
Learning with structured covariance matrices in

linear Gaussian models

Alfredo Kalaitzis

Department of Computer Science

University of Sheffield

A thesis submitted for the degree of

Doctor of Philosophy

February 2013



Abstract

We study structured covariance matrices in a Gaussian setting for a

variety of data analysis scenarios. Despite its simplistic nature, we

argue for the broad applicability of the Gaussian family through its

second order statistics. We focus on three types of common structures

in the machine learning literature: covariance functions, low-rank and

sparse inverses covariances. Our contributions boil down to combin-

ing these structures and designing algorithms for maximum-likelihood

or MAP fitting: for instance, we use covariance functions in Gaus-

sian processes to encode the temporal structure in a gene-expression

time-series, with any residual structure generating iid noise. More

generally, for a low-rank residual structure (correlated residuals) we

introduce the residual component analysis framework: based on a

generalised eigenvalue problem, it decomposes the residual low-rank

term given a partial explanation of the covariance. In this example

the explained covariance would be an RBF kernel, but it can be any

positive-definite matrix. Another example is the low-rank plus sparse-

inverse composition for structure learning of GMRFs in the presence

of confounding latent variables. We also study RCA as a novel link

between classical low-rank methods and modern probabilistic counter-

parts: the geometry of oblique projections shows how PCA, CCA and

linear discriminant analysis reduce to RCA. Also inter-battery factor

analysis, a precursor of multi-view learning, is reduced to an itera-

tive application of RCA. Finally, we touch on structured precisions of

matrix-normal models based on the Cartesian factorisation of graphs,

with appealing properties for regression problems and interpretabil-

ity. In all cases, experimental results and simulations demonstrate the

performance of the different methods proposed.
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Chapter 1

Introduction

The Gaussian family of distributions seems simplistic with only two moments to

fit, though with easily interpretable parameters. Its tails decay too rapidly for

many real-world distributions. In the spirit of George Box’s most famous quote1,

we will argue through examples that despite its simplicity and unrealism, the

standard multivariate Gaussian approach remains ever-useful to statisticians and

machine learners.

As the title hints, we will focus on the interactions between whatever covari-

ates (or interchangeably, features, observables, independent variables, inputs)

a data analysis is concerned with. Precisely, structured second-order statistics

as encoded by the multivariate Gaussian family will be our toolbox. For a p-

dimensional Gaussian, its p × p covariance matrix is very expressive and inter-

pretable: a zero in the covariance implies a marginal independence constraint,

a zero in the inverse-covariance implies a conditional independence constraint

and its spectral properties can shed light to hidden variables. By “structured”

we mean any restrictions that we will impose on the functional form of the co-

variance matrix. We will restrict our attention to linear relationships between

any Gaussian random variables, so all of the models presented will be linear-

Gaussian, see also a seminal work by Roweis & Ghahramani [1999]. Approaches

for converting the linear to non-linear (for instance, generalised linear models,

1“All models are wrong but some are useful.”

1



1. INTRODUCTION

GPLVM, etc) or the inverse (for instance, Gaussian copulas, etc) are potential

directions to eventually take. In each chapter we will motivate a particular struc-

ture type or combinations of such, namely: covariance functions, low-rank and/or

sparse-inverse covariances, Kronecker-products or Kronecker-sums of precision

(inverse-covariance) matrices. To these ends, with the exception of Gaussian pro-

cesses (GP), we will propose novel — and in some cases re-discovered — ways to

point-estimate (via maximum likelihood or a posteriori) these structures. Fully

Bayesian extensions would also be of interest to the community.

Covariance functions The Gaussian process is one of the success stories of the

Gaussian family in machine learning [Rasmussen & Williams, 2006]. Covariance

functions or kernels are now a mainstream line of research partly due to the

expansive application of Gaussian processes, first in the geostatistics community

(non-linear regression under the name of kriging) and later in machine learning

for regression and classification. Therefore in Chapter 2 we kick off the story

with a regression problem that we faced early on, under the guise of ranking

genes based on the differential expression of their time-series (or microarray)

data. The regression problem was solved by modeling the series with a Gaussian

distribution whose covariance is parametrised by a “vanilla” RBF1 kernel. But

the true contribution of the chapter is perhaps the ranking of genes based on

ratios of GP marginal likelihoods. The chapter is a re-edited version of [Kalaitzis

& Lawrence, 2011b] and besides presenting the methodology it is also a self-

contained introduction to GP regression.

Low rank Perhaps the protagonist of this thesis and the oldest in origin within

the chosen topics is the low-rank type of covariance structure. To conceptually

tie it with the regression problem above, consider the following problem of cor-

relation effects in the expression series – for instance, due to a normalisation –

that might be hidden in the microarray data. For each gene, the GP either ex-

plains the empirical gene-expression variance with the smooth RBF covariance

1A.k.a. the double-exponential, Gaussian or as Neil Lawrence prefers, the exponentiated
quadratic kernel.

2



1. INTRODUCTION

function, or simply as independent Gaussian spherical noise. It is reasonable to

assume that some structure in the measurement error (that is, a colored noise

effect) remains to be recovered. This would amount to some additive low-rank

structure in the covariance of the time-points. This motivates our residual compo-

nent analysis (RCA) framework in Chapter 3: the recovery of lower-dimensional

components that explain the structured noise effect hidden in the data, given a

partial explanation (fixed additive part) of the marginal covariance.

Chapter 4 will deal with additional theoretical aspects of RCA and in particu-

lar its role as a novel link between classical (non-probabilistic) low-rank methods

and their modern probabilistic counterparts. For instance, we will show how RCA

and its probabilistic variant generalise classical/probabilistic PCA/CCA respec-

tively. Linear discriminant analysis will also reduce to RCA, thus strengthening

the marriage of unsupervised and supervised learning. Inspired by the signal pro-

cessing literature, the geometry of oblique projections will bind them all. RCA

will also be used to extend, as opposed to generalise. For instance, we will show

how an iterative application of RCA (iterative-RCA) can be used to analyse dis-

joint set of covariates with paired samples that supposedly measure overlapping

sets of latent factors, a problem known in machine learning as multi-view learn-

ing. In this way, we re-invented a re-invention: our iterative-RCA is equivalent

to the extended-CCA model of Klami & Kaski [2006] which is equivalent of the

inter-battery factor analysis model studied in the statistics literature [Tucker,

1958].

We will discuss a few applications of RCA in Chapter 5. Among them is a

simple demonstration that will tie RCA with the use of GPs in Chapter 2: ex-

plaining away the trained covariance of a GP (defined by a RBF) on concatenated

time-series from two separate experiments. The residual structure will serve as

the basis for measuring the differential expression across the experiments. Per-

haps the most promising application is the reconstruction of regulatory networks

of genes from protein-signaling data. Usually such data are confounded by low-

rank effects: structured (that is, correlated) measurement deviations introduced

by measuring under heterogeneous experimental conditions (for instance, due to

different cell perturbations or platforms or even labs). RCA will help to reduce

3



1. INTRODUCTION

the low-rank effects and ultimately recover more accurately the sparse conditional

dependency structure (equivalently, the sparse precision matrix of the joint Gaus-

sian). But the methodology to actually recover this Markov network will bring

us to the next subject of covariance structures.

Sparse inverse-covariances In the later half of this thesis (Chapters 5, 6) we

will depart from the purely directed nature of such generative graphical models in-

duced by low-rank structures, and concentrate on learning the structures of purely

undirected graphs or Markov networks. This problem is effectively solved for the

purposes of point-estimation, assuming that the true distribution is Markov with

respect to a Gaussian graphical model [Banerjee et al., 2008; Friedman et al.,

2008]. The challenge presents itself in the form of unknown latent factors in the

graph (by “unknown” we mean that one simply postulates their existence); one

which we will try to tackle with a low-rank plus sparse-inverse covariance struc-

ture. We will present no contribution with regards to sparse-inverse selection

or lasso optimisation per se, as this theory as firmly founded for our purposes

[Tibshirani, 1996]. Chapters 3,4 and 5 are collectively an extended version of

[Kalaitzis & Lawrence, 2011a, 2012].

Kronecker-products and Kronecker-sums of sparse inverses-covariances

In the 6th and final chapter we will describe some work in progress on purely

sparse-inverse structures in matrix-Gaussians (or matrix-normals), that is, Gaus-

sian distributions over random matrices. Their potentially large covariances can

exploit ideas from algebraic graph theory giving modeling and algorithmic bene-

fits for learning simultaneously two sparse conditional dependency structures, one

over the rows of a matrix-sample and one over its columns. Finally, in chapter

7 we will close with a summary of the main ideas and results of this thesis and

outline some ideas for future research.

4



Chapter 2

Temporal covariance structures

for ranking differential

expression

The analysis of gene expression from time series underpins many biological stud-

ies. Two basic forms of analysis recur for data of this type: removing inactive

(quiet) genes from the study and determining which genes are differentially ex-

pressed. Here, the problem is one of ranking genes based on the differential

expression of their time-series (or microarray) data. Often these analysis stages

are applied disregarding the fact that the data is drawn from a time series. In

this chapter we propose a temporal covariance structure to account for the un-

derlying temporal nature of the data based on a Gaussian process (GP) [Kalaitzis

& Lawrence, 2011b].

Results We review GP regression, for estimating the continuous trajectories

underlying the gene expression time-series, in section 2.2. We present a simple

approach which can be used to filter quiet genes, or for the case of time series

in the form of expression ratios, quantify differential expression. We assess the

rankings produced by our regression framework through ROC curves and compare

them to a recently proposed hierarchical Bayesian model (BATS) in section 2.3.

5



2. TEMPORAL COVARIANCE STRUCTURES FOR RANKING
DIFFERENTIAL EXPRESSION

We compare on both simulated and experimental data showing that the proposed

approach considerably outperforms the current state of the art.

Conclusions We argue in section 2.4 that GPs offer an attractive trade-off

between efficiency and usability for the analysis of microarray time series. The GP

framework offers a natural way of handling biological replicates and missing values

and provides confidence intervals along the estimated curves of gene expression.

Therefore, we believe that GPs should be a standard tool in the analysis of gene

expression time series.

2.1 Background

Gene expression profiles give a snapshot of mRNA concentration levels as encoded

by the genes of an organism under given experimental conditions. Early studies

of this data often focused on a single point in time which biologists assumed to

be critical along the gene regulation process after the perturbation. However,

the static nature of such experiments severely restricts the inferences that can be

made about the underlying dynamical system.

With the decreasing cost of gene expression microarrays time series experi-

ments have become commonplace giving a far broader picture of the gene regu-

lation process. Such time series are often irregularly sampled and may involve

differing numbers of replicates at each time point [Lönnstedt & Speed, 2002]. The

experimental conditions under which gene expression measurements are taken

cannot be perfectly controlled leading the signals of interest to be corrupted by

noise, either of biological origin or arising through the measurement process.

Primary analysis of gene expression profiles is often dominated by methods

targeted at static experiments, i.e. gene expression measured on a single time-

point, that treat time as an additional experimental factor [Dudoit et al., 2002;

Efron et al., 2001; Friedman et al., 2000; Kerr et al., 2000; Lönnstedt & Speed,

2002; Spellman et al., 1998]. However, where possible, it would seem sensible

to consider methods that can account for the special nature of time course data.

6



2. TEMPORAL COVARIANCE STRUCTURES FOR RANKING
DIFFERENTIAL EXPRESSION

Such methods can take advantage of the particular statistical constraints that are

imposed on data that is naturally ordered [Angelini et al., 2007, 2008; Bar-Joseph

et al., 2003; Ernst et al., 2005; Storey et al., 2005; Tai & Speed, 2006].

The analysis of gene expression microarray time-series has been a stepping

stone to important problems in systems biology such as the genome-wide identifi-

cation of direct targets of transcription factors [Della Gatta et al., 2008; Honkela

et al., 2010] and the full reconstruction of gene regulatory networks [Bansal et al.,

2006; Finkenstadt et al., 2008]. A more comprehensive review on the motivations

and methods of analysis of time-course gene expression data can be found in

[Bar-Joseph, 2004].

2.1.1 Testing for expression

A primary stage of analysis is to characterize the activity of each gene in an exper-

iment. Removing inactive or quiet genes (genes which show negligible changes in

mRNA concentration levels in response to treatments/perturbations) allows the

focus to dwell on genes that have responded to treatment. We can consider two

experimental set ups. Firstly, we may be attempting to measure the absolute

level of gene expression (for example using Affymetrix GeneChip microarrays).

In this case a quiet gene would be one whose expression level is indistinguish-

able from noise. Alternatively, we might be may be hybridizing two samples to

the same array and quantifying the ratio of the expression levels. Here a quiet

gene would be one which is showing a similar response in both hybridized sam-

ples. In either case we consider such expression profiles will consist principally

of noise. Removing such genes will often have benign effects later in the pro-

cessing pipeline. However, mistaken removal of profiles can clearly compromise

any further downstream analysis. If the temporal nature of the data is ignored,

our ability to detect such phenomena can be severely compromised. An example

can be seen in Figure 2.1, where the temporal information is removed from an

experimental profile by randomly reordering its expression samples. Disregarding

the temporal correlation between measurements, hinders our ability to assess the

profile due to critical inherent traits of the signal being lost such as the speed

7
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and scale of variation.

Failure to capture the signal in a profile, irrespective of the amount of em-

bedded noise, may be partially due to temporal aggregation effects, meaning that

the coarse sampling of gene expression or the sampling rates do not match the

natural rates of change in mRNA concentrations [Bay et al., 2004]. For these rea-

sons, the classification scheme of differential expression in this paper is focused

on reaching a high true positive rate (TPR, sensitivity or recall) and is to serve

as a pre-processing tool prior to more involved analysis of time-course microarray

data. In this work we distinguish between two-sample testing and experiments

where control and treated cases are directly-hybridized on the microarray (For

brevity, we shall refer to experiments with such setups as one-sample testing).

The two-sample setup is a common experimental setup in which two groups of

sample replicates are used [Della Gatta et al., 2008; Stegle et al., 2010]; one be-

ing under the treatment effect of interest and the other being the control group,

so to recover the most active genes under a treatment one may be interested

in testing for the statistical significance of a treated profile being differentially

expressed with respect to its control counterpart. Other studies use data from a

one-sample setup [Angelini et al., 2007, 2008], in which the control and treated

cases are directly hybridized on a microarray and the measurements are normal-

ized log fold-changes between the two output channels of the microarray [Schena

et al., 1995], so the analogous goal is to test for the statistical significance of

having a non-zero signal.

A recent significant contribution in estimating and ranking the differential

expression of time-series in a one-sample setup is the hierarchical Bayesian model

for the analysis of gene expression time-series (BATS) [Angelini et al., 2007, 2008].

The framework offers fast computations through exact computations of Bayesian

inference, to the cost of making a considerable number of biological assumptions,

see section 2.3.2.
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Figure 2.1: Temporal information removed from the profile of gene Cyp1b1 in the
experimental mouse data. (a) The centred profile of the gene Cyp1b1 (probeID
1416612 at in the GSE10562 dataset). The blue crosses represent zero-mean
hybridised gene expression in time of measurement (log2 ratios between treatment
and control). (b) The same profile with its timepoints randomly shuffled.

2.1.2 Gene expression analysis with Gaussian processes

Gaussian processes (GP) [MacKay, 2003; Rasmussen & Williams, 2006] offer an

easy to implement approach for quantifying the true signal and noise embedded in

a gene expression time-series, and thus allow us to rank the differential expression

of the gene profile. We initially motivated GPs as Gaussians with a particular

(temporal) type of covariance structure over the expression time-points. More

generally in the context of the Gaussian family of distributions, a Gaussian pro-

cess is the natural generalisation of a multivariate Gaussian distribution to a

Gaussian distribution over a space of a specific family of functions — a family

defined by a covariance function or kernel, that is, a similarity metric between dat-

apoints. Roughly speaking, viewing a function as an infinite-dimensional vector,

allows one to represent that function as a point in an infinite-dimensional space

of a specific class of functions, and a Gaussian process as an infinite-dimensional

Gaussian distribution over that space.

In the context of expression trajectory estimation, a Gaussian process coupled

with the squared-exponential covariance function (or radial basis function, RBF)
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— a standard covariance function used in regression tasks — makes the reasonable

assumption that the underlying true signal in a profile is a smooth function [Yuan,

2006], that is, an infinitely differentiable function. This property endows the GP

with great flexibility in capturing the underlying signals, without imposing strong

modeling assumptions (as in, a finite number of basis functions in BATS) but may

also erroneously pick up spurious patterns (false positives) should the time-course

profiles suffer from temporal aggregation effects. From a generative viewpoint,

the profiles are assumed to be corrupted with additive independent spherical (iid)

Gaussian noise. This property makes the GP an attractive tool for bootstrapping

simulated biological replicates [Kirk & Stumpf, 2009].

In a different context, Gaussian process priors have been used for modeling

transcriptional regulation. For example, Lawrence et al. [2007], while using the

time-course expression of a-priori known direct targets (genes) of a transcription-

factor, the authors went one step further and inferred the concentration rates of

the transcription-factor protein itself and Gao et al. [2008] extended the same

model for the case of regulatory repression.

The ever-lingering issue of outliers in time series is still critical, but is not

addressed here as there is significant literature on this issue, in the context of

GP regression, complementary to this work. For instance, Stegle et al. [2009,

2010] proposed a probabilistic model using Gaussian processes with a robust

noise model specialised for two-sample testing to detect intervals of differential

expression, whereas the present work optionally focuses on one-sample testing, to

rank the differential expression and ultimately detect quiet/active genes. Other

examples can also be easily applied; Tipping & Lawrence [2005] used a Student-t

distribution as the robust noise model in the regression framework along with

variational approximations to make the inference mechanism tractable, and Van-

hatalo et al. [2009] used a Student-t observation model with Laplace approxima-

tions for inference.

In this case study, the standard GP regression framework is straightforward to

use, with a minimal need for manual tweaking of a few hyper-parameters. Section

2.2 describes the GP regression framework in detail.

10
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2.2 Methodology

The modeling of time-course microarray data with GPs is not a new idea (see sec-

tion 2.1, Background). In this section we review the methodology for estimating

the continuous trajectory of a gene expression through GP regression. This is fol-

lowed by a likelihood-ratio approach to ranking the differential expression of a

gene, in section 2.2.2. The following section contains some key GP theory, bor-

rowing from chapters 45 and 2 in [MacKay, 2003; Rasmussen & Williams, 2006,

respectively].

2.2.1 The Gaussian process model

The main idea is to treat trajectory estimation, given some noisy output obser-

vations (gene expression), as an interpolation problem on functions of one (time)

dimension. By assuming that the observations are jointly Gaussian-distributed

with Gaussian iid noise, the computations for prediction become tractable and

involve only the manipulation of linear algebra rules.

A finite parametric model

We gradually introduce the GP regression model, starting from a linear re-

gression model with inputs x ∈ Rp mapped to some feature space defined by

φ = φ(x):

f(x) = φ>w, y = f(x) + ε . (2.1)

For example, φ(x) = (1, x, x2 )> maps a line to a quadratic curve. In our case,

gene expression is measured at timepoints {xi}1..n, to form a profile of obser-

vations {yi}1..n. The input and output dimensionalities are one. The (time)

inputs are mapped to features {φ(xi)}1..n. We assume that the observations are

contaminated with Gaussian iid noise of zero mean and variance σ2:

ε ∼ N
(
0, σ2

)
. (2.2)

11



2. TEMPORAL COVARIANCE STRUCTURES FOR RANKING
DIFFERENTIAL EXPRESSION

Then the likelihood of the observations y = {yi}1..n, given inputs1 x = {xi}1..n

and parameters w, is Gaussian:

p(y |x,w) =
n∏
i=1

(2πσ2)−1/2 exp

{
−(yi − φ>i w)2

2σ2

}
= (2πσ2)−n/2 exp

{
− 1

2σ2
(y −Φw)>(y −Φw)

}
= N (y |Φ w, σ2I) .

Here, we assume that the observations are conditionally independent given the

inputs, that is, the likelihood factorises across the yi.

Bayesian linear regression

Now we wish to include some prior belief about the parameters w, by specifying

a zero mean spherical Gaussian as a prior distribution over the parameters:

w ∼ N
(
0, σ2

w

)
.

Now we can integrate out the parameters from the joint distribution p(y,w |x)

to get the marginal likelihood

p(y |x) =

∫
dw p(y |x,w)p(w) . (2.3)

The marginal is also Gaussian with mean and covariance

E [y |x] = ΦE [w] + E [ε] = 0 (2.4)

var [y |x] = Φ var [w] Φ> + var [ε]

= σ2
wΦΦ> + σ2I

, Kf + σ2I , Ky

(2.5)

1Normally, we use the notation x to denote a single datapoint of dimension p. In this
section, we diverge temporarily from this notation to denote a collection of inputs.
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p(y |x) = N (y |0,Ky)

= (2π)−n/2|Ky|−1/2 exp

{
−1

2
y>K−1

y y

}
,

(2.6)

where Ky is defined as the covariance from eq. (2.5) and Kf as the noiseless signal

covariance.

Why Bayesian? Recall that the structure of the covariance in eq. (2.5) relies

on the choice of mapping φ. This can be a mapping to variable-order polynomi-

als, by adjusting the polynomial degree hyperparameter, or a RBF (radial basis

function) with a variable lengthscale. While these different classes of features

give different classes of models, within one class we can compare or rank different

models (different choices of hyperparameters) through the marginal likelihood in

eq. (2.6). This is made possible by the marginalisation in eq. (2.3), which is a

weighted average over the parameters w, and the Gaussianity assumptions of the

data likelihood and prior give the integral a closed form solution. At the same

time, the Bayesian approach reduces overfitting on the data, without having to

apply explicitly a regulariser to the data fit term. In fact, the marginal likelihood

implicitly penalises overly complex models (e.g. high degree polynomials) as the

prior assumes a lower probability density for such values of w, see sections 2.8

and 5.4 in [MacKay, 2003; Rasmussen & Williams, 2006, respectively].

For Ky to be a valid covariance matrix of the GP, it must satisfy the following

conditions:

• Kolmogorov consistency: satisfied when Kij = k(xi, xj) for some covari-

ance function k : R×R→ R, such that K is positive semidefinite — that is,

y>Ky ≥ 0 for any y or, equivalently, the eigenvalues of K are non-negative.

• Exchangeability: satisfied when the data are iid. This implies that the

order in which the data become available has no impact on the marginal

distribution.
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Definition of the Gaussian process

More formally, a Gaussian process is a collection of random variables (a stochas-

tic process), such that the joint distribution over any finite subset,

p (y1, y2, ... , yn) ,

is Gaussian and its covariance satisfies the Kolmogorov consistency.

If we remove the noise term σ2I from Ky in eq. (2.5), we get noiseless predic-

tions of f(x) rather than y(x), see eq. (2.1). However, when dealing with finite

parameter spaces, Kf may be ill-conditioned (determinant close to zero), so the

constant diagonal noise term increases the eigenvalues just enough to make Ky

invertible.

Now we can view the GP as a Gaussian prior distribution over the function

values f for inputs x, by rewriting eq. (2.6):

p(f |x) = (2π)−n/2|Kf |−1/2

{
−1

2
(f −m)>K−1

f (f −m)

}
. (2.7)

But more generally, it turns out that the GP can be safely defined as a prior

distribution over functions f :

f(x) ∼ GP (m(x), k(x, x′))

m(x) = E [f(x)] (2.8)

k(x, x′) = E [(f(x)−m(x))(f(x′)−m(x′))] , (2.9)

where m is the mean function (usually defined as the zero function) and k is

the covariance function satisfying the Kolmogorov consistency. Fortunately, in

practice, we only have to handle a finite number of dimensions of the GP (eq. 2.7),

as we can only access a finite collection of inputs x.
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2.2.2 The squared-exponential kernel

In this case study we use the univariate version of the SE (squared-exponential)

or RBF kernel. Before embarking on its analysis, the reader should be aware of

the existing wide variety of kernel families, and combinations of them. A compre-

hensive review of covariance functions can be found in [Rasmussen & Williams,

2006, chapter 4].

Derivation

In section 2.2.1 we mentioned the possibility of an ill-conditioned covariance ma-

trix, in the case of a finite parametric model. We can see this from eq. (2.5),

where Kf can have at most as many non-zero eigenvalues as the number of pa-

rameters in the model. Hence for any problem of any given size, the matrix is

positive semidefinite. Ensuring that Kf is positive definite, involves adding the

diagonal noise term to the covariance.

On the other hand, it can be shown that with a particular feature space (with

an infinite number of RBFs), when the features are integrated out then the co-

variance between the datapoints is expressed by a covariance function instead of

the features. To show this, first we consider a feature defined by the RBF φxc

centred at point xc, such that φxc = (φxc(x1), ..., φxc(xn))> for c ∈ {1, ..., n}, so

Φ = (φx1 , ...,φxn). We express the covariance matrix Kf in terms of a decompo-

sition of outer-products:

Kf = σ2
wΦΦ> = σ2

w

∑
c

φxcφ
>
xc ,

which is equivalent to

Kf,ij = k(xi, xj) = σ2
w

∑
c

φxc(xi)φxc(xj) . (2.10)

Here, the number of features (complexity) k is equal to the number of data-

points n. With an infinite number of centers (features) on the real line, the limit
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converges [MacKay, 1998]:

k(xi, xj) = lim
k→∞

σ2
w

k

k∑
c=1

φxc(xi)φxc(xj)

= σ2
w

∫ ∞
−∞

dxc φxc(xi)φxc(xj)

= σ2
w

∫ ∞
−∞

dxc exp

{
−(xi − xc)2

2r2

}
exp

{
−(xj − xc)2

2r2

}
=
√
πr2 σ2

w exp

{
−(xi − xj)

2

4r2

}
= σ2

f exp

{
−(xi − xj)

2

2`2

}
.

(2.11)

Analysis

It turns out that by integrating out the feature centers, we end up with another

scaled RBF function with either input as its center, that is, kxi(xj) = kxj(xi) =

k(xi, xj). This covariance function or kernel satisfies the Kolmogorov consistency

and is known as the SE or RBF kernel. The factor σ2
f ,
√
πr2 σ2

w acts as a signal

variance and `2 , 2r2 as the lengthscale of this standard form of the univariate

SE covariance function. In practice, we use the noisy version:

Ky,ij = σ2
f exp

{
−(xi − xj)2

2`2

}
+ σ2δij , (2.12)

where δij is the Kronecker delta function which is one for i = j and zero other-

wise.

RKHS kernel As a side note, the RBF feature kx is a member of a reproducing

kernel Hilbert space (RKHS). A Hilbert space H is a space with an inner product

〈., .〉H and it is complete1 with respect to the norm induced by this inner product3.

1The space must contain the limits of all Cauchy2 sequences of elements in H.
2A sequence x1, x2, ... ∈ H is Cauchy if for an arbitrarily small ε > 0, the distance d(xi, xj)

(as induced by the norm) always gets smaller than ε for some i onwards in the sequence.
3In our case, we have a space of real functions f : R→ R with norm ||f ||2H = 〈f, f〉H.
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It is an RKHS, if there is some function k : R× R→ R such that:

• For all x ∈ R, k(x, x′) as a function of x′ is a member of H.

• For all x ∈ R, kx is the evaluation representer; that is, for any f ∈ H,

〈f, kx〉H = f(x). In this case we say that k is a reproducing kernel.

For more details on the properties of RKHS spaces, see [Berlinet & Thomas-

Agnan, 2004; Rasmussen & Williams, 2006; Schölkopf & Smola, 2002; Wegman,

1988].

Kernel trick Since kxi(.) = k(xi, .) and kxj(.) = k(xj, .) are members of H then

according to the second property of the RKHS H,

〈k(xi, .), k(xj, .)〉H = k(xi, xj) .

Therefore, the solution of the integral in eq. (2.11) relies on it being a particular

case of an inner product between two reproducing members of H and is as simple

as a function evaluation of k.

SE hyperparameters The SE is a stationary kernel, i.e. it is a function of

distance d = xi−xj which makes it translation invariant (in time). It is governed

by the characteristic lengthscale `2 which, roughly speaking, specifies the distance

at which the outputs for any two inputs (xi, xj) become uncorrelated. In other

words, the lengthscale `2 controls the amount by which f varies along the input

domain (time): A small lengthscale makes f vary rapidly along time, and a very

large lengthscale makes f behaves almost like a constant function, see Figure

2.2. This parameterisation of the SE kernel is very powerful when combined

with hyperparameter adaptation, as described in section 2.2.4. Other adaptable

hyperparameters include the signal variance σ2
f which is the vertical scale of

function variation and the noise variance σ2, see eq. (2.2). The noise variance

is not a hyperparameter of the SE itself, but of its noisy variant. Unless we set

it as a constant, its adaptation can give different explanations about the latent

function that generates the data.
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Kernel composites One can also combine covariance functions, as long as

they are positive-definite. In fact, eq. (2.12) is a sum of the SE kernel and the

covariance function of isotropic Gaussian noise. Examples of valid combinations

of covariance functions include linear combinations and products of covariance

functions. Direct sums and tensor products of covariance functions defined over

different spaces are also valid covariance functions.

2.2.3 Gaussian process regression

To reconstruct the true trajectory of gene expression at the sampled inputs (time-

points) as well as predict the trajectory at unsampled inputs we must infer the

true function values f(x), as well as f(x∗) for all new inputs x∗, given some

observed outputs y at sampled inputs x1.

Under the GP model in eq. (2.7), we know that the joint distribution over any

(latent) function values f = f(x) is the GP prior. Without loss of generality,

f can be concatenated with a single new function value f∗ for some unsampled

input x∗, [
f

f∗

]
∼ N

(
0,

[
Kf kf∗

k>f∗ k∗

])
,

where Kf is the RBF covariance matrix across the outputs of sampled timepoints

x, (kf∗)i = k(xi, x∗) is the covariance between the new f∗ and old function values

f and k∗ = k(x∗, x∗) is the variance of f∗.

Noisy outputs As with any practical application, in this section we consider

predictions using noisy observations y, whereas the true function values f are

unknown. Since the noise is spherical Gaussian by assumption, then

cov

[
y

f∗

]
= cov

[
f + ε

f∗ + 0

]
= cov

[
f

f∗

]
+ cov

[
ε

0

]
=

[
Kf + σ2I kf∗

k>f∗ k∗

]
, (2.13)

1Where possible, we do not denote the conditioning on inputs to avoid cluttering.
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so [
f

f∗

]
∼ N

(
0,

[
Kf kf∗

k>f∗ k∗

])
, (2.14)

(y> f∗) is Gaussian-distributed with zero mean and the covariance in eq. (2.13).

Now, the closed form of the predictive distribution of f∗ |y relies on standard

formulas for the conditional mean and covariance of a subset of Gaussian random

variables conditioned on the rest, see appendix A.1.

Predictive equations

The mean and covariance of the predictive distribution of f∗ |y define the mean

function and covariance function of the posterior GP, which can be seen intuitively

as a distribution over functions that agree with our observations (x,y), see Figure

2.2(a). For a single new timepoint x∗ we have:

f∗ |y ∼ N (m∗, var [f∗]) , where

m∗ = k>f∗(Kf + σ2I)−1y , (2.15)

var [f∗] = k(x∗, x∗)− k∗
>(Kf + σ2I)−1k∗ . (2.16)

These equations can be easily generalised for the prediction of function values

for a set of new timepoints x∗, by augmenting kf∗ with more columns (one for

each new timepoint x∗) and turning k(x∗, x∗) into the matrix defined by (K∗)ij =

k(x∗i, x∗j).

With respect to the joint covariance in eq. (2.13), for every new timepoint x∗,

a new vector kf∗ is concatenated as an additional column and row to give

KC+1 =

[
KC kf∗

k>f∗ k∗

]
,

where C increments with every new timepoint.
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2.2.4 Hyperparameter learning

Given the data, one can learn the hyperparameters of the kernel by maximising

the marginal likelihood of the GP p(y |x,θ), that is, the marginal distribution

over outputs y, governed by the hyperparameters θ of Ky, see eq. (2.12). In

general, a kernel-based model such as the GP can employ a variety of kernel

families whose hyperparameters can be adapted with respect to the underlying

intensity and frequency of the local signal structure. The GP can then predict the

true signal while quantifying the uncertainty of the prediction, that is, the signal

reconstruction happens in a probabilistic fashion. The SE kernel allows us to

interpret the adapted hyperparameters intuitively, especially for one-dimensional

inputs such as time-series, see Figure 2.2 for an example of interpreting various

local optima.

Maximising the GP marginal likelihood

We get a closed form of the marginal likelihood of the GP model by marginalising

over the latent function values f :

p(y |x) =

∫
dfp(y | f ,x)p(f |x) = N

(
y |0,Kf + σ2I

)
, (2.17)

where p(f |x) is the GP prior from eq. (2.7) and p(y | f ,x) is the Gaussian like-

lihood N (y | f , σ2I) factorised across the outputs y. It is common to compute

the log of the marginal likelihood (LML), as it is more stable numerically and

prevents arithmetic underflows:

ln p(y |x,θ) = −1
2
y>K−1

y y − 1
2

ln|Ky| − n
2

ln(2π) , (2.18)

where Ky = Kf + σ2I. Note that the marginal here is explicitly conditioned

on the hyperparameters θ to denote it as a function of the hyperparameters of

Kf .

To maximise the marginal likelihood, we use the matrix derivative identities

in appendix A.2 to compute partial derivatives of the LML with respect to each
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hyperparameter:

∂
∂θ

ln p(y |x, θ) = 1
2
α> ∂

∂θ
Ky α− 1

2
tr
(
K−1
y

∂
∂θ

Ky

)
= 1

2
tr
((
αα> −K−1

y

)
∂
∂θ

Ky

)
,

for α = K−1
y y and

∂
∂`2
ky(xi, xj) = kf (xi, xj)

(xi − xj)2

2`4
, ∂

∂`2
Ky = Kf ◦ 1

2`4
D ,

∂
∂σ2

f
ky(xi, xj) = kf (xi, xj) σ

−2
f , ∂

∂σ2
f
Ky(xi, xj) = 1

σ2
f
Kf ,

∂
∂σ2ky(xi, xj) = δij ,

∂
∂σ2 Ky = I ,

where ◦ denotes the Hadamard product and (D)ij = (xi − xj)
2 is the matrix

of squared differences. The LML can be optimised through the scaled conjugate

gradients algorithm [Möller, 1993], to which we feed the partial derivatives listed

above.

2.2.5 Model comparison and ranking with likelihood ra-

tios

Maximising the LML is fundamentally a maximum-likelihood approach, known

as type II maximum-likelihood1. Alternatively, we could opt for a fully Bayesian

approach, by assuming a hyper-prior distribution p(θ |M) over the hyperparam-

eters, where M represents a particular class of models. The posterior over the

hyperparameters,

p(θ |y,x,M) =
p(y |x,θ,M) p(θ |M)∫

dθ p(y |x,θ,M) p(θ |M)
, (2.19)

would be based on some initial beliefs encoded in p(θ |M), such as the func-

tions having large lengthscales. A maximum a posteriori (MAP) approach would

amount to promoting large lengthscale values (via the prior term), unless there

1As opposed to type I maximum-likelihood on the data likelihood p(y |x, f). Type II opti-
mises the parameters of a marginal model.
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is evidence to the contrary (via the likelihood term). The normalising constant

in the denominator is known as the model evidence.

In the presence of different classes of models (M1,M2), that is, with a different

set of hyperparameters (θ1,θ2), a Bayesian-standard way of comparing them is

through:

R(M1,M2) =
p(y |x,M1)

p(y |x,M2)
× p(M1)

p(M2)
=
p(M1 |y,x)

p(M2 |y,x)
. (2.20)

The first ratio in the RHS is the Bayes factor — a ratio of model evidence terms

(recall the one that appears in the denominator of eq. (2.19)), where the models

(M1,M2) usually represent two complementary hypotheses. Namely,

• M1 - the profile has a significant underlying signal and thus it is truly

differentially expressed.

• M2 - there is no underlying signal in the profile and the observed gene

expression is simply the effect of random noise.

In other words, if we can compute this ratio then we can rank the profiles based

on how likely it is that modelM1 generated the data relative toM2. The second

factor is a ratio of model priors which weighs the Bayes ratio based on our initial

beliefs about the models. Again, this turns out to be a trade-off between initial

belief (expert, domain or simply gut knowledge) and empirical evidence — a

recurring theme of Bayesian reasoning. Usually, as is the case in here, if there is

no good reason to believe that any one model is more probable, then a uniform

p(M) is used. See also [Angelini et al., 2007; Stegle et al., 2010; Yuan, 2006] for

other examples of hypotheses comparisons within a Bayesian framework.

In practice, the model class M is such that the integral (model evidence) in

eq. (2.19) is analytically intractable. Standard approaches to approximating the

posterior distribution include the Laplace approximation, or sampling from the

posterior with Markov chain Monte Carlo (MCMC) methods to discover its —

potentially multiple — modes [MacKay, 1999; Neal, 1997].
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Approximating ratio In this case study we present a simpler but effective

approach to ranking the differential expression of a profile: Instead of integrating

out the hyperparameters, we approximate the Bayes factor with a log-ratio of GP

marginal likelihoods (introduced in eq. 2.18):

R(M1,M2) ≈ ln{p(y |x,θ1)} − ln{p(y |x,θ2)}, (2.21)

with each LML being a function of different instantiations of θ. That is, we still

maintain hypotheses M1 and M2, representing the same notions as described

above, but in our case they differ simply by configurations of θ.

Hyperparameter configuration Specifically, with M2 the hyperparameters

are fixed to θ2 = (∞, 0, v̂ar[y])> to encode a function constant in time [` 2 →∞],

with no underlying signal [σ2
f = 0], which generates a time-series with an empirical

variance that is explained exclusively by noise [σ2 = v̂ar[y]]. Analogously, with

M1 the hyperparameters θ1 = (20, v̂ar[y], 0)> are initialised in a way that encodes

a function fluctuating in accordance to a typical significant profile — for instance

`2 = 20 — with a signal variance that exclusively explains the empirical time-

series variance [σ2
f = v̂ar[y]] and no noise [σ2 = 0].

Local optima of the LML function

The two configurations (θ1,θ2) correspond to two points in the three-dimensional

input domain of the LML function, both of which usually lie close to local-

optimum solutions. This assumption can be empirically verified by exhaustively

plotting the LML function for many instantiations of θ, see Figure 2.2(b). For

the less frequent case of profiles whose LML contour varies radically, a number

of initialisation points can be used to ensure convergence to the global-maximum

solution. Because the configuration of the first hypothesis (no noise, σ2 = 0) is an

unrealistic scenario, we let θ1 adapt with respect to a given profile by numerically

optimising its LML function, as opposed to keeping it fixed like θ2.

In general, the LML as a function of θ, eq. (2.18), is not convex. Nonetheless,
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Figure 2.2: (a) GP fit on the centred profile of gene Cyp1b1 (probeID 1416612 at

in the GSE10562 dataset) with different settings of the lengthscale hyperparame-
ter ` 2. The crosses are zero-mean hybridised gene expression (log2 ratios between
treatment and control). The solid and dotted lines are mean predictions of the GP
and the shaded areas visualise the point-wise mean -/+ two standard deviations
(95% confidence region). As ` 2 → ∞ (0 inverse-lengthscale), the mean func-
tion becomes virtually constant and the empirical output variance is attributed
to noise, v̂ar[y] = σ2. When the lengthscale `2 is set to a large enough value
(local-optimum ` 2 = 30), the mean function roughly fits the data-points and the
observed variance is explained equally by signal and noise, (σ2

f = σ2 = 2 v̂ar[y]).
Additionally, the GP has higher uncertainty in its predictive curve. When the
lengthscale is set to a local-optimum of a small lengthscale (`2 = 15.6) then the
mean function tightly fits the data-points with high certainty. The interpretation
from the covariance function in this case is that the profile contains a minimal
amount of noise and that most of the empirical output variance is explained by
the underlying signal, v̂ar[y] = σ2

f . (b) The contour of the corresponding LML
function plotted through an exhaustive search of ` 2 and SNR (signal-to-noise ra-
tio) values. The two main local-optima are indicated with green dots and a third
local optimum, that corresponds to the constant zero function, has a virtually
flat vicinity in the contour, which encompasses the whole lengthscale axis for very
small values of SNR (that is, the lengthscale is not important when SNR≈ 0).

24



2. TEMPORAL COVARIANCE STRUCTURES FOR RANKING
DIFFERENTIAL EXPRESSION

local optima do not necessarily pose an obstacle to learning, but provide alterna-

tive interpretations to the observations. However, to help alleviate the problem

of spurious local optimum solutions, we make the following observation: by ex-

plicitly restricting the signal variance hyperparameter σ2
f to small values during

optimisation, we implicitly restrict the noise variance hyperparameter σ2 to large

values. This occurs as the explanation of the empirical output variance v̂ar[y] is

split between the underlying signal and noise variance, that is, v̂ar[y] = σ2
f + σ2.

This dependency allows us to treat this three-dimensional optimisation problem

as an intrinsically two-dimensional problem — of a lengthscale `2 dimension and

of a SNR (signal-to-noise ratio) = σ2
f/σ

2 dimension — without danger of missing

any optima.

Figure 2.2(b) illustrates the log-marginal likelihood as a function of the charac-

teristic lengthscale `2 and the SNR. It features two local optima, one with a small

lengthscale and high SNR, where the observed data are explained with a complex

function and small noise variance, and one optimum for a large lengthscale and

a low SNR, where the data are explained by a simpler function with high noise

variance. Note that the first optimum has a smaller LML. This relates to the

algebraic structure of the LML, eq. (2.18): the first term (dot product) promotes

data fitness and the second term (determinant) penalises the complexity of the

model [Rasmussen & Williams, 2006, sec.5.4].

Overall, the LML function of the Gaussian process offers a good trade-off

between fitness and complexity without the need for additional regularisation.

Optionally, we can use multiple initialisation points that focus on different finite

lengthscales, to deal with the local optima along the lengthscale axis. Finally, we

pick the best solution (max LML) to represent hypothesis M1 in the likelihood-

ratio during the ranking stage.

2.3 Results and discussion

We apply standard GP regression and the Bayesian hierarchical model for the

analysis of time-series (BATS) on two in-silico datasets simulated by BATS
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and GPs, and on one experimental dataset coming from a study on primary

mouse keratinocytes with an induced activation of the TRP63 transcription fac-

tor [Della Gatta et al., 2008]. In that study, a reverse-engineering algorithm

was developed (TSNI: time-series network identification) for inferring the direct

targets of TRP63.

2.3.1 Evaluation setup

ROC curves We assume that each gene expression profile can be categorized

as either quiet or differentially expressed. We consider algorithms that provide a

ranking of the profiles, on the basis of which is most likely to be non-quiet (or

differentially expressed). Given a ground truth, we can then evaluate the quality

of such a ranking and compare different algorithms. We use receiver operating

characteristic (ROC) curves to evaluate the algorithms. These curves plot the

false positive rate on the horizontal axis, versus the true positive rate on the

vertical axis; that is, the percentage of negatives (non-differentially expressed

profiles in the ground truth) that were erroneously declared positive (declared

differentially expressed), versus the percentage of positives (in the ground truth)

that were correctly declared as positives.

Ground truths In this case study, we consider a ground truth to consist of a

binary vector, of equal length to the number of profiles in the dataset, where the

label “1” flags the corresponding profile as differentially expressed and the label

“0” as non-differentially expressed. This can be viewed as a binary classification

problem, with a threshold on the ranking-metric playing the role of the decision

boundary. By varying that threshold, the corresponding points (FPR, TPR) form

an ROC curve. The quality of a ranking can then be summarised by the AUC of

the corresponding curve. So a good ranking exhibits a rapidly rising percentage of

its first i positions having matching labels [1/0] to the ground truth, as i increases

from 1 to N (all profiles). The following subsections (2.3.2, 2.3.3) describe three

such ground truths in detail.
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2.3.2 Simulated data

Bayesian Analysis of Time Series In BATS [Angelini et al., 2007], the as-

sumption is that each time-course profile is generated by a function projected on

an orthonormal basis (Legendre or Fourier), plus some noise. Thus the global

estimand for every gene expression trajectory is the linear combination of a num-

ber of basis functions, whose coefficients are modeled by a posterior distribution.

The number of basis functions and their coefficients, are estimated with closed

form computations in a fully Bayesian manner. The BATS framework also allows

for various types of non-Gaussian noise models.

BATS simulation

The first set of in-silico profiles is simulated by the BATS software1 in accor-

dance to the guidelines given by Angelini et al. [2008]. We reproduce the simu-

lations performed by Angelini et al. [2007]. Specifically, we sample three sets of

N = 8000 profiles, with n = 11 timepoints and kji = 2 replicates, for i = 1, . . . , N ,

j = 1, . . . , n except k2,5,7
i = 3, according to the model defined in [Angelini et al.,

2007, sec. 2.2]. In each of the three sets of profiles, 600 out of 8000 are gener-

ated as differentially expressed (labeled “1” in the ground truth), that is, they

are simulated as a linear combination of orthonormal basis function (Legendre

polynomials) with additive iid noise.

The other 7400 non-differentially expressed profiles (labeled as “0” in the

ground truth) are zero functions with additive iid noise. Each BATS-sampled

dataset is induced with a different kind of iid noise — Gaussian N(0, σ2), Student-

t distributed with 5 and 3 degrees of freedom (T(3), T(5)). Figure 2.3(a,b,c) illus-

trates the comparison on BATS-sampled data with various kinds of noise.

1http://www.na.iac.cnr.it/bats/
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Figure 2.3: ROC curves for the GP and BATS methods on data simulated
by BATS induced with (a) Gaussian noise, (b) Student’s-t with 5 degrees of
freedom, (c) Student’s-t with 3 degrees of freedom, (d) data simulated by GPs.
Each panel depicts one ROC curve for the GP method and three for BATS,
each using a different noise model indicated by the subscript legend (Gaussian,
Student’s-T and Double-Exponential), followed by the AUC.
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Gaussian process simulation

In a similar setup, the second in-silico dataset consists of N = 8000 profiles

sampled from GPs, with the same number of replicates and timepoints, among

which 600 are differentially expressed. To generate a differentially expressed

profile, we first sample the hyperparameters of the RBF kernel from separate

Gamma densities, one for each each hyperparameter. To resemble the behaviour

of BATS-sampled profiles, each Gamma density is fitted to a set of estimates

of the corresponding hyperparameter. This is a set of estimates taken from GP

training on BATS-sampled profiles. The set only includes estimates from TP-

classified profiles at FPR ≈ 0. Table 2.1 lists the fitted parameters of the Gamma

densities.

Sampling Gamma density Γ(a, b)
a (scale) b (shape)

Sampled ` 2 (lengthscale) 1.4 5.7
RBF- σ2

f (signal variance) 2.76 0.2
hyperparameter σ2 (noise variance) 23 0.008

Table 2.1: Gamma distributions from which we sample the RBF hyperparam-
eters. For instance, σ2

f is sampled from a Gamma with scale 1.4 and shape 5.7.
The hyperparameters are then used in the RBF covariance function to simulate
a profile from the GP.

The other 7400 non-differentially expressed profiles are simply zero functions

plus iid spherical Gaussian noise, with variance equal to the sum of a sampled σ2
f

and σ2, in accordance to Table 2.1. This generates a noise-only profile of com-

parative amplitude to the differentially expressed ones. Figure 2.3(d) illustrates

the comparison on the GP-sampled data.

2.3.3 Experimental data

We apply the standard GP regression framework and BATS on an experimental

dataset1 from a study on primary mouse keratinocytes with an induced activation

1GEO database accession number GSE10562.
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of the TRP63 transcription factor [Della Gatta et al., 2008]. In this study the au-

thors developed TSNI (Time-Series Network Identification), a reverse-engineering

algorithm for inferring the direct targets of TRP63. Based on the AUC of the

gene expression trajectories, 786 out of 22690 gene reporters were chosen and

ranked by TSNI according to the probability of being direct targets of TRP63.

This ranking list1 serves here as a noisy ground truth.

Preprocessing Prior to any analysis, we process the data with the RMA

(robust multi-array average) expression measure, built in the affy R-package

[Irizarry et al., 2003]. We label as “1” the top 100 position of the TSNI ground

truth ranking, as they are the best candidate direct targets of the TRP63 tran-

scription factor. This is justified in Figure 2.4, where the distribution of the

binding scores2 is denser within the first 100 ranks. Furthermore, Della Gatta

et al. [2008] validated these 100 positions via GSEA (gene set enrichment anal-

ysis) [Subramanian et al., 2005] to correlate their up/down regulation patterns

to genes that respond to TRP63 knock-downs in general. In summary, “the top

100 TSNI ranked transcripts are significantly enriched for the strongest binding

sites” [Della Gatta et al., 2008]. Figure 2.5 illustrates the comparison on the

experimental data.

2.3.4 Comparison

Ultimately, each model outputs a ranking of differential expression which is as-

sessed by an ROC curve to quantify how well in accordance to each of three ground

truths [BATS-sampled, GP-sampled, TSNI-experimental] the method performs.

The BATS model uses three different noise models, that is, the marginal dis-

tribution of the error is assumed to be either Gaussian, Student-t or double-

exponential. For the following comparisons we plot four ROC curves, one for each

noise model of BATS and one for the GP. We demonstrate that the GP ranking

1Published as a supplementary file: http://genome.cshlp.org/content/suppl/2008/05/
05/gr.073601.107.DC1/DellaGatta_SupTable1.xls

2Computed as the sum of -log2 of p-values of all TRP63-binding regions identified by ChIP-
chip experiments.
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Figure 2.4: The distribution of the binding scores is mostly dense along the first
100 positions of the TSNI ranking. Della Gatta et al. [2008] selected only the
top 100 and bottom 200 genes to look for binding sites and thus showed that the
top 100 genes have more binding sites than the bottom 200 genes. The limited
concentration in the between-ranks is due to some regions along the genome being
occupied by the same reporter in the microarray.

outperforms that of BATS with respect to the TSNI ground truth ranking on the

experimental data (Figure 2.5) and, as expected, on GP-sampled profiles (Figure

2.3(d)).

2.3.5 Discussion

On BATS-sampled data, Figure 2.3(a,b,c), we observe that the change in the in-

duced noise is barely noticeable in regards to the performances of both methods

and that BATS maintains its stable supremacy over the GP framework. This

performance gap is partially due to the lack of a robust noise model for the GP

(see section 2.4.1, Related work). Furthermore, there is a modeling bias in the

underlying functions of the simulated profiles, which contain a finite small degree

of differentiability1. This puts the GP in a disadvantaged position as it mod-

els for smooth (infinitely differentiable) functions due to its squared exponential

covariance function. Consequently, for this simulated dataset the GP is more

susceptible to capturing spurious patterns as they are more likely to lie within

1 The maximum degree of Legendre polynomials is 6.
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Figure 2.5: ROC curves for the GP and BATS methods on the experimental
data. As with the simulated data, one ROC curve and its AUC are depicted for
the GP method and three for BATS, each using a different noise model indicated
by the subscript in the legend. (a) Ground truth consists of 22690 labels among
which only 786 profiles, top-ranked by TSNI, are labeled “1”. (b) Similarly, here
only 100 profiles, top-ranked by TSNI, are labeled “1”.

its modeling range, whereas for BATS modeling the polynomials with a limited

degree acts as a safeguard against spurious patterns, most of which vary rapidly

in time.

On GP-sampled data, Figure 2.3(d), we observe a switch in terms of superiority

in favor of the GP framework, while its performance is virtually unaffected. The

GP still seems susceptible to non-differentially expressed profiles with spurious

patterns as well as differentially expressed profiles with excessive noise. However,

the polynomials of limited degree of BATS show to be inadequate for many of

the GP-sampled functions and the two BATS variants with robust noise models

(BATST , BATSDE) only alleviate the problem slightly.

Similarly, Figure 2.5 shows the GP maintaining superiority over the Gaussian

noise variant of BATS by a similar degree. The experimental data are more com-

plex and the robust BATS variants seem to offer no performance boost. Since the

ground truth focuses on the 100 most differentially expressed genes, with respect

to the induction of the TRP63 transcription factor, then these results indicate
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that the proposed GP ranking method indeed highlights differentially expressed

genes, with an attractive robustness against various kinds of noise.

2.4 Conclusions

We presented an approach to estimating the continuous trajectory of gene ex-

pression time-series from microarray data through Gaussian process regression

and ranking the differential expression of each profile through a log-ratio of two

GP marginal likelihoods, each one representing the hypothesis of differential and

non-differential expression respectively.

We compared our method to a recent Bayesian hierarchical model (BATS)

via ROC curves, on data simulated by BATS and GPs and experimental data.

The experimental data were taken from a previous study on primary mouse ker-

atinocytes and the top 100 genes of its ranking were used here as the noisy ground

truth for the purposes of assessment.

The GP framework significantly outperforms BATS on experimental and GP-

sampled data and the results show that standard GP regression can be regarded

as a standard tool in evaluating the continuous trajectories of gene expression

and ranking its differential expression.

One of our primary assumptions in this chapter was that of an unstructured

noise process. Once we explained any structure with the RBF, all that was left was

iid Gaussian spherical noise. In chapter 3 we present a framework for uncovering

any structured noise, given a partial explanation of the joint covariance. Later

in chapter 5 we will demonstrate this idea of residual analysis as a sequel to the

analysis in this chapter.

2.4.1 Related work

The proposed ranking scheme relates to the work of Stegle et al. [2010] on two-

sample data (separate time-course profiles for each treatment), where the two
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competing hypotheses are represented by two different generative models con-

nected by a gating scheme: one hypothesis assumes that the two profiles of a

gene reporter are generated by two different GPs, explaining the gene as differ-

entially expressed across the two treatments. The other hypothesis assumes that

the two profiles are generated by the same GP, thus the gene is non-differentially

expressed. The gate serves as a switch between the two generative models, in time,

to detect intervals of differential expression. This gives biologists a means for in-

vestigating the propagation of perturbations in a gene regulatory network.

Practicalities aside, this case study demonstrates that Gaussian process regres-

sion is a natural fit to the analysis of gene expression time-series and its simplicity

can still outweigh the ever-increasing, but necessary, complexity of hierarchical

Bayesian models.

2.4.2 Future work

While this case study and the proposed methodology follow a more basic ap-

proach, we note that robust mechanisms against outliers, such as the ones used

by Stegle et al. [2010] (see also Tipping & Lawrence, 2005; Vanhatalo et al., 2009),

are complementary to this work and including one would be a sensible extension

of our framework. Finally, the potential periodicity of the underlying signal sets

another interesting biological question about the behaviour of gene expression.

For this purpose, a different kind of stationary covariance function, the periodic

covariance function [MacKay, 2003, section 45.4], can be used to fit a time-series

generated by a periodic process, with the lengthscale hyperparameter interpreted

as its cycle.

2.4.3 Source code

The source code for the GP regression framework is available in Matlab code1

and as a package for the R statistical language2. The routines for the estimation

1http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/gp/
2http://cran.r-project.org/web/packages/gptk/
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and ranking of the gene expression time-series are available in Matlab1 and as

an R Bioconductor package2. The time needed to serially analyse the 22690

profiles in the experimental dataset, with just the two basic initialisation points

of hyperparameters, is roughly 30 minutes on a desktop running Ubuntu 10.04

with a 2.8GHz CPU and 3.2 GiB of memory. Since the gene expression profiles

are independently fitted, the procedure can be parallelised for N cores, cutting

the computation time down to 30/N minutes.

2.4.4 Authors contributions

Alfredo Kalaitzis (AK) designed and implemented the computational analysis

and ranking scheme presented here, assessed the various methods and drafted

the related manuscript. Neil Lawrence (NL) pre-processed the experimental data

and wrote the original Gaussian process toolkit for MATLAB and AK rewrote it

for the R statistical language. Both AK and NL participated in interpreting the

results and revising the manuscript.

1http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/gprege/
2http://www.bioconductor.org/packages/2.10/bioc/html/gprege.html
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Chapter 3

Residual component analysis

One of our primary assumptions in chapter 2 was that of an unstructured noise

process. Once we explained any structure with the RBF, the residuals were iid

Gaussian spherical noise. In this chapter we study scenarios where the noise

has structure and present the residual component analysis (RCA) framework

that generalises (probabilistic-)PCA for recovering such complex residuals when

a partial explanation of the joint covariance is given. Later in chapter 5 we

will demonstrate this idea of RCA in the context of the regression problem from

chapter 2.

Probabilistic principal component analysis (PPCA) seeks a low dimensional

representation of a data set in the presence of independent spherical Gaussian

noise. The maximum-likelihood solution for the model is based on an eigenvalue

problem on the sample-covariance matrix. In this chapter we consider the situa-

tion where the data variance is already partially explained by other factors. For

instance, these can be sparse conditional dependencies between the covariates,

or temporal correlations between datapoints in a time-series; ultimately, these

factors leave some residual variance unexplained.

We address the problem of decomposing only the residual variance into its

eigenvector components through a generalised eigenvalue problem (GEP), which

we call residual component analysis (RCA) [Kalaitzis & Lawrence, 2011a, 2012].

We explore a range of new algorithms that arise from the framework, including
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one that decomposes the covariance of a Gaussian distribution into a low-rank and

a sparse-inverse component. We show that principal component analysis (PCA),

canonical correlation analysis (CCA) and linear discriminant analysis (LDA) can

be derived as special cases of our algorithm. Furthermore, we discuss a deeper

connection of these methods on the basis of oblique (non-orthogonal) projections

steered by the structure of the explained covariance term.

Roadmap

We start by giving some background on probabilistic principal component analysis

(PPCA) in section 3.1, a Gaussian model that provides a probabilistic interpre-

tation of a classical linear approach on dimensionality reduction. In the same

section we also discuss dual -PPCA, a basic linear model that is the dual coun-

terpart of PPCA (that is, it describes the relationships between datapoints as

opposed to features). This will lay the basis for any kernel -based approach that

we might attempt to devise in the future.

The shortcomings of the simplistic low-rank plus diagonal covariance will be-

come clear while describing some useful manifestations of linear mixed-effects

models, in section 3.2. This will motivate the use of a more general, low-rank

plus positive definite, covariance structure along with an algorithm for learning

the low-rank component when the positive definite term is known or estimated.

In section 3.3 this idea will crystallise in the form of a formal proof on maximising

the likelihood of this covariance structure with respect to the low-rank part.

Aside from our contribution in endowing this structure with a probabilistic in-

terpretation, termed residual component analysis (analogous to the PPCA-PCA

relationship), the task of explaining away structure with some fixed covariates in

linear models has long been explored in the statistics and signal processing liter-

ature. Therefore, we also aim to uncover a deep connection between any problem

that can be cast as a PCA problem (sec. 3.3.3), their probabilistic counterparts

and oblique projections (sec. 3.3.2).

At that point, we will have justified RCA as a probabilistic model that unifies
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many different algorithms (chapter 4), as opposed to it being a mere algorithmic

trick on an eigenvalue problem. This will lay the basis for using RCA in larger

graphical models and potentially formulate Bayesian extensions (for example,

with sparsity priors on the loadings) or kernelised generalisations through the dual

version of the RCA theorem. While this chapter focuses on the theory of RCA,

in chapter 5 we will demonstrate some of these ideas on the recovery of a protein-

signaling network, the modeling of gene expression time-series, the recovery of

the human skeleton from motion capture 3-D cloud data, the recovery/mapping

of human poses from silhouettes and the discovery of collusion patterns within

voting data from the annual Eurovision song contest.

3.1 Background

3.1.1 Probabilistic principal component analysis

Probabilistic principal component analysis (PPCA) decomposes the covariance of

a multivariate random variable y ∈ Rp, into the sum of a low-rank term WW>

and a spherical noise term σ2I. The underlying probabilistic model assumes that

each datum is Gaussian-distributed:

y ∼ N
(
0,WW> + σ2I

)
, (3.1)

where, without loss of generality, we center the datapoints (mean is zero) and

W ∈ Rp×q, with q < p, induces a reduced rank structure on the covariance.

Thereby, the log-likelihood of the centered dataset Y ∈ Rn×p of n datapoints and

p features or variables is:

p(Y) =
n∏
i=1

N
(
yi |0,WW> + σ2I

)
. (3.2)

It was simultaneously and independently conjectured by Roweis [1998] and proven

by Tipping & Bishop [1999] that this marginal likelihood, as a function of the load-
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ings W and for a particular latent dimensionality k = q, is maximised when

Ŵ = UqLqR
> , (3.3)

where Uq is the eigenvector matrix with its columns being the q principal (or-

thonormal) eigenvectors of the sample-covariance matrix

Ŝ , 1
n
Y>Y ,

ordered by the magnitudes of the corresponding eigenvalues. The q × q diagonal

matrix Lq has elements

Lq,ii =
√
λi − σ2 , (3.4)

with λi being the i-th largest eigenvalue of the sample-covariance matrix Ŝ and

σ2 being the noise variance, followed by an arbitrary orthogonal/rotation matrix

R. Note that the maximum-likelihood solution of the covariance in eq. (3.2), irre-

spective of q, is expressed in terms of the singular value decomposition (SVD, see

appendix A.1) of Ŵ, thus the maximum-likelihood solution is rotation-invariant,

that is,

ŴŴ> = (UqLqR
>)(RLqU

>
q ) = UqL

2
qU
>
q

leads to the same positive semi-definite component in the covariance, for any

rotation matrix R. Intuitively, the matrix W spans the principal subspace or

latent space within the data space, with respect to which, the latent subspace

basis can have any relative (rigid) rotation that does not affect the covariances

between the observed variables/features.

Generative low-rank models Underlying this model is an assumption that

the data set is generated as

Y = XW> + E ,
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where X ∈ Rn×q is the matrix of the low-dimensional latent representations

x ∈ Rq of the datapoints y ∈ Rp and E is the matrix of noise variables,

Eij ∼ N
(
0, σ2

)
.

We diverge momentarily to note a tight connection to the problem of multi-

output linear regression,

yi = Wxi + ε . (3.5)

The main difference is that the input to the low rank system is now unknown

(instead of the output and the system has more outputs than inputs, hence there

is some redundancy in the system output.

Under this linear regression view, we can say that the “outputs” of the low-

rank system are conditionally independent given the inputs. This redundancy

confounds the underlying structure of the observed covariates. Loosely speak-

ing:

Anything said by a set of highly agreeing variables can be equally ex-

pressed by fewer variables, up to a small error.

See Figure 3.1 for a visualisation. This idea motivated the study of low-rank

models like PCA [Jolliffe, 2002; Hotelling, 1933; see also Pearson, 1901 for histor-

ical purposes], factor analysis [Bartholomew et al., 2011; Basilevsky, 1994] and

canonical correlation analysis [Hotelling, 1936] (see section 4.2 for a review).

The combination of the linear mapping and Gaussian iid noise assumption

gives the data likelihood:

p(Y |X,W, σ2) =
∏
i

N
(
yi |Wxi, σ

2I
)
, (3.6)

where i indexes the rows of Y and X. Then, the marginal likelihood from eq. (3.2)

is obtained by inducing a factorised Gaussian spherical prior1 on (each row-vector

1 We can use a N (0, I) prior here for simplicity without loss of generality, since the func-
tional form of p(Y) remains unchanged for a general Gaussian prior.

40



3. RESIDUAL COMPONENT ANALYSIS

Figure 3.1: The redundancy in the observations (green dots) of A,B and C
take the form of a linear manifold (red plane), spanned by the two principal
eigenvectors of the sample-covariance (red arrows). The eigen-basis coordinates
faithfully represent the original observations.

of) X

p(X) =
∏
i

N (xi |0, I) (3.7)

and averaging over X with respect to its prior (see appendix A.1):

p(Y) =

∫
dX p(Y |X,W, σ2) p(X) , (3.8)

where, for the rest of the chapter, we suppress the parameters of the marginal

distribution p(Y |W, σ2) to reduce cluttering. The graphical model of PPCA is

illustrated in Figure 3.2(a): The interpretation of the marginal p(Y) here is that

in the system there exists a fixed1 and unknown linear mapping W and each

sample yi is a contribution from a single latent point xi. The set of features of xi

are weighted differently (by a different row of W) for each output or component

of yi, see eq. (3.5).

1As in, non-random.
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Figure 3.2: The shaded nodes distinguish the observed variables from the latent
ones. (a) Graphical model of probabilistic PCA. The joint distribution factorises
across the n datapoints (indexed by i) and the conditional likelihood is governed
by the mapping W. (b) Graphical model of dual PPCA. The joint distribution
factorises across the p features (indexed by j) and the conditional likelihood is
governed by the latent coordinates X.

3.1.2 Dual PPCA

There is also an alternative interpretation of the marginal p(Y), see Figure 3.2(b):

In the system, there exists a fixed1 set of latent points X and each output y′j

(column of Y) is a contribution from all latent features (columns) in X, such

that

y′j = Xwj + ε ,

where the columns xj are combined differently (by a different row wj of W) for

each output y′j. This was the motivation for Lawrence [2005] when he showed that

the PCA solution is also obtained for likelihoods of a dual form, recovered when

we average over the loadings W with a (similarly) factorised Gaussian isotropic

prior p(W) =
∏

j N (wj |0,Σw), with diagonal Σw, instead of averaging over the

latent points X:

p(Y)=

∫
dW p(Y|X,W,σ2) p(W) =

p∏
j=1

N
(
y′j |0,XΣwX> + σ2I

)
, (3.9)
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where j indexes the columns of Y and the parameters in the marginal likelihood

are suppressed as before.

Identifiability Because of the diagonal prior covariance Σw, there is an inde-

terminacy between X and Σw in the maximum-likelihood solution, meaning that

XΣ
1/2
w would also be a solution and there is no way to distinguish between the

two. A principled way to work around this is to assume that X>X = I which is

equivalent to seeking a MAP solution for the latent variables under a spherical

Gaussian prior on x; we stick to this approach for the sake of simplicity. The

marginal likelihood is now parameterised by the latent points X instead of the

loadings W and the factorisation now implies conditional independences across

the p features, as opposed to the n datapoints, meaning that the covariances are

expressed between datapoints and not features.

Dual interpretation This dual formulation of PCA1 is also known as princi-

pal coordinate analysis as it solves for the the latent coordinates instead of the

principal subspace basis and the maximum-likelihood solution is now:

X̂ = U′qLqR
> ,

where Lq and R is defined as in eq. (3.3) and the columns of U′q are the first

q left-singular vectors of Y, or equivalently, the q principal eigenvectors of the

sample-inner product (feature covariance) matrix YY> (see SVD, appendix A.3).

The rotation R introduces a second kind of indeterminacy, but as we discuss in

a later section, the rotation is not important (set as the identity) since we most

often care about the relative positions of the latent variables.

Connection to the Gaussian process The underlying model in eq. (3.9)

is in fact a product of independent Gaussian processes with linear covariance

functions, see section 2.2.1 and [Rasmussen & Williams, 2006]. In this form, the

1This contrasts the typical primal form. The name refers to the duality between the sample-
space (row-space) and the feature-space (column-space) of a typical design matrix Y with its
rows as samples.
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generalisation to a non-linear mapping from the latent space X to the observed

space Y now seems almost straightforward:

p(Y) =

p∏
j=1

N
(
y′j |0,K + σ2I

)
,

where we have replaced the (bi-)linear covariance function, defined by the inner

product between samples x>x′, with a non-linear covariance function k(x,x′),

see section 2.2.2 for an example. The resulting model is known as the Gaussian

process latent variable model (GPLVM) [Lawrence, 2005], most notably used for

non-linear dimensionality reduction [Lawrence, 2004], with Bayesian extensions

thereof [Damianou et al., 2011; Titsias & Lawrence, 2010].

3.2 Low-rank plus positive definite covariance

Both primal and dual interpretations involve maximising Gaussian likelihoods of

a similar covariance structure, namely, that of a low-rank plus a spherical noise

term. In many parts of this chapter we motivate the framework while focusing

on the dual case,

XX> + σ2I ,

without loss of generality for the primal case. Where possible, we give the primal

cases of the equations as well. The focus of this chapter is a more general form

of the above covariance structure given by

dual: XX> + Σ (3.10)

primal: WW> + Σ , (3.11)

where Σ is a positive definite matrix. We are motivated by scenarios where the

data variance is already partly explained by the covariance term Σ and we wish

to study the components of the residual variance. We show that our ideas can be

applied for both primal and dual representations and the representation of choice

depends on the information that we wish to encode in Σ.
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3.2.1 Motivating examples

Consider the general functional form of a linear mixed-effects model [Pinheiro &

Bates, 2000] with two factors X,Z and noise E:

Y = XW> + ZV> + E , (3.12)

where Z is a matrix of known covariates (fixed effects) with some predictive

power for Y, and X is a matrix of latent variables (random effects), see also

[Fusi et al., 2012] for an application with Gaussian processes on genome-wide

association studies. This linear mixed-effects model will serve as a conceptual

reference point for the rest of this chapter and it is illustrated in Figure 3.3(a).

In this section, we mention a few specific forms that eq. (3.12) can take for various

applications including one of visualisation and computational biology.

(a) (b) (c)

Figure 3.3: (a) A linear mixed-effects model. Fixed effects z partially explain
the variance in the observation y through the mapping defined by V. The residual
variance is then explained by random effects x up to noise. (b) Probabilistic CCA
model. Observations y1 and y2 share the latent variable z, thus the variance in
the joint data is explained solely by z up to noise. In other words, the model
assumes no structure within y1 or y2 but only between their two covariate sets.
(c) Linear multi-view learning model, also known as inter-battery factor analysis
[IBFA, Ek et al., 2008; Klami & Kaski, 2006; Tucker, 1958] , where observations
y1 and y2 share the latent variable z but also have private latent variables x1

and x2 respectively.

Akin to averaging over the loadings W as we did in eq. (3.9) (or over the

factors X as in eq. (3.8)), in the mixed-model case we can also average over the
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loadings V (or factors Z for the primal) to recover the likelihood:

(dual) p(Y) =

p∏
j=1

N
(
y′j |0,XX> + Σ

)
(primal) p(Y) =

n∏
i=1

N
(
yi |0,WW> + Σ

)
,

(3.13)

where the positive definite matrix Σ assumes the role of the explained vari-

ance:

(dual) Σ = ZZ> + σ2I

(primal) Σ = VV> + σ2I .

For instance, the representation of Y in eq. (3.12) can manifest as:

(a) a set of protein activation signals under various external stimuli (which make

the data heterogeneous). In this primal scenario, V is the identity matrix

and there are as many effects (columns) in Z as there are covariates in Y.

The factors in Z are special in that they share a sparse network of conditional

dependencies. Sparse dependencies are interesting in terms of learning parsi-

monious models but in realistic scenarios the sparsity can be confounded by

the heterogeneous experimental conditions (the various stimuli) under which

Y is generated. We encode these confounders as the factors (columns) of

X. Intuitively, if the confounders are fewer than our observed covariates and

the confounders somehow affect the observed space in a linear fashion XW>,

then the variance explained solely by X is a low-rank term in the marginal

covariance, see eq. (3.13, primal). Another way to argue about this is by

seeing how the nominal values of our activation signals are forced to diverge

from their otherwise true values: Because there are always fewer confounders

than covariates, there is redundancy in the way the confounders express in

the observed space and, consequently, a low-rank structure in the covariance

of our measurements.

Returning to the sparse dependencies, we are led to parameterise the ex-
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plained covariance term as:

ΣGMRF = Λ−1 , (3.14)

where Λ is sparse, thus recovering a low-rank plus sparse-inverse parameter-

isation of the covariance in eq. (3.13). A sparse precision inscribes a sparsely

connected Gaussian Markov random field (GMRF) or a Gaussian graphical

model of the factors in Z, such that each row zi is distributed fromN (0,Λ−1),

where the precision matrix Λ is sparse [Lauritzen, 1996];

(b) a set of n gene expression profiles as rows, where each profile concatenates

two time-series of p1 timepoints sampled under control conditions plus p2

timepoints sampled under test conditions. In this dual scenario, the instan-

tiation

ΣGram = K + σ2I ,

for a general Gram matrix K, expresses temporal correlations in a time-series

dataset, with Kij = k(zi, zj) for some covariance function k : Rp × Rp → R.

This approach gets close to the common practice of explicitly subtracting

the result of a simpler model from the data and then analyzing the residual

separately;

(c) a set of n patients’ gene expression measurements of p genes, with each row

of Z being the set of genotypes1 of each patient and each row of X being

some unobserved environmental effects (confounders), see [Fusi et al., 2012].

In each of these cases, the benefit of analysing the components of the residual

variance XX> (primal: WW>), given the explained variance Σ or some esti-

mate thereof, is twofold: on the one hand, learning about the confounders and

potentially correcting our data for their effects and on the other hand, learning

Σ when we restrict it to a specific type of structure (e.g. sparse-inverse). This

raises the following two questions:

1. Given Σ, how can we solve for X (respectively W)?

And more importantly:

1 For example, SNP (single-nucleotide polymorphism) data.
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2. For what forms of Σ can we formulate useful new algorithms for ma-

chine learning?.

We refer to the forms of Σ as instantiations for the rest of this chapter and denote

them by a subscript.

3.2.2 Proposed approach

First, the key theoretical result of this chapter in Section 3.3.1 shows that the

maximum-likelihood solution for X (primal: W) is simply based on a gener-

alised eigenvalue problem (GEP) of the sample-covariance matrix and explained

covariance Σ. Hence, the low-rank term XX> of the marginal covariance can be

optimized for an arbitrary fixed positive definite Σ. We call this data analysis

approach residual component analysis (RCA). De Bie et al. [2005] present a nice

review on a range of GEPs in the machine learning literature.

Secondly, from a unification viewpoint the RCA approach is interesting as it

connects a few classical methods and their probabilistic counterparts in the litera-

ture and also gives rise to a range of new algorithms suited for the aforementioned

scenarios. For instance, for scenario (a) we propose an EM/RCA hybrid algo-

rithm in section 5.1.1 for estimating both the low-rank and sparse-inverse terms.

For scenario (c) we present a pure RCA treatment in Section 5.2: the residual

basis of interest is found with a single estimate via the GEP solution. The focus

of chapter 5 and is on demonstrating the effectiveness of the algorithms on a

variety of datasets and application domains.

3.2.3 Background

GLASSO The low-rank plus inverse-sparse parameterisation, by eqs. (3.13-

3.14), extends the Graphical Lasso (GLASSO) algorithm [Banerjee et al., 2008;

Friedman et al., 2008]. GLASSO is a MAP approach to maximising the Gaussian

likelihood, as a function of the covariance, with an l1-penalty (sparsity-promoting)
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term on the precision matrix Λ:

max
Λ

{
ln|Λ| − tr(ŜΛ)− λ||Λ||1

}
, (3.15)

where Ŝ is the sample-covariance matrix. Due to the L1 restriction on the solution

norm, the stationarity conditions no longer have a closed form. Nonetheless,

the problem is still convex and a global solution is found efficiently through

the iterative use of least angle regression [Hastie et al., 2009]. Sparse-inverse

structures capture relations between variables that are not well characterized by

low-rank forms. As such, the combination of sparse-inverse and low-rank can be

a powerful one with applications in computational biology and visualisation, as

we demonstrate in chapter 5. We also point to the work of Stegle et al. [2011] for

a different approach based on a multiplicative — Kronecker product — structure

in the covariance.

PPCA We also note a few more connections to well-studied algorithms for

linear dimensionality reduction. The obvious connection to PPCA is recovered

by

ΣPCA = σ2I .

Bi-directed graphs If the covariance term Σ is assumed to be sparse (as op-

posed to sparse-inverse), then this relates to the problem of structure learning

for Gaussian bi-directed graphs [Silva, 2011]. Such graphs encode constraints of

marginal independence and are of interest due to being closed under marginal-

isation (that is, the graph retains its set of independencies over the remaining

variables), [Richardson & Spirtes, 2002].

PCCA More interestingly, probabilistic canonical correlation analysis (PCCA)

[Bach & Jordan, 2002, 2005] is recovered by

ΣCCA =

[
Y>1 Y1 0

0 Y>2 Y2

]
, for the concatenation Y =

[
Y1

Y2

]
.

49



3. RESIDUAL COMPONENT ANALYSIS

We prove this non-trivial statement in section 4.3.

Inter-battery factor analysis On a similar note, if

Y =

[
X1W

>
1 + ZV>1 + E1

X2W
>
2 + ZV>2 + E2

]
,

then the partitions of Y have their own associated private latent spaces of X1 and

X2, in addition to the standard shared latent space of Z found in CCA, see Figure

3.3(c). This is in fact a special case of the multi-view learning model of Ek et al.

[2008]; the linear case was more closely studied by Klami & Kaski [2006, 2008]

and is known as extended probabilistic-CCA. In the statistics literature the model

is known as inter-battery factor analysis (IBFA) [Browne, 1979; Tucker, 1958].

To train this type of model, an iterative treatment of RCA can be formulated; we

give an outline here: on step one, solve for the weights V of the shared components

by setting the explained covariance term as

ΣIBFA =

[
W1W

>
1 0

0 W2W
>
2

]
+ σ2I

in the GEP of the concatenated data sample-covariance matrix. On step two, for

each of d ∈ {1, 2} views solve for the weights Wd of the view-specific components

by setting

ΣIBFA = VdV
>
d + σ2I

in the GEP of the sample-covariance associated with Yk. This iterative-RCA

algorithm is reminiscent of the expectation-maximization (EM) algorithm for op-

timising extended-PCCA, as both approaches maximise the likelihood by fitting

components into the residual. We provide more details of iterative-RCA algorithm

in section 4.6.

Coloured noise models Lastly, we mention a link to existing work on coloured

noise models from the signal processing literature, that is, linear models that as-

sume a full noise matrix in the marginal covariance [Chen & Wang, 2006; Hu &
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Loizou, 2003]. Such models mitigate noise effects by performing oblique (non-

orthogonal) projections of the data onto the signal subspace but along the direc-

tion of the noise subspace [Behrens & Scharf, 1994]. As we discuss in section

3.3.3, oblique projections have an important role in interpreting the proof of the

RCA theorem as well as providing a geometric interpretation of RCA as a data

analysis tool. Ultimately, it turns out that the GEP of RCA is strongly tied to an

oblique projection as it estimates either the oblique-projected data (dual) or the

projection basis (primal), but the theorem is novel as it introduces a probabilistic

interpretation of the recovered oblique projector subspace in the same way that

PPCA enriched classical PCA, for both primal and dual representations.

3.3 Maximum-likelihood residual component anal-

ysis

We show the main theoretical results on the dual case, without loss of generality

for the primal case.

3.3.1 RCA theorem

Dual case theorem

For a positive-definite Σ with a spectral radius at most as large as that

of 1
p
YY>, the maximum-likelihood estimate of the parameters X of

the marginal p(Y) =
∏p

j=1N
(
y′j |0,XX> + Σ

)
is

X̂ = ΣS(D− I)1/2 , (3.16)

where S is the solution to the GEP,

1
p
YY>S = ΣSD , (3.17)

and its columns are the generalised eigenvectors (of 1
p
YY> and Σ) and
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D is the diagonal matrix of the corresponding generalised eigenvalues.

Proof The log-marginal likelihood ln p(Y), as a function of the latent variables

X, is:

L(X) = −p
2

ln|K| − 1

2
tr
(
YY>K−1

)
− np

2
ln(2π) ,

where K , XX> + Σ. Since Σ is positive-definite, we can consider its eigen-

decomposition:

Σ = UΛU>, (3.18)

where U>U = UU> = I and Λ is diagonal (see appendix A.3).

We proceed by rotating the marginal covariance K from the data-space basis

to the eigen-basis U and scaling by the eigenvalues Λ:

K̃ , Λ−1/2U>KUΛ−1/2

= Λ−1/2U>
(
XX> + Σ

)
UΛ−1/2

=
(
Λ−1/2U>X

) (
X>UΛ−1/2

)
+ I

= X̃X̃> + I ,

(3.19)

where we have defined the rotated and scaled latent points

X̃ , Λ−1/2U>X . (3.20)

Therefore, from the inverse-transformation of K in eq. (3.19) we get the determi-

nant and trace

|K| = |K̃||Λ|

tr
(
YY>K−1

)
= tr

(
Λ−1/2U>YY>UΛ−1/2K̃−1

)
= tr

(
ỸỸ>K̃−1

)
,
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where, in a similar manner, we have transformed the data

Ỹ , Λ−1/2U>Y . (3.21)

Now we are in position to re-parameterise the log-marginal likelihood as a

function of the transformed variables X̃ and Ỹ:

L(X̃) = −p
2

ln
(
|K̃||Λ|

)
− 1

2
tr
(
ỸỸ>K̃−1

)
− np

2
ln(2π) .

We know how to maximize this new form of the log-likelihood, by following a

route similar to the proof of Tipping & Bishop [1999]: Taking the gradient with

respect to the new parameters X̃ (see Matrix derivatives, appendix A.2),

∂L

∂X̃
= K̃−1ỸỸ>K̃−1X̃− p K̃−1X̃ ,

gives the stationary point

X̃ =
1

p
ỸỸ>K̃−1X̃ . (3.22)

Next, we replace X̃ in eq. (3.22) with its SVD,

X̃ = ṼLR> , (3.23)

which gives

ṼLR> =
1

p
ỸỸ>

(
ṼL2Ṽ> + I

)−1

ṼLR> .

By applying1 the Woodbury matrix identity (see appendix A.3.3) and simplifying,

we see that maximisation relies on the regular eigenvalue problem:

1

p
ỸỸ>Ṽ = ṼD, where D , L2 + I . (3.24)

Now, we focus on relating the stationary point of X̃ to that of X. First, we

1Here, it is assumed that L is square and diagonal and Ṽ is rectangular. If we start this
step with an orthonormal Ṽ but rectangular L then we end up with Ṽq in eq. (3.24), keeping
only the first q columns.
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express the eigenvalue problem of eq. (3.24) in terms of YY>. To do that, we

use the definition of X̃ from eq.(3.20) to obtain the SVD of X:

X =
(
UΛ1/2Ṽ

)
LR> = VLR> , (3.25)

where V , UΛ1/2Ṽ are the left-singular vectors of X. This makes explicit the

relationship between the row-spaces of X and X̃. Then, we substitute Ỹ and

Ṽ with their definitions in eq.(3.24) and use the inverse of Σ from eq.(3.18) to

recover the equivalent eigenvalue problem:

1
p

(
Λ−1/2U>Y

) (
Y>UΛ−1/2

) (
Λ−1/2U>V

)
=
(
Λ−1/2U>V

)
D

1
p
YY>

(
UΛ−1U>

)
V = VD

1
p
YY>Σ−1V = VD .

To conclude the proof, we define S , Σ−1V to recover the desired symmetric

form of the GEP:
1

p
YY>S = ΣSD .

Based on the SVD of X in eq. (3.25), now we can recover X up to rotation R —

which for simplicity is normally set to the identity — and rank q via the first q

generalised eigenvectors of YY>:

Xq = VqLq = ΣSqLq = ΣSq(Dq − I)1/2 . �

Primal case theorem The algebraic symmetry between the primal and dual

formulations of the marginal likelihood, eq. (3.13), allows us to easily extend the

theorem to the primal case. Specifically,

the maximum-likelihood solution of the parameters W of the marginal

p(Y) =
∏n

i=1N
(
yj |0,WW> + Σ

)
, has the same functional form,

Ŵ = ΣS(D− I)1/2 , (3.26)

54



3. RESIDUAL COMPONENT ANALYSIS

where the columns of S are the generalised eigenvectors of the GEP:

1

n
Y>YS = ΣSD . (3.27)

Commentary To summarise the proof strategy, we start with the marginal

p(Y) with a low-rank plus full noise covariance structure and we re-express it

in terms of a low-rank plus spherical noise covariance, by essentially rotating

and scaling the data-space as per the spectral decomposition of the explained

covariance term Σ. This results in the transformed marginal1 p(Ỹ) with a low-

rank plus diagonal noise covariance structure, as in PPCA. At this point, we

can use the main result of Tipping & Bishop [1999] to compute the maximum-

likelihood estimate of the parameters of the new distribution. Finally, using

the estimates and their relation to the original parameters, we can solve for the

parameters of the original distribution.

Aside from the generality of Σ, we note a subtle difference from the PPCA

solution for W in eq. (3.3, p. 39): Whereas PPCA in eq. (3.4) explicitly subtracts

the noise variance from the q retained principal eigenvalues, RCA in eq. (3.19)

implicitly incorporates any noise terms into Σ and standardises them when it

projects the total covariance onto the eigen-basis of Σ. Thus we get a reduction

of unity from the retained generalised eigenvalues in eq. (3.16). As we discuss

in more detail in section 4.3, for Σ = I the PPCA and RCA solutions are the

same.

3.3.2 Posterior expectation as an oblique projection

We know how to learn the mapping from the latent to the observed space and

now we wish to infer the distribution over the latent variables; we use the primal

picture for this, see Figure 3.3(a), p. 45.

Specifically, we wish to infer the posterior mean and covariance of p(x|y): By

Bayes’ theorem and conjugacy (both the likelihood p(y|x) and prior p(x) are

1This is a linear transformation of the distribution domain, so the mode is preserved after
the transformation.
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Gaussian), the posterior distribution p(x|y) is also Gaussian. Hence, comput-

ing the posterior relies on completing the square in the exponent of the joint

distribution:

p(x |y) ∝ p(y |x) p(x) = N (y |Wx,Σ) N (x |0, I) ,

where y is a centered datapoint and in the likelihood we have averaged over the

fixed effects z so the explained covariance becomes Σ = VV> + σ2I. Isolating

the quadratic and linear terms in x in the exponent,

ln p(x|y) ∝ −(p+ 1) ln(2π) − |Σ| − (y −Wx)>Σ−1(y −Wx) − x>x

= C − y>Σ−1y + 2x>W>Σ−1y − x>(W>Σ−1W + I)x ,

gives the covariance and mean of the posterior distribution p(x|y):

Σx|y = (W>Σ−1W + I)−1

E [x|y] = Σx|yW>Σ−1y .
(3.28)

Similarly in the dual picture, Figure 3.2(b) (recall that Σ = ZZ> + σ2I), we

learn the latent coordinates X via RCA and then we can infer the posterior over

a loadings vector w conditioned on a particular output y′:

Σw|y′ = (X>Σ−1X + I)−1

E [w|y′] = Σx|y′X
>Σ−1y′ .

The take-away message of this section is that when Σ = I (reduced to PCA),

the posterior expectation can be seen as the coordinates part1 of an orthogonal

projection on the column space of W with a bias towards zero due to the Gaus-

sian prior. Similarly, what is reflected from the functional form of the posterior

expectation in eq. (3.28) and its dual counterpart is the coordinates part of a

biased oblique projection. This is illustrated on a toy example in the next section

but more details follow.

1One way the projection formula can be broken down is [Basis of subspace in Rp as the
coordinate system] × [Coordinates].
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Explained covariance term as a null-steering operator

The following point is important, so we reproduce the primal form of the biased

oblique projector :

W(W>Σ−1W + I)−1W>Σ−1 (3.29)

which is similar to eq. (A.20) in appendix A.3.2, where we review the relevant

properties of oblique projectors. Clearly, we are stretching the definition of a pro-

jector here, for two reasons. The first being that — strictly speaking — a projector

must be idempotent (equal to its square) whereas eq. (3.29) is biased (due to the

additive I). Additionally, by terminology introduced in the same appendix, Σ−1

plays the role of a null-steering operator, that is, an orthogonal projector that

nulls everything in the subspace spanned by the fixed-covariates: any observation

in Rp is first applied with this null-steering operator that orthogonally projects

onto the orthogonal complement of the null-space of the oblique projector. This

is the null-space that governs the directions along which an oblique projection

occurs and, with Σ−1 as the operator, the projecting directions are the same as

the principal components of the explained covariance Σ. This brings us to the

second reason: we must stretch the biased projector’s definition to encompass any

positive definite Σ−1 as a pseudo-null-steering operator. At this point, it would be

useful to think of the effect of multiplying with an inverse-covariance (precision).

Assuming that we normalise the fixed effects and data such that the spectral

norm ||Σ−1|| = 1, then the spectrum of Σ−1 lies anywhere in [0, 1], whereas the

spectrum of a conventional null-steering operator (orthogonal projector) is binary

(that is, it lies in {0, 1}) and only the eigenvectors of non-zero eigenvalues are

intact. The added twist is that, since the magnitudes of the principal projecting

directions are scaled by the principal eigenvalues then the pseudo-null-steering

operator, and ultimately the biased oblique projector, can also act anywhere in

between the ends of the spectrum.
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Example: Dual-RCA on a toy dataset

We demonstrate first a proof of concept with a 3D toy-dataset illustrated in

Figure 3.4. We consider the case where variables Z are observed (fixed effects)

or just estimated (for example, after an EM iteration) so the sample-covariance

of Y is partially explained by the covariance of Z and noise. The take-away

message is that RCA accounts for this covariance structure in Y and gives a point

estimate of the latent variables X up to rotation, but with respect to the residual

covariance in Y not explained by Z and noise. Another point of this example

is to visualise the end result of an actual oblique projector. The reconstruction

error depends on the variance σ2 of the induced noise and the number of samples

in the dataset.

3.3.3 Corollary for equivalence to PCA

In terms of objective functions, it is well known that PCA maximises the variance

of the reduced dataset when projected on the eigen-basis of the sample-covariance

matrix [Bishop, 2006; Hastie et al., 2009; Jolliffe, 2002]; whereas Canonical Corre-

lation Analysis (CCA) maximises the correlation of two datasets when projected

on the generalised eigenvectors of a particular covariance structure. We review

CCA in section 4.2.

RCA objective function There is an easy way to solve the GEP of RCA; it

involves casting it into the equivalent form of a regular eigenvalue problem and

then solving for the generalised eigenvectors. It also explicitly shows the objective

function of RCA through a direct connection with PCA. More specifically, it

follows from eq. (3.27) that

1
n

Y>YS =
(
UΛ1/2

) (
Λ1/2U>

)
SD

1
n

(
Λ−1/2U>

)
Y>YS =

(
Λ1/2U>S

)
D

1
n

(
Λ−1/2U>Y>

) (
YUΛ−1/2

)
S̃ = S̃D

1
n
Ỹ>ỸS̃ = S̃D ,

(3.30)
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(a) (b)

(c)

Figure 3.4: RCA on a 3D toy-dataset of 500 samples. Random effects X (blue)
are hidden and fixed effects Z (red) are given. Each set of variables lies in a two-
dimensional linear manifold in the 3D space of the observed variables Y (green).
Each plane is spanned by its variables’ principal components (arrows).
(a) Observed variables Y are generated through a linear combination of effects
X,Z and iid Gaussian spherical noise.
(b) True values of X (green) and estimates by RCA (red) for σ2 = 10−2. The
Procrustes algorithm is used on the estimated X for visualization purposes to
find an appropriate rotation that best matches the true X.
(c) The mean square error of the recovered X as a function of the induced noise
variance σ2, for two sample sizes.
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where S̃ , Λ1/2U>S is a transformed version of the generalised eigenvectors and

Ỹ are the transformed data introduced in eq. (3.21). Clearly, this is the PCA

eigenvalue problem on the sample-covariance of the transformed data. �

More generally, we have shown the corollary that:

Every RCA problem can be cast into an equivalent PCA problem.

We can append “and vice versa” at the end of the corollary that would work only

for a fixed U and Λ, otherwise a PCA problem can be cast into infinitely many

RCA problems. But if we stick to a particular strategy1 for inverse-transforming

the data-space then we can claim that there is a bijection between the two sets

of problems, thus showing that:

The sets of PCA and RCA problems are of the same size.

RCA vs simply transforming the data Tempting as it may be, we do not

actually recommend solving the equivalent PCA problem from eq. (3.30), as it

obviously requires an explicit transformation of the data. Note instead that RCA

does not “touch” the data, a virtue which is highlighted especially when very

large matrices are involved, and/or RCA is a step to some iterative scheme where

preserving the sample covariance matrix is crucial to the larger algorithm, for

instance, see Section 4.6 and Chapter 5.

Potential directions towards unification The above statement guarantees

that any problem that can be cast as an RCA problem can also be solved via

PCA. There is now potential to establish new connections and strengthen existing

ones between classical models as well as their probabilistic counterparts, includ-

ing Bayesian-linear extensions such as Bayesian-PCA [Bishop, 1999], Bayesian-

CCA [Klami & Kaski, 2007; Virtanen et al., 2011; Wang, 2007] and similarly

through the dual-RCA for kernelised (non-linear) extensions such as the GPLVM

[Lawrence, 2005], kernel-PCA [Schölkopf et al., 1997] and kernel-ICA [Bach &

1Namely, for a fixed U and Λ there is a bijection between the set of covariances of size p
and the set of pairs of covariances such that Ỹ>Ỹ 7→

(
Y>Y,UΛU>) as per eq. (3.30).

60



3. RESIDUAL COMPONENT ANALYSIS

Jordan, 2002]. Linear models can hardly be considered state-of-the-art and ker-

nelised approaches are of special interest in the machine learning community as

they allow us generalise classical linear methods to model non-linear relationships

between datapoints with many practical applications in complex domains (e.g.

biomedicine, economics).

A geometric interpretation using oblique projectors

As we mentioned in section 3.2.3, oblique projections play a important role in

interpreting the proof of the RCA theorem and bring geometrical insight to the

study of RCA solutions, to which we dedicate chapter 4. We review some math-

ematical properties of oblique projectors in appendix A.3.2.

We also saw in section 3.3.2 that the posterior expectation of RCA is strongly

tied to an oblique projection as it estimates either the oblique-projected data

(dual) or the projection basis (primal). The RCA theorem is novel as it introduces

a probabilistic interpretation of the recovered projector subspace in the same way

that PPCA enriched classical PCA for both primal and dual representations.

Thereby, we distinguish the probabilistic interpretation of RCA from its classical

origins in generalised projection methods, which are not as familiar in machine

learning as they are to the signal processing community [Behrens & Scharf, 1994;

Chen & Wang, 2006; Hu & Loizou, 2003].

In Figure 3.4 we can directly read-off the geometric interpretation of the

operation in RCA: the eigen-basis of the fixed variables dictates the direction at

which the data are projected onto the basis that explains the maximum residual

variance. From a physical viewpoint, this can be seen as an oblique projection

akin to a light projector displaying onto a wall at an oblique angle. The RCA proof

shows us exactly the mechanics of this operation: First, the data are transformed

such that the oblique angle of the “projector”, and scaling thereof, are undone.

Then PCA on the transformed data takes care of the projection onto the final

surface.

Taking this analogy one step further — and this is where the spectral theorem
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really comes into play — the properties of the positive definite Σ−1 are uniquely

characterised by its spectral decomposition. We saw this at the end of section

3.3.2, where we commented on the pseudo-null-steering operator Σ−1 not being

an orthogonal projector in the strict sense, that is, not being characterised simply

by its column-space (principal eigenvectors) but being enriched with more “dials”

(principal eigenvalues), hence the naming. A real-world analogy would be closer

to having a holographic rather than a 2-D projection. So depending on the

frequencies of the “light” that we cast we can get different kinds of information

from the data, as we explore in the following section.

3.4 Summary

A common approach in data modeling is to explain the behavior of an observed

set of covariates through a smaller latent set. This motivated the study of clas-

sical models with a low-rank covariance structure plus diagonal noise (spherical

or heteroscedastic). However, we are often faced with data represented by lin-

ear mixed-effects, that is, the data can be partially explained by a set of fixed

covariates and we wish to analyse the residual components corresponding to the

random effects in these data.

This motivated us to develop the residual component analysis (RCA) algo-

rithm: a maximum-likelihood approach for describing a low dimensional repre-

sentation of the residuals of a dataset given partial explanation by a fixed-effects

covariance matrix Σ. We showed how the low-rank component of the covariance

in the marginal distribution can be determined through a generalized eigenvalue

problem (GEP).

We analysed how the GEP of RCA (that is, with the joint sample-covariance

as the matrix on the LHS) is essentially a regular eigenvalue problem on the joint

sample-covariance (a PCA problem) of a linear transformation of the original

data. Expanding on this, we showed a deeper connection based on oblique (non-

orthogonal) projections of the data, where the inverse of the explained covariance

term plays the role of a null-steering operator in the posterior expectation of the
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latent components.

The following chapter is dedicated on drawing connections: we will use both

variants of the RCA theorem to reduce a number of probabilistic and classical

low-rank models into RCA.
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Chapter 4

Generalisations of classical and

probabilistic models

As we show in this chapter, from the viewpoint of RCA, we can recover CCA

by instantiating Σ to be block-diagonal, with each block containing the sample-

covariance associated to an individual dataset, in other words, this instantiation

of Σ encodes no correlation between the datasets but only within. Thereby, the

generalised eigenvectors or residual components S in the GEP of RCA would

explain away the remaining structure that is not captured by any of the sample-

covariances individually — that structure being in this case the cross-correlation

between the data sets. Again, we note that the framework of RCA is more

generally applicable; depending on the instantiation of Σ we can explore other

kinds of residual components.

4.1 Generalised eigenvalue problems

On an abstract level, problems like PCA and CCA aim to optimize some vector w

in a metric vector space defined by M, with some restriction on the solution norm

in a vector space defined by N. Problems of this general formulation lead to the
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maximisation of a Rayleigh quotient [Horn & Johnson, 1990; Parlett, 1980]:

max
w

R(w) ≡ max
w

{
w>Mw

w>Nw

}
. (4.1)

Setting the gradient of this quotient with respect to w to zero,

∇wR(w) = 2Mw −R(w)2Nw = 0 ,

yields the stationarity conditions expressed in the form of a GEP (not necessarily

symmetric):

Mw = R(w)Nw ,

where the solution for w is obtained as the generalised eigenvector of M and

N and the quantity of interest, initially formulated as the Rayleigh quotient, is

obtained as the corresponding generalised eigenvalue. In settings where M and N

are symmetric (e.g. covariance structures), then the generalised eigenvalues are

real and the normalised generalised eigenvectors form an orthonormal basis.

4.2 A review of canonical correlation analysis

Canonical correlation analysis (CCA), originally introduced by Hotelling [1936],

follows in the same track of PCA [Hotelling, 1933] in the sense that both ap-

proaches are formulated as eigenvalue problems [De Bie et al., 2005].

The aim of CCA is to find weights u1 ∈ Rp1 and u2 ∈ Rp2 so as to maximize the

Pearson product moment correlation between the linear combinations Xu1 and

Yu2, with the constraint that ||Xu1||2 = ||Yu2||2 = 1. A second set of solution

weights can be found giving a different pair of combinations, with the added

constraint that they are orthogonal to the first pair, and so on up to min(p1, p2)

solutions. The full set of solutions is given through the GEP:[
0 Ŝ12

Ŝ21 0

][
U1

U2

]
=

[
Ŝ1 0

0 Ŝ2

][
U1

U2

]
P , (4.2)
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where the square block matrices contain the individual sample-covariances and

cross-covariances of parts of the concatenated (joint) data

Y =

[
Y1

Y2

]
, such that Ŝ =

[
Ŝ1 Ŝ12

Ŝ21 Ŝ2

]
=

1

n

[
Y>1 Y1 Y>1 Y2

Y>2 Y1 Y>2 Y2

]
.

The generalised eigenvalues in the diagonal matrix P are called the canonical

correlations. The generalised eigenvectors made up of direction-pairs U1 and U2

are known as the canonical-directions or coefficients in the data-spaces of Y1 and

Y2 respectively. So these maximise the correlation between the combinations

Y1U1 and Y2U2 known as canonical variates, such that

U>1 Ŝ12U2 = P and U>1 Ŝ1U1 = U>2 Ŝ2U2 = I ,

where P now is a rectangular diagonal matrix with the canonical correlations on

its diagonal.

PCCA Bach & Jordan [2002] showed that the probabilistic-CCA model, for

centered data [
y1

y2

]
∼ N

(
0,

[
V1V

>
1 V1V

>
2

V2V
>
1 V2V

>
2

]
+

[
Σ1 0

0 Σ2

])
, (4.3)

illustrated in Figure 3.3(b), p. 45, has the maximum-likelihood solution1:[
V̂1

V̂2

]
=

[
Ŝ1 0

0 Ŝ2

][
U1q

U2q

]
P1/2
q R (4.4)

Σ̂1 = Ŝ1 − V̂1V̂
>
1

Σ̂2 = Ŝ2 − V̂2V̂
>
2 ,

(4.5)

where Σ1 and Σ2 are full noise covariance matrices, U1q and U2q are the first

q pairs of canonical directions, Pq is the diagonal matrix of the first q canonical

correlations and R is an arbitrary rotation matrix that can be set as the identity

1The solution that maximises the conditional entropy of y|z.
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for simplicity.

4.3 CCA, PCA and factor analysis as RCA

CCA Loosely speaking, since the task of CCA is to capture only the linearly

shared structure between two sets of variables and treat all other structure as

noise, then in principle we can reproduce this in RCA by canceling any structure

captured within the datasets and focus on the shared or residual structure, that

is, on the linear mechanisms that cause the two sets of covariates to respond

similarly. This RCA-like interpretation of CCA, allows us to perform tasks in-

volving shared and private structures otherwise impossible with classical CCA;

for instance, in section 5.2 we show how to explain away with dual-RCA some

estimated shared structure between paired times-series of two experimental con-

ditions and focus on the differential structure; in section 4.5 we “re-invent” the

learning of a multi-view model in statistics known as inter-battery factor analy-

sis [IBFA, Browne, 1979; Tucker, 1958] and extended-CCA in machine learning

[Klami & Kaski, 2006, 2008].

To show how RCA can be reduced to CCA, we compare their GEPs: recall

that the GEP of primal RCA is

1
n
Y>YS = ΣSD

and with very little algebra eq. (4.2) can be re-expressed as[
Ŝ11 Ŝ12

Ŝ>12 Ŝ22

][
U1

U2

]
=

[
Ŝ11 0

0 Ŝ22

][
U1

U2

]
(P + I) . (4.6)

By inspection, we can clearly see the RCA-view of CCA: the canonical directions

U of CCA are recovered as the generalised eigenvectors S of RCA and the corre-

sponding canonical correlations as the shifted generalised eigenvalues P = D− I.
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In other words, the instantiation

ΣCCA = 1
n

[
Y>1 Y1 0

0 Y>2 Y2

]
=

[
Ŝ11 0

0 Ŝ22

]
, (4.7)

reduces the GEP of RCA to that of CCA. �

Therefore, the RCA solution from eq. (3.26) (reproduced here for conve-

nience)

Ŵ = ΣS(D− I)1/2 ,

reduces to the PCCA maximum-likelihood solution from eq. (4.4) for

W =

[
V1

V2

]
, Σ =

[
Ŝ11 0

0 Ŝ22

]
, S =

[
U1

U2

]
, D = P + I .

Note that the canonical correlations in P always lie in the range [−1, 1], so the

eigenvalues in D always lie in [0, 2].

PCA Similarly, we get the PCA eigenvalue problem for Σ = I and the PPCA

maximum-likelihood solution from eq. (3.3) is recovered as

Ŵ = Sq(Dq − I)1/2 = Uq(Λq − I)1/2 . �

From this analysis we can conclude that from the RCA viewpoint, CCA can

be seen as setting Σ as a block-diagonal covariance matrix, with each block

containing the sample-covariance associated to an individual dataset, or more

intuitively, a Σ instantiation that encodes a lack of correlation between the two

datasets. Consequently, the residual components in S are forced to capture the

correlation structure between the data sets, which is the residual structure missed

by the individual sample-covariances. In the case of PCA, no structure in the

covariance is explained (Σ is the identity), therefore all of the structure remains

to be captured by the principal eigenvectors of the sample-covariance Ŝ. The

analogue equivalences for the dual representations are directly parallel to the

primal representations discussed here.
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Factor analysis Recall that the covariance structure of a factor analysis model

[Bartholomew et al., 2011; Basilevsky, 1994] is slightly more general than that of

PPCA; the marginal covariance has the form of a low-rank plus diagonal noise

structure:

y ∼ N
(
0,WW> + diag (α)

)
,

where diag (α) is a diagonal matrix comprised of the noise variances in α. The

heteroscedasticity of the noise, on the one hand, makes the factor analysis model

more flexible than PPCA while maintaining the convexity of the likelihood func-

tion, but on the other hand introduces interaction terms in the stationarity (zero

gradient) conditions between the components of W and α, so the maximum

likelihood estimates of the parameters (W,α) must be obtained iteratively, the

simplest way being via the expectation-maximisation (EM) algorithm [Rubin &

Thayer, 1982]. In practice, the noise variances α are not known a priori, though

they can be fixed as part of the E-steps during an EM run and the solution for

W conditioned on α has exactly the form of the RCA solution:

Ŵ = ΣFA(Dq − I)1/2 ,

when the explained covariance term is ΣFA = diag (α).

Casting CCA as an RCA problem is a interesting result because other gener-

alisations and connection drawn from the CCA literature readily follow into our

framework as we show in the following sections. Nonetheless, we emphasise that

these are special cases and the framework of residual component analysis is more

general. Later in the chapter, we see that by alternative choices for Σ we can

explore other kinds of residual components with practical applications.

4.4 LDA as RCA

Linear discriminant analysis (LDA) or multiple discriminant analysis is a lin-

ear dimensionality reduction approach to multi-class classification [Duda & Hart,

1973; Fukunaga, 1990]. It is also known as Fisher discriminant analysis when
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restricted to binary classification settings [Fisher, 1936]. Assuming the n data-

points are centered and split across a total of k classes {Cc}1..k with nc , |Cc|
memberships and class mean mc, then the between class covariance is defined

as

ŜB ,
1

n

∑
c

nc mcm
>
c =

∑
c

πc mcm
>
c = M diag (π) M> ,

where M = [m1 . . .mk], and the within class covariance is defined as the weighted

average over all covariance-per-class matrices Ŝc = 1
nc

∑
i∈Cc(xi−mc)(xi−mc)

>:

ŜW ,
∑
c

πcŜc = Ŝ− ŜB .

The aim of LDA is to project the data on a hyperplane u residing in the data

space, so as to maximise the between-class projected covariance u>ŜBu as a mea-

sure of class separation, such that the within-class projected covariance u>ŜWu

is also minimised to prevent further class overlap on the projecting hyperplane.

From our discussion on GEPs in beginning of this section, the above description

can be naturally formalised as the maximisation of a Rayleigh quotient:

û = max
u

{
w>ŜBu

u>ŜWu

}
,

whose complete set of solutions is given by the GEP:

ŜBU = ŜWUP . (4.8)

As an interesting marriage of supervised and unsupervised learning, it is also

well known that the same LDA solution is obtained via CCA [Bach & Jordan,

2002; De Bie et al., 2005; Sun et al., 2011] when the centered dataset Y is cou-

pled with the target matrix T whose rows are the target vectors in the 1-of-k

encoding1: [
0 ŜYT

ŜTY 0

][
UY

UT

]
=

[
ŜYY 0

0 ŜTT

][
UY

UT

]
P′ , (4.9)

1 A datapoint yi belonging in class C3 out of 5 classes is paired to the target vector ti =
(0, 0, 1, 0, 0)>.
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where the blocks are the covariances and cross-covariances of the two datasets,

UY equals U from eq. (4.8) and ŜYY = Ŝ.

One would justifiably think that since the set of RCA problems contains the

set of CCA problems, which in turn contains the set of LDA problems, then

RCA subsumes LDA. Indeed, as we show RCA can be reduced directly to either

solution form. In eq. (4.8) different algebraic manipulations give GEPs with

different eigenvalues; more specifically, adding:

ŜWU to both sides gives ŜU = ŜWU(P + I) , (4.10)

or ŜBUP to both sides gives ŜU = ŜBU(P−1 + I) , (4.11)

(recall that Ŝ = ŜB + ŜW ). Especially from eq. (4.10), now we can read the

RCA interpretation of LDA, in which the explained structure is the within-class

covariance and the generalised eigenvectors of RCA (typically the first k− 1) are

the required discriminants onto which the data are projected. From the CCA

view in eq. (4.9), we repeat the same algebraic manipulation that we used for

reducing any CCA problem to RCA:[
ŜYY ŜYT

ŜTY ŜTT

][
UY

UT

]
=

[
ŜYY 0

0 ŜTT

][
UY

UT

]
(P′ + I) ,

Potential for spectral clustering It is worth noting that the CCA view

in eq. (4.9) makes explicit use of label data in T and the discriminant direc-

tions capture the maximum correlation between the paired datasets, whereas the

RCA view makes explicit use of non-class information encoded in the within-

class covariance ŜW as a proxy to uncovering the class-related structure in the

sample-covariance. Both forms give the same solution and show intuitive spectral

classification algorithms. However, eq. (4.11) and its dual counterpart can be po-

tentially extended for spectral clustering [Azar et al., 2001; Kannan et al., 2004;

Ng et al., 2002] where the between-class covariance ŜB is unknown and optimised

in a constrained fashion (e.g. as a sparse positive definite).
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4.5 Revisiting some generalisations of CCA

Bach & Jordan [2002] proposed a kernelised version of CCA for computing a

contrast function of a set of non-Gaussian random variables in the form of a

non-linear correlation measure in a reproducing kernel Hilbert space (RKHS).

This contrast function is minimised as a proxy to the mutual information of

the observed variables which amounts to independent component analysis (ICA)

on non-Gaussian-distributed data. In the same paper the authors also explored

relationships between CCA and mutual information and the generalisations of

CCA to more than two sets of variables. Other instantiations of kernel-CCA

restricted to two multivariate random variables were proposed by Lai & Fyfe

[2001] and Akaho [2001]. Since CCA is a special case of RCA, it is natural to ask

about fitting these developments into our framework and the potential directions

they might lead to.

4.5.1 RCA and mutual information

It is well known that the mutual information between two multivariate Gaussian

random variables y1 ∈ Rp1 and y2 ∈ Rp2 with joint covariance S =

[
S11 S12

S21 S22

]
can be computed exactly:

M(y1,y2) = −1

2
log

|S|
|S11| |S22|

,

and that the fraction of determinants is equal to the product of the canonical cor-

relations of CCA on y1 and y2. This is because the fraction of determinants equals

the determinant of the covariance-product in the eigenvalue problem (LHS):[
S11 0

0 S22

]−1

SU = U(P + I) ,
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which shares the same eigenvalues with the equivalent GEP of CCA

SU =

[
S11 0

0 S22

]
U(P + I) .

ThereforeM(y1,y2) = −1
2

log|P + I|, assuming P is square with size min(p1, p2).

4.5.2 Towards massive-view learning through RCA

In fact when Bach & Jordan [2002] showed the above, they used the RCA view of

CCA (to express it in term of the joint covariance matrix). However, the authors

did not comment on the generality of this form (that is, beyond the significance

of the block-diagonal on the RHS as the explained covariance). Kettenring [1971]

was the first to consider various extensions of CCA to more than two datasets.

However, the one proposed by Bach & Jordan [2002, appendix A.2], simply by

expanding the block-diagonal for more datasets,
S11 . . . S1m

...
. . .

...

Sm1 . . . Smm




U1

...

Um

 =


S11

. . .

Smm




U1

...

Um

P ,

fits naturally into the RCA framework, as the explained covariance term cancels

out any structure that jointly treats the datasets as pairwise uncorrelated. As

expected, the mutual information between many multivariate Gaussian random

variables generalises just as easily

M(y1, . . . ,ym) = −1

2
log

|S|
|S11| . . . |Smm|

.

This connection strengthens the justification for using the canonical correlations

in a RKHS as a proxy for minimising the mutual information between sets of

non-Gaussian random variables, which in general is a function of higher-order

moments of their true distributions and not just correlation (second-order) in the

primal space. Furthermore, in many applications probabilistic-CCA is used as
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a basis for multi-view learning of a single latent multivariate random variable

(usually with the addition of view-specific latent variables). The above general-

isation to many variables through the RCA interpretation could provide a basis

for massive-view learning, that is, scenarios where many different datasets with

aligned1 samples (e.g. a gene expression microarray experiment performed in

many different labs around the world, or measurements from multiple sensors

scattered in region) can potentially provide deeper insight on the fundamental

factors of common variation.

Note that by diagonalising the sample-covariance of each dataset a priori (re-

ducing the block-diagonal to a diagonal Σ, hence reducing the algorithm to PCA

or FA) would be detrimental to the massive-view aspect of the algorithm. So

massive-view RCA can be seen as a factor analysis approach on the level of

data-sets as opposed to the conventional level of data-points, the only require-

ment being that the datasets have the same number of samples (for the primal

representation) or the same number of features (dual).

4.6 An algorithm for inter-battery factor anal-

ysis

Probabilistic canonical correlation analysis (PCCA, sec. 4.2) models the covari-

ance structure of two paired datasets with a full-rank block-diagonal and low-rank

off-diagonal terms, see eq. (4.3), p. 66. Tucker [1958] introduced inter-battery fac-

tor analysis (IBFA) which extends classical CCA with view-specific components

(in addition to the standard components shared by both views). IBFA is a more

realistic model for multi-view learning as it attempts to explain data also with

components exclusive to each dataset. Figure 3.3(c), p. 45, shows the graphical

model of IBFA. In the statistics literature, Browne [1979] worked out a maximum-

likelihood algorithm for learning IBFA. In the machine learning literature, Klami

& Kaski [2006, 2008] independently developed an EM approach to learning IBFA

and a Bayesian approach to automatically learn the latent dimensionalities [Klami

1Meaning that the correspondence of any particular sample across the datasets is known.
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& Kaski, 2007] and group components into shared and view-specific sets [Virta-

nen et al., 2011] via ARD priors. Ek et al. [2008] proposed a non-linear version

of IBFA which maps the shared and private (view-specific) latent spaces to the

observed space through Gaussian processes.

Each dataset, Yd ∈ Rn×pd , d ∈ {1, 2}, associates to its own set of latent

points, Xd ∈ Rn×qd as well as the shared latent points, Z ∈ Rn×q, that lie in the

shared latent space found in classical CCA. As an advantage of this structure,

if the covariance specific to each dataset is low-rank then this will be recovered.

The data partition is represented as

y1 = W1x1 + V1z + ε1 with noise ε1 ∼ N (0, σ1I) and

y2 = W2x2 + V2z + ε2 with noise ε2 ∼ N (0, σ2I) .

Each set of latent variables is marginalized through an isotropic Gaussian prior

to give a marginal covariance structure for the concatenated data

S =

[
W1W

>
1 0

0 W2W
>
2

]
+

[
V1V

>
1 V1V

>
2

V2V
>
1 V2V

>
2

]
+

[
σ2

1I 0

0 σ2
2I

]
.

On the one hand, if the view-specific weights W1 and W2 are known, we can learn

the shared shared-view weights, V> = [V>1 V>2 ], thought the RCA algorithm by

setting the explained covariance term as

ΣIBFA =

[
W1W

>
1 0

0 W2W
>
2

]
+

[
σ2

1I 0

0 σ2
2I

]
.

On the other hand, to learn W1 and W2 we note that the marginal covariance

of y1 is the block S11 = W1W
>
1 + V1V

>
1 +σ2

1I . So if V1 is known, we can learn

W1 with RCA using Σ = V1V
>
1 + σ2

1I. We follow an analogous procedure for

learning W2 .

One obvious question with IBFA is how to choose the latent dimensionalities.

If the noise variance σ2 is fixed in probabilistic PCA then the latent dimension q is

determined automatically by choosing the maximal set of q principal components

W(q) such that λq > σ2, see eq. (3.4), p. 39. This reduces the problem of choosing
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the intrinsic dimension to choosing a suitable noise level. We follow a similar

approach with iterative-RCA by setting the noise variances to a fraction α ∈ [0, 1]

of the total data variance tr (S) and tune α to control the latent dimensionality.

The algorithm converges when the log-marginal likelihood drops less than a small

constant (10−6). Algorithm 1 lists one variant of iterative-RCA:

Algorithm 1 iterative-RCA

Initialize α ∈ [0, 1]; Ŝ =

[
Ŝ11 Ŝ12

Ŝ21 Ŝ22

]
← 1

n

[
Y>1 Y1 Y>1 Y2

Y>2 Y1 Y>2 Y2

]
σ2

1 ← α
p1

tr
(
Ŝ11

)
; σ2

2 ← α
p2

tr
(
Ŝ22

)
; Ŵ1 ← V̂1 ← 0p1 ; Ŵ2 ← V̂2 ← 0p2

repeat
View-specific step:

Solve for W̃1 in Ŝ11W̃1 = (V̂1V̂
>
1 + σ2

1I) W̃1Λ1

Ŵ1 ← (V̂1V̂
>
1 + σ2

1I) W̃
(q1)
1 (Λ

(q1)
1 − I)1/2

Solve for W̃2 in Ŝ22W̃2 = (V̂2V̂
>
2 + σ2

2I)W̃2Λ2

Ŵ2 ← (V̂2V̂
>
2 + σ2

2I)W̃
(q)
2 (Λ

(q)
2 − I)1/2

View-shared step:

Σ ←

[
Ŵ1Ŵ

>
1 + σ2

1I 0

0 Ŵ2Ŵ
>
2 + σ2

2I

]
Solve for Ṽ in ŜṼ = ΣṼΛ
V̂ ← ΣṼ(q)(Λ(q) − I)1/2

until the log-marginal likelihood converges.

4.6.1 An example on pose recovery

We experiment on motion capture data produced by Agarwal & Triggs [2006]

to demonstrate the effect of learning view-specific components through iterative-

RCA. The data contain n = 1, 927 frames of human poses (3D point clouds), each

paired to a 2D silhouette. Each pose is represented by 21 sensors with 3D coor-

dinates, giving p1 = 63 features, and the pose data are collected in Y1 ∈ Rn×p1 .
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Each silhouette is summarized by p2 = 100 HoG1 features and the silhouette data

are collected in Y2 ∈ Rn×p2 . Because both datasets were produced in the studio,

we add a small amount of iid Gaussian spherical noise to each feature to simulate

conditions closer to the outside world.

Our task is to predict the pose y1 of a silhouette y2. The posterior (predictive)

mean of p(y∗1|y2) is:

E [y∗1|y2] = V1V
>
2 (W2W

>
2 + σ2

2)−1y2 + µ1 ,

where µ1 is the sample mean of Y2. Posterior variances are not required for

this experiment. Figure 4.1(a) compares the prediction root mean square errors

(RMSE) of iterative-RCA and probabilistic CCA while varying α or q (one deter-

mines the other). Iterative-RCA generally outperforms PCCA, with the smallest

difference being at q = 18 for PCCA (or α = 0.3 for RCA). The RMSE of RCA is

robust for a wide range of large α values. An interesting aspect of iterative-RCA

is the self-regularity that the noise variance imposes on the latent dimensionality

of the shared and view-specific components: For example, Figure 4.1(b) shows

the increase of noise with α causing the eigenvalues to decay faster from z and x2

than from x1. Trimming the latent dimensionality by explaining part of the vari-

ance as noise was simple enough for illustration, but more principled approaches

to dimension selection can be followed (for instance, through the BIC criterion

[Schwarz, 1978]).

4.7 Summary

We discussed how the RCA theorem (both primal and dual representations) pro-

vides a probabilistic interpretation of generalised-projection low-rank models and

as such can potentially unify many different algorithms. For instance, we saw

probabilistic-PCA and probabilistic-CCA arise as special cases of our algorithm.

The same cannot be said about LDA as the class labels or cluster assignments are

non-Gaussian in general, unless a continuous relaxation of the labels is assumed.

1Dalal & Triggs [2005].
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Figure 4.1: Comparison of iterative-RCA with probabilistic CCA shows the merit
of accounting for view-specific components. (a) RMSE (across all test frames) of
iterative-RCA and PCCA on reconstructing poses from silhouettes. The figure
shows the error as a function of latent dimension q for PCCA and α (the fraction
of explained variance) for RCA. Linear regression (not visible) yields RMSE =
3.21. (b) Latent dimensions of x1, x2 and z after convergence as functions of α.
(c) Test frame #404 reports the largest errors in the test set. Figure shows the
test silhouette and paired true pose followed by the predicted poses.
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Alternatively, those parts of the data can be “Gaussianised” through Gaussian

copulas. Nonetheless, if we dispense with any probabilistic notion in RCA, its

GEP still reduces to that of LDA for a special choice of Σ. At numerous points

across this chapter, we have shown that with further imaginative instantiations

of Σ we can develop new approaches to data analysis.

In the following chapter we begin to flesh out the applications of RCA hinted

in section 3.2.1.

The main idea will be a sum of low-rank and sparse inverse-covariance struc-

tures, with promising application in computational biology for heterogeneous

data with hidden confounders. To link with chapter 2, a secondary application

example will be given on analysing residuals left from a GP.
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Chapter 5

Applications of RCA

Whereas the previous chapter focused on drawing links; here we aim to show

the applicability of the RCA framework. The centerpiece of this chapter is the

composite structure of low-rank plus sparse-inverse covariance. To motivate this

structure, section 5.1 starts off with a formal description of the problem — a linear

mixed-effects equation, where one effect is hidden and low-dimensional and the

other is Gaussian-distributed with a sparse precision — and slowly introduces the

pieces of the composite structure that will help us identify this equation. Section

5.1.1 describes our proposed methodology and section 5.1.2 describes a number

of experiments across a number of application domains. A second application of

RCA on the analysis of residuals of a GP is given in section 5.2, that also provides

a link to the first chapter of the thesis.

5.1 Accounting for confounders in sparse Gaus-

sian Markov random fields

Consider the following linear mixed-effects model [Pinheiro & Bates, 2000] of

observed centered covariates y ∈ Rp with two sets of factors x ∈ Rq, z ∈ Rp and

noise ε ∼ N (0, σ2Ip) :

y = Wx + z + ε , (5.1)
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where z is a vector of “fixed” effects either in the form of known, given or esti-

mated covariates postulated to have some predictive power over y (in practice

they are unknown, but eventually they are fixed to some estimate to determine

the residual components) and x is a lower dimensional vector of random effects

(in general we assume there are q < p latent variables). The graphical model of

this representation is illustrated in Figure 3.3(a), p. 45. The focus of this chapter

is a particular case of eq. (5.1), in which the “fixed” covariates z are distributed

according to a zero-mean Gaussian with a sparse-inverse covariance (or sparse

precision) matrix. This is a potentially powerful representation for many ap-

plication domains, as we demonstrate with examples on computational biology,

motion-capture and social networks.

Consider a case where samples yi ∈ Rp are heterogeneous (for instance, a set

of activation signals from p proteins, measured under various external stimuli).

In a primal representation we aim to recover a sparse network of interactions

between the features (proteins). The representation of y depends on two types of

background effects: in z there are as many factors as there are observed covariates

in y. The factors in z are special in the sense that they share a sparse network

of conditional dependencies. Sparse dependencies are interesting for learning par-

simonious models (in this case, a protein regulation network) but in realistic

scenarios this sparsity is confounded by the heterogeneous experimental condi-

tions (the various stimuli) under which each sample of y is generated. In a sense,

z represents a “clean”, unconfounded, version of y. We encode these confounders

with the second type of background effects x. The hypothesis is that, if there

are any underlying confounding effects in the data generation process, these are

fewer than our observed covariates and the confounders somehow combine in a

linear fashion, Wx, to affect an observed covariate (protein signal). Then, the

structure explained solely by x corresponds to a low-rank term in the marginal

covariance, see the primal version of eq. (3.13), p. 46. Another intuitive way

to argue for modeling the confounding structure with a low-rank component, is

by seeing how the nominal values of our signals are forced to diverge from their

otherwise true values: because there are always fewer confounders than observed

covariates, there is redundancy in their expression on the observed space, thus
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adding a low-rank structure in the covariance of our measurements.

Since by assumption the regulatory network is sparse, we parameterise the

explained covariance term as:

ΣGMRF
1 = Λ−1 , (5.2)

where Λ is a sparse positive definite matrix, thus recovering a low-rank plus

sparse-inverse parameterisation of the covariance in eq. (3.13), p. 46. It is well

known, that the precision matrix Λ of a multivariate Gaussian distribution has

elements Λij = 0 if and only if the variables i and j are independent when

conditioned on the rest [Lauritzen, 1996]. Thereby, a sparse precision induces a

sparsely connected Gaussian Markov random field (GMRF) or Gaussian graph-

ical model of the factors z, such that each sample zi is distributed according to

N (0,Λ−1) .

5.1.1 Low-rank plus sparse-inverse covariance

Given a dataset Y ∈ Rn×p, our goal is to infer the sparse structure of the under-

lying GMRF, encoded by the sparse-inverse covariance term Λ−1. If yi is truly

sampled from a Gaussian with sparse precision Λ, then we can efficiently estimate

Λ with the graphical-Lasso algorithm [GLasso, Banerjee et al., 2008; Friedman

et al., 2008]. The challenge is to estimate Λ in the presence of low-rank structures

(in the marginal covariance), induced by confounding latent variables X ∈ Rn×q.

We show that a low-rank structure leads to highly correlated covariates, which

in turn increases the number of false edges called by GLasso (on the empirical

covariance of Y). Our approach is to perform GLasso on the sample-covariance

of Z ∈ Rn×p, the unconfounded version Y.

1Using the sub-index notation here as a descriptor.
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Based on the discussion above, we build the following generative model:

y|x, z ∼ N
(
Wx + z, σ2I

)
x ∼ N (0, I)

z ∼ N
(
0,Λ−1

)
p(Λ) ∝ exp (−λ||Λ||1) ,

(5.3)

where Λ is sampled from a Laplace distribution (a sparsity promoting prior) and

the level of sparsity is driven by the hyperparameter (or regularisation parameter)

λ. Figure 5.1 shows the corresponding graphical model. We propose a hybrid

approach of EM and RCA to optimise this generative model with respect to the

loadings W and the sparse GMRF encoded by the precision matrix Λ.

Figure 5.1: Generative model that yields a low-rank plus sparse-inverse structure
in the marginal covariance. The parameters are optimised by an EM/RCA hybrid.

Averaging over X ∈ Rn×q in the graphical model yields the joint log-density

ln p(Y,Λ |W) =
∑
i

ln
{
N
(
yi |0,WW> + Λ−1

)
p (Λ)

}
(5.4)

≥
∫
q(Z) ln

p(Y,Z,Λ)

q(Z)
dZ . (5.5)

The integral in eq. (5.5) acts as a variational lower bound1 of the joint log-

density in eq. (5.4) and q(Z) is the variational distribution that we must op-

timise to raise the bound. Because the parameters W and Λ have no fixed-

1Computation is reduced to optimising a functional with respect to the distribution q().
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point solution, we seek a MAP solution by optimising the lower bound via the

expectation-maximisation algorithm [EM, Dempster et al., 1977; Lawrence et al.,

2010]. We derive the variational lower bound and equations for updates in ap-

pendix A.4.

E-step Replacing q(Z) with the posterior p
(
Z |Y, Λ̂

)
for current estimates

Λ̂ and Ŵ , amounts to the following E-step for the exact update of the posterior

distribution of zi |yi :

var [z |y] =

((
ŴŴ> + σ2I

)−1

+ Λ̂

)−1

(5.6)

E [zi |yi] = var [z |y]
(
ŴŴ> + σ2I

)−1

yi (5.7)

Ep(z |y)[ziz
>
i ] = var [z |y] + E [zi |yi]E [zi |yi]> . (5.8)

M-step Then for fixed Ẑ , the only free parameter in the expected complete-

data log-likelihood Q = Ep(Z |Y) [ln p (Z,Λ)] is the sparse-inverse Λ . Therefore,

the update for Λ depends on the L1 problem:

Λ̂ = max
Λ

ln|Λ| − tr

(
1
n

∑
i

{
Ep(z |y)[ziz

>
i ]
}

Λ

)
− λ||Λ||1 , (5.9)

which can be maximised efficiently with the graphical-Lasso algorithm [GLasso,

Banerjee et al., 2008; Friedman et al., 2008] (note the L1-penalty for sparsity).

RCA-step After one iteration of EM, we update Ŵ via RCA based on the

newly estimated Λ̂ , by first solving for S in the GEP:

1
n
Y>YS = ΣGMRFSD where ΣGMRF = Λ−1

Ŵ = ΣGMRFS(D− I)1/2 .
(5.10)

Algorithm 2 summarises the EM and RCA steps which collectively constitute

one iteration of the EM/RCA hybrid:
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Algorithm 2 EM/RCA

Initialise σ2 , Ŵ and Λ̂ and λ .
repeat

E-step: Update posterior distribution of Z|Y with (5.6) and (5.7).

M-step: Update Λ̂ with (5.9).

RCA-step: Update Ŵ with (5.10).
until the lower-bound (5.5) converges.

Related work

A more generalised approach was proposed recently by Agakov et al. [2012], where

the sparsity assumption is on the joint field of observed and latent variables.

Under this framework, our “low-rank plus sparse-inverse” approach becomes the

special case where there are as many latent variables as there are observed (a one-

to-one correspondence) and we focus only on structure learning of the latent field.

The authors also consider straightforward extensions to discriminative mixtures

of such fields, where each expert is activated based on side information, and for

“Gaussianising” long-tailed marginals through Gaussian copulas.

Another closely related approach was by Chandrasekaran et al. [2010] where

the marginal precision matrix of the observed variables is decomposed into a

sum of sparse plus low-rank terms. This occurs when the latent dimensional-

ity is smaller than the observed and the conditional precision matrix (of the

observed given the latents) is assumed to be sparse. Then the sparse/low-rank

decomposition naturally appears as the Schur complement of the latent variables’

(lower-right) block in the joint precision matrix (see also Appendix A.1).

5.1.2 Experiments

For each experiment, we initialise:

• the noise variance as σ2 = 1
2p

tr Ŝ , where Ŝ is the sample-covariance

of the data Y ∈ Rn×p. Note that if we fix σ2 to the initialized value,

this implicitly fixes the number of latent variables (confounders). A more
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systematic approach would be a line search on σ2 during the M-step or

using the BIC criterion over a small range of q (number of latent variables);

• the loadings matrix as W = Uq(Lq − σ2I)1/2 with the q principal eigen-

vectors in Uq whose eigenvalues are larger than σ2;

• the sparse GMRF-encoding matrix as Λ = I (no dependencies);

• a sequence of L1-regularisation parameters as λ = 5x such that x is linearly

interpolated in [-8,3], thus creating a solution “path”1 as λ increases expo-

nentially. The solution paths of lasso-based algorithms tend to be unstable.

Therefore, we apply a form of stability selection [Meinshausen & Bühlmann,

2010] to smoothen the solution paths: for each λ and method, the results are

stabilised by taking 100 repeats with a random 90% sub-sampling for each

repeat. If an edge of the GMRF is called (that is, estimated as non-zero in

Λ) on more than 50% of the repeats then it is declared active.

A result for a particular regularisation parameter λ constitutes an estimate Λ̂.

The estimate is compared to the ground-truth network, represented by the ad-

jacency matrix G. For some Λij 6= 0, the call is true-positive (TP) if Gij 6= 0

and false-positive (FP) if Gij = 0. The efficiency of the algorithm is measured

in terms of recall = #TP
#P

and precision = #TP
#TP + #FP

where #P are the total

true edges. As the λ parameter increases to the next number in the sequence,

EM/RCA continues from the point where it last converged, thus tracing a per-

formance path in the recall-precision space.

Simulations

We consider an artificial dataset sampled from the generative model in eq. (5.3),

Figure 5.1, to demonstrate the effects that confounders have on the estimation of

the sparse-inverse covariance. Specifically the raw data are generated as:

Y = XW>+Z+E , where Y,E ∈ R100×50, W ∈ R50×3, X ∈ R100×3 .

For each sample, xi ∼ N (0, I3) , zi ∼ N (0,Λ−1) , εi ∼ N (0, σ2I) and

1A path of sparse-inverse estimates, where the estimate for some λi is used as the initiali-
sation for λi+1.
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wj ∼ N (0, γI50) . The sparsity of Λ is 1% of all p(p − 1)/2 potential edges

in the GMRF. The non-zero entries of Λ are iid samples from N (1, 2) . The

variance γ is such that Λ−1 and WW> explain an equal amount of variance and

the variance σ2 of the induced noise is such that the signal-to-noise ratio (SNR) is

10. Figure 5.2(a) shows the effectiveness of EM/RCA on a dataset suffering from
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Figure 5.2: (a) Recall-precision curves of EM/RCA and GLasso on the simulated
confounded dataset (solid curves), and GLasso on the simulated non-confounded
dataset (dashed curve). (b) EM/RCA, KroneckerGLasso and GLasso on the
Sachs data. The Kronecker-GLasso and GLasso curves are taken from [Stegle
et al., 2011].

confounders, whereas standard GLasso fails to find any part of the true structure

even when strongly regularised. The EM/RCA algorithm has significantly better

performance than GLasso on the confounded data (solid curves). The dashed

curve shows the performance of GLasso on the same samples but without con-

founders (W is zero). We note that EM/RCA on the confounded data performs

better than GLasso on the unconfounded data because the latter have a lower

SNR.

Reconstructing a protein-signaling network

We compare EM/RCA to the Kronecker -GLasso algorithm of Stegle et al. [2011]

on the protein-signaling data from [Sachs et al., 2005]. These data provide signal
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measurements from p = 11 proteins under various external stimuli. We col-

lect n = 2, 666 samples from the first three experiments into one heterogeneous

dataset Y ∈ Rn×p. The heterogeneous conditions of these experiments induce

confounding effects in the data. For the sake of comparison, we also run the

analysis on a random 10% subset of the n samples, with a 10% from each of

the three experiments. All results are validated based on the moralised1 version

of the directed ground-truth network, constructed and validated biologically by

Sachs et al. [2005]. Figure 5.2(b) shows EM/RCA slightly outperforming the

True Network EM/RCA

GLASSO KroneckerGlasso

Figure 5.3: Reconstructed networks by EM/RCA, Kronecker-GLasso and GLasso
on the Sachs data, for 0.4 recall. Red edges indicate false-positives.

other methods and Figure 5.3 shows the reconstructed networks for recall 0.4.

We observe that EM/RCA appears more conservative in calling positive edges

1For any node, its parents are connected and all edges become undirected.
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while preserving a higher precision.

Reconstructing the human form

The data in this experiment come from the CMU motion-capture database1. The

objective is to reconstruct the underlying connectivity of the human form, given

only the 3D locations of 31 sensors placed about the figure’s body. Each captured

motion in the database involves data of the skeleton (or stickman) specific to the

person under the trial (different heights, builts, etc.) and the 3-D sensor cloud

data. Each trial involves 31 sensors, so the raw dataset for each trial has size n

(frames captured in the trial) × 93 (x,y,z · sensors).

The aim of our model is to recover the connectivity between these sensors.

This should be possible because we expect sensors that are connected in the un-

derlying figure to be conditionally independent of other sensors in the figure. This

motivates the underlying sparse structure. Conversely, different motions exhibit

much broader correlations across the figure. In particular, walking exhibits anti-

correlations between sensors on different legs and across the arms. These types

of motion should be far better recovered through a low-rank representation of the

covariance.

If, as expected, the raw data is confounded by low-rank properties associated

with particular structured motions (as opposed to random poses, as might be

adopted by a wooden artist’s doll) then our combination of low-rank with sparse

connectivity should outperform a model based purely on sparse connectivity. We

therefore compare EM/RCA and GLasso on trials involving walking, running,

jumping and dancing. The local connectivity between the sensors, i.e. the human

skeleton, should be represented in the sparse matrix Λ (prescribing a Gaussian

random field). To further motivate this idea we also note the physical interpre-

tation of Λ as the stiffness (or Laplacian) matrix of a spring network, where the

off-diagonal entries represent the negative stiffness of the spring. Therefore, to

detect an “attracting” connection between two sensors we look only for negative

1http://mocap.cs.cmu.edu.
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(a) (b)

Figure 5.4: (a) Recall-precision curves of EM/RCA and GLasso on the CMU
motion-capture data. (b) Hinton diagram of X capturing the confounding effects
in the motions. Each column of X is visualised by rearranging its elements to the
corresponding sensors on the ground-truth stickman. The colour of a dot indi-
cates the sign and the size is proportional to the magnitude of the corresponding
element in X.

entries in the estimated Λ1.

Data preprocessing Because we are interested in modeling interactions be-

tween sensors and to avoid modeling explicitly the correlations between spatial

features (x-y-z coordinates) within a sensor, we convert absolute positions of the

point cloud into inter-point distances. Hence the covariance to be analysed re-

duces from 93 features to 31 (number of sensors involved in a frame). Also, we

treat the frames as independent, meaning that we ignore the sequence in which

they appear in a trial. This amounts to summing up sensor-covariances across

all frames. Let H(k) , I − 1
k
11> be the centering operator, where 1 ∈ Rk is

the vector of ones; D(f) is the squared distance matrix for some configuration of

points (sensors) X(f) ∈ R31×3 at frame f , such that

Dij = (xi − xj)
>(xi − xj) = x>i xi − 2x>i xj + x>j xj ,

1On a similar note, see also MacKay’s “The Humble Gaussian distribution” on interpreting
Gaussian graphical models as energy models.
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and in matrix notation D = 1 diag
(
XX>

)>−2XX>+diag
(
XX>

)
1> . Centering

D gives the centered squared distance matrix

HDH = −2HXX>H ∝ X̄X̄> = K̄ , since H1 = 0 . (5.11)

Hence computing the centered squared distance matrix is equivalent to comput-

ing the centered inner-product matrix (that is, the inner-product matrix of the

centered raw data X̄). Let x̄j ∈ R31 denote the j-th column of X̄, collecting the

x-only-coordinates of all 31 sensors (or y, z depending on j) for a particular frame.

Then from eq. (5.11), the sum across frames
∑

f X̄(f)X̄
>
(f) =

∑
f K̄(f) can be seen

as a sum of independent scatter matrices in the dual representation, and since

X̄X̄> =
∑

j x̄jx̄
>
j then

∑
f K̄(f) =

∑
f,j x̄

(f)
j x̄

(f)>
j , which is the scatter matrix of

all x̄j vectors as samples (rows) in our final design matrix Y. To summarise the

preprocessing, we start with raw data X(f) ∈ R31×3 for each frame f ∈ {1, .., F},
center its rows via HX(f) = X̄(f) and collect all frames in the design matrix

Y> = [X̄(1) . . . X̄(F )]. This amounts to working with the dual representation of

the data and treating as independent the frames as well as the sensor (x,y,z)

coordinates.

Results Figure 5.4 shows the recall-precision curves for GLasso and EM/RCA

on the CMU mocap data, where EM/RCA consistently outperforms standard

GLasso. Figure 5.5 shows the stickmen recovered by EM/RCA and GLasso. We

note that the connectivities and eigenposes are more faithful to the true human

form, in comparison to GLasso. For a small λ setting (recall 1) the precisions

are similar; nonetheless the human form is robust, with very weak (yellow) edges

wherever they do not apply (e.g. elbow-waist, elbow-head). This signifies that the

precision measure might be ill-suited for evaluating a stickman, where the network

configuration has a spatial interpretation. The ground-truth is also “noisy” in

the sense that a shoulder-chest edge, for instance, must be called as the torso is

a rigid part of the human body (high stiffness)

Figure 5.4(b) illustrates the confounding effects captured by X (as part of

XX> + Λ−1). Specifically, in the first component, the legs are anti-correlated to

91



5. APPLICATIONS OF RCA

−0.4

−0.2

0

0.2
−0.2

−0.1
0

0.1
0.2

0.3

−0.3

−0.2

−0.1

0

0.1

0.2

z

EMRCA−inferred stickman (at recall: 0.76667)

x

y

−0.4
−0.2

0
0.2

−0.4
−0.2

0
0.2

−0.2

0

0.2

z

GLASSO−inferred stickman (at recall: 0.76667)

x
y

−0.4

−0.2

0

0.2
−0.2

0
0.2

−0.3

−0.2

−0.1

0

0.1

0.2

z

EMRCA−inferred stickman (at recall: 1)

x

y

−0.4−0.2 00.2
−0.4−0.200.2

−0.2

0

0.2

z

GLASSO−inferred stickman (at recall: 1)

x

y

Figure 5.5: Stickman reconstructions by EM/RCA (left) and GLasso (right)
for recalls 0.77 (top) and 1 (bottom). For each stickman, inferred edges are
superimposed on the eigenposes extracted from the 3 principal eigenvectors of
the estimated sparse Λ (or Laplacian of the spring system). Edge color and
thickness indicate the negative stiffness intensity (red is large) and the black lines
are shadows for aiding the perspective.
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the upper-half of the body, which can be attributed to jumping motions. The

second and forth components capture anti-correlations across the different legs

and arms, exhibited by walking and running, as discussed earlier. Finally, the

third component shows strong anti-correlation between the hands and the rest of

the upper-body, which is more open to interpretation.

Discovering collusion patterns in voting data

And now for something completely different1. In this section we analyse voting

data from the Eurovision song contest collected2 across recent years. The resi-

dents of each country vote for the best song (other than its own). Each country

thus produces a ranking which is translated into points; 12, 10, 8, 7, 6, 5, 4, 3, 2,

1 for the top ten. The country with the most points wins the song contest.

More precisely, each sample (row) yi in our design matrix consists of the

votes that a particular country gave to every other country (from a complete

alphabetically ordered list of countries) in a particular year of the competition,

and it has the following format: (# votes to Albania, #votes to Andorra, ...,

#votes to United Kingdom). We assume that any country always rewards the

maximum allowed points to itself (a country always likes its own song), and the

whole row forms an affinity vector of the country towards all countries (including

itself) for the duration of one competition.

The goal here is to reconstruct a network of collusive voting, that is, determine

the pairs of countries that tend to vote on any basis of factors other than song

quality/popularity (for instance, political relations, geography, etc). Naturally,

we assume this network to be sparse and we relax the ordinal (non-Gaussian)

restriction of the variables such that they follow a Gaussian graphical model. We

also expect the network to form geographically relevant clusters.

As in the previous experiment, we are interested in positive interactions (col-

1This experiment was inspired from Martin O’Leary’s blog-post: http://mewo2.com/

nerdery/2012/05/20/ive-got-eurosong-fever-ted/.
2An early version of this dataset was compiled by Anthony Goldbloom of Kaggle, the

extended version published by Martin O’Leary at https://github.com/mewo2/eurovision/.
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Figure 5.6: The emergence of voting blocs in the Eurovision song contest. Only
edges of negative entries in the precision are shown, which imply “attracting”
links. Three distinct blocs are visible: the northern bloc consisting mainly of
Britannic, Scandinavian and Baltic states, the eastern bloc consisting only of
post-Soviet states, and the southern bloc consisting mainly of Balkan and Slavic
states. Darker edges imply stronger conditional dependencies. The coordinates
forming this map are artificially induced and not part of the output.
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lusions) so we focus on the negative entries of the estimated precision. Un-

fortunately this case has no ground truth; nonetheless, there is some room for

qualitative evaluation: namely, the topology of the collusion network in Figure

5.6 reflects to some extent the European geography (that is, most conditional

dependencies are restricted between geographical neighbors).

5.2 Analysing residuals of a Gaussian process

Differences in gene expression profiles We now revisit the analysis of gene

expression time-series from chapter 2. To reiterate the problem, a common chal-

lenge in data analysis is to summarize the difference between treatment and con-

trol samples. To illustrate how RCA can help, we consider two gene expression

time-series of cell lines. The treatment cells are targeted by TP63 introduced

into the nucleus by tamoxifen. The control cells are simply subject to tamoxifen

alone. The data used for this case study come from [Della Gatta et al., 2008]1.

The treatment group Y1 ∈ Rn1×p contains n=13 time-points of p = 22, 690 gene

expression measurements, whilst the control group Y2 ∈ Rn2×p contains only

n2 = 7 time-points. This complexity of data (with different numbers of time-

points and non-uniform sampling) is typical of many bio-medical data sets. The

challenge is to represent the differences between the gene expression profiles for

these two data sets. CCA could be applied but this would represent the similar-

ities between the data, not the differences.

First we consider the null hypothesis that both time-series are identical. This

implies that y> = (y>1 y>2 ) can be modeled by a Gaussian process (GP) with a

temporal covariance function, y ∼ N (0,K), where K ∈ Rn×n for n=n1+n2 is

structured such that both y1 and y2 are generated from the same function, Ki,j =

k(ti, tj) = exp(−1
2
`−2(ti − tj)

2), a squared-exponential covariance function (or

RBF kernel, figure 5.7(a)). Other kernels could be used and the hyperparameters

of the kernel could be optimized, but for this simple demonstration we set ` =

20 which provides a bandwidth roughly in line with the time-point sampling

1GEO database, accession number GSE10562.
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intervals. We also add a small noise term along the diagonal of K which was set

to 1% of the data variance.

Now by the null hypothesis assumption, a more general model (dual paradigm)

of the form y ∼ N (0,XX> + K), should explain no variance in the low-rank

component XX>, as all the signal in the time-series is assumed to be explained

by the underlying function sampled from the GP. If we solve for the residual

components X via RCA, they will be forced to explain how the two time-series

are actually different.

We project the profiles onto the eigen-basis of the first q generalised eigenvec-

tors Ỹ = S>q Y and obtain a score of differential expression based on the norms

of their projections. The number q of retained principal eigenvectors is decided

on the number of corresponding eigenvalues di being larger than one. Recall

from PPCA, that as we increase the assumed noise variance σ2, more eigenval-

ues become negative and less eigenvectors are retained in Ŵ of eq. (3.3), p. 39.

Similarly, RCA standardises any noise in eq. (3.19), so we only have to retain

the eigenvectors of eigenvalues larger than 1. In this case, the assumed noise

variance embedded in the kernel drives the effective number of eigenvectors in

the projection basis.

We rank the scores and compare to the noisy ground-truth list of binding tar-

gets1 of TP63 from [Della Gatta et al., 2008], giving the ROC performance curve

in Figure 5.7(b). The baseline method that we compare against is the Bayesian

hierarchical model BATS [Angelini et al., 2007]. Note that RCA outperforms

BATS in terms the area under the ROC curve for all of its noise models.

5.3 Summary

Full covariance matrix models of data are often problematic as their parameteri-

sation scales with p2. Two separate approaches to a reduced parameterization of

these matrices are to base them on low-rank matrices (as in probabilistic PCA)

1A gene with a large number of binding sites for TP63 is a strong candidate for being one
of its direct targets, and thus associated with TP63-related diseases.
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Figure 5.7: (a) An RBF covariance computed on the augmented time-input vec-
tor for the microarray experiment. The covariance is computed across the times
t> = (0 : 20 : 240, 0, 20, 40, 60, 120, 180, 240) jointly for control and treatment.
(b) ROC comparison against BATS variants of different noise models (G: Gaus-
sian, T: t-distribution, DE: double-exponential). See also [Kalaitzis & Lawrence,
2011b] for an alternative approach based on GPs.

or on a sparse-inverse structure (as in GLasso). These two approaches have

very different characteristics: one assumes that a reduced set of latent variables

is governing the data, the other involves specifying sparse conditional depen-

dencies in the data. More precisely, when the data marginal is Gaussian, the

precision (inverse-covariance) matrix induces a Gaussian Markov random field.

Furthermore, a sparse precision possesses a valuable graphical interpretation, put

to fruition as an efficient regression model or as a structure learning approach.

Clearly, in any given dataset both low-rank and sparse-GMRF characteristics

may be present.

After describing the RCA framework in chapter 3, in the present chapter we

addressed the above problem to motivate the particular case of the explained

covariance term Σ being sparse-inverse. We proposed a basic point-estimation

algorithm based on EM for learning the low-rank and sparse-inverse parts of the

marginal covariance. This was demonstrated to good effect with experiments

spanning computational biology, with an example of a small protein-signaling

network; motion-capture, where the results became much more visually inter-
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pretable; and a “socio-political” example, where we showed evidence of collusion

in the Eurovision voting “system” amongst participating nations.

As an attempt to tie RCA to GPs from Chapter 2, we closed with a simple

demonstration of explaining away the trained covariance of a GP (defined by a

RBF) on concatenated time-series from two different conditions. The residual

structure served as the basis for measuring the differential expression across the

experiments.

Armed with a background on sparse-inverse selection, for the next and final

chapter we will focus solely on the sparsity of precision matrices of matrix-normal

(or matrix-Gaussian) models, that is, Gaussian densities over random matrices.

We will use this distribution on design matrices and learn its two precision matrix

parameters. One is the precision over the rows of a matrix-sample and the other

is precision over the columns. We will show that to simultaneously learn the

structure of those two graphs is at least as hard as an iterative application of

GLasso, which is provably efficient in itself. We will motivate the Kronecker-sum

as a novel structure for the joint precision of matrix-normal, which borrows from

Algebraic Graph Theory and provides an easily interpretable factorisation of the

precision, among other benefits.
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Chapter 6

The Bigraphical Lasso

Until now, we have embraced the endemic assumption in machine learning of

i.i.d. data. We now look at the more general case where this assumption can

be flawed: more complex data sets can exhibit partial correlations between data

points as well as features. To deal with correlation of this type we introduce the

bigraphical Lasso. The model is based on a Gaussian distribution over random

matrices that specifies correlations between data points and features. It does

so with a structured (Kronecker-sum) precision matrix that induces a Cartesian

product of undirected graphs, a prominent product with well studied properties

in spectral graph theory. One factor represents the graph over the rows of the

matrix and the other the graph over the columns. This structure has appealing

properties for regression and enhanced interpretability.

The most general of such matrix-models has a number of parameters that

scales quadratically with features and data points. To deal with this parameter

explosion we introduce `1 penalties and fit the model through a flip-flop algorithm

that reduces the problem to a series of lasso regressions. We demonstrate the

performance of our approach with extensive simulations and an example from

the COIL image data set.
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6.1 Introduction

When fitting Gaussian models to data, we usually make an independence assump-

tion across data points and fit the covariance matrix by maximum likelihood. The

number of parameters in the covariance matrix can be reduced by factor analysis

like structures (see Chapters 3 and 4) or by constraining the inverse-covariance

(or precision matrix) to be sparse [e.g. Banerjee et al., 2008]. A sparse precision

matrix defines a Gaussian Markov random field which is conveniently represented

by a weighted undirected graph. Nodes which are not neighbors in the graph are

conditionally independent given all other nodes. Models specified in this way can

learn conditional independence structures between features.

An alternative Gaussian modeling approach was introduced by Lawrence [2012],

who showed that spectral dimensionality reduction methods have an interpreta-

tion as sparse graphical models where the independence assumption is across data

features, and the parameters of the covariance are fitted by maximum likelihood

(or in the case of local linear embeddings [Roweis & Saul, 2000] by maximizing a

pseudolikelihood). This assumption leads to much better determined parameters

in the case where the number of features is greater than the number of data points

(the so called large p, small n case).

The choice of feature independence or data point independence is a model

choice issue, but both choices are in fact a simplification of a more general frame-

work that aims to estimate the conditional independence relationships between

both features and data points. It is this type of model that we address in this

chapter. Specifically we want to build a sparse graph that interrelates both fea-

tures and data points. For instance, we might have a data set that is a video.

Here the data points are the frames of the video and the data features are the

pixels in the video. Let’s assume that the ordering of the video frames and the

neighborhood structure between pixels has somehow been lost. A potential learn-

ing task would be to learn both the temporal structure of the data and the spatial

structure of the inter related pixels. We successfully solve this task for a simple

video from the COIL data set in Section 6.5.

An alternative motivating data example could be gene expression data, where
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we might wish to extract a genetic network from the gene expression values

whilst explaining correlations between samples (such as close genetic relation-

ships, or related experiments) with a separate network. Econometrics, computa-

tional biology and computer vision are very few example domains that often deal

with datasets of complex dependency structures that are best approximated with

higher-dimensional models of matrices or tensors. Such data are more naturally

represented by matrix-variate distributions.

6.1.1 Graphical Lasso and the matrix-variate Gaussian

The graphical lasso [GLasso, Banerjee et al., 2008; Friedman et al., 2008] is a

computationally efficient penalised likelihood algorithm for learning sparse struc-

tures of conditional dependencies or Gaussian Markov random fields (GMRF)

over features of iid vector-variate Gaussian samples [Lauritzen, 1996].

The matrix-variate normal [Dawid, 1981; Gupta & Nagar, 1999] is a Gaussian

density which can be applied to a matrix through first taking a vectorized (vec)

representation1 of the matrix samples X ∈ Rn×p and assuming the covariance

matrix has the form of a Kronecker product between two covariance matrices,

separately associated with the rows and columns of the data. The Kronecker

product assumption for the covariance implies that the precision matrix is also a

Kronecker product, which is formed from the Kronecker product of the precision

matrices associated with the rows and columns (Ψ⊗Θ).

One approach to applying sparse graphical models to matrix data is to combine

the Kronecker product structured matrix variate normal with the graphical Lasso.

Dutilleul [MLE, 1999] used a flip-flop approach for maximum likelihood estima-

tion of the parameters of the matrix-normal and much later Zhang & Schneider

[2010] used it for MAP estimation with sparsity penalties on the precision ma-

trices. More recently, Leng & Tang [2012] applied the SCAD penalty [Fan &

Li, 2001] as well as the Lasso in the likelihood function of the matrix-normal.

Tsiligkaridis et al. [2013] analyzed the convergence of Kronecker GLasso under

1Vectorization of a matrix involves converting the matrix to a vector by stacking the columns
of the matrix.
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asymptotic conditions as well as simulations that show significant convergence

speedups over GLasso and MLE.

However, whilst the Kronecker-product structure arises naturally when con-

sidering matrix-normals (Kronecker-normals), it is relatively dense when it comes

to the dependencies it suggests between the rows. More precisely, if Ψij in Ψ⊗Θ

is non-zero (for example, corresponding to an edge between samples i and j in the

design matrix X) then many edges between features of sample i and sample j (as

many as in Θ) will also be active. A sparser structure would benefit situations

where the connection between a feature of some sample and a different feature of

any other sample is of no interest or redundant, simply because a same-feature

dependency between different samples would suffice to establish a cross-sample

dependency. For instance in a video, it is reasonable to assume given that the

neighbors of pixel (i, j) in frame k are conditionally independent to the neighbors

of pixel (i, j) in frame k + 1, conditioned on pixels (i, j) of both frames.

6.1.2 The Bigraphical Lasso

In this chapter, we introduce the bigraphical Lasso (BiGLasso), a model for

matrix-variate data that preserves their column/row structure and, like the Kro-

necker product based matrix-normal, simultaneously learns two graphs, one over

rows and one over columns of the matrix samples. The model is trained in a

flip-flop fashion, so the number of Lasso regressions reduces to O(n + p). How-

ever, the model preserves the matrix structure by using a novel Kronecker sum

structure for the precision matrix, (Ψ ⊗ I) + (I ⊗ Θ) instead of the Kronecker

product (Ψ⊗Θ). This structure enjoys enhanced sparsity in comparison to the

conventional Kronecker-product structure of matrix-normals.

In the context of regression models, the Kronecker-sum prevents the condi-

tional independence between responses of multi-output Gaussian processes, a

property known in various literatures as cancellation of inter-task transfer or

autokrigeability.

When operating on adjacency matrices, the Kronecker-sum is also known in
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algebraic graph theory as the Cartesian product of graphs and is arguably the

most prominent of graph products [Chung, 1996; Imrich et al., 2008; Sabidussi,

1959]. This endows the output of the BiGLasso with a more intuitive and inter-

pretable graph decomposition of the induced Gaussian random field (GRF), see

figure 6.1.

(a) (b)

Figure 6.1: When acting on adjacency matrices of graphs, the Kronecker-sum
acts as the Cartesian-product (a) and the Kronecker-product as the tensor-
product (b). The lattice-like structure of the Cartesian-product is ideal for
modeling dependencies between features as well as samples. More generally,
since the Cartesian-product is associative, it can be generalized to model higher-
dimensional GRFs. Note that here we do not include self-edges (zeros on the
diagonals). Based on figures created by David Eppstein, http://en.wikipedia.
org/wiki/Graph_product.

Enhanced Sparsity For a matrix density λ ∈ [0, 1] of both precision matrices

the Kronecker-sum has O(λnp(n+ p)) non-zeros, whereas the Kronecker-product

has O(λn2p2) non-zeros.

Better Information Transfer Kronecker product forms have a known weak-

ness, referred to in the Gaussian process (GP) literature as the cancellation of

inter-task transfer : Bonilla et al. [2008, §2.3] showed that the predictive mean of

a multi-output GP with a noise-free Kronecker-product covariance1 and the same

inputs conditioned across tasks (a conditioning structure referred to as a block de-

sign) uncouples the outputs of the different tasks, that is, the posterior factorises

1One factor for inter-task one for inter-point covariances.
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and thus the outputs are computed independently. The key of this proof lies in the

factorisable property of the inverse Kronecker-product, (Ψ⊗Θ)−1 = Ψ−1⊗Θ−1.

This property does not apply under the presence of additive noise, hence the

outputs remain coupled. This result first arose in geostatistics under the name of

autokrigeability [Wackernagel, 2003] and is also discussed for covariance functions

by O’Hagan [1998]. Zellner [1962], Binkley & Nelson [1988] pointed out how the

consideration of the correlation between regression equations leads to a gain in

efficiency.

In a similar vein from econometrics, are models of seemingly unrelated re-

gressions [SUR, Zellner, 1962], a form of general least squares that allows for a

different set of regressors for each response. The problem reduces to ordinary

least squares (OLS) when the same covariates are used across the outputs (block

design). With a block design, OLS would pass on a potential gain in efficiency

by disregarding correlations between responses. Nonetheless, the distribution of

the maximum-likelihood estimators does not factorize, regardless of conditioning

design. In contrast to SUR, a block design on a multi-output GP with a noise-free

Kronecker-product covariance induces the stronger effect of conditional indepen-

dence over the outputs. These two factorisations are very different and in general

do not coincide.

The same property that allows for a simple flip-flop approach also negates

the merit of exploiting any correlations between different outputs, but by cou-

pling them with additive noise to enable inter-task transfer, flip-flop is no longer

straightforward. Stegle et al. [2011] addressed this issue by adding iid noise to

a Kronecker-product covariance — a low-rank factor for confounding effects and

a sparse-inverse factor for inter-sample dependencies — and exploiting identi-

ties of the vec(.) notation for efficient computation within the matrix-normal

model.

To summarize our contributions, contrary to existing approaches that use the

Kronecker-product structure, the Kronecker-sum preserves the inter-task trans-

fer. Our algorithm maintains the simplicity of the flip-flop with a simple trick

of transposing the matrix-variate (samples become features and vice versa). At

the same time, the induced Cartesian factorization of graphs provides a more
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parsimonious interpretation of the induced Markov network.

The rest of this chapter is structured as follows. We describe the matrix-

normal model with the Kronecker-sum inverse-covariance in §6.2. In §6.3, we

present the BiGLasso algorithm for learning the parameters of the Kronecker-

sum inverse-covariance. We present some simulations in comparison to a recent

Kronecker-normal model of Leng & Tang [SMGM, 2012] in §6.4 and an application

to an example from the COIL dataset in §6.5. We conclude in §6.6.

6.2 Matrix-normal with the Kronecker-sum struc-

ture

To motivate our model, consider the case where matrix-variate data Y are sam-

pled iid from a matrix-normal distribution (matrix-Gaussian). This is a natural

generalisation of the Gaussian distribution towards tensor support1. This distri-

bution can be reparametrized such that the support is over vectorised represen-

tations of random matrices,

vec(Y) ∼ N
(
0,Ψ−1

n ⊗Θ−1
p

)
.

The Kronecker-product-based SMGM Under the assumption that Ψn⊗Θp

is sparse, the SMGM estimator (Sparse Matrix Graphical Model) of Leng &

Tang [2012] for the precision matrices Ψn,Θp can be computed iteratively by

minimizing a flip-flop extension of GLasso for Kronecker-product matrix-normals

using the `1 penalty:

min
Θp,Ψn

{
1

Nnp

N∑
i=1

tr
(
YiΘpY

>
i Ψn

)
− 1

n
log|Ψn| − 1

p
log|Θp|+ λ1||Ψn||1 + λ2||Θp||1

}
,

(6.1)

1A vector is an order-1 tensor, a matrix is an order-2 tensor and so on.
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where Yi is the i-th matrix sample, N is the sample size and λ1, λ2 the regulariza-

tion parameters. Minimisation proceeds by fixing one of the precision matrices

(say, the columns-precision matrix Θp), thus reducing the above to a GLasso

problem on Ψn with a projected covariance (
∑

i YiΘpY
>
i ). Similarly, another

GLasso step fits the the columns-precision matrix Θp with a fixed rows-precision

Ψn. Note that each GLasso step involves an additional O(N) term as the sum-

mation depends on a new estimate.

The Kronecker-sum-based BiGLasso Let Y ∈ Rn×p be a random matrix. If

its rows are generated as iid samples from N (0,Σp), then the sampling distribu-

tion of the sufficient statistic Y>Y is Wishart(n,Σp) with n degrees of freedom

and scale matrix Σp. Similarly, if the columns are generated as iid samples from

N (0,Γn), then the sampling distribution is Wishart(p,Γn).

From a maximum entropy point of view we can constraint these second-order

moments in a model both for the features and the datapoints of a design matrix.

One way to do so, is to combine these sufficient statistics in a model for the entire

matrix Y as

p(Y) ∝ exp
{
−tr

(
ΨnYY>

)
− tr

(
ΘpY

>Y
)}

,

where Ψn ∈ Rn×n and Θp ∈ Rp×p are positive definite matrices. This is equivalent

to a joint factorized Gaussian distribution (see eq. (A.6) in the appendix) for the

n× p entries of Y, with a precision matrix of the form

Ω , Ψn ⊕Θp = Ψn ⊗ Ip + In ⊗Θp ,

where⊗ is the Kronecker-product and⊕ the Kronecker-sum operator. Thus,

ωij,kl = ψi,kδj,l + δi,kθj,l ,

for i, k ∈ {1, . . . , n} and j, l ∈ {1, . . . , p}. As an immediate benefit of this

parameterization, while the full covariance matrix has O(n2p2) entries, these are

governed in our model by only O(n2 + p2) parameters.
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Given data in the form of some design matrix Y, the BiGLasso estimates

sparse matrices by putting `1 penalties on Θp and Ψn. The convex optimization

problem is

min
Θp,Ψn

{
n tr (ΘpS) + p tr (ΨnT)− ln|Ψn ⊕Θp|+ λ||Θp||1 + γ||Ψn||1

}
, (6.2)

where S , 1
n
Y>Y and T , 1

p
YY> (6.3)

are empirical covariances across the samples and features respectively. A solution

simultaneously estimates two graphs – one over the columns of Y, corresponding

to the sparsity pattern of Θp, and another over the rows of Y, corresponding

to the sparsity pattern of Ψn. Note that (6.2) does not require a summation

over the datapoints in each step as was the case in (6.1). Also note that since

ωii,jj = ψii + θjj, the diagonals of Θp and Ψn are not identifiable (though we

could restrict the inverses to correlation matrices). However, this does not affect

the estimation of the graph structure (locations of zeros).

6.3 A penalized likelihood algorithm for BiGLasso

A note on notation If M is an np×np matrix written in terms of p×p blocks,

as

M =


M11 . . . M1n

...
. . .

...

Mn1 . . . Mnn

 ,

then trp(M) is the n× n matrix of traces of such blocks1:

trp(M) =


tr (M11) . . . tr (M1n)

...
. . .

...

tr (Mn1) . . . tr (Mnn)

 .

We alternate between optimizing over Ψn while holding Θp fixed and optimiz-

1In a sense, this generalizes the conventional trace operator as trnp(M) = tr (M).
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ing over Θp while holding Ψn fixed. First we consider the case where there is no

regularization. From (6.2), the first step of the optimization problem is reduced

to

min
Ψn

{
p tr (ΨnT) − ln|Ψn ⊕Θp|

}
. (6.4)

Section A.5 in the supplementary material shows how to take the gradient

of (6.4) with respect to Ψn. Combining (A.27) and (A.28) of the appendix we

obtain the stationary point:

T− 1
2p

T ◦ I = 1
p
trp(W)− 1

2p
trp(W) ◦ I ,

where we define W , (Ψn ⊕Θp)
−1. We partition V , 1

p
trp(W) as

V =

[
v11 v>1\1
v1\1 V\1\1

]
, (6.5)

where v1\1 is a vector of size n−1 and V\1\1 is a (n−1)×(n−1) matrix. Despite

the complex form of the stationarity condition, only the lower-left block of its

partition will be of use:

t1\1 = 1
p
trp(W1\1) = v1\1, and also from (6.3),

t1\1 = (t21, . . . , tn1)> = 1
p
(y>2 y1, . . . ,y

>
n y1)>. (6.6)

Similarly, we partition W into blocks:

W =

[
W11 W>

1\1

W1\1 W\1\1

]
,

where W11 is a p× p matrix and W1\1 is a p(n− 1)× p matrix. Then from the

bottom-left block of

WΩ =

[
W11 W>

1\1

W1\1 W\1\1

]
ψ11Ip + Θp . . . ψinIp

...
. . .

...

ψn1Ip . . . ψnnIp + Θp

 = In ⊗ Ip , (6.7)

108



6. THE BIGRAPHICAL LASSO

we get

W1\1(ψ11Ip + Θp) + W\1\1(ψ1\1 ⊗ Ip) = 0n−1 ⊗ Ip

W1\1 + W\1\1


(ψ11Ip + Θp)

−1ψ21

...

(ψ11Ip + Θp)
−1ψn1

 = 0n−1 ⊗ Ip (6.8)

W1\1 + W2\1(ψ11Ip + Θp)
−1ψ21 + . . .

· · ·+ Wn\1(ψ11Ip + Θp)
−1ψn1 = 0n−1 ⊗ Ip ,

with 0n−1 as the vector of n−1 zeros. According to the stationary point in (6.6),

taking the blockwise trace trp(.) of both sides, gives the equation:

p t1\1 + A\1\1ψ1\1 = 0n−1, where

A>\1\1 ,


trp
{
W2\1(ψ11Ip + Θp)

−1
}>

...

trp
{
Wn\1(ψ11Ip + Θp)

−1
}>
 . (6.9)

By imposing an `1 penalty on ψ1\1, this problem reduces to a Lasso regres-

sion.

After estimating ψ1\1, we compute W1\1 by substituting into (6.8). It remains

to compute W11. This follows from (6.7), which gives

W11 = (I−W>
1\1(ψ1\1 ⊗ I))(ψ11I + Θp)

−1 .

This algorithm iteratively estimates columns of Ψn and W in this manner. The

procedure for estimating Θp, for fixed Ψn, becomes directly parallel to the above

simply by transposing the design matrix (samples become features and vice-versa)

and applying the algorithm. Algorithm 3 outlines the BiGLasso.

In our experiments we treat λ and γ as the same parameter and the precision

matrices Ψn and Θp are initialized as identity matrices. The empirical mean

matrix is removed from each dataset.
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Algorithm 3 BiGLasso

Input: Y, λ, γ and initial estimates of Ψn and Θp

T← p−1YY>

repeat
# Estimate Ψn :
for i = 1 . . . n do

Partition Ψn into ψii,ψi\i and Ψ\i\i.
Find a sparse solution of p ti\i + A\i\iψi\i = 0n−1 with Lasso regression.
Substitute ψi\i into (6.8) to compute Wi\i.

Wii ←
(
I−W>

i\i(ψi\i ⊗ I)
)

(ψiiI + Θp)
−1

end for
# Estimate Θp :
Proceed as if estimating Ψn with input Y>, λ, γ.

until (6.2) converges or maximum iterations reached.

6.4 Simulations

To empirically assess the efficiency of BiGLasso, we generate the datasets de-

scribed below from centered Gaussians with Kronecker-product (KP) and Kronecker-

sum (KS) precision matrices. We run the BiGLasso and SMGM using the `1

penalty. The Θp and Ψn precision matrices in both cases are generated in accor-

dance to [§4, Leng & Tang, 2012]; namely, as either of the following d× d blocks

(d being either p or n) of increasing density:

1. A1: Inverse AR(1) (auto-regressive process) such that A1 = B−1 with

Bij = 0.7|i−j|.

2. A2: AR(4) with Aij = I(|i− j| = 0) + 0.4I(|i− j| = 1) + 0.2I(|i− j| =
2) + 0.2I(|i− j| = 3) + 0.1I(|i− j| = 4), I(.) being the indicator function.

3. A3 = B + δI, where for each Bij = Bji, i 6= j, P (Bij = 0.5) = 0.9 and

P (Bij = 0) = 0.1. The diagonal is zero and δ is chosen such that the

condition number of A3 is d. Since the condition number is k(A3) = d =
λ1+δ
λd+δ

, the ratio of largest-to-smallest eigenvalue, then δ = dλd−λ1
1−d .

Figures 6.2 and 6.3 show the recall =
#{Ω̂ij 6=0 & Ωij 6=0}

#{Ωij 6=0} (or true-positive rate)

and precision =
#{Ω̂ij=0 & Ωij=0}

#{Ω̂ij=0 & Ωij=0}+#{Ω̂ij=0 & Ωij=1}
across 50 replications to assess
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Figure 6.2: Simulation results on data generated from Kronecker-sum structures.
Each box shows a recall-precision plot for a particular setup (shown along the top
and right margin). Structure recovery can be exact, as the sample size increases
for the A3/A3 combination (most right column).

the Ω̂ estimates under various setups.

Each box shows a particular setup that varies in block combination (A1,A2,A3),

in block sizes (n, p), in sample size N generated from the matrix-normal and by

the structure used (KS or KP) to generate the sample. Each curve in a box is the

solution-path of a replication in precision-recall space for a range of regularization

settings λ = 5x, for x ∈ [−6,−2] interpolated 10 times. The blocks are arranged

such that the overall density of the structured precision matrices increases from

left to right.

We note that since blocks A1,A2 have a fixed form, for such combinations

each curve is a different sample from the same graph structure. Only A3 is

random so in combinations involving A3, each box has a different random A3

and consequently generates a set of 50 replicates from a different graph. At a

glance this has little effect.
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Figure 6.3: Simulation results on data generated from Kronecker-product struc-
tures.

Figures 6.2 and 6.3 also compare against the results of SMGM (using the Lasso

penalty) on data simulated from the matrix-normal with KS structures. Leng &

Tang [2012] had also ran comparisons against the MLE method of Dutilleul [1999]

(an unpenalized variant of SMGM), ridge-SMGM (SMGM with an `2 penalty in-

stead of `1) and the GLasso of Friedman et al. [2008] (on vectorized samples from

N (0,Ψn ⊗Θp), i.e. ignoring the matrix structure). They consistently outper-

formed all of these methods, so for brevity we compare only against the SMGM.

Similarly, Figure 6.3 visualizes the simulations under KP structures.

By the empirical distributions of these solution-paths (50 for each model in

each box), it is no surprise that the intrinsically denser SMGM tends to have

low precision (many false-positives) for smaller values of λ. On the contrary,

BiGLasso tends to have low recall (many false-negatives) due to its intrinsically

sparser structure.
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Block A3 is the only randomized sparse structure whereas A1 and A2 are more

“artificial” as they respectively model an inverse-AR(1) and AR(4) and they yield

banded precision matrices. Of interest is the observation that the largest effect of

the increase in sample size (10→ 100) seems to occur on the A3/A3 combination

(right end column of boxes). More precisely in Figure 6.2, we note the difference

from box (1,6) to (2,6) and from (3,6) to (4,6). The sample size is very effective:

with sufficiently large sample size N, BiGLasso starts to recover exactly and

SMGM occupies lower regions in general.

In Figure 6.3, since the data generation process uses Kronecker-product struc-

tures, the SMGM is expected to outperform our method. Indeed for lower-

density structure, the recovery rate of the SMGM seems consistently better than

BiGLasso. and recovery can be almost exact for the SMGM for combination

A1/A1. However, as the overall density increases, the performance of BiGLasso

is balanced. Again, for combinations involving A3, larger sample sizes benefit

BiGLasso more.

In summary, KP-simulated data proved harder to tackle for both methods than

KS-generated data. These simulations have shown that the BigLasso consistently

outperforms the SMGM on KS-simulations, with the possibility of exact recovery

on large sample sizes. On KP-simulations the comparison is less clear, but the

BiGLasso proves more practical for denser Kronecker-product structures and the

SMGM more practical for sparser structures.

6.5 An example from the COIL dataset

In this section we perform a minor video analysis of a rotating rubber duck from

the COIL dataset1. The video consists of gray-scaled images, see Figure 6.4. The

goal is on two fronts: to recover the conditional dependency structure over the

frames and the structure over the pixels. For simplicity, we reduced the resolution

of each frame and sub-sampled the frames (at a ratio 1:2). After vectorizing the

frames (stacking their columns into 81 × 1 vectors) and arranging them into a

1http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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Figure 6.4: Video of a rotating rubber duck. Original resolution of 128 × 128
pixels (back row) and reduced resolution of 9× 9 pixels (front row).

design matrix Y, the resulting single “datapoint” that BiGLasso has to learn from

is 36× 81 (#frames × vectorized frame length). Unlike our previous simulations

where we had many matrix-samples, here the challenge is to learn from this single

matrix (N = 1).

Despite the big loss in resolution, the principal component (PCA) subspace

of the rotating duck seems to remain smooth, see Figure 6.5. Being a time-

series, the video is expected to resemble a 1D manifold, “homeomorphic” to the

one recovered by PCA shown in figure 6.5, so we applied the BiGLasso on the

reduced images.

Figure 6.5: 1D manifold of the rotating duck in 3D space, recovered by PCA and
projecting onto the 3 principal eigenvectors of Y>Y. The black curve serves as
a shadow to aid perspective. Note that the blue line is drawn only by knowledge
of the frame ordering and PCA is responsible solely for the reduced embedding.

Indeed, the left panel of figure 6.6 shows the row-precision parameter of Bi-

GLasso capturing a manifold-like structure where the first and last frames join,

as expected of a 360◦ rotation. The model recovered the temporal manifold struc-
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ture, or in other words, we could use it to connect the dots in Figure 6.5 in case

the true order of the frames was unknown (or randomly given to us).

The right panel of Figure 6.6 shows the conditional dependency structure over

the pixels. This figure shows strong dependencies at intervals of 9 — that is,

roughly in line with the size of a frame (due to the column-wise ordering of the

pixels). This is expected, as neighboring pixels are more likely to be conditionally

dependent.

Figure 6.6: Row and column-precision matrix estimates of BiGLasso with λ ≈
.0009.

A more intuitive picture of the induced Markov network is shown in Figure 6.7.

A Gaussian graphical model can be naturally interpreted as a system of springs,

where the off-diagonal entries of the inverse-covariance represent the negative

stiffness of the springs. Therefore by the colorbar, a negative-color represents an

“attracting” spring between those two pixels and a positive-colour represents a

“repulsing” spring. Naturally, in the frames network almost all non-zero elements

are negative.

6.6 Summary

There is a need for models to accommodate the growing complexity of depen-

dency structures. We are concerned with conditional dependencies, as encoded
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Figure 6.7: The Markov network induced by the column-precision over the pixels
(superimposed over the first frame for reference of the pixel locations).

by the inverse-covariance of a matrix-normal density. In high-dimensional cases

the Markov network structures induced by a graph could be approximated by fac-

torisations such as the tensor-product (Kronecker-product of precision matrices).

In this work, we motivated a novel application of the Cartesian factorization of

graphs (Kronecker-sum of precision matrices), as a more parsimonious and in-

terpretable structure for inter-sample and inter-feature conditional dependencies.

In the context of multi-output GPs, the Kronecker-product cancels any transfer

(that is, ignoring any correlations) between outputs (tasks) when a block design

with a noise-free covariance. This is not the case with the Kronecker-sum due to

its additive form. We introduced the bigraphical Lasso, an algorithm for the si-

multaneous point-estimation of the structures of two Gaussian graphical models:

one over the rows of a matrix-sample and the other over its columns. This was

demonstrated to good effect through simulations as well as a toy example from

the COIL dataset.

An obvious extension that would exploit the associativity of the Cartesian

product, would be the modeling of datasets organised into 3 or higher-dimensional

arrays (amounting to GRFs over higher-order tensors) with dependencies across

any subset of the array dimensions.
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One of the appealing features of the Kronecker-sum of precision matrices is

the preservation of inter-task transfer, thereby leading to potential applications

on Kronecker-sums of kernels for multi-output Gaussian processes.

Finally we feel that the — largely unknown to machine learning — literature

on the Cartesian product of graphs deserves a thorough study, towards modeling

and algorithmic advances in probabilistic graphical modeling.
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Chapter 7

Conclusions and future work

Conclusions

In the thesis we have studied a number of covariance structures for exploiting re-

lationships between covariates. The relevancy of these structure to realistic prob-

lems relies on three properties of the Gaussian distribution: the non-parametric

formulation of smooth functions with kernel matrices, the formulation of condi-

tional independence constraints through structural zeros in the inverse-covariance

and most importantly, the formulation of low-rank bases through the spectral

analysis of the covariance.

In chapter 2 we proposed the Gaussian process as the default tool for fitting

gene-expression trajectories with encouraging results compared to a state-of-the-

art Bayesian hierarchical model specialised to this task. The inter-timepoint

modeling was done through a temporal covariance structure, defined by a RBF

for simplicity. Other kernels could help, but the question of preference would be

lie outside the scope of this thesis. The residual structure left by the RBF was

assumed to be Gaussian spherical noise.

The relaxation of this assumption motivated chapter 3, where we introduced

the residual component analysis (RCA) algorithm: a maximum-likelihood ap-

proach for identifying a low dimensional representation of the residuals when the

covariance is partially explained by another covariance of fixed-effects. We proved
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how the low-rank component in the joint covariance of the covariates can be de-

termined through a generalized eigenvalue problem (GEP), for dual and primal

representations. With further analysis, the GEP of RCA turned out to reduce

to PCA/PPCA (a regular eigenvalue problem) on the joint sample-covariance of

a particular linear transformation of the data. We also showed that this trans-

formation is strongly connected to an oblique (non-orthogonal) projection of the

data. The projector is governed by the inverse of the explained covariance term,

which plays the role of a null-steering operator in the posterior expectation of the

latent components. Conversely for a fixed transformation, every PCA problem

is mapped to an RCA problem, effectively declaring them equivalent. Now every

problem that can be reduced to RCA, can also be reduced to PCA.

Chapter 4 enumerated a few such problems, with the most prominent recently

in machine learning being CCA/PCCA. Another notable example is LDA, which

was already known to reduce to CCA (so that connection came for free), though

it involves mixed (binary and continuous) data. The primal and dual variants of

the RCA theorem provide a probabilistic interpretation to classical generalised-

projection algorithms, thus with the potential to unify many different algorithms.

The take-away message was that with further imaginative instantiations of the

explained covariance term Σ, one can develop new approaches to data analy-

sis.

A few such approaches are demonstrated in Chapter 5. One approach involves

a more accurate fitting of sparse-inverses (or structure learning of Gaussian graph-

ical models) by combining it with a low-rank covariance term that acts as the

residual covariance when the data suffer from confounding low-rank effects. With

the former problem having already been solved to some extent by the Graphi-

cal Lasso and the latter with a just-proposed solution, the natural next step

was to devise an EM algorithm (EM/RCA) that iteratively fits one structure at

a time. The EM/RCA algorithm was tested to good effect on protein-signaling

data, motion-capture data and Eurovision voting data. The second new approach

revisited the GP regression problem from Chapter 2 with a low-rank plus RBF

kernel covariance structure to characterise more accurately any the structured

error in the time-series. Again, the idea was to fit both structures in a flip-flop
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fashion, but a single pass sufficed to outperform the same baseline method from

chapter 2.

Finally in chapter 6, we focused to conditional independencies induced by the

inverse-covariance of a matrix-normal density. The vectorised re-parametrization

of the matrix-normal has a Kronecker-product covariance structure. Its prop-

erties enable flip-flop approaches for fitting its np × np covariance that reduce

training time from O(n2p2) to O(n2 + p2) in the number of matrix dimensions.

We motivated a novel structure for the joint precision, the Cartesian factorisa-

tion of graphs (Kronecker-sum of precisions), as a more parsimonious and inter-

pretable structure for inter-sample and inter-feature conditional dependencies. In

the context of regression, the Kronecker-product cancels any transfer (that is, in-

ducing zero correlations) between responses (tasks) of multiple regressions. The

Kronecker-sum does not suffer from this shortcoming due to its additive functional

form. We also proposed the bi-Graphical Lasso (BiGLasso), an algorithm with

the novel Kronecker-sum inverse-covariance structure for the simultaneous L1-

estimation of the structures of two Gaussian graphical models: one over the rows

of a matrix-sample and the other over its columns. It responded with encouraging

results on simulations as well as an example from the COIL dataset.

Future work

We touched on a number of potential directions while discussing RCA.

Better inference One could enrich the RCA framework in ways parallel to

the developments of PPCA (for instance, see Bayesian PCA [Bishop, 1999]). A

Bayesian treatment of RCA would be of interest as there is a plethora of work

on priors for the low-rank part that consider the latent dimensionality of the

confounders, or the sparsity of the low-rank weights W, for instance see spike-

and-slab [Mohamed et al., 2012], the horseshoe [Carvalho et al., 2010], or the

generalised double Pareto prior [Armagan et al., 2011]). Chapter 5 presented

a MAP estimator for the M-step (of EM/RCA) when the explained covariance
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term Σ is sparse-inverse, but one might wish to consider suitable priors depending

on the application (and thus structure) of Σ. These suggestions would merely

augment our earlier graphical models.

Other structured composites Also mentioned in §3.2.3, a combination of

low-rank plus sparse might be useful for learning marginal dependency structures,

for a Bayesian approach see [Silva, 2011]. The Kronecker-sum structure studied

in Chapter 6 can be readily extended to three or more precisions by exploiting

the associativity of the Cartesian product. Training on 3-or-higher-dimensional

data-arrays (amounting to the number of indices required to access an entry)

would proceed analogously to Algorithm 3 but with more transpositions of the

data-array indices involved.

Non-linear non-Gaussian models Finally, we established a solid relationship

of RCA1 to PCA and CCA, but not so much to LDA, ICA and their kernelised

variants. It is not straightforward how one could generalise RCA to a GPLVM-

like model, as oblique projections probably lose any meaning in an RKHS in

general. However, we believe there is hope for representing mixed-data (discrete,

ordinal, continuous) via Gaussian copulas — an up-and-coming line of research for

semi-parametric learning in machine learning and more traditional in statistics.

Existing approaches could be adapted [Hoff, 2007; Murray et al., 2011] so that

our RCA framework is applied on the Gaussian latent representations of non-

Gaussian, discrete or ordinal observations.

1Usage of the term ’RCA’ here is akin to PCA/PPCA and refers collectively to the RCA
generalised eigenvalue problem and RCA maximum-likelihood solution.
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Appendix A

Mathematical background

In this appendix we provide enough basic background on each topic to make this

thesis self-contained. For further discussions on each topic we provide references

in their respective sections.

A.1 Gaussian identities

Let X = {x1, x2, ..., xn} be a set of scalar random variables in R,

xi ∼ N
(
µi, σ

2
i

)
.

If {A,B} is a partition on X, that is, A ∪ B = X and A ∩ B = Ø, for non-

empty A and B, then with xA we denote an ordered collection of the random

variables in A. By slight abuse of notation, we use x also as a vector of scalar

random variables in Rp. Thereby,

N (xA| µA,ΣA) = (2π)−p/2|ΣA|−1/2 exp
{
−1

2
(xA − µA)>Σ−1

A (xA − µA)
}
,
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denotes the Gaussian distribution over the random variable xA and similarly for

the set B. The joint, marginal and conditional distributions of Gaussians are also

Gaussian but the product of two Gaussians distribution yields an unnormalised

Gaussian. See also [Bishop, 2006; Von Mises, 1964] for a detailed treatment.

A.1.1 Joint distribution

If xA ∼ N (µA,ΣA) and xB ∼ N (µB,ΣB), then

[
xA

xB

]
∼ N

([
µA

µB

]
,

[
ΣA ΣAB

ΣBA ΣB

])
= N

[µA
µB

]
,

[
ΛA ΛAB

ΛBA ΛB

]−1
 , (A.1)

where the partitioned joint precision (inverse of the joint covariance) is:

[
ΛA ΛAB

ΛBA ΛB

]

=

[(
ΣA −ΣABΣ−1

B ΣBA

)−1 −ΛAΣABΣ−1
B

−Σ−1
B ΣBAΛA Σ−1

B + Σ−1
B ΣBAΛAΣABΣ−1

B

]
. (A.2)

A.1.2 Marginal distribution

If eq. (A.1) holds for two random variables xA and xb, then the marginal distri-

bution of xA is:

p(xA) =

∫
dxB p(xA,xB) = N (µA,ΣA) (A.3)

and similarly for xB. Marginalisation relies on completing a square in the expo-

nential of the Gaussian, see [Bishop, 2006].
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A.1.3 Conditional distribution

More interestingly, the mean and covariance of the conditional distribution of

xA|xB are:

µA|B = µA + ΣABΣ−1
B (xB − µB) (A.4)

ΣA|B = Λ−1
A . (A.5)

Note that the conditional precision is simply the upper-left block of the joint

precision, eq. (A.2). This nicely juxtaposes the marginal covariance being simply

the upper-left block of the joint covariance, eq. (A.3).

A.1.4 Product of Gaussians

The product of two Gaussian distributions over the same domain yields an un-

normalised Gaussian:

N (x|µA,ΣA) N (x|µB,ΣB) ∝ N (x|µC ,ΣC) , where

µC = ΣC

(
Σ−1
A µA + Σ−1

B µB
)−1

ΣC =
(
Σ−1
A + Σ−1

B

)−1
.

(A.6)

For the product, note that the precision matrix of the unnormalised Gaussian is

simply the sum of the individual precisions and the mean is the convex sum of

the means, weighted by the individual precisions [Rasmussen & Williams, 2006,

section A.2].
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A.2 Matrix derivatives

All matrix derivatives are based on the following differential forms (a,A are

constants):

∂A = 0 (A.7)

∂(X>) = (∂X)> (A.8)

∂(X + Y) = ∂X + ∂Y (A.9)

∂(AX) = A∂X (A.10)

∂(a>Xa) = a>(∂X)a (A.11)

∂(XY) = (∂X)Y + X(∂Y) (A.12)

∂(X⊗Y) = (∂X)⊗Y + X⊗ (∂Y) (A.13)

∂X−1 = −X−1(∂X)X−1 (A.14)

∂ tr (X) = tr (∂X) (A.15)

∂ ln|X| = tr
(
X−1∂X

)
. (A.16)

For proofs on these identities, see [Magnus & Neudecker, 1988]. For any of the

above, if the X in ∂f
∂X

is symmetric then

∂f

∂X
=

[
∂f

∂X

]
+

[
∂f

∂X

]>
− I ◦

[
∂f

∂X

]
. (A.17)

A.3 Linear algebra

We describe here some basic matrix properties for reference [Golub & Van Loan,

1996; Horn & Johnson, 1990; Strang, 2003]. In the following, let X ∈ Rn×m be a

arbitrary real rectangular matrix.
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A.3.1 Singular value decomposition

As a culmination of the fundamental theorem of linear algebra, the SVD neatly

connects the four fundamental subspaces of X in the form of mapping between

two orthonormal spaces:

X = ULV> , (A.18)

where U is an orthogonal matrix whose columns are called the right-singular

vectors and they form an orthonormal basis for the direct sum1 of the column-

space and left-null space of X. The columns of the orthogonal matrix V are the

left-singular vectors and they form a basis for the direct sum of the row-space and

null space. The diagonal m×n matrix L contains the singular values li responsible

for the scaling from one space to the other. Now, any linear transformation can

be broken down to its constituent steps: For a right-singular vector vi,

Xvi = (ULV>)vi = ULei = liui ,

and since any a ∈ Rm can be expressed as a linear combination of the right-

singular vectors vi, then

Xa = (ULV>)(c1v1 + · · ·+ cmvm) =
∑
i

ciliui = b ,

shows the mapping to a linear combination of the left-singular vectors ui.

Connection to the spectral theorem

It follows that the left and right-singular vectors are the eigenvectors of XX> and

X>X respectively and the singular values are the square roots of the eigenvalues,

1X ⊕ Y = {(x, y) | x ∈ X , y ∈ Y}.
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shared by both matrices:

XX> = (ULV>)(VL>U>) = UL2U>

X>X = (VL>U>)(ULV>) = VL2V> .

If X is symmetric then obviously XX> = X>X = X2 = UL2U> = VL2V>,

thereby U = V and

X = ULU> , (A.19)

which is the spectral or eigen-decomposition of X. This also shows a method to

compute the singular vectors of any X through the eigenvectors and eigenvalues

of XX> and X>X, which in turn can be computed efficiently by the QR method

or Francis QR step [Golub & Van Loan, 1996]. In the special case where all the

eigenvalues of the symmetric X are positive (non-negative), then X is positive

(semi-)definite, that is, a>Xa > 0 (≥ 0) for all non-zero a ∈ Rm. Therefore,

XX> and X>X are always positive (at-least-)semi-definite.

Economy SVD

For matrices X ∈ Rn×m of rank r where m and n differ greatly, an equivalent

economic form of the SVD should be used:

X = UrLrV
>
r =

∑
i

liuiv
>
i ,

where Ur and Vr now have r ≤ min(n,m) orthonormal columns, thus we only

have to compute the r principal eigenvalues and eigenvectors.

A.3.2 Geometry of oblique projections

The notation and introduction approach in this section are adapted from [Behrens

& Scharf, 1994]. Let P ∈ Rp×p be an arbitrary projection matrix with column
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rank q < p. Let C(P), R(P) and N (P) denote the column-space (or range), row-

space and null-space of P respectively. What we mean by a projection is that the

matrix transforms any vector x in Rp to a vector inside the column-space C(P) of

dimension q. Naturally, any vector already in C(P) is unaffected by P, therefore

for P to be a projection it must be idempotent :

P2 = P .

An eigenvector of the projection is either any vector in C(P), with corresponding

eigenvalue 1, or any vector in the space that is orthogonal to the row space R(P),

that is, the null space N (P), with eigenvalue 0. Now we make a distinction

between orthogonal and oblique (non-orthogonal) projections. For this, let X ∈
Rp×q be an arbitrary rectangular matrix of rank q.

Orthogonal projections Intuitively, orthogonal projections are characterised

by the fact that they project the whole of Rp on a right vertically to C(P). Hence,

only vectors of the space orthogonal to the column space C(P), the null space

N (P), are mapped to 0. The projection P is orthogonal iff

P = P> .

To construct an orthogonal projection that projects onto the column-space of X

(C(P) = C(X)), then

PX , X
(
X>X

)−1
X> ,

which is symmetric and idempotent. Note that PXX = X and PXA = 0,

where C(A) = N (X) and that only a basis of C(X) is needed to uniquely define

PX.

Oblique projections The projection angle of P wrt to C(P) is oblique (non-

right) iff P is not symmetric, thought it is still idempotent. Recall that for an

orthogonal projection, since the angle projecting on C(X) is right, then the column
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space of the projection automatically determines the space along which P projects.

In other words, there is only one possible choice for N (P) and that is N (X). This

is not the case for oblique projections. Due to the projecting direction forming

an oblique angle α1 with C(P), there is an infinity of possible choices for N (P):

simply take any such space with the angle α from C(X) and precess it about

the axis orthogonal to C(X). Thereby, we need two spaces to uniquely define an

oblique projection PX,N, C(P) , C(X) and N (P) , C(N), for some N ∈ Rp×q′ ,

such that q′ + q ≤ p, whose columns we arrange to span the null-space of the

oblique projection. Now note that PX,NX = X and PX,NN = 0. In this sense,

oblique projections can be seen to generalise2 orthogonal projections as they

depend on a superset of the parameters. Figure A.1 illustrates the relationship

between the fundamental subspaces of projections.

Figure A.1: The fundamental subspaces of projections. The column-space and
null-space of an orthogonal projection (left panel) are orthogonal complements so
either one uniquely determines the other. The null-space of an oblique projection
(right panel) intersects the column-space at the origin at an oblique angle, so both
bases are required to characterise the projection onto C(P) along the direction of
N (P). Note that in this caseN (P) can have any dimension q′ ≤ p; in the diagram
the subspaces jointly span the whole space purely for visualisation purposes.

Now consider the joint subspace spanned by the concatenated columns of

1Actually, there is a set of principal angles between two Euclidean spaces, but for simplicity
we refer to them as one.

2Not in the strict sense since they do not subsume orthogonal projections.
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[X N], hence the partitioned form of its orthogonal projection is

P[X N] , [X N]

[
X>X X>N

N>X N>N

]−1 [
X>

N>

]
.

In the formula, we can see that the left block provides a basis that is coupled with

coordinates computed by the middle and right blocks. Then we can decompose

the contributions of C(X) and C(N) since they are disjoint by assumption:

P[X N] = [X 0]

[
X>X X>N

N>X N>N

]−1 [
X>

N>

]
+ [0 N]

[
X>X X>N

N>X N>N

]−1 [
X>

N>

]
= PX,N + PN,X .

Using the partitioned inverse formula gives the more concise form:

PX,N = X(X>P⊥NX)−1X>P⊥N , (A.20)

where PN is the projector onto C(N) and P⊥N , I − PN the projector onto

the orthogonal complement of C(N). The projector P⊥N can be seen as a null-

steering operator that nulls everything in the null-space of the projector. It

is easy to verify that P is idempotent (but not symmetric) with column-space

C(X): PX,NX = X(X>P⊥NX)−1(X>P⊥NX) = X, and null space C(N): PX,NN =

X(X>P⊥NX)−1X>(P⊥NN) = 0. It follows that PX,N is the oblique projection onto

C(X) along the direction of C(N) and similarly for PN,X.

A.3.3 Woodbury matrix identity

In a partitioned inverse, such as eq. (A.2), the inverse of the upper-left block

Λ−1
A = ΣA−ΣABΣ−1

B ΣBA, is known as the Schur complement of ΣB in the joint

covariance matrix. An alternative way to partition the inverse is through the

Schur complement of ΣA, that is, Λ−1
B = ΣB − ΣBAΣ−1

A ΣAB, (which requires
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only an exchange of the letters):

Σ−1 =

[
Σ−1
A + Σ−1

A ΣABΛBΣBAΣ−1
A −ΛBΣBAΣ−1

A

−Σ−1
A ΣABΛB

(
ΣB −ΣBAΣ−1

A ΣAB

)−1

]
. (A.21)

Equating the upper-left blocks of eqs. (A.2) and (A.21) gives the Woodbury matrix

identity (in its general form for symmetric matrices):

(
A−CB−1C>

)−1
= A−1 + A−1C

(
B−C>A−1C

)−1
C>A−1 , (A.22)

where A = ΣA, B = ΣB and C = ΣAB .

A.4 EM for learning low-rank plus sparse-inverse

covariance structures

A.4.1 Variational lower bound

Given data Y, our goal is to infer the sparse structure of the underlying GMRF,

encoded by a sparse-inverse covariance term Λ−1 . We can efficiently estimate Λ

with the GLASSO algorithm [Banerjee et al., 2008; Friedman et al., 2008]. The

challenge is to estimate Λ in the presence of low-rank structures WW> in the

marginal covariance, induced by confounders X. In a fully Bayesian setting we

would compute the posterior p(Λ |Y,W) . By Bayes’ rule:

p(Λ |Y,W) ∝ p(Y |Λ,W) p(Λ) ,

where p(Λ) is some kind of sparsity-inducing prior on Λ (for instance, a Laplace

distribution). The normalising constant of the posterior is an intractable integral

so it is omitted. We opt for a MAP (point) estimate of Λ which is equivalent to
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maximising the joint distribution p(Y,Λ |W) = p(Y |Λ,W) p(Λ) . However,

the maximum has no closed-form solution so we approximate it by maximising a

lower bound on the mode of the log-posterior:

ln {p(Y,Λ |W)} = ln

∫
p(Y,Λ,Z |W) dZ = ln

∫
q(Z)

p(Y,Λ,Z |W)

q(Z)
dZ

≥
∫
q(Z) ln

{
p(Y,Λ,Z |W)

q(Z)

}
dZ . (A.23)

Since the log function is concave, the last line applies Jensen’s inequality to yield

the lower bound [MacKay, 2003].

A.4.2 Update equations

Now we derive the update equations of the hybrid EM/RCA algorithm for opti-

mising the parameters of the low-rank plus sparse-inverse covariance in the joint

distribution p(Y,Λ |W) =
∏

iN
(
yi |0,WW> + Λ−1

)
p(Λ) . For fixed Λ′ and

W′ the lower bound is maximised when the variational distribution equals the

posterior: q(Z) = p(Z |Y,W′,Λ′) . We have:

ln {p(Z |Y,W′,Λ′)}
c
= ln p(Y |Z,W′) + ln p(Z |Λ′) = lnN

(
Y |Z,W′W′> + σ2I

)
+ lnN

(
Z |0,Λ′−1

)
c
=1

2

∑
i

{
− ln|W′W′> + σ2I||Λ′| − (yi − zi)

>
(
W′W′> + σ2I

)−1

(yi − zi)−
(
z>i Λ′zi

)}
.
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Update for Z Isolating the linear and quadratic terms in zi gives the posterior

expectation and covariance respectively as the update equations for Z :

var [z |y] =

((
W′W′> + σ2I

)−1

+ Λ′
)−1

(A.24)

E [zi |yi] = var [z |y]
(
W′W′> + σ2I

)−1

yi (A.25)

Ep(z |y)[ziz
>
i ] = var [z |y] + E [zi |yi]E [zi |yi]> . (A.26)

By fixing the variational distribution as the new posterior q(Z) = p(Z |Y,W′,Λ′),

eq. (A.23) becomes

∫
p(Z |Y,W′,Λ′) ln

{
p(Z |Y,W′,Λ′) p(Y,Λ′ |W′)

p(Z |Y,W′,Λ′)

}
dZ

=

∫
p(Z |Y,W′,Λ′) ln p(Y,Λ′ |W′) dZ = ln p(Y,Λ′ |W′) ,

the maximisation of which wrt Λ leads to its update (the M-step).

Update for Λ From eq. (A.23), isolating any factors that depend on Λ gives:

∫
p(Z |Y,W′,Λ′) ln

{
p(Z,Λ) p(Y |Z,W′)

p(Z |Y,W′,Λ′)

}
dZ

=

∫
p(Z |Y,W′,Λ′) {ln p(Z,Λ) + ln p(Y |Z,W′)− ln p(Z |Y,W′,Λ′)} dZ .
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The maximisation of the above does not depend on terms independent from Λ.

Eliminating such terms leads to the complete-data expected log-likelihood:

argmax
Λ

∫
p(Z |Y,W′,Λ′) ln p(Z,Λ) dZ = argmax

Λ
Ep(Z |Y) [ln p(Z,Λ)]

= argmax
Λ

Ep(Z |Y)

[∑
i

{
−p

2
ln 2π + 1

2
ln|Λ| − 1

2
z>i Λzi

}
− n

2
λ||Λ||1

]
= argmax

Λ
ln|Λ| − 1

n

∑
i

{
Ep(Z |Y)

[
tr
(
ziz
>
i Λ
)]}
− λ||Λ||1

= argmax
Λ

ln|Λ| − tr

(
1
n

∑
i

{
Ep(Z |Y)

[
ziz
>
i

]}
Λ

)
− λ||Λ||1 .

By eq. (A.26), the last line amounts to a GLASSO problem with covariance

1
n

∑
i

Ep(Z |Y)

[
ziz
>
i

]
= var [z |y] + 1

n
Ẑ>Ẑ ,

where Ẑ> =
[
E [z1 |y1] . . . E [zn |yn]

]
.
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A.5 Derivatives for BiGLasso

Gradient wrt Ψn Taking the gradient of eq. (6.4), with respect to Ψij and

using the identity (A.16) we get:

∂

∂Ψij

ln |Ψn ⊕Θp| = tr

{
(Ψn ⊕Θp)

−1∂(Ψn ⊕Θp)

∂Ψij

}
= tr

{
W

(
∂Ψn

∂Ψij

⊗ Ip

)}
, by (A.13)

= tr
{
W
(
(Jij + Jji − JijJij)⊗ Ip

)}
, by (A.17)

= tr

W


0 . . . 0
... I

(i,j)
p

...

0 . . . 0


+ tr

{
W
(
Jji ⊗ Ip

)}
− tr

{
W
(
JijJij ⊗ Ip

)}
= 2 tr

{
W(i,j)

}
− δijtr

{
W(i,j)

}
,

where W , (Ψn ⊕ Θp)
−1; I

(i,j)
p is at the (i, j)-th block of size p × p, that is,

(i, j) = [(pi−p+1) : pi , (pj−p+1) : pj]; Jij is the single-entry matrix (with

Jij = 1 and zeros elsewhere); δij = 1 if i = j, δij = 0 if i 6= j. Therefore

∂

∂Ψn

ln |Ψn ⊕Θp| = 2 trp (W)− trp (W) ◦ I . (A.27)

Also, using (A.10) and (A.15) gives

∂ p tr (ΨnT)

∂Ψn

= 2pT−T ◦ I . (A.28)
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