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Abstract

The use of a pinhole-type detector to image the high-energy protons produced by inter-

actions of fast particles within the plasma of low field tokamaks such as the Mega Amp

Spherical Tokamak is explored. The minimum number of detector elements in a pinhole-

type detector needed to produce accurate images of the plasma was found to be 144, giving

a 5cm by 5cm resolution of the plasma in the R,Z plane. The image is recreated via a

combination of singular value decomposition and maximum entropy methods. The proton

production rate is a function of the spatial distribution of fast particles, and so images of

the proton production distribution can be used to directly diagnose the fast particle dis-

tribution within the plasma. These fast particles are mostly produced by neutral beam

injection, and so the methods presented here can be used to more accurately control the

neutral beam injection energy to ensure that the heating and current drive is applied to the

desired regions of the plasma.

As the orbits of the fusion born protons are influenced by the magnetic field within the

plasma, a transformation matrix is created to link the detector image with the intial proton

distribution within the plasma. To do this, large numbers of test particles are needed. The

calculation of the orbits of the test particles is performed using CUDA GPUs which can

calculate the orbits of up to 100,000 particles per second. This takes advantage of the

embarrassingly parallel nature of the problem, which is ideally suited to calculation on the

GPU.
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Chapter 1

Introduction

1.1 Energy Production and Consumption

Global estimated energy usage in 2011 was approximately 54 PW hrs, of which approx-

imately 87% was provided by fossil fuels [8]. This includes energy used for heating,

cooking, electricity, and transport. At current rates of consumption, the proven reserves of

oil will last for 54.2 years; the proven reserves of natural gas for 63.6 years; and proven

reserves of coal for 112 years. By considering only proven reserves, the use of new tech-

nologies, such as fracking to produce shale gas, is discounted. These are therefore very

pessimistic predictions. World energy consumption is increasing, and although the pro-

portion of energy provided by fossil fuels is decreasing, as can be seen in Fig. (1.1), the

total usage of fossil fuels is increasing. Unless more efficient fission power stations are put

into operation, the supply of uranium will also be depleted in 83 years [22]. The remaining

supply of fossil fuels, and uranium, is summarised in Table (1.1).

The increasing demand for energy, and the limited supply of traditional fuels, leads to

a serious problem. If we are to maintain the level of energy useage at 2011 levels, and

assuming that all energy requirements can be met by electricity, we require a worldwide

generating capacity of approximately 6 TW, which must be independent of fossil fuel

production within 100 years. If we are to replace this capacity evenly over 200 years, this

Fuel Proven Reserves Consumption Time till

Depletion [Years]

Oil 234000 million tonnes 4100 million tonnes in 2011 57

Gas 208 trillion cubic metres 3.2 trillion cubic metres in 2011 65

Uranium 5327 thousand tonnes 64 thousand tonnes in 2010 83

Coal 860 trillion tonnes 7.7 trillion tonnes in 2011 112

Table 1.1: The reserves, and consumption for fuels providing over 90% of the worlds

energy supply [8]. The reserves listed are dependent on the cost of extraction: as the value

of the fuel increases, previously uneconomic reserves can be utilised.

1



Figure 1.1: The approximate total world energy useage, by fuel type.

requires the construction of 30 GW of fossil fuel free generating capacity per year. This

assumes that the fossil fuel consumption requirements will drop as the new generating

capacity is added, giving approximately 200 years till depletion of fossil fuel reserves.

1.1.1 Available technological solutions in Britain

Given the increasing global energy demand shown in Fig. (1.1), and limits to supply of

traditional fuels shown in Table (1.1), how can Britain, and the rest of the world, ensure

continuity of energy supply? In addition to these constraints, we should consider the

potential impact of solutions on climate change, and the security of supply. There are five

main groups of existing renewable electricity generating technologies, being wind, wave

and tidal, hydroelectric, biomass, and solar. Each of these has particular advantages and

disadvantages on local and global scales. Generating schemes for each technology are

divided into large scale schemes, being those with a capacity greater than 5MW, and small

scale schemes.

Electricity generation and transmission must match demand exactly. If power cuts due

to lack of generating capacity are to be avoided, the historic rule of thumb is that generating

capacity must exceed peak demand by 20% [37]. This applied to situations with relatively

small numbers of large independent generating stations. Fossil fuel and nuclear stations

have approximately 5% chance of being unable to generate at times of peak capacity, and

are largely uncorrelated. Renewable generating schemes have greater intermittency than

traditional power stations. This means that a much larger installed generating capacity is

needed to ensure continuity of supply. This is especially true if a reduction in generating

2



Figure 1.2: Predicted electricity demand and generation capacity, showing forecast clo-

sures due to the age of nuclear power stations and the impact of the European Large Com-

bustion Plant directive [37].

capacity in one or more of the schemes is correlated, for example days with low wind

speeds can correlate with a reduction in the amount of rain, decreasing the effectiveness

of both wind and hydro generating schemes. Britain must replace ageing nuclear and coal

power stations to maintain supply, as shown in Fig. (1.2).

Wind

Generation of electricity from both onshore and offshore turbines suffers from intermit-

tency. The load factor is a measure of how much electricity will be produced by a given

generator. For the UK, the 2011 load factor for offshore wind turbines was 36%, and for

onshore wind turbines was 27% [35]. The load factor varies from year to year, from a

minimum of 24% in 2003 to a maximum of 36% in 2011 for offshore wind, and a mini-

mum of 22% in 2010 to a maximum of 28% in 2002 for onshore wind. These load factors

are for locations with strong steady winds. For areas with low, or variable wind speeds,

such as urban areas, load factors are likely to be as low as 1 or 2%. The UK currently

has 4.6GW of installed onshore wind capacity, and 2.35 GW of offshore wind capacity.

The variability of wind power is a concern for the UK, as wind speeds can be correlated

over length scales greater than the total area of the UK [38]. This means that there must

be additional generating capacity to cover at least the base-load power requirements, inde-

pendent of the weather conditions. This additional capacity can come from energy storage

schemes, such as pumped water or compressed air schemes, but at considerable additional

cost. There is evidence that the wind speeds are positively correlated with the peak energy

demands [43], but not strongly enough to be reliable. Wind generation schemes, with their

inherent short-term variability in output, place large stresses on electricity transmission

3



networks such as the National Grid, and require considerable extra generating capacity.

This problem is magnified as a greater proportion of the total electricity generating capac-

ity consists of wind power, making wind unsuitable for more than, at most, 20% of total

electricity mix [40].

Wave and Tide

There are two types of tidal generators. Tidal barrages trap water at high tide, and release

it at low tide to power turbines, and tidal stream devices use fast-flowing tidal streams to

power turbines. For wave power, three schemes are in use. The first utilises an oscillating

water column in a hollow cylinder to drive changes in air pressure, the second uses a

system of articulated cylinders which move with the waves, again compressing air. The

third absorbs energy from the waves by using the movement of a floating platform to

induce rotation in gyroscopes.

There are currently no wave generating schemes in the UK operating to supply the

national grid. Although there is considerable potential wave power [11], this energy gen-

erating scheme suffers from similar intermittency problems to wind power, and the size of

waves, and power available, is strongly correlated with the wind speed. This makes wave

power suitable only for a small portion of the total UK electricity mix.

Tidal power has smaller potential capacity, being reliant on particular geographic con-

ditions. There are several potential sites, such as the Severn estuary, which could produce

up to 1.8GW of electricity [34]. Tidal generators suffer from intermittency problems as-

sociated with high and low tides, as well as changes in efficiency at spring and neap tides.

These are very predictable, lessening the impact on the National Grid. However, the ex-

pense and large environmental impacts, combined with the inherent intermittency of tidal

movements, mean that there are currently no plans to construct large scale energy gener-

ating tidal barrages.

Hydroelectric

Hydroelectric schemes have been in operation for many years, and are a mature tech-

nology. However, large-scale schemes all consist of dams and reservoirs in mountainous

regions, and there are very few suitable locations that have not already been utilised in the

UK. Smaller schemes are generally river based, and suffer similar but more predictable in-

termittency to wind generators. The lack of suitable locations for hydroelectric power also

apply to using pumped storage of water as a method of generator smoothing, as suitable

locations for this are also lacking [36].
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Biomass

There are three sources of biomass in general consideration in the UK. The first is wood

from sustainable forestry practices, which may be felled directly or consist of excess from

sawmills. This is usually burnt to provide small scale heating and electricity generation.

Specially grown energy crops, such as sugar beat or oilseed rape, form the second source

of biomass. These are generally used to create transport bio fuels; bio ethanol for sugar

crops, or bio diesel for oil crops. This is relatively inefficient, yielding approximately four

tonnes of useful biomass per hectare per year for sugar beet, and one tonne per hectare

per year for oilseed rape [50]. Finally, gas produced by the decomposition of organic

materials is currently the largest source of biomass generation in the UK [35]. Biomass

generation is not intermittent, and so can be easily utilised by the National Grid. However,

most sources of biomass, such as gas from landfill sites, is currently being utilised, and

the use of farmland to grow biomass crops for electricity generation may be unfavourable

if the resultant increase in food imports requires larger energy expenditure than is gained

from the grown biomass.

Solar

Solar generation, through solar photovoltaics or solar furnaces, is increasing worldwide.

However, the UK is unsuited for solar generation, as peak demand is during the winter

months, and the amount of cloud cover reduces the load factor of solar installations. The

UK has approximately 1GW of installed PV capacity [35], producing 252 GW hrs per

annum. This gives a load factor of approximately 3%. This may underestimate the load

factor, as not all of the installed capacity has been operational for the entire year. Typical

load factors for solar PV in the UK are around 10%. In addition to the low load factor,

solar energy in the UK is very intermittent, and therefore unsuitable as more than a few

percent of the total electricity mix.

The chief problem with the renewable electricity generating techniques that are cur-

rently in use is intermittency. Although this can be ameliorated through smart grids, and

a large over-provision of electricity generating capacity, an ideal solution would need to

have low intermittency, low carbon emissions, and a low environmental impact. In addi-

tion, in the UK, the security of supply is a potential issue. Already, as local production

of fossil fuels decreases whilst demand increases, the UK is increasingly dependent on

imported gas and coal. To solve this problem, within the constraints, the UK must turn to

as yet immature technologies. Chiefly, nuclear power, both fusion and fission, has the po-

tential to have low intermittency and low carbon emissions, whilst a cost-effective energy

storage technology would greatly reduce the problem of intermittency.
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Fission

Considering nuclear fission, whilst current uranium reserves will be depleted in approx-

imately 80 years at current rates of consumption, current fission power stations operate

a ”once-through” fuelling system. Fast breeder reactor designs can significantly improve

the utilisation of the uranium, whilst reducing the radioactivity of the waste products.

The waste material radioactivity is mostly due to relatively short-lived actinide species.

Fast breeder reactors can be split into two types: fast neutron reactors use the neutrons

produced in one reaction to induce fission in other actinides, whilst thorium fuel cycle

reactors follow a decay chain with many fewer heavy actinides. However, very few fast

breeder reactors have been built, and most designs are untested.

The main alternative under consideration is nuclear fusion. This has the potential to

provide non-polluting, waste free, and dependable electricity generation whilst in opera-

tion. It can ensure security of supply, as fuel can be gathered direct from seawater, and

it is not intermittent. It is a technology that is still under development, and will require

considerable time and research funding to bring it to maturity.

1.2 Fusion

Fusion describes the process by which light elements combine into heavier elements. This

requires that the nuclei of the elements can get into such proximity that the strong nuclear

force, which attracts nucleons such as protons, is greater than the electrostatic force, which

will repels similarly charged particles. To achieve this proximity in the nuclei of the el-

ements undergoing fusion requires considerable energy input to the nuclei. The energies

involved are sufficient to cause the fuel to enter a plasma state.

Plasmas are a form of high energy gas, in which the electrons have dissociated from

the ions. This makes a plasma a quasi-neutral gas comprised of charged particles, with ap-

proximately equal numbers of electrons and protons. The most effective way of combining

bulk quantities of hydrogen is by heating the hydrogen gas until it becomes a plasma.

To create a fusion plasma the plasma, usually deuterium (D) and tritium (T), needs to

be heated, and kept hot, for long enough to undergo fusion reactions. There are several

schemes for heating and confining the plasma, chiefly magnetic confinement, usually in

tokamaks, and inertial confinement, in which lasers are used to heat the plasma, which is

confined by the inertia of the particles.

As can be seen from Fig. 2.1 the temperatures needed to produce fusion reactions at

useful rates are high. In most research reactors deuterium only plasmas are used. This

is due to the similarity of the physics of deuterium only plasmas to deuterium-tritium

plasmas, without the higher levels of radioactivity of the D-T plasma, and the expense of

acquiring the tritium.
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The main reaction under consideration for the fusion plasmas is

3
1T +2

1 D →4
2 He + n (1.1)

The likelihood of this reaction peaks at a lower temperature than other hydrogen reac-

tions, so fusion occurs more readily at lower temperatures. This is less of an engineering

challenge than trying to sustain higher temperatures.

1.2.1 Fusion Triple Product

The confinement time, τE , is the time taken for a plasma to lose energy to the surroundings.

τE =
W

Ploss
(1.2)

where W is the energy content, and Ploss is the rate of energy loss. In a fusion reactor,

the plasma must be always be above a critical temperature. The plasma must therefore be

heated at the same rate that energy is lost for steady state operation. This heating may be

from fusion reactions within the plasma, or from external heating.

For D-T reactions, assuming a plasma consisting solely of equal numbers of deuterium

and tritium ions the rate of fusion reactions per unit volume per unit time is given by

f = nDnT < σv >=
1

4
n2
e < σv > (1.3)

where v is the relative velocity of the parent particles, and < σv >, the reaction cross-

section at a velocity v, is averaged over the Maxwellian velocity distribution at temperature

T . This lets us find the rate of fusion heating, assuming that all the fusion produced neu-

trons are lost, whilst all the charged products are retained. The energy of the α-particles,

Ech = 3.5 MeV. If we require that all the heating comes from the charged fusion products,

we can find the minimum rate of fusion reactions required to sustain the temperature of

the plasma

fEch ≥ Ploss
1

4
n2
e < σv > Ech ≥ 3nekBT

τe

neτe ≥ 12

Ech

kBT

< σv >
(1.4)

If we assume that the plasma has a maximum attainable pressure, we find that the

fusion power density, nFP is given by
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nFP ∝ p2 < σv >

T 2
(1.5)

This tells us that the maximum fusion power for any given device is obtained when

< σv > /T 2 is a maximum. If we now combine Eqns. (1.4) and (1.5), we can find the

fusion triple product

neTτE ≥ 12kB
Ech

T 2

< σv >
(1.6)

This gives a simple characterisation of a fusion plasma for a range of devices, allowing

comparisons between plasmas produced via the various confinement schemes.

1.2.2 Plasma Devices

There are several schemes for devising fusion plasma devices. These broadly fall into four

categories, being magnetic confinement, inertial confinement, electrostatic confinement,

and mechanical confinement. Magnetic confinement relies upon strong magnetic fields to

confine the plasma for sufficient time to allow fusion to occur. Inertial confinement uses

the inertia of a rapidly created plasma to confine the plasma. Electrostatic confinement

uses a series of electric grids to constrain the plasma. Mechanical confinement creates a

plasma, and then rapidly mechanically compresses it to provide the required conditions

for fusion. Of these techniques, magnetic confinement has given the highest plasma tem-

perature, and ITER, a tokamak currently under construction, is expected to produce ten

times as much energy as is used to create and maintain the plasma.

1.2.3 Tokamak Devices

A tokamak is a toroidal magnetic containment chamber. The word tokamak derives from

the Russian acronym for toroidal magnetic confinement chamber. The toroidal geometry

of these devices allows a closed magnetic field to be formed. Ideally, the plasma would

be held in a sphere. This gives the lowest surface area to volume, which increases the

efficiency of the device by reducing the area through which heat can be lost. However, to

confine the particles of the plasma, a closed magnetic field is needed. By considering the

magnetic field lines as being similar to hairs on a ball, it can shown that it is impossible to

create a closed magnetic field that covers the surface of a sphere. It is possible to create

closed magnetic field lines on the surface of a torus, and the increase in surface area to

volume ratio is not sufficient to preclude heating the plasma to the temperature required

for fusion reactions.

Tokamaks are generally classed into small aspect ratio, or spherical tokamaks, and

large aspect ratio devices. The aspect ratio considered here is the ratio between the major

8



Figure 1.3: The generalised Lawson confinement parameter, averaged pressure times con-

finement times, versus the ion temperature for a range of tokamak and laser plasmas. The

light blue region shows the criteria for ignition [15].
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Figure 1.4: Tokamak Cross-Section
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and minor radii, as shown in Fig. (1.4). The major radius is the distance from the axis

through the gap to the centre of the ring of the torus, whilst the minor radius is the radius

of the ring of the torus. Large aspect ratio tokamaks therefore look like inner tubes, or

ring donuts, whilst small aspect ratio devices appear more similar to cored apples. The

Joint European Torus (JET), and ITER are examples of large aspect ratio tokamaks with

aspect ratios of approximately 3, whilst the Mega-Amp Spherical Tokamak (MAST) is a

spherical tokamak with an aspect ratio of approximately 1.3. One of the advantages of

spherical tokamaks is that the magnetic field needed to confine a similar volume of plasma

is lower. Due to this lower magnetic field, the products of fusion reactions are not as well

confined, and will generally escape within one Larmor orbit, as shown in section (1.3.3).

This is undesirable, as the possibility of heating using these fast particles is lost, however

it allows the detection of these particles to be used as a diagnostic.

A MAST plasma typically has major radius R ≈ 0.85m, a minor radius r ≈ 0.65m,

plasma current Ip < 1.3MA, and a toroidal magnetic field Bt = 0.3− 0.6T [48]. It is one

of the best diagnosed tokamaks currently utilised. This is in part due to the separation of

the outboard edge of the plasma and the vacuum vessel wall, which is not found in many

other tokamaks. This allows diagnostic equipment to approach the plasma, and to view

beyond the plasma edge.

1.2.4 Tokamak Plasma Heating

The gas within a tokamak must be heated before it will become a plasma, and that heat

must be maintained sufficiently long to allow fusion events to occur. There are several

schemes in use for tokamak plasma heating, chiefly radio frequency heating, ohmic heat-

ing, neutral beam injection, and compressive heating.

Compressive Heating

By utilising the “frozen-in” condition of MHD plasmas, we can move the plasma by mov-

ing the magnetic fields. In particular, by increasing the toroidal or poloidal magnetic field

the major or minor radius of the plasma can be reduced. However, the potential gains

from this are limited, as the plasma will diffuse across the field lines, and the amount

of compression that can be achieved is limited. In addition, once the plasma has been

compressed, the heating cannot be reapplied without allowing the magnetic field to relax

and the plasma to cool. As such, this is not a suitable technique for heating steady state

plasmas.
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Ohmic Heating

A toroidal electric current is induced in the plasma. The tokamak and the plasma can

now be considered as a transformer, where the plasma ring forms a one-turn secondary

winding, whilst the primary winding is situated in the central column. The pulse length

for a plasma discharge is limited, in part, by the maximum current that can be driven in

the primary winding. The effective heating of the plasma is dependent on the resistiv-

ity of the plasma. The Ohmic power is I2pR, where Ip is the plasma current, and R is the

plasma resistivity. As the temperature of the plasma increases, the resistivity of the plasma

decreases [45], limiting the effectiveness of the heating. This method of heating is com-

monly used to provide start-up heating, as well as providing heating throughout the life of

the plasma[25]. For designs such as spherical tokamaks with very thin central columns,

this can be complicated to arrange [51].

Radio Frequency Heating

High-frequency electromagnetic waves are created outside the plasma. If these waves have

frequencies close to the characteristic frequencies of the plasma, they will pass energy to

particles within the plasma. This is analogous to Landau damping [52]. By ensuring that

the phase velocity of the wave is greater than the average velocity of the thermal particles,

energy is passed from the wave to plasma [29]. Due to the difference in gyration fre-

quencies of electrons and ions, radio frequency (RF) heating is usually categorised as ion

cyclotron resonance heating or electron cyclotron resonance heating. Ion cyclotron heat-

ing will utilise resonant frequencies either at the ion cyclotron frequency, or at a harmonic,

as dictated by the requirements of the plasma being heated. These frequencies range be-

tween ∼ 20 − 60Mhz. Electron cyclotron heating requires much higher frequencies, in

the order of 100GHz. By careful consideration of the frequency used, and the polarisation

and direction of the radio waves, the heating can be localised to certain areas within the

plasma. This exploits the fact the the energy exchange between the particles and the wave

only happens when the wave phase velocity is comparable with the particle velocities. RF

heating has been used in many tokamaks [52].

Neutral Beam Heating

A beam of high energy neutral hydrogen or deuterium atoms is injected into the plasma.

The neutral particles will be unaffected by the magnetic field. After collisions with elec-

trons and ions in the bulk of the plasma, the neutral particles will become ionised, and

constrained by the magnetic fields. The resulting fast ions increase the temperature of the

plasma. By fast ions, we mean ions with energies greater than two standard deviations

above the mean thermal ion temperature, if the thermal ion temperature has a Maxwellian
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Figure 1.5: Scheme of a Neutral Beam Generator

distribution. The temperature of fast ions can be much greater than two standard deviations

above the average temperature of the bulk plasma.

The neutral beam must be of sufficient energy that the particles penetrate to the core

of the plasma before undergoing ionisation, but not so energetic that the beam passes

completely through the plasma without collisions. This limits both the lower and upper

bounds of the energy of the beam.

In order to produce neutral beams of sufficient energy, we first create hydrogen ions.

These are then accelerated via a series of electric fields, and then the resultant high energy

ions are neutralised before being injected into the plasma. An example of a neutral beam

generator is shown in Fig. (1.5).

The injection of fast neutral hydrogen atoms into the plasma serves several purposes.

The fast ions produced in the plasma will heat the plasma, and act as replacement ions

for those lost to the wall of the device. By carefully tuning the energy of the fast atoms,

the region of the plasma in which the atoms are ionised can be chosen. The speed of

rotation of the plasma can also be influenced if the atoms are injected co-rotationally or

counter-rotationally [47]. This requires several neutral beams being injected into the same

plasma.

The interaction of the beam consists of four main physical processes. First, the injected

atoms are ionised by collisions with the plasma. This occurs initially in interactions with

the electrons, and then with the ions [16]. The three processes following the slowing

down of the beam atoms are that the fast ions will drift in the magnetic field, that the fast

ions will scatter from plasma ions and electrons, slowing the fast ions, and that there are

charge-exchange collisions of the fast ions with background neutral atoms.

The fine-tuning of the injection energy of the neutral beam is critical for the success of

this technique. If the energy of the particles is too high not all of the beam will be ionised

in the plasma. This is known as ‘shine-through’. If the energy is too low, the atoms will

not reach the centre of the plasma before being ionised. This gives unfavourable particle

and power deposition profiles, with most of the energy deposited in the edge plasma. This

reduces the efficiency of the heating of the plasma, as these fast ions will diffuse out of

the plasma much faster. In addition, if the neutral beam injection is being used to provide
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toroidal rotation in an attempt to stabilise the plasma, or a toroidal current to maintain the

quality of the poloidal field, an incorrectly adjusted beam energy may drastically reduce

the efficiency and lifetime of the plasma shot.

MAST has a high power neutral beam injection system, providing 5MW, and due to be

upgraded to 7.5MW at stage 1 of the MAST upgrade, and then to 12.5MW at stage 2 [3].

These beams provide super Alfvénic fast particles. These fast particles are expected to

drive a number of instabilities, such as Alfvén eigenmodes (AE). It is extremely important

to future reactors that fast particle driven instabilities are well understood, as a burning

plasma will create a large population of fast particles in the core of the plasma. Measuring

the fast particle population is therefore very important in understanding the physics of the

fast ions, and the behaviour of burning plasmas.

1.3 Super-Thermal Ions

After the beam particles are ionised, the deuterium ions are still in a non-collisional

regime. There is a period of ”slowing-down” time during which they undergo interac-

tions with the thermal ions. The 40keV particles injected into a typical MAST plasma will

thermalise after ∼ 65ms.

After the particles have slowed to a collisional regime, they will still have more energy

than the thermal ions. This energy will be lost to the bulk plasma, providing the heating.

The slowing down time allows the particles to spread from the ionisation site through the

plasma following the magnetic field lines. The fusion interactions are therefore assumed

to happen uniformly toroidally. This means that the steady state proton production profile

can be modelled purely in the poloidal, or R,Z plane.

1.3.1 Collisionallity

The collision frequency of a plasma is the rate at which particles within the plasma are

scattered by other particles. It is defined as being the inverse of the time taken for the par-

ticle trajectory to be changed by 90
o

by collisions. For fast particles in low-field tokamaks,

the collision frequency is given by [52]

νc = Nσc(v)v (1.7)

where N is the number density per unit volume of the plasma, and σc(v) is the cross

section of a particle with velocity v. For fast protons, the cross section for Coulomb

scattering can be approximated as

σc(E) =
5

16
Z2 e

4

ε2
(1.8)

13



where σc(E) is the cross section in terms of energy, e is the electron charge, Z is the

charge number, and ε is the particle energy in the centre of mass system. We substitute

equation 1.8 into equation 1.7 to find the collision frequency. As we can see, the higher the

energy of the particle, the lower the collisional frequency. If the collisional frequency is

less than the transit frequency ω = vT/l where vT is the thermal speed, and l is the length

scale under consideration then we say that the plasma is in the non-collisional regime.

Fusion born protons have very high energies for particles in a tokamak plasma, and can

therefore be modelled as collisionless during the time it takes them to leave the plasma.

1.3.2 Proton Energies

Fusion produced protons will have two initial energy components. The energy resulting

from the fusion reaction, found in the centre of mass frame, and the energy of the centre

of mass frame. The fusion energy will result in an initial velocity of the proton that is de-

pendent on the velocity of the centre of mass frame. The initial fusion energy of a proton

resulting from a D-D reaction is approximately 3MeV. If we assume that the reaction is

between a thermal ion and a beam ion, the thermal ion will have an energy, in MAST, of

approximately 1 keV, whilst the beam ion will have an energy of at most 40 keV, given

the capability of the MAST neutral beam devices before the upgrade in 2011. This gives

the centre of mass frame an energy of at most 41 keV. The velocity distribution result-

ing from these energies is discussed further in section 2.5. We can find the theoretical

energy distribution at the detector using techniques found in [9], and compare this to our

calculations.

1.3.3 Charged Particle Orbits

Charged particles feel a force given by the Lorentz equation due to a magnetic field, which,

in the absence of an electric field, gives the following equation of motion:

m
dv

dt
= Ze(v ×B(x)) (1.9)

where m is the mass of the particle, v is the velocity, Ze is the charge, and B(x) is the

magnetic field at position x.

The velocity can be split into components perpendicular (v⊥) and parallel (v‖) to the

magnetic field. If we consider the parallel component of Eq. 1.9 we find that v‖ is a

constant for a constant magnetic field. Taking the perpendicular component gives

m

Ze

dv

dt
= v⊥ ×B(x) (1.10)

Taking the scalar product of 1.10 with v⊥ gives v⊥ · v̇⊥ = 0, i.e. that v2⊥ is a constant.
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Using 1.10 again, we find that

( m

Ze

)2

v̈⊥ =
m

Ze
(v̇⊥ ×B) = −B2v⊥ (1.11)

We can then define a quantity, ωc, the Larmor frequency, where

ωc =
ZeB

m
(1.12)

If we now move to a coordinate system x, y, z, where the z-axis is in the direction of

the magnetic field, we can define the velocity as

vx = v⊥ cos(ωct+ φ)

vy = −v⊥ sin(ωct+ φ) (1.13)

(1.14)

We can see that the particle will therefore follow a helical path around a line known as

the guiding centre. The radius of this path, being the distance from the guiding centre to

the edge of the Larmor orbit, is

rL =
v⊥
ωC

(1.15)

Species Energy Velocity (ms−1) Larmor Radius (m)

Thermal Electron 1 keV 1.88× 107 2.13× 10−4

Thermal Ion 1 keV 3.10× 105 1.29× 10−2

Beam Ion 40 keV 1.96× 106 8.17× 10−2

Fusion Proton 3.02 MeV 2.41× 107 0.5

Table 1.2: The energy, and Larmor radius, of species of particles found in the plasma

under consideration. The Larmor radius is calculated assuming a constant magnetic field

of 0.5 Tesla, and that v⊥ = v.

1.4 Tokamak Diagnostics

There are two classes of diagnostic devices on MAST that gather data on the fast particle

population. The fast particles will undergo fusion reactions, giving off charged and neutral

particles, and excite plasma instabilities that will perturb the magnetic field. The two

classes of diagnostic devices are therefore those that detect the particles given off, and

those that detect the change in the magnetic field. The perturbations in the magnetic field

can be detected outside the plasma, using either the large number of Mirnov coils, or the

toroidal Alfvén eigenmodes (TAE) antenna installed on MAST. The neutral particles given
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off are neutrons, and can be detected, either through neutron counters, or neutron energy

spectrum analysers to provide information about the fusion rate and the energy distribution

of the fast particle populations. Similarly, detection of the charged particles could provide

a measurement of the spatial distribution of the fast particles, and this will be the topic of

this thesis. We will now provide a brief review of each technique.

1.4.1 Neutral Particle Diagnostics

There are a number of neutral particle diagnostics currently installed in MAST. These can

be split into three main types. There are 5 neutron counters, consisting of two fission

chambers, a 3He proportional counter, an activation foil, and a BF3 proportional counter

[46]. These record the total neutron production throughout each plasma shot. There is a

compact neutral particle analyser, which determines the energy distribution of the fast ions

by measuring the energy distribution of the energetic neutral atoms resulting from charge

exchange processes involving the fast ions [48]. Finally, there is the neutron camera, which

records the neutron count along 4 collimated sight lines.

The neutron camera installed in MAST consists of four liquid scintillator detectors,

each viewing the plasma through a 90cm collimator [13]. The detectors are shielded from

stray neutrons by 90cm of high density pure polyethylene, and from the magnetic field

by two soft iron boxes and a layer of µ-metal. The polyethylene is a source of 2.23

MeV γ rays, and so the detectors are additionally shielded with lead. The signals are

sampled at 250 MHz, and pulse shaped discrimination is used to identify γ ray and neutron

events. The neutron count rate along each sight line can then be recorded with a 2 ms

time resolution. This is sufficiently fast to study the effects of AEs on the fast particle

population.

1.4.2 Magnetic Diagnostics

MAST has a very large number of magnetic diagnostics, with more than 600 mirnov coils

recording the magnetic field data. Energetic particle modes, such as AEs, can produce

electromagnetic oscillations with frequencies ranging from 80-300kHz [30]. The effects of

these oscillations on the magnetic field can be detected using the TAE antennas. MAST has

12 TAE antennas, positioned with six above and six below the midplane on the outboard

side of the plasma, and evenly spaced around the toroidal extent of the device. These

antenna have the ability to actively probe the plasma at frequencies up to 500kHz. This

allows the measurement of stable AE modes [18]. The presence of AE modes can lead

to transport of energetic particles, and a high resolution array of Mirnov coils is used to

identify the toroidal mode number of the AE modes [21].
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Figure 1.6: A possible schematic for a pinhole type detector. Only the probe head is

shown.

1.4.3 Charged Particle Diagnostics

There are two main forms of diagnostic devices observing charged particles. The first

measures the energy spectrum of the fusion products, and from this one infers the ion

energy spectra of fast ions [44]. This is not dependent on modelling the orbits of the

fusion products. It can also be used to measure the central ion temperature [7].

The second measures the orbit of the protons, and can, ideally, localise the initial

position of the orbit. This allows the temperature gradient, and the fast particle distribution

to be measured.

1.4.4 Proton Detector Design

Pinhole and Detector Plate

This design consists of an array of detector elements positioned behind a pinhole, as shown

in Fig. (1.6). This requires only a single small probe into the device, and operates in

a manner similar to traditional cameras. The resolution of the device is limited by the

expense and size of the detector elements, as well as the required size of the pinhole.

The size of the detector elements is limited by the space available behind the pinhole, as

placing the array of detector elements too far from the pinhole will result in additional

orbiting behaviour within the detector, invalidating the assumption that these particles are

travelling in straight lines between the pinhole and the detector elements. The pinhole

must be small enough to ensure that the incident angle of the particles can be accurately

recorded, and large enough that sufficient particles will enter the device to ensure that

measurements can be taken on timescales relevant to the phenomena being considered.

The detecting elements must be seperated such that cross talk noise is reduced, and the

required size of the detector elements make this more challenging to engineer. In addition,

there may be parts of the plasma that will be invisible to the detector, if the detector is in

the shadow of magnetic coils.
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Detector Elements in Collimating Tubes

By splitting the detector into a number of individual well-collimated sensors, each cover-

ing distinct orbits, the complication of making the detector sufficiently small so as to fit

behind a pinhole is removed. The fast particle profile of the plasma can then be inferred

from the data recorded [5]. The total particle production along each orbit is recorded, and

by ensuring that the orbits overlap the number of protons produced in each part of the

plasma may be inferred. However, the orbits must be well collimated to ensure that the

data collected is sufficiently localised that positions of overlap of the orbits can be identi-

fied. This limits the number of overlap positions, and the accuracy of the data recorded.

A four channel system based on this design will be installed on MAST for the 2013 cam-

paign [39]. This will consist of 4 detectors, considering orbits passing through the core of

the plasma.

1.4.5 Proton Detector Materials

The detector will almost certainly be a surface barrier detector, using a layer of doped

material as a reverse biased diode. As charged particles traverse the thin layer of doped

material, they will induce ionisation currents which can be measured. The amplifiers and

measurement equipment associated with detecting these currents will need to be suffi-

ciently far from the plasma that they are not affected by the temperature or radiation, but

close enough to the detector that the levels of noise added by the electromagnetic interfer-

ence present within the tokamak will not swamp the signal.

Silicon Detectors

These have been used to detect fusion born protons on a range of tokamak devices [20].

The advantage of silicon detectors is that they are relatively inexpensive, and, having been

in use for a number of years, well understood. However, these detectors require low oper-

ating temperature (< 50oC) and relatively few high energy particles (< 109 protons/cm2)

to prevent damage to the detector [49].

Natural Diamond Detectors

By replacing the silicon layer in the detector with a natural diamond layer, the range of op-

erating conditions can be considerably widened [27]. The diamond detectors will perform

at up to 200o in a magnetic field of up to 3T [2]. This allows the detector to be much closer

to the plasma, giving a higher proton flux. However, these detectors are less common,

more expensive, and less well understood than the silicon detectors.
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1.4.6 Etendue Problem

The etendue of an optical system is described as being a product of an area A, and the

solid angle ΩS where the solid angle is defined by the properties of the collimating optics

of the system. The intensity of a system can be found by measuring the power per unit

frequency crossing the etendue. The larger the etendue, the more light gathered by the

system. In classical optical systems, the etendue of the system will remain constant. The

power detected by the optics is

IAΩs =

∫

jAΩsds (1.16)

where s is the distance along a ray trajectory, I is the intensity, and j is the emissivity

If we try to apply this system to the fusion-born protons leaving the plasma we find

that the etendue is no longer constant. This is due to the curved paths the protons take out

of the plasma. We must therefore find the etendu of each point in turn using a Monte Carlo

method.
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Chapter 2

Proton Production Rate

2.1 Deuterium Plasma Reactions

Most tokamak devices, for almost all plasmas, operate with deuterium only plasmas. The

use of tritium/deuterium plasmas has been extremely limited, as it leads to radioactive

activation of the dust, walls, and interior of the device. The use of deuterium only plasmas

allows the investigation of plasmas similar to those that will be used in reactors without

the radioactive activation of the device. The injection of fast deuterium into the plasma is

used to heat the plasma, and to drive current. It is expected that these fast atoms will be

ionised, and will react with thermal ions and other fast ions in the core. The two reactions

that produce the most easily detectable products in deuterium plasmas are:

2
1D +2

1 D → 3
1T + p+ (2.1)

2
1D +2

1 D → 3
2He + n0 (2.2)

These reactions are equally probable [52], but are still comparatively rare, with the

reactivities shown in Fig. 2.1 [6].

2.2 Reaction Probabilities

The reaction rate per unit volume, R:

R =

∫ ∫

σ(v′)v′f1(v1)f2(v2)d
3v1d

3v2 (2.3)

The likelihood of a reaction is a product of two parts:

1. The Reaction Cross-section, σ(v′).

2. The Probability of Particle Interaction, v′f1(v1)f2(v2).
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Figure 2.1: The probability of fusion reactions is dependent on the temperature of the

constituent ions [23]. The deuterium/tritium interaction has the highest peak at lower

temperatures, and is therefore the fuel of choice for reactors. The deuterium/deuterium

reaction rate is lower so a deuterium only plasma at the same energy will produce a much

lower number of fusion products.
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where v′ = v2 − v1.

A population of particles will have a certain proportion of interactions, and each inter-

action will have a certain chance of creating a fusion reaction.

2.2.1 Reaction Cross-section

The reaction cross-section, σ, gives the likelihood of an interaction between two deuterium

ions resulting in one of the reactions given in section 2.1.

σ ∝ 1

v′2
exp(−2G) (2.4)

where v′ is the relative velocity of the interacting particles v1−v2, andG is the Gamow

factor, governing the likelihood of the reaction overcoming the Coulomb barrier, where

G ≈ e2

4πǫ0

πZ2

~v′
(2.5)

where e is the charge on an electron, ǫ0 is the permittivity of free space, Z is the number

of protons in each of the reacting species, here simplified as the reaction involves only one

species, ~ = h/2π where h is Planck’s constant, and v′ is the relative velocity of the two

particles.

Thus, for a reaction between two deuterium ions:

σ(v′) ∝ 1

v′2
exp

(
e2

4ǫ0

1

~v′

)

(2.6)

2.2.2 Comparison of Reaction Cross Sections

The reaction cross section, σ, has been parameterised by Miley, Towner, and Ivich [32],

Bosch and Hale [6], and Li, Wei, and Liu [28]. Here, these parameterisations are given,

and compared for a sample MAST plasma. The accuracy of the parameterisation can be

found by comparison to the measured neutron rate, as similar numbers of both protons and

neutrons are created in a typical plasma.

Parameterisation via Miley [32]

σ(g) = 10−24





A2

(A4−A3g)2+1

g
(

exp
{
A1√
g

}

− 1
)



 (2.7)

where A1 = 46.097, A2 = 372, A3 = 4.63× 10−4, and A4 = 1.220.
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Figure 2.2: Comparison of the Fusion Cross-Sections for the Three Parameterisation

Schemes

Parameterisation via Bosch and Hale [6]

σ(g) =
A1 + g(A2 + g(A3 + g(A4 + gA5)))

g exp
(
BG√
g

) (2.8)

BG = παZ1Z2

√

2mrc2 (2.9)

where BG is the Gamow constant, α is the fine structure constant, mrc
2 is the reduced

mass of the particle in keV,A1 = 5.3701×104,A2 = 3.3027×102,A3 = −1.2706×10−2,

A4 = 1.4987× 10−6, and A5 = 1.8181× 10−10.

Paramterisation via Li, Wei, and Liu [28]

σ(g) =
π

2µ
~2
glab

(
Mb

Ma+Mb

)
1

θ2
(−4C3)

(C1 + C2glab)
2 +

(
C3 −

(
1
θ2

))2 (2.10)

where µ is the reduced mass, ~ is the Planck constant divided by 2π, 1/θ2 is the Gamow

penetration factor

θ2 =
1

2π

(

exp

[
2π

kac

]

− 1

)

(2.11)

where ac is the length of the Coulomb unit, ac = ~
2/µz1z2e

2, z1 and z2 are the charge

numbers of the colliding nuclei, e is the electron charge, k =
√

2µg/~2, C1 = −60.2641,

C2 = 0.05066, C3 = −54.9932.
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Parameterisation Total Number of Protons Produced

Miley 2.6× 1012

Bosch 1.5× 1013

Li 6.8× 1013

Table 2.1: Total Proton Production in a Sample Plasma, based on MAST shot 18808.

Interaction Rate

We assume that the velocity distribution, f(v), of the plasma is Maxwellian:

f(v) = n
( m

2πT

) 3

2

exp

(

−mv
2

2T

)

(2.12)

where n is the number density, m is the mass of the particles, T is the temperature and

v is the velocity.

2.2.3 Reaction Rate

Combining the velocity distribution and the reaction cross-section, we can find the reaction

rate per unit volume, R:

R =

∫ ∫

σ(v′)v′f1(v1)f2(v2)d
3v1d

3v2 (2.13)

Substituting in for σ(v′) from equation 2.6, and for f(v) from equation 2.12 we obtain

R = n1

( m1

2πT

) 3

2

n2

( m2

2πT

) 3

2

∫ ∫
1

v′
exp

{

−2e2

4ǫ0

1

~v′

}

exp

{

−m1v
2
1

2T

}

exp

{

−m2v
2
2

2T

}

d3v1d
3v2 (2.14)

= n1n2
(m1m2)

3

2

(2πT )3

∫ ∫
1

v′
exp

{

−2e2

4ǫ0

1

~v′

}

exp

{

−m1v
2
1

2T

}

exp

{

−m2v
2
2

2T

}

d3v1d
3v2 (2.15)

2.3 Total Proton Production per Parameterisation

We can use each reaction rate parameterisation in our calculation of the proton production

per unit area of the plasma. The results can be seen in Fig. 2.3. The total number of

protons produced in the sample plasma for each parameterisation is shown in Table 2.1.

From the neutron yield monitors the measured yield is ∼ 1013 s−1 [46]. The average of our

three parameterisations is 2.9 × 1013. We shall therefore use the Miley parameterisation,

as this gives the closest result to the average of our three parameterisations.
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(a) Miley Parameterisation (b) Bosch Parameterisation

(c) Li Parameterisation

Figure 2.3: The rate of proton production for each parameterisation, with 5cm grid spac-

ing. The Miley parameterisation gives a total number of protons nearest to the average,

and to the measured neutron yields.
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Figure 2.4: The proton flux at the vessel wall. The shadows of the magnetic coils can be

seen.

2.4 Proton Flux

Having found the proton production per unit area, it is possible to find the proton flux per

unit area of the wall. This is shown in Fig. (2.4). If we assume that the plasma is toroidally

symmetric, we can find the ideal location for the detector to receive the maximum flux of

protons. This should also correspond to having the widest possible view of the plasma.

2.5 Particle Velocities

The initial velocity of the proton is determined by the energy released in the fusion event,

and the velocity of the centre of mass of the parent particles. From equation 2.1 we know

that the proton will have an energy of 3.02 MeV. In addition, the beam ions, which are the

highest contributor to the reaction rate, have an energy of approximately 40 keV before

the MAST upgrade, and the thermal ions have approximately 1 keV. We can divide the

fusion events into three types: Beam-Beam fusion, Beam-Thermal fusion, and Thermal-

Thermal fusion. For a typical MAST plasma, ∼ 80% of the fusion products seen are

produced by beam-thermal ion interactions, and ∼ 20% from beam-beam interactions.

The contribution to the initial speed of the proton from the energy released in the fusion

reaction is 2.41 × 107 ms−1. The velocity of the centre of mass of the parent particles is
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approximately 4× 105 ms−1. This gives a maximum initial velocity of 2.45× 107 ms−1.

2.5.1 Beam Ion Relaxation Time

The slowing down time of the injected fast particles can be estimated from the measured

neutral flux after the beam has been shut off. The relaxation time to a Maxwellian distri-

bution is ∼ 65 ms [48]. If we consider a typical MAST plasma, where within the central

region the electron temperature and density are assumed to be constant, and the effective

charge is 1, as measured by the Thompson scattering and bremsstrahlung imaging diag-

nostics. If we consider the passing particles, and assume that ni = ne, we can find the

energy loss rate of the primary beam ion energy, Eb

dEb
dt

= −2
1

2neZ
2
b e

4m
1

2

e ln Λe

6π
3

2 ǫ20mbT
3

2

e

Eb −
2

1

2niZ
2
i Z

2
b e

4m
1

2

b ln Λi

8π
3

2 ǫ20miE
1

2

b

(2.16)

This is simplified to

dEb
dt

= −2Eb
τei

[

1 +

(
Ec
Eb

) 3

2

]

(2.17)

where τei is the electron ion collision time, and Ec is the critical beam energy. This

is defined as being the fast ion energy at which ions and electrons receive equal power

transfer, and is given by

Ec = mbTe

(

3π
1

2Z2
i ln Λi

4m
1

2

emi ln Λe

) 2

3

(2.18)

For a typical MAST deuterium plasma, the critical energy is ≈ 20keV.

We can estimate the energy of the beam ions some time t after injection by taking the

integral of Eq. (2.17)

Eb(t) = E0

[

e
−3t

τei −
(
Ec
E0

) 3

2
(

1− e
3t

τei

)
] 2

3

(2.19)

where E0 is the initial beam energy. This is limited to the finding the time for the beam

ions to slow to energy of the thermal ions. This allows us to find the characteristic slowing

down time, τs for the beam ions to fully thermalise

τs =
τei
3

ln






1 +
(
Ec

E0

) 3

2

(
Te
E0

) 3

2

+
(
Ec

E0

) 3

2




 (2.20)

This time can be compared to the relaxation time required for the fast particle pop-
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Figure 2.5: Anistropy in the Differential Cross-Section for the 2H(d, p)3H Reaction.

ulation to dissipate after the neutral beams are switched off, and there is a clear fit [48].

The slowing down time is therefore well described by classical theory, and is due predom-

inantly to Coulomb collisions and charge exchange phenomena.

There is evidence that the velocity distribution of fusion products is not isotropic, but

dependent on the velocities of the parent particles [10]. The particles are assumed to travel

along magnetic field lines, as the effects of the gyro-orbits will average out and the effects

of particle drifts are neglected, and so the velocity distribution can be implemented with

the parent particles being considered as following the magnetic field lines. We can there-

fore find the particle velocity distribution as a function of the magnetic field angle. The

protons are assumed to be created in fusion events between a beam ion and a thermalised

plasma ion, where the energy of the beam is 40 keV, and the energy of the thermal ion is

1 keV. Coupled with the assumption that the particles will be following the magnetic field

lines, as it assumed that any effect of the gyro-orbit will average out over large numbers

of fusion events, the initial velocity distribution as a function of magnetic field angle will

show a level of anisotropy. The anisotropy in the differential cross-section is shown in Fig.

2.5.1.

2.6 LOCUST-GPU

LOCUST-GPU is a full-orbit code, including electron drag, thermal ion scattering, and

diffusion [1]. This provides an accurate model of the fast particle distribution due to

the neutral beams injected into the plasma. This distribution could be used as the expert

knowledge in Bayesian probability calculations, allowing the calculation of the entropy of

our plasma image with reference to the LOCUST-GPU results. The distribution of fast

particle energy is extremely useful to the calculation of the initial energies of the fusion
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born protons, which in turn allows the expected energy of protons at the detector to be

calculated.
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Chapter 3

Orbit Code and the GPU

3.1 Introduction to CUDA

Compute Unified Device Architecture (CUDA) is a computer architecture designed to al-

low easy parallelisation of computing tasks developed by nVidia [33]. The main method of

using CUDA devices is the CUDA for C language. The term CUDA has therefore spread

to refer to the programming language as well as the class of devices. CUDA includes ex-

tensions to C that allow control of the graphics processing unit (GPU). This allows parallel

code to be run using the computing resources of the GPU. The GPU is, in general, a single

instruction multiple data device, optimised for vector calculations.

There are several advantages to using the GPU. The problem of tracking independent

particles along their orbits requires limited instructions, needs only limited access to data

stored in the host device, and can utilise hardware optimised for vector problems. General

Purpose Graphical Processing Units (GPGPUs) are ideally suited to problems of this type.

In particular, we take advantage of the hardware accelerated two dimensional interpolation

usually used for graphics texture interpolation. This allows us to interpolate the magnetic

field at a low computational cost. However, the limited amount of memory available on

the device does restrict the size of the problem that can be considered, as well as restricting

the possibility of interaction between the particles under consideration.

The two devices used for this work are an nVidia GeForce GTX 260 and a GeForce

GT 640. These devices have a large number of CUDA cores (see Tab. (3.1)), each of

which is an independent computing unit. Each core consists of a limited amount of registry

memory, an integer processor, a floating point processor, and a input/output bus connecting

the core to the rest of the streaming multiprocessor. These cores can access a range of

memory types on the device. The cards are compared in Table (3.1).

When programming these devices, the program must be split first into two parts. The

kernel is the code which will run on the CUDA device, whilst the CPU code is used to

initialise the code, and pass data to and from the CUDA device. The kernel code is broadly
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Device GTX 260 GT 640

Architecture Tesla Fermi

CUDA cores 192 384

Clock Rate [MHz] 576 900

Device Memory (DDR3) [MB] 896 2048

Memory Bandwidth [GB/s] 111.9 28.5

Maximum Performance [GFLOPS] 715 691

Streaming Multiprocessors 1 2

Orbits calculated per second 3560 47770

Table 3.1: Comparison of GTX 260 and GT 640 CUDA devices

Figure 3.1: Heirarchy of the CUDA device, showing the sequence of code operation on

the left, and the architecture of the device memory on the right [33].

comparable to a function in C. These kernels will be executed in threads, similar to POSIX

threads, with the threads formed into groups called blocks. These threads will be executed

in parallel within blocks, and for devices with multiple streaming multiprocessors, the

blocks can be executed in parallel. Each thread will run on a single CUDA core, and each

block on a single streaming multiprocessor. The threads are further bundled into warps,

with 32 threads per warp. Each warp is run simultaneously, and the same instruction

set is used across all the threads within a warp. To ensure that the device is used to full

capacity, it is common to have many more threads per block than there are CUDA cores on

the device. The threads may depend upon code running in other threads within the same

block, but the blocks must be able to run independantly, and may be run in any order.

The blocks are collected into grids, with one grid called per invocation of the kernel. The

hierarchy of the code execution and memory on the device is shown in Fig. (3.1).

The memory in a CUDA program is broadly split into four types. Initially, we divide
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Memory Type Speed [GBs−1]

Coalesced 100

Misaligned Contiguous 50

Random Scatter/Gather 10

Table 3.2: Memory bandwidth for various types of read within the CUDA device.

the memory accessed by the program into host memory, attached to the CPU, and device

memory, on the CUDA card. On the card, each CUDA core will have access to per-thread

local memory registers in the core itself. The threads bundled into a block have access

to memory shared within a block, but not between blocks. Finally, there is the global

memory on the device. This is accessible by any thread within a grid. Accessing the

global memory has about 400-600 clock cycles of latency, as opposed to 10 cycles for

register and 20 cycles for shared memory. This latency can be hidden by ensuring that

reads are contiguous, especially if the read is contiguous for a warp. For current Tesla

devices, the memory bandwidth within the device can be seen in Table (3.2).

There are two further sub-types of memory on the device. The constant memory, which

is accessable by all threads, is nearly as fast as the register memory. However, it can only

be updated from the host, and is read-only from the device. More importantly for our

purposes is the texture memory. This is also faster than the global memory, but can only

be updated from the CPU. The texture memory is optimised for 2D locality, and spatially

cached. This is designed to store 2D arrays, and any memory lookup to the texture memory

will read not only the single value requested, but also an area of memory surrounding it.

This memory will be stored in a local cache, so any further reads to this area within a warp

will be much faster. It allows non-integer memory array fetching, using either bilinear

interpolation or nearest point lookup. This interpolation is hardware accelerated, and is as

fast as a simple memory lookup.

The CUDA devices are, in general, optimised for integer and 32-bit floating point

operation. These operations will be performed considerably more efficiently than 64-bit

floating point operations. The GT 640 can perform 192 32-bit floating point addition

or multiplication operations per clock cycle, but only 8 64-bit floating point addition or

multiplication operations. If the algorithm used requires greater than 32-bit accuracy it

is very difficult to achieve performances approaching theoretical peak performance from

the CUDA devices. The theoretical peak GPU performance has been increasing faster

than the CPU performance over the last 10 years, as shown in Fig. (3.2). The cost of

GPUs is driven largely by the gaming market, although devices designed purely for high

performance computing have also been released. Modern games have come to rely upon

extremely realistic graphics to help provide immersion. These graphics require ever more

powerful GPUs to render them, and the cost of the design and manufacture of the GPU is

spread across the entire gaming market, lowering the cost for high performance devices.
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Figure 3.2: The theoretical peak performance for GPU and CPU over the last decade. The

GPU peak performance has outgrown the CPU performance, although accessing the peak

performance will be restricted to problems that are suited to the GPU architecture [33].

3.1.1 CUDA Optimisation

CUDA optimisation falls into two main categories. We must optimise algorithms, and

the memory access. There is considerable overlap between these categories, as we can

hide memory access latency by careful choice of calculation order. The chief method of

calculation optimisation consists of ensuring that all threads within a warp have a similar

runtime. If one thread in a warp takes much longer to finish, the others will wait, rather

than having their CUDA cores reassigned to new warps. This is known as warp divergence.

The second part of optimisation is ensuring that the code is not limited by the memory

latency or bandwidth. The memory bandwidth between the host and the device, shown in

Table (3.1), limits the speed at which data can be passed between the host and the device.

However, the kernel launch is asynchronous to the host code. We can start passing data

to the kernel, hide the latency by performing further calculations on the host, start the

kernel, perform more calculations on the host as the kernel runs, and the data is passed

back. Providing the algorithm allows this additional calculation to be run on the host, this

can hide the latency of the kernel. For the code running on the device, careful use of all

the memory types can allow the latency of memory lookups to be minimised. In addition,

caching of texture memory lookups, combined with warps running similar data, can ensure

that the memory bottlenecks are avoided on the device.
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3.2 Orbit Following Code

The orbit-following code CUEBIT is based on an algorithm created by Dr. McClements

[31]. It is an energy conserving solution to the Lorentz equation in the absence of an

electric field.

dx

dt
= v (3.1)

m
dv

dt
= Zev ×B(x) (3.2)

where m is the mass of the proton, Ze is the charge, v is the velocity and B(x) is the

magnetic field at position x.

The Eqns. (3.2), (3.1) can be approximated using the finite difference system

m
v(n+1) − v(n)

δt
= e

(
v(n+1) + v(n)

2

)

×B

(
x(n+1) + x(n)

2

)

(3.3)

x(n+1) − x(n)

δt
=

v(n+1) + v(n)

2
(3.4)

where the superscript n denotes the timestep under consideration. This ensures that

the energy of the particle is conserved, which can be shown by taking the scalar product

of v(n+1) + v(n) with Eq. 3.3, giving (v(n+1))2 = (v(n))2.

Using Cartesian coordinates, and replacing the (x(n+1) + x(n))/2 with x(n), we can

obtain a first approximation of the solution to Eq. 3.3 as a 3 × 3 matrix, which can then

be solved. This gives an estimate of v(n+1), which can be used to refine the estimate of

x(n+1) using Eq. 3.4, which in turn is used to gain a more accurate estimate of v(n+1), and

so on. It is found that an acceptable level of accuracy can be obtained by repeating this

process three times, reducing the computational overhead of testing for convergence.

3.2.1 4th-Order Runge-Kutta Technique

In order to solve equation 3.2 as efficiently as possible to allow larger numbers of particles

to be tracked, improving the overall statistics, the scheme used by Dr. McClements, [31]

was replaced with a 4th order Runge-Kutta scheme [26]. The general method for this

scheme is given as

dy

dt
= f(t, y) (3.5)

y(t(0)) = y(0) (3.6)
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where f is some function of t and y, t(0) is the start point of the system, and y(0) is the

value of y when t = 0. The numerical approximation of this is then given by

y(n+1) = y(n) +
1

6
h(k1 + 2k2 + 2k3 + k4) (3.7)

t(n+1) = t(n) + h (3.8)

where y(n+1) is the approximation of y(t(n+1)), n denotes the timestep, h the time interval,

and

k1 = f(t(n), y(n)) (3.9)

k2 = f(t(n) +
1

2
h, y(n) +

1

2
hk1) (3.10)

k3 = f(t(n) +
1

2
h, y(n) +

1

2
hk2) (3.11)

k4 = f(t(n) + h, y(n) + hk3) (3.12)

This has a total accumulated error of order h4.

3.2.2 CUEBIT++

The serial code utilising the CUEBIT method to follow the orbit of particles until the par-

ticles leave the device, known as CUEBIT++ was initially used to follow sample particle

orbits. This ensured that the energy of the particles was conserved, but was computation-

ally more intense that the Runge-Kutta technique outlined in Section (3.2.1). Using the

GTX 260, the CUEBIT++ code takes 257 minutes and 29 seconds to calculate the orbits

of 45,793,280 particles, a rate of 2964 particles a second. The Runge-Kutta code takes

225 minutes and 20 seconds to calculate the orbits of 48,128,000 particles, a rate of 3560

particles per second.

3.2.3 Back Code

We can also take the image at the detector plate, and use this as the basis for particles

accelerated back into the plasma. This requires that we know the initial speed of the

particle, which is assumed to be unchanged from the birth speed of the particles, and the

arrival angles of the particles, which are found from the detector image.

3.3 Particle Creation and Detection

Having split the plasma into pixels, as shown in section 5.1.1, we are in a position to start

the process of finding the transformation matrix M. The transformation matrix relates the
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birth positions of the protons to the detector image of the protons. Particles are created in

equal numbers in each small volume of the plasma corresponding, when projected into the

R,Z plane, to pixels within the last closed flux surface. Within each pixel, the particles are

given a random position in the R,Z plane, as well as a random toroidal angle. The fusion

born protons have an initial velocity distribution as calculated in Sec. 2.5. The particles are

created in batches of 4096, as this allows the most efficient use of the available memory

on the CUDA device. By using 4096 particles, with one particle per thread, we ensure

that all the CUDA cores are continually in use. We must pass only the initial positions

and velocities of the particles to the CUDA device, and pass the penultimate and ultimate

positions of the particles as they hit the walls of the device back to the detector. This

allows us to minimise the amount of data we need to pass to and from the device.

Having found the positions of the particle before and after it has hit the wall, we per-

form a simple linear interpolation between these two points to find the point of intersection

with the wall. If this point of intersection coincides with the position of the detector, it can

be recorded as a successful point. This requires that the stepsize be sufficiently small that

the curve between the points can be estimated as a straight line. Here, we can use the

assumed toroidal symmetry of the tokamak and magnetic field to allow us to minimise the

numbers of particles we need to simulate. If we assume that the detector is a ring around

the device, limited in the Z-direction, we can find all the particles that hit this detector, and

then rotate the initial position of the particles by the same angle as the angle the detector

would have to be rotated to localise it to the original angular extent. If the angular extent

of the detector is ψ, this allows us to simulate 2π/ψ fewer particles to get the same number

of particles hitting the detector.

3.4 Results

3.4.1 Benchmarking CUDA Code Against Serial Code

The CUEBIT++ code was rewritten to take advantage of the CUDA compute capabilities

of an nVidia GTX 260, and an nVidia GT 640.

Speed of codes

The CUDA code can assign initial positions and velocities to, track the orbits of, and test

for interaction with detector of 3,560 particles a second for the GTX 260, and 47,770

particles per second for the GT 640. For a plasma split into 5cm by 5cm pixels, at least

8.5 × 108 particles are needed to ensure an accurate matrix, as shown in Section (4.1.2),

which would take a total run time of approximately 297 minutes to complete. The serial

code, run purely on the CPU, can track the orbits of 67 particles per second, and would
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(a) CUDA/Runge-Kutta Code (b) Serial/CUEBIT code

Figure 3.3: Comparison of the changes in timestep for CUDA and CUEBIT codes over a

single orbit. The timestep increases with the magnetic field, as it is a proportion of Larmor

period. This is most evident near the central column.

take 211,000 minutes to calculate the matrix. The CUDA code, running on the GT640,

is approximately 700 times faster than the serial code running on a 2.27GHz Intel Xeon

E5520 CPU.

Accuracy of results

The energy of a charged particle in a magnetic field is independent of the time of measure-

ment. We can therefore compare the energy of the particles at the detector to the initial

energy of the particles. If the energy is constant, or nearly so, we can be confident that

the code is conserving energy. Taking protons born with an energy of 3.1225 MeV, which

have anisotropic birth velocities as calculated in Section (2.5), we can find the energies of

the protons at the detector. This is shown in Fig. (3.4). The detector is slightly biased to-

wards particles with greater energy, which is a result of the anisotropic initial distribution.

The energy of the particle is conserved, and if we ignore the contribution to the energy of

the parents centre of mass, and consider only the fusion energy, the energy of the particle

at the detector is unchanged.

We can compare the accuracy of the CUDA code, particularly the hardware accelerated

interpolation, in a number of ways. In figure 3.3 we can see that both CUDA and C++

codes have the same timestep, as is expected.
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Figure 3.4: The kinetic energy of particles incident on the detector. The peak is at 3MeV,

as expected. The greater spread towards the higher energies is due to there being some

areas of the plasma from which only protons with higher energies are able to reach the

detector.

Figure 3.5: Comparison of CUEBIT on both CUDA and C++, showing Orbits for dif-

ferent Magnetic Field Gridsizes, being, from left to right, 65 by 65, 100 by 200, and 200

by 400. This shows the difference between the linear interpolation, as performed on the

GPGPU, and the bicubic spline, as performed on the CPU.

3.4.2 Interpolation of the Magnetic Field

The magnetic field is taken from EFIT data. This gives the magnetic field as a 65 by

65 grid in R,Z. We assume that the magnetic field will be toroidally symmetric. The

hardware accelerated linear interpolation of the CUDA device is compared to the bicubic

spline interpolation of the C++ code. The bicubic spline technique is then used to resample

the magnetic field. Example orbits can be seen in Figs. (3.5(a), 3.5(b), 3.5(c)). The

accuracy of the orbit increases with the increasing number of points in the magnetic field

grid. The increase in accuracy must be counterbalanced by the increased memory usage

of the larger magnetic grid on the CUDA device.
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Timestep Larmor Final Position Final Position Final Position No. of

Fraction X [m] Y [m] Z [m] Points

0.1 1.2674 1.3828 0.1592 3

0.01 1.1681 1.2808 -0.02683 39

0.001 1.1487 1.2539 -0.01622 393

0.0001 1.1488 1.2535 -0.01636 3938

0.00001 1.1486 1.2533 -0.016235 39383

0.000001 1.1486 1.2533 -0.016228 393835

Table 3.3: C++ Change in final postion of a sample orbit with change in timestep. The

orbit is sufficiently accurate when the timestep is is 0.0001 of the Larmor period.

3.4.3 Orbit Tracking Timestep

The stepsize in the orbit tracking is taken as a proportion of the period of the Larmor orbit.

The Larmor period, L is given by

L =
2πm

q|B| (3.13)

As the timestep, as a proportion of the Larmor period, is decreased, the accuracy of

the orbit, and the time needed to calculate the orbit, is increased. We want, therefore, to

choose the timestep such that the orbit is calculated as fast as possible, to the given levels

of accuracy. The table 3.3 shows the change in accuracy as the timestep size is decreased,

showing the change in the final position of the orbit as the number of points in the orbit

is increased. Each point in the orbit takes the same amount of time to calculate. As the

detector pinhole is 1cm by 1cm, the inaccuracy of the final position of the orbit should be

no more than 1mm. We therefore choose the timestep to be 0.0001 of the Larmor period.

3.4.4 Constants of Motion

We can test the accuracy of the codes by considering the constants of motion for particles

moving through the plasma. We are expecting these to have some variation due to the

limits of numerical accuracy, but excessive variation is to be avoided at all costs. We shall

consider the energy of the particle, and the toroidal canonical momentum.

Energy

The energy of the particle along the orbit is expected to be constant. As we can see

from Fig. (3.6) the variation in energy along a particle orbit is extremely small, which is

consistent with this being a constant of motion to the limits of numerical accuracy. The

Lagrangian of the particle is given by

L =
1

2
mv · v − qv ·A (3.14)
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Variation in Energy along a Sample Orbit
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(a) CUDA code, colour denotes energy in J

Variation in Energy along a Sample Orbit
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Figure 3.6: The energy of the particle at each timestep in the orbit is shown in colour. The

variation in the energy along the orbit is extremely small, so this may be taken to be a

constant of motion. This demonstrates that both calculating schemes conserve the energy.

The agreement between the CUDA and C++ codes is extremely good. The total dif-

ference between the energies recorded by each code is shown in Fig. (3.7). This is also

consistent with the energy being a constant of the motion.

Canonical Toroidal Momentum

The Lagrangian of the proton can be expressed as

L =
1

2
mr2φ̇2 − qrφ̇Aφ (3.15)

where m is the mass of the proton, r is the distance from the centre of the tokamak,

φ is the toroidal angle, q is the charge, and Aφ is the toroidal component of the vector

potential. As the plasma we are considering is toroidally symmetric

∂Aφ

∂φ̇
= 0 (3.16)

The canonical toroidal momentum is given by [52]

pφ =
∂L

∂φ̇
(3.17)

= mr2φ̇− qrAφ (3.18)

= mrvφ − qΨ (3.19)

The canonical toroidal momentum along a sample orbit for RK4 and CUEBIT codes

is shown in Fig. 3.8.
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Chapter 4

Constructing the Transformation

Matrix

The transformation matrix is a matrix that relates a given distribution of the birthplaces

of fusion born protons within the plasma to the positions of incidence of the fusion born

protons at the detector elements. The rows of the matrix correspond to pixel subdivisions

of the R,Z plane of the plasma, and the columns of the matrix correspond to the detector

elements.

4.1 Brute Force Matrix Construction

The transformation matrix can be constructed by creating large numbers of particles in

each grid cell in the plasma. These particles are then tracked along their orbits. Those

that hit the detector have their arrival angle at the detector recorded, along with the initial

position. These angles and positions are then used to construct the transformation matrix.

This matrix will be non-square, with the number of columns given by the number of grid

points in the plasma, and the number of rows given by the number of detector elements.

The size of the matrix can be truncated by considering only points within the last closed

flux surface, and only elements of the detector which register a signal. For a typical MAST

plasma, with the plasma divided into 5cm by 5cm cells, and the detector divided into 15o

by 15o cells, the transformation matrix will have ∼ 70 rows and ∼ 430 columns with non-

zero elements. Each element of the matrix corresponds to the probability that a particle

from the region of the plasma corresponding to that column will intersect with the detector

within the range of incident angles corresponding to that row. As can be seen in Fig.

(4.1) the matrix will typically be rectangular, with many more columns than rows. As the

number of elements in the detector is increased, so too can the number of pixels into which

the plasma is divided, such that the transformation matrix will always be rectangular.
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Figure 4.1: A sample matrix, for a 5cm by 5cm plasma grid and 15deg by 15deg detector

elements. The plasma grid and detector element number is chosen using a Z-order curve,

which rasters throught the 2D image line by line to produce a 1D vector of the pixel

intensities.

4.1.1 Random Number Generation

If the initial velocity of the particles is random, within the distribution calculated in Sec-

tion (2.5), we must ensure that sufficiently many particles are used such that the matrix will

have converged onto a given solution. The randomness of the initial distribution must be

of sufficient quality that the convergence of the solution is not over-estimated. To ensure

this, the CUDA library random number generator was not used, as this is a flawed im-

plementation of the xorwow algorithm [41]. Instead, the required random numbers were

generated on the host, and passed to the device. To ensure that the initial velocity distri-

bution is consistent with the anisotropic behaviour seen in deuterium deuterium reactions

[10] a simple accept-reject algorithm is used. To do this, a random number is generated

for each initial angle up to a maximum given by the maximum value in Fig. (2.5.1). If the

random number chosen is lower than the corresponding height of the curve at that angle,

the angle is accepted. If the random number is higher, the angle is rejected. The parent

particles are assumed to be moving along the magnetic field lines, as any velocity compo-

nent due to gyro-orbit motion will, for large numbers of particles, cancel out. Although

each particle will have a component of velocity perpendicular to the guiding centre orbit,

the average velocity for a large number of particles will be along the guiding centre. It can

therefore be assumed that the orbits of the parent particles will be parallel to the magnetic

field.
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Figure 4.2: The normalised matrix value, as given in Eq. (4.1), converges after approxi-

mately 400 batches of particles are created in each grid cell of the plasma.

4.1.2 Accuracy of the Matrix

As the number of particles simulated increases, the matrix will converge towards the state

that would be experienced with an infinite number of particles. To demonstrate that a

sufficient number of particles are being simulated, it is important to be able to characterise

the matrix, such that we can easily see the changes to it. The normalised matrix is

||M|| =

√
√
√
√
∑

ij

(
Mij

l

)2

(4.1)

where l is the number of points in the matrix. The normalised matrix is then calcu-

lated for increasing numbers of particles. To ensure the optimal use of the CUDA card,

these particles are produced in batches of 4096 particles. The matrix will converge after

approximately 400 batches of particles, or 1.6× 106 particles, are produced at each point,

as shown in Fig. (4.2).

Figure (4.2) shows the normalised value of the matrix. The accuracy of this standard

can found by considering the change in the normalised value of the matrix under two

circumstances. First, we consider the difference between the normalised matrix calculated

using a limited number of particles, and the normalised matrix calculated using a very

large number of particles, to be as close to infinitely many particles as can be reasonably

simulated, ||δM||

||δMk|| = ||Mk −M∞||
||M∞|| (4.2)
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Figure 4.3: The normalised matrix is compared to both the previous matrix, and the matrix

for a large number of particles as the number of particles simulated is increased. This

shows that the convergence is not as fast as concluded from Fig. (4.2), and that up to 1000

batches are needed per grid cell to ensure that the change in the matrix is less than 10−4

from the matrix with a large number of points. Delta refers to the result from Eq. (4.2),

whilst Delta prime refers to the result from Eq. (4.3).

where the superscript k denotes the number of particles created at each point in the

plasma. Simulating infinitely many particles is beyond the scope of this research, and so

10,000 batches of 4096 particles each was chosen as a number that was both larger than

any likely to be used, but still able to be computed in a reasonable amount of time.

Secondly, the difference between Mk and Mk+1 is calculated, to show the speed of

convergence.

||δ′M|| = ||Mk −Mk+1||
||Mk+1|| (4.3)

The change in the matrix as the number of batches is increased, and the comparison

to the matrix at a very large number of particles, show that convergence is not as fast as

expected from Fig. (4.2), and that whilst 200 batches per point is enough to ensure an error

of less than 1% in the matrix, further gains take considerably larger numbers of particles.

Batches of 1000 sets of 4096 particles are therefore used as these give a good accuracy in

the matrix, whilst not being excessively onerous to compute.
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4.2 Particles Moving Backwards in Time

An alternative approach to constructing the transformation matrix can come from finding

the solid angle subtended by the detector elements at each point in the plasma. This solid

angle, as a proportion of the whole, corresponds to the probability that a particle created

in a particular area will hit the detector. Once this has been found, we can construct the

transformation matrix in a similar way to the brute force method. We start by producing a

large number of particles at the detector, and track the particles as they move backwards

in time. At each grid point in the volume of the plasma, the velocity of any particle which

passes through that grid point is recorded. Using these velocities, we can track particles

forwards through the plasma, allowing the solid angle subtended by the detector to be

calculated.

4.2.1 Solid Angle

The solid angle subtended by the detector is the region of velocity space at the point of

particle creation that produces orbits which intersect the detector. The initial velocity of

a fusion born proton is dependent on the velocities of its parent particles. The velocity of

the centre of mass of the parent particles can be up to 80 keV, whilst that resulting from

the fusion event is 3.02 MeV. The maximum inaccuracy in the initial velocity of these

particles is 2.6%. It is expected that the particles will slow from injection velocities before

undergoing fusion events, so the average inaccuracy will be less than this. To simplify this

problem, we assume that the parents are moving parallel to the magnetic field, whilst the

component of velocity from the fusion event is isotropically distributed. We are assuming

that the anisotropy in the velocity of fusion products, as found by Brown and Jarmie [10],

is small enough to be ignored here.

4.2.2 From the Detector to the Plasma

For each point in the plasma an initial velocity that gives an orbit which intersects with

the detector must be found, or found to not exist. The easiest way to find this is to launch

particles backwards in time from the detector and track their progress through the plasma.

For each region of the plasma the particle passes through, we may therefore record the

corresponding velocity. Although the proton production in the plasma is continuous, we

divide it into pixels for ease of calculation. Each pixel intensity is considered as the aver-

age of the pixel production rate across that region. We assume that the magnetic field is

toroidally symmetric, and divide the plasma into regions in x, y, and z.

Let us start with a pinhole design for the detector. The pinhole is assumed to be 1cm

tall in the Z-direction, and have an angular extent of 1.47×10−3radians in the φ-direction,
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(a) x, y plane (b) R, z plane

Figure 4.4: Number of Distinct Orbits found from Backwards Particles, projected into the

(X, Y ) and (R,Z) planes

or approximately 1cm in the (x, y)-plane at 1.7 m from the origin. Behind the pinhole we

place an array of detecting elements, and so can limit our orbits to only those that will

intersect with the detecting element under consideration.

The orbits of the backwards particles are found by reversing time. At each grid point,

we will find a number of particles will pass through that point. By comparing their veloc-

ities, we can find the number of distinct orbits that pass through both that point and the

detector. The magnitude of the velocity is assumed to be constant, with any variation aris-

ing from numerical inaccuracy is assumed to be small. For each grid point in the plasma,

any orbit with angles within 0.05 radians of a previous orbit is not counted, to prevent

double counting. The distinct orbits can be seen in Fig. (4.4).

4.2.3 Ensuring that the Orbits Match

The initial points of the backwards orbits of the particles may be displaced from the final

points of the forwards orbits by up to half the grid cell size. If the backwards orbit is

started with the same initial velocity as recorded in the forwards orbit, but at a different

position in space, the orbits will not exactly match. We may therefore have to make a

small initial adjustment to the angle of the velocity, to ensure that the backwards orbit

will hit the detector. Let the initial guess at the correct angles by denoted by (θ1, φ1), the

position of the detector be (Zd, ψd), the required changed to hit the detector be (δθ, δφ),

and the distance from the point at which the forward orbit hits the wall to the detector be

(δZd, δψd). We can link all these together via a matrix equation
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(

δZd

δψd

)

=

(
∂Zd

∂θ
∂Zd

∂φ

∂ψd

∂θ

∂ψd

∂φ

)(

δθ

δφ

)

(4.4)

We would like to know δθ and δφ. To do this, we can simply take the inverse of the

matrix. We approximate the gradients of Zd and ψd by producing two new orbits, changing

θ1 to θ2 in the first, and φ1 to φ2 in the second. The distance from the intersection of the

orbit with the wall to the detector is given by (Z1, ψ1) in the first case, and (Z2, ψ2) in the

second. We can therefore approximate as follows

∂Zd
∂θ

=
Z2 − Z1

θ2 − θ1
(4.5)

and similarly for the rest of the elements of the matrix.

We can then iterate through this process to find the initial velocity of an orbit which

hits the detector from the region of interest in the plasma.

Newton-Raphson Method in Two Dimensions

We have a problem that is equivalent to a root finding problem in two dimensions, with

two variables. Let the orbit tracking be a function, f , with independent variables θ, φ, and

dependant variables Z, ψ, being the distance from the point of intersection with the wall

of the device to the detector. If the change is small, we can expand f using Taylor series

fi(x+ δx) = fi(x) +
2∑

j=1

∂fi
∂xj

δxj +O(δx2) (4.6)

where i = 1, 2, f1 = Z, f2 = ψ, x1 = θ, x2 = φ.

We can form a Jacobean matrix, J via

Jij ≡
∂fi
∂xj

(4.7)

The desired endpoint is that the orbit should intersect with the detector, i.e. that f(x+

δx) = 0. Our Taylor expansion is only valid near to x, so δx must be small. We can

therefore neglect terms of order δx2 and higher. This gives

δx = −J−1f (4.8)

This problem is not efficiently stated for calculation on CUDA devices. The overheads

of parallelisation on CUDA devices is such that for calculation of small numbers of orbits

it is more efficient to run such calculations on the host device. The orbit-finding code is

therefore run on the host device, before the corrected orbit is passed to the CUDA device

for calculation of the solid angle.
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Figure 4.5: Schematic for the division of velocity space into regions of equal surface area.

4.2.4 Dividing the Velocity Space

We can consider the initial velocity space of fusion born proton to be a sphere, with the

change in initial velocity from co- and counter-rotating ion collisions included later as

influences to the orbit, rather than distortions to the sphere. The direction of the velocity

can be described in terms of the angles θ and φ, where 0 ≤ θ < π and 0 ≤ φ < 2π.

We would like to convert the velocity sphere into a number of regions, each with equal

surface area. This allows us to find the approximate solid angle of the detector without

having to find all the edges of the solid angle subtended by the detector, a computational

saving.

To convert a sphere into regions of equal surface area, we start by deciding to split

the sphere into regions of equal angle δθ. This splits the sphere into rings, each ring

subtending the same angle in θ. Each ring can then be divided into a number of regions in

φ, each region having the same surface area as the uppermost ring. A schematic for this

is shown in Fig. (4.5). The intention is that the regions labelled A and B should have the

same surface area. This is analogous to placing a large number of evenly spaced points

over the surface of a sphere, which is a hard problem. If the surface area of the regions

is allowed to vary, this becomes a much easier problem. As a result, these regions have

similar, but not exactly the same, surface areas.

We can find the surface area of the region labelled A in Fig. (4.5) because it forms a

spherical cap. The surface area of a spherical cap can be calculated via
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SA = 2πrh (4.9)

where SA is the surface area of the region A, r is the radius of the sphere, and h is the

height of the spherical cap. The height of the spherical cap is related to the radius of the

sphere via the radius of the base of the cap, a, where

r =
a2 + h2

2h
(4.10)

We can find a by comparison to our chosen pixel size in θ

a = r sin(δθ) (4.11)

Assuming that the velocity has been normalised, and substituting equations (4.11) and

(4.10) into equation (4.9) gives a formula for the surface area of the cap

SA = 2π
(

1 +
√

1− sin(δθ)
)

(4.12)

We now have the problem of how to divide further rings in φ to ensure that the regions

are of equal surface area. For each ring, the surface area of the whole ring can be calculated

by increasing δθ in equation (4.12). The area of the previous cap can be taken from this

area, giving the area of the ring. We know that each region should be approximately the

same area as the first cap, and so we can simply divide the area of the ring by the area of

the first cap. We then round this number to the nearest integer, which gives the change in

φ needed to retain approximately equal surface areas for each region. We can therefore

characterise each ring in terms of the angle θ.

To find the extent of the detector in velocity space, we can then rotate the subdivided

sphere such that the initial angle, (θ, φ) = (0, 0), and test the velocity of each region in

turn. The initial region, as formed by the first spherical cap, will always contain a velocity

giving an orbit that intersects with the detector, and so gives the minimum solid angle

subtended by the detector. The size of δθ should therefore be chosen to ensure that the

change in subtended solid angle along the orbit is significant. Along the length of an orbit,

the angle subtended by the detector will range from large, when the distance along the

orbit to the detector is small, to small, when the distance along the orbit to the detector is

large. This can be compared to the chance that a particle born in a particular position along

the orbit will hit the detector. Close to the detector, the chances of hitting the detector will

be higher than if the particle is born far from the detector. However, too small a δθ will

result in greater computational cost. The required accuracy must therefore be balanced

against the time required for the computation. The full extent of the detector can be found

by testing the velocity for each region in a ring, stopping when no region of the ring gives
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an orbit which intersects with the detector. A more efficient method of performing this

calculation is shown in Section (4.2.5).

The rotation of the velocity sphere such that the axis of rotational symmetry, i.e. the

z-axis of the unrotated sphere, is aligned to the angle of the velocity of the orbit known to

intersect with the detector, is done by transforming the coordinates of the velocity space

from spherical polar to Cartesian coordinates, performing the rotation, and then converting

back to spherical polar coordinates. We start with the angles of the known orbit, θ and φ,

and the angles of the region of the divided sphere, δθ and δφ. We are trying to find the

Cartesian coordinates that correspond to the angles associated with a particular region of

the divided sphere, which is itself aligned to some particular angle. First we convert the

region’s angles to Cartesian coordinates

x = cos(δφ) sin(δθ)

y = sin(δφ) sin(δθ)

z = cos(δθ)

The radius of the sphere is assumed to be unitary, and is therefore neglected. Secondly,

we rotate these angle around the y axis by θ, to get the declination

x′ = z sin(θ) + x cos(θ)

y′ = y

z′ = z cos(θ)− x sin(θ)

Thirdly, we rotate about the z axis by φ

x′′ = x′ cos(φ)− y′ sin(φ)
= (cos(δθ) sin(θ) + cos(δφ) sin(δθ) cos(θ)) cos(φ)− sin(δφ) sin(δθ) sin(φ)

y′′ = x′ sin(φ) + y′ cos(φ)
= (cos(δθ) sin(θ) + cos(δφ) sin(δθ) cos(θ)) sin(φ) + sin(δφ) sin(δθ) sin(φ)

z′′ = z′
= cos(δθ) cos(θ)− cos(δφ) sin(δθ) sin(θ)

Finally, these are converted back into spherical polar coordinates, to be used as the

initial velocity of the proton in the test orbit.
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Theta

Phi

Extent of angle
subtended by detector

New extent of
test particle ring

Old Extent of 
test particle ring

Figure 4.6: The reduction in the required computation to find the solid angle subtended by

the detector is demonstrated by the reduced lengths of the test particle rings shown to the

right of the image, as compared to the full rings on the left.

4.2.5 Refinements to the Constant Surface Area Method

The angle subtended by the detector tends to be long and thin, by which I mean that

the extent in θvelocity is much greater than the extent in φvelocity. It quickly becomes

inefficient to calculate test orbits for all the points in each circle of δθ. We would therefore

like to only produce test orbits for the area slightly overlapping the detector.

First, the edges of the detector must be found. In any given ring, there will be either

two or four edges. Knowing the edges in one ring allows us to limit our test orbits in the

next ring to only those angles that are similar to the successful orbits of the previous ring.

Finding the edges is done first by calculating all the orbits for an early ring. Taking each

orbit in turn, we can find the angles which correspond to the edge of the detector. For each

subsequent orbit, the probable extent of the detector is known, and so it is possible, by

checking an extra orbit to either side of the previous extent, find the new extent, as shown

in Fig. (4.6). This is far more computationally efficient than calculating the orbits for the

complete ring. In most cases, the extent of the detector can be found by considering the

four edge angles, φ1, φ2, φ3, andφ4, where

0 ≤ φ1 ≤ φ2 ≤ φ3 ≤ φ4 ≤ 2π (4.13)

The detector extent in φ for this ring is therefore given by

φD = (φ2 − φ1) + (φ4 − φ3) (4.14)

There is a complication that arises if the angle subtended by the detector includes

φ = 0, in which case
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Ω = ((2π − φ4) + φ1) + (φ3 − φ2) (4.15)

4.2.6 Variable Surface Area

The solid angles subtended by the detector at different positions along the length of a

single orbit can cover several orders of magnitude. The solid angle subtended by the

detector at the point just before the orbit intesects with the wall will be large, whilst the

solid angle subtended at the far end of the orbit will be small. If we divide the surface

area of the velocity space sphere into equal parts, we must make those parts small enough

that variation can be seen in adjacent points along the length of the orbit, even when the

total solid angles subtended at each of those points is small. If we are to also test every

region of solid angle both within the area subtended by the detector, and adjacent to the

edge of that area, this can take considerable amounts of computation, especially if the area

subtended by the detector is large. We must therefore have a scheme which will distinguish

between the smallest surface areas subtended by the detector, but also be fast to compute

for the largest solid areas. This can be done by abandoning the fixed size for the pixels

of solid angle. Instead, we have a fixed number of pixels per ring. This means that the

rings closest to the top of our velocity sphere have pixels that are small, and so we can

distinguish between the solid angles of detectors far along the orbits, which are likely to

be small. As the solid angle subtended increases, the pixel size will increase, so the amount

of calculation needed for larger detectors is reduced. This also allows easier optimisation

of the CUDA code, as each ring can be calculated as a single kernel, as opposed to trying

to calculate the optimum number of orbits per kernel for each ring. This is the scheme

currently used.

4.2.7 Jacobian Calculation of Solid Angle

An alternative approach to calculating the solid angle is to find the Jacobian matrix, J of

an orbit which hits the detector.

J =

(
∂Z
∂θ

∂Z
∂φ

∂ψ

∂θ

∂ψ

∂φ

)

(4.16)

This, coupled with the size of the detector, allows us to find the change in angle corre-

sponding to a change in the position of intersection with the wall

δZ δψ = |J|δθ δφ (4.17)

where δZ and δψ are the dimensions of the detector. The solid angle, Ω is therefore
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Ω = δθ δφ sin θ0 =
δZδψ

|J| sin θ0
(4.18)

where θ0 is the initial angle of the orbit which intersects the detector. This assumes a

linear relationship between the initial angle and the final position at the wall. This is not

true in all cases, and so this technique is not used.

4.3 Image Resolution

The fusion-born particles will be created in a continuum in space. We choose a length

scale over which to pixelate the plasma. This length scale is chosen to maximise the

useful information we can extract from the detector image, whilst limiting the errors intro-

duced. Ideally, the detector would also be a continuum, allowing us to directly compare

detector image to plasma. However, economic and physical constraints on the detector

force us to consider areas of the detector as single elements. We must therefore consider

the length scale of events in the plasma that may affect the proton production distribution.

For a typical MAST plasma, the Alfvén velocity is of the order of 106 ms−1. The Alfvén

eigenmodes will typically have corresponding wavelengths up to ∼ 20m [17], of which

perturbative AEs will have wavelengths of between 2 and 20m. The toroidal modes with

mode numbers n=1-3 have a radial width which is comparable to the drift orbit of the fast

ions when these ions have slowed to the Alfvén speed [42]. These modes have a radial

width of ∼ 5cm, and are a major contributor to the fast particle transport. Being able to

image the plasma on 5cm lengthscales would therefore be useful. Over longer timescales,

chirping, sawtooth, and fishbone modes lead to fast particle loss with features again having

∼ 5cm lengthscales [12]. It was decided to consider detectors in terms of the extent of each

pixel in the θ and φ directions. The detectors record the incoming protons in terms of their

incident angle. Detectors were considered that have a range of resolutions, from 6 deg to

45 deg. As the length scale of the plasma image is increased, the inversion of the associ-

ated transformation matrix will move from underspecified to over specified. For MAST

shot 18808, assuming, for the sake of simplicity, that the plasma is toroidally symmetric,

the plasma will have 516 5cm by 5cm regions within the LCFS. Although this assumption

can be relaxed, the numerical calculations will then take considerably longer. A detector

with a 6 deg×6 deg pixel size will have 900 pixels, making this an over-specified problem,

although not all the detector pixels will record data, and not all the points in the plasma

will contribute points that hit the detector. The results of this inversion are shown in Fig.

(4.7(a)). This reconstruction is indistinguishable from the known distribution, which is to

be expected for an over specified problem. We can therefore move to smaller grid sized in

the plasma, allowing more information to be extracted, until the image starts to degrade,
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as shown in Figs. (4.7(b)), (4.7(c)).

4.4 Detector Design and Calibration

The detector is based on a 1cm by 1cm square pinhole, with an array of detector elements

mounted 1cm behind it. The detector will be positioned at the midplane, at R = 1.7 m,

corresponding to a position mounted on the MAST reciprocating arm.

The expected proton flux can be calibrated by comparison to the neutron flux in the

device. The total proton production will be comparable to the total neutron production,

typically ∼ 1013 s−1 [46]. The production of neutrons along particular lines of sight is

also known, due to measurements by the neutron camera [13]. This allows comparison to

both the total expected flux and the flux at particular locations within the plasma.

We can compare the brute force and backwards calculations by checking that the prob-

ability of a particle hitting this detector from a particular point in the plasma is consistent,

shown in Fig. (4.8). This means that we calculate the matrix M via both methods, and

chack that the outputs are similar. Neither of these codes creates the detector image. The

two are currently not directly comparable, as the back tracking code doesn’t include the

energy of the centre of mass of the particles, but they do show sufficient similarities to

allow some confidence in the results.

4.5 Accuracy of Orbit Tracking Code

There must be a balance between the speed of calculation of the code, and the accuracy of

the results obtained. As we desire to calculate the orbits as quickly as possible, we must

therefore decide what is the minimum accuracy required to give reasonable results. The

relationship between accuracy and computational time is generally an inverse one, in as

much as increased accuracy will require longer times to calculate. The level of accuracy

needed will depend on the exact device under consideration, for example the dimensions

of the detector will determine the level of accuracy needed in the calculation of the final

point of the orbit. There are two main parameters governing the level of accuracy in the

calculation. The first is the time step used in the orbit, given in terms of the fraction of

the time taken to complete a single Larmor orbit. The second parameter is the size of

the magnetic field grid. This is particularly important in the CUDA code, as the CUDA

devices offer a hardware-accelerated bilinear interpolation of magnetic field data. This

allows interpolation at the same speed as a simple matrix look up on the CUDA device,

but is limited to linear interpolation only. As a result of this, the more points there are

in the magnetic field data, the more accurate the CUDA code will be. However, as there

is only limited memory on the device, larger magnetic field matrices will take space that
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(a) 5cm grid size

(b) 2cm grid size

(c) 1cm grid size

Figure 4.7: Reconstruction of the proton production distribution for a variety of grid sizes,

with each detector pixel corresponding to incident angles in a 6o by 6o range. This shows

the decrease in quality of reconstructions as the number points in the plasma increases.56



(a) Brute Force Method (b) Backwards Orbit Tracking

Figure 4.8: The probability of a particle from each point in the plasma hitting the detector.

The two codes are not directly comparable, as the backwards code doesn’t include the

energy of the centre of mass of the parent particles.

would otherwise be used to hold particle position calculations. The fewer particles that can

be run in each CUDA kernel, the longer the code will take to calculate equivalent numbers

of particle orbits.

We must now choose the required accuracy of our system. The detector design under

consideration has a 1cm square pinhole, centred at X = 1.7, Y = 0.0, Z = 0.0, but

following the curve of the wall. We therefore choose to have a minimum accuracy in the

position of the intersection of the orbit with the wall of the device of ≈ 2.5mm. In addition,

we consider detectors with between 3600 and 25 elements, corresponding to an angular

resolution of 3 deg to 35 deg. Our system should therefore have a minimum accuracy of

2 deg in incident angle of orbit to detector.

The length of the orbit will also determine the accuracy of the result. A particle which

is lost to the plasma on its first orbit will be considerably more accurately simulated than

one which experienced multiple orbits before it hits the wall. We must therefore consider

the accuracy as a function of orbit length. The test initial positions and orbits have been

chosen to demonstrate the accuracy for orbits that are at least half the length of a Larmor

orbit, as well as demonstrating the accuracy for both first orbit losses and multiple orbit

losses. The test particles are created with initial positions and angles as shown in Tab.

(4.1). Sample orbits can be seen in Fig. (4.9).
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(a) In RZ plane

(b) In XY plane, i.e. by considering the projection of the orbit from

above.

Figure 4.9: Sample orbits used to test the accuracy of the codes, showing a first orbit loss

in red and a multiple orbit loss in green.

X [m] Y [m] Z [m] θ [rad] φ [rad]

0.75 0.0 0.0 1.6470 3.088791

0.95 0.0 0.0 1.70895 5.7202

0.95 0.0 0.0 1.6957 2.74475

Table 4.1: The initial positions and angles of the sample orbits used in calculating the

accuracy of the orbit following code.
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Figure 4.10: The change in position of the point of intersection of the orbit with the wall

at various time steps. To achieve the desired accuracy of 2.5 mm the timestep can be no

larger than 0.0001×Larmor time.

4.5.1 Time step

The change in the accuracy of the final position for both CUDA and C++ codes is shown

in Fig. (4.10). If we are to achieve the desired accuracy of 2.5mm at the point of intersec-

tion, we must use a time step that is no larger than 0.0001× Larmor time. If we consider

the change in the intersection angle as a result of changing the time step, as shown in Fig.

(4.11), we can see that to achieve the desired accuracy of 2o the time step can be as large

as 0.009×Larmor time. However, as the time step need for accuracy in the position is

smaller, we will use that time step.

4.6 Magnetic Field Grid Size

We would like to know the smallest magnetic field data grid that will give satisfactory

accuracy. We can compare the results of the CUDA orbits with the C++ orbits to find

the accuracy of the magnetic interpolation. The different sizes of the magnetic fields are

generated by using a C++ code to resample the 65× 65 data file provided by EFIT from

shot 18808 on MAST. As such, the bicubic spline interpolation is assumed to be perfectly

accurate, at least in comparison to the linear interpolation.

It can be seen that certain sizes of magnetic field give more accurate results than would

be expected from the number of points in the magnetic field grid. This is probably due

to certain sizes fitting more easily into the memory of the device. CUDA, to use the

device memory more efficiently, aligns the data in memory with the size of the memory by

padding the data. This may affect the hardware accelerated interpolation, making certain

sizes of magnetic field matrix more efficient and accurate. This effect can be seen in
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Figure 4.11: The change in angle of intersection of the orbit with the wall at various time

steps. The orbit is the sample orbit from X = 0.75, Y = 0.0, Z = 0.0. To achieve the

desired accuracy of 2o the timestep must be no larger than 0.009× Larmor time.
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Figure 4.12: The accuracy of the orbit as a function of the number of points in the magnetic

field. The decrease in accuracy in point 160 by 320 is due to the hardware interpolation of

the magnetic field being more accurate if there is less padding in the array sizes.
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Figure 4.13: The accuracy of the intersection angle of the orbits with the wall as a function

of the number of points in the magnetic field.

Fig. (4.12). From this, we can see that to achieve the desire accuracy, with a maximum

displacement in final position of 2.5mm, the magnetic field should be 100 × 200. The

magnetic field is otherwise assumed to be toroidally symmetric.

The accuracy of the intersection angle required can be achieved by the 50× 100 mag-

netic field. This data set, however, does not have the required accuracy in the position. We

therefore use the 100 × 200 magnetic field data, as this allows us to achieve the desired

accuracy in both the position of the intersection with the wall, and the angle of intersection

with the wall.

4.7 Effect of Displacement of the Initial Position of the

Orbit on the Point of Intersection with the Wall

A further problem, particularly with the backwards/forwards orbits approach, is that by

considering orbits that pass through regions of space, rather than particular points, the

initial point of the forwards orbit will be displaced from the point in the backwards orbit

giving the velocity used for the forward orbit. It is important to choose a grid size that

will minimise this inaccuracy, whilst still allowing computation of the translation matrix

in reasonable time. Here, it is easier to consider C++ and CUDA codes separately, as it is

not expected that one will be more accurate than the other.

As can be seen in Figs. (4.14), (4.16), even a change in initial position of as little as

1cm will lead to an inaccuracy greater than our desired minimum accuracy of 2.5mm in

position and 3 degrees in incident angle. This dependency of the orbit on initial position

shows how the backwards/forwards orbit method, which should be considerably more

accurate than the forward method alone, may suffer. The requirement that a successful
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Figure 4.14: The change in the position of the intersection of the sample orbits due to a

change in the initial position of the orbit. The initial velocity of the orbit is unchanged.
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Figure 4.15: The change in angle of intersection of the sample orbits with the wall due

to a change in the initial position of the orbit, as calculated using C++ code. The initial

velocity of the orbits is unchanged.
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Figure 4.16: The change in position of the intersection of the sample orbit with the wall

due to a change in the initial position of the orbit as calculated using the CUDA code. The

initial velocity of the orbit is unchanged.

forward orbit be found, even with the initial guess of a successful backwards orbit, adds

an additional computational constraint to the code, and one which is not amenable to

CUDA parallelisation, unlike the orbit tracking.

The inaccuracy is just as apparent in the CUDA orbit tracking code, as can be seen in

Fig. (4.16). We can see that the changes in the position and angle of intersection with the

wall are more dependant on the displacement in the X, Y plane than in the Z direction.

This may allow us to consider a grid with longer grid cells in the Z direction than in the

X, Y directions.
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Figure 4.17: The change in the angle of intersection of the sample orbit with the wall due

to a change in the initial position of the orbit, as calculated using the CUDA code. The

initial velocity of the orbit is unchanged.
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Chapter 5

Image Reconstruction

The proton production distribution in the plasma can be found by finding the inverse of

the transformation matrix, and applying this to the measured detector image

y = Mx (5.1)

x = M−1y (5.2)

Where y is the detector image, reduced to a vector via a z-curve method, and x is

the projection of the fast particle distribution in the (R,Z) plane, also reduced to a vector

via a z-curve method. To find x from y requires that the matrix be invertible. As the

matrix is rectangular, a pseudo-inverse is found instead. This is done using Singular Value

Decomposition (SVD). The image found from Eq. (5.2) will probably not be exactly the

proton distribution. To ensure that the reconstruction has the minimum of assumptions

associated with it, the entropy of the reconstructed image is maximised, subject to the

constraint that the image produced by applying Eq. (5.1) be consistent with the image

recorded by the detector.

5.1 Reduced Transformation Matrix

The matrix produced in Chapter (4), an example of which is shown in Fig. (4.1), shows

that there exist areas of the plasma which do not contribute particles which hit the detector.

In addition, there are detector elements which do not record any particle impacts. These

areas of the plasma and detector elements can be removed from the matrix, leaving a

reduced matrix which still contains all the available information about the plasma. An

example of the reduced matrix is shown in Fig. (5.1).
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Figure 5.1: The reduced form of the transformation matrix, where only the rows and

columns with non-zero elements are retained.

5.1.1 Plasma Image

Although the proton production in the plasma is continuous, we divide it into pixels for

calculation. Each pixel intensity is considered as the average of the proton production rate

across that region. We assume that the plasma is toroidally symmetric for computational

simplicity, and divide it into regions in the poloidal, or R,Z-plane, as shown in Fig. (5.2).

The total image of the plasma can then be described as a one dimensional vector of the

intensities, x. Each component of x can then be associated with the R,Z-coordinate of

the pixel. When dealing with the reduced matrix, the pixels which do not contribute to the

detector are removed, leaving only those containing orbits that coincide with the detector.

The plasma image may be reconstructed by recording which rows of the matrix have been

retained, and the associated position of those rows in the R,Z-plane

5.1.2 Detector Image

The image at the detector is recorded as as series of pixel intensities, y. The incident angle

of the protons determines which detector element records their arrival, creating an image

in angles that are broadly equivalent to toroidal and poloidal directions of the tokamak, as

shown in Fig. (5.3). The two dimensional image that is constructed from the incoming

protons is then converted to a one dimensional vector. This vector is then reduced to the

length of the columns of the reduced matrix.
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(a) Before pixelation (b) After pixelation

Figure 5.2: Example proton production distribution

(a) 60 by 60 Detector Elements (b) 12 by 12 Detector Elements

(c) 5 by 5 Detector Elements

Figure 5.3: Detector Images from Sample Proton Distribution shown in Fig. 5.2. This

detectors have a 1cm2 pinhole, and are positioned at R=1.7, Z=0 within the device.
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5.2 Singular Value Decomposition

We may combine the proton distribution, x and the detector image y with the the trans-

formation matrix calculated using the CUDA code, we have a simple expression for the

plasma image

Mx = y (5.3)

where M is the transformation matrix, x is the proton production distribution in the

plasma, and y is the detector image.

If M was directly invertable, we could then simply find the proton production distri-

bution via

x = M−1y (5.4)

However, we will always divide the plasma into the greatest number of pixels possible,

as shown in Section (5.1.1). This ensures that there will be more points within the last

closed flux surface than in the detector image, i.e. that there are more elements in x

than y. This gives us an under-specified problem. Because we have chosen x and y in

this way, the transformation matrix M will not be square. As such, we cannot find an

inverse of the matrix such that all the information is retained. We must therefore calculate

the Moore-Penrose pseudo-inverse of M to extract as many clues as to the real proton

production distribution as possible. To calculate this pseudo-inverse, we have chosen to

use the Singular Value Decomposition (SVD) technique.

The SVD algorithm being used is an iterative QR algorithm, from the ALGLIB library

[4].

5.2.1 QR algorithm

The QR algorithm for the singular value decomposition of a rectangular matrix, M, has

two phases [14]. Initially, we compute orthogonal matrices U1 and V1 such that

B = UT
1MV1 (5.5)

where B has non-zero elements on the diagonal and first super-diagonal only. This

is done via Householder transformations of the matrix M. We then compute two further

orthogonal matrices, U2 and V2, again via Householder transformations of B, such that

W = UT
2BV2 (5.6)

where W is diagonal and non-negative. The diagonal elements, wi, of W are the
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singular values of M. Furthermore, we can find the right singular vectors via

U = U1U2 (5.7)

and the left singular vectors via

V = V1V2 (5.8)

where the columns of U and V are the right and left singular vectors, respectively.

From our SVD decomposition of the transformation M we therefore get the three

matrices

M
︸︷︷︸

a×b
= U
︸︷︷︸

a×a
W
︸︷︷︸

a×b
VT

︸︷︷︸

b×b
(5.9)

where U and V are both unitary matrices, such that

UUT = UTU = U−1U = I (5.10)

and similarly for V. W is directly invertable, being diagonal. From this, we can

construct the pseudo-inverse

M−1

︸︷︷︸

b×a
= V
︸︷︷︸

b×b
W−1

︸ ︷︷ ︸

b×a
UT

︸︷︷︸

a×a
(5.11)

We must pay careful attention to the inverting of the diagonal matrix, W. If there

are errors in the small elements of W, these can have a disproportionate impact on the

accuracy of W−1, and the impact of these errors increases as we approach the limits of

numerical accuracy for the machine. We must therefore take the decision to truncate the

non-zero elements of W at some value that prevents these numerical errors. All elements

of W with values smaller than some wmin are then set to zero. wmin is therefore chosen

to be the limit of numerical accuracy of the machine running the code. This may also, if

wmin is set too high, lose useful information in the inversion. In addition, if, as in the

case currently under consideration, a is larger than b, we will be unable to recover all the

information in x when we take the pseudo-inverse of M. We must therefore make a series

of assumptions about the nature of x to maximise the utility of our image.

We can safely assume that there will be no point in the plasma that will have a negative

production rate of protons. The energy of the fusion produced protons is great enough that

the plasma can be considered to be non-collisional, as shown in section 1.3.1, so any

absorption of protons is likely to be small compared to the total production. We therefore

assume that x cannot be negative at any point. A more important assumption is that the

proton production distribution will be smoothly varying.
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For noisy data, there will be many possible proton production distributions that satisfy

Eq. (5.3). By maximising the entropy of the test image, whilst ensuring that the detector

data is unchanged, we can select the test image that requires the fewest assumptions to

reproduce. The entropy of the image, as calculated in Section (5.3), is a measure of the

smoothness of this distribution, where distributions with higher entropies will be smoother.

5.2.2 Accuracy

The accuracy of the singular value decomposition is almost entirely governed by the de-

cision of the minimum eigenvalue to consider. For underspecified problems, we will ordi-

narily be able to find the number of eigenvalues we expect, and utilise them all. However,

very small eigenvalues, which are close to the limits of the accuracy of the computing

device, will still need to be ignored. The cut-off used is

wmin = 1× 10−15 (5.12)

The value used is an absolute value, chosen such that the potential rounding error in

calculation using 32-bit floating point numbers is eliminated.

5.3 Maximum Entropy

5.3.1 Theory

The theory behind the maximum entropy interpretation of data sets is usually presented

by considering the problem of monkeys throwing balls into boxes. If we have a team of

monkeys tossing N identical balls into M boxes, the number of balls in the j th box, nj , or

the intensity of the j th pixel is given by

nj = Nfj (5.13)

where fj is the probability that a ball will be thrown into box j. We can then say that

the number of ways any given combination of balls in boxes can occur is

g =
N !

ΠM
1 nj!

(5.14)

We can then define the entropy of the image as
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S ≡ ln g (5.15)

= ln

(
N !

ΠM
1 nj!

)

(5.16)

= ln(N !)− ln(ΠM
1 nj!) (5.17)

= ln(N !)−
M∑

1

(ln(nj!)) (5.18)

at this point we apply Stirling’s approximation

S ≈ N ln(N)−N −
M∑

1

(nj ln(nj)− nj) (5.19)

= N ln(N)−
M∑

1

(nj ln(nj)) As
∑M

1 nj = N (5.20)

= N ln(N)−
M∑

1

(Nfj ln(Nfj)) (5.21)

= N ln(N)−
M∑

1

(Nfj ln(N) +Nfj ln(fj)) (5.22)

= N ln(N)−N ln(N)−
M∑

1

(Nfj ln(fj)) As
∑M

1 fj = 1 (5.23)

= −N
M∑

1

(fj ln(fj)) (5.24)

Our efforts to maximise this entropy should generate the image that is maximally ig-

norant. By this, we mean that the selected distribution is one that makes the least claim

of being informed beyond the stated prior data. In the above example, there is no prior

data, and so the entropy will be maximised by a uniform, or flat, distribution. We have no

data about the likelihood of a monkey throwing a ball into a particular box, and so should

consider all boxes equally likely to be the recipient of a ball.

5.3.2 Implementation

The entropy of an image with M pixels is defined [19] as

S =
M∑

i=1

−pi log(pi) (5.25)

where pi is the probability that a particular pixel has a particular proton production

rate, pi = xini/xtot. Here xi is the proton production rate per unit area of the plasma,

71



Figure 5.4: The probability of a particle born in each position in R,Z hitting the detector.

The large variation in probabilities should be noted.

considered in the R,Z plane, and xtot =
∑

i xi. pi = xi/N . It is important that
∑N

i pi =

1, and that 0 < pi ≤ 1 for all pi. For the problem under consideration we are using

S =
M∑

i=1







−xini

N
log
(
xini

N
+ ǫ
)

if xini
N

≥ 0

−xini

N
log(ǫ) if xini

N
< 0

(5.26)

where xi is the proton production rate in that area of the plasma, ni is the corresponding

probability that a proton from that region of the plasma will hit the detector, shown in Fig.

(5.3.2), N is the total number of particles that are recorded at the detector, and ǫ is a

small positive constant to ensure that, should xi be negative, although this is unphysical

in a system without particle sinks, we can still calculate the entropy of the image. If we

differentiate equation 5.25 with respect to p, we get

∂S

∂pi
= − log(pi)−

pi
pi

(5.27)

= − log(pi)− 1 (5.28)

whilst if we perform the same operation on S =
∑N

i −pi log(p+ ǫ)
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∂S

∂pi
= − log(pi + ǫ)− pi

pi
(5.29)

= − log(pi + ǫ)− 1 (5.30)

So we can see that these functions are both continuous, allowing us to add the ǫ, which

allows consideration of points where xi = 0.

The large variation in the probabilities of the particles hitting the detector leads to

potential problems when calculating the entropy of the image. The positions with a large

probability of hitting the detector have a comparatively larger influence on the resulting

entropy. However, as these areas which contribute most particles to the detector image, all

else being equal, this means that biasing the entropy calculation in favour of these areas

can be seen as beneficial. The areas with low probability of hitting the detector can vary

by much larger amounts, and still have the same total impact on the entropy as the high

probability areas. This can lead to a much lower influence on the results from these areas,

which in turn means that the variation in these areas is less well suppressed by the entropy

maximisation.

5.4 Constructing the Code

We now have most of the basic building blocks of an analysis code that will allow us to

get the maximum information from each of our detector images. This code is independent

of the method used to construct the matrix, M. We shall now outline the code, as it is

expected to be run. The first part of the code is making sure that we have the data we

need, and we shall therefore read in the detector image, y, the transformation matrix, M,

and the corresponding list of pixel positions within the last closed flux surface which will

allow us to output the results in the R,Z plane.

The first step is to use SVD to create a pseudo-inverse of M, as outlined in Section

(5.2). We must choosewmin such that we preserve as much information as possible without

introducing numerical errors. Typically, a value of 10−15 is used. This gives an initial

guess at the proton production distribution, x0, as well as the matrix V, which can be split

into orthogonal vectors spanning the basis of M.

We then find those vectors in V that are in the kernel of M, and we are expecting to

find R of these, such that

Mvj = 0 (5.31)

where 1 ≤ j ≤ R. We can then add a combination of the vectors vj to x0 to create

a proton distribution that will comply with our assumptions, whilst still satisfying the
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condition that Mx = y

x = x0 +
∑

j

λjvj (5.32)

where λj is the magnitude of the contribution of each vj . We now have two conditions

to satisfy, namely that all the points in x are positive, and that the entropy of the resultant

image is maximised. We have a simple method of changing x without changing our image

in y, via choosing the values of λj . We have chosen a combination of unconstrained and

constrained optimisation algorithms to produce the desired result.

5.5 Non-linear Conjugate Gradient Optimisation

Let the function we are trying to minimise be f(x(i)). We find the gradient of this function,

such that

d(0) = r(0) = −f ′(x(0)) (5.33)

We then have to find the values of α(i), where α(i) are scalars, that minimises

f(x(i) + α(i)d(i)) (5.34)

by ensuring that the gradient is orthogonal to the search direction. We can then iterate

x(i+1) = x(i) + α(i)d(i) (5.35)

r(i+1) = −f ′(x(i+1)) (5.36)

β(i+1) =
rT(i+1)r(i+1)

rT(i)r(i)
(5.37)

d(i+1) = r(i+1) + β(i+1)d(i) (5.38)

The stopping conditions are either the difference between the solutions of the current

iteration and the previous iteration is small enough, or some maximum number of itera-

tions is reached.

5.6 Unconstrained Optimisation

The first part of the optimisation process is to choose the values of λj such that all the

points in x are non-negative. This is done using an unconstrained conjugate gradient

method. The function to be minimised is the absolute sum of the negative elements of
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x, where x is calculated as in Eq. (5.32). The values of λj are varied, according to the

ALGLIB CG-optimisation method. The gradient of the function is calculated numerically.

5.7 Constrained Optimisation

The next part of the optimisation is to maximise the entropy whilst ensuring that all the

points of x remain non-negative. We therefore have a linear constraint, and a pair of

boundary constraints governing the size of λj . To simplify these constraints, we will

introduce a variable, w, such that

w =
∑

j

λjvj (5.39)

We must now find the direction of w which is in the direction of the steepest descent

of the entropy, as defined in equation 5.26. We must therefore find the maximum of

w · ∇S, subject to the linear constraint that w >= −x, and the boundary constraints that

−λmax <= λj <= λmax. This is done using the LP-SOLVE library, based upon the

revised simplex method. Once we have found the step direction we can choose the step

size. To do this, we introduce a variable governing the step length, µ, such that

xi = xi−1 + µw (5.40)

We can use a simple 1d optimisation scheme to choose µ such that we maximise the

entropy of xi. This is done by starting from some small, fixed value of µ, µ0. This is added

to the current best guess of µ. If the entropy of the resulting x is increased, we double the

step size. If the entropy is less than before, we reset the step size to µ0.

At the end of this process, we will have selected from the class of possible x = M−1y,

the x that satisfies the constraint that all the elements of x are non-negative, and that has

the highest entropy.

5.8 An Alternative Iterative Entropy Maximisation Scheme

The inversion of the transformation matrix can be computationally intensive for large ma-

trices. This is especially true for systems with few detector elements, which will have

transformation matrices which are extremely non-square. Ideally, a maximum entropy

scheme would not require the inversion of this matrix. However, this is reasonably quick

for the matrices under consideration, where most ofthe detectors have less than 300 ele-

ments, and the plasma is split into 5cm × 5cm regions.

We shall therefore apply Bayesian probability theory to the problem. We can write the

posterior probability function as [24]
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p(x|y, σ, I) = pp(x|I) · pl(y|x, σ, I)
pe(y|I)

(5.41)

where σ is the error, and I is the background expert knowledge, pp(x|I) is the prior

probability density function, pl(y|x, σ, I) is a likelihood probability density function, and

pe(y|I) is a normalisation factor of the posterior probability function.

We should like to choose the prior probability density function such that the entropy

of x is maximised. This function is therefore

pp(x|I) =
( α

2π

)N

2

exp(αS) (5.42)

where α is a regularisation coefficient, which can be viewed as a competition factor

between the entropy and the χ2 of the measured data. S is the entropy, as found in Eq.

(5.25).

The likelihood probability density function gives the probability that the detector im-

age is given by the Eq. (5.3). The reconstructed detector image is compared to the mea-

sured detector image via

pl(y|x, σ, I) =
1

ΠN
k=1

√
2πσk

exp(−1

2
F ) (5.43)

where

F =
M∑

k=1

(

yk −
∑N

i=1Mijxi
σk

)

(5.44)

which is a modified χ2 cost function, and pe(y|I) is a normalisation factor of the

posterior probability function.

The entropy is a convex function and F is a convex ellipsoid, which means that there

must be a global maximum of the function

Q(x,y) =

(
S

Sinitial

)

− 1

2

(
F

Finitial

)

(5.45)

where the initial values of S and F are the values for the first guess of the iteration.

The values of the pixels can then be updated via

x
(n+1)
i = x

(n)
i

(

1 + α(n) ∂S

∂xi
− β(n) ∂F

∂xi

)

(5.46)

where α and β are arbitrarily chosen, and their size reduced each iteration to ensure that

the effect of overshooting the minimum is minimised. The method of choosing α(n), β(n) is

described in Section (5.8.2). The problem remains of whether there should be a correction

factor relating S to F . The simplest case omits this factor, whilst using the initial values
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Figure 5.5: The entropy of a particular pixel, demonstrating the convex shape of the func-

tion when attempting to maximise the entropy. x is the probability of the pixel having a

particular value.

of S and F prevents problems arising from one being much larger than the other.

5.8.1 Maximum Entropy as a Convex Function

The entropy of a particular point, as defined in Eq. (5.25), forms a convex curve, as shown

in Fig. (5.5). The maximum entropy that can be achieved for a large ensemble of points

will therefore be when all the points are equal, known as the ”grey” solution, because it

corresponds to an image with all the intensities at some low value. Image inversion via

maximum entropy will therefore tend to underestimate peaks, and overestimate troughs.

Similarly, minimising the F value of the data will lead to underestimation of peaks, as

this is also a convex function, as shown in Fig. (5.6). As both of the conditions we are

trying to meet are convex functions, we know that there will exist some global maximum.

This is complicated by the introduction of errors in data. In this instance, we would not

expect to maximise the entropy subject to the constraint that the F is zero, but rather that

it is small.

5.8.2 An Iterative Minimum Finder for Non-Differentiable Convex

Functions

We can exploit the convex shape of F and the entropy to easily find the values of α and

β that will minimise the F and maximise the entropy. Initially, we are more interested in

minimising the F value of our test distribution of initial proton positions. We will therefore

set α to zero, and attempt to minimise the F value of
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Figure 5.6: An example of the F values around a known value of 2. When minimising F
of an ensemble, this is a convex function.

p
(n+1)
i = p

(n)
i

(

−β ∂F

∂p
(n)
i

)

(5.47)

as calculated using Eq. (5.44). Our previous iteration will give us a value of F when β

is zero. If we then find the value of F for a very small β, we can approximate a tangent to

the curve. The gradient of the tangent will be negative if our β is smaller than the value,

β0 which gives a minimum F , and similarly if the tangent is positive, β is larger than β0.

After the initial tangent has been found, the next β can be found by finding the intersection

of the tangent with F = 0. We can record the points of the closest approach from either

side of β0, and the tangents to the curve at both of these points. The next β to be tested

is found by finding the point of intersection of the two tangents. The ending point of the

scheme can be chosen as being when the difference between β− and β+ is less than some

cut-off value. This scheme requires the calculation of F twice for each test beta, and will

converge more rapidly than pattern search methods.

5.8.3 Removing Unphysical Proton Production Values

If the initial values for the pixels are chosen by multiplying the detector image by the

pseudoinverse of the transformation matrix, as found by SVD, the initial χ2 test will be

close to zero. Using this as a starting point means that the algorithm converges extremely
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quickly. However, the values found by multiplying the pseudoinverse with the detector

image may be negative, which is unphysical. These values are therefore set to zero. This

will stop the reconstructed image being a solution to Eq. (5.1). The iterative scheme

outlined above can be used to find the closest solution to this problem, by setting α to zero

in Eq. (5.46). This iterates towards a solution with the minimum difference between the

observed and reconstructed detector images. Once this has reached a minimum, α can be

increased, and the iterative scheme to maximise the entropy, subject to the cost function

in Eq. (5.45), used to find a reconstructed image of the plasma. The region marked ”A”

in Fig. (5.7) is the region in which α is set to zero, whilst the region ”B” shows results

for non-zero α and β. The values of Sinitial and χ2

initial
are set as the values of S and χ2

at the point of transition from region ”A” to ”B”. The cost function is only calculated in

region ”B”, and is shown in Fig. (5.7(c)). The whole system converges in 200 iterations,

with 175 iterations needed to find the minimum in χ2. The χ2 value found was calculated

as

χ2 = (d−Mx)2 (5.48)

The final error should be considered against the total number of particles at the detec-

tor, which is ∼ 2 × 107, over 25 pixels. The final error of 2 × 106 in the detector image

is the square of the absolute error, which is small in comparison to the total number of

particles at the detector.
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(a) χ2 values at 5 iteration intervals. (b) Entropy values at 5 iteration in-

tervals

(c) Cost function values at 5 iteration

intervals

Figure 5.7: The values of the χ2 comparison of the reconstructed data and the observed

data, the entropy of the reconstruction, and the value of the cost function are shown as

the scheme iterates. In the region labelled ”A”, the value of α is set to zero, allowing a

minimum of the χ2 to be found. In the region labelled ”B”, the full iterative scheme is

applied.
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Chapter 6

Results

6.1 Simple Image Inversion

The simplest approach to reconstructing the proton production distribution is to find the

inverse of the transformation matrix, giving

y = Mx (6.1)

x = M−1y (6.2)

Where y is the detector image, M is the transformation matrix mapping the initial

spatial distribution of the protons onto the detector image, and x is the initial spatial dis-

tribution of the protons. The transformation matrix will not be directly invertable, and so

the pseudo-inverse is found using Singular Value Decompostion (SVD), as described in

Chapter (5). This has been done for a variety of test cases. Each test case has the same

magnetic field, initial proton distribution, and detector position and size. The number of

imaging elements in the detector is varied from 3600 to 36, the first being a very overspec-

ified case, and the last very underspecified. The accuracy of the reconstruction is tested by

a modified χ2 test. The unmodified test

χ2 =
∑

i

(Oi − Ei)
2

Ei
(6.3)

where Oi is the observed value, and Ei is the expected value, is unsuitable for this

problem as there are regions where the expected values of proton distribution are zero.

In addition, this test will overestimate the inaccuracy in regions where the expected value

is small, and underestimate it in regions where the expected value is large. If we are

concerned with measuring the fast particle population as a diagnostic for the neutral beam

heating, it is preferable to weight the measure of accuracy in favour of the largest values
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Figure 6.1: The accuracy of the reconstruction increases as the number of elements in

the detector increases. The large jump in accuracy between points H and I is due to the

problem changing from underspecified to overspecified between these points.

of the proton distribution rather than the smallest. The modified test used is

χ2 =

∑

i (Oi − Ei)
2

∑

iEi
(6.4)

The results can be seen in Fig. (6.1(a)). The large decrease in accuracy between the

underspecified and overspecified problems can be seen as the number of imaging elements

in the detector is increased, shown in Fig. (6.1(b)). The reconstructions for the labelled

points can be compared to the initial distribution in Fig. (6.2). This shows that the general

features of the initial distribution, namely a ring of greater proton production around a

slight dip at the core of the plasma, are present in even quite under-specified problems.

However, as the problem is increasingly underspecified, the SVD inversion will introduce

regions of negative particle production. This is unphysical, as the particles produced are

very unlikely to experience collisions sufficient to reduce their energy to the energy of the

general population of the plasma in the time required to escape the plasma. There are no

particle sinks within the plasma, only particle sources, and so the appearance of areas of

negative particle production in the reconstruction must be an error.

6.2 Recovering the Plasma Image by Maximising the En-

tropy

As the SVD only reconstruction produces regions of negative particle production, and due

to the expectation that the particle production distribution is expected to be smoothly vary-

ing, it is possible to apply certain preconditions to the data used for the maximum entropy

reconstruction. The first is to replace any negative values with zeros in the reconstructed

particle distribution. The effect of this on the accuracy of the reconstruction can be seen

in Fig. (6.3). This will stop our distribution being a solution to Eq. (6.1) in addition to

smoothing, and removing the unphysical particle sinks. We can then return our distribu-
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Figure 6.2: Example reconstructions using only the pseudo-inverse of the matrix, as cal-

culated via SVD. Any negative values are not shown, to allow easier comparison to the

maximum entropy reconstructions.
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Figure 6.3: The negative values of the reconstructions are removed, and smoothing ap-

plied. This is then used as the initial guess for the Maximum Entropy iterative scheme.

tion to being a near solution of Eq. (6.1) by following the iterative scheme in Section (5.8),

but using only the ∂F/∂xi terms in updating the pixel values. Once the agreement with the

observed data has converged, as tested by the modified χ2 test comparison to the observed

data, the entropy can be maximised whilst the increase in F is kept as low as possible. The

example solutions from the full SVD and maximum entropy processes can be seen in Fig.

(6.5). As can be seen in Fig. (6.4(a)), this technique fails on those examples where the

the problem is overspecified, as it needlessly smooths already sufficiently smooth results.

However, for detectors with only small numbers of elements compared to the number of

pixels in the plasma, this increases the accuracy of the reconstruction, as shown in Fig.

(6.4(b)). It is therefore possible, for this particular case, to find the minimum number of

elements needed by the detector to reproduce the proton production distribution. First we

must decide upon a reasonable level of accuracy in the reconstruction. From Fig. (6.5),

we can see that a reasonable reconstruction is achieved at point D, which has a dectector

containing 12× 12 elements. Detectors with fewer elements no longer reliably reproduce

the ring feature of the known distribution. This reconstruction also has an accuracy, as

measured by the modified χ2 test, just under 1 × 108. This can therefore be used as the

cut-off of acceptable reconstruction.

6.3 Displacing Initial Proton Distribution

The sensitivity of the detector to the initial proton distribution can be tested by shifting

the initial distribution in either the R or the Z direction. An example of a shifted proton

distribution, and the reconstruction of this distribution, are shown in Fig. (6.6)

The change in accuracy of the reconstructions of point D due to displacements in both
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(a) Maximum Entropy technique fails for the over-

specified problem

(b) Maximum Entropy technique successfully improves

the reconstruction for underspecified problem

Figure 6.4: The Maximum Entropy scheme produces more accurate reconstructions than

the only SVD reconstruction for the underspecified problem, but fails for the over-specified

problem.
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Figure 6.5: Example reconstructions using a combination of the SVD pseudo-inverse and

the iterative Maximum Entropy scheme.
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(a) Known Distribution (b) Reconstruction

Figure 6.6: The displacement giving the greatest increase in accuracy. The proton dis-

tribution is moved 10cm towards the central column in the R,Z plane. This shows that

the detector position is more important to the quality of the reconstruction than previously

considered.

the R and Z directions is shown in Fig. (6.7). This shows that the midplane is the correct

position for the plasma, but that the detector may be positioned too close to the plasma.

The change in accuracy as the proton distribution is moved away from the plasma implies

that either the choice of last closed flux surface as a cut-off for the production of protons

for the construction of the matrix was too close to the centre of the plasma, or that the

detector produces better results slightly further from the plasma, where the field of view

is improved, or some combination of the two. For a detector positioned at R = 1.7,

the plasma doesn’t fill the field of view, as shown in Fig. (5.3), making it likely that

the detector position is important in the accuracy of the reconstruction. However, if the

detector is moved away from the plasma the proton flux is reduced, and there is more

potential for multi-orbit losses to decrease the sharpness of the image, increasing the time

needed to collect the data for a reconstruction.

6.4 Limits of Accuracy

6.4.1 Noise

The image at the detector, and, to a lesser extent, the plasma in the RZ-plane are both

noisy, in as much as that they are both not completely smooth functions. One source

of this noise is the discrete nature of the particles, which means that we cannot have a
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Figure 6.7: The proton distribution was displaced in both the R and Z directions by up to

15cm. The accuracy of the reconstruction is calculated via the modified χ2 test.

continuum of results across detector images. This can be minimised by considering larger

numbers of particles, as was explained in the Chapter 4, such that the effect of individual

particles is small compared to the effect of all the particles. However, this can only reduce

the noise. If we consider the points at the edge of the detector image, where very few

particles are likely to strike, there will only ever be a small number of particles, no matter

how many are simulated. In addition, for the inversion methods mentioned in Chapter (5),

the greatest effect of small changes in the initial distribution of protons is seen at the edges

of the detector image, the area we are most likely to see the noise from the discrete nature

of the particles. The problem of calculating how long the detector will need to gather

sufficient particles to reduce this noise to acceptable levels is part of the future work that

needs to be done on this problem.

We may broadly divide the rest of the noise into two main types. First, we will con-

sider false positives. False positives may be considered as those occasions upon which the

detector has registered a signal, but the source of the signal was not a fusion born pro-

ton. There are various possible sources for this sort of noise, including other species of

charged particles, fast neutrals, and particles which have come from the interaction of the

plasma with the detector itself. The false positive rate is expected to be broadly similar

across the detector as these events result from things like the interaction of the detector

with charged particles diffused from the plasma, which whould strike the detector approx-

imately equally in all detector elements, and that it is assumed that it can be expressed as

a percentage of the maximum recorded signal. Secondly, there are false negatives. These

arise when a fusion born proton has hit the detector, but the detector has not recorded this
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Figure 6.9: Effects of varying levels of noise on the accuracy of the results. These results

show that the reconstruction is very sensitive to false positives, but not so sensitive to false

negatives. The results are gathered from comparing reconstructions with added noise to

those without, via a χ2 comparison.
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event. It this instance, these are modelled by reducing the signal at each detector element

by an amount proportional to that signal. In both cases, the variation in the signal is as-

sumed to be random, up to a maximum of the value given. Fig. (6.8) shows the impact on

the detector intensities of a false positive and false negative rate of up to 10%. The noise

is assumed to be a uniform distribution, up to the size defined by the percentage rate used

in each instance. The effecs of the noise on the reconstruction can be seen in Fig. 6.9,

where the accuracy of the results is calculated using the same modified χ2 test as other

results. The impact of the false positives is much greater than that of the false negatives,

but the problem of false positivies is a simpler one to solve, by using a thicker screen in

front of the detector. This helps to eliminate the false positives arising from particles that

are not fusion born protons, at the cost of increasing the false negative rate. This will trap

low energy charged particles, such as those that diffuse across the separatrix, whilst still

allowing a proportion of the fast fusion products to pass. Other types of noise, such as the

noise generated by cross talk between detector elements is not considered here, as a more

advanced concept of the detector is required before progress can be made in this area.

6.5 Proton Production Averaged over Ψ

The proton production rate of the plasma is often given as a function of Ψ, which forms

a convenient substitute for the minor radius, especially for more triangular plasmas, such

as those in MAST. The Ψ of the sample magnetic field is shown in Fig. (6.10). The

assumption that the fast particles are evenly spread over flux surfaces allows us to find the

average proton production at intervals of Ψ. This assumption is made so that the results

can be compared to results from [5], where the same assumption is made.

The average proton production rate for both the sample distribution taken from shot

18808, and the reconstructed distribution, is shown in Fig. (6.11). The reconstruction

is based on the 144 element detector, point D in Fig. (6.4(a)). The broadening of the

curve of the reconstruction, and lowering of the peak, are expected from the maximum

entropy technique. This is due to the pressure towards uniformity exerted by attempting to

maximise the entropy. Most of the features are successfully reconstructed, as is the total

area under the curve. This corresponds the the total production of protons per unit time.
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Figure 6.10: Ψ for the sample distribution. Areas of equal Ψ are assumed to be on the

same flux surface, and so the proton production rate can be averaged over this area.

Figure 6.11: The proton production rate at intervals of Ψ. The lowered peak, and broad-

ening of the curve is expected from a maximum entropy reconstruction. The position of

the reconstruced peak coincides with that of the sample distribution.
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Chapter 7

Conclusions

A set of codes has been developed to simulate and interpret the data recorded by a notional

proton detecting diagnostic on a low-field tokamak, specifically the Mega-Amp Spherical

Tokamak (MAST), Culham. This diagnostic is designed to measure the fast particle dis-

tribution of a deuterium plasma, in particular the spatial distribution of the fast particles

injected into the plasma by the neutral beam injection system. These fast particles are used

to heat the plasma, and provide part of the plasma current. The use of the neutral beam

injection system is vital to producing the quality of the plasma needed for the research un-

dertaken at MAST. The proposed diagnostic will be able to directly image the fast particle

distribution, using the protons produced by the reaction of the fast particles with both the

bulk plasma and other fast ions. The rate at which these protons are expected to be pro-

duced within the plasma was calculated, and a method which allowed the signals produced

by the detector to be interpreted in terms of the fast particle distribution was developed.

The reaction cross of the deuterium-deuterium reaction was calculated using a variety

of parameterisations [32, 6, 28]. The expected total proton production rate was determined

for a sample MAST plasma, taken from shot 18808, and compared to the total neutron

emission rate. This was used to determine parameterisation used, as a deuterium reaction

is equally likely to produce a neutron as a proton. The initial velocity distribution of the

fusion born protons was calculated. This is calculated in two parts. The first the velocity

of the particle resulting from the fusion event, and the second is that resulting from the

combined velocities of the parent particles. The rotation of the plasma is neglected. The

anisotropy of the velocity distribution caused by the velocity of the parents was accounted

for, as was the anisotropy inherant to products of the fusion reaction [10].

A code was developed to utilise a general purpose graphical processing unit (GPGPU),

using CUDA language and architecture, in tracking the orbits of fusion born protons

through the device. These protons are non-collisional, and have sufficient energy to be lost

to the plasma within a few Larmor orbits. The code takes advantage of the embarassingly

parallelisability of the problem to calculate the Larmor orbits of up to 100,000 protons per
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second using an nVidia GT 640. This can be achieved due to the non-interacting nature

of the protons, and efficient use of the hardware. A 4th-Order Runge-Kutta algorithm was

used to solve the Lorentz equation, being found to be faster than the CUEBIT algorithm

for this problem, whilst retaining similar accuracy.

The orbit-following code was used to allow the creation of a transformation matrix

linking the initial proton distribution in the plasma to the image recorded by the detector.

This was done using both a brute force method, relying on creating a large number of

particles at each point in the plasma and tracking them forwards in time, and a method

that calculated the etendu of each point in the plasma by tracking the particles backwards

in time from the detector. The first method is faster for simple problems, where assump-

tions such as the toroidal symmetry of the plasma allow considerable gains in accuracy

without having to calculate greater numbers of particles. The second method, of intially

tracking the particles backwards in time, is faster for problems where these simplifying

assumptions cannot be made, and a full 3-d model of the plasma must be created. The

use of CUDA and the GPU allowed large numbers to particles to be simulated in short

times, allowing the necessary number of particles for these matrices to be calculated using

a desktop machine. The detector used was a simple pinhole detector, with an array of de-

tecting elements behind the aperture. The problem of finding the best position and design

for the detector was not considered.

Finally, a code was developed to recreate the initial proton distribution from the detec-

tor image. This relied upon a mix of singular value decomposition of the transformation

matrix, allowing an inverse to be found, and maximising the entropy of the candidate

reconstruction to ensure that the reconstruction is the most uniform possible that is con-

sistent with the data. This should produce a reconstruction in which any departure from

uniformity is essential for the reconstruction to fit the data recorded. However, questions

remain over the best method for calculating the entropy of the image, and the best algo-

rithm to use whilst maximising the entropy. The algorithm presented in this thesis weights

each point in the plasma by the likelihood that that point will contribute particles to the

image captured at the detector. The intention was to ensure that the influence of points

that only contribute fewer particles should be reduced, which should decrease the error in

those points contributing the most particles. If the proton distribution is such that the areas

with the highest levels of proton production are also areas which are less likely to con-

tribute points to the detector, this can lead to distortion in the reconstrution. The method

by which the detector image of the reconstruction is made consistent with the measured

image deserves further consideration. The current method enforces positive values in the

reconstruction at the start of the process, whilst other techniques can ensure that there are

no negative values by assigning large costs to these values.

This work shows that if detectors can be made with at least 144 detector elements,
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reasonable recreations of the fusion proton distribution can be made in the R,Z-plane.

This would allow the fast ion distribution to be diagnosed on a 5 by 5cm grid, which will

allow more accurate diagnosis of the neutral beam injection system.

7.1 Future Work

There is considerable scope for future work arising from this project. This can be split into

two main parts. First, there is the design and position of the detector. Very little work has

been done in finding the most effective position and design of the detector. In particular,

it would be beneficial to model the proton detector currently being installed in MAST.

Secondly, the maximum entropy scheme currently in use may not be the most efficient

and effective method of reconstructing the fusion proton distribution.

The future work on the detector may be split into two parts, being the design of the

detector itself, and the position of the detector. These two parts will be somewhat inter-

connected, as the ideal position for one design may not be the ideal location for another.

In addition, the possibility of having smaller, more widely spaced detectors, such as those

in W. U. Boeglin et. al. (2010) [5]. This would also provide an alternative method of

interpreting the results from the proton detectors currently being installed in MAST.

Alternative maximum entropy methods would also center on two points. Firstly, the

choice of probabilities of the pixels of the reconstruction should be examined. Secondly,

it would be beneficial to be able to select the algorithm used to maximise the entropy

that best fits the use case. It may be that using an alternative measure of the information

of the image, for example Fisher information, would allow for faster and more accurate

reconstructions.

Finally, there must be a consideration of the cost of the detector. As the number of

detector elements required grows, so will the cost of the device. In any project, a final

decision must be made on the basis of cost vs. reward. Will the resulting data be worth

the money required to gather it? An important piece of future work will therefore be to

consider the cost of any proposed detector.
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Appendix A

Appendix 1: Orbit Following Code

A.1 CUDA RK4 Orbit Code

The 4th Order Runge-Kutta code used on the CUDA devices.

__global__ void testKernal(float4 *vel_D, float4 *pos_D, float4 *

{

//define constants

const float q_over_m = 1. * ELECTRONIC_CHARGE / PROTON_MASS;

const float Timestep_Larmor_Fraction = 0.0001;

//loop counters

float time = 0.0;

//iteration counter

int nits = 0;

//bfield container

float4 B0 = make_float4(0.0, 0.0, 0.0, 0.0);

float4 posOld = make_float4(0.0, 0.0, 0.0, 0.0);

float4 posNew = make_float4(0.0, 0.0, 0.0, 0.0);

float4 velOld = make_float4(0.0, 0.0, 0.0, 0.0);

float4 velNew = make_float4(0.0, 0.0, 0.0, 0.0);

float R = 0.0;

float4 B_base = make_float4(0.0, 0.0, 0.0, 0.0);

float phi = 0.0;

float4 k1 = make_float4(0.0, 0.0, 0.0, 0.0);
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float4 v1 = make_float4(0.0, 0.0, 0.0, 0.0);

float4 pos1 = make_float4(0.0, 0.0, 0.0, 0.0);

float R1 = 0.0;

float4 B_base1 = make_float4(0.0, 0.0, 0.0, 0.0);

float4 B1 = make_float4(0.0, 0.0, 0.0, 0.0);

float4 k2 = make_float4(0.0, 0.0, 0.0, 0.0);

float4 v2 = make_float4(0.0, 0.0, 0.0, 0.0);

float4 pos2 = make_float4(0.0, 0.0, 0.0, 0.0);

float R2 = 0.0;

float4 B_base2 = make_float4(0.0, 0.0, 0.0, 0.0);

float4 B2 = make_float4(0.0, 0.0, 0.0, 0.0);

float4 k3 = make_float4(0.0, 0.0, 0.0, 0.0);

float4 v3 = make_float4(0.0, 0.0, 0.0, 0.0);

float4 pos3 = make_float4(0.0, 0.0, 0.0, 0.0);

float R3 = 0.0;

float4 B_base3 = make_float4(0.0, 0.0, 0.0, 0.0);

float4 B3 = make_float4(0.0, 0.0, 0.0, 0.0);

float4 k4 = make_float4(0.0, 0.0, 0.0, 0.0);

float RR = 0.0;

int threadNum = (blockDim.x*blockIdx.x) + threadIdx.x;

float4 pos = pos_D[threadNum];

posNew_out[threadNum] = make_float4(0.0, 0.0, 0.0, 0.0);

posOld_out[threadNum] = make_float4(0.0, 0.0, 0.0, 0.0);

//Calculate the magnetic pitch angle

float Rinit = sqrt(pos.x*pos.x+pos.y*pos.y);

float4 pete = tex2D(tex_B, (((Rinit)/2.0)), (((pos.z+2.0)/4.0)));

float jim = sqrt((pete.x*pete.x)+(pete.y*pete.y)+(pete.z*pete.z));

//Gives Magnetic Pitch Angle

float4 Bnorm = make_float4((pete.x/jim), (pete.y/jim), (pete.z/jim),

float4 anang2 = vel_D[threadNum];

float birthvel = sqrt((2.*3020000.0*1.60217e-19)/1.67262158e-27);

// float initialvel = sqrt((2.*39000.0*1.60217e-19)/1.67262158e-27);

float initialvel = 0.0;
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float4 vel = make_float4((anang2.x*birthvel)+(initialvel*Bnorm.x),

float larmor_period = (TWO_PI / q_over_m) / jim;

float dt = Timestep_Larmor_Fraction * larmor_period;

//loop for lifetime of the particle

while((nits<nits_max) and (time< END_TIME))

{

//loop counter

nits++;

//needed for calculation of larmor_period

pete = tex2D(tex_B, ((((sqrt(pos.x*pos.x + pos.y*pos.y))/2.0))),

jim = sqrt((pete.x*pete.x)+(pete.y*pete.y)+(pete.z*pete.z));

//Give larmor period and timestep, ensures accuracy

larmor_period = TWO_PI / q_over_m / jim;

dt = Timestep_Larmor_Fraction * larmor_period;

// if ((sqrt(vel.x*vel.x+vel.y*vel.y+vel.z*vel.z)*dt) > 0.01) {

// dt = 0.01/sqrt(vel.x*vel.x+vel.y*vel.y+vel.z*vel.z);

// }

//divides positions into new and old

posOld = make_float4(pos.x, pos.y, pos.z, pos.w);

posNew = make_float4(pos.x, pos.y, pos.z, pos.w);

//divides velocities into new and old

velOld = make_float4(vel.x, vel.y, vel.z, vel.w);

velNew = make_float4(vel.x, vel.y, vel.z, vel.w);

//interpolated B-field

R = sqrt(pos.x*pos.x + pos.y*pos.y);

B_base = tex2D(tex_B, (((R)/2.0)), (((pos.z+2.0)/4.0)));

phi = atan2(pos.y, pos.x);

B0 = make_float4((B_base.x*cos(phi)) - (B_base.y*sin(phi)), (B_base.x

//Lorentz force positions

97



pos = make_float4(posOld.x, posOld.y, posOld.z, posOld.w);

//lorentz force velocities

vel = make_float4(velOld.x, velOld.y, velOld.z, velOld.w);

//Runge-Kutta method

//K1 term

k1 = make_float4(q_over_m*(vel.y*B0.z-B0.y*vel.z), q_over_m*(vel.z

//Data from K1 term

v1 = make_float4(vel.x + k1.x*0.5*dt, vel.y+k1.y*0.5*dt, vel.z+k1.z

pos1 = make_float4(pos.x+(v1.x*0.5*dt), pos.y+(v1.y*0.5*dt), pos.z+(v1.z

R1 = sqrt(pos1.x*pos1.x+pos1.y*pos1.y);

B_base1 = tex2D(tex_B, (((R1)/2.0)), (((pos1.z+2.0)/4.0)));

B1 = make_float4(B_base1.x*cos(phi) - B_base1.y*sin(phi), B_base1.x

//K2 term

k2 = make_float4(q_over_m*((v1.y*B1.z)-(v1.z*B1.y)), q_over_m*((v1.z

//data from K2 term

v2 = make_float4(vel.x + k2.x*0.5*dt, vel.y+k2.y*0.5*dt, vel.z+k2.z

pos2 = make_float4(pos.x+(v2.x*0.5*dt), pos.y+(v2.y*0.5*dt), pos.z+(v2.z

R2 = sqrt(pos2.x*pos2.x+pos2.y*pos2.y);

B_base2 = tex2D(tex_B, (((R2)/2.0)), (((pos2.z+2.0)/4.0)));

B2 = make_float4(B_base2.x*cos(phi) - B_base2.y*sin(phi), B_base2.x

//K3 term

k3 = make_float4(q_over_m*((v2.y*B2.z)-(v2.z*B2.y)), q_over_m*((v2.z

//data from K3 term

v3 = make_float4(vel.x + k3.x*dt, vel.y+k3.y*dt, vel.z+k3.z*dt,

pos3 = make_float4(pos.x+(v3.x*dt), pos.y+(v3.y*dt), pos.z+(v3.z

R3 = sqrt(pos3.x*pos3.x+pos3.y*pos3.y);

B_base3 = tex2D(tex_B, (((R3)/2.0)), (((pos3.z+2.0)/4.0)));

B3 = make_float4(B_base3.x*cos(phi) - B_base3.y*sin(phi), B_base3.x

//K4 term

k4 = make_float4(q_over_m*((v3.y*B3.z)-(v3.z*B3.y)), q_over_m*((v3.z

//final acceleration

velNew = make_float4(velOld.x+((1./6.)*dt*(k1.x+(2.0*k2.x)+(2.0

// Calculate new position

posNew = make_float4(posOld.x + (dt * velNew.x),posOld.y + (dt
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//replace positions and velocities

pos = posNew;

vel = velNew;

//Used to calculate if the particle has left the device

RR = sqrt((pos.x*pos.x)+(pos.y*pos.y));

float phi = atan2(pos.y, pos.x);

float v_phi = (vel.x*-sin(phi))+(vel.y*cos(phi));

float torCanMom = ((PROTON_MASS*v_phi*RR)) - (ELECTRONIC_CHARGE

track_pos[nits-1] = make_float4(pos.x, pos.y, pos.z, torCanMom);

//increment time counter

time += dt;

//stops calculation if outside vessel or hits coil

if((RR > 1.7) or (fabs(pos.z)>2.0) or (RR < 0.22) or ((RR > 1.405)

{

posNew_out[threadNum] = make_float4(posNew.x, posNew.y, posNew.z,

posOld_out[threadNum] = make_float4(posOld.x, posOld.y, posOld.z,

break;

}

}

}

A.2 CUDA CUEBIT Code

The CUEBIT algorithm used on the CUDA devices.

__global__ void cuebitKernal(float4 *vel_D, float4 *pos_D, float4 *

{

//define constants

const float q_over_m = 1. * ELECTRONIC_CHARGE / PROTON_MASS;
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const float Timestep_Larmor_Fraction = 0.0001;

//loop counters

float time = 0.0;

//iteration counter

int nits = 0;

//bfield container

float4 B0 = make_float4(0.0, 0.0, 0.0, 0.0);

float4 posOld = make_float4(0.0, 0.0, 0.0, 0.0);

float4 posNew = make_float4(0.0, 0.0, 0.0, 0.0);

float4 velOld = make_float4(0.0, 0.0, 0.0, 0.0);

float4 velNew = make_float4(0.0, 0.0, 0.0, 0.0);

float R = 0.0;

float4 B_base = make_float4(0.0, 0.0, 0.0, 0.0);

float phi = 0.0;

float RR = 0.0;

int threadNum = (blockDim.x*blockIdx.x) + threadIdx.x;

float4 pos = pos_D[threadNum];

posNew_out[threadNum] = make_float4(0.0, 0.0, 0.0, 0.0);

posOld_out[threadNum] = make_float4(0.0, 0.0, 0.0, 0.0);

//Calculate the magnetic pitch angle

float Rinit = sqrt(pos.x*pos.x+pos.y*pos.y);

float4 pete = tex2D(tex_B, (((Rinit)/2.0)), (((pos.z+2.0)/4.0)));

float jim = sqrt((pete.x*pete.x)+(pete.y*pete.y)+(pete.z*pete.z));

//Gives Magnetic Pitch Angle

float4 Bnorm = make_float4((pete.x/jim), (pete.y/jim), (pete.z/jim),

float4 anang2 = vel_D[threadNum];

float4 ang = make_float4(anang2.x+Bnorm.x, anang2.y+Bnorm.y, anang2.z+Bnorm.z,

float4 ang2 = make_float4(ang.x/(sqrt((ang.x*ang.x)+(ang.y*ang.y)+(ang.z

float birthvel = sqrt((2.*3020000.0*1.60217e-19)/1.67262158e-27);
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// float initialvel = sqrt((2.*39000.0*1.60217e-19)/1.67262158e-27);

float initialvel = 0.0;

float4 vel = make_float4((anang2.x*birthvel)+(initialvel*Bnorm.x),

float larmor_period = TWO_PI / q_over_m / jim;

float dt = Timestep_Larmor_Fraction * larmor_period;

//loop for lifetime of the particle

while ((nits<nits_max) and (time < END_TIME)) {

//loop counter

nits++;

//needed for calculation of larmor_period

pete = tex2D(tex_B, ((((sqrt(pos.x*pos.x + pos.y*pos.y))/2.0))),

jim = sqrt((pete.x*pete.x)+(pete.y*pete.y)+(pete.z*pete.z));

//Give larmor period and timestep, ensures accuracy

larmor_period = TWO_PI / q_over_m / jim;

dt = Timestep_Larmor_Fraction * larmor_period;

if ((sqrt(vel.x*vel.x+vel.y*vel.y+vel.z*vel.z)*dt) > 0.01) {

dt = 0.01/sqrt(vel.x*vel.x+vel.y*vel.y+vel.z*vel.z);

}

//divides positions into new and old

posOld = make_float4(pos.x, pos.y, pos.z, pos.w);

posNew = make_float4(pos.x, pos.y, pos.z, pos.w);

//divides velocities into new and old

velOld = make_float4(vel.x, vel.y, vel.z, vel.w);

velNew = make_float4(vel.x, vel.y, vel.z, vel.w);

//interpolated B-field

R = sqrt(pos.x*pos.x + pos.y*pos.y);

B_base = tex2D(tex_B, ((R/2.0)), (((pos.z+2.0)/4.0)));

phi = atan2(pos.y, pos.x);

B0 = make_float4(B_base.x*cos(phi) - B_base.y*sin(phi), B_base.x
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for (int ITERATIONS = 0; ITERATIONS < 4; ITERATIONS++) {

pos.x = 0.5*(posOld.x+posNew.x);

pos.y = 0.5*(posOld.y+posNew.y);

pos.z = 0.5*(posOld.z+posNew.z);

pos.w = 0.5*(posOld.w+posNew.w);

vel.x = 0.5*(velOld.x+velNew.x);

vel.y = 0.5*(velOld.y+velNew.y);

vel.z = 0.5*(velOld.z+velNew.z);

vel.w = 0.5*(velOld.w+velNew.w);

//interpolated B-field

R = sqrt(pos.x*pos.x + pos.y*pos.y);

B_base = tex2D(tex_B, ((R/2.0)), (((pos.z+2.0)/4.0)));

phi = atan2(pos.y, pos.x);

B0 = make_float4(B_base.x*cos(phi) - B_base.y*sin(phi), B_base.x

double lambda = 0.5 * q_over_m * dt;

double ax = lambda * B0.x; // corresponding to \alpha_x

double ay = lambda * B0.y; // corresponding to \alpha_y

double az = lambda * B0.z; // corresponding to \alpha_z

double M11 = 1.0+ax*ax-ay*ay-az*az;

double M12 = 2.0*(ax*ay+az);

double M13 = 2.0*(az*ax-ay);

double M21 = 2.0*(ax*ay-az);

double M22 = 1.0-ax*ax+ay*ay-az*az;

double M23 = 2.0*(ay*az+ax);

double M31 = 2.0*(az*ax+ay);

double M32 = 2.0*(az*ay-ax);

double M33 = 1.0-ax*ax-ay*ay+az*az;

double aa = 1.0/(1.0+ax*ax+ay*ay+az*az); // pre-multiplier

velNew.x = aa * (M11*velOld.x + M12*velOld.y + M13*velOld.z);

velNew.y = aa * (M21*velOld.x + M22*velOld.y + M23*velOld.z);

velNew.z = aa * (M31*velOld.x + M32*velOld.y + M33*velOld.z);

posNew.x = posOld.x + 0.5 * dt * (velOld.x + velNew.x);

posNew.y = posOld.y + 0.5 * dt * (velOld.y + velNew.y);

posNew.z = posOld.z + 0.5 * dt * (velOld.z + velNew.z);

}

//replace positions and velocities

pos = posNew;
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vel = velNew;

//Used to calculate if the particle has left the device

RR = sqrt((pos.x*pos.x)+(pos.y*pos.y));

float phi = atan2(pos.y, pos.x);

float v_phi = (vel.x*-sin(phi))+(vel.y*cos(phi));

float torCanMom = ((PROTON_MASS*v_phi*RR)) - (ELECTRONIC_CHARGE

track_pos[nits-1] = make_float4(pos.x, pos.y, pos.z, torCanMom);

//increment time counter

time += dt;

//stops calculation if outside vessel or hits coil

if((RR > 1.7) or (fabs(pos.z)>2.0) or (RR < 0.22) or ((RR > 1.405)

{

posNew_out[threadNum] = make_float4(posNew.x, posNew.y, posNew.z,

posOld_out[threadNum] = make_float4(posOld.x, posOld.y, posOld.z,

break;

}

}

}
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Appendix B

Appendix 2: Maximum Entropy Finder

This is the method used to find the maximum entropy, whilst ensuring that the detector

data is consistent with the observed data.

while ((success < 2)) {

fred++;

S = 0.0;

scaled_sum = 0.0;

for (int i = 0; i < Plasma_Length; i++) {

if (gamma[i] > 0.0) {

if (pixels[i] > 0.0) {

pixels_scaled[i] = ((pixels[i]*gamma[i]))/(data_sum);

}

else {

pixels_scaled[i] = 0e0;

}

}

else {

pixels_scaled[i] = 0.0;

}

scaled_sum += pixels_scaled[i];

}

for (int i = 0; i < Plasma_Length; i++) {

if ((pixels_scaled[i] > 0.) && (pixels_scaled[i] < 1.)) {

S += -1.0*(pixels_scaled[i]*log(pixels_scaled[i]));

}
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}

for (int i = 0; i < Detector_Length; i++) {

Fake_data[i] = 0.0;

}

for (int i = 0; i < Detector_Length; i++) {

for (int j = 0; j < Plasma_Length; j++) {

Fake_data[i] += Matrix[i][j]*pixels[j];

}

}

Fold = F;

F = 0.0;

for (int i = 0; i < Detector_Length; i++) {

F += (((data[i]) - (Fake_data[i]))*((data[i]) - (Fake_data[i])))/(data_sum);

}

Fnew = F;

Qold = Q;

if ((Fold <= Fnew) && (fred > 2)) {

change2 = true;

for (int i = 0; i < Plasma_Length; i++) {

}

}

if ((change2 == true) && (change3 == false)) {

change3 = true;

Finitial = F;

Sinitial = S;

}

if (change2 == true) {

Q = ((S/Sinitial) - ((F/Finitial)));

flength = 1;

}

else {

Q = -F/2.;

alpha = 0.0;

flength = 1;
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}

Qnew = Q;

Fold = F;

if ((Qold>=Qnew) && (change2 == true)) {

success++;

}

for (int i = 0; i < Plasma_Length; i++) {

f2[i] = 0.0;

}

for (int i = 0; i < Plasma_Length; i++) {

for (int j = 0; j < Detector_Length; j++) {

f2[i] += -(2./data_sum)*MTransp[i][j]*(data[j] - Fake_data[j]);

}

}

for (int i = 0; i < Plasma_Length; i++) {

if ((pixels_scaled[i] > 0.) && (pixels_scaled[i] < 1.)) {

s[i] = -(1.+log(pixels_scaled[i]));

}

else {

s[i] = 0.0;

}

}

beta_left = 0.0;

beta_right = 10.0;

beta_test = 0.0;

line_left = make_double2(0.0, 0.0);

line_right = make_double2(0.0, 0.0);

int check = 0;

// Beta Minimum finder

while ((fabs(beta_left-beta_right) > 1e-6) && (check < 100)) {

check++;

//Find beta_1, F_1, beta_2, F_2

if (beta_test == 0.0) {
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beta_1 = 0.0;

F_1 = Fold;

point_1 = make_double2(beta_1, F_1);

}

else {

beta_1 = beta_test - change;

for (int i = 0; i < Plasma_Length; i++) {

pixels_test[i] = pixels[i]*(1. - (beta_1*f2[i]));

if (pixels_test[i] < 0.0) {

}

}

for (int i = 0; i < Detector_Length; i++) {

Fake_data[i] = 0.0;

}

for (int i = 0; i < Detector_Length; i++) {

for (int j = 0; j < Plasma_Length; j++) {

if (pixels_test[j] > 0.0) {

Fake_data[i] += Matrix[i][j]*pixels_test[j];

}

}

}

F_1 = 0.0;

for (int i = 0; i < Detector_Length; i++) {

F_1 += ((data[i] - Fake_data[i])*(data[i] - Fake_data[i]))/(data_sum);

}

point_1 = make_double2(beta_1, F_1);

}

beta_2 = beta_test + change;

for (int i = 0; i < Plasma_Length; i++) {

pixels_test[i] = pixels[i]*(1. - (beta_2*f2[i]));

}

for (int i = 0; i < Detector_Length; i++) {

Fake_data[i] = 0.0;

}

for (int i = 0; i < Detector_Length; i++) {

for (int j = 0; j < Plasma_Length; j++) {

if (pixels_test[j] > 0.0) {
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Fake_data[i] += Matrix[i][j]*pixels_test[j];

}

}

}

F_2 = 0.0;

for (int i = 0; i < Detector_Length; i++) {

F_2 += ((data[i] - Fake_data[i])*(data[i] - Fake_data[i]))/data_sum;

}

point_2 = make_double2(beta_2, F_2);

line_new = EqOfLine(point_1, point_2);

if (line_new.x < 0.0) {

line_left = line_new;

}

else if (line_new.x > 0.0) {

line_right = line_new;

}

else {

break;

}

beta_test = (line_right.y - line_left.y)/(line_left.x - line_right.x);

if (beta_test < 0.0) {

beta_test = 0.0;

}

if (line_new.x < 0.0) {

beta_left = beta_test;

}

else {

beta_right = beta_test;

}

}

if (change2 == true) {

alpha_left = 0.0;

alpha_right = 1.0;
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alpha_test = 0.0;

double q_test[10];

for (int i = 0; i < 10; i++) {

q_test[i] = 0.0;

}

double q_max = 0.;

int q_high = 0;

check = 0;

while ((fabs(alpha_left-alpha_right) > 1e-7) && (check < 100))

check++;

for (int k = 0; k < 10; k++) {

alpha_test = (((alpha_right-alpha_left)/10.)*double(k)) +

for (int i = 0; i < Plasma_Length; i++) {

pixels_test[i] = pixels[i]*(1. + (alpha_test*s[i]) - (beta

if (pixels_test[i] < 0.0) {

}

}

for (int i = 0; i < Detector_Length; i++) {

Fake_data[i] = 0.0;

}

for (int i = 0; i < Detector_Length; i++) {

for (int j = 0; j < Plasma_Length; j++) {

if (pixels_test[j] > 0.0) {

Fake_data[i] += Matrix[i][j]*pixels_test[j];

}

}

}

F_1 = 0.0;

for (int i = 0; i < Detector_Length; i++) {

F_1 += ((data[i] - Fake_data[i])*(data[i] - Fake_data[i]))/data_sum;

}

pixel_sum = 0.0;

for (int i = 0; i < Plasma_Length; i++) {

pixel_sum += pixels_test[i]*gamma[i];

}
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for (int i = 0; i < Plasma_Length; i++) {

if (gamma[i] > 0.0) {

pixels_scaled[i] = ((pixels_test[i]*gamma[i]))/(data_sum);

}

else {

pixels_scaled[i] = 0.0;

}

}

S_1 = 0;

for (int i = 0; i < Plasma_Length; i++) {

if ((pixels_scaled[i] > 0.) && (pixels_scaled[i] < 1.))

S_1 += -1.0*(pixels_scaled[i]*log(pixels_scaled[i]));

}

}

q_test[k] = ((S_1/Sinitial)-(F_1/(Finitial)));

}

for (int i = 0; i < 10; i++) {

if (q_test[i] > q_max) {

q_max = q_test[i];

q_high = i;

}

}

alpha_left = (((alpha_right-alpha_left)/10.)*double(q_high-1))

if (alpha_left < 0.) {

alpha_left = 0.0;

}

alpha_right = (((alpha_right-alpha_left)/10.)*double(q_high+1))

alpha_test = (((alpha_right-alpha_left)/10.)*double(q_high))

alpha = alpha_test;

beta = beta_test;

}

}

else {

alpha = 0.0;

beta = beta_test;
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}

for (int i = 0; i < Plasma_Length; i++) {

pixels[i] = pixels[i]*(1. + (alpha*(s[i])) - ((beta*f2[i])));

if (pixels[i] < 0.0) {

pixels[i] = 0.0;

}

}

}
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Definitions

x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Plasma image pixel intensities

y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Detector image pixel intensities

M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transformation matrix

B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Magnetic field

Ψ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poloidal magnetic flux

R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Major radius of tokamak

Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Height of tokamak

θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Toroidal Angle

φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poloidal Angle

n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Density

σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reaction cross-section

v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Velocity

m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Mass

Ze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Charge

G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Gamow factor

t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Time

E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Energy

p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Momentum

T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature
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