70 degrees C. Any mix of 

organic waste mater can be used, including animal and human sewage, crop residues, 

newspaper, abattoir waste and agricultural and food processing waste. Since the 

resultant product is a gas this fuel is more applicable to electricity generation, rather 
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than a transport fuel; although methane could be liquefied for vehicular use (Chynoweth 

et al., 2001). 

 7.1.6. Oil from tyre pyrolysis 

 

  Around 40 million tyres (440,000 tonnes) per year are produced world-wide. Currently 

the UK recovers some value from 70% of the total used tyres produced, with the rest 

going to landfill. In 2006 a ban on tyre-landfill was introduced, so tyres are increasingly 

being treated by pyrolysis, a process of thermal degradation in the absence of oxygen at 

elevated temperatures (430°C) and pressures(Shulman, 2004). The products of pyrolysis 

(from organic waste) are gases, small quantities of liquid, and a solid residue containing 

carbon and ash. The gases produced in the process can then be re-used to provide the 

heat required to continue the process (Makarov and Drozdovskiĭ., 1991 ). 

7.1.7. Biodiesel production  

 

    Currently, biodiesel is generally used as a diesel fuel additive to minimize particulate 

release and the production of carbon monoxide, and hydrocarbons. The relatively high 

production cost is the main reason why biodiesel is not used as a primary fuel. Three 

quarters of the cost of biodiesel is derived from the feedstock, such as soybean oil, 

rapeseed oil and sunflower oil. In addition, the use of limited food supplies for the 

production of biodiesel is not feasible for developing countries like China. As a result, 

non-food feedstocks such as Jatropha curcas, Chinese tallow and microalgae are being 

developed as sources of biofuels; the use of these sources however, is certainly not 

without problems. On the other hand, organic wastes such as animal wastes, residential 

wastes (e.g., household), commercial and institutional wastes are generated in large 

quantities in developing countries and present a cheap from of  organic wastes which 

would otherwise present a environmental pollution problem and so can act as a useful 

resource for biodiesel production (Ma and Hanna., 1999) 
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 7.1.8. Biodiesel production by BSFL 

 

     Animal faeces waste can be used for biodiesel production, with the resultant 

biodiesel being comparable to rapeseed based biodiesel, and met the European biodiesel 

standard, EN14214. Among the organic wastes evaluated, chicken manure appears to be 

the best one for achieving high rates of BSFL biomass production. About 30% of the 

waste-grown BSFL biomass can be extracted as crude fat, which can be used for the 

production of biodiesel; the resultant fuel properties of the BSFL fat-based biodiesel, 

including density (885 kg/m3), viscosity (5.8 mm2/s), and cetane number (53) were 

found to be similar to those of rapeseed oil based biodiesel (Li et al., 2011a). To date 

there appear to be no reports of the use of dogs faeces to produce biodiesel either alone 

or in conjunction with BSFL or FBL. Among the organic wastes evaluated chicken 

manure was found to be the best for maximal BSFL growth (327.6 g), which gave 8.5 g 

crude fat production after petroleum ether extraction. An optimized two step conversion 

process was performed, yielding 91.4 g of biodiesel with a biodiesel yield of 93% from 

the crude fat contents (Li et al., 2011c).  Cattle, pig and chicken manure can also act as 

a food source for the production of high fat, nutrient–rich larvae. Fat-rich BSFL can be 

used to degrade organic waste and produce biodiesel as well as providing foods from 

animals notably chickens(Li et al., 2011b). 

         The results of recent studies have shown that BSFL-produced fatty acids could be 

a valuable feedstock for biodiesel production having two advantages over crop oil-based 

biodiesel, namely: 

1) It does not compete with food resources or land use 

2) It uses „„waste nutrients‟‟ for insect growth. 

    The aim of the work reported in this Chapter was to determine if the larvae used here 

can convert dog faeces into a potentially viable source of biodiesel 
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7.2. Materials and Methods 

 

7.2.1. Samples collection 

 

     Black soldier fly and fruit beetle larvae were obtained from LiveFood Co., while dog 

faeces samples were collected from local dog waste bins. The faeces were distributed in 

two boxes, each containing 100g of dog faeces.  Ten BSFL were then added to the 

waste (1000 larvae per kg dog waste) according to Li et al., ( 2011) and ten FB larvae 

were similarly added to the dog faeces. The treated faeces were incubated under 

laboratory conditions for 28 days; samples were obtained in triplicate at weekly 

intervals. 

 

7. 2.2. Extraction of lipids 

 

     In order to extract lipids from dog faeces and larvae, the larval  whole body were 

ground and then weekly samples (1 g) of all samples were added to Eppendorf tubes 1.5 

ml  and frozen at -80
o
C overnight, then freeze dried (lypophilized) for 24-48 hours.  To 

estimate the weight of biomass the Eppendorf tubes were re-weighed. Samples were 

transferred to centrifuge tubes (50 ml), 20 ml of methanol/ chloroform (2:1 v/v) were 

added; the contents were then sonicated for 1 min on ice. Samples were centrifuged at 

5000 g for 5 mins and transferred to a centrifuge tubes in order to determine the volume 

of supernatant. Then 2:1 methanol: chloroform, and chloroform and 1% NaCl (1 g NaCl 

in 100 ml) was added to give 2:2:1 methanol: chloroform:1%NaCl. (13.33ml 

methanol:13.33 chloroform:6.7 1%NaCl) (Fig 7.1). Samples were then centrifuged for 2 

mins at 5000 g. The centrifuge tubes were labelled and weighed then transferred to a 

chloroform phase into pre-weighed sample were left in fume cupboard with tops open to 

evaporate until dry. The centrifuge tubes were then re-weighed and the weight of lipids 

calculated. (Lu et al. 2008; Chiu et al. 2009) 
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 7.2.3.Detection and measurement the fatty acid using a combined mass 

spectrometer and gas chromatographic GC/MS  

 

     The harvested lipids (10mg/ml) of dog faeces and BSF and FB larvae before and 

after being fed on dog faeces were dissolved in chloroform. The samples were then 

subjected to gas chromatography-mass spectrometry GC/MS. The GC/MS analyses 

were performed using a Perkin Elmer Turbo mass spectrometer detector (software 

version 5.4. Perkin Elmer). Injector and oven temperatures were set as above with a 

transfer line temperature, 260°C.  The injection volume was 1.0µl of dog faeces and 

larvae and was injected in a capillary column (Zebran ZB-S, 30 m length x 0.25 mm 

diameter x 0.25μm phase thickness) (see appendix 4).  The oven temperature was 

programmed from 60°C and increased at the rate of 10°C/min to a final temperature of 

260°C, which was held at 260°C for 10 min.  High purity helium was used as carrier gas 

at 1ml/min, split ratio and 1:25; Electron ionization (EI) spectra were obtained at 70 eV; 

the scan range was 50-450 m/z at 30 min. The identity of each compound was 

determined by comparison of its retention index (RI) as well as of its total ion 

chromatogram with the NIST mass spectral library version 5.4.2 (Albano et al., 2011; 

Sivasamy et al., 2011). 
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7.3. Results and Discussion 

 

7.3.1. Extraction of biodiesel from larvae 

 

       A visual representation of the fact that lipids could be extracted from the faeces on 

which larvae were grown and from the larvae themselves is shown in Fig.7.1. Table 7.1 

shows the percentage of lipids produced in the faeces fed on the larvae and in the larvae 

themselves  

 

 

 

 

 

Fig. 7. 1: Fatty acids extracted from; a, BSFL, b) FBL, 

c) dog faeces with BSFL, d) Dog faeces with FBL 

 

 

 

 

 

 

 

 

 

 

a b c d 
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Table. 7. 1: The percentage of lipids in dry weight of 1g samples of faeces and larvae 

 

  

Time/ week 
Dry weight/ g 

SD± 

 

Total lipids/ g  

SD± 

 

% of lipids in 

dry weight 

Zero time    

Untreated dog faeces (without larvae) 0.21  ± 0.01 0.15 ± 0.02 71% 

BSFL before fed on dog faeces  0.26  ± 0.01 0.22 ± 0.02 85% 

FBL before fed on dog faeces 0.20  ± 0.01 0.10 ± 0.02 50% 

Week 1    

Dog faeces with BSFL 0.70  ± 0.05 0.10 ± 0.00 14% 

Dog faeces with FBL 0.44 ± 0.04 0.12 ± 0.01 27% 

BSFL fed on dog faeces 0.28 ± 0.01 0.23 ± 0.01 82% 

FBL fed on dog faeces 0.25 ± 0.02 0.14 ± 0.03 56% 

Week 2    

Dog faeces with BSFL 0.90 ± 0.02 0.10 ± 0.02 11% 

Dog faeces with FBL 0.80 ± 0.02 0.14 ± 0.01 18% 

BSFL fed on dog faeces 0.50 ± 0.02 0.15 ± 0.02 30% 

FBL fed on dog faeces 0.60± 0.01 0.14 ± 0.04 23% 

Week 3    

Dog faeces with BSFL 0.90± 0.03 0.23± 0.03 26% 

Dog faeces with FBL 0.80± 0.02 0.22± 0.02 28% 

BSFL fed on dog faeces 0.50± 0.02 0.16± 0.04 32% 

FBL fed on dog faeces 0.70± 0.02 0.13± 0.01 19% 

Week 4    

Dog faeces with BSFL 0.80 ± 0.01 0.23± 0.01 29% 

Dog faeces with FBL 0.84± 0.02 0.20 ± 0.02 24% 

BSFL fed on dog faeces 0.62± 0.04 0.16 ± 0.02 26% 

FBL fed on dog faeces 0.82± 0.02 0.14 ± 0.01 17% 
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     Untreated dog faeces (without larvae) possessed a lipid content of 71% Table 7.1). 

The unfed larvae, BSFL and FBL, contained 85and 50% dry weight of lipids. This 

suggests that both types of dog faeces and the two larvae could be used independently 

as a source of lipids for the production of biofuels. The next step was to determine if 

feeding the larvae on dog faeces would increase, over time, their lipid content and the 

lipid content of the faeces on which they were feeding.  

     The results of the week 1 analysis shows that the lipid content of the dog faeces 

treated with BSFL and FBL fell from 71 to 14 and 27% respectively, while the lipid 

content of the two larvae remained broadly the same as before feeding on faeces. By 

week 2, the lipid content of the dog faeces treated with BSFL and FBL declined, as did 

the concentration of lipids in both types of larvae (Table 7.1);this trend was also seen at 

weeks 3 and 4 (Table 7.1). 

    These results show that the decline in dog faeces lipid content was not mirrored by an 

increase in the lipid content of the two larvae.  Presumably, the faeces-lipids were, over 

time, metabolized by the larvae, ultimately to carbon dioxide, i.e. the larvae were using 

the faecal lipids as a food source. The results show that no advantage can be gained in 

relation to total lipid production by treating dog faeces with BSFL and FBL. However, 

Fig.7.2 shows that the type and concentration of fatty acids (as seen by referring to peak 

retention times and peak height respectively of the exhibited chromatograms)varied 

markedly depended on time of exposure of the larvae to dog faeces and the type of 

larvae used. This is shown more clearly in Table 7.3. Dog faeces without larvae and 

unfed FBL contained only palmitic and stearic acids, while unfed BSFL contained these 

fatty acid together with lauric acid. 

    The type of fatty acid produced in the larvae and in the dog faeces on which the 

larvae fed was then seen to vary over time. Oleic acid, for example was only produced 

in the BSFL fed on dog faeces and then only at week 2 (Table 7.2). Clearly, the type of 
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fatty acid varied with the larvae used and in the faeces treated with the different larvae, 

all of which varied over time. This finding suggests that BSFL and FBL might be used 

to produce individual fatty acids, either within their bodies, when fed on dog faeces, or 

in the dog faeces itself. In this way a single, or desired mixture of fatty acids, might be 

produced. Thus, if oleic acid alone was needed as a biofuel feedstock, or for some other 

biotechnological purpose then feeding BSF on dog faeces for 2 weeks and the 

harvesting the larvae and extracting the fatty acid may provide a source of this 

individual fatty acid. 
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Table. 7. 2: The GC/MS analysis chain composition of a number of fatty acids from dog faeces and larval fats 
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Fig. 7. 2: GC–MS chromatogram of a reference mixture of fatty acid representative the  

total of samples ion taken from  dog faeces and BSF and FB larvae. The chromatogram 

for this figure and all subsequent figures were obtained with Gas Chromatograph using 

Zebron ZB-S capillary column  
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    The use of BSF to treat domestic waste has been pioneered by the New York-

based Ecosystem Corporation which is asking the US Department of Energy for $1.75 

million to prove the concept. This Company is also seeking a matching grant from the 

Dog's Biomass Research and Development Initiative to build a $3.5 million 

demonstration project that would use 24,000 tons of food waste from an Ohio waste 

transfer station to feed a "bioreactor" full of flies (Otis et al., 1980).The pilot plant could 

produce between 150,000 to 195,000 gallons of oil per year; some 26 million tons of 

food scraps are dumped by Americans into landfills each year, and only about 3 percent 

of that is being recovered today. Ecosystem claim that with only one-quarter of all those 

food scraps  it could make 100 million gallons of oil every year; add in livestock 

manure and other agriculture wastes and that amount could increase – particularly if the 

company can be paid to take it off waste handlers' hands, a possibility which forms an 

important part of many waste-to-biofuel business plans (Vaughn, 2009)     

    Restaurant wastes are also an ideal foodstock for BSFL biodiesel production. The 

major methyl ester components of the biodiesel derived from BSFL were oleinic acid 

methyl ester (27.1%), lauric acid methyl ester (23.4%), and palmitic acid methyl ester 

(18.2%) (Table 7.3, 7.4).  Table 7.3 also shows that BSFL biodiesel contains a far richer 

mix of fatty acid methyl ester compounds than does biodiesel obtained from rapeseed. 

Certainly the BSFL product provides a better source of fatty acids for other possible 

industrial/food-based products than does rapeseed oil biodiesel. 

 

 

 

 

 

http://www.eco-system.com/
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Table. 7. 3: Comparison of fatty acid methyl ester composition of BSFL fat-based 

biodiesel and rapeseed oil-based biodiesel. 

 

Composition 

BSFL fat-based 

biodiesel
a
 (%) 

Rapeseed oil-based 

biodiesel
b
 (%) 

Capric acid methyl ester 3.1 n/a 

Lauric acid methyl ester 35.6 n/a 

Myristic acid methyl ester 7.6 n/a 

Palmitoleic acid methyl ester 3.8 n/a 

Palmitic acid methyl ester 14.8 3.5 

Oleinic acid methyl ester 23.6 64.4 

Linoleic acid methyl ester 5.8 22.3 

Linolenic acid methyl ester Nd 8.2 

Stearic acid methyl ester 3.6 0.8 

Noadecanic acid methyl ester 1.4 n/a 

 

 

 
 

(See EN 14214 in Refs. Nd stands for not detected). 

Most of the properties of this biodiesel met the specifications of the standard EN 14214, 

including density (860 kg/m
3
), viscosity (4.9 mm

2
/s), flash point (128 °C), cetane 

number (58) and ester contents (96.9%) (Table 7.4).  

 

 

 

 

 

 

 

http://www.sciencedirect.com/science/article/pii/S0016236110006307#tblfn2
http://www.sciencedirect.com/science/article/pii/S0016236110006307#tblfn3
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Table. 7. 4: Comparison of fuel properties of BSFL fat-based biodiesel, rapeseed oil-based 

biodiesel, and the standard EN14214. 

 

 

Properties 

 

EN14214 

BSFL 

biodiesel
a
 

Rapeseed 

biodiesel
b
 

Density (kg/m
3
) 860–900 885 880 

Viscosity at 40 °C (mm
2
/s) 1.9–6.0 5.8 6.35 

Sulfur content (wt.%) 0.05 Nd <0.01 

Ester content (%) 96.5 97.2 n/a 

Water content (mg/kg) <0.03 0.03 0.03 

Flash point (°C) 120 123 n/a 

Cetane index 48–60 53 45 

Acid number (mg KOH/g) <0.8 1.1 0.3 

Methanol or ethanol (m/m) 0.2% 0.3% n/a 

Distillation (°C) n/a 360 352 

 

nd stands for not determined 

. 

(See EN 14214 in Refs. Nd stands for not detected). 

 

     Results such as these show that BSFL obtained from larvae grown on fat wastes 

could potentially be used as a non-food feedstock for biodiesel production, as well as 

significantly reducing the large quantity of a solid waste. 

  It has also been shown in the literature (REF) that larval biomass of BSFL fed on 

animal manure can efficiently produced biodiesel. Approximately15.8 g biodiesel was 

produced from about 1200 black soldier fly larvae when fed on dairy manure over a 21 

days period.  

  

http://www.sciencedirect.com/science/article/pii/S0016236110006307#tblfn4
http://www.sciencedirect.com/science/article/pii/S0016236110006307#tblfn5
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 Conclusion 

     The results reported in this Thesis show that dog faeces and BSFL and FBL fed on 

such faeces can provide a source of fatty acids which could form the basis of biodiesel 

production. Again however, the main limitation of using dog faeces for any process, be 

it agricultural or industrial soon becomes apparent and relates to the economics of 

collecting sufficient quantities of dog waste. When one compares the vast world-wide 

production of rapeseed oil with the large, but widely dispersed sources of dog faeces it 

soon becomes obvious that the former has such a  huge competitive advantaged which 

makes it impossible that bulk dog faeces-biodiesel could ever compete with other 

sources of this product.            
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Chapter Eight: Final Discussion 
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8.1 Final Discussion 

 

     It is perhaps surprising, considering the vast amounts of dog faeces which reach the 

environment that relatively few scientific studies have been made on the bioremediation 

of this potentially toxic waste which is major source of disease-causing microorganisms 

in the urban environment. The obvious distasteful nature of dog faeces doubtless 

contributes to the lack of interest amongst researchers in this waste product. This lack of 

interest means that there exists relatively few publications available which are directly 

relevant to the scientific study of dog faeces. 

    The broad aim of this work reported in this Thesis was to study a variety of aspects of 

dog faeces in relation to public health, their fertilizer potential and the possibility of 

them being remediated using larvae, ultimately to provide a source of biodiesel. 

   Dog faeces were shown to be a source of pathogenic bacteria, notably E.coli and 

Salmonella. These bacteria were shown to be transferred to the soil of a local playing 

field by direct, in situ, transfer from dog faeces undergoing weathering. The potential 

danger to public health is obvious, especially since children play in parks like these, and 

are therefore at risk of picking up pathogens from contaminated soil, or more directly 

from the faeces themselves. Dog faeces are known to transmit bacterial pathogens and, 

perhaps more worryingly, potentially deadly parasites.  

     It was shown here that “common or garden” slugs can transfer potentially pathogenic 

bacteria from dog faeces to lettuce. Again this is potentially damaging to public health, 

especially since slugs frequent agricultural areas. The following genera and species of 

bacteria were isolated from slugs: Enterococcus sp, Salmonella sp, Staphylococcus 

lentus, E. coli, Proteus sp and Acinetobacter sp. Enterobacter amnigenes was isolated 

from the outside secretion of slugs and their identification was confirmed using 16S 

rRNA sequence gene analysis (i.e.. 99% confirmed). Externally isolated species were 

identified to Acinetobacter sp (99%) using 16SrRNA and Comamonas sp was also 
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confirmed by 16S rRNA analysis is (91%), Enterobacter amnigenus, Acinetobacter sp, 

Comamonas sp and Acinetobacter sp were isolated from lettuce contaminated with 

slugs fed on dog faeces.  Mycoplasma was transmitted from dog faeces to slugs or snails 

which they, ingested or carried, and then in turn transferred to lettuce. Earthworms were 

also shown to carry Mycoplasma from soil on/or within their bodies, a fact which 

presumably reflects contamination from animal faeces, mainly dogs. Perhaps the 

greatest potential risk relates to gardens and allotments where slugs may be common, 

and not successfully controlled. The consumption of pathogen contaminated lettuces, or 

other salad vegetables, is an obvious potential problem, which would presumably only 

be solved by vigorous washing of locally grown produce. There is no doubt more 

research effort has been devoted to the potential risk to human and animal of parasites 

in dog faeces, rather than bacterial and virus pathogens. Viruses have been isolated from 

dog faeces (Carmichael and Binn, 1981)  

   Dog faeces were shown to have potential inherent fertilizer content, the nutrients 

present being released over a time period mimicking the natural weathering of dog 

faeces in the environment. The fertilizer potential of dog faeces is not however, great 

and their offensive nature and potentially rich pathogen content means that un-

weathered, or non-composted canine faeces are rarely used as an agricultural fertilizer. 

Dog faeces were also shown to contain an indigenous microflora capable of 

mineralizing organic nitrogen to ammonium and oxidizing added ammonium to nitrate; 

elemental sulphur to sulphate and were able to solubilise insoluble phosphate to plant 

available, soluble phosphate.  As a generalization, the addition of both types of larvae to 

dog faeces significantly reduced the concentration of indigenous plant nutrients over the 

entire four week incubation period; exceptions to this were nitrate and phosphate 

concentrations in BSFL treated faeces, where significant increases were seen at week 4 

and 3 respectively and in faeces treated with FBL, where ammonium concentrations 
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were significantly increased at weeks 2-4, and phosphate at week 4. While the addition 

of both larvae therefore initially decreased levels of indigenous plant nutrients there was 

a trend in some of the nutrients to increase the longer the incubation went on. This 

suggests that perhaps a longer term exposure of dog faeces to the two larvae might have 

lead to increase in ammonium, nitrate, sulphate and phosphate concentrations. While 

this would generally be advantageous to the fertility of soils surrounding dog faeces, the 

potential long term increase in nitrate could at first sight be considered detrimental as 

nitrate can be readily leached to ground waters (where, when present in drinking water, 

it can cause blue baby disease and gastric cancer in humans). However, the relatively 

small amounts of dog faeces which are present, spread over large areas of soil, would 

likely make such increased nitrate contributions to drinking water relatively 

insignificant. 

     The addition of ammonium, elemental sulphur and insoluble phosphate to dog faeces 

which had been modified by the two larvae led to significant increases in nitrate, 

sulphate and plant-available phosphate, results which shows that that dog faeces 

contains the indigenous microflora required for the transformation of these amendments 

(which simulate fertilizer addition). The increased friability and therefore increased 

aeration of the dog faeces following larval modification is also like to result in   

enhanced rates of nitrification, S-oxidation and phosphate solubilisation. Clearly, the 

microflora of dog faeces could act to modify added fertilizers and convert them to the 

plant available form. Dog faeces represent a potential source for spreading pathogenic 

bacteria such as E. coli and Salmonella enterica, bacteria which represent an obvious 

risk human health. Bacterial pathogens from dog faeces could infect young children and 

others playing, or using, parks etc (including of course dog owners). Dog faeces have 

also been shown here to produce gasses which are injurious to plant germination and/ or 

growth, and are also likely to be directly inhibitory to plant growth. 
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   The potential for using fly larvae for the bioremediation of dog faeces was 

investigated. Black Soldier Fly (BSFL) and Fruit Beetle (FBL) Fly larvae were shown 

to dramatically improve the physical nature of canine faeces, even after only a short 

exposure period, giving a bioremediated product which is markedly improved in terms 

of texture, reduced odour and overall reduced offensiveness.  

   The feeding of BSFL on faeces led to a statistically significant increase in the number 

of bacteria inside the BSFL gut and the same trend was seen in relation to dog faeces 

fed FBL. This trend of increasing bacterial numbers in larvae fed on dog faeces is 

particularly worrying in relation to the potential feeding of these larvae to animals- post 

exposure to faeces. Black soldier Fly larvae in particular are currently being produced 

for use as animal feed (mainly to chickens) following feeding on restaurant food waste. 

It is unlikely then, considering the high pathogen content of larvae fed on dog faeces 

that these could be safely used as animal feed following feeding on dog faeces. The 

bioremediated dog faeces produced was also found to be suitable as potting compost 

when “diluted” with proprietary potting compost.  

    The haemolymph and total body extracts of BSFL and FBL were shown to be 

antibacterial.  

     The potential for using dog faeces and dog faeces which had been treated with BSFL 

and FB was determined. It was shown that potential biodiesel precursors (mainly fatty 

acids) were present both in the raw dog faeces and in faeces which were treated with the 

two different larvae. Whether or not dog faeces, treated or otherwise, could be used 

economically as a source of biodiesel remains to be seen. Although vast amounts of dog 

faeces are produced annually all over the world problems relating to such collection are 

obvious. The increasing social trend towards dog owners collecting dog faeces and 

placing them in council collection containers means that an increasing amount of this 

potential bioresource is being collected together, at least in the urban environment. The 
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quantities collected will never however, approach that of other animal faeces, such as 

cattle feedlot waste. As a result, it might be better to use the relatively small amounts of 

dog faeces which are collected in any one location for localised methane generation, 

rather than biodiesel production.    

   The number of bacteria, including pathogens declined inside the gut of BSFL 

following feeding on dog faeces. The feeding of BSFL on faeces led to a statistically 

significant increase in the number of bacteria inside the BSFL gut and the same trend 

was seen in relation to dog faeces fed FBL. This trend of increasing bacterial numbers 

in larvae fed on dog faeces is particularly worrying in relation to the potential feeding of 

these larvae to animals- post exposure to faeces. Black soldier Fly larvae in particular 

are currently being produced for use as animal feed (mainly to chickens) following 

feeding on restaurant food waste. It is unlikely then, considering the high pathogen 

content of larvae fed on dog faeces that these could be safely used as animal feed 

following feeding on dog faeces. The bioremediated dog faeces produced was also 

found to be suitable as potting compost when “diluted” with proprietary potting 

compost. Increasing the ratio of compost to modified faeces “diluted out” the inhibitory 

effect of raw dog faeces on plant growth suggesting the possibility that larval modified 

dog faeces could be used as compost additive fertilizer, or  perhaps even be used as an 

agricultural soil fertilizer.   

      Escherichia coli and Salmonella enterica were isolated from all four sites (Fig. 

6.3nb) while no such isolates were obtained from the fifth location which was 

uncontaminated with dog faeces. The number of E. coli varied from site to site (from 

10
4
 to 10

5
 CFU/g); E. coli was isolated in highest numbers. The isolation of these 

pathogenic bacteria from playing fields frequented by children is obviously a major 

public health concern since pathogenic bacteria could be picked up from these soils, 

either on shoes, or by transfer from contaminated skin to the ears, eyes or mouths of 
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infected  children (and of course, people in general) from where they could cause 

disease. The number of bacteria present in dog faeces disposed of in plastic bags 

dramatically increased over exposure to the UK summer, when temperatures were 

recorded between 10-27
o
C. The following bacteria were isolated from the enclosed 

faeces (Fig. 6.4) a), Enterococcus spp and E. coli in Chromoagar media b), E. coli in 

HiCrome agar media c), Salmonella enterica in XLT-4 media while d) was 

Staphylococcus aureus with MRSA selective media respectively. However, the faecal 

sample counts were:( range 3.5×10
5
 to 4.6 × 10

6
,  9.7×10

3
 to 1.0× 10

5 
and 4.2×10

3
 to 

2.9× 10
5
) for E. coli, Salmonella enterica and plate count respectively. This study has 

demonstrated that the numbers and the diversity of bacteria can increase when dog 

faeces are enclosed over a month in plastic bags. 

   There has been a welcome trend of late for dog owners to act responsibly by picking 

up waste from their dogs, placing this in plastic bags and than putting these bags into 

special local council run dog-waste containers, from where they are transported and 

disposed off. 

 

8.2 Future work  

 

    The lack of published work on all aspects of the environmental and agricultural 

impact of dog faeces means that there is considerable potential to continue and extend 

the work reported in this Thesis. This Thesis reports preliminary work on all of the 

individual research questions investigated and all of the separate chapters could be 

extended to form the basis of separate theses.   

1) The work described here on biofuels could be extended, particularly in relation to the 

type of lipids produced by fly larvae growing on faeces.  However, since there exist 

more readily available and technically more readily useable biofuel substrates available 
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it   would seem economically pointless to devote to much attention to this area of green 

technology.  

2) No work was done here on viruses, both in relation to their presence in faeces and 

transmission to salads and vegetable. This is clearly an opportunity for workers with the 

experience and methodology in relation to working with viruses.  

3) Considerable interest is currently being devoted to the use of BSFL, produced from 

waste vegetables and other waste organic matter, as a source of poultry feed. It would 

be of interest to develop this line of research. Problems related to pathogen transfer 

mean that it is unlikely however, that such animal feeds could be safely produced from 

dog faeces. 
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Appendix One: Preparation of chemical solutions and reagents 

 

1.1 Solutions used in analysis of inorganic N-ions: 

1.1.1 Indophenol blue method for the determination of ammonium-N (NH4+-N). 

(a ) Standard ammonium solution.. 

Standard ammonium solution was prepared by dissolving 0.4717 g ammonium sulphate  

in 1 litre distilled water for (100 pg N ml-
1
). (Wainwright and Pugh, 1973) 

(A) Ethylenediamineteraaactic acid (EDTA) 

EDTA (60g) was dissolved in (900ml) distilled water then diluted to 1 litre 

 (b) Phenol solution: 

Phenol solution was prepared by dissolving phenol (62.5 g) in ethanol (25 ml) and 

adding acetone (1S.5 ml) to give a total of 100 ml. The phenol solution was stored in the 

dark at 4
o 
C. 

(c) Phenolate reagent: 

Phenolate reagent was prepared by mixing 20 ml of phenol solution with 20 ml caustic 

solution (27%NaOH w/v) and diluting to 100 ml. The reagent was prepared fresh daily. 

 

1.1.2  Chromotropic acid method for nitrate-N determination. 

(a) Standard nitrate solution: 

 Potassium nitrate (KNO3), 0J229 was dissolved in distilled water and made up to 1 

litre volumetrically, for 100 NO3-N ml
-1.

 

 (b) Chromotropic acid reagent (C1o H6O8S2 Na2): 

 A0.l% (v/v) stock solution of chromotropic acid in concentrated sulphuric acid (H2SO4) 

was prepa.red by dissolving 1.84 g chromotropic acid in litre H2SO+ (1:l). This solution 

was stored in an amber bottle in refrigerator at 4
o
C for several months. 

 (c) Working chromotropic acid solution (CTA): 
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A working CTA-solution (0.01% v/v) was prepared by diluting 100 ml of stock solution 

to 990 ml with concentrated sulphuric acid (H2SO4) then adding 10 ml concentrated 

HCl. This solution was stored at 4
o
C for several weeks only 

 

1.1.3 Analysis of inorganic S-ions. 

(a) Standard sulphate-S solution: 

Sodium sulphate (Na2SO+.10H2O), 0.443 g was dissolved in 1 litre distilled water, 

which gives the concentration 100 µg SO4
2-

- S ml
-l
.  

 b) Gum acacia solution (0.250/" w/v): 

Gum acacia0.25 g was dissolved in 100 ml distilled water. 

1.3.4Analysis of phosphate 

(a) Chemical solution 

1- Ascorbic acid solution(10%) was prepared by mixing 10 ml of ascorbic acid with 90 

ml of distilled water 

2- Ammonium molybdate (0.42Vo) was prepared by dissolved 42gof ammonium 

molybdate with 100 ml of in (1N) H2SO4 

(b) Working solution 

Working solution was prepared by mixed 1 volume of ascorbic acid solution (10%) and 

6 volumes of ammonium molybdate (0.42%) 

2. Elements standard curves  

2.1 Standard ammonium solution (Wainwright and Pugh, 1973) 

3.66 g of (NH4)2SO4 and were dissolved it in litre then diluted the solution 10 times (10 

ml of ammonium solution with 90ml distal water) = 100µg/NH4
+
-N ml

-1. 
2ml of 

previous solution was added to 1ml of EDTA (6%w/v)  7ml of distilled water, 5ml of 

phenolate reagent and 3ml of sodium hypochlorite solution (10%v/v). The reaction 

mixture was mixed thoroughly and incubated at 25
o
C for 20min in the dark. The volume 
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was made up to 50ml and mixed and the concentration of the indophenols-blue complex 

was measured at 630 nm. 
 

2.2 Standard Nitrate solution ( Sims and Jackson, 1971) 

Weight 0.137g of NaNO3 and were dissolved to 100ml of distilled water. Resulting 

solution is 1mg nitrate (NaNO3) per ml. Solution was pipette to 6 tubes following 

volumes of the standard solution: (1µl=1µg nitrate) (0µl, 10µl, 20µl, 40µl, 80µl, 100µl). 

3ml of  filtrate  was mixed to 7ml chromotropic acid (work solution)then incubated in 

water bath for 45 min in 40
o
C. The yellow colour formed was measured at 41 nm using 

spectrophotometer and the concentration of nitrate was determined by reference to a 

standard curve of nitrate concentration.(Fig 1 2)  

2.3  Standard sulphate-s solution  (Hesse, 1971) 

1.47 g of ( Na2SO4) and were dissolved in 1 litre of distilled water, which give the 

concentration 1000µg/ SO4
-2

-S ml
-1

 then  diluted the solution 10 times (10 ml of sodium 

sulphate solution with 90 ml of distal water) =100µ g/ SO4
-2

-S ml
-1

. 

5ml of previous solution were added to 1g barium chloride  BaCl2 and 2ml of gum 

acacia (0.25%w/v) mixed well then the volume was made up to 25ml with distilled 

water. The white suspension resulting from precipitation of sulphate was measured at 

470 nm. (Fig 13) 

 

2.4  Standard phosphate  solution (Hesse, 1971) 

Weight 0.4393g of potassium dihydrogen (KH2PO4) into a litre volumetric flask. This 

solution was diluted with distilled water to produce 10µg , 20 µg, 40 µg, 50 µg, 60 µg, 

70 µg, 80 µg, 90 µg and 100 µg. The control was distilled water without KH2PO4. 
 

Mix  1 vol. of ascorbic acid mixed with 6 vol. of ammonium molybdate. The add 0.7 ml 

of working solution to 0.3 ml of sample and incubate at 37oC for 1 hour and read with 

blue colour at 820 nm. (Fig 1 4) 
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Fig 1 3: Sulphate standard curve                                 Fig 1 4: Phosphate standard curve 
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Appendix Two: Identification of bacteria   

1. Solid media 

 

1.1 BRILLIANCEUTI CLARITY AGAR 

Brillianceuti Clarity Agar (formerly Chromogenic UTI Clarity Agar) is for 

differentiation and presumptive identification of common urinary tract infection 

isolates. 

Table 2 1 Composition of  Brilliant clarity agar medium 

 Typical Formula*………………………………………….  Gm/ 

litre 

Peptone……………………………………………………..    9.00  

Chromogenic Mix………………………………………….  17.00  

Tryptophan………………………………………………….   1.00 

Agar………………………………………………………… 10.00  

pH 7.0 ± 0.2 @ 25ºC    

 

Interpretation 

The expected colour reactions are laid out in Table  2 2 

Table 2 2 Typical colour reactions on BrillianceUTI Clarity Agar  

Organism  β-galactosidase  β-glucosidase  TDA 

  

Colony colour  

 E. coli  +     Pink 

enterococci     +   Blue / Turquoise  

coliforms   + +    Dark Blue / Purple  

Proteus/Morganella      +  Brown halo  

pseudomonads        Green/ Brown  

staphylococci         White / Cream 

S. saprophyticus         Pale Pink / White 

streptococci        White  

.  Appearance 

Dehydrated BrillianceUTI Clarity Agar is a free-flowing straw coloured powder.  

The prepared medium is a straw-coloured, transparent agar. 

 

Table 2 1 Quality control 

Positive controls Expected results 

Escherichia coli  ATCC
®

25922* Good growth; pink colonies 

Enterobacter aerogenes ATCC
®
13048* Good growth; purple colonies  

Enterococcus faecalis ATCC
®
29212* Good growth; blue colonies 

Proteus mirabilis NCTC10975 or Proteus 

mirabilis  ATCC
®
29906* 

Good growth; brown colony and 

halo  

Staphylococcus aureus ATCC
®
25923* Good growth; typical appearance  

 Negative control   

Uninoculated medium  

 

E. coli 

 Fig 2 1: E. coli on BrillIant agar /  Author‟s  photo 
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E. coli on Brillianceuti Clarity Agar by (Authors ) 

1.2 CHROMagar Orientation  

The principle of this medium is the use of Chromogenic substrates revealing metabolic 

enzymes. Dehydrated powder was provided by the CHROMagar Company, Paris, 

France.  

The medium is composed of 169 each of peptone, meat, and yeast extracts and 15g of 

agar per Litre and a special chromogenic mixture. The powder was introduced into an 

Automatic pippeter, and sterilization process was performed at 120
o
C for 15 min. 

Samples were  Streaked  onto plate and incubate at 37°C for 18-24 hours.  

 

Table 2 4: Composition of Chromagar Orientation medium 

Typical Formula………………………………………………. gm/litre 

Agar…………………………………………………………… 15.0 g 

Peptone and yeast extract…………………………………… 17.0 

Chromogenic mix……………………………………………. 1.0 g 

Total…………………………………………………………… 33 g/L 

pH 7.0 ± 0.2 @ 25°C 
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Fig, 2 2: The colour of colonies of CHROMagar Orientation media reference  

 

 

 

1.3  CHROMagar MRSA 

 

BBL CHROMagar MRSA is a selective and differential medium, which incorporates 

cefoxitin, for the detection of MRSA from specimens. 

For pre-weighed dose of medium of CHROMagaTMRSA powder, add dry powder to 

the corresponding volume of purified water. Alternatively, suspend the powder slowly 

in water by rotating for swelling of the agar. Heat and bring to boiling (100"C) while 

swirling or stirring regularly. If using an autoclave, do so without pressure. Do not heat 

to more than100
o
C. the mixture may also be brought to a boil in a microwave oven: 

after initial boiling, remove from oven, stir gently, then return to oven for short 

repeated155 

 

 

 

 

 

 

 

 

(Merlino et al., 1996) 
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Table 2 5: Composition of Chromagar MRSA 

Typical 

Formula………………………………………………. 

gm/lit

re 

Chromopeptone  

……………………………………………. 

40.0 g 

Sodium Chloride  

…………………………………………... 

25.0 g 

Chromogenic 

mix…………………………………………… 

 0.5 g 

Inhibitory Agents  

…………………………………………. 
0.07 g 

Cefoxitin………………………………………………

…….. 
6.0mg 

Agar……………………………………………………

…….. 
14.0 g 

pH 7.0 ± 0.2 @ 25°C  

 

 

Table 2 6: Quality control 

Positive control: Expected result 

Staphylococcus aureus  ATCC® 29213 Inhibition 

 (partial to complete);  N/A 

*Staphylococcus aureus   ATCC®25923  Inhibition 

 (partial to complete);  N/A 

*Staphylococcus aureus ATCC®43300 Growth; Mauve 

Staphylococcus aureus ATCC ®3359 Growth; Mauve 

Enterococcus faecalis ATCC ®29212 Growth; blue  

(Garner, 1996 ; Clinical and Laboratory Standards Institute. 2008) 

 

 

 

 

 

 

 

 

 

 

1.4  Czapek Dox agar  
    

Code: CM0097 / Oxoid     

 

 Semi-synthetic solid medium, containing sucrose as C-source and nitrate as the sole 

source of nitrogen, useful for the general cultivation of fungi, yeasts and soil bacteria. 

Recommended by Czapek (1902-1903) and Dox (1910). Table 2 1 1 
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Table 2.7:  Composition of Czapek Dox agar  medium 

Typical Formula gm/litre 

Na NO…………………………………………………. 2.00 g 

KCI…………………………………………………….. 0.50 g 

Magnesium glycerophosphate………………………… 0.50 g 

Fe SO4 (7H2O)………………………………………… 0..01 g 

K2 SO4………………………………………………... 0.35 g 

Sucrose………………………………………………… 30.0 g 

Agar (Oxoid No. 3)………………………………........ 12.0 g 

pH 6.8 ± 0.2 @ 25°C 

 
 

Directions 
 

A proprietary formulation (Oxoid) of Czapek Dox Agar was used for fungal growth. It 

was prepared by suspending 45.4 g of the powder in a litre of distilled water. The 

medium Was dissolved, and the pH adjusted to 6.8, and sterilised by autoclaving at l2l
o
 

C for 15 min. 

 

Appearance  

Dehydrated medium: White coloured, free-flowing powder 

Prepared medium: Off-white coloured gel 

 Table 2 8: Cultural characteristics after 24-48 hours at 35°C. 

 Organisms (ATCC)  Growth 

Aspergillus braseliensis (16404)  +++ 

Saccharomyces cerevisiae (9763)  +++ 

Candida albicans (10231)  ++ 

Bacillus subtilis (6633)  ++ 

Staphylococcus aureus (25923)  - 

1.5 HiCrome (TM) E. coli Agar A 

Code: 70722/ Fluka/ Sigma 

HiCrome E.coli Agar B is recommended for the detection and enumeration of 

Escherichia coli in foods without further confirmation on membrane filter or by indole 

reagent. 

Table 2 9: Composition of HiCrome (TM) E. coli Agar A 

Formula 

……………………………………………………………… 

gm/litre  
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Casein enzymic 

hydrolysate………………………………………….. 

14.0 g 

Peptone 

especial………………………………………………………  

5.0 g  

Bile salts 

mixture………………………………………………………. 

1.50 g 

Disodium 

hydrogen…………………………………………………... 
1.0 g 

Sodium dihydrogen 

phosphate……………………………………….. 

 0.6 g 

Sodium 

chloride……………………………………………………… 

2.4 g 

Glucuronide………………………………………………………... 0.075 g 

Agar …………………………………………………………… 12.0 g 

pH 7.2 ± 0.2 @ 25°C  

Directions : 

Suspend 36,6g in 1 litre distilled water. Sterilize by autoclaving at 121°C for 15 

minutes. Cool to 50°C and pour into sterile petri plates 

Table 2 10: Culture characterisation after 18-24 hours at 44
o
C  

Positive control:  Expected results  

Escherichia coli ATCC® 25922 *  Luxuriant; blue 

Klebsiella pneumonia  ATCC®  

13883 

 luxuriant colourless, mucoid 

Salmonella enteritidis  

ATCC® 13076 

luxuriant colourless 

Staphylococcus aureus 

ATCC® 25923 

inhibited 

Anderson and Baird-Parker., 1975;  Hansen and Yourassawsky  

 

 
Fig 2 3: E. coli on HiCrome agar / Author‟s photo 

E. coli 



187 

 

 

1.6 Nutrient Agar (Oxoid) 

 

Code: CM0003 (Powder) 

A general purpose medium which may be enriched with up to 10% blood or other 

biological fluid. 

Table 2 11: Composition of Nutrient Agar 

Typical Formula………………………………………. gm/litre 

'Lab-Lemco' powder (Oxoid)………………………….. 1.0 g 

Yeast extract………………………………………….... 2.0 e 

Peptone………………………………………………… 5.0 g 

Sodium chloride……………………………………….. 5.0 g 

Agar……………………………………………………. 15.0 g 

pH 7.4 ± 0.2 @ 25°C  

 

Directions 
 

The medium was prepared by suspending 28g in litre of distilled water, boiled 

dissolve completely.  Sterilised by autoclaving at l2l
o
C

 
for 15 minutes. 

 

Table 2 2 12: Quality control 

Positive controls: Expected results 

Staphylococcus aureus ATCC
®
 

25923 * 

Good growth; straw/white 

colonies 

Escherichia coli ATCC
®
 25922 * Good growth; straw colonies 

Negative control:   

Uninoculated medium No change 

(Lapage et al. 1970) 

 

 

1.7 Plate Count Agar 

 

The medium was prepared by suspending 17.5g in litre of distilled water, boiled to 

dissolve completely, pH 7.0, sterilised by autoclaving at 121
o
C for 15 minutes' 

Silica gel medium (Parkinson et a1.,1989) 

 

Table 2 13: Composition Plate Count Agar (Oxoid) 

Typical Formula………………………………………. gm/litre 

Tryptone……………………………………………….. 1.0 g 

Yeast extract………………………………………….... 2.5 e 

Glucose………………………………………………… 1.0 g 

Agar……………………………………………………. 9.0 g 
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pH 7.0 ± 0.2 @ 25°C 

 
 

Directions 

Add 17.5g to 1 litre of distilled water. Dissolve by bringing to the boil with frequent 

stirring, mix and distribute into final containers. Sterilise by autoclaving at 121°C for 15 

minutes. 

 

Appearance  

Dehydrated medium: Straw coloured, free-flowing powder  

Prepared medium: Straw coloured gel 

Table 2 14: Quality control  

Positive control:  Expected results  

Escherichia coli ATCC® 25922 *  Good growth; straw coloured 

colonies 

Negative control:    

Uninoculated plate No change 

(PHLS, 1999) 

 

1.8 POTATO DEXTROSE AGAR (EP/USP/JP/BP) 

Code: CM0139 (Oxoid) 

 For the detection and enumeration of yeasts and moulds in butter and other dairy and 

food products.  Also for the preparation of Aspergillus niger for the Harmonised 

Microbial Limit Tests from EP/USP/JP (enumeration test)  

 

 

Table 2 15: Composition of  PAD medium 

Formula  gm/litre  

Potato 

tract…………………………………………………... 

 

4.0* 

Glucose 

………………………………………………………... 

20.0  

Agar 

…………………………………………………………… 

15.0  

pH 5.6 ± 0.2 @ 25°C   

 

 

Directions 

Suspend 39g in 1 litre of water (purified as requested). Bring to the boil to dissolve 

completely. Sterilise by autoclaving at 121°C for 15 minutes. Mix well before pouring. 
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Appearance 

Dehydrated medium: Off-white, free-flowing powder 

Prepared medium: Light straw coloured gel 

Table 2 16: Quality Control 

Positive control: Expected result 

Aspergillus fumigatus ATCC® 9197 * White mycelium, blue green 

spores 

Negative controls:   

Uninoculated medium No change  

At pH 3.5 Bacillus subtilis ATCC® 6633 

* 

No growth 

American Public Health Association. (1992) 

 

 

1.10  XLT-4 AGAR  

Code: CM1061 from / Oxoid 

A highly selective medium for isolation and identification of Salmonellae from clinical, 

environmental and food samples. 

Table  17; Composition of  XLT-4  Agar 

Typical Formula* gm/litre  

Proteose Peptone …………………………………………………. 1.6 

Yeast extract………………………………………………………. 3.0 

Lysine………………………………………………………………. 5.0 

Xylose……………………………………………………………… 3.75 

Lactose…………………………………………………………….. 7.5 

Sucrose……………………………………………………………... 7.5 

Ferric ammonium citrate…………………………………………… 0.8 

Sodium thiosulphate……………………………………………….. 6.8 

Sodium chloride……………………………………………………. 5.0 

Phenol Red…………………………………………………………. 0.08 

Agar………………………………………………………………… 18.0  

 pH 7.4 ± 0.2 @ 25°C   

Directions 

Suspend 59g of XLT-4 Agar Base in 1 litre of distilled water, add 4.6ml of XLT-4 

Selective Supplement and bring the medium to the boil. 

Do not overheat, do not autoclave. 

Cool to approximately 50°C and pour into sterile Petri dishes. It is not advised to hold 

the medium at 50°C for longer than 1 hour as this may cause the medium to precipitate.  

http://www.oxoid.com/UK/blue/prod_detail/prod_detail.asp?pr=CM1061&org=124&c=UK&lang=EN
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Description 

XLT-4 (Xylose Lactose Tergitol™ 4) Agar is a highly selective plating medium used 

for isolation and identification of salmonellae from clinical, environmental and food 

samples according to Miller 

 

 

b) XLT-4 SELECTIVE SUPPLEMENT 

Code: SR0237/ Oxoid 

Table 2 18: Composition of  XLT-4 selective supplement 

Supplement available in 100 ml (SR0237C) per 

litre 

Tergitol™ 

4………………………………………………………. 

4.6ml 

 

Appearance: 
Dehydrated medium: straw coloured, free-flowing powder 

Prepared medium: clear red gel 

 

Table 9: Quality control 

Positive control:  Expected results 

Salmonella enteritidis 

ATCC®13076 * 

Good growth: black or, red with black 

centre 

Negative controls:   

Escherichia coli ATCC®25922 * Reduced growth, yellow 

Enterococcus feacalis 

ATCC®29212 * 

 

( Miller and Tate, 1990; Dusch and Altwegg, 1995) 

 

 

 
Fig 2 4: S. enterica on XLT-4 agar / Author‟s photo 

  

 

 

Salmonella enterica 
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               L  1  2 

 

Fig 2 5:  g DNA of  isolated bacterial species; (Lane 1) Salmonella and (Lane 2) E. coli, 

( lane L); hyper ladder 

 

      L       1      2        3 

 

Fig 2 6: PCR- 16Sr RNA, amplification products of Salmonella enteric species   

analyzed by electrophoresis in agarose gel lanes represent; ( lane L); hyper ladder;(lane 

lane 1);  S. enterica R1, (lane 2); S. enerica R2 and (lane 3) positive control.   
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                       L   1   2 

 

  Fig 2 7: PCR- 16Sr RNA, amplification products of Salmonella enteric species   

analyzed by electrophoresis in agarose gel lanes represent; ( lane L); hyper ladder;(lane 

lane 1);  S. enterica R1, (lane 2); S. enerica R2 negative result l.   

   

 

                      L                    1    

 

 Fig 2 8: PCR- 16Sr RNA, amplification products of E. coli   analyzed by 

electrophoresis in agarose gel lanes represent; ( lane L); hyper ladder;(lane lane 1);  

E.coli .  
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Appendix Three: ANOVA tables  

 

Three Way Analysis of Variance Saturday, March 17, 2012, 14:06:28 

 

Data source:    E. coli ANOVA of BSFL in BSFL AONVA E. coli 

 

Balanced Design (No Interactions) 

 

Dependent Variable: Y  

 

Normality Test: Failed (P < 0.050) 

 

Equal Variance Test: Passed (P = 1.000) 

 

Source of Variation  DF   SS   MS    F    P   

T 1 1.974E+015 1.974E+015  431.898 <0.001  

R 4 1.914E+016 4.784E+015  1046.919 <0.001  

C 2 2.713E+013 1.357E+013 2.969 0.109  

Residual 8 3.656E+013 4.570E+012    

Total 29 2.724E+016 9.394E+014     

 

 

The difference in the mean values among the different levels of T are greater than 

would be expected by chance after allowing for the effects of differences in R and C.  

There is a statistically significant difference (P = <0.001).  To isolate which group(s) 

differ from the others use a multiple comparison procedure. 

 

The difference in the mean values among the different levels of R are greater than 

would be expected by chance after allowing for the effects of differences in T and C.  

There is a statistically significant difference (P = <0.001).  To isolate which group(s) 

differ from the others use a multiple comparison procedure. 

 

The difference in the mean values among the different levels of C are not great enough 

to exclude the possibility that the difference is just due to random sampling variability 

after allowing for the effects of differences in T and R.  There is not a statistically 

significant difference (P = 0.109). 

 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor: T 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

2.000 vs. 1.000 16221816.000 20.782 <0.001 0.050 Yes

  

Comparisons for factor: R 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

1.000 vs. 5.000 63319106.667 51.305 <0.001 0.005 Yes
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1.000 vs. 4.000 63293650.000 51.284 <0.001 0.006 Yes

  

1.000 vs. 3.000 59012683.333 47.815 <0.001 0.006 Yes

  

2.000 vs. 5.000 36459106.667 29.541 <0.001 0.007 Yes

  

2.000 vs. 4.000 36433650.000 29.521 <0.001 0.009 Yes

  

2.000 vs. 3.000 32152683.333 26.052 <0.001 0.010 Yes

  

1.000 vs. 2.000 26860000.000 21.763 <0.001 0.013 Yes

  

3.000 vs. 5.000 4306423.333 3.489 0.008 0.017 Yes

  

3.000 vs. 4.000 4280966.667 3.469 0.008 0.025 Yes

  

4.000 vs. 5.000 25456.667 0.0206 0.984 0.050 No 

 

Comparisons for factor: C 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

1.000 vs. 3.000 2284562.000 2.390 0.044 0.017 No

  

2.000 vs. 3.000 1536809.000 1.608 0.147 0.025 No

  

1.000 vs. 2.000 747753.000 0.782 0.457 0.050 No

  

Power of performed test with alpha = 0.0500:  for T : 1.000 

Power of performed test with alpha = 0.0500:  for R : 1.000 

Power of performed test with alpha = 0.0500:  for C : 0.288 

 

Least square means for T :  

Group Mean  

1.000 12725337.333  

2.000 28947153.333  

Std Err of LS Mean = 551942.360 

 

Least square means for R :  

Group Mean  

1.000 63333333.333  

2.000 36473333.333  

3.000 4320650.000  

4.000 39683.333  

5.000 14226.667  

Std Err of LS Mean = 872697.497 

 

Least square means for C :  

Group Mean  

1.000 21847017.000  

2.000 21099264.000  

3.000 19562455.000  

Std Err of LS Mean = 675988.575 
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Three Way Analysis of Variance Saturday, March 17, 2012, 14:54:58 

 

Data source: ANOVA OF BSFL  Salmonella in BSFL ANOVA Salmonella 

 

Balanced Design (No Interactions) 

 

Dependent Variable: Y  

 

Normality Test: Failed (P < 0.050) 

 

Equal Variance Test: Passed (P = 1.000) 

 

Source of Variation  DF   SS   MS    F    P   

T  1                  2.293E+013               2.293E+013  955.133 <0.001  

R  4                 3.360E+014                8.400E+013  3499.420 <0.001  

C  2                62712566000.000       31356283000.0 

Residual 8                192037221999.938     24004652749.992        

Total 29                4.441E+014                1.531E+013    

 

 

The difference in the mean values among the different levels of T are greater than 

would be expected by chance after allowing for the effects of differences in R and C.  

There is a statistically significant difference (P = <0.001).  To isolate which group(s) 

differ from the others use a multiple comparison procedure. 

 

The difference in the mean values among the different levels of R are greater than 

would be expected by chance after allowing for the effects of differences in T and C.  

There is a statistically significant difference (P = <0.001).  To isolate which group(s) 

differ from the others use a multiple comparison procedure. 

 

The difference in the mean values among the different levels of C are not great enough 

to exclude the possibility that the difference is just due to random sampling variability 

after allowing for the effects of differences in T and R.  There is not a statistically 

significant difference (P = 0.323). 

 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor: T 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

2.000 vs. 1.000 1748433.333 30.905 <0.001 0.050 Yes 

 

 

Comparisons for factor: R 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

1.000 vs. 5.000 8397250.000 93.875 <0.001 0.005 Yes

  

1.000 vs. 4.000 8379783.333 93.680 <0.001 0.006 Yes
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1.000 vs. 3.000 8256250.000 92.299 <0.001 0.006 Yes

  

2.000 vs. 5.000 4309083.333 48.172 <0.001 0.007 Yes

  

2.000 vs. 4.000 4291616.667 47.977 <0.001 0.009 Yes

  

2.000 vs. 3.000 4168083.333 46.596 <0.001 0.010 Yes

  

1.000 vs. 2.000 4088166.667 45.703 <0.001 0.013 Yes

  

3.000 vs. 5.000 141000.000 1.576 0.154 0.017 No

  

3.000 vs. 4.000 123533.333 1.381 0.205 0.025 No

  

4.000 vs. 5.000 17466.667 0.195 0.850 0.050 No

  

 

Comparisons for factor: C 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

1.000 vs. 3.000 111920.000 1.615 0.145 0.017 No

  

1.000 vs. 2.000 59470.000 0.858 0.416 0.025 No

  

2.000 vs. 3.000 52450.000 0.757 0.471 0.050 No

  

Power of performed test with alpha = 0.0500:  for T : 1.000 

Power of performed test with alpha = 0.0500:  for R : 1.000 

Power of performed test with alpha = 0.0500:  for C : 0.0826 

 

Least square means for T :  

Group Mean  

1.000 1701493.333  

2.000 3449926.667  

Std Err of LS Mean = 40003.877 

 

Least square means for R :  

Group Mean  

1.000 8400000.000  

2.000 4311833.333  

3.000 143750.000  

4.000 20216.667  

5.000 2750.000  

Std Err of LS Mean = 63251.683 

 

Least square means for C :  

Group Mean  

1.000 2632840.000  

2.000 2573370.000  

3.000 2520920.000  

Std Err of LS Mean = 48994.543 
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Three Way Analysis of Variance Saturday, March 17, 2012, 13:00:40 

 

Data source: BSFL AONVA  Plate count media in Plate count media ANOVA 

 

Balanced Design (No Interactions) 

 

Dependent Variable: Y  

 

Normality Test: Failed (P < 0.050) 

 

Equal Variance Test: Passed (P = 1.000) 

 

Source of Variation  DF   SS   MS    F    P   

T 1 1.581E+017 1.581E+017  102.181 <0.001  

R 4 7.626E+017 1.906E+017  123.201 <0.001  

C 2 7.304E+015 3.652E+015 2.360 0.156  

Residual 8 1.238E+016 1.547E+015    

Total 29 1.560E+018 5.378E+016    

 

 

The difference in the mean values among the different levels of T are greater than 

would be expected by chance after allowing for the effects of differences in R and C.  

There is a statistically significant difference (P = <0.001).  To isolate which group(s) 

differ from the others use a multiple comparison procedure. 

 

The difference in the mean values among the different levels of R are greater than 

would be expected by chance after allowing for the effects of differences in T and C.  

There is a statistically significant difference (P = <0.001).  To isolate which group(s) 

differ from the others use a multiple comparison procedure. 

 

The difference in the mean values among the different levels of C are not great enough 

to exclude the possibility that the difference is just due to random sampling variability 

after allowing for the effects of differences in T and R.  There is not a statistically 

significant difference (P = 0.156). 

 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor: T 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

2.000 vs. 1.000 145196940.000 10.108 <0.001 0.050 Yes

  

 

Comparisons for factor: R 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

2.000 vs. 5.000 363737183.333 16.016 <0.001 0.005 Yes

  

2.000 vs. 4.000 361496500.000 15.917 <0.001 0.006 Yes
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2.000 vs. 3.000 359237333.333 15.818 <0.001 0.006 Yes

  

1.000 vs. 5.000 283270516.667 12.473 <0.001 0.007 Yes

  

1.000 vs. 4.000 281029833.333 12.374 <0.001 0.009 Yes

  

1.000 vs. 3.000 278770666.667 12.275 <0.001 0.010 Yes

  

2.000 vs. 1.000 80466666.667 3.543 0.008 0.013 Yes

  

3.000 vs. 5.000 4499850.000 0.198 0.848 0.017 No

  

3.000 vs. 4.000 2259166.667 0.0995 0.923 0.025 No

  

4.000 vs. 5.000 2240683.333 0.0987 0.924 0.050 No 

 

 

Comparisons for factor: C 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

1.000 vs. 2.000 37619750.000 2.138 0.065 0.017 No

  

1.000 vs. 3.000 24658710.000 1.402 0.199 0.025 No

  

3.000 vs. 2.000 12961040.000 0.737 0.482 0.050 No

  

 

Power of performed test with alpha = 0.0500:  for T : 1.000 

Power of performed test with alpha = 0.0500:  for R : 1.000 

Power of performed test with alpha = 0.0500:  for C : 0.209 

 

Least square means for T :  

Group Mean  

1.000 58213993.333  

2.000 203410933.333  

Std Err of LS Mean = 10156812.630 

 

Least square means for R :  

Group Mean  

1.000 283333333.333  

2.000 363800000.000  

3.000 4562666.667  

4.000 2303500.000  

5.000 62816.667  

Std Err of LS Mean = 16059330.839 

 

Least square means for C :  

Group Mean  

1.000 151571950.000  

2.000 113952200.000  

3.000 126913240.000  

Std Err of LS Mean = 12439504.178 
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Three Way Analysis of Variance Saturday, March 17, 2012, 12:27:59 

 

Data source: E. coli   ANOVA in FBL E. coli ANOVA 

 

Balanced Design (No Interactions) 

 

Dependent Variable: Y  

 

Normality Test: Failed (P < 0.050) 

 

Equal Variance Test: Passed (P = 1.000) 

 

Source of Variation  DF   SS   MS    F    P   

R 1 8.554E+015 8.554E+015  455.393 <0.001  

T 4 3.470E+016 8.676E+015  461.905 <0.001  

C 2 4.231E+013 2.115E+013 1.126 0.371  

Residual 8 1.503E+014 1.878E+013    

Total 29 7.776E+016 2.681E+015    

 

The difference in the mean values among the different levels of R are greater than 

would be expected by chance after allowing for the effects of differences in T and C.  

There is a statistically significant difference (P = <0.001).  To isolate which group(s) 

differ from the others use a multiple comparison procedure. 

 

The difference in the mean values among the different levels of T are greater than 

would be expected by chance after allowing for the effects of differences in R and C.  

There is a statistically significant difference (P = <0.001).  To isolate which group(s) 

differ from the others use a multiple comparison procedure. 

 

The difference in the mean values among the different levels of C are not great enough 

to exclude the possibility that the difference is just due to random sampling variability 

after allowing for the effects of differences in R and T.  There is not a statistically 

significant difference (P = 0.371). 

 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor: R 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

2.000 vs. 1.000 33771066.667 21.340 <0.001 0.050 Yes

  

 

Comparisons for factor: T 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

2.000 vs. 5.000 88992000.000 35.566 <0.001 0.005 Yes

  

2.000 vs. 4.000 88841000.000 35.505 <0.001 0.006 Yes
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2.000 vs. 3.000 84650000.000 33.830 <0.001 0.006 Yes

  

2.000 vs. 1.000 71783333.333 28.688 <0.001 0.007 Yes

  

1.000 vs. 5.000 17208666.667 6.877 <0.001 0.009 Yes

  

1.000 vs. 4.000 17057666.667 6.817 <0.001 0.010 Yes

  

1.000 vs. 3.000 12866666.667 5.142 <0.001 0.013 Yes

  

3.000 vs. 5.000 4342000.000 1.735 0.121 0.017 No

  

3.000 vs. 4.000 4191000.000 1.675 0.132 0.025 No

  

4.000 vs. 5.000 151000.000 0.0603 0.953 0.050 No

  

 

Comparisons for factor: C 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

1.000 vs. 3.000 2812600.000 1.451 0.185 0.017 No

  

1.000 vs. 2.000 2049200.000 1.057 0.321 0.025 No

  

2.000 vs. 3.000 763400.000 0.394 0.704 0.050 No 

 

 

Power of performed test with alpha = 0.0500:  for R : 1.000 

Power of performed test with alpha = 0.0500:  for T : 1.000 

Power of performed test with alpha = 0.0500:  for C : 0.0630 

 

Least square means for R :  

Group Mean  

1.000 5377866.667  

2.000 39148933.333  

Std Err of LS Mean = 1119016.803 

 

Least square means for T :  

Group Mean  

1.000 17333333.333  

2.000 89116666.667  

3.000 4466666.667  

4.000 275666.667  

5.000 124666.667  

Std Err of LS Mean = 1769320.918 

 

Least square means for C :  

Group Mean  

1.000 23884000.000  

2.000 21834800.000  

3.000 21071400.000  

Std Err of LS Mean = 1370510.090 
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Three Way Analysis of Variance Tuesday, January 17, 2012, 21:49:21 

 

Data source: FBL  Salmonella  ANOVA in FBL Salmonella  ANOVA 

 

 

Balanced Design (No Interactions) 

 

Dependent Variable: Y  

 

Normality Test: Failed (P < 0.050) 

 

Equal Variance Test: Passed (P = 1.000) 

 

Source of Variation  DF   SS   MS    F    P   

R 1 2.473E+017 2.473E+017  237.919 <0.001  

T 4 7.879E+017 1.970E+017  189.502 <0.001  

C 2 2.672E+015 1.336E+015 1.285 0.328  

Residual 8 8.315E+015 1.039E+015    

Total 29 1.872E+018 6.454E+016    

 

 

The difference in the mean values among the different levels of R are greater than 

would be expected by chance after allowing for the effects of differences in T and C.  

There is a statistically significant difference (P = <0.001).  To isolate which group(s) 

differ from the others use a multiple comparison procedure. 

 

The difference in the mean values among the different levels of T are greater than 

would be expected by chance after allowing for the effects of differences in R and C.  

There is a statistically significant difference (P = <0.001).  To isolate which group(s) 

differ from the others use a multiple comparison procedure. 

 

The difference in the mean values among the different levels of C are not great enough 

to exclude the possibility that the difference is just due to random sampling variability 

after allowing for the effects of differences in R and T.  There is not a statistically 

significant difference (P = 0.328). 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor: R 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

2.000 vs. 1.000 181583786.667 15.425 <0.001 0.050 Yes

  

 

Comparisons for factor: T 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

2.000 vs. 5.000 420681950.000 22.601 <0.001 0.005 Yes

  

2.000 vs. 4.000 420623483.333 22.598 <0.001 0.006 Yes
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2.000 vs. 1.000 386316666.667 20.754 <0.001 0.006 Yes

  

2.000 vs. 3.000 385480000.000 20.709 <0.001 0.007 Yes

  

3.000 vs. 5.000 35201950.000 1.891 0.095 0.009 No

  

3.000 vs. 4.000 35143483.333 1.888 0.096 0.010 No

  

1.000 vs. 5.000 34365283.333 1.846 0.102 0.013 No

  

1.000 vs. 4.000 34306816.667 1.843 0.103 0.017 No

  

3.000 vs. 1.000 836666.667 0.0449 0.965 0.025 No

  

4.000 vs. 5.000 58466.667 0.00314 0.998 0.050 No 

 

 

Comparisons for factor: C 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

1.000 vs. 3.000 20346370.000 1.411 0.196 0.017 No

  

2.000 vs. 3.000 19675210.000 1.365 0.210 0.025 No

  

1.000 vs. 2.000 671160.000 0.0465 0.964 0.050 No

  

 

Power of performed test with alpha = 0.0500:  for R : 1.000 

Power of performed test with alpha = 0.0500:  for T : 1.000 

Power of performed test with alpha = 0.0500:  for C : 0.0802 

 

Least square means for R :  

Group Mean  

1.000 7304353.333  

2.000 188888140.000  

Std Err of LS Mean = 8324291.397 

 

Least square means for T :  

Group Mean  

1.000 34400000.000  

2.000 420716666.667  

3.000 35236666.667  

4.000 93183.333  

5.000 34716.667  

Std Err of LS Mean = 13161860.360 

 

Least square means for C :  

Group Mean  

1.000 105102090.000  

2.000 104430930.000  

3.000 84755720.000  

Std Err of LS Mean = 10195133.196 
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Three Way Analysis of Variance Saturday, March 17, 2012, 20:02:03 

 

Data source: FBL  Plate count media ANOVA in FBL Plate count media  ANOVA 

 

Balanced Design (No Interactions) 

 

Dependent Variable: Y  

 

Normality Test: Failed (P < 0.050) 

 

Equal Variance Test: Passed (P = 1.000) 

 

Source of Variation  DF   SS   MS    F    P   

R 1 2.338E+017 2.338E+017  1114.570  <0.001  

T 4 8.676E+017 2.169E+017  1034.149  <0.001  

C 2 1.363E+014 6.814E+013 0.325 0.732  

Residual 8 1.678E+015 2.097E+014    

Total 29 1.815E+018 6.259E+016    

 

 

The difference in the mean values among the different levels of R are greater than 

would be expected by chance after allowing for the effects of differences in T and C.  

There is a statistically significant difference (P = <0.001).  To isolate which group(s) 

differ from the others use a multiple comparison procedure. 

 

The difference in the mean values among the different levels of T are greater than 

would be expected by chance after allowing for the effects of differences in R and C.  

There is a statistically significant difference (P = <0.001).  To isolate which group(s) 

differ from the others use a multiple comparison procedure. 

 

The difference in the mean values among the different levels of C are not great enough 

to exclude the possibility that the difference is just due to random sampling variability 

after allowing for the effects of differences in R and T.  There is not a statistically 

significant difference (P = 0.732). 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor: R 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

2.000 vs. 1.000 176550300.000 33.385 <0.001 0.050 Yes

  

 

Comparisons for factor: T 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

2.000 vs. 5.000 452886583.333 54.163 <0.001 0.005 Yes

  

2.000 vs. 4.000 452667666.667 54.137 <0.001 0.006 Yes
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2.000 vs. 3.000 403100000.000 48.209 <0.001 0.006 Yes

  

2.000 vs. 1.000 309666666.667 37.035 <0.001 0.007 Yes

  

1.000 vs. 5.000 143219916.667 17.128 <0.001 0.009 Yes

  

1.000 vs. 4.000 143001000.000 17.102 <0.001 0.010 Yes

  

1.000 vs. 3.000 93433333.333 11.174 <0.001 0.013 Yes

  

3.000 vs. 5.000 49786583.333 5.954 <0.001 0.017 Yes

  

3.000 vs. 4.000 49567666.667 5.928 <0.001 0.025 Yes

  

4.000 vs. 5.000 218916.667 0.0262 0.980 0.050 No

  

 

Comparisons for factor: C 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

3.000 vs. 1.000 5214920.000 0.805 0.444 0.017 No

  

2.000 vs. 1.000 2822550.000 0.436 0.675 0.025 No

  

3.000 vs. 2.000 2392370.000 0.369 0.721 0.050 No

  

 

Power of performed test with alpha = 0.0500:  for R : 1.000 

Power of performed test with alpha = 0.0500:  for T : 1.000 

Power of performed test with alpha = 0.0500:  for C : 0.0500 

 

Least square means for R :  

Group Mean  

1.000 41060666.667  

2.000 217610966.667  

Std Err of LS Mean = 3739382.136 

 

Least square means for T :  

Group Mean  

1.000 143333333.333  

2.000 453000000.000  

3.000 49900000.000  

4.000 332333.333  

5.000 113416.667  

Std Err of LS Mean = 5912482.295 

 

Least square means for C :  

Group Mean  

1.000 126656660.000  

2.000 129479210.000  

3.000 131871580.000  

Std Err of LS Mean = 4579789.093 
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Larvae Guts 

Three Way Analysis of Variance Monday, March 19, 2012, 14:24:45 

 

Data source: ANOVA BSFL gut E. coli in ANOVA  BSFL gut E. coli 

 

Balanced Design (No Interactions) 

 

Dependent Variable: Col 4  

 

Normality Test: Failed (P < 0.050) 

 

Equal Variance Test: Passed (P = 1.000) 

 

Source of Variation  DF   SS   MS    F    P 

T 1 3491104687.500 3491104687.500  141.130 <0.001 

C 4 5039706996.667 1259926749.167 50.933 <0.001 

R 2 91331151.667 45665575.833 1.846 0.219 

Residual 8 197894770.000 24736846.250 

Total 29 14123564784.167 487019475.316 

 

 

The difference in the mean values among the different levels of T are greater than 

would be expected by chance after allowing for the effects of differences in C and R.  

There is a statistically significant difference (P = <0.001).  To isolate which group(s) 

differ from the others use a multiple comparison procedure. 

 

The difference in the mean values among the different levels of C are greater than 

would be expected by chance after allowing for the effects of differences in T and R.  

There is a statistically significant difference (P = <0.001).  To isolate which group(s) 

differ from the others use a multiple comparison procedure. 

 

The difference in the mean values among the different levels of R are not great enough 

to exclude the possibility that the difference is just due to random sampling variability 

after allowing for the effects of differences in T and C.  There is not a statistically 

significant difference (P = 0.219). 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor: T 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

2.000 vs. 1.000 21575.000 11.880 <0.001 0.050 Yes 

 

Comparisons for factor: C 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

2.000 vs. 1.000 34163.333 11.897 <0.001 0.005 Yes

  

2.000 vs. 5.000 34017.500 11.847 <0.001 0.006 Yes
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2.000 vs. 4.000 30211.667 10.521 <0.001 0.006 Yes

  

2.000 vs. 3.000 19218.333 6.693 <0.001 0.007 Yes

  

3.000 vs. 1.000 14945.000 5.205 <0.001 0.009 Yes

  

3.000 vs. 5.000 14799.167 5.154 <0.001 0.010 Yes

  

3.000 vs. 4.000 10993.333 3.828 0.005 0.013 Yes

  

4.000 vs. 1.000 3951.667 1.376 0.206 0.017 No

  

4.000 vs. 5.000 3805.833 1.325 0.222 0.025 No

  

5.000 vs. 1.000 145.833 0.0508 0.961 0.050 No

  

Comparisons for factor: R 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

1.000 vs. 3.000 4167.500 1.874 0.098 0.017 No

  

2.000 vs. 3.000 2904.500 1.306 0.228 0.025 No

  

1.000 vs. 2.000 1263.000 0.568 0.586 0.050 No

  

 

Power of performed test with alpha = 0.0500:  for T : 1.000 

Power of performed test with alpha = 0.0500:  for C : 1.000 

Power of performed test with alpha = 0.0500:  for R : 0.145 

 

Least square means for T :  

Group Mean  

1.000 120.333  

2.000 21695.333  

Std Err of LS Mean = 1284.182 

 

Least square means for C :  

Group Mean  

1.000 266.667  

2.000 34430.000  

3.000 15211.667  

4.000 4218.333  

5.000 412.500  

Std Err of LS Mean = 2030.470 

 

Least square means for R :  

Group Mean  

1.000 12718.000  

2.000 11455.000  

3.000 8550.500  

Std Err of LS Mean = 1572.795 
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Three Way Analysis of Variance Monday, March 19, 2012, 14:32:22 

 

Data source: ANOVA BSFL gut Salmonella in ANOVA  BSFL gut Salmonella 

 

Balanced Design (No Interactions) 

 

Dependent Variable: Col 4  

 

Normality Test: Passed (P = 0.097) 

 

Equal Variance Test: Passed (P = 1.000) 

 

Source of Variation  DF   SS   MS    F    P   

T 1 21075980853.333 21075980853.333 12.305 0.008

  

C 4 35539650118.133 8884912529.533 5.188 0.023

  

R 2 2254822678.400 1127411339.200 0.658 0.544

  

Residual 8 13702023586.667 1712752948.333    

Total 29 124078968596.800 4278585124.028    

 

The difference in the mean values among the different levels of T are greater than 

would be expected by chance after allowing for the effects of differences in C and R.  

There is a statistically significant difference (P = 0.008).  To isolate which group(s) 

differ from the others use a multiple comparison procedure. 

 

The difference in the mean values among the different levels of C are greater than 

would be expected by chance after allowing for the effects of differences in T and R.  

There is a statistically significant difference (P = 0.023).  To isolate which group(s) 

differ from the others use a multiple comparison procedure. 

 

The difference in the mean values among the different levels of R are not great enough 

to exclude the possibility that the difference is just due to random sampling variability 

after allowing for the effects of differences in T and C.  There is not a statistically 

significant difference (P = 0.544). 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor: T 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

2.000 vs. 1.000 53010.667 3.508 0.008 0.050 Yes 

 

Comparisons for factor: C 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

3.000 vs. 1.000 88390.667 3.699 0.006 0.005 No

  

3.000 vs. 5.000 87605.000 3.666 0.006 0.006 No
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3.000 vs. 4.000 85338.333 3.572 0.007 0.006 No

  

3.000 vs. 2.000 48490.000 2.029 0.077 0.007 No

  

2.000 vs. 1.000 39900.667 1.670 0.133 0.009 No

  

2.000 vs. 5.000 39115.000 1.637 0.140 0.010 No

  

2.000 vs. 4.000 36848.333 1.542 0.162 0.013 No

  

4.000 vs. 1.000 3052.333 0.128 0.902 0.017 No

  

4.000 vs. 5.000 2266.667 0.0949 0.927 0.025 No

  

5.000 vs. 1.000 785.667 0.0329 0.975 0.050 No 

 

Comparisons for factor: R 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

3.000 vs. 1.000 18648.400 1.008 0.343 0.017 No

  

3.000 vs. 2.000 18122.000 0.979 0.356 0.025 No

  

2.000 vs. 1.000 526.400 0.0284 0.978 0.050 No

  

 

Power of performed test with alpha = 0.0500:  for T : 0.847 

Power of performed test with alpha = 0.0500:  for C : 0.689 

Power of performed test with alpha = 0.0500:  for R : 0.0500 

 

Least square means for T :  

Group Mean  

1.000 39.867  

2.000 53050.533  

Std Err of LS Mean = 10685.669 

 

Least square means for C :  

Group Mean  

1.000 119.333  

2.000 40020.000  

3.000 88510.000  

4.000 3171.667  

5.000 905.000  

Std Err of LS Mean = 16895.527 

 

Least square means for R :  

Group Mean  

1.000 20153.600  

2.000 20680.000  

3.000 38802.000  

Std Err of LS Mean = 13087.219 
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Three Way Analysis of Variance Monday, March 19, 2012, 16:14:50 

 

Data source: ANOVA BSFL gut Plate count medium in ANOVA  BSFL gut Plate 

count medium 

 

Balanced Design (No Interactions) 

 

Dependent Variable: Col 4  

 

Normality Test: Failed (P < 0.050) 

 

Equal Variance Test: Passed (P = 1.000) 

 

Source of Variation  DF   SS   MS    F    P 

  

Col 1 1 795360395700.300 795360395700.300 179.832  <0.001

   

Col 2 4  1.220E+012 30              5092657541.967     68.982 <0.001

   

Col 3 2 15524723293.267     7762361646.633 1.755 0.233

   

Residual 8 35382363173.067 4422795396.633  

  

Total 2 3. 327E+012 1 14719680659.151 

    

The difference in the mean values among the different levels of Col 1 are greater than 

would be expected by chance after allowing for the effects of differences in Col 2 and 

Col 3.  There is a statistically significant difference (P = <0.001).  To isolate which 

group(s) differ from the others use a multiple comparison procedure. 

 

The difference in the mean values among the different levels of Col 2 are greater than 

would be expected by chance after allowing for the effects of differences in Col 1 and 

Col 3.  There is a statistically significant difference (P = <0.001).  To isolate which 

group(s) differ from the others use a multiple comparison procedure. 

 

The difference in the mean values among the different levels of Col 3 are not great 

enough to exclude the possibility that the difference is just due to random sampling 

variability after allowing for the effects of differences in Col 1 and Col 2.  There is not a 

statistically significant difference (P = 0.233). 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor: Col 1 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

2.000 vs. 1.000 325650.200 13.410 <0.001 0.050 Yes

  

Comparisons for factor: Col 2 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

2.000 vs. 5.000 483278.833 12.587 <0.001 0.005 Yes
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2.000 vs. 1.000 479883.333 12.498 <0.001 0.006 Yes

  

2.000 vs. 4.000 474980.000 12.371 <0.001 0.006 Yes

  

3.000 vs. 5.000 320612.167 8.350 <0.001 0.007 Yes

  

3.000 vs. 1.000 317216.667 8.262 <0.001 0.009 Yes

  

3.000 vs. 4.000 312313.333 8.134 <0.001 0.010 Yes

  

2.000 vs. 3.000 162666.667 4.237 0.003 0.013 Yes

  

4.000 vs. 5.000 8298.833 0.216 0.834 0.017 No

  

4.000 vs. 1.000 4903.333 0.128 0.902 0.025 No

  

1.000 vs. 5.000 3395.500 0.0884 0.932 0.050 No

  

Comparisons for factor: Col 3 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

1.000 vs. 3.000 55721.700 1.874 0.098 0.017 No

  

2.000 vs. 3.000 28027.000 0.942 0.374 0.025 No

  

1.000 vs. 2.000 27694.700 0.931 0.379 0.050 No

  

Power of performed test with alpha = 0.0500:  for Col 1 : 1.000 

Power of performed test with alpha = 0.0500:  for Col 2 : 1.000 

Power of performed test with alpha = 0.0500:  for Col 3 : 0.134 

 

Least square means for Col 1 :  

Group Mean  

1.000 2563.133  

2.000 328213.333  

Std Err of LS Mean = 17171.285 

 

Least square means for Col 2 :  

Group Mean  

1.000 5666.667  

2.000 485550.000  

3.000 322883.333  

4.000 10570.000  

5.000 2271.167  

Std Err of LS Mean = 27150.185 

 

Least square means for Col 3 :  

Group Mean  

1.000 193193.700  

2.000 165499.000  

3.000 137472.000  

Std Err of LS Mean = 21030.443 
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Three Way Analysis of Variance Monday, March 19, 2012, 15:50:56 

 

Data source: ANOVA FBL gut  E. coli in ANOVA FBL gut E. coli 

 

Balanced Design (No Interactions) 

 

Dependent Variable: Y  

 

Normality Test: Failed (P < 0.050) 

 

Equal Variance Test: Passed (P = 1.000) 

 

Source of Variation  DF   SS   MS    F    P 

  

T 1 289342177348.033 289342177348.033549.679  <0.001

   

C 4 865296991978.467 216324247994.617410.963   <0.001

   

R 2 2437231576.467 1218615788.2332.315  0.161

   

Residual 8 4211070551.867 526383818.983  

  

Total 29              2.057E+012 70946674171.551   

 

The difference in the mean values among the different levels of T are greater than 

would be expected by chance after allowing for the effects of differences in C and R.  

There is a statistically significant difference (P = <0.001).  To isolate which group(s) 

differ from the others use a multiple comparison procedure. 

 

The difference in the mean values among the different levels of C are greater than 

would be expected by chance after allowing for the effects of differences in T and R.  

There is a statistically significant difference (P = <0.001).  To isolate which group(s) 

differ from the others use a multiple comparison procedure. 

 

The difference in the mean values among the different levels of R are not great enough 

to exclude the possibility that the difference is just due to random sampling variability 

after allowing for the effects of differences in T and C.  There is not a statistically 

significant difference (P = 0.161). 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor: T 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

2.000 vs. 1.000 196415.267 23.445 <0.001 0.050 Yes

  

Comparisons for factor: C 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

3.000 vs. 5.000 441169.000 33.305 <0.001 0.005 Yes
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3.000 vs. 4.000 430199.333 32.477 <0.001 0.006 Yes

  

3.000 vs. 1.000 418376.167 31.585 <0.001 0.006 Yes

  

3.000 vs. 2.000 404107.833 30.508 <0.001 0.007 Yes

  

2.000 vs. 5.000 37061.167 2.798 0.023 0.009 No

  

2.000 vs. 4.000 26091.500 1.970 0.084 0.010 No

  

1.000 vs. 5.000 22792.833 1.721 0.124 0.013 No

  

2.000 vs. 1.000 14268.333 1.077 0.313 0.017 No

  

1.000 vs. 4.000 11823.167 0.893 0.398 0.025 No

  

4.000 vs. 5.000 10969.667 0.828 0.432 0.050 No 

 

Comparisons for factor: R 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

2.000 vs. 1.000 21282.200 2.074 0.072 0.017 No

  

3.000 vs. 1.000 15728.900 1.533 0.164 0.025 No

  

2.000 vs. 3.000 5553.300 0.541 0.603 0.050 No 

 

Power of performed test with alpha = 0.0500:  for T : 1.000 

Power of performed test with alpha = 0.0500:  for C : 1.000 

Power of performed test with alpha = 0.0500:  for R : 0.204 

 

Least square means for T :  

Group Mean  

1.000 4731.400  

2.000 201146.667  

Std Err of LS Mean = 5923.872 

 

Least square means for C :  

Group Mean  

1.000 23333.333  

2.000 37601.667  

3.000 441709.500  

4.000 11510.167  

5.000 540.500  

Std Err of LS Mean = 9366.463 

 

Least square means for R :  

Group Mean  

1.000 90602.000  

2.000 111884.200  

3.000 106330.900  

Std Err of LS Mean = 7255.231 
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Three Way Analysis of Variance Monday, March 19, 2012, 15:59:35 

 

Data source: ANOVA FBL gut Salmonella in ANOVA FBL gut Salmonella 

 

Balanced Design (No Interactions) 

 

Dependent Variable: Y  

 

Normality Test: Failed (P < 0.050) 

 

Equal Variance Test: Passed (P = 1.000) 

 

Source of Variation  DF   SS   MS    F    P   

T 1 5083997648.133 5083997648.133 97.628 <0.001

  

C 4 3124422187.200 781105546.800 15.000 <0.001

  

R 2 179414888.467 89707444.233 1.723 0.239

  

Residual 8 416599594.200 52074949.275    

Total 29 13693679987.867 472195861.651    

 

The difference in the mean values among the different levels of T are greater than 

would be expected by chance after allowing for the effects of differences in C and R.  

There is a statistically significant difference (P = <0.001).  To isolate which group(s) 

differ from the others use a multiple comparison procedure. 

 

The difference in the mean values among the different levels of C are greater than 

would be expected by chance after allowing for the effects of differences in T and R.  

There is a statistically significant difference (P = <0.001).  To isolate which group(s) 

differ from the others use a multiple comparison procedure. 

 

The difference in the mean values among the different levels of R are not great enough 

to exclude the possibility that the difference is just due to random sampling variability 

after allowing for the effects of differences in T and C.  There is not a statistically 

significant difference (P = 0.239). 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor: T 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

2.000 vs. 1.000 26035.867 9.881 <0.001 0.050 Yes

  

 

Comparisons for factor: C 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

3.000 vs. 4.000 30753.333 7.381 <0.001 0.005 Yes
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1.000 vs. 4.000 21574.000 5.178 <0.001 0.006 Yes

  

3.000 vs. 5.000 18341.000 4.402 0.002 0.006 Yes

  

2.000 vs. 4.000 18207.333 4.370 0.002 0.007 Yes

  

3.000 vs. 2.000 12546.000 3.011 0.017 0.009 No

  

5.000 vs. 4.000 12412.333 2.979 0.018 0.010 No

  

3.000 vs. 1.000 9179.333 2.203 0.059 0.013 No

  

1.000 vs. 5.000 9161.667 2.199 0.059 0.017 No

  

2.000 vs. 5.000 5795.000 1.391 0.202 0.025 No

  

1.000 vs. 2.000 3366.667 0.808 0.442 0.050 No 

 

Comparisons for factor: R 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

1.000 vs. 2.000 5439.400 1.685 0.130 0.017 No

  

1.000 vs. 3.000 4892.700 1.516 0.168 0.025 No

  

3.000 vs. 2.000 546.700 0.169 0.870 0.050 No

  

Power of performed test with alpha = 0.0500:  for T : 1.000 

Power of performed test with alpha = 0.0500:  for C : 0.997 

Power of performed test with alpha = 0.0500:  for R : 0.130 

 

Least square means for T :  

Group Mean  

1.000 4664.133  

2.000 30700.000  

Std Err of LS Mean = 1863.240 

 

Least square means for C :  

Group Mean  

1.000 22666.667  

2.000 19300.000  

3.000 31846.000  

4.000 1092.667  

5.000 13505.000  

Std Err of LS Mean = 2946.041 

 

Least square means for R :  

Group Mean  

1.000 21126.100  

2.000 15686.700  

3.000 16233.400  

Std Err of LS Mean = 2281.994 
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Three Way Analysis of Variance Monday, March 19, 2012, 14:42:25 

 

Data source: ANOVA FBL gut Plate countmedium  in ANOVA  FBL gut Plate count 

medium 

 

Balanced Design (No Interactions) 

 

Dependent Variable: Y  

Normality Test: Failed (P < 0.050) 

 

Equal Variance Test: Passed (P = 1.000) 

 

Source of Variation  DF   SS   MS    F    P 

  

T 1  143431898781.633   143431898      781.6106.291      <0.001

   

C 4    1.541E+012          385284530525.8    285.517      <0.001 

  

R 2    2612610782.       6001306305391.3          0.968          0.420

   

Residual 8 10795425067.067 1349428133.383  

  

Total 29     1.930E+0126             6549719835.197  

  

The difference in the mean values among the different levels of T are greater than 

would be expected by chance after allowing for the effects of differences in C and R.  

There is a statistically significant difference (P = <0.001).  To isolate which group(s) 

differ from the others use a multiple comparison procedure. 

 

The difference in the mean values among the different levels of C are greater than 

would be expected by chance after allowing for the effects of differences in T and R.  

There is a statistically significant difference (P = <0.001).  To isolate which group(s) 

differ from the others use a multiple comparison procedure. 

 

The difference in the mean values among the different levels of R are not great enough 

to exclude the possibility that the difference is just due to random sampling variability 

after allowing for the effects of differences in T and C.  There is not a statistically 

significant difference (P = 0.420). 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor: T 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

2.000 vs. 1.000 138290.467 10.310 <0.001 0.050 Yes 

 

Comparisons for factor: C 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

1.000 vs. 4.000 604935.000 28.523 <0.001 0.005 Yes
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1.000 vs. 5.000 598791.167 28.233 <0.001 0.006 Yes

  

1.000 vs. 3.000 522166.667 24.620 <0.001 0.006 Yes

  

1.000 vs. 2.000 357500.000 16.856 <0.001 0.007 Yes

  

2.000 vs. 4.000 247435.000 11.667 <0.001 0.009 Yes

  

2.000 vs. 5.000 241291.167 11.377 <0.001 0.010 Yes

  

2.000 vs. 3.000 164666.667 7.764 <0.001 0.013 Yes

  

3.000 vs. 4.000 82768.333 3.903 0.005 0.017 Yes

  

3.000 vs. 5.000 76624.500 3.613 0.007 0.025 Yes

  

5.000 vs. 4.000 6143.833 0.290 0.779 0.050 No 

 

Comparisons for factor: R 

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

1.000 vs. 3.000 22800.700 1.388 0.203 0.017 No

  

2.000 vs. 3.000 12810.200 0.780 0.458 0.025 No

  

1.000 vs. 2.000 9990.500 0.608 0.560 0.050 No 

 

Power of performed test with alpha = 0.0500:  for T : 1.000 

Power of performed test with alpha = 0.0500:  for C : 1.000 

Power of performed test with alpha = 0.0500:  for R : 0.0500 

 

Least square means for T :  

Group Mean  

1.000 130842.867  

2.000 269133.333  

Std Err of LS Mean = 9484.823 

 

Least square means for C :  

Group Mean  

1.000 616666.667  

2.000 259166.667  

3.000 94500.000  

4.000 11731.667  

5.000 17875.500  

Std Err of LS Mean = 14996.823 

 

Least square means for R :  

Group Mean  

1.000 210918.500  

2.000 200928.000  

3.000 188117.800  

Std Err of LS Mean = 11616.489 
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Appendix Four: Turbo mass spectrometer GC/MS 

 

 

 

      
Fig 4 1: Turbo mass spectrometer detector used in GC/MS; a) Outer view b) Inside view   

 

 

 
Fig 4 2: Capillary column (Zebran ZB-S, 30 m length x 0.25 mm 

Diameter x 0.25 μm phase thickness) 

 

a b 
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Interactions between invertebrates and  pathogenic and non-pathogenic bacteria

S. Jaber and M. Wainwright
Department of Molecular Biology and Biotechnology, Firth Court, Western Bank, University of Sheffield, S10 2TN, England

mbp008sma@sheffield.ac.uk

The risks of canine waste accumulation in urban environment and agro-ecosystem is an ever-growing issue, pathogenic bacteria such as Escherichia coli and Salmonella Spp. have been isolated from animals faeces including canine faeces. Invertebrates such as slugs and snails play an important role

in the food chain and can act as agricultural pests. (Emma et al, 2006 )observed that the Great Gray Slug, Limax maximus and the Yellow Slug, Limax flavus can carry E. coli O157 from animals manure on their bodies surface and internally as intermediate hosts vectors. Recycling is a sustainable

strategy for disposing of animals waste, and composting can be an important part of a recycling programme. The microorganisms involved oxidize carbon as an energy source for growth and ingest nitrogen for protein synthesis (Taylor 2004). Consequently, the right carbon to nitrogen ratio in composting

systems is required for efficient decomposition of wet dog manure contains 0.7% nitrogen (N),and 0.25% phosphate (P2O4) (compared to wet cattle manure, dog waste which contains 40% more nitrogen, the same amount of phosphate (Hall and Schulte 1979). Insects such as Black soldier fly larvae

have been used in bioremediation to breakdown and recycle animals faeces which lead to a reduction in bacterial number in animal’s faeces in may be used for biodiesel production and animal food-stock. This study aims to investigate the problems resulting from dog faeces accumulation in the

environment and to find scientific solutions for utilizing and converting dogs waste to a safer material which should be more compatible with environmental aspects,

Figure 5. PCR-18Sr RNA, amplification products of fungal

species detecting fungi test analyzed by electrophoresis in

agarose gel lanes represent; ( lane L); hyper ladder; (lane K5

and K6 ) dog faeces samples.

(b)(a)

Bacterial

strain

Colonies colour

on media

(Chromoagar)

Presence of bacterial species in different Samples

Dogs faeces

Slugs Lettuce

Contr

ol
Fed on faeces

Control Contaminated

In Ex In Ex

Enterococcus spp Blue Turquoise + + + + + + +

Enterobacter amnigenus Metallic blue - - + - - - -

Staphylococcus letus Metallic blue + - - + - - +

Acinetobacter sp Beige  + - - + + - -

Comamonas sp Blue - - - - + - -

Delftia sp Beige + - - + - +

Proteus sp
Beige  with brown  

Halo 
+ - - + - - -

E. coli Pink-red + - - + - - +

Salmonella sp Cream + + - - +

Samples Symbol Reaction

Earth worm (Whole body) RM1 Positive

Dog faeces

Contaminated lettuce

SR1

SR2

Positive

Positive

Control lettuce SR3 Negative

Outside  control  slug AZ1 Negative

Outside  contaminated slug AZ2 Positive

Outside control  snails AZ3 Negative

Outside contaminated snails AZ4 Negative

Inside  control slugs AZ5 Positive

Inside contaminated slugs AZ6 Positive

inside control snails AZ7 Negative

Inside contaminated snails AZ8 Positive

S/No S/ source Species  S %

JS1

JS2

JS3

JS4

JS5                                                                                                                            
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Figure 3. PCR amplification products of bacterial

species detecting bacteria test analyzed by

electrophoresis in agarose gel lanes represent; (

lane L); hyper ladder;(lane MR1) Inside slugs fed

on faeces (MB); (lane MR 2) Inside slugs fed on

faeces (C); (lane MR3) Contaminated salad

.

Figure 4. Polymerase chain reaction (PCR) detection of

Mycoplasma species in Dog faeces and lettuce samples, EZ-

PCR- detecting Mycoplasma test analyzed by electrophoresis in

2% agarose gel; the lanes represent ( lane L); 1kb hyper ladder,

( lane AZ 2); contaminated slugs (lane AZ 3); control slugs(lane

(lane AZ 4) contaminated lettuce; (lane AZ 5); control lettuce

Figure 2. PCR amplification products of four bacterial

species analyzed by electrophoresis in agarose gel lanes

represent; ( lane L); hyper ladder;(lane JS1) outside control

slugs (MB); (lane JS 2) Inside slugs fed on faeces (B); (lane

JS3) outside slugs fed on faeces( B); (lane JS 4) outside

slugs fed on faeces (C); (lane 5) Contaminated salad
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Figure1:A)Bacteria isolated from dog faeces grown on Chromagar medium .1. S. letus;

2. Enterococcus spp; 3. Proteus sp; 4.S. entreica; 5. E. coli; 6. Delftia sp; 7.

Acinetobacter sp. B) Bacteria grown on Petri-dish isolated from slugs gut following; 1.

S. letus; 2. S. enterica 3. Enterococcus spp; 4. E. coli; 5. Proteus sp; 6. Delftia sp. C)

E. coli and D) S. enterica are bacteria grown on selective media isolated from public

park and E ) Aspergillus niger and A, flavus
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The results (Figure 1.A) show seven differently coloured bacterial

colonies which were isolated from dog faeces grown on

CHROMagar media. Six of them were transmitted to the inside (gut)

of slugs fed on dog faeces (Figure 1.B); as well, Staphylococcus

lentus grow in the slime on the surface of slugs. However, in the

contaminated lettuce samples, four colonies, different from

Enterococci, were isolated. The colonies were initially identified

using colour reference as. S. lentus, Delftia sp, E. coli and S.

enterica in addition to Enterococci spp which were isolated

everywhere (Table. 1)

Further identification of bacterial species using 16S rRNA procedure

has been investigated. The isolations JS1, JS2, JS3 , JS4 and JS5

(Table. 2) were subjected to the extraction of genomic DNA (Figure

3.4) which were isolated from; outside control slugs (Metallic blue),

Inside slugs fed on faeces (Beige), outside slugs fed on faeces

(Beige), outside slugs fed on faeces( Cream) and contaminated

salad(Beige) respectively. In addition to three isolations MR1, MR2

and MR3 (Table. 2) which were isolated from the Inside of slugs

Table 3. The presence of Mycoplasma in various samples

JS1          JS2   JS3  JS4  JS5    L

L M
R

1

M
R

2

M
R

3

Table 2. Bacterial identification using gDNA-16SrRNA 

3. Summary of the canine
waste accumulation Problems

Dog faeces can carry
7 species of bacteria,
mycoplasma and
pathogenic fungi

contaminated Slugs
and snails can carry
6 species of bacteria
and mycoplasma

5 species of bacteria
and mycoplasma
can be transmitted
to lettuce by slugs

Insert BSF and FB Larvae
as a solution suggested
for bioremediation of
dog faeces
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Figure 6. Influence of BSFL on

bacterial activity on dog faeces.
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Figure 8.  The Influence of BSFL gut on 

bacterial in dogsfaeces

Figure 9.  The Influence of BFBL gut on 

bacterial in dogs faeces

Figure 7. Influence of FBL on 

bacterial activity  on dog faeces.
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Table 1. Different colours  of  bacteria species grown on CHROMagar medium  

Figure  10. The final  compound of  

untreated  dog faeces after 28 days

Figure  11. The final compound of  treatment dog faces   

a) treated with FBL; b) treated with BSFL after 28 days 

Figure12. Illustrates; a) the lettuce seeds planted in

different concentration of treated dog faeces with BSFL

No; 1, control dog faeces 2, 3 and 4 are 75, 50 and 25%

of dog faeces concentration and 5 is a control compost.

From 6 to 10 are the turnip seeds planted at the same

concentration b) the lettuce seeds planted in different

concentration of treated dog faeces with FBL No; 1,

control dog faeces 2, 3 and 4 were 75, 50 and 25% of

dog faeces and 5 is a control compost. From 6 to 10 are

the turnip seeds planted at the same concentration

The results of this study show out that seven species of bacteria were

found in dogs’ faeces. Six out these seven species were confirmed for

being carried by slugs and snails, when obligatory fed on dog’s

faeces. Slugs transmitted four bacterial species i.e.: E.coli sp,

Salmonella enterica, Staphylococcus lentus and Delftia sp to fresh

lettuce. Our study suggests a range of different solutions to convert

the dog faeces from a poisonous substance to a less offensive

material using insect larvae. Bioremediation of dog faeces was

successful in converting dog waste to modified compost for

agricultural purpose. Lipids of poetical use as befouls were also

extracted from dog faeces treated with larvae.
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Figure 13. The effect of hemolymph and whole body secretions of BSF and FB Larvae 

on the morphological of MRSA,(a-e), E. coli (f-j), Internal morphology different bacterial 

species(k-o). Z and y the effect the secretion of larvae on E. coli and MRSA  growth

Figure  14. The amount of lipids in dry weight

of 1g of  dog faeces and BSF and FB larvae 
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