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Abstract

A pair of orthonormal bases are mutually unbiased (MU) if the inner products across

all their elements have equal magnitude. In quantum mechanics, these bases represent

observables that are complementary, i.e. a measurement of one observable implies

maximal uncertainty about the possible outcome of a subsequent measurement of a

second observable. MU bases have attracted interest in recent years because their

properties seem to depend dramatically on the dimension d of the quantum system in

hand. If the dimension is given by a prime or prime-power, the state space is known to

accommodate a complete set of d+1 MU bases. However, for “composite” dimensions,

such as d = 6, 10, 12, . . ., complete sets seem to be absent and it is not understood why.

In this thesis we carry out a comprehensive study of MU product bases in dimension

six. In particular, we construct all MU bases in dimension six consisting of product

states only. The exhaustive classification leads to several non-existence results. We also

present a new construction of complex Hadamard matrices of composite order, which is

a consequence of our work on MU product bases. Based on this construction we obtain

several new isolated Hadamard matrices of Butson-type.
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Chapter 1

Introduction

The formulation and development of quantum mechanics has brought forth a major rev-

olution in our understanding of physics at the microscopic level. Intriguingly, the theory

is far removed from the familiar classical picture of mechanics, where all dynamical vari-

ables of a system can be determined precisely. The revolutionary theory was developed

independently in the twenties and early thirties of the last century: Schrödinger’s wave

mechanics established a differential equation with the use of operators while Heisen-

berg developed matrix mechanics and derived his uncertainty principle. Over the next

half-century, an array of physicists and mathematicians, including Dirac, Born, Bohr,

Jordon, von Neumann and many others, made significant contributions to the subject.

Abstractly, quantum mechanics involves linear operators acting on a Hilbert space (a

complex vector space equipped with an inner product). A measurable quantity cor-

responds to a self-adjoint operator acting on the Hilbert space. Probably the most

striking property of this theory is the probabilistic description of the states. In con-

trast to classical theory, not all dynamical variables of a state in a quantum mechanical

system can simultaneously have sharp values. In other words, some dynamical variables

will remain undetermined. Thus, quantum mechanics is a statistical theory providing

probability distributions for the possible outcomes of a measurement of an observable.

While there are still many issues today surrounding quantum mechanics and its inter-

pretation, there is no doubting its power to make accurate experimental predictions.
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The book by Isham [42] is recommended as a good introductory text to the subject,

and further mathematical and interpretational discussions can be found in monographs

by Mackey [59] and Bub [22].

This thesis is concerned with observables in quantum mechanics that exhibit comple-

mentarity. This is a property held by certain physical quantities for which a measure-

ment of one observable implies maximum uncertainty about the possible outcome of a

subsequent measurement of another observable. As an example, consider the Hilbert

space H = C2, in which a general qubit state ρ (a positive trace class operator of trace

one) can be expressed as ρ = 1
2(I + ~r.~σ), where ~r ∈ R

3, |~r| ≤ 1, I is the identity

operator and ~σ = (σx, σy, σz). The Pauli operators σx, σy and σz, together with I, form

a self-adjoint operator basis. Consider a spin component observable S~a in the direction

~a and let “± ” label the two measurement outcomes. If the outcome is “ + ” then the

spin direction is ~a and if the outcome is “− ” the spin direction is −~a. The projection

operators for this measurement, which project the state onto an eigenstate of the ob-

servable, are given by S~a(±) = 1
2(I±~a.~σ). Suppose that we have measured S

~a and wish

to predict the measurement outcome distribution of another spin component observable

S
~b. For any state ρ, the difference between the outcome probabilities associated with

S~a(+) and S
~b(+) is given by 12 |~r.(~a−

~b)|, which is bounded above by 12‖~a−
~b‖. Thus, if

~a and ~b have similar directions, the outcome measurement distribution of S~a provides

a fairly accurate estimate for the outcome measurement distribution of S
~b. However, if

~a is chosen orthogonal to ~b then we find that 12‖~a−
~b‖ = 1√

2
. In this case, the outcome

of a spin component measurement in direction ~b is completely unpredictable given that

the system is in an eigenstate of spin in the orthogonal direction ~a, i.e., the probability

outcome distribution satisfies tr[ρS
~b(+)] = tr[ρS

~b(−)] = 1
2 given ρ =

1
2(I +~a.~σ). Thus,

any two orthogonal spin component operators form a pair of complementary observ-

ables. For more detailed discussions on complementarity in quantum mechanics one

can refer to [23,38,71].

One way to express complementarity for a pair of quantum mechanical observables is

to say that their eigenstates form a pair of mutually unbiased bases : if a system resides

in an eigenstate of one of these observables, there is a uniform probability distribution
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of finding the system in the eigenstates of the other observable. Formally, we say that

two orthonormal bases B and B′ of a finite-dimensional Hilbert space Cd are mutually

unbiased (or MU for short) if and only if |〈ψ|φ〉| = 1/
√
d for all |ψ〉 ∈ B and all |φ〉 ∈ B′.

For example, the eigenstates of the three pairwise complementary spin operators σx, σy

and σz form a set of three MU bases for which the overlap from vectors across different

bases is 1/
√
2.

The main purpose of this thesis is to investigate the existence problem of mutually

unbiased bases in certain finite-dimensional Hilbert spaces Cd. For arbitrary d it is well

known that one can construct at most (d+ 1) MU bases [97]. Furthermore, this upper

bound is achieved when d = pn, with p prime and n ∈ Z+. However, in every other

dimension, complete sets of (d + 1) MU bases appear absent. While the problem still

remains open, evidence suggests the existence of complete sets is unlikely for d 6= pn

(we will often refer to these non-prime-power cases as composite dimensions). For the

smallest composite dimension, d = 6, it is conjectured that only three of the possible

seven MU bases exist [98].

Some interesting properties of operators which exhibit complementarity were first no-

ticed by Schwinger in his paper “Unitary Operator Bases” [80]. Here, Schwinger in-

vestigates a pair of unitary operators U and V acting on a finite-dimensional Hilbert

space Cd, defined to cyclically permute (modulo d) the eigenstates of V and U , respec-

tively. These operators satisfy the commutation relation V U = e
2πi
d UV and generate

a complete operator basis. In addition, the operators are maximally incompatible, i.e.,

their eigenstates form a pair of bases with constant overlap. When d is a prime number

the operator basis yields a set of d + 1 MU bases; an explicit construction was first

given by Ivanovic in [43]. This was later generalised by Wootters and Fields to include

prime-power cases [97]. The generalised construction depends on the existence of finite

fields containing d elements and so the method does not apply when d 6= pn.

Other constructions of complete sets have since been found [6, 31, 51]. A method by

Bandyopadhyay et al. is based on finding maximally commuting subsets from a basis

of orthogonal unitary matrices [6], and a construction by Klappenecker et al. uses
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finite fields and Galois rings [51]. Further studies on the relevence of finite fields for

constructing MU bases can be found in [31,41,72,77,96].

Unfortunately, known constructions for complete sets are of little use in composite di-

mensions. It has been shown in [4] that generalised formulas based on the constructions

given in [51,97] fail when the dimension d is composite. However, by factorising d into

the form d = pn11 p
n2
2 . . . pnrr , where pi is prime, ni ∈ Z

+ and pn11 < . . . < pnrr , one

can construct at least (pn11 + 1) MU bases [51]. This bound is achieved by building

bases in Cd from sets of MU bases in each prime-power subsystem. For most com-

posite dimensions it appears likely that this lower bound is not exceeded, however, in

certain square dimensions additional MU bases have been constructed using mutually

orthogonal Latin squares [95].

The existence and construction of MU bases have some interesting links with other

structures in mathematics. The most striking connection, found in [15], shows the

existence of MU bases of the space Cd is equivalent to the existence of orthogonal

Cartan subalgebras of the simple Lie algebra sld(C). In fact, the existence problem

for MU bases is equivalent to an older problem which conjectures that an orthogonal

decomposition of sld(C) exists if and only if d is a prime-power [55]. If this is true then

complete sets of MU bases only exist in prime-power dimensions. Other analogous

structures include affine planes (or mutually orthogonal Latin squares), which prove

useful in the construction of MU bases [77], and complex Hadamard matrices [10].

These will be discussed thoroughly in Chapter 2.

Over the last decade substantial effort has been devoted to the existence problem in

dimension six but the conjecture suggesting non-existence remains unproven. Various

approaches attempt to find additional MU bases but to no avail. Extensive numerical

searches suggest that no fourth basis exists [16,25], and it has been found that certain

pairs and triples of MU bases cannot extend to a MU quadruple [34, 45]. Other non-

existence results rule out certain construction methods from yielding a complete set.

For example, one can construct at most three MU bases from the partitioning of a nice

error basis in dimension six [5], while in contrast, the method successfully generates
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complete sets of MU bases in prime and prime-power dimensions.

While results in dimension six are limited, most of the progress relies on restricting the

search for MU bases in some way. For example, restricting the construction to nice error

bases or limiting the search to include known pairs yields several non-existence results.

In this thesis we focus on the product structure of the Hilbert space and limit our

studies to bases which contain only product states. In particular, we investigate states

of the form |ψ,Ψ〉 ≡ |ψ〉 ⊗ |Ψ〉 in the space C6, with |ψ〉 ∈ C2, and |Ψ〉 ∈ C3. While

product bases appear frequently in the studies of MU bases, their product structure is

usually neglected. One of the few known results in dimension d = 6 is the impossibility

to extend, by more than one further MU basis, the pair of bases consisting of the

standard basis and its dual, the Fourier basis [34]. Another more recent result states

that the Fourier family of Hadamard matrices in dimension six, together with the

identity, does not extend to a MU quadruple [45]. These initial pairs, after non-local

equivalence transformations, consist of product states only, a fact which has received

little attention. Thus, on reflection it seems worthwhile to systematically study MU

bases which contain only product states. In addition, this work will also complement

studies of the entanglement structure of complete sets in prime-power dimensions where

the product structure of MU bases plays an important role [58,75,93].

The structure of this thesis is as follows. In Chapter 2 we review progress made towards

resolving the existence problem of complete sets of mutually unbiased bases in composite

dimensions (i.e. non-prime-power cases), with particular focus on dimension six. We

shall discuss several mathematical structures that are related to this problem, including

orthogonal decompositions of simple Lie algebras, complex Hadamard matrices and

affine planes. We will summarise all known computational and analytic results which

provide evidence either for or against the conjecture that at most three MU bases exist

in dimension six. Finally, we discuss a few well-known applications of MU bases, e.g.

state tomography, quantum key distribution and the King’s problem, and highlight

possible workarounds if complete sets are found not to exist.

Chapters 3, 4 and 5 consist of three published papers on mutually unbiased product
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bases. In Chapter 3 we start by deriving an exhaustive list of product bases of the

space C2 ⊗ C3, inequivalent under local equivalence transformations. By imposing the

condition for a product basis to be MU to a product vector we arrive at two results

important to enumerate all pairs and triples of MU product bases. We then give a

complete classification of all MU product bases in dimension six. To illustrate our

method and confirm various known results we also provide a complete classification

of all MU product bases of the space C2 ⊗ C2. The classification in dimension six

reveals four families of pairs of MU product bases: a four-parameter family; two pairs

containing two-parameters; and a single parameter-independent pair. In addition, there

exist only two triples of MU product bases. As a consequence of this classification, and

with some help from a computer-aided search given by Grassl in [34], it follows that no

MU product triple is part of a complete set of seven MU bases.

In Chapter 4 we provide a stronger non-existence result for MU product bases in dimen-

sion six by proving that if a complete set of seven MU bases exist, it contains at most

one product basis. The proof relies on the classification of pairs of MU product bases

derived in the previous chapter and two computer algebraic calculations given in [45]

and [18]. In particular, we show that all pairs of MU product bases are equivalent un-

der non-local unitary transformations to just two types. Written in matrix form, these

pairs both contain the identity matrix together with either the two-parameter Fourier

family F6(a, b) or the isolated matrix S6. A computational search given by Jaming et

al., which is made exact by using rigorous error bounds, shows that the pair containing

the identity matrix and Fourier family cannot extend to a quadruple of MU bases [45].

A search for vectors MU to the identity matrix and S6 rules out the extension of this

pair beyond a MU triple. Thus, since all MU product pairs are equivalent to bases

known to be unextendible, it follows that a complete set will contain only one product

basis, the standard canonical basis.

The non-existence results we have so far derived, while rigorous, rely in some way on

computer algebraic manipulations. In Chapter 5, we overcome this deficiency by prov-

ing two analytic non-existence results. Both statements are weaker than the main result

of Chapter 4 but they nevertheless offer an additional perspective and complement the
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few analytic results that already exist. The first result is a proof that no vector is

MU to a triple of MU product bases in dimension six. The proof relies on some sim-

ple mathematical techniques which exploit the tensor product structure of the Hilbert

space C2⊗C3. The second result is slightly stronger and considers constellations of MU

product states rather than bases. A MU constellation is a set containing orthogonal

and MU states. For example, any subset of a set of MU bases is a MU constellation.

The product constellation we consider contains 16 product states: two bases and a set

of four orthogonal states. We show that any product constellation of this type cannot

be extended to a complete set of seven MU bases.

In Chapter 6 we shift our focus from the existence problem of MU bases in dimension

six to the construction of complex Hadamard matrices in composite dimensions. The

two structures are closely related since a set of MU bases can be represented by a set

of complex Hadamard matrices. A square matrix H of order d is a complex Hadamard

matrix if it is unitary, HH† = I, and if its elements have equal modulus. This definition

generalises the concept of a real Hadamard matrix where the matrix elements are limited

to the values ±1/
√
d. The first known construction of such matrices is due to Sylvester

[83], while they take their name from Hadamard who found that the absolute value of

the determinant of a unitary matrix achieves its maximum if all its matrix elements

have the same modulus [36]. Since then, complex Hadamard matrices have made their

appearance in various branches of both mathematics and physics. For example, they

relate to the problems of finding bi-unitary sequences and cyclic n-roots [13], they can

be useful in constructing certain *-subalgebras of finite von Neumann algebras [73],

and error correcting codes [2]. They also have applications in quantum information,

representing an important ingredient in teleportation and dense coding schemes [92],

and they are closely linked to mutually unbiased bases [80]. For a detailed overview of

their applications, see [2, 39].

In view of their many uses, a complete classification of complex Hadamard matrices

would be highly desirable but it has not yet been achieved. All complex Hadamard

matrices, up to equivalence, are known for dimensions d ≤ 5 [35, 91], but their clas-

sification remains incomplete for higher dimensions. General construction methods
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exist in composite dimensions [28, 40], and continuous families of complex Hadamard

matrices have been obtained from so-called parameterisations of known Hadamard ma-

trices [28–30, 61]. There has also been some success in finding continuous families of

complex Hadamard matrices for certain prime dimensions [70]. A survey of known com-

plex Hadamard matrices is given in [88] for d ≤ 16, with an updated online catalogue

provided by [21].

Chapter 6 contains a new construction method for complex Hadamard matrices of order

d = pq, with p, q prime, based on pairs of MU product bases of the same dimension. This

technique stems from our classification of all MU product bases in dimension six given

in Chapter 3. Furthermore, we show that for a certain choice of bases, new examples of

isolated complex Hadamard matrices appear. A complex Hadamard matrix is isolated

if the upper bound on the dimensionality of the set of Hadamard matrices stemming

from the matrix is zero, i.e. it is disconnected from any continuous set. We demonstrate

the method for d < 100, and construct at least 12 new isolated matrices from order 9 to

91. All of the tested dimensions (except d = 4) result in at least one isolated Hadamard

matrix. This is in contrast to the discovery of most other isolated matrices, which are

usually found through numerical searches and occur quite sporadically.

We conclude this thesis in Chapter 7 with a brief discussion of our main results.
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Chapter 2

The MUB problem in d = 6

2.1 Orthogonal decompositions of sld(C)

The unsolved problem of whether complete sets of MU bases exist in arbitrary dimen-

sions is connected, somewhat surprisingly, to an analogous problem involving orthogonal

decompositions of Lie algebras. In fact, the conjectured non-existence of complete sets

in composite dimensions is equivalent to a much older conjecture that the simple Lie

algebra sld(C) admits an orthogonal decomposition only if d is a prime-power [55]. In

this section we summarise the equivalence of the existence of MU bases for arbitrary di-

mension d with orthogonal Cartan subalgebras of sld(C) as shown in [15] and highlight

a consequence for dimension six.

Suppose that L is the simple Lie algebra sld(C) consisting of all traceless complex

matrices of order d. A Cartan subalgebra H of L is a maximal subspace that is self-

normalising, i.e. if [g, h] ∈ H for all h ∈ H, then g ∈ H. The Killing form K(x, y) is

defined as

K(x, y) = tr(adx ∙ ady), (2.1)

where adx : L → L, for some element x ∈ L, is the adjoint endomorphism with

adx(z) = [x, z] = xz − zx for all z ∈ L. The Killing form is non-degenerate on L as

well as on the restriction to any Cartan subalgebra H. Thus, two Cartan subalgebras

Hi and Hj are orthogonal with respect to the Killing form if K(Hi,Hj) = 0.
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The following theorem summarises the equivalence between sets of MU bases and or-

thogonal Cartan subalgebras, first noticed in [15].

Theorem 2.1.1. A set of μ MU bases B1, . . . ,Bμ of Cd exists if and only if a set of μ

pairwise orthogonal Cartan subalgebras H1, . . . ,Hμ of sld(C), closed under the adjoint

operation, exists.

This equivalence can be understood as follows. One can construct a Cartan subalgebra

H from an orthonormal basis B = {|ψ1〉, . . . , |ψd〉} if H is defined as the linear subspace

of sld(C) consisting of all traceless matrices that are diagonal in B. Any element x ∈ H

can be written as x =
∑
i ai|ψi〉〈ψi|, with

∑
i ai = 0. By associating each Cartan

subalgebra Hi with a mutually unbiased basis Bi in this way, it is straightforward to

show that two Cartan subalgebras Hi and Hj are orthogonal with respect to the Killing

form.

To construct an orthonormal basis B from a Cartan subalgebra H, one takes the com-

mon eigenvectors of all the matrices in H as the elements of B. To show that two

bases Bi and Bj which correspond to two orthogonal Cartan subalgebras Hi and Hj

are mutually unbiased, one simply assumes the opposite, leading to a contradiction of

the orthogonality condition.

Since any Cartan subalgebra, closed under adjoint operation, has a basis of unitary ma-

trices that is orthogonal with respect to the Killing form, this construction of MU bases

is equivalent to a construction given in [6] which depends on collections of maximally

commuting classes of unitary error bases. A maximally commuting basis C of unitary

matrices, orthogonal with respect to the trace inner product, is a basis of complex d×d

matrices which can be partitioned into classes of d−1 commuting matrices Ci such that

C = I ∪ C1 ∪ . . . ∪ Cd+1, with I the identity matrix. If such a partition occurs, then a

complete set of MU bases can be constructed. Furthermore, a set of μ MU bases in

Cd is equivalent to a set of μ maximally commuting classes C1, . . . , Cμ, with each class

containing d commuting unitary matrices such that the elements in C1 ∪ . . . ∪ Cμ are

orthogonal [6].
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From Theorem 2.1.1 it is clear that a complete set of d+1 MU bases exists if and only

if one can find a set of pairwise orthogonal Cartan subalgebras H1, . . . ,Hd of the Lie

algebra L. Such a set forms an orthogonal decomposition of L and, as a vector space,

can be written as a direct sum

L = H1 ⊕ . . .⊕Hd. (2.2)

While it has been shown that orthogonal decompositions exist for L = sld(C) when d is

a prime-power, their existence in other dimensions in unknown. It is conjectured that

orthogonal decompositions of this kind exists only in prime-power cases.

A consequence of the equivalence of MU bases to orthogonal Cartan subalgebras of

sld(C) is the following result given in [15].

Theorem 2.1.2. In dimension six no more than three MU bases exist that are mono-

mial.

A set of MU bases is monomial if the set of maximally commuting matrices, which yield

the MU bases from their eigenvectors, contains only monomial matrices, i.e. matrices

that have only one non-zero element in each row and column. Theorem 2.1.2 follows

directly from a result proved in [55] which shows that no more than three monomial,

pairwise orthogonal, Cartan subalgebras of the Lie algebra sl6(C) exist. This restriction

seems quite severe in light of a result in [33] that every known construction of complete

sets of MU bases, including those given in [6, 97], is monomial.

2.2 Complex Hadamard matrices

A complex Hadamard matrix of order d is a generalisation of a real Hadamard matrix

which is a square, unitary matrix, with entries consisting of ±1/
√
d. The generalisation

allows one to drop the restriction of real entries to those with modulus 1/
√
d. Our focus

on complex Hadamard matrices is motivated by their close correspondence to mutually

unbiased bases; any pair of MU bases in a finite dimensional Hilbert space Cd can be
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represented by a complex Hadamard matrix H of order d. To see this, we can write a

pair of MU bases as a pair of unitary matrices B1 and B2 where the columns within

each matrix represent orthonormal states. By performing a unitary transformation on

both matrices such that one is mapped to the identity matrix, the second becomes a

Hadamard matrix H. Since the columns of H are mutually unbiased to the columns

of the identity matrix, their elements have equal modulus, i.e. |hij | = 1/
√
d. Thus,

by searching for Hadamard matrices of a particular order, one is also searching for

pairs of complementary bases. A complete classification of Hadamard matrices (pairs

of complementary bases) is given for d ≤ 5 [35] and while these matrices exist in

all dimensions, complete classifications are still unknown. We will discuss this open

problem for d = 6 later in this section.

In the classification of Hadamard matrices, the ordering of the columns and their over-

all phase factors are not important. Therefore, we can multiply a Hadamard H from

the left by a permutation matrix P1 and a unitary diagonal matrix D1 and the re-

sulting matrix HD1P1 is regarded as equivalent to H. Similarly, equivalence is also

maintained if we multiply H from the left with permutation and diagonal matrices.

Thus, two Hadamard matrices H and K are equivalent, i.e. H ∼ K, if they satisfy

H = P1D1KD2P2. As a consequence, a Hadamard matrix is usually expressed in its

dephased form with the first row and column having elements hi1 = h1j = 1/
√
d.

It can be difficult to deduce whether two matrices are (in)equivalent but a useful test

given in [35] can often show that two matrices are inequivalent. This approach involves

constructing the Haagerup set Λ(H) of the complex Hadamard matrix H,

Λ(H) = {hijhklh
∗
ilh
∗
kj : i, j, k, l = 1, . . . , d}, (2.3)

where h∗ij denotes the complex conjugation of hij . The Haagerup set is invariant under

equivalence transformations so if two matrices H and K have different Haagerup sets,

they are inequivalent.

It is usually the case that a Hadamard matrix is contained in a set of Hadamard matrices

where the elements depend on continuous parameters. An affine family of Hadamard
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matrices is a set H(R) stemming from a Hadamard matrix H of order d, where

H(R) = {H ◦ EXP(i ∙R) : R ∈ R}, (2.4)

and R is a subspace of all real matrices of order d with zeros in the first row and

column. The notation ◦ is the entrywise product of matrices (the Hadamard product),

and EXP(.) is the entrywise exponential function acting on a matrix. A family which

does not fall into an affine set is called non-affine.

An upper bound on the number of free parameters for the set of matrices stemming

from H is given by the defect of H, d(H). This bound was derived in [88] and is useful

when a matrix is isolated : a Hadamard matrix H is isolated if its defect is zero. In

other words, all Hadamard matrices within a neighbourhood of H are equivalent. We

can calculate the defect by introducing phases into the core of the matrix, where the

core consist of all elements hij 6= h1,j , hi,1, and solving the unitary condition up to

first order from the Taylor series (see [10] for an example). The defect corresponds to

the number of free parameters remaining. In most cases when d is large, a computer

program is necessary for the calculation.

An alternative method to determine if a matrix is isolated is the span condition pre-

sented in [66]: if H is a Hadamard matrix and the dimension of the vector space

span{uv−vu : u ∈ D, v ∈ H∗DH} is (d−1)2, then H is isolated. Here, D is the algebra

of diagonal matrices and H∗ denotes the complex conjugate of H. It is presently un-

known if isolation is equivalent to the span condition, i.e. can a matrix have non-zero

defect and not be part of any family?

While the defect provides an upper bound on the dimensionality of the Hadamard

family, it is not true that this bound is always reached. The definition is based on first

order calculations of the unitary condition and investigating higher order terms can

lead to a more precise upper bound [8]. As an example, the Fourier matrix Fd, with

fij = ω
ij/
√
d and ω = e2πi/d, has a defect given by

d(Fd) =

d−1∑

n=1

(gcd(n, d)− 1). (2.5)
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This is a strict upper bound when d is a prime-power, but the dimension of the largest

smooth family stemming from Fd is strictly less than the defect for 6 < d ≤ 100 when

d is not a prime or prime-power [8]. The d = 6 case turns out to be special: the defect

of F6 is four and evidence suggests the existence of a four-parameter family containing

F6 [8, 82]. Furthermore, it seems that the bound on the dimension of a smooth family

stemming from the Fourier matrix depends on the prime decomposition of d. It has so

far not been possible to find an exact bound for arbitrary d but it has been conjectured

that if d = p1p
2
2 there is a non-linear family of Hadamard matrices stemming from Fd

which has 3p1p
2
2−3p1p2−2p

2
2+p2+1 free parameters [8]. Since we know that Hadamard

matrices correspond to pairs of complementary bases, this result suggests the geometry

of the quantum state space depends heavily on the number theoretic properties of the

dimension.

2.2.1 The classification problem for d = 6

Considerable effort has been devoted to the problem of classifying complex Hadamard

matrices of order six. Its recent prominence has been motivated primarily by the search

for a complete set of MU bases in dimension six; a successful classification would narrow

down the state space where these bases exist to a size in which a computational search

is possible. While the classification remains incomplete, we will summarise the progress

that has been made so far.

For every non-prime dimension there exists an affine Fourier family of Hadamard ma-

trices and its transpose family. In dimension six, these are the two-parameter families

denoted by F
(2)
6 and (F

(2)
6 )

T , respectively. The discovery of other complex Hadamard

matrices has been quite staggered, with individual examples found and later extended

or connected by one- and two-parameter families. In most cases, the methods of con-

struction focus on restricting the search to various special cases, e.g. self-adjoint or sym-

metric matrices. For example, the classification of all self-adjoint complex Hadamard

matrices of order six yields a non-affine one-parameter family found in [9], and a non-

affine one-parameter family of symmetric matrices was derived in [63]. More general
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two-parameter families, which contain the one-parameter families as a subset, were

later discovered in [47,85].

Further progress was made towards a classification by the discovery of an elegant three-

parameter family K
(3)
6 , derived in [49], that encompasses all previously known one-

and two-parameter families. The three-parameter family was found by investigating

matrices that are H2-reducible; a property whereby all (2 × 2) submatrices of a (6 ×

6) matrix are Hadamard [48]. Surprisingly, every Hadamard matrix of order six is

equivalent to a matrix where all or none of the nine 2× 2 submatrices are Hadamard.

It is simple to check the H2-reducibility property since a matrix of order six is H2-

reducible if and only if its dephased form contains an element equal to (−1). Note that

for convenience we also refer to matrices as Hadamard if their elements have modulus

1 rather than 1/
√
d.

To construct K
(3)
6 , one starts with a general dephased block matrix H6 of nine (2× 2)

submatrices. By requiring that H6 is H2-reducible and using the unitary and uni-

modularity constraints on its elements, a complete classification of all H2-reducible

Hadamard matrices is covered by the three-parameter set

K
(3)
6 =








F2 Z1 Z2

Z3
1
2Z3AZ1

1
2Z3BZ2

Z4
1
2Z4BZ1

1
2Z4AZ2







, (2.6)

as described in [49]. The (2× 2) matrix

A =




A11 A12

A12 −A11



 (2.7)

has elements

A11 =
1

2
+ i

√
3

2
(cos θ + e−iφ sin θ), (2.8)

A12 = −
1

2
+ i

√
3

2
(− cos θ + eiφ sin θ), (2.9)

with θ, φ ∈ [0, π) and B = −F2 − A. The submatrices Zi =




1 1

zi −zi



 for i = 1, 2
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and Zi =




1 zi

1 −zi



 for i = 3, 4 contain parameters zi satisfying |zi| = 1 which are

related via the Möbius transformations z23 =MA(z
2
1), z

2
3 =MB(z

2
2), z

2
4 =MA(z

2
2) and

z24 =MB(z
2
1), where M(z) =

αz−β
β̄z−ᾱ

, αA = A212, βA = A211, αB = B212 and βB = B211.

By choosing z1 = eiλ, say, the remaining three parameters zi are constrained by the

Möbius transformations and the resulting three-parameter family is K6(θ, φ, λ).

The parameterisation inK
(3)
6 is somewhat different to those used in the smaller one- and

two-parameter families, so connections between K
(3)
6 and its subfamilies are difficult

to see. However, at the limit θ = 0, the Fourier family F
(2)
6 is recovered by taking z1

and φ as the free parameters. Similarly (F
(2)
6 )

T is recovered if z3 and φ are the free

parameters.

Although the three-parameter family goes some way towards completing the classifica-

tion, numerical evidence in [82] suggests the existence of a four-parameter family. By

performing infinitesimal shifts of phases in the Fourier matrix, the unitary condition of

the Hadamard matrix is preserved while moving away along four directions. This was

confirmed in [87] where a construction was given for a four-parameter set G
(4)
6 . The

matrix elements of G
(4)
6 are given by algebraic functions of roots of sextic polynomials,

however it has not been possible to express these functions in terms of closed expres-

sions. The construction is non-trivial and quite complicated so we refer the reader

to [87] for all the details. The matrix takes the form

G6(a, b, c, d) =

















1 1 1 1 1 1

1 a b e s1 s2

1 c d f s3 s4

1 g h ∗ ∗ ∗

1 t1 t3 ∗ ∗ ∗

1 t2 t4 ∗ ∗ ∗

















≡




E B

C D



 , (2.10)

where E,B,C and D are (3 × 3) submatrices. The elements of B and C are found

from the orthogonality conditions of the first three rows and columns of G
(4)
6 as well as

other results involving Haagerup’s trick [35], but the solutions are by no means trivial.
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Once this is complete, the elements of D can be determined since D = −CE†(B−1)†,

where † denotes the conjugate transpose. Once the elements e, f, g, h, si and ti – all

dependent on a, b, c and d – have been calculated, it is then decided algorithmically if

the submatrix E can be embedded in the Hadamard matrix G
(4)
6 . The detailed steps of

the construction are spelled out in [87] and a Mathematica script which finds random

examples based on this construction is provided in [21].

Whilst we have so far only considered matrices that are contained in continuous families,

isolated examples may also occur. This is indeed true in dimension six where one

isolated matrix, the symmetric Hadamard matrix S6, is known. It has been found

independently in various derivations but it is unknown if other such isolated examples

exist. Its first construction was given by Butson in [24] where he provides a technique to

construct matrices of order 2p which contain only p-th roots of unity, when p is prime.

For p = 3, the construction leads to a matrix consisting of third roots of unity only,

namely S6. Other derivations have been found using numerical searches [89], symmetric

conditions [63], or MU product bases (see Chapter 4).

It has been conjectured in [87] that every complex Hadamard matrix of order six is

equivalent to a member of either G
(4)
6 , K

(3)
6 or S6. The relationship between G

(4)
6 and

K
(3)
6 is not fully understood; one expects that K

(3)
6 is a subset of G

(4)
6 but it is not even

known if the Fourier family is contained in G
(4)
6 . If one is equipped with a proof of

this conjecture, it may indeed be possible to decide how many MU bases the space C6

can accommodate. This would follow in analogy to a proof by an exhaustive computer

search in [45] which excludes the Fourier family F
(2)
6 (and its transpose) from appearing

in a hypothetical set of seven MU bases.

2.3 Affine planes and Latin squares

Another object in mathematics with striking similarities to sets of MU bases is an affine

plane. These particular geometric structures consist of points and lines which satisfy

the following three axioms: any two points have exactly one line in common; for any

line and additional point there is a unique line through this point and disjoint (parallel)
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from the given line; and finally, there exists at least three noncollinear points. This

being the case, an affine plane of order d contains d2 points and d(d + 1) lines, with

each line containing d points. The lines of an affine plane can be partitioned into d+1

sets, called striations, each containing d parallel lines. Any pair of non-parallel lines

intersect at only one point.

It is known that affine planes of order d exists if d is a prime or prime-power, however,

for certain composite dimensions, e.g. d = 6, affine planes do not exist. In fact, the

Bruck-Ryser theorem states that no affine plane of order d exists if d − 1 or d − 2 is

divisible by four and d is not the sum of two squares [20]. Numerical computations

have also ruled out their existence for d = 10 [56].

These results bear a striking resemblance to the MU problem, and the following conjec-

ture has been made in light of these similarities [78]: The non-existence of a projective

plane of the given order d implies that there are less than d+ 1 MU bases in the corre-

sponding Hilbert space Cd, and vice versa. A projective plane is used here instead of an

affine plane, but the two objects are essentially the same. One can construct an affine

plane from a projective plane by removing a single line and all its containing points.

While no rigorous association between affine planes and MU bases is known, it has been

suggested in [96] to treat the lines as projection operators Pi, projecting onto orthogonal

quantum states. A set of d parallel lines then corresponds to a basis of d orthogonal

projection operators satisfying
∑
i Pi = 1, and two non-parallel lines with associated

projection operators Pi and Qj satisfy tr(PiQj) = 1/d. Thus, the d+1 striations of an

affine plane correspond to a set of d+ 1 MU bases. An obvious question subsequently

arises about the role of the d2 points in such a correspondence. In [96], a point α is

chosen to represent a Hermitian operator Aα/d such that: (i) tr(Aα/d) = 1/d; (ii)

tr(Aα/d)(Aβ/d) = δαβ/d; and (iii)
∑
α(Aα/d) = Pi. Unfortunately, in this scheme the

existence of d+1 striations does not imply the existence of a complete set of MU bases

since there is no known construction of the operators Aα.

Interestingly, affine planes are also analogous, in some sense, to SIC-POVMs. By

switching the roles of points and lines in the geometry, i.e. an object with d2 lines and
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d(d+ 1) points, a SIC-POVM mirrors the geometric structure of an affine plane [96].

An affine plane can also be represented by a set of orthogonal Latin squares. A Latin

square of order d is an array of d×d integers {0, . . . , d−1} such that each number appears

exactly once in each row and column. Two Latin squares L and L′ are orthogonal if

all ordered pairs of elements (Lij , L
′
ij) are distinct. For every prime and prime-power

d, there exists a complete set of d − 1 mutually orthogonal Latin squares (MOLS), as

follows from the existence of affine planes.

A set of ` mutually orthogonal Latin squares can be extended to an augmented set of

MOLS which include two additional (non-Latin) squares A and B such that Aij = i

and Bij = j. An example of an augmented set of MOLS in d = 3 is given by

0 1 2

0 1 2

0 1 2

0 0 0

1 1 1

2 2 2

0 1 2

2 0 1

1 2 0

0 1 2

1 2 0

2 0 1

(2.11)

where the last two squares are Latin and all four are mutually orthogonal. Each square

from an augmented set of MOLS corresponds to a striation of an affine plane, with the

points on a line relabelled by distinct integers.

An augmented set of orthogonal Latin squares of size `+2 is equivalent to a combinato-

rial design known as a net which consists of `+2 rows. The algorithm which translates

an augmented set of ` + 2 MOLS to a net design is given in [68]. The corresponding

net design can be written as a table whereby each row containing d2 integers separates

into d cells of size d. The numbers contained in one cell of a given row are distributed

evenly among all cells of any other row. The correspondence between MU bases and net

designs results from linking the cell elements to the exponents of the Heisenberg-Weyl

cyclic shift (modulo d) and phase operators X and Z, respectively, defined as

X|j〉 = |j + 1〉 and Z|j〉 = ωj |j〉, (2.12)

where ω = e2πi/d is a d-th root of unity and {|j〉} is the standard basis with j =

0 . . . d − 1. If d is prime, one can construct a complete set of (d + 1) MU bases from

the eigenbases of the operators Z and X(Z)k for 0 ≤ k ≤ d− 1 [6].
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One useful consequence of the link between these two problems was a new construction

of MU bases in certain square dimensions found in [95]. When the dimension of the

Hilbert space is neither prime nor prime-power and its prime factorisation is given by

d = pn11 . . . pnrr , one can always find at least mini(p
ni
i + 1) MU bases in C

d by taking

the tensor products of MU bases from the space corresponding to each prime-power

factor [51]. However, if the dimension is square, i.e. d = s2, and the augmented set of

MOLS of order s is greater than mini(p
ni
i + 1), one can find more MU bases than the

lower bound. The first example occurs when d = 262, where the number of MOLS is

at least four and so one can construct six MU bases, one more than the minimum five

bases.

In dimension six no two MOLS exist and the best one can do, based on the construction

given in [68], is to find three MU bases from the augmented set of three MOLS. As we

have already seen with the existence of affine planes, if the two problems are equivalent,

then this is sufficient to prove the inexistence of a complete set in dimension six.

Some caution should be taken with the proposed equivalence of affine planes and MU

bases since unexpected differences appear between these structures [91]. The differences

arise when one considers mutually unbiased constellations : a set of vectors for which

pairs can be either orthogonal or mutually unbiased. For example, a set of two bases and

four orthonormal states of the space C6 is a MU constellation when all non-orthogonal

vectors in the constellation are mutually unbiased.

As we shall discuss later, a numerical search presented in [16] is unable to find a

MU constellation consisting of three MU bases together with four orthogonal states.

However, the largest affine constellation to exist contains three striations, each with

six lines, and an additional set of four parallel lines. An affine constellation consists

of sets of points and lines such that any two lines within a set do not intersect, and

any pair of lines from different sets have one point in common. Thus, if an affine

constellation does not exist, then neither will an affine plane. If there is some deep

underlying connection between affine planes and MU bases, for example with parallel

lines corresponding to orthonormal bases and intersecting ones to MU states [96], one
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would expect the structure of affine and MU constellations to be similar, which seems

not to be the case.

2.4 Analytically searching for MU bases

We have so far covered several analytic results regarding MU bases in composite di-

mensions. These include: (i) the equivalence of complete sets of MU bases with or-

thogonal decompositions of simple Lie algebras sld(C); (ii) the non-existence of four

monomial MU bases in dimension six, i.e. Theorem 2.1.2; (iii) the construction of a

three-parameter family of H2-reducible complex Hadamard matrices K
(3)
6 ; and (iv) a

construction of MU bases in square dimensions, d = s2, based on Latin squares, which

for some values of s yields more MU bases than expected. We now summarise several

other known analytic results on mutually unbiased bases valid for non-prime-power

dimensions.

2.4.1 Nice error bases

The construction of MU bases is equivalent to the partitioning of a maximally com-

muting basis (unitary error basis) of unitary matrices in the Hilbert space Cd×d into

subsets of maximally commuting matrices. This was briefly discussed in Sec. 2.1. By

considering a specific type of unitary error basis, namely a nice error basis, there is a

limit on the number of MU bases one can constructed [5]. A nice error basis is defined

as follows [15]:

Definition 2.4.1. Let G be a group of order d2 with identity element e. A set N =

{Ug : g ∈ G} ⊂ Cd×d of unitary matrices is a nice error basis if

1. Ue is the identity matrix,

2. tr(Ug) = 0 for all g ∈ G \ {e},

3. UgUh = ω(g, h)Ugh for all g, h ∈ G,
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where ω(g, h) ∈ C has modulus one.

As a simple example, consider d = pk, for prime p, and take the index group as G =

Zkp ×Z
k
p where Zp = {0, . . . , p− 1} such that (x, z) = (x1, . . . , xk, z1, . . . , zk) ∈ Z

k
p ×Z

k
p.

A nice error basis N can be constructed from the Heisenberg-Weyl operators X and Z,

defined in Eq. (2.12), such that

N = {U (x,z) : (x, z) ∈ Zkd × Z
k
d}, (2.13)

with

U (x,z) = Xx1Zz1 ⊗ . . .⊗XxkZzk . (2.14)

We now summarise the main result in [5] which places a limit on the number of MU

bases one can construct from a nice error basis.

Theorem 2.4.2. Let N be a nice error basis of Cd×d then the maximum number

of mutually unbiased bases that can be obtained by partitioning a subset of N into

maximally commuting classes is at most mini(p
ni
i + 1) where d = pn11 . . . pnrr . This

bound is achieved iff d is a prime or prime-power, and in this case the unitary error

basis is equivalent to the basis given in Eq. (2.13).

An obvious consequence is that only three nice MU bases can be constructed from

a nice error basis in dimension six. However, this does not rule out the existence

of additional bases which may be mutually unbiased to three nice MU bases. For

d = pk, the nice error basis given in Eq. (2.13) can be partitioned into d+1 maximally

commuting classes, thus, a complete set of d + 1 MU bases is derived. Notice that

by restricting ourselves to unitary error bases which form a complete collection of

maximally commuting classes and MU bases, the niceness of the unitary error basis

implies monomiality via Theorem 2.4.2. In general, however, without the requirement

of a complete partitioning of the error basis, niceness and monomiality do not imply

each other [53].

One important observation pointed out in [15] is that an “incomplete” set of MU bases

constructed from Latin squares [68] is not contained in a nice error basis. However,
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the bases found in [68] are monomial, and every known complete set of MU bases is

monomial and obtained by partitioning nice error bases [33].

2.4.2 Entanglement in MU bases

The role of entanglement in sets of MU bases has been studied in [93]. In particular,

the entanglement content of complete sets of MU bases is investigated for a bipartite

quantum system of dimension d = dAdB, where dA and dB are prime, and dA ≤ dB. It

is found that any complete set must contain a fixed amount of entanglement E given

by

E = dAdB(dA + dB). (2.15)

The measure of entanglement used here is a function of the linear entropy of a reduced

density operator ρA = trB(ρ) given by the purity tr(ρ
2
A). The purity obtains its mini-

mum value of 1/dA when the state is maximally entangled, and its maximum of unity

when the state is separable. A proof of the fixed entanglement content makes use of

complex projective 2-designs ; a complete set of MU bases is an example of a complex

projective 2-design [52]. We shall discuss this concept more thoroughly in Sec. 2.6.

As a consequence of Eq. (2.15), complete sets must include both entangled and prod-

uct states. In other words, the fixed entanglement content makes it impossible for a

complete set to contain only entangled states or product states. However, the distri-

bution of entanglement within a complete set is arbitrary. For example, suppose that

for a bipartite quantum system of dimension d = dAdB with dA < dB, we have a set of

dA+1 MU product bases, then the remaining bases of a (hypothetical) complete set of

dAdB + 1 bases must contain only entangled states.

In dimension six, where dA = 2 and dB = 3, the entanglement content of any complete

set is E = 30. A set of three MU product bases can be constructed from the tensor

product of three MU bases of the space C2 with three MU bases of the space C3 (see

Eq. (3.53)). However, due to the fixed entanglement content, the remaining four bases

must contain entangled states only.
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2.4.3 A Fourier analytic approach

We now summarise some results from [60] that make use of Fourier analytic arguments

in an attempt to simplify the existence problem. Suppose that G is a compact abelian

group and let A ⊂ G be a symmetric subset, called the “forbidden” set, containing

the identity element e ∈ A. The aim is to determine the cardinality of the set B =

{b1 . . . , bm} ⊂ G such that bj − bk ∈ Ac ∪ {e}, i.e. the differences bj − bk avoid the

forbidden set A. Here, Ac = G \ A denotes the complement of A.

The solution involves finding a witness function h : G → R satisfying the following

properties: (i) h is an even function, i.e. h(x) = h(−x), such that the Fourier inversion

formula holds for h; (ii) h(x) ≤ 0 for all x ∈ Ac; (iii) ĥ(γ) ≥ 0 for all γ ∈ Ĝ; and (iv)

ĥ(e) = 1. Here, ĥ and Ĝ denote the Fourier transforms of h and G, respectively. A

method, given by Delsarte, shows that for a given function h with the above properties,

the cardinality of B is bounded by |B| ≤ h(e).

To relate this problem to MU bases we can choose G to be the group of d× d unitary

matrices and A = Hc, where H ⊂ G is the set of complex Hadamard matrices which

have matrix elements of magnitude 1/
√
d. One can see that the maximum number of

MU bases in Cd is equivalent to the maximum cardinality of B = {U0, . . . , Um} ⊂ G,

where the differences associated with U †jUk lie in the subset A
c ∪ I. However, in this

setting, the group G is not abelian and so the method of Delsarte cannot be directly

applied.

To overcome this issue one chooses the group G = Td, where T is the complex unit

circle, such that each vector ~v = (0, α1, . . . , αd−1) ∈ G corresponds to a vector ~v′ =

(1, e2πiα1 , . . . , e2πiαd−1) in Cd. Thus, the columns of a set of Hadamard matrices

H1, . . . ,Hm become a set of md vectors denoted by ~vi ∈ Td. Let Od denote the

set of vectors (0, α1, . . . , αd−1) ∈ Td which correspond to vectors of Cd orthogonal

to (1, . . . , 1) ∈ Cd, and let UBd denote the set of vectors (0, α1, . . . , αd−1) ∈ Td cor-

responding to vectors of Cd MU to (1, . . . , 1) ∈ Cd. By taking the forbidden set as

Ad = (Od ∪ UBd)c we arrive at a scheme for which Delsarte’s method applies. As a

consequence, we have the following theorem [60]:
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Theorem 2.4.3. Let A be an orthonormal basis in Cd, and let B = {~c1, . . . ,~cr} consists

of unit vectors which are all unbiased to A. Assume for 1 ≤ j 6= k ≤ r that the vectors

~cj and ~ck are either orthogonal or unbiased to each other. Then r ≤ d2.

This result offers an alternative proof that a complete set of MU bases in the space Cd

contains at most d+ 1 bases. The proof of Theorem 2.4.3 involves the construction of

a witness function h which takes the form

h(0, x1, x2, . . . , xd−1) =
1

(d− 1)d

∣
∣
∣
∣
∣
∣
1 +

d−1∑

j=1

e2πixj

∣
∣
∣
∣
∣
∣

2

|1−
d−1∑

j=1

e2πixj |2 − d



 . (2.16)

The cardinality of B is bound by the witness function evaluated at h(0, . . . , 0) = d2.

Obviously, no better witness function can be constructed when d = pn. However, when

the dimension d is a composite number, it may still be possible to construct a witness

function with a lower bound for r. If so, this would prove that complete sets of MU

bases only exist in prime-power cases.

Additional work was carried out in [62] making further use of Fourier analysis on the

group G = Td. In this paper, progress has been made in proving some non-existence

results for sets of MU bases, i.e. MU bases that cannot be extended to a complete set.

While some of these results are already known, the novelty here is that the proofs do

not depend on computer-aided calculations.

To highlight these results it will first be necessary to introduce some further notation

in analogy to [62]. The dual group of G = Td is given by Ĝ = Zd, and the action of

a character γ = (n1, n2, . . . , nd) ∈ Zd on an element ~v = (v1, v2, . . . , vd) ∈ Td is given

by γ(~v) = ~vγ = vn11 v
n2
2 . . . vndd . For a set S ⊂ G the Fourier transform is given by

Ŝ =
∑
~s∈S ~s

γ . Thus, given a complete set of MU bases, labelled I,H1, . . . ,Hd, where

we consider Hj ⊂ G as a d element set {~cj1, . . . ,~cjd}, the Fourier transform of a MU

basis is

gj(γ) ≡ Ĥj(γ) =
d∑

k=1

~c
γ
jk for each γ ∈ Zd. (2.17)

Two important functions, F (γ) and G(γ), which prove useful in this framework are
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given by

G(γ) ≡
d∑

j=1

Gj(γ) for each γ ∈ Z
d, (2.18)

where Gj(γ) ≡ |gj(γ)|2 and

F (γ) ≡ |f(γ)|2, (2.19)

where f(γ) ≡
∑d
j=1 gj(γ) for each γ ∈ Z

d. The orthogonality and unbiasedness rela-

tions can then be expressed as linear constraints on the functions F and G. In other

words, the polynomial relations from the orthogonality and unbiasedness conditions are

transformed into linear relations using Fourier transforms, and one should expect that

these constraints are simpler to deal with.

The restrictions placed on F and G are enough to derive several known results on MU

bases in dimensions d ≤ 5. It is hoped that a contradiction can be reached from these

constraints in cases when complete sets cannot be constructed. The main new result

from this approach is the following theorem [62]:

Theorem 2.4.4. Let I,H1, . . . ,Hd be a complete system of MU bases, in matrix form,

and suppose that H1 is a real Hadamard matrix. Then there is no further purely real

column in any of the matrices H2, . . . ,Hd. In particular it is impossible to have two

real Hadamard matrices in a complete set of MU bases.

In addition, it is also shown that no complete set of MU bases in dimension six contains

the pair {I, F6}. While this result is already known in [34], and will be discussed in

the next section, the original proof uses a computer algebraic approach, whereas the

proof provided here relies only on Fourier analytic arguments. Furthermore, a stronger

result excluding the existence of a complete set containing the pair {I, F6(a, b)} can be

proven using similar arguments if the following conjecture is true [62].

Conjecture 2.4.5. Let H be any complex Hadamard matrix of order 6, not equivalent

to the isolated matrix S6 and let σ be any permutation of the vector (1, 1, 1,−1,−1,−1).

Then g1(σ) = 0 for the function defined in Eq. (2.17).

A proof of the non-existence of a complete set containing {I, F6(a, b)} is already known,

independent of the conjecture’s truth [45]. However, the proof relies on a large numerical
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search using rigorous error bounds which we discuss in more detail in the following

section.

It has been predicted that Conjecture 2.4.5 will prove vital in a proof of the non-

existence of a complete set in dimension six by offering an additional linear constraint

on the function G. By assuming the existence of a hypothetical complete set, a future

proof would involve using the linear constraints on F and G to find some structural in-

formation on the set of vectors, leading to a contradiction. For example, if in dimension

six, F (σ) = 64 for all permutations of σ = (6,−6, 0, 0, 0, 0), then one could conclude

that the vectors of a complete set in dimension six must consist of sixth roots of unity

only. It is easy to check that no such complete set exists. A similar constraint on F

exist for dimension four with fourth roots of unity. Unfortunately, the linear constraints

involving F and G do not seem to imply the relation F (σ) = 64, and so this particular

approach is fruitless.

2.5 Computational results

In this section we review some direct approaches towards solving the existence prob-

lem in dimensions six using computational searches. We separate these approaches

into numerical results which rely on approximations (numerical analysis) and exact

computational calculations which provide rigorous results.

2.5.1 Numerical analysis

The search for MU bases can be recast as an optimisation problem in which one tries to

minimise a function that attains a global minimum when a set of orthonormal bases are

mutually unbiased. A function of this type was derived in [10] as a measure of distance

between orthonormal bases that is maximised if and only if the bases are mutually

unbiased. This measure of distance is quite natural when we view the basis vectors of

the space Cd as density matrices in a real d2− 1 dimensional vector space. In this case,
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a d dimensional Hilbert space spans a (d− 1)-plane in a real vector space of dimension

d2 − 1, and two MU bases correspond to two orthogonal (d− 1)-planes.

A numerical search involving this minimisation problem was given in [25] for dimension

six, and the results suggest that no more than three of the possible seven MU bases

exist. The function one attempts to minimise depends on a set of m ≤ d orthonormal

bases of the space Cd, and is given by

fd,m(U1, . . . , Um) =
∑

0≤k<l≤m

d∑

r,s=1

(∣
∣
∣
(
U
†
kUl

)

rs

∣
∣
∣
2
−
1

d

)2
. (2.20)

The m orthonormal bases are represented by (d × d) unitary matrices U1, U2, . . . , Um,

so that the columns within each unitary matrix are orthonormal vectors; the unitary

U0 ≡ I is chosen as the identity matrix. The function achieves a global minimum

fd,m = 0 if and only if the m + 1 orthonormal bases are pairwise mutually unbiased,

i.e. |(U †kUl)rs|
2 = 1/d.

The numerical approach given in [25] searches over all sets of unitaries. Two separate

tests to find four and seven unitaries that minimise fd,m were conducted but both

failed. The minimum values achieved while searching for four and seven MU bases

were f6,3 = 0.051249 and f6,6 = 1.5844721, respectively.

Further analysis in [74] reveals a set of four bases that reach the minimum value of

f6,3 = 0.051249 obtained in [25]. In particular, a two-parameter family of orthonormal

bases is explicitly found which achieves this minimum for certain parameter values.

Of the four bases, three are equidistant and the remaining basis is mutually unbiased

to all three. Thus, the set can be written as the identity matrix together with three

complex Hadamard matrices. The two-parameter family containing all three Hadamard

matrices turns out to be the transposed Fourier family.

Additional numerical searches were explored in [16] focusing on mutually unbiased

constellations, which were briefly mentioned in Sec. 2.3. Again, this evidence supports

the conjecture that only three MU bases exist, and furthermore, that no vector exists

which is mutually unbiased to a set of three MU bases. A MU constellation is a set of

vectors, partitioned into sets of orthonormal states such that each set of orthonormal
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states is mutually unbiased to every other set in the constellation. A MU constellation

is denoted by {x1, . . . , xn}d, where xi is the number of vectors in a set of orthonormal

states, and d is the dimension of the vector space. As an example, the constellation

{6, 6, 4}6 contains two sets of six orthogonal states, i.e. two MU bases, and a set of four

orthogonal states MU to the two bases. We can abbreviate this notation to {62, 4}6

where 62 denotes the two sets of six orthonormal states. In addition, since d − 1

orthonormal states determine an orthonormal basis of the space Cd, one can rewrite

{62, 4}6 as the MU constellation {52, 4}6.

The numerical searches for MU constellations given in [16] use the same minimising

technique as [25]. The idea is to rule out the existence of a MU constellation; this, in

turn, will imply the inexistence of any set of MU bases for which the MU constellation is

a subset. From searches of this type, the largest MU constellations found were {5, 42, 1}6

and {52, 3, 1}6, both containing 15 MU states. The smallest MU constellations which

the search failed to find were {5, 33}6 and {5, 4, 3, 2}6 with each containing 14 states.

The MU constellation {53, 1}6 containing 16 states was not found, implying the non-

existence of a set of three MU bases together with an additional MU state.

Further numerical searches for MU bases were investigated in [10] where a restriction

is placed on the vectors such that their components contain only n-th roots of unity.

All known complete sets of MU bases satisfy this condition, with their components

consisting of either d or 2d roots of unity depending on whether the dimension of the

Hilbert space d is odd or even, respectively. Thus, in dimension d = 6, if a complete

set exists, one may reasonably expect its vectors consist of twelfth roots of unity only.

The search over all known complex Hadamard matrices containing only twelfth roots of

unity finds at most triples of MU bases. The matrix F6(0, 0) together with the standard

basis has only four possible MU candidate bases. Similarly, F6(1/6, 0) and F
T
6 (1/6, 0)

have only one additional candidate basis each. Supplementary searches for 24th, 48th,

60th and 72th roots were carried out, but apart from a further four candidate MU bases

for the Diţă-matrix D6(1/8) [28], no additional bases were found.

Thus, numerical evidence points overwhelmingly towards the non-existence of a com-
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plete set of mutually unbiased bases in dimension six. Even the existence of a single

vector mutually unbiased to any triple of MU bases is unlikely. If they do exist then it

appears they are very well hidden.

2.5.2 Exact results

One of the first results showing that certain sets of MU bases cannot be extended by

additional MU bases was given in [34]. Specifically, it is shown that the two MU bases

corresponding to the identity and Fourier matrices, I and F6(0, 0) ≡ F6, or equivalently

the eigenstates of the Heisenberg-Weyl operators Z and X, do not extend to a complete

set of MU bases. In fact, there exist only 48 vectors mutually unbiased to this pair.

One can arrange these vectors into 16 different orthonormal bases Bi to produce 16 MU

triples {I, F6, Bi}, but there is no vector mutually unbiased to these.

The proof follows by solving a set of polynomial equations. One can express a possible

candidate vector of C6 in the form

|ψ〉 =
1
√
6
(1, x1 + ix6, x2 + ix7, x3 + ix8, x4 + ix9, x5 + ix10)

T , (2.21)

where the variables xi are real and x
2
i + x

2
i+5 = 1. By requiring that |ψ〉 is MU to

the columns of F6, and using the computer algebra system MAGMA, one finds 48 real

solutions for the set of variables. The 48 vectors are listed explicitly in the updated

preprent of [34].

Further analysis of the structure of these 48 vectors, and the corresponding 16 orthonor-

mal bases, has been carried out in [10]. Of the 16 orthonormal bases, two are Fourier

matrices enphased with 12th roots of unity, two are equivalent to F T (1/6, 0), six are

Björck matrices [14] and six are Fourier matrices enphased with Björck’s number. One

interesting feature of any Hadamard matrix which is mutually unbiased to the pair

{I, F6} is that it must be circular, i.e. Cij = zi−j where |zi| = 1. This is also true in

any dimension d for the pair of MU bases {I, Fd}.

A generalisation of the computer-algebraic calculation given for the Heisenberg-Weyl

pair has been made in [17] and includes various other pairs of MU bases {I,H6}, where
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H6 is a complex Hadamard matrix. This method relies on the computer program

Maple to transform the set of polynomials, using Buchberger’s algorithm, to a simpler

set, the Gröbner basis, which is easier to solve. All vectors are found which are mutually

unbiased to the pair {I,H6}, and one subsequently investigates the possible extensions

of this pair.

For example, the number of vectors MU to the pairs {I,H6}, where H6 is the Diţă-

matrix D6(0), the circulant matric C6 [14] and the isolated matrix S6 is 120, 56 and

90, respectively. While ten triples exist containing the pair {I,D6(0)}, none of these

extend to four MU bases. Similarly, no four MU bases exist containing {I, C6} and no

orthonormal basis can be constructed from the 90 vectors MU to {I, S6}.

The same calculation is also carried out at regular intervals over the one-parameter Diţă

family D6(x) and the two-parameter Fourier family F6(a, b). For the pair {I,D6(x)},

the number of MU vectors appears to be piecewise constant, dropping from 120 to 72

and then to 48 at the end points. In the Fourier family F6(a, b), there exist 48 MU

vectors at each of the tested parameter values. In both cases, no set of four MU bases

can be constructed.

While these results represent rigorous limits on the number of vectors MU to the pair

{I,H6}, it is not possible to achieve such rigour when the complex Hadamard matrix

H6 is non-affine. For the symmetric, Hermitian and Szöllősi non-affine families, the

available computational memory was insufficient to find the relevant Gröbner basis, thus

certain approximations were necessary. While it is unlikely that the approximations

fail to identify all of the MU vectors, the result that there exist no four MU bases

containing these families is no longer exact.

A subsequent result, presented in [45], has made further progress towards confirming

the inexistence of complete sets in dimension six by proving the following.

Theorem 2.5.1. The family of MU bases {I, F6(a, b)} cannot be extended to a quartet

of MU bases.

Previously, this result was only known for a finite subset of the two-parameter family

F6(a, b), as discussed above. The proof of Theorem 2.5.1 relies on a discretisation
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scheme and a computational search similar to [16], but the result here is rigorous

by establishing proper estimates of the error terms. The search for candidate MU

vectors involves finding approximate MU vectors by estimating the phases of the vector

components using N -th roots of unity. Each vector component is evaluated at regular

intervals of 2πj/N , with j = 1, . . . , N , and a computer-aided search calculates Nν

states, where ν denotes the number of free variables (phases) for the candidate MU

vectors. By choosing a sufficiently large positive integer N , rigorous bounds of the

errors, given by the inner products of the approximated states, can be established.

If the errors from these approximated states are too large, no such MU vectors exist.

Importantly, this method can be generalised and could, theoretically, constitute a proof

of the inexistence of complete sets in dimension six, even without a classification of

(6× 6) complex Hadamard matrices [44].

The computational search over the parameter values (a, b) reveals the number of vectors

MU to the pair {I, F6(a, b)} to be 48, confirming the findings of [16]. In most cases these

48 vectors produce 8 orthonormal bases C1(a, b), . . . , C8(a, b). In exceptional cases one

can construct additional orthonormal bases, e.g. for (a, b) = (0, 0) and (a, b) = (1/6, 0),

there exist 16 and 70 orthonormal bases, respectively.

It is also shown in [45] that a one-parameter family of triples {I, F6(0, b(t)), C(t)} exists,

which is found in closed analytic form. This complements an infinite family of triples

found in [98] which is written explicitly in [45]. In addition, the numerical calculations

which find 48 vectors MU to {I, F6(a, b)} point to the existence of a two-parameter

family of MU triples, but this has not been proven rigorously.

Another possible computational approach to rule out, rigorously, the existence of certain

MU bases is semi-definite programming [18]. This technique involves an optimisation

problem for the set of polynomials pi(~x) that provides the constraints for the MU basis

vectors; the real variables ~x = (x1, . . . , xn) parameterise the possible candidate vectors.

The general idea is to minimise one polynomial, pk(~x), subject to the condition pi(~x) = 0

for all i 6= k. If a positive global bound is found for this minimisation, no solution and

therefore no set of MU bases exists. This method confirms the non-existence of a
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MU triple containing the pair {I, S6}, where S6 is the isolated Hadamard matrix, but

it is unsuccessful for the constellation {53, 1} due to the increase in computational

complexity [18].

2.6 Applications of MU bases

We now summarise some of the popular applications of MU bases in the field of quantum

information. These include quantum state tomography, quantum key distribution and

the King’s problem. While we find that MU bases are an important ingredient for

these applications, it is not vital that complete sets of MU bases exist. However, this in

no way diminishes the interesting mathematical and physical questions that arise from

their probable inexistence.

2.6.1 State tomography

One of the most striking applications of MU bases is revealed in the problem of quantum

state determination (quantum tomography). In fact, complete sets of MU bases for

prime and prime-power dimensions were first discovered in a solution to the problem of

optimal quantum state determination. MU measurements play a key role in optimising

the information gain, or minimising the statistical error, for estimating a given quantum

state [43,97].

In the process of state estimation it is first assumed that we have a large but finite

ensemble of identical d-state systems. The aim is to determine the density matrix

ρ ∈ S(H) of the system, where S(H) is the set of positive trace class operators of trace

one. The ensemble is divided into d+ 1 subensembles, each of equal size, and on each

subensemble we perform a different measurement. From the outcome probabilities of

these measurements we can reconstruct the pre-measurement state ρ.

The measurements we choose, as long as they are informationally complete, will give

an estimate of the state ρ with some degree of statistical error. By choosing d + 1

measurements which are pairwise complementary, the statistical error is minimised [97].
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In this case, the r-th measurement is given by a set of orthogonal projection operators

{P (r)i }, i = 1, . . . , d, which project the measured state onto the eigenvectors of an

orthonormal basis, mutually unbiased to the remaining d measurements.

For the simplest case, d = 2, the density matrix to find is ρ = 1
2(I + ~r.~σ), with I

the identity matrix and |~r| ≤ 1. The complementary spin observables σx, σy and σz

are then measured on separate subensembles, with each spin direction producing one

component of ~r, and the state is unambiguously determined. Since every measurement

has some degree of statistical inaccuracy, each measurement confines ~r to a plane which

is a “fuzzy” estimate of the exact plane. The intersection of the three “fuzzy” planes

represents the inaccuracy in the measurement of ~r. The error is minimised if the planes

are mutually perpendicular, i.e. the measurements are mutually unbiased, as one would

intuitively expect.

If a complete set of d + 1 MU measurements do not exist, all subspaces cannot be

pairwise orthogonal and the problem of state optimisation becomes somewhat more

complicated. Without knowledge of a complete set, or even if no such set exist, can we

still find an optimal reconstruction procedure for the state in question? Fortunately, a

successful alternative to the MU approach to state reconstruction has been found for

arbitrary dimensions. Thus, it appears that the existence of complete sets in arbitrary

dimensions – while an important ingredient – is not fundamental for optimal quantum

tomography.

In the generalisation to arbitrary d-level systems, weighted complex projective 2-designs

now play the important role in optimising the state reconstruction [76]. These particular

2-designs are generalisations of complete sets of MU bases; in fact a complete set of d+1

MU bases is an example of a complex projective 2-design [52]. It has been shown that

the set of bases which constitute a weighted 2-design form the orthogonal measurements

necessary for optimal quantum tomography [76].

To define a 2-design let f(x) be a homogenous polynomial of degree 2 on Cd evaluated

over its coordinates and their complex conjugates (with respect to some fixed basis), i.e.

f(x) = f(x1, . . . xd, x
∗
1, . . . , x

∗
d), and denote the set of these polynomials by Hom(2, 2).
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Then a weighted complex projective 2-design is a set of normalised vectors D in Cd,

with a normalised weight function w : D → [0, 1], such that for all f ∈ Hom(2, 2) the

relation
∑

x∈D

w(x)f(x) =

∫

CP d−1
f(x)dx (2.22)

holds. Here, dx denotes the Haar measure on the complex projective space CP d−1.

Explicit examples of weighted 2-designs are constructed in [76] for d+1 a prime-power

where a set of d + 2 orthonormal bases is found. This covers dimension six, in which

eight orthonormal bases form a weighted 2-design. Here, starting with the standard

basis {|e0〉, . . . , |e5〉}, the remaining seven orthonormal bases are given by

|eaj 〉 =
1
√
6

5∑

k=0

ωjke2πia3
k/7|ek〉, (2.23)

where a = 1, . . . , 7 and ω = e2πi/6. The overlap between elements of different bases,

given explicitly in [69], is

|〈eai |e
b
j〉|
2 =






6
7 if a 6= b, i 6= j ,

1
36 if a 6= b, i = j .

(2.24)

Surprisingly, by performing the measurements associated with the eight orthonormal

bases on the unknown quantum state – the standard basis is measured in the ratio

7 : 6 with respect to each of the remaining bases – optimal state reconstruction can

be achieved. In fact, the same statistical error is minimised as would be the case if a

complete set of seven MU bases existed.

In higher composite dimensions, when d + 1 is not prime, the minimum number of

orthonormal bases needed to construct a weighted 2-design for optimal state recon-

struction is not known explicitly, but an upper bound is given in [76]. This bound was

improved in [64] where weighted 2-designs are found to contain roughly 2(d+
√
d) bases

when d is odd and 3(d+
√
d) for d even.

Another approach to quantum state reconstruction of an arbitrary d-level system is to

recast the problem in terms of special types of informationally complete positive oper-

ator value measures (IC-POVM). These are called tight rank-one IC-POVMs [81] and
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are equivalent to complex projective 2-designs. Both SIC-POVMs and complete sets

of MU bases are examples of tight rank-one IC-POVMs. It is shown in [81] that tight

rank-one IC-POVMs are optimal for linear quantum state tomography. The state re-

construction is “linear” in the sense that it is limited to a simplified state reconstruction

procedure.

2.6.2 Quantum key distribution

The process of measurement in quantum systems in some way disturbs the state of the

system. This fundamental aspect of quantum mechanics has been the springboard to

applications in quantum cryptography. In particular, one can share a secret key, which

can be used to encrypt a message between two parties such that it is impossible for

some outside entity to gain information of the key without disturbing its content and

being detected.

The first example of quantum key distribution was discovered in [11] and it is often

referred to as the BB84 protocol. A secret key, usually some random assortment of

bits, e.g. 010110, is sent via a series of qubit states to a receiver. The states belong to

two orthonormal bases, Bz = {|0〉, |1〉} and Bx = {|+〉, |−〉}, corresponding to the spin

operators σz and σx, respectively. Within each basis, each state represents one of the

two bits 0 and 1. The sender chooses the basis randomly, and the appropriate state

corresponding to 0 or 1. The state is transmitted using a secure quantum channel to

the receiver, who then measures the state using either σz or σx, chosen randomly. If

the receiver chooses the correct measurement, which will occur in half of all cases, the

correct state can be determined accurately.

After the measurements are made, the basis and measurement choices are revealed

through some public communication channel. When the sender and receiver have made

different basis choices, the associated bits are removed from the key. To check security

they compare a subset of their key and if errors appear, a breach must have occurred.

If the error rate is below a certain bound, it is possible to delete the incorrect bits and

to reduce the knowledge gained by the eavesdropper.
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Other quantum key distribution protocols have since been developed and successful

implementation for various schemes has been achieved experimentally and commercially

[79]. The optimal or most robust protocol is one which can tolerate large disturbances

(errors) and still result in secure key distribution. This depends on the eavesdropper’s

strategy and so considerable effort is invested towards finding the optimal method of

attack for each protocol. The optimal eavesdropping strategy for the BB84 protocol

is known for individual attacks [26], and when unlimited resources are available to the

eavesdropper, the protocol is secure.

In the BB84 protocol, only two mutually unbiased bases are used. A variation of this is a

six-state protocol where an additional MU basis is considered. A further generalisation

was made in [26] to d-level systems using either two MU bases in Cd, or a complete set

of d + 1 MU bases, when they exist. If individual attacks are considered by means of

a quantum cloning machine, a slightly higher error rate is achieved with a set of d+ 1

MU bases compared to just two, however, practically it is the two basis protocol which

is preferred since a longer key can be produced.

2.6.3 The King’s problem

Another slightly less natural application of MU bases is their role in the solution to a

measurement problem involving a fictitious “mean” King. The problem evolved from

a scenario whereby an observer A prepares a spin-12 particle in a state of her choice

and then performs a control measurement on the system. Between the preparation and

measurement, a second observer B measures either σx, σy or σz on the particle state.

After the control measurement, observer A is told which spin component observer B

measured and is asked to determine the corresponding measurement outcome [90].

The generalisation of this problem is usually told by the following story: a King who

lives on a remote island sets a physicist a life or death challenge. He asks the physicist to

prepare an d-state quantum system of her choice and to perform a control measurement

on the system. Before her control measurement, she must hand the state over to the

King while he secretely performs a measurement. After her control measurement the
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King reveals his measurement and challenges her to determine the outcome. In this

generalisation, the choice of measurement made by the King is restricted to pairwise

complementary observables.

The generalised problem was first solved for a system with prime degrees of freedom

in [32] and then extended to include prime-powers [3]. Crucially, both solutions rely on

the existence of complete sets of MU bases. To solve this, the physicist prepares two

d-state systems in a maximally entangled state of the space Cd ⊗ Cd. The auxiliary

system is kept by the physicist while the King preforms one of d+1 mutually unbiased

measurements on the object system.

Under these assumptions, and by restricting the measurement made by the physicist to

a projection-valued measure (PVM), the King’s problem for an arbitrary d-state system

has a solution only if the maximum number of d− 1 mutually orthogonal (MO) Latin

squares exist [37]. If d is a prime or prime-power, this maximum is achieved and the

solutions agree with those given in [3,32]. However, in dimension d = 6 only three MO

Latin squares exist, implying that there is no solution to the problem for this degree of

freedom, regardless of whether a complete set of seven MU bases exist. Similarly, this

is true for d = 10 since no set of nine MO Latin squares exist.

By extending the type of measurement made by the physicist on the space Cd ⊗ Cd

to include POVM measurements, a full solution to the King’s problem has now been

found for arbitrary levels [50]. Thus, regardless of whether d − 1 MO Latin squares

or complete sets of MU bases exist, the physicist can always determine the King’s

measurement outcome.
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Chapter 3

All MU product bases in

dimension 6

In this chapter we carry out a comprehensive study of MU product bases in dimensions

six, complementing studies devoted to the entanglement structure of complete sets

of MU bases [58, 75, 93]. More specifically, we will derive an exhaustive list of MU

product bases in dimension six. The restriction to product states goes hand in hand

with local equivalence transformations, or LETs, consisting of local (anti-) unitary

transformations. We will find that in the space C2⊗C3, there is a considerable number

of inequivalent product bases, a limited set of families of MU product pairs and just

two triples of MU product bases. No larger MU product constellations exist. This

result effectively limits the number of MU product bases contained in a hypothetical

complete set of MU bases in dimension six.

The argument will unfold as follows. In Sec. 3.1 we introduce MU product bases, specify

all local (anti-) unitary transformations which map a given set of MU product states to

an equivalent one, and summarise relevant properties of MU bases in dimensions two

and three. Then, in Sec. 3.2, we derive all inequivalent product bases in C4 and C6.

Sec. 3.3 has two results on product vectors required to be MU to certain given sets of

MU product vectors. These results will be important tools to enumerate all pairs and

triples of MU bases in dimension four (Sec. 3.4) and dimension six (Sec. 3.5). This
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classification allows us to conclude, as shown in Sec. 3.6, that no MU product triple

can be part of a complete set of seven MU bases in d = 6. The final section summarises

our findings.

Readers mainly interested in the results relevant to dimension six are advised to im-

mediately proceed to Sec. 3.5 after having familiarised themselves with the concept of

mutually unbiased product bases presented in Sec. 3.1.

3.1 MU product bases

From now on, we will consider quantum systems consisting of two subsystems with

prime dimensions p and q, where p ≤ q. The state space of such a bipartite system is

given by the Hilbert space Cp ⊗ Cq of dimension d ≡ pq. Since p is a prime, there is a

complete set of (p+ 1) MU bases for Cp labelled by the states

|ja〉 ∈ Cp , j = 0 . . . p− 1, a = 0 . . . p , (3.1)

which satisfy the condition

|〈ja|kb〉|
2 =
1

p
(1− δab) + δjkδab, j, k = 0 . . . p− 1, a, b = 0 . . . p . (3.2)

The p states {|ja〉} form one orthonormal basis labelled by a and states taken from two

distinct bases are mutually unbiased. Similarly, there is a complete set of MU bases of

Cq, and we will denote its q(q + 1) states by

|Jb〉 ∈ Cq , J = 0 . . . q − 1, b = 0 . . . q . (3.3)

The q states {|Jb〉} form an orthonormal basis labelled by b and every pair of bases is

MU, in analogy to Eq (3.2). Given complete sets of MU bases in Cp and Cq, respectively,

we now construct (p + 1) MU product bases of the space Cp ⊗ Cq. To do so, we pair

each MU basis of the space Cp with a (different) basis of Cq and, within each pair,

we tensor each state of the first basis with a (different) state of the second one. This

procedure results in pq(p+ 1) product states

|ja〉 ⊗ |Ja〉 ≡ |ja, Ja〉 , (3.4)

48



forming (p + 1) MU bases {|ja, Ja〉, a = 0 . . . p} of the space Cp ⊗ Cq. This is evident

upon calculating the overlaps

|〈ja, Ja|kb,Kb〉|
2 = |〈ja|kb〉|

2 |〈Ja|Kb〉|
2 =






δjkδJK if a = b ,

1
pq if a 6= b ,

(3.5)

which are the conditions for bases to be MU in a space of dimension pq.

One can construct MU product bases of the type given in Eq. (3.4) using Heisenberg-

Weyl (HW) operators. In dimension p, with p prime, the HW cyclic shift (modulo p)

and phase operators Xp and Zp, respectively, are defined in analogy to Eq. (2.12).

For the composite dimension d = pq, we can build a set of (p+1) MU product bases of

the Hilbert space Cp ⊗ Cq with the operators Xp and Zp acting on the space Cp, and

Xq and Zq on the space Cq. For example, the eigenbases of the operators Xp⊗Xq and

Zp ⊗ Zq form two MU product bases, which we call a Heisenberg-Weyl pair. One can

also construct HW bases with the operators Xpq and Zpq on the space Cpq, however,

these do not necessarily form product bases. Since we are concerned with product

bases in this paper, we define the HW operators on the space Cp ⊗ Cq such that their

eigenstates are product states. Note that we do not limit the construction of MU bases

to the eigenbases of HW operators, i.e. {|ja, Ja〉} in (3.4) can be any product basis.

Each basis {|ja, Ja〉} is a direct product basis of the space Cp ⊗ Cq since each state

|ja〉, j = 0 . . . p − 1, of the ath basis in Cp is multiplied with every state |Ja〉, J =

0 . . . q − 1, of the ath basis of Cq. Direct product bases are, however, only a subset

among all product bases: indirect product bases [93] result if the states being tensored

stem from more than one basis of the space Cp (or Cq). The four states

{|0z, 0z〉, |0z, 1z〉, |1z, 0x〉, |1z, 1x〉} (3.6)

provide a simple example of an indirect product basis in dimension four since two

different bases of the second space, {|jz〉} and {|jx〉}, occur in the construction. The

matrix representation of a direct product basis in dimension d = pq is given by the

tensor product of two matrices, each representing a basis of the spaces Cp and Cq,

respectively. The matrix representation of an indirect product basis cannot be written

as a tensor product of two matrices.
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Conceptually, the distinction between direct and indirect product bases is not linked to

MU bases: instead of using {|jz〉} and {|jx〉} in (3.6) any other pair of bases of C2 would

also define an indirect product basis. Indirect product bases are important since they

have been found to exhibit a degree of non-locality in the absence of entanglement [12].

In this chapter we will be concerned exclusively with product bases of the spaces C2⊗C2

and C2⊗C3. To simplify the construction of all different MU product bases, we will now

introduce equivalence relations which respect the structure of product states, followed

by a brief reminder of the properties of MU bases in C2 and C3 following conventions

used in [18].

3.1.1 Local equivalence transformations

Given a set of MU bases on the space Cp, we obtain another set by applying one single

unitary transformation to all states simultaneously. The scalar products between the

states of the MU bases do not change under this transformation so that we deal indeed

with a second set of MU bases, factually different from the initial set but equivalent to

it. By not distinguishing between equivalent MU bases, their enumeration is greatly

simplified. When representing MU bases by Hadamard matrices, the concept of a

standard (or dephased) form emerges naturally (see [10], for example). To enumerate

all MU product bases it will be helpful not to distinguish those sets of MU product

bases which can be transformed into each other by local equivalence transformations,

or LETs, for short. LETs are defined by the requirement that they preserve the product

structure of all states. If there is no LET transforming two given sets of MU product

states into each other they will be called locally inequivalent, or just inequivalent. It

may still be possible to transform them into each other by non-local transformations.

We now list all LETs for a bipartite quantum system with Hilbert space Cp ⊗ Cq.

Suppose we are given sets of (r+1) MU bases {B0,B1, . . . ,Br} that contain only product

states. Explicitly, the ρth basis, with ρ = 0 . . . r, consists of d = pq product states

|nρ, Nρ〉, n ≡ N ∈ {1, 2, . . . , d}, where |nρ〉 ∈ Cp and |Nρ〉 ∈ Cq. Any combination of

the following five operations maps the given set of MU bases into a locally equivalent
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set:

1. a local unitary transformation û⊗ Û effecting

Bρ → B
′
ρ = û⊗ ÛBρ ≡

{
. . . , |ûnρ〉 ⊗ |ÛNρ〉, . . .

}
, (3.7)

which leaves invariant the value of all scalar products;

2. the multiplication of all states within a basis by possibly different phase factors

such that

Bρ → B
′
ρ =

{
. . . , eiφ

ρ
n |nρ, Nρ〉, . . .

}
; (3.8)

these transformations exploit the fact that the overall phase of a quantum state

has no physical significance and automatically drops out from the conditions

defining MU bases. It is worth noting that a single phase factor eiφ can dephase

both states of a product: let φ ≡ φ′+φ′′ to find eiφ|nρ, Nρ〉 = (eiφ
′
|nρ〉)⊗(eiφ

′′
|Nρ〉);

3. permutations of the product states within each basis; as an example, consider the

permutation of states |nρ, Nρ〉 and |n′ρ, N
′
ρ〉 in the ρ

th basis

{
. . . , |nρ, Nρ〉, . . . , |n

′
ρ, N

′
ρ〉, . . .

}
−→

{
. . . , |n′ρ, N

′
ρ〉, . . . , |nρ, Nρ〉, . . .

}
, (3.9)

which amounts to relabelling the elements within each basis;

4. the local complex conjugations k̂ ⊗ Î and Î ⊗ K̂ (anti-unitary operations defined

with respect to the standard bases in Cp and Cq, respectively), and thus their

product k̂ ⊗ K̂; for example, applying k̂ ⊗ Î

Bρ → B
′
ρ =

{
. . . , |n∗ρ, Nρ〉, . . .

}
, (3.10)

swaps all scalar products resulting from the first factors without changing their

numerical values;

5. pairwise exchanges of two bases, which amounts to relabelling the bases.

We now briefly discuss some important properties of LETs. First, they represent a true

subset of all equivalence transformations in a space of dimension pq: no LET maps an
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indirect product basis to a direct one while a general unitary equivalence transformation

can send any orthonormal basis to any other. Second, we will find indirect product bases

which cannot be transformed into each other by LETs, i.e. locally inequivalent product

bases. As a result, the idea of a unique standard or dephased form of MU bases is less

straightforward for MU product bases. We define a standard form in the following way:

the first basis B0, be it direct or indirect, contains the states {|jz〉} of the space Cp and

the states {|Jz〉} of the space Cq; the second basis B1 contains the state |0x, 0x〉, and all

other states in the remaining bases are dephased using the transformation defined in

(3.8). Superficially, LETs remind one of local operations with classical communication,

or LOCCs [67]. However, the presence of anti-unitary operations rather suggests a link

with Wigner’s theorem about symmetry transformations leaving transition probabilities

invariant [94], for the special case of a universe populated with product states only.

Finally, it is straightforward to generalise LETs to n-partite systems residing in product

states only.

It is often convenient to represent an MU product basis in Cpq as a complex Hadamard

matrix of dimension (pq × pq), with each product state corresponding to one column.

The bases {B0,B1, . . . ,Br} then turn into a set of (r + 1) matrices, on which the five

transformations above act in the following way. The first LET is a local unitary, given

by the Kronecker product of two unitary matrices, applied to all matrices from the left;

the second LET corresponds to diagonal unitary transformations acting from the right;

unitary permutation matrices acting from the right implement the third type of LET,

while the effect of the local complex conjugations must be worked out by writing down

each product state individually.

3.1.2 MU bases in dimensions two and three

Given a pair of MU bases in the vector space C2, we can always map the first basis to

the standard basis {|jz〉} by a suitable unitary transformation û ∈ SU(2). Being MU

to the first basis, the states of the second basis now must have the form

|a〉 =
1
√
2
(|0z〉+ e

iλ|1z〉) ≡ r̂λ|+〉 , |a⊥〉 = r̂λ|−〉 , (3.11)
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where {|±〉} ≡ {|jx〉} is the x-eigenbasis, and the operator r̂λ, λ ∈ [0, π), represents a

rotation by an angle λ about the z-axis. Since any such rotation leaves the standard

basis {|jz〉} unchanged, the second MU basis can be transformed into {|jx〉}. The

matrix representation of the resulting pair of MU bases reads

{I;F2} ≡









1 0

0 1



 ;
1
√
2




1 1

1 −1









. (3.12)

All other pairs of MU bases of the space C2 are, in fact, equivalent to this one. A third

basis MU to these two bases consists of the states given in Eq. (3.11) if λ = ±π/2,

producing {|jy〉}. Thus, all pairs of MU bases in C2 are equivalent to {|jz〉; |jx〉}, and

all triples are equivalent to {|jz〉; |jx〉; |jy〉}, as is well known.

In dimension three, one of two given MU bases can always be mapped to the standard

basis {|Jz〉, J = 0, 1, 2}, so that the second basis consists of states of the form

|A〉 =
1
√
3
(|0z〉+ e

iξ|1z〉+ e
iη|2z〉) , ξ, η ∈ [0, 2π) , (3.13)

exploiting the fact that the overall phase of a quantum state has no physical meaning.

One can construct three states of this form which are pairwise orthogonal: writing

|A⊥〉 =
1
√
3
(|0z〉+ γe

iξ|1z〉+ δe
iη|2z〉) , |γ| = |δ| = 1 , (3.14)

the condition 〈A|A⊥〉 = 0 implies γ + δ = −1. A geometric argument in the complex

plane implies either γ = ω and δ = ω2, or γ = ω2 and δ = ω, where ω = e2πi/3 is a

third root of unity. We denote the resulting basis by

{|A〉, |A⊥〉, |A⊥⊥〉} = {R̂ξ,η|Jx〉} , (3.15)

where the triple {|Jx〉} ≡ {|Jx〉, J = 0, 1, 2} consists of the eigenstates of the shift

operator X̂3, and the operator R̂ξ,η is diagonal in the z-basis such that |A〉 ≡ R̂ξ,η|0x〉,

cf. Eq. (3.13). The free parameters ξ, η in the pairs of MU bases {|Jz〉; R̂ξ,η|Jx〉} can

be removed by a suitable redefinition of the phases of the states in the standard basis

{|Jz〉}. Thus, all pairs of MU bases of C3 are equivalent to the pair {|Jz〉; |Jx〉} which
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may be represented by

{I;F3} =













1 0 0

0 1 0

0 0 1







;
1
√
3








1 1 1

1 ω ω2

1 ω2 ω













, (3.16)

where F3 ≡ Hx is the Fourier matrix in C3. Note that two more orthonormal bases of

states MU to the pair {|Jz〉; |Jx〉} emerge if one sets either eiξ = eiη ≡ ω or eiξ = eiη ≡

ω2 in Eq. (3.15). We will denote these bases by {|Jy〉} and {|Jw〉}, respectively, and

their matrix representations are given by

Hy =
1
√
3








1 1 1

ω ω2 1

ω 1 ω2







, Hw =

1
√
3








1 1 1

ω2 1 ω

ω2 ω 1







, (3.17)

which are also MU with respect to each other. The matricesHx,Hy andHw are complex

(3× 3) Hadamard matrices, i.e. they are unitary and the moduli of all their entries are

equal to 1/
√
3.

Two triples of MU bases now result from adding either {|Jy〉} or {|Jw〉} to the pair

{|Jz〉; |Jx〉}. These triples are equivalent to each other as follows from taking the com-

plex conjugate (defined in the z-basis) of the triple {|Jz〉; |Jx〉; |Jy〉}: the complex con-

jugation only affects the ordering of states within {|Jx〉} while {|Jy〉} turns into {|Jw〉}.

Thus we conclude that the triples are indeed equivalent which we express formally by

writing

{|Jz〉; |Jx〉; |Jy〉} ∼ {|Jz〉; |Jx〉; |Jw〉} . (3.18)

Consequently, all MU triples are equivalent to the triple {|Jz〉; |Jx〉; |Jy〉}, and the com-

plete set of four MU bases in C3 is also unique, as is well known.

3.2 Constructing product bases in dimensions four and

six

The first step towards an exhaustive list of pairs and triples of MU product bases in

dimension six is to construct all locally inequivalent product bases in C2 ⊗ C3. Once
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these are known, the requirement of any two such bases to be MU will impose further

constraints. It will be helpful to initially carry out this construction in dimension four.

Thus, we will first derive all inequivalent product bases of the space C2 ⊗ C2, followed

by a similar construction for a six-dimensional space.

3.2.1 All product bases in d = 4

We now show that each product basis in d = 4 is equivalent either to the standard direct

product basis or to a member of two families of indirect product bases, each depending

on two real parameters. Any (orthonormal) product basis in the space C2 ⊗ C2 must

have the form
{
|ψ1, φ1〉, |ψ2, φ2〉, |ψ3, φ3〉, |ψ4, φ4〉

}
, (3.19)

where |ψn〉, |φn〉 ∈ C2 for n = 1 . . . 4. The conditions

〈ψn, φn|ψn′ , φn′〉 = 〈ψn|ψn′〉〈φn|φn′〉 = δnn′ , n, n′ = 1 . . . 4 , (3.20)

imply that at least two states of the first factor must be orthogonal: assume that there

is no orthogonal pair among the states |ψ1〉, |ψ2〉 and |ψ3〉; then, the states |φ1〉, |φ2〉

and |φ3〉 must be pairwise orthogonal. However, no three orthogonal states exist in C2,

so that upon calling |ψ1〉 ≡ |a〉 we must have

{
|a, φ1〉, |a

⊥, φ2〉, |ψ3, φ3〉, |ψ4, φ4〉
}
, (3.21)

with |ψ2〉 = |a⊥〉 being the unique state (up to a phase factor) orthogonal to |a〉. Now

we need to consider two separate cases: we can have either |ψ3〉 = |a〉 (or, equivalently,

|ψ3〉 = |a⊥〉) or |ψ3〉 = |b〉 such that 0 < |〈a|b〉| < 1, meaning that the state |b〉 is neither

a multiple of the state |a〉 nor orthogonal to it; we call such a vector |b〉 skew to |a〉.

Case 1: If |ψ3〉 = |a〉, then the states |φ1〉 and |φ3〉 must be orthogonal. This implies

that the state |ψ4〉 must be orthogonal to |a〉 – if it was not, |φ4〉 would have to be

orthogonal to the orthogonal pair |φ1〉, |φ3〉, which is impossible. Thus, we find

{
|a,A〉, |a⊥, φ2〉, |a,A

⊥〉, |a⊥, φ4〉
}
, (3.22)
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where we write |A〉 to denote |φ1〉. Finally, the condition 〈φ2|φ4〉 = 0 restricts the

states involved to be any orthonormal pair, |φ2〉 = |B〉, and |φ4〉 = |B⊥〉, say. Two

qualitatively different cases result depending on whether we have |B〉 ≡ |A〉 ,

B0 =
{
|a,A〉, |a,A⊥〉, |a⊥, A〉, |a⊥, A⊥〉

}
(3.23)

or |B〉 being skew to |A〉,

B1 =
{
|a,A〉, |a,A⊥〉, |a⊥, B〉, |a⊥, B⊥〉

}
. (3.24)

The basis B0 is a direct product basis while the basis B1 is not.

Case 2: If |ψ3〉 = |b〉 in (3.21) is chosen skew to |a〉, it follows that the state |ψ4〉 must

be orthogonal to |b〉. Assuming that the state |ψ4〉 is not orthogonal to any of the three

states |b〉, |a〉 and |a⊥〉, the state |φ4〉 must be orthogonal to |φ1〉, |φ2〉 and |φ3〉. This is

only possible if |φ1〉 = |φ2〉 = |φ3〉, implying that the states |a, φ1〉 and |b, φ3〉 are not

orthogonal. Therefore, we must indeed have that |ψ4〉 = |b⊥〉, leading to

{
|a, φ1〉, |a

⊥, φ2〉, |b, φ3〉, |b
⊥, φ4〉

}
. (3.25)

The orthogonality conditions

〈φ1|φ3〉 = 〈φ1|φ4〉 = 0 (3.26)

imply that both |φ3〉 and |φ4〉 must be orthogonal to |φ1〉, which allows us to conclude

from

〈φ2|φ3〉 = 〈φ2|φ4〉 = 0 (3.27)

that |φ2〉 ≡ |φ1〉. Now letting |φ1〉 = |A〉, we find another family of indirect product

bases,

B2 =
{
|a,A〉, |a⊥, A〉, |b, A⊥〉, |b⊥, A⊥〉

}
, (3.28)

where |a〉 and |b〉 are skew. This concludes the construction of all product bases in

dimension four. The basis B0 is a direct product basis while the bases B1 and B2

are not. After performing suitable LETs, we can thus summarise the complete list of

product bases in dimension four as follows.
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Lemma 3.2.1. Any orthonormal product basis of the space C2 ⊗C2 is equivalent to a

member of one of the families

I0 = {|jz, kz〉} ,

I1 = {|0z, kz〉, |1z, ûkz〉} ,

I2 = {|jz, 0z〉, |v̂jz, 1z〉} , (3.29)

where the operators û, v̂ ∈ SU(2) act on the space C2 such that the states |0z〉 and û|0z〉,

as well as the states |0z〉 and v̂|0z〉, are skew.

Note that the parameters on which the operators depend have been chosen in such a

way that no product basis occurs more than once. A number of LETs (cf. Sec. 3.1.1)

have been used to bring the bases into the form given in the lemma. The basis B0

in (3.23) has been mapped to I0 by means of a transformation û1 ⊗ û2 such that û1

maps the pair of states {|a〉, |a⊥〉} to the standard basis {|jz〉} of C2, and û2 is defined

analogously. Thus, the bases B0 and I0 are equivalent to each other. We apply a similar

transformation to the basis B1 in (3.24) mapping two of the bases to the standard basis.

The freedom to choose a third basis, associated with the pair {|B〉, |B⊥〉}, is represented

in I1 by the undetermined unitary operator û acting on the standard basis. The same

reasoning brings B2 into the form (3.29) except that the roles of the two spaces are

swapped. Since a complex conjugation reflects points on the Bloch sphere about the

xz-plane, only half of all the unitaries û (and v̂) need to be considered in Lemma 3.2.1.

In other words, the bases associated with the unitaries û and û∗, given by the complex

conjugate of the matrix representing û in the z-basis, coincide.

The symmetry of the space C2 ⊗ C2 is reflected in the fact that we found two bases

I1 and I2 which are identical except for the order of the factors. If we stick with the

idea that LETs dictate whether two product bases are equivalent to each other, we

need to consider these bases as inequivalent. Thus, the complete set of product bases

consists of two families each of which depends on two parameters due to the SU(2)-

transformations û and v̂. Not all three parameters of a transformation in SU(2) are

relevant since the overall phase of quantum states is physically irrelevant: each pair
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of opposite points on the Bloch sphere defines an orthonormal basis of C2 so that the

set of all bases depends on only two real parameters. Note that the sets I1 and I2 of

Lemma 3.2.1 are both connected to the product basis I0.

The symmetry becomes particularly obvious if we represent the bases of Lemma 3.2.1

by quantum circuits. The idea is to visualise the operation needed to map the states

of the standard product basis I0 into the desired product basis by means of a quantum

gate. This is always possible since any two orthonormal bases are connected by a unitary

operation. Obviously, the trivial gate, described by the identity Î ,maps the four vectors

of the standard product basis to itself. Fig. (3.1) shows that (non-local) controlled-û

and controlled-v̂ gates are required to output the bases I1 and I2, respectively. As

expected, the two circuits are identical upon swapping the qubits.

I0
•

I1
û

I0
v̂

I2
•

Figure 3.1: Two quantum circuits to create the product bases I1 and I2, respectively; the

unitaries û and v̂ only act on the target qubit if the control qubit is in the state |1z〉.

3.2.2 All product bases in d = 6

To construct all product bases in dimension six we use the same method as in dimension

four. Any product basis in the space C2 ⊗ C3 takes the form

{
|ψ1,Ψ1〉, |ψ2,Ψ2〉, |ψ3,Ψ3〉, |ψ4,Ψ4〉, |ψ5,Ψ5〉, |ψ6,Ψ6〉

}
, (3.30)

with states |ψn〉 ∈ C2 and |Ψn〉 ∈ C3 for n = 1 . . . 6 , satisfying the orthogonality

conditions

〈ψn,Ψn|ψn′ ,Ψn′〉 = 〈ψn|ψn′〉〈Ψn|Ψn′〉 = δnn′ , n, n′ = 1 . . . 6 . (3.31)

The states |ψn〉 , n = 1 . . . 6, in (3.30) must contain at least two (not necessarily differ-

ent) pairs of orthogonal states. If they do not, the orthogonality conditions require four

orthogonal states in C3, which do not exist. In fact, the remaining two states in C2
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must also be orthogonal, which implies that the product bases of C6 will come in three

flavours. The states |ψn〉 , n = 1 . . . 6, fall into three pairs of states consisting of either

three, two, or only one pair of orthonormal bases. The following lemma summarises

the results of the detailed arguments given in Appendix A.

Lemma 3.2.2. Any orthonormal product basis of the space C2 ⊗C3 is equivalent to a

member of one of the families

I0 = {|jz, Jz〉} ,

I1 = {|0z, Jz〉, |1z, ÛJz〉} ,

I2 = {|jz, 0z〉, |û0z, 1z〉, |û0z, 2z〉, |û1z, V̂ 1z〉, |û1z, V̂ 2z〉} ,

I3 = {|jz, 0z〉, |v̂jz, 1z〉, |ŵjz, 2z〉} , (3.32)

with j = 0, 1 and J = 0, 1, 2; the operators û, v̂, ŵ ∈ SU(2) and Û , V̂ ∈ SU(3) act on

C2 and C3, respectively, with V̂ leaving the the state |0z〉 invariant; the parameters of

the operators û, . . . , V̂ are chosen in such a way that no product basis occurs more than

once.

Without any restrictions on the five unitary operators û, . . . , V̂ some product bases

would occur more than once in this list. For example, if Û ≡ Î, the basis I1 turns into

I0; similarly, the bases associated with Û and Û∗ are identical. We could remove such

multiple occurrences by appropriately restricting the unitary operators but it is rather

cumbersome to do so and not particularly informative.

Compared to dimension four, the number of families of indirect product bases have

increased, and they contain transformations generated by elements of the group SU(3).

Clearly, there is no scope for symmetry under exchanging the two spaces of the product

C2 ⊗ C3. The families I1 to I3 each depend on a number of free parameters: I1 has

six free parameters due to the unitary Û ; two free parameters are associated with

each SU(2)-transformation present in I3, while I2 is a five-parameter family – the

transformations due to V̂ , which is effectively an SU(2)-transformation, brings not

only two but three parameters because the overall phase of the states in the two-
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dimensional subspace spanned by |1z〉 and |2z〉 does not drop out. Figs. (3.2) and (3.3)

show quantum circuits to generate the inequivalent product bases in dimension six.

I0
•

I1
Û

I0
• û û†

I2
V̂ X̂ • X̂†

1

Figure 3.2: Quantum circuits for a qubit (upper wire) and qutrit (lower wire) to create the

bases I1 and I2, respectively; the controlled-Û and controlled-V̂ gate act on the qutrit only if

the control qubit is in the state |1z〉; the unitary û†, the adjoint of û, acts on the qubit only

when the control qutrit is in the state |1z〉; and the operator X̂ acts as a shift on the standard

basis of C3.

I0
ŵ v̂

I3
•
1

X̂ •
1

Figure 3.3: A quantum circuit for a qubit (upper wire) and qutrit (lower wire) to create the

basis I3; the unitaries v̂ and ŵ act on the qubit only if the control qutrit is in the state |1z〉,

and the operator X̂ acts as a shift on the standard basis of C3.

3.3 Adding MU product states to sets of orthogonal prod-

uct vectors

In this section we derive a theorem which will play a crucial role in the construction of

all pairs and triples of MU product bases in dimension four and six. This theorem is

inspired by a constraint on two direct product bases to be MU, obtained in [93]:

Lemma. Two [direct] product bases {|ja, Ja〉} and {|kb,Kb〉} in dimension d = pq are

MU if and only if |ja〉 is MU to |kb〉 in dimension p and |Ja〉 is MU to |Kb〉 in dimension

q.

This result does not cover indirect bases. To (partly) remedy this shortcoming, we will

present two different ways to generalise this lemma. Firstly, we find a constraint on

each product vector if it is to be MU to a specific set of product vectors; this result
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is obtained for spaces of arbitrary composite dimension d = pq. Secondly, we derive

constraints on a product vector required to be MU to any (direct or indirect) given

product basis of the spaces C4 or C6.

Consider p product states {|ψi,Ψ〉, i = 1 . . . p} with an orthonormal basis {|ψi〉, i =

1 . . . p} of the space Cp, and with |Ψ〉 ∈ Cq. After swapping the two factors in Eq.

(3.6), the product basis {|jz, 0z〉, |jx, 1z〉}, for example, is seen to consist of two sets

of this form. We find that only particular product states can be MU to such sets of

product states.

Lemma 3.3.1. The product state |φ,Φ〉 in dimension d = pq is MU to the set of

orthogonal product states {|ψi,Ψ〉, i = 1 . . . p} if and only if |φ〉 is MU to |ψi〉 ∈ Cp and

|Φ〉 is MU to |Ψ〉 ∈ Cq.

If |〈ψi|φ〉|2 = 1/p and |〈Ψ|Φ〉|2 = 1/q, then the product states are indeed MU in the

space Cpq since it follows that |〈ψi,Ψ|φ,Φ〉|2 = |〈ψi|φ〉|2|〈Ψ|Φ〉|2 = 1/pq. To prove

the converse, we assume the product states are MU, |〈ψi,Ψ|φ,Φ〉|2 = 1/pq. Sum-

ming over i = 1 . . . p, we obtain |〈Ψ|Φ〉|2 = 1/q upon using the completeness relation
∑
i |〈ψi|φ〉|

2 = 1. This result immediately implies that |〈ψi|φ〉|2 = 1/p , i = 1 . . . p, also

holds.

Note that one can swap the roles of the factors in the tensor product. Then Lemma

3.3.1 restricts the form of any product state which is MU to a set of q orthogonal states

{|ψ,Ψi〉, i = 1 . . . q} with an orthonormal basis {|Ψi〉, i = 1 . . . q} of the space Cq, and

with |ψ〉 ∈ Cp.

This result covers the lemma given at the beginning of this subsection. To see this,

group the basis {|ja, Ja〉} into q sets of p orthonormal vectors {|ja, 1a〉}, {|ja, 2a〉} . . .

{|ja, qa〉}; then, by Lemma 3.3.1, any product state |φ,Φ〉 is mutually unbiased to each

set of vectors if and only if the state |φ〉 is MU to all states |ja〉, and the state |Φ〉 is MU

to all states |Ja〉. By replacing the state |φ,Φ〉 with a vector from the basis {|ka,Ka〉}

and repeating the argument for all states in this basis, one arrives at the lemma for

direct product bases.
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The following generalisation uses the fact that we know all direct and indirect product

bases in dimensions four and six.

Theorem 3.3.2. The product state |φ,Φ〉 ∈ Cd, d ≡ pq ≤ 6, is MU to the product basis

{|ψi,Ψi〉} with i = 1 . . . pq, if and only if |φ〉 is MU to |ψi〉 ∈ Cp and |Φ〉 is MU to

|Ψi〉 ∈ Cq.

We prove this statement by considering the cases d = 4 and d = 6 separately:

• d = 4: All product bases in dimension four are given by the bases I0, I1 and I2,

collected in Lemma 3.2.1. Each of these bases can be divided into groups of states

of the form {|ψj ,Ψ〉, j = 1, 2}, or {|ψ,Ψj〉, j = 1, 2}. Thus, Theorem 3.3.2 follows

immediately from Lemma 3.3.1.

• d = 6: It is sufficient to consider the four families of bases given in Lemma 3.2.2.

Each of the bases I0, I1 and I3 can be split into sets of the form required to apply

Lemma 3.3.1; thus, Theorem 3.3.2 holds for these bases. To complete the proof, we

need to consider the basis I2 which has no such decomposition. To begin, suppose that

the basis I2 is MU to the state |φ,Φ〉. According to Lemma 3.3.1 this state is MU to

the pair {|jz, 0z〉} if both |〈φ|0z〉|2 = |〈φ|1z〉|2 = 1/2 and |〈Φ|0z〉|2 = 1/3 hold. The

state |φ,Φ〉 also needs to satisfy

|〈φ|û0z〉|
2|〈Φ|1z〉|

2 = |〈φ|û0z〉|
2|〈Φ|2z〉|

2 =
1

6
; (3.33)

adding these two constraints we find

|〈φ|û0z〉|
2
(
|〈Φ|1z〉|

2 + |〈Φ|2z〉|
2
)
=
1

3
. (3.34)

Using
∑
J |〈Φ|Jz〉|

2 = 1, i.e. the completeness relation of the basis {|Jz〉}, and |〈Φ|0z〉|2 =

1/3, we find that |〈Φ|1z〉|2+|〈Φ|2z〉|2 = 2/3. Substituting this identity into (3.34) leaves

us with |〈φ|û0z〉|2 = 1/2, so that |〈Φ|1z〉|2 = |〈Φ|2z〉|2 = 1/3 as well. A similar argu-

ment applied to the pair {|û1z, ˆV 1z〉, |û1z, V̂ 2z〉} shows that indeed |〈φ|û1z〉|2 = 1/2

and |〈Φ|V̂ 1z〉|2 = |〈Φ|V̂ 2z〉|2 = 1/3, which confirms that the state |φ,Φ〉 is of the desired

form. The converse direction of the statement is straightforward.
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We conjecture Theorem 3.3.2 to hold for all product dimensions d ≡ pq, i.e. d =

4, 6, 9, 10, . . . However, a proof similar to the one for d = 4, 6, would rely on the structure

of all product bases in composite dimensions d > 6 – which is not known to us.

3.4 MU product bases in dimension four

3.4.1 All pairs of MU product bases

To construct pairs of MU product bases in the space C4, we check all possibilities to

form MU pairs of the product bases displayed in Lemma 3.2.1 of Sec. 3.2.1. We find

two families of locally inequivalent MU product bases given in Proposition 3.4.1 below.

Since the bases I1 and I2 are identical to each other after a swap of factors, we only

need to work through four different cases.

• {I0;B0}: Choose the second basis to be B0 given in Eq. (3.23). The eight vectors

of the pair {I0;B0} need to satisfy a total of 16 conditions, spelled out in Eq. (3.5)

for p = q = 2 and with |a〉 skew to |b〉; however, not all of these conditions are

independent. Summing |〈a,A|jz, kz〉|
2 = |〈a|jz〉|

2 |〈A|kz〉|
2 = 1/4 over j = 0, 1, and

k = 0, 1, respectively, leads to the four conditions

|〈a|jz〉|
2 =
1

2
, j = 0, 1, and |〈A|kz〉|

2 =
1

2
, k = 0, 1 . (3.35)

Thus, the states |a〉 and |A〉 must be linear combinations of the states |0z〉 and |1z〉

with coefficients of modulus 1/
√
2,

|a〉 =
1
√
2
(|0z〉+ e

iμ|1z〉) ≡ r̂μ|jx〉 , and |A〉 = r̂ν |jx〉 , μ, ν ∈ [0, π) . (3.36)

States of this form are located on the equator of the Bloch sphere. However, for

given values of μ and ν these states can be transformed simultaneously by appropriate

rotations about the z-axes, i.e. by a local unitary transformation r̂†μ⊗ r̂
†
ν , into the state

|0x, 0x〉, thus mapping B0 into the basis {|jx, kx〉}. Not surprisingly, all pairs of MU

bases constructed from two copies of the direct product basis are found to be equivalent

to the Heisenberg-Weyl pair

P(4)0 = {|jz, kz〉; |jx, kx〉} . (3.37)
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• {I0;B1} and {I0;B2}: These two cases will be covered by {I2;B1} and {I1;B2},

respectively, since we will treat the direct product basis I0 as a subset of both I1 and

I2.

• {I1;B1} and {I2;B2}: The bases I1 and B1 are MU only if the two distinct bases

{|A〉, |A⊥〉} and {|B〉, |B⊥〉} are both MU to the standard basis {|kz〉} as well as

to {|ûkz〉}. The basis B1 can be mapped, by local transformations, into the basis

{|0x, kx〉, |1x, r̂νkx〉}, but with the condition that the pair of states {|r̂νkx〉} is MU to

the pair {|ûkz〉}. This condition is only satisfied if {|r̂νkx〉} is one of the bases {|jx〉}

or {|jy〉}. Either choice for the basis {|r̂νkx〉} implies that one of the bases I1 or B1 is

a direct product basis. Thus, we cannot construct a pair of MU bases out of the bases

I1 and B1. Since {I2;B2} is obtained from {I1;B1} by a swap of the qubits involved,

these bases also do not combine to a pair of MU product bases.

• {I1;B2} and {I2;B1}: We now combine the basis I1 = {|0z, kz〉, |1z, ûkz〉} with the

basis

B2 =
{
|a,A〉, |a⊥, A〉, |b, A⊥〉, |b⊥, A⊥〉

}
. (3.38)

Lemma 3.3.1 implies that the states of B2 are MU to the states {|0z, kz〉} contained in

I1 if we have

|a〉 = r̂λ|jx〉 , |b〉 = r̂ν |jx〉 , |A〉 = r̂ξ|jx〉 , (3.39)

with λ, ν, ξ ∈ [0, π). Now map the state |a,A〉 to |0x, 0x〉 by the local unitary transfor-

mation r̂†λ ⊗ r̂
†
ξ to write B2 as

B2 =
{
|jx, 0x〉, |r̂νjx, 1x〉

}
, (3.40)

where the unitary operator r̂ν rotates the x-basis {|jx〉} ≡ {|±〉} into the xy-plane

according to r̂ν |±〉 = (|0z〉 ± eiν |1z〉)/
√
2, where ν ∈ (0, π). Finally, the remaining pair

of states in I1, viz. {|1z, ûkz〉}, is MU to the pair {|r̂νjx, 1x〉
}
only if {|ûkz〉} ≡ {|ŝμkz〉}

where ŝμ is a rotation about the x-axis of the Bloch sphere. Thus, we have obtained a

two-parameter family of product bases

P(4)1 = {|0z, kz〉, |1z, ŝμkz〉; |jx, 0x〉, |r̂νjx, 1x〉} , (3.41)

64



with rotations r̂ν , ν ∈ (0, π), and ŝμ, μ ∈ [0, π), about the z- and x-axes, respectively.

The pair P(4)1 has a partner that is obtained from constructing MU product pairs using

{I2;B1}. However, due to the symmetry, it is found readily from swapping the two

spaces C2 in Eq. (3.41),

{|0z, kz〉, |ŝμ′jz, 1z〉; |0x, kx〉, |1x, r̂ν′kx〉} , (3.42)

with unitaries r̂ν′ and ŝμ′ defined in analogy to the operators used in the definition of

P(4)1 . This pair turns out to be equivalent to P
(4)
1 by multiplying (3.42), from the left,

with a unitary t̂ρ ⊗ t̂ρ, where t̂ρ is a rotation about the y-axis. Choosing ρ = π/2 such

that {|t̂π/2jx〉} = {|jz〉}, the MU product pair transforms into P
(4)
1 . We now collect

our findings regarding MU product bases in dimension four.

Proposition 3.4.1. Any pair of MU product bases in the space C2 ⊗ C2 is equivalent

to a member of the families

P(4)0 ≡ {|jz, kz〉; |jx, kx〉} ,

P(4)1 ≡ {|0z, kz〉, |1z, ŝμkz〉; |jx, 0x〉, |r̂νjx, 1x〉} , (3.43)

where j, k = 0, 1, and the unitary operator r̂ν rotates the basis {|jx〉} ≡ {|kx〉} ≡ {|±〉}

into the xy-plane according to r̂ν |±〉 = (|0z〉 ± eiν |1z〉)/
√
2 for ν ∈ (0, π); the operator

ŝμ generates rotations about the x-axis, i.e. ŝμ|kz〉 = (|0x〉 + (−1)keiμ|1x〉)/
√
2 for

μ ∈ [0, π).

The pair P(4)0 is the Heisenberg-Weyl pair consisting of two direct product bases. The

pair of MU bases P(4)1 is a two-parameter family and may contain direct and indirect

product bases. Notice that the operator ŝμ can act as the identity since the first basis

of P(4)1 may be the standard basis {|jz, kz〉}.

The pair P(4)1 turns out to be equivalent under non-local transformations to the Fourier

family as follows from mapping the first basis to the standard basis {|jz, kz〉}. Thus,

we have obtained all pairs of MU bases in dimension four (cf. Sec. 3 of [19]) in spite of

limiting ourselves initially to MU product bases only.
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3.4.2 All triples of MU product bases

Now we are in a position to derive all triples of MU product bases in dimension d = 4:

we need to determine which of the pairs of MU product bases given in Proposition 3.4.1

can be extended by a third MU product basis.

It is easy to see that the MU pair P(4)0 ≡ {|jz, kz〉; |jx, kx〉} can be extended by adjoining

a third direct product basis, namely |jy, ky〉, resulting in the standard Heisenberg-Weyl

triple. This is the only possibility, as follows immediately from Theorem 3.3.2: a

product state |φ,Φ〉 is MU to both {|jz, kz〉} and {|jx, kx〉} only if |φ〉 is MU both to

{|jz〉} and {|jx〉}, and if |Φ〉 is MU both to {|kz〉} and {|kx〉}.

The pair P(4)1 of MU bases cannot be extended, not even by a single MU product state.

To extend the pair by an MU product state, one would need to find a state in C2 which

is MU to the three bases {|kz〉}, {|kx〉} and {|r̂νkx〉}. Since ν ∈ (0, π), no two of these

three bases coincide and there is no state in the space C2 simultaneously MU to three

distinct bases. As a consequence, the number of MU product triples is rather limited

in dimension four.

Proposition 3.4.2. Any triple of MU product bases in the space C2⊗C2 is equivalent

to

T (4)0 ≡ {|jz, kz〉; |jx, kx〉; |jy, ky〉} . (3.44)

Using Theorem 3.3.2 again, the non-existence of even a single product state MU to the

triple T (4)0 follows immediately – all states MU to the triple must be entangled.

This observation agrees with results reported earlier. For the two-qubit system con-

sidered here, a construction of the five MU bases based on the Galois field GF (4) has

been given in [54]. The complete sets obtained turn out to be equivalent under local

unitary transformations, and they necessarily consist of three MU bases made up from

separable (i.e. product) bases while the remaining two contain maximally entangled

states only. This structure also emerges from an approach which exploits the fact that

any complete set of MU bases of a bipartite system in Cd contains a fixed d-dependent

amount of entanglement (see Sec. 2.4.2). When d = 4, this result implies that for a
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complete set of MU bases containing the triple T (4)0 , the other two bases of the quin-

tuple must consist of entangled states – in fact, only maximally entangled states are

permitted. In [58], the entanglement structure of complete sets of MU bases related

to Heisenberg-Weyl operators in prime-power dimensions has been studied, leading to

a generalisation of the result for dimension d = 4: in bipartite systems of dimension

d = p2, if (p+1) MU bases consist of product states, the remaining bases contain only

maximally entangled states.

3.5 MU product bases in dimension six

3.5.1 All pairs of MU product bases

We will now construct all pairs of MU product bases in dimension six following the

method used in dimension four (cf. Sec. 3.2.1). To obtain a MU pair we take each

basis listed in Lemma 3.2.2 and go through all possibilities of adding one of the product

bases B0 to B3 (cf. Eqs. (A.5,A.4,A.8,A.9) of Appendix A).

When constructing pairs of MU product bases, it is not necessary to include the basis

I2 in Lemma 3.2.2. We will show now that the operator V̂ must either act as the

identity on the pair of states {|1z〉, |2z〉} or swap them, i.e. only α = 0 or β = 0 are

allowed in the expression V̂ |1z〉 = α|1z〉+ β|2z〉. However, in both cases the simplified

product basis I2 turns into a special case of I3, given in (3.32).

Here is the reason why the operator V̂ must simplify in the way just described. Apply

Theorem 3.3.2 to the product state |φ,Φ〉 required to be MU to I2: the state |Φ〉 must

be MU to all six vectors of C3 present in I2. Consequently, all states in C3 which occur

in the bases B0 to B3, defined in Eqs. (A.5,A.4,A.8,A.9) – these are all candidates

for a second product basis MU to I2 – must be MU to the standard basis {|Jz〉} of

C3. Now, each of these four bases contains another orthonormal basis of C3, namely

{|A〉, |A⊥〉, |A⊥⊥〉}. There is a two-parameter family of such states, given in (3.15).

However, these states must also be MU to the state V̂ |1z〉 of the basis I2. For the
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states |A〉 and |A⊥〉, this requirement reads

|〈A|(α|1z〉+ β|2z〉)|
2 = |〈A⊥|(α|1z〉+ β|2z〉)|

2 =
1

3
. (3.45)

Now using the explicit expressions of the states |A〉 and |A⊥〉 given in (3.16) and the

identity |α|2 + |β|2 = 1, the first equality leads to

|1 + ω| |α| |β| = |α| |β| , (3.46)

which implies that either α ≡ 0 or β ≡ 0. Thus, for the construction of pairs it is

sufficient to use the restricted basis

I ′2 = {|jz, 0z〉, |ûjz, 1z〉, |ûjz, 2z〉} (3.47)

instead of I2 given in Lemma 3.2.2. All bases of this form, however, are contained in

I3 if one chooses v̂ = ŵ ≡ û in (3.32). This simplification also holds for the basis B2

when occurring in a pair of product bases.

The actual derivation of all MU product bases in dimension six is lengthy but straight-

forward. The calculations have been relegated to Appendix B except for the pairing

of the basis I1 with B1, which gives rise to the pair P2. The proof that no other

(non-trivial) pair of MU product bases results from {I1;B1} has been obtained by A.

Sudbery, and it is given in Appendix C. We now summarise the results derived in these

two appendices.

Theorem 3.5.1. Any pair of MU product bases in the space C2 ⊗ C3 is equivalent to

a member of the families

P0 = {|jz, Jz〉; |jx, Jx〉} ,

P1 = {|jz, Jz〉; |0x, Jx〉, |1x, R̂ξ,ηJx〉} ,

P2 = {|0z, Jz〉, |1z, Jy〉; |0x, Jx〉, |1x, Jw〉} ,

P3 = {|0z, Jz〉, |1z, Ŝζ,χJz〉; |jx, 0x〉, |r̂σjx, 1x〉, |r̂τ jx, 2x〉} , (3.48)

with j = 0, 1 and J = 0, 1, 2. The unitary operator R̂ξ,η is defined as R̂ξ,η = |0z〉〈0z|+

eiξ|1z〉〈1z| + eiη|2z〉〈2z| , for η, ξ ∈ [0, 2π), and Ŝζ,χ is defined analogously with respect

to the x-basis; the unitary operators r̂σ and r̂τ act on the basis {|jx〉} ≡ {|±〉} according

to r̂σ|jx〉 = (|0z〉 ± eiσ|1z〉)/
√
2 for σ ∈ (0, π), etc.

68



As before, the ranges of the parameters are assumed to be such that no MU product pair

occurs more than once in the list. The pairs P0 and P2 have no parameter dependence,

the pair P1 depends on two parameters, while P3 is a four-parameter family.

Theorem 3.5.1 represents the first main result of this chapter. It states that there are

continuously many possibilities to select pairs of MU bases which, however, can be

listed exhaustively. We will now proceed to analytically construct all triples of MU

bases which exist in d = 6. This will lead to a non-existence result in Sec. 3.6, namely

Theorem 3.6.1, which states the impossibility to extend any MU product triple by even

a single MU vector. Thus, complete sets of MU bases in d = 6 will contain at most

pairs of MU product bases.

An alternative method to exploit Theorem 3.5.1 will be persued in the next chapter.

Upon using suitable non-local unitary transformations and known results obtained by

computer-algebraic methods, the strongest possible statement about MU product bases

is then derived: if a complete set of seven MU bases exists, it will contain at most one

product basis – which may be chosen to be the standard basis.

3.5.2 All triples of MU product bases

It is straightforward to enlarge the existing pairs of MU product bases in Theorem 3.5.1

to triples: simply add the MU product bases listed in Lemma 3.2.2, one after the other,

to each of the pairs P0 to P3 and check whether a valid MU product triple results.

Neither of the pairs P2 and P3 in Theorem 3.5.1 can be extended by a single MU

product state. To do so, we would need a vector MU to the three distinct bases {|jz〉},

{|jx〉} and {|r̂σjx〉} in the space C2, or a vector mutually unbiased to four MU bases in

the space C3. No such states exist, implying that any state mutually unbiased to these

pairs must be entangled.

The pairs P0 and P1 can be extended by a further MU product basis since there

exist vectors of the spaces C2 and C3 that satisfy the necessary conditions. To obtain

the complete list of all MU product triples in C6 we thus need to search for possible
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extensions of these two pairs by a third product basis. Starting with P0, it is possible

to extend this pair by either B0 or B1.

• {P0;B0}: If we choose the third basis to be of the form B0, there are only two choices,

{|jy, Jy〉} or {|jy, Jw〉}. Using the local complex conjugation Î⊗K̂, the resulting triples

are found to be equivalent,

{|jz, Jz〉; |jx, Jx〉; |jy, Jy〉} ∼ {|jz, Jz〉; |jx, Jx〉; |jy, Jw〉} ; (3.49)

consequently, all triples of this type are equivalent to the Heisenberg-Weyl triple

T0 = {|jz, Jz〉; |jx, Jx〉; |jy, Jy〉} . (3.50)

• {P0;B1}: If we extend P0 by an indirect product basis of the form B1, there are only

two choices, {|0y, Jy〉, |1y, Jw〉} or {|0y, Jw〉, |1y, Jy〉}. Again, a local complex conjuga-

tion k̂ ⊗ Î maps one of the triples into the other,

{|jz, Jz〉; |jx, Jx〉; |0y, Jy〉, |1y, Jw〉} ∼ {|jz, Jz〉; |jx, Jx〉; |0y, Jw〉, |1y, Jy〉} , (3.51)

leaving us with the triple

T1 = {|jz, Jz〉; |jx, Jx〉; |0y, Jy〉, |1y, Jw〉} . (3.52)

Now turning to the pair P1, we again attempt to obtain a triple by adding either B0 or

B1.

• {P1;B0} or {P1;B1}: First, extend the pair P1 by a direct product basis, resulting in

either {|jz, Jz〉; |0x, Jx〉, |1x, Jy〉; |jy, Jw〉} or {|jz, Jz〉; |0x, Jx〉, |1x, Jw〉; |jy, Jy〉}. It is not

difficult to apply suitable LETs to transform them into the triple T1. Now extend the

pair P1 by an indirect product basis B1. This leads to a contradiction since we would

need the states {|R̂ξ,ηJx〉} in P1 to coincide with {|Jx〉}, which is not allowed.

This completes the construction of all MU product triples in dimension six, leading to

the second main result of this chapter.

Theorem 3.5.2. Any triple of MU product bases in the space C2 ⊗C3 is equivalent to

either

T0 = {|jz, Jz〉; |jx, Jx〉; |jy, Jy〉} ,

or T1 = {|jz, Jz〉; |jx, Jx〉; |0y, Jy〉, |1y, Jw〉} . (3.53)
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According to Theorem 3.3.2, neither of these triples can be extended by a single MU

product state. Thus, any complete set of seven MU bases in dimension six will contain

at most three product bases, and if it does, the triple must be equivalent to one of those

in Theorem 3.5.2. In the following section we will obtain an even stronger result.

3.6 Excluding triples of MU product bases from complete

sets

In this section we derive the third main result of this chapter.

Theorem 3.6.1. No triple of MU product bases in dimension six can be extended by a

single MU vector.

In other words, no complete set of seven MU bases in d = 6 contains a triple of MU

product bases. This result relies on a computer-aided proof in [34], which finds a total

of 48 vectors MU to the pair of eigenbases of the Heisenberg-Weyl operators X6 and

Z6, giving rise to sixteen different orthonormal bases (see Sec. 2.5.2). However, none

of these bases allows one to extend the given pair beyond a triple of MU bases.

The present construction of MU product triples effectively produces twelve (and only

twelve) product vectors that are MU to the pair P0 = {|jz, Jz〉; |jx, Jx〉}, namely

{|jy, Jy〉} and {|jy, Jw〉}, and they give rise to the only two inequivalent triples of

MU bases, T0 and T1. Since P0 is equivalent to the eigenbases of X6 and Z6, clearly

these twelve product vectors must figure among the 48 vectors given in [34].

To show this, we must first deal with a difference in our definition of the HW operators.

The HW pair used in [34] does not have the same form as P0 since the x-basis in [34] is

the eigenbasis of the operator X6, whereas we have used the eigenbasis of the operator

X2 ⊗X3 (cf. Eq. (2.12)). Nevertheless, both pairs of bases turn out to be equivalent

using a non-local unitary transformation. By writing the operators as matrices, we find

that X2⊗X3 = P25X6P25, where P25 is a permutation matrix permuting rows two and

five. This non-local transformation brings the eigenbasis of X6 into product form, i.e.

{|jx, Jx〉}, by multiplying it with P25 from the left.
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The same transformation must also be applied to the list of 48 vectors so that they are

MU to the pair P0. After multiplying each of these vectors by the matrix P25 from the

left, one easily identifies the twelve product vectors, numbered by 1, 2, 5, 6, 9, 10, 13,

14, 17, 18, 21 and 22 in the Appendix of the updated version of [34]. For example, the

vector labelled (1) transforms as follows:

1
√
6
P25(1, α

5, 1,−α3,−α2,−α3)T =
1
√
6
(1,−α2, 1,−α3, α5,−α3)T

≡
1
√
6
(1, ω2, 1,−i,−iω2,−i)T

≡
1
√
6
(1,−i)T ⊗ (1, ω2, 1)T (3.54)

where α = e2πi/12 and ω = e2πi/3. This vector is the product state |1y, 1y〉.

The twelve vectors give rise to four of the sixteen orthonormal bases which are MU to

the original pair. These product bases are covered by the product bases we construct

when extending the Heisenberg-Weyl pair P0 to a triple; however, only two of the

four triples are locally inequivalent as follows from exploiting suitable local equivalence

transformations.

Upon combining the computer-aided result just described with Theorem 3.5.2 it is

straightforward to arrive at a result that excludes product triples from being part of a

complete set of seven MU bases. The triples of MU product bases T0 and T1 both contain

the Heisenberg-Weyl pair P0 = {|jz, Jz〉; |jx, Jx〉}, and it is impossible to extend this

pair by more than a single MU basis according to [34]. Since Theorem 3.5.2 provides

an exhaustive list of MU triples in the space C2⊗C3, it follows that no complete set of

seven MU bases in d = 6 contains a triple of MU product bases.

3.7 Summary

By limiting ourselves to orthonormal product bases, we have been able to obtain a

number of analytic results regarding the existence of MU bases of the space C2 ⊗ C3.

After identifying all orthonormal product bases of this space, presented in Lemma 3.2.2,

we have constructed an exhaustive list of pairs of MU product bases. They come in
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four different flavours according to Theorem 3.5.1. Next, Theorem 3.5.2 states that,

in addition to the Heisenberg-Weyl triple, there is only one other locally inequivalent

triple of MU product bases. The absence of quadruples of MU product bases agrees

with Zauner’s conjecture [98] that there are no more than three MU bases in dimension

six.

The derivation of the list of MU product pairs and triples has been simplified consid-

erably by the content of Theorem 3.3.2. It spells out severe restrictions on the form

of product states required to be MU to certain sets of orthonormal states in the space

C2⊗C3. We have established Theorem 3.3.2 for dimensions d = 4 and d = 6 only, since

the proof relies on enumerating all orthonormal product bases in these dimensions.

Theorem 3.5.2 allows us to partly replicate results obtained by means of a computer-

algebraic method. Out of the 48 vectors mutually unbiased to the Heisenberg-Weyl pair

P0, found in [34], we successfully recover twelve, and they are shown to be equivalent

to product vectors.

The most important consequence of exhaustively enumerating MU product bases in

dimension six is a bound on their allowed number in complete sets of MU bases. Ap-

plying Theorem 3.3.2 to the triples of MU product bases in C2 ⊗ C3, namely T0 and

T1, directly implies that no single product state can be MU to any of them. However,

a stronger result is within reach, spelled out in Theorem 3.6.1: it is impossible to com-

plement either T0 or T1 by any MU vector. This follows from combining Theorem 3.5.2

with the results derived in [34]. Thus, a complete set of MU bases in dimension six can-

not contain a product triple. This is in marked contrast to the prime-power dimension

p2 where a complete set of MU bases necessarily contains (p + 1) MU product bases

constructed from the tensor products of Heisenberg-Weyl operators [58].

A similar situation has been described in [5] where a different class of MU bases is

studied. Given a“nice error basis”, consisting of d2 suitable matrices, one can construct

MU bases from certain partitions of the matrices (see Sec. 2.4.1). In the case of

dimension six, it is shown that any partition of a nice error basis gives rise to no

more than three MU bases. This limitation and the non-existence of more that three
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MU product bases are independent results: MU product bases and MU bases arising

from nice unitary error bases are structurally different. For example, our construction

reproduces the continuous family P(4)1 of MU product pairs in d = 4, and it is known

that some of the pairs in this family are inequivalent to MU bases stemming from nice

error bases [53].

Our considerations are backed by deriving corresponding results in the Hilbert space

of two qubits, i.e. C2 ⊗ C2. In this case there exists a symmetry between the two

factors and the enumeration of MU product pairs and triples is much simpler. Clearly,

when a qubit is combined with a qutrit, no such symmetry exists. We believe that the

symmetries between the subsystems present in only prime-power dimensions are the

ultimate reason that additional “identities” exist which allow for the construction of

complete sets of MU bases.

Let us conclude by formulating a conjecture which emerges naturally from our results:

we expect Theorem 3.3.2 to hold for all composite dimensions d = pq ≥ 4, not only for

d = 4 and d = 6. Our pedestrian proof in these dimensions relies on enumerating all

orthonormal product bases. However, the set of product bases in composite dimensions

is likely to possess a certain structure which, once spelled out, should allow for a more

elegant proof applicable to arbitrary composite dimensions.
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Chapter 4

The limited role of MU product

bases in dimension 6

The purpose of this chapter is to derive a rigorous result regarding the impossibility to

extend certain pairs of MU bases in dimension six to complete sets. We will show that

no pair of MU product bases can figure in a complete set, as stated by the following

theorem.

Theorem 4.0.1. If a complete set of seven MU bases in dimension six exists, it con-

tains at most one product basis.

This is, in fact, the strongest possible bound on the number of MU product bases since

one can always map one MU basis of a complete set to the standard basis. The proof

will start from the exhaustive list of pairs of MU product bases of C6 constructed in

Section 3.5.1. Not all of the listed pairs are given in the standard form which requires

the first basis to be the computational basis [18]. Thus, we will first bring the pairs of

the list into standard form using unitary equivalence transformations. We will find that

the second MU product basis of each pair is mapped either to a member of the Fourier

family of Hadamard matrices or the isolated matrix S6. Using several computer-aided

results, it is then straightforward to prove Theorem 4.0.1.
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To begin, we reproduce the set of pairs of MU product bases obtained in Section 3.5.1.

It will be convenient to represent the MU product pairs of Theorem 3.5.1 in terms of

(6× 6) unitary matrices,

P0 = {I; F̃ (0, 0)} , (4.1)

P1 = {I; F̃
T(ξ, η)} , (4.2)

P2 = {Ĩ(4π/3, 4π/3); F̃
T(4π/3, 4π/3)} , (4.3)

P3 = {Ĩ(ζ, χ); F̃ (σ, τ)} . (4.4)

Here, the unitary matrix F̃ (ξ, η) is given by

F̃ (ξ, η) =
1
√
2




F3 F3

F3D −F3D



 , (4.5)

with F3 defined in Eq. (3.16) and the diagonal matrix D = diag(1, e
iξ, eiη). This

particular form of F̃ (ξ, η) appears in [10]. The transpose of F̃ , present in P1 and P2,

is denoted by F̃T(ξ, η). The family of non-standard bases Ĩ(ζ, χ) is given by

Ĩ(ζ, χ) =




I3 0

0 Sζ,χ



 , where Sζ,χ =








a c b

b a c

c b a







, (4.6)

and

a(ζ, χ) =
1

3
(1 + eiζ + eiχ) , (4.7)

b(ζ, χ) =
1

3
(1 + ω2eiζ + ωeiχ) , (4.8)

c(ζ, χ) =
1

3
(1 + ωeiζ + ω2eiχ) . (4.9)

Here, Sζ,χ is diagonal in the eigenbasis of the Heisenberg-Weyl operator X3.

First, we show that the pair P1 = {I; F̃T(ξ, η)} is equivalent to {I; F̃ (ξ, η)}. To see this

we multiply {I; F̃} with F̃ †, the adjoint of F̃ , from the left; this leaves us with {F̃ †; I}.

Then, by taking the complex conjugation we have {F̃T; I}, which after exchanging the

order is indeed P1.
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Next, we show that the matrix F̃ (ξ, η) is equivalent to the Fourier family of Hadamard

matrices F (ξ, η) as defined in [88]. First we permute rows 2 and 5 of the matrix

F̃ (ξ, η), resulting in F̃ ′(ξ, η), the columns of which are no longer product vectors. Then

we reorder the columns of F̃ ′ such that columns 2, 3, 5 and 6 become columns 6, 2, 3

and 5, respectively, producing immediately the Fourier family F (ξ, η). In some sense

we have derived the Fourier family of Hadamard matrices from our construction of MU

product bases, thereby“explaining”why this set depends on two real parameters. Since

the transformations just described do not affect the standard basis, we have shown the

equivalence of P1 with the pair {I; F (ξ, η)}.

Now we will show that the pair P3 ≡ {Ĩ(ζ, χ); F̃ (σ, τ)} is also equivalent to P1. To see

this, we transform the first basis Ĩ(ζ, χ) into the identity by multiplying it from the left

with its inverse, 


I3 0

0 S
†
ζ,χ



 , (4.10)

where S†ζ,χ is the adjoint of Sζ,χ, defined in (4.6), simultaneously mapping the matrix

F̃ (σ, τ) (see Eq. (4.5)) to

1
√
2




F3 F3

S
†
ζ,χF3D −S†ζ,χF3D



 . (4.11)

Since Sζ,χ is diagonal in the X3 basis, the adjoint S
†
ζ,χ simply multiplies the columns

of each matrix F3 by phase factors. Writing σ
′ = σ − ζ and τ ′ = τ − χ, we obtain the

desired equivalence

P3 ∼ {I; F̃ (σ − ζ, τ − χ)} = {I; F̃ (σ
′, τ ′)} ∼ P1 . (4.12)

Finally, we show that P2 is equivalent to the pair {I; S6}. We can express the pair as

P2 =









I3 0

0 −iHy



 ;
1
√
2




F3 Hw

F3 −Hw









, (4.13)

with matrices Hy and Hw defined in Eq. (3.17). To map the first matrix to the identity

we multiply it with 


I3 0

0 iH
†
y



 (4.14)
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from the left. The second matrix in P2 transforms to

S̃6 =
1
√
2




F3 Hw

iH
†
yF3 −iH

†
yHw



 , (4.15)

with

iH†yF3 =
1
√
3








1 ω ω

ω 1 ω

ω ω 1








and iH†yHw = −
1
√
3








1 ω2 ω2

ω2 1 ω2

ω2 ω2 1







. (4.16)

To transform S̃6 into the Hadamard matrix S6 we perform a number of simple opera-

tions. First we exchange the second row of S̃6 with the third row as well as the fourth

and fifth rows. Then we permute columns two with six, three with five, and four with

five, followed by multiplying rows four and six with ω2. These equivalence transforma-

tions indeed result in the matrix S6, while their action on the identity is easily undone

by column operations, thus establishing the equivalence relation

P2 ∼ {I; S6} . (4.17)

This concludes our simplification of the list of MU product pairs. As with the Fourier

family, we have “derived” the isolated matrix S6 from a pair of MU product bases.

To summarise, the standard form for the MU product pairs listed in Eqs. (4.1)–(4.4)

reduces to

P0 ∼ {I; F (0, 0)} ,

P1 ∼ P3 ∼ {I; F (ξ, η)} ,

P2 ∼ {I; S6} , (4.18)

with P1 and P3 equivalent to a two-parameter family and P2 an isolated pair.

It is now straightforward to complete the proof of Theorem 4.0.1. Using computer-

aided methods, it has been shown that the standard basis together with the isolated

Hadamard S6 cannot be extended to a triple of MU bases: there are 90 vectors MU

to {I; S6} [17] but no two of them are orthogonal [18]. Thus, P2 cannot figure in a
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complete set of seven MU bases. Combining numerical calculations with rigorous error

bounds [45], all pairs of MU bases involving members of the Fourier family1 have been

shown rigorously not to extend to quadruples of MU bases (cf. Section 2.5.2). These

two results cover all cases given in (4.18), and hence all MU product pairs of Theorem

3.5.1. It follows that no complete set of seven MU bases in d = 6 contains a pair of

MU product bases, i.e. Theorem 4.0.1.

We set out in the previous chapter with the modest goal to construct all MU product

bases in dimension six. Using the resulting exhaustive list of MU product pairs, we have

now been able to conclude that six of the seven MU bases required for a complete set

in C6 must contain entangled states. To our knowledge, this is the strongest rigorous

result concerning the structure of MU bases for d = 6. It considerably generalises

the result that no pair of MU bases associated with the Heisenberg-Weyl operators of

C6 gives rise to a complete set [34], at the same time providing an independent proof

thereof. It is also stronger than a result given in [93], where the fixed entanglement

content of a complete set in d = 6 has been used to show that no more than three of the

seven hypothetical MU bases can be product bases. In addition, the current approach

sheds some light on the particular character of the Fourier family of Hadamard matrices

and the isolated matrix S6, since these – and only these – matrices emerge naturally

upon constructing all pairs of MU product bases in dimension six.

1In terms of our conventions, the result in [45] applies to the transposed Fourier family, i.e. directly

to the pair P1 in Eq. (4.2).
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Chapter 5

Unextendible product triples

In this chapter an analytic proof is given which shows that it is impossible to extend

any triple of MU product bases in dimension six by a single MU vector, i.e. Theorem

3.6.1. While this result is already known, the final step of the proof in Section 3.6 relies

on algebraic manipulations carried out by a computer [34]. In contrast, the method

presented here follows from exploiting the structure of MU product bases in a novel

fashion, and is one the strongest results obtained for MU bases in dimension six without

recourse to computer algebra.

Only a few analytic results are known for sets of MU bases in composite dimensions

such as d = 6 or d = 10 (see Section 2.4). The results we present in this chapter add to

this list of known analytic results. We will start with a proof of the main theorem (Sec.

5.1), and then marginally improve this result by introducing MU product constellations

(Sec. 5.2) and discuss the limitations of this approach. We summarise and discuss our

results in Sec. 5.3.
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5.1 Excluding MU product triples from a complete set of

MU bases

We now present an analytic proof of Theorem 3.6.1, i.e. No triple of MU product bases

in dimension six can be extended by a single MU vector. The starting point of our proof

is the fact that, in dimension six, no more than two inequivalent triples of MU product

bases exist, i.e. Theorem 3.5.2. Any product triple is equivalent, under specific unitary

or anti-unitary transformations, to either

T0 = {|jz, Jz〉; |jx, Jx〉; |jy, Jy〉} ,

or T1 = {|jz, Jz〉; |jx, Jx〉; |0y, Jy〉, |1y, Jw〉} , (5.1)

where j = 0, 1 and J = 0, 1, 2.

Due to Theorem 3.5.2, it is sufficient to show that no vector is MU to either of the

triples T0 or T1; any other MU product triple can be transformed to one of these two

triples using equivalence transformations.

A candidate state |ψ〉 ∈ C6 is MU to the three product bases T0 if and only if the

following 18 conditions hold,

|〈ja, Ja|ψ〉|
2 =
1

6
, a = x, y, z ; j = 0, 1 ; J = 0, 1, 2 , (5.2)

not all of which are independent. Similarly, the state |ψ〉 is mutually unbiased to the

product triple T1 if and only if

|〈jz, Jz|ψ〉|
2 = |〈jx, Jx|ψ〉|

2 = |〈0y, Jy|ψ〉|
2 = |〈1y, Jw|ψ〉|

2 =
1

6
. (5.3)

It will take us three steps to show that each of these two sets of equations is contra-

dictory. In other words, there is no state |ψ〉 satisfying either the constraints (5.2) or

(5.3).

Given a candidate state |ψ〉 ∈ C6 we will derive (Step 1) that the smaller subsystem

must reside in a totally mixed state which implies that the unknown state |ψ〉 ∈ C6 is

maximally entangled,

|ψ〉 =
1
√
2

(
|0z〉 ⊗ |D〉+ |1z〉 ⊗ |D

⊥〉
)
, (5.4)
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with any two orthogonal states |D〉, |D⊥〉 ∈ C3.

Then we will show (Step 2) that the states |D〉 and |D⊥〉 are given by two states either

of the basis By or of Bw, displayed in Eqs. (3.17). Calling these states |H〉 and |H⊥〉,

a total of twelve candidates remains, namely

|ψ〉 =
1
√
2

(
|0z〉 ⊗ |H〉+ |1z〉 ⊗ |H

⊥〉
)
. (5.5)

However, any state |ψ〉 of the form (5.5) will turn out to be incompatible with some

MU conditions not used so far (Step 3).

Step 1: Fix the values of j and a in Eqs. (5.2). Summing over J leads to six equations

2∑

J=0

|〈ja, Ja|ψ〉|
2 = 〈ja|

[
trB|ψ〉〈ψ|

]
|ja〉 = 〈ja|ρA|ja〉 =

1

2
, (5.6)

which are sufficient to determine the components of the Bloch vector ~n of ρA = (IA +

~n ∙~σ)/2. Since the spin components are given by σa = |0a〉〈0a|− |1a〉〈1a|, one finds that

na ≡ trA
[
σaρA

]
= 0 , a = x, y, z , (5.7)

which means that the smaller subsystem must reside in the maximally mixed state,

ρA ≡ trB|ψ〉〈ψ| =
1

2
IA . (5.8)

Summing Eqs. (5.3) over J , with j and a fixed, results in the same six equations

〈ja|ρA|ja〉 = 1/2, hence Eq. (5.8) holds in this case as well.

Next, the Schmidt decomposition of a state |ψ〉 ∈ C6 reads

|ψ〉 = λ1|c〉 ⊗ |C〉+ λ2|c
⊥〉 ⊗ |C⊥〉 (5.9)

where
{
|c〉, |c⊥〉

}
and

{
|C〉, |C⊥〉, |C⊥⊥〉

}
are appropriately chosen orthonormal bases

of the spaces C2 and C3 respectively, while λ1,2 are two positive numbers satisfying

λ21 + λ22 = 1. Eq. (5.8) implies that these coefficients must be equal so that λ1 =

λ2 = 1/
√
2 follows. Consequently, we are free to identify the basis

{
|c〉, |c⊥〉

}
with

the standard basis
{
|0z〉, |1z〉

}
of C2, at the expense of using a different orthonormal
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basis
{
|D〉, |D⊥〉, |D⊥⊥〉

}
of C3, unitarily equivalent to

{
|C〉, |C⊥〉, |C⊥⊥〉

}
. Thus, the

candidates for states MU to three product bases must be maximally entangled ones,

|ψ〉 =
1
√
2

(
|0z〉 ⊗ |D〉+ |1z〉 ⊗ |D

⊥〉
)
. (5.10)

This result agrees with a known result: if a complete set of seven MU bases in dimension

six contains three MU product bases then all states of the remaining four MU bases

are maximally entangled [93].

Step 2: Now consider the reduced density matrix for the larger subsystem (with label

B),

ρB =
1

2

(
|D〉〈D|+ |D⊥〉〈D⊥|

)
, (5.11)

which has eigenvalues (1/2, 1/2, 0), in agreement with those of ρA in (5.8), except for

a padded zero. The requirement that the state |ψ〉 be MU to the states
{
|jz, Jz〉

}
and

{
|jx, Jx〉

}
, which appear in both triples, imposes restrictions on the states |D〉 and

|D⊥〉. Summing the conditions in (5.2) and (5.3) over all values of j while keeping J

fixed, one obtains six further constraints now on the density matrix ρB,

1∑

j=0

|〈ja, Ja|ψ〉|
2 = 〈Ja|

[
trA|ψ〉〈ψ|

]
|Ja〉 ≡ 〈Ja|ρB|Ja〉 =

1

3
, (5.12)

where J = 0, 1, 2 and a = x, z, similar in spirit to Eqs. (5.6). However, these expecta-

tion values are not sufficient to reconstruct the reduced density matrix ρB. Nevertheless,

one can draw the important conclusion that

∣
∣〈Ja|D

⊥⊥〉
∣
∣2 =

1

3
, J = 0, 1, 2, a = x, z . (5.13)

To see this, use the resolution of the identity in terms of the D-basis of C3 to rewrite

(5.11) as

ρB =
1

2

(
IB − |D

⊥⊥〉〈D⊥⊥|
)

(5.14)

and calculate its expectation value in the state |Ja〉.

Eqs. (5.13) tell us that the state |D⊥⊥〉 is MU to the states of the MU bases Bx and

Bz of C3. This leaves only a small number of possibilities for the state |D⊥⊥〉: it must

coincide with one of the six vectors |Jy〉, |Jw〉, J = 0, 1, 2, which form By and Bw, since
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– as shown in [18] – these are indeed the only states in C3 MU to the pair Bz and Bx.

Letting |D⊥⊥〉 ≡ |H⊥⊥〉, where |H⊥⊥〉 is any of the six states in By ∪ Bw, the states |D〉

and |D⊥〉 must be linear combinations of |H〉 and |H⊥〉. After removing overall phase

factors, we can thus write

|D〉 = cos ϑ2 |H〉+ e
iφ sin ϑ2 |H

⊥〉 ,

|D⊥〉 = sin ϑ2 |H〉 − e
iφ cos ϑ2 |H

⊥〉 ,
(5.15)

with two real parameters ϑ ∈ [0, π], and φ ∈ [0, 2π). Projecting the candidate |D〉

given in (5.15) onto the states |Jz〉, J = 0, 1, 2, produces three constraints on the free

parameters:
∣
∣〈Jz|D〉

∣
∣2 ≡

∣
∣〈Jz|

(
cos

ϑ

2
|H〉+ eiφ sin

ϑ

2
|H⊥〉

)∣∣2 =
1

3
. (5.16)

Using
∣
∣〈Jz|H〉

∣
∣2 =

∣
∣〈Jz|H⊥〉

∣
∣2 = 1/3, this equation leads to the conditions

sin
ϑ

2
cos

ϑ

2

(
eiφ〈H|Jz〉〈Jz|H

⊥〉+ c.c
)
=
1

3
sinϑ cos(φ+ μJ) = 0 , (5.17)

where the relation 〈H|Jz〉〈Jz|H⊥〉 ≡ (1/3) eiμJ defines the angles μJ ∈ [0, 2π), J =

0, 1, 2. However, the states |H〉 and |H⊥〉 are orthogonal, which implies that

0 = 〈H|H⊥〉 =
2∑

J=0

〈H|Jz〉〈Jz|H
⊥〉 =

1

3

2∑

J=0

eiμJ , (5.18)

forcing

μJ = μ+
2π

3
J , J = 0, 1, 2 , (5.19)

with some constant μ ∈ [0, 2π). Therefore, Eqs. (5.17) require either sinϑ ≡ 0 or

cos(φ+ μ+
2π

3
J) = 0, J = 0, 1, 2 . (5.20)

Since the zeros of the cosine function occur at intervals of length π (not 2π/3), we con-

clude that ϑ/2 ∈ {0, π/2} are the only values allowed in (5.15). An entirely analogous

argument leads to the same conclusion if we consider the state |D⊥〉 defined in (5.15)

instead of |D〉.

Thus, we have shown that there are only two cases in which the requirements of (5.2)

or (5.3) are satisfied: we must have either

|D〉 = |H〉 and |D⊥〉 = −eiφ|H⊥〉 , (5.21)
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or

|D〉 = eiφ|H⊥〉 and |D⊥〉 = |H〉 . (5.22)

In both cases, the phase factors may be absorbed into the definition of the state |H⊥〉,

which leaves us with two possible candidates being MU to the three product bases in

T0 or T1, namely

|ψ〉 =
1
√
2

(
|0z〉 ⊗ |H〉+ |1z〉 ⊗ |H

⊥〉
)
, (5.23)

and the state obtained from swapping |H〉 with |H⊥〉. Consequently, the requirement

of the state |D⊥⊥〉 to be a member of By or Bw implies that the states |D〉 and |D⊥〉

must coincide with the two other members of the same basis. Overall, we have indeed

reduced the possible states mutually unbiased to T0 or T1 to twelve entangled states

listed in Eq. (5.5).

Step 3: Finally, we show that states |ψ〉 of the form (5.23) are not MU to the states

|1x, Jx〉, J = 0, 1, 2, which are present in both product triples, T0 and T1. The mechanics

to produce this contradiction is similar to the one given at the end of Step 2.

To begin, let us consider the state |ψ〉 in (5.23): the conditions

1

2

∣
∣
∣〈1x, Jx|

(
|0z〉 ⊗ |H〉+ |1z〉 ⊗ |H

⊥〉
)
〉
∣
∣
∣
2
=
1

6
(5.24)

lead to

〈H|Jx〉〈Jx|H
⊥〉+ 〈H⊥|Jx〉〈Jx|H〉 = 0 . (5.25)

Upon writing 〈H|Jx〉〈Jx|H⊥〉 ≡ (1/3) eiνJ , one obtains

cos

(

ν +
2π

3
J

)

= 0 , J = 0, 1, 2 , (5.26)

where we have used the fact that the orthogonality of the states |H〉 and |H⊥〉 restricts

the values of the phases νJ in analogy to Eqs. (5.19). However, the three equations in

(5.26) cannot hold simultaneously, and the state |ψ〉 in (5.23) is found not to be MU

to the given three product bases. This completes the proof that there is not a single

state mutually unbiased to the triple T0 or T1.
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5.2 An unextendible MU product constellation

We now marginally strengthen Theorem 3.6.1 by considering the constellation {5, 5, 4}⊗6

which consists of two product bases (five orthonormal rays in C6 determine a unique

sixth state so that it is not listed in this notation), and a set S of four orthogonal

product states.

Theorem 5.2.1. The product constellation {5, 5, 4}⊗6 cannot be part of a complete set

of seven MU bases.

This result is an immediate consequence of the following lemma, the proof of which will

form the main part of this section.

Lemma 5.2.2. The product constellation {5, 5, 4}⊗6 extends to a triple of MU bases

only by adding product states.

If the product constellation {5, 5, 4}⊗6 was part of a complete set of seven MU bases,

Lemma 5.2.2 would imply that the complete set must contain a triple of MU product

bases, contradicting Theorem 3.6.1.

To prove Lemma 5.2.2, we need the complete list of pairs of MU product bases obtained

in Theorem 3.5.1, i.e.

P0 = {|jz, Jz〉; |jx, Jx〉} ,

P1 = {|jz, Jz〉; |0x, Jx〉, |1x, R̂ξ,ηJx〉} ,

P2 = {|0z, Jz〉, |1z, Jy〉; |0x, Jx〉, |1x, Jw〉} ,

P3 = {|0z, Jz〉, |1z, Ŝζ,χJz〉; |jx, 0x〉, |r̂σjx, 1x〉, |r̂τ jx, 2x〉} . (5.27)

The four product states in S must be MU to one of these pairs. However, we can

exclude the pairs P2 and P3 since no product state can be MU to either pair, as follows

from Theorem 3.3.2 given in Sec. 3.3. The pair P2 contains a complete set of four

MU bases for the space C3 which means there is no other product state MU to P2.

Similarly, no state in C2 is MU to the bases {|jz〉}, {|jx〉} and {|r̂σjx〉}, (r̂σ 6= Î),
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and therefore no product state MU to P3 exists. Thus, the two MU bases of any MU

product constellation of the form {5, 5, 4}⊗6 are given by either of the pairs P0 or P1.

We now use Theorems 3.3.2 and 3.5.1 to limit the form of the four states which make

up the set S. Since there are only three MU bases in C2, the first factor of each of the

four states in S must be either |0y〉 or |1y〉, giving rise to only two possibilities, either

S1 = {|0y, A〉, |0y, A
⊥〉, |0y, A

⊥⊥〉, |1y, B〉} (5.28)

or

S2 = {|0y, A〉, |0y, A
⊥〉, |1y, B〉, |1y, B

⊥〉}, (5.29)

where {|A〉, |A⊥〉, |A⊥⊥〉} and {|B〉, |B⊥〉, |B⊥⊥〉} denote two orthonormal bases in C3.

The crucial point here is to observe that both |0y〉 and |1y〉 can occur at most three

times as a factor – otherwise the states in S could not be orthogonal. Each state of the

set S must be MU to all states of either P0 or P1, which implies that any one of the

six states |A〉, . . . , |B⊥⊥〉, occurring in (5.28) or (5.29) must be MU to the bases Bz and

Bx. This requirement limits the states to members of the bases By or Bw.

The states |1y, B⊥〉 and |1y, B⊥⊥〉 are orthogonal to the quadruple (5.28), as are their

linear combinations,

|ψ1〉 = α|1y, B
⊥〉+ β|1y, B

⊥⊥〉 ≡ |1y〉 ⊗ (α|B
⊥〉+ β|B⊥⊥〉) , (5.30)

with |α|2 + |β|2 = 1. Hence, adding any two orthogonal states from this family to the

set S1 in (5.28) produces a MU product basis.

Any orthonormal state extending the set S2 in (5.29) can be written as

|ψ2〉 = α|0y, A
⊥⊥〉+ β|1y, B

⊥⊥〉, (5.31)

which is entangled unless |A⊥⊥〉 = |B⊥⊥〉 or one of the constants α and β is zero. We

now show that the state |ψ2〉 cannot be entangled if it is to satisfy the MU conditions

|〈0z, Jz|ψ2〉|
2 =
1

6
, J = 0, 1, 2 . (5.32)

Write |A⊥⊥〉 = (ω0|0z〉+ω1|1z〉+ω2|2z〉)/
√
3 and |B⊥⊥〉 = (ω′0|0z〉+ω

′
1|1z〉+ω

′
2|2z〉)/

√
3,

where ω0 = ω′0 = 1 and each of the four coefficients ω1, . . . , ω
′
2 is a third root of unity
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such that the states |A⊥⊥〉 and |B⊥⊥〉 coincide with any two different states of the bases

By and Bw. Then, the MU conditions in (5.32) turn into

αβ∗〈Jz|A
⊥⊥〉〈B⊥⊥|Jz〉+ α

∗β〈Jz|B
⊥⊥〉〈A⊥⊥|Jz〉 = 0 , J = 0, 1, 2 , (5.33)

or explicitly,

αβ∗ωJω
∗
J
′ + α∗βω∗Jω

′
J = 0 , J = 0, 1, 2 . (5.34)

For J = 0, we find the relation

αβ∗ + α∗β = 0 , (5.35)

which, when used in (5.34), leads to

αβ∗(ωJω
∗′
J − ω

∗
Jω
′
J) = 0 , J = 1, 2 . (5.36)

However, these constraints on the phase factors cannot be satisfied by any allowed

choice of the pair of states |A⊥⊥〉 and |B⊥⊥〉 with |A⊥⊥〉 6= |B⊥⊥〉. Thus, either α or β

must equal zero, and we conclude that |ψ2〉 is a product state. This completes the proof

of Lemma 5.2.2.

5.3 Summary

The main result of this chapter is an analytical proof that no vector is MU to any

triple of MU product bases, i.e. Theorem 3.6.1. Our approach exploits the structure of

MU product bases in a novel fashion, and it is entirely independent of any computer

algebraic methods. Thus, we consider it to be a worthy addition to the few existing

analytic results on MU bases in dimension six.

Results stronger than Theorem 3.6.1 are known which exclude a wider class of MU

bases from complete sets. For example, the proof that the Heisenberg-Weyl pair of

bases {|jz, Jz〉} and {|jx, Jx〉} is MU to at most one further basis [34] and the numerical

search for bases mutually unbiased to the Fourier family [45]. However, these both rely

on a computer in one way or another.
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It is worth recalling that a hypothetical complete set of MU bases in dimension six

will contain at most one product basis as shown in the previous chapter. While this

is a stronger statement than the one obtained here, the proof depends on a numerical

search with rigorous error bounds [45].

A recent analytic result [62] employs combinatorial and Fourier analytic arguments to

prove that no complete set of MU bases in dimension six will contain both the standard

and Fourier basis. As a consequence, no complete set of MU bases will contain triples

of MU product bases. Whilst this is also a consequence of Theorem 3.6.1, the result

presented here is different since we have shown the impossibility to extend a product

triple by a single MU vector. The result in [62] does not seem to forbid such an

extension.

In order to strengthen Theorem 3.6.1 we also considered a MU product constellation

that is slightly smaller than MU product triples. The resulting Theorem 5.2.1 states

that the product constellation {5, 5, 4}⊗6 cannot be part of a complete set of seven MU

bases. Its derivation relies on an enumeration of all pairs of MU product bases in

dimension six which was given in Section 3.5.1.

To make any stronger statements regarding product constellations seems to be sur-

prisingly difficult. For example, we are not able to show whether a complete set of

seven MU bases contains the MU constellation {5, 4, 4}⊗6 , consisting of one MU prod-

uct basis and two sets of four orthogonal MU product states. The main difficulty is

that the proof of Theorem 5.2.1 relies on Theorem 3.3.2 which does not apply to the

constellation {5, 4, 4}⊗6 .
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Chapter 6

Isolated complex Hadamard

matrices

In this chapter a new construction of complex Hadamard matrices of composite order

d = pq, with primes p, q, is presented which is based on pairs of MU bases containing

only product states. For product dimensions d < 100, we illustrate the method by

deriving many previously unknown complex Hadamard matrices. We obtain at least

12 new isolated matrices of Butson-type, with orders ranging from 9 to 91.

The method we use to construct Hadamard matrices originates from earlier studies on

pairs of MU product bases in dimension six presented in Chapters 3 and 4. Generalising

this method from d = 2 × 3 to composite dimensions d = pq, we establish a general

construction method resulting in previously undiscovered complex Hadamard matrices.

The chapter is organised as follows: In Section 6.1 we summarise those properties of

complex Hadamard matrices which we will use in later sections. Section 6.2 includes

our first main result, Theorem 6.2.1, which describes a general construction for complex

Hadamard matrices of size d = pq. In Section 6.3 we apply Theorem 6.2.1 to find new

complex Hadamard matrices for d ≤ 15. We briefly touch upon higher dimensions as

well as potential generalisations of the construction in Section 6.4. Section 6.5 contains

a summary of our results.
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6.1 Complex Hadamard matrices refresher

As we have already discussed (see Section 2.2), MU bases in a finite-dimensional Hilbert

space Cd are closely related to complex Hadamard matrices of order d. Given a set of

(r + 1) MU bases in standard form {I,B1, . . .Br}, where I is the standard basis, the

bases B1, . . . ,Br are represented by (d × d) complex Hadamard matrices, H1, . . . ,Hr.

Here the vectors of each basis form the columns of a matrix. Since these matrices are

MU to the identity matrix, their matrix elements have modulus 1/
√
d.

It is often the case that a single Hadamard matrix is contained in a subset of a larger

continuous family of complex Hadamard matrices. The defect d(H) of a Hadamard

matrix H, defined in [88], provides an upper bound on the dimensionality of any set of

Hadamard matrices stemming from H. If a dephased Hadamard matrix has a defect of

zero then the matrix is called isolated, expressing the fact that all complex Hadamard

matrices in a neighbourhood of H are equivalent. To calculate the defect of H, we

multiply all elements of the Hadamard matrix with independent phase factors, i.e.

Hij → eaijHij for i, j = 2 . . . d, and solve the set of equations, to first order, which are

imposed by the unitarity condition (see [10] for an explicit example). For all but the

smallest dimensions d or special cases, it seems imperative to use a computer program

in order to determine the defect; the software we have used is MATLAB [1]. The

defect provides only a weak upper bound on the dimensionality of a Hadamard family;

higher-order solutions of the unitarity conditions often lead to stronger bounds [8].

6.1.1 Known constructions in composite dimensions

There are many known constructions of complex Hadamard matrices (e.g. [21]), some

of which apply only to specific dimensions. We briefly review two constructions of

(affine) complex Hadamard matrices based on the tensor product of smaller matrices

following [86].

Theorem 6.1.1. (Hosoya-Suzuki [40]) Let M1,M2, . . . ,Mv be k×k, N1, N2, . . . , Nk be

v×v complex Hadamard matrices. Then the generalised tensor product matrix, denoted
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by Q = (M1,M2, . . . ,Mv)⊗ (N1, N2, . . . , Nk), whose (i, j)th block is given by the matrix

Qij = diag([M1]ij , [M2]ij , . . . , [Mv]ij)Nj, is a complex Hadamard matrix of order vk.

By using a simpler version of this tensor product structure, these matrices can be

parameterised, i.e. embedded in larger families of Hadamard matrices.

Corollary 6.1.2. (Diţǎ [28]) Let M = (mij) be a k × k and N1, N2, . . . , Nk be v ×

v dephased complex Hadamard matrices with m and n1, n2, . . . , nk free parameters,

respectively, and let D2, . . . , Dk be v × v unitary diagonal matrices each containing

(v − 1) free parameters. Then the block matrix

Q =








m11N1 m12D2N2 . . . m1kDkNk
...

mk1N1 mk2D2N2 . . . mkkDkNk







, (6.1)

is a complex Hadamard matrix of order vk with m +
∑k
i=1 ni + (k − 1)(v − 1) free

parameters.

Any matrix which can be derived from Corollary 6.1.2 is called a Di̧tǎ-type complex

Hadamard matrix.

6.1.2 Butson-type complex Hadamard matrices

We finally recall a special class of Hadamard matrices called Butson-Hadamard matri-

ces.

Definition 6.1.3. A complex Hadamard matrix of order d is a Butson-Hadamard ma-

trix BH(d, r) if its elements are rth roots of unity, apart from a factor 1/
√
d.

It is straightforward to show that a Hadamard matrix is (equivalent to one) of Butson-

type BH(d, r): once dephased, all its matrix elements must be rth roots of unity.

The simplest examples of Butson-type matrices occur when r = 2; in this case the

matrices BH(d, 2) are the set of (d × d) real Hadamard matrices. The existence of

BH(d, r) matrices for arbitrary values of d and r is still an open problem; it remains
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unknown, for example, if real Hadamard matrices of the form B(4n, 2) exist for all

integers n. A summary of existing Butson-Hadamard matrices with fourth and sixth

roots of unity can be found in [86] and the known BH(d, r) matrices for d ≤ 16 are

given in [21]. There are also several existence theorems for BH(d, r) matrices, e.g.

Theorem 6.1.4. (Butson [24]) When p is prime, a BH(2p, p) matrix can be con-

structed.

For p = 3, the matrix BH(6, 3) turns out to be the isolated matrix S6, which was

also found independently in [65, 89]. We have derived the matrices B10 ∈ BH(10, 5)

and B14 ∈ BH(14, 7) following Butson’s method (see Appendix D) since they will be

important in the present context and seem to be unavailable in the literature.

Butson-Hadamard matrices will appear in Sections 6.3 and 6.4, where we derive previ-

ously unknown examples of complex Hadamard matrices of orders up to 91. Most of

these examples cannot be constructed from Theorem 6.1.4.

6.2 Complex Hadamard matrices from pairs of MU prod-

uct bases

The following theorem shows how to construct a complex Hadamard matrix of order

d = pq where p and q are both prime, using sets of MU bases in dimensions p and q.

Theorem 6.2.1. Suppose that K0, . . . ,Kp−1 and L0, . . . , Lp−1 are unitary matrices of

order q such that K†mLn are complex Hadamard matrices for all m,n = 0, . . . , p − 1,

i.e. Km is MU to Ln, and let αij/
√
p be the (i, j)th element of a complex Hadamard

matrix M of order p, with |αij | = 1. Then the block matrix Hpq given by

Hpq =
1
√
p














α11K
†
0L0 α12K

†
0L1 . . . α1pK

†
0Lp−1

α21K
†
1L0 α22K

†
1L1 . . . α2pK

†
1Lp−1

α31K
†
2L0 α32K

†
2L1 . . . α3pK

†
2Lp−1

...

αp1K
†
p−1L0 αp2K

†
p−1L1 . . . αppK

†
p−1Lp−1














(6.2)
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is a complex Hadamard matrix of order pq.

The theorem follows easily from factorising the matrix Hpq such that Hpq = B
†
1B2,

where

B1 =











K0 0 . . . 0

0 K1 . . . 0
...

...
. . .

...

0 0 . . . Kp−1











(6.3)

and

B2 =











α11L0 α12L1 . . . α1pLp−1

α21L0 α22L1 . . . α2pLp−1
...

...
...

αp1L0 αp2L1 . . . αppLp−1











. (6.4)

The column vectors of the unitary matrices B1 and B2 form a pair of MU bases since

the block matrices Km are MU to Ln, i.e. K
†
mLn are complex Hadamard matrices for

all m,n = 0, . . . , p − 1. Thus, by mapping B1 to the identity matrix using the unitary

transformation B†1, the matrix B2 is simultaneously mapped to B
†
1B2 = Hpq, which is

a complex Hadamard matrix. This completes the proof of Theorem 6.2.1.

In fact, the matrices B1 and B2 correspond to a pair of MU product bases where the

columns of B1 and B2 form the vectors of each basis. We can write the pair of matrices

B1 and B2 as the orthonormal bases

B1 =
{
|0z〉 ⊗ K0, |1z〉 ⊗ K1, . . . , |(p− 1)z〉 ⊗ Kp−1

}
(6.5)

and

B2 =
{
|0a〉 ⊗ L0, |1a〉 ⊗ L1, . . . , |(p− 1)a〉 ⊗ Lp−1

}
, (6.6)

respectively, where |mz〉 ⊗ Km denotes the tensor product of a state |mz〉 from the

standard basis of Cp with all states from a basis Km of the space Cq corresponding

to the matrix Km. Similarly, |na〉 ⊗ Ln is defined such that |na〉 is a state in Cp

corresponding to the nth column vector of the (p× p) Hadamard matrix M , and Ln is

a basis of Cq corresponding to the matrix Ln. Thus, by mapping B1 to the standard

basis, the columns of the second basis B2 form the complex Hadamard matrix Hpq.
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To simplify the matrix Hpq we perform equivalence transformations on the pair of MU

bases {B1,B2} such that K0 and L0 are mapped to the standard and Fourier basis

of Cq respectively, and the orthonormal basis {|0a〉, . . . , |(p − 1)a〉} is mapped to the

Fourier basis of Cp, i.e. K0 ≡ Iq, L0 ≡ Fq and M ≡ Fp, with Iq the (q × q) identity

matrix, and Fp, Fq, being the Fourier matrices of order p and q respectively. Since

B1 is MU to B2, the set {Iq,K1,K2, . . . ,Kp−1} is MU to {Fq, L1, . . . , Lp−1}, and as a

consequence, L1, . . . , Lp−1 are complex Hadamard matrices. We will continue to use

the simplification M ≡ Fp, K0 ≡ Iq and L0 ≡ Fq throughout.

In the trivial case of K1 = . . . = Kp−1 = Iq, one can choose each matrix Ln to be a

(q− 1)-parameter family DFq where D = diag(1, ea
n
1 , . . . , ea

n
q−1) for each n > 0. In this

case, Hpq is a (p− 1)(q − 1)-parameter family of complex Hadamard matrices.

In the following section we will show that for certain choices of the (q × q) matrices

K1, . . . ,Kp−1, L1, . . . , Lp−1, the matrix Hpq given in Theorem 6.2.1 supplies new ex-

amples of Hadamard matrices. Most of the matrices we find will be isolated, which

is sufficient to confirm that Theorem 6.2.1 produces matrices not of Diţǎ-type: every

Diţǎ-type matrix is embedded within a family depending on at least (k− 1)(v− 1) free

parameters, with k, v > 1.

6.3 Examples: d ≤ 15

We will now use the construction given in Theorem 6.2.1 to find complex Hadamard

matrices of composite dimensions d = pq, with prime numbers p ≤ q. In this section,

we limit ourselves to matrices of order d ≤ 15 with p ≤ q. Larger dimensions and

possible generalisations of the construction will be considered briefly in Sec. 6.4.

6.3.1 Dimension four

In dimension four, all inequivalent complex Hadamard matrices are given by the one-

parameter family F4(a), a ∈ [0, π] which can be found in [19, 35]. We re-derive this
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family from Theorem 6.2.1 using the block matrix,

H4 =
1
√
2




F2 L1

K
†
1F2 −K

†
1L1



 , (6.7)

where

F2 ≡
1
√
2




1 1

1 −1



 (6.8)

is the (2 × 2) Fourier matrix and L1,K1 are specific unitary matrices of order two; to

apply Theorem 6.2.1 it is necessary that the set {I2,K1} is MU to {F2, L1}.

If K1 is chosen as the identity, then L1 can take the form

L1(a) =
1
√
2




1 1

eia −eia



 , (6.9)

where the column vectors of L1 are indeed MU to the standard basis; an overall phase

factor has been removed using equivalence transformations. Thus, H4 turns into a

one-parameter family of complex Hadamard matrices,

H4(a) =
1
√
2




F2 L1(a)

F2 −L1(a)



 . (6.10)

By permuting rows it is easily shown that H4(a) is equivalent to the one-parameter

Fourier family F4(a). One can exchange K1 with L1 but the resulting family is still

equivalent to F4(a); no other choices are possible. Note that in the four-dimensional

case, F4(a) is equivalent to the transposed Fourier family (F4(a))
T , a relation that does

not always hold for larger composite dimensions.

6.3.2 Dimension six

In Chapter 4, pairs of MU product bases of the form B1 = {|0z〉 ⊗ K0, |1z〉 ⊗ K1} and

B2 = {|0x〉 ⊗ L0, |1x〉 ⊗ L1} were shown to give rise to the transposed Fourier family of

complex Hadamard matrices and the isolated matrix S6 ∈ BH(6, 3). Here we rederive

this result on the basis of Theorem 6.2.1 where we start with the following (6 × 6)
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matrix

H6 =
1
√
2




F3 L1

K
†
1F3 −K

†
1L1



 , (6.11)

where F3 is the (3 × 3) Fourier matrix defined in Eq. (3.16) and K1, L1 are unitary

matrices of order three. The bases B1 and B2 will be MU if the pair {I3,K1} is MU

to the pair {F3, L1}. A proof given in Appendix C limits the possible choices for the

matrices K1 and L1 to just three: (i) K1 = I3; (ii) L1 = F3; and (iii) all four matrices

are pairwise MU.

If K1 = I3, the most general set of matrices satisfying the MU conditions is a two-

parameter set,

L1(a, b) =
1
√
3








1 1 1

eia ωeia ω2eia

eib ω2eib ωeib







. (6.12)

Thus, H6 becomes a two-parameter family of complex Hadamard matrices which is

equivalent to the transposed Fourier family (F
(2)
6 )

T .

If all four matrices I3, F3,K1 and L1 are MU then K1 = Hy and L1 = Hw or vice versa,

with Hy and Hw defined in Eq. (3.17). Here, {I3, F3,Hy,Hw} is the complete set of

MU bases in C3. The complex Hadamard matrix H6 in (6.11) associated with K1 = Hy

and L1 = Hw is equivalent to S6, the only known isolated complex Hadamard matrix

of order six.

Thus, we have indeed constructed the transposed Fourier family of complex Hadamard

matrices and the isolated matrix S6 from Theorem 6.2.1. There are many more

Hadamard matrices of order six, including three- and four-parameter families, as de-

scribed in Section 2.2, but none of these can be derived from Theorem 6.2.1.

6.3.3 Dimension nine

The online catalogue [21] lists three types of complex Hadamard matrices of order nine:

the four-parameter Fourier family F
(4)
9 , the isolated matrix N9 [9], and the matrix B9

which has a defect of two [9]. Three Butson-Hadamard matrices are among these,
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namely F3⊗F3 ∈ BH(9, 3), F9 ∈ BH(9, 9) and B9 ∈ BH(9, 10). Theorem 6.2.1 allows

us to identify an additional isolated Butson-Hadamard matrix of the form BH(9, 6).

The matrix in Eq. (6.2), for d = 9, has the structure

H9 =
1
√
3








F3 L1 L2

K
†
1F3 ωK

†
1L1 ω2K

†
1L2

K
†
2F3 ω2K

†
2L1 ωK

†
2L2







, (6.13)

where ω = e2πi/3 is a third root of unity, and the matrices I3 and F3 are the (3 × 3)

identity and Fourier matrix, respectively. The (3×3) matrices K1,K2, L1 and L2 must

be chosen such that the set {I3,K1,K2} is MU to {F3, L1, L2}.

In the six-dimensional case (cf. Sec 6.3.2), the choice of pairs {I,K1} and {F3, L1} was

limited to either two matrices having identical columns (up to column permutations)

or all four matrices being MU. Similarly, the choices for the triples {I3,K1,K2} and

{F3, L1, L2} is restricted to the following two possibilities: (i) three matrices within one

triple are identical (up to column permutations); (ii) two matrices are identical in each

triple and all four MU bases {I3, F3,Hy,Hw} are used.

If all matrices in one triple are the same, i.e. K1 = K2 = I3, then H9 is equivalent to the

transposed Fourier family (F
(4)
9 )

T of order 9, which depends on four real parameters.

Now suppose that K1 = I3 and L1 = F3. The only remaining choice for matrices K2

and L2, (if K2 6= I3), that satisfy the MU conditions is K2 = Hy and L2 = Hw (or vice

versa), with Hy and Hw defined in Eq. (3.17). Denoting the resulting matrix by S9,

we find

S9 =
1
√
3








F3 F3 Hw

F3 ωF3 ω2Hw

H
†
yF3 ω2H

†
yF3 ωH

†
yHw







. (6.14)

After dephasing, the matrix S9 takes the form
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S9 =
1

3



























1 1 1 1 1 1 1 1 1

1 ω ω2 1 ω ω2 ω2 1 ω

1 ω2 ω 1 ω2 ω ω2 ω 1

1 1 1 ω ω ω ω2 ω2 ω2

1 ω ω2 ω ω2 1 ω ω2 1

1 ω2 ω ω 1 ω2 ω 1 ω2

1 ω ω ω2 1 1 −ω −1 −1

1 ω2 1 ω2 ω ω2 −ω2 −1 −ω2

1 1 ω2 ω2 ω2 ω −ω2 −ω2 −1



























, (6.15)

where ω = e2πi/3 is a third root of unity. Due to the negative signs in the bottom

right block, S9 is a Butson-Hadamard matrix containing sixth roots of unity, i.e. S9 ∈

BH(9, 6). We find the defect of this matrix to be d(S9) = 0 implying that S9 is isolated.

Proposition 6.3.1. The matrix S9 is inequivalent to F
(4)
9 , B9 and N9.

Since F
(6)
9 and B9 have non-zero defects and N9 contains only tenth roots of unity, it

is clear that S9 is inequivalent to any known complex Hadamard matrix in dimension

d = 9. The only other isolated complex Hadamard matrix known for d = 9, i.e. N9,

was found by a numerical search in [9]. As far as we are aware, the matrix S9 has not

been published previously.

6.3.4 Dimension ten

The known Hadamard matrices in dimension ten include the Fourier family F
(4)
10 and its

transpose (F
(4)
10 )

T , the family D
(8)
10 found by Diţǎ [29] and a family D

(3)
10 stemming from

D10 [84]. There is also an isolated matrix N10A, a family N
(3)
10B found originally in [9]

and parameterised in [57], and G
(1)
10 [57]. Furthermore, there are the Butson-Hadamard

matrices X10 ∈ BH(10, 5) [7] andW ′ ∈ BH(10, 6) [27]. Within the continuous families,

several Butson-type matrices exist: D10 ∈ BH(10, 4), F2 ⊗ F5 ' F10 ∈ BH(10, 10),

and those contained in D
(8)
10 , e.g. H

(ω)
10 , d

(ω)
10 ∈ BH(10, 6) given in [29].
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In the following, we construct a complex Hadamard matrix of Butson-type based on

the block matrix

H10 =
1
√
2




F5 L1

K
†
1F5 −K

†
1L1



 , (6.16)

where it is necessary that the pair of (5 × 5) matrices {I5,K1} is MU to the pair of

(5× 5) matrices {F5, L1}. Here, I5 is the identity matrix and F5 the Fourier matrix,

F5 ≡
1
√
5














1 1 1 1 1

1 ω ω2 ω3 ω4

1 ω2 ω4 ω ω3

1 ω3 ω ω4 ω2

1 ω4 ω3 ω2 ω














, (6.17)

with ω = e2πi/5 a fifth root of unity. Assuming that K1 and L1 are not identical

to I5 and F5, respectively, one choice is to require that the matrices within the set

{I5, F5,K1, L1} are pairwise MU.

In dimension five, the complete set of six MU bases can be written as

{I5, F5,H1,H2,H3,H4}, (6.18)

where Hi are the complex Hadamard matrices of order five given by

H1 = DF5, H2 = D
2F5, H3 = D

3F5, H4 = D
4F5, (6.19)

and with a diagonal matrix,

D = diag(1, ω, ω4, ω4, ω). (6.20)

This characterisation of the complete set of MU bases is based on a construction in [19].

By choosing K1 = H3 and L1 = H4, the matrix H10 becomes

S10 =
1
√
2




F5 H4

H
†
3F5 −H

†
3H4



 , (6.21)
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which has the dephased form

S10 =
1
√
10






























1 1 1 1 1 1 1 1 1 1

1 ω ω2 ω3 ω4 ω4 1 ω ω2 ω3

1 ω2 ω4 ω ω3 ω ω3 1 ω2 ω4

1 ω3 ω ω4 ω2 ω ω4 ω2 1 ω3

1 ω4 ω3 ω2 ω ω4 ω3 ω2 ω 1

1 ω3 ω2 ω2 ω3 1 ω ω4 ω4 ω

1 ω2 1 ω4 ω4 ω3 ω2 ω3 ω ω

1 ω ω3 ω 1 ω2 ω4 ω3 ω4 ω2

1 1 ω ω3 ω ω2 ω2 ω4 ω3 ω4

1 ω4 ω4 1 ω2 ω3 ω ω ω3 ω2






























, (6.22)

where ω = e2πi/5 is a fifth root of unity.

Proposition 6.3.2. The matrix S10 is inequivalent to F
(4)
10 , (F

(4)
10 )

T , D
(3)
10 , D

(8)
10 , N10A,

N
(3)
10B, G

(1)
10 and W

′.

The matrix S10 is found to be isolated and contains only fifth roots of unity, therefore

it is inequivalent to any of the complex Hadamard matrices listed in the proposition.

However, we have not been able to show whether it is equivalent (or not) to the isolated

Butson-type matrix X10 ∈ BH(10, 5) or the matrix B10 given in Appendix D.

A different choice of the matrices K1 and L1, for example, K1 = H1 and L1 = H2,

leads to the block matrix

S′10 =
1
√
2




F5 H2

H
†
1F5 −H

†
1H2



 , (6.23)
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which in dephased form is given by

S′10 =
1
√
10






























1 1 1 1 1 1 1 1 1 1

1 ω ω2 ω3 ω4 ω2 ω3 ω4 1 ω

1 ω2 ω4 ω ω3 ω3 1 ω2 ω4 ω

1 ω3 ω ω4 ω2 ω3 ω ω4 ω2 1

1 ω4 ω3 ω2 ω ω2 ω 1 ω4 ω3

1 ω4 ω ω ω4 −1 −ω −ω4 −ω4 −ω

1 ω 1 ω2 ω2 −ω2 −ω −ω2 −1 −1

1 ω3 ω4 ω3 1 −ω3 −1 −ω4 −1 −ω3

1 1 ω3 ω4 ω3 −ω3 −ω3 −1 −ω4 −1

1 ω2 ω2 1 ω −ω2 −1 −1 −ω2 −ω






























, (6.24)

with ω = e2πi/5 a fifth root of unity. This matrix is a member of the family BH(10, 10)

and, with a defect d(S′10) = 8, the maximum dimension of any smooth manifold stem-

ming from S′10 will be eight. Several other matrices of the form BH(10, 10) exist but

we are not able to determine whether S′10 is equivalent to any of them.

Any choice of K1 and L1 from the set of MU bases {F5,H1,H2,H3,H4} will result in

a Butson-type matrix of the form BH(10, 5) or BH(10, 10). It would be interesting to

see if the various combinations of K1 and L1 result in further new inequivalent complex

Hadamard matrices.

6.3.5 Dimension fourteen

The known complex Hadamard matrices of order fourteen are the six-parameter Fourier

family F
(6)
14 and its transpose (F

(6)
14 )

T , the family D
(6)
14 found in [84], and a set of at

least eight isolated matrices L
(0)
14X found in [57]. In addition, there are several Diţǎ-

type matrices, listed in [21], obtained from Diţǎ’s method of Corollary 6.1.2 using the

Fourier matrix F2 and any Hadamard matrix of order seven.

The matrix we construct from Theorem 6.2.1 consists of four blocks,

H14 =
1
√
2




F7 L1

K
†
1F7 −K

†
1L1



 , (6.25)
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where the Fourier matrix of order seven is given by

F7 =
1
√
7




















1 1 1 1 1 1 1

1 ω ω2 ω3 ω4 ω5 ω6

1 ω2 ω4 ω6 ω ω3 ω5

1 ω3 ω6 ω2 ω5 ω ω4

1 ω4 ω ω5 ω2 ω6 ω3

1 ω5 ω3 ω ω6 ω4 ω2

1 ω6 ω5 ω4 ω3 ω2 ω




















, (6.26)

with ω = e2πi/7, and the (7× 7) matrices K1 and L1 are chosen from the complete set

of eight MU bases of the space C7.

Let us denote the complete set of MU bases by {I7, F7,H1,H2,H3,H4,H5,H6} where

Hj = D
jF7 (6.27)

and

D = diag(1, 1, ω, ω3, ω6, ω3, ω), (6.28)

with j = 1, . . . , 6. The diagonal D is based on the construction of a complete sets of

MU bases in prime dimensions presented in [6]. By choosing K1 = H1 and L1 = H2,
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we find a complex Hadamard matrix which, after dephasing, reads explicitly

S14 =
1
√
14









































1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 ω ω2 ω3 ω4 ω5 ω6 1 ω ω2 ω3 ω4 ω5 ω6

1 ω2 ω4 ω6 ω ω3 ω5 ω2 ω4 ω6 ω ω3 ω5 1

1 ω3 ω6 ω2 ω5 ω ω4 ω6 ω2 ω5 ω ω4 1 ω3

1 ω4 ω ω5 ω2 ω6 ω3 ω5 ω2 ω6 ω3 1 ω4 ω

1 ω5 ω3 ω ω6 ω4 ω2 ω6 ω4 ω2 1 ω5 ω3 ω

1 ω6 ω5 ω4 ω3 ω2 ω ω2 ω 1 ω6 ω5 ω4 ω3

1 ω ω3 ω6 ω3 ω 1 ω5 ω5 ω4 ω2 ω6 ω2 ω4

1 1 ω ω3 ω6 ω3 ω ω4 ω5 ω5 ω4 ω2 ω6 ω2

1 ω6 ω6 1 ω2 ω5 ω2 ω ω3 ω4 ω4 ω3 ω ω5

1 ω5 ω4 ω4 ω5 1 ω3 ω3 ω6 ω ω2 ω2 ω ω6

1 ω4 ω2 ω ω ω2 ω4 ω3 1 ω3 ω5 ω6 ω6 ω5

1 ω3 1 ω5 ω4 ω4 ω5 ω ω6 ω3 ω6 ω ω2 ω2

1 ω2 ω5 ω2 1 ω6 ω6 ω4 ω3 ω ω5 ω ω3 ω4









































, (6.29)

with ω = e2πi/7. This is an isolated Butson-type complex Hadamard matrix of the form

BH(14, 7).

Proposition 6.3.3. The matrix S14 is inequivalent to F
(6)
14 , (F

(6)
14 )

T , D
(5)
14 , L

(0)
14X and

every Di̧tǎ-type matrix given in [21].

Since S14 and L
(0)
14X contain different roots of unity they are inequivalent. All other

known matrices listed in the proposition are contained in families of complex Hadamard

matrices, thus, they are inequivalent to S14. However, it is not known whether S14 is

equivalent to the Butson-Hadamard matrix B14 given in Appendix D.

We can construct further complex Hadamard matrices by choosing different MU bases
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for K1 and L1, e.g. if K1 = H1 and L1 = H4, the resulting matrix in dephased form is

S′14 =
1
√
14









































1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 ω ω2 ω3 ω4 ω5 ω6 1 ω ω2 ω3 ω4 ω5 ω6

1 ω2 ω4 ω6 ω ω3 ω5 ω4 ω6 ω ω3 ω5 1 ω2

1 ω3 ω6 ω2 ω5 ω ω4 ω5 ω ω4 1 ω3 ω6 ω2

1 ω4 ω ω5 ω2 ω6 ω3 ω3 1 ω4 ω ω5 ω2 ω6

1 ω5 ω3 ω ω6 ω4 ω2 ω5 ω3 ω ω6 ω4 ω2 1

1 ω6 ω5 ω4 ω3 ω2 ω ω4 ω3 ω2 ω 1 ω6 ω5

1 ω ω3 ω6 ω3 ω 1 −ω3 −ω −ω −ω3 −1 −ω6 −1

1 1 ω ω3 ω6 ω3 ω −1 −ω3 −ω −ω −ω3 −1 −ω6

1 ω6 ω6 1 ω2 ω5 ω2 −ω5 −ω6 −ω2 −1 −1 −ω2 −ω6

1 ω5 ω4 ω4 ω5 1 ω3 −ω4 −ω3 −ω4 −1 −ω5 −ω5 −1

1 ω4 ω2 ω ω ω2 ω4 −ω4 −ω −1 −ω −ω4 −ω2 −ω2

1 ω3 1 ω5 ω4 ω4 ω5 −ω5 −1 −ω4 −ω3 −ω4 −1 −ω5

1 ω2 ω5 ω2 1 ω6 ω6 −1 −1 −ω2 −ω6 −ω5 −ω6 −ω2









































,

(6.30)

with ω = e2πi/7. This is a Butson-Hadamard matrix of the form BH(14, 14), and has a

defect of 12. It is unknown if S′14 is equivalent to a BH(14, 14) matrix contained within

an existing family of Hadamard matrices.

6.3.6 Dimension fifteen

The only known complex Hadamard matrices of order fifteen are the eight-parameter

Fourier family F
(8)
15 , stemming from the Fourier matrix F15 ' F3 ⊗ F5 ∈ BH(15, 15),

and the transposed Fourier family (F
(8)
15 )

T . To construct a new (15 × 15) complex

Hadamard matrix by means of Theorem 6.2.1, we use the block matrix

H15 =
1
√
3








F5 L1 L2

K
†
1F5 αK

†
1L1 α2K

†
1L2

K
†
2F5 α2K

†
2L1 αK

†
2L2







, (6.31)

where α = e2πi/3 is a third root of unity, I5, F5,K1,K2, L1 and L2 are (5× 5) matrices

including the identity matrix I5 and the Fourier matrix F5 defined in Eq. (6.17). The

set {I5,K1,K2} is MU to the set {F5, L1, L2}.
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If we use the complete set of six MU bases of the space C5, {I5, F5,H1,H2,H3,H4},

corresponding to K1 = H1, K2 = H2, L1 = H3 and L2 = H4, as defined in Eq. (6.19),

the resulting complex Hadamard matrix becomes

S15 =
1
√
3








F5 H3 H4

H
†
1F5 αH

†
1H3 α2H

†
1H4

H
†
2F5 α2H

†
2H3 αH

†
2H4







. (6.32)

Apart from a factor 1/
√
15, its dephased form reads explicitly























1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 ω3 ω6 ω9 ω12 ω9 ω12 1 ω3 ω6 ω12 1 ω3 ω6 ω9

1 ω6 ω12 ω3 ω9 ω6 ω12 ω3 ω9 1 ω3 ω9 1 ω6 ω12

1 ω9 ω3 ω12 ω6 ω6 1 ω9 ω3 ω12 ω3 ω12 ω6 1 ω9

1 ω12 ω9 ω6 ω3 ω9 ω6 ω3 1 ω12 ω12 ω9 ω6 ω3 1

1 ω12 ω3 ω3 ω12 −ω5 −ω14 −ω11 −ω14 −ω −ω10 −ω −ω4 −ω4 −ω

1 ω3 1 ω6 ω6 −ω2 −ω8 −ω2 −ω14 −ω14 −ω4 −ω13 −ω4 −ω7 −ω7

1 ω9 ω12 ω9 1 −ω8 −ω11 −ω2 −ω11 −ω8 −ω −ω13 −ω7 −ω13 −ω

1 1 ω9 ω12 ω9 −ω8 −ω8 −ω11 −ω2 −ω11 −ω −ω −ω13 −ω7 −ω13

1 ω6 ω6 1 ω3 −ω2 −ω14 −ω14 −ω2 −ω8 −ω4 −ω7 −ω7 −ω4 −ω13

1 ω6 ω9 ω9 ω6 −ω10 −ω13 −ω7 −ω7 −ω13 ω5 ω14 ω11 ω11 ω14

1 ω9 1 ω3 ω3 −ω7 −ω4 −ω7 −ω −ω ω8 ω14 ω8 ω5 ω5

1 ω12 ω6 ω12 1 −ω13 −ω4 −ω −ω4 −ω13 ω2 ω5 ω11 ω5 ω2

1 1 ω12 ω6 ω12 −ω13 −ω13 −ω4 −ω −ω4 ω2 ω2 ω5 ω11 ω5

1 ω3 ω3 1 ω9 −ω7 −ω −ω −ω7 −ω4 ω8 ω5 ω5 ω8 ω14























,

(6.33)

where ω = e2πi/15 is now a fifteenth root of unity. Since all matrix elements can be

written in terms of 30th roots of unity, S15 is an example of a Butson-Hadamard matrix

BH(15, 30). The vanishing defect of this matrix, i.e. d(S15) = 0, implies that S15 is

isolated. This property excludes S15 from being a member of either of the affine families

F
(8)
15 or (F

(8)
15 )

T .

Proposition 6.3.4. The matrix S15 is inequivalent to F
(8)
15 and (F

(8)
15 )

T .

One could produce additional complex Hadamard matrices by choosing different com-

binations of MU bases from the complete set of six, such as K1 = I5 or L1 = F3. It is

likely that various inequivalent matrices will result from these choices.
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6.4 Examples: dimensions d > 15, and further generalisa-

tions

The construction of the matrices S6, S9 and S15 has a common feature: in each case,

the matrices K0, . . . ,Kp−1, L0, . . . , Lp−1 used to construct the blocks of the Hadamard

matrix in Theorem 6.2.1 include a complete set of (q + 1) MU bases of the space Cq.

For the cases d = 6 and d = 15, i.e. q = 2p−1, complete sets of MU bases in dimension

three and five are used, respectively, resulting in the isolated matrices S6 and S15.

Furthermore, in the case d = 9, where q < 2p− 1, a complete set of four MU bases in

dimension three is used, and again we find an isolated Hadamard matrix, namely S9.

Thus, one might expect additional isolated complex Hadamard matrices to emerge for

larger composite dimensions whenever its factors are related by q ≤ 2p − 1. We have

been able to confirm this property for all primes p, q, with pq < 100 and q ≤ 2p − 1,

excluding the case d = 4. The first three examples are covered by S6, S9 and S15 which

we already know are isolated. The remaining five matrices S25, S35, S49, S77 and S91,

also turn out to be isolated. We construct these matrices as follows:

• S25 is derived from the complete set of six MU bases I5, F5 andHj = DjF5, j = 1 . . . 4,

where D = diag(1, ω, ω4, ω4, ω) and ω = e2πi/5. The matrices Kn, for n = 0 . . . 4, are

chosen as I5, I5, I5,H1,H2, respectively, and Ln as F5, F5, F5,H3,H4, respectively.

• S35 uses the complete set of eight MU bases I7, F7 and Hj = DjF7, j = 1 . . . 6, where

D = diag(1, 1, ω, ω3, ω6, ω3, ω) and ω = e2πi/7. The matrices Kn, for n = 0 . . . 4, are

chosen as I7, I7,H1,H2,H3, and Ln as F7, F7,H4,H5,H6, respectively.

• S49 is constructed from the same complete set of MU bases used for S35, and we choose

Kn as I7, I7, I7, I7,H1,H2,H3, and Ln as F7, F7, F7, F7,H3,H4,H5, with n = 0 . . . 6,

respectively.

• S77 uses a complete set of twelve MU bases given by I11, F11 and Hj , j = 1 . . . 10 with

D = diag(1, 1, ω, ω3, ω6, ω10, ω4, ω10, ω6, ω3, ω) and ω = e2πi/11. The matrices Kn, for

n = 0 . . . 6, are chosen as I11, I11,H1,H2,H3,H4,H5 and Ln as F11, F11,H6,H7,H8,H9,

H10, respectively.
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• S91 is based on the complete set of fourteen MU bases in C13, i.e. the identity

I13, the Fourier matrix F13, and the matrices Hj = DjF13 for j = 1 . . . 12, where the

diagonal matrix is given by D = diag(1, 1, ω, ω3, ω6, ω10, ω2, ω8, ω2, ω10, ω6, ω3, ω) and

ω = e2πi/13. The matrices K1, . . . ,K6, L1, . . . , L6, correspond to H1, . . . ,H12, respec-

tively.

All these isolated matrices are of Butson-Hadamard type with S25 ∈ BH(25, 10), S35 ∈

BH(35, 70), S49 ∈ BH(49, 14), S77 ∈ BH(77, 154) and S91 ∈ BH(91, 182). They may

have smaller roots of unity if their matrix elements contain no entries equal to (−1).

The matrix S91 is similar to S6 and S15 in the sense that the prime factors of d = 91

satisfy the equality q = 2p − 1, meaning that each MU basis from the complete set is

used exactly once. For the other isolated matrices, the factors satisfy the inequality

q < 2p − 1, which implies that some MU bases are used more than once in the set

K0, . . . , Lp−1. In this case, there are additional choices for the bases used; different

combinations may lead to further inequivalent isolated complex Hadamard matrices.

So far, we have applied Theorem 6.2.1 mainly to product dimensions 4 ≤ d ≤ 15 or

when d = pq < 100 and q ≤ 2p − 1. To explore whether the latter constraint on

the factors p and q is necessary, we have constructed Hadamard matrices in all other

composite dimension d < 100 for p, q ≤ 13. In each of these cases, i.e. d = 21, 22, 26,

33, 39, 55 and 65, we were able to identify isolated Hadamard matrices. In addition,

it is also possible to construct Hadamard matrices with non-zero defects, simply by

selecting different sets of MU bases for K0, . . . , Lp−1. Thus, the theorem is potentially

the source of infinitely many new Hadamard matrices in arbitrary product dimensions.

Interestingly, the method is not limited to dimensions of the form d = pq: if the

numbers p and q are composite, it is likely that additional, possibly inequivalent complex

Hadamard matrices can be constructed which relate to different factorisations of the

dimension, such as 2× 6 = 3× 4 when d = 12. Furthermore, it has been shown in [46]

that inequivalent complete sets of MU bases exist for large prime-power dimensions,

possibly leading to yet more inequivalent Hadamard matrices. One could also try to

create continuous families of complex Hadamard matrices if sets of four or more MU
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bases exist which contain free parameters after dephasing.

Finally, another generalisation of Theorem 6.2.1 can be achieved as follows. The

Hadamard matrices we have constructed are derived from product bases which ten-

sor each vector in an orthonormal basis of Cp with an orthonormal basis of Cq (cf. Eqs.

(6.5,6.6)). However, other types of product bases exist; for example, one could take

vectors from different orthonormal bases in Cp and tensor them with vectors from one

basis in Cq. The classification of all product bases in the space C2 ⊗ C3, up to local

equivalence transformations, contains a number of examples of these so-called indirect

product bases (cf. Lemma 3.2.2). Thus, alternative block structures may be allowed in

Theorem 6.2.1, potentially leading to other Hadamard matrices.

6.5 Summary

The main results of this chapter are (i) a new general construction of complex Hadamard

matrices in composite dimensions d = pq (p, q prime) described in Theorem 6.2.1, and

(ii) the explicit derivation of various new complex Hadamard matrices as a consequence

of this theorem. The construction relies on the simple idea that a suitable unitary

transformation maps a pair of MU product bases to its standard form in which the

vectors of one basis turn into the columns of a complex Hadamard matrix. It becomes

possible to systematically construct new Hadamard matrices many of which are isolated.

Previous examples of isolated Hadamard matrices have been found by trial and error [89]

or from numerical methods [9].

To illustrate the approach we first derive some known results in low dimensions. In

particular, we find the complete family of complex Hadamard matrices when d = 4, and

in dimension six we find the isolated matrix S6. We then proceed to higher dimensions,

obtaining isolated Hadamard matrices of order 9, 10, 14 and 15. Two of these are new

isolated Butson-type Hadamard matrices, namely S9 ∈ BH(9, 6) and S15 ∈ BH(15, 30),

while S10 ∈ BH(10, 5) and S14 ∈ B(14, 7) are shown to be inequivalent to nearly all

known Hadamard matrices of their order. However, we cannot exclude the equivalence

of S10 to B10 or X10, and of S14 to B14.
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In dimensions d = 10 and d = 14, there is some flexibility in selecting suitable subsets of

MU bases when applying Theorem 6.2.1. This enables us to construct two non-isolated

Hadamard matrices S′10 and S
′
14, with defects equal to 8 and 12, respectively. Further

research is needed to understand which choices of MU bases will lead to inequivalent

Hadamard matrices.

Whenever the factors in the product dimension d = pq are related by q ≤ 2p − 1, the

set K0, . . . ,Kp−1, L0, . . ., Lp−1 given in Theorem 6.2.1 can accommodate a complete

set of MU bases for the space Cq. We speculate that in these cases, with the exception

of dimension four, Theorem 6.2.1 will always give rise to an isolated Hadamard matrix.

This expectation has been confirmed for all matrices of order d = pq < 100 that satisfy

q ≤ 2p−1. In these cases, the matrices S6, S9, and S15, as well as S25, S35, S49, S77 and

S91 all turn out to be isolated, and they include the largest known examples of isolated

Hadamard matrices (as far as we know). What is more, we are also able to generate

isolated (and non-isolated) Hadamard matrices for dimensions d = 21, 22, 26, 33, 39,

55 and 65, giving rise to a total of 16 isolated complex Hadamard matrices. Twelve of

these are new, while the remaining four, namely S10, S14, S22, S26 ∈ BH(2p, p), may be

equivalent to matrices resulting from Butson’s construction.

Throughout this chapter we have limited our search to Butson-type Hadamard matrices.

However, the method given in Theorem 6.2.1 covers a much wider class of complex

Hadamard matrices. We expect that many other examples of more general Hadamard

matrices can be found by extending the choice for the unitary matrices Kn and Ln.
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Chapter 7

Summary and outlook

In this thesis we have focused on the existence problem of complete sets of MU bases

in dimension six. While it remains unknown if one can construct more than three

MU bases in this case, we have made some progress which rules out the existence of a

certain class of bases. In particular, we have restricted our studies to separable states

and proved several non-existence results for complete sets containing MU product bases.

The landscape of the existence problem for composite dimensions is described in some

detail in Chapter 2. Most of the progress in recent years relies on imposing certain

assumptions on the construction of MU bases. For example, one can construct a com-

plete set in prime and prime-power dimensions by partitioning a nice error basis into

commuting sets of matrices. However, a nice error basis in dimension six does not yield

a complete set (Theorem 2.4.2). Similarly, by partitioning sets of monomial matrices of

order six into classes of commuting matrices, one can construct no more than three MU

bases (Theorem 2.1.2). These are two of the very few analytic non-existence results for

composite dimensions.

Most other non-existence results in dimension six rely on various computer-aided cal-

culations and show that certain pairs of MU bases do not extend to a complete set.

This is most notably demonstrated in a proof by Matolsci et al. showing that the set

of all pairs containing the identity matrix and a member of the two-parameter Fourier

family does not extend to a quadruple of MU bases (Theorem 2.5.1).
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The results in this thesis use similar methods to those described, in the sense that

certain assumptions are made during the construction; in our case this assumption is

the separability of the states. This is particularly interesting in light of a recent result

requiring that a complete set of MU bases must contain a fixed amount of entanglement.

In addition, we prove that certain pairs and triples of MU bases do not extend to a

complete set. All our results are rigorous, however some are entirely analytic and others

rely on computer-aided calculations.

We now give a brief summary of the main results in this thesis. For a more detailed

discussion see the summary section provided at the end of each chapter. In Chapter 3

our main results include a complete classification of all pairs and triples of MU product

bases in dimensions six: there exist four families of pairs (Theorem 3.5.1) and two

inequivalent triples (Theorem 3.5.2). Subsequently, we conclude that no MU product

triple can be extended by a single MU vector, i.e. Theorem 3.6.1. This proof relies on

a computer-aided result provided by Grassl.

In the following chapter we prove that if a complete set of seven MU bases exists in

dimension six, it contains at most one product basis (Theorem 4.0.1). Again, this result

relies on computer-aided (rigorous) results: firstly, a proof by Matolsci et al. described

above, and secondly, a proof by Brierley et al. that the isolated matrix S6 together

with the identity do not extend beyond a MU triple. This theorem is our strongest

non-existence result.

In Chapter 5 we conclude our studies on product bases by providing an analytic proof

that no MU product triple can be extended by a single MU vector, originally proved

in Chapter 3 using a computer-algebraic approach. In addition, we strengthen this

statement by showing that a product constellation {5, 5, 4}⊗6 containing two bases and

a set of four orthonormal states cannot be part of a complete set of seven MU bases,

i.e. Theorem 5.2.1.

In the penultimate chapter, our focus shifts from MU bases to complex Hadamard

matrices, and from dimension six to general composite dimensions of the form d = pq,

where p and q are prime. The main result, summarised by Theorem 6.2.1, is a new
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construction method for complex Hadamard matrices. What is surprising is that the

construction yields at least one isolated Hadamard matrix for every tested dimension

in the range 6 ≤ d ≤ 100. These particular matrices are unusual since they are

disconnected from any continuous family of Hadamard matrices, and very few have

been found before.

There are several questions that arise naturally from our work on product bases. One

avenue of future research could attempt to generalise our results for dimension six

to arbitrary composite dimensions d = pq. In particular, a classification of all MU

product bases for higher dimensions may be of interest. For this, we would need to

extend several of our results, namely Lemma 3.2.2 and Theorem 3.3.2. The main

difficulty is to prove the conjecture, stated in Chapter 3 (a generalisation of Theorem

3.3.2), that the product state |ψ,Ψ〉 ∈ Cd is MU to the product basis {|ψi,Ψi〉} if and

only if |φ〉 is MU to |ψi〉 ∈ Cp and |Ψ〉 is MU to |Ψi〉 ∈ Cq, for any p and q prime.

Unfortunately, our proof of Theorem 3.3.2 does not extend, at least in any obvious

way, to higher dimensions. However, one might expect product bases in composite

dimensions to possess a certain structure which, once understood, would simplify the

problem and allow for a more elegant proof.

A generalisation of our non-existence results, e.g. Theorem 4.0.1, to higher dimensions

is difficult, mainly due to the increase in computational complexity of the calculations.

It is likely that analytic arguments will be necessary, and in some cases an entirely

new approach. For example, in the six-dimensional case we show analytically that

the product constellation {5, 4, 4}⊗6 cannot extend to a complete set. Any stronger

statements regarding product constellations seems surprisingly difficult and probably

require an alternative approach.

Our work on complex Hadamard matrices (see Chapter 6) generalises the construction

of certain pairs of MU product bases in dimension six to composite dimensions d =

pq. As a result, we use Theorem 6.2.1 to construct new Butson-type matrices, where

the elements of each matrix consist of r-th roots of unity. The restriction on the

elements is self-imposed due to simplicity; by dropping this constraint and allowing the
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block matrices to consist of products of parameter-dependent Hadamard matrices, the

construction method may lead to the discovery of new families of Hadamard matrices.

In addition, one can easily generalise the construction method to matrices of order d =

pn11 p
n2
2 . . . pnrr , where d is non-prime. Furthermore, in arbitrary composite dimensions

there exist a wider variety of indirect product bases (see Lemma 3.2.2 for the six-

dimensional examples). By choosing various pairs of these indirect product bases it is

likely that one can build a whole new collection of Hadamard matrices.

While this thesis provides a classification of a particular type of MU bases in dimension

six, namely product bases, a complete classification of all MU bases in dimension six

remains an ambitious challenge. Needless to say, a solution to the existence problem

for arbitrary composite dimensions seems quite far away. Nevertheless, the problem

remains intriguing for a variety of reasons. We hope that the contributions made here

prove useful for future work in this field.
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Appendix A

Classification of all product bases

In this Appendix we derive all product bases in dimension six reported in Lemma 3.2.2.

The six states |ψj〉 , j = 1 . . . 6, of a product basis {|ψj ,Ψj〉}, defined in (3.30) must

contain at least two (possibly identical) pairs of orthogonal states. If there was only one

pair (with the remaining four states of the space C2 non-orthogonal), the orthogonality

conditions (3.31) would require four orthogonal states |Ψj〉 ∈ C3, which do not exist.

Thus, denoting the orthogonal pairs by {|a〉, |a⊥〉} and {|b〉, |b⊥〉}, the product basis

must take the form

{
|a,Ψ1〉, |a

⊥,Ψ2〉, |b,Ψ3〉, |b
⊥,Ψ4〉, |ψ5,Ψ5〉, |ψ6,Ψ6〉

}
. (A.1)

The states |ψ5〉 and |ψ6〉 must also be an orthogonal pair. To see this, assume that

they are skew (or identical) and they are both skew to the states |a〉 and |b〉; then the

state |Ψ6〉, for example, must be orthogonal to the orthonormal triple {|Ψ1〉, |Ψ3〉, |Ψ5〉},

which is impossible. Here we have assumed that |a〉 and |b〉 are not orthogonal; if they

are, we use the orthonormal triple {|Ψ1〉, |Ψ4〉, |Ψ5〉} instead. The same conclusion can

be drawn if the states |ψ5〉 and |ψ6〉 are skew (or identical) but one of them coincides

with any of the four states |a〉, |b〉, |a⊥〉 or |b⊥〉. Thus, we conclude that any product

basis of the space C6 must be of the form

{
|a,Ψ1〉, |a

⊥,Ψ2〉, |b,Ψ3〉, |b
⊥,Ψ4〉, |c,Ψ5〉, |c

⊥,Ψ6〉
}
. (A.2)
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Now it is obvious that we need to consider three different possibilities depending on

how many of the three bases of the space C2 coincide.

Case 1: If all three bases coincide, we have

{
|a,Ψ1〉, |a

⊥,Ψ2〉, |a,Ψ3〉, |a
⊥,Ψ4〉, |a,Ψ5〉, |a

⊥,Ψ6〉
}
. (A.3)

These six states are orthogonal only if the three states |Ψ1〉, |Ψ3〉 and |Ψ5〉 are orthogonal

to each other, as well as the triple {|Ψ2〉, |Ψ4〉, |Ψ6〉}. Upon denoting the first triple by

{|A〉, |A⊥〉, |A⊥⊥〉}, where |A⊥⊥〉 ∈ C3 is a vector orthogonal to |A〉 and |A⊥〉, we obtain

B1 =
{
|a,A〉, |a,A⊥〉, |a,A⊥⊥〉, |a⊥, B〉, |a⊥, B⊥〉, |a⊥, B⊥⊥〉

}
, (A.4)

also introducing an arbitrary second triple of orthogonal states. If the two triples

coincide, we find the important special case of a direct product basis

B0 =
{
|a,A〉, |a,A⊥〉, |a,A⊥⊥〉, |a⊥, A〉, |a⊥, A⊥〉, |a⊥, A⊥⊥〉

}
, (A.5)

Case 2: If only two of the bases in C2 coincide, we find

{
|a,Ψ1〉, |a

⊥,Ψ2〉, |b,Ψ3〉, |b
⊥,Ψ4〉, |b,Ψ5〉, |b

⊥,Ψ6〉
}
. (A.6)

As in Case 1, each of the triples {|Ψ1〉, |Ψ3〉, |Ψ5〉} and {|Ψ2〉, |Ψ4〉, |Ψ6〉} must be an

orthonormal basis of C3. However, we also need to have

〈Ψ1|Ψ4〉 = 〈Ψ1|Ψ6〉 = 0 , (A.7)

which means that |Ψ3〉 and |Ψ5〉 span the same subspace as |Ψ4〉 and |Ψ6〉. It follows

that |Ψ1〉 ≡ |Ψ2〉; upon calling this state |A〉, we are led to a new class of product bases

of C6 given by

B2 =
{
|a,A〉, |a⊥, A〉, |b, A⊥〉, |b⊥, V̂ A⊥〉, |b, A⊥⊥〉, |b⊥, V̂ A⊥⊥〉

}
, (A.8)

where V̂ |A⊥〉 = α|A⊥〉 + β|A⊥⊥〉 and V̂ |A⊥⊥〉 = β̄|A⊥〉 − ᾱ|A⊥⊥〉, i.e. V̂ is any unitary

transformation of the two-dimensional subspace of C3 orthogonal to the state |A〉.

Case 3: Finally, we consider the case where the three bases of the space C2 present

in (A.2) are all different, meaning that |a〉, |b〉 , and |c〉 are pairwise skew. Then, the
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orthogonality conditions directly imply that the triples {|Ψ1〉, |Ψ3〉, |Ψ5〉} and

{|Ψ2〉, |Ψ4〉, |Ψ6〉} of orthogonal states must coincide. This leaves us with bases of the

form

B3 =
{
|a,A〉, |a⊥, A〉, |b, A⊥〉, |b⊥, A⊥〉, |c, A⊥⊥〉, |c⊥, A⊥⊥〉

}
. (A.9)

These three cases complete the construction of all product bases in dimension six. Using

local equivalence transformations in analogy to the procedure used in Sec. 3.2.1, one

can write the four sets of product bases as displayed in Lemma 3.2.2.
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Appendix B

Derivation of all MU product

pairs

In this Appendix we derive all pairs of MU product bases in dimension six by pairwise

combining the orthonormal product bases B0 to B3, defined in Eqs. (A.5,A.4,A.8,A.9).

In principle, we need to look at only 10 of the 16 pairs {Bi;Bj}, i, j = 0 . . . 3, since the

order of the bases does not matter: the pairs {Bi;Bj} and {Bj ;Bi} are equivalent for

i 6= j. Using local equivalence transformations, each pair can be brought to the form

{Ii;Bj}, i ≤ j, where the bases I0 to I3 are those listed in Lemma 3.2.2. As shown

in the main text, it is not actually necessary to consider the bases I2 and B2 at all,

reducing the number of cases to six. Parameter ranges are assumed so that no pair

occurs more than once.

• {I0;B0}: First we extend I0 to a pair of MU bases by combining it with

B0 =
{
|a,A〉, |a,A⊥〉, |a,A⊥⊥〉, |a⊥, A〉, |a⊥, A⊥〉, |a⊥, A⊥⊥〉

}
. (B.1)

The states of B0 are MU to those of the basis I0 if the pair of states {|a〉, |a⊥〉} is

any basis of C2 associated with opposite points on the Bloch sphere, i.e. |a〉 = (|0z〉+

eiμ|1z〉)/
√
2 etc., and if the orthonormal basis {|A〉, |A⊥〉, |A⊥⊥〉} is defined as in Eqs.

(3.15) of Sec. 3.1.2.
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A local transformation allows us to rotate the states {|a〉, |a⊥〉} into {|jx〉} and to

simultaneously change the basis {|A〉, |A⊥〉, |A⊥⊥〉} into the basis {|Jx〉} of C3 so that

we end up with the known Heisenberg-Weyl MU pair of direct product bases,

P0 ≡ {|jz, Jz〉; |jx, Jx〉} . (B.2)

• {I0;B1} and {I0;B3}: These cases will be covered by the pairs {I1;B1} and {I1;B3},

respectively, since we can treat the basis I0 as a subset of I1.

We now construct the three pairs of indirect product bases that contain

I1 = {|0z, Jz〉, |1z, ÛJz〉} as the first basis, where the unitary Û maps the basis {|Jz〉}

of the space C3 to another basis.

• {I1;B1}: In a first step, we act with a local unitary on the second basis

B1 =
{
|a,A〉, |a,A⊥〉, |a,A⊥⊥〉, |a⊥, B〉, |a⊥, B⊥〉, |a⊥, B⊥⊥〉

}
(B.3)

to rotate the a-basis of states that are MU to {|jz〉} into the basis {|jx〉} while the

A-basis turns into {|Jx〉}, as before. This maps B1 to

{
|0x, Jx〉, |1x, Û

′Jx〉
}
, (B.4)

where we have introduced a unitary Û ′ which parameterises all orthonormal bases of

C3 relative to the x-basis. The requirement that the states of the pair {I1;B1} be MU

now turns into the problem of identifying all pairs of orthonormal bases of C3, namely

{|Jz〉; |ÛJz〉} and {|Jx〉; |Û ′Jx〉}, such that all states of one set are MU to those of the

other, viz.

|〈Jz|Û ′Jx〉|
2 = |〈ÛJz|Jx〉|

2 = |〈ÛJz|Û ′Jx〉|
2 =
1

3
, (B.5)

while |〈Jz|Jx〉|2 = 1/3 holds by construction. It is easy to see that these conditions are

satisfied if the bases in (at least) one pair coincide or all four are different, i.e. they use

up a complete set of MU bases in C3. In Appendix C we present a proof, due to A.

Sudbery, that these are the only solutions of the constraints (B.5). Thus, if I1 is the

standard basis {|jz, Jz〉}, then we obtain the MU product pair

P1 = {|jz, Jz〉; |0x, Jx〉, |1x, R̂ξ,ηJx〉} , (B.6)
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with {|R̂ξ,ηJx〉} defined in Eq. (3.15). However, if we use the complete set of MU bases

in C3 we obtain the MU product pair

P2 = {|0z, Jz〉, |1z, Jy〉; |0x, Jx〉, |1x, Jw〉} . (B.7)

• {I1;B3}: The second basis reads explicitly

B3 =
{
|a,A〉, |a⊥, A〉, |b, A⊥〉, |b⊥, A⊥〉, |c, A⊥⊥〉, |c⊥, A⊥⊥〉

}
, (B.8)

and suitable LETs map it to

{|jx, 0x〉, |r̂σjx, 1x〉, |r̂τ jx, 2x〉} , (B.9)

which involve two rotations of the basis {|jx〉} about the z-axis, r̂σ and r̂τ . The operator

Û in I1 must be chosen such that {|ÛJz〉} is MU to the x-basis. All such U(3)-rotations

are given by the two-parameter family

Ŝζ,χ = |0x〉〈0x|+ e
iζ |1x〉〈1x|+ e

iχ|2x〉〈2x| , (B.10)

diagonal in the x-basis, and defined in analogy to R̂ξ,η in Eq. (3.15). Altogether, we

obtain a four-parameter family of MU product pairs,

P3 = {|0z, Jz〉, |1z, Ŝζ,χJz〉; |jx, 0x〉, |r̂σjx, 1x〉, |r̂τ jx, 2x〉} . (B.11)

• {I3;B3}: No pair results when we combine the product basis B3 with I3. The standard

transformations to simplify B3 lead to

{
|jx, 0x〉, |r̂σjx, 1x〉, |r̂τ jx, 2x〉

}
, (B.12)

since both the b-basis and the c-basis must be MU to the standard basis. The only

basis MU to the three bases {|jx〉}, {|r̂σjx〉}, and {|r̂τ jx〉}, is the standard basis {|jz〉},

which is also true for the case {|r̂σjx〉} = {|r̂τ jx〉}. Consequently, this would force the

operators û and v̂ to be the identity, in contradiction to the assumption that the three

bases of C2 present in I3 do not coincide.
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Appendix C

Proof of Theorem C.0.1

Here we report a proof by A. Sudbery that the conditions of Eq. (B.5) in Appendix

B are only satisfied if the bases in (at least) one pair coincide or all four bases are

mutually unbiased. If B1 and B2 are orthonormal bases, we write B1 μB2 to mean “B1

and B2 are mutually unbiased”.

Theorem C.0.1. Suppose B0,B1,B2,B3 are orthonormal bases of C3 satisfying

{B0,B1} μ {B2,B3}.

Then either B0 and B1 are equivalent bases or B2 and B3 are equivalent bases or all

four bases are mutually unbiased.

Let B0,B1,B2,B3 be represented by unitary matrices I, U, V,W , respectively, where

we have chosen B0 to be the standard basis of C3. We regard the bases U , UP and

UD, with P a permutation matrix and D a diagonal, as equivalent bases. Note that if

two orthonormal bases in C3, represented by unitary matrices U and V , are mutually

unbiased, then U †V (where the dagger denotes hermitian conjugation) is a complex

Hadamard matrix H. We can write any (3× 3) Hadamard matrix as

H = DFD′ or DF †D′ (C.1)

where D and D′ are diagonal and F ≡ F3 is the Fourier matrix defined in Eq. (3.16).
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The condition B2 μB0 implies the unitary V is a Hadamard matrix, and since F † = FP ,

the basis B2 is equivalent to a basis represented by V = DF . Similarly, B3 is equivalent

to a basis represented by W = D′F where D′ is diagonal. Now

B2 μB1 =⇒ V †U = KF (1)L, (C.2)

B3 μB1 =⇒ W †U = K ′F (2)L′ (C.3)

where K, L, K ′ and L′ are diagonal and F (i) is either F or F † (i = 1, 2). Hence

U = DFKF (1)L = D′FK ′F (2)L′. (C.4)

We will now examine the relationship between U and the diagonal matrices D,K,L

in the two cases U = DFKFL and U = DFKF †L, respectively. We can assume the

leading entries of D and L to be d11 = l11 = 1 by absorbing two phase factors in the

diagonal matrix K.

Lemma C.0.2. Suppose U = DFKFL where D,K,L are diagonal unitary matrices

with D = diag(1, α, β). Then either U = PE where P is a permutation matrix and E

is diagonal, or the matrix elements of U are all non-zero and satisfy

u12u23u31 = u13u21u32 = u11u22u33, (C.5)

and α and β are given by

α3 =
u21u22u23

u11u12u13
, (C.6)

β = α2
u12u31

u21u22
. (C.7)

Let K = diag(γ, δ, ε) and L = diag(1, ζ, η). Then

U =








a ζb ηc

αb αζc αηa

βc βζa βηb








(C.8)
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where

a = 1
3(γ + δ + ε),

b = 1
3(γ + ωδ + ω

2ε), (C.9)

c = 1
3(γ + ω

2δ + ωε).

Suppose one of a, b, c were zero, say a = 0. Then, since γ, δ, ε all have modulus 1, they

must form an equilateral triangle in the complex plane, so either δ = ωγ and ε = ω2γ,

when b = 0 and c = γ, or δ = ω2γ and ε = ωγ, when b = γ and c = 0. In both cases U

is of the form PE.

If none of a, b, c are zero, then all the matrix elements of U are non-zero and equations

(C.5), (C.6) and (C.7) follow immediately from (C.8).

Exactly similar arguments prove

Lemma C.0.3. Suppose U = DFKF †L where D,K,L are as in Lemma C.0.2. Then

either U = PE where P is a permutation matrix and E is diagonal, or the matrix

elements of U are all non-zero and satisfy

u11u23u32 = u12u21u33 = u13u22u31, (C.10)

while α is given by (C.6) and β by

β = α2
u13u31

u21u23
. (C.11)

We now return to eq. (C.4) and consider the four possibilities for (F (1), F (2)).

Case 1: U = DFKFL = D′FK ′FL′.

Let D = diag(1, α, β), D′ = diag(1, α′, β′). Then, by Lemma C.0.2, either U is of the

form PE (when the bases B0 and B1 are equivalent), or

α3 = α′3 and
β′

β
=

(
α′

α

)2
. (C.12)

Hence α′ = α or ωα or ω2α, so

D′ =








1 0 0

0 α 0

0 0 β







or








1 0 0

0 ωα 0

0 0 ω2β







or








1 0 0

0 ω2α 0

0 0 ωβ







. (C.13)
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This gives

V = DF =








1 1 1

α ωα ω2α

β ω2β ωβ







, (C.14)

W = D′F =








1 1 1

α ωα ω2α

β ω2β ωβ







or








1 1 1

ωα ω2α α

ω2β ωβ β







or








1 1 1

ω2α α ωα

ωβ β ω2β







. (C.15)

In each case the columns of W are a permutation of those of V . Thus either the bases

B0 and B1 are equivalent or B2 and B3 are equivalent.

Case 2: U = DFKFL = D′FK ′F †L′.

Suppose U is not of the form PE. Then both Lemmas C.0.2 and C.0.3 apply, and U has

non-zero matrix elements satisfying (C.5) and (C.10). As in case 1, let D = diag(1, α, β)

and D′ = diag(1, α′, β′). Now α and β are given by Lemma C.0.2, but α′ and β′ are

given by Lemma C.0.3. Once again we have α3 = α′3, but now β′/β is not determined

solely by α′/α:

β′

β
=

(
α′

α

)2 u13u22
u12u23

. (C.16)

Using (C.5) and (C.10),

(
u13u22
u12u23

)3
=

(
u13
u12

)3(u22
u23

)3

=
u13

u12
.
u23u31

u21u32
.
u21u33

u22u31
.
u22

u23
.
u12u31

u11u33
.
u11u32

u13u31
(C.17)

= 1.

Hence α′/α and β′/β are both cube roots of 1. Write α′ = φα, β′ = χβ. If χ = φ2

then, as shown in Case 1, the columns of V and W are the same, up to permutation,

and the bases B2 and B3 are equivalent. If χ 6= φ2 then two of 1, χ, φ are equal and the

third is different. The same is true of the sets {1, ωχ, ω2φ} and {1, ω2χ, ωφ}. Hence

the sums a = 1 + χ + φ, b = 1 + ωχ + ω2φ and c = 1 + ω2χ + ωφ all have the same
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modulus. For χ 6= φ2, the product

V †W = F †D†D′F =
1

3








a b c

c a b

b c a







. (C.18)

is a Hadamard matrix and hence the bases B2 and B3 are mutually unbiased. Thus in

this case, B2 and B3 are either equivalent or mutually unbiased.

Case 3: U = DFKF †L = D′FK ′FL′.

This is the same as Case 2 with V and W interchanged.

Case 4: U = DFKF †L = D′FK ′F †L′.

This is similar to Case 1, using Lemma C.0.3 instead of Lemma C.0.2. The conclusion

is the same.

We have now shown that in every case, either B2 and B3 are equivalent or B0 and B1 are

equivalent or B2 and B3 are mutually unbiased. But the assumptions of the theorem

are symmetric between the pairs {B0,B1} and {B2,B3}, so we can also prove that if B2

is not equivalent to B3 and B0 is not equivalent to B1, then B0 and B1 are mutually

unbiased and therefore all four bases are mutually unbiased.
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Appendix D

Explicit construction of BH(10, 5)

and BH(14, 7)

In this Appendix we list the two Butson-type Hadamard matrices BH(2p, p) of order

10 and 14 which we derive from the construction given in Butson’s original paper [24].

• For p = 5, the dephased matrix BH(10, 5) is given by

B10 =
1
√
10






























1 1 1 1 1 1 1 1 1 1

1 ω ω2 ω3 ω4 ω2 ω4 ω ω3 1

1 ω2 ω4 ω ω3 ω3 ω2 ω 1 ω4

1 ω3 ω ω4 ω2 ω3 ω4 1 ω ω2

1 ω4 ω3 ω2 ω ω2 1 ω3 ω ω4

1 ω3 ω2 ω2 ω3 1 ω ω4 ω4 ω

1 ω2 1 ω4 ω4 ω ω ω3 ω2 ω3

1 ω ω3 ω 1 ω4 ω3 ω4 ω2 ω2

1 1 ω ω3 ω ω4 ω2 ω2 ω4 ω3

1 ω4 ω4 1 ω2 ω ω3 ω2 ω3 ω






























, (D.1)

where ω = e2πi/5 is a fifth root of unity. The defect of B10 is zero.

• For p = 7, the dephased matrix BH(14, 7) is
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B14 =
1
√
14









































1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 ω ω2 ω3 ω4 ω5 ω6 ω6 ω2 ω5 ω ω4 1 ω3

1 ω2 ω4 ω6 ω ω3 ω5 ω3 ω2 ω 1 ω6 ω5 ω4

1 ω3 ω6 ω2 ω5 ω ω4 ω5 1 ω2 ω4 ω6 ω ω3

1 ω4 ω ω5 ω2 ω6 ω3 ω5 ω3 ω ω6 ω4 ω2 1

1 ω5 ω3 ω ω6 ω4 ω2 ω3 ω4 ω5 ω6 1 ω ω2

1 ω6 ω5 ω4 ω3 ω2 ω ω6 ω3 1 ω4 ω ω5 ω2

1 ω4 ω2 ω ω ω2 ω4 1 ω5 ω6 ω3 ω3 ω6 ω5

1 ω ω3 ω6 ω3 ω 1 ω4 ω6 ω4 ω5 ω2 ω2 ω5

1 ω5 ω4 ω4 ω5 1 ω3 ω2 ω ω3 ω ω2 ω6 ω6

1 ω2 ω5 ω2 1 ω6 ω6 ω ω4 ω3 ω5 ω3 ω4 ω

1 ω6 ω6 1 ω2 ω5 ω2 ω ω ω4 ω3 ω5 ω3 ω4

1 ω3 1 ω5 ω4 ω4 ω5 ω2 ω6 ω6 ω2 ω ω3 ω

1 1 ω ω3 ω6 ω3 ω ω4 ω5 ω2 ω2 ω5 ω4 ω6









































, (D.2)

with ω = e2πi/7 a seventh root of unity. This matrix has zero defect.
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