
 
 

 

 

The effect of roots and ectomycorrhizal fungi on carbon cycling in forest 
soils 

 

Naomi Rachel Voke 

 

 

PhD 

 

The University of York 

Biology  

 

December 2012



2 
 

Abstract 

Though the input of labile substrates into the rhizosphere by roots is known to 

promote decomposition of both soil organic matter (SOM) and surface litter, the 

presence of ectomycorrhizal (ECM) fungi living in symbiosis with plant roots has been 

shown to coincide with decreased litter decomposition rates in some systems. In a 

series of field experiments, techniques including forest girdling and soil trenching were 

used to exclude roots and ECM fungi in order to investigate the mechanisms 

controlling litter decomposition in forest soils. 

Soil trenching was carried out in combination with litter bag incubations, and 

measurements of soil CO2 flux in a 20 year-old Pinus contorta stand. The use of mesh 

in-growth collars allowed the influence of ECM fungal hyphae on litter mass loss, and 

their contribution to soil CO2 flux, to be established separately to that of roots. A 

specialised irrigation system allowed moisture effects caused by root/ECM hyphal 

water uptake to be investigated. Neither the presence of roots, nor ECM fungi had any 

influence on litter decomposition, and soil temperature was the only factor found to 

correlate with litter mass loss. 

The exclusion of roots and ECM hyphae led to increased utilisation of a simple 

substrate, 13C-labelled glucose. Results of incubations of four substrates, varying in 

structural complexity and nitrogen (N) content, suggested that the rapid utilisation of 

simple substrates by r-strategist microorganisms might be suppressed in the presence 

of ECM fungi. Though N content appeared to have a positive influence on substrate 

decomposition, the results were not significant.  

In contrast, when forest girdling was used in a nearby Tsuga heterophylla stand to 

exclude plant-assimilate C supply to the soil, a significant reduction in the rate of litter 

mass loss was observed. 

The results presented in this thesis indicate a potentially large role of ECM fungi in 

controlling decomposition in forest soils, and the mechanisms underlying their 

influence require further investigation. 
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Chapter 1 General introduction 

It has been estimated that up to 40% of the world’s terrestrial below-ground carbon 

(C) is stored in forests, as part of soil organic matter (SOM) (Dixon et al., 1994; 

Hyvonen et al., 2007). There is uncertainty regarding whether forest soils will remain a 

sink for carbon dioxide (CO2) under future climate scenarios, mitigating the effects of 

rising atmospheric CO2 (Fitter, 2005). Consequently, factors influencing the stability 

and turnover of large carbon stores such as forest SOM should be further investigated 

(Schulze and Freibauer, 2005) and, models updated to incorporate them as they are 

elucidated (Medlyn et al., 2005). 

1.1 Carbon input to the soil  

Surface litter decomposition is a fundamental process in forest soils, and is one of the 

major routes for carbon to be incorporated into SOM (Swift et al. 1979; Chadwick et 

al., 1998; Aerts, 2006). In a 13C-labelled litter decomposition experiment in a Populus 

nigra L. plantation in Italy, Rubino et al. (2010) estimated that after 11 months, the 

litter had lost 80% of its mass, with c. 67% of the litter C incorporated into SOM. 

Around 30% of litter-derived C had been released into the atmosphere as carbon 

dioxide (CO2) respired by microorganisms, including bacteria and fungi, which are the 

most important litter decomposers in forest soils (Berg & McClaugherty, 2003). Soil 

CO2 efflux (Rs) is the main route by which C taken up by forest trees through 

photosynthesis is returned to the atmosphere (Janssens et al., 2001), and contributes 

around 60-80% of total ecosystem respiration (Kuzyakov & Larionova, 2005). Rs can be 

further subdivided, generally into heterotrophic respiration (Rh), and autotrophic 

respiration (Ra) which in the current work is defined as the CO2 flux from roots, and 

closely associated microorganisms in the rhizosphere (Subke et al., 2006). 

Litter decomposition involves physical and chemical processes, including leaching, 

fragmentation and catabolism, breaking down the substrate into its chemical 

constituents, thus ensuring nutrient supply for microbial and plant growth (Swift et al., 

1976; Aerts, 2006; Cotrufo et al., 2010). Litter is made up of a variety of substrates 

which vary in complexity, and is broken down by a succession of decomposer 

microorganisms, each adapted to a specific ‘niche’ (Frankland, 1969; 1998). The 
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composition of the microbial community changes alongside that of the litter, as the 

substrate becomes progressively more recalcitrant (McGuire & Treseder, 2010).  

During the first stage of litter decomposition, soluble, low molecular weight substrates, 

including simple sugars are lost from the litter, mostly through leaching (McClaugherty, 

1983). Following this, hemicelluloses, then cellulose, and finally lignin decomposition 

are the dominant processes (Berg & McClaugherty, 2003). The loss of the different 

organic-chemical components of litter over time from Scots pine needle litter is 

displayed in Fig. 1.1 (Berg et al., 1982). Though litter decomposition follows this 

general pattern, it is not strictly sequential, with decomposition of all the components 

occuring at the same time, to varying degrees (Berg & McClaugherty, 2003). 

Mindermann (1968) thought that it should be possible to calculate individual 

exponential decay rates for each of the litter components, the sum of which would 

represent the overall decomposition rate of the litter. Though mass loss from litter 

does follow an exponential pattern, there are interactions between the decomposition 

of the different components of litter which means that overall decomposition rates of 

complex substrates cannot merely be predicted by knowledge of the decomposition 

rates of the individual components included (Wider et al. 1982; Berg & McClaugherty, 

2003). 

The rate at which litter decomposes is controlled by three main variables; the activity 

of the decomposer organisms present, the physico-chemical environment, and the 

quality of the litter, all of which are linked (Swift et al., 1979). In hierarchical order, 

climate is generally held to be the most important controller of litter decomposition, 

as it affects the quality of the litter, and also directly influences the activity of soil 

microorganisms. This is then followed in order of importance by litter quality, and then 

the activity of the soil microorganisms themselves (Lavelle et al., 1993; Aerts, 2006).  

Both moisture and temperature can be limiting to decomposition. Soil moisture 

dictates the availability of oxygen for aerobic decomposition, and the movement of 

enzymes, dissolved organic carbon (DOC) and nutrients through the soil solution 

(Goebel et al., 2007). Temperature affects the production and catalytic ability of  

  



20 
 

 

 

 

 

 

 

 

Fig. 1.1  The mass loss of organic-chemical components of Scots pine litter over time in 
a boreal Scots pine forest. From Berg et al. (1982).  
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enzymes involved in the decomposition process (Atkin & Tjoelker, 2003). When 

moisture falls below a certain threshold, an increase in temperature will not result in 

increased decomposition, just as in cold conditions, increased moisture will not 

necessarily result in increased decomposition (Berg & McClaugherty, 2003). Therefore 

the effects of moisture and temperature on decomposition can be strongly linked. 

Aerts (1997) analysed first-year decomposition data from 44 locations spanning a 

range of climates, including temperate and tropical sites and found that though litter 

quality was associated with litter mass loss, AET (actual evapotranspiration; an index of 

temperature and moisture, used by large-scale studies to represent climate) had the 

highest association of all the variables tested. This was supported in another study of 

litter decomposition across climatic zones, by Meentemeyer (1978), who found that 

AET was considerably more important than litter quality (measured by lignin content). 

Berg (1993) also observed a high association between AET and litter mass loss over a 

range of 39 sites with differing climates, when standard litter was incubated at each of 

the sites. Berg (1993) found that when AET was combined with the average July 

temperature and average annual temperature, this could explain 70% of the mass loss 

observed, and that litter quality was more important at a local scale. However, this 

study, and others using standard litters, were criticised by Chadwick et al. (1998), who 

found that the chemistry of the underlying native litter layer affected the mass loss of 

standard Pinus sylvestris L. litter. Therefore this may have influenced the results of 

studies incubating standard litters over wide geographic scales, such as Berg et al. 

(1993) and may have given a false impression of the relative importance of climate and 

litter quality in controlling litter decomposition. 

In addition to litter decomposition, another major route for C to be introduced into the 

soil and incorporated into SOM is via plant roots. In recent years, there has been 

increased interest in the interactions between soil components on decomposition in 

forest soils with, in particular, how plants exert control of decomposition through the 

input of C and organic acids to the soil via their roots, influencing the activity and 

interactions of soil microbial communities (Kuzyakov, 2002; Subke et al., 2004; 

Kuzyakov, 2010).  
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Plants allocate up to 50% of the C fixed from the atmosphere via photosynthesis 

below-ground to roots, c. 20% of which is cycled into the soil as lysates, exudates and 

root litter (reviewed in Kuzyakov & Domanski, 2000; Chaudhry et al. 2005). The area 

surrounding, and directly influenced, by the plant root is referred to as the 

rhizosphere. and is regarded as being a ‘hotspot’ of microbial activity with high 

microbial turnover rates, due to the input of labile photoassimilate C making the area 

rich in terms of energy for soil microorganisms (Kuzyakov & Larionova, 2005; Buee et 

al., 2009). In comparison, microorganisms have been shown to be C-limited in the bulk 

soil, which consists of partially degraded, more recalcitrant SOM (Killham, 1994; Ekblad 

& Nordgren, 2002) requiring more complex enzymes for decomposition and, therefore, 

turnover rates are comparatively low (Nehls et al. 2007).  

1.1.1 Priming of SOM decomposition 

Pulses of labile C into the soil, whether as a result of the presence of plant roots (Subke 

et al. 2004; Cheng, 2009), through the leaching of simple soluble sugars from litter 

(Rasmussen et al., 2007), or through decaying microbial or animal cells have been 

observed on numerous occasions to lead to priming effects (reviewed by Kuzyakov, 

2002). Priming is defined as: an increase in the decomposition of recalcitrant SOM 

brought about by an increase in activity of soil microorganisms following the 

introduction of the labile substrates which are found in fresh organic matter (FOM) 

(Fontaine et al., 2004; Kuzyakov et al., 2007). A schematic of the priming process, 

including both positive and negative priming effects is displayed in Fig. 1.2.  

There has been knowledge of priming effects since the 1920’s, but it has only been 

possible to quantify this process following the development of sophisticated isotopic 

labelling techniques since the 1940’s, allowing more accurate separation of 

component fluxes of soil CO2 than was previously possible (Kuzyakov & Larionova, 

2005, Kuzyakov, 2010) The term ‘priming’ was coined by Bingeman et al. (1953) but 

the scale and mechanisms behind priming are still poorly understood (Fontaine et al., 

2004). Despite this, the existing evidence of priming indicates the direct control of 

SOM turnover through plant activity, and this link between soil compartments could  
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Fig 1.2  Schematic of carbon priming effects. Where roots are present in a planted soil, 
inputs of labile carbon results in either additional CO2 being released from the soil 
from increased decomposition of SOM (a positive priming effect), or a reduction in 
SOM decomposition (a negative priming effect), in comparison to the CO2 efflux 
measured in the absence of roots. Taken from Kuzyakov, (2002). 
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be a factor which could reduce the ability of forests to act as carbon sinks in the future 

(Subke et al., 2004).  

Priming effects associated with the input of labile C to the soil were observed by 

Nottingham et al. (2009) following the addition of sucrose, which over their 

experiment released an additional 3.3% of the SOM C pool. The initial pulse of primed 

CO2 they observed was also described in previous substrate addition studies, and 

could be an ‘apparent priming effect’ attributed to the replacement of C in microbial 

biomass, and not due to SOM decomposition (Dalenberg & Jager, 1981). Following the 

initial pulse of primed C, Nottingham et al. (2009) observed a pulse of substrate-

derived CO2 followed by a smaller, more sustained flux of primed CO2, a ‘real priming 

effect’. This same pattern was observed by Hamer & Marschner (2005), following the 

addition of 14C-labelled fructose, alanine, oxalic acid and catechol to different horizons 

of two forest soils, and one arable soil. They observed particularly strong priming of 

SOM following the addition of 14C-labelled glucose and alanine, with almost double the 

mineralisation of SOM compared to control soils. Catechol additions caused negative 

priming effects, reducing SOM decomposition by 43% in one of the soils, and the 

addition of oxalic acid caused both positive and negative priming effects. The results of 

Hamer & Marschner (2005) suggest that whether a positive or negative priming effect 

is induced depends on the substrate added and the soil type. Fontaine et al. (2007) 

introduced plant derived-C into sub-layers of soil, stimulating the decomposition of c. 

2000 year old SOM. This demonstrated how the addition of labile fresh organic matter 

(FOM) has the potential to release C from previously stable SOM. However, the 

approach of Fontaine et al. (2007) could be criticised on the basis that they must also 

have added oxygen as well, which could have had the same promoting influence on 

SOM decomposition in deep anaerobic peat layers. 

Priming effects have also been observed following litter addition. When Crow et al. 

(2009) conducted litter decomposition studies where the amount of litter input was 

doubled, they observed a greater release of C from the soil than would be predicted 

from the amount of additional litter C added. Rasmussen et al. (2007) studied the 

decomposition of 13C-labelled ponderosa pine litter, and observed priming of SOM 

within the first 20 days of a 90 day study, the timing of which suggested that the 
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priming of SOM decomposition coincided with the release of the simple soluble 

components of litter.  

1.1.2 Suggested mechanisms for the priming of SOM 

Kuzyakov (2002) proposed a series of mechanisms by which the priming of SOM could 

be explained, the most important of which were deemed to be microbial activation 

following the introduction of labile substrates to the soil, and preferential substrate 

utilisation. Microbial activation is where the input of labile substrates causes increased 

microbial growth/turnover, leading to the decomposition of the added substrate 

alongside co-metabolism of SOM by the soil microorganisms. Cheng (2009) observed 

that SOM decomposition was increased by up to 380% in the presence of roots, in 

comparison to SOM decomposition in a control soil, though this was dependent on the 

plant species studied. They measured total microbial biomass, and found it was the 

same between treatments, leading them to the conclusion that the priming effects 

they observed were caused by increased activity and microbial turnover where roots 

were present, rather than an increase in the number of decomposer microorganisms in 

the system. De Nobilli et al. (2001) found that the addition of trace amounts of 

glucose, amino acids and root exudates to soil caused 2-5 times more C to be released 

as CO2 than was added as part of the ‘trigger’ solution, and that the microbial 

community could be re-activated with repeat additions.  

The alternative mechanism to explain priming offered by Kuzyakov (2002), preferential 

substrate utilisation, is where the addition of a labile substrate causes the microbial 

community to switch to the utilisation of that substrate, rather than existing more 

recalcitrant substrates, leading to a negative priming effect. This could explain the 

results of Chigineva et al. (2009) who found decreased litter decomposition following 

the addition of sucrose. This was coupled with a shift in the microbial community to 

microorganisms more suited to decomposing simple substrates (r-strategists), at the 

expense of K-strategist microorganisms, characterised by slow growth rates, and the 

ability to produce enzymes capable of degrading more complex substrates such as 

plant litter (Berg & McClaugherty, 2003, Fierer et al., 2007). 
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It was suggested in a conceptual model by Fontaine et al. (2003; 2004) that priming 

effects are dependent on competition between r- and K-strategist microorganisms. If r-

strategist microorganisms are able to respond more rapidly to the input of labile 

substrates, and prevent access to the K-strategists, with their greater decomposer 

abilities, then there would not be expected to be a priming effect of labile C on SOM 

decomposition (Fontaine et al., 2003; 2004). However, Fontaine et al., (2004) suggest 

that if just a small proportion of the labile substrate was intercepted and utilised by K-

strategists, they could become dominant upon the exhaustion of the labile substrate, 

and potentially decompose r-strategist biomass. The theory proposed by Fontaine et 

al. (2003; 2004) was supported by the findings of Wu et al. (2003) who observed 

greater priming of SOM following the application of ryegrass, a complex substrate, 

than following the addition of a simple substrate, 13C-labelled glucose. The application 

of the ryegrass would be expected to increase the activity of K-strategist 

microorganisms to a greater extent than that of r-strategists, and therefore a greater 

amount of additional complex SOM decomposition was observed.  

1.1.3 The priming of litter decomposition and the ‘Gadgil effect’ 

In a girdling experiment, Subke et al. (2004) observed the priming of both SOM and 

litter decomposition following the input of labile C, cycled through roots and 

associated rhizosphere microorganisms in a Norway spruce plantation in Germany. 

There was also evidence of positive feedback, with the addition of the litter to the soil 

increasing rhizosphere activity, which in turn stimulated litter decomposition. This 

positive relationship between an intact rhizosphere and litter decomposition is the 

opposite to that found by Gadgil & Gadgil (1971; 1975). Using trenching, they found 

that litter decomposition was reduced in the presence of roots and associated 

ectomycorrhizal (ECM) fungi.  Studies since have also observed a negative influence of 

roots on litter decomposition (Faber & Verhoef, 1991; Chuyong et al., 2002; Koide & 

Wu, 2003, Henkel, 2003). Gadgil & Gadgil (1971; 1975) suggested that the decrease in 

litter decomposition they observed was a result of the suppression of saprotrophic 

decomposers by ECM fungi.  
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1.2 Ectomycorrhizal (ECM) fungi 

In most temperate and boreal pine forest systems the majority of the input of plant 

assimilates to soil is utilised by ectomycorrhizal (ECM) fungi living in symbiosis with 

roots (Högberg et al., 2001; Koide et al., 2011), and mycorrhizal networks  can 

effectively replace fine roots in these systems (Read et al., 2004). The term 

‘mycorrhiza’ has been in use since 1885 to describe modifications of the root 

structures of trees (Zak, 1964; Finlay, 2008), and describes a mutualistic symbiosis 

between a fungus and a plant root (Smith & Read, 1998). Ectomycorrhizal fungi are 

generally basiodiomycetes or ascomycetes, and globally as many as 10,000 fungal, and 

8000 plant species could be involved in ectomycorrhizal associations, which is 

characterised by a mantle or sheath developing round fine roots, which are suppressed 

(Finlay, 2008; Nehls, 2008).  

ECM fungi provide their host plant with nutrients such as N and P as well as potentially 

improving water absorption, and protecting the roots against pathogens (Chakravarty 

& Hwang, 1991; Conn & Dighton, 2000; Lindahl et al., 2002; Kipfer et al., 2011). In 

exchange, they are able to benefit from their close association with plant roots, and 

intercept an un-rivalled supply of energy-rich substrates allocated to the roots by the 

plant, thus the nutrient limitations of both the plant and the fungus are overcome 

through the association (Nehls, 2007; 2008). There is also evidence of nutrient 

exchange between plants connected by the same mycelial network (Leake et al., 

2004). 

ECM fungi are capable of forming extensive mycelial networks in the soil, with the 

mycelia making up 80% of the fungal biomass of certain species (Wallander et al., 

2001; Rillig & Mummey, 2006). The production of mycelia allows a maximal surface 

area for nutrient exchange, and the supply of labile C from their host enables ECM 

fungi to proliferate and decompose or scavenge nutrients from heterogenous locations 

in the soil (Cairney, 2005; Drigo et al., 2012). It also potentially gives them an 

advantage over other, more carbon limited decomposer microorganisms in the soil, 

including saprotrophic fungi, as was suggested by Gadgil & Gadgil (1971; 1975). The 

outcome of competitive interactions between the mycelia of different species of 
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fungus has been shown to be related to the size of the resource from which each of 

the combatants has grown (Lindahl et al., 1999; Cairney, 2005).  

Free-living saprotrophic fungi are considered to be better decomposers of recalcitrant 

substrates in the soil than ECM fungi (Colpeart & van Tichelen, 1996), therefore, it has 

been largely assumed that ECM fungi are reliant on the decomposer activities of the 

saprotrophs (Lindall et al., 1999). However, the ability of ECM fungi to decompose 

complex N containing substrates is greater than was previously thought (Bending & 

Read, 1995; Wu, 2011), though different species have been shown to have different 

decomposer abilities (Entry et al., 1991; Zeller et al., 2007). It has been suggested that 

if ECM fungi are able to use the advantage of their labile C supply and selectively take 

up N from decomposing substrates, they could suppress the activity of the more 

effective saprotrophic decomposers, and reduce litter decomposition (Abuzinadah et 

al., 1986; Bending, 2003).  

An estimated 10-50% of the carbon fixed by trees is received from the roots by ECM 

fungi where they are present, which they then distribute throughout their mycelial 

networks (Smith & Read, 1998). This large loss of carbon from the host plant could be 

considered as wasteful (Killham, 1994), or evidence of parasitism. However, there is 

evidence that plants have developed mechanisms to prevent the cost of the symbiosis 

from being too high (Nehls et al., 2008), and it is the plant that is in control of the 

mycorrhizal symbiosis through its allocation of plant C (Fitter et al., 1998).  

When the supply of plant-assimilates is reduced, ECM fungi can become very carbon 

limited, which can lead to problems with toxic accumulation of ammonium that is no 

longer assimilated (Wallander et al., 2011). Vallack et al. (2012) observed that 

following fertilisation of the soil with N in a boreal forest, the contribution of CO2 

efflux from ECM fungi to total soil CO2 efflux decreased, while the component flux 

from soil heterotrophs increased. Therefore the tree would appear to be allocating less 

C to its roots when inorganic N is not limiting (Vogt et al., 1993). Through the use of 

isotopic pulse labelling and hyphal-ingrowth collars, Vallack et al. (2012) were able, for 

the first time, to measure how this influences the activity of the fungal partner, directly 

in the field. However, a three-year study by Wallander et al. (2011) found that whether 
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N fertilisation impacts the fungus depends on the effect it has on the growth of the 

tree. They studied ECM hyphal growth using mesh in-growth bags at two Norway 

spruce stands in Sweden, alongside fertilisation regimes. They found that where tree 

growth was stimulated by N fertilisation, ECM growth was not affected, but where tree 

growth was less stimulated by fertilisation with N, there was a decrease in ECM 

growth. In a meta-analysis of numerous independent field studies, Treseder (2004) 

found that on average, there was a 15% decrease in mycorrhizal abundance alongside 

N deposition, but that large variation between studies in terms of N responses means 

that predictability of microbial biomass according to the level of N deposition is low.  

Kuzyakov (2002; 2010) proposed that the ECM mycorrhizal symbiosis is an evolved 

strategy by plants and involved in SOM priming. He suggested that when the plant 

provides labile C in the rhizosphere, microbial activation takes place,  which results in 

the breakdown of substrates, including SOM by the fungal partner in order to gain N. 

In the process, N becomes available to the plant host. Cheng et al. (2008) observed 

that the increased turnover of microbial populations following labile C input results in 

more extracellular enzymes being produced, making a greater amount of nutrients 

available in solution for plant uptake, and if plant roots are longer lived than the fungi, 

then the plant would benefit over the long-term. 

One individual ECM fungus, of the species Armillaria bulbosa, is reportedly one of the 

largest and oldest organisms in the world, spanning 15 hectares and weighing over 

10,000 Kg (Smith et al., 1992). In boreal forest systems, ECM mycelia has been 

estimated to make up 30% of the total microbial biomass (Wallander et al., 2001), and 

they have been shown to contribute up to 50% of soil respiration (Högberg et al., 

2001). ECM fungi are potentially huge players in forest soil carbon cycling, and if they 

do suppress the activity of saprotrophic microorganisms, as was suggested by Gadgil & 

Gadgil (1971; 1975), as well as being an important sink for photoassimilates, they could 

be contributing to increased C storage in SOM. Despite this, it is only relatively recently 

that attempts have been made to assess the turnover of ECM fungal mycelium in 

forest soils (Wallander et al., 2012), and their input has largely been ignored in carbon 

modelling (Lindahl et al., 2002; Heinemeyer et al., 2007). Further work is required in 
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order to establish the relative influence of plant assimilate-derived C, and the influence 

of ECM fungi on litter decomposition in forest soils. 

1.3 Techniques: trenching and girdling 

In order to separate out the effects of the input of plant assimilates, or the presence of 

roots and ECM fungal mycelia in order to measure their influence on litter 

decomposition rates and their contribution to total soil CO2 efflux, it is necessary to 

exclude them from areas of the soil. Two methods that have been used successfully to 

achieve this in previous research are “trenching” (Gadgil & Gadgil, 1971; 1975; 

Heinemeyer et al., 2007; 2012; Comstedt et al., 2011, Vallack et al., 2012) and girdling 

(Högberg et al., 2001; Subke et al., 2004; Wu et al., 2011). 

In the current work, the term ‘trenching’ will be used to refer to all situations where 

roots and mycorrhizal hyphae have been severed by cutting the soil to a depth below 

where the majority of roots and mycorrhizal hyphae are known to be concentrated. 

Roots and mycorrhizal hyphae are then excluded from an area of soil, either by 

repeated cutting, the establishment of an air gap, or through a physical barrier such as 

plastic or metal. By severing roots and ECM hyphae, the input of plant-assimilate C 

through these routes is cut off (reviewed in Subke et al., 2006). Trenching has the 

disadvantage that it is associated with an increase in the amount of decaying root and 

fungal material in the soil. It can also result in soil moisture differences between 

treatments, as there is no longer root water uptake (Saiz et al., 2006; Comstedt et al., 

2011). In order to separate out ECM hyphae from roots, Heinemeyer et al. (2007) 

trenched the soil using sections of PVC pipe. These were hammered into the soil, so 

that four mesh-filled windows were positioned just below the soil surface, where most 

of the ECM hyphae had been observed to proliferate. The use of 41 µm mesh in the 

windows of the collars allowed ECM hyphae to grow into the trenched soil, whilst 

excluding roots. The use of 1 µm mesh in collar windows excluded both roots and ECM 

hyphae. They were able to take measurements of soil CO2 efflux using an infra-red gas 

analyser (IRGA) with a survey chamber, which could be positioned directly on top of 

the PVC soil collars. By comparing the CO2 efflux between the exclusion collars with 

CO2 efflux measured from the total soil, they were able to separate out, the relative 
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contributions of roots (Rr), ECM hyphae (Rm) and background soil heterotrophs (Rh), to 

total soil CO2 efflux (Rs), for the first time in the field. 

Forest girdling is a sophisticated technique which prevents the flow of plant assimilate-

derived C reaching the roots of the tree by severing the phloem. A comparison 

between measurements of soil CO2 efflux from girdled and non-girdled plots can be 

used to separate out autotrophic (Ra) and heterotrophic (Rh) respiration. Following 

girdling, root and rhizosphere respiration decrease, as the supply of labile C from 

photosynthesis has been removed and any stored carbohydrates in roots are quickly 

depleted, therefore, any CO2 evolved from these plots can be used as an estimate of 

Rh (Högberg et al., 2001; Bhupinderpal-Singh et al., 2003). Girdling also removes the 

labile C supply to ECM fungi present in the system, effectively taking away any 

competitive advantage conferred on them by their association with plant roots (Nehls, 

2008).  As girdling leaves the xylem intact, root water uptake is maintained, which is an 

advantage of girdling as opposed to trenching, as it avoids the confounding influence 

of soil moisture differences (Subke et al., 2004). 

1.4 Thesis aims and structure 

The aims of the current thesis were to investigate the factors controlling litter 

decomposition and soil CO2 efflux in a temperate coniferous forest soil. An attempt 

was made to investigate the seemingly contradictory results in the literature 

surrounding the influence of ECM roots on litter decomposition, alongside 

consideration of the controls on decomposition by environmental variables including 

soil moisture and temperature. The following questions were addressed: 

1. Is there an effect of roots and ECM fungi on litter decomposition rates? 

2. Can any differences in litter decomposition between trenched and control soils, 

as observed by Gadgil & Gadgil (1971; 1975), be actually explained by soil 

moisture differences or does competition between mycorrhizal fungi and other 

soil microorganisms retard litter decomposition rates? 

3. What is the effect of roots and ECM fungi on soil CO2 efflux (Rs)? How are root 

respiration (Rr), mycorrhizal hyphal respiration (Rm) and heterotrophic 
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respiration (Rh) influenced differently by controlling factors such as 

temperature and soil moisture? 

4. How important are ECM fungi in terms of their contribution to soil CO2 efflux in 

a temperate coniferous forest? 

5. Does the presence of mycorrhizal systems influence the decomposition of 

simple and complex substrates to the same extent? 

Questions 1 & 2 are addressed in Chapter 2 of this thesis, which contains the 

results of a litter bag experiment, in combination with soil trenching used to 

selectively exclude roots and ECM hyphae. A specially developed irrigation system 

was used to control soil moisture between trenched and control soils. These 

questions are also addressed in Chapter 4, (now published in Subke et al., 2011), 

and report the results of a litter bag experiment carried out in conjunction with 

forest girdling. Questions 3 & 4 are addressed in Chapter 3 of this thesis, which 

includes the results of a series of measurements of soil CO2 efflux carried out in 

conjunction with the litter bag experiment described in Chapter 2.  Question 5 is 

addressed in Chapter 5 of this thesis, where the results of two incubations of 13C-

labelled substrates of varying structural complexity and N content are presented.  
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Chapter 2 Litter decomposition and the ‘Gadgil effect’ 

2.1  Introduction 

Studies have demonstrated a positive priming of soil organic matter (SOM) 

decomposition, following the addition of labile substrates into the soil (Kuzyakov, 

2002; Fontaine et al., 2004). Subke et al. (2004) showed that priming of SOM 

decomposition can be accompanied by accelerated litter decomposition. Both SOM 

and litter decomposition are promoted by the presence of an intact rhizosphere where 

easily utilizable plant carbon derived from photosynthesis enters the soil through 

roots, and  any associated soil microorganisms, including ectomycorrhizal (ECM) fungi 

(Subke et al., 2004; 2006).  

The results of Subke et al. (2004) support those of Entry et al. (1991) who found 

increased litter decomposition where mycelial mats of the ECM fungus Hysterangium 

setchellii (Fischer) was present in a Douglas Fir stand, compared to adjacent 

experimental plots where there were no mycelial mats. Zhu & Ehrenfeld (1996) found 

that the presence of Pinus rigida (Mill.) roots stimulated litter decomposition by 18.7% 

over the course of a 29 month study in the New Jersey Pinelands. Dighton et al. (1987) 

used a mesocosm system to study decomposition of hide powder, chitin and cotton 

and found that the decomposition of all three substrates was enhanced where roots 

and mycorrhizas were present. 

However, this evidence conflicts strongly with the classic studies of Gadgil & Gadgil 

(1971; 1975) which demonstrated the exact opposite conclusion, or so called ‘Gadgil 

effect’ i.e. a negative influence of the presence of an intact micorrhizosphere on litter 

decomposition.  Gadgil & Gadgil (1971; 1975) conducted two field and one laboratory 

experiment, where they demonstrated decreased litter decomposition in the presence 

of Pinus radiata (L.) roots and their associated microorganisms, including ECM fungi. In 

both field experiments, the soil was cut with a spade (to a depth of 30 cm) to exclude 

both roots and ECM hyphae from 1 x 1 m plots in a Pinus radiata stand in the 

Kaingaroa State Forest, New Zealand. The second field experiment differed from the 

first by including a greater number of litter harvest days, and a more detailed analysis 
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of soil and litter samples to see how the chemical, physical, and microbial 

characteristics of the soil and the litter affected litter accumulation. Methodology may 

play a key role in explaining the apparent contradiction between the results of Gadgil 

& Gadgil (1971; 1975) and those of more recent studies (i.e. Subke et al., 2004). 

Both field experiments conducted by Gadgil & Gadgil (1971; 1975) demonstrated 

increased amounts of litter accumulated on the soil surface in the presence of ECM 

roots in comparison to where roots had been excluded. The lowest mass of litter 

recorded at 3 and 6 months were from plots that had been cut, dug over, and roots 

removed. The lowest mass of litter accumulated on the surface were recorded in the 

treatment where plots were cut and dug, but the roots were not removed.  The results 

of their laboratory experiment (Gadgil & Gadgil, 1975) also demonstrated decreased 

litter decomposition in the presence of mycorrhizal roots when compared to non-

mycorrhizal roots. 

The ‘Gadgil effect’ has been observed in subsequent litter decomposition studies. 

Chuyong et al. (2002) found that litter decomposed faster in plots where there was a 

low abundance of ECM trees, than it did with a high abundance of ECM trees.  Faber & 

Verhoef (1991) conducted a trenching experiment, where roots were allowed to grow 

back into some experimental plots, but were permanently excluded from others in a 

33 year old Pinus nigra (Arnold) plantation in the Netherlands.  Where ECM roots were 

present, they observed a 2% decrease in litter decomposition rate. Fisher & Gosz 

(1986) conducted a cellulose decomposition experiment and found decreased 

decomposition of this substrate in the presence of roots in a mixed conifer forest in 

New Mexico. Genney et al. (2004) also found that decomposition of fluorene (a 

polycyclic aromatic hydrocarbon), was slower in the presence of Pinus sylvestris (L.) 

roots and their associated ECM fungi in a microcosm experiment.   

So the influence of the presence of roots and associated ECM fungi on litter 

decomposition is complicated, with evidence for both positive and negative 

interactions. In addition, several studies have demonstrated no effect at all. Staaf 

(1988) found that the presence of ECM roots had no effect on litter decomposition 

during a trenching experiment in two forest sites in southern Sweden, one with mor 
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soil and the other with mull. Cuenca et al. (1983) selectively excluded vesicular-

arbuscular mycorrhizal roots from litter bags, by periodically lifting the bags from the 

soil surface in a coffee plantation. They found that the presence of roots tended to 

positively influence the rate of litter mass loss, but this was only significant on one 

occasion. Chigineva et al. (2009) studied litter decomposition in the presence and 

absence of ECM roots with a sucrose addition treatment. They found a slight increase 

in decomposition in the presence of ECM roots one year, and a slight decrease the 

next year. A recent litter decomposition experiment in combination with girdling was 

carried out in 2 year old and 24 year old Eucalyptus plantations in Guangdong 

Province, southern China and also showed no effect of the presence of an intact 

rhizosphere on litter mass loss (Wu et al., 2011). 

In the tropical forests of Guyana, Henkel (2003) reported that the depth of litter was 

higher in two plots where the ectomycorrhizal tree Dicymbe corymbosa (Spruce ex 

Benth) had achieved monodominance, than in adjacent mixed forest plots. Mayor & 

Henkel (2006) conducted an experiment where, in the same location, trenching took 

place in the monodominant stand alongside a litter bag experiment. They found no 

difference in the decomposition rate of mixed or D.corymbosa litter in the 

monodominant stand between trenched and un-trenched plots. Though the D. 

corymbosa litter decomposed more slowly than the mixed species litter when 

incubated in the mixed forest, there was no difference in the decomposition of the 

mixed litter between the adjacent monodominant, and mixed forest plots. It was 

suggested that there may have been more specialised saprotrophic decomposers 

present in the D. corymbosa stand which meant the native litter was decomposed 

more effectively.   

Gadgil & Gadgil (1971; 1975) suggested that the decrease in litter decomposition they 

observed in the presence of ECM roots could be explained by ECM fungi suppressing 

the activity of saprotrophic microorganisms, which are known to have a greater ability 

to decompose complex substrates (Colpaert & Van Tichelen, 1996; Hobbie et al., 

1999); this suppression would then lead to a decrease in the rate of litter 

decomposition in the non-trenched plots. Saprotrophic fungi rely on decaying organic 

matter as their sole energy source, with ECM fungi having an advantage by receiving 
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an easily utilisable energy source through their association with the plant root. A 

variety of explanations for the suppression of saprotrophic decomposers by ECM fungi 

have been proposed. They include: the creation of a physical barrier by proliferating 

and occupying space (Marx, 1969); the ability of ECM fungi to make their surroundings 

more acidic and therefore create conditions unsuitable for other soil microorganisms 

(Rasanayagam & Jeffries, 1992; Schelkle & Peterson, 1996), the secretion of 

antimicrobial compounds (Garrido et al., 1982; Duchesne et al., 1988), or through 

resource competition, taking up and immobilising key nutrients such as nitrogen and 

phosphorus so they are unavailable for use by other soil microorganisms (Stark, 1972; 

Abuzinadah et al., 1986; Bending & Read, 1995).  So there is evidence to support the 

observation of the suppression of saprotrophic decomposers by ECM fungi, via a 

variety of potential mechanisms, causing a decrease in litter decomposition.  

However, there is an alternative explanation which could explain the results of Gadgil 

& Gadgil (1971; 1975). Koide & Wu (2003) studied the decomposition of litter and F-

layer material in a Pinus resinosa (Aiton) plantation, relating the number of ECM root 

tips present in “envelopes” containing litter to the mass loss of the litter, and also the 

gravimetric moisture content of the litter in each bag. They found that high densities of 

ECM roots were associated with lower litter decomposition rates, and also with 

decreased litter moisture content. This work of Koide & Wu (2003) suggests that the 

effect of the presence of ECM roots on water availability could offer an explanation for 

the ‘Gadgil effect’.   

This alternative explanation is consistent with criticisms of the field experiments of 

Gadgil & Gadgil (1971; 1975), that there was no control for water uptake by ECM roots. 

Gadgil & Gadgil (1971; 1975) noted higher soil moistures in the trenched plots when 

compared to control plots, and they also acknowledged that more extreme differences 

between treatments in terms of soil moisture could have occurred, undetected 

between the sampling dates. It is conceivable that differences in litter decomposition 

by Gadgil & Gadgil (1971; 1975) were caused simply by soil moisture differences. The 

experiment carried out here was designed specifically to investigate this potential 

moisture explanation for the ‘Gadgil effect’. 
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Litter decomposition rates have been studied  using a number of approaches such as 

creating fibre glass mesh layers, where litter ‘sandwiches’ of litter cohorts are 

separated (Anderson, 1973; Singh & Gupta, 1977; Binkley, 2002). Others have 

measured carbon loss from litter via respiration (Anderson & Ineson, 1982) or used 

isotopic tracers including 14C, and more recently, 13C (Hobbie et al., 2004; Hanson et 

al., 2005). Couteaux et al. (2001) used 13C-labelled wheat straw to study 

decomposition in soils along a climatic transect, giving an estimate of the level of 

biological activity in the different soils. Isotopic measurements have the advantage 

that they avoid the disturbance involved with confining litter, though uniform labelling 

of isotopically labelled substrates can be difficult and expensive (Bromand et al., 2001).  

Non-invasive methods have the advantage of not interfering with any of the processes 

leading to litter breakdown, including leaching, catabolism and fragmentation, and 

therefore are considered to give the best representation of litter mean residence time 

(MRT) in the field, when compared to other methods (Swift et al., 1979; Cotrufo et al., 

2010).  

The majority of studies of litter decomposition in the field confine litter by tethering 

leaves or use litter decomposition bags. The litter bag technique, where litter is 

contained in small bags of inert material, is most commonly used as it is a cheap and 

relatively simple method to use, providing an estimate of leaching and microbial 

catabolism of litter components (see Cotrufo et al., 2010). Accurate measurements of 

mass loss can be obtained with the contents of the bag being weighed prior to, and 

after incubation, with no confounding of results created by litter blown in from outside 

experimental plots. It is acknowledged that mass loss is often slower from litter bags 

than from tethered or unconfined litter, as less fragmentation takes place (Bocock & 

Gilbert, 1957). Also a consideration of mesh size is important when using litter bags, as 

the exclusion of soil animals can result in an underestimate of decomposition 

(Anderson, 1973).  All the methods available for measuring litter decomposition in the 

field have drawbacks, and care should be taken when comparing studies where 

different techniques have been used (Aerts, 1997).  

For the current experiment, a mesh exclusion collar trenching technique outlined in 

section 1.3 (Heinemeyer et al., 2007) was used to selectively exclude roots and / or 
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ECM hyphae. It was decided that litter bags incubated inside the mesh collars would 

provide the most sensible solution for confining the decomposing litter, and enable an 

accurate comparison of litter mass loss between the various treatments. This 

experimental design also allowed the influence of the presence of an intact 

rhizosphere, and the input of simple carbon into the soil, cycled through roots and 

associated microorganisms to be investigated, and also any potential impacts of soil 

moisture on litter decomposition to be controlled. Control for water uptake by roots 

and mycorrhizal hyphae in the top 6 cm of the soil, was achieved using a specially 

developed automated feedback irrigation system. The following hypotheses were 

tested: 

1 Under conditions of similar soil moisture, there is a slower rate of litter 

decomposition in treatments when roots and any associated microorganisms have 

been excluded. 

2 In treatments where soil moisture is allowed to decrease due to root and 

mycorrhizal presence, there is a slower rate of litter decomposition, compared to 

treatments where water taken up by roots and mycorrhizal fungi has been replaced.  
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2.2 Materials and methods 

2.2.1 Site description 

The study site was a 20 year old stand of Lodgepole pine (Pinus contorta, Douglas) with 

occasional silver birch (Betula pendula, Roth.), situated approximately 8 km south-east 

of York, United Kingdom (53º54′34′′N, 0º59′48′′W; c. 20 m asl) with little understory 

vegetation. The soil was a well-draining sandy gley soil, mean annual air temperature 

was 9.0 ˚C and mean annual precipitation was c. 627 mm (Subke et al., 2011). For a 

fuller site description, see Heinemeyer et al. (2007).  

2.2.2 Experimental treatment 

PVC tubing (20 cm diameter, Plumb Centre, Wolseley, UK) was cut to 30 cm lengths to 

create 16 “deep” soil collars. Four windows were cut (width 6 cm, height 4 cm, 

situated 5 cm from the top of the collar and evenly spaced) and covered with one of 

two meshes (Normesh Ltd., Oldham, UK) of different gauge, to create two treatments 

(following the design of Heinemeyer et al., 2007). The windows were positioned 

directly below the soil surface. Treatment S (soil only) was created using 1 µm mesh, 

and excluded roots and ECM hyphae. Treatment MS (mycorrhizal hyphae + soil) was 

created using 41 µm mesh, excluding roots but permitting ECM hyphal access (see Fig. 

2.1). 

Thirty shallow collars (20 cm diameter) were randomly assigned positions in the Pinus 

contorta stand on 15th April 2008, with potential collar locations being rejected if the 

distance from the nearest tree was less than 0.5 m or greater than 2 m, collars were 

spaced at least 1 m apart. Measurements of background CO2 efflux were conducted 

using a Li-8100 infrared gas analyser (IRGA) with a 20 cm survey chamber (Li-Cor 

Bioscience, Lincoln, NE, USA).  

Based on these pre-existing CO2 fluxes the locations were ranked, and this ranking 

used to assign each collar to a specific block, in a randomised block design.  Collars 

showing outlying CO2 efflux were excluded from the experiment. Replacing the 

shallow collars used for the background survey of soil CO2 efflux, 16 deep collars were  
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Fig. 2.1  Diagram adapted from Heinemeyer et al. (2007) showing the collar depth (cm) 
of the three PVC collar types used to create the three treatments: RMS, MS and S. 
Treatment RMS consisted of shallow surface collars where no soil components were 
excluded. Treatments MS and S involved trenching with 30 cm deep collars hammered 
into the soil to a depth of 25 cm ± 2 cm. Mesh, 41 µm, in the windows of treatment MS 
allowed in-growth of fungal hyphae, but excluded roots. Mesh, 1 µm, in the windows 
of treatment S excluded both roots and fungal hyphae.   
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hammered 25 cm ± 2 cm into the soil in the Pinus contorta stand in July 2008, cutting 

through the main concentration of roots. At the same time, 8 surface collars (20 cm 

diameter, Plumb Centre, Wolseley, UK), remained to create treatment RMS (roots + 

mycorrhizas + soil), where none of the soil components were excluded (see Fig. 2.1). 

Each treatment was represented in each block, with a random assignment of the 

treatment collars within the block. 

In order to reduce variability in soil moisture over the course of the experiment, 

above-ground incident throughfall was excluded from all collars using PVC shields. 

These were constructed by cutting transparent corrugated PVC sheeting (Corulux, Ariel 

Plastics, Stavely, UK) into rectangles measuring 30 cm x 40 cm which were suspended 

at ~25 cm above the collars with four bamboo canes, and secured using cable ties (see 

Plate 2.1).  Incident throughfall was replaced once a week with the area-weighted 

average volume of throughfall which had fallen during the previous week, measured 

using nine randomly placed throughfall collectors. The throughfall collectors were 

made from 6 L plastic bottles, each with a 20 cm funnel fitted with a removable nylon 

mesh filter to remove solid debris. The replacement volume of throughfall per collar 

was calculated and supplemented, when necessary, with additional throughfall 

collected in a large centralised water butt with incoming drainage from two large 

corrugated PVC sheets. No watering took place between 4th December 2009 and 19th 

January 2010 as there was heavy snowfall during this period and the contents of the 

centralised water butt were frozen. 

The PVC shields also prevented the ingress of incident litter, the dry mass of which was 

determined and replaced by the mean dry mass of litter fall calculated for the area (c. 

18.3 g m-2), some of which was added as part of the litter bag experiments, and also on 

one other occasion (see Section 2.2.4). 

2.2.3 Automated irrigation system 

An additional two treatments were also established in order to determine any putative 

impacts of the various mesh treatments caused by changes in moisture status. This 

involved maintaining the same moisture content in the upper soil level in these 

additional treatments, targeted to the average measured upper soil level moisture  
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Plate 2.1  Photograph showing PVC shields suspended above soil collars in the Pinus 
contorta stand at Wheldrake Forest prior to the installation of the automated irrigation 
system and litter bag incubations. 
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content for treatment S. This was achieved through the addition of deionised water by 

a specially developed automated irrigation system (see Fig. 2.2), in addition to the 

weekly watering with throughfall described in Section 2.2.2. These additional 

treatment collars (four replicates of each treatment) are referred to as RMS(W), and 

MS(W). In addition, a further treatment was created to act as a control for adding 

deionised water. Four replicates of the S collars received the same deionised water 

input as treatment RMS(W), and are referred to as S(W) (see Table 2.1) For the 

purposes of distinguishing collars in terms of whether they received additional input 

from the automated irrigation system, the collars that did (RMS(W), MS(W) and S(W)) 

are referred to on occasion as the ‘corrected collars’ and those that did not (RMS, MS 

and S) are referred to on occasion as the ‘non-corrected collars’). 

The irrigation system was controlled using a data logger (CR1000, Campbell Scientific 

Ltd., Loughborough, UK), which compared average surface soil moisture readings (top 

6 cm of the soil) from three SM200 soil moisture sensors (Delta-T Devices Ltd., 

Cambridge, UK), in each of the treatments [RMS(W), MS(W), S); (nine in total); (see Fig. 

2.2)] every five minutes.  When the average soil moisture from the three soil moisture 

sensors in treatments RMS(W), or MS(W) fell below the average from treatment S, 

three submerged water garden pumps (Blagdon A4000 amphibious garden water 

pump) supplied fixed aliquots (3.2 ± 5% ml per minute) of deionised water to each of 

the RMS(W) and MS(W) collars over a three minute period.  

Water was distributed to each of the collars via a 12 m length of tubing (1 x 3 mm, 

Silicone tubing, VWR, Lutterworth, UK), with four tubes from each of the three pumps 

attached to a four-way manifold. The opposite end of each 12 m length of tubing was 

knotted and regular perforations made along 40 cm from the knot. Previous testing 

had determined that arranging the tube in a spiral formation in the collar allowed an 

even spread of water across the soil surface. The data logger was programmed so that 

whenever the RMS(W) pump was activated, the S(W) pump was also switched on (see 

Fig. 2.2). A copy of the Campbell program used to control the automated watering 

feedback is given in Appendix 1. There were technical problems with the system during 

summer 2009, leading to fine-tuning and increased moisture control of treatment 
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Table 2.1  Summary of six treatments created using PVC soil collars, and water correction from the automated irrigation system. Treatments RMS and 
RMS(W) consisted of shallow surface collars where no soil components were excluded. Treatments MS, MS(W), S, S(W) consisted of 30 cm collars 
hammered to a depth of 25 cm ± 2 cm. Each treatment had 4 replicates. 
 

 

Treatment Code             Brief treatment description   Collar Depth   Mesh Gauge                      

      

RMS            Roots+  ECM hyphae + background soil   Surface         - 

RMS(W)            RMS + automated moisture input   Surface         - 

MS                   ECM hyphae + background soil with roots excluded   25 cm    41 µm 

MS(W)            MS plus automated moisture input   25 cm    41 µm 

S            Background soil with roots and ECM hyphae excluded   25 cm    1 µm 

S(W)            Control for adding deionised water    25 cm    1 µm 
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RMS(W) in particular during summer 2010. 

2.2.4 Litter bag incubations 

2.2.4.1   I2009 (Installed 2009) litter bags 

Recently fallen Lodgepole pine (Pinus contorta) litter was taken from the soil surface at 

the experimental site on 10th April 2008 and returned to the laboratory, where it was 

air-dried over several weeks.  Litter bags, ca. 5 x 9 cm, were constructed from 

polyester net curtain material with an aperture size of 0.5 mm2. Initially two pieces of 

material were sewn together along three sides to form the bag using polyester thread. 

A noted mass, ca. 1 g, of dried litter was added to each litter bag alongside a piece of 

Dymo tape (9 mm embossing tape, Dymo Store, Cambridgeshire, UK) as recommended 

by Berg & Lazkowski (2006). Each piece of tape had a unique code punched into it 

which was then recorded alongside the initial litter dry mass in each bag for use in 

subsequent mass loss calculations. 

Eleven litter bags were deployed in each of the 24 collars on 1st July 2009, with one 

additional bag being installed in four collars and then immediately harvested and 

brought back to the laboratory. These immediately returned four bags were used to 

calculate the small average physical mass loss associated with the construction, transit, 

moistening and installation of the litter bags.  

To ensure the same total dry mass of litter was present in each of the collars, surface 

litter was removed before the litter bags were installed. A litter survey was carried out 

on 10th April 2008 with 40 locations being randomly sampled using a 0.5 x 0.5 m 

quadrat. The average fresh mass of litter was measured, with samples being dried in 

order to establish the fresh to dry mass ratio. Based on these measurements, average 

mass of dried native litter (5.8 g dry mass) were then moistened and placed in the 

collars surrounding the litter bags. Additional litter was added to the cores on 21st 

December 2009 (as part of I2010 litter bags, see below) and also a smaller amount on 

18th April 2010 in order to simulate litterfall at the site, which although greatest in the 

Autumn, occurred to a certain extent all year round. Litterfall was quantified by 
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measuring the dry mass of the needles accumulated on the PVC shields suspended 

above the soil collars. 

2.2.4.2   I2010 (Installed 2010) litter bags 

Following a failure of the automated irrigation system in summer 2009 (insufficient 

moisture addition to treatment RMS(W) from 11th August 2009 to 14th October 2009), 

a supplementary set of litterbags (six in each of the 24 collars) were deployed on 21st 

December 2009 in order to extend the experiment. They were constructed using the 

same method as for the I2009 litter bags, but using bag material marked with a 

serrated edge to make them easily distinguishable from the original series of litter bags 

already in the collars. The litter added in order to simulate litterfall, and also that used 

in the I2010 litter bags was from the same collection of laboratory-dried native litter 

that had been used in the construction of the I2009 litter bag series and stored in dry 

conditions for later use. 

2.2.5 Harvesting and processing of the litter bags 

For the I2009 series of litter bags, one litter bag per collar was harvested on nine 

occasions; 10th July 2009, 11th August 2009, 30th September 2009, 26th November 

2009, 28th January 2010, 07th April 2010, 4th June 2010, 18th August 2010 and 05th 

October 2010. For the second, I2010 series of litter bags, four harvests were carried 

out on 2nd March 2010, 14th May 2010, 17th August 2010 and 17th November 2010 with 

the same method of processing employed for both series of litter bags.  Processing 

involved the careful removal of litter from the bags, with any fine roots and other 

additional material being gently removed. Fresh mass (g) of the litter was recorded and 

then the litter was dried at 75oC for five days (to constant dry mass), before the dry 

mass (g) was recorded in order to establish mass loss. 

2.2.6 Measurement of environmental parameters 

Soil temperatures at depths of 5 cm and 10 cm were logged from replicate 

temperature probes (3 per depth, per site) linked to a DL2e Data Logger (Delta-T 

Devices Ltd., Cambridge, UK) every 10 minutes during the experiment. Average soil 
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temperatures at depths of 5 cm and 10 cm were calculated from these data, with 

periods when individual probes were faulty excluded from data analysis. 

Soil moisture data were logged every 10 minutes from the nine SM200 soil moisture 

probes (Delta-T Devices Ltd., Cambridge, UK) permanently situated in soil collars from 

treatments RMS(W), MS(W) and S (three probes per treatment) as part of the 

automated irrigation system (see Fig. 2.2). 

Additionally, average soil % moisture readings were taken from three locations in each 

of the 24 soil collars during hand-held surveys, generally prior to throughfall additions. 

A hand-held soil moisture probe was used, which consisted of a Meterman DM7B 

multimeter (Amprobe, Washington, USA) linked via a custom battery interface 

(Electronics Workshop, Department of Biology, University of York) to an SM200 soil 

moisture probe. These readings provided a comparison of the soil moisture between 

treatments with and without water addition by the automated irrigation system. The 

three readings per collar taken during hand-held moisture surveys also provided a 

check of whether water from the automated irrigation system was being evenly 

distributed across the soil surface, and were used in subsequent analyses to compare 

the function of the automated irrigation system between the summers of 2009 and 

2010. 

Measurements of the throughfall volumes collected from nine throughfall collectors 

during the experiment were also recorded, alongside the average amount of 

throughfall added to each collar under the PVC shields. 

2.2.7 Data Analysis 

The experiment followed a randomised block design, and a variety of statistical 

approaches were used during data analysis. Where possible, treatment differences 

were tested using two-way ANOVA with block and treatment (the six soil collar and 

watering treatments summarised in Table 2.1) as factors. Where sample distributions 

deviated from normal, data were transformed or the equivalent non-parametric tests 

were carried out. Further specific information regarding the use of different statistical 
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tests is detailed in the Results section. All statistical tests were carried out using SAS 

software package v. 9.2 (SAS Institute Inc., Cary, NC, USA). 

2.2.7.1  Litter mass loss 

The initial litter dry mass for each litter bag prior to incubation was adjusted with a 

correction term derived from the mass loss associated with litter bag construction, 

transit, moistening and installation, which was measured using the four bags that were 

harvested immediately following litter bag installation (see Section 2.2.4). Litter mass 

loss was expressed as the percentage mass remaining of the corrected initial litter dry 

mass (see Eq. 1). 

         % mass remaining = litter dry mass after incubation (g) 
corrected litter dry mass before incubation (g) 

 × 100                 (Eq. 1) 

 
2.2.7.2  Litter moisture content 

Following each harvest, the fresh and dry mass of each litter bag were used to 

calculate the litter % moisture content (see Eq. 2, after Allen et al., 1989). 

                Litter % moisture = loss in mass on drying (g)
initial sample mass  (g) 

 × 100                                                        (Eq. 2) 

2.2.7.3  Soil moisture content 

Voltage output readings from the nine SM200 soil moisture probes permanently 

situated in collars as part of the automated irrigation system were converted to soil % 

moisture content (volumetric) by the Campbell CR1000 logger (Campbell Scientific Ltd., 

Loughborough, UK) using an equation for organic soils provided in supporting 

information for the SM200 soil moisture probes (Delta-T Devices Ltd., Cambridge, UK) 

(see Eq. 3). 

Soil % moisture (volumetric) = (-0.039 +2.091V -5.029V2 +7.907V3 -5.98V4 +1.758V5) x 100 

(where V is the SM200 output in volts)                                                                                         (Eq. 3) 

 

In order to convert voltages obtained during hand-held soil moisture surveys of the 24 

soil collars into soil water content values, a calibration was undertaken, using soil from 
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the Pinus contorta stand at Wheldrake Forest. Soil samples from the top 10 cm of soil 

below the litter layer were brought back to the lab. Soil was sifted and then equal 

amounts were weighed into four plant pots with mesh at the bottom. Deionised water 

was added to the pots until the soil was fully saturated. Mass loss was measured at 

intervals over the next few days, alongside voltage outputs from the hand-held soil 

moisture probe (SM200), and the results were used to calculate gravimetric soil  

moisture content (see Eq. 4). 

                                     SWCg = ms - md

md
 × 100                                                                                 (Eq. 4) 

(where SWCg is the gravimetric soil water content (g water (g soil)-1), ms is the total soil mass, 
and md is the mass of dry soil) 

 

A 4th degree polynomial regression (r2 = 0.9966) was used to convert voltage readings 
obtained using the SM200 probe to SWCg values (see Eq. 5) 

 

                        SWCg = -923.4 V4 + 2001 V3 - 1451 V2 + 512 V – 10.69                            (Eq.5)     

 (where V is the SM200 output in volts) 

 

2.2.7.4  Regression analysis 

Values of k, the decomposition constant (after Jenny et al. 1949; Olson, 1963) were 

calculated for each of the 24 collars for both the I2009 (16 months) and I2010 (11 

months) litter bag incubations. This was achieved by plotting a linear regression of the 

natural log of the % mass remaining data against time, for each collar individually, the 

slope of each line being k.  

Individual simple regressions and forward stepwise multiple regressions (SAS v 9.2) 

were used to assess whether environmental factors could explain any variation in litter 

mass loss.  These environmental factors included soil temperature at depths of 5 cm 

and 10 cm, soil moisture content, and the throughfall volumes added to the collars at 

7-10 day intervals during the experiment.   
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2.3 Results 
 
2.3.1 Litter mass loss 
 
The I2009 litter bag series showed a slow decline in % mass remaining during the 491 

days of the experiment (see Fig. 2.3).  The greatest rate of mass loss occurred over the 

first 121 days, and was followed by a steadier decline with an average total mass loss 

of 22.8% by the end of the experiment.  Percentage mass remaining data were arcsine 

square root transformed to achieve normality, followed by repeated measures ANOVA 

with treatment as the main effect. There were no significant differences in the mass 

loss of litter between the different treatments, and no obvious trends due to the 

treatments (F=0.712, p>0.622, see Fig. 2.3). 

 

A slow decline was also observed in the % mass remaining in the I2010 litter bag 

incubation (see Fig. 2.4). This set of supplementary litter bags showed an average total 

mass loss of 15.9% over the 331 day experimental period. Unlike the I2009 series, the 

I2010 series of litter bags had consistent moisture control from the automated 

irrigation system for the whole incubation period. This ensured that the moisture 

contents in the top 6 cm of soil in treatments RMS(W),and MS(W) were maintained at 

the same level as treatment S for the I2010 series.  

 
For the I2010 series, the initial rapid rate of decomposition remained for 144 days, 

until the second harvest. At the third harvest, litter mass loss was not as great as for 

the second harvest, deviating somewhat from the expected exponential decay curve. 

Again, data were arcsine square root transformed to achieve normality, and there 

were no significant differences in mass loss between the treatments during the I2010 

series, and no obvious trends due to the treatments (F=0.667, p>0.645, see Fig. 2.4). 

Despite being established in the soil collars in winter, at the end of December 2009, 

litter from the I2010 litter bag series had a greater initial rate of mass loss than litter 

from the litterbags in the I2009 series which had been left to decompose from the 

start of June 2009 (see Fig. 2.5). However, after the second harvest, the rate of 

decomposition of litter contained in the I2010 litter bags slowed, and for the following 

two harvests the total average mass remaining was greater than for the I2009 series.  
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2.3.2  Litter moisture content 
 
Analysis of the % moisture of litter for both the I2009 and I2010 series litterbags 

showed fluctuations in the moisture content of the litter across the experimental 

periods, with lower average litter moisture contents during the summer than the 

winter months (see Figs. 2.6 and 2.7). The average litter % moisture was calculated for 

each of the 24 collars for the I2009 and I2010 series separately. The resulting 24 values 

were compared using Friedman’s non-parametric two-way analyses of variance with 

treatment and block as factors to identify any significant differences between the 

average litter % moisture of the different treatments at harvest. Results showed that 

there was a significant difference between treatments for litter % moisture for the 

I2009 litter bag series (F= 3.56, p< 0.03). Post-hoc analysis (Duncan’s multiple range 

test on ranked data) showed that litter harvested from collars in treatments S(W) and 

RMS had a significantly higher average % moisture than litter harvested from collars in 

treatments S and MS (see Fig. 2.8). The same effect was not observed for the I2010 

litter bag series, with no significant differences between treatments in terms of 

average litter moisture content (F= 0.96, p>0.46, see Fig. 2.8). 

 

In order to establish whether fluctuations in the litter moisture between harvests 

could be explained by the underlying soil moisture, litter % moisture values from the 

nine collars permanently containing SM200 soil moisture probes (averages from 

treatments S, MS(W) and RMS(W), n=3) were natural log transformed to achieve 

normality. These data were then plotted against the average soil moisture content (top 

6 cm of soil, % volumetric) on litter harvest days (between 9 am and 11 am prior to 

watering). The average soil moisture content values used in the correlation had been 

logged by the data logger running the automated irrigation system. There was a weak 

association (r2  = 0.1831, F= 5.6, p < 0.03) between litter moisture and volumetric soil 

moisture on the litter harvest days for the I2009 litter bag series, and no pattern in 

terms of the treatments (see Fig. 2.9).  

 

As there were only four harvest days for the I2010 litter bag series, these data were 

amalgamated with those from the I2009 series and the regression analysis was 
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Fig. 2.9  Average volumetric soil moisture contents for collars containing permanent 
SM200 soil moisture probes as part of the automated irrigation system (averages from 
treatments S, MS(W) and RMS(W), three probes from each), plotted against the 
natural log of the average litter % moisture measured on litter harvest from the same 
collars during the I2009 litter bag incubation series. Treatments RMS(W) and MS(W) 
are represented by solid squares  ■  and circles ●, respectively. Treatment S is 
represented by open triangles ∆. For each data point n=3. 
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repeated. There was no significant association between the variables (r2 = 0.0682, F= 

2.71, p > 0.1) and there was no pattern in terms of the treatments (see Fig. 2.10).  

 
2.3.3    Soil moisture content  
 
Fig. 2.11 shows the moisture content (% gravimetric) in the top 6 cm of the soil of 

treatments S, S(W), MS(W) and RMS(W) measured by hand held moisture survey. 

These surveys were conducted prior to watering of collars with throughfall, and the 

soil moistures were consequently likely to have been at times when the soil was at its 

driest. Initial technical problems with the automated irrigation system are evident 

during summer 2009 (see Fig. 2.11), when treatment RMS(W) had a consistently lower 

soil moisture than treatments MS(W) and S. Treatment S(W) had a higher soil moisture 

than the other corrected treatments during the summer, which is to be expected as it 

was receiving irrigation to the same level as treatment RMS(W), but with roots 

excluded. 

 

For the treatments not receiving additional moisture through the automated irrigation 

system, the hand held surveys revealed clear differences in soil moisture in the 

presence of plant roots, with treatment RMS generally having lower soil % moisture 

than treatments MS and S (see Fig. 2.12), and shows that the presence of plant roots 

has the effect of drying the soil to a much greater extent than the presence of any in-

growth of mycorrhizal hyphae. 

 

Figs. 2.13 and 2.14 show more clearly the differences in soil moisture between 

treatments RMS and RMS(W) and MS and MS(W) during the experiment. Treatment 

RMS has a lower soil % moisture content than treatment RMS(W), as would be 

expected during the summer months. The difference in soil % moisture between 

treatments MS and MS(W) is less pronounced, as the presence of ECM hyphae did not 

affect soil moisture to the same extent as the presence of roots. 

Friedman’s non-parametric two-way analyses of variance (see Section 2.3.2 for a 

description of how the data were averaged to avoid pseudo replication) with 

treatment and block as factors were conducted for three distinct periods: (A) prior to  
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Fig. 2.10  Average volumetric soil moisture contents for collars containing permanent 
SM200 soil moisture probes as part of the automated irrigation system (averages from 
treatments S, MS(W) and RMS(W), three probes from each), plotted against the 
natural log of the average litter % moisture measured on litter harvest  from the same 
collars during both the I2009 and I2010 litter bag incubation series. Treatments 
RMS(W) and MS(W) are represented by solid squares  ■  and circles ●, respectively. 
Treatment S is represented by open triangles ∆. For each data point n=3. 
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development of the fault with the automated irrigation system, (B) during the fault 

with treatment RMS(W) excluded, and (C) after the fault, to see if treatments were 

significantly different in terms of the % moisture content in the top 6 cm of the soil.  

 

Prior to the fault there was a significant difference between treatments (F= 3.46, 

p<0.03) in terms of soil % moisture (gravimetric) measured on hand-held moisture 

survey days. Post- hoc analysis (Duncan’s multiple range test) revealed that treatment 

RMS had significantly lower soil moisture than all other treatments apart from 

RMS(W), and that S(W) had a significantly higher soil moisture than all other 

treatments apart from MS(W) (see Fig. 2.15). 

 

During the fault, there was a significant difference between treatments (F= 11.12, 

p<0.0006). Post-hoc analysis revealed that the treatment RMS had a significantly lower 

soil moisture than the other treatments and treatment S(W) had a significantly higher 

soil moisture than all other treatments apart from MS(W) (see Fig. 2.15).  

 

After the fault there was, again, a significance difference between treatments (F= 3.18 

p<0.04), with treatment RMS having a significantly lower soil moisture than all other 

treatments apart from treatment RMS(W). RMS(W) was not significantly different from 

any of the treatments following the re-establishment of moisture control by the 

automated irrigation system (see Fig. 2.15).  

 

Friedman’s non parametric two- way ANOVA was repeated for just the months of June 

to September 2009 and 2010, in order to establish whether there were differences 

between the average soil % moisture contents of the collars during the summer 

months.  For these analyses, treatment RMS(W) was not excluded. During summer 

2009, there was a significant difference between treatments (F = 5.57, p < 0.0045) with 

treatment RMS having lower average soil moisture than all the other treatments apart 

from RMS(W) (see Fig. 2.16). Surprisingly, the average soil moisture content of 

treatment RMS(W) was not significantly different from that of treatment S, despite 

problems with the irrigation system. Also, treatments MS(W) and S(W) had 

significantly higher soil moisture than the other treatments.  
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During summer 2010 there were also overall differences between the treatments in 

terms of the average moisture measured in the collars (F= 3.36, p<0.031) with 

treatment RMS having significantly lower soil % moisture content than all other 

treatments apart from RMS(W) (see Fig. 2.16).  

 
2.3.4 Regression Analysis 
 
In order to see whether there was any significant difference in the decomposition rates 

between the different treatments, decomposition constants (k values) were calculated 

for each of the 24 collars for both the I2009 (16 months) and I2010 (11 months) litter 

bag incubations (see Table 2.2). The resulting k values were then tested for normality 

using Kolmogorov-Smirnov tests. A two-way ANOVA with block and treatment as 

factors showed that there was no significant difference in k values between the 

treatments for either the I2009 (F=0.946, p>0.47) or I2010  (F=0.638, p>0.67) series. 

 

The I2009 and I2010 litter bag incubations began at different times of the year, and in 

order to assess whether variation in the residuals for the I2009 series could be 

explained by prevailing weather conditions, regression analyses were carried out. As 

there were no significant differences in litter mass loss between the mesh collar 

treatments, it was possible to split the I2009 litter bag incubation into nine periods 

based on the harvest dates and calculate the average mass (mg) remaining per period 

using the litter bags harvested from all 24 collars. Fig. 2.17 shows the natural log (ln) of 

the average mass (mg) remaining for each period plotted against time (y=-0.0005x 

+25.687, R2 = 0.952). As expected, the transformed data fall on a straight line, following 

an exponential decay curve and a linear regression was fitted and used to calculate 

model values of average mass remaining (mg). Residuals were calculated and 

expressed as percentages of the model mass remaining (mg) in order to normalise the 

residuals, thus taking into account their position on the exponential decay curve. 

Average values per period (based on the litter harvest dates) were also calculated for 

environmental variables. Results from simple regression analyses showed that both 

the soil temperature at 5 cm and at 10 cm were significantly correlated with these 

residuals for the I2009 series  (p <0.007 and p<0.01  respectively; see Fig. 2.18). 
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Table 2.2  Values of k, the decomposition constant calculated for the I2009 and I2010 
litter bag incubations. Values for treatments are means, with standard errors in 
parentheses, n=4. 

  
Litter decomposition series 

 
        Treatment 

 
I2009 

 
I2010 

 
        S 

 
-0.000475 (-0.000062) 

 
-0.00022 (0.000066) 

 S(W) 
 

-0.0005   (0.00007) 
 

-0.000375 (0.000047) 
 MS 

 
-0.00045   (0.000028) 

 
-0.000325 (0.000075) 

 MS(W) 
 

-0.0005   (0.00004) 
 

-0.0003675 (0.0001) 
 RMS  

 
-0.000525   (0.000047) 

 
-0.00025 (0.000064) 

 RMS(W) 
 

-0.000675   (0.00014) 
 

-0.00032 (0.000089 
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Fig. 2.17  Natural log (ln) of the average mass remaining for the I2009 litter bag 
incubation over the periods of decomposition defined by the litter bag harvests. Each 
point is the mean of 24 values. 
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Fig. 2.18  Correlation between residuals as a percentage of model average mass 
remaining per litter decomposition period for the I2009 litter decomposition series 
plotted against: (a) soil temperature at 5 cm, (b) soil temperature at 10 cm, (c) 
volumetric soil moisture, (d) throughfall. 
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From Figs. 2.18a and 2.18b, when the soil temperatures were higher than 12˚C, the 

residuals were all positive, with litter mass loss being greater than predicted by the 

model. At lower temperatures, the residuals were negative, indicating that low 

temperatures were related to litter mass loss being less than predicted by the model.  

The results of the forward stepwise multiple regression displayed in Table 2.3 show 

that soil temperature at a depth of 5 cm was significantly correlated with the residuals 

from the model (p <0.0074, r2 = 0.6645), and was the only variable that met the 0.05 

significance level criteria for inclusion into the model. Table 2.3 also includes the 

results when the significance level criteria for entry into the model was set to 0.5, in 

order to demonstrate the poor association between the other environmental variables 

and the residuals from the model values. 

The regression analyses were repeated for the I2010 series, but since there were only 

four periods, these data were amalgamated with those from the I2009 series in order 

to assess whether the observed effect of soil temperature was robust across the two 

series. Again, linear regression analysis showed that soil temperature at 5 cm 

significantly correlated with the residuals from the modelled values, as did the soil 

temperature at 10 cm, both at a significance level of p <0.02. Figs. 2.19a and 2.19b 

show that although the correlations are not as strong as for the I2009 litter bag series, 

when temperatures were below 12˚C, the residuals tended to be negative, with less 

decomposition taking place at low temperatures than would be predicted by the 

overall regression model.  

The results of the forward stepwise multiple regression for the amalgamated I2009 

and I2010 data are also displayed in Table 2.3. The results show again that soil 

temperature at a depth of 5 cm was the only variable that met the 0.05 significance 

level criteria for entry into the model, and was highly significantly correlated with the 

residuals from the model values (p <0.018, r2 = 0.4120). 

 

  



 

74 
 

 

 

Table 2.3  Results from a forward stepwise multiple regression to explain variation in 
residuals for the I2009 litter decomposition series and for the I2009 and I2010 series 
combined.  

I2009 litter decomposition series 

     Environmental factor partial r2  model r2 F value P value 

     soil temperature at 5 cm 0.6645 0.6645 13.86 0.0074 

     soil temperature at 10 cm 0.0827 0.7472 1.96 0.2108 

     
     Combined I2009 and I2010 litter decomposition series 

     Environmental factor partial r2  model r2 F value P value 

     soil temperature at 5 cm 0.412 0.412 7.71 0.018 

     soil temperature at 10 cm 0.0724 0.4845 1.41 0.2633 

     volumetric soil moisture 0.0569 0.5414 1.12 0.3182 

     throughfall volume (mls) 0.0335 0.5749 0.63 0.4498 
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Fig. 2.19  Correlation between residuals as a percentage of model average mass 
remaining per litter decomposition period for the I2009 and 12010 litter 
decomposition series combined plotted against: (a) soil temperature at 5 cm, (b) soil 
temperature at 10 cm, (c) volumetric soil moisture, (d) throughfall. 
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2.4 Discussion 

The aim of the current work was to investigate the ‘Gadgil effect’, by measuring litter 

decomposition in the presence and absence of roots and associated ECM hyphae, but 

with control for the influence of water uptake. The absence of any significant 

difference in the rate of litter mass loss between total-soil, root and ECM hyphal 

exclusion treatments does not support the hypothesis that the input of simple 

carbohydrates into the soil, derived from roots and associated microorganisms, 

including ectomycorrhizal (ECM) fungi, has a promoting effect on needle litter 

decomposition. Nor does the current work provide support for the findings of Gadgil & 

Gadgil (1971; 1975), who observed a decrease in litter decomposition in the presence 

of roots and associated ectomycorrhizal (ECM) hyphae.   

Litter bags were successfully used to study mass loss of litter samples during this 

experiment based on the widely used technique, introduced by Bocock & Gilbert 

(1957), using confined litter to study field decomposition rates. In this experiment, the 

mesh size of the litter bags was 0.5 mm2, preventing needle loss and avoiding 

excessive loss through fragmentation of the litter; larger soil animals, such as 

earthworms may have been excluded. However, despite frequent digging at the site 

whilst setting up experiments, earthworms were never observed.  

A negative relationship between earthworm numbers and the abundance of other soil 

animals has been demonstrated (Räty & Huhta, 2003; Huhta & Räty, 2005). Schaefer & 

Schauermann (1990) found an inverse relationship in terms of the numbers of 

enchytraieds and earthworms present in forest soils. Enchytraeids were regularly 

found in the litter during litter-bag processing, and it may be that they were more able 

to tolerate the acidic soils present at the current site than earthworms (Räty & Huhta, 

2003) and, consequently, the potential exclusion of earthworms from the litter bags 

was not of importance at this site. The mesh size used to construct the litter bags was 

large enough to allow the in-growth of fine roots and mycorrhizal hyphae.  

The use of litter bags deployed in soil collars had the advantage that destructive 

harvesting of small defined samples of litter could take place at intervals from each 

collar. This allowed the accurate start and end mass of the litter to be measured, and 
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consequently an accurate measure of litter mass loss. A criticism of the field 

experiments of Gadgil & Gadgil (1971; 1975) is that they did not present a starting 

mass for their Pinus radiata litter prior to decomposition, or confine their experimental 

litter in any way. Instead they established the mass of litter accumulated at the soil 

surface of their 1 x 1 m plots at the different harvest dates, which means that, despite 

their block design, substantial error may have been introduced through litter blown 

into plots from surrounding areas.   

Replicating the 1 x 1 m plots of Gadgil & Gadgil (1971; 1975) with accurate control of 

soil surface moisture over such a large area would be very challenging to achieve, and 

therefore smaller soil collars where the moisture could more easily be controlled were 

used. Despite the differences in experimental design, ECM roots were excluded in the 

current study, just as they were in the research by Gadgil & Gadgil (1971; 1975), and 

any treatment effects caused by trenching on litter decomposition should be evident, 

despite differences in the technique used to measure litter mass loss.   

Though decomposition over long periods of time is best described by asymptotic decay 

curves, it is generally the case that simple exponential models are used as to describe 

litter mass loss during the initial stages of decomposition (Minderman, 1968; Latter et 

al., 1998).  In the current work the litter mass loss of both the I2009 and I2010 litter 

bag series followed expected exponential decay curves. Litter mass loss dynamics for 

both series shown in Figs. 2.3 and 2.4 could be divided into two phases, with a classic 

sharp initial phase of mass loss, consistent with the leaching of soluble organic 

components including simple sugars from the litter (Berg, 2000), followed by litter 

mass loss at a decreased rate, as more complex substrates including polysaccharides, 

cellulose and hemicelluloses and potentially lignin were decomposed by soil 

microorganisms (Swift et al., 1979). 

Decay constants (k values, after Olson, 1963) are widely used to incorporate the 

information contained in an exponential decay curve into a single figure which may 

then be used compare litter decomposition rates from different treatment regimes, or 

between species (Meentemeyer, 1978; Aerts, 1997, Guo & Sims, 2001). In the current 

study, the lack of difference between treatments in terms of litter mass loss revealed 



 

78 
 

by repeated measures ANOVA was also seen in no differences in the decomposition 

constant (k) values between treatments. The calculated values of mass loss of litter 

observed in the current experiment of 22.8% for the I2009 series (491 days), and 

15.9% (121 days) for the I2010 series, were low. The average k value was -0.00052 for 

the I2009 series, with no significant difference in k between the treatments (see Table 

2.2). For the I2010 series, there was an overall average k value of -0.00031, again with 

no significant difference in k between the six treatments. Meentemeyer (1978) 

observed an average value for k of -0.19 over the first year of a mixed litter 

decomposition experiment at Moorhouse in the UK. In a Scots pine plantation in 

Ehrhorn, Germany, which has a similar climate to the current field site, Berg et al. 

(1993) observed a first-year % mass loss of 38% from Scots pine litter, which is 

considerably greater than that observed during the current study. However, Berg & 

Staaf (1980) conducted two incubations in series of litters ranging in N content in 

central Sweden. They found that the first-year mass loss of litter with ambient N 

content was 20.7% for their first incubation, and for the second incubation, there was 

a greater first-year mass loss of 32.7%.  Therefore, even for the same site there can be 

considerable variation between years in initial litter mass loss. It is possible that even 

with the weekly watering with average throughfall amounts, having PVC shield over 

the collars, may have made conditions in the collars drier than they would have been 

naturally, resulting in slower rates of decomposition than are generally seen in 

temperate coniferous forests. 

Though the current work did not observe either the ‘Gadgil effect’ or a promoting 

influence of plant roots and associated microorganisms on litter mass loss, it was 

possible to relate decomposition rates to other variables. Aspects of climate are 

regulators of the metabolism of microorganisms responsible for decomposition and 

litter mass loss, with their activity frequently being related to climatic variables, 

including temperature and moisture (Lavelle et al., 1993; Aerts, 1997; Chadwick et al., 

1998; Davidson & Janssens, 2006). Variation in rates of litter decomposition over broad 

climatic scales have been explained using actual evapotranspiration (AET), an index of 

combined temperature and moisture, which includes a measure of the interaction 

between the two. Correlations between AET and annual decomposition rates have 
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produced r2-values as high as 0.98 (Meentemeyer, 1978; Berg et al., 1993; Aerts, 

1997).  

Although AET is applicable over broad regional scales it cannot account for variation 

within microsites (Meentemeyer, 1978; Liski et al., 2003, Aerts, 2006).  Consequently, 

in the current work, the effects of temperature and moisture on litter decomposition 

were considered separately. 

The initial litter mass loss shown in Fig. 2.5 occurred faster for the I2010 litter bag 

series than for the I2009 series, despite being installed in the winter, at the end of 

December, as opposed to June for the I2009 series. The litter used in the bags would 

be expected to be at the same initial stage of decomposition to begin with, as it was 

taken from the site on the same day, dried and stored before use. The difference in the 

initial decomposition rate could potentially be attributed to differences between the 

level of activity of soil microorganisms between the two seasons. However, 

measurements of soil CO2 efflux have shown that though there is low level microbial 

activity through the winter months, microbial communities are much more active in 

the summer, associated with warmer temperatures (Heinemeyer et al., 2007). Though, 

it is also possible that the microbial community is more starved of easily attainable 

carbon in the winter months, so that rates of removal of these components of the 

litter may have proceeded more quickly during the winter. 

The higher litter % moisture and soil % moisture during the winter months suggests 

that there may have been greater leaching of soluble components from the litter 

during the winter than during the summer months. Virzo de Santo et al. (1993), in a 

comparison of five coniferous sites under varying climates, found that litter moisture 

content was the rate-limiting factor for initial litter decomposition. Up to 50% of 

soluble components may be lost from decomposing litter via leaching, with the level of 

leaching being dependent on how much water comes into contact with the litter, and 

to a lesser extent, temperature (Witkamp, 1969; Swift et al., 1979; McClaugherty, 

1983). The total volume of throughfall during the first few months of the I2010 

incubation was slightly less than that for the I2009 litter bags during summer 2009. 



 

80 
 

However, the litter bags installed for the I2010 collars were quickly covered with snow 

during January 2010, which may have led to increased leaching as the snow thawed. 

Seasonal fluctuations in throughfall and temperature resulted in higher litter moisture 

in the winter months than during the summer. There were only differences in litter % 

moisture between the treatments during the I2009 litter bag series with treatment 

S(W) (root and hyphal exclusion collars with the same water additions as treatment 

RMS(W)) having the highest average litter % moisture overall. This is to be expected as 

collars from treatment S(W) were receiving a considerable amount of water from the 

automated irrigation system, particularly during the summer months. There appeared 

to be no association between the litter % moisture and the underlying soil % moisture 

(see Fig. 2.9), an observation also made by others (eg. Virzo de Santo et al., 1991).  

Treatment RMS, which received no water correction had relatively high average litter 

% moisture, despite the soil underneath having the lowest soil % moisture of all the 

treatments during the summer months. This could potentially be explained by soil 

microorganisms moving water to the litter layer where a large proportion of 

decomposition takes place. Hydraulic lift occurs when dry surface layers receive water 

from deeper layers as water travelling upwards in roots or hyphae passively enters dry 

soil along water potential gradients (Lehto & Zwiazek, 2011). The extent to which the 

large mycelial network in forest soils (Smith et al., 1992) can move water is poorly 

researched, although we know that it is important for nitrogen translocation to litter 

from deeper soil layers as suggested by Staaf & Berg (1977), and demonstrated using a 
15N tracer (Hart & Firestone, 1991). In a mesocosm experiment, Querejeta et al. (2003) 

used tracers to unambiguously demonstrate that during the night, hydraulic lift 

allowed water to be transferred from plants to associated fungal mycelium. It is 

possible via this mechanism that trees enhance nutrient uptake by supplying water to 

their mycorrhizal partners, increasing soil moisture in the litter layer so that the fungal 

mycelium is maintained, and litter decomposition can continue (Querejeta et al., 2003; 

2007). 

During the current study, significant drying of the soil only occurred in the total soil 

treatment (RMS) and there was no specific evidence of water uptake by ECM hyphae. 



 

81 
 

Figs. 2.11 and 2.12 show that the soil % moisture contents in the mycorrhizal 

treatments (MS and MS(W)) were similar to that of the soil only treatment (S) for the 

duration of the experiment. The contentious statement that enhanced water uptake is 

one of the benefits for the host plant in ectomycorrhizal symbiosis (see Lehto & 

Zwiazek, 2011) was not demonstrated here. 

ECM hyphae have been shown to function as extensions of the root system, 

particularly during drought conditions (Duddridge et al., 1980; Allen, 2007) and it has 

been suggested that water may be transported to the host plant via a mass-flow 

mechanism in large diameter ‘vessel’ hyphae, but direct evidence for this in the field is 

lacking (Cairney, 2005). As host trees tend to have well developed deep root systems, 

it is perhaps more beneficial for the plant to supply water to the fungus in order that 

decomposition can be continued in the drier surface layers, leading to enhanced 

nutrient acquisition (Lehto & Zwiazek, 2011).   

In the current research, it seems likely that any soil moisture differences were not 

severe enough to limit litter decomposition, and the trees at the study site did not 

appear to facilitate additional water uptake through their fungal partners. Instead, the 

trees may have provided the ECM fungi in the litter layer with additional water during 

the summer months, taken up from deeper in the soil profile. 

The results of Gadgil & Gadgil (1971; 1975) are difficult to interpret for several reasons. 

The main criticism of their work has been that in both of their field studies, they did 

not control for soil water uptake by roots and it is therefore not possible to discount 

the effect of soil moisture, or to attribute the decrease in litter decomposition they 

observed solely to a single factor. Soil moisture was controlled in the laboratory 

experiment of Gadgil & Gadgil (1975), where sterilised litter was left to decompose in 

microcosms containing mycorrhizal and non-mycorrhizal seedlings. In support of their 

field studies, they observed that the presence of ECM roots had a negative influence 

on litter decomposition. However, caution should be exercised when extrapolating 

results from experiments conducted under laboratory conditions to the field, where 

conditions are more variable, with extremes of temperature and moisture and other 

factors which would be expected to influence decomposition (Dighton et al. 1987).  
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Despite initial problems with the automated irrigation system during summer 2009, 

the control of soil moisture necessary to investigate the ‘Gadgil Effect’ was achieved. 

During summer 2009 and 2010, the effect root water uptake had, drying the soil, was 

clear as treatment RMS (total soil without correction) had significantly lower soil % 

moisture content than treatments MS and S, where roots had been excluded.  

However, these clear differences in soil moisture between treatments did not lead to 

any differences in litter decomposition rates, as might be expected considering the key 

role moisture can play in controlling litter decomposition (Robinson et al., 1995; 

Murphy et al., 1998). Results from the regression analysis showed no relationship 

between litter mass loss and soil moisture, or the amount of throughfall added to 

collars, supporting the conclusion that soil moisture is not a limiting factor for litter 

decomposition at this particular site.   

Although there was no relationship between soil moisture and the rate of litter 

decomposition, temperature at a depth of 5 cm was found to be correlated. This 

apparent controlling effect of temperature on litter decomposition has been observed 

many times (Kirschbaum, 1995; Hobbie, 1996; Panikov, 1999; Guo & Sims, 2001). 

Domisch et al. (2006) investigated the effects of different soil temperatures on the 

decomposition of Pinus sylvestris needles in a growth chamber experiment, where 

moisture levels were maintained and found that the accumulating soil temperature 

sum dictated the rate of mass loss, with faster mass loss observed at 15˚C than at 10˚C 

or 5˚C. 

Greatest litter decomposition rates generally occur under conditions of high 

temperature, where there is sufficient moisture (Bloomfield et al., 1993) but, in the 

natural environment, high temperatures tend to occur at times when soil moisture is 

at its lowest (Gonçalves & Carlyle, 1994). This was found for the current study, with the 

summer high temperatures coinciding with the lowest soil moistures, particularly in 

treatment RMS (total soil, no water correction).  

Gadgil & Gadgil, and others since, have postulated that the mechanism behind the 

‘Gadgil effect’ involves direct suppression of saprotrophic decomposers by ECM fungi, 

and a variety of explanations for this suppression have been proposed. ECM fungi 
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could suppress the activity of more effective litter decomposing saprotrophs by 

creating a physical barrier and occupying microsites in the soil, or via anti-microbial 

action, both of which have been demonstrated to provide protection for host-plant 

roots against pathogens (Zak et al., 1964; Garrido et al., 1982). Marx (1969) found that 

the fungal mantle and Hartig net of Pinus echinata (Mill.) ectomycorrhizas provided a 

physical barrier against infection of seedling roots by the pathogenic fungus 

Phytophthora cinnamoni (Rands), in comparison to non-mycorrhizal roots which were 

heavily infected.   

The synthesis of antibiotics by the ECM fungus Paxillus involutus was shown to inhibit 

the growth of the root-rot fungus Fusarium oxysporum, with the production of these 

antibiotic compounds being stimulated by Pinus resinosa root exudates in vitro 

(Duchesne et al., 1988). There is also evidence that ECM fungi suppress the activity of 

pathogenic microorganisms in vitro by acidifying the surrounding medium, rather than 

secreting antibiotics (Schelkle & Peterson, 1996). Rasanayagam & Jeffries (1992) tested 

19 isolates of ectomycorrhizal fungi to see if they inhibited the growth of the common 

plant pathogen Pythium ultimum and found that through a mechanism of acidification 

of the surrounding media, the presence of 16 of the isolates caused the hyphal tips of 

the pathogen to burst.   

Another mechanism by which ECM fungi could suppress the activity of saprotrophic 

microorganisms is via the uptake and immobilisation of key nutrients. In a comparison 

of the concentration of ten biologically important elements including N and P between 

pine needles which had been decomposing for one year, and that contained in 

basidiomycete fungal  fruiting bodies, Stark (1972) found that the fruiting bodies were 

enriched in N (94-340%),  P (312-698%), K (60-2046%) and Cu (278-711%)  relative to 

the pine needles, indicating that significant  amounts of nutrients may be immobilised 

as part of the fungal mycelium. Co-evolution of ECM fungi, alongside their host plants 

may have created a system where ECM fungi are capable of outcompeting 

saprotrophic microorganisms for N and P in the nutrient poor litter produced by their 

host plant and from decomposing root material, whilst immobilising the labile carbon 

substrates from the plant roots (Henkel, 2003; Read et al., 2004). Bending & Read 

(1995) investigated the nutrient status of fermentation horizon organic matter (from a 
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pine forest soil) before and after colonisation by two species of ECM fungi in symbiosis 

with Pinus sylvestris, and found that the C:N ratio of the material was increased 

following colonisation by the two fungal species, when compared to un-colonised 

material.  

Though it has been observed that different species of mycorrhizal fungi have differing 

abilities to extract N and P (Perez-Moreno & Read, 2000) N starvation of saprotrophic 

microorganisms following the uptake of N by mycorrhizal fungi could result in 

suppression of saprotrophic activity (Bending & Read, 1995). It has previously been 

assumed that ECM fungi depend on the decomposing activity of saprotrophs to extract 

organic N from recalcitrant compounds and laboratory studies have shown that ECM 

fungi are capable of extracting organic protein N, thus allowing them to compete even 

more effectively with saprotrophic decomposers (Abuzinadah et al., 1986). However, 

the ability of ECM fungi to extract N from recalcitrant polyphenolic compounds in 

natural conditions has been questioned (Koide & Wu, 2003).  

As the ‘Gadgil effect’ was not observed during the current work, these results do not 

provide any insight into the observations of Gadgil & Gadgil (1971; 1975). Nor did the 

current work provide any support for the hypothesis that the input of simple 

carbohydrates into the soil, derived from roots and associated microorganisms, 

including ECM fungi, has a promoting effect on needle litter decomposition, as 

observed by Subke et al. (2004). 

Interpretation of the literature surrounding the influence of labile carbon into the soil 

through roots and associated microorganisms in the rhizosphere is complicated, and 

whether the ‘Gadgil effect’, when observed, can best be explained by direct 

competition between ECM fungi and saptrotrophs, or by a moisture effect is uncertain. 

An attempt has been made here (see Table 2.4) to separate out the literature 

surrounding the Gadgil effect into studies which saw a positive, negative or no effect 

of the presence of ECM roots on decomposition, and also whether there was a 

difference between whatever treatments were implemented in the studies in terms of 

soil or litter moisture. This has only been possible where sufficient information has 

been provided in papers, with some papers (Cuenca et al., 1983; Entry et al., 1991; 
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Table 2.4                  Information from papers including, and following the work of Gadgil & Gadgil (1971; 1975), which have investigated the influence of ECM roots on 
the decomposition of litter and simple substrates. 
Authors Influence of ECM roots  

 
Substrate(s) Tree species present Soil type Annual  air 

temperature 
Annual 
precipitation 

 on 
decomposition 
rate 

on 
soil/litter 
moisture 

     

Chigineva et al. (2009) (o) Litter (-) Litter (separate bags for each 
species): 
Berlinia bracteosa (Benth.), 
Picea abies (L.) H. Karst., 
Populus tremula (L.) 
 

Picea abies (L.) H. Karst. Albeluvisol Mean:  2.7 – 
3.8 ˚C 

580 – 620 mm 

Cuenca et al. (1983) 
 

(o) NA Litter (separate bags for each 
species): 
Coffee arabica (L.), 
Erithrena sp., 
Inga spp. 
 

Coffee arabica (L.), 
Erithrena sp., 
Inga spp. 

Acid, derived 
from mica 
schists 

Mean:  19 ˚C 1200 mm 

Chuyong et al. (2002) (-) NA Litter (separate bags for each 
species): Berlinia bracteosa 
(Benth.), Didelotia africana 
(Baill.), Microberlinia 
bisulcata (A.) Chev. 
Tetraberlinia bifoliolata 
(Harms) Hauman 
Cola verticillata (Thonn) 
Stapf. Ex A. Chev., 
Oubanguia alata (Bak.f.), 
Strephonema pseudocola 
(A.Chev) 

Plots with either high or 
low abundance of ECM 
trees. 
High species diversity  
(for more information 
see Newbery et al. 
(1997) 

Sandy 
(taken from 
Gartlan et al. 
1986) 

Mean:  23.7 – 
30.2 ˚C 
(taken from 
Gartlan et al. 
1986) 

5460 mm 
(taken from 
Gartlan et al. 
1986) 
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Table 2.4 Continued      
Authors Influence of ECM roots  

 
Substrate(s) Tree species present  Soil type Annual  air 

temperature 
Annual 
precipitation 

 on 
decomposition 
rate 

on 
soil/litter 
moisture 

     

Dighton et al. (1987) (+) NA Hide Powder 
Chitin 
Cotton 
 

Pinus contorta Perlite/peat  
(95: 5) 

Laboratory 
incubation 

Laboratory  
incubation 

Entry et al. (1991) (+) NA Litter: 
Pseudotsuga menziesii 
(Mirb.) Franco 
 

Pseudotsuga menziesii 
(Mirb.) Franco 

Gravelly loam Range:  2.7 - 
18.5 ˚C 

1905 mm 

Faber & Verhoef 
(1991) 

(-) (o) Litter: 
Pinus nigra (Arnold) 
 

Pinus nigra (Arnold) Sandy  Mean :  8.5 ˚C 
 

NA 

Fisher & Gosz (1986) (-) (-) Cellulose Pseudotsuga menziesii, 
Abies concolor (Lindl.), 
Pinus ponderosa (Laws), 
Pinus flexilus (James), 
Populus tremuloides 
(Michx.) 
 

Sandy loam Range:  -5 - 
15˚C 

450-650 mm 

Gadgil & Gadgil (1971; 
1975) 

(-) (-) Litter: 
Pinus radiata  
 
 
 
 
 

Pinus radiata  Silty sand Mean:  10 ˚C 1524 mm 
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Table 2.4 Continued      
Authors Influence of ECM roots  

 
Substrate(s) Tree species present  Soil type Annual  air 

temperature 
Annual 
precipitation 

 on 
decomposition 
rate 

on 
soil/litter 
moisture 

     

        
Mayor & Henkel 
(2006) 

(o) NA Litter: 
Bags containing just Dicymbe 
corymbosa litter and bags 
containing mixed species 
litter (without Dicymbe 
corumbosa) 

Dicymbe corymbosa in 
monodominant plots, 
also highly diverse 
mixed species plots  
(for further information, 
see Henkel et al., 2002) 

Soils variable in 
texture, but 
uniformly acid 

Range: 19 - 
29˚C 

3866 mm 

        
McGuire et al.(2010) (o) NA Litter: Bags containing just 

Dicymbe corymbosa litter 
and bags containing mixed 
species litter (without 
Dicymbe corumbosa) 

Dicymbe corymbosa in 
monodominant plots, 
also highly diverse 
mixed species plots  
(for further information, 
see Henkel et al., 2002) 
 

Soils variable in 
texture, but 
uniformly acid 

Range:  19 – 
29 ˚C 

3866 mm 

Staaf (1988) (o) (-) only on 
driest 
occasions 

Litter:  
Fagus sylvatica (L.) 

Fagus sylvatica, with 
occasional Quercus sp. 
and Fraxinus sp. (taken 
from Staaf, 1987) 
 

Mor site: orthic 
podsol 
Mull site: gleyic 
cambisol, acid 

Mean:  7 ˚C 650 – 800 mm 

Subke et al. (2004)           
 
 
 
Wu et al. (2011) 

(+)                           
 
 
 
(o) 

NA 
 
 
 
(-) 

Litter: 
13C-labelled, Picea abies (L.)  
H. Karst 
 
Litter: Eucalyptus 

Picea abies 
 
 
 
Eucalyptus 

Sandy loam 
 
 
 
Acrisol 

Mean:  6 ˚C 
 
 
 
Mean:  22.5 ˚C 

 1000 mm 
 
 
 
 1534 mm 
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Table 2.4 Continued      
Authors Influence of ECM roots  

 
Substrate(s) Tree species present  Soil type Annual  air 

temperature 
Annual 
precipitation 

 on 
decomposition 
rate 

on 
soil/litter 
moisture 

     

        
Zhu & Ehrenfeld 
(1996) 

(+) (o) Litter:  
Pinus rigida (Mill.) 
 

Pinus rigida Acid podzol Range:  0 – 
24˚C  

1067 – 1168 
mm 
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Chuyong et al., 2002; Mayor & Henkel, 2006; McGuire et al. 2010) not stating whether 

there was a difference in soil or litter moisture between their treatments. 

Studies which show a decrease in the decomposition of cellulose (Fischer & Gosz, 

1986), fluorene (Genney et al., 2004) and litter (Koide & Wu, 2003) alongside 

decreases in soil or litter moisture in the presence of ECM roots provide support for 

the findings of Gadgil & Gadgil (1971; 1975). They also provide evidence for the theory 

that the ‘Gadgil effect’ is caused by indirect suppression of saprotrophic decomposers 

following the uptake of soil water by ECM roots. However, as with the findings of 

Gadgil & Gadgil, direct suppression of saprotrophs by ECM fungi cannot be ruled out as 

a possible explanation for the differences in decomposition observed in these studies. 

Koide & Wu (2003) found that 36% of the variation in litter decomposition could be 

explained by the density of ECM root tips, and that variation in litter water content 

could explain 23% of the variation in litter decomposition. Their results show the 

importance of moisture for litter decomposition, but they also highlighted the 

complexity of the decomposition process, as although moisture effects could 

potentially explain the decrease in litter decomposition observed by Gadgil & Gadgil 

(1971; 1975), they cannot explain all the results from subsequent studies (see below). 

A large proportion of the variation in litter decomposition in the experiment of Koide & 

Wu (2003) remains unexplained.  

Studies demonstrating a decrease in litter decomposition where ECM roots are present 

with no change in soil moisture (eg. Faber & Verhoef, 1991) may provide evidence for 

direct suppression of saprotrophs by ECM fungi as a cause of the ‘Gadgil effect’. As 

there was no significant decrease in moisture associated with ECM roots, moisture 

differences caused by trenching could not explain these results. 

Further evidence for the promoting effect of the presence of ECM roots on 

decomposition observed by Subke et al. (2004) comes from studies that have shown 

an increase in decomposition in the presence of ECM roots, alongside no change in soil 

moisture, as with the work of Zhu & Ehrenfeld (1996), and also Dighton et al. (1987). 

These studies do not argue against moisture differences causing the ‘Gadgil effect’, but 
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there is no evidence that ECM fungi were directly suppressing more effective 

saprotrophic decomposers in these studies. 

There have been studies that have shown that the presence of ECM roots has little 

effect on soil or litter moisture, with no change in litter decomposition rates, (eg. Staaf 

1988), who only observed differences in moisture between trenched and control plots 

on the driest of occasions. The study by Staaf (1988) did not provide evidence to 

repudiate that moisture differences may have caused the ‘Gadgil effect’ but it did 

provide evidence against a promoting effect of ECM roots, and also direct suppression 

of soil saprotrophs by ECM roots. 

There have also been studies which support the current work, where a significant 

decrease in moisture has led to no change in litter decomposition (eg. Chigineva et al., 

2009; Wu et al., 2011). The importance of soil moisture on decomposition is 

highlighted by the fact that, to our knowledge, no study has demonstrated an increase 

in litter decomposition alongside a decrease in soil moisture in the presence of ECM 

roots. This lends support to the hypothesis of Subke et al. (2004) that moisture effects  

may have been strong enough to mask any promoting effect of an intact rhizosphere in 

the studies of Gadgil & Gadgil (1971; 1975). 

In the current work, the supply of labile carbon from plant roots to ECM fungi was 

excluded for some time from treatment collars, and this would be expected to take 

away any competitive advantage of the ECM fungi and alleviate any suppression of 

free-living soil saprotrophs taking place. Koide et al. (2011) found that the species of 

ECM fungus present in the system was critical for controlling root interactions with 

decomposition of dead root material and it may be also true for litter decomposition. 

The composition of the microbial community associated with the rhizosphere could 

dictate whether or not litter is decomposed at a faster rate, depending on the 

saprotrophic capabilities of the fungi in question (Koide & Wu, 2003).  

Dighton et al. (1987) found that the presence of roots and mycorrhizas increased the 

decomposition of hide powder, chitin and cotton in mesocosms, and that different 

species of fungus differed in their decomposer capabilities, with the mycorrhizal 

fungus Suillus luteus (L.) being the most effective decomposer. They also found that 
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competition between fungi had an effect on substrate decomposition, with the 

observed enhancement of degradation of hide powder and cotton in the presence of 

roots and mycorrhizal fungi disappearing in the presence of the saprotrophic fungus 

Mycena galopus (Pers.). However the presence of the saprotroph had a ‘synergistic 

effect’ on chitin decomposition. Dighton et al. (1987) showed that in the absence of a 

plant host, there was very little difference in the level of decomposition taking place in 

the presence of the mycorrhizal or non-mycorrhizal fungi studied, though the presence 

of the plant host enhanced the decomposition of all three substrates significantly.  It is 

possible therefore, that the differences between studies in terms of whether the 

presence of ECM roots had a positive, negative, or no effect at all on litter 

decomposition could be related to the microbial community present at a given 

experimental site. The work of Dighton et al. (1987) and Genney et al. (2004) has 

demonstrated that different species of ECM fungi have different decomposer abilities, 

and this, along with how capable these fungi are of competing with free-living 

saprotrophs, may dictate how decomposition is then affected by their exclusion (Koide 

& Wu, 2003).  

Koide & Wu (2003) have also offered one further explanation which could potentially 

explain the inconsistencies in the literature in terms of why the moisture effect 

appears to be affecting litter decomposition in some studies (eg. Gadgil & Gadgil, 1971; 

1975; Fischer & Gosz, 1986; Koide & Wu, 2003; Genney et al., 2004) but not for those 

of Chigineva et al. (2009), Wu et al. (2001) or at the current site. Koide & Wu (2003) 

have suggested that changes in soil moisture, following the exclusion of roots and 

associated microorganisms, may have an effect on litter decomposition depending on 

prevailing weather conditions. Koide and Wu (2003) suggested that the reason why 

their study produced an apparent soil moisture effect, and a decrease in litter 

decomposition in the presence of ECM roots (when other studies had not) was that 

their study was conducted during a particularly dry year, with levels of soil moisture 

falling below a ‘threshold’ level which would inhibit the decomposing activity of 

saprotrophic microorganisms.  It is probable that during wet years, the same effect 

would not be observed (Bending, 2003; Virzo De Santo, 1993; Mayor & Henkel, 2006). 

It may be that although there was a significant difference between treatments in terms 
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of soil moisture content, overall soil moisture was high enough that ECM roots and 

hyphae did not take up sufficient water to affect the activity of litter decomposers 

during the current work.  

As the experimental design of Koide & Wu (2003) did not have an ECM root exclusion 

treatment, it is not possible to directly compare the level of drying caused by ECM 

roots between their study and the current work.  However, it is possible to make a 

crude comparison of average soil moistures measured at the current site, and those 

measured by Gadgil & Gadgil during their second field study (Gadgil & Gadgil, 1975) to 

see if there was greater inherent moisture limitation during their field studies than was 

apparent at Wheldrake Forest during the current work. 

The field studies of Gadgil & Gadgil (1971; 1975) were carried out in a 22 year old un-

thinned Pinus radiata stand in Kaingaroa State Forest, New Zealand. The region has an 

average rainfall of 1524 mm and an average temperature of 10˚C (Will, 1959; Seaton et 

al., 2008). The average temperature is similar to the average temperature of 9˚C 

experienced at Wheldrake Forest, however rainfall at Wheldrake Forest is less than 

half that experienced at the New Zealand site, with a yearly average of c. 630 mm 

(Heinemeyer et al., 2007; Subke et al., 2011). Consequently, it might be expected that 

moisture conditions were less limiting at the Gadgil site than at Wheldrake Forest. 

However, when the average soil % moisture contents from treatments RMS (total soil, 

no exclusion) and S (where roots and ECM hyphae excluded) from the current work, 

and the average soil % moisture (calculated from the four harvest days) from the cut 

and control treatments from the Gadgil & Gadgil (1975) paper are compared, the 

opposite appears to be true. The average soil moisture contents of treatment RMS and 

S were 42% and 50%, respectively (with a difference between the treatments of c. 8%). 

The average soil moisture contents of the Gadgil (1975) cut and control treatments 

were 36% and 43%, respectively (so a difference between treatments of c. 7%). The 

soil at Wheldrake is a well-draining sandy gley soil, and the soil at the Gadgil field site 

was classified as silty sand, so both are comparable in terms of drainage.  

The conditions at the field site of Gadgil & Gadgil (1975) were likely to be more 

moisture limited than at the current site, and potentially the explanation of Koide and 
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Wu (2003), that the soil moisture would need to cross a ‘threshold’ value beyond 

which additional water uptake by ECM roots could affect litter decomposition might 

explain why Gadgil & Gadgil (1971; 1975) observed a decrease in litter decomposition 

in the presence of ECM roots, which was not observed in the current study. 

There is no mention in either the Gadgil & Gadgil 1971 or 1975 paper of whether their 

field studies took place during particularly dry years. This is also true of most of the 

papers following on from the work of Gadgil & Gadgil (1971; 1975) with studies 

conducted over relatively short time periods of up to two years, where variations 

between years in the levels of litter and soil moisture, could be critically important for 

decomposition rates. 

An attempt was made to conduct a meta-analysis from all the relevant published 

studies by plotting the average annual rainfall reported in each of the relevant studies 

against the observed % change in litter weight loss between treatments. 

Unfortunately, differences in methodologies, methods of reporting decomposition 

rates and lack of local specific weather data make such an analysis impossible. 

The results of the current study, and those from the literature show that there are 

complex interactions between abiotic soil environment effects (soil moisture) and 

biotic effects (microbial suppression / competition), which prevent a direct evaluation 

of studies in contrasting systems. It is also likely that the nutrient content of the 

decomposing substrate and the nutrient status of the soil are important (Dighton et 

al., 1987; Dormaar 1990), factors not measured during the current work, but which 

warrant further consideration. Pickles et al. (2010) used spatial analysis to investigate 

the distribution of individual species of mycorrhizal fungi in the field and found that it 

is extremely patchy, and that the distribution changes considerably over time. This 

highly dynamic nature of microbial community distribution is likely to create real 

difficulty when trying to draw out mechanisms of control of decomposition within and 

between different systems. 

In terms of understanding what caused the ‘Gadgil effect’, further work needs to be 

done and comparisons need to be made between average, wet and dry years. In an 

ideal world, an experiment such as the current work, with control for water uptake by 
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roots and ECM fungi should be conducted at the original field site in New Zealand. It 

would also be useful if papers reporting results from litter decomposition studies are 

uniform in terms of including the mass of litter prior to the start of the experiment and 

at the end, allowing easy comparison between studies, and also provide more 

comprehensive meteorological data. 

Measurements of litter mass loss only constitute one method for estimating the level 

of decomposition taking place in forest soils. Though the results of the current 

experiment demonstrated that there was no difference in the rate of litter mass loss 

between the different soil collar treatments, the same may not be true for soil organic 

matter (SOM) decomposition as a whole. In Chapter 3, results from regular surveys of 

soil CO2 efflux taken from the 24 soil collars will be presented alongside some results 

from periods when high resolution measurements of soil CO2 were taken using an 

automated system. These results allow a comparison of the activity of the soil 

microbial community between the different mesh collar treatments, and an 

investigation of the influence of correction for water uptake by roots, and 

environmental factors on soil respiration.  
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Chapter 3 Forest soil CO2 efflux measurements with controlled soil 

moisture 

3.1 Introduction 

Measurements of soil respiration are a proxy for measurements of decomposition and 

biological activity, giving an indication of the number of viable organisms active in a 

system (Song et al., 1986; Panikov, 1999; Margesin et al., 2000). There has been 

considerable recent interest in the links and feedbacks between above ground and 

below ground carbon cycling (Högberg et al., 2001; Subke et al., 2004; Vallack et al., 

2012). Above ground activity, determining plant-derived C inputs to the soil, whether 

through leaf/needle litter or through root exudates/turnover has strong links with 

below ground processes, governing microbial activity in the soil, and this biological 

activity is reflected in the amount of C released through respiration (Kuzyakov & 

Domanski, 2000).  

Subke et al. (2006) identified the following sources of CO2 from the soil: (A) root 

respiration (from growth and maintenance of roots), (B) rhizomicrobial respiration 

(heterotrophic decomposition of live root-derived carbohydrates), (C) decomposition 

of fresh organic matter (FOM) such as surface litter, (D) decomposition of old soil 

organic matter (SOM), including priming of SOM decomposition following input of 

labile substrates, (F) weathering of soil carbonates. Consequently, soil CO2 efflux (Rs) is 

a complex flux with contributions from a variety of sources (Sulzman et al., 2005). 

However, it is difficult to separate and study all the contributing fluxes to soil CO2 

efflux simultaneously, and generally, when studies separate soil CO2 efflux into 

component fluxes, they measure autotrophic respiration (Ra), and heterotrophic 

respiration (Rh). Ra includes CO2 derived from the respiration of plant assimilate-

derived C by roots, and the respiration of microorganisms directly associated with 

roots in the rhizosphere, including mycorrhizal fungi. Rh includes CO2 derived from the 

decomposition of FOM such as leaf/needle litter and SOM carried out by 

microorganisms, and soil animals (Kirschbaum, 2005). When CO2 data are used in a 

modelling context, feedbacks between the soil components are usually ignored, for 

example with the potential priming of the decomposition of SOM by labile substrates 



 

96 
 

 

in litter and root exudates (Kuzyakov, 2002; Subke et al., 2004). Another problem is 

that by only separating out Rs into Ra and Rh, and not their component parts, there is 

the potential that full understanding of the control of the contributors to Ra and Rh by 

abiotic factors is not properly established. However, some individual studies have 

attempted to subdivide Ra and Rh (eg. Taneva & Gonzalez-Meler, 2012). Albanito et al. 

(2012) studied the contribution of Ra and Rh to Rs using inherent differences in δ13C of 

the fluxes from the various sources, and a three-way mixing model. These authors 

were able to further separate out Rh into the contributions from litter decomposition, 

and the component flux from the decomposition of older SOM. Through the use of 

labelled litter, Rubino et al. (2010) found that over a period of 11 months, 30% of the 

mass loss of C from litter was released as CO2, and the rest of the C was incorporated 

into SOM. Fahey et al. (2005) have also attempted to separate root and rhizosphere-

derived components of Ra using a mass balance approach, incorporating data on root 

turnover rate and root respiration from excised roots in a hardwood system. Other 

attempts have been made to separate the components of Ra, and gain an estimate of 

the contribution of rhizomicrobial respiration (from microorganisms such as ECM fungi 

in the rhizosphere) to Rs using pulse-labelling of ECM seedlings in pots, data from the 

respiration of excised roots, and mass balance calculation (Fahey et al. 2005; Phillips & 

Fahey, 2005) but these methods are subject to a high degree of estimation and error.  

ECM fungi are important contributors to the global carbon cycle as along with other 

tree species, they form symbioses with the Pinaceae, species of which make up boreal 

and temperate coniferous forests in the northern hemisphere (Smith & Read, 1997; 

Hilszczańska et al., 2011). Heinemeyer et al. (2007) were the first to measure the 

contribution of ECM fungi to Rs in the field, in a 6 month experiment, divided into 

three measurement campaigns. This research was conducted in the same Pinus 

contorta stand in Wheldrake Forest used in the current work, with the same collar 

exclusion collar design. During their third measurement campaign, Heinemeyer et al. 

(2007) showed that Rh contributed 65% to Rs, and that Ra contributed 35%. They were 

able to show that the % contribution of ECM hyphae to Rs at Wheldrake forest in 

November to December 2005 was considerable (25%), and higher than that of roots, 

which contributed only 10%. Importantly, Heinemeyer et al. (2007) also demonstrated 
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that Rh and the components of Ra (roots and ECM hyphae) responded differently to 

environmental controlling factors. For example, they found that Rh was more affected 

by temperature than the mycorrhizal component of Ra.  They also found that during a 

drought period, there was a decrease in respiration from both soil heterotrophs and 

mycorrhizal hyphae, but that the mycorrhizal flux contribution was particularly 

reduced, recovering quickly with the onset of rainfall.  

Soil moisture is an important factor in forest soils, and along with temperature, is a key 

determinant of the rate of decomposition and release of C (Moyano et al., 2012). Soil 

water films critically allow the diffusion of extracellular enzymes involved in substrate 

breakdown through the soil medium (Steinweg et al., 2012). Therefore, during drought 

or freezing conditions, a decrease in decomposition and, hence a reduction in CO2 

release would be expected. On the other hand, the enzymes associated with anaerobic 

respiration generally catalyse reactions at a slower rate than those used in aerobic 

respiration, therefore, when soils become water-logged there is also a decrease in CO2 

efflux (Davidson & Janssens, 2006). Davidson et al. (1998) studied the effect of 

different levels of soil drainage on soil CO2 efflux at six different sites and found that 

the better drained soils had higher rates of soil CO2 efflux. However, a drought event 

caused a big decline in soil respiration rates during the summer months in five sites, 

but had no influence on soil CO2 efflux from a swamp site.  

Linn & Doran (1984) observed that non-tilled soils which had a higher percentage of 

water filled pores (% WFP) had higher soil CO2 efflux when compared to ploughed soils 

which had a lower % WFP, though water-soluble C was also found to be important in 

determining CO2 efflux. They found that below 60% WFP, soil moisture limited 

decomposition, but above 60%, restrictions in the diffusion, and availability of oxygen 

decreased the rate of decomposition. In two laboratory experiments using trenched 

and control soils, Fischer and Gosz (1986) found that there were significant moisture 

differences between trenched and control soils, and that once these moisture 

differences were eliminated, there was no difference in the soil CO2 efflux from 

trenched versus control soils. 
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As was outlined in Chapter 2, soil moisture differences caused by water uptake by 

roots was  offered as an explanation for the decrease in litter decomposition observed 

in control soils when compared to soils where roots had been cut, during the work of 

Gadgil & Gadgil (1971; 1975) by Koide & Wu (2003) and Subke et al. (2004). One of the 

main criticisms of excluding roots from soil to separate out the various components of 

Rs is that plots without active roots generally have higher soil moisture contents than 

control soils. This difference in soil moisture would be expected to affect soil 

respiration, leading to an over-estimation of Rh, and an underestimation of Ra. Water 

uptake by roots in non-trenched soils could potentially be decreasing soil moisture to a 

degree that would decrease Rs through decreasing Rh and, possibly the mycorrhizal 

component. This may have occured during the work of Heinemeyer et al. (2007) who 

did not measure or consider soil moisture differences between their treatments. 

However, their third measurement campaign was carried out during November and 

December, so any moisture differences caused by trenching would not be expected to 

be as severe as they would be during the summer months. 

The current experimental set-up was designed primarily to test the hypotheses 

outlined in Chapter 2 (see Section 2.1). However, the control of soil moisture involved 

in the litter decomposition experiment also allowed a unique opportunity to study the 

effect of surface soil moisture differences on the various components of Rs. Few data 

are available concerning the contribution of ECM hyphae to forest soil carbon cycling, 

and to our knowledge, a direct correction of water uptake by roots in the field and a 

study of how the localised decrease of soil moisture in the presence of roots affects 

decomposition has not been attempted. 

The aim of the current work was primarily to investigate the influence that soil 

moisture has on soil CO2 efflux, and its component fluxes from roots, mycorrhizal 

hyphae and free-living soil heterotrophs. By running over two summers, the current 

study also gave greater information about the seasonality of the contributions from 

the various flux components. A major difference between the current work, and that 

of Heinemeyer et al. (2007) is that they used high resolution hourly data throughout, 

compared in the current work, where conclusions were drawn from fortnightly 

measurements of soil CO2 efflux obtained using a hand-held CO2 survey system. For 



 

99 
 

 

this reason it was decided to make a short-term comparison of data from an 

automated system (after Heinemeyer et al., 2007) and the hand-held soil CO2 survey 

system. During the current work, the following hypothesis was tested: 

The correction of soil moisture differences between soil where roots and / or ECM 

fungi are present, and where they have been excluded will result in an increase in Rs. 
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3.2 Materials and methods 

3.2.1 Site description 

The study site was a 20 year old stand of Lodgepole pine (Pinus contorta, Douglas) as 

described for the litter decomposition experiment covered in Chapter 2, with details 

provided in section 2.2.1. 

3.2.2 Experimental treatment 

Twenty four soil collars, comprising 16 ‘deep’ soil collars (30 cm in height, hammered 

25 cm into the soil) and  8 ‘shallow surface’ collars were installed on 10th June 2008, in 

a randomised block design based on a survey of background CO2 efflux (for further 

details of this survey, and of soil collar construction, see section 2.2.1). 

A fortnight following collar installation, PVC shields were erected above the 24 soil 

collars, and weekly additions of average amounts of collected throughfall commenced 

(see section 2.2.2). 

Between 10th June 2008 and 9th April 2009, there were effectively three treatments 

(RMS, MS and S, n=8). Following a survey of soil CO2 efflux on 25th November 2008, 

replicates of treatments RMS, MS and S were ranked, and this ranking used to assign 

the 8 replicates in each collar type to the ‘corrected’ (receiving additional water from 

the automated irrigation system) and ‘non-corrected’ (control) treatments. This 

subdivision created an additional three treatments, and following the installation of 

the automated irrigation system on 9th April 2009, consequently four replicates each 

of RMS, MS and S. The new treatments are referred to as RMS(W), MS(W) and S(W), 

respectively, the (W) designated to describe ‘corrected’ water. For a summary of the 

six treatments, see Table 2.1. 

3.2.3 Hand-held surveys of soil CO2 efflux  

Following collar installation, regular hand-held surveys of soil CO2 efflux were carried 

out prior to watering, on a roughly fortnightly basis between 17th June 2008 and 27th 

October 2010, using a Li-8100 infra-red gas analyser (IRGA) with an 8100-103 20 cm 

survey chamber (Li-Cor Bioscience, Lincoln, NE, USA) (see Fig. 3.1). Measurements 
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Fig. 3.1 (A) A photograph taken during a hand-held survey of soil CO2 efflux showing 
the Li-Cor Li-8100 infrared gas analyser with an 8100-103 20 cm survey chamber in 
position on top of one of the PVC soil collars in the Pinus contorta stand at Wheldrake 
Forest (B) Schematic taken from www.licor.com showing the Li-8100 system 
configuration. 

                                                                                                                                                                   

A 
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were always taken shortly after midday, (between 12:00 hrs and 15:00 hrs), and 

always in the same order, which included a random ordering of the six treatments. 

During each measurement, the survey chamber was closed for 2 minutes (a short 

enough time to limit any effects of the closed chamber on CO2 diffusion gradients), 

during which time the rate of increase of CO2 was measured by the Li-Cor software 

using both CO2 and H2O concentrations. The Li-Cor software offers two options, either 

a linear or polynomial function can be fitted to CO2 vs. time data.  As the polynomial is 

sensitive to the length of time of the measurement, for the current work, the linear 

function was selected (see Li-Cor, 2005). A dead-band of 10 seconds was set, so that 

the period immediately following the positioning of the survey chamber on each collar, 

and the chamber closing, was excluded from the flux calculation, thereby allowing time 

for stable mixing to be established prior to the start of the measurement. Care was 

taken not to breathe in close proximity to the chamber when it was closing, or to 

remain standing on soil within one metre of the chamber, as this could cause increased 

release of CO2 from the soil, and an overestimation of the flux. 

3.2.4 Automated hourly measurements of soil CO2 efflux 

Continuous hourly measurements of soil CO2 efflux were taken using an automated 

soil CO2 efflux measurement system, comprising a Li-cor 8100 IRGA, linked via a 

custom made multiplexer unit (Electronics Workshop, Department of Biology, 

University of York) to 12 automatic 8100-101 long-term chambers. This system was 

deployed for two measurement ‘Runs’. Run 1 took place between 14th October 2009 

and 26th October 2009, where the 12 automated chambers were positioned on  top of 

four replicates each of treatments RMS, MS and S (the ‘non-corrected’ collars, see 

Section 2.2.3). Run 2 took place between 28th October 2009 and 16th November 2009, 

where the 12 automated chambers were re-positioned on top of four replicates of 

treatments RMS(W), MS(W) and S (the ‘corrected collars’, see Section 2.2.3). During 

each measurement, the chamber was closed for 3 minutes during which time the rate 

of increase of CO2 was measured by the Li-Cor software using both CO2 and H2O 

concentrations. Again, a dead-band of 10 seconds was set, so that the period 

immediately following the positioning of the survey chamber on each collar, and the 

chamber closing, was excluded from the flux calculation, thereby allowing time for 
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stable mixing to be established prior to the start of the measurement. Once the 

measurement had finished, the chambers opened automatically, and remained open, 

so that the presence of the chamber did not affect soil processes. 

3.2.5 Measurement of environmental parameters 

For details of the measurements of soil temperature, and of hand-held soil moisture 

surveys refer to Section 2.2.6. 

Measurements of regional light intensity (lux) and air temperature (oC) were logged 

from four replicate sensors (HOBO Pendant temperature/light data logger Model: UA-

002-64, Tempcon Instrumentation Ltd, Sussex, UK), suspended using cable ties from 

the top of 6 ft seedlings in the middle of a nearby stand (to avoid shading of the 

sensors by mature trees). 

3.2.6  Data analysis 

Linear regressions calculated by the in-built Li-Cor version 2 software were visually 

inspected, and where the date were ‘noisy’ and the coefficient of variation was large, 

occasionally measurements were excluded from later analysis.  Each flux was corrected 

according to the individual collar it was measured from, as collars differed slightly in 

terms of their height above the soil surface (5 ± 1 cm), which affected the total volume 

over which the flux values were calculated (see Li-Cor, 2005) . 

The experiment followed a randomised block design, and a variety of statistical 

approaches were used during data analysis. Where possible, parametric analyses were 

carried out but generally sample distributions deviated from normal so data were 

transformed where possible or the equivalent non-parametric tests were carried out, 

usually Friedman’s non-parametric two-way ANOVA with Post-hoc analyses using 

Duncan’s multiple range test (see Section 2.3.2 for a description of how the data were 

averaged to avoid pseudo replication). Further specific information regarding the use 

of different statistical tests is detailed in the Results section. All statistical tests were 

carried out using SAS software package v. 9.3 (SAS Institute Inc., Cary, NC, USA). 
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Overall percentage flux contributions from roots (see Eq. 3.1), ECM hyphae (see Eq. 2), 

and soil heterotrophs (Rh) (see Eq. 3) to total soil respiration (Rs) were calculated using 

the method of Heinemeyer et al. (2007). This process was repeated for the treatment 

RMS(W) and MS(W) collars, and for all treatments during summers 2009 and 2010 (1st 

June-30th Sept), and also for winter 2009/2010 (1st Nov-28 Feb). 

 

Root% = �
(RMS flux − MS flux)

RMS flux
�  X 100                 ( Eq. 3.1) 

                       

 

ECM% = �
(MS flux − S flux)

RMS flux
�  X 100                       (Eq. 3.2) 

 

Soil heterotroph % = �
S flux

RMS flux
�  x 100                 ( Eq. 3.3) 

 

where RMS flux is the average soil CO2 efflux measured during hand-held surveys from 

treatment RMS, MS flux is the average soil CO2 efflux from the treatment MS collars, 

and S flux is the average soil CO2 efflux measured during hand-held surveys from 

treatment S collars. 

3.2.7 Correlation between CO2 fluxes and environmental variables 

Individual simple correlations and a forward stepwise multiple regressions (SAS v 9.3) 

were used to assess whether environmental factors could explain any variation in soil 

CO2 efflux.  These environmental factors included soil temperature at depths of 5 cm, 

soil moisture content, and light intensity. For the forward stepwise multiple regression, 

the significance level for entry into the model was set at 0.05.  
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3.3 Results 

3.3.1  Hand-held surveys of soil CO2 efflux prior to installation of the automated 

irrigation system 

At the first hand-held survey of soil CO2 efflux, conducted seven weeks following collar 

installation, there was already a clear difference in the soil CO2 efflux between 

treatments RMS, MS and S. The greatest CO2 efflux was measured from total soil 

collars where neither roots nor mycorrhizal fungi had been excluded (treatment RMS) 

followed by where roots had been excluded (treatment MS), with the lowest flux 

values measured from the collars where roots and mycorrhizal hyphae had been 

excluded (treatment S). These treatment effects had a seasonal trend, being most 

pronounced during the summer months (see Fig. 3.2).   

The annual cumulative soil CO2 efflux was calculated for each of the 24 soil collars 

prior to the installation of the automated irrigation system (see Fig. 3.3). Results of 

Friedman’s two-way ANOVA with treatment and block as factors showed that there 

was a highly significant difference between the soil collar treatments for average 

cumulative soil CO2 efflux (F= 27.52, p < 0.0001). Post-hoc analysis (Duncan’s multiple 

range test) showed that treatments RMS, MS and S were all significantly different from 

each other (see Fig. 3.3). There were no inherent significant differences between the 

collars of treatment RMS, and those which were later to become treatment RMS(W), 

once the automated irrigation system was installed. The same was true for the 

treatment MS collars, and those collars soon to be allocated to treatment MS(W), and 

also for the collars of treatments S and S(W).  

3.3.2  Hand-held surveys of soil CO2 efflux following the installation of the 

automated irrigation system 

Fig. 3.4 shows the soil CO2 efflux over time from all six treatments following 

installation of the automated irrigation system, and as with the data prior to 

automated irrigation, there were clear treatment differences, which were more 

pronounced during the summer months. In order that the data be viewed more clearly 
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and to aid comparison, the data from the six treatments displayed in Fig. 3.4 have 

been separated out and re- 
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drawn over the next group of figures, beginning with the soil CO2 efflux from collars 

that did not receive additional water from the automated irrigation system, the ‘non-

corrected’ collars (treatments RMS, MS and S, see Fig. 3.5). There was a continuation 

of the treatment differences that were observed prior to the installation of the 

automated irrigation system, with treatment RMS collars consistently displaying the 

greatest soil CO2 efflux, followed by treatments MS and S.  

The same pattern was observed for the ‘corrected collars’, treatments RMS(W), MS(W) 

and S(W) during summer 2009, with treatment RMS(W) generally having a higher soil 

CO2 efflux than treatments MS(W) S and S(W) (see Fig. 3.6).  However, in contrast to 

the non-corrected treatments, during summer 2010, it would appear that the highest 

soil fluxes recorded during several of the hand-held CO2 surveys were from treatment 

MS(W). Treatment S(W), which had received the same amount of water from the 

automated irrigation system as treatment RMS(W), had a higher flux than the 

treatment S control collars, and on several occasions during summer 2010 had a higher 

average soil CO2 efflux than that of the treatment RMS(W) collars.   

A direct comparison of treatments RMS and RMS(W) (see Fig. 3.7) shows that 

generally, greater soil CO2 efflux was observed from treatment RMS than treatment 

RMS(W).The opposite was true for the mycorrhizal treatments, with a higher average 

soil CO2 efflux measured on most occasions from treatment MS(W) (see Fig. 3.8). As 

previously mentioned for Fig. 3.4, this treatment effect was especially pronounced 

during summer 2010, with treatment MS(W) having the highest flux of all the six collar 

treatments (see Fig. 3.8).  

Treatment S(W) collars had a consistently higher average soil CO2 efflux than 

treatment S collars, again, with the greatest differences observed during the summer 

months. As with treatment MS(W), the difference between S and S(W) appears to be 

greater for summer 2010, than it was for 2009 (see Fig. 3.9). 

The cumulative soil CO2 efflux was calculated using the results of the hand-held 

surveys of soil CO2 efflux for each of the 24 soil collars following the installation of the 

automated irrigation system (see Fig. 3.10). Results of a Friedman’s two-way ANOVA 

with block and treatment as factors showed that overall there was a significant  
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Fig. 3.10  Average cumulative soil CO2 efflux (mol m-2 yr-1) calculated following the 
installation of the automated irrigation system. Error bars represent ± 1 SE (n = 4), 
treatments which differ significantly have different letters. 
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difference between the treatments in terms of their average cumulative soil CO2 efflux 

(F= 6.33, p < 0.003).  

Fig. 3.10 clearly shows that overall, the greatest emissions of CO2 were from collars 

where roots were not excluded (treatments RMS(W) and RMS) and post-hoc analysis  

showed that there was no overall significant difference between these two 

treatments. The opposing trend in terms of the effect of irrigation on the CO2 efflux 

from the root and mycorrhizal collars mentioned previously (Figs. 3.7 and 3.8) can be 

seen clearly here. Treatment RMS appeared to have a higher cumulative soil CO2 efflux 

than treatment RMS(W), though this was not significant, and as there was a higher flux 

from the RMS collars prior to the establishment of the automated irrigation system, it 

is not possible to attribute this apparent difference in the root contribution to soil CO2 

efflux to correction for root water uptake via automated irrigation.  

For the mycorrhizal collars, the treatment effect observed prior to automated 

irrigation was reversed following the installation of the automated irrigation system, 

with the higher flux coming from MS(W), rather than MS (see Figs. 3.3 and 3.10). The 

difference between the cumulative soil CO2 efflux from treatments MS and MS(W) 

compared to treatment S suggests that with automated irrigation, the overall 

contribution of mycorrhizal hyphae to soil CO2 efflux is enhanced, compared to the 

mycorrhizal contribution from the non-corrected MS collars. However, the differences 

between treatments MS(W) and MS in terms of the cumulative soil CO2 efflux were 

not significant either prior to, or following the start of automated irrigation.  

Interestingly, despite roots and mycorrhizal hyphae being excluded, the average 

cumulative soil CO2 efflux from treatment S(W) was not significantly different from 

that of the root or mycorrhizal treatments. Treatment S(W) had a significantly higher 

CO2 efflux than that of treatment S (see Fig. 3.10).  

As the treatment differences in terms of soil CO2 efflux were most pronounced during 

the summer, the  average cumulative soil CO2 efflux for each of the treatments was 

recalculated for just the summer months (1st June to 30th Sept, 2009 and  1st June to 

30th Sept 2010, see Fig. 3.11). Results of Friedman’s two-way ANOVA with block and 

treatment as factors showed that there was a significant difference between the  
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treatments for both summer 2009 (F=10.13, p<0.0003) and summer 2010 (F=3.36 

p<0.04) for average cumulative soil CO2 efflux (see Fig. 3.11). 

The magnitude of the fluxes from all treatments was greater for summer 2010 than 

summer 2009, apparently driven by an increase in the underlying soil heterotrophic 

flux (treatment S) (see Fig. 3.11). The relationship between treatments RMS and 

RMS(W), with RMS having the higher soil CO2 efflux (though not significant), was 

maintained over the two summers. However, there was a clear difference between 

summer 2009 and 2010 in terms of the cumulative soil CO2 efflux measured from 

treatments MS and MS(W). The cumulative fluxes from treatments MS and MS(W) 

during summer 2009 were not significantly different. However for summer 2010, the 

average cumulative flux from the MS(W) collars was significantly greater than that 

from the MS collars, and unlike 2009, it was not significantly different from the 

cumulative fluxes from treatments RMS and RMS(W). There was also a significant 

difference in the cumulative soil CO2 efflux between the treatment S(W) and S collars 

in summer 2010 that was not present during summer 2009. In 2010, as was seen for 

the MS(W) treatment collars, the soil CO2 efflux from the S(W) collars did not differ 

from that of the RMS and RMS(W) collars.  

Figs. 3.5 and 3.6 show that during the winter months, fluxes from both the corrected 

and non-corrected treatments had decreased relative to the fluxes measured during 

the summer months, and that any differences between the treatments were smaller 

(see Figs. 3.5 and 3.6). The average cumulative soil CO2 efflux was calculated for each 

of the six treatments for just the winter months (1st Nov to 28th Feb) in 2009 and 2010 

(see Fig. 3.12). There was a similar treatment effect to that observed during summer 

2010, but the magnitudes of all the fluxes was smaller, and the difference between the 

treatments was not significant (F = 2.38, p>0.08). Treatments S and MS had higher 

cumulative fluxes relative to the other treatments than they did during summer 2009 

and summer 2010. Treatments MS(W) and S(W) had also increased relative to the 

other treatments, compared to during summer 2009, however, unlike treatments S 

and MS the higher relative cumulative fluxes remained during summer 2010 (see Figs 

3.11 and 3.12).  
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Fig. 3.12  Average cumulative soil CO2 efflux (mol m-2 period-1) calculated for the six 
soil collar treatments for winter 2009/10 (1st Nov 2009 – 28th Feb 2010). Error bars 
represent ± 1 SE (n = 4), treatments which differ significantly have different letters. 
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In order to assess whether there was an interaction between the soil collar treatments 

and the watering treatments (i.e. whether the collars received water via the 

automated irrigation system), the Friedman’s two-way ANOVA were repeated, only 

this time with soil collar treatment (RMS, MS or S) and water correction treatment 

(‘corrected’ or ‘non-corrected’) as factors. The data were not normal, and 

transformation to achieve normality was not possible. As there was no appropriate 

non-parametric alternative to a three-way ANOVA available, it was decided to perform 

a Friedman’s non-parametric two-way ANOVA, ignoring the block. 

Overall, there was no significant interaction between the collar treatments and 

whether they received additional water correction via the automated irrigation system 

(F=2.05, p>0.15). When the analysis was repeated for just summer 2009, again the 

interaction was not significant (F=0.96, p>0.4). However for summer 2010, though the 

difference between the soil collar treatments RMS, MS and S was not significant 

(F=1.18, p>0.32), there was a significant interaction between the treatment collar type 

and whether it received additional water correction via the automated irrigation 

system or not (F=3.77, p<0.05).  

Table 3.1 shows the contributions (%) of roots, mycorrhizal hyphae (Ra flux 

components) and background soil heterotrophs (Rh) to the total cumulative soil CO2 

efflux (Rs), and also their contributions for just summer 2009, summer 2010 and 

winter 2009/2010. For the non-corrected treatments (RMS, MS and S), the overall 

contribution of roots, mycorrhizal hyphae and background soil heterotrophs to Rs 

were, 31.2%, 12.8% and 56.0% respectively. The % contributions from roots and 

mycorrhizal hyphae were less for summer 2010 than for summer 2009, with an 

increase in the % flux derived from background soil heterotrophs (Rh), reflecting the 

greater increase in the soil CO2 efflux from treatment S between summer 2009 and 

summer 2010, than for treatments MS and RMS (see Fig. 3.11). The % contribution of 

roots to total soil CO2 efflux in the non-corrected treatments fell from 35.5% in 

summer 2009, to 17% in winter 2009/2010.  Though the fluxes during winter were 

evidently smaller (see Fig. 3.5), the relative contribution of mycorrhizal hyphae 

remained fairly constant between summer 2009 and winter 2009/2010, though the 

mycorrhizal hyphal component appeared to contribute less to Rs in summer 2010.   
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Table 3.1  Average contribution of roots, mycorrhizal hyphae and background soil 
heterotrophs to the cumulative soil CO2 efflux (mol m-2 yr-1) following the installation 
of the automated irrigation system, and also for summer 2009 (June- Sept), summer 
2010 (June-Sept) and winter 2009/10 (Nov-Feb) for both the non-corrected (RMS, MS 
and S) and corrected (RMS(W), MS(W)) treatments. Values are percentages, calculated 
using the method of Heinemeyer et al. (2007). 

*calculated using MS(W) as the underlying mycorrhizal flux component 

**calculated using MS as the underlying flux component, for comparison 

  

 
% Contribution to total soil CO2 efflux 

  
Overall  

 
Summer 

2009 

 
Summer 

2010 

 
Winter 
2009/10 

 
Non corrected treatments (RMS, MS, S) 

 
roots 

 
31.2 

 
35.5 

 
26.6 

 
17.0 

 
mycorrhizal hyphae 

 
12.8 

 
16.0 

 
11.3 

 
16.3 

 
background soil 
heterotrophs (Rh) 
 
autotrophic respiration 
(Ra) 

 
56.0 

 
 

44 

 
48.5 

 
 

51.5 

 
62.0 

 
 

37.9 

 
65.7 

 
 

33.3 

 
 

    

Corrected treatments (RMS(W), MS(W), S) 
 
roots * 
 
roots** 

 
7.0 

 
19.1 

 
25.7 

 
25.8 

 
-14.0 

 
17.2 

 
-0.5 

 
7.6 

 
mycorrhizal hyphae 

 
27.2 

 
18.5 

 
44.0 

 
26.4 

 
background soil 
heterotrophs (Rh) 
 

 
         65.9 

 
55.8 

 
70.0 

 

 
74.1 
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The high cumulative MS(W) flux, relative to the RMS(W) in 2010 previously discussed 

(see Figs. 3.6 and 3.11) resulted in a high  % contribution of mycorrhizal hyphae to the 

Rs for the corrected collars, and a low value for the % contribution of roots to Rs (7 % 

compared to treatment RMS, which contributed 31.2%). Because of the high MS(W) 

collar flux,  the contributions from roots during winter 2009/2010 and summer 2010 

were calculated as being negative (-0.5 % and -14.0 %, respectively). For comparison, 

the % contribution of roots from treatment RMS(W) was recalculated using the 

mycorrhizal contributions from the MS, rather than MS(W) treatment, this resulted in 

a % contribution of 19.1 % overall, and more reasonable flux values for summer 2009, 

summer 2010 and winter 2009/2010 (25.8 %, 17.2 % and 7.6 %, respectively). Because 

the RMS(W) cumulative flux was lower than the RMS cumulative flux (see Fig. 3.11) the 

% flux component from background soil heterotrophs was increased for the irrigated 

treatments compared to the non-irrigated treatments.  

3.3.3 Soil moisture content 

Analysis of the soil moisture contents of the six collar treatments are covered in detail 

in Section 2.3.3, and are summarised in the current section. Figs. 2.12, 2.13 and 2.14 

show that over the year, the soil moisture measured during the hand-held soil 

moisture surveys varied, with the greatest differences between the treatments being 

observed during the summer months. Generally, there was little difference between 

treatments S, MS and MS(W) in terms of soil moisture content. However, during the 

summer months, there was a dramatic decrease in the soil moisture content measured 

from treatments RMS, and to a lesser extent RMS(W) (see Fig. 2.13).  

Fig. 3.13 (a copy of Fig. 2.16 added to this Section for ease of reference) shows that 

overall, there was a decrease in the average soil moisture contents of all six treatments 

between summer 2009 and summer 2010, which is the opposite of what occurred in 

terms of the soil CO2 efflux (see Fig. 3.11). Despite problems with the automated 

irrigation system in summer 2009, there was no significant difference between 

treatments RMS(W) and S for both summer 2009 and 2010 in terms of the average soil 

moisture contents, though there was a significant difference between treatments RMS 

and S.  
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Treatment RMS, which had the lowest soil moisture content of all the treatments 

during summers 2009 and 2010 (see Fig. 3.13), had the highest cumulative soil CO2 

efflux in 2009, and the second highest in summer 2010 (see Fig. 3.11). This seemingly 

negative effect of soil moisture on soil CO2 efflux was also demonstrated by 

treatments MS(W) and MS. In summer 2010, the average soil moisture content was 

lower (though not significantly) for treatment MS(W) than treatment MS (see Fig. 

3.13), but the average cumulative soil CO2 efflux from treatment MS(W) was higher 

than that of all the other treatments, and significantly higher than the cumulative soil 

CO2 efflux from treatment MS (see Fig. 3.11).  

Treatment S(W) had a higher soil moisture content than all the other treatments 

during both summers, as it was receiving the same level of water correction from the 

automated irrigation system as treatment RMS(W), whilst not having any soil water 

uptake by roots (see Fig 3.13). There was no significant difference in terms of soil 

moisture between treatments S(W) and S for summer 2009 or summer 2010. 

However, this was not mirrored by the cumulative soil CO2 efflux, where there was a 

much higher average flux measured from treatment S(W) than S during summer 2010, 

compared to summer 2009 (see Fig. 3.11).  

During winter 2009/2010, the average soil moisture contents from the six treatments 

were very similar, and the difference between the treatments was not significant (F = 

1.24, p>0.3, see Fig. 3.14). For treatments MS, MS(W) S and S(W), the average soil 

moisture contents were slightly higher during winter 2009/2010 than during the two 

summers. However treatments RMS and RMS(W) had a noticeably higher average soil 

moisture contents during the winter months than during  summers 2009 and 2010.  

The differences between the treatments in terms of soil CO2 efflux for winter 2009/10 

were not significant (F= 2.38, p>0.08, see Fig. 3.12), but, treatment RMS had a higher 

cumulative soil CO2 efflux than the other treatments, and treatment S had the lowest 

cumulative soil CO2 efflux of all the treatments despite all treatments having similar 

average soil moisture contents. So, as for the data from summers 2009 and 2010, the 

variation in the soil CO2 efflux did not appear to reflect what was happening in terms 

of the soil moisture contents (see Figs. 3.12 and 3.14). 
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Fig. 3.14  Average soil moisture contents (% gravimetric) for the six soil collar 
treatments calculated from hand-held soil moisture surveys during winter 2009/10 (1st 
Nov – 28th Feb). Error bars represent ± 1 SE (n = 4). Treatments which differ 
significantly have different letters. 
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In order to ascertain whether there was any association between the soil CO2 efflux 

and the soil moisture measured during hand-held surveys for the whole period 

following the installation of the automated irrigation system, these data were natural 

log- transformed to achieve normality, then the average soil CO2 efflux per 

measurement day was plotted against the average soil moisture (% gravimetric) 

measured on the hand-held CO2 efflux survey days for each of the six treatments 

individually (see Fig. 3.15), then a Pearsons product-moment correlation was carried 

out (see Table 3.2). The associations between soil moisture content (% gravimetric) 

and the soil CO2 efflux measured from treatments RMS and MS were non-significant. 

There were weak, but significant negative associations between the average soil CO2 

efflux and the average soil surface moisture contents for treatments MS(W), S(W), S 

and RMS (see Fig. 3.15 and Table 3.2). 

3.3.4 Temperature and Light intensity 

Environmental data measured during the period following installation of the 

automated irrigation system is displayed in Fig. 3.16, and show clear seasonal trends. 

This seasonal change in average soil surface temperature is reflected by the soil CO2 

fluxes displayed in Figs. 3.4 to 3.9, with the higher average temperatures measured 

during the summer months, coinciding with the highest soil CO2 fluxes. The maximum 

daily soil temperature was also recorded, and used in subsequent correlations (see 

Table 3.2), but as it showed a similar pattern to the average daily temperature it is not 

displayed in Fig. 3.16. 

Data were transformed where necessary to achieve normality and scatter plots were 

produced to show any associations between the soil CO2 efflux measured on hand-

held survey days for the different treatments, and environmental variables logged on 

the same days including: the average soil surface temperature at a depth of 5 cm (see 

Fig. 3.17), the maximum soil surface temperature at a depth of 5 cm (see Fig. 3.18), the 

average air temperature measured above the canopy (see Fig. 3.19) and the average 

light intensity measured above the canopy (see Fig. 3.20). These scatter plots show 

that there appears to be a positive association between soil CO2 efflux and soil 

temperature, and that there are variations between the different treatments.  As with  
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Table 3.2  Results of Pearson product-moment correlations to investigate any 
association between the average soil CO2 efflux measured from the six soil collar 
treatments and environmental variables. 

 

 

 

  

 
Average soil moisture (% gravimetric) 

 

 
 
S 

 
S(W) 

 
MS 

 
MS(W) 

 
RMS 

 
RMS(W) 

R2 0.2 0.27 0.05 0.32 0.02 0.13 
Sig. p<0.008 p<0.001 p>0.18 p<0.0005 p>0.36 p<0.04 

 
Daily average soil temperature at a depth of 5 cm (oC) 

  
S 

 
S(W) 

 
MS 

 
MS(W) 

 
RMS 

 
RMS(W) 

R2 0.48 0.48 0.57 0.48 0.65 0.64 
Sig. p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 
 

Daily maximum soil temperature at a depth of 5 cm (oC) 
  

S 
 
S(W) 

 
MS 

 
MS(W) 

 
RMS 

 
RMS(W) 

R2 0.44 0.46 0.53 0.48 0.61 0.59 
Sig. p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 

 
Daily mean air temperature above the canopy (oC) 

  
S 

 
S(W) 

 
MS 

 
MS(W) 

 
RMS 

 
RMS(W) 

R2 0.58 0.59 0.50 0.53 0.64 0.58 
Sig. p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 

 
Daily mean light intensity above the canopy (Lux) 

  
S 

 
S(W) 

 
MS 

 
MS(W) 

 
RMS 

 
RMS(W) 

R2 0.08 0.08 0.06 0.07 0.17 0.10 
Sig. p>0.1 p>0.1 p>0.15 p>0.15 p<0.02 p>0.08 



 

128 
 

 

 

Fig. 3.15  Correlations between the natural log of the average soil CO2 efflux (µmol m-2 
s-1) and the natural log of the average soil moisture contents (% gravimetric) for 
treatments S, S(W), MS, MS(W), RMS and RMS(W). Each point is the mean of 4 values. 
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Fig. 3.17  Correlations between the natural log of the average soil CO2 efflux (µmol m-2 
s-1) for treatments S, S(W), MS, MS(W), RMS and RMS(W) and the exponential of the 
mean soil temperature at a depth of 5 cm (oC) measured on the hand-held CO2 efflux 
survey days. Each point is the mean of 4 values. 
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Fig. 3.18  Correlations between the natural log of the average soil CO2 efflux (µmol m-2 
s-1) for treatments S, S(W), MS, MS(W), RMS and RMS(W) and the exponential of the 
maximum soil temperature at a depth of 5 cm (oC) measured on the hand-held CO2 
efflux survey days. Each point is the mean of 4 values. 
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Fig. 3.19  Correlations between the natural log of the average soil CO2 efflux (µmol m-2 
s-1) for treatments S, S(W), MS, MS(W), RMS and RMS(W) and the mean air 
temperature (oC) above the canopy measured on hand-held CO2 survey days. Each 
point is the mean of 4 values. 
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Fig. 3.20  Correlations between the natural log of the average soil CO2 efflux (µmol m-2 
s-1) for treatments S, S(W), MS, MS(W), RMS and RMS(W) and the natural log of the 
mean light intensity (lux) above the canopy on hand-held CO2 survey days. Each point 
is the mean of 4 values. 
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the soil moisture contents, Pearson product-moment correlations were carried out to 

assess the degree of association. The co-efficient of determination (R2) values 

obtained, and the significance of the relationship between the variables for each 

treatment are also displayed in Table 3.2. 

The results displayed in Table 3.2 show that temperature appears to be more 

important in terms of driving soil CO2 than soil moisture, for all six treatments. Water 

correction from the automated irrigation system did not appear to influence the 

strength of the various correlations, with the corrected and non-corrected collars from 

each soil collar type being relatively similar in terms of the strength of correlation 

between the temperature measurements and soil CO2 efflux, apart from in the case of 

treatments MS and MS(W). Soil CO2 efflux from treatment MS(W) tended to have a 

lower correlation than the soil CO2 efflux from treatment MS to temperature, with 

correlation similar to that of treatments S and S(W). However, soil CO2 efflux 

measured from treatment MS(W) did have a higher correlation with air temperature 

than the soil CO2 efflux measured from treatment MS.  The soil CO2 efflux from 

treatments S and S(W) tended to have the lowest correlations with mean and 

maximum soil temperature at a depth of 5 cm, but had higher correlations with mean 

air temperature than treatments MS and MS(W). The correlations between the soil 

CO2 efflux measured from treatments RMS and RMS(W), and the various temperature 

measurements, were the highest of all the soil collar types, and were similar to each 

other. Therefore, from the individual correlations (see Table 3.2) the difference in the 

strength of the associations between total soil CO2 efflux (Rs) (R2 = 0.65), and soil 

temperature, and that of the correlations for treatments MS and S (R2= 0.57, R2 = 0.48, 

respectively) indicates that both Rh (treatment S) and Ra were positively correlated 

with soil temperature, and that the correlations were stronger for Ra than Rh. From 

the separation out of the flux components of Ra, root respiration would appear to have 

a higher correlation with soil temperature than mycorrhizal respiration. 

There were weak correlations between the soil CO2 efflux measured from treatments 

MS, MS(W), S and S(W) and  light intensity measured above the canopy. There was a 

slightly stronger association between the soil CO2 efflux from treatments RMS and 

RMS(W) with light intensity, which was significant in the case of treatment RMS (R2 = 
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0.17, p<0.02), indicating that root respiration was more influenced by light intensity 

than mycorrizal or soil heterotrophic respiration (Rh). 

In order to formally assess the relative importance of the relationship between soil 

CO2 efflux from the six treatments, and the environmental variables shown in Table 

3.2, where necessary, data were transformed to achieve normality and a forward 

stepwise multiple regression was carried for each treatment individually.  The results 

of the forward stepwise multiple regression displayed in Table 3.3 show that the 

treatments differ in the environmental variables deemed most influential in driving the 

soil CO2 efflux by the model, with the mean soil temperature (5 cm depth) being the 

variable most highly related to the soil CO2 efflux for the corrected treatments RMS, 

RMS(W) and MS and the mean daily air temperature above the canopy explaining the 

most variation in soil CO2 efflux from treatments  S, S(W) and MS(W). These results, 

along with the results from the individual correlations suggest that temperature is 

generally positively associated with soil CO2 efflux for all six of the soil collar 

treatments, with the association being slightly stronger for treatments RMS and 

RMS(S) than for the other treatments, suggesting that the root component of 

autotrophic respiration (Ra) is  more influenced by temperature than the other 

components of Rs.  

Lagged Pearson product-moment correlations were carried out to see if there was a 

stronger association between soil CO2 efflux measured from the six treatments, and 

light intensity measurements taken up to four days prior to the soil CO2 efflux 

measurements. The results displayed in Table 3.4 confirm this, with the associations 

being noticeably stronger, and significant for all treatments when the soil CO2 efflux is 

correlated with the mean light intensity measured the day prior to the hand-held 

surveys. The association is strongest for treatments RMS (R2 = 0.29, p<0.003) and 

RMS(W) (R2= 0.21, p<0.01), followed by treatments S(W) and S, then treatments MS 

and MS(W). Following this, for the other lagged correlations, the associations are 

lower again, returning to similar levels as the original low association displayed in 

Table 3.2.   

  



 

136 
 

 

 

 

Table 3.3  Results from a forward stepwise multiple regression to explain variation in 
soil CO2 efflux from six soil collar treatments using environmental variables. 

 

  

 
Treatment  S 

 
Environmental variable 

 
partial r2 

 
model r2 

 
F value 

 
Sig. 

 
mean daily air temperature 

 
0.5962 

 
0.5962 

 
32.49 

 
p<0.0001 

 
Treatment S(W) 

 
Environmental variable 

 
partial r2 

 
model r2 

 
F value 

 
Sig. 

 
mean daily air temperature 

 
0.5748 

 
0.5748 

 
29.74 

 
p<0.0001 

 
Treatment MS 

 
Environmental variable 

 
partial r2 

 
model r2 

 
F value 

 
Sig. 

 
mean daily soil temperature (5 cm depth) 

 
0.5779 

 
0.5779 

 
30.12 

 
p<0.0001 

 
Treatment MS(W) 

 
Environmental variable 

 
partial r2 

 
model r2 

 
F value 

 
Sig. 

 
mean daily air temperature 

 
0.5412 

 
0.5412 

 
25.95 

 
p<0.0001 

 
Treatment RMS 

 
Environmental variable 

 
partial r2 

 
model r2 

 
F value 

 
Sig. 

 
mean daily soil temperature (5 cm depth) 

 
0.6479 

 
0.6479 

 
40.49 

 
p<0.0001 

 
soil moisture content (% gravimetric) 

 
0.1037 

 
0.7516 

 
8.77 

 
p<0.008 

 
Treatment RMS(W) 

 
Environmental variable 

 
partial r2 

 
model r2 

 
F value 

 
Sig. 

 
mean daily soil temperature (5 cm depth) 

 
0.6627 

 
0.6627 

 
43.23 

 
p<0.0001 
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Table 3.4  Results of Pearson product-moment correlations to investigate associations 
between the average soil CO2 efflux measured from the six soil collar treatments and 
the lagged daily mean light intensity logged for the same measurement day, and up to 
four days prior to the hand-held surveys of soil CO2 efflux. 

  

 
Daily mean light intensity above the canopy (Lux) 

 

 
 
S 

 
S(W) 

 
MS 

 
MS(W) 

 
RMS 

 
RMS(W) 

R2 0.08 0.08 0.06 0.07 0.17 0.10 
Sig. p>0.1 p>0.1 p>0.15 p>0.15 p<0.02 p>0.08 

 
Daily mean light intensity above the canopy (Lux) one day prior to CO2 efflux 

measurements 
  

S 
 
S(W) 

 
MS 

 
MS(W) 

 
RMS 

 
RMS(W) 

R2 0.20 0.21 0.16 0.18 0.29 0.21 
Sig. p<0.01 p<0.02 p<0.03 p<0.02 p<0.003 p<0.01 
 

Daily mean light intensity above the canopy (Lux) two days prior to CO2 efflux 
measurements 

  
S 

 
S(W) 

 
MS 

 
MS(W) 

 
RMS 

 
RMS(W) 

R2 0.05 0.06 0.05 0.04 0.11 0.09 
Sig. p>0.19 p>0.17 p>0.2 p>0.25 p>0.06 p>0.1 

 
Daily mean light intensity above the canopy (Lux) three days prior to CO2 efflux 

measurements 
  

S 
 
S(W) 

 
MS 

 
MS(W) 

 
RMS 

 
RMS(W) 

R2 0.08 0.10 0.08 0.08 0.15 0.16 
Sig. p>0.12 p>0.09 p>0.12 p>0.13 p<0.04 p<0.03 

 
Daily mean light intensity above the canopy (Lux) four days prior to CO2 efflux 

measurements 
  

S 
 
S(W) 

 
MS 

 
MS(W) 

 
RMS 

 
RMS(W) 

R2 0.06 0.06 0.06 0.06 0.14 0.11 
Sig. p>0.17 p>0.18 p>0.19 p>0.3 p<0.05 p>0.07 
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3.3.5 Automated hourly measurements of soil CO2 efflux 

From the hourly measurements of soil CO2 efflux it is possible to see that there were 

clear temporal variation in the fluxes from treatments RMS, MS and S measured during 

Run 1 of the automated soil CO2 efflux measurement system (see Fig. 3.21), and that 

those fluctuations were similar to the fluctuations in surface soil temperature recorded 

during that period of time (see Fig. 3.22). The steep decrease, followed by a increase in 

soil temperature (see Fig. 3.22) was mirrored by a fall, then rise in soil CO2 efflux from 

treatments RMS, MS and S (see Fig. 3.21).  Error bars have been removed from Fig. 

3.21 for ease of distinguishing between treatments. During the two week period the 

automated system was running, generally the highest soil CO2 efflux was measured 

from treatment RMS, followed by the CO2 efflux from treatment MS, with treatment S 

consistently having the lowest soil CO2 efflux. 

In order to ascertain how much information was lost due to the intermittent nature of 

hand-held surveys of soil CO2 efflux, when compared to the high resolution hourly 

data recorded using the automated soil CO2 efflux measurement system, the 

cumulative soil CO2 efflux was calculated for the period of Run 1, using the data from 

two hand-held surveys conducted during Run 1, and also the automated system data 

(see Fig. 3.23). For the non-corrected collars measured during Run 1, there was no 

significant difference between treatments RMS, MS and S in terms of the cumulative 

soil CO2 efflux calculated from the high resolution hourly data. The two methods used 

to calculate the cumulatives produced extremely similar results, with the same 

treatment pattern, and no significant difference in the cumulative soil CO2 efflux 

between the treatments, regardless of whether the high resolution (F=0.69, p>0.5), or 

more sporadic hand-held survey data  (F=1, p>0.4) were used to calculate the 

cumulatives.  

In order to assess the diurnal pattern in terms of soil CO2 efflux during Run 1, a period 

of two days is shown in Fig. 3.24 A, alongside air temperature measurements (see Fig. 

3.24 B) and soil surface temperature measurements (see Fig. 3.24 C). The surface soil 

temperature peaked in the afternoon on 21.10.2009, following a slight peak in air 
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temperature. The same occurred in the afternoon of the 22.10.2009. It is difficult to 

detect a diurnal pattern in the soil CO2 efflux, though treatment S appears to have 
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roughly followed soil temperature, rising towards the end of the two days. The CO2 

efflux from treatments RMS and MS rose and fell, frequently in opposite directions, 

overall though, as with treatment S, there was a general rise in both fluxes, over the 

two day period, following the rise in surface soil temperature. 

Fig. 3.25 displays the data from Run 2 of the automated CO2 efflux measurement 

system on the corrected collars (treatments RMS(W), MS(W) and the control collars, 

treatment S). The distinction between treatments RMS(W) and MS(W) is not as clear 

as the distinction between treatments RMS and MS measured during Run 1 (see Fig. 

3.21). Because of this, in a change of formatting, treatment MS(W) is represented here 

by open circles in order that it can be distinguished from treatment RMS(W). There 

were more occasions where treatment MS(W) had an equal or higher flux than 

treatment RMS(W). As with Run 1, treatment S consistently had the lowest soil CO2 

efflux. Despite Run 2 starting only two weeks after the start of Run 1, Fig. 3.26 shows 

that, in comparison to the soil surface temperature during Run 1, which ranged 

between 9.5oC and 11.5oC (see Fig. 3.22), during Run 2, the soil surface temperature 

was more variable. The temperature fell below 7oC on occasion, and the shape of the 

soil temperature data was mirrored by the soil CO2 efflux data, falling gradually during 

the three week measurement period (see Figs. 3.25 and 3.26). 

A comparison between the cumulative soil CO2 efflux calculated using the high 

resolution hourly measurements, and the sporadic handheld surveys of soil CO2 efflux 

was also done for Run 2 (see Fig. 3.27). Unlike the comparison of the two methods 

conducted on the data from Run 1, here there were differences between results 

produced. The cumulatives calculated using the high resolution automated data reflect 

what was shown in Fig. 3.25, that though the difference between treatments RMS(W) 

and MS(W) was not great, the greater soil CO2 efflux was mostly from treatment MS 

(see Fig. 3.27 A). However, the cumulatives calculated using the two hand-held soil 

CO2 efflux surveys during Run 2 show a different treatment pattern, suggesting that 

the higher flux was from treatment RMS (see Fig. 3.27 B). Both methods reflect that 

the lowest flux was consistently from treatment S, but this difference was significant 

according to the hand held survey data (F=13, p<0.007, see Fig 3.27 B), whereas there 

was no significant difference between the cumulatives calculated using the high  
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resolution hourly data (F=2.33, p>0.17, see Fig. 3.27 A). Runs 1 and 2 of the automated 

CO2 measurement system were conducted over different periods of time, and 

therefore cannot be directly compared.  

In order to assess the diurnal pattern in terms of soil CO2 efflux during Run 2, again a 

period of two days is shown in Fig. 3.28 A, alongside air temperature measurements 

(see Fig. 3.28 B) and soil surface temperature measurements (see Fig. 3.28 C). Soil 

surface temperature peaked in the afternoon on 31.10.2009, falling to its lowest point 

before midday on 1.11.2009, before peaking again in the afternoon on 1.11.2009. The 

peaks in soil surface temperature appear to be at the same time, or just following 

peaks in air temperature measured above the canopy (see Fig. 3.28 B). There was a 

peak in the soil CO2 efflux measured from treatment RMS(W), MS(W) and S collars in 

the mid afternoon of  1.11.2009, at the same time as the peak in soil temperature, and 

immediately following the peak in air temperature. During this short period of time, 

consistent with the complete time series (see Fig. 3.25), the greatest soil CO2 efflux 

was measured from treatment MS(W), this was followed by treatment RMS, then the 

lowest fluxes were measured from treatment S collars. 

The high resolution hourly data for soil CO2 efflux (Runs 1 and 2) were correlated with 

the surface soil temperature, using Spearman’s Rank correlations for treatments RMS, 

MS and S during Run 1 (see Table 3.5), and for treatments RMS(W), MS(W) and S 

during Run 2 (see Table 3.6). The associations between soil CO2 efflux and soil 

temperature were all highly significant for all treatments over Runs 1 and 2. However, 

the correlations were stronger for treatments RMS(W), MS(W) and S(W) during Run 2, 

than the correlations for Run 1. The correlations were noticeably stronger between the 

hourly average soil CO2 efflux and the hourly mean soil surface temperature, than 

between daily average soil temperature and sporadic hand-held soil CO2 efflux survey 

data shown previously in Table 3.2. Unlike the hand-held correlations, with the higher 

resolution correlations, treatment S had a higher correlation than treatments RMS and 

MS during Run 1 (see Table 3.5), whereas for the hand held surveys, treatment RMS 

had the highest correlation. During Run 2, CO2 efflux from treatment RMS(W) had the 

highest correlation with soil temperature, followed by treatment MS(W) and S, which 

is consistent with the hand-held data, though here MS(W) had a higher correlation  
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Table 3.5  Results of Spearman’s Rank correlations  between the average soil CO2 
efflux measured during Run 1 of the automated CO2 efflux measurement system from 
treatments RMS, MS and S, and the lagged hourly mean surface temperature (depth 5 
cm) logged for the same measurement hour, and the four hours prior to each 
measurement of soil CO2 efflux.  

 
Hourly average soil CO2 efflux (µmol m-2 s-1) and the hourly average  soil surface 

temperature (oC)  
 

 
 
S 

 
 

 
MS 

  
RMS 

 

       
ρ 0.70  0.62  0.58  
Sig. p<0.0001  p<0.0001  p<0.0001  

 
Hourly average soil CO2 efflux (µmol m-2 s-1) and the hourly average  soil surface 

temperature (oC) from one hour prior 
  

S 
 
 

 
MS 

 
 

 
RMS 

 
 

       
ρ 0.70  0.62  0.58  
Sig. p<0.0001  p<0.0001  p<0.0001  
 

Hourly average soil CO2 efflux (µmol m-2 s-1) and the hourly average  soil surface 
temperature (oC) from two hours prior 

  
S 

 
 

 
MS 

 
 

 
RMS 

 

       
ρ 0.70  0.61  0.57  
Sig. p<0.0001  p<0.0001  p<0.0001  

 
Hourly average soil CO2 efflux (µmol m-2 s-1) and the hourly average  soil surface 

temperature (oC) from three hours prior 
  

S 
 
 

 
MS 

 
 

 
RMS 

 
 

       
ρ 0.68  0.60  0.56  
Sig. p<0.0001  p<0.0001  p<0.0001  

 
Hourly average soil CO2 efflux (µmol m-2 s-1) and the hourly average  soil surface 

temperature (oC) from four hours prior 
  

S 
 
 

 
MS 

 
 

 
RMS 

 
 

       
ρ 0.66  0.58  0.54  
Sig. p<0.0001  p<0.0001  p<0.0001  
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Table 3.6  Results of Spearman’s Rank correlations  between average soil CO2 efflux 
measured during Run 2 of the automated CO2 efflux measurement system from 
treatments RMS(W), MS(W) and S, and the lagged hourly mean surface temperature 
(depth 5 cm) logged for the same measurement hour, and the four hours prior to each 
measurement of soil CO2 efflux. 

 
Hourly average soil CO2 efflux (µmol m-2 s-1) and the hourly average  soil surface 

temperature (oC)  
 

 
 
S 

 
 

 
MS(W) 

  
RMS(W) 

 

       
ρ 0.84  0.85  0.86  
Sig. p<0.0001  p<0.0001  p<0.0001  

 
Hourly average soil CO2 efflux (µmol m-2 s-1) and the hourly average  soil surface 

temperature (oC) from one hour prior 
  

S 
 
 

 
MS(W) 

 
 

 
RMS(W) 

 
 

       
ρ 0.84  0.84  0.86  
Sig. p<0.0001  p<0.0001  p<0.0001  
 

Hourly average soil CO2 efflux (µmol m-2 s-1) and the hourly average  soil surface 
temperature (oC) from two hours prior 

  
S 

 
 

 
MS(W) 

 
 

 
RMS(W) 

 

       
ρ 0.83  0.84  0.86  
Sig. p<0.0001  p<0.0001  p<0.0001  

 
Hourly average soil CO2 efflux (µmol m-2 s-1) and the hourly average  soil surface 

temperature (oC) from three hours prior 
  

S 
 
 

 
MS(W) 

 
 

 
RMS(W) 

 
 

       
ρ 0.82  0.84  0.85  
Sig. p<0.0001  p<0.0001  p<0.0001  

 
Hourly average soil CO2 efflux (µmol m-2 s-1) and the hourly average  soil surface 

temperature (oC) from four hours prior 
  

S 
 
 

 
MS(W) 

 
 

 
RMS(W) 

 
 

       
ρ 0.80  0.83  0.84  
Sig. p<0.0001  p<0.0001  p<0.0001  
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than treatment S (see Table 3.6), which previously had the same level of correlation in 

the hand-held data (see Table 3.2). Runs 1 and 2 were carried out over a much shorter 

period of time than the hand-held surveys, which were conducted throughout the 

entire year, and therefore the soil surface temperature will have varied to a greater 

extent in the hand-held data, than it did during Runs 1 and 2.  

In order to assess whether there was a delay in the response in terms of soil 

respiration to soil temperature, a series of lagged correlations were carried out, 

comparing the soil CO2 efflux to the average soil temperature logged for the four 

previous hours (see Tables 3.5 and 3.6). However, it would appear that soil respiration 

responded rapidly to soil temperature changes, with the strongest associations 

between soil CO2 efflux and soil temperature being for the same hour, as lagging the 

temperature data only decreasing the level of association for all treatments. 

The average soil moisture measured from the soil collars during Runs 1 and 2 is shown 

in Fig. 3.29. During Run 1, overall, there was a highly significant difference between the 

treatments in terms of the average soil moisture (F=13, p<0.007). Consistent with the 

hand-held surveys of soil CO2 efflux, treatment RMS had significantly lower soil 

moisture than treatments MS and S, whilst having generally the highest (though not 

significantly higher) soil CO2 efflux of the three treatments (see Fig. 3.23). Treatments 

MS and S had very similar soil moisture contents (see Fig. 3.29), but the soil CO2 efflux 

from treatment MS was higher than that of treatment S. During Run 2, there was no 

significant difference in the average soil moisture content of treatments RMS(W), 

MS(W) or S (F=0.69, p>0.5). 

The sporadic hand-held surveys of soil CO2 efflux were only ever measured in the early 

afternoon, and never at night. In order to see whether the pattern in terms of the 

treatments differed between night and day, the high resolution hourly data was split 

into two time periods, so that the average cumulative soil CO2 efflux could be 

determined, per treatment for ‘day time’ ( defined here as 08:00-20:00hrs), and ‘night 

time’ (20:00-08:00hrs, see Fig. 3.30).  

The same magnitude of fluxes appeared to be observed from both the corrected and 

non-corrected fluxes during the day and the night, again with no significant differences  
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Fig. 3.30  Average cumulative soil CO2 efflux measured using the automated soil CO2 
efflux measurement system from (A) treatments RMS, MS and S (Run 1) during the day 
(08:00 to 20:00 hrs), (B) treatments RMS, MS and S (Run 1) during the night (20:00 to 
08:00 hrs), (C) treatments RMS(W), MS(W) and S (Run 2) during the day (08:00 to 
20:00 hrs), (D) treatments RMS(W), MS(W) and S (Run 2) during the night (20:00 to 
08:00 hrs). Within each sample period, treatments which differ significantly have 
different letters. Error bars represent ± 1 SE (n = 4).  
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between the cumulative fluxes observed at any time. The pattern in terms of the 

treatments was also the same between the day and the night time.  
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3.4 Discussion 

The aim of the current work was to investigate differences in total soil respiration (Rs) 

caused by soil trenching, and the role of abiotic factors including  soil moisture, 

temperature and light intensity on Rs and its component heterotrophic (Rh) and 

autotrophic (Ra) fluxes, and also on the components fluxes from roots and ECM 

hyphae that make up Ra. The addition of water to the various soil collar treatments via 

the automated irrigation system allowed an investigation of how correcting any soil 

moisture differences caused by trenching would affect the CO2 efflux from the 

different soil collar treatments. The results suggest that water correction had no effect 

on root respiration, but there is evidence of increased CO2 efflux from mycorrhizal 

hyphae and background soil heterotrophs, and this apparent difference between the 

soil components in their response to water correction is discussed here. 

Trenching was used successfully to separate out total soil CO2 efflux (Rs) into its 

component autotrophic (Ra) and heterotrophic (Rh) fluxes. The use of different sized 

mesh in the collar windows was successful in allowing an estimate of the contributions 

of roots (Rr) and ectomycorrhizal hyphae (Rm) to Ra.  The average contribution of Rh to 

Rs was 56%, compared to 44% from Ra, the contributions of the autotrophic flux 

components from root respiration and mycorrhizal respiration were 31.2% and 12.8%, 

respectively.  

Previous studies of the relative contributions of the different flux components to Rs 

have shown a range of results, varying between sites and plant species, the 

methodology used to separate out the flux components, and also the length of time 

used to calculate the average contributions (Subke et al., 2006). Taneva & Gonzalez-

Meler (2012) reported average flux components of 30% from Ra, and 70% from Rh 

during the daytime, and 34% from Ra and 66% from Rh during the night time. In 

contrast to the current work, they subdivided Rh into the components from litter 

decomposition (26% during the day) and background SOM decomposition (44% of 

during the day). The root contributions to Rs reported by Heinemeyer et al. (2012) 

from a four-year experiment in a temperate deciduous forest in south-east England 

were 38%, with contributions from mycorrhizal fungi of 18%, and the contribution 
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from Rh was 44%. Comstedt et al. (2011) showed in a trenching study combined with 

modelling to account for moisture differences, that the autotrophic and heterotrophic 

components contributed c. 50% each to Rs. 

The results reported by Heinemeyer et al. (2007) from the trenching study conducted 

previously in the Pinus contorta stand at Wheldrake Forest, were also different to 

those of the current work. In contrast to the 56% contribution of Rh to Rs in the 

current work, their estimate of the Rh contribution was 65%, they also reported a 

higher contribution of 25% from mycorrhizal hyphae, compared to 12.8% in the 

current work, and 10% from roots, which was lower than the 31.2% in the current 

study. The third measurement campaign in the study by Heinemeyer et al. (2007), 

which included treatment RMS took place between 25th October and 29th December 

2005, compared to the 16 months of measurements in the current work (including two 

summers), so it is likely that the difference in the average contributions from the 

various components can be explained by seasonality (see discussion below). 

A common problem with trenching as a technique is resulting increases in Rs caused by 

decay following the severing of existing roots and mycorrhizal hyphae (Comstedt et al., 

2011). In their review of 30 years of literature surrounding separating out soil 

components, Subke et al. (2006) noted that authors commonly acknowledge this as a 

problem and some try to deal with the additional CO2 efflux from decaying roots by 

accounting for the amount of dead roots likely to be present in collars following 

trenching and applying decay constants from meta-analyses of regional trends in root 

decay dynamics (Silver & Miya, 2001; Saiz et al., 2006). There are problems with this 

approach as the correction factor is constant and does not take into account seasonal 

variations in the autotrophic and heterotrophic fluxes (Saiz et al., 2006). In contrast, 

using a PLS-model, Comstedt et al. (2011) compared what they assumed to be ‘root 

free’ trenched plot data from trenched plots in 2004 (the field season following when 

trenching took place) with the data from the same plots in 2003 in order to gain an 

estimate of the proportion of the flux which could be attributed to trenching-induced 

decay. Another approach used to avoid confounding effects of decaying roots and 

hyphae following trenching is to wait until the contribution from this source is likely to 

be minimal (Boone et al., 1998; Sulzman et al., 2005). In the current work, it is 
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acknowledged that the treatment effect observed following trenching for treatments 

MS and S shown in Figs. 3.2 and 3.3 will probably have been overestimated, though 

collars had been established for nine months prior to the start of automated irrigation, 

so this confounding effect should have been reduced. Suseela et al. (2012) waited 15 

months after trenching before taking CO2 efflux measurements in order to estimate 

the size of microbial populations, which they felt was adequate to remove any such 

problems. Sayer and Tanner (2010) trialled a new trenching technique where the Ra 

was estimated by measuring soil CO2 efflux prior to, and quickly following trenching, 

before decay processes were significantly affecting the CO2 efflux; this was compared 

to bi-weekly measurements from trenched plots, where they found that the data could 

not be used for seven months due to the additional CO2 release from decomposing 

roots.  

The current work shows clear seasonal variation in total soil CO2 efflux (Rs), measured 

from the RMS collars on the time-series graphs, showing peaks during the summer 

months and lower fluxes during the winter months. This seasonality of soil respiration 

has also been demonstrated by numerous previous studies (eg. Tang et al., 2005; 

Heinemeyer et al., 2012), and it has been shown to be caused by variations in the 

different flux components. Taneva & Gonzalez-Meler (2012) found that there were 

clear fluctuations in both Ra and Rh, which caused changes in overall Rs over the 

seasons.  

There were also fluctuations of Ra and Rh in the current work, with a greater 

contribution from treatment S (Rh) during the winter months, 2009/2010 than during 

both summer 2009 and 2010. In contrast to an increase in the cumulative Rh flux for 

the winter months, the Ra contribution decreased, driven by a decrease in the CO2 

efflux from roots, consistent with roots becoming dormant during the winter (Franck, 

2011). The mycorrhizal component of Ra stayed relatively consistent between summer 

2009 and winter 2009/2010, though it did decrease for summer 2010. These results 

are supported by Heinemeyer et al. (2012), albeit for a deciduous system. They found 

that generally, background soil heterotrophic respiration was higher than autotrophic 

respiration during the winter. They did find that occasionally, during the growing 

season, the autotrophic flux component was higher than the heterotrophic flux 
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component, which was also the case in the current work for summer 2009, but not for 

summer 2010.  

The increase in Ra during the growing season that was observed in the current study, 

and by Heinemeyer et al. (2012) was also observed by Comstedt et al. (2011) in a 

Norway spruce forest in Sweden.  They estimated that the maximum contribution of 

autotrophic respiration in their study ranged between 0% to 43% from April to June, 

but that it ranged from 35% to 72% from June onwards, peaking in the growing season 

(August to September), this was consistent with other field experiments in Sweden (eg. 

Högberg et al., 2001; Bhupinderpal-Singh et al., 2003). Though in the current work, the 

mycorrhizal flux component stayed relatively constant between summer 2009 and 

winter 2009/2010, it is possible that a period of rapid growth of mycorrhizal hyphae, as 

reported for the autumn by Wallander et al. (2001), was somehow missed. It is also 

possible that if a period of rapid mycorrhizal growth spanned September to October at 

Wheldrake forest in 2009, it may have been averaged across the two periods. 

Heinemeyer et al. (2007) reported a fall in the mycorrhizal flux component in the 

autumn, following fruiting body production, though they did still report a higher 

mycorrhizal flux component compared to the root flux component in late October to 

December and it may be that for 2009 when the current work took place, there was 

not the same level of mycorrhizal growth as in previous years.  

The peaks for treatment RMS shown in Fig. 3.11 are nearly the same height, which 

suggests that between 2009 and 2010, Rs stayed relatively constant, and only through 

flux separation is it possible to see that there were hidden differences in the 

components of Rs between the two summers. The increase in the flux component 

from Rh (treatment S) between summers 2009 and 2010, also led to an increase in the 

cumulative flux measured from treatment MS. Both the components of Ra fluctuated 

between the years, with a decrease in the contribution from roots between summers 

2009 and 2010, from both the corrected, and non-corrected collars (RMS and 

RMS(W)). There was also a decrease in the mycorrhizal component from treatment 

MS, leading to a decrease in Ra compared to Rh between 2009 and 2010. 
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The main aim of the current work was to investigate the effect of water uptake by 

roots on Rs, and its component fluxes. The successful flux separation in the current 

work was accompanied, as for previous trenching studies (Gadgil & Gadgil 1971, 1975; 

Fischer & Gosz, 1986), with significant differences between the treatments in terms of 

soil moisture content, particularly during the summer months for treatment RMS, as 

was shown in Fig. 3.13. Correcting moisture differences caused by the uptake of water 

by roots and mycorrhizal fungi had no effect on the total soil CO2 efflux (Rs), as shown 

by a comparison of the CO2 efflux from treatments RMS and RMS(W). Though Fig. 3.11 

and Table 3.1 show that there was a lower contribution from irrigated roots (from 

RMS(W)) to total soil CO2 efflux, there were no significant differences between 

treatments RMS and RMS(W) in terms of soil CO2 efflux overall, for summer 2009 or 

for summer 2010, and there had been a lower (though not significant) cumulative flux 

from treatment RMS(W) collars compared to RMS collars prior to the start of 

automated irrigation. In the winter months, when the soil moistures were extremely 

similar, the same difference in terms of RMS(W) having a slightly lower, but not 

significant difference in terms of soil CO2 efflux remained, and the relationship never 

changed despite changes in water stress over the year. If there had been an effect of 

water uptake by roots affecting Rs, potentially by decreasing the component 

underlying fluxes from mycorrhizal hyphae and background soil heterotrophs (Rh), 

there should have been an increase in the flux from treatment RMS(W), in comparison 

to treatment RMS.  

Comstedt et al. (2011) used the strength of association between soil moisture and soil 

CO2 efflux from trenched and control soils to model the underlying Rh flux component 

where roots were present in the control soils, so taking the flux contributions of 

Heinemeyer et al. (2007) further and introducing a modelled correction for moisture 

differences. They estimated that had this correction not been applied, there would 

have been a considerable overestimation of the Rh flux component (~18-24%), caused 

by trenched soils having a 3-7% higher moisture content than control soils. One 

problem with the current work is that rather than decreasing the moisture in 

treatment S, as was achieved by Comstedt et al. (2011) using modelling, the other 

drier treatments were watered, which is the opposite of what is natural. However the 
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current work allowed the mechanisms behind the control of litter decomposition and 

soil CO2 efflux to be investigated in the field. It would seem from the current results 

that the work of Heinemeyer et al. (2007), may not have been confounded by the 

effects of soil moisture differences between the treatments previously at the current 

site, assuming there is no difference between years in terms of moisture stress caused 

by water uptake by roots. Though the results of the current work suggest that the soil 

moisture differences caused by root water uptake were not having an effect on Rs, soil 

moisture is still an acknowledged controlling factor on soil respiration in different 

circumstances (Fischer & Gosz, 1986), and should always be measured in combination 

with soil trenching. In a later study, in a deciduous forest in SE England, Heinemeyer et 

al. (2012) did take treatment-specific moisture measurements on a monthly basis, 

which they increased to high resolution measurements during the final year of their 

experiment. They found significant differences between their trenched and control soil 

in terms of soil moisture, and put shields above the collars to block incident throughfall 

in just the S and MS collars, in an attempt to dry the soil to the same level as that of 

RMS. Lavigne et al. (2006) found that modest water stress caused a substantial 

reduction in Rs of 25-50%, which recovered when soil moisture increased. However, 

Mosier et al. (2003) observed that increased soil moisture resulted in a decrease in soil 

CO2 efflux when compared to controls in the Colorado shortgrass steppe, but when 

high water was combined with N addition, the highest CO2 flux values were observed. 

Though there was a 30% drop in the surface moisture content of treatment RMS 

compared to treatment S during the summer months, the soil moisture content in the 

current work never fell below 20% for any of the treatments, which is potentially a 

reason why there was no positive influence of irrigation on Rs. The drought-induced 

drop in mycorrhizal CO2 efflux observed by Heinemeyer et al. (2007) involved soil 

moisture content (measured outside the collars) falling to less than 15%.  

During summer 2009, irrigation appears to have had no influence on the CO2 efflux 

from treatment MS, with practically identical cumulative fluxes calculated for 

treatments MS and MS(W). It was noted during this time that water was very rarely 

supplied to these treatment collars by the automated irrigation system, so although 

the cumulative CO2 efflux for treatments MS and MS(W) were significantly higher than 
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for treatment S (see Fig. 3.11) indicating successful colonisation of the collars, ECM 

hyphae appeared to take up very little soil moisture. However, during summer 2010, 

the cumulative soil CO2 efflux from treatment MS(W) had increased significantly 

compared to treatment MS, suggesting that irrigation was positively influencing the 

mycorrhizal flux component. The same apparent effect of irrigation was also observed 

for the Rh flux component, with a higher cumulative soil CO2 efflux from treatment 

S(W) compared to treatment S, in contrast to summer 2009, where the difference was 

not significant.  

The sudden significant interaction for summer 2010 between soil collar treatment, and 

whether the collar was receiving irrigation, when there had been no significant 

interaction for summer 2009, was driven mostly by sudden increases in the soil CO2 

efflux from the  MS(W) and S(W) collars relative to the treatment MS and S collars. It 

was noted that during summer 2010, the reservoir housing the three aquarium pumps 

that irrigated treatments RMS(W), MS(W) and S(W) required filling more frequently, 

which would partly be explained by better water correction of treatment RMS(W), but 

it could also indicate that the MS(W) pump was being activated to a greater extent 

than it had been in summer 2009. Also, the lack of difference between a new set of MS 

and S collars of the same depth, in terms of soil CO2 efflux led to these new collars 

being dug up after 18 months. The collars, which had been intended for use in the 

substrate decomposition experiment presented in Chapter 5 were found to contain a 

large quantity of roots which had grown up from underneath, although the mesh 

windows were still intact. Therefore an alternative hypothesis to irrigation causing the 

significant increase in soil CO2 efflux from the treatment MS(W) and S(W) collars is 

that roots had grown up into the collars, possibly as early as winter 2009/10. This is 

supported by the observation that the CO2 efflux measured from treatments MS(W) 

and S(W) was the same or slightly greater than for treatments RMS and RMS(W), 

which is consistent with them also becoming total soil (Rs) treatments. Alternatively, 

that CO2 efflux from root proliferation near to/underneath the collars may have been 

diffusing through the soil collars and increasing the soil CO2 efflux from these 

treatments. 
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Therefore, there is problem with the technique employed in the current work, and in 

other studies (eg. Suseela et al., 2012) of waiting for a period of time following 

trenching for the confounding addition of CO2 from decaying roots and hyphae to 

decrease, in that one runs the risk of roots growing back in again, effectively removing 

treatment effects. The collar depth at this site was chosen based on the observation of 

Heinemeyer et al. (2007) that the main mass of roots was concentrated in the top 30 

cm of the soil, with a low density of roots below this point. It was difficult to hammer 

the collars to this depth, as below was a hard sandy layer. In retrospect, it may have 

been better to use deeper collars, and to dig in and backfill the collars. However, this 

would have caused additional disturbance which should be avoided. Also, it would be 

extremely difficult to guarantee that all roots were excluded, and impossible to see 

whether they were present in the treatment collars during the experiment. Other 

studies running for two years have encountered the similar problems, with Comstedt 

et al. (2011) observing colonisation of their collars by mycorrhizal mycelium during the 

second year of their study. A further problem with the current experimental design 

was that the ‘shallow’ surface collars used to create treatment RMS and RMS(W), and 

the ‘deep’ collars used to create treatments MS, MS(W), S and S(W) will have impacted 

the soil in slightly different ways. It is acknowledged that the ‘deep’ collars will have 

compacted the soil to a greater degree than the surface collars. It would have been 

better to have used deep collars for all treatments and allowed roots to re-grow in 

through windows, following cutting the soil, as was done for mycorrhizal hyphae. 

However, this strategy would likely take longer, and potentially also allow problems 

with roots growing under the collars, further compromising the treatments.  

It is possible that the irrigation may have been the cause of the proliferation of roots 

and /or mycorrhizal hyphae, and potentially bacteria into the MS(W) and S(W) collars.  

Plants have been known to adapt their root morphology in response to soil moisture, 

with such plasticity allowing them to compete with other species/ individuals for 

limiting resources (Fitter & Hay, 1987). In the fast-draining sandy soils at Wheldrake 

Forest, the majority of roots are concentrated at the soil surface (Heinemeyer et al., 

2007) allowing them to intercept moisture and to take up nutrients from the 

decomposing litter. So for treatments MS(W) and S(W), it is likely there will have been 
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increased leaching of substrates from the litter layer alongside increased moisture 

from irrigation, so roots or ECM hyphae which had grown into the collars may have 

proliferated to a greater degree in these collars than they had in the non-corrected MS 

and S collars. This is supported by Ludovici & Morris (1996) who observed Loblolly pine 

root proliferation in response to a high water treatment.  Also, Huang et al. (1997) 

observed that of four warm-season turfgrass species, the two which exhibited greatest 

root plasticity had the highest drought resistance, as they were quickly able to avoid 

surface drought by proliferating in lower areas of the soil profile. 

So, if the greater CO2 efflux from treatments MS(W) and S(W) can be explained by 

roots growing into the collars, it would appear that there was no significant effect of 

irrigation on the respiration from the different collar treatments, nor did the surface 

soil moisture content of the collars appear to have a controlling influence on Rs at this 

site. It is possible that moisture differences lower down in the soil profile had an effect 

on the soil CO2 efflux from the different treatments, but only surface soil moisture 

contents (top 6 cm of the soil) were measured during the current work. 

The correlations between soil CO2 efflux and the soil moisture contents for the six soil 

collar treatments showed that there were significant but weak negative associations 

between soil moisture content and soil CO2 efflux for the corrected treatments 

(RMS(W), MS(W), S(W)) and the control, treatment S. None of the associations were 

particularly strong, and the association between soil CO2 efflux and soil moisture for 

treatments RMS, MS were weaker still, and non significant. Soil moisture content was 

only included in the forward stepwise multiple regression model on one occasion, for 

treatment RMS, which is odd as this contradicts what the individual correlations 

showed. However, this treatment consistently had a high soil CO2 efflux, whilst having 

the lowest soil moisture content during the summer months for 2009 and 2010. For 

the individual correlations, the strongest negative relationship was for treatment 

MS(W), explaining 32% of the variation, followed by treatment S(W), potentially 

caused by those treatments having high CO2 efflux during summer 2010.  

This negative association between soil moisture and CO2 efflux has been observed 

previously, by Davidson et al. (1998) in a hardwood forest, which they attributed to 
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other factors important in terms of governing soil respiration, such as temperature and 

substrate availability being high at times of the year when soil moisture is at its lowest.  

As with the current study, Sulzman et al. (2005) logged the lowest temperatures and 

the highest soil moistures in the winter months, whilst the peak in soil CO2 efflux over 

their three year study (2001-2004) occurred in August, July and May respectively, 

when moisture conditions were relatively low. They also reported a low association 

between soil moisture content and CO2 efflux. 

It would seem that Rh was not limited by soil moisture content in this study, as despite 

the soil moisture content of treatment S decreasing between summers 2009 and 2010 

(see Fig. 3.13), there was an increase in the cumulative soil CO2 efflux (see Fig 3.11) 

and the contribution from Rh had increased (see Table 3.1). The decrease in 

contribution from mycorrhizal hyphae between summers 2009 and 2010 could 

potentially indicate a moisture limitation, and because of the potential confounding 

effects of roots growing into treatment MS(W) it is not possible to see if irrigation had 

any effect, the same applies to treatment S(W). 

It has been shown that soil moisture, when at extremes, can cause decreases in CO2 

efflux from all flux components, and affect the influence of other abiotic factors, 

including temperature sensitivity on respiration (Davidson & Janssens, 2006; Suseela et 

al., 2012). Heinemeyer et al. (2007) noticed that the mycorrhizal flux fell rapidly 

following a period of drought, but with rainfall, the flux component recovered quickly. 

Moisture surveys were taken sporadically in the current study, therefore short-term 

changes in soil moisture will have been missed. Also regular weekly watering, though it 

followed average rainfall meant that inputs were regular and drought conditions may 

have been avoided. 

The same lack of influence of soil moisture on soil CO2 was shown for the high-

resolution data taken during Runs 1 and 2 of the automated soil CO2 efflux 

measurement system. Treatment RMS had the highest soil CO2 efflux during Run 1, 

but the average soil moisture content was significantly lower than the soil moistures of 

treatments MS and S (see Fig. 3.29). During Run 2, there was no significant difference 

between the treatments in terms of the average soil moisture contents, but there was 
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a significantly higher soil CO2 efflux from treatment RMS and MS collars, than there 

was from treatment S. There are limitations here as the soil moisture content was 

taken on two occasions, and averaged, and high resolution moisture data would have 

made a better comparison to the high resolution soil CO2 efflux data. 

The average soil moisture content during the winter months was very similar for all six 

treatments, and not much higher than the average during the  summer months, but  

the lower contents from treatment RMS(W), RMS, MS(W) and MS had disappeared 

(Fig. 3.14). There were still variations between the treatments in terms of soil CO2 

efflux however, further reflecting that soil moisture was not the main controller of soil 

CO2 efflux at this site. The cumulative soil CO2 efflux from all treatments was reduced 

during the winter, alongside a general increase in soil moisture, thus reinforcing any 

negative associations.   

In contrast with soil moisture content, temperature is known to have a positive 

association with biological processes, such as soil respiration, peaking at the same time 

as Rs (Sulzman et al., 2005). The results of the surveys of soil CO2 efflux conducted in 

the Pinus contorta stand at Wheldrake Forest clearly suggest that temperature was the 

main controlling factor for respiration, having a positive association with soil CO2 efflux 

from the six treatments. The clear seasonal pattern in terms of soil CO2 efflux shown 

over time in Figs. 3.4 -3.9 was reflective of the seasonal variations in soil temperature 

shown in Fig. 3.16. This association was supported by the results of the forward 

stepwise multiple regression, which showed that, for all treatments, between  53% and 

67% of the variation in soil CO2 efflux could be explained by temperature, whether air 

temperature, or soil surface temperature (measured at a depth of 5 cm). 

The results from simple correlations showed that Rs (treatment RMS) correlated most 

strongly with soil surface temperature (R2 = 0.65), correlations between soil 

temperature and soil CO2 efflux from treatments MS and S, (R2 = 0.57, and R2 =0.48), 

respectively, suggest that Ra was more influenced by soil temperature than Rh, and 

that of the components of Ra, root respiration was more influenced by soil 

temperature than respiration from mycorrhizal hyphae. Had the associations been of 

the same strength for treatments RMS, MS and S, this would have indicated that there 
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was no difference in the association strength between all the components of Rs, but 

this was not the case.  

Differing effects of temperature on autotrophic (Ra) and heterotrophic (Rh) respiration 

have been observed previously. Boone et al. (1998) demonstrated in a trenching and 

litter input experiment in a temperate hardwood forest, that the association between 

soil respiration and soil temperature was stronger for control plots (R2=0.91) compared 

to trenched plots (R2=0.73), where roots had been excluded using fibre glass screens. 

In a girdling experiment in a Vitis vinifera vineyard, Franck et al. (2011) demonstrated 

that root respiration was more sensitive than background soil heterotrophic 

respiration to soil temperature.  

However, other studies have shown no difference between the temperature sensitivity 

of Ra and Rh (Irvine et al., 2005).  During a girdling experiment in northern Sweden, 

Bhupinderpal-Singh et al. (2003) reported a 20-day period when temperature dropped 

by 6˚C, accompanied by a rapid decline in Rh, but not Ra, suggesting that temperature 

was in fact more important in the control of Rh, than Ra. This was supported by Hartley 

et al. (2007), who demonstrated that Rh was more sensitive than Ra to changes in 

temperature. Their experiment included soils at ambient temperature, and soils that 

were warmed to 3˚C above ambient, and a comparison of planted (maize or wheat) 

and unplanted soils. They found that during the growing season, there were increases 

in respiration in all the soils, but that the greater the contribution of Ra to Rs, the less 

temperature sensitivity was observed.   

Previously, at the current site, Heinemeyer et al. (2007) demonstrated that there were 

strong associations between soil temperature and soil CO2 efflux from treatments S 

(R2=0.88) and MS (R2=0.68). However, when the difference in flux between these two 

treatments was subtracted to gain an estimate of just the mycorrhizal flux component, 

and this was correlated against soil temperature, there was no association, meaning 

that Rh was more affected by temperature than the mycorrhizal component of Ra.  

Also, Heinemeyer et al. (2012) demonstrated that a greater temperature sensitivity of 

Rs during the winter months could be explained by the increase in the Rh flux 

component relative to Ra.  
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There is contention regarding the relative temperature sensitivity of autotrophic and 

heterotrophic respiration (Högberg, 2010; Luo & Zhou, 2010; Zhou et al., 2010). Subke 

& Bahn (2010) have offered a suggestion which explains why studies such as Boone et 

al. (1998) and Franck et al. (2011) have apparently shown the opposite to others in 

terms of the relative sensitivity of Ra and Rh to temperature. They suggest that studies 

which show increased temperature sensitivity of Ra relative to Rh overlook the effects 

of substrate supply and plant phenology on Ra, mistaking their effect to be that of 

temperature. Though temperature certainly has an effect on kinetic properties of 

enzymes and is therefore likely to influence respiration, low substrate supply during 

the winter months could also be a factor explaining the decrease in root respiration 

observed in the current work (Subke & Bahn, 2010). Atkin & Tjoelker (2003) point out 

that even if temperatures are optimal for respiration, a limit in substrate supply would 

restrict the level of respiration taking place.  Also, during cold periods, the maximum 

catalytic activity (Vmax) of respiratory enzymes is reduced, so even if there are 

substrates available, respiration is reduced. Clearly, the interpretation of what factors 

are driving respiration is complicated, Franck et al. (2011) acknowledge that the 

difference in sensitivity to temperature they observed could also be explained by the C 

availability to the roots in the non-trenched treatments. Bhupinderpal-Singh et al. 

(2003) suggest that though soil temperature may be used to model Rh, that plant 

photosynthetic activity, and the allocation of C to roots would give a more accurate 

prediction of Ra, and though temperature may still have an effect on root respiration, 

roots have been shown to acclimate quickly, reducing the temperature response (Atkin 

et al. 2000, Atkin & Tjoelker, 2003). Heinemeyer et al. (2007; 2012) were able to 

demonstrate that it is not only the root component of Ra that changes in response to 

substrate supply and plant phenology. Mycorrhizal respiration was shown to alter 

around the time of fruiting body appearance in the autumn, which increased the 

apparent temperature sensitivity, though they commented that it was more likely due 

to changes in the substrate supply to the fungi from their mycorrhizal partners. 

The high resolution hourly CO2 efflux data and the hourly average temperatures 

measured during Runs 1 and 2 of the automated CO2 efflux measurement system show 

that the same association with temperature appeared to remain for the high 
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resolution measurements as it had for the more sporadic hand-held measurements. 

During Run 1, in contrast to the previous temperature regressions, treatment S had the 

highest positive association with temperature (ρ=0.70), followed by treatments MS 

and RMS (ρ= 0.62 and ρ= 0.58, respectively), so it would appear that diurnally, Rh was 

more affected by fluctuations in temperature, than Ra. As these high-resolution 

measurements were taken over a short two-week period, there was much less 

temperature variation than was seen seasonally, but also potentially less variation in 

the substrate supply available for roots and mycorrhizal hyphae, with starch reserves 

in roots potentially having a buffering effect on Ra, which may explain why they were 

less affected by short-term temperature change than soil heterotrophs, which in the 

trenched plots may have been more substrate limited.  

However, there was no evidence from the lagged temperature correlations that Rh 

responded more quickly to changes in soil temperature than the autotrophic flux 

components, with soil CO2 efflux from all three treatments having the stongest 

association with soil temperature for the hour when the CO2 measurements were 

taken (see Table 3.5). During Run 2 with the corrected collars, the associations were 

equal across treatments S, MS(W) and RMS(W), suggesting that with irrigation, soil 

heterotrophs were almost as affected by temperature as roots and mycorrhizal 

hyphae. The comparison of the treatment effects between day and night showed that 

there was no difference in the relative contributions of the different flux components 

to the cumulative soil CO2 efflux during runs 1 or 2, if the measurements were taken 

during the day compared to during the night. Overall, the cumulative fluxes measured 

during the day and the night were of the same magnitude. Taneva & Gonzalez-Meler 

(2011) found that overall, both autotrophic and heterotrophic respiration were slightly 

higher during the night time, and that there were significant differences between day 

and night time during the summer months. The current measurements were taken 

during October and November, and therefore considering the variations that Taneva & 

Gonzalez-Meler (2011) observed during the summer months, it is perhaps surprising 

that no differences were observed here. If CO2 release from a system were to be 

modelled accurately though, it would be a good idea to include night time 

measurements, particularly, it would seem, during the summer.  
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So, it has been demonstrated that assimilate supply to the soil is likely to be an 

important driver of Ra as well as temperature, and that care must be taken not to 

mistake an increase in CO2 efflux due to substrate supply as an increase in soil CO2 

efflux driven solely by an increase in soil temperature (Olsson et al., 2005; Subke and 

Bahn, 2010). The importance of assimilate supply as a controller of Ra was 

demonstrated by Hogberg et al (2001), who found a clear coupling between 

aboveground plant activity and Ra in a large-scale  girdling study experiment in a 

Boreal pine forest in Sweden, where the effect of cutting off photoassimilates to roots 

on Rs was studied. They noticed a reduction in respiration in the girdled plots of 56%, 

and the loss of ECM fruiting bodies, demonstrating the dependence of not only roots, 

but also mycorrhizal fungi on photoassimilates in these systems.  

In the current work, though light intensity did not meet the 0.05 significance level for 

inclusion into the forward stepwise multiple regression model, there was a significant 

but weak association between soil CO2 efflux and light intensity for treatment RMS (R2 

= 0.17, p<0.02). An attempt to investigate the timeframe over which Ra is influenced 

by photosynthesis was unsuccessful, with higher associations for all treatments, 

including Rh being observed between soil CO2 efflux and the mean light intensity 

measured one day prior to the hand-held surveys of soil CO2 efflux. It is surprising that 

this lagged association was higher for treatment S than for treatment MS (R2= 0.21 and 

R2=0.16, respectively), when it would be expected to be higher for treatment MS, 

which included the CO2 from the mycorrhizal flux component. Treatment RMS did still 

have the highest association of CO2 with light intensity (R2= 0.29), as would be 

expected as root respiration relies on photoassimilates. A previous study by Ekblad & 

Högberg (2001) in a mixed conifer forest in northern Sweden found a strong 

relationship between the isotope ratio (δ13C) of soil CO2 efflux with the relative 

humidity in the air, 3-4 days prior to the measurements of soil CO2 efflux. As they had 

deduced that RH affects the δ13C of photosynthates (low RH leads to a high δ13C), they 

were able to come up with an estimate that photoassimilates are available for use in 

root respiration 1-4 days after photosynthesis has taken place. Heinemeyer et al. 

(2012) were able to show that the time lag for associations between GPP and 

mycorrhizal respiration was 2-8 days, and this was a longer time lag than for root 
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respiration, and also that factors such as herbivory from caterpillars, and mildew 

increased the time lag for GPP correlation with both root and mycorrhizal respiration. 

Bowling et al. (2002) found peaks in correlation coefficients between δ13C of soil CO2 

efflux and the vapour saturation deficit (vpd) of air (which alters the δ13C of 

photosynthates) for 5, 9, 5 and 10 days for four different conifer forests along a 

precipitation gradient transect in Oregon, USA. They explained the lag time as being a 

result of a variety of processes, including phloem loading, transport time, unloading, 

the allocation of C by the plant, the phenology of leaves and roots, root exudation, 

mycorrhizal and microbial activity and fine root turnover. All of these factors, and 

whether the plant stores the photoassimilates, for example as root reserves in the 

winter months, would be expected to affect the lag time for different sites (Bowling et 

al., 2002; Irvine et al., 2005; Brüggemann et al., 2011). Therefore, the reason why 

there was such a low association between light intensity and soil CO2 efflux, and why a 

stronger association with the respiration from Ra components was not seen, could be 

due to any or all of these factors, and there is potential that lagging over a longer 

period of time would result in identifying stronger associations. 

The aim of using the automated CO2 efflux measurement system on the soil collars at 

Wheldrake forest was to ascertain whether obvious bias was introduced by only 

carrying out sporadic surveys of soil CO2 efflux. It would appear that when there is a 

clear difference between treatments over time, with little overlap, as was the case for 

treatments RMS, MS and S as shown in Fig. 3.21, then there is less chance of a sporadic 

measurement taken during that time leading to a false conclusion of what was 

happening generally. This was the case for the two sporadic surveys of soil CO2 efflux 

taken during Run 1 of the automated system, where there was no difference in the 

cumulative soil CO2 efflux for that period calculated using the high resolution data, 

compared to when it was calculated using the low resolution data. 

However, when treatments RMS(W) and MS(W) were similar in terms of the soil CO2 

efflux, with considerable overlap, as was the case for Run 2 of the automated system, 

the cumulatives calculated using the high automated system data and the low 

resolution data from the two hand-held surveys of soil CO2 efflux showed a different 

treatment effect. Interestingly, the automated system was switched off for the hour 
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when the hand-held surveys were taken, but when the automated data was assessed 

from the hour prior to the hand-held surveys, and the first survey following, to see if 

the same result of treatment RMS(W) having the higher flux (as shown by the hand-

held surveys) was shown in the nearest automated data, treatment MS(W) was still 

shown to have the higher soil CO2 efflux.  

Each automated CO2 efflux measurement took 3 minutes in every hour, which 

although is at a much greater frequency than that of the two one-off hand-held 

measurements of soil CO2 efflux, still leaves quite a large period of time unmeasured. 

Therefore, it is not surprising that when there is overlap between two treatments in 

terms of soil CO2 efflux, different methods can produce different cumulative fluxes.  

Another reason why there may have been differences in the estimates of the 

cumulative fluxes from the hand-held surveys of soil CO2 efflux using the Li-Cor LI-8100 

IRGA and 20 cm survey chamber, compared to the high-resolution automated surveys 

using the multiplexed system is down to an artefact recently discovered by 

Nottingham et al. (2012, In press). Whilst conducting soil CO2 efflux measurements in a 

tropical montane cloud forest in Peru, they noticed that soil CO2 efflux was 

significantly higher when measured using a multiplexed system as in the current work, 

than it was using a hand-held IRGA and survey chamber. They conducted swap tests 

with the two systems on the cloud forest soil and two other soil types in order to 

isolate the problem. They found that the difference was only encountered during 

measurements of CO2 efflux from the cloud forest soil. This soil had a low bulk-density 

and the mass flow of CO2 was promoted by the automated system. Their swap test 

technique could be criticised on the basis that the multiplexed system was always 

tested first, prior to the hand-held system. However they showed a clear artefact of 

using two different designs of system, which they were able to solve by simply 

changing the angle of the air inflow tube and reducing the flow rates in the automated 

chambers. The difference between the high and low resolution measurements in 

terms of the cumulative soil CO2 efflux during Run 2 highlights the need for caution 

when interpreting data measured using two different systems, even when the majority 

of the components are the same. 
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In summary, the current work has demonstrated that despite there being no 

significant difference between the treatments in terms of litter decomposition 

(Chapter 2), there were clear significant differences between the six soil collar 

treatments in terms of soil CO2 efflux. There were potential problems with roots and 

/or mycorrhizal hyphae growing into deep soil collars towards summer 2010, which 

highlights the need for caution when using soil trenching as a technique to separate 

out the various flux components of Rs. Though there was no evidence from this 

research to support that moisture differences caused by water uptake by roots 

influences soil CO2 efflux in trenched compared to control soils, or that moisture in 

general was limiting soil CO2 efflux at this site, the need to measure soil moisture and 

its effect on the components of soil CO2 efflux at alternative sites, under more severe 

moisture conditions is apparent. 

Temperature was clearly the most important driving factor of soil CO2 efflux at 

Wheldrake Forest, though whether the seeming greater response of root respiration to 

soil temperature was in fact at least in part explained by variations in assimilate supply 

is a possibility, and warrants further investigation.  

The use of the high resolution data from the automated soil CO2 efflux measurement 

system allowed an investigation of the degree of bias introduced by basing 

assumptions in terms of the treatment effects on sporadic hand-held surveys of soil 

CO2 efflux. It would seem that unless two treatments are extremely close in terms of 

their soil CO2 efflux, the high and low resolution measurements generally give 

consistent results. 

Certainly the differences demonstrated in terms of the responses of roots and 

mycorrhizal hyphae to seasonal changes, whether driven by temperature, moisture or 

assimilate/substrate supply support the view of Heinemeyer et al. (2007, 2012) that it 

is important to consider the different flux components of Rs and the factors important 

for driving them separately, for modelling of carbon dynamics in forest systems to be 

accurate.  
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In the next Chapter, results of a litter decomposition experiment in combination with 

forest girdling and measurements of soil CO2 efflux are presented, these data have 

been published (Subke et al., 2011). 
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Chapter 4 Dynamics and pathways of autotrophic and heterotrophic 
soil CO2 efflux revealed by forest girdling (Subke et al., 
2011). 
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Chapter 5 ECM fungi and the decomposition of 13C-labelled simple and 

complex substrates 

5.1 Introduction 

As previously described and demonstrated in Chapter 4, the introduction of labile 

substrates, including plant assimilate C to the soil have been shown to cause increased 

microbial activity and turnover of complex substrates including litter (Subke et al., 

2004; 2006), and SOM (Kuzyakov, 2002; Fontaine et al., 2004). In temperate and boreal 

forest systems, much of the labile C entering the soil is via ECM fungi in symbiosis with 

plant roots. Godbold et al. (2006) estimated that in these systems, ca. 60% of the C 

input to the soil is cycled through ectomycorrhizal (ECM) fungi, a greater input than 

from leaf litter decomposition and the turnover of fine roots.   

Forest soils are complex systems and competition between microorganisms of 

differing decomposer abilities can influence the rate of carbon cycling taking place. 

There is evidence that the C supply to ECM fungi gives them a competitive advantage 

in forest soils, and their dominance, combined with their limited decomposer abilities 

has the effect of slowing down litter decomposition (Gadgil & Gadgil, 1971; 1975). In a 

study comparing litter decomposition and microbial diversity, between a mono-

dominant Dicymbe corumbosa stand, with  associated ECM fungi, and a mixed-species 

stand where AM associations were dominant, McGuire et al. (2010) reported increased 

decomposition of litter collected from both the mono-dominant and the mixed litter 

stands when they were incubated in the soil of the mixed stand. The decreased rate of 

decomposition of litter native to both stands in the presence of ECM fungi in the 

mono-dominant stand was accompanied by decreased microbial diversity in the soil. 

Gadgil & Gadgil (1971; 1975) and Abuzinadah et al. (1986) suggested that a potential 

mechanism through which ECM fungi could inhibit decomposition is selective uptake 

of nutrients such as N from the litter, making them unavailable for soil saprotrophs. 

This is one key mechanism that could explain the decrease in diversity in the ECM-

dominated stand observed by McGuire et al. (2010). It has been largely assumed that 

ECM fungi intercept N released from complex substrates decomposed by saptrotrophs, 

since ECM fungi reportedly cannot access organic N on their own (Bending & Read, 
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1995). Though the decomposer abilities of free-living saprotrophic fungi are 

considered to be much greater than for ECM fungi, there is evidence of certain species 

of ECM fungi directly accessing organic N substrates (Abuzinadah et al., 1986; Lindahl 

et al., 1999a). In contrast to the findings of Gadgil & Gadgil (1971; 1975) and McGuire 

et al. (2010), the results of girdling studies (Subke et al., 2004) and the litter 

decomposition experiment presented in Chapter 4 suggest that the presence of ECM 

fungi actively promoted the decomposition of complex substrates. In the current 

Chapter, the results from two experiments are presented, where the influence of roots 

and associated ECMs on the decomposition of substrates differing in terms of 

structural complexity and nitrogen (N) content was investigated. 

In an initial experiment, conducted prior to the litter decomposition experiments 

presented in Chapters 2, 3 and 4 of this thesis, it was decided to assess the influence of 

the presence of ECM roots, ECM hyphae excluding roots, and free living soil 

saprotrophs on the decomposition of a simple substrate, 13C-labelled glucose. High 

resolution measurements of soil CO2 efflux and its isotopic composition were 

measured continuously from four replicate collars each of treatments RMS, MS and S, 

with a field-deployed mass spectrometer. This allowed a unique opportunity to study 

the addition of a labile C source to the soil, in the presence or absence of ECM fungi in 

a field situation.  

Further, in order to investigate the apparent emerging  discrepancy between the 

results of this initial 13C-labelled glucose decomposition experiment, and the results of 

the girdling experiment presented in Chapter 4 (Subke et al., 2011), a further field 

experiment was conducted. During the current experiment, the decomposition rates of 

the following four substrates: 13C-labelled glucose, 13C-labelled cellulose, 13C-labelled 

lysine and 13C-labelled fungal cell wall material were studied in the presence or 

absence of ECM hyphae (treatments MS and S). These four substrates were selected in 

terms of their differing structural complexities and N contents; Table 5.1 provides the 

coding structure and basic rationale behind these treatments. Glucose is a simple 

sugar and a common component of rhizodeposits (Kuzyakov, 2010) and contains no 

nitrogen (N). Lysine is an N-containing amino acid, but is also relatively simple in terms 

of structure. In contrast, fungal cell wall material is estimated to contain up to 60% 



 

177 
 

 

chitin (Treseder & Allen, 2000), a complex N containing substrate which constitutes an 

important structural component of microbial cells. 

A considerable amount of work has been conducted into studying the influence of the 

turnover of roots on forest C cycling (Silver & Maya, 2001), but surprisingly little 

attention has been given to the turnover of ECM fungal biomass (Wallander, 2012). 

We now realise that ECM fungal biomass constitutes one of the major sinks for plant 

photoassimilates in temperate and boreal forest systems (Godbold et al., 2006) and 

their turnover is likely to provide a substantial resource in terms of both C and N for 

other soil microorganisms (Wilkinson et al., 2011, Fernandez & Koide, 2012). A handful 

of recent studies have assessed the mass loss of laboratory cultured ECM mycelia in 

mesh bags (Koide & Malcolm, 2009; Koide et al., 2011; Fernandez & Koide, 2012). 

Drigo et al. (2012) studied the turnover of 13C-labelled fungal mycelia in a controlled 

laboratory study. However in the current field-based study, the use of the 13C isotopic 

label, in combination with soil trenching allowed an estimate of the turnover of the 

complex structural components of ECM fungal mycelium in the soil, in the presence or 

absence of labile C inputs through roots and associated ECM fungi, which to our 

knowledge has not previously been attempted. The hypotheses under test in the 

current work were: 

13C-labelled glucose decomposition experiment: 

There will be a faster decomposition rate of simple substrates in the presence 

of an intact rhizosphere, compared to where roots and ECM fungi are excluded. 

13C-labelled simple and complex substrate decomposition experiment: 

1. There will be a faster decomposition of structurally complex substrates in the 

presence of ECM fungi, compared to where they are excluded. 

 

2. There will be faster decomposition of N-containing substrates in the presence 

of ECM fungi, compared to where they are excluded. 
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5.2 Materials and methods 

5.2.1 Site description 

The study site was the same 20 year old stand of Lodgepole pine (Pinus contorta, 

Douglas) used for the litter decomposition experiment (see Chapter 2, and further 

study site information given in Section 2.2.1). 

5.2.2 Experiment 1: 13C-labelled glucose decomposition experiment 

5.2.2.1   Experimental treatment 

The aim of this experiment was to investigate the impacts of root/root + mycorrhizal 

exclusion on field decomposition rates of added 13C labelled glucose. This involved the 

construction of appropriate exclusion collars and field use of an isotope ratio mass 

spectrometer to monitor in situ 13CO2 production from these collars.  As previously 

mentioned, 24 soil collars, 16 ‘deep’ soil collars (30 cm in height, hammered 25 cm into 

the soil) and 8 shallow surface collars were installed on 10th June 2008, in a 

randomised block design based on a survey of background CO2 efflux (for further 

details of this survey, and of soil collar construction, see section 2.2.1). There were 

three treatments (RMS, MS and S, n=8; see previous Chapters for treatment naming 

conventions).  

There are experimental limitations imposed by the field use of the field IRMS (see 

below and Fig. 5.1) which includes the maximum distance between cores and the IRMS 

(50 metres) and a maximum of 16 analytical lines (and hence the number of cores) 

which can be monitored automatically; this line limitation means that the number of 

treatments or replicates has to be reduced (as in this case) or the lines have to be 

moved manually between cores at regular (e.g. daily) intervals (as for Experiment 2, 

below).  In the current experiments, initial CO2 flux measurements were made using a 

hand-held IRGA to optimally allocate treatments and blocks to minimise experimental 

heterogeneity and, hence, the number of replicates required. 

Two weeks after  collar installation, PVC shields were erected above the 24 soil collars, 

and weekly additions of average amounts of collected throughfall commenced; this 
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Fig. 5.1  Photographs (A) showing a flow-through chamber positioned on top of a soil 
collar, secured using a section of tyre inner-tubing (B) the mobile laboratory containing 
an IRMS in position at Wheldrake Forest, with treatment lines running out to the 
treatment collars. 
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also greatly reduced the heterogeneity in CO2 fluxes whilst fully maintaining the 

chemistry and quantity of throughfall inputs.  

Following a hand-held survey of soil CO2 efflux using an Li-8100 infrared gas analyser 

(IRGA) with a 20 cm survey chamber (Li-Cor Bioscience, Lincoln, NE, USA) on 25th 

November 2008, replicates of treatments RMS, MS and S were ranked, and the ranked 

collars were split into four sets of pairs. Randomly within each pair, one of the collars 

was assigned for use in the current study. This left four replicates of each of the three 

treatments: RMS (surface collars, nothing excluded) MS (deep collars, 41 µm mesh 

windows, roots excluded) and S (deep collars, 1 µm mesh windows, roots and 

mycorrhizal hyphae excluded).  

There was an expected significant initial difference between the three soil treatments 

in terms of soil CO2 efflux, measured during the hand-held survey on 25th November 

2008 (Friedman’s non parametric two-way ANOVA, F= 12.84, p<0.007), with the 

greatest soil CO2 efflux measured from treatment RMS, followed by treatments MS 

and S. This indicated successful exclusion of the various soil components, and 

confirmed the in-growth of ECM hyphae into the treatment MS collars. 

Flow-through chambers (20 cm diameter, 10 cm height) were placed on top of the 12 

soil collars, and a tight seal achieved using a section of tyre inner tubing (see Fig. 5.1 

A). Following the method of Subke et al. (2009), soil CO2 efflux (Rs) from the treatment 

collars and its isotopic composition (δ13C) were measured directly using a field-

deployed mobile laboratory containing an isotope ratio mass spectrometer (IRMS) (see 

Fig. 5.1 B), linked to a specially developed continuous flow gas sampling interface, 

drawing air through up to 15 measurement lines, and from a reference cylinder at a 

constant rate of 50 ml min-1 (see Fig. 5.1; for further information, see Subke et al., 

2009). In addition to the 12 sample lines running to treatment collars, two sample lines 

were allocated to two new surface collars (of the same type as the treatment RMS 

collars, see section 2.2.3), deployed at the start of the experiment in order to gain a 

measurement of the natural abundance of 13C in soil CO2 efflux (referred to here as NS 

control collars). A further line was positioned near to the gas intake point on the flow-

through chambers in order to provide measurements of the concentrations and δ13C 
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values of CO2 in ambient air (referred to here as the Air Line). Soil CO2 efflux and its 

isotopic composition (δ13C) was measured from each soil collar on an hourly basis, 

from 11th until 21st December 2008. The flux of 13CO2 was used to estimate the 

microbial utilization of the 13C labelled glucose in the different treatments. 

13C-labelled glucose solution (300 cm3, 5 g l-1 glucose, 60 mg l-1 13C-labelled glucose (99 

atom %), made using throughfall as the solvent, was added to the four replicate 

treatment collars of treatments RMS, MS and S between 15:00 and 16:00 hrs on 12th 

December 2008. The amount of throughfall used to make the solution was based on 

the average amount collected over the plot for the week prior, corrected for the collar 

surface area. To avoid any osmotic effects, the concentration of glucose added was 

based on the amount normally included in growth media (Marx, 1969), considered 

optimal for microbial growth. The NS control collars received 300 cm3 of throughfall 

without glucose, whilst the 12 remaining collars which were not included  in the 

current experiment received 300 cm3of glucose solution without the isotopic label.  

5.2.3 Simple and complex substrate decomposition experiment 

For a full list of substrates used in the experiment, and the treatment coding system, 

see Table 5.1. The total amount and ‘dilution’ ratio with unlabelled substrate for each 

of the substrates added was carefully planned so that both identical amounts of total C 

and 13C were added to each of the experimental cores.   

5.2.3.1   Preparation of 13C-labelled fungal cell wall material 

Mycelium of the generalist ECM basidiomycete Paxillus involutus (Batsch) Fr. (Isolate 

MAI) was grown on agar in Petri dishes containing ¼ strength modified MMN medium 

(Marx, 1969; for full list of ingredients, see Appendix 2), incubated at 25˚C until the 

mycelia covered the surface of the agar. Small 1 x 1 cm plugs of agar were then 

aseptically transferred to 500 cm3conical flasks, each containing 250 cm3 of ¼ strength 

modified MMN liquid media. For one third of the flasks, 10% of the 12C glucose was 

replaced with 99 atom % 13C-labelled glucose (Cambridge Isotope Laboratories, Inc., 

Andover, USA), without the malt extract so that the glucose was the only C source in 
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Table 5.1  Summary of ten treatments created using PVC soil collars, (30 cm hammered 
to a depth of 25 ± 2 cm) and the addition of 13C-labelled substrates. Each treatment 
had 3 replicates. 
 
Treatment code 

 
    Substrate 

 
Mesh gauge 

 
Soil collar treatment 

 
GLS 

 
13C-labelled glucose 

 
1 µm 
 

 
Roots and ECM 
hyphae excluded 

 
LYS 

 
13C-labelled lysine 

 
1 µm 
 

 
Roots and ECM 
hyphae excluded 

 
CES 

 
13C-labelled cellulose 

 
1 µm 
 

 
Roots and ECM 
hyphae excluded 

 
FUS 

 
13C-labelled fungal cell wall 
material 

 
1 µm 

 
Roots and ECM 
hyphae excluded 

 
NSS 

 
Control (no substrate) 

 
1 µm 

 
Roots and ECM 
hyphae excluded 

 
GLM 

 
13C-labelled glucose 

 
41 µm 
 

 
Roots excluded 

 
LYM 

 
13C-labelled lysine 

 
41 µm 
 

 
Roots excluded 

 
CEM 

 
13C-labelled cellulose 

 
41 µm 
 

 
Roots excluded 

 
FUM 

 
13C-labelled fungal cell wall 
material 

 
41 µm 
 

 
Roots excluded 

 
NSM 

 
Control (no substrate) 

 
41 µm 
 

 
Roots excluded 
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the media. The flasks were incubated at ambient room temperature and left to rock 

gently until the mycelia had grown to fill the flasks.  

Following this, the mycelia were removed from the flasks, and cut away from any of 

the original plug that was remaining before being frozen at -20 ˚C for several days. The 

fungal cell wall material was then extracted following the method of Moreno et al. 

(1969), where the frozen fungus was crushed 25 times with a manual French press. 

Samples of the crushed fungus were then suspended individually in approximately ten 

times their volume of deionised water before treatment in a sonicator for 20 minutes. 

The crude cell walls were isolated by centrifugation for 10 minutes at 3000 rcm 

(Metafuge 1.0, Heraeus Sepatech), and the supernatant solution was removed and 

replaced with deionised water; this process was repeated until the supernatant 

solution became clear. The pellet containing the cell wall material was then freeze-

dried and stored in a dessicator until prior to use when it was hand-ground using a 

pestle and mortar to a fine powder.  

5.2.3.2   Preparation of 13C-labelled cellulose 

13C cellulose was extracted from wheat straw using the method of Sun et al. (2004) 

which had been grown under a 13CO2 enriched atmosphere (13C atom enrichment of 

10%, δ13C of 8890‰). To remove waxes, a soxhlet extraction was carried out using 200 

cm3toluene and 100 cm3 of ethanol (for c. 7g of cellulose). The residue was then 

thoroughly rinsed with deionised water in cellulose-free thimbles. Lignin was removed 

using acid digestion, with a mixing ratio of 30:60:10, formic acid: acetic acid: water, 

including the addition of 0.1% HCl, carried out for 4 hours at 85 ˚C. The residue was 

then washed with deionised water and ethanol, and dried in an oven at 60˚C for 24 

hours before being stored in a dessicator prior to use. 

5.2.3.3  Preparing substrates for addition to the soil collars 

The C content of the fungal cell wall material was estimated at 40.1 % (based on the % 

C content of glucosamine), consistent with assumptions made in previous studies (Ek, 

1997). Based on this assumption, the amount of fungal cell wall material C available for 
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addition to each of the three FUS (see Table 5.1), and each of the three FUM collars, 

was 0.234 g, with a 13C atom enrichment of 3.35%. 

Accordingly, the 13C-labelled glucose was diluted with 12C glucose (D-glucose 

anhydrous, Fisher Scientific Ltd, Loughborough, UK) whilst the 13C-labelled lysine (99 

atom %, Cambridge Isotope Laboratories, Inc., Andover, USA) was appropriately 

diluted with 12C-lysine (L-Lysine dihydrochloride, Acros Organics, Geel, Belgium). The 
13C-labelled cellulose was diluted with 12C-cellulose made under identical conditions to 

the labelled material but never exposed to 13CO2 (see section 5.2.3.2). The most 

limited material was the extracted fungal cell walls and all substrates were diluted to 

match the amount of cell wall material added to the collars in terms of C content and 

atom enrichment. 

5.2.3.4  Experimental treatment 

Using the same technique as previously described in Section 2.2.2, PVC tubing (20 cm 

diameter, Plumb Centre, Wolseley, UK) was cut to 30 cm lengths to create 40 soil 

collars.  Four windows were cut (width 6 cm, height 4 cm, situated 5 cm from the top 

of the collar and evenly spaced) and covered with one of two meshes (Normesh Ltd., 

Oldham, UK) of different gauge, to create two treatments (following the design of 

Heinemeyer et al., 2007). The cores were inserted to a depth which positioned the 

mesh windows to just below the soil surface. Treatment S (soil only) was created using 

1 µm mesh, and excluded roots and ECM hyphae; treatment MS (mycorrhizas + soil) 

used 41 µm mesh, excluding roots but permitting ECM hyphal access (see Fig. 2.1). 

Forty-four shallow collars (20 cm diameter) were randomly assigned positions in the 

Pinus contorta stand on 8th September 2011, with potential collar locations being 

rejected if the distance from the nearest tree was less than 0.5 m or greater than 2 m, 

collars were spaced at least 1 m apart . Measurements of background CO2 efflux were 

conducted using a Li-8100 infrared gas analyser (IRGA) with a 20 cm survey chamber 

(Li-Cor Bioscience, Lincoln, NE, USA). 

Based on these initial CO2 flux measurements, the locations were ranked, and this 

ranking used to assign each collar to a specific pair, in a randomised design.  Any 
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collars with outlying CO2 flux rates were excluded from the experiment. The 40 collars 

were hammered 25 cm ± 2 cm into the soil in the Pinus contorta stand on 19th 

September 2011, cutting through the main concentration of roots. Two weeks after 

collar installation, small PVC roofs were erected above the 24 soil collars, and weekly 

additions of average amounts of collected throughfall commenced. 

Following a hand-held survey of soil CO2 efflux on 3rd August 2012, when there was a 

significant difference between the treatment MS and S soil collars (P<0.0258, Wilcoxon 

signed-rank test), the pairs of MS and S collars were ranked, according to the 

magnitude of the MS flux. The two pairs with the highest MS fluxes, and the three 

pairs with the lowest MS fluxes were excluded, to leave 30 collars (15 pairs). Within 

each of the three new blocks, each containing five pairs of MS and S collars, the pairs 

were randomly assigned to one of five substrate treatments (see Table 5.1) 

On 22nd August 2012, the mobile IRMS laboratory was established at the experimental 

site, and a series of measurements began. The three blocks, each of which contained 

one replicate from each of the 10 substrate treatments described in Table 5.1, were 

measured in series with one ‘run’ of the mobile laboratory in the morning, one in the 

early afternoon and one in the evening. Prior to each run of the mobile laboratory, 

flow-through chambers were deployed as described for the 13C-labelled glucose 

decomposition experiment (see Section 5.2.2.1) with one sample line dedicated to 

calibration by drawing air from the reference gas cylinder of known CO2 concentration 

and δ13CO2 value. For this experiment, a further two analytical lines were positioned 

near to the gas intake point on the flow-through chambers to provide measurements 

of the concentration and δ13C of CO2 in ambient air (referred to here as the Air Lines). 

For each run of the mobile lab, a minimum of four hourly cycles were carried out with 

the data from the first measurement cycle being discarded. As previously, the flow rate 

of gas through all the sample lines was controlled at 50 cm3 min-1. 

Between 10:00 hrs and 11:00 hrs on 23rd August 2012, the four isotopically labelled 

substrates were applied as dry powder to the three replicates of each of the 

treatments shown in Table 5.1, and 200 cm3 of deionised water was applied to wash 
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the substrates gently into the litter later. The NS control collars received 200 cm3 of 

deionised water, but without any added substrate. 

On 29th August 2012, a slightly different measurement strategy was followed with all 

the replicates from treatments GLS, GLM, LYS and LYM measured during one run of the 

mobile laboratory, all the replicates from treatments CES, CEM, FUS and FUM 

measured in a second run, and all the replicates of treatments NSS, NSM, FUS and 

FUM measured in a final run. This was done in order to enable direct comparisons 

between the MS and S collar treatments for each of the substrates, whilst reducing the 

error associated with spreading the three replicates for each of the treatments out 

over each measurement day. The mobile laboratory ran from 22nd August 2012 to 2nd 

September 2012, when power supply difficulties stopped the measurements. The 

‘return’ flux of 13C as 13CO2 was used to estimate the microbial utilization of the 

substrates in the different treatments. 

5.2.4 Data analysis 

5.2.4.1   Calculating soil CO2 efflux, and its isotopic composition (δ13C) 

Following the method of Subke et al. (2009), the concentration of CO2 measured in the 

flow-through chamber headspace air was used to calculate the soil CO2 efflux (F) for 

each soil collar, for each measurement cycle of the mobile laboratory (see Eq. 5.1). 

This calculation was identical for the data obtained from both the initial 13C-labelled 

glucose decomposition experiment, and the later 13C-labelled simple and complex 

substrate decomposition experiment. 

   

Soil CO2 flux (F)  = �
Csample − Cair  x flow

A
�                             (Eq. 5.1) 

 

Where Csample is the concentration of CO2 ((µl l-1) in the chamber headspace air, Cair is 

the concentration of CO2 (µl l-1) entering the flow-through chambers in the ambient 

forest air (an average of the concentrations measured from the two Air Lines), flow is 
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the flow rate of air through the chamber (cm3 min), and A is the area of soil covered by 

the soil collar. The isotope ratio (δ13C) of soil CO2 efflux was calculated for each soil 

collar, for each measurement cycle using a two-source mixing model (see Eq. 5.2). 

 

δSoil = �
�δSample CSample − δAir CAir�

CSample −  CAir
�                                          (Eq. 5.2) 

 

: 

Where C is the CO2 concentration, and δ is the 13C/12C isotope ratio of the gas. The 

suffix ‘Soil’ refers to CO2 derived from the soil, the suffix ‘Sample’ refers to the CO2 

measured from the chamber headspace air, and the suffix ‘Air’ refers to the CO2 

entering the flow through chamber (an average of the two Air Lines). 

5.2.4.2   Statistical analysis 

Both experiments used a randomised block design, with a variety of statistical 

approaches used during data analysis. Where possible, parametric analyses were 

carried out but generally sample distributions deviated from normal so data were 

transformed where possible or the equivalent non-parametric tests were carried out, 

usually Friedman’s non-parametric two-way ANOVA with post-hoc analyses using 

Duncan’s multiple range test (see Section 2.3.2 for a description of how the data were 

averaged to avoid pseudo replication). Further specific information regarding the use 

of different statistical tests is detailed in the Results section. All statistical tests were 

carried out using SAS software package v. 9.3 (SAS Institute Inc., Cary, NC, USA). 
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5.3 Results 

5.3.1 13C-labelled glucose decomposition experiment 

5.3.1.1  Soil CO2 flux 

Prior to the addition of 13C-labelled glucose, as expected, there was a consistently 

higher concentration of CO2 in the headspace air leaving the chambers than in the 

incoming air (see Fig. 5.2). There was also a larger soil-derived CO2 flux (see Fig. 5.3) 

from treatment S collars, than from treatment RMS and MS collars. In order to view 

these data more clearly, Fig. 5.4 displays the same data as Fig. 5.3, but with the error 

bars removed.  A Friedman’s non parametric one-way ANOVA was performed on the 

of the cumulative soil CO2 flux data, and demonstrated a highly significant difference 

between the treatments in terms of the cumulative soil CO2 flux calculated for each 

collar during the period prior to substrate addition (F = 29.64, p<0.0001). A post-hoc 

analysis showed that all treatments were significantly different (see Fig. 5.5).   

As described in Section 5.2.2.1, two NS (no substrate) control collars were placed on 

the soil surface when the flow-through chambers were established. Therefore, the soil 

inside the NS control collars had not received the same treatment in terms of the 

exclusion of incident throughfall, and the weekly watering regime which the treatment 

RMS, MS and S collars had been subject to for a period of six months prior to the start 

of the current experiment. This treatment difference is reflected in the particularly low 

cumulative soil CO2 flux from the NS control collars when compared to the other 

treatments (see Fig. 5.5). 

Following the addition of 13C-labelled glucose, between 15:00 and 16:00 hrs on 12th 

December 2008, an increase in CO2 flux was quickly evident from all collars (see Figs. 

5.3 and 5.4). Once started, this rise in respiration occurred at a similar rate for all three 

treatments, but began particularly quickly in treatment S, two hours after substrate 

addition. Though there was a transient rise in soil CO2 flux measured from treatment 

RMS collars three hours after substrate addition, the response from both the RMS and 

MS collars started to occur approximately 11 hours after the addition of the 13C-

labelled glucose. CO2 flux peaked at a much greater level in treatment S collars, and 
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Fig. 5.5  Average cumulative soil CO2 efflux (mol m-2 period-1) during the period 
following the installation of flow-through chambers, prior to the addition of 13C-
labelled glucose (a period of 16 hours). Treatments which differ significantly have 
different letters. For treatments S, MS and RMS, error bars represent ± 1 SE (n = 4). For 
the control (NS) collars and error terms are the range, with n = 2. 
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was sustained for longer than in treatment MS and RMS collars, though this was also 

contributed to by treatment S collars having an initial higher background soil CO2 flux 

prior to substrate addition (see Figs 5.3 and 5.4). Friedman’s two-way ANOVA, with 

treatment and block as factors, revealed a highly significant difference between the 

treatments (NS control collars were excluded from this analysis as they were not part 

of the original block structure) in terms of their cumulative soil CO2 flux following 

substrate addition (F= 13, p<0.007). Post-hoc analysis showed that treatment S collars 

had a significantly higher average cumulative CO2 flux than treatments MS and RMS, 

which did not differ significantly (see Fig. 5.6).  

 As there was a significant difference between the treatments in terms of the 

cumulative Soil CO2 flux, it justified to carry out repeated Friedman’s two-way ANOVA 

at each time point to see whether there were occasions when treatments MS and RMS 

differed significantly. These analyses revealed that for a short period of time following 

16th December 2008, the soil CO2 flux was greater from treatment MS than treatment 

RMS (see Figs. 5.3 and 5.4). 

There was a second peak in soil CO2 flux, which began on 20th December 2008 and 

occurred in all treatments, including the NS control collars. It is probable therefore, 

that this response in the CO2 flux was not caused by substrate addition, but by 

background changes in soil temperature (see Figs. 5.3 and 5.4). Watering took place on 

16.12.2008 between 13:45 and 15:15 hours, so it is unlikely to have contributed to this 

second peak in flux rate. 

5.3.1.2  δ13C soil CO2 flux 

The δ13C of soil CO2 flux over time is displayed in Fig. 5.7. Again, in order to make 

viewing the data easier, Fig. 5.8 shows the same data as Fig. 5.7, but with the error 

bars removed. As there was no significant difference in the average δ13C of soil CO2 

flux between treatments RMS, MS, S and the NS control collars prior to substrate 

addition (F=2.29, p>0.14), any rise in the δ13C from the treatments above that of the 

NS control δ13C must be attributed to utilisation of the substrate. The δ13C of soil CO2 

flux displayed in Figs. 5.7 and 5.8 matches the data shown in Figs. 5.3 and 5.4, with 

treatment S having a greater and more sustained peak in flux, though there was not as  
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Fig. 5.6  Average cumulative soil CO2 efflux (mol m-2 period-1) following the addition of 
13C-labelled glucose (a period of 175 hours). Treatments which differ significantly have 
different letters, error bars represent ± 1 SE (n = 4).  
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dramatic a difference between the δ13C of the fluxes from each treatment as there was 

in the soil CO2 flux (see Figs. 5.3 and 5.4). This is because the soil CO2 flux data, also 

incorporates any pre-existing differences in background soil CO2 fluxes from the 

different treatments. As previously mentioned, it was clear that treatment S had a 

higher soil CO2 flux than treatments MS and RMS, so this accentuated the treatment S 

peak in Figs. 5.3 and 5.4, relative to the peak in the δ13C displayed in Figs. 5.7 and 5.8. 

The differences between the treatments in terms of the average δ13C of soil CO2 flux 

following substrate addition was highly significant (F=45.59, p<0.0001) with all 

treatments significantly different from each other (see Fig. 5.9). The second peak in the 

soil CO2 flux shown in Figs. 5.3 and 5.4 is not reflected in Figs. 5.7 and 5.8, again 

suggesting that this increase was not due to substrate addition. 

Following the addition of 13C-labelled glucose, there is a period when the δ13C of soil 

CO2 flux from the NA control collars was very noisy, after which the value settled down 

and remained in a fairly constant range for the remainder of the experiment (see Figs. 

5.7 and 5.8); initial contamination with CO2 from human breath may have contributed 

to these unusual values. In order to ensure that subsequent calculations involving the 

δ13C of soil CO2 flux from the NS control collars were not compromised, it was decided 

that an average δ13C, be calculated over the time period after these initial noisy data, 

until the end of the experiment. This value was substituted for the raw NS control 

collar values at each time point following substrate addition and was used to 

recalculate 12C and 13C concentrations, used in all subsequent analysis. 

5.3.1.3  Percentage return of glucose-derived C 

In order to estimate the mass of total C, 13C, and 12C released from each collar during 

the experiment, a simple calculation mass balance was carried out using the total CO2 

concentration measured from the chamber headspace air, and the re-calculated 13CO2 

and 12CO2 concentrations. By working out the cumulative mg C, 12C, and 13 C measured, 

then subtracting the cumulative mg of C from the Air Line, and the average cumulative 

mg C, 12C and 13C from the NA control collars, an estimate of the mass of glucose-

derived C emitted (including any additional C released from priming of SOM) from the 

collars during the experiment was obtained (see Fig. 5.10). Friedman’s two-way 
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Fig. 5.9  Average δ13C  soil CO2 efflux (‰) following the addition of 13C-labelled 
glucose. Treatments which differ significantly have different letters, error bars for 
treatments S, MS, RMS represent ± 1 SE (n = 4), error terms for NS control collars 
represent the range, with n = 2.  
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Fig. 5.10  Average cumulative additional return as CO2 of: (A) C, (B) 12C, (C) 13C  (mg) 
from treatment collars over the experimental period (see text for calculation method). 
Within each chart, treatments which differ significantly have different letters. Error 
bars represent ± 1 SE (n = 4). 
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ANOVA, with block and treatment as factors, showed there was a highly significant 

difference between the treatments in terms of the mass of total C, 13C and 12C released 

during the experiment (F=13, p<0.007), with treatment S having a significantly higher 

release of C than treatments MS and RMS which did not differ significantly in terms of 

the mass of C released (see Fig. 5.10). The higher % return of glucose-derived C from 

treatments RMS and  MS, estimated using this method,  does not support what is 

shown by the δ13C of soil CO2 flux (see Figs. 5.7 and 5.8). One reason  for this 

discrepancy is that the use of the mass of C emitted from the NS control collars as a 

proxy for the background release of C from the treatment collars does not take into 

account the inherent differences in soil CO2 flux between the treatments, and the NS 

control collars, prior to substrate addition (see Fig. 5.5). 

In order to resolve this problem, and to gain a more treatment-specific estimate of the 

background soil CO2 being emitted from the treatment collars, two alternative 

calculation methods were attempted. The first, using the proportional difference 

between each individual treatment collar, and the NS control collars prior to substrate 

addition to alter the NS control collar concentration (ppm) at each time point, creating 

a control for each individual collar, proved unsuccessful. Initially, this seemed the best 

available option, as it allowed for variation in CO2 flux driven by environmental factors, 

such as temperature, to be taken into account (see Figs. 5.3 and 5.4). However, the 

values obtained using this method for the mass of C released from the ‘controls’ were 

higher than the mass from each collar when the substrates had been added.. Clearly, 

the proportional differences between the NS control collar CO2 flux and that of the 

treatment collars prior to substrate addition must have decreased during the 

experiment. In support of this, Fig. 5.2 shows that initially the difference was large, 

with the NS collar CO2 concentration being close to that of the Air Line, but then the 

concentration appears to increase relative to that of the Air Line, suggesting that it was 

becoming more similar to the underlying background CO2 concentration of treatments 

RMS, MS and S.  

A second, alternative calculation method was applied, where the average mass of soil-

derived C from each collar prior to substrate addition was subtracted from the mass of 

soil-derived C after substrate addition to give an estimate of the mass of C returned 
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following utilisation of the glucose. This method is not ideal, as it does not take into 

account fluctuations in the background soil C flux due to changing factors such as soil 

temperature and moisture. However, the results obtained do show that there was a 

greater mass of C released from treatment MS than treatment RMS, as was shown by 

the δ13C of soil CO2 flux in Figs. 5.7 and 5.8 (see Fig. 5.11). Furthermore, the error bars 

displayed for each treatment in Fig. 5.11 are much smaller than in Fig. 5.10, suggesting 

that this method is at least more precise than the use of the NS control collars. The 

average mass of C (mg) returned per treatment was used, alongside the original mass 

of total C, 12C and 13C added to estimate the % return of glucose-derived per treatment 

during this experiment (see Table 5.2). Results of Friedman’s two-way ANOVA, with 

block and treatment as factors, showed there was a highly significant difference 

between the treatments in terms of the mass of total C, 13C and 12C released during the 

experiment (F=13, p<0.007), with treatment S having a significantly higher release of C, 

and a higher % return of glucose-derived C than treatments MS and RMS. Though the 

mass of C from treatments MS and RMS calculated using this method seems more 

reflective of what is displayed in Figs. 5.7 and 5.8, these two treatments did not differ 

significantly in terms of the mass of C released (see Fig. 5.11 and Table 5.2). 

5.3.1.4  Soil moisture surveys 

Results of Friedman’s non-parametric two way ANOVA comparing the average soil 

moisture per treatment and block from the three hand-held soil moisture surveys 

conducted on 5th, 16th and 22nd December 2008 showed that there was a significant 

difference between the treatments in terms of soil moisture (F=13, p<0.007), with 

treatment RMS having a significantly higher average soil % moisture (gravimetric) than 

treatments MS and S, which did not differ significantly.  

5.3.2 Simple and complex 13C-labelled substrate decomposition experiment 

5.3.2.1  Soil CO2 flux 

Prior to the establishment of flow-through chambers, a hand-held survey of soil CO2 

flux was carried out (see Section 5.2.3.4) in order to ascertain whether there was a 

significant difference between the treatment MS and S collars, which would indicate  
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Table 5.2  The percentage return as CO2 of glucose-derived C, 12C and 13C from added 
13C-labelled glucose for treatments RMS, MS and S, calculated using the soil-derived C 
from each of the collars prior to the addition of 13C-labelled glucose. Treatments which 
differ significantly have different letters. Values for treatments are means, with 
standard errors in parentheses, n=4.  
 
Treatment 

 
          % return of glucose-derived C 

 
S 

 
8.7 (0.9)a 

 
MS 

 
4.3 (0.3)b 

 
RMS 

 
3.5 (0.4)b 

 
% return of glucose-derived 12C 

 
S 

 
8.7 (0.9)a 

 
MS 

 
4.3 (0.3)b 

 
RMS 

 
3.5 (0.4)b 

 
% return of glucose-derived 13C 

 
S 

 
8.9 (0.9)a 

 
MS 

 
4.4 (0.3)b 

 
RMS 

 
3.6 (0.4)b 
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Fig. 5.11 Average cumulative additional return of: (A) C, (B) 12C, (C) 13C (mg) from 
treatment collars over the experimental period (see text for calculation). Within each 
chart, treatments which differ significantly have different letters. Error bars represent 
± 1 SE (n = 4). 
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successful ingrowth of ECM hyphae into the MS collars. Analysis using a Wilcoxon 

signed-rank test showed that there was greater soil CO2 flux  measured from 

treatment MS collars than from treatment S collars (p<0.03). However, during the 

period following flow-through chamber establishment, prior to the addition of the 13C-

labelled substrates, the data recorded using the mobile laboratory indicated that 

significantly higher values of soil CO2 flux were obtained from treatment S collars, 

rather than the treatment MS collars (Friedman’s non parametric two-way ANOVA, 

F=3.5, p<0.02).  

Fig. 5.12 displays the cumulative soil CO2 fluxes for the MS and S collars prior to 

substrate addition, calculated according to the substrates they were due to receive on 

24th August 2012. This was done to allow later comparison with the cumulative soil 

CO2 flux following substrate addition. The highest average soil CO2 flux prior to 

substrate addition was from treatment GLS, though there were large differences in the 

cumulative soil CO2 flux between the three replicate GLS collars, which meant that the 

error term was large (see Fig. 5.12). Post-hoc analysis showed that the collars which 

were to make up treatment LYS had a significantly higher soil CO2 flux than all the 

other treatments apart from FUS, GLS and NSS, prior to substrate addition. This 

difference was not reflected by the results of the Li-Cor hand-held survey of soil CO2 

flux which had been conducted previously. When the data were re-analysed from the 

original Li-Cor survey using a Friedman’s two-way ANOVA, separating the collars out 

according to the substrates they had been assigned to receive, there was a significant 

difference between the treatments in terms of the average soil CO2 flux (p<0.05). 

However, post-hoc analysis revealed that just three weeks prior to flow through collar 

establishment, the MS collars consistently had a higher soil CO2 flux than the S collars, 

so there was a discrepancy here between the two sets of soil CO2 flux measurements. 

Following the addition of the 13C-labelled substrates on 24th August 2012, the average 

soil CO2 flux measured from all treatments that had received substrates increased, 

whereas the soil CO2 flux from treatment NSS declined slightly (see Fig. 5.13). In order 

to view these data more clearly, the various treatments have been separated over the 

next group of figures. The rise in soil CO2 flux was particularly pronounced for 

treatment GLS, with an equally rapid, though less sustained, rise in GLM (see Fig. 5.14),  
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Fig. 5.12 Average cumulative soil CO2 efflux (mol m-2 period-1) during the period 
following the installation of flow-through chambers, prior to the addition of 13C-
labelled substrates (a period of 29 hours). Treatments which differ significantly have 
different letters. Error bars represent ± 1 SE (n = 3).  
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reflecting what was shown previously in the 13C-glucose decomposition experiment 

(see Fig. 5.3). This rise in soil CO2 flux following substrate addition was short-lived for 

treatment GLS, and it tended to have a lower soil CO2 flux than both the control 

treatments (NSS and NSM), which was also the case prior to substrate addition (see 

Figs. 5.12 and 5.14).  

Though there was a slight increase in the soil CO2 flux measured from treatments CEM 

and CES following 13C-labelled cellulose addition, this was much less pronounced than 

had been observed in treatments GLS and GLM. The soil CO2 flux was higher from 

treatment CES than treatment CEM (see Fig 5.15), though both treatments had a 

consistently lower average soil CO2 flux than treatment NSS, where no 13C-labelled 

substrates had been added, which was also the case prior to substrate addition (see 

Fig. 5.12). The same lack of difference between the relative treatment fluxes prior to 

and following substrate addition was also observed in treatments LYS and LYM (see 

Fig. 5.16). Treatment LYS had a higher flux than treatment NSS, both prior to and 

following treatment addition, and treatment LYM had a lower average soil CO2 flux 

than treatment LYS prior to and following substrate addition. Fig. 5.17 shows that 

there no was no clear peak in soil CO2 flux in treatments FUS and FUM following the 

addition of 13C-labelled fungal material, during the time of the current work. Again, 

treatment FUS consistently had a higher average soil CO2 flux than treatment FUM, 

which was also the case prior to substrate addition (see Fig 5.12). 

The cumulative soil CO2 flux was calculated for each soil collar, in order to determine 

whether the addition of the 13C-labelled substrates had caused any change in soil CO2 

flux from the different treatments (see Fig 5.18). The treatment pattern in terms of the 

cumulative soil CO2 flux was identical prior to (see Fig. 5.12), and following the 

addition of the substrates (see Fig 5.18). Results of a Friedman’s two-way ANOVA, with 

block and treatment as factors, showed that there was a highly significant difference 

between the treatments (F= 4.88, p<0.003). Within each substrate treatment, 

significant differences between MS and S collars occurred for treatments GLS and 

GLM, LYS and LYM and also FUS and FUM. However, there were significant differences 

between these treatments prior to the addition of the substrates (see Fig. 5.12). There 

was no difference between the MS and S collars in terms of cumulative soil CO2 flux  
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Fig. 5.18 Average cumulative soil CO2 efflux (mol m-2 period-1) during the period 
following the addition of 13C-labelled substrates (24th August 2012 to 2nd September 
2012, a period of 220 hours). Treatments which differ significantly have different 
letters. Error bars represent ± 1 SE (n = 3).  
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either prior to, or following the addition of 13C-labelled cellulose to treatments CES and 

CEM (see Figs. 5.12 and 5.18). 

When the return of soil CO2 flux from all the replicates of substrate treatment were 

measured simultaneously on 29th August 2012, there was a switch in the treatment 

effects, with higher average soil CO2 flux recorded from treatment GLM, when 

compared to treatment GLS (see Fig. 5.19). The same ‘switch’ was observed for 

treatments LYS and LYM, though results of a paired t-test showed that the differences 

between the MS and S collars for both the 13C-labelled glucose and lysine treatments 

were not significant. There was a significant difference between the average soil CO2 

flux measured from treatments GLS and GLM, though again, this was shown to be the 

case prior to substrate addition, so could not necessarily be attributed to utilisation of 

the substrate (see Fig. 5.19). 

5.3.2.2  δ13C Soil CO2 flux 

The use of the 13C-label allowed a comparison of the decomposition of the different 

substrates between the S and MS collars, whilst removing any variation caused by the 

magnitude of the fluxes from the collars prior to, and following substrate addition. Fig. 

5.20 shows the δ13C of soil CO2 flux plotted against time for all of the 13C-labelled 

substrates, and it was possible to attribute any increase in the δ13C, above that of the 

NSS and NSM collars, to use of the 13C-labelled substrates. The δ13C results show that 

there was an immediate peak in utilisation of the glucose, with a slightly higher 

utilisation from treatment S collars than treatment MS collars, in support of what was 

shown in the previous 13C-labelled glucose experiment. The peak in utilisation of 13C-

labelled lysine took place later than that of 13C-labelled glucose, occurring at around 

four days following substrate addition, but the utilisation was more sustained than 

that for glucose, with no apparent difference between the MS and S collars at any time 

point (see Fig. 5.20).   

In order to see what was happening overall, the average δ13C of soil CO2 flux was 

calculated for each treatment (see Fig. 5.21) and showed that there was a highly 

significant difference between the utilisation of the different substrates during this 
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experiment (F = 21.20, p<0.0001). Though the CO2 output from the 13C-labelled 

glucose  
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Fig. 5.21  Average δ13C of soil CO2 efflux (‰) measured from treatment collars 
following the addition of 13C-labelled substrates. Error bars represent ± 1 SE (n = 3). 
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in treatments GLS and GLM peaked faster, there was more sustained use of the 13C-

labelled lysine in treatments LYS and LYM, resulting in the highest average δ13C values 

of all the treatments. Though the δ13C of soil CO2 flux measured from the glucose 

treatments appeared higher on average than from treatment S collars than from 

treatment MS collars, the difference was not significant. There were no significant 

differences between the MS and S collars for any of the substrates in terms of the 

average δ13C of soil CO2 flux. The significant difference between the δ13C of soil CO2 

flux from treatments GLS, GLM, LYS and LYM, compared to CES, CEM, FUS and FUM 

would suggest that there was a significantly higher utilisation of the simple substrates 

than of the more complex substrates during this experiment.  

A comparison of the average δ13C of soil CO2 flux was also made for 29th August 2012 

(see Fig. 5.22), when all the replicates from each substrate treatment were measured 

at the same time; the line number limitations referred to above meant that single 

substrate comparisons necessitated a temporary re-arrangement of sampling order.  

Paired t-tests were used to compare MS and S collars in terms of the average δ13C of 

soil CO2 flux, and as with the comparison using the overall average (see Fig. 5.21), 

there were no significant differences between the MS and S collars for any of the 

substrates. Though there appeared to be a higher average δ13C of soil CO2 flux in 

treatment FUS, when compared to FUM (see Fig. 5.21) the difference was not 

significant.  

5.3.2.3  Percentage return of substrate-derived C 

As with the previous 13C-glucose decomposition experiment, the mass of substrate-

derived C (mg), 12C and 13C from each of the collars during the current experiment was 

calculated by subtracting the estimated cumulative soil-derived C prior to substrate 

addition from the cumulative soil-derived C following substrate addition. It was 

decided not to use the cumulative soil derived C from treatments NSS and NSM as 

there were occasions, particularly for treatment NSS, when these collars had a higher 

soil CO2 flux than the substrate collars (see Figs. 5.13 to 5.17), and therefore were not 

reflective of the underlying soil-derived CO2 flux of the other treatments. The 

estimated substrate- derived C, 12C and 13C for each of the treatments are displayed in  
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Fig. 5.23, and the % return values for the added C, 12C and 13C are displayed in Table 

5.3. 

The NS collars are also included, as the additional C calculated from these collars   

indicated that there was an increase in the underlying soil respiration from the other 

treatments during the time of the experiment that was not caused by 13C-substrate 

addition. However, there were differences between the collars prior to substrate 

addition and the increase observed in the NS collars following substrate addition is 

unlikely to be an estimate of an underlying increase in C release from the other 

treatments.  

There was no significant difference between the treatments in terms of the estimated 

additional substrate-derived C (F= 0.96, p>0.5), or 12C (F= 0.96, p>0.5) emitted from the 

collars. However, there was a highly significant difference between the additional 13C 

derived from the treatments (F=11.26, p<0.0001), with a significantly higher substrate-

derived 13C flux observed from treatment LYS than LYM. There was no significant 

difference between the MS and S collars in terms of the substrate-derived 13C emitted 

from the remaining substrates (see Fig. 5.23, Table 5.3). The simple substrates, 13C-

labelled lysine and glucose, were clearly utilised to a greater extent than the more 

complex 13C-labelled fungal cell wall material, and these results suggest that 13C-

labelled cellulose was the least utilised substrate during this experiment (see Fig. 5.23, 

Table 5.3). 

5.3.2.4  Soil moisture surveys 

Prior to flow through chamber addition, results of a hand-held survey of soil moisture 

conducted on 3rd August 2012, analysed using a paired t-test showed that there were 

no significant differences between treatment MS and S collars in terms of soil moisture 

(t=1.17, p>0.25). Another soil moisture survey was conducted following substrate 

addition on 30th August 2012, and again there were no significant differences between 

the treatments in terms of soil moisture (t=0.31, p>0.7). 
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Table 5.3  The percentage return as CO2 of substrate-derived C, 12C and 13C from added 
13C-labelled substrates for treatments MS and S, calculated using the soil-derived C 
from each of the collars prior to the addition of 13C-labelled substrates. For each 
substrate, collar treatments which differ significantly have different letters. Values for 
treatments are means, with standard errors in parentheses, n=4.  
 
 

 

 
 

13C-labelled 
glucose 

 
 

13C-labelled 
cellulose 

 
 

13C-labelled 
lysine 

 

13C-labelled 
fungal cell wall 

material 
 
Collar treatment % return of substrate-derived C 
 
S 

 
20.3 (32.4)a 

 
15.0 (7.2)a 

 
35.7 (15.4)a 

 
26.9 (19.5)a 

 
MS 

 
17.0 (10.3)a 

 
17.0 (4.7)a 

 
5.3 (16.0)b 

 
16.6 (11.9)a 

 
% return of substrate-derived 12C 

 
S 

 
19.9 (33.4)a 

 
15.2 (7.4)a 

 
35.7 (15.7)a 

 
27.4 (20.0)a 

 
MS 

 
17.0 (10.6)a 

 
17.3 (4.8)a 

 
5.0 (16.5)b 

 
16.9 (12.1)a 

 
% return of substrate-derived 13C 

 
S 

 
37.9 (6.3)a 

 
9.5 (3.2)a 

 
37.3 (6.6)a 

 
14.8 (7.1)a 

 
MS 

 
16.6 (3.7)a 

 
8.8 (1.8)a 

 
15.4 (5.4)b 

 
8.4 (4.1)a 
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Fig. 5.23  Average cumulative additional return as CO2 of: (A) C, (B) 12C, (C) 13C (mg) 
from treatment collars over the experimental period. Within each chart, treatments 
which differ significantly have different letters. Error bars represent ± 1 SE (n = 3). 
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5.4 Discussion 

The aim of the initial 13C-glucose decomposition experiment was to investigate the 

decomposition of a simple substrate in the presence of an intact rhizosphere, or where 

plant photoassimilate-C input to the soil, cycled through roots and ECM fungi was 

excluded by trenching. Previous studies have demonstrated a promoting effect of 

labile C input to the soil on the decomposition of needle litter (Zhu & Ehrenfeld, 1996; 

Subke et al., 2004), and this finding was supported by the results of a more recent 

girdling study (Subke et al., 2011, constituting Chapter 4 of this thesis).  

The results of the current 13C-labelled glucose decomposition experiment, showed a 

clear enhanced utilisation of the 13C-labelled glucose with root and ECM hyphal 

exclusion (see Table 5.2). This suggests some form of difference in the microbial 

community between the soil collar treatments affecting the utilisation of simple and 

more complex substrates. It is possible that this resulted from the complexity of the 

substrates in terms of their structure, and the enzyme complement required by 

microorganisms for their decomposition, or more simply due to the nitrogen (N) 

content of the substrates.  

The 13C-labelled simple and complex substrate decomposition experiment was 

designed to investigate this further using four substrates varying in terms of their 

structural complexity and N content. In contrast to the work of Subke et al. (2004), and 

Subke et al. (2011) (see Chapter 4), the results presented in the current Chapter 

suggest that the decomposition of all the substrates investigated, whether simple or 

complex, was promoted when roots and ECM fungi were excluded. However, the two 

experiments showed slightly different results for glucose, with no significant difference 

in the utilisation of this substrate in the second experiment, in contrast to the initial 

experiment (see Tables 5.2 and 5.3). CO2 data from both of the experiments presented 

in the current Chapter suggest that this greater substrate utilisation was caused by a 

higher level of microbial activity in the treatment S collars, observed prior to the 

application of the 13C-labelled substrates. 

5.4.1 The influence of structural complexity on 13C-labelled substrate 

decomposition 
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Labile C substrates, such as glucose, are required by soil microorganisms for growth, 

and to provide energy for the production of extracellular enzymes that break down the 

more complex nutrient-containing SOM (Mary et al., 1992; Schnekenberger et al., 

2008). By excluding plant assimilates from the soil of the S collars in the current 

experiment, the soil was essentially starved of labile C and the microbial community 

appears to have altered in response to increased labile C limitation (Ekblad & 

Nordgren, 2002), though further work is required to confirm this. In the S collars it is 

likely that the rapid response observed following the addition of the labile substrates 

(13C-labelled glucose and lysine; see Figs. 5.4, 5.14 and 5.16) was from microorganisms 

with an ‘r’ life strategy. This functional group of microorganisms includes species 

characterised by having the ability to respond rapidly following the sudden input of 

labile substrates (Panikov, 1999).  

In the current work, the addition of 13C-labelled glucose in both experiments resulted 

in a rapid increase in the activity of the microbial community. This was reflected in the 

increase in soil CO2 flux following substrate addition on 12th December 2008 for the 

initial 13C-labelled glucose decomposition experiment (see Figs. 5.3 and 5.4), and on 

24th August 2012 for the later 13C-labelled simple and complex substrate 

decomposition experiment (see Fig. 5.14). In both cases, the initial rate of increase 

appeared the same for the S and MS collars (and also the RMS collars in the initial 

experiment). However, the magnitude of the flux was greater where roots and ECM 

fungi had been excluded, as shown by the higher average cumulative soil CO2 flux from 

treatment S collars than the other treatments following substrate addition (see Figs. 

5.6 and 5.18). In both experiments, there was a higher average cumulative soil CO2 flux 

from the treatment S collars prior to the addition of the substrates (see Figs. 5.5 and 

5.12), therefore substrate addition did not cause the treatment difference observed. 

When the initial difference in CO2 flux from each treatment was taken into account by 

studying the δ13C of soil CO2 flux over time for the addition of 13C-labelled glucose in 

the initial experiment (see Fig. 5.7), the rate of response to substrate addition was the 

same for all collar treatments, though it was sustained to a greater extent in the S 

collars compared to the RMS and MS collars. Following 13C-labelled glucose addition in 

the second experiment, the response of the treatment S and MS collars was also 
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similarly quick as reflected by the average δ13C of soil CO2 flux over time (see Fig. 

5.20), with the peak immediately following substrate addition. Fig 5.20 also shows that 

there was no difference at any time point in the average δ13C of soil CO2 flux measured 

from treatment MS or S collars following 13C-labelled lysine addition. Previous studies 

(eg. Anderson & Domsch, 1978; Dalenberg & Jager, 1981; 1989) report the same rapid 

response of the soil microbial community to glucose as was observed in the current 

work. Following 13C-glucose addition, Dilly & Zyakun (2008) observed a peak in soil CO2 

flux three days following addition of C4 plant-derived glucose to soil in a Beech forest 

in Germany.  

Only a small percentage of the C added as part of the 13C-labelled glucose was 

returned as CO2 during the time of both the current experiments. The amount differed 

between the MS and S collars, but ranged from 3.5% to 8.7% for the initial 13C-labelled 

glucose decomposition experiment (see Table 5.2) and from 17% to 20.3% for the later 
13C-labelled simple and complex decomposition experiment (see Table 5.3). However, 

this low return of substrate % return is not unusual, Brant et al., (2006) reported a 

peak in respiration within two days of the addition of 13C-labelled glucose to soil in a 

Douglas Fir and Western Hemlock forest in Oregon. They calculated that 70 - 80% of 

the added C was incorporated into microbial cells, so the percentage of the added 

substrate returned as respired CO2 was of the same order as was reported in the 

current work. Dalenberg & Jager (1981) reported that during the 2 week period 

following labelled glucose addition, 75% of the added C returned as CO2, with 25% 

remaining in microbial biomass under laboratory conditions. Therefore, had the 

current work continued for longer it might be expected that a greater amount of 13C 

added as part of the simple 13C-labelled substrates would have been released as 13CO2.  

The lower percentage of added glucose-C returned during the 13C-labelled glucose 

decomposition experiment, when compared to the later 13C-labelled simple and 

complex substrate decomposition experiment (see Tables 5.2 and 5.3) is potentially a 

seasonal effect. The initial 13C-labelled glucose decomposition experiment was 

conducted in December 2008, whereas the later 13C-labelled simple and complex 

substrate decomposition experiment was conducted in August and September 2012. 

Temperature is likely to have had an effect on the level of activity of the microbial 
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community decomposing the substrates, alongside the availability of substrates 

already in the soil (Subke & Bahn, 2010), which is reflected in the lower soil CO2 fluxes 

displayed in Figs. 5.3 and 5.4 for the initial 13C-labelled glucose decomposition 

experiment, when compared to those displayed in Fig. 5.13 for the 13C-labelled simple 

and complex substrate decomposition experiment.  

There is also the potential that the difference observed in terms of the level of soil CO2 

flux and % return of the substrates (see Tables 5.2 and 5.3) could be explained by the 

amount of 13C-labelled substrates added. The amount of C added to the soil in glucose 

in the initial experiment was 0.6 g C 314 cm-2 (collar surface area), in the second simple 

and complex substrate decomposition experiment, the amount added was 

considerably lower, 0.23 g C 314 cm-2, with the amount of C added constrained by the 

estimated amount available for use as part of the cultured 13C-labelled fungal biomass. 

Dilly & Zyakun (2008) found that when they altered the amount of 13C-glucose added 

to soil, the amount dictated the level of stimulation of the microbial community 

reflected by soil CO2 flux. It is possible that this could explain why the return of 

substrate-derived 13C from glucose was significantly different between the MS and S 

collars in the initial experiment (see Fig 5.11 and Table 5.2), but not significant for the 

later 13C-labelled simple and complex substrate decomposition experiment (see Fig. 

5.23 and Table 5.3). Potentially, the amount of glucose added in the second 

experiment was not sufficient enough to prime the activity of the soil microbial 

community to the same extent, so the same effect was not observed. The results 

displayed in Table 5.3 show that the percentage return of added 13C from the 

treatment S collars for the simple substrates lysine and glucose were similar (37.3% 

and 37.9%, respectively). However the difference between the MS and S collars in 

terms of the substrate-derived 13C returned was significant for lysine, but not for 

glucose (see Fig. 5.23 and Table 5.3). 

In the current work, it is likely that the decomposition of the more complex, polymeric 

substrates would require K-strategist microorganisms, with the ability to produce a 

greater complement of specialist enzymes (Panikov, 1999). This is supported by 

Dighton et al. (1987) who demonstrated greater decomposition of complex substrates 

including hide powder, cotton and chitin by the K-strategist mycorrhizal fungus Suillus 
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luteus (L.) Gray, a later coloniser of substrates than the r-strategist fungus Hebeloma 

crustuliniforme (Bull. Ex St. Amans.) Quél. K-strategist microorganisms can be at a 

competitive disadvantage in comparison to r-strategists (Fontaine 2003; 2004) because 

they develop more slowly and tend to dominate in the later stages of litter 

decomposition, following the utilisation of more labile substrates by the r-strategists 

(Chigineva et al., 2009). Therefore it is not surprising that the same rapid response 

seen following the introduction of the labile glucose and lysine was not observed for 

the structurally complex substrates, cellulose and fungal cell wall material. Unlike 

simple substrates, there did not appear to be a convincing peak in the δ13C of soil CO2 

flux from treatments CES, CEM, FUS or FUM (see Fig. 5.20). The average δ13C of soil 

CO2 flux was significantly greater from treatments CES, CEM, FUS and FUM than from 

the NS treatments, showing that the substrates were being decomposed, but at a 

much reduced level when compared to the decomposition rates of the simple 

substrates (see Fig. 5.21). There was a hint that there was greater utilisation of the 

complex substrates, 13C-labelled fungal cell wall material, and 13C-labelled cellulose 

from the S collars as was seen with the simple substrates (see Table 5.3). However, the 

difference in the amount of substrate-derived 13C returned between treatments MS 

and S was not significant for either the 13C- labelled cellulose or the 13C-labelled fungal 

cell wall material (see Fig. 5.23). The second experiment was cut short due to technical 

difficulties, and it is possible that the experiment did not run long enough to draw 

appropriate conclusions regarding the influence of the presence of an intact 

rhizosphere on the decomposition of the more complex substrates.  

Of all the substrates studied in the current work, the least return of substrate-derived 

C (see Fig. 5.23), was observed following the addition of 13C-labelled cellulose. There 

was a return of 9.5% of the 13C added to treatment CES, and an 8.8% return of the 13C 

added to treatment CEM (see Table 5.3), The returns of 13C from treatments CES and 

CEM were greater than the additional 13C released from the control treatments NSS 

and NSM, indicating that though the utilisation of this structurally complex component 

was relatively low, it was decomposed to some extent during the time of the 

experiment. The results of the current experiment differed from those of Fontaine et 

al. (2004) who observed that the addition of cellulose to the soil stimulated the 
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microbial community, with almost double the production of control soils at day 70. 

They observed a short lag phase of three days before exponential growth until 

substrate exhaustion at day 17. In contrast, the response in terms of soil CO2 flux for 

the current study was comparatively low (see Fig. 5.15) with the average soil CO2 flux 

over time from treatments CES and CEM being lower than that of treatment NSS. The 

treatment NSS collars had a higher average cumulative soil CO2 flux than the CES and 

CEM collars prior to substrate addition (see Fig. 5.12), and the addition of cellulose to 

treatments CES and CEM did not appear to stimulate CO2 production relative to that of 

the control collar NSS following substrate addition either (see Fig. 5.18).  

The amount of each substrate added in this experiment was dictated by the available 

amount of cultured 13C-labelled fungal cell wall material, where there was difficulty in 

culturing a large amount of biomass. Therefore it is possible that the small amount of 

the complex substrates added in the second experiment may have affected the results 

observed. This is highlighted by the fact that Fontaine et al. (2004) were able to 

recover 85% of the labelled cellulose C they added by day 13 of their experiment, 

which is a large amount compared to the % returns observed for cellulose-derived C in 

the current study (see Table 5.3). The savannah-derived soils studied by Fontaine et al. 

(2004) were incubated at 28 ˚C, which might also explain the difference in the level of 

stimulation of soil CO2 flux in the current work, compared to that of Fontaine et al. 

(2004); temperatures in the Pinus contorta stand at Wheldrake forest during 

September were considerably lower, with an average air temperature for September 

2010 of 14˚C.  

Mycorrhizal mycelia is a relatively recalcitrant substrate because of its chitin content 

(Wallander et al., 2012), but a surprisingly large amount of fungal cell wall material 

was decomposed during the current work. The percentage return of 13C added as 

fungal cell wall material during the nine days of incubation was 14.8% from treatment 

S and 8.4 % from the treatment MS collars (see Table 5.3).  The % return of substrate-

derived 13C from the structurally simple glucose and lysine was greater, but not hugely 

different (see Table 5.3). Following the addition of  13C-labelled fungal cell wall material 

on 24th December, there was an immediate noticeable rise in the soil CO2 flux (see Fig. 

5.17), which was steeper for treatment FUM than treatment FUS. However, as for the 
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addition of 13C-labelled cellulose, there was obvious peak in soil CO2 flux, suggesting 

that perhaps too small an amount was added to stimulate the microbial community, or 

that the experiment did not run long enough to observe a peak, with insufficient time 

for K-strategists to respond to the addition of this complex substrate (Janssens et al., 

2010). 

This apparent lack of recalcitrance of ECM fungal biomass has also been observed in 

other recent studies. Koide et al. (2011) simultaneously compared the decomposition 

of laboratory cultured fungal mycelia in litter bags with fine roots finding that during 

their 37 day experiment the mass loss of fungal mycelia was 56.8%, compared with 

19.4% for fine roots. Drigo et al., (2012) studied the decomposition of 13C-labelled 

fungal biomass, and found that, within seven days of substrate addition, 13C was 

incorporated into fungal DNA in the soil, with the labile fractions of the substrate being 

rapidly utilised by saprotrophic fungi. Fernandez & Koide (2012) studied the 

decomposition of laboratory cultured ECM fungal tissue from five isolates, collected 

from root tips in a Pinus resinosa plantation with the decomposition of the cultured 

mycelia being studied in a mesh bag decomposition experiment spanning 28 days. The 

% mass loss they observed varied significantly between fungal isolates, ranging 

between 15-50% at 14 days and 20-60% at 28 days, which is not inconsistent with the 

results of the current work. They observed that the fungal chitin was not recalcitrant in 

comparison to other tissues, indeed higher concentrations of chitin in fungal tissues 

was associated with higher levels of decomposition. 

The current work differed slightly from the handful of studies that have investigated 

the decomposition of laboratory cultured fungal biomass, as generally others have 

used intact mycelia (eg. Koide & Malcolm, 2009). The decay of fungal mycelia has been 

described as similar to the decay of plant litter, as they both contain fractions of 

varying complexity, which are broken down by a series of different microorganisms 

with varying decomposer abilities (Wallander et al., 2012; Drigo et al., 2012). In the 

current work, in order to avoid a confounding effect of the decomposition of the more 

labile cell contents, these were extracted leaving the more recalcitrant cell wall 

material. However, this did not appear to have reduced mass loss when compared to 

these other studies.  
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5.4.2 Evidence of competition between ECM fungi and free living saprotrophic 

microorganisms 

Clearly there was a difference between the decomposition of simple and complex 

substrates in the current experiment. In the current work, there was significantly 

higher use of simple substrates, 13C-labelled glucose in the initial experiment, and 13C-

labelled lysine in the second experiment by the treatment S collars, where ECM roots 

had been excluded. In the girdling experiment presented in Chapter 4, there was 

significantly greater decomposition of a complex substrate where ECM roots had not 

been excluded.  This difference is likely explained by the ability of the microorganisms 

in the different treatments to respond to the added substrates. In the current work, 

though there was evidence that there might have been a promotion of decomposition 

of complex substrates in the absence of roots and ECM fungi, the difference between 

the MS and S collars was not significant, and therefore does not contradict the findings 

in Chapter 4. It is likely then that the differences observed were to do with structural 

complexity and specifically the ability of r-strategist decomposers to respond to added 

simple substrates between the MS and S collar treatments.  

The suppression hypothesis proposed by Gadgil and Gadgil (1971; 1975) can 

potentially explain why they, and others since (Faber & Verhoef, 1991; Chuyong et al., 

2002) have observed decreased litter decomposition in the presence of roots and ECM 

fungi. The hypothesis could potentially be applied to explain the seeming lack of ability 

of r-strategist microorganisms in the MS collars to respond to the addition of the 

simple substrates, when compared to the r-strategists in the treatment S collars.  It 

involves the ability of ECM fungi to utilise the competitive advantage they have 

through receiving labile plant photoassimilate C, in order to outcompete saptrotrophic 

fungi, both r- and K-strategists, potentially through the uptake of essential nutrients 

such as N, making them unavailable to saprotrophs (Abuzinadah et al., 1986; Bending, 

2003).   

Lindahl et al. (1999b) demonstrated that the outcome of competitive interaction 

experiments between a wood-decomposing fungus and an ECM fungus in microcosms 

was dictated by the size of resource available to the wood-decomposing fungus. When 
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the size of the experimental wood blocks was large, the wood decomposer was able to 

outcompete and capture resources from the ECM fungus, but the outcome was 

reversed when the wood blocks, and consequently, the available resource was low. 

This is potentially what occurs in the Pinus contorta stand at Wheldrake Forest. The 

resources available to ECM fungi in terms of labile C were high, therefore they are able 

to utilise this advantage to selectively uptake N and other essential nutrients, thereby 

suppressing other soil decomposers. Hence, when ECM fungi were excluded there was 

a much larger response of r-strategists to the addition of both the simple substrates in 

the S collars compared to the MS collars. Conditions were not limited for ECM fungi in 

terms of labile C, therefore they did not respond in the same way to the addition of 

the labile substrate.   

One of the most interesting and unexpected findings of the current work was that in 

both experiments there was a reversal in the impacts of the exclusion treatments for 

soil CO2 flux prior to substrate addition (see Figs. 5.5 and 5.12). Prior to the 

deployment of the mobile laboratory, when the soil CO2 flux was measured with the 

Li-Cor IRGA (see sections 5.2.2.1 and 5.2.3.4) the higher average soil CO2 fluxes were 

measured from treatment RMS, followed by the flux from treatments MS then S. For 

the later substrate decomposition experiment, the higher average fluxes were 

measured from treatment MS when monitored using the Li-Cor hand-held system, 

prior to substrate addition. However, when measured with the field-deployed IRMS, 

the day prior to substrate addition, in both cases this treatment effect had switched, 

with the higher flux consistently occurring from the treatment S collars.  

This difference, with the higher level of soil CO2 flux measured by the mobile 

laboratory from the treatment S collars, (roots and ECM fungi excluded), is not 

consistent with the general view that the rhizosphere is a hotspot of microbial activity 

in comparison to the bulk soil (Kuzyakov, 2010). Several days prior to substrate 

addition in both experiments, the collars were watered with a considerable amount of 

throughfall to ensure no differences in soil moisture content between treatments. 

With hindsight, it is possible that this altered the respiration from the collars. The 1 µm 

mesh in the S collar windows would be expected to retain moisture to a greater extent 

than the 41 µm mesh in the MS collar windows, and it is possible that the retention of 
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a higher soil moisture in the S collars resulted in a higher respiration rate when 

measured by the IRMS.  The results presented in Chapter 3 showed that for summer 

2009, the irrigation of treatment S(W) with relatively large amounts of water did lead 

to increased respiration rate. Measurements with the Li-Cor IRGA were never made 

immediately following the addition of the large amounts of throughfall to the collars in 

either the 13C-labelled glucose decomposition experiment, or the 13C-labelled simple 

and complex substrate decomposition experiment; this apparent effect of the addition 

of large volumes of water requires further consideration. Though soil moisture surveys 

conducted during both experiments showed that there was no significant difference 

between the collars in terms of soil surface moisture, the moisture lower down in the 

soil profile was never measured, and this could have had an impact. 

There is also another potential explanation for the apparent increase in the activity of 

soil microorganisms in the S collars relative to the MS collars. Throughfall is known to 

contain soluble carbohydrates, but with varying concentration during the year 

(McClaugherty, 1983). It is possible that these labile compounds, leached from the 

canopy could have increased the activity of r-strategist microorganisms prior to the 

addition of the 13C-labelled substrates. De Nobilli et al. (2001) observed that repeated 

pulses of labile C inputs can cause a state of metabolic alertness (Kuzyakov, 2002; 

Cheng, 2009), resulting in a greater response from the soil microbial community with 

the next pulse of labile C input (Kuzyakov, 2010). The observation that even this pre-

priming effect appears to have been suppressed in the MS collars, in the presence of 

ECM fungi is further evidence for the suppression hypothesis (Gadgil & Gadgil, 1971; 

1975) prior to the beginning of the current experiments.  

Though the analysis systems were analytically checked, and both measurement 

systems were found to be functioning properly, previous studies (Janssens et al., 2010; 

Nottingham et al., 2012) have observed artefacts involving chamber design and soil 

type on estimates of soil CO2 flux. It would be useful to conduct a series of comparison 

tests, in conjunction with contrasting addition of large volumes of throughfall or 

deionised water to elucidate these processes more fully.  
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5.4.3 The influence of substrate nitrogen (N) content on 13C-labelled substrate 

decomposition rates 

In addition to the input of labile C substrates,   which dictates the growth of 

saprotrophic microbial biomass, nitrogen (N) is also a limiting factor for soil 

microorganisms (Mary et al., 1992), and has been shown to control the decomposition 

rate of complex substrates such as plant litter (Cotrufo et al. 2004). There is the 

possibility that the switch observed in the decomposition rates of simple (the current 

Chapter, enhanced when ECM fungi excluded) and complex substrates (Chapter 4, 

decreased when plant C through ECM fungi excluded by girdling) could be explained by 

the N contents of the substrates used rather than their polymeric complexity. The litter 

used as a substrate in the girdling experiment contained N but, in addition to being 

structurally more simple than plant litter, glucose does not contain N. Though ECM 

fungi have a competitive advantage in terms of their labile C supply provided by their 

plant host, they are also known to be limited in N or P, and have been shown to 

proliferate where there is a good supply of N (Bending and Read 1995). Indeed, Vallack 

et al. (2012) demonstrated decreased CO2 flux from ECM fungi following N fertilisation 

in a boreal forest. When N is plentiful, this suggests that the plant allocates less 

assimilate C below-ground to the fungus.  ECM fungal scavenging for N has been given 

as an explanation for priming of SOM decomposition following labile C input in the 

rhizosphere (Kuzyakov, 2010). Therefore, when N was introduced in substrates in the 

current experiment, if it was the limiting growth of ECM fungi at Wheldrake forest, 

there would have been a similar utilisation of the N containing substrates between 

treatments MS and S. The lack of a difference between the δ13C of soil CO2 flux over 

time shows this to be the case for the 13C-labelled lysine (see Fig. 5.20), suggesting that 

both ECM fungi and free-living soil saprotrophs were utilising the substrate. 

There seemed to be a trend towards increased lysine decomposition over glucose, 

with the average δ13C of soil CO2 flux from treatment LYS appearing larger, but this 

was not significant to that measured from treatment GLS (see Fig. 5.21). Dalenberg & 

Jager (1981) observed rapid release of CO2 following glucose addition, which they 

attributed to a turnover of C in microbial biomass. Due to its N content, there is the 

potential that a greater amount of lysine C could have been immobilised into the 
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microbial biomass, rather than being released as CO2, though it was beyond the scope 

of the current work to test this. Certainly the utilisation of the 13C-labelled lysine was 

more gradual and sustained than that of the glucose, as is reflected by the  δ13C of soil 

CO2 flux  over time (see Fig. 5.20), suggesting that N content was of importance in 

maintaining enhanced microbial activity in this experiment.  

There was also greater return of 13C from the complex N containing substrate, 13C-

labelled fungal cell wall material, than for cellulose in both the MS and S collars (see 

Fig. 5.23). Vance & Chapin (2001) noted that there was a greater immobilisation of N 

following the addition of cellulose to laboratory incubated soils, indicating the reliance 

of cellulose decomposers on assimilation of additional N, which may have restricted 

the decomposition of the cellulose, compared to the fungal cell wall material in the 

current work (Janssens et al., 2010).  

The fungal cell wall material which was used as the high N, high structural complexity 

substrate in the current work was from one species of ECM fungus, Paxillus involutus. 

With the rising interest in the decomposition of ECM biomass, studies have 

investigated how the N content of the microbial biomass affects its decomposition. 

Koide & Malcolm (2009) observed that the rate of decomposition of ECM fungal 

mycelia differed between species, with a strong association between mass loss from 

and tissue N content, in a mesh bag experiment.  Koide et al. (2011) tested whether 

the N content of mycorrhizal mycelia, could lead to increased decomposition of fine 

roots in symbiosis with ECM fungi. They found that colonisation of roots either had no 

effect on their decomposition rate, or was slightly increased depending on the isolate 

of fungus, which they attributed to different isolates having different C:N ratios. 

Wilkinson et al. (2011) measured the decomposition of fungal necromass in 

mesocosms, and observed that the greater the species richness of the fungal isolates 

represented in a sample, the greater the decomposition rate. Nearly all of these recent 

studies acknowledge that fungal mycelia grown in optimum conditions in the 

laboratory may have very different N content to naturally-produced decaying mycelia 

in the field.  It is possible that the relatively fast decomposition of the 13C-labelled 

fungal cell wall material observed in the current experiment may have been partly 

attributed to a relatively high N content, and may not be representative of natural 
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ECM mycelial turnover rates. Recently, Wallander et al. (2012) highlighted the need for 

considerably more research in this area given the clear importance of ECMs in forest C 

cycling. 

Though it was beyond the scope of this experiment to directly measure the loss of N 

from the substrates, and subsequent uptake by the different components of the soil 

community, the increased use of both simple and complex substrates (see Fig 5.23) 

when they contained N (as opposed to containing no N) would suggest that this was of 

importance; had the experiment run over a longer period, effects of N limitation on 

use of the substrates may have become more evident.  

Exclusion techniques were successfully used in the current experiments to separate 

out the components of soil CO2 flux. The measurements of the decay of isotopically 

labelled substrates in situ using the field-deployed mass spectrometer allowed an 

accurate estimate of substrate decomposition over time, with the in-growth collar 

technique allowing a unique investigation of the influence of ECM fungi on 

decomposition processes. The initial 13C-labelled glucose experiment informed the 

later experiment in terms of the resolution of measurements required to be able to 

assess the decomposition of the substrates between the different collar types. 

Unfortunately, constraints were put on the experimental design in terms of the 

number of lines available for measurement at any one time which meant a large error 

term resulting from spreading three replicate measurements for each of the substrates 

over the course os a day. When all the replicate collars for each substrate were 

measured at once on 29th August, the same patterns were observed In that there was 

no difference between the S and MS collars in terms of the δ13C of soil CO2 flux for any 

of the substrates (see Fig. 5.22). However, the pattern in terms of the average soil CO2 

flux was slightly different from over the whole time series (see Figs. 5.19), suggesting 

that the greater magnitude in terms of soil CO2 flux was from treatment GLM, 

compared to treatment GLS, when the cumulative soil CO2 flux measured for the nine 

days following substrate addition suggested the opposite treatment effect (see Fig. 

5.18). A possible explanation for this discrepancy is that weekly watering took place on 

the morning of the 30th August, and prior to this on the 29th, the soil will probably  

have been at its driest. As was mentioned previously, the impact of soil moisture 
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extremes are something that needs to be investigated more fully, to find out if they 

can influence soil CO2 flux to the extent that treatment effects may have been altered 

in the current experiments.  

Though an attempt was made to improve on the design of the first experiment, by 

including soil collar-specific NS control collars (treatments NSS and NSM), it was found 

that even when blocked, the variation between individual collars was so large that it 

was not really possible to use these collars as a proxy for the underlying flux for the 

other treatments, when calculating the estimated substrate-derived return of C.  

Whatever the explanation for the higher activity prior to substrate addition in both 

experiments, there was consistently higher activity where ECM fungi had been 

excluded (treatment S) in comparison to where they were not excluded (treatments 

MS and RMS) observed in both experiments. This higher level of activity resulted in a 

higher turnover of all the substrates from treatment S collars, reflected by the 

substrate-derived return of 13C data shown in Figs. 5.11 and 5.23, and the greater % 

return of added substrate 13C from treatment S shown in Tables 5.2 and 5.3. The faster 

turnover of both simple and complex substrates in the absence of ECM fungi in the 

current experiment contrasted the results of the previous girdling experiment (Chapter 

4), where the input of labile substrates into the soil, cycled through roots and ECM 

fungi had a positive input on litter decomposition. It is possible that there is a 

difference in the level of C limitation caused by root/mycorrhizal exclusion and girdling 

on saprotrophic microorganisms, which would explain why in forest systems where the 

better decomposers are saprotrophs, excluding ECM fungi promoted decomposition of 

complex substrates alongside trenching, but reduced decomposition alongside girdling. 

In summary, the differences observed between MS and S collars in terms of the 

relative utilisation of simple and complex substrates observed in the initial 13C-labelled 

glucose decomposition experiment, and in the girdling experiment (see Chapter 4), are 

probably explained by the structural complexity of the substrates. Evidence was 

provided of suppression of r-strategist microorganisms in the presence of ECM fungi. 

There was evidence of N limitation of r-strategists following the potential input of 

labile substrates in throughfall, though further investigation is required. There was also 
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evidence that N content could influence the decomposition of more complex 

substrates, yet  a longer-term experiment would be required to investigate this more 

fully. The current work has also added to the existing small body of literature 

concerning the turnover time of 13C-labelled fungal cell wall material in forests, 

suggesting that even the more recalcitrant components of this little-studied substrate 

decompose over a relatively short period of time, when placed in the field. 
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Chapter 6 General Discussion 

The aim of this thesis was to investigate the role of roots and associated ECM fungi on 

carbon (C) cycling in forest soils, including their contribution to soil CO2 flux and their 

influence on other soil organisms. Soil organic matter (SOM) is a globally important 

sink for C, and it is becoming increasingly important that the fluxes of C in and out of 

the SOM are investigated (Fontaine et al. 2003; Schulze & Freibauer, 2005). The 

experiments presented in this thesis have focussed on the three main factors which 

control decomposition, as outlined by Swift et al. (1979): namely the quality of the 

substrate; the physico-chemical environment; the activity of the decomposer 

microorganisms. Throughout the litter decomposition and soil CO2 flux studies 

presented in Chapters 2 and 3, the influences of temperature and moisture on litter 

decomposition were investigated. The influence of the quality of the substrate in 

terms of its N content and structural complexity was investigated in the simple and 

complex substrate decomposition experiment presented in Chapter 5.  

6.1 The influence of ectomycorrhizal (ECM) fungi on decomposition in forest soils 

The potential influence of ECM fungi on the C cycle was highlighted by Gadgil & Gadgil 

(1971; 1975), who observed decreased litter decomposition in the presence of ECM 

roots. This was attributed to suppression of saprotrophic microorganisms, which are 

believed to be the better decomposers (Lindahl et al., 1999). The observations of 

Gadgil & Gadgil (1971; 1975) were supported by later studies which also observed the 

‘Gadgil effect’ (Fischer & Gosz, 1986; Genney et al., 2004; Chuyong et al., 2002). In 

contrast, results from other studies found an increase in decomposition rates in the 

presence of ECM roots (Dighton et al., 1987; Entry et al., 1991; Subke et al., 2004).  

Through the use of exclusion collars, the experiments conducted as part of this thesis 

considered the influence of the ECM fungi, separately from that of roots. This allowed 

an investigation of how litter decomposition and also the decomposition of 

ecologically relevant substrates are influenced by these microorganisms. The current 

work has provided strong evidence to support the theory of Gadgil & Gadgil (1971; 

1975), that competition between ECM fungi and saprotrophic decomposers in forest 

soils causes decreased decomposition. The results from the incubations of 13C-labelled 
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simple and complex substrates (Chapter 5) showed that there was a significantly 

higher %  of 13C-labelled glucose mineralised to CO2 under treatment S, than from 

treatments MS and RMS (see Table 5.2) and a significantly higher % mineralisation  of 
13C-labelled lysine from treatment S than treatment MS (see Table 5.3). The higher 

glucose mineralisation  rates in the absence of roots and ECM hyphae in the initial 13C-

labelled glucose decomposition experiment, and in the absence of ECM fungi in the 

later 13C-labelled simple and complex substrate decomposition experiment, was 

attributed to changes in the r-strategy microorganisms. There appeared to be a trend 

towards greater decomposition of the structurally complex substrates, 13C-labelled 

fungal cell wall material, and 13C-labelled cellulose in the absence of ECM hyphae. 

However, this particular experiment did not run for sufficiently long to establish 

whether there would have been significantly higher turnover of substrates by K-

strategist microorganisms when ECM fungi had been excluded.  

In contrast to the results obtained for the individual substrates in the current work 

(Chapter 5) there was no evidence for a suppression of litter decomposition in the 

presence of roots and ECM fungi (Chapter 2). This inconsistency could potentially be 

explained by the species of ECM fungi dominant in the Pinus contorta stand at 

Wheldrake forest, and its ability to compete with other K-strategist saprotrophic 

decomposers (Dighton et al., 1987; Lindahl et al. 1999). Had the 13C-labelled simple 

and complex substrate experiment run for longer, it may have been possible to see if 

the observed trend of higher decomposition of the structurally complex substrates in 

the absence of ECM fungi continued, and whether ECM fungi in that system also 

suppress the decomposition of complex, as well as simple substrates, and then 

potentially try to establish why this was not observed for the litter bag experiment 

described in Chapter 2. One possible explanation is that the nature of the positioning 

of the bags in a lattice design in the soil collars resulted in ECM fungi and other 

decomposer microorganisms having less access to the litter. In the girdling experiment 

presented in Chapter 4, and the 13C-labelled simple and complex substrate 

experiments presented in Chapter 5, the added litter and substrates had a greater 

level of contact with the soil, and less interference from litter bag material, which has 
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been shown to alter the decomposition dynamics of litter, when compared to other 

methods (Bocock & Gilbert, 1957; Cotrufo et al., 2010). 

Despite this inconsistency with the complex substrates, in the current work, there was 

certainly a much more rapid response to the addition of the structurally simple 

substrates, suggesting that in the presence of ECM fungi, r-strategist microorganisms 

are suppressed, and that ‘microbial activation’ (Kuzyakov, 2002) was much more 

pronounced where mycorrhizal hyphae had been excluded.  

During the 13C-labelled simple and complex substrate decomposition experiment 

(Chapter 5), the difference between treatments MS and S in terms of the  return of 13C 

added as part of the 13C-labelled glucose approached significance (p<0.051) (see Table 

5.3). This lack of significance, in comparison to the result of the previous 13C-labelled 

glucose incubation (Table 5.2) was attributed to the smaller amounts of substrates 

added during the second experiment, leading to reduced CO2 production. Indeed, 

these results highlight the power of isotopic labelling as a technique to differentiate 

between the various sources of soil CO2 efflux (Subke et al., 2006; Kuzyakov, 2006). 

Without the isotope data (δ13C), it would not have been possible to detect differences 

in the decomposition rates of the substrates between the treatments. In contrast to 

the results obtained for the individual substrates in the current work (Chapter 5) there 

was no evidence for a suppression of litter decomposition in the presence of root and 

ECM fungi in the current work.  

Suggested mechanisms by which ECM roots could potentially suppress saprotrophic 

decomposers include:  the creation of a physical barrier and occupying microsites in 

the soil (Marx, 1969), anti-microbial action (Zak et al., 1964; Duchesne et al., 1988), the 

uptake of water by ECM roots drying the soil (Koide & Wu, 2003), and the selective 

uptake and immobilisation of key nutrients such as N (Stark, 1972; Bending & Read, 

1995; Abuzinadah et al., 1986). As has already been discussed, the ability to extract N 

and P differs between ectomycorrhizal species but they are thought to be capable of 

bypassing parts of the N cycle, and making N unavailable for use by other soil 

microorganisms (Perez-Moreno & Read, 2000). The results of the experiment 

described in Chapter 2, which was designed specifically to test whether the influence 
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of ECM roots observed by Gadgil & Gadgil (1971; 1975) could be attributed to the 

uptake of water by roots also showed no evidence to support the hypothesis of Koide 

& Wu (2003). Also the lack of a significant moisture difference between the MS and S 

collars in the 13C-labelled simple and complex substrate decomposition experiment 

means that the suppression effect observed could also not be explained by this 

mechanism. These results, for the first time, refute the frequent criticism of the 

original Gadgil & Gadgil (1971) studies in that they failed to control for the potential 

impacts of trenching on soil moisture. It would therefore appear that the impacts of 

the presence of ECMs on litter decomposition rates, as described by Gadgil & Gadgil 

(1971), can potentially largely be attributed to changes in microbial populations rather 

than physico-chemical or substrate quality changes.  

Previous results have demonstrated that the N content of substrates affects their 

decomposition (Vance & Chapin, 2001; Cotrufo et al. 2004), and this was reflected in 

the current work with increased decomposition of 13C-labelled lysine in comparison 

with 13C-labelled glucose (Chapter 5). There is evidence that the influence of ECM fungi 

may change as a result of N deposition (Vallack et al. 2012), though this has also been 

shown to be dependent on the system, and the effect that N addition has on the 

growth of trees (Wallander et al., 2011). With future increased anthropogenic 

deposition of N over large areas of the globe (see Phoenix et al., 2006), it may be that 

plant C allocation patterns will  change, and the current dominance of ECM fungi in 

temperate and boreal pine forests reduced. The evidence from the current work, and 

from studies such as McGuire et al. (2010), would suggest that ECM fungi may be 

retarding decomposition on a large scale, and reducing the amount of C released as a 

result of decomposition in forest soils. Though the addition of N has been shown to 

have varying effects on the decomposition of litter, there is evidence that when it is 

added to low quality litters with high lignin content, there is a stimulation of litter 

decomposition (Knorr et al. 2005).  Therefore, it is important to assess alongside 

predicted changes in litter quality, whether the amount of C released from litter 

decomposition is altered by deposition of N, and the impact of a potential loss of 

dominance of ECM fungi in forest systems. 
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The current work included two studies where the contribution of ECM hyphae to total 

soil CO2 efflux (Rs) was measured in the field. The contributions of ECM mycelium to 

soil CO2 flux estimated by Heinemeyer et al. (2007; 2012) and Moyano et al. (2008) 

ranged between 5% to 30%, which is consistent with the results obtained in the 

current work. During the 18 months of CO2 measurements presented in Chapter 3, 

ECM fungi contributed, on average, 12.8% of total soil CO2 flux (Table 3.1). The 

contribution of mycorrhizal hyphae to Rs remained fairly constant throughout the year, 

suggesting that despite their potential conserving effect of SOM through retarding 

decomposition processes, ECM fungi are responsible for the return of an appreciable 

amount of plant-assimilate derived C to the atmosphere as CO2. The CO2 flux results 

from the trenching experiment presented in Chapter 3, and those from the girdling 

experiment presented in Chapter 4, were consistent in that they both showed that the 

underlying root and mycorrhizal components of Ra can react independently. Both 

experiments indicated that the decrease in Ra during the winter months was due to a 

decrease in the root component. This finding supports the arguments of Heinemeyer 

et al. (2007; 2012) that the mycorrhizal component, and sensitivity to environmental 

controls, should be considered separately from that of roots, and the other soil 

component fluxes, if modelling of forest soil C dynamics is to be accurate.  

Not only do ECM fungi have a role in controlling the rate of decomposition through 

suppressing other microorganisms, they also provide a substrate for decomposition 

which in the past has been overlooked (Wallander, 2012). It has been estimated that 

10-50% of photoassimilate-derived C allocated below ground is received by ECM fungi, 

which effectively replace fine roots (Smith & Read, 2008), and form extensive mycelial 

networks in the soil (Cairney, 2005). Högberg and Högberg (2002) stated that their 

estimate of 32% contribution of ECM mycelia to microbial biomass was likely to be an 

underestimate, because it didn’t take into account the utilisation of ECM mycelium as 

a substrate by other soil microorganisms. The current work has also added to a small, 

but developing body of knowledge surrounding the nature of fungal mycelial turnover 

in forest soils (Koide & Malcolm, 2009, Wilkinson et al., 2011; Drigo et al., 2012), 

showing that in a period of nine days, ca. 14.8% of 13C added as part of the fungal cell 
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wall material was returned from treatment S, and ca. 8.4% was returned from 

treatment MS (Chapter 5).  

6.2 A promoting influence of the presence of roots on litter decomposition 

Though there has been increased interest in C priming since the 1980’s, work still 

needs to be done to investigate the mechanisms controlling the priming of SOM 

decomposition through labile C input, with studies showing contrasting effects of the 

addition of labile C on SOM decomposition (Dormaar, 1990; Kuzyakov, 2010). In the 

Norway spruce plantation where Subke et al. (2004) carried out their 13C-labelled litter 

decomposition experiment in conjunction with forest girdling, it would appear that the 

input of labile substrates into the soil through both the presence of roots, and leached 

from added litter, had a positive priming effect on both SOM and litter decomposition.  

In the current work, the litter decomposition experiment conducted alongside forest 

girdling (Chapter 4, Subke et al. 2011) supported the work of Subke et al. (2004), 

demonstrating a clear link between the activity of plants, and their allocation of C to 

the soil and surface litter mass loss. This finding was in  contrast with the results of the 

litter decomposition experiment conducted alongside soil trenching (Chapter 2) where 

there was no difference in mass loss, expressed as k-values observed between any of 

the six treatments (see Table 2.1), and the results of the 13C-labelled simple and 

complex substrate decomposition experiment (Chapter 5).  

It is possible that these apparent contradictions can be explained by differences in the 

severity of the method used to exclude ECM roots between the different studies. 

There is no disputing that ECM fungi appear to be causing reduced decomposition 

where they are present (Chapter 5). However, the complete disruption of labile plant-

assimilate C input, alongside other substrates in plant root exudates during girdling is 

likely to cause much more severe C-limitation in girdled soil than is observed in 

trenched soil, which could decrease the decomposition of more complex substrates. 

The word ‘trenching’ has been used in this thesis to describe methods where plant 

roots and mycorrhizal hyphae have been severed and then excluded from areas of soil. 

In the experiments presented in Chapters 2, 3 and 5, this was done using exclusion 
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collars made of PVC. Other studies have used metal barriers (Faber & Verhoef, 1991), 

or plastic linings (Zhu & Ehrenfeld, 1996). Gadgil & Gadgil (1971; 1975) refer to 

‘cutting’ the soil with a spade, and then re-cutting every two weeks. Staaf et al. (1988) 

also cut with a spade, but then only re-cut twice a year. Clearly, there is a large amount 

of variation in the methodologies used to exclude roots and mycorrhizal hyphae and 

these variations may go some way towards explaining the differing results. 

The literature assessed in Chapter 2 (see Table 2.4) with regards to the Gadgil effect 

needs to be re-evaluated to see if there is a pattern with regards to the effect of ECM 

roots and the exclusion method used. For example, studies where there was a 

promotion of litter decomposition in the presence of ECM roots tended to be where 

girdling had been used (Subke et al., 2004; Subke et al., 2011), or where there had 

been a physical barrier installed following cutting, as in the case of Zhu & Ehrenfeld 

(1996), who lined their trenches with plastic. Faber & Verhoef claim that there was a 

reduction of decomposition rates of 2% in the presence of roots, compared to where 

they had been excluded using metal screens. However, upon closer inspection of their 

results, in the control treatment (their study was designed to look at the impact of 

collembolan species), after 7 months, there was greater weight loss where roots were 

not excluded (see Fig. 1, Faber & Verhoef, 1991). In contrast, in studies where girdling 

or no physical barriers were used to exclude the influence of roots (e.g. Gadgil & 

Gadgil, 1971; 1975; Cuenca et al., 1983; Staaf, 1988; Chuyong et al., 2002; Koide & Wu, 

2003) there tended to be no effect, or a negative effect, of roots on decomposition. An 

exception to this pattern is a girdling study conducted by Wu et al. (2011), where no 

effect of the exclusion of plant assimilate-derived C on litter decomposition was 

observed.  

In the litter decomposition experiment presented in Chapter 2, the exclusion collars 

used did not block the input of soil water into the collars, which could flow in through 

the mesh windows. Therefore any dissolved organic carbon (DOC), alongside other 

dissolved materials would be able to enter the collars. This could also have occurred in 

studies where no physical barrier was used, with studies tending not to indicate the 

size of the air gap created by their cutting techniques. It is possible that the conditions 

of C-limitation caused in girdled plots, or the more elaborate trenched plots have a 
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greater retarding effect on litter decomposition than in environments where there is 

still plant-assimilate input through root or ECM exudates available to saprotrophic 

organisms as DOC. Högberg & Högberg (2002) demonstrated that following girdling, 

there was a 45% decrease in DOC in girdled plots, when compared to controls.  

It is possible in the currrent Pinus contorta stand that plant assimilate-derived C was 

still priming the decomposition of litter in the exclusion collars to a certain extent. This 

could explain why there was not the same indication of the reliance of soil 

decomposers on plant-assimilate C in the litter decomposition experiment presented 

in Chapter 2, as there was in the girdling study presented in Chapter 4 of the current 

work. Schaefer et al. (2009) used both trenching and girdling in the same plot to 

estimate the Rh flux and found that it appeared lower from the girdled plots. However, 

the same comparison was done in Subke et al., (2011, Chapter 4) and there was no 

significant difference between the Rh flux measured using the PVC exclusion collars in 

the control plots, or between the girdled and control plots (see Fig. 3, Subke et al., 

2011). Overall, plant-assimilate C input to the soil is clearly important, priming the 

activity of soil microorganisms, which has been reported on numerous occasions 

(reviewed in Dormaar, 1990; Kuzyakov, 2002), and when this supply is 

comprehensively removed from large areas of soil using techniques such as girdling 

(Subke et al., 2006), this may override any suppressing effect that ECM fungi have on 

litter decomposition in forest soils. 

6.3 The influence of moisture and temperature on decomposition 

Climate has been acknowledged to be one of the most important drivers of 

decomposition processes in forest soils, affecting the rate at which the different stages 

of decomposition can proceed (Swift et al., 1979).  

In contrast to previous studies (Virzo de Santo et al., 1993; Koide & Wu, 2003), soil 

moisture was shown not to be limiting to either litter decomposition (Chapter 2), or 

soil CO2 efflux (Chapter 3) during the current work. Though soil moisture was 

significantly correlated with the ‘watered’ treatments, RMS(W), MS(W), S(W) and also 

treatment S, the associations were weak. This lack of correlation between soil 
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moisture and soil CO2 flux is a common finding as, with seasonal changes, levels of 

moisture are generally low when other influencing variables such as temperature and 

assimilate supply are peaking (Davidson et al., 1998; Sulzman et al., 2005).  

Soil moisture contents in the Pinus contorta stand at Wheldrake forest, even in 

treatment RMS which had the lowest soil moisture contents of all the treatments 

during the summer months, never fell below 20%. Though previous work by 

Heinemeyer et al. (2007) at the same site demonstrated that soil moisture limited the 

ECM flux component during a period of drought, no such effects were observed in the 

current study. 

Temperature on the other hand explained ca. 66% of the variation in litter mass loss 

(Table 2.3), and 53-67 % of the variation in soil CO2 efflux in the Pinus contorta stand 

at Wheldrake Forest (Table 3.3). In the current work, there was evidence of the flux 

component from roots having a higher temperature sensitivity than the components 

from mycorrhizal hyphae or soil heterotrophs (Table 3.2). This is in contrast with 

previous results at the same site, for a shorter period of time by Heinemeyer et al. 

(2007), who observed that Rh was more influenced by temperature than Ra. Moyano 

et al. (2008) reported that the flux components from all sources were correlated with 

temperature, apart from the mycorrhizal flux component at one of the two sites they 

studied. The results from the current work, and those of Heinemeyer et al. (2007; 

2012) and Moyano et al. (2008) have provided evidence that the mycorrhizal flux 

component responds differently to environmental drivers than the root component, 

and that therefore these two components of Ra should be modelled separately in the 

future.  

6.4 Suggestions for further work 

This thesis has highlighted the link between above-ground and below-ground activity, 

in terms of the promoting influence of plant-assimilate C, cycled into the soil via roots 

on litter decomposition. It has also clearly demonstrated that the presence of ECM 

fungi has a negative influence on the turnover of substrates in forest soils. In light of 

the results presented in the current work, there is a need for future studies excluding 

ECM fungi from areas of soil, and measuring their influence on decomposition, and to 
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use molecular techniques in order to measure the associated changes in microbial 

communities. This could be achieved using a combination of pyrosequencing of 

bacterial and fungal communities and analysis of functional genes involved in the 

decomposition of cellulose such as the fungal cellobiohydrolase (exocellulase) gene 

cbh-I, as used by Baldrian et al. (2012). This would hopefully lead to a better 

understanding of the mechanisms driving suppression. 

Though the experiment presented in Chapter 5 incorporated substrates which included 

or did not include N, the influence of N on the role of ECM fungi has not been properly 

considered as part of the current work. Different ECM fungi have been demonstrated 

to have different capabilities with regards to decomposing complex N-containing 

substrates. The suggested suppression mechanism regarding the uptake of N by ECM 

fungi (Abuzinadah et al., 1986) should be investigated to a greater extent in the field, 

in order to fully appreciate the role that ECM fungi play in carbon storage, and how 

this may change with N deposition, as highlighted by the work of Vallack et al. (2012). 

Further work is required where the ECM flux component is studied in the field, 

between a range of environments, alongside the measurement of environmental 

parameters, and measurements of photo-assimilate supply, in order to separate out 

effects of temperature, and substrate supply. It would be interesting to study whether 

overall, there is a balance between the conservation of C as part of SOM by ECM fungi, 

and their release of photo-assimilate derived C as CO2. For example, does the presence 

of ECM fungi in a system result in net increased or decreased C storage, compared to 

systems where they are not present or have been excluded? 

Such work  should be combined  with further attempts to study the decomposition  

dynamics of fungal biomass in forest soils, where if possible, fungal mycelia has been  

cultured under more ‘natural’ conditions, and not in media optimal for microbial 

growth.  

Considering the importance of the global C cycle in the context of climate change 

(IPCC, 2007), particular attention should be paid in future work to fully understand the 

mechanisms controlling the potentially huge role ECM fungi could be playing in the 

global C cycle. 
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Appendix 1 Example Campbell CR1000 program 

'CR1000 

'Created by Short Cut (2.5) 

'Declare Variables and Units 

Dim Voke 

Dim TCount 

Public Badger1 

Public Badger2 

Public Batt_Volt 

Public SM200(9) 

Public SWC(9) 

Public SoilOnly_SWC 

Public SoilMyc_SWC 

Public SoilMycRoot_SWC 

'Public T_mV(4) 

'Public T_kOhm(4) 

'Public T_C(4) 

Public PanelT 

 

Units Batt_Volt=Volts 

Units SM200=V 

Units SWC=% volumetric 

'Units T_mV=mV 

'Units T_kOhm = kOhm 

'Units T_C = deg C 

Units PanelT = deg C 
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'Define Data Tables 

DataTable(Table1,True,-1) 

DataInterval(0,10,Min,10) 

'Sample (4,T_mV(1),IEEE4) 

'Sample (4,T_kOhm(1),IEEE4) 

Sample (1,PanelT,IEEE4) 

'Sample (9,SM200(1),FP2) 

Sample (9,SWC(1),FP2) 

Sample (1,SoilOnly_SWC,IEEE4) 

Sample (1,SoilMycRoot_SWC,IEEE4) 

Sample (1,SoilMyc_SWC,IEEE4) 

Sample (1,Badger1,IEEE4) 

 Sample (1,Badger2,IEEE4) 

'Sample(1,SM200(2),FP2) 

'Sample(1,SWC(2),UINT2)  

'Sample(1,SM200(3),FP2) 

EndTable 

 

DataTable(Table2,True,-1) 

DataInterval(0,10,min,10) 

Minimum(1,Batt_Volt,FP2,False,False) 

EndTable 

 

'Main Program 

BeginProg 

Scan(10,Min,1,0) 

Badger1=0Badger2=0 
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'Default Datalogger  

Battery Voltage measurement Batt_Volt: 

Battery(Batt_Volt) 

'Turn AM16/32 Multiplexer On 

'PortSet(1,1) 

'Turn SM200s On 

PortSet(9,1) 

Voke=1 

 'Delay  scan for 2 second warm-up period 

Delay(0,2,Sec) 

'SubScan(0,0,2) 

'Switch to next AM16/32 Multiplexer channel 

'PulsePort(2,10000) 

'SM200 soil moisture content measurements mV on the AM16/32 Multiplexer: 

VoltSe(SM200(Voke),9,mV2500,1,0,0,250,.001,0) 

'Voke=Voke+1 

'NextSubScan 

'Conversion of mV signal to SWC 

For Voke=1 To 9 

SWC(Voke)=-0.039+2.091*(SM200(Voke))-
(5.029*(SM200(Voke))^2)+(7.907*(SM200(Voke))^3)-
(5.978*(SM200(Voke))^4)+(1.758*(SM200(Voke))^5) 

Next 

'Turn SM200s Off 

PortSet(9,0) 

'Turn AM16/32 Multiplexer Off 

'PortSet(1,0) 
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'Average Treatments 

SoilOnly_SWC=(SWC(1)+SWC(2)+SWC(3))/3 

SoilMycRoot_SWC=(SWC(4)+SWC(5)+SWC(6))/3 

SoilMyc_SWC=(SWC(7)+SWC(8)+SWC(9))/3 

'Irrigation instruction; switches 12 V output if SWC in root collars is lower than average of "soil 
only" and "Mycorrhiza" collars 

'Badger is in there just to log when the pumps were switched on and off 

If SoilOnly_SWC-SoilMycRoot_SWC>0.03 Then  

PortSet(3,1) 

Badger1=1 

EndIf 

Delay(0,15,Sec) 

PortSet(3,0) 

If SoilOnly_SWC-SoilMyc_SWC>0.03 Then 

PortSet(5,1) 

Badger2=1 

EndIf 

Delay(0,15,Sec) 

PortSet(5,0) 

'Measure Air Temperature 

'TCount = 1 

BrHalf(T_mV(TCount),4,mV2500,10,VX1,4,1000,1,0,_50Hz,1,0) 

'Convert voltage to resistance 

'T_kOhm(TCount) = 2*(1-T_mV(TCount))/(T_mV(TCount)) 

'T_C(TCount) = -21.042*LN(T_kOhm(TCount)) + 39.406 

'Generate ratio of resistance, where calculated resistance is devided by resistace at 0 deg C 
(needed as input for following instruction) 

'RR_T(TCount) = T_kOhm(TCount)/6.53 
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'Convert resistance to temperature in deg C 

'PRT(T_C(TCount),1,RR_T(TCount),1,0) 

PanelTemp(PanelT,_50Hz) 

   

'Call Data Tables and Store Data 

CallTable(Table1) 

CallTable(Table2) 

NextScan 

EndProg 
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Appendix 2  

Components of Modified Melin Norkrans (MMN) growth medium (Marx, 1969) used to 
culture 13C-labelled fungal cell wall material for use in the simple and complex 
substrate decomposition experiment (Chapter 5). ¼ strength solution was used. 

 Full strength: 
In 1 litre 
distilled H2O 

¼ strength: 
In 1 litre 
distilled H2O 

 
Diammonium hydrogen orthophosphate 
(NH4)2HPO4 

 
0.25 g 

 
62.5 mg 

 
Potassium dihydrogen orthophosphate 
KH2PO4 

 
0.50 g 

 
0.125 g 

 
Magnesium sulphate MgSO4.7H2O 

 
0.15 g 

 
37.5 mg 

 
Calcium chloride CaCl2.2H2O 

 
0.05 g 

 
12.5 mg 

 
Sodium chloride NaCl 

 
0.025 g 

 
6.25 mg 

 
FeEDTA (2%) 

 
24 mg 

 
6.0 mg 

 
Thiamine (not autoclaved, filtered separately 

 
0.1 mg 

 
0.025 mg 

 
D-glucose (not autoclaved, filtered 
separately)* 

 
1.0 g 

 
1.0 g 

 
Malt extract** 

 
3.0 g 

 
0.75 g 

 
Agar (oxoid No. 3)*** 

 
15.0 g 

 
15.0 g 

 
Adjusted to pH 4.7 with HCl and autoclaved 

 

  

*13C-labelled medium contained 10% 13C-labelled glucose (99 atm%), 90% non-labelled 
glucose 

**excluded from the media when culturing the non-labelled fungal biomass (malt 
extract) 

***agar excluded from liquid media 
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