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ABSTRACT

Heat transfer equipment is one of the main unit operations in many industrial 

processes such as heating, cooling, transportation and power generation. Thus, 

convective heat transfer plays a major role in the heat equipment. In the past years, 

liquids such as water, oil and ethylene glycol had been used as the heat transfer fluids. 

These fluids have a major drawback since they possess low thermal conductivity. Thus 

innovation in developing advanced heat transfer fluids is needed in many industrial 

applications so that more energy efficient and compact systems can be achieved. This is 

the main impetus of this work.

A nanofluid is a liquid suspension that consists of nano-sized solid particles. In 

this work, carbon nanotubes (CNT) and titanium dioxide (Ti0 2 ) were utilized in 

formulating nanofluids. The shape and morphology of these nanoparticles make it a 

challenge in producing long term stable nanofluids. CNT nanofluids were produced 

using sonication and higher shear mixing, while the T i0 2 nanofluids were produced by 

using the beads mill. The CNT nanofluids dispersion stability was enhanced by the aid 

of gum arabic surfactant and the T i0 2 was stabilized by means of electrostatic 

stabilization mechanism at pH -  11.0.

The nanofluids were characterised using electron microscopy and size analyzer. 

The multi-wall CNTs have a diameter of < lOnm and length up to micron size, thus the 

aspect ratio is huge. The primary particles of TiCK have an average diameter of 30-40 

nm.
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The heat transfer study involves several measurements and analysis: i) the 

thermal conductivity measurements, ii) viscosity analysis and iii) convective heat 

transfer measurements. A significant enhancement was observed for thermal 

conductivity of CNTs nano fluids, where nanoparticles concentration of 0.25 wt %, 25% 

enhancement was observed. On the other hand, for concentration of 0.2 wt% of TiOo 

nanofluids, a maximum of 3.2% enhancement was observed, both measurements were 

conducted at 25°C.

The viscosity of CNT and T i0 2 nanofluids showed shear thinning behaviour. 

The viscosity decreases with increasing shear rate, and decreases with increasing 

temperature. The viscosity o f CNTs nanofluids was much greater than that of T i0 2 

nanofluids. At shear rate greater than 150 s the T i0 2 nanofluids behaved like 

Newtonian fluids and the viscosity approached the viscosity values of water.

The heat transfer behaviour of nanofluids was investigated for various 

experimental conditions such as flow conditions (Reynolds Number), nanoparticle 

concentration, pH, and particle size. For flow in 45 mm diameter pipe, the heat transfer 

coefficient decreases with increasing axial direction from the entrance, and increasing 

Reynolds Number. A significant enhancement for heat transfer coefficient was 

observed for CNT nanofluids. At Re = 800, a maximum of 350% enhancement of heat 

transfer coefficient was observed for 0.5wt % of CNTs. As the concentration increases, 

the maximum enhancement occurred at increasing axial direction along the pipe. On 

the other hand, the maximum enhancement (-16%), was observed at x/D = 150 for the 

T i0 2 nanofluids. Moreover, the heat transfer coefficient of T i0 2 increases with 

decreasing particle size for Reynolds Number > 2000.



Apart from the thermal conductivity of nanoparticles, several other possible 

mechanisms are believed to be operating towards the enhancement of heat transfer 

coefficient. These include changes in the boundary layer thickness, particle migration 

and re-arrangement, thermal conduction increase due to shear and aspect ratio of 

nanoparticles.
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of research

Heat transfer equipment is one of the most important unit operations in many 

industries. Thus heat transfer fluids play a vital role in many processes such as heating 

and cooling processes, chemical processes and power generation. Conventionally, the 

fluids commonly used as the medium include water, oil and ethylene glycol. However, 

these fluids have poor heat transfer properties. Particularly, the thermal conductivities 

of these fluids are low and this has limited the thermal performance of some heat 

transfer equipment. Thermal conductivity and heat transfer coefficient of fluids play an 

important role in the development of energy-efficient and compact heat transfer 

equipment. A lot of efforts have been carried out to improve and optimise the 

equipment and operation as well as heat transfer fluid.

One significant consideration in achieving efficient and compact heat transfer 

equipment is to increase the thermal conductivity of the heat transfer fluids. This could 

be done by suspending metal or metal oxide particles in the base liquid. This is partially 

due to the fact that metal and metal oxide have higher thermal conductivity. For 

instance, water has a thermal conductivity of 0.6 W/m-K and copper has the a value of 

386 W/m-K. When the micro-meter sized particles were ‘in fashion’, many attempts 

were made to employ microparticles in liquid suspensions. A study of fluids with 

suspended particles of micro and millimeters had been carried out by Ahuja (1975(a)
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and 1975(b)) and Sohn and Chen (1981). Unfortunately, such suspensions suffer a 

number of drawbacks such as clogging, fouling and other related problems. Further 

studies have shown improvement on suspension stability where utilizing much smaller 

size particles. The bottleneck started to be eliminated when new dimension in science, 

such as nanotechnology come into the scene. The concept of using particles of 

nanometer dimensions was materialised by a series of research works pioneered at the 

Argonne National Laboratory, USA approximately a decade ago, and since then the 

term ‘nanofluids’ attracts great attention of both physics and engineering communities 

(Choi, 1995; Eastman et. al, 1997; Eastman et. al, 1999). The credit should also go to 

Masuda et. al who had started a work on the nanofluids in Japan in 1993 (Masuda et. al, 

1993).

1.2 Nanofluids in the attention

Nanofluids are liquid suspensions that consist of nano-sized solid particles. 

Since a decade ago, research interest in nanofluids has rapidly increased. In the early 

stages, lots of the researches were mainly devoted to the production techniques and 

syntheses. Production of stable nanofluids remains a challenge due to the fact that 

nanoparticles form agglomeration and aggregates, and thus the size could be much 

bigger than the primary particles. A single route was predominantly employed at that 

stage where solid nanoparticles, produced from a separate synthesis, were suspended in 

the base liquid. Two step procedures were then used in which the first step involved 

producing the nanoparticles and secondly suspending them in liquids. The 

nanoparticles used in these studies include metal, metal oxide as well as carbon
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nanotubes. Recently diamond and titanium dioxide nanotubes have also been added to 

the list of nanoparticles to produce nanofluids.

The research on nanofluids continued on to the study of its novel properties and 

characteristics. One of the properties that were measured and predicted in the early 

stages was thermal conductivity. Nanofluid, if properly engineered, could exhibit a 

thermal conductivity that is significantly higher than the base liquid (Choi, 1995; Lee et. 

al, 1999; Li and Xuan, 2002; Putra, 2002). This extraordinary property of nanofluid has 

gained an attractive research interest especially in the development of advanced heat 

transfer fluids. Therefore, the innovation of nanofluid has opened a new dimension for 

heat transfer enhancement. Recent literatures have revealed that high thermal 

conductivity enhancement can be achieved by adding even a very small amount (< 5 

volume %) of nanoparticles (Lee and Choi, 1996; Choi et. al, 2002; Li and Xuan, 2002; 

Das et. al, 2003c; Hwang et. al, 2005). These remarkable findings somehow vary in 

terms of the percentage of enhancement, ranging from as low as 5% to as high as 200%. 

Mathematical models were also developed to predict the thermal conductivity of 

nanofluids (Wang et al, 2003; Xue, 2003; Xue et. al, 2004). However, there was 

inconsistency in the observed properties and several issues have been raised to 

understand the behavior of nanofluids.

Besides thermal conductivity, there are few publications on the convective heat 

transfer of nanofluids (Xuan and Li, 2003; Wen and Ding, 2004b; Ding et. al. 2006; 

Heris et. al 2006). Experiments were conducted to measure the convective heat transfer 

coefficient of nanofluids under various conditions of flow and temperature.
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Mathematical models were also developed in conjunction with the experiments 

(Buongiomo, 2006; Jou and Tzeng, 2006).

Apart from the thermal properties, there were several reports on the rheology of 

nanofluids (Park and Cho, 1998; Tepei and Forter-Barth, 2001; Kinloch et. al, 2002; 

Alias et. al, 2003). The viscosity of nanofluids was reported to have shown pseudo 

plastic flow behavior. However, there is certain condition such as pH influence where 

nanofluids could behave differently (Tseng and Wu, 2002).

1.3 Motivation of research

As mentioned above, nanofluids have gained a lot o f attention over the past 

decade. The researches on the properties of nanofluids are still moving on with many 

new findings and results reported. Having known the basic properties and 

characteristics of nanofluids, the research trend on nanofluids are being advanced to 

practical applications on a small scale basis.

However, few works have been done on the convective heat transfer of 

nanofluids. This behaviour of nanofluids is more important from the industrial point of 

view. Thus, this has been the main motivation of this research to further study the 

convective heat transfer of nanofluids. Since this involves a flow system, a rheological 

study of nanofluids would be necessary. This is because the pressure drop of the flow 

system is closely related to the fluid rheology. In addition, the flow and heat transfer
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behaviour in a flow system are coupled. Thus, relating the rheological behaviour with 

the thermal behaviour of nanofluid has been another motivation of this work.

1.4 Aims and objectives

The aim of this research is to engineer nanofluids with tailored properties. The 

specific objectives are:

• To formulate stable nanofluid systems using both metal oxide nanoparticles 

(TiCb) and carbon nanotubes.

• To construct and use a robust experimental measurement system to quantify 

the heat transfer performance of the nanofluids.

• To characterize the nanofluids in terms of size distribution, thermal 

conductivity and rheological behaviour.

• To investigate the convective heat transfer in both horizontal and vertical 

configuration pipe systems.

• To provide detailed and more advanced understanding of heat transfer 

mechanisms in these systems.

1.5 Scope of this work

It is impossible to investigate all ranges of particulates systems within this scope 

of research. Due to this, this research has been focused on the following aspects.
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• Materials - Titanium dioxide (Ti02) and carbon nanotubes have been 

chosen as the subject matter. This is because little work has been reported on 

the convective heat transfer of nanofluids made from these materials.

• Thermal conduction — A hot wire based probe is chosen for the thermal 

conductivity measurements. This is because o f the easiness for the 

measurements and fairly good repeatability of the measurements.

• Rheology - Steady shear rate increment is used to characterise the flow 

properties of nanofluids.

• Convective heat transfer -  Both the horizontal and vertical pipe system are 

used for the work.

• Pressure drop -  Measurement of pressure drop for the flow of nanofluids.

1.6 The structure of report

The second chapter follows will review the production and synthesis of 

nanofluids. Various techniques and methods that have been employed will be discussed. 

Chapter Three will review some properties and behaviour of nanofluids that have been 

reported in the literatures. These include thermal conductivity, convective heat transfer 

and rheology. The thermal conductivity of nanofluids has been a major focus in the 

previously reported studies. There are also models that have been developed to predict
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the thermal conductivity of nanofluids. Moreover, mechanisms aimed at explaining the 

enhancement of nanofluids thermal conductivity have been discussed in various 

publications. Convective heat transfer of nanofluids is also gaining more and more 

research interest. In addition to thermal behaviour, the flow behaviour of nanofluids in 

terms of rheological properties, have in fact received considerable attention. If 

nanofluids were to be adopted in industrial applications, these properties have to be 

tailored to maximize the advantages of nanofluids.

Chapter Four describes the research methodology. A detail description of the 

experimental procedure will be discussed. The methods of preparation, selection of 

dispersant system, and experiments will be explained in this chapter. The equipment 

used for characterization and analysis are also discussed in this chapter. The following 

Chapter Five focuses on the results and discussion of the work done on carbon 

nanotubes. This will be followed by results and discussion of titanium dioxide system 

in Chapter Six. Conclusion will be drawn in Chapter Seven. The final chapter, Chapter 

Eight will give some recommendations for future research.

1.7 Contribution of research

The main contribution of the research is on the formulation of carbon nanotubes 

and titanium dioxide nanofluid system. It also provides an insight and knowledge of the 

convective heat transfer of these nanofluids.
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CHAPTER TWO 

PRODUCTION AND SYNTHESIS OF NANOFLUIDS : A REVIEW 

2.1 Introduction

The successful production and synthesis of nanofluids are crucial in obtaining 

optimum thermal properties. A lot of efforts have been put on to the synthesis of 

nanofluids since the research begun approximately a decade ago. Studies to date have 

reported that various type of nanoparticles which include metal nanoparticles such as 

aluminium (Al), copper (Cu), iron (Fe), gold (Au), nickel (Ni), and titanium (Ti) have 

been utilized in the production o f nanofluids. Oxide nanoparticles and other metal 

compound such as alumina ( A L O 3 ) ,  copper oxide (CuO), silica (Si0 2 ), titanium dioxide 

(Ti0 2 ), and silicon carbide (SiC) are also received as much attention in the synthesis of 

nanofluids. In addition nanotubes such as carbon and titania nanotubes as well as 

diamond nanoparticles have also been used to make nanofluids. The formulations of 

nanofluids have been a real challenge due to various factors such as morphology of 

nanoparticles/nanotubes, strong interparticle forces and surface properties of 

nanoparticles. Particles in the liquid move through Brownian motion and collide with 

each other. Therefore, the stability of the suspension is mainly determined by the 

interactions during the collision. The particles are either attractive or repulsive to each 

other depending on the solution chemistry and surface properties o f particles. When 

particles are attractive, they will form aggregates and even strong agglomerates, which 

have to be overcome during nanofluid production. In achieving stable and even 

distribution of nanoparticles in nanofluids synthesis, many techniques and methods have
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been employed. This chapter will review the methods and techniques that have been so 

far most commonly used in formulation of nanofluids.

2.2 Formulation of nanofluids

There are several approaches that have been employed to prepare nanofluids. 

These include the single evaporation process, the two-step process, the direct mixing 

method, and other methods. They are briefly discussed in the following.

2.2.1 Single-step process

This method has been shown to successfully produce stable nanofluids. It is the 

single-step evaporation method, which simultaneously makes and disperses 

nanoparticles directly into a base liquid. The technique was employed at the Argonne 

National Laboratory, USA. Eastman et. al. (1997) used CuO and AI2O3 nano-crystalline 

nano-powder in these experiments. The schematic diagram of this process is shown in 

Figure 2.1. The same procedure was also applied by Lee et. al. (1999), Choi and 

Eastman (2001), and Choi et. al. (2001).

Zhu et. al. (2004) successfully prepared Cu nanofluids by reacting copper sulfate 

anhydride (CuS04 .5H20 ) and sodium hypophosphite (NaH2P0 2 .H2 0 ) in ethylene 

glycol. The reaction was carried under irradiation microwave. Stable and non

agglomerated suspension was obtained.
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Cooling system

Substance 
to be 
vaporised

Cylinder
chamber

Heated

Figure 2.1: Schematic diagram of a single-step process of nanofluids

production (Choi, 2002).
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2.2.2 Two-step process

In the two-step process, nanoparticles were first produced as dry powder using 

the gas inert condensation method. Then the nanoparticles were dispersed in the base 

liquid. Advantages of gas-condensation method over other processing techniques 

include the ability to produce particles under cleaner conditions. Nanofluids produced 

by gas condensation method could have good stability and evenness (Li and Xuan, 

2000). However, this method is expensive and difficult to satisfy practical application 

requirement. There are many other techniques that have been employed to produce 

nanoparticles such as chemical synthesis technique (Gleiter, 1989), aerosol spray drying 

method (Ashly, 1994) and condensation of metal vapor (Andres et. al, 1981). 

However, carbon nanotubes have been produced from different techniques which 

include arc discharge (Iijima, 1991), laser ablation (Scott et. al, 2001), catalytic process 

(Hemadi, 2002) and chemical vapor deposition (Pan et. al, 1999).

Another successful and well known two-step process in the production of 

nanofluids is the VEROS method which stands for Vacuum Evaporation on Running 

Oil Substrate. This method was introduced by Yatsuya et. al. (1978). With this 

technique, the nanoparticles were produced by direct evaporation in a vacuum onto the 

surface of running oil. The size distribution of particle produced by this technique was 

narrow and the particle yield per unit time is higher than that of gas evaporation 

technique. However, this technique is not suitable for substances o f more than one 

component such as metal oxides. Furthermore, it is difficult to separate the particles 

from the fluids to obtain dry powder.
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The VEROS technique was used by Eastman et. al. (1999) in dispersing Cu 

nanoparticles. However certain modification was introduced and the running oil was 

substituted with ethylene glycol instead. The nanoparticles produced by this technique 

were very small with average diameter o f less than 1 0  nm and very little particle 

agglomeration.

2.2.3 Three-step process

Wang et. al. (1999) introduced a three steps method for producing AI2O3 

nanofluids. The first step employs mechanical blending and ultrasonic bath. The 

nanofluids produced contain both separated individual particles and agglomerations of 

several particles. The second step involves coating of particles with polymer. Styrene- 

maleic anhydride was added during the blending process to keep the particles separated. 

To keep the polymer fully soluble the pH of the solution was kept at 8 .5-9.0. In the last 

step, filtration was applied to removes particles with diameters larger than 1 jam.

2.2.4 Alternative processes

As an alternative for producing nanofluids, direct mixing of nanoparticles in the 

base liquid can be used. However, using this means of production, an additional aid 

would be necessary in order to obtain an even distribution and stable suspensions. As 

mentioned above, particles in suspension attract each other, it is necessary to modify 

particle surfaces to give repulsion between the particles to enhance stability. The 

repulsion must be strong enough to overcome the attractive interactions. Stability of 

suspensions can be obtained through electrostatic stabilization and steric stabilization
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(Tadros, 1993; Werth et. al, 2003; Muller, 2004). Therefore, some auxiliary activator 

and dispersant have been used to enhance the dispersion.

A vast variety of surfactants and dispersants have been used in nanofluids 

systems which include organic acids, polymer surfactants and salts. They form stable 

suspension through the mechanism of steric stabilization. Steric stabilization is a 

mechanism that can explain the ability of certain additives to inhibit coagulation of 

suspensions. These additives include certain hydrophilic polymers and surfactants with 

hydrophilic chains. Stabilized system using this mechanism tend to remain well 

dispersed even at high particle loading or under conditions where the zeta potentials of 

the surfaces are reduced to near zero.

Quite a few researches have used this technique of stabilization in producing 

nanofluids. Deiss (1996), used poly ethylene glycol (PEG) and polyacrylamide (PAM) 

to sterically stabilize TiOo nanoparticles suspension. Both PEG and PAM are polymers. 

Bandyopadhyaya et. al. (2002), reported that gum arabic (GA) gave the longest 

stabilized nanofluids containing carbon nanotubes (CNT). Different types of surfactant 

were also tested and compared with GA such as a polysaccharide (Dextrin), a long 

chain synthetic polymer poly ethylene oxide (PEO), negatively charged sodium 

dodecyl sulfate (SDS), positively charged cetyltrimethylammoniumchloride (CTAC), 

dodecyl trimethylammoniumbromide (DTAB) and nonionic pentaoxoethyelenedodecyl 

ether (C12E5). Islam et. al. (2003) explored the dispersing power of several surfactants 

to evaluate stabilization characteristics of CNT nanofluids. The surfactant include 

sodium dodecylbenzenesulfate (NaDDBS), sodium octylebenzene sulfonate (NaOBS),
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sodium benzoate (CsHsCC^Na), sodium dodecyl sulfate (SDS), and Triton X-100. This 

study has demonstrated that NaDDBS can stabilize nanofluids for a long period of time.

In addition, to successfully obtain stable nanofluids systems, mixing techniques 

such as sonication, high shear mixer, or milling are required. Sonication is a method of 

dispersing using the ultrasonic waves. It is the most commonly used method in the 

production of nanofluids (Xuan and Li, 2000; Bandyopadhyaya et. al, 2002; Li and Q, 

2002; Putra, 2002; Xie et. al, 2002(a) and 2002(c); Alias et. al, 2003; Chon, 2005; Heris 

et. al, 2006).

Besides sonication, nanofluids have also been produced by using a high shear 

mixer. The nanofluids systems are well mixed in this method since high frequency of 

mixing is used (Wen and Ding, 2004(a); Wen and Ding, 2004(b); Wen and Ding, 2005). 

This method, however, needs certain precaution in order not to mechanically damage 

the structure and morphology of nanoparticles. Both sonication and high shear mixing 

processes are simple and relatively cheap. Even so, results have shown that long stable 

nanofluids can be achieved by these methods.

Wang et. al. (2005) obtained nanofluids by fdling CNT with toluene using 

supercritical CO2 gas. Prior to the synthesis, the CNT have been produced using a 

different technique.

2.2.5 Acid treatment process

Stable suspension of nanofluids can also be achieved by techniques such as pH 

alteration to change the surface charge of particles in aqueous solutions. This is a
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mechanism of stabilizing suspensions through the electrostatic repulsion mechanism, in 

which the particles are surrounded by electrical double layer. Changing the pH would 

change the surface charge of the nanoparticles. Acid or alkaline is added into the 

suspensions to adjust the pH level. Nitric acid (HNO3) and sodium hydroxide (NaOH) 

were used by Wen and Ding (2006) to adjust the pH of TiC>2 nanofluids. Shaffer and 

Windle (1999) used acid oxidation treatment to stabilize CNT nanofluids. Esumi et. al.

(1996) stabilized CNT nanofluids by using nitric acid (HNO3) and sodium hydroxide 

(NaOH). Lee et. al. (2006) adjusted CuO nanofluids by using hydrochloric acid (HC1) 

and NaOH.

As a conclusion, there have been several techniques and methods to formulate 

nanofluids. Each of the methods has advantages and disadvantages. Therefore, it is 

important to have a basic understanding of the characteristics and nature o f 

nanoparticles and the base fluids before one can engage on any method to produce 

nanofluids. Table 2.1 summarizes some of the techniques and methods that have been 

employed for formulation of nanofluids. This research will use a few of these 

techniques to produce CNT-water and Ti0 2 -water nanofluids. The chapter follows will 

review the characteristics and behaviour of nanofluids that have been reported in the 

literature.
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Table 2.1: Review of nanofluids production.

No. Literature
Nanoparticles

used
Method of nanofluids production

1 . Esumi, et. al. (1996) CNTs Chemical treatment

2 . Eastman, et. al. (1997)
Cu, CuO and 

A120 3

Gas condensation and VEROS 

method.

3. Lee, et. al. (1999) CuO and ALO3

Production of oxide nanoparticles 

and dispersed in the base fluid.

4.
Shaffer, M.S. P. and 

Windle, A.H. (1999)
CNTs Acid oxidation treatment.

5.
Xuan, Y and Li, Q. 

(2 0 0 0 )
Cu Ultrasonic vibration

6 . Choi et. al. (2001) CNTs

Production of CNT in a chemical- 

vapour-deposition reactor and 

dispersed in base fluid

7. Choiet. al. (2001)
Cu, CuO and 

AI2O3

Two methods :

1. Preparation of nanoparticles 

using inert gas condensation (IGC) 

and dispersed in base fluid.

2. Preparation of nanoparticles 

using VEROS method and dispersed 

in base fluid.
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Table 2.1: Review of nanofluids production (continued).

No. Literature
Nanoparticles

used
Method of nanofluids production

8 .
Hirai, H and Yakura, 

N. (2001)
Pd Alcohol reduction method.

9.
Bandyopadhyaya, et. 

al. (2 0 0 2 )
CNTs Sonication method.

1 0 . Choi, et. al. (2002) Cu and CNTs

Cu- Direct evaporation method 

CNT -  production of CNT and 

dispersed in base fluid

1 1 . Kinloch, et. al. (2002) CNTs Acid oxidation treatment.

1 2 .
Li, Q and Xuan, Y. 

(2 0 0 2 )
Cu Ultrasonic vibration.

13. Putra, N.S.D. (2002) CuO and AI2O3 Ultrasonic vibration.

14. Saito, et. al. (2002) CNTs Chemical treatment

15. Xie, et. al. (2002b) 0C-AI2O3 Ultrasonication.

16. Xie, et. at. (2002c) ALO3

Production of nanoparticles and 

dispersed in the base fluid.

17.
Yerushalmi-Rozen, R. 

and Regev, O. (2002)
_  ...........  _

CNTs Ultrasonic vibration.



18

Table 2.1: Review of nanofluids production (continued).

No. Literature
Nanoparticles

used
Method of nanofluids production

18. Islam, et. al. (2003) CNTs Sonication method.

19. Jiang, et. al. (2003) CNTs Acid oxidation treatment.

2 0 . Patel et. al. (2003) Au and Ag Citrate reduction route

2 1 .
Tseng, W.J. and Lin, 

K.C. (2003)
T i0 2

Mixing -  adsorption of polymeric 

surfactant.

2 2 . Xie, et. al. (2003) CNTs Acid treatment.

23. Assael et. al. (2004) CNTs Ultrasonication

24.
Wen and Ding 

(2004a)
CNT, A120 3 Shear mixing

25. Gibson et. al. (2004) CNTs Ultrasonication

26.
Bang and Chang 

(2005)
ALO3 Ultrasonication

27.
Bonnemann et. al. 

(2005)
Cu and Ag

Cu - Peptization

Ag -  Thermal decomposition



19

Table 2.1: Review of nanofluids production (continued).

No. Literature
Nanoparticles

used
Method of nanofluids production

28. Lou et. al. (2005) Cu
Submerged arc nanoparticle 

synthesis system (SANSS)

29. Manna et. al. (2005) AI70CU30 Two-step method

30. Wang et. al. (2005) CNTs
Supercritical C 0 2: nanochemical 

reaction.

31. Chopkar et. al. (2006) AI70CU30 Two-step method

32. Lee et. al. (2006) CuO Acid-alkaline treatment

33. Mamut, E. (2006) Cu Single-step process -  VERL device

34. Wen and Ding (2006) T i0 2 Direct mixing and acid treatment
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CHAPTER THREE 

PROPERTIES AND BEHAVIOUR OF NANOFLUIDS : A REVIEW 

3.1 Introduction

Extensive research conducted on nanosized powder preparation and processing 

technology in recent years has provided an opportunity to apply this emerging 

nanotechnology to thermal engineering. For instance, improvements to make heat 

transfer equipment more energy efficient would be crucial. Conventional heat transfer 

fluids such as water, mineral oil and ethylene glycol play a very vital role in many 

industrial processes. The poor heat transfer properties of these commonly used fluids 

are a primary obstacle to high compactness and effectiveness of heat exchangers. Many 

initiatives and approaches at utilizing solids particle suspensions as heat transfer media 

were developed. When particles of the order of millimeters and micrometers are 

suspended in liquid, severe problems could occur such as increased pressure drop, 

clogging of flow channels, and erosion of the pipelines. Furthermore, they often suffer 

from instability and associated problems. Although these suspensions have better 

thermal conductivity, they are not practical. Hence, a solution to some of these 

problems was found when much smaller particles are added instead.

Since the word ‘nanofluids’ was coined and associated research was started, the 

number of publications increase every year. In the early stage of the research, most 

studies on nanofluids were focused on the production of nanofluids and their thermal 

conductivities. As the time goes by, more research work is directed to areas associated
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the applications of nanofluids. This chapter will review the literature on properties and 

behaviour of nanofluids.

3.2 Thermal conductivity of nanofluids

Theoretical and experimental studies have shown that suspensions containing 

solid particles have significantly higher thermal conductivities than the base fluids 

without particles. Unfortunately, suspended particles of micrometer dimensions may 

cause some severe problems such as abrasion and clogging in small passages. 

Moreover, large particle suspensions have a poor stability the coarse grained solid 

particles settle out under gravity eventually. Nanofluids have been shown to exhibit 

superior thermal conductivity yet without suffering particle settling. It is well known 

that metal in liquid have a thermal conductivity several orders of magnitude higher than 

pure liquid. For example, at the room temperature copper has a thermal conductivity of 

approximately 700 higher than that of water. Furthermore, the thermal conductivity of 

metal materials is much greater than that of nonmetallic materials. Therefore, the 

thermal conductivity of liquids having suspended solid metal particles is expected to be 

higher than the conventional fluids. In most studies, the thermal conduction of 

nanofluids is characterized by the effective thermal conductivity, keff, which is a 

function of the thermal conductivity of particles, kp, the thermal conductivity o f the base 

fluid, kf, the concentration of particles, and other properties of the base liquid and 

particles, for instance, particle shape, solution pH and others.

Many studies have devoted to the prediction and measurement of the thermal 

conductivity of nanofluids and the literature is seen to increase. Nanofluids containing
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metal nanoparticles are studied by few groups around the world. The method used to 

measure thermal conductivity in many studies is the transient hot-wire method (Healy 

et. al, 1976). Other methods include the steady-state parallel-plate technique (Wang et. 

al, 1999) and the temperature oscillation technique (Putra, 2002; Das et. al, 2003c; 

Bhattacharya et. al, 2004; Bhattacharya, 2005).

Eastman et. al. (1997) studied the thermal conductivity of copper (Cu) 

nanofluids in water. Xuan and Li (2000) studied nanofluids of Cu in water and 

transformer oil. Thermal conductivity of Cu-ethylene glycol nanofluid was measured 

by Eastman et. al. (2001). All these studies reported enhanced thermal conductivity 

despite to different extents. Several factors were investigated by these authors such as 

particle concentration and size which will be discussed in Section 3.3. Other metals 

investigated include iron (Fe) (Hong et. al, 2005), gold (Au) (Patel et. al, 2003; Putnam 

2006) and silver (Ag) (Patel et. al, 2003). Despite the high percentage of thermal 

enhancement observed by earlier research, a different scenario was observed in a recent 

work (Putnam et. al, 2006). The nanofluids containing -0.001 volume % gold 

nanoparticles did not show significant enhancement (< 2%). This is a direct conflict of 

results measured by Patel et. al. (2003) where 5% - 21% thermal conductivity 

enhancement was observed for particle concentration of 0.00026 by volume. The 

results from the experimental data of these researchers are shown in Figure 3.1.

The difference results obtained in these researches may be due to different 

technique employed in the nanofluids production and different physical properties of 

surfactant. For example, Eastman et. al. (1997) employed the VEROS technique, Xuan 

and Li (2000) utilized the sonication method while Patel et. al. (2003) applied the citrate
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♦  Cu-HE200 Oil (Eastman, 1997)

□  Cu-Oil (Xuan and Li, 2000)

A A Cu-Water (Xuan and Li, 2000)

•  Cu-EG(Eastman,2001)

A
X Au-thiolate (Patel et. al, 2003)

O Au-Citrate (Patel et. al, 2003)

♦  □  _  •
• ▲ Ag-citrate (Patel et. al, 2003)

□
O Fe-EG (Hong et. al, 2005)

% X Au-MUD (Putnam et. al, 2006)

1* ,  o  O  O +  Au-C12 (Putnam et. al, 2006)

i ______________  _  _

,

0 0.2 0.4 0.6 0.8 1
vol. fraction

Figure 3.1: The experimental data on thermal conductivity of nanofluids 

containing metal nanoparticles. (Note : EG = Ethylene glycol, MUD =11-  

mercapto-l-undecanol, C12 = toluene).
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reduction method. The accuracy and reliability of theses results are unknown as they 

are not been reported. The temperature at which the data were taken was also slightly 

different between these results. The error estimated in these results is approximately 

5%-10%.

The thermal conductivity of nanofluids containing metal oxide nanoparticles 

was also measured by many researchers. The three oxide nanoparticles that are very 

commonly investigated are A I 2 O 3 ,  CuO and Ti0 2 . An earlier work by Eastman et. al

(1997) have demonstrated that the thennal conductivity of CuO-water nanofluids could 

be enhanced by 60% by adding 5 volume % of nanoparticles. The enhancement was 

also observed for Al2 0 3 -water nanofluids, although less significant than that of CuO. A 

similar work was also conducted by Eastman et. al. (1999). These works showed that 

the thennal conductivity of nanofluids increased linearly with particles loading. Kwak 

and Kim (2005) observed that even at very low volume fraction (0.1%), the thermal 

conductivity of Cu-EG nanofluids was increased by 2.6%.

Wang et. al. (1999) measured the thermal conductivity of AI2O3 (28 nm 

diameter) and CuO (20nm diameter) that are dispersed in several fluids; water, vacuum 

pump liquid, engine oil and ethylene glycol (EG). The results showed that the effective 

thermal conductivity for all the nanofluids measured were higher than that o f the 

respective fluids. The experimental data were compared to those of Masuda et. al. 

(1993) and Lee et. al. (1999) results. The comparison indicated a possible relation 

between the effective thermal conductivity and the nanoparticle size. The thermal 

conductivity was observed to increase with increasing particles size. The experimental 

data measured were found to be lower than the thermal conductivities values predicted
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by several existing models. This indicates that there are deficiencies in the models and 

therefore are insufficient to describe the heat transfer behaviour o f nanofluids. Thus 

new model is needed which should account for factors such as motion and structuring of 

nanoparticles.

Putra (2002) and Das et. el. (2003c) studied the heat conduction of water-based 

nanofluids containing CuO (28.6 nm) and A120 3 (38.4 nm) over a temperature range of 

21°C to 51°C. The thennal conductivity of the nanofluids was enhanced as a function 

of both volume fraction and temperature. The data were compared with the Hamilton- 

Crosser model, a mathematical model that predicts the thermal conductivity o f solid- 

liquids mixture (Hamilton-Crosser, 1962). At room temperature, the A^Oa-water 

nanofluids agree with the Hamilton-Crosser (H-C) prediction whereas at other 

temperature they did not agree. It would somewhat be accidental since Wen and Ding 

(2004b) observed a contradict results where the thermal conductivity o f AloOs-water 

nanofluid, measured at room temperature failed to agree with H-C prediction. Chon et. 

al (2005) observed that the thermal conductivity of nanofluids was enhanced with 

increasing temperature and decreasing particle size. For such occunences, the 

Brownian velocity is believed to be the key mechanism on the temperature dependence 

of nanofluids thermal conductivity and will be discussed in more detail in Section 3.5.

Thermal conductivity of T i02-water nanofluids was studied by Mushed et. al.

(2005). Two morphologies of nanoparticles were investigated; i) spherical shape of 

15nm diameter and ii) rod-like shape with lOnm x 40nm dimension. The investigation 

showed that the thennal conductivities of T i0 2 nanofluids are higher than the base 

liquid. For a particle volume fraction of 5%, the enhancement achieved was 27.9% for
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nanofluids consisting of spherical particles and 32.8% enhancement was observed for 

cylindrical particles. The thermal conductivities were also affected by the morphology 

of the nanoparticles where the thermal conductivity o f spherical shape nanoparticles 

was always higher. The results were compared with several models. It was found that 

the experimental results were higher than those predicted by the models. An earlier 

work on TiOa-water nanofluids observed 10% enhancement for a particle loading of 

4.35 volume % (Masuda et. al, 1993).

Nanofluids containing other compound of metal such as carbides were also 

studied in several works. Xie et. al. (2002a) and Xie et. al. (2002d) measured the 

thennal conductivity o f SiC nanofluids where EG and water were utilized as the base 

liquids. Two types of SiC nanoparticles were investigated; one having a spherical shape 

with 26 nm average diameter and the other is cylindrical shape with average diameter of 

600nm. The experiments showed that even at small amount of particle loading (4.2 

volume %), the thermal conductivities of the nanofluids systems were significantly 

higher than that of the respective base liquids and the enhancement increased linearly 

with particle volume fraction. The results were compared with the Hamilton-Crosser 

model. It was found that the model fitted well for large particle (600nm) but inadequate 

for nanofluids made of smaller nanoparticles. A recent work on AI70CU30 alloy in 

ethylene glycol observed a sigmoidal nature of thermal conductivity enhancement. A 

very significant increased (> 200%) was reported for 1.5 volume % of particles 

(Chopkar et. al, 2006). The results of the experimental data o f some studies on oxide 

metal and other compound are shown in Figure 3.2 to give better insight of the findings.
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♦  Alumina-water (M asuda et. al, 
1993)

□  CuO-water(Eastman et. al, 
1997)

O Alumina-water (Eastman et. al, 
1997)

X CuO-water (Lee et. al, 1999)

O Alumina-water (Lee et. al, 1999)

A CuO-water (Putra, 2002)

■ Alumina-water (Putra, 2002)

A Alumina-water (Wen and Ding, 
2004)

X Rod Titania-water (M urshed et 
al, 2005)

4- Sphere Titania-Water 
(M urshed et. al, 2005)

•  SiC-Water (Xie et. al, 2002)

0.06

Figure 3.2: The experimental data of thermal conductivity of nanofluids 

containing oxide and other metal compound.
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The thennal conductivity of carbon nanotubes (CNTs) nanofluids also received 

much attention in the literature. CNTs were first discovered by a Japanese physicist 

(Iijima, 1991). Since then, a lot of reports on the thermal conductivity o f CNTs were 

published. Experimental measurements have indicated that CNTs possess high thermal 

conductivity (Berber et. al, 2000; Xie et. al, 2000; Kim et. al, 2001).

Having such a high thermal property, introducing CNTs in nanofluids would be 

an extra advantage to their thermal conductivity. Choi et. al. (2001) studied the thermal 

conductivity of multi-wall CNT dispersed in oil. A significant extent of enhancement 

of thermal conductivity (-160%) was observed for 1 volume % of CNT. A lower 

enhancement (-20% ) was observed by Xie et. al. (2003) for the same CNT volume 

fraction. However, the experimental conditions of these work are unidentical, thus, 

direct comparison could not be made. Biercuk et. al. (2002) measured thermal 

conductivity of CNTs-Epoxy composites and observed -125% thermal conductivity 

enhancement for 1 weight % of CNT loading. Wen and Ding (2004a) also observed the 

enhancement even though at a lower o f 30%-40% magnitude.

Assael et. al. (2004) studied the thermal conductivity of multi-wall CNTs-water 

nanofluids with 0.1 weight % of Sodium Dodecyl Sulfate (SDS) as a dispersant. 

Maximum thermal conductivity enhancement was observed for 0.6 volume % of CNTs 

loading. The experiments were then repeated but hexadecyltrimethyl ammonium 

bromide (CTAB) and nanosphere AQ was used as a dispersant instead of SDS (Assael 

et. al, 2006). In addition to multiwall CNTs, the thermal conductivity of nanofluids 

containing double-wall CNTs were also investigated. For the same volume fraction, the 

maximum enhancement achieved was 34% with CTAB and CTAB was found to be
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better dispersant for both double-wall and multi-wall CNTs. Recently, Hwang et. al

(2006) investigated the thermal conductivity of several nanofluids (CNT-water, CuO- 

water, Si0 2 -water and CuO-EG) and reported that the CNT nanofluids showed the 

highest thermal conductivity enhancement. At 1 volume % of particle loading, the 

thermal conductivity increased to 1 1  %.

Liu et. al. (2005) experimentally measured the thermal conductivity o f multi

wall CNT in ethylene-glycol (EG) and synthetic oil. They observed that the thermal 

conductivity enhancement increased almost linearly with the volume fraction. For 1.0 

vol. %, 12.4% of enhancement was observed for CNT-EG nanofluids, while for 2.0 vol. 

% of CNT-synthetic oil nanofluids, 30% enhancement was observed.

It can be seen that the experimental data on CNTs nanofluids thermal 

conductivity are widely varied between the researchers. Several factors may influence 

such phenomena. These include the preparation technique, the CNTs structure and 

dimension, the CNTs thermal properties and the chemistry of the dispersant. Figure 3.3 

illustrates some the experimental data on thermal conductivity of nanofluids containing 

CNTs.

Many studies on thermal conductivities of nanofluids have reported a significant 

enhancement. Fundamentally, the thermal conductivity of nanoparticles depends on 

their size, which may be even much lower than the bulk value because of the boundary 

scattering of phonon and electrons. Therefore, with this argument, the thermal 

conductivity of nanoparticles suspension would then be reduced if  particles are smaller
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Figure 3.3: Comparison of experimental data of CNT nanofluids. (Note: 

EG=ethylene glycol, DE = decene)



31

than the mean free path of the energy carrier. In most publications, the thermal 

conductivity of the bulk material is often used since there is very limited data on the 

thermal conductivity o f nanoparticles. These results suggest that there is an urgent need 

to develop new measurement techniques that takes into account these factors and able to 

predict nanofluid thermal conductivity.

3.3 Factors affecting the thermal conductivity of nanofluids

Several parameters have been looked into in the work on the effective thermal 

conductivity of nanofluids. These include particle size, particle loading (volume 

fraction), morphology, type of base fluids, type of nanoparticles, and solution chemistry.

3.3.1 The effect of particle size

The most significant factor affecting the thermal conductivity of nanofluids is 

the particle size. Several studies have found that thermal conductivity increases with 

decreasing particle size. Masuda et. al. (1993) measured thermal conductivity of 

alumina nanofluids with nanoparticle diameter of =13nm and observed a 30% 

enhancement of effective thermal conductivity. On the other hand, Lee et. al. (1999) 

measured the same type of nanofluids, but alumina size slightly bigger (-40 nm). Only a 

10% enhancement was observed for the same volume fraction of nanoparticles (4.3 

volume %). An even greater enhancement was reported for Cu nanofluids, where just a 

0.3 volume fraction of 30nm Cu nanoparticles led to thermal conductivity increase of up 

to 40% (Eastman, 2001). This was attributed to the increase in the specific surface area 

which increases as particles size decreases.
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3.3.2 The effect of particle concentration

Another important factor that affects the thermal conductivity of nanofluids is 

the particle volume fraction. The thermal conductivity of nanofluids increases with 

increasing volume fraction of nanoparticles. Wang et. al. (1999) reported that the 

effective thermal conductivity of ethylene glycol increased 26% when approximately 5 

volume % of AI2O3 powders were added, whereas 40% increase was observed when 

approximately 8  volume % of A120 3 powders were added. Xuan and Li (2000) reported 

that the effective thermal conductivity of water-Cu nanofluids varied from 1.24 to 1.78 

when the volume fraction of Cu nanoparticles increased from 2.5% to 7.5%. Choi et. al. 

(2001) observed that when 5 volume % of nanocrystalline CuO particles were 

suspended in water, the improvement in thermal conductivity reached 60%. Another 

remarkable enhancement was reported by Choi et. al. (2002). They found that 

nanofluids containing ~ 1  volume % of 26 nm carbon nanotubes could enhance the 

thermal conductivity by 160%. Nevertheless, all studies showed that the ratio of the 

thermal conductivity of nanofluids increases almost linearly with the volume fraction.

3.3.3 The effect of particle shape

Not only particle size plays a role in thermal conductivity enhancement, particle 

shape does too. A study on this factor was conducted by Xie et. al. (2002). Thermal 

conductivity of nanofluids containing SiC nanoparticles having a cylindrical and 

spherical shape was measured. The results showed that the thermal conductivities 

enhancement were larger for cylindrical shape as compared to spherical shape. A 

similar conclusion was drawn for thermal conductivity measurement of spherical and
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rod-like TiCb nanofluids (Murshed et. al, 2006). With these findings, it seems not 

surprising that nanofluids containing carbon nanotubes can exhibits a significant 

thermal conductivity enhancement (Choi, 2001; Xie et. al, 2003; Wen and Ding, 2004a) 

even with low percentages of particle loading.

3.3.4 The effect of base liquid

The effective thermal conductivity of nanofluids increases with increasing 

thermal conductivity of the base fluid. However, the ratio of the effective thermal 

conductivity of nanofluids to that of the base liquid decreases with increasing thermal 

conductivity of the base liquid. Lee et. al. (1999) and Xie et. al. (2002) studied two 

nanofluids made of water and ethylene glycol. They reported that percentage of the 

thermal conductivity enhancement o f ethylene glycol based nanofluid, was always 

higher than that of the water based systems. Wang et. al. (1999) reported that the 

thermal conductivity enhancement was the highest for ethylene glycol and engine oil 

based nanofluids, whereas that for the pump oil based nanofluid was the lowest. This 

result seems to be consistent with other work by Xie, et. al. (2002) for water and 

ethylene glycol based nanofluid, where percentage of the thermal conductivity 

enhancement of SiC-ethylene glycol nanofluid was slightly higher than that of SiC- 

water nanofluids. Given that, the thermal conductivity o f water, engine oil, and EG are 

0.613 W/m-K, 0.145 W/m-K and 0.256 W/m-K respectively, the above conclusion does 

not held for the mineral based oil. The exact reason is unclear. Thermal conductivity of 

nanoparticle seems to give more impact towards the thermal conductivity of nanofluids. 

Physical interaction between the nanoparticle and the base liquid may also play a role.
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3.3.5 The effect of nanoparticle material

The thermal conductivity o f nanofluids should be related to the properties of 

nanoparticles used. For instance, the thermal conductivities of Cu and Fe are 400 

W/m-K and 80 W/m-K, respectively. One therefore would expect that nanofluids 

containing Cu nanoparticles to have a thermal conductivity higher than that of Fe 

nanofluids, given other conditions. However, this does not seem to be the case. As Xie 

et. al. (2005) reported, the nanofluids containing Fe nanoparticles showed a higher 

thermal conductivity than nanofluids containing Cu nanoparticles. The exact reason for 

this is unclear. Solution chemistry, the material density and the crystalline structure are 

believed to play a role.

3.3.6 The effect of pH

The pH of nanofluids is also affecting the thermal conductivity o f nanofluids. 

Xie et. al. (2002) observed that the enhanced thermal conductivity ratio of A^Os-water 

nanofluids decreased with increasing pH value (pH 2 -12). However, there is 

inconsistency with results obtained by Lee et. al. (2006). They found that the effective 

thermal conductivity of CuO-water nanofluids decreased with increasing pH, from pH 2 

to pH 8 , and increased above pH 8 . These results indicate that the surface charge of 

nanoparticles may play a role in which affects nanoparticle structuring, hence the 

thermal conductivity of nanofluids.
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3.4 Model for thermal conductivity of nanofluids

After the measurements of nanofluids thermal conductivity were made, many 

researchers have attempted to theoretically calculate the thermal conductivity. Thermal 

conductivities of mixtures have been studies for more than a century. As discussed 

previously, thermal conductivity of nanofluids is believed to be dependent on several 

parameters such as thermal conductivities of base fluid and the nanoparticles, particle 

volume fraction, the surface area, the shape of nanoparticles as well as the temperature. 

However, the conventional models of the effective thermal conductivity for solid-liquid 

suspensions fail to predict the thermal conductivity of nanofluids satisfactorily. 

Maxwell’s model (Maxwell, 1904) was among the first for predicting both the effective 

electrical conductivity and thennal conductivity of a random suspension of spherical 

particles. The theory is expressed as follows:

I eff _ k P + 2 k f -  2<t>{kf  - k p) Eq 3 -1
kf  kp +2kf -</)(kf - k p)

where kejf  is effective thermal conductivity, kf is thermal conductivity of base liquid, kr is 

the ratio of thermal conductivity of particle and base liquid and <j> is the volume fraction. 

Maxwell model can satisfactorily predict thermal conductivity of large particle 

suspensions at low concentrations. Wang et. al. (1999) observed that the experimental 

data of low concentration A I 2 O 3 - E G  nanofluids did not fit in this model. This suggests 

that the particle size do matter in the calculation of nanofluids thermal conductivity.
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Hamilton and Crosser (H-C) developed a model for effective thermal 

conductivity o f solid-liquid mixtures for non-spherical particles as in the following:

keff _ kp+ (n~ X)kf ~ (” ~ lXkf ~ kP )<> E q  3 _ 2

kf  kp + { n - \ ) k p +(/)(kf - k p)

where n is the shape factor given by n = 3/i//, and ^ is  the particle sphericity (Hamilton 

and Crosser, 1962). Even with the additional factor included, just like the Maxwell 

model, the H-C model is capable of predicting the thermal conductivity o f suspensions 

containing large particles. It appears to be inadequate for nanofluids with smaller 

particles. Xie et. al. (2002) used the H-C equation to compute the thermal conductivity 

of SiC nanofluid. They reported that the equation is adequate of predicting the thermal 

conductivity o f 600 nm particles, but failed for 26 nm sized particles. This is because 

the heat transfer between the particles and the fluid takes place at the particle-surface 

interface. The heat transfer is expected to be more efficient and rapid for a system with 

large interfacial area. If the size of the dispersed particles were large, the volume effect 

of the particles becomes dominant. Since, the H-C model focuses on the effect of the 

particle shape on the surface area, hence it is capable of predicting the thermal 

conductivities of 600nm SiC nanofluids. Similar finding was reported by Lee et. 

al.(1999), where the H-C equation was applied for predicting the thermal conductivities 

of CuO and ALO3 nanofluids. The prediction was satisfacory for large agglomerated 

A L O 3  (~100nm) but inadequate for CuO particles (<100nm). Choi et. al. (2001) 

observed that the effective thermal conductivity of CNT-oil suspension did not fit not 

only to this model, but several other conventional models as well such as those by Davis 

(1986), Bonnecaze and Brady (1990), and Lu and Lin (1996). These findings indicate
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that other characteristics and properties of nanofluids should be included in the 

empirical models to calculate the thermal conductivity of nanofluids.

Yu and Choi (2003) developed a modified version of Maxwell model, 

considering the effect of nano-layer that forms at the nanoparticle-liquid interface 

(Figure 3.4). Nano-layer is the layering of the liquids at the interface of nanoparticles 

and the bulk liquid. The solid-like nano-layer is assumed to have a thermal conductivity 

(kiaye>•) higher than that of the bulk liquid and thermal transport in nanofluids is 

diffusive. The nanoparticle of radius r, and the thin nano-layer o f thickness /, form a 

particle with a thermal conductivity kpe. Based on the effective medium theory, the 

thermal conductivity correlation is as the following:

k = [2P r)  + 0  + / ? ) 3 ( 1 + 2 r)l7fr Eq. 3-3
- 0 - r ) + ( i + / ? ) 3( i+ 2 r )  '

where y  = kiayer/kp is the ratio of nano-layer thermal conductivity to particle thermal 

conductivity and /? = l/r, where I is the nano-layer thickness. If k/ayer = kp, then Eq. 3-3 

reduces to

k  +  2  k  f +  2(k  — k  f  )(1 +  /? ) 3 (j)
k ,  = - = ------ Eq. 3-4

■’  kr. + 2 k , - ( k r. - k , W  + p ) , 4> f

The model predicted the experimental data (Cu-EG and CuO-EG nanofluids) quite well 

and most effective when the particle diameter is < 10 nm. This suggests that the 

presence of nano-layer contributes to the enhancements of nanofluids thermal

LEEDS UNIVERSIlY LIBRARY
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Figure 3.4: The schematic structures of nanoparticles suspended in a base

liquid (nanofluids).
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conductivity. However, the model did not satisfactorily predict Cu-EG nanofluids with 

surfactant and thus indicates that the chemistry of surfactant should be considered. This 

model is also limited only to spherical particle, thus it is inadequate to predict CNTs 

nanofluids thermal conductivity. More recently, the nano-layer theory has been 

suggested to be physically unsound (Evans et. al, 2006).

Xue (2003) proposed a model for effective thermal conductivity o f nanofluids 

based on Maxwell theory and average polarization theory. This model considers the 

interface effect between the solid particles and the base fluids in nanofluids, identical to 

the nano-layer structure as proposed by Yu and Choi (2003). The particle and 

interfacial layer are assumed to form an elliptical complex nanoparticle. The effective 

thermal conductivity of this model is expressed as follows:

i - l
X

w ~ kf
) ̂ keff + k j

Veff
/I

+ 4- k e f f ~ k c,y

K  + b 2,  (* „  -  K ff) 2ke + (i -  b 2'X -  keff)
= 0 Eq. 3-5

where A = abc/[(a+t)(b+t)(c+t)J, t is the interfacial thickness and a, b,c are the half- 

radii of the elliptical complex nanoparticles. kcj  is the effective diaelectric constant and 

Bi.x is the depolarization factor component of the elliptical particle along the j- 

symmetrical axis, derived from the average polarization theory. The model was tested 

on CNT-oil and AliC^-water nanofluids. It was observed that the measured data was in 

good agreement with the model when the interfacial thickness, t = 3nm. The model also 

satisfactorily predicted the nonlinear increase of CNT-oil nanofluids thermal
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conductivity. However, Yu and Choi (2004) found that this model is inaccurate for 

CNT-oil nanofluids because the depolarization factor and the semi-axis a values used 

were incorrect. Therefore the validity of this model needs to be re-established.

The interfacial/nano layers formed in nanofluids are considered again in a 

modified H-C model developed by Yu and Choi (2004). Similar with H-C theory, this 

model include the non-spherical factor of nanoparticles. The effective thermal 

conductivity o f nanofluids is expressed as:

keff ~ k-f Eq. 3-6

where the parameter A is defined as

A = -  y  ----^ ^ ----  Eq. 3-7
3 j£b,c kp J + (n - 1 )kf

and

■̂ {a~ + t)(b~ + t)(c2 + /) 
iJabct , r  = — ----- r— —-----1 Eq- 3-8

is the equivalent volume concentration of complex ellipsoids particles, an imaginary 

structure of elliptical particles. The shape factor, n, in H-C model is modified to 

consider more general rod-like particles. The shape factor, n, is expresses as n = y/~a 

where a  is an empirical parameter and y/ is the particle sphericity. The model was 

compared with CNT-oil nanofluids measured data with a  = 1 and 1.55. This model 

predicted the data quite well but failed to predict the nonlinearity thennal conductivity 

enhancement. It was suggested that the a  value of CNT should be > than 1. The
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modified H-C model has shown that the interfacial layers play an important role in the 

enhanced thermal conductivity of nanofluids. However, this model needs to be 

improved for the extreme case o f nanotubes and other non-spherical particles.

Xue and Xu (2005) porposed a model based on Bruggeman model 

(Bruggeman, 1935), in which the interfacial shell/nano layer was also considered. The 

nanoparticle and the interfacial shell were considered as a ‘complex nanoparticle’ and 

the effective thermal conductivity correlation was established as follows:

The model was compared to the measured data of CuO-water and CuO-EG 

nanofluids and good agreement was evident.

Xie et. al. (2005) also investigated impact of interfacial layer on the

conductivity derived from the Fourier’s law of heat conduction gives the following 

expression:

\  <t>\ke ff~ kf  +

0 (k eff X2*2 k i ) oc(k] k2 ){2k2 +  keff)
OC {2 k ejy +  k 2 \ 2 k 2 +  k x) + 2cx{kx — k 2 )(^2 ~~ k ê )

Eq. 3-9

enhancement mechanism of nanofluids thermal conductivity. The effective thennal

Eq. 3-10

with
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(l + y f  + 2 P lf/3pl
</>T = 0 0  + 7)

k t - k f  _ 

lf k x + 2k f  ’
k p - k ,

Eq. 3-11

where S  is the nano-layer thickness and rp is the original particle radius. It was

observed that the model predicts some experimental data (Cu-EG, CuO-EG, AI2O3- 

water) quite well. However, they also claimed that the model is inconsistent with some 

other experimental data.

This model was re-visited to consider the effects o f micro-convection due to the 

Brownian motion o f nanoparticles (Ren et. al, 2005). With this consideration Eq, 3-10 

was modified to:

Eq. 3-12

with

F(Pe) = 0.0556Pe + 0.1649Pe2 -  0.0391A?3 + 0 .0034 /V  ;

Pe = Eq. 3-13

where 0Cf is the diffusivity o f the base liquid. With S  = 2 nm, the model predicts the 

effective thermal conductivity o f nanofluids quite well.
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The models that emphasize the interface layer seem to be promising but there is 

a controversial issue raised by other groups (Xue et. al, 2003; Xue et. al, 2004) which 

will be discussed in Section 3.5.

Based on the Maxwell model, Xuan et. al. (2003) developed another theoretical 

model to analyze the enhancement mechanism o f nanofluids thermal conductivity. In 

this work, the suspended particles are believed to randomly move in Brownian motion. 

During this motion, some particles may collide with each other and form aggregates. 

The clusters o f two or more particles move slower than a single particle. If the clusters 

are large enough they may even sedimentate by gravity. The enhancement o f thermal 

conductivity is believed to decrease as more cluster form in the suspension. Using the 

Fourier’s law energy flux, the effective thermal conductivity enhanced by the Brownian 

motion is expressed as follows:

where ks is the Boltzmann constant, rc is the radius o f clusters, and Tj is the liquid 

viscosity. Note that the temperature effect is taken into account. The model 

satisfactorily predicted the experimental data o f Cu-water nanofluids. This observation 

suggests that apart from the parameters in the Maxwell model, the thermal conductivity

Eq. 3-14

Thus, the Maxwell model can be re-expressed as follows:

Eq. 3-15
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o f nanofluids is also a function o f density, viscosity, the specific heat o f  the particles 

and the radius o f the clusters. The smaller the cluster radius the larger effective thermal 

conductivity can be achieved. Therefore, the low percentage o f thermal conductivity 

enhancements from some experimental data may due to the forming o f large aggregates 

and cluster in the nanofluids. If this is so, the preparation techniques need to be 

improved for better size distribution o f particles. Although the temperature is 

incorporated, the dependence is too weak.

The role o f Brownian motion o f nanoparticles in nanofluids is no doubt to be 

very important. Several other models were developed based on this argument. Jang and 

Choi (2004) proposed a model based on kinetics, Kapitza resistance, and convection.

The prediction o f thermal conductivity o f nanofluids is continuing as it is necessary to 

understand the mechanism lying behind the behaviour. The particles in the suspension 

are believed to collide in four modes o f energy transport; 1) collision between the base 

liquid molecules, 2) thermal diffusion in suspended nanoparticles, 3) collision between 

nanoparticles in the Brownian motion, and 4) thermal interaction o f dynamics 

nanoparticles with the base liquid molecules. The effective thermal conductivity o f 

nanofluids is expressed as follows:

keff = k f ( \ -(/)) + kp(j) + 3C — k f Re2dpPr(p Eq. 3-16
dp

where C is propotional constant, Pr is the Prandtl Number, ReaP is the Reynolds 

Number defined by
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Cd p .R&dp~ Eq. 3-17
V

where C is the random motion velocity o f nanoparticles, v  is dynamics viscosity o f  the 

base liquid, If is the mean free path, Do =kBT/37lfJ.dp, and he = 1.3807 x 10"23 J/K is the 

Boltzmann constant. The prediction was compared to experimental data o f nanofluids 

(Cu-EG, CuO-water, CuO-EG, ALOa-water). Excellent agreement was evident for all 

the nanofluids. This model validates the size and temperature dependence o f 

nanofluids. As the temperature increase, the particles move more rapidly and increasing 

the Brownian motion. As a result, the convection effects increases, hence increases the 

conductivities.

The argument that Brownian motion of nanoparticles contributes to the thermal 

conductivity enhancement was experimentally validated by Chon et. al. (2005). Based 

on the Buckingham-Pi theorem, an empirical correlation was established to show that 

the effects o f particle size and temperature on nanofluids thermal conductivity. The 

correlation is:

r
=  1 +  const.

k f
Eq. 3-18

V

with

pfOC
p  = a -i o b/(T-C)

where If ( I f = 1/V2n • n d 2f ) is the mean free path o f the base liquid, A,B, and C are

constant associated with the base liquid. The model was compared to experimental data
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o f three batches (11, 47, and 150 nm) o f Al20 3 -water nanofluids and good agreement 

was achieved.

Bhattacharya et. al. (2004) used the Brownian dynamics simulation to calculate 

the effective thermal conductivity o f nanofluids. Based on the Newton’s equation o f 

motion, the correlation is expressed as follows:

k , f =<pk,+V - m ,  Eq.3-19

where kp is the conductivity due to the positions and motions o f the particles in the 

liquid defined as

K  = 7 4 ^ i < e ( 0 ) f i( iA n )A ( Eq. 3-20
*B* * 7=0

where T is temperature, V is the volume o f the domain, n is the number o f time step , 

AT is the time step and (Q(O)-Q(jAT) AT) is the time-autocorrelation function o f Q(t). 

The simulation results are nearly in full agreement with the Cu-EG nanofluids and 

within 3% varied with the AI2O3-EG nanofluids.

A comprehensive model was proposed by Kumar et. al. (2004) to account for 

the thermal conductivity in nanofluids. The effect o f particle size, concentration, 

motion and temperature are taken care in the model. To account for all the effects, two 

aspects are considered: 1) stationary particle model and 2 ) moving particle model
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developed from the Stokes-Einstein formula. The effective thermal conductivity 

correlation is expressed as

where c is a constant, 77 is the dynamic viscosity, T is the temperature, dp is the particle 

diameter, and rp is the particle radius. The data was compared with experimental data 

o f  Au-toluene nanofluids and good agreement was achieved. The thermal conductivity 

enhancement increases with temperature. As the temperature increases, the viscosity o f 

liquid decreases and thus the Brownian motion increases. However, the validity o f this 

model is yet to be further investigated especially for high concentrated nanofluids since 

the concentration o f tested nanofluids was too low.

Similar parameters were incorporate by Koo and Kleinsteuer (2004) and Koo

(2005) in developing the model for nanofluids thermal conductivity. The micro-mixing 

resulting from the Brownian motion was taken into account and the correlation can be 

expressed as:

k -  p , / 
k P + 2k, -  ((kp -  kb V

k p +2k f + l ( k p - k f ]ft>

P

where [5 is the fraction o f the liquid volume Vf, which travels with a particle. It will 

decrease with particle volume fraction, a. It can be seen that this model incorporates
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the Maxwell model, as shown in the first term o f Equation 3.22. The function, f(T,4>) 

was assumed to vary with particle volume fraction as the following relation:

The data satisfactorily agreed with a few sets o f experimental data. The Brownian 

motion effect was observed to become more effective at high temperature.

Later, the model was re-visited to check for the effect o f thermo-phoresis and 

osmo-phoresis (Koo and Kleinsteuer, 2005). The thermo-pherotic thermal conductivity, 

kjp, is defined as

where kc is the thermal conductivity o f the continuous phase, kd is the thermal 

conductivity o f the discrete phase and VT is the temperature gradient in the base liquid. 

The thermal conductivity due to the osmo-phoresis, derived from the van’t H o ffs  

equation for osmotic pressure, is defined as

f ( T ,  <p) = ( -  6.040 + 0.475)7 + (l 722.30 -134.63) Eq. 3-23

Eq. 3-24

Eq. 3-25

The model was tested on Cu-water nanofluids with 1 % concentration, dp — 10 nm, krp =

5.1 x 10'10, PT= 3.2 x 105 and kos = 1 x 10'10. It can be seen that the kos value is very
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low and negligible. The impact o f  Brownian motion is more dominant than the thermo- 

phoretic and osmo-phoretic effects. The Brownian motion effect on thermal 

conductivity decreases with particle concentration, and shows a transition region 

between 0.55 and 1.0%.

Prasher et. al. (2005) proposed another mechanism for the nanofluids thermal 

conductivity enhancement. Neglecting the impact o f interfacial layer, they proposed 

three other mechanisms for thermal energy transport in nanofluids: 1) translational 

Brownian motion, 2) the existence o f an interparticle potential, and 3) convection due to 

the Brownian motion. The modification o f Maxwell model leads to the following 

correlation:

—  = (1+A i?emP r0'333 0)
(l + 2 a ) +  20(l — (x) 

(l + 2a) -0(1 - a )
Eq. 3-26

with

a  = 2Rhk m Id  ; Eq. 3.27

where Rb is the interfacial thermal resistance.

Recently, Prasher et. al. (2006), introduce a convective-conductive model that 

captures the effects o f particle size, thermal interfacial resistance between particle and 

liquid, temperature, choice o f base liquid and others. Based on the Maxwell-Grant 

conduction model and the Brownian convection effect, an empirical correlation, called 

multisphere Brownian model (MSBM), was established for the effective thermal 

conductivity o f nanofluids. The Eq. 3-26 have been re-casted to:
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= (l + ARem Pr° 333 (/)
[k (1 + 2a)  + 2 km ] + 2 <p[kp (1 -  a )  -  k  ] 

[fc, (l + 2 a )  + 2£„, ] ■- </>[kp (l -  a )  -  k m ]

where km (km= k / l+ ( l /4 )R eP r] )  is the matrix thermal conductivity. The validity o f  this 

model very much depends on the constant A, m and Rb values. The model was tested on 

nanofluids with different base liquid and good agreement was evident. It was shown 

that the convection due to the Brownian motion contributes to the mechanism in 

nanofluids thermal conductivity enhancement.

Several models that account the Brownian motion o f nanoparticles in nanofluids 

have shown that Brownian motion constitutes a key mechanism in the enhancement o f 

nanofluids thermal conductivity. The role o f Brownian motion and a controversial issue 

raised by Evans et. al. (2006) will be discussed in the next section.

Wang et. al. (2003) used the effective medium approximation and the fractal 

theory to predict the effective thennal conductivity o f nanofluids. This model takes into 

account the process o f nanoparticles clustering, particles size as well as the surface 

adsorption. The effective thermal conductivity o f nanofluids is expressed as:

Eq. 3-29
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where r is the radius o f  nanoparticle clusters, kct is the thermal conductivity o f  cluster 

and n(r) is the log normal distribution function. The liquid molecules on the particle 

surface are assumed to be adsorped on the particle surface and form single layer. The 

model was tested with CuO-water nanofluids, but the measured value did not quite fit in 

the model. Moreover, the model was not tested with other nanofluids. Therefore 

further research work is needed for validity o f the clustering argument.

In summary, the theoretical models developed have shown that the effective 

thermal conductivity o f nanofluids is not mainly a function o f the physical parameters 

o f  the nanoparticles and the base liquid. In fact, it is also governed by some other 

nanoscale structure and microscopic conditions o f the suspended nanoparticles. 

Although some models are applicable to a specific set o f data, they have provided 

certain understanding o f nanofluids behaviour. Note that most o f the models pay least 

attention to the properties and surface chemistry o f dispersant and coating material and 

their effects on the effective thermal conductivity o f nanofluids. Figure 3.5 compares 

results o f the effective thermal conductivity o f CuO nanofluids from a few selective 

models. The models o f nanofluids effective thermal conductivity are summarised in 

Table 3.1.

3.5 Mechanism for thermal conductivity enhancement

There are several possible mechanisms lie behind the thermal conductivity 

enhancement, some o f which have been briefly discussed in the previous section.
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♦  CuO(23.6nm)-EG 
(Lee.et. al, 1999)

□ CuO(28.6nm)- 
w ater(Das et. al, 
2003)

------------Yu and Choi, 2003

Joo and Kleinsteuer, 
2004

-----------Jang and Choi, 2004

-----------Xue and Xu, 2005

------------Xie et. al, 2005

0 1 2 3 4 5 6

volume fraction (%)

Figure 3.5: Comparison of experimental data and effective thermal 

conductivity models for CuO nanofluids.



Table 3.1: Mathematical models of thermal conductivity

No. Reference Expressions Remarks

1. Maxwell (1904)
K f  kp +2kf -2</>{kf - k p) 

kf  kp +2kf  -<j>(kf - k p)

1. Spherical particles are assumed.

2. Accurate to order (j)1, applicable to cj)<l or |a - l|< l. 

(j> = volume fraction of particle in suspension

2 .
Hamilton- 

Crosser (1962)

keff kp +(n - 1 )kf  -  (w - 1  \ k f  - kp)</> 

kf  kp + { n - \ ) k p +</>(kf-kp)

1. Spherical and nonspherical particles are considered : n = 3 

for spheres, n= 6  for cylinders.

2. Accurate to order 01, applicable to <j>< 1 or |a - l|< l.

3.
Bruggeman

(1935)
<t>

k - k  ^ (  k - k  ^
'  Kff + 0  f  eff = 0  

kp + 2keffJ \ k f - 2 k eff^
Spherical particles

4.
Yu and Choi 

(2003) kp, + 2 k , - ( k „ - k f ) ( n / 3 f t  ’

Modified version of Maxwell model. 

Effect of nano-layer considered. 

Most effective for < 10 nm particles

5. Xue (2003)

9

A

1 kf  !
v J 2kejj + k f

keff ~ kc x ^  keff-  kc y _  ̂

_ K + B2.X (ke,x ~ keff ) 2ke + 0  " B2.t )(kc,y ~ keff)

Based on Maxwell model.

Interfacial layer considered.

Most effective when the interfacial thickness is 3 nm.



Table 3.1: Mathematical models of thermal conductivity (continued)

No. Reference Expressions Remarks

6 .
Yu and Choi 

(2004)
kejf = i+  n*-’ A  V

Modified H-C model

Interfacial layer and non sphericity of particles considered.

7.
Xue and Xu 

(2005)

M 'V a

<t> (ke// 
a  (2keJ

\ ]r _£■KeJ Kf  
2kejj + k j

— k2 )(2k2 + k^) — oc{kl — k2 )fek2 + kejj) 
7 + k2)j.k2 +kl)+2a(k l - k 2\ k 2 - k ltf)

The expression depends on the thermal conductivity of solid, 

base liquid, their volume fraction, particle size as well as the 

interfacial properties.

8 . Xie et. al. (2005) keff = \ + y * f r *  3 & !f:
Based on Fourier’s law 

Interfacial layer considered.

9. Ren et. al. (2005)

Kff_ _

k.r
l + F(Pe) + 30 0 r + y ~ ^ ~  

1 -  ($<j)T

Nanolayer and Brownian convection considered.

10 .
Xuan et. al. 

(2003)
Kff 2k f ~ 2^ kr ~ k r) , 1 , kJ
k f kp + 2kf  +<t>(kf -  kp) 2  p p \37rrcrj

Modified version of Maxwell model. 

Brownian motion and aggregation considered.



Table 3.1: Mathematical models of thermal conductivity (continued)

No. Reference Expressions Remarks

11.
Jang and Choi 

(2004)
k,f  = k J ( l - t )  + k rt  + 3 C j f - k ,  R e ;  Pr«>

d p

Brownian motion effects considered

12.
Chon et. al. 

(2005)

k (  P r(r)0 9955 ,̂.2321
——- \  +const. — — --------ttttt—-----
k f d  B k f (T) JU (T)j y p y

Brownian motion effects considered

13.
Bhattacharya et. 

al. (2004)
k eff= f t p +Q.-p)k f

Brownian dynamics simulation

14.
Kumar et. al. 

(2004)

. . 2 k BT <prf 
keff - k  + c . ■ k.

mjd; kf  (l -  </>)rp

Stationary and moving particle model.

15.

Koo and

Kleinsteuer

(2004)

_kp+2kf +2{kp-k f )l)
«  kp + 2kf -[(kp-k b)0 '

5x 104M pc  M - f ( r , t )  
\Ppd

Brownian motion effects considered



Table 3.1: Mathematical models of thermal conductivity (continued)

No. Reference Expressions Remarks

16.

Koo and

Kleinsteuer

(2005)

kTP = 1 <*» 3k“ (i 
6 n  n  kd + 2 kc

_  1 f k B 3 kc 
os 3 n  // kd +2kc

xlO5 p f c f ^JT 

(lxlO 5p f c f )?T

Additional effect of thermo-phoresis and osmo-phoresis to 

previous model (Koo and Kleinsteuer, 2004).

17.
Prasher et. al. 

(2005)

^ -  = (1 +ARemPr(>333</j) 
kf

a  = 2Rhkm Id

"(l + 2a)+ 2(j>{[-a) 
(l + 2 « ) - ^ ( l - o r )

Brownian convection effect considered. 

A = constant, m = constant

18.
Wang et. al. 

(2003)

M W  U r ) n ( r )  *
Kff _ o kd O') + 2kf  

k '  M ) + 3
o kcl(r) + 2kf]

Predict dilute suspension of non metallic nanoparticles.
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3.5.1 Role of Brownian motion

In the previous section, it can be seen that quite a number o f  publications 

developed the effective thermal conductivity models based on the hydrodynamics 

effects o f  Brownian motion o f nanoparticles. The main basis o f their arguments is 

directly connected to the vigorous collision between the particles during the random 

motion. The collisions then enable transportation o f heat between the colliding particles 

to occur, and thus increasing the thermal conductivity o f the fluids.

The Brownian motion is also believed to produce micro-convection o f the liquid 

at the nanoscale. With the small size o f nanoparticles, the random motion is increased 

and the micro-convection effect becomes dominant, thus increasing the thermal 

conductivity. Therefore smaller particles size will give thermal conductivity 

enhancement (Jang and Choi, 2004). The Brownian velocity increases with increasing 

temperature and decreasing particle size. The argument that the thermal conductivity 

enhancement due to convection was also proposed by Prasher et. al. (2005). Their 

findings have shown the enhancement is at least one order o f magnitude higher than 

other mechanisms.

A controversy raised by Evans et. al. (2006) suggested that the Brownian motion 

contribution towards the enhanced thermal conductivity is small. The argument was 

supported by the results from molecular dynamics simulation o f nanofluids model. In 

the simulation, the liquid and nanoparticles are assumed to be in same phase, thus the 

whole liquid is diffused together with the nanoparticles. Both the liquid and the 

nanoparticles have the same velocity. At low volume fraction, the nanoparticles carry



58

much less heat than the surrounding liquid. From these assumptions, the ratio o f  the 

Brownian-motion-induced thermal conductivity, kb to the thermal conductivity o f  the 

base liquid, Kf is < 1%. Therefore the contribution o f particle motion in the nanofluids 

is not a key mechanism to thermal transport. The simulation agrees with the 

experimental results o f low volume fraction nanofluids (Eastman et. al, 2001; Patel et. 

al, 2003; Putnam et. al, 2006).

To further support the argument, molecular dynamics simulation was done once 

again on the heat flow o f nanofluids. The nanoparticles can be divided into three 

categories based on the solid-fluid interaction strength: 1) non wetting, 2 ) weakly- 

wetting and 3) wetting particles. The thermal transport results showed that the thermal 

conductivity o f nanofluids with non wetting and weakly wetting particles is slightly 

lower than that o f nanofluids with wetting particles. The three categories o f particles 

exhibit different interfacial thermal resistance. There is only small thermal conductivity 

difference between the three categories o f particles and the base liquid. From the 

effective medium theory, the thermal conductivity ratio o f nanofluids to the base liquid 

can be deduced to

V = 1 + 3 / f r - ^
y+  2

Eq. 3-30

where /  is the volume fraction and y  is the ratio o f particle radius to the equivalent 

matrix thickness. From Eq.3-30, when y  = 1, there is no thermal conductivity 

enhancement at all, and when y<  1, the addition o f particles will reduce the nanofluids 

thermal conductivity. The simulation has shown that the Brownian-motion-induced did 

not have a significant enhancement to the nanofluids thermal conductivity.
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As a conclusion, the Brownian motion may have an impact on the effective 

thermal conductivity o f nanofluids. To reject the argument may be unjustified since 

there are models that have proved its effects. The extent o f the impact to all nanofluids 

system is uncertain and therefore more understanding o f  the nanofluids behaviour is 

required.

3.5.2 The effect of solid-liquid interface layer

As discussed in Section 3.4, at least five models have been discussed have 

shown the effect o f interfacial/nano-layer that forms at the interface between the particle 

and the bulk liquid. These models have shown that the interfacial layer plays an 

important role in the enhancement mechanism o f nanofluids effective thermal 

conductivity. The interfacial layer, having the thermal conductivity, kiayer (kiayer > kf) 

acts as a thermal bridge and increases the thermal conduction from the particles to the 

liquid. The effective thermal conductivity increases with increases in the nano-layer 

thickness. It was suggested that the effective thermal conductivity o f nanofluids could 

further be increased by manipulating the nano-layer.

However, these arguments were opposed by Xue et. al. (2003) where they found 

that the nano-layer has little effect on the thermal transport o f nanofluids. From the 

molecular dynamics simulation, it was found that the nano-layer has almost the same 

temperature as the bulk liquid. The study on the intermolecular interactions between the 

solid and liquid regimes has found that the atomic bonding at the particle-matrix 

interfaces in nanofluids will exhibit high thermal resistance. This argument is again 

supported by Xue et. al. (2004) where they found that the structure o f nano-layer
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exhibits weak ordering and essentially limited to single atomic layer. Note that these 

studies are specific to simple (mono-atomic) liquid. They might not be true for other 

nanofluids involving more complex liquid such as liquid with long chain molecules.

Thus, by manipulating the thickness o f nano-layer may not enhance nanofluids 

thermal conductivity. Alternatively, there may be an optimum nano-layer thickness that 

is essential for the interface nano-layer to make a significant impact on the effective 

thermal conductivity o f nanofluids. Hence this opens an opportunity in the research 

area for instance, to manipulate the thermal conductivity o f the nano-layer.

3.5.3 The effects of particles clustering

Clusters o f particle are formed from the attachment due to collision in the 

Brownian motion. During clustering, nanoparticles form percolating patterns that 

provide paths for rapid heat transfer. Choi et. al. (2002) studied the relation between the 

thermal conductivity and effective volume o f the clusters. When the packing fraction 

was decreased, the effective volume o f clusters increased, thus enhancing thermal 

conductivity. If the particles do not need to be in physical contact, an increase in 

thermal conductivity could take place since heat flows rapidly within the clusters.

As pointed out by Xuan et. al. (2003), the effective thermal conductivity o f  Cu- 

water nanofluids without aggregation would be higher than that with aggregation. From 

the effective medium theory simulation (Keblinski et. al, 2002; Keblinski et. al, 2005), it 

was shown that the effective thermal conductivity o f nanofluids would be higher in a 

loosely packed clusters than that o f closely packed (Figure 3.6).
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Figure 3.6: Schematic diagram of thermal conductivity enhancement due to

particle clustering
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3.5.4 The effect of ballistic phonon transport

Energy transport across a material consists o f two natures, diffusive and ballistic 

(Aitcheson et. al, 2002). Nanoscale heat transfer differs from that o f larger scale mainly 

due to the size effect. In bulk materials, heat transfer processes are dominated by the 

internal scattering which is considered as diffusive transport. Ballistic transport is 

movement o f carrier without any collision or scattering. In nanoscale particles, phonons 

transport o f nanoparticles is contributing to the enhanced thermal property o f 

nanofluids.

Phonons are the quantum o f vibrational energy in a solid. Since the coherent 

length o f thermal phonons is short, phonons can be considered as discrete particles. 

Thermal conductivity can also be explained by phonons interactions. As the particle 

size decreases, the frequency o f the phonon boundary collision increases. The interface 

scattering o f phonons and the associated thermal boundary resistance can dominate heat 

conduction in nanoparticles. Around nanoparticles, phonons become rarefied when 

their mean free path is comparable or larger than the nanoparticles themselves, which 

indirectly increases the thermal resistances (Chen, 2000). Based on the kinetic theory, 

mean free path (A) o f phonon can be related to the thermal conductivity through

A = —  Eq. 3-31
Cv

where k  is thermal conductivity, C is the specific heat per unit volume and v is the speed 

o f sound. When particle size is smaller than A, the transport o f heat in solids not in 

diffusive manner but o f a ballistic nature or in other words, scattering is negligible or 

absent.
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These mechanisms are believed to be a factor that constitutes the enhancement 

o f  nanofluids thermal conductivity. Whether each mechanism contributes a significant 

impact is unclear, therefore more research is required to understand the thermal 

transport o f nanofluids.

3.6 Convective heat transfer of nanofluids

Most work on nanofluids has been concerned on the heat conductivity o f 

nanofluids. The convective heat transfer o f nanofluids has received comparatively 

lesser attention, despite its engineering importance. One o f the earliest works on forced 

convection o f nanofluids was done by Lee and Choi (1996). The performance o f 

microchannel heat exchangers was compared using water and two different nanofluids, 

NF2 and NF3 as the working fluid. The thermal conductivities o f NF2 and NF3 are two 

and three times higher than that o f water, respectively. They showed that by using 

nanofluids, the thermal resistances are reduced by a factor o f 2 .

Pak and Cho (1998) experimentally investigated turbulent friction factor and 

heat transfer behaviours o f Al20 3 -water and Ti0 2 -water nanofluids in circular pipe. The 

viscosities o f 10 vol. % ALO3 and T i0 2 nanoparticles were 200 times higher than water 

for AI2O3 and 3 times higher for Ti0 2 . The hydrodynamics entry section was long 

enough (x/D = 157) to accomplish fully develop flow. The heat transfer test section had 

a dimension (x/D) o f 330. They found that the Darcy friction factors for the nanofluids 

coincided with the Kays’ correlation for turbulent flow in a single phase fluid. The 

Darcy friction factor decreased (0.05-0.02) with increasing Reynolds Number (3000- 

100000 s '1). The Nusselt Number for the nanofluids increased (101 -  103) with
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increasing volume fraction and Reynolds Number. A new Nusselt Number (Nu) 

correlation was suggested as

Nu  = 0.021 ReQ*PrQ* Eq. 3-32

valid for volume concentration o f 0-3%, the Reynolds Number o f  (104- 105) and Prandtl 

Number (6.54-12.33). Since the viscosities were higher than water, based on Equation 

3-32, the Nu  is expected to decrease. Therefore, the heat transfer coefficient should 

decrease since h is directly proportional to Nu. Thus is it justified that the heat transfer 

coefficient o f the nanofluids in the experiment was 12% smaller than that o f water.

Xuan and Li (2000) developed a model to estimate the convective heat transfer 

coefficient and friction factor o f  nanofluids in a tube. The nanofluid sample used was 

Cu nanoparticles dispersed in de-ionized water. This study reported that the heat 

transfer coefficient o f nanofluids changed with flow velocity as well as volume fraction. 

The convective heat transfer coefficient o f the nanofluids was higher than that o f  the 

base liquid, for instance a 2% by volume o f nanofluids gave a 39% enhancement. The 

enhancement was attributed to the high thermal conductivity o f nanofluids, random 

movement particles, and the dispersion effect o f the nanoparticles. The results also 

showed that the nanofluids did not cause significant increase in pressure drop. Further 

experiments were carried out by Xuan and Li (2003) to investigate the convective heat 

transfer and flow features o f nanofluids. Similar conclusion was obtained.

Chien et. al. (2003) used Au-water nanofluid to measure the thermal resistance 

o f a disk-shaped miniature heat pipe (DMHP). Their results showed that the Au-water
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nanofluid had a lower thermal resistance under any charge volume, for example a 

decrease o f 40% in thermal resistance could be achieved. Au-water nanofluid was also 

used by Tsai et. al. (2004) to measure the thermal performance o f conventional circular 

heat pipe. Their results also revealed that the thermal resistance o f the heat pipe with 

nanofluids was lower than that o f water, with at least 20% reduction. The reduction o f 

thermal resistance was due to the bombardment o f vapor bubbles by the suspended 

nanoparticles. The nucleation size o f vapor bubble is much smaller for nanofluids than 

that without them. Ma et. al. (2006) developed an ultrahigh-performance cooling 

device, called nanofluid oscillating heat pipe (OHP), utilizing Au as the working 

medium. They found that, at the input power o f 80.0W, the nanofluid could reduce the 

temperature difference between the evaporator and condenser from 40.9 to 24.3°C. 

These findings have shown that nanofluids have an excellent cooling performance.

Yang et. al. (2005) reported experimental results o f convective heat transfer 

coefficient o f graphite nanoparticles dispersed in liquid for laminar flow tube. The 

results illustrated that heat transfer coefficient increased with Reynolds number and the 

particle volume fraction. However, the heat transfer enhancement was small (15%) 

when the liquid temperature increased (70°C). At lower temperature (50°C), the heat 

transfer coefficient is 22% higher than the base liquid (water). Wen and Ding (2004b) 

studied the heat transfer coefficient at the entrance region o f a horizontal tube. 

Alumina nanoparticles were used in the work. Apart from the results that the heat 

transfer coefficient increased with increasing Reynolds number and volume fraction, 

they also found that the enhancement was more profound in the entrance region.
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The CuO (50-60nm) and AI2O3 (20nm) in water nanofluids systems were 

investigated by Heris et. al. (2006). The laminar flow o f nanofluids in a circular tube 

was examined. The results showed that for both nanofluids systems, the heat transfer 

coefficient increased with increasing particle size and Peclet Number. Peclet Number 

(Pe) is defined as Reynolds Number multiply by Prandtl Number ( Pe = Re Pr). They 

also found that, for the same Peclet Number, the ALC^-water nanofluids showed more 

enhancement than that o f  CuO-water nanofluids. For example at Peclet Number 5000, 

when AlaOs-water concentration changed from 0.2% to 2.5%, the heat transfer 

enhancement increased from 1.05 to 1.29, while for CuO-water nanofluids the increased 

was from 1.06 to 1.23. This may be due to the size factor and higher viscosity o f CuO 

which affecting the heat transfer coefficient. The viscosity o f CuO and AI2O3 was 1.7 

mPa-s and 1,5m P a s  respectively.

Maiga et. al. (2004) investigated the laminar forced convection flow inside a 

uniformly heated tube. AhOa-water and AI2O3-EG were used as the working 

nanofluids. Their results showed that the addition o f nanoparticles had increased the 

heat transfer at the tube wall for both laminar and turbulent regimes. However, the 

addition o f nanoparticles induced drastic effects on the wall shear stress. The AI2O3-EG 

nanofluids seemed to have better heat transfer enhancement than that o f AfOa-water. 

Unfortunately it is the one that induced more drastic effects on the wall shear stress. In 

the turbulence regimes, the heat transfer increased was more profound with increasing 

Reynolds Number.

Further investigation was done by Maiga et. al. (2005) which include radial 

flow. Apart from the results obtained previously, they also observed for radial flow,
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both Reynolds Number and the distance separating the disks did not have a significant 

impact on the heat transfer.

Buongiomo (2006) analyzed the effects o f various particle migration mechanism 

on the convective heat transfer. He considered effects o f  inertia, Brownian diffusion, 

thermophoresis, diffusiophoresis, magnus effect, fluid drainage and gravitational force. 

Among these factors, Brownian diffusion and thermophoresis were concluded to be the 

dominant in effecting the forced convective heat transfer.

Few works have devoted to the natural convective heat transfer. An 

experimental study on convective heat transfer o f nanofluids was conducted by Putra et. 

al. (2003). Two nanofluids (A^Oj-water and CuO-water) flowing in a horizontal 

cylinder were observed. Several parameters such as particle concentration, particle type 

and geometry o f cylinder were investigated at steady-state conditions. The convective 

heat transfer o f nanofluids was found to be lower than the base liquid. In addition, the 

convective heat transfer was also found to deteriorate with increasing particle 

concentration, aspect ratio o f cylinder and density o f particles. The deterioration o f 

smaller sized CuO nanofluids was higher than that o f AI2O3. This is because the density 

o f  CuO was higher than AI2O3. The error o f the experiment was estimated to be below 

5%.

A contradict findings was observed by Khanafer et. al. (2003) where nanofluids 

was utilized in a two-dimensional enclosure. In the model developed, the results 

showed that the heat transfer rate increased with increasing nanoparticles volume 

fraction at any Grashof Number, and this is a total disagreement with Putra et. al.
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(2003). A similar work was done by Jou and Tzeng (2006) and the results showed that 

by increasing the buoyancy and volume fraction o f nanoparticles, the heat transfer 

coefficient was increased.

Wen and Ding (2005) investigated the natural convective heat transfer o f TiOa -  

water nanofluids. Their results showed that convective heat transfer decreased with 

increasing particle concentration, an agreement to Putra et. al. (2003) finding. They 

proposed several mechanisms for the observation such as nanofluids properties, 

convection due to concentration difference, pH influence, and particle-surface 

interactions. Recent work by Wen and Ding (2006) obtained similar conclusion.

3.7 Mathematical model for convective heat transfer of nanofluids

Some empirical models have been developed based on the experimental data, 

theoretical analysis and even modeling. Earliest attempts were done by Pak and Cho

(1999) and Xuan and Roetzel (2000). The model was derived using two approaches in 

these attempts. Nanofluids were treated as a single phase fluid in the first approach 

while the other treated nanofluids as a solid-liquid mixture. Later on, Xuan and Li

(2 0 0 0 ) established a correlation for the forced convective heat transfer coefficient based 

on the experimental work done on Cu-water system. The correlation included factors 

such as Brownian motion, friction between the fluid and particles, etc. The correlation 

was further improved by incorporation the micronvection and microdiffusion effects 

(Xuan and Li, 2003).
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Kim et. al. (2004) introduced a new factor f, defined as the ratio o f  the Raleigh 

Number o f nanofluids to that o f the based liquid, and proposed a new relationship for 

natural convection o f nanofluids. A macroscopic view o f heat transfer in nanofluids 

was studied by Xuan et. al. (2005). The external and internal forces that act on the 

suspended nanoparticles were considered as well as the thermal interactions between the 

solid and fluid particles. The Lattice Boltzmann model was used to describe the heat 

transfer and flow o f the nanofluids. The findings revealed that the convective heat 

transfer is enhanced with increasing volume fraction, for example, the Nusselt Number 

with 1 vol. % o f nanoparticles is 27% higher than that o f water.

Table 3.2 summarizes the correlations for the convective heat transfer 

coefficient in terms o f Nusselt Number reported in the literature. Note that these 

models are based on the single-phase assumptions. They are only applicable to 

conditions under which they were established. A fundamental understanding o f the 

enhancement mechanism is needed to establish a more generic model.

3.8 Viscosity of nanofluids

The rheology o f suspensions has been the subject o f numerous researches, 

mainly because o f its obvious importance in a wide range o f  industrial applications. A 

thorough understanding o f the dispersion and resultant flow behaviour o f nanoparticle 

suspensions is critically important before they can be applied in the practical 

applications. Therefore, the measurement o f rheological properties o f a suspension can 

help to develop a better product, predict its end use performance and predict the 

physical properties o f a product during and after processing.



Table 3.2: Convective heat transfer correlation in terms of Nusselt Number

M kDNu = —  
k

No. Reference Correlation Remarks

1. Park and Cho (1998) Nu = 0.021 Re"sPr°s
Re = Reynolds Number 

Pr = Prandtl Number

2 . Xuan and Li (2000)
E I . , J r r a / [^ (0 ) - J i ' '( 0 ) / i>e*]

Pe = Peclet Number

3. Xuan and Roetzel (2000) Nu = [l +C'/>e”/'(0)j9 '(0)R e"

4. Li and Xuan (2002)
For laminar flow

Nu = 0.4328(1.0 +11.285^°754 F ^ 001)Re^333 PrJ4

5.
Putra (2002) and Putra et. 

al. (2003) Nu - C  Ra" Ra = Rayleigh Number



Table 3.2: Convective heat transfer correlation in terms of Nusselt Number (continued).

No. Reference Correlation Remarks

6 . Xuan and Li (2003) Nu = 0.0059(1.0 + 7.628^° 6mPe°d 001) Re0/ 38 ?r°nfA Correlation establish for turbulence flow

7. Kim et. al. (2004)

Nunf = A Ramnf = A Ramf f m = Nu f f n'

h ( k \nf _  rm
h f  k fj  \  j j
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When subjected to shear, suspensions show different responses to deformation 

rate depending upon the general physical and chemical characteristics o f  the system. 

This include particle size and particle size distribution, particle shape, solid phase 

volume, surface charge heterogeneity, range and magnitude o f various forces between 

the suspended particles and type o f  the dispersing agents used to stabilize the dispersion. 

Suspensions o f particles in shear flows experience several forces such as hydrodynamic 

forces which include the viscous drag force and particle-particle interaction through 

flow field induced by neighbouring particles. Other forces are electrostatic, steric, 

London-van der Waals attractive forces, forces due to the gravitational, inertia, 

electroviscous, and thermal or molecular collisional effects (Zaman et. al, 2002).

Only few literatures discussed in the previous sections have studied the rheology 

o f nanofluids. However, there have been numerous other publications on rheology of 

suspensions. Pak and Cho (1998) investigated the viscosity o f AI2O3-water and T i02- 

water nanofluids. The results showed that at 10% volume fraction, the viscosities o f 

ALOs-water and Ti02-water nanofluids were 200 and 3 times greater than that o f water. 

The viscosities were measured using a Brookfield rotating viscometer with cone-and- 

plate geometry. Putra et. al. (2003) studied the rheological behaviour o f  Al20 3 -water 

nanofluids and found that at low volume fraction (1% and 4%), the nanofluids showed 

Newtonian behaviour in the range o f the shear rate studied (lO-lOOOs'1). For instance, 

at 60°C, the viscosity o f 1 volume fraction o f A120 3 was at 0.7 mPa-s between shear rate 

o f  ~70-700s''. The viscosities measurements were made using a disc type rotating 

rheometer. Heris et. al. (2006) used a cylindrical rheometer observed that for low 

concentration (< 5 vol %) o f Al2 0 3 -water and CuO-water nanofluids. They also 

observed that the viscosities increased with particles volume fraction and the viscosity
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o f CuO nanofluids increased more significantly than that o f A120 3. These findings have 

indicated that viscosity o f  nanofluids depended on the volume fraction o f nanoparticles.

Tseng and Wu (2002) studied the rheology o f ALOj-water nanofluids at pH 2.0 

and pH 11.0. The average particle size investigated was ~37nm. The pH was adjusted 

by adding HC1 or NH4OH. Nanoparticle suspensions at pH 2.0 generally showed that 

the viscosity decreased with increasing shear rate in a shear rate range o f 70-200 s \  

This indicated that particle structures were broken into smaller ones as the shear rate 

increased. The suspensions showed an apparent shear thickening when the shear rate 

exceeds a critical level. The critical shear rate for the dilatant transitions increased with 

particle volume fraction. Quite different behaviour was shown by suspensions at pH 

11.0. At lower volume fractions (0  = 0.03 and 0.06), the suspensions exhibited 

rheological properties similar to those o f pH 2.0, with a transition from shear thinning to 

shear thickening. However, for (/) > 0.11, the suspensions were pseudoplastic in 

character over the entire shear rate and no transition was observed. This indicated that 

the suspensions were flocculated over the entire investigated shear rate ( 1- 10 0 0 s '1).

Tseng and Lin (2003) investigated the rheological behaviour o f TiOo-water 

nanofluids. The average particle size o f TiOi was 7-20 nm. The nanofluids generally 

showed a pseudoplastic flow behaviour over the entire shear rate investigated (0 -1 2 0 0  

s '1) for all particle volume fractions ((j)= 0.05-0.12). The shear thinning flow behaviour 

revealed that the particle aggregates in the suspension were broken down into smaller 

flow units by the applied forces, so that the resistance to flow was reduced, leading to a 

lower viscosity as the shear rate increased. A thixotropic behaviour was also observed 

for particle volume fraction higher than 0.1. This indicated that particle aggregations
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existed in the suspensions, and nanoparticles interaction increased with the increased 

particle volume fraction.

Chen et. al. (1998) investigated the stability and rheology o f concentrated 

(>50%) Ti0 2  dispersions. The dispersion was found to be non-Newtonian and the 

increase in viscosity was more significant at higher volume fraction. A remarkable 

shear thinning characteristics was observed for shear rate range o f 0-500s . The 

viscosity decreased with increasing surfactant (SDS) indicate that a strong adsorption o f 

SDS on the surface o f TiC>2. The stability o f the suspension was depended on the pH 

value. Mushed et. al (2005) characterized the rheology o f TiC>2-water (spherical and 

cylindrical shape). They found that the viscosity o f spherical TiCb nanoparticles in 

water is higher than that o f cylindrical T i0 2 in water. Moreover, the viscosity increased 

was more significant for the spherical TiC>2 nanoparticle suspension. Wen and Ding

(2006) investigated the viscosity o f Ti0 2 -water nanofluids (pH 3.0) and shear thinning 

behaviour was observed for shear rate range of 0-400s_1.

Kinloch et. al. (2002) studied the rheological behaviour o f carbon 

nanotubes/water dispersions. A shear thinning behaviour was observed for all particle 

loading (0.05 vol. % to 9.20 vol. %). The pseudoplastic character was observed over 

the whole range o f shear rate (0.1 -  1000 s '1). A thixotropic behaviour was observed 

for volume fraction higher than 4.5%. Alias et. al. (2003) studied the rheological 

behaviour o f CNTs nanofluids. The pseudoplastic behaviour was found but none o f the 

nanofluids showed any thixotropic behaviour for the same shear rate range.
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The rheology o f CNT nanofluids was studied by Yang et. al. (2005). The 

dispersion also exhibit shear thinning behaviour in steady shear measurement. The 

result also showed that the ultrasonication time changes the rheological behaviour o f  the 

dispersion. This was attributed to the fact that the sonication alters the aspect ratio o f 

the tube. Yang et. al. (2006) investigated the thermal and rheological properties o f 

CNT-oil nanofluids with polyisobutene succinimideas the dispersant. Without the 

dispersant, the viscosity o f nanofluids was quite high (5x105 Pa-s) at low stress (0.1 Pa). 

Addition o f dispersant reduced the nanofluids viscosity to < 0.5 Pa.s at a stress o f 0.07 

Pa. A strange behaviour was observed where for the highest (8 wt. %) and lowest (0.3 

wt. %) concentration, the viscosity showed a clear shear thinning, while for 0.3 wt. % 

concentration, the nanofluids behaved like a Newtonian fluid. Nanofluid with 3 wt. % 

dispersant concentration gives the minimum viscosity (~0.1 Pa-s) at a low stress (0.07 

Pa). For dispersant concentration o f below and above 3 wt. %, the viscosities were 

higher. This suggests that at low dispersant concentration, less polymer molecules were 

adsorbed to the CNT surface, thus reduced protection towards agglomeration. At higher 

dispersant concentration, bridging flocculation could occur between the polymer chain 

and form agglomerates. The agglomeration can be reduced by the fluid motions under 

high shear rates.

The thermal conductivity ratio (knf/kf) was a minimum at 3wt % dispersant 

loading. This suggests that the dispersant provided good steric hindrance between the 

nanotubes and reduced the contact between them. At higher dispersant loading, the 

thermal conductivity increased due to the larger agglomeration forming and promoted 

the nanotubes contact. They also observed that ultasonication time could reduce the 

agglomerates and the aspect ratio o f nanotubes.
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Shin and Lee (2000) also studied the relation o f  thermal and rheological 

properties relation, but focused on larger particle size (25-300 pm). When subjected to 

shear, the thermal conductivity o f suspension for particle size o f  25 pm remained 

constant even for 10% volume fraction o f particles. On the other hand, suspension 

made o f 100 pm, the thermal conductivity increased linearly with the shear rate in a 

shear rate between 50-220s'\ The thermal conductivity reached a plateau at shear rate 

higher than 220 s '1. For larger particle size (180 and 300 pm), the thermal conductivity 

o f  suspensions strongly depend on the shear rate. The degree o f shear rate dependence 

increased with the particle size. The results were consistent with the experiments 

conducted by Ahuja (1975). This phenomenon may cause an overestimation o f heat 

transfer rate for high shear flows.

From these studies, several conclusions can be drawn on the rheological 

behaviour o f nanofluids. The viscosity o f nanofluids is depended on volume fraction, 

particle size, particle shape, types o f particle, pH and dispersant loading.

3.9 Potential application of nanofluids

Due to the size factor, nanoparticles appear to be suited for applications in which 

fluids flow through small channels. Nanoparticle suspensions, if  properly engineered, 

are stable, thus will not clog the channel. Therefore, the findings o f nanofluids could 

impact many industrial sectors, including transportation, electronics, energy supply, 

electronics, textiles, and paper production. Successful design o f nanofluids will 

encourage the current trend in miniaturization. For instance, small microchannel and
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heat exchangers could be designed and utilized. Nanofluids can also act as a lubricating 

medium because o f their small sizes.

Lee and Choi (1996) estimated the performance o f microchannel heat 

exchangers using nitrogen, water and nanofluids as the working fluids. The heat 

exchangers were used for cooling o f silicon mirrors used in the X-ray sources. Again, 

Jang and Choi (2006) used a nano-sized metal (Cu and diamond) particles suspension as 

new coolant in microchannel heat exchanger. When nanofluids were used, the thermal 

resistances were reduced and the power densities were increased. The nanofluids 

enhanced the cooling rates during the operation of the cooling system. The pumping 

power o f 2.25W was enhanced by 10% with the nanofluids. They concluded that 

nanofluids can offer significant benefits in cooling technology. Nanofluids can also be 

used in engines, superconducting magnets, and in supercomputers, where densely 

packed chips generate much heat. It may also be used in fiber-forming processes or in 

reducing size o f current industrial cooling instruments. Furthermore, by passing the 

nanofluids through small channels, the possibility o f  thermal distortion and flow- 

induced vibration could be eliminated (Eastman et. al, 2002).

Faulkner et. al. (2003) used nanofluids in cooling the microwave electronics. A 

suspension o f ceramic-based nanoparticles was used in the design. No problems were 

encounter with the nanofluids and flow in the micro-channels. It is a good evidence 

that nanofluids can improve the heat flux in heat transfer fluids. At temperature 125°C, 

the system was observed to dissipate heat fluxes between 243-320 W/cm2.
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Ali et. al. (2004) added nanoparticles suspensions to the falling films dessicant 

to study the heat and mass transfer enhancements. A comparative numerical study was 

employed in the parallel and counter-current flow configurations. They reported that 

the dispersion factor appeared to have an effect on enhancing the heat transfer between 

air and liquid desiccant at the interface. By adding Cu nanoparticles in the suspension, 

the dehumidification and the cooling rates were enhanced.

3.10 Conclusions

The properties and behaviour o f nanofluids are discussed in this chapter. Many 

researchers have given more attention to the measurements and calculation o f 

nanofluids thermal conductivity. This can be seen that the publications on thermal 

conductivity o f  nanofluids outnumbered that on the convective heat transfer studies and 

the trend tends to continue as in current situation.

The work on modeling the thermal conductivity o f nanofluids is progressing. 

Several conventional theories o f thermal conduction have been modified to include 

certain characteristics o f nanofluids. It can be seen that certain models can satisfactorily 

agreed with only some experimental data. Therefore no concrete conclusions can be 

drawn whether the models are accurate. The proposed mechanisms o f the thermal 

conductivity enhancements with some controversial issues have been discussed. 

Nevertheless, those models have provided some basic understanding o f the 

enhancement mechanism o f nanofluid thermal conductivity. This suggests that the 

prediction and calculation of nanofluids thermal conductivity remains a challenge in 

research. This will give better knowledge that underlies the nanofluids behaviour.
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The research on the convective heat transfer has provided some insight o f  the 

heat transfer performance o f nanofluids. However, few works have devoted to the 

investigation o f nanofluids convective heat transfer; hence no concrete conclusions can 

be drawn regarding the general heat transfer behaviour o f  nanofluids. Thus more 

research is required for further understanding o f nanofluids.
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CHAPTER FOUR 

EXPERIMENTS

4.1 Introduction

The details o f  experiments and research methodology will be described in this 

chapter. This includes characterization o f nanoparticles, materials used, experimental 

devices and procedures, and data collection.

4.2 Materials

Two types o f nanoparticles were used in this work. They are carbon nanotubes 

(CNTs) and titanium oxide (Ti02). CNTs are in the form of multi-wall nanotubes 

(Figure 4.1) while T i0 2 nanoparticles are spherical in shape (Figure 4.2). The details of 

these nanoparticles are listed in Table 4.1. Distilled water (DW) was used as the base 

liquid.

In order to obtain a stable suspension, a choice o f surfactants and dispersants 

was used in the preparation o f nanofluids. They are oleic acid, gum arabic (GA), sodium 

dodecyl benzene sulfonate (NDDBS), sodium laurate salt and succinimide for carbon 

nanotubes nanofluids. Hydrochloric acid, nitric acid and sodium hydroxide were used 

to manipulate the nanofluids to pH -2 .00  and ~ 1 1.00, respectively. The details o f these 

chemical are shown in Table 4.2.
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Figure 4.1: Images of carbon nanotubes as received: (a) SEM image of CNT s

and (b) TEM image of CNTs.
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Figure 4.2: The T i0 2 nanoparticles as received
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Table 4. 1: Nanoparticles studied and their shape, size and manufacturer.

Nanoparticles Shape Size Manufacturer

Titanium

dioxide

Spherical 20 nm 

diameter

P25, Degussa, Germany.

Carbon

nanotubes

Multiwalled

cylindrical

20-60nm

diameter

Tsinghua-Nafine Nano-Powder 

Commercialization 

Engineering Centre, China
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Table 4.2: A list of surfactants and dispersants and their manufacturers.

Surfactant/

Dispersant

Chemical Formula Description Manufacturer

Gum Arabic Complex mixture o f 

arabinogalactan 

oligosaccharides, 

polysaccharides and 

glycoproteins

Crystalline powder, 

slightly beige in 

colour

Beecroft Scientific, 

UK

Oleic Acid c 17h 33c o o h Clear liquid, 

colourless with 

fatty odour

Fischer Scientific, 

UK

Sodium Laurate 

Salt

Ci2H23Na02 Solid, white in 

colour and 

odourless

Fischer Scientific, 

UK

Sodium dodecyl 

benzene sulfonate 

(NDDBS)

C i2H25C6H4S 0 3 Na Crystalline powder, 

white or light 

yellow flakes

Fischer Scientific, 

UK

Hydrochloric acid HC1 Colourless Fischer Scientific, 

UK

Nitric acid h n o 3 Colourless Fischer Scientific, 

UK

Sodium hydroxide NaOH Colourless Fischer Scientific, 

UK
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4.3 Instruments and procedures

Different techniques were applied to formulate the nanofluids. They are 

sonication, high shear mixing and milling.

4.3.1 Ultrasonication

Bath sonication is a mechanical method o f mixing using the ultrasonic vibration. 

Ultrasonic sound waves enter the liquid within the tank and create an effect called 

cavitation, the rapid formation and collapse o f microscopic bubbles. The bubbles travel 

at high speed around the tank causing them to implode, against the surface of the test 

tube immersed, energy release which gradually mixes the suspension inside the test 

tube.

Sonication technique was used because the technique is simple, easy, and 

inexpensive. Moreover, previous researches have shown that stable nanoparticle 

suspension could be achieved by ultrasonication. An ultrasonic bath was used to 

sonicate the raw nanoparticles as well as the suspension. The instrument used was 

ultrasonic bath Model MU from Clifton (Figure 4.3). The sonicator can be timed for a 

maximum o f 15 minutes. The tank was filled to certain height so that the suspensions 

containers are immersed in the liquid and even energy was distributed.
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Figure 4.3: Ultrasonic bath : (a) water bath (Grant, UK) for sample heating and 

(b) sonication bath (Clifton, UK) for sonication of raw CNTs.
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4.3.2 High shear mixing

High shear mixing is another mechanical method o f mixing. Unlike 

ultrasonication, in this method, the suspensions are directly contacted with the mixer. 

High shear force is applied through a nozzle to generate high shear rate, by means o f the 

rotor and stator. In this work, a high-performance dispersing instrument from IKA, 

UK, model T25 Ultra Turrax (Figure 4.4) was used to homogenizely mix the nanofluids. 

The device can disperse liquids for a maximum o f 2000 ml. The homogenizer had a 

gap o f 0.5 mm between the rotor and stator. The mixing speed ranges from 6500 to 

24000 revolutions per minute which can provide a shear rate o f 10 000 s '1 to 40 000 s"1.

Dispersing 
tool

Sample to 
be mixed

Speed
adjustment
wheel Mixing

speed

Figure 4.4: High shear mixer for CNTs nanofluids production.



4.3.3 Beads mill mixing

In beads mill mixing, the suspensions have a direct contact with the milling 

medium. In this method, the suspensions are mixed and agitated in the presence o f 

small ceramics (YS2) beads. The nanoparticles are broken into smaller size by the high 

shear gradients and collisions with the beads. A large number o f  small beads will be 

more effective because o f the increased collisions between the beads and the particles.

In this work, the beads mill, also called Dyno-Mill, is manufactured by W. A. 

Bachofen o f Switzerland (Figure 4.5). It consists o f a horizontal cylindrical container 

equipped with motor-driven shaft and impellers. The device can operate continuously. 

A specially designed agitator discs, mounted symmetrically on a shaft, transfer the 

energy required for dispersion to the spherical 0.1 mm zirconia grinding beads. An 

external pump feeds the product into the mill for continuous operation in a 0.6 liter 

grinding container. The jacketed chamber is cooled via an external chiller to keep the 

material at optimal temperatures. In this work, this equipment is specially used for TiC>2 

nanofluids production. Nanofluids were pumped into the mixing chamber and recycle 

back into the mixer for continuous operation.

4.3.4 Electron microcopy

The morphology of different nanoparticles is different, which may contribute to 

the observed thermal behaviour. Thus characterization o f the sample is needed. The 

Scanning Electron Microscopy (SEM) was used to give images o f nanoparticle under
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study. The equipment used for this purpose is the FEGSEM Model Leo 1500 with a 

Philips Column and spatial resolution o f 1.2 nm at 20 kV .

The SEM images can give the shape as well as the size o f nanoparticles. From 

Figure 4.1, it can be seen that CNTs are entangled and the tubes are micrometers in 

length. Figure 4.2 shows that T i0 2 nanoparticles are spherical with primary particle 

size o f 30-40 nm but form some degree o f agglomerates even to the size of micrometers.

Transmission Electron Microscopy (TEM) images were also taken tor some 

CNTs sample and for this purpose a TEM instrument Model Philips 2000 was used. It 

uses field emitter, operated at 200kV and fitted with a Gatan GIF 200 Imaging filter.

4.3.5 Thermal conductivity measurements

The instrument used to measure the thermal conductivity o f nanofluids is the 

model KD2 from Labcell, Ltd, UK (Figure 4.6). It is a compact, portable meter which 

consists o f a hand-held read out and a single-needle probe. The probe, having a 

dimension o f 60-mm length and 1,28-mm diameter, is inserted into the medium that to 

be measured. The device measures thermal conductivity and thermal resistivity at the 

same time. Thermal resistivity is a measure o f the ability o f a material to impede the 

flow of heat, or in other words, thermal resistivity is the reciprocal o f thermal 

conductivity. The operating environment is within a temperature from -20°C to 80°C.



91

LCD

On/Off
Button

Probe

Button to 
for 

data 
reading

(a)

(b)

Figure 4.6: (a) Thermal conductivity device and (b) thermal conductivity

measurement on sample.
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The KD2 sensor needle contains both a heating element and a thermosistor. 

When a measurement is begun, the microcontroller waits for 30 seconds for temperature 

stability. Then a known amount o f current is applied to a heater in the probe that has an 

accurately known resistance. The microprocessor calculates the amount o f power 

supplied to the heater. The probe thermosistor then measures the changing temperature 

for 30 seconds while the microprocessor stores the data. It then monitors the rate o f 

cooling for another 30 seconds. At the end o f the reading, the controller computes the 

thermal conductivity using the change in temperature ( A T ) vs. time data. The thennal 

resistivity is calculated as the reciprocal o f thermal conductivity. For multiple 

measurements, it is important to wait at least 5 minutes between readings. This is to 

allow enough time for the sample’s temperature to equilibrate from the previous 

reading. For maintaining equilibrium temperature, the samples were placed in a water 

bath.

At least five measurements were taken for each data set at a given temperature to 

ensure the uncertainty o f measurements within 5%. The device is calibrated using water 

as the reference materials. Five readings were taken at room temperature (k = 0.592, 

0.604, 0.615, 0.622, 0.63 W/m-K)). This gives an average value of 0.6126 W /mK. 

Comparing with the value given by the manufacturer ( kwater = 0.61 W/m-K), this gives 

an error o f ~0.5%.

The principle o f the measurement is based on the radial heat conduction in a 

homogeneous, isotropic medium, given by
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dT  (  32
------=  K
dt

d2T  | 1 dT  
dr2 r dr

Eq. 4-1

2where T  is temperature (°C), t is time (s), at is thermal diffusivity(m /s), and r is radial 

distance (m). When a long, electrically heated probe is introduced into a medium 

(sample), the temperature will rise from an initial temperature To, Due to surrounding 

temperature, at some distance, r, within the probe, the temperature o f the probe is

T - T 0 =
4 nk.. 4 Kt

Eq. 4-2

where q is heat produced per unit length per unit time (W/m), km is the thermal 

conductivity o f the medium (W/m-K), and Et is the exponential integral function

exp (-u)du = - / - I n
(  2 A r

Aki
V /

+ ■
4 Kt

(  2 \  r
8 Kt

V /

Eq. 4- 3

with a = r2/4Kl and / i s  Euler’s constant (0.5772...). When t is large, the second order 

term in Eq. 4-3 approaching zero and can be eliminated. Combining Eq.4-2 and Eq. 4-3

gives

T - T
r  V

4tz*„
ln(?) -  y -  In

A
Eq. 4-4
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T-To (AT) and In (t) in Eq. 4-4 can be linearly related (y = mx+c) with a slope 

m=q/4nkm. From linear regression o f (AT) on In (t), the thermal conductivity can be 

obtained from

4.3.6 Rheology analysis

For rheological analysis purposes, a high resolution CVO 120 Bohlin 

Instruments rheometer from Malvern Instruments, UK was used. It is an integrated 

system consists o f a rheometer, a temperature control unit, a coolant, compressed air 

and a computer for data acquisition system (Figure 4.7a). Many measuring systems can 

be used on the rheometer. For this research, a mooney cell was predominantly used as 

this applies to relatively homogeneous shear rate across the sample. The gap between 

the measuring system and the plate was set to 70 )tm (Figure 4.7b). This geometry is 

excellent in preventing water loss due to evaporation during the experiments. A Bohlin 

V6.32.1 software accompanied this instruments for data analysis.

The measurement started with loading o f  sample into the lower measuring 

system. Sample o f 2.5 ml was loaded into the measuring system for each test run. Then 

slowly lower the upper measuring system in placed by pressing the down arrow in the 

control panel. Then the test parameter was set up from the software. For this research, 

the viscometry test protocol was selected. The test setting was then determined which 

include the controlled mode, the temperature control mode, the equilibrium time, the 

delay time and the shear stress test range.
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Figure 4.7: (a) CVO rheometer for rheological analysis and (b) the mooney cell

measuring system
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Measurements were taken in steady mode. The viscosity measurements were 

taken in a series o f temperatures from 20°C to 40°C. By applying a controlled stress 

mode, the shear stress was increased systematically in a stepwise manner during the 

measurement. The samples were being held as each step (shear stress) for typically 120 

seconds. The data were automatically generated by the software by recording the shear 

rate ( y), viscosity (/?) and the shear stress (a ) .

Calibration o f the rheometer was done by running a viscosity test o f  oil which is 

a Newtonian fluid. The actual viscosity o f  the oil is 1 Pa-s. Figure 4.8 shows the 

viscosity measurement o f the oil and it shows that the data obtained from the rheometer 

was reliable with error estimate is less than 5%.

10

«
Q.

V)oo«

0.1
10 100 

shear rate (1/s)

1000

Figure 4.8: Calibration of rheometer using a Newtonian fluid.
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4.3.7 Nanoparticle sizing

TiC>2 nanofluids particles size was measured using the Nanosizer ZS from 

Malvern Instruments, UK (Figure 4.9). The device is accompanied by Nanosizer 

software version 4.10. The instrument is capable o f measuring particle size from 0.6 

nm to 6 (im using Dynamic Light Scattering (DLS) method. DLS theory is a well 

established method for measuring small particle size. DLS measures Brownian motion 

and relates this to the size o f particles. Brownian motion is the movement o f particles 

due to the bombardment by the solvent molecules that surround them. The smaller the 

particle, the faster the Brownian motion will be. Smaller particles with less inertia are 

moved further by the solvent molecules and move more rapidly.

The Nanosizer ZS uses a monochromatic coherent He-Ne laser (4 mW) with a 

fixed wavelength of 633 nm as the source o f light. The scattered light is detected by an 

avalanche photodiode at an angle o f 173° and this is known as backscatter detection. 

The optics are not in contact with the sample. By using this detection, the laser does not 

have to travel through the entire sample and thus multiple scattering can be minimized. 

Fluctuations in the intensity o f scattered light are converted to electrical pulses, which 

are fed into a correlator. The correlator then compares the intensity at a certain time 

intervals. An autocorrelation function will be generated which is passed to a computer 

where data analysis is performed. In the Nanosizer ZS software, the mean diameter (z- 

average) and the width distribution are obtained from cumulants analysis. The size 

distribution displayed is a plot o f the relative intensity o f light scattered by particles in 

various size. The plot is known as intensity distribution.
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Figure 4.9: Nanosizer Zeta Series for particle size measurements.
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4.3.8 Convective heat transfer experiment

The experimental system for measuring the convective heat transfer coefficient 

is similar to the one used by Wen and Ding (2004b), and is shown in Figure 4.10. It 

consisted o f a flow loop, a heating unit, a cooling part, and a measuring and control unit. 

The flow loop included a pump with a built-in flowmeter, a reservoir, a collection tank 

and a test section. A horizontal copper tube with 970mm length, 4.5 ± 0.02mm inner 

diameter, and 6.4 ± 0.05mm outer diameter was used as the test section. The whole test 

section (copper tube) was heated by a flexible heater (Watlow, UK) linked to a DC 

power supply (TTi Ex 752m, RS, UK). The power supply was adjustable and had a 

maximum power o f 300W. There was a thick thermal isolating layer surrounding the 

copper tube to reduce heat loss along the test section. Five T-type thermocouples were 

mounted on the test section at axial positions o f 118 mm (T l), 285 mm (T2), 524 mm 

(T3), 662 mm (T4) and 782 mm (T5) from the inlet o f  the test section to measure the 

wall temperature distribution. An additional two T-type thermocouples were inserted in 

the flow at the inlet and outlet o f the test section to measure the bulk temperature o f the 

nanofluids. The pump (520S, Watson-Marlow) used in this work was o f peristaltic type 

with flowrate controlled by the rotational rate. The maximum flowrate the pump could 

deliver was 3.5 liter/minute. There was a three-way valve in the flow loop for flowrate 

calibrations and flow system cleaning between runs using the same nanofluid. The 

schematic diagram o f the experimental rig is shown in Figure 4.11.

Another experimental system was set up based on the same principle as in 

Figure 4.10. Instead o f having a horizontal pipe, the other rig was set up vertically. The 

vertical pipe had a length of 184 cm for the test section, while other dimensions remain
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Figure 4.10: Convective heat transfer experimental rig.
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Figure 4.11: Schematic diagram of the convective heat transfer

experimental rig.
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the same. Seven T-type thermocouples were mounted on the test section at axial 

positions of 200 mm, 400 mm, 600 mm, 1000 mm, 1400 mm, 1600 mm, and 1800 mm 

from the inlet of the test section to measure the wall temperature distribution. An 

additional two T-type thermocouples were also inserted in the flow at the inlet and 

outlet of the test section to measure the bulk temperature of the nanofluids.

In the heat transfer experiments, the pump rotational rate, voltage and current of 

the DC power supply were recorded and the temperature readings from seven 

thermocouples were registered by a data acquisition system. As the pump perfonnance 

was sensitive to the fluid viscosity at a given rotational speed, calibration was needed. 

The amount of nanofluids flowed in a time period of 1 minute was weighed before and 

after each experiment. This is to ensure that the same amount of nanofluids flowed 

through the test section during the experiments. This gives an accuracy of nanofluids 

flow rate better than 4.6%. The thermocouples were calibrated in a thermostat water 

bath and the accuracy was found to be within 0 .1K.

4.4 Nanofluids formulation

Two different techniques were employed to formulate CNT-DW nanofluids and 

TiCh-DW nanofluids.

4.4.1 CNT-DW nanofluids

Distilled water and multi-walled carbon nanotubes were used to produce 

nanofluids. The carbon nanotubes (CNTs) were provided by the Tsinghua Nafine
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Nano-powder Commercialization Engineering Centre (China) and were used as 

received. They were produced catalytically from hydrocarbon materials on nano

catalyst under high pressures.

It is known that CNTs have a hydrophobic surface, which is prone to 

aggregation and precipitation in water in the absence of a dispersant or surfactant 

(Hilding, et. al, 2003; Zhang, 2004). Lots of effort were therefore made in the initial 

stage of the work, searching for an appropriate dispersant. Several samples ot CNT 

nanofluids were produced with sodium laurate (SL), sodium dodecyl benzene sulfonate 

(SDBS) and gum arabic as the dispersants. All the suspensions were stored at the 

ambient temperature and checked periodically for visual changes. Photos of samples 

were taken using a digital camera. After a certain period of time, some suspensions 

were settled (Figure 4.12). Sample with gum arabic remained suspended after one 

month at stationary state. Therefore, gum arabic was chosen as the dispersant for CNTs 

nanofluids.

Then the optimum concentration of gum arabic was determined. CNTs 

nanofluids were produced with several compositions of gum arabic (0.1, 0.25, 0.5, 0.75,

1.0 wt %). From these series of experiments, it was observed that 0.25wt% gum arabic 

was the optimum concentration which gave the longest stable nanofluids. Summary of 

CNT-water nanofluids production is shown in a flowchart shown in Figure 4.13.
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(0 (ii) (»i)

(a) Vials containing aqueous dispersion of multi-wall CNTs after homogeneously 

mixed. These samples were stored at stationary state. Dispersants used were 

(i) laurate salt, (ii) SDBS and (iii) gum arabic.

(i) (ii) (iii)

(b) Samples of CNTs after one month observation. Nanofluids with gum 

arabic remained suspended.

Figure 4.12: Samples of nanofluids using different dispersants (a) after mixing 

(b) after one month at stationary state.



Figure 4.13: Flow chart of CNT-DW nanofluids formulation.



4.4.2 T 1O 2-D W  nanofluids

Milling technique was used to produce TiCb nanofluids system. 0.2 wt % of 

TiCh were added to distilled water. The stabilization was done using sodium hydroxide 

and the pH was manipulated to 11.00. The nanofluids were milled continuously for 1 

hour. T i0 2 particle size was then determined using Nanosizer ZS. If the desired size 

had not achieved, the milling process was continued for further size reduction. 

Summary of TiCb-water nanofluids formulation is shown in Figure 4.14. For TiCh-DW 

nanofluids, electrostatic stabilization was employed to obtain stable suspension. Lower 

pH manipulation was not done because of the sensitivity of beads mill towards strong 

acid. The samples of TiC>2-DW nanofluids are shown in Figure 4.15. The size 

distribution of TiCK particles is shown in Figure 4.16. The size distribution obtained 

was based on the average of three measurements. The average diameters (Z-ave) are 

90, 120, 180, and 570 nm.

After the formulation of nanofluids, other experiments were done which include 

thermal conductivity measurements, viscosity measurements and investigation of 

convective heat transfer. The experiments and test conditions are shown in Table 4.3.

4.5 Convective heat transfer data processing

The local convective heat transfer coefficient (h) is defined as



Figure 4.14: Flowchart of TiC>2-DW nanofluids formulation



Figure 4.15: Vials containing Ti02-w ater nanofluids; (a) sample after milling 

(b) sample after a few months at stationary state.
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(a) Size distribution (nm)

(b) Size distribution (nm)

S ize distribution (nm)

Size distribution (nm)

Figure 4.16: Size distribution of Ti02-water nanofluids based on intensity. 

Measurements made using Zetasizer (Malvern Instruments).



Table 4.3: Experiments and test conditions.

Nanofluids Concentration Particle Size pH Surfactant/
Stabilizer

Thermal
conductivity Rheology Test Convective 

heat transfer

CNTs-
water

0.1 Owt.%, 
0.25wt.%, 
0.50wt.%

-
2 .0 ,
6 .0 ,
11.0

Gum Arabic, Acid 
Hydrochloric, 

Sodium Hydroxide

T =20°C, 25°C, 
30°C T = 25°C, 40°C

Re = 800, 
1000 , 1100 , 

1200

TiOo-water 0 .2wt% 90nm,120nm, 
180nm, 570nm 11.0 Sodium Hydroxide T= 20°C, 25°C, 

28°C,30°C T = 25°C, 30°C
Re = 900, 

1100 , 
2500,3500
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where x  represents axial distance from the entrance of the test section, q is the heat flux, 

Tw is the measured wall temperature and Tf is the fluid temperature decided by the 

following energy balance

w =*;„+— 7 Etf 4-7p cpuA

where cp is the heat capacity, p  is the fluid density, A is the cross sectional area, S the 

perimeter of the test tube, and u is the average fluid velocity. Equation 4.7 is based on 

the assumption that the heat flux is uniform and zero heat loss through the insulation 

layer. The deviation to this assumption was assessed by comparing the measured 

temperature difference between the inlet and the outlet of the test section with the 

theoretical value calculated by Equation 4.7. It was found that the maximum deviation 

was lower than 6.2% under the conditions of this work. Equation 4.7 was also used to 

evaluate the performance of the test rig. This was done by taking the temperature of 

CNT nanofluids ( T f ) after the test. The heat (<7) obtained from Eq. 4-7 will then 

compared with the heat supplied from the heat source. An error estimation between 5- 

1 0% was observed.

The convective heat transfer coefficient, h, in Equation 4.6 is usually expressed 

in the form of Nusselt Number (Nu) as

Nu(x■) = * & £ . Eq. 4-8
k

where D  is the tube diameter and k is the fluid thermal conductivity. The Nusselts 

number is related to the Reynolds number defined as

R e= SOB Eq. 4-9
M
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CHAPTER FIVE

HEAT TRANSFER OF AQUEOUS SUSPENSIONS OF CARBON  

NANTOTUBES (CNT NANOFLUIDS)

5.1 Introduction

This chapter will discuss the experimental work on the convective heat transfer 

of suspensions of carbon nanotubes (CNT nanofluids). There are several motivating 

factors that encourage the writer to study the phenomena. Since the production of 

CNTs is relatively still in a new era, thus, no previous studies have been found in the 

literature on the convective heat transfer of CNT nanofluids. However, there are some 

literatures that report the findings of high thermal conductivities of carbon nanotubes, 

~3000W/m-K for multi-walled CNTs (Kim et. al, 2001) and ~6000W/m-K for single 

walled CNTs (Berber et. al, 2000). These finding, therefore, gives a great potential for 

significant heat transfer enhancement. Apart from that, there have been the 

inconsistencies in a few reported studies on the convective heat transfer using 

nanofluids (Pak and Cho, 1998; Xuan and Li, 2003; Yang et. al, 2005; Wen and Ding, 

2004b) and for that reason a detail study is essential.

The experimental procedure and data processing method have been discussed in 

Chapter 4. Therefore, this chapter will focus only on the results and discussion of heat 

transfer study of CNTs. This chapter is organized in the following manner. Section 2 

presents and discusses the results. And finally Section 3 summaries the main 

conclusions.



1 1 2

5.2 Results and Discussion

5.2.1 Effective thermal conductivity

Figure 5.1(a) shows the effective thermal conductivity of nanofluids as a 

function of CNTs concentration at three temperatures. The concentration of gum 

Arabic was 0.25 weight % with respect to water, which was found to give excellent 

stability to the CNT nanofluids. It can be seen that the effective thermal conductivity 

increases with increasing temperature and CNT concentration, with the dependence of 

the conductivity on temperature much more significant. At 20°C and 25°C, the 

dependence of the effective thermal conductivity levels off at CNT concentration 

greater than ~0.5 weight %, while this did not occur at 30°C and 35°C. The 

enhancement of the thermal conductivity, measured at room temperature, shown in 

Figure 4.4 is slightly higher than that reported by Assael et. al. (2003), Xie, et. al. 

(2003) and Wen and Ding (2004), but much lower than that reported by Choi et. al. 

(2001 and Choi et. al (2003). Figure 5.1(b) shows the thermal conductivity increased 

with increasing temperature and the dependence was nonlinear, a typical observation for 

CNT nanofluids (Choi et. al, 2001; Xie et. al, 20003; Wen and Ding, 2004).

The exact reason for this discrepancy is unclear but is believed to be associated 

with the thermal properties of CNTs used, liquid-CNT interfacial resistance, and the 

aspect ratio of CNTs used ( Wen and Ding, 2004a; Wen and Ding, 2005). It should be 

noted that the base liquid used by Choi et. al. (2001) is oil, which has a much lower 

thermal conductivity than water; hence the absolute increase in conductivity is not huge.
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C N T concentration (wt % )

(a) The normalized effective thermal conductivity of CNT nanofluids as a

function of concentration.

Temperature (°C)

(b) The normalized effective thermal conductivity of CNT nanofluids as a

function of temperature.

Figure 5.1: The effective thermal conductivity of CNT nanofluids under different 

conditions: gum arabic concentration of 0.25 wt.% with respect to water.
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Interface thermal resistance can be expressed as the following;

q = -G A T  Eq. 5-1

where q is the heat flux, G is the Kapitza conductance and T is temperature. Through 

molecular modelling, Wen and Ding (2004) found that the presence o f surfactant could 

impose a large thermal resistance to heat transfer. This is due to the phonon-phonon 

coupling that controlled the CNTs and surfactant molecules. Energy is transferred from 

high -frequency phonon modes within the CNTs to low frequency modes through the 

phonon-phonon coupling before being exchanged with the surrounding medium. From 

this finding, it can be concluded that the lower effective thermal conductivity of CNT 

nanofluids, in the present work, may partially be due to the phonon-phonon coupling of 

gum arabic-CNTs.

Zhou and Gao (2006) studied the effective thermal conductivity of non-spherical 

particles with interfacial thermal resistance. They found that the effective thermal 

conductivity enhancement was much higher for inclusion that possesses high aspect 

ratio (cylinder or disk). With this argument, it is expected that the effective thermal 

conductivity of CNT nanofluids is much higher than that of spherical particles. 

Differential effective medium theory was used to predict the effective thermal 

conductivity of CNTs nanofluids. The model was compared with experimental results 

of CNT-oil nanofluids (Choi et. al, 2001) and CNT-decene nanofluids (Xie et. al, 2003). 

Note that the aspect ratio in both cases was -2000 and the thermal conductivity o f the 

base liquid was almost the same, 0.1448 W/m-K and 0.14 W/m-K for oil and decene 

respectively. Therefore the large discrepancy of these results may results from the 

different interfacial thermal resistance. The interfacial thermal resistance of, R c n t -oii =



115

lxlO ' 8 m2 K/W and RcNT-decene = 4.2 x 10' 7 m2-K/W was estimated for CNT-oil and 

CNT-deeene respectively.

The interfacial resistance is strongly dependent on the type of bonding between 

the solid and the liquid ( Xue et. al, 2003). They found that the solid-liquid bonding 

can be categories in two regimes; i) the non-wetting region (weak bonding) and ii) the 

wetting regime (strong bonding). Based on molecular dynamics simulations, they found 

that there is always a repulsion that preventing the overlaps of the atoms regardless of 

how small is the solid-liquid interactions. With this argument, even without any solid- 

liquid attraction, there is still energy transfer from the liquid to the solid. This implies 

that there is a finite interfacial thermal resistance.

5.2.2 Viscosity of nanofluids

The viscosity of CNT nanofluids as a function of shear rate was measured under 

various conditions. Shear rate is the rate of change of velocity at which one layer of 

fluid passes over an adjacent layer. Shown in Figure 5.2 are results for two different 

temperatures and pH = 6.0 (a) and 11.0 (b). A clear shear thinning behaviour is seen 

under all conditions. At a given shear rate, the viscosity of nanofluids increases with 

increasing CNT concentration and decreasing temperature. The shear thinning 

behaviour was also observed by Kinloch et. al. (2002) for which highly concentrated 

aqueous suspensions of multi-walled carbon nanotubes were studied. The dispersion 

also exhibit shear thinning behaviour in steady shear measurement. Yang et. al. (2005) 

and Yang et. al. (2006) also reported that CNT nanofluids shear thinned with increasing 

shear rates.
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Furthermore, Yang et. al. (2006) reported that addition of polyisobutene succinimide, as 

the dispersant, reduced the viscosity from (5xl05 Pas) at low stress (0.1 Pa) to < 0.5 

Pa s at a stress o f 0.07Pa.

The results shown in Figure 5.2 have very important implication to CNT 

nanofluids flowing through the tubular geometry used in this work as the shear rate at 

the wall region is higher than that at the core region, hence lower viscosity at the wall 

region and better lubrication effect. The results also bear important implications to heat 

transfer as the heat transfer coefficient depends on the flow behaviour. More 

discussions will be made in Section 5.2.3.

The viscosity of pure water is shown in Figure 5.3(a). It is clearly shows that the 

viscosity o f CNT nanofluids is much higher than that of water. There may be doubts 

that the shear thinning behaviour is due to the presence of gum arabic dispersant. A few 

rheological experiments were therefore carried out on gum arabic solutions. The results 

are illustrated in Figure 5.3, which clearly shows the shear thinning behaviour at low 

shear rate but slightly shear thickening is seen at shear rates greater than -200 s’1. A 

comparison of Figure 5.2 and Figure 5.3 shows that, at low shear rates the viscosity of 

gum arabic solutions is several orders of magnitude lower than that of the CNT 

nanofluids. The gap is narrowed down at high shear rates but the difference is still 

several-folds. This suggests that the presence of gum arabic affects little on the 

viscosity of CNT nanofluids at low shear rates but may play a role at high shear rates. 

Further discussion will be made in Section 5.2.3.
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Figure 5.3: Viscosity of pure water and gum arabic-water solution

at 25°C.
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5.2.3 Convective heat transfer coefficient

5.2.3.1 Convective heat transfer coefficient of pure water

Before conducting systematic experiments with CNT nanofluids, the reliability 

and accuracy of the experimental system were tested using distilled water as the 

working fluid. The results are shown in Figure 5.4, together with predictions o f the 

following well-known Shah equation for laminar flow under the constant heat flux 

boundary (Shah, 1975);

Nu =
1.953 RePr

D \l/3
RePr

D >33.3

4.364 + 0.07122RePr
D

v
R eP r—

x

< Eq. 5-2
<33.3

J

The Nusselt Number is between 2.0 -  14.0 for both Reynolds Number of 850 and 1100, 

thus the values are reasonable for flow in the laminar regime. Reasonably good 

agreement has been achieved between the Shah equation and the measurements over the 

Reynolds Number range used in this work.

5.2.3.2 Convective heat transfer coefficient of CNT nanofluids

Having established confidence in the experimental system, systematic 

experiments were performed at different flow conditions (Reynolds numbers), different 

CNT concentrations and pH levels. The results are presented and discussed in this sub

section.
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Figure 5.4: Initial test of the experiment rig using distilled water.
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As the viscosity is not well defined due to non uniform shear rate across the pipe 

cross section, the Reynolds number is calculated based on viscosity o f the host liquid at 

zero-shear rate. However, it may be possible to use an alternative non- dimensionless 

group based on non-Newtonian models for the viscosity to replace the Reynolds number 

as described above.

5.2.3.2.1 Effect of CNT concentration on the convective heat transfer

Figure 5.5(a) shows the effect of CNT concentration on the local heat transfer 

coefficient at various axial distances from the entrance of the test section at Re = 800 ± 

50 and pH = 6.0. Also included in the figure are results of pure distilled water and 

gum arabic-water solution for comparison purposes. Figure 5.5(b) shows the 

enhancement of the heat transfer coefficient, with reference to pure distilled water, as a 

function of axial distance at different CNT concentrations. The following observations 

can be made from the two figures:

• The presence of gum arabic only gives a marginal enhancement on the heat 

transfer performance at x/D <~ 100, but the enhancement approaches to zero at 

x/D >~ 100 (Figures 5.5a and 5.5b).

• At a given CNT concentration, the heat transfer coefficient decreases with axial 

distance (Figure 5.5a). This is as expected for heat transfer in the entrance 

region..
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• The enhancement o f heat transfer coefficient increases with x/D initially, 

reaches a maximum at a value of x/D depending on CNT concentration, and 

then decreases with a further increase in x/D. The value of x/D at which the 

enhancement is maximum increases with CNT concentration (Figure 5.5).

Figure 5.6 (a) shows the effect of CNT concentration on the local heat transfer 

coefficient at various axial distances from the entrance of the test section at Re = 1100 

and pH = 6.0. The results of water and gum arabic are also included. Figure 5.6 (b) 

shows the enhancement of the heat transfer coefficient, with reference to pure distilled 

water, as a function of axial distance at different CNT concentrations. The same 

observation was seen for the heat transfer coefficient. However, for higher Reynolds 

Number, the enhancement of heat transfer coefficient reached a maximum value at the 

same x/D of ~63.3. Several conclusions can be drawn based on Figure 5.5 and Figure 

5.6:

• The presence of carbon nanotubes increases the convective heat transfer 

coefficient significantly, and the increase is more considerable at high CNT 

concentrations (Figure 5.5).

• The enhancement of heat transfer coefficient increases with increasing 

Reynolds Number.
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Figure 5.6 Axial profile of heat transfer coefficient (a) and enhancement of heat 

transfer coefficient (b) for different CNT concentrations (pH = 6.0) at Re = 1100.
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• A discrepancy was observed for CNT concentration of 0.25% where higher 

enhancement was observed for Re ~ 800. This may result from particle 

migration effect, which will be discussed later.

Nevertheless, Figures 5.5 and 5.6 suggest a possible smart measure to keep the 

high heat transfer coefficient - creation of many 'artificial entrance' regions along a 

pipeline. The use of artificial length will inevitably increase the pressure drop hence 

optimisation is needed. A comparison of Figure 5.5 and Figure 5.6 with Figure 5.1 

indicates that the enhancement of the convective heat transfer coefficient is much more 

dramatic than that purely due to the enhancement of effective thermal conductivity. A 

similar trend but with less significant enhancement was also observed by Xuan and Li

(2003) in the turbulent flow regime and Wen and Ding (2004b) at the entrance region 

in the laminar flow regime. Xuan and Li (2003) showed that the heat transfer 

coefficient was increased by -60%  for an aqueous based nanofluid containing 2% Cu 

nanoparticles by volume, but the nanofluid only had an effective thermal conductivity 

approximately 12.5% higher than that of the base liquid. Wen and Ding (2004b) 

investigated heat transfer of aqueous y-alumina nanofluids and observed a ~ 47% 

increase in the convective heat transfer coefficient at x/D~60 for 1.6 vol. % 

nanoparticle loading and Re = 1600, which was much greater than that due to the 

enhancement of thermal conduction (-10%). More discussion on this will be made 

later.
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5.2.3.2.2 Effects of Reynolds number on the convective heat transfer

Figure 5.7(a) shows the effect of the Reynolds number, which clearly indicates 

that the heat transfer coefficient increases with increasing Reynolds number. There is a 

large difference between the heat transfer coefficient at Re = 1200 and that at Re <~ 

1100, which will be discussed further in the following. Figure 5.5(b) shows the 

enhancement o f the heat transfer coefficient with reference to pure water. It can be seen 

that the heat transfer enhancement increases with increasing Reynolds number at Re = 

1000-1200, but a more complex case occurs at Re = 800. At x/D <~ 110, the 

enhancement for Re = 800 is higher than that for Re = 1000 and 1100, but this is 

reversed at x/D  >~ 110. To identify how the heat transfer enhancement changes with 

Reynolds number, the data shown in Figure 5.7(b) are presented in a different format in 

Figure 5.8. It is seen that the effect of Reynolds number is small at Re <~ 1100 but a 

big increase occurs when the Reynolds number becomes greater than 1100. The reason 

for this requires further investigation, but the effect of shear rate on the viscosity could 

be a reason. At Re = 1100, the shear rate at the wall is approximately 500 s '1, which 

corresponds to the transition from the strong shear thinning region to the region with 

approximately constant viscosity.

It is recognised that measurements of pressure drop across the tube length under 

different conditions could provide some information for relating directly the observed 

heat transfer behaviour to the flow behaviour. As shown in Figure 5.9, the pressure 

drop along the pipe was low and can be negligible in this work.
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5.2.3.2.3 Effect of pH on the convective heat transfer

Figure 5.10 compares the axial profiles, at two Reynolds numbers, o f the 

convective heat transfer coefficient under two pH conditions. The convective heat 

transfer coefficient at pH = 6  is slightly higher than that at pH = 10.5. It is unclear if  the 

effect of pH is actually very small under other pH conditions. If the small effect of pH 

is proven, excellent opportunities will be provided for future industrial taking-up of the 

technology as both very acidic and alkaline suspensions would increase both the capital 

and operating costs and also have significant safety implications.

5.2.3.2.4 Mechanisms of heat transfer enhancement

The heat transfer coefficient, h, is a macroscopic parameter describing heat transfer 

when a fluid flowing across a solid surface of different temperature. It is not a material 

property but can be approximately given by k/St with §, the thickness of thermal 

boundary layer. At the entrance (x/D = 0), the theoretical boundary layer thickness is 

zero, hence the heat transfer coefficient approaches infinity. The boundary layer 

increases with axial distance until fully developed after which the boundary layer 

thickness and hence the convective heat transfer coefficient is constant. The above 

simple argument addresses the problem qualitatively and does not give much insight 

into the mechanisms for the observed large heat transfer enhancement. However, it 

does provide a starting point for looking at possible underlying mechanisms.
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The above simplified theory suggests that both an increase in k and/or a 

decrease in 8 , increase the convective heat transfer coefficient. As can be seen from 

Figure 5.1, the maximum enhancement of the thermal conductivity under the 

conditions of the convective heat transfer experiments in this work does not exceed 

18% for 0.1% CNT nanofluids and 37% for 0.5% CNT nanofluids. The enhancement 

of the convective heat transfer coefficient, however, is much greater than that due to 

the increase in the thermal conductivity, particularly at high CNT concentrations and 

high Reynolds numbers; see Figures 5.5-5.10. One may therefore simply attribute the 

large enhancement purely to a decrease in the thermal boundary layer thickness. No 

doubt, the reduction in the thermal boundary layer thickness could be an important 

factor, but further enhancement on the thermal conduction under dynamic conditions 

could be another important factor. The effective thermal conductivity shown in Figure

5.1 was obtained under the static conditions, whereas significant shear exists under the 

conditions of the convective heat transfer experiments. In this research, the effective 

thermal conductivity is defined as the ratio of the thermal conductivity of nanofluid 

over the thermal conductivity o f the base liquid. As shown in Figure 5.2, CNT 

nanofluids exhibit a significant shear thinning behaviour, the effective thermal 

conductivity under dynamic shear conditions may therefore be much higher than that 

shown in Figure 5.1. Such behaviour has indeed been observed previously by Sohn 

and Chen (1981) who measured the effective thermal conductivity in a rotating 

Couette flow apparatus at low Reynolds number but high Peclet number conditions, 

where the Peclet number is defined as y - d 2p / v  with y  is the shear rate, and dp is the

particle diameter. Significant enhancement on effective thermal conductivity was 

observed at Peclet numbers over 300, and the shear-dependent behaviour fitted well 

into a power law relationship. A similar trend was also reported by Ahuja (1975), who
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used a shell-and-tube heat exchanging arrangement, and employed the Graetz 

solutions at the entrance region to evaluate the effective thermal conductivity o f a 

saline / polystyrene latex suspension. These researchers attributed the enhancement to 

the high Peclet number, which represents a measure of the eddy scale convection as 

compared to conduction, and therefore is associated with self-rotating and/or micro

convection (Ahuja 1975a, 1975b). For CNT nanofluids, Peclet number is of an order 

of 1 under the conditions of this work if  the shear rate at the wall and the volume 

based equivalent particle diameter are used in the calculation. This seems to suggest 

little contribution of enhanced thermal conduction to the observed large enhancement 

o f the convective heat transfer coefficient. However, CNTs are likely to form 

structures, which may have an effective particle size much larger than the volume 

based equivalent particle diameter, and hence lead to a much higher Peclet number 

and significant further enhancement on the thermal conduction.

As shown in Figures 5.4-5.8 , the convective heat transfer coefficient decreases 

with axial distance, and the decay for pure water is much quicker than that for CNT 

nanofluids. This indicates that the presence of CNTs affects the development of 

boundary layers. The effect of particles on the boundary layer development has also 

been suggested to be the main mechanism for heat transfer enhancement in particulate 

flows under the turbulent flow regime (Hetsroni and Rozenblit, 1994). For a pure 

Newtonian fluid flowing in a straight pipe, the boundary layer develops smoothly and 

the flow is hydrodynamically and thennally fully developed at x/D >  ~(0.05Re) and 

x/D >  ~(0.05RePr), respectively. The criterion for the thermal boundary layer 

development does not apply to CNT nanofluids as clearly shown in Figures 5.4-5.7.
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The above discussion is mostly from the macroscopic point o f view. 

Microscopically, particle migration and re-arrangement due to non-uniform shear rate 

over the pipe cross-section could also be a reason for the observed large heat transfer 

enhancement. In normal pipe flows, the highest shear rate occurs at the wall, whereas 

the lowest shear rate takes place at the centre. The non-uniform shear rate implies non

uniformity in both viscosity and thermal conductivity; see Phillips et al. (1992), Ding 

and Wen (2004), and Wen and Ding (2005b). Wen and Ding (2005b), by using a 

theoretical model, showed that the non-uniform thermal conductivity profile resulting 

from particle migration could lead to a higher Nusselt number. They also found that 

the average particle concentration has a considerable effect on the particle 

concentration distribution. A more non-uniform particle distribution occurred for 

higher average particle concentration. A higher average particle concentration also 

weakens the fluid velocity distribution. This is most likely be the case of the 

discrepancy observed for 0.25wt% CNT as seen in Figure 5.5b and Figure 5.6b. This 

suggests that for utilizing nanofluids for heat intensification, an optimal particle 

concentration may exist.

A final point is the effect of particle shape on the heat transfer performance. 

Previously studies using nearly spherical nanoparticles by Pak and Cho (1999), Xuan 

and Li (2003) and Wen and Ding (2004b) showed an enhancement o f the convective 

heat transfer of up to -60%. Recently, Yang et. al. (2004) studied the laminar flow 

heat transfer of nanofluids made from disc-like graphitic nanoparticles with an aspect 

ratio of -0.02. They found very small enhancement in the heat transfer coefficient, and 

the enhancement is even lower than that due to thermal conductivity. These 

observations seem to suggest that the observed high heat transfer enhancement in this
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work be (at least partially) associated with the very high aspect ratio (> 100) o f CNTs.

In summary, the observed large enhancement of the convective heat transfer 

coefficient is associated with a) enhancement o f the thermal conductivity under the 

static conditions, b) further enhancement on the thermal conduction under the dynamic 

conditions (shear induced), c) reduction of the boundary layer thickness and delay in 

the boundary layer development, d) particle re-arrangement due to non-uniform shear- 

rate across the pipe cross-section, and e) high aspect ratio of CNTs.

5.3 Conclusions

This chapter discussed the study on the heat transfer behaviour of aqueous 

suspensions o f multi-walled carbon nanotubes (CNT nanofluids). Stable CNT 

nanofluids are produced by using both ultrasonification and high shear homogenisation 

methods in the presence of a small percentage of gum arabic. Systematic experiments 

were performed on the produced nanofluids to obtain the (static) effective thermal 

conductivity, viscosity and convective heat transfer coefficient. The following 

conclusions are obtained:

• Significant enhancement was observed of the convective heat transfer in 

comparison with pure water as the working fluid. The enhancement depended 

on the flow conditions, CNT concentration, Reynolds Number and the pH level, 

and the effect of pH is observed to be small.

• Given other conditions, the enhancement is a function of the axial distance from 

the inlet of the test section; the enhancement increased first, reached a
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maximum, and then decreased with increasing axial distance. The position at 

which the maximum enhancement occurred increased with CNT concentration 

and Reynolds number.

• Given CNT concentration and pH level, there seems to be a Reynolds number 

above which a big increase in the convective heat transfer coefficient occurs. 

Such a big increase seems to correspond to the shear thinning behaviour.

• For nanofluids containing 0.5 wt % CNTs, the maximum enhancement is over 

350% at Re = 800, and the maximum occurs at an axial distance of 

approximately 110  times the tube diameter.

• The observed large enhancement of the convective heat transfer could not be 

attributed purely to the enhanced thermal conduction under the static conditions. 

Particle re-arrangement, shear induced thermal conduction enhancement, 

reduction of thermal boundary layer thickness due to the presence of 

nanoparticles, as well as the very high aspect ratio of CNTs are proposed to be 

possible mechanisms.
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CHAPTER SIX

CONVECTIVE HEAT TRANSFER OF NANOFLUIDS 

CONTAINING T I0 2 NANOPARTICLES

6.1 Introduction

This chapter will discuss the investigation of convective heat transfer coefficient 

of T i02-water nanofluids. Very few publications discussed on the work of T i0 2 

nanofluids. Murshed et. al. (2005) and Wen and Ding (2006) studied the enhanced 

thermal conductivity of T i02-water nanofluids, while Pak and Cho (1998) investigated 

the convective heat transfer of T i02-water nanofluids. Therefore, thorough 

investigation and understanding of nanofluids containing TiO? is essential and that has 

motivated this part of research. This research was different from that o f Pak and Cho 

(1998) in terms of the experimental set up. Table 6.1 describes the difference between 

the two experimental rigs set up.

The procedures and data processing for this work is similar to that of CNTs 

nanofluids (Chapter 5) and the details have been described in Chapter 4. Therefore, this 

chapter will focus only on the results and discussion of heat transfer study of T i02- 

water. This chapter is organized in the following manner. Section 2 presents and 

discusses the results. And finally Section 3 summaries the main conclusions. Reviews 

of relevant work in the literature will also be included where appropriate.



Table 6.1: Comparison between Pak and Cho (1998) and current work.

Researcher Pipe type Test section 

axial distance 

(x)

Pipe inner 

diameter (D)

Nanoparticle 

size (nm)

Method of 

production

Stabilization

technique

Nanofluids 

pH value

Pak and Cho 

(1998)

Stainless

steel

351 cm 1.066 cm 27 High speed 

mixing 

( 1 0 0 0 0  rpm)

Electrostatic

repulsion

1 0 . 0

Current work Copper 97 cm and 

184 cm

0.45 cm 90, 120, 180, 

570

Beads milling Electrostatic

repulsion

11.0
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6.2 Results and Discussion

6.2.1 Effective thermal conductivity

Figure 6.1 shows the effective thermal conductivity o f TiC^-water nanofluids at 

five different temperatures, 20°C, 23°C, 25°C, 28°C, and 30°C. Note that the 

concentration of nanofluids was 0.2 wt % and the pH value was at 11.0. It is interesting 

to see that the effective thermal conductivity increases slightly with increasing particle 

size and temperature. However, the increase is significant given that the error bar is 

~3%, particularly due to particle size. The temperature effects on the thermal 

conductivity enhancement were more considerable albeit still small with the maximum 

enhancement observed was —4%. Wen and Ding (2006) observed that at —2.5 wt % (pH 

= 2.0) TiC>2 nanofluid gave an enhancement o f -  5%.

Figure 6.2 shows a comparison of the effective thermal conductivity between the 

previous works on TiCb-water nanofluids. It clearly shows that the thermal 

conductivity enhancement depends on pH value, temperature and concentration. The 

current results are comparable to previous work (Pak and Cho, 1998; Wen and Ding, 

2006). Since this work limits to more dilute systems, a direct comparison cannot be 

made to those by others. However, the data point falls within the same order of 

magnitude of the reported data by previous studies. An inspection of the results of Pak 

and Cho (1998) and Murshed et. al. (2005) showed that the pH value seems to play an 

important role in thermal conductivity enhancement of TiC^-water nanofluids. This 

implies that the electrostatic charges hence extent of particle clustering could affect the 

thermal conductivity. This seems to be consistent with a recent study by Lee et. al.
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Figure 6.1: Effective thermal conductivity of 0.2 wt.% of TiC>2-water nanofluids

at pH 11.0.
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O pH=3, T=22C (Wen and Ding,
2006)

■ pH=10, T=27C (Pak and Cho,
1998)
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2005)

o pH=11,T=23C (current work)
▲

▲
▲

▲

▲

■
■

o °  ■
o  ■

DL. O

0 1 2 3 4 5 6

volume concentration (%)

Figure 6.2: Comparison of effective thermal conductivity o f TiC>2-water nanofluids.
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(2006) who found a strong correlation between thermal conductivity and surface 

charges. Note also that the CTAB surfactant was used in Murshed et. al. (2005) work. 

The difference may therefore be partially due to the use o f surfactant.

6.2.2 Viscosity of Ti02-water nanofluids

Figure 6.3 shows the viscosity results for the Ti0 2 -water nanofluids. In general 

the viscosities o f TiCVwater nanofluids showed shear thinning behaviour at 0.2 wt %. 

The particle size did not have a significant impact on the viscosities, all sizes of 

particles showed similar viscosities values. The viscosity o f TiC>2 nanofluid is higher 

than that of water by ~1.3 times. The viscosity difference was obvious only at low 

shear rate (< 100 s’1). At shear rate greater than 150 s"1 the viscosity values approached 

a constant. Pak and Cho (1998) observed constant viscosities for 1 vol. % of TiCh- 

water nanofluids. Shear thinning behaviour of TiC>2 suspensions was observed at 10 vol. 

% nanofluids. Wen and Ding (2006) observed shear thinning behaviour for 1 wt. % and

2 wt. %  of TiC>2-water nanofluids and the viscosities approached a constant value at 

shear rate greater than 2 0 0 s '1.

Figure 6.4 shows the temperature-dependent behaviour of viscosity for TiCV 

water nanofluids. The viscosity decreases with increasing temperature which is 

expected for liquid suspensions.
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Figure 6.3: Viscosity of 0.2 wt % TiC>2 -water nanofluids (pH=11.0) at 25°C (a) and

30°C (b).
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Figure 6.4: Temperature effects on viscosity of Ti02-water nanofluids.
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6.2.3 Convective heat transfer coefficient of T i02-w ater nanofluids

The reliability and accuracy of the experimental system were tested in the same 

manner as was described in Section 5.2.3.1. Predictions using Shah’s equation (Shah, 

1975) was used for laminar flow under the constant heat flux boundary condition:

Nu =
1.953 Re ■ Pr

D x l / 3

4.364 + 0.07722R e P r —
x

Re ■ P r —
x
D

>33.3
Eq. 6-1

Re ■ Pr  - <33.3

The results are shown in Figure 6.5. The heat transfer coefficient values using Shah’s 

Equation and from the experiments are in reasonably good agreement. Having 

established the confidence in the experimental set up, experiments were performed at 

different flow conditions (Reynolds Number) and different sizes of nanoparticles.

6.2.3.1 Effect of Reynolds Number (flow condition) on the convective heat transfer

In these experiments, the difference between the inlet and outlet temperatures as 

well as between the bulk temperature and the wall was maintained to be less than 10 K 

(between 3-5 K). This is to minimize the effect of temperature-dependent viscosity on 

the heat transfer coefficient. The inlet temperature of the nanofluids was kept at 28°C- 

30°C for all runs.



h 
(W

/m
2.K

)

145

4500

3500

2500

1500

500
50

o Re = 850 (Experiment) 

■ Re = 1100 (Experiment)

------ Re = 850 (Eq. 6.1)

Re = 1100 (Eq. 6-1)

1 0 0

x/D
150 200

Figure 6.5: Initial test of the experiment rig using distilled water.
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Figure 6 . 6  shows the axial profile o f convective heat transfer coefficient o f distilled 

water for different Reynolds Numbers. Figure 6.7 shows the effect o f Reynolds 

Number on the axial profile of the heat transfer coefficient for; (a) 90 nm and (b) 120 

nm (b), and Figure 6. 8  shows the effects of Reynolds Number for; (a) 180 nm and (b) 

570 nm. These figures clearly show that the convective heat transfer increases with 

increasing Reynolds Number. The heat transfer coefficient decreases with increasing 

axial direction. This is as expected for heat transfer in the entrance region. Figure 6.7a 

and Figure 6 .8 a also show that the convective heat transfer coefficient reached to a 

similar value towards the exit if  the pipe was long enough (x/D > 400). Wen and Ding

(2004) also observed that the heat transfer coefficient of AbC^-water nanofluids 

reached to a similar value towards the exit.

The enhancement of the heat transfer coefficient was calculated with reference 

to water. Figure 6.9 shows the enhancement of heat transfer coefficient, as a function of 

axial distance. The following observation can be made from the two figures:

• The enhancement of heat transfer coefficient increased with x/D  initially, 

reaches a maximum, decreased with further increase in x/D.

• The maximum enhancement was observed at x/D  =150 for the Reynolds 

Number studied. This observation is different from that of CNT 

nanofluids where the maximum enhancement occurred increased with 

concentration and Reynolds Number. This is due to particle shape effect. 

The average diameter of multi- wall CNT was 20-60nm and the length 

was a few tens of micrometers. Thus the aspect ratio (L/D) o f CNT is > 

1000 while the average diameter of TiC>2 was 20 nm. The different



h, 
W/m

 
.1

147

2100 

1800 

*  1500 

1200 

900 

600
0 100 200 300 400 500

x/D

Figure 6.6: Axial profiles of heat transfer coefficient of water for 

different Reynolds Number.

q :

o

♦  Re = 900 

O Re = 1200 

o Re = 1400 

A Re = 1700 

X  - Re = 2000 
o Re = 2500



h(
W

/m
2K

)

148

1600

1400

*  1200
CM

E
I
^  1000

800

600 
0 100 200 300 400 500

x/D

■  ^

. ..

O -  Re = 
A - R e  = 
O Re = 
■  Re =

= 900 
: 1400 
1700 
2000

o
A ;

\
o

-
' ^.' q ■■

' A \
\ i

5. 
kt " " " \

<
t 2  11

)
dp = 90 nm k

(b)
x/D

Figure 6.7: Effect of Reynolds Number on heat transfer coefficient for 

(a) 90 nm and (b) 120 nm of TiCh-water nanofluids.



149

(a) x/D

x/D

Figure 6.8: Effect of Reynolds Number on heat transfer coefficient for

(a) 180 nm and (b) 570 nm of Ti02-water nanofluids.
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particle shape will alter the fluid flow in the pipe. The velocity 

distribution of TiC>2 nanofluids is more uniform than that o f CNT 

nanofluids. Thus, the position at which the maximum enhancement was 

achieved is similar. Moreover, the TiCb concentration was lower than 

that of CNT nanofluids, hence creates a better particle concentration 

distribution in the pipe.

• The maximum enhancement achieved was about 16 %.

A similar trend was observed by Xuan and Li (2003) and Wen and Ding (2004b) 

but with more significant enhancement. Xuan and Li observed that the turbulence heat 

transfer coefficient of Cu-water nanofluids was increased by 60%. Pak and Cho (1998) 

investigated the turbulent (Re > 104) heat transfer coefficient of ALO^-water and T1O2- 

water nanofluids. They observed that the enhancement of heat transfer coefficient was 

-45%  for additional of 1.3% vol. concentration of ALO3 and 75% at the concentration 

on 2.78%. They also observed that the heat transfer enhancement of TiCh was less than 

that of ALO3. Wen and Ding (2004b) observed -47%  increase in the heat transfer 

coefficient for 1.6 vol % of ALCVwater nanofluids. This indicates that particle 

concentration affects the extent enhancement of convective heat transfer of nanofluids. 

Wen and Ding (2004b) also observed that the maximum enhancement was observed at 

x/D  -  63, which was closer to the entrance.

The enhancement of heat transfer coefficient for TiCb-water nanofluids was 

much lower than that o f CNT-water nanofluids where >100% enhancement was 

observed. This suggests that the enhancement of heat transfer coefficient is associated 

with the enhancement of thermal conduction. This can be seen from Figure 6.1 where
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the enhancement for T i02-water nanofluids was much lower than that o f CNT-water 

nanofluids (Figure 5.1). Thus, in order to utilize nanofluids as working medium to 

enhance heat transfer performance, selecting particles with higher effective thermal 

conductivity should be considered. However, as discussed in Chapter 5, the thermal 

conduction only contributes a small part of the enhanced convective heat transfer. 

Other factors such as particle shape and viscosity may play a role; more detail 

discussions will be made in later section.

6.2.3.2 Effect of nanoparticle size on the convective heat transfer

Figure 6.10 shows the nanoparticle size effect on the convective heat transfer 

coefficient for different Reynolds Number. The figures show that at a Reynolds 

Number of 900 and 1700 the size of nanoparticles does not contribute a significant 

impact on the convective heat transfer of nanofluids. Figure 6 .11 shows the effects of 

particle size on the convective heat transfer for Re = 2000. It shows that the convective 

heat transfer increased with decreasing particles size. A discrepancy occurred for the 

570 nm particles where the heat transfer coefficient increased with Reynolds Number. 

As discussed by Wen and Ding (2005a), the Peclet Number increases with particle size 

and Reynolds Number. This is most likely the case for the 570 nm nanofluids, hence 

this implies that the 570nm T i0 2 nanofluids dose not possess nanofluids feature where 

Peclet Number is in the order of 1. However, Pak and Cho (1998) suggested the use of 

bigger size of particles to enhanced heat transfer performance. To resolve the 

controversy, further experimental work is strongly recommended.
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6.2.3.3 Mechanism for heat transfer

As discussed in Chapter 5, the enhancement of heat transfer coefficient is 

associated with several possible mechanisms, a) enhancement of the thermal 

conductivity under the static conditions, b) further enhancement on the thermal 

conduction under the dynamic conditions (shear induced), c) reduction of the boundary 

layer thickness and delay in the boundary layer development, d) particle shape and e) 

particle migration and re-arrangement due to non-uniform shear-rate across the pipe 

cross-section. The following discussions will be based on these mechanisms.

The enhancement of thermal conductivity under static condition contributes to 

the enhancement of heat transfer coefficient of the Ti0 2 -water nanofluids. In this work, 

the maximum enhancement observed was ~ 4% at 30°C. However, the enhancement of 

convective heat transfer is much greater than that due to the thermal conductivity. 

Hence, further enhancement of thermal conductivity may be due to the dynamic shear 

conditions. As shown in Figure 6.3, the nanofluids showed a shear thinning behaviour, 

and therefore the effective thermal conductivity should be higher than that shown in 

Figure 6.1. Such behaviour has been observed by Sohn and Chen (1981) and Ahuja 

(1975a). These researchers attributed the enhancement to the high Peclet Number (Pe = 

y - d 2p / v ) ,  where y  is the shear rate, and dp is the particle diameter. However, for TiCh

nanofluid, the Peclet Number is of an order of 1. Consequently, the enhancement of 

heat transfer coefficient cannot solely lie on such argument. On the other hand, if the 

nanoparticle were to form clusters that are much larger than the particles sizes, then it 

would be possible that the Pe Number were much larger under the conditions of this
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work. This argument is in contradiction to the results shown in Figure 6 .11 where small 

particles give a higher heat transfer coefficient.

The enhancement may be due to presence of thermal boundary thickness. The 

heat transfer coefficient, h, can be approximately given by k/8, where S, is the thickness 

o f the thermal boundary layer. This indicates that the heat transfer coefficient increases 

with an increase k and/or decreasing S,. Therefore, the maximum enhancement at the 

entrance region occurred as a result of decreasing thermal boundary thickness. The 

presence of nanoparticles affects the development of boundary layer in the pipe. For 

Newtonian fluids, the boundary layer develops smoothly and hydrodynamically 

developed at x/D > (O.OSRe) and thermal fully developed at x/D > (0.05RePr) .  

However, Figures 6.7 and 6 .8 , show the existence of a greater thermal developing 

length for nanofluids. Therefore, the presence of nanoparticles affects the boundary 

layer development in the pipe flow.

Wen and Ding (2005b) suggested that the enhancement is due to the particle 

migration and rearrangement due to non-uniform shear rate over the pipe cross section. 

Consequently, there would be a non-uniformity in the viscosity and the thermal 

conductivity of nanofluids. For TiCVwater nanofluids, the particle migration may have 

a significant impact on the thermal conductivity but not the viscosity. As seen in Figure 

6.3, the viscosity o f TiC^-water nanofluids reaches a constant value at higher shear rate.
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6.3 Conclusions

This chapter discussed the study on the heat transfer behaviour of T i0 2-water 

nanofluids. Stable TiCb nanofluids of various size, were produced by beads milling 

technique and the electrostatic mechanism was employed to stabilize nanoparticles. 

Experiments were performed on the produced nanofluids to obtain the (static) effective 

thermal conductivity, viscosity and convective heat transfer coefficient. The following 

conclusions are obtained:

• A small enhancement (4%) was observed for the effective thermal conductivity.

• A significant enhancement was observed of the convective heat transfer in 

comparison with pure water as the working fluid. The enhancement depended 

on the flow conditions and nanoparticle size.

• Given other conditions, the enhancement is a function of the axial distance from 

the inlet of the test section; the enhancement increases first, reaches a 

maximum, decreases with increasing axial distance. The position at which the 

maximum enhancement occurred was at x/D = 150.

• The maximum enhancement achieved was ~ 16% under the conditions of this 

work (Re = 900, 1200 and 1400).

• The observed large enhancement of the convective heat transfer could not be 

attributed purely to the enhanced thermal conduction under the static conditions.
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• Particle shape, particle re-arrangement, shear induced thermal conduction 

enhancement, reduction of thermal boundary layer thickness due to the presence 

of nanoparticles, are proposed to be possible mechanisms.
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CHAPTER SEVEN 

CONCLUSIONS 

7.1 Nanofluids formulation and characterization

The procedures and formulations for preparation o f nanofluids are presented. 

The dry CNTs and Ti0 2  samples (before suspended) were characterised using scanning 

electron microscope (SEM). The microscopy images showed that the CNTs were 

entangled into a spaghetti-like network and the Ti0 2  nanoparticles were agglomerated 

and form aggregates that are bigger than the corresponding primary particles.

Several methods were employed to formulate and produce stable nanofluids 

systems. The sonication and high-shear mixing methods were applied in the production 

o f CNT-water nanofluids. This method was simple and inexpensive, thus suitable for a 

lab scale production. Beads milling technique was employed to formulate Ti0 2 -water 

nanofluids systems. This method allowed more control on the nanoparticle size desired 

depending on the time o f milling engaged. The longer process gave smaller 

nanoparticle size in the suspension. Nanofluids produced by these methods remained 

stable for months in a stationary state.

To further enhance the stability o f  CNT-water nanofluids, gum arabic was 

chosen as the surfactant after a series o f trial and error with other surfactants. The 

stability o f CNTs nanofluids showed that surfactant can modify the surface o f the 

nanoparticles and prevent aggregation over certain period o f time.
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On the other hand, the Ti0 2 -water was stabilized by means o f electrostatic 

repulsion mechanism. Sodium hydroxide was used for the purpose and the pH was 

adjusted to 1 1 .0 .

7.2 Heat transfer investigation of CNTs-water nanofluids

The thermal conductivity o f  CNT nanofluids was higher than that o f water. The 

effective thermal conductivity increases with increasing particle loading and 

temperature. At 20°C and 25°C , the effective thermal conductivity reached a constant 

value for particle concentration greater than 0.5 wt %. At 30°C the thermal 

conductivity enhancement was -30%  at 0 .2 5  wt. % and reached as high as 80% for 1.0  

wt. %. The enhancement, however, was higher than several previous works (Assael et. 

al, 2003; Xie, et. al, 2003; Wen and Ding, 2004a), but much lower than that reported by 

Choi et. al. (2001).

Viscosity analysis showed that CNT nanofluids shear thinned (decreased) with 

increasing shear rates. The viscosity decreased with increasing temperature. These 

observations are consistent with previous works (Kinloch et. al, 2002; Yang et. al, 2005; 

Yang et. al, 2006). The viscosities o f CNT nanofluids were much higher than that o f 

pure water. For instances at 25°C, the lowest viscosity o f 0.1% CNT was 0.003 Pa-s 

which is approximately 3 times higher than that o f water.

The convective heat transfer investigation showed that a significant 

enhancement in comparison with pure water as the working fluid. The enhancement 

depended on the flow conditions, CNT concentration and the pH level, and the effect o f
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pH is observed to be small. The enhancement increased first, reached a maximum, and 

then decreases with increasing axial distance. For nanofluids containing 0.5 wt % 

CNTs, the maximum enhancement is over 350% at Re = 800, and the maximum occurs 

at an axial distance o f approximately 1 10  times the tube diameter.

7.3 Heat transfer investigation of TiC>2 -water nanofluids

The thermal conductivity o f TiC>2 nanofluids was higher than that o f water. The 

enhancement was not significant; ~4% enhancement was observed. Note that the 

concentration o f TiOa nanoparticle in this work is 0 .2  wt. % which can be considered as 

very dilute. Therefore the contribution o f the thermal conductivity o f TiC>2 towards the 

thermal conductivity o f nanofluids is not expected to be large. The nanoparticle size 

was not seen to play a major role in the effective thermal conductivity. A comparison 

with previous researchers’ results (Pak and Cho, 1998; Murshed et. al, 2005; Wen and 

Ding, 2006) shows that the effective thermal conductivity o f TiOi nanofluids is likely to 

depend on particle loading, size, shape and pH.

The viscosity o f TiC>2 nanofluids was 3% higher than that o f water. TiC>2 

nanofluids showed a shear thinning behaviour at low shear rates and behaved like a 

Newtonian fluids at shear rate > 150 s '1. The viscosity difference between different 

sizes o f nanoparticle was insignificant. The viscosity decreased with increasing 

temperature. However, the viscosity did not differ in large amount as temperature 

increase was < 10%.
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A significant enhancement was observed for the heat transfer coefficient. The 

enhancement o f heat transfer coefficient increased with x/D  initially, reached a 

maximum, and decreased with further increase in x/D. The maximum enhancement o f  

-1 6 %  was observed at x/D = 150. At low Reynolds Number, the size effect did not 

show a significant impact on the heat transfer coefficient. At higher Reynolds Number 

the heat transfer decreased with increasing particle size (90, 120, 180 nm). The 

discrepancy for the 570 nm TiC>2 nanofluids suggests that it does not possess the feature 

o f  nanofluids where Peclet Number is in the order o f  1.

7.4 Overall conclusions

The heat transfer coefficient o f nanofluids depends on the thermal conductivity 

o f  the nanoparticles. The experimental results have shown that, the enhancement o f 

heat transfer coefficient o f CNT nanofluids was very high as compared to TiC>2 

nanofluids. This is because CNTs have a much higher thermal conductivity. An 

investigation o f A120 3 nanofluids (Wen and Ding, 2004b), showed that the enhancement 

o f heat transfer coefficient was higher than that o f this work. Another study by Pak and 

Cho (1998), also observed that the heat transfer coefficient o f Ti(> nanofluids was 

lower than of A120 3. This is at least partially because, the thermal conductivity o f 

A120 3 (35 W/m-K) is higher than that o f T i0 2 (11 W/m-K). This suggests that, to utilize 

nanofluids as heat transfer medium, the thermal conductivity o f solid nanoparticles is 

one o f the crucial factors. The viscosity also play a role in the enhancement o f heat 

transfer coefficient since there exist shear inside the tube and therefore changes the 

thermal conductivity which arise from the shear induced.
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This work shows that the size effect as suggested by Pak Cho (1998) did not 

seem to be significant. Further investigation is crucial to justify the argument. The 

thermal conduction is not the only factor that contributes to the enhancement o f heat 

transfer coefficient. There are other mechanisms that could be possible such as thermal 

conduction due to dynamics conditions, particle re-arrangement, particl e-surface 

interactions, and the reduction o f thermal boundary layer thickness.
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CHAPTER EIGHT 

RECOMMENDATIONS FOR FUTURE RESEARCH

This research has shown reliable results and findings. However, there are still 

plenty o f areas where this research could be improved and further investigation is highly 

recommended. The current publications on convective heat transfer o f nanofluids are 

limited. However, the findings have reported a range o f results that are worth looking 

into. This chapter recommends possible future research that can be done to improve the 

understanding o f convective heat transfer o f nanofluids. Among the activities include 

nanofluids samples preparation, convective heat transfer study and investigation o f heat 

transfer enhancement mechanism.

8.1 Nanofluids samples preparation

The method o f nanofluids preparation in this study could be improved in order 

to have better property. The raw materials used in the study are agglomerates with 

much bigger size than the primary particles when received. This is due to the fact the 

attractive forces between the particles are very strong so that they may be sintered at 

high temperature. Therefore, they have to be broken into the desired size using some 

mechanical means. One possible technique is to use the two-step process where the 

nanoparticles are produced in situ. In this method the nanoparticles size can be better 

controlled.

One direction that can be look into is to use different base liquid such as oil, 

refrigerants, and ionic liquid mixed with nanoparticles o f various sizes and
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concentrations. This work will indicate the trend and will give a better insight view o f 

the heat transfer process o f nanofluids.

8.2 The measurements of nanoparticle physical properties

Due to the lack o f information on the actual thermal conductivity of 

nanoparticles, in most studies, the bulk properties o f particles were used. It would be 

beneficial if  the actual properties such as thermal conductivity and density o f  

nanoparticles are known. Therefore, extensive experiments are recommended in future 

to measure the actual properties nanofluids, which are crucial for better understanding 

o f  behaviour o f  flowing nanofluids.

8.3 Convective heat transfer investigation

The study o f T i0 2 nanofluids was restricted to very dilute system. The 

behaviour o f TiC>2 nanofluids behaviour can be better understood if  more concentrated 

systems are also looked into. So far, no work on heat transfer has been done for 

concentration o f greater than 3.5 vol. %. At present conditions, the research o f 

convective heat transfer is limited to only water as the based fluids. It would be o f great 

interest if  convective heat transfer o f other based liquids is investigated such as oil and 

ionic liquid.
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IMAGES OF NANOPARTICLES
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Figure A .l : SEM image of carbon nanotubes under FEGSEM Leo 1500.

Figure A.2: TEM images of carbon nanotube suspension.



Figure A.3: TEM images of carbon nanotube suspension.

Figure A.4: SEM image of dispersed carbon nanotube nanofluids.

Figure A.5: SEM image of TiC>2 nanoparticles.
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APPENDIX B2 (CONTINUED)

water 25C
Shear Rate Viscosity
'(1/s) ’(Pas)

53.432 0.00131
74.68 0.001204
87.024 0.001174
96.433 0.001168
104.93 0.00117
113.45 0.001176
122.39 0.001184
132.37 0.001191
141.9 0.001198
154.26 0.001206
166.27 0.001214
179.05 0.001222
192.8 0.001229
207.51 0.001237
223.42 0.001246
240.57 0.001255
258.9 0.001263
278.53 0.001272
299.58 0.001281
322.04 0.001289
346.16 0.001296

water 30C
Viscosity
'(1/s)

0.001089
0.001042
0.00109
0.001066
0.000934
0.001063
0.0009762
0.0009952
0.001012
0.001021
0.001033
0.001043
0.00105
0.001057
0.001062
0.001068
0.001075
0.00108
0.001086
0.001091
0.001098



DATA FOR PARTICLE SIZE DISTRIBUTION MEASUREMENTS 

FROM NANOSIZER

APPENDIX C

90nm
Size Mean Size Mean

d.nm
Intensity
% d.nm

Intensity
%

0.4 0 5.61 0
0.463 0 6.5 0
0.536 0 7.53 0
0.621 0 8.72 0
0.719 0 10.1 0
0.833 0 11.7 0
0.965 0 13.5 0
1.12 0 15.7 0
1.29 0 18.2 0
1.5 0 21 0
1.74 0 24.4 0
2.01 0 28.2 0
2.33 0 32.7 0
2.7 0 37.8 0.5
3.12 0 43.8 1.7
3.62 0 50.7 3.6
4.19 0 58.8 6
4.85 0 68.1 8.4

Size Mean Size Mean
Intensity Intensity

d.nm % d.nm %

78.8 10.6 1110 0

91.3 12.1 1280 0

106 12.6 1480 0

122 12.2 1720 0

142 10.8 1990 0

164 8.7 2300 0

190 6.3 2670 0

220 3.9 3090 0

255 1.9 3580 0

295 0.6 4150 0
342 0 4800 0

396 0 5560 0

459 0 6440 0

531 0 7460 0

615 0 8630 0
712 0 1.00E+04 0
825 0
955 0



°A
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

M
In
%
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

APPENDIX C (CONTINUED)

Mean Size Mean
Intensity Intensity
% d.nm %
0 5.61 0
0 6.5 0
0 7.53 0
0 8.72 0
0 10.1 0
0 11.7 0
0 13.5 0
0 15.7 0
0 18.2 0
0 21 0
0 24.4 0
0 28.2 0
0 32.7 0
0 37.8 0
0 43.8 0.3
0 50.7 1.1
0 58.8 2.7
0 68.1 4.9

Mean Size Mean
Intensity Intensity
% d.nm %
0 5.61 0
0 6.5 0
0 7.53 0
0 8.72 0
0 10.1 0
0 11.7 0
0 13.5 0
0 15.7 0
0 18.2 0
0 21 0
0 24.4 0
0 28.2 0
0 32.7 0
0 37.8 0.5
0 43.8 1.3
0 50.7 1.9
0 58.8 1.9
0 68.1 1.6

Size Mean
Intensity

Size

d.nm % d.nm
78.8 7.3 1110
91.3 9.6 1280
106 11.4 1480
122 12.4 1720
142 12.4 1990
164 11.4 2300
190 9.7 2670
220 7.4 3090
255 5 3580
295 2.9 4150
342 1.2 4800
396 0.3 5560
459 0 6440
531 0 7460
615 0 8630
712 0 1.00E+04
825 0
955 0

Size Mean
Intensity

Size

d.nm % d.nm
78.8 1.3 1110
91.3 1.6 1280
106 2.6 1480
122 4.3 1720
142 6.6 1990
164 9 2300
190 11 2670
220 12.1 3090
255 12.1 3580
295 11 4150
342 9 4800
396 6.4 5560
459 3.8 6440
531 1.7 7460
615 0.4 8630
712 0 1.00E+04
825 0
955 0



APPENDIX C (CONTINUED)

570nm
Size Mean

d.nm
Intensity
%

0.4 0
0.463 0
0.536 0
0.621 0
0.719 0
0.833 0
0.965 0
1.12 0
1.29 0
1.5 0
1.74 0
2.01 0
2.33 0
2.7 0
3.12 0
3.62 0
4.19 0
4.85 0

Size Mean
Intensity

d.nm %
5.61 0
6.5 0
7.53 0
8.72 0
10.1 0
11.7 0
13.5 0
15.7 0
18.2 0
21 0
24.4 0
28.2 0
32.7 0
37.8 0
43.8 0
50.7 0
58.8 0
68.1 0

Size Mean
Intensity

d.nm %
78.8 0
91.3 0
106 0
122 0
142 0
164 0
190 0
220 0
255 0
295 9.9
342 30.5
396 36.9
459 21.2
531 1.5
615 0
712 0
825 0
955 0

Size Mean
Intensity

d.nm %
1110 0
1280 0
1480 0
1720 0
1990 0
2300 0
2670 0
3090 0
3580 0
4150 0
4800 0
5560 0
6440 0
7460 0
8630 0
1.00E+04 0
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ABSTRACT

Since its discovery, carbon nanotubes (CNTs) materials have inspired engineers for a range of 
potential applications. Some applications have been limited due to difficulties in dispersing the 
CNTs in liquid. To obtain a fully dispersed carbon nanotubes suspension is a significant 
problem. In this paper, a procedure to prepare nanofluids which consists of multi-wall carbon 
nanotubes (MWNTs) and a base liquid is discussed. Some sample suspensions were prepared 
using several different types of dispersant. The microscopy images are shown to illustrate 
morphology of the suspension. The rheological behaviour of the suspensions for various CNTs 
concentration is investigated. The steady shear test is applied to the suspension for analysis.

INTRODUCTION

Since their discovery by Iijima in 1991, carbon nanotubes have attracted considerable attention 
in fundamental and applied research. According to many experimental efforts and theoretical 
calculations, carbon nanotubes have extraordinary mechanical, thermal and electrical properties. 
These excellent properties of carbon nanotubes are due to their unique carbon structure as well 
as the nanosize scale. Carbon nanotubes have been expected to have a variety applications 
based on their remarkable properties. Unfortunately, achievement of these applications has 
been hindered, mainly by the poor processability of carbon nanotubes. Furthermore, carbon 
nanotubes are insoluble in many organic solvent because of the pure carbon element and their 
stable structure. They also have tendency to aggregate together due to the strong Van der Waals 
interaction between the tubes, and it is very difficult to disperse them uniformly.

EXPERIMENTAL SECTION

The multi-walled carbon nanotubes used in this study are obtained from Tsinghua-Nafine Nano- 
Powder Commercialization Engineering Centre. These nanotubes are produced catalytically 
from hydrocarbon materials on nano-catalyst under high pressure. The average diameter of the 
nanotubes is 20-60nm. The SEM images of the raw materials are shown in Figure 1 below.



FIGURE 1 : The SEM images of the raw materials as obtained.

The possibility of producing stable dispersion has been reported (Bandyopadhyaya et al. 
2002; Islam et al. 2003; Jiang et al.), and dispersion have been made stable by using surfactants, 
dispersing agent, stabilizing agents or by means of chemical treatment and modification (Esumi 
et al. 1996; Saito et al. 2002). In this study, gum arabic (GA), sodium dodecyl benzene 
sulfonate (NaDDBS), laurate salt and succinimide were used to enhance stabilization of the 
carbon nanotubes. Gum Arabic and NaDDBS have been used as dispersant in other research as 
well (Bandyopadhyaya et al. 2002; Islam et al. 2003; Yerushalmi-Rozen and Regev 2002).

Prior to the preparation of suspension, the CNTs are sonicated for 20 minutes to break 
up the tangled aggregates. The dispersant was dissolved in the base liquid and sonicated for 15 
minutes to obtain homogenous mixture and enhance dispersivity. The carbon nanotubes are 
then added to the sample. Each of the samples was sonicated for 1 hour. A homogeneous 
dispersion of MWNT was obtained. All the suspensions, that had an ink-like appearance, were 
stored at ambient temperature and checked periodically for visual changes. After more than 1 
month at stationary state, the dispersion remained unchanged (Figure 3). However the 
suspension using succinimide as the dispersant show sign of settlement (Figure 2).

mim m m fc L f

FIGURE 2: Vials containing aqueous dispersion of MWNTs (0.05 wt% CNT in 0.5 wt % 
dispersant) after more than one month in stationary state. Dispersant used are (a) laurate salt, 

(b) NaDDBs and (c) gum arabic and (d and e) succinimide. Note that the dispersion in (d) settle 
after one month in stationary state and (e) is the sample at the beginning of observation.

A high resolution C-VOR Bohlin Instruments rheometer was used to analyse the 
dispersions. A mooney geometry was predominantly used as this applies a homogeneous shear 
rate across the sample (75pm gap). This geometry is excellent in preventing water loss 
evaporation during the experiments.

RESULTS AND DISCUSSION

Measurements were taken in steady mode at 20°C. Steady shear sweeps were used to 
investigate the flow properties of the suspensions by recording the shear stress(a) and 
viscosity(ri) at increasing shear rate( f  ). The shear rate was increased in a stepwise manner,



with the samples being held as each step for typically 120 seconds. The results for the flow 
behaviour of the dispersions are shown in Figure 3. The dispersion shows a shear thinning 
behaviour. Rheological analysis was not done to the samples in succinimide due to the unstable 
dispersion obtained.
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Figure 3 The steady flow behaviour of the dispersion. 

CONCLUSION

A method of preparing a nanofluid consisting of carbon nanotubes in a base liquid is presented.

NOTATION

a  shear stress 
r) viscosity 
f  shear rate
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