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Abstract

The obligately outbreeding root hemiparasite Striga hermonthica (Orobanchaceae) is a
serious  threat  to  subsistence  agriculture  in  sub-Saharan  Africa.  Resistance  to  this
parasite in its crop hosts, such as rice, sorghum and maize, is not common, and the
evolution of host adaptations that are able to overcome new sources of resistance is an
ever-present risk. Research into host adaptation in S. hermonthica has generally sought
to  correlate  the  genetic  relationship  between  Striga individuals  with  host  identity;
however, such approaches must be supported by lab-based evidence of host adaptation,
otherwise  ad hoc  field sampling may result in the confounding of host identity with
isolation-by-distance. Additionally, genetic variation used to reconstruct relationships is
unlikely  to  provide  an  insight  into  relationships  at  functional  loci  underlying  host
adaptation. In this thesis, I use a range of new approaches to investigate several different
aspects of parasite adaptation in the S. hermonthica-Sorghum bicolor pathosystem.

Host  adaptations,  or  pre-adaptations,  are  commonly  revealed  using  tests  for
differential  virulence  between  Striga populations  and  host  genotypes;  that  is,  by
demonstrating population-level genotype-by-genotype interactions.  Evidence for such
interactions was found between three West African populations of  S. hermonthica  and
five sorghum cultivars. These interactions were shown to be strongest at the parasite
post-attachment  life  stage,  and  to  depend  on  the  parasite  virulence  metric  used.
Environmental  influences  on  host-parasite  interactions  were  strong  and  variable
between years and sites.

Candidate  genetic  loci  for  virulence,  responding  to  selection  in  a  micro-
evolutionary fashion, were identified by  FST differentiation-based approaches ('outlier
analyses') that  aim to  uncover associations between particular loci and environmental
drivers,  such  as  host  identity.  An  AFLP outlier  analysis  was  used  on  Striga plants
parasitising nine sorghum cultivars in a field trial in Burkina Faso. Significant locus-
specific differentiation was detected at 14 out of 1275 loci. However, predicted allele
frequencies at these loci did not correlate with a field measure of Striga virulence across
host-selected sub-populations. Simulation results suggested that the estimated levels of
FST at  outlying  loci  could  mean  that  alleles  underlying  host  adaptation  exist  at
intermediate frequencies in populations.

A three-generation  pedigree,  created  from  a  cross  between  S.  hermonthica
individuals from an East African and a West African population, enabled further insights
into  the  genetics  of  adaptation.  Individuals  from  a  pseudo-backcrossed  F1 (BCF1)
generation,  grown on  two  different  sorghum hosts  and  in  axenic  culture,  indicated
significant host-related segregation distortion. Analyses of virulence in the BCF1 also
provided strong evidence for epistasis, and for an effect of maternal identity. A second
outlier analysis of host adaptation, investigating the East African population used in the
pedigree,  indicated  some correspondence  between  outlier  loci  and loci  found to  be
differentially  segregating  between  different  hosts  in  the  BCF1 generation,  and
demonstrated  the  differing  genomic  extents  of  these  phenomena.  The  results
accumulated across these experiments provide evidence for a complex, polygenic basis
to virulence in S. hermonthica.
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Chapter 1. General Introduction

1.1 The genus Striga: Parasitic weeds in Africa

Within the flowering plants, nutritional parasitism has arisen on at least 11 occasions in

many different families  (Barkman  et al. 2007). One family, the Orobanchaceae, now

consists  almost  entirely  of  parasitic  plants;  this  is  due  to  the  breaking-up  of  the

Scrophulariaceae  sensu lato, and the reorganisation of its constituent genera based on

several recent phylogenetic analyses (Park et al. 2008). A monophyletic Orobanchaceae

suggests that the parasitic plant haustorium, the ‘specialized organ of absorption’ (Kuijt

1977) essential to the root parasitic lifestyle, evolved only once; variations on the root

parasitic  theme,  e.g.  facultative  or  obligatory  parasitism  and  hemiparasitism  or

holoparasitism, are therefore derived characters which vary across the clade (Yoder  et

al. 2007). Hemiparasitism, the nutritional life-style of the genus of plant parasites with

which this thesis is concerned, is the case where a parasitic plant contains chlorophyll,

and  can  photosynthesise,  but  depends  on  its  host  for  water  and  nutrients  (Press  &

Graves 1995).

Hemiparasites  of  the  Orobanchaceae  are  known  to  have  important  effects  on

ecosystems, often gaining for them the label of ecosystem engineers; these effects are

mediated  through  a  range  of  ecophysiological  traits  (reviewed  in  Phoenix  &  Press

2005). Agroecosystems constitute  an extreme case,  demonstrating the ability of root

hemiparasites to exert large effects on their hosts over large areas of land. The reduction

of host plant productivity resulting from nutritional parasitism can increase community

diversity in (semi-)natural ecosystems  (Phoenix & Press 2005); however, in farmers’

fields, the most obvious and important outcome is the reduction of crop yields.
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Within the Orobanchaceae, Striga is a genus of obligate root hemiparasites, which has

been called ‘the greatest biological constraint to food production in Africa’ (Ejeta 2007).

Striga, the witchweeds, is the most important genus of cereal crop weeds in the semi-

arid tropics of sub-Saharan Africa (Parker & Riches 1993). Striga can cause a total loss

of crop yield, but the loss from a typical infestation is thought to be around 50% (Ejeta

2007). The crop species primarily parasitised by Striga species include a large range of

the staple food crops of African subsistence farmers; these include maize (Zea mays),

sorghum (Sorghum bicolor; Fig. 1.1), pearl millet (Pennisetum glaucum), upland rice

(Oryza sativa), and the grain legume, cowpea (Vigna unguiculata). Estimates from the

1990s put the level of infestation of Striga at around 50 million hectares, two-thirds of

the total area of cereals and legumes in sub-Saharan Africa at that time (Musselman et

al. 2001); the full range of estimates varies from 21 to 50 million hectares (Emechebe et

al. 2004). However, the sources from which these figures were originally gathered are

very dated, and it is generally considered that the spread of Striga has been accelerating

in recent years (Ejeta 2007; Parker 2009). Estimates of the numbers of people affected

by  Striga are  also quite  out-of-date,  but  the most  recent  figure cited is  300 million

people (Emechebe et al. 2004; Ejeta 2007). Information from farmers suggests a recent

spread of  Striga, linked to human population growth and the associated expansion of

agriculture onto marginal lands  (Parker 2009); these trends are themselves bound up

with increased poverty and hunger, compounding the problem through time. This has

led  to  the  current  desperate  situation,  recently characterised  as  a  Striga ‘pandemic’

(Ejeta 2007).
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Figure 1.1. S. hermonthica parasitising sorghum in an Ethiopian field. Picture courtesy of Prof.
J.D. Scholes, University of Sheffield.

Of the 28 species of Striga currently recognised in Africa, out of around 40 worldwide,

9 are known to parasitise crop hosts to some extent  (Mohamed et al. 2001). Of these,

the bulk of lost crop yield is due to 3 species (Berner et al. 1995): Striga asiatica (L.)

Kuntz; Striga hermonthica (Del.) Benth.; and Striga gesnerioides (Wald.) Vatke. Thus,
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most African Striga species are not weedy, and can be found in natural and semi-natural

habitats;  however,  some  species  have  evolved,  in  tandem with  their  crop  hosts,  to

become the  serious  threats  to  food production  that  they are  today.  For  example,  S.

hermonthica, probably the single most serious parasitic weed in the world  (Parker &

Riches  1993), is  only  known  from agroecosystems  (Mohamed  et  al. 2001). Striga

asiatica and S. hermonthica only infect monocotyledons of the Poaceae; S. gesnerioides

can infect a range of dicotyledonous families, but its most serious impact on subsistence

agriculture is due to its parasitism of cowpea (Fabaceae). These plant pathogens also

differ in their geographical distributions: the main range of S. asiatica is southern and

central Africa;  S. hermonthica extends west to east across central Africa, and south to

Tanzania (Fig. 1.2);  S. gesnerioides has the largest distribution of any witchweed in

Africa, it is widespread in west and east Africa, and extends down the eastern side of the

continent as far as South Africa (Mohamed et al. 2001).

Figure  1.2.  Distribution  map  of  S.  hermonthica (circles)  in  Africa,  based  on  herbarium
specimens (Mohamed et al. 2001). (Triangles represent the non-weedy S. gracillima.)
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One of the main reasons why weedy Striga are so much of a problem for agriculture is

their extreme fecundity. A single plant can produce from 50,000 to over 200,000 seeds

depending on the species, with each tiny seed measuring approximately 0.3 × 0.2 mm

(Parker & Riches 1993); these seeds may remain viable in the soil for up to 14 years

(Parker & Riches 1993; Berner et al. 1995; Yoder & Musselman 2006). This means that

seed banks can be vast, and may act as reservoirs of diversity. Genetic diversity is likely

to equate to evolvability: genotypes capable of parasitising a range of host species and

cultivars may be present in the seed bank. This diversity may be generated in several

different  ways,  depending on the  species.  Entire  genotypes  may be moved between

fields or regions through farming practices and seed exchange or sale  (Berner  et al.

1995). In addition, differences in mating system among S. asiatica, S. hermonthica and

S. gesnerioides affect the levels of gene flow between plants.  Striga  asiatica and  S.

gesnerioides are primarily autogamous (Musselman et al. 1982), whilst S. hermonthica

is obligately allogamous (Safa et al. 1984). Models that attempt to evaluate the relative

risks  of  plant  pathogen  evolution  state  that  autogamous  and  allogamous  pathogen

strategies present different levels of risk for crop plants  (McDonald & Linde 2002):

plants  exhibiting  autogamy  (which  is,  however,  often  incomplete;  for  example,  see

Nickrent & Musselman 1979) may not be evolving rapidly, but if pathogenic genotypes

are created through infrequent outcrossing events, or mutation, subsequent inbreeding

can mean rapid  increases  in  the  number  of  parasites,  all  with  the  same pathogenic

genotype. In addition, founder events are more likely, because a single plant is sufficient

to  establish a  new population.  On the other  hand,  allogamous plant  populations  are

continually  changing  through  the  exchange  and  recombination  of  genetic  material

within  and  between  populations;  populations  may  therefore  contain  considerable
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diversity,  and  the  associated  evolutionary  potential  (McDonald  &  Linde  2002;

Mohamed et al. 2007).

1.2 The Striga life-cycle and host resistance

Striga seeds require exposure to a class of chemicals called strigolactones in order to

germinate (Fig. 1.3a). Strigolactones had been known to induce germination in certain

parasitic plants for around 25 years before it was discovered that this class of chemicals

was  also  involved  in  plant  shoot  branching,  and  in  inducing  the  branching  of

mycorrhizal fungi in the soil  (Yoder & Scholes 2010). Striga exploits these essential

host plant hormones in order to locate host plant roots (Mach 2010). After germination,

the  Striga radicle elongates and the tip of the radicle begins to differentiate into the

specialised  organ  of  parasitism,  the  haustorium  (Kuijt  1977), that  will  be  used  to

penetrate the host root. So-called 'haustorium inducing factors' (HIFs) are thought to be

produced by the oxidation of host root cell-wall localised benzoquinones  (Kim  et al.

1998;  Fig.  1.3b); the  oxidation  is  carried  out  by host  peroxidases  activated  by the

release of hydrogen peroxide from the  Striga radicle  (Keyes  et al. 2007; Scholes &

Press 2008). Striga therefore actually elicits its own HIFs from the host root (Keyes et

al. 2001). To date, only one HIF has been isolated, from the roots of sorghum, this is

2,4-dimethoxy-p-benzoquinone  (DMBQ)  (Chang  &  Lynn  1986); however,  this

compound may potentially be widespread in the plant kingdom, derived as it is from

lignin and phenolic acids (Yoder & Scholes 2010). Host resistance can be linked to low

production of germination stimulants or HIFs  (Yoder & Scholes 2010). In these cases

the resistance is known as 'pre-attachment' resistance (e.g. Jamil et al. 2011); that is, the

resistance operates before the attachment of the haustorium to the host root.
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Figure 1.3. The Striga life-cycle. Adapted from Rich & Ejeta (2007).

As it develops, the haustorium becomes covered in sticky hairs that assist in anchoring

it to the host root  (Reiss & Bailey 1998; Fig. 1.3c). Following  Striga attachment, the

parasite penetrates the host root cortex and endodermis, and connections between host

and parasite  xylems are established (Fig.  1.3d).  As an obligate  parasite,  this  step is

essential for the survival of Striga, and allows the transfer of host-derived nutrients and

water  (Press & Graves 1995). Clearly,  many plant-plant molecular interactions must

take place between the attachment of the parasite and the successful establishment of

xylem-xylem  continuity.  Much  less  is  known  about  the  molecular  basis  of  host
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resistance acting at this stage, which is normally known as 'post-attachment' resistance

(e.g. Cissoko et al. 2011). However, various host post-attachment resistance phenotypes

have been described through microscopic examination of incompatible interactions: for

example, the blocking of parasite growth in the host root cortex, at the endodermis, and

before, or after, connection to the host vasculature have all been reported, either for

Striga,  or for the closely related holoparasitic genus  Orobanche (Yoshida & Shirasu

2009; Yoder & Scholes 2010). These observations suggest that a variety of molecular

responses may underlie post-attachment resistance, even within a single host species;

for  example,  for  various  sorghum  cultivars,  endodermal  thickening,  pericycle

lignification  and silica  crystal  deposition  have  all  been observed in  post-attachment

resistance to S. hermonthica (El Hiweris 1987).

The most recent advance in understanding the molecular basis of host post-attachment

resistance to  Striga has been for the  S. gesnerioides-cowpea interaction. Work on the

existence of 'races' of S. gesnerioides, with particular patterns of virulence against sets

of cowpea cultivars  (Lane  et al. 1993; Botanga & Timko 2006), recently led to the

identification  of  the first  sequenced resistance  gene  (or  'R-gene')  against  a  parasitic

plant, and confirmation that gene-for-gene resistance can occur in these interactions (Li

& Timko  2009). The  R-gene  encoded  protein  contained  the  'coiled-coil  nucleotide-

binding-site leucine-rich-repeat' (CC-NBS-LRR) pattern of amino acid structural motifs,

commonly found in proteins involved in plant resistance to microbial pathogens (Jones

& Dangl  2006) and  insect  herbivory  (de  Meaux & Mitchell-Olds  2003). When the

coding gene (RSG3-301) in the previously resistant cowpea cultivar B301 was silenced,

susceptibility  to  the  S.  gesnerioides race  'SG3'  was  created;  however,  the  cultivar

remained  resistant  to  other  races  of  the  parasite,  thus  supporting  a  gene-for-gene
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interaction hypothesis (Li & Timko 2009). As noted above (section 1.1), S. gesnerioides

is strongly autogamous  (Musselman  et al. 1982), and the formation of parasite races

with  particular  reactions  to  different  host  species  or  cultivars  (often  called  host

specificity;  Vasudeva  Rao  &  Musselman  1987) may  be  more  likely  to  occur  for

inbreeding species, because of the almost clonal nature of successful genotypes, where

most  genetic  variation is  between populations  (McDonald  & Linde 2002). It  seems

likely,  therefore,  that  this  breakthrough  in  understanding  one  particular  interaction

between S. gesnerioides and cowpea may not automatically provide an insight into the

interactions between the obligately outcrossing  S. hermonthica and its hosts; indeed,

because  of  its  mating  system,  S.  hermonthica may  present  a  higher  risk  to

agroecosystems  and  sustainable  host  resistance  (McDonald  &  Linde  2002). The

genetics  of  Striga species,  and their  interactions  with host  genotypes,  are  discussed

further below (section 1.4).

1.3 Strategies for controlling Striga

Many control strategies for weedy Striga species have been developed or proposed. The

problem is  often that  these  strategies  are  unaffordable  for  subsistence farmers,  who

make up approximately 75–80% of farmers in sub-Saharan Africa (Gressel et al. 2004);

for example,  nitrogen fertilisation,  soil  fumigation,  and chemical herbicides all  have

some degree of efficacy for controlling Striga, but are beyond the reach of the average

resource-limited  farmer  in  sub-Saharan  Africa  (Gressel  et  al. 2004). Simpler  and

cheaper solutions more often used by subsistence farmers include hand-pulling, sowing

rotation crops, trap-cropping, mixed cropping and altering the time or method of sowing
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(Parker & Riches 1993). These techniques aim to reduce levels of infestation through

depletion of the  Striga seed bank and by preventing the setting of seed. By reducing

field infestations these techniques could also improve farmers’ yields.  Another well-

established method for reducing parasitism lies with crop breeding  (e.g. Haussmann,

Hess, Koyama,  et al. 2000). Desirable crop genotypes for the reduction of parasitism

can be characterised as either tolerant or resistant: tolerant genotypes are those showing

smaller reductions in yield than susceptible genotypes under the same level of  Striga

infestation,  whilst  resistant genotypes show less  Striga attachment and higher yields

than susceptible genotypes under the same conditions  (Haussmann, Hess, Welz,  et al.

2000).

As yet,  no crop cultivar,  or wild relative,  with full  resistance (i.e. immunity) to any

Striga species has been found. However, tolerant cultivars of maize, sorghum and rice

have been identified  (Scholes  et al. 2007; Kaewchumnong & Price 2008); and novel

types of post-attachment resistance have been described in rice  (Gurney  et al. 2006),

sorghum (Mohamed et al. 2003), and in a wild relative of maize (Gurney et al. 2003).

Progress  has  been  made  in  breeding  complex  traits  underlying  broad-spectrum

resistance in sorghum into farmer-preferred or locally-adapted cultivars; these cultivars,

with high levels of resistance and high yields, are now starting to have a positive impact

in several African countries (Ejeta et al. 2007; Kapran et al. 2007).

Resistant cultivars have the potential  to both deplete the soil  seed bank and prevent

Striga reproduction; tolerant cultivars can also deplete the seed bank, but other methods

must  be  used  in  conjunction  to  prevent  seed-setting  (Rodenburg  et  al. 2005). It  is

generally recognised that any successful Striga control programme must be one which

integrates  a  range  of  methods  that  are  appropriate  for  the  local  conditions,  both
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environmental and socio-cultural  (Ransom  et al. 2007). This approach extends to the

design and eventual deployment of improved cultivars: tolerant cultivars can increase

the  Striga seed bank without supplementary control; and where plants do have some

degree  of  resistance,  this  is  often  variable  across  environments  (Haussmann,  Hess,

Welz,  et al. 2000), meaning that the breakdown of host resistance could occur if new,

more virulent, genotypes of Striga are selected for (e.g. Lane et al. 1994). Therefore, it

is of great importance for the durability of resistant germplasm, even if the resistance is

broad-spectrum, that measures are taken to ensure that virulent genotypes of Striga are

not selected for in the field by improved cultivars (McDonald & Linde 2002). Given the

frequency of crop seed contamination by Striga seed that has been found in surveys of

African markets  (20–40%; Berner  et al. 1994), and other potential routes of genotype

flow  (Berner  et al. 1995), it  is possible that resistance breakdown in one area could

spread.  Because  of  this,  the  requirement  for  an  improved  understanding  of  the

relationship  between  Striga genetic  variation  and  host  resistance  has  been  noted

frequently in the parasitic plant literature (Vasudeva Rao & Musselman 1987; Parker &

Riches 1993; Haussmann, Hess, Welz,  et al. 2000; Mohamed  et al. 2007; Scholes &

Press  2008). Even  so,  relatively  few studies  on  Striga genetic  diversity  have  been

carried  out,  and  the  potential  for  large  increases  in  knowledge  exists,  with  broad

implications for cultivar testing and deployment, and the understanding of the molecular

and population genetic bases of Striga virulence (Mohamed et al. 2007).

1.4 Striga-host interactions: studies and conceptual approaches

It has long been noted that there is variation in host specificity within Striga species (see
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Vasudeva  Rao  & Musselman  1987  for  a  review of  studies  up  to  that  date). It  has

generally been the practice to divide the observed patterns of adaptation found for a

species of  Striga into two types:  inter-species host specificity and intra-species host

specificity. Within S. hermonthica it has been suggested that there will be populations

that  are  specific  to  certain  crop  species  (inter-species),  or  to  a  certain  subset  of

genotypes (e.g. cultivars or landraces) within a crop species (intra-species)  (Vasudeva

Rao & Musselman 1987; Parker & Riches 1993; Mohamed et al. 2007).

For  S.  hermonthica,  the  most  cited  example  of  host  specificity  is  the  inter-species

specificity reported from parts of Africa and India for sorghum and pearl millet (Parker

& Riches  1993;  Ejeta  2007). Vasudeva  Rao  & Musselman  (1987) cite  four  'cross-

infectivity' studies investigating the degree of S. hermonthica population specificity for

either sorghum or pearl millet.  Three of these studies  (Wilson-Jones 1955; Parker &

Reid 1979; Hosmani & Parker 1980) found, through either cross-inoculation of hosts, or

cross-stimulation of germination using host root exudates, that host preferences could

be  demonstrated  for  the  populations  of  S.  hermonthica tested. The  fourth  study

(Ramaiah 1984) found less specificity in cross-inoculation tests, and suggested that this

was due to  Striga populations representing 'intermediate forms'. Field-based virulence

trials,  where  the same set  of  crop hosts  are  grown in  different  locations,  have also

suggested  broad  geographic  patterns  in  S.  hermonthica inter-species  specificity

(Vasudeva Rao & Musselman 1987). However,  given the age  of  these studies,  it  is

unclear  how many of these patterns of  virulence are extant;  plant  pathosystems are

continually evolving, and human agency in moving crop and parasite seed around the

landscape is a significant factor in Striga spread and evolution, as noted above. 

Ejeta (2007) gives a brief and partial report on the current state of one example of inter-
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species specificity in the field. Interestingly, he reports that for S. hermonthica in Sudan,

where  inter-species  specificity  for  sorghum  and  pearl  millet  was  previously  found

(Wilson-Jones 1955), changes in the regions growing pearl millet in the 1980s resulted

in the gradual appearance of S. hermonthica virulent on pearl millet, where previously

there had been specificity for sorghum  (Ejeta 2007). This phenomenon suggests that

Striga host specificity can be based on regional separation of crop cultivation, which

can  break  down  when  these  patterns  are  disrupted,  suggesting  that  S.  hermonthica

adaptations to host species may change on a scale of years rather than tens of years (see

also Parker & Riches 1993 pp. 6–7). However, in the western Eritrea region of Ethiopia,

sorghum and pearl  millet  are  grown in the same areas,  but  Striga  is  reportedly not

currently parasitic on pearl millet  (Ejeta 2007); this may be due to the suggested lag

phase  for  S.  hermonthica populations  switching  between  sorghum and  pearl  millet

(Parker & Riches 1993), suggesting that adapting to both species simultaneously may

also take time (although evidence suggests that this is possible, e.g. Estep et al. 2011).

Intra-species  specificity  is  defined here  as  the  presence  of  reproducible,  differential

cross-reactions between Striga populations and a set of genotypes within a host species.

Evidence  for  this  within  Striga species  has  in  the  past  been  considered  equivocal

(Vasudeva Rao & Musselman 1987). However, recent evidence for populations of  S.

gesnerioides with specific differential reactions across cultivars of cowpea is very clear,

as discussed above (section 1.2; Botanga & Timko 2006; Li & Timko 2009). Vasudeva

Rao  &  Musselman  (1987) equivocated  on  the  existence  of  Striga intra-species

specificity for three reasons: they pointed out that the observed differential reactions in

the field could also be due to:  “(1)  Striga intensity [i.e.  infestation] differences,  (2)

instability of the resistance of the host, or (3) the several soil and environmental factors
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which affect (weaken/strengthen) the resistance of the host cultivars” (Vasudeva Rao &

Musselman 1987). The last two of these can be thought of as environmental components

of the Striga-host interaction; that is, to use the terminology of analysis of variance, the

main effect of the environment and its interaction effects. Vasudeva Rao & Musselman

(1987)  also  suggested  that  certain  types  of  host  resistance  mechanism,  such  as  the

mechanical barrier of lignification in sorghum cultivar N13 (Maiti  et al. 1984), would

be unlikely to be overcome by variation in Striga virulence mechanisms, suggesting that

variation in parasite virulence between cultivars was more likely to be due to variation

in the expression of host resistance. However, as Parker & Riches (1993 pp. 53–54)

point out, a variety of mechanisms may actually underlay the resistance of a variety

such as N13, and more research is required before it can be concluded that variation in

the field resistance of particular cultivars is not at least partially due to parasite genetic

variability.  Clearly, the observations of Vasudeva Rao & Musselman (1987) must be

taken  into  account  when  assessing  Striga  intra-species  specificity  in  the  field

(Haussmann, Hess, Welz, et al. 2000): Striga population-host genotype interactions are

most  convincingly  examined  in  controlled,  lab-based  experiments,  where  the

environmental component is  stable and moderate,  and where host and parasite main

effects and their interactions can be examined. Of course, environmental effects are a

real part of any natural host-parasite system (Wolinska & King 2009), and their impact

should also be examined in well-designed field trials or common garden experiments

(Nuismer  &  Gandon  2008). Although  work  on  the  genetics  of  host  resistance  has

progressed through the use of lab-based pot and root-observation chamber studies (e.g.

Gurney  et  al. 2003,  2006), few studies  have  used  these  techniques  to  evaluate  the

genetic component of the host specificity of Striga populations. One exception to this is
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the work of Lane and colleagues on the S. gesnerioides-cowpea interaction (Lane et al.

1993,  1996). Their  work  demonstrated  the  existence  of  differential  host-parasite

resistance  reactions  under  laboratory  conditions;  specifically,  they  reported  a  post-

attachment  necrotic  response  of  cowpea  cultivar  58-57  to  a  population  of  S.

gesnerioides from Burkina Faso, but not to a population from Mali (Lane et al. 1993).

Subsequent pot studies and molecular marker work confirmed the existence of at least 7

races of S. gesnerioides on cowpea in West Africa (Botanga & Timko 2006); work on

the basis of resistance to these races in cowpea led to the discovery of gene-for-gene

resistance in this pathosystem (Li & Timko 2009; Timko et al. 2012). Work of this type,

combining lab-based assessments of virulence with population genetics, can therefore

help to direct workers to host-parasite interactions that stand the best chance of yielding

interesting information concerning the genetic basis of differential virulence.

At this  point,  it  is  necessary to  express a  partial  dissatisfaction with the conceptual

framework of intra- and inter-species host specificity that has so far dominated research

on  Striga  population-host  genotype  interactions.  The  word  'specificity'  suggests  a

focused virulence, implying a previous degree of exposure and host adaptation between

parasite  and  host  populations  (Parker  &  Riches  1993). The  word  also  suggests

restriction of the phenomenon to the parasite populations and host species or genotypes

studied in any particular system, when, in fact, differential virulence between parasite

and host populations could sometimes be due to pre-adaptive genetic diversity. Whilst

the  term may be  suitable  for  Striga-host  associations  in  the  strongly  inbreeding  S.

gesnerioides, where, at the level of host species, differentiated parasite lineages exist,

even sympatrically (Parker & Riches 1993; Mohamed et al. 2001), and, possibly, for the

inbreeding  S.  asiatica (e.g.  Botanga  et  al. 2002), this  conceptual  framework seems
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unsuitable for the outbreeding  S. hermonthica, where host preference appears to be a

matter of degree than of absolutes (i.e. quantitative rather than qualitative). Whilst this

point has been made before  (Parker & Riches 1993 p. 198), it has also been ignored

(e.g.  Mohamed  et  al. 2007). Therefore,  throughout  this  thesis  I  will  express  the

phenomenon  of  differential  virulence  between  S.  hermonthica  populations  and  host

genotypes  as  a  population-level  genotype-by-genotype  interaction  (G  ×  G);  this

terminology is increasingly used in epidemiological and ecological research of all kinds

(e.g.  Lambrechts  et  al. 2006;  Nuismer  &  Gandon  2008;  Wolinska  &  King  2009;

Rowntree et al. 2011). It also carries less connotation of historical interaction between

species, and admits, by its neutrality, of a greater potential for dynamism and change in

species interactions, that are a part of all interactions between species in the natural

world  (Thompson  1999;  Barrett  et  al. 2008;  Burdon  &  Thrall  2009), but  perhaps

particularly for outbreeding pathogens in agroecosystems (McDonald & Linde 2002).

Additionally, in this thesis I use the word 'population', rather than the word 'race', to

describe  S.  hermonthica seed  collections  with  particular  population-level  reactions

against sets of host-species genotypes. Although research on the S. gesnerioides-cowpea

interaction has used the word 'race' for parasite groups exhibiting differential virulence

between host genotypes (Lane et al. 1993; Botanga & Timko 2005, 2006), the word is

usually  associated  with  plant-microbe  pathosystems,  and  often  implies  a  particular,

well-defined genetic interaction, involving R-genes, for example (Agrios 2005). Whilst

this  has actually proven to be the case for certain interactions between the strongly

inbreeding  S. gesnerioides and genotypes of its cowpea host (Li & Timko 2009), the

current lack of experimental evidence for qualitative, all-or-nothing, host specificity for

S. hermonthica suggests that this terminology may be less appropriate in this instance.
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Certainly,  the widespread finding of quantitative G × G population-level interactions

between S. hermonthica populations and host genotypes (Kim et al. 1994; Cissoko et al.

2011; Huang et al. 2012), and the discovery of multiple quantitative trait loci (QTL) for

S.  hermonthica resistance  in  rice  (Gurney  et  al. 2006;  Swarbrick  et  al. 2009) and

tolerance in sorghum (Kaewchumnong & Price 2008), suggest that host adaptation at

this  level  is  a matter of degree (i.e.  resistance and virulence are quantitative traits).

Unfortunately, this conclusion is somewhat complicated by the fact that most research

on  S. hermonthica  has quantified virulence (or host resistance) at the population, or,

more accurately, the seed-batch level. That is, counts are usually made of the number of

Striga plants attached to a host root system (Gurney et al. 2003, 2006; Swarbrick et al.

2009; Cissoko et al. 2011), or emerging from pots or in the field (e.g. Kim et al. 1994).

Whilst this is a natural approach in the sense that host plants are typically attacked by

multiple parasites, in terms of the genetic basis of such a measure, it will be seen that it

is not an individual-level quantitative trait,  but rather a frequency measurement of a

qualitative trait  (i.e.  a count  of the individual  parasites that are able  to successfully

parasitise the host). Therefore, both of the preceding points concerning the evidence for

the  quantitative  bases  of  virulence  and  resistance  in  the  S.  hermonthica-host

pathosystem,  could  also  represent  situations  where  populations  consist  of  multiple

Striga genotypes,  differing at  a small  number of R-gene loci;  in this case,  QTL for

resistance  could  theoretically  represent  qualitative  resistance  genes  responding  to

different  Striga virulence genotypes in the genepool. Clearly, in a pathosystem where

the  interaction  of  practical  importance  involves  infection  of  a  host  by  multiple

genotypes, and the extent of damage to the host is a decreasing function of the amount

of co-infection  (Fig. 1.4; Gurney et al. 1999), a population-level approach is likely to
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yield the most useful information concerning interactions of agroecological importance.

However, for genetic inference, the subtle difference between a true quantitative trait

and the population-level frequency of a qualitative trait should not be forgotten.

Figure 1.4. The relationship between the infection density of S. hermonthica and the grain yield
of the sorghum cultivar 'CSH-I' at 100 days after planting. Closed circles indicate the grain yield
in  the  absence of  Striga infection;  open circles  represent  plants  infected at  different  initial
densities of Striga seed. Adapted from Gurney et al. (1999); d. wt = dry weight.

Related to this point is the use of the term 'virulence'; this term is often singled out for

the variety of meanings that have been attached to it over time (Jarosz & Davelos 1995;

Barrett et al. 2009). Its traditional meaning in plant pathology refers to the ability of a

pathogen genotype to infect a particular host genotype, often relating to the gene-for-

gene relationship, with the classic example being the flax/flax-rust system (Flor 1956);
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therefore, traditionally, a highly virulent pathogen genotype was one that could infect  a

wide range of host genotypes (Jarosz & Davelos 1995). However, in the ecological and

animal  pathology  literature,  'virulence'  has  been  used  to  refer  to  the  extent  of  a

pathogen's impacts on its host (Jarosz & Davelos 1995; Barrett et al. 2009). The plant

pathology world has  partly adopted this  second definition  (Jarosz  & Davelos  1995;

Sacristán  &  García-Arenal  2008;  Barrett  et  al. 2009),  adding  to  the  potential  for

confusion. In the case of  S. hermonthica, the term virulence has essentially been used

very casually, without any rigorous attempt to relate the word to one or other of the

established definitions (e.g. Gurney et al. 2003; Cissoko et al. 2011; Huang et al. 2012).

Indeed,  given  the  fact  that  S.  hermonthica  virulence  is  usually  measured  as  the

frequency  of  an  individual-level  qualitative  trait  (i.e.  binary  infectivity),  and  that

increasing  amounts  of  attached  parasite  increasingly  reduces  host  fitness  (Fig.  1.4;

Gurney et al. 1999), the word, and the feature of  S. hermonthica pathosystems that it

seeks to represent, can be thought of as containing both established definitions. In this

thesis,  I  continue with the use of the word 'virulence'  to indicate a quantitative (i.e.

frequency) measure of the population-level occurrence of successful parasitism, which

scales with the extent of a parasite population's impact on a host.

1.5 Prior work on the genetics of Striga-host interactions

Some data concerning genetic variation in Striga species are available. For the strongly

inbreeding species  S.  asiatica,  the study of Botanga  et  al.  (2002) provided the first

information on the relationship between genetic variation and the host adaptations of

Striga populations. Botanga et al. (2002) followed the approach of Lane et al. (1993) in
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using pot studies to minimise environmental variation, ensuring that genetic variation in

S. asiatica could be confidently associated with observed differential virulence. Other

studies that have sampled Striga species from hosts in the field, with the apparent aim

of  investigating  host  adaptation,  have  tended  to  assume  that  the  host  association

recorded in the field represents the 'adapted' host of that parasite deme (e.g. Estep et al.

2011;  Welsh & Mohamed 2011), without  using complementary lab investigations to

prove the existence of significant host-parasite G  × G  interactions (i.e. the ability of

different Striga populations to preferentially parasitise different host genotypes).

Botanga et al. (2002) demonstrated the existence of population-level G × G interactions

at both the host species and host genotype level for  S. asiatica populations in Benin:

none of the S. asiatica populations collected from maize or wild grasses (Panicum spp.

and Rottboellia spp.)  were  observed  to  parasitise  a  susceptible  sorghum  cultivar

(CK60B) in  laboratory pot studies,  neither  would some of the  populations collected

from wild grasses parasitise maize. Host genotype-by-parasite population interactions

were also shown in the lab by the cross-inoculation of the different maize hosts sampled

in  the  field  with  Striga seed  collected  from  these  same  hosts:  the  existence  of

interactions was shown by the fact that maize hosts from two of the six field sites were

differentially  resistant  to  the  S.  asiatica populations  (Botanga et  al.,  2002).

Significantly, the genetic analyses used in Botanga et al. (2002) revealed some evidence

for among-population genetic variation in  S. asiatica correlating with host preference.

Based  on  the  clustering  observed  in  some of  the  resulting  molecular  marker-based

dendrograms, the authors proposed that host selection could be the main force driving

the observed inter-population genetic differentiation within  S. asiatica in Benin.  For

example,  one  dendrogram showed three  S.  asiatica populations  separating  into  two
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'major classes' correlating with host species (wild grasses or maize, Fig. 1.5; Botanga et

al. 2002); however, the bootstrapped branch supports were very low in some cases (Fig.

1.5; Botanga et al. 2002). In addition, Botanga et al. (2002) also found a strong effect

(R2 = 0.61) of geographic distance on inter-population genetic distance. Clearly, as for

most  host-pathogen  interactions,  much  more  evidence  and  knowledge  of  causal

mechanisms will be needed before firm conclusions, or even broad generalisations, can

be made regarding host-parasite interactions that have been formed by host selection in

the field (Barrett et al. 2008; Burdon & Thrall 2009).

Figure 1.5. Dendrogram showing the relationships between individuals from three 'strains' of S.
asiatica (L9, L11 & L12; adapted from Botanga et al. 2002). The dendrogram was constructed
using the 'unweighted pair-group method using averages' (UPGMA) clustering algorithm with
117 amplified fragment length polymorphism (AFLP) markers.
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Studies of genetic variation within S. hermonthica also exist, and attempts to relate this

variation to host-parasite G × G interactions have been made. Olivier et al. (1998) used

allozymes  to  investigate  populations  of  S.  hermonthica growing  on  different  host

species  across  Africa.  Olivier  et  al. (1998)  suggested  that  high  levels  of  genetic

divergence  between  S.  hermonthica plants  parasitising particular  host  species  would

indicate  an  ancestral  host  specialisation,  whilst  low  divergence  would  be  more

indicative of recent adaptation. Presumably, however, even an ancestral specialisation

for  host  species  specificity  within  S.  hermonthica would  not  rule  out  more  recent,

flexible adaptations to host genotypes within species. Olivier  et al.  (1998) found little

evidence  of  genetic  divergence  between the  populations  of  S.  hermonthica sampled

from the different host species investigated.  They concluded that even adaptation to

different host species may be recently evolved in  S. hermonthica, although no cross-

infectivity analysis was presented to prove that the populations investigated were truly

preferentially adapted to the different host species sampled; that is, G × G interactions

showing  differential  virulence  on  the  different  host  species  were  not  demonstrated

(Olivier  et al. 1998). If we accept the two allozyme loci investigated by Olivier  et al.

(1998) as  representative  of  inter-population  divergence  relevant  for  host-preference

(which is, admittedly, unlikely for a very small number of markers if there is gene flow

between the putative host-specialised populations), then we could conclude that: (1) S.

hermonthica has recently adapted to host species (and, by extension, host genotypes),

or,  (2),  if  there  was  actually  low  host-specialisation  amongst  populations,  then  S.

hermonthica has enough standing genetic variation to parasitise a range of host species

and genotypes. In either case, the outlook for crop breeders would not be bright (cf. the

conclusions of McDonald & Linde 2002 on the risks presented by outbreeding pathogen

22



species).

Gethi et al. (2005) suggest “that it may not be necessary to develop [host] cultivar and

resistance breeding or selection programmes targeting particular regions”, based on a

finding of low S. hermonthica among-population variation in Kenya; however, this is a

heavily assumption-laden prediction, given that, like Olivier  et al.  (1998), Gethi and

colleagues did not test for parasite-by-host species or genotype interactions, and that

high genetic differentiation may not necessarily correlate with specificity (Olivier et al.,

1998). Low among-population genetic divergence may be due to most genetic variation

being within-population, however, even a low among-population component to genetic

variation could create different population-level host-parasite G × G interactions if that

variation was at functional sites for parasite virulence (Huyse et al. 2005; Barrett et al.

2008).

Other studies of genetic diversity in S. hermonthica have also concluded that divergence

due to isolation-by-distance is higher than that due to host species (Bharathalakshmi et

al. 1990; Musselman  et al. 1991; Kuiper  et al. 1996), or that neither was significant

(Gethi et al. 2005); this would not be unexpected for neutral markers, even if there is

strong differentiation for functional (i.e. host-adapted) genetic variation.  This pattern

seems likely to be at least partially due to the obligately outcrossing life history of  S.

hermonthica: populations growing on host species and genotypes locally may freely

interbreed, whilst the fecundity of the species, and the large seed bank, help to ensure

that there are always likely to be genotypes retaining the ability to parasitise different

hosts; isolation-by-distance will then be primarily responsible for population structure at

neutral  markers  in  the  absence  of  high  migration.  It  is  possible  that  understanding

genetic  variability in  S.  hermonthica may help to  target  appropriate  sources  of host
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resistance against particular populations; however, as Olivier et al. (1998) suggest, high

adaptability to new hosts in  S. hermonthica may correspond to a low probability of

finding high levels of host resistance in cultivars, because the time period for a strong

coevolutionary response has been too short and sexual recombination can create large

numbers of different genotypes, especially if host resistance is quantitative (McDonald

& Linde 2002; Barrett  et al. 2008). This has been the case so far  (Hearne 2009), and

crop breeding programmes now focus on attempting to 'pyramid' resistance genes in

order to create broad-spectrum, quantitative resistance to Striga (Ejeta et al. 2007).

Further  evidence  for  the  existence  of  high  adaptability  of  S.  hermonthica has  been

provided by studies examining within-population selection by different host genotypes

in the laboratory; that is, the individual basis of population-level G × G interactions has

been  investigated.  For  example,  Koyama  (2000a) demonstrated  genetic  divergence

between subsets of parasites from one population of S. hermonthica selected for by five

different sorghum cultivars. Huang  et al. (2012) came to a similar conclusion using

population genetic outlier analyses for the detection of loci under selection (see Chapter

3 for further information); Huang and colleagues also demonstrated population-level G

× G interactions between three rice cultivars and the S. hermonthica population used in

the outlier experiment, suggesting that variation at a small number of loci can drive

virulence differences between populations of S. hermonthica. Such results indicate that

standing diversity in populations of S. hermonthica relevant for host adaptation is likely

to  respond  quickly  to  changes  in  selection  pressure.  These  observations  provide

evidence for similar mechanisms leading to population-level G × G interactions in the

field, albeit, interactions underlain by high adaptability, and thus potentially leading to

relatively rapid changes from very low to very high virulence in  Striga  populations
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repeatedly  presented  with  the  same,  previously  resistant  host  (cf.  Ejeta  2007).  We

should  also  be  aware  that  what  appears  to  be  the  gradual  adaptation  of  existing

populations may also be due to an influx of new genotypes via the routes noted above

(e.g. seed exchange, wind or livestock movement; Berner et al. 1994).

1.6 The S. hermonthica-host pathosystem in the wider context of plant pathology

Whilst parasitic plants have tended to receive less attention than microbial pathogens

(e.g. Musselman et al. 2001), there is a rich theoretical literature on parasite ecology in

general (see the recent book-length reviews of Poulin 2008 and Schmid-Hempel 2011),

and this work may guide our expectations of the patterns of host adaptation that are

likely  to  be  found  in  particular  pathosystems,  such  as  between  the  outcrossing  S.

hermonthica and its gramineous hosts.

Sexual reproduction is thought to be common amongst parasites, although there appears

to have been no systematic attempt to assess its relative level of occurrence compared to

non-parasitic  organisms.  Despite  the  abundance  of  work  on  the  parasite-driven

maintenance  of  sex  in  hosts,  comparatively  little  work  has  been  performed  on  the

phenomenon of sex in parasites  themselves  (Clay & Kover  1996; Thompson 2005).

Recent modelling efforts have suggested that sex should increase virulence in parasites

(Galvani 2003); the normal contention being that sex should be important for staying

ahead of a host's responses to infection (Thompson 2005). Thompson (2005) points out

that there is considerable scope for further evaluation of the particular circumstances

that favour the evolution and maintenance of mixed mating strategies in parasites; this is

particularly relevant  for plant  pathogens,  where a number of the most  economically
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important plant pathogens exhibit mixed mating (McDonald & Linde 2002). The plant

pathogen risk evaluation framework put forward by McDonald & Linde (2002) suggests

that a mixed reproductive system is likely to lead to the highest risk of host resistance

breakdown. This is due to the fact that occasional outbreeding can produce new multi-

locus genotypes, which, if successful, can subsequently spread asexually across large

areas.  However,  sex without  an asexual  phase can also be a  successful  strategy for

parasites,  as  demonstrated  by  the  current  S.  hermonthica 'pandemic'  (Ejeta  2007).

Whilst  it  is  important  to  understand  the  conditions  that  favour  the  evolution  and

maintenance of sex in parasites, the patterns of adaptation within a parasite species that

confront us across a landscape over short time scales are perhaps more important for

applied questions in the area of pathology (Burdon & Thrall 2009): this brings us to the

subject of local adaptation, which has been another domain of intense theoretical and

empirical  investigation  for  the  ecology  and  genetics  of  host–parasite  interactions

(Thompson 2005; Poulin 2008).

Parasite  local  adaptation  is  the  situation  where  local  parasite  genotypes  are  more

virulent on sympatric hosts than on allopatric ones; it is essentially a type of G  × G

interaction  based  on  variable  adaptation  across  space  and  time  (Thompson  2005).

Research in this area grew from the recognition that merely focusing on interactions

occurring in a single deme would not capture the range of evolutionary possibilities for

particular host–parasite interactions, which could be extremely important for evolution

at  the  landscape  scale  (Burdon  &  Thrall  2009);  it  is  increasingly  appreciated  that

variation in interactions, for example the strength of selection, across the landscape can

drive different  ecological  and evolutionary patterns  and processes  (Thompson 2005;

Tack et al. 2012). The interactions between the numerous phenomena that can influence
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local adaptation, such as the population genetics, life history, traits and spatial structure

of a pathogen, have not been well studied in many plant pathosystems (Barrett  et al.

2008;  Tack et  al. 2012),  and  the  links  between  these  variables  are  an  area  where

considerable advances in knowledge could be made (Burdon & Thrall 2009). Whilst a

number of broad inferences concerning the influences of various pathogen life histories

and traits on pathogen genetic structure have been drawn (Barrett et al. 2008), the links

between  pathogen  genetic  structure  and  local  adaptation  are  not  necessarily

straightforward  (Gandon & Nuismer 2009). Huyse  et al. (2005) suggested that  very

small  parasite  effective  population  sizes  (Ne)  would  reduce  the  likelihood  of  local

adaptation.  Gandon  &  Nuismer  (2009)  confirmed  this,  but  also  found  that  local

adaptation was actually highest for parasite populations that were still quite small (10–

100  individuals),  as  long  as  parasite  migration  exceeded  that  of  the  host  and  all

interactions were occurring within one habitat type. Striga hermonthica populations are

likely to be much larger than 10–100 individuals, due to their extremely high fecundity

and  the  size  and  longevity  of  their  seed  bank  (Van  Delft  et  al. 1997;  Yoder  &

Musselman 2006), and the fact that in agroecosystems host plants are unlikely to be

rare.

Models of local adaptation are normally based on variations on the theme of major gene

(i.e. qualitative) resistance (for example, gene-for-gene or matching allele models of

infection; Clay & Kover 1996), and there has been little work on quantitative resistance

in this context  (Lannou 2012; but see Zhan  et al. 2002). Intuitively, if the degree of

virulence depends on a variable number of locus-specific interactions, we might expect

considerable variation in the virulence of pathogen populations across the landscape,

which does in fact seem to be the case for many plant pathosystems (Laine et al. 2011;
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Tack  et  al. 2012). A recent  individual-based  model  has  indicated  that  quantitative

resistance, based on a set of correlated host traits, may be a strong constraint on parasite

virulence  (Gilman  et  al. 2012). Earlier  modelling efforts  suggested  that  quantitative

resistance may be more likely to select for higher parasite virulence than qualitative

resistance  (Gandon & Michalakis 2000), although the speed at  which this  evolution

occurs  is  likely  to  be  dependent  on  the  genetic  architecture  of  the  virulence  and

resistance traits involved (Gilman et al. 2012). Indeed, it has usually been thought that

the evolution of virulence against quantitative resistance is much slower than against

qualitative  resistance  (van  der  Plank  1968;  Frankel  &  Soulé  1981), and  empirical

evidence exists to support this (Zhan et al. 2002).

Qualitative and quantitative resistance are likely to  be two ends of a  spectrum, and

interactions  based  on  the  presence  of  both  a  number  of  R-genes  and  a  degree  of

quantitative resistance are plausible  (Thompson & Burdon 1992; Burdon et al. 1996);

indeed, the prevalence of gene-for-gene relationships in the plant pathogen literature

may  merely  be  due  to  subtle  biases  in  the  types  of  pathosystems  that  have  been

investigated (Thompson & Burdon 1992). Even in pathosystems where reproducible,

qualitative  virulence  among  pathogen  races  had  been  previously  demonstrated,  for

example  the  rice  brown planthopper  Nilaparvata  lugens  (Homoptera:  Delphacidae),

subsequent studies found the basis of virulence to be polygenic (Thompson & Burdon

1992).  For  S.  hermonthica,  the  presence  of  some R-genes  in  the  genome is  almost

certain: they have been found for  S. gesnerioides (Li & Timko 2009), and they are

known from across the plant kingdom, suggesting an early evolutionary origin and on-

going utility against a wide variety of pathogens  (Meyers  et al. 2005). Despite these

uncertainties concerning the bases of virulence/resistance interactions in any particular
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pathosystem,  a  number  of  general  factors  that  are  likely  to  be  associated  with  the

genetic  structure  and  effective  population  size  of  parasite  populations  have  been

identified (Table 1.1; Huyse et al. 2005; Barrett et al. 2008).

Table 1.1. Host and pathogen life history and demographic variables likely to be associated with
the effective population size of parasites. Adapted from Barrett et al. (2008).
Life history/demographic 

variable
Increase effective population size Decrease effective population size

Host exploitation Generalist species; multiple hosts Specialised; single host

Pathogen reproduction Sexual Clonal or inbreeding

Pathogen dispersal Long-distance Local

Environmental variability Stable environment/host population Frequent extinction/recolonisation

Host longevity Perennial/long-lived host Annual/ephemeral host

Host population size/structure Large, well-connected Small, fragmented

Epidemiology Endemic Epidemic ('boom-and-bust')

Huyse  et  al. (2005)  present  a  similar  list  of  factors  likely to  influence  the  genetic

structure of parasite populations. Whilst effective population size and genetic structure

are not necessarily related,  under certain conditions,  for example low migration and

small  population  sizes,  low  effective  population  size  is  likely  to  lead  to  increased

genetic  structure through genetic  drift;  however,  for  large parasite  populations,  with

stable, long-lived hosts, but low parasite dispersal between populations, it is possible

that a degree of significant among-population genetic structure could be present even

though individual effective population sizes are large. This is perhaps the most likely

situation for S. hermonthica, at least in the absence of large-scale genotype-flow from

human activities (Berner et al. 1994). If hosts vary across the landscape due to the use

of local crop landraces,  or particular farming practices and local environments, then

genetic structure could be present at loci involved in host adaptation (cf. Bierne et al.

2013). However given the fact that  S. hermonthica populations have been found to be
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highly heterozygous (Bharathalakshmi et al. 1990; Olivier et al. 1998; Gethi et al. 2005;

Yoshida et al. 2010; Estep et al. 2011; Welsh & Mohamed 2011; Huang et al. 2012), it

seems likely that populations will retain considerable genetic variation; therefore, even

if some locally adapted interactions slowly evolve against quantitative host resistance, it

is likely that populations will still contain genetic variation for infecting unencountered

host genotypes (i.e. populations will be pre-adapted to some degree). Indeed, as noted,

the  finding  of  population-level  G  × G  interactions  between  host  genotypes  is  not

uncommon in lab experiments and field trials for S. hermonthica (e.g. Kim et al. 1994;

Cissoko et al. 2011), therefore the molecular basis of virulence between S. hermonthica

and its hosts seems likely to be polygenic and highly adaptable (Olivier et al. 1998).

1.7 Thesis aims

To summarise,  the current  evidence suggests that  populations of  S. hermonthica are

genetically  diverse,  not  strongly  differentiated  by  host  (species  or  genotypes),  and

capable of rapid evolution in response to new hosts. Characterising populations with

differential  virulence reactions against  host species or genotypes in different regions

should still be useful; this information could be used by farmers and seed-merchants to

ensure a measure of local resistance or tolerance against S. hermonthica. This approach

would  need  to  be  supported  by pest  management  strategies  designed to  reduce  the

chances  of  increased  virulence  evolving. Additionally,  the  potential  effects  of  the

environment  on virulence  can  be large,  and should be  taken into account  (Kaltz  &

Shykoff 1998; Wolinska & King 2009). Characterising the genetic structure of meta-

populations  at  different  scales  may  also  be  of  use  for  predicting  the  evolution  of
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virulence (e.g. Estep  et al. 2011), although it should be remembered that broad scale

genetic structure may have no bearing on patterns of differential  virulence if this is

dependent on a small number of loci and/or their interactions (Huyse  et al. 2005). A

useful step for African agriculture in the long-term would be to characterise those loci

responsible for virulence within Striga species. Knowledge of the causal mechanisms of

virulence, and of their variability, could offer new approaches for parasite control, and

underscore older ones (Hearne 2009). Understanding the nature of the genes responsible

for successful parasitism could also assist with the on-going search for resistance genes

in host and non-host germplasm.

Therefore, the broad aims of this thesis are:

1. To  investigate  the  magnitude  of  population-level  G  × G  interactions  for

populations of S. hermonthica and genotypes of its sorghum host, and to assess

the impact of the environment on them (Chapter 2).

2. To extend the within-population approach to detecting candidate virulence loci

underlying  population-level  G  × G  interactions  to  field  populations  of  S.

hermonthica and its sorghum genotype hosts (Chapter 3).

3. To  develop  and  test  new  approaches  for  investigating  the  genetic  basis  of

interactions  between  individual  S.  hermonthica genotypes  and  different  host

genotypes, and to compare this approach to the outlier analysis approach used in

Chapter 3 and in Huang et al. (2012) (Chapters 4 and 5).
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Chapter  2.  Population-level  G  ×  G  interactions  in  a  host-parasite  interaction

depend on parasite life-stage but vary in their ability to predict outcomes in the

field

2.1 Introduction

In some host-parasite systems the level of resistance of host genotypes, or the virulence

of parasite genotypes, may be the main determinant of the interactions between species

(e.g. Grech et al. 2006), but it is also not unusual to discover interactions between host

and parasite  genotypes  (Wolinska  & King 2009;  Tack  et  al. 2012). Here,  the  word

'interaction' designates the situation where parasite fitness depends on the host genotype

under  consideration  (or,  conversely,  relative  host  resistance  depends  on  the  parasite

genotype).  This  is  usually  demonstrated  as  a  significant  statistical  interaction,  and

should be evaluated in an experimental set-up that enables the 'genotype-by-genotype'

(G × G) interaction component to be separated from confounding environmental effects;

for  example  in  a  common  garden  experiment,  or  a  lab  assay  (Tack  et  al. 2012).

Although a strong G  × G interaction may change the relative virulence rankings of

parasite  genotypes  between  hosts,  this  is  not  necessary  for  an  interaction  to  be

significant (in  the statistical  sense,  at  least),  and it  may simply be the case that  the

relative differences in virulence between parasites are increased or decreased, without a

change in parasite rank virulence (Wolinska & King 2009). G × G interactions can, in

theory, be investigated at either the individual or population level, although differences

in interpretation may apply. At the individual level, different clones of two species could

be used to investigate the genotype-dependence of an interaction such as parasitism

(Whitham  et  al. 2003). Alternatively,  for  obligately outbreeding  species  such as  S.
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hermonthica,  different populations can be used to investigate how a change of deme

affects the interactions with a set of host genotypes.

G  × G interactions  are  often  of  interest  to  researchers,  although the  reason for  the

interest  varies  between  areas  of  research.  For  example,  workers  in  the  field  of

community genetics have stressed the importance of G × G interactions in determining

ecological  outcomes  at  the  community  or  ecosystem level  (Neuhauser  et  al. 2003;

Whitham  et  al. 2006). The  aim in  this  area  is  to  link  evolutionary  and  ecological

phenomena more tightly, by discovering the precise genetic loci and phenomena that

influence  larger  scale  ecological  patterns  and processes  (Hersch-Green  et  al. 2011).

Alternatively, taxonomic studies of parasites have attempted to better define host races

by demonstrating the existence of G  × G interactions: a change in parasite virulence

rank  between  hosts  may  suggest  the  presence  of  genetic  variation  worth  formally

recognising with a taxonomic rank, especially if the parasite populations demonstrating

host preferences have morphological correlates and can be distinguished in the field

(Thorogood  et al. 2009). Cryptic (morphologically indistinguishable) host races may

also be of interest to researchers if the parasite is of economic importance  (Jerome &

Ford 2002), or  if researchers are interested in more fundamental biological questions,

such as speciation  (Huyse  et al. 2005). G  × G interactions can also be of practical

importance in crop breeding programs seeking to utilise resistant crop germplasm: if a

parasite is geographically widespread and genetically variable (like Striga hermonthica;

Mohamed et al. 2007) then assessing the stability of crop host resistance against many

different parasite populations is likely to help ensure that host resistance is not going to

be overcome in the areas in which a crop variety is going to be deployed (Haussmann,

Hess, Welz,  et al. 2000; Cissoko et al. 2011). This may highlight regions that require
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monitoring  for  resistance  breakdown,  potentially  increasing  the  efficiency  of  other

parasite control methods that could then be targeted to those areas. Finally, the local

adaptation  of  parasites  to  their  hosts,  a  much  discussed  topic  in  the  area  of  eco-

evolutionary dynamics (Gandon 2002; Tack et al. 2012), is essentially a form of G × G

interaction, where the ability of a parasite genotype to infect a host genotype depends on

their degree of prior exposure to each other.

Within  these  several  different  contexts,  host-parasite  G  × G  interactions  involving

parasitic plants have been investigated using pot, root observation chamber ('rhizotron')

and  common  garden  (or  field  trial)  experiments.  An  obvious  shortcoming  of  such

experiments is the absence of information on the effects of environmental variation on

the outcomes observed (Wolinska & King 2009). The only situation in which the effect

of the environment on the host-parasite interaction might not be immediately relevant is

where basic cellular or molecular knowledge of the interaction is desired; for example,

studies  of  quantitative trait  loci  (QTL) may simply aim to identify loci  involved in

parasite  virulence  or  host  resistance  (Gurney  et  al. 2006;  Swarbrick  et  al. 2009);

however,  eventually,  a  fuller  understanding  of  the  interactions  of  QTL  with  the

environment  may also  be desired  (Anderson  et  al. 2011,  2013). In  all  of  the  other

situations  described  above,  where  G  × G  interactions  are  of  interest,  the  desire  to

extrapolate  lab  or  common  garden  findings  to  the  wider  environment  makes  any

environmental  effects  on  the  observed G  × G interactions  an  important  part  of  the

system under study (i.e. G × G × E interactions should be considered; Wolinska & King

2009;  Tack  et  al. 2012). In  the  area  of  host-parasite  local  adaptation,  a  field-based

experimental design using reciprocal common garden experiments has been shown to

separate  out  the  different  components  of  variance  in  species'  interactions  across
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genotypes and environments (Nuismer & Gandon 2008).

For parasitic plants, there are very few examples of pathosystems where an effort to

quantify the impact of environmental variability on G × G interactions has been made

(but see Omanya  et al. 2000). This is perhaps not surprising, given that Nuismer &

Gandon (2008) reported only one example of such an experimental strategy being used

for any type of interaction between two species. Moreover, for parasitic weeds, such as

Striga,  it  is  often  impossible  to  translocate  parasites  between  field  sites  due  to

quarantine measures (Prof. J.D. Scholes, pers. comm.); removing existing 'home site'

infestations may also be costly  (Haussmann, Hess, Welz,  et al. 2000). Therefore, the

comparison of lab experiments with experimental field trials, which are restricted to the

home sites from which the parasites originate, is the only option available in the study

of the agriculturally important S. hermonthica/sorghum host-parasite system. Whilst this

approach  provides  an  insight  into  how G  ×  G interactions  may change  between  a

controlled environment and the field, it unfortunately precludes experimentation across

a range of environments, which would provide further information on the size of any G

× G  × E component (Gandon & Nuismer, 2008; Wolinska & King, 2009). However,

conducting field trials across multiple years may be able to provide information on the

effects of a varying environment on G × G interactions.

There is considerable evidence that environmental variation will play an important part

in host-parasitic plant interactions. For the S. hermonthica/sorghum interaction,  both

nitrogen  and  phosphorous  deficiency  have  been  found  to  promote  strigolactone

production in sorghum (Yoneyama  et al. 2007), potentially leading to greater parasite

infection. Field-based research programs have also found soil nitrogen status to have a

complex relationship with host resistance to  Striga (Press  et al. 1999; Schulz  et  al.
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2003). In general, the importance of environmental variability for Striga virulence has

long been appreciated (Haussmann, Hess, Welz, et al. 2000).

The  'multi-step'  nature  of  parasite  infection  is  another  topic  of  importance  when

considering G × G interactions.  Striga requires a chemical signal from a host plant in

order to germinate, a signal for haustorium differentiation, and compatible molecular

interactions in order to successfully penetrate host tissue (Yoder & Scholes 2010). This

suggests at least three plant-plant interactions, each, potentially, with its own genetic

basis. Recent theoretical work has suggested that the existence of two-step infection

processes could have strong effects on host-parasite coevolution and related patterns of

gene frequencies and selection  (Fenton et al. 2012). However, most work on parasitic

plant  G  × G interactions  has  either  not  separated out the 'foraging'  stage from host

attachment and penetration (Mutikainen et al. 2000; Koskela et al. 2000; Rowntree et

al. 2011), or,  has  focused  solely  on  the  post-attachment  part  of  the  host-parasite

interaction by using pre-germinated  parasite seed  (Cissoko  et al. 2011; Huang  et al.

2012). 

One exception to this general pattern is the work of Thorogood  et al. (2009). These

authors examined both germination and attachment in the interaction between two intra-

specific  taxa  within  Orobanche minor s.l. and  the  host  plants Trifolium repens  and

Daucus carota  ssp. gummifer. Thorogood  et al. (2009) showed the presence of host-

parasite interactions at  both the pre- and post-attachment stages; that is,  the relative

virulence of the two parasite taxa depended on the host and on the stage of interaction.

However, the two taxa investigated,  O. minor  ssp.  minor (synonym var.  minor; Stace

2010) and O. minor ssp. maritima, have long been separated taxonomically on the basis

of morphological difference and host preference (e.g. Druce 1930), and have been found
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to  be  genetically  differentiated  (Thorogood  et  al. 2008); therefore  this  particular

instance of a host-parasite G × G interaction may actually represent a pair of taxa that

are well on the way to full host-specialisation and reproductive isolation.

Another recent study has investigated both pre- and post-attachment resistance for the

interaction  between  rice  and  S.  hermonthica (Jamil  et  al. 2011);  however,  in  this

instance,  different parasite populations were used in the different parts  of the study.

Unfortunately, this strategy forfeits the opportunity to comment on the strength of the

genetic basis of any observed similarities or differences in the virulence rankings of the

two stages of this host-parasite interaction. Even though the rankings of Jamil  et al.

(2011) were broadly similar between the two stages of infection, we cannot be sure that

this means that the two stages of virulence are actually similar for a single population of

the parasite: the use of different populations of the parasite gives us no information on

the strength of any parasite genotype life-stage × host interaction; that is, parasite life-

stage and parasite population were confounded in the experimental design.

The work of Omanya, Haussmann and colleagues (Omanya et al. 2000; Haussmann et

al. 2001, 2004) may be the most comprehensive assessment of pre- and post-attachment

resistance, and of the effects of the environment on these phenomena, for any parasitic

plant-host interaction to date. They studied the interaction between S. hermonthica and

two  recombinant  inbred  populations  of  sorghum  in  the  lab  and  the  field.  Their

controlled  experiments  consisted  of  both  germination  assays  and  pot  studies,  and

correlations  between  these  results  and  metrics  of  Striga field  emergence  were

calculated. Their main conclusion was that pot studies were poor predictors of the field

performance  of  sorghum  lines,  but  that  germination  assays  showed  more  promise,

although even the predictive ability of this assay type varied considerably between sites
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(Omanya et al. 2000).

The need to explicitly consider separate G × G interactions at different stages of parasite

infection may depend on the focus of a study. For example, for the early stages of a

community genetic research program, such as that of Rowntree  et al. (2011), the fact

that an overall G × G interaction was found between hemiparasitic Rhinanthus species

and populations and a set of barley (Hordeum vulgare) cultivars is simply presented as

evidence that the genetics of interacting species are likely to have indirect effects on

ecosystem function, because Rhinanthus species have been considered to be 'ecosystem

engineers'  (Rowntree  et  al. 2011). However,  if  this  research progresses to  the stage

where  coevolutionary  patterns  of  gene  frequencies  are  investigated  in  natural

populations,  or genomic signatures  of  selection are sought  (e.g.  Mhedbi-Hajri  et  al.

2011), then a better knowledge of the stages at which genetic interactions are occurring

would  be  desirable.  The  distinction  between  pre-  and  post-attachment  G  × G

interactions might similarly be of importance for work on host-parasite local adaptation

(Lively 1999; Agrawal & Lively 2003; Fenton et al. 2012).

For  research  into  S.  hermonthica,  or  other  agriculturally  important  parasitic  weeds,

information  on  G  × G  interactions  at  different  infection  stages  is  likely  to  be  of

considerable importance (Haussmann, Hess, Welz, et al. 2000). If G × G interactions are

more common at the post-attachment stage of infection (Cissoko et al. 2011; Huang et

al. 2012) than at the pre-attachment stage, then one interpretation might be that post-

attachment virulence evolves more quickly between populations than pre-attachment

virulence (or  'foraging'  efficiency).  This  could indicate  that,  between pre-  and post-

attachment  resistance,  pre-attachment  is  likely  to  be  the  more  robust  strategy  for

breeding crops with durable Striga resistance (Kim et al. 1994; Omanya et al. 2004).
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Here, I investigate the existence of population-level G × G interactions between three

populations  of  S.  hermonthica and  five  sorghum  cultivars.  Specifically,  I  test  the

following hypotheses: (1) Is there evidence for G × G interactions at the pre-attachment

(germination stimulation) stage? (2) Is there evidence for G × G interactions at the post-

attachment (host root penetration) stage? (3) Does the choice of virulence metric (where

different measures may represent different aspects of parasite fitness) affect conclusions

regarding  post-attachment  G  × G  interactions?  And  (4),  do  any  of  the  lab-based

estimates  of  virulence  for  each  Striga population/sorghum  host  combination

consistently predict the outcomes of a set of multi-year West African field trials of the

same  Striga and  sorghum plant material? The investigation of (4) provides an insight

into the presence of G × G × E interactions in this host-parasite system.

2.2 Materials and Methods

2.2.1 Plant materials

The  S. hermonthica seed populations used in this  chapter were collected from three

agricultural  research stations in West Africa; these sites are part  of the International

Sorghum and Millet  Collaborative  Research  Support  Program (INTSORMIL CRSP;

http://intsormil.org). As a part of the INTSORMIL program, multi-year field trials have

been  in  progress  at  these  research  stations,  the  primary  aim of  which  has  been  to

characterise Striga-resistant and Striga-tolerant varieties of sorghum (Dr T. van Mourik,

pers. comm.) One of these stations was at Kouare, Burkina Faso (11°95'N:00°30'E), the

other two were in Mali, at Sotuba (12°66'N:07°91'W) and Samanko (12°52'N:08°07'W),

both on the outskirts of the capital Bamako. The geographical distance between the two

Mali sites is approximately 21 km, whereas the Burkina Faso site is approximately 906
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km from the two Mali sites (measured from Bamako, Mali to Kouare, Burkina Faso).

The INTSORMIL field trials at these sites evaluated fifteen sorghum cultivars; five of

these cultivars  were chosen as the subject  of  the research presented in  this  chapter.

These five were selected because they represented a variety of host responses to  S.

hermonthica across the West African sites. As judged by Striga emergence across the

three  field  trial  sites,  they  were  either  relatively  resistant,  relatively  susceptible,  or

showed differing responses across sites (Dr T. van Mourik, pers. Comm.;  Chapter 3,

Table  3.2).  The  five  were:  Brhan;  CSM 388  (hereafter  called  CSM);  Malisor  92-1

(hereafter called Malisor); Mota Galmi (hereafter called MG); and SRN 39 (hereafter

called SRN). Seeds of all sorghum cultivars were obtained from the International Crops

Research Institute for the Semi-Arid Tropics (ICRISAT), Mali. Due to low germination

of the seed of some of the sorghum cultivars on receipt, seed stocks were bulked-up by

growing  plants  in  pots  in  a  controlled  environment  growth room before  use  in  lab

experiments; inflorescences were bagged before anther dehiscence to prevent crossing

taking place between cultivars.

2.2.2 Host root exudate germination stimulant assays

Five replicates were used for each sorghum cultivar. Sorghum seeds were germinated in

rock-wool  blocks  in  a  controlled  environment  growth  room  under  the  following

conditions: photon flux density:  500 μmol m-2 s-1 at plant height;  12 h photoperiod;

relative humidity 60%. The seedlings were transferred after five days to a hydroponic

system in the same growth room. This system consisted of individual sorghum plants

growing  in  50  mL plastic  Falcon  tubes  (Sarstedt,  UK),  with  the  tubes  wrapped  in

aluminium foil.  The  plants  sat  in  sponge  bungs;  the  sponge  around  the  plant  was

covered with Parafilm (Pechiney, USA) to reduce evaporation. The tubes were filled
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with 40% Long Ashton nutrient solution (Hewitt 1966) with 2 mM ammonium nitrate,

topped-up as required. After 10 days the nutrient solution was replaced with distilled

water. Twelve hours were allowed for the collection of root exudates, then the water

from each replicate  was collected and frozen at  -20°C until  use.  The sorghum root

systems  were  collected,  dried  at  45°C  and  weighed.  S.  hermonthica seeds  were

conditioned at 27°C for 12 days on moistened glass-fibre filter paper (GF/A, Whatman)

in 9 cm Petri dishes sealed with Parafilm. Germination assays were performed in 48-

well  plates  (Nunc,  Themo Scientific,  USA) by cutting  10  mm discs  of  filter  paper

containing between 50 and 200 conditioned seeds with a metal borer, and suspending

the seeds in 2 mL of root exudate in a well of the 48-well plate. Two technical replicates

were performed for each biological replicate.

In order to account for differences in the production of root exudate due to differences

in  root  biomass, the  root  exudate  solutions  were normalised  to  the  lowest  root  dry

weight. However, this resulted in the exudates being too dilute to compare (no  Striga

seeds  germinated).  Attempts  were  also  made  to  quantify  the  phenol  content  of  the

exudates using the Folin Ciocalteu method (Singleton  et al. 1999) as a proxy for root

exudation:  this  revealed  no differences  between replicates,  either  within or  between

sorghum cultivars. Therefore, root exudate dilutions (1×; 0.5×; 0.2×; 0.1×; 0.01×) were

made  from  the  neat  root  exudates  with  sterile,  distilled  water;  the  dilutions  were

intended  to  increase  the  range  over  which  differences  between  cultivars  might  be

observed. Rather than normalising samples to remove the influence of root biomass, the

effect of root dry weight was accounted for by its inclusion in all statistical models.

The 48-well plates were incubated at 27°C for 24 h, whereupon germination (number of

germinated  seeds/total  number  of  seeds)  was  assessed  for  each  sample  using  a
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stereomicroscope.  Negative  (sterile  de-ionised  water)  and  positive  (the  germination

stimulant  GR-24,  0.1 mg L-1)  controls  were  used.  The germination  counts  for  each

technical  replicate  were  added  together  to  give  the  final  data  for  each  biological

replicate, as is appropriate for proportion data (Crawley 2005).

2.2.3 Post-attachment resistance assays

Sorghum seeds were germinated between strips of kitchen-towel, supporting by blocks

of wet horticultural rockwool (Aquaculture, Sheffield, UK). After five days the sorghum

plants were transferred to individual root observation chambers (rhizotrons). A rhizotron

consisted of a square, perspex tissue culture plate of 300 mm side and 30 mm depth.

Rhizotrons were packed with moist vermiculite, except for a rockwool block at the base

to aid drainage. A mesh (100 µm polyester multi; Plastic Group, Birkenhead, UK) was

placed over  the  vermiculite,  onto  which  individual  sorghum plants  were  placed;  an

opening at the top of the rhizotron allowed for shoot growth. Individual sorghum root

systems were infected with 12.5 mg of conditioned, pre-germinated Striga seed 12 days

after  sowing.  S. hermonthica  seed was conditioned as described in section 2.2.2.  S.

hermonthica seeds  were  artificially  germinated  (using  a  0.1  mg L-1 solution  of  the

artificial germination stimulant GR-24) in order to promote synchronous attachment of

Striga to  the  sorghum roots  (Gurney  et  al. 2006). The  S.  hermonthica seeds  were

carefully aligned against the sorghum roots using a fine paintbrush.

After the rhizotron lids were closed, the rhizotrons were wrapped in aluminium foil to

prevent light from reaching the sorghum root systems. A diagram of a rhizotron and

photos of the experimental set-up are given in Figures 2.1 and 2.2 respectively. Each

rhizotron was watered automatically four times a day with approximately 100 mL of

40% Long Ashton solution,  with  2 mM ammonium nitrate  (Hewitt 1966). Rhizotrons
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were placed in a controlled environment growth room under the conditions described

above (section 2.2.2).

Six replicate  rhizotrons  for  each  sorghum  cultivar/S.  hermonthica population

combination were used. The surviving Striga parasites were harvested from their host

root  systems  at  30  days  post-inoculation  under  a  stereomicroscope.  The  harvested

parasites were placed on filter paper in 9 cm Petri dishes and digitally photographed.

Counts and length measurements of parasites were made from the digital images using

ImageJ v. 1.45 (http://rsb.info.nih.gov/ij/). Total parasite dry weight was calculated by

drying the Petri dishes containing the parasites at 45°C for two days, and then taking the

difference between the weight of the filter paper plus the parasite, and the filter paper

minus the parasite.

43



Figure 2.1. The rhizotron setup used in the post-attachment sorghum resistance assays. Once the
chamber lid is affixed, the rhizotron is wrapped in aluminium foil to keep the root system in the
dark.

Figure 2.2. A typical rhizotron set-up in a growth room (left), and, an individual rhizotron (the
susceptible  sorghum cultivar  E36  infected  with  S.  hermonthica)  opened  up  to  reveal  the
infected root system at 35 days post-infection (right).
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2.2.4 Field trials of sorghum cultivar resistance to S. hermonthica

The field trials were carried out by staff of the West African research stations listed

above (section 2.2.1). All of the information that immediately follows concerning the

field trials  was communicated to me by Drs Tom van Mourik (ICRISAT, Mali)  and

Hamidou Traore (INERA, Burkina Faso).

The field trials  were conducted between 2008 and 2011 using randomized complete

block designs with either three or four replicate plots, depending on year and site. Each

replicate  at  a  site  consisted  of  a  row of  sub-plots,  one sub-plot  for  each  of  the  15

sorghum cultivars evaluated; a sub-plot either measured 4.0 m by 1.5 m (Samanko) or

3.0 m by 1.6 m (Sotuba & Kouare). An example of the experimental field layout is

given in Figure 2.3. The sorghum resistance trait measured was the average number of

S. hermonthica  parasites emerged above ground at 90 d after host planting, per host

plant, per sub-plot (hereafter, 'emerged  Striga at 90 d host plant-1  sub-plot-1').  Due to

different  initial  planting  schemes,  and to  the  initial  differential  survival  of  sorghum

plants post-planting, differing final numbers of sorghum plants were assessed for Striga

emergence  per  sub-plot,  both  between  and  within  sites  and  years  (hence  the

normalisation to the number of host plants in the resistance metric used). The overall

mean number of sorghum plants (± s.d.) assessed per sub-plot was 12.26 (± 6.62; range

= 5-34).  Further  information  about  the  field  trials  is  summarised  in  Table  2.1.  The

parasite seeds used for artifical infestation at a field site were from the same batch as the

seeds received from a site at the University of Sheffield for use in the pre-attachment

and post-attachment resistance assays described above.
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Figure 2.3. An example of the experimental design used in the sorghum cultivar resistance field
trials. This example consists of three replicate plots, each consisting of 15 sub-plots. The sub-
plot measurements shown here are those used at Samanko; sub-plots measured 3.0 m by 1.6 m
at Sotuba and Kouare. Each of the 15 sorghum cultivars (here designated by a number between
1 and 15) was randomly assigned to a sub-plot within a replicate plot. A sub-plot contained
between 4 and 34 sorghum plants; see Table 2.1 for further details on the specific layouts, and
for further information on the numbers of sorghum plants assessed in a sub-plot at each site.
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Table 2.1. Infomation relating to the West African sorghum S. hermonthica resistance field trials conducted in Burkina Faso and Mali between 2008 and 2011.

Site
Geographic
coordinates

Years trial
conducted 

(and number of
replicates)

Final number of
sorghum plants per
sub-plot assessed:

mean ± s.d. (range)

Sub-plot size
(m)

Artifical Striga
infestation

method

Amount of Striga used
in artificial infestation

NPK fertiliser
used?1

Kouare, 
Burkina 
Faso

11°95'N:00°30'E
2008  (3)
2009 (-)2

2010  (3)
14.50 ± 5.89  (5-28) 3.0 by 1.6

Infested planting 
holes

3000 germinable seeds 
per planting hole

Y

Samanko,
Mali

12°52'N:08°07'W
2008  (3)
2009  (4)
2010  (4)

8.51 ± 0.81  (5-9) 4.0 by 1.5
Infested planting 
ridges

1 g of 70% germinable 
S. hermonthica seed per
ridge3

N

Sotuba, 
Mali

12°66'N:07°91'W
2009  (3)
2010  (3)
2011  (3)

15.43 ± 8.62  (5-34) 3.0 by 1.6
Infested planting 
holes

3000 germinable seeds 
per planting hole

Y

1 Field applications followed the recommendations given in Berner et al. (1997).
2 Whilst average Striga emergence data were received from Kouare for 2009, the raw data could not be retrieved, hence their exclusion from the analysis presented in this chapter.
3 There was one (soil) ridge per sub-plot. If one Striga seed weighs approximately 5 × 10-6 g (Berner et al. 1997), this is around 140,000 seeds (assuming 70% germination). For a

4.0 m length planting ridge, this is 3500 seeds for every 10 cm, i.e. comparable to the number of seeds used per planting hole at the other sites.
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2.2.5 Statistical analyses

2.2.5.1 Host root exudate germination stimulant assays

To determine the effects of the sorghum cultivar root exudates on the germination of the

three S. hermonthica seed populations, the proportion of seeds germinated was analysed

in a binomial generalised linear model (GLM). The response was a two column vector

of 'successes'  and 'failures'  (Crawley 2007); that  is,  counts of the numbers of seeds

germinated and ungerminated for each combination of host, Striga population, and root

exudate dilution factor. Using a two column vector utilises information on sample size

to  weight  the  model  predictions,  information  which  is  lost  when  using  a  simple

proportion as a response variable (Crawley 2007). The germination dataset was found to

be overdispersed; that is, there was more variability than could be accounted for by the

binomial distribution (Warton & Hui 2011). Overdispersion was assessed by comparing

the ratio of the residual deviance (deviance is a likelihood-based measure of goodness

of  fit,  which  can  be  compared to  sums of  squares)  to  its  degrees  of  freedom.  One

recommended  solution  when  dealing  with  overdispersed  proportion  data  is  to  fit  a

quasi-binomial  model;  these  models  use an  empirical  scaling  factor  to  account  for

overdispersion (Crawley 2007; Warton & Hui 2011).

The standard 'link'  function for a  binomial  GLM is  the log of the odds (the 'logit';

Crawley 2007); however, in the current experiment the response of seed germination to

an  increasing  concentration  of  root  exudate  was  asymptotic,  and  exhibited  a  form

similar to the well-known Michaelis-Menten equation (Soetaert & Herman 2009). The

Michaelis-Menten  equation  can  be  linearised  by taking  the  inverse  of  x and  y  (the

Lineweaver-Burk linearisation); therefore, the inverse link function was used, and the

inverse of the dilution factor was also taken before modelling. This approach was found

to minimise the residual deviances of the models compared to alternative approaches.
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The inclusion  of  covariates  and their  interactions  in  models  ('model  selection')  was

assessed  by  likelihood  ratio  tests  using  the  F distribution,  as  is  recommended  for

overdispersed models (Crawley 2007). Main effects were included in models if any of

their  interactions  were  significant,  even  if  they  themselves  were  not  significant

(Venables  & Ripley  2002). Model  checking  was  carried  out  by inspecting  plots  of

residuals against fitted model values for heteroscedasticity (unequal group variances)

and non-normality of residuals (Warton & Hui 2010).

2.2.5.2 Post-attachment resistance assays

Striga attachment data from post-attachment resistance assays were analysed differently

depending on the  response  metric.  Counts  of  Striga attachment  were  analysed  in  a

quasi-Poisson  GLM  due  to  overdispersion  (Crawley  2007).  Median  length  of  the

parasites  and  total  dry  weight  of  attachments  were  log-transformed  to  stabilise  the

variances, and were subsequently analysed in linear models. Likelihood ratio tests to

check the significance of terms in the model and model checking (for heteroscedasticity

and  non-normality  of  residuals)  were  carried  out  in  all  cases.  Tukey's  Honestly

Significant Difference (HSD) was used for post hoc pairwise group comparisons.

2.2.5.3 Field trials of sorghum cultivar resistance

The metric 'emerged Striga at 90 d host plant-1 sub-plot-1' (section 2.2.4) was calculated

in a spreadsheet program. Plots of sub-group (that is, data from a particular combination

of year, host and Striga field site) means and variances showed that heteroscedasticity

was present in this dataset, therefore the square root of the Striga emergence metric was

taken to stabilise the variances. The transformed Striga emergence metric was analysed

in a linear model. The alternative was to analyse counts of emerged Striga at 90 d sub-

plot-1, and to use the number of sorghum host plants per sub-plot as an 'offset term' in a
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Poisson or negative binomial model (Gelman & Hill 2006), so that the count data can be

modelled as rates. However, lower  Akaike's Information Criterion  (AIC; a commonly

used measure of the relative goodness of fit of competing models, Bolker 2008) values

indicated that the use of a linear model, and the square root transformation, were both

justified over the alternative Poisson or negative binomial approach. Model selection

was performed using likelihood ratio tests (for nested models; Bolker 2008) and AIC

comparisons (for nested or non-nested models; Burnham et al. 2011). Tukey's HSD was

used for post hoc comparisons between sorghum cultivars within sites and years.

2.2.5.4 Using lab-assay data to predict field outcomes

In order to evaluate the ability of the data on pre- and post-attachment resistance for

each Striga population/sorghum host combination to predict sorghum cultivar resistance

in the field trials, the percentage of seeds germinated for the undiluted root exudates

(1×), as predicted by the minimum adequate models (i.e. the most parsimonious model

for the data; Crawley 2007) of the germination data, and the mean values of the three

post-attachment estimates of  Striga virulence from the rhizotron experiments (number

of attached Striga; total Striga dry-weight; and median length of attached Striga), were

used as covariates in the minimum adequate models of the field trial Striga emergence

data. 

Because  the  expression  of  post-attachment  virulence  depends  on  Striga having first

germinated in response to  host  root  exudates,  estimates  of combined pre- and post-

attachment virulence were created. These additional virulence covariates were created

by multiplying each post-attachment metric by the pre-attachment germination metric

for every  Striga population/sorghum host combination (i.e.  downweighting the post-

attachment metrics by the percentage of Striga seeds germinated). These new covariates
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were  tested  in  the  same  way  as  the  separate  pre-  and  post-attachment  resistance

estimates, by using them as covariates in the minimum adequate models of the field trial

Striga emergence data. 

The use of these different metrics in place of the categorical variable 'sorghum host

cultivar' in the models of the field data enabled an evaluation of the ability of these lab-

derived resistance metrics to explain the field resistance of the sorghum cultivars. AIC

and  R2 values  were  used  to  compare  the  explanatory  powers  of  the  different  host

resistance (or, conversely, parasite virulence) pre- and post-attachment metrics.

All analyses were performed using the statistical programming language R v. 2.12.2 (R

Core Team 2012).

2.3 Results

2.3.1 Host root exudate germination stimulant assays

2.3.1.1 Baseline differences in S. hermonthica population germination

The mean germination of the three  Striga seed populations with the GR-24 artificial

germination  stimulant  control  were  (means ±  binomial  standard  errors):  Kouare,

Burkina Faso: 79.84% ± 2.69; Samanko, Mali: 74.18% ± 2.68; Sotuba, Mali: 82.58% ±

3.03  (n =  7  for  all  populations).  There  were  no  significant  differences  in  baseline

germination between the populations (quasi-binomial GLM: F = 2.55, p = 0.106, d.f. =

2),  indicating  that  Striga germination  responses  to  the  host  root  exudates  could  be

directly  compared  between  the  three  sites  without  normalisation  to  the  amount  of

germinable seed per population.
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2.3.1.2 The effects of host cultivar and dilution on Striga germination

Initial analyses of  Striga germination were undertaken within populations  (Table 2.2).

Figures 2.4a–e, 2.5a–e and 2.6a–e show the percentage germination responses to each

host cultivar root exudate for the  Striga populations at Kouare, Samanko and Sotuba

respectively. The overlaid regression lines represent the predicted germination values

from the minimum adequate models (Table 2.2; Crawley 2007) for each S. hermonthica

population/host combination (Figs 2.4a–e, 2.5a–e and 2.6a–e). Figure 2.7a–c, displays

the same minimum adequate model predictions for each Striga population's response to

the five different sorghum cultivar root exudates without the raw data for comparison.

The  statistics  for  the  terms  in  the  minimum  adequate  models  of the  germination

responses of the Striga populations are given in Table 2.2.

For each Striga population, significant effects of host (sorghum cultivar), root exudate

dilution factor and host root weight were found (Table 2.2). Figures 2.4a–e, 2.5a–e and

2.6a–e clearly indicate that, within Striga populations, clear differences were found in

the percentage germination response between different cultivar root exudates, and that,

around the  1 in  5 to  1  in  10 point,  dilution  of  the  host  root  exudates  significantly

reduced percentage germination. A comparison of the effects of host cultivar on Striga

percentage germination between the three Striga populations suggests that, in each case,

the germination responses to the different cultivars were very similar between  Striga

populations (Fig. 2.7a–c). Both the order in which the host root exudates stimulated

germination, and the absolute levels of percentage germination, are comparable between

populations (Fig. 2.7a–c), with the possible exception of the relatively lower percentage

germination  in  the  Sotuba  Striga population  in  response  to  root  exudates  from the

cultivars SRN and Brhan (Fig. 2.7c). This suggests that the Striga population × sorghum
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host interaction detected affected the sizes of the differences in germination sensitivity

to the different hosts between Striga populations, but did not change the order (in terms

of the percentage germination) in which populations were stimulated by the sorghum

cultivar root exudates.

The models also indicate that host root dry weight had a significant effect on percentage

germination for all three Striga populations, although this direct effect of host root dry

weight  had  the  smallest  effect  of  the  significant  model  terms  in  all  three  Striga

populations (Table 2.2). Significant interaction terms between host cultivar and dilution

factor  were  found  for  all  three  Striga populations,  indicating  that  particular

combinations of cultivar root exudate and dilution level had specific effects on  Striga

percentage  germination.  This  is  particularly  clear  in  the  Samanko  and  Sotuba

populations, where the models clearly show that the shape of the curve relating Striga

percentage germination to dilution factor depends strongly on cultivar (Fig. 2.7b and c).

The  relationship  between  host  cultivar  and  dilution  factor  was  also  influenced  by

variation in the root dry weight of particular replicates for the Kouare and Samanko

populations,  although for Sotuba the effect  of  root  dry weight  did not  interact  with

cultivar identity, suggesting that variation in this factor was similar across cultivars in

the Sotuba population experiments (Table 2.2).
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Figure 2.4a–e. The germination of  S. hermonthica seed from Kouare, Burkina Faso, by root
exudates of five sorghum cultivars. The broken lines plot the smoothed model predictions of the
minimum adequate model of the response of the Striga seed to each cultivar's exudate.
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Figure 2.5a–e. The germination of S. hermonthica seed from Samanko, Mali, by root exudates
of  five  sorghum  cultivars.  The  broken  lines  plot  the  smoothed  model  predictions  of  the
minimum adequate model of the response of the Striga seed to each cultivar's exudate.
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Figure 2.6a–e. The germination of S. hermonthica seed from Sotuba, Mali, by root exudates of
five sorghum cultivars. The broken lines plot the smoothed model predictions of the minimum
adequate model of the response of the Striga seed to each cultivar's exudate.
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Figure 2.7a–c. For each  Striga population, the graphs show the predictions of the minimum
adequate models relating Striga seed germination to dilution factor for the root exudate of each
of the five sorghum cultivars.
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Table 2.2. Model terms for the minimum adequate models of percentage germination for each of
the three West  African populations of  S.  hermonthica in response to five different  sorghum
cultivars.  The  three  fitted  models  were  quasi-binomial  generalised  linear  models  (section
2.2.5.1). D.f. = degrees of freedom; p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***.

Striga population and model terms D.f. Deviance
Residual

d.f.
Residual
deviance

F

Kouare, Burkina Faso

Host cultivar 4 904.61 110 2724.7 38.63***

Dilution 1 1551.26 109 1173.5 264.94***

Root dry weight 1 52.21 108 1121.2 8.92**

Host cultivar × Dilution 4 333.70 104 787.5 14.25***

Host cultivar × Dilution × Root 
dry weight

5 214.37 99 573.2 7.32***

Samanko, Mali

Host cultivar 4 2323.47 120 4442.2 63.27***

Dilution 1 1616.13 119 2826.1 176.06***

Root dry weight 1 86.65 118 2739.5 9.44**

Host cultivar × Dilution 4 1204.36 114 1535.1 32.80***

Host cultivar × Dilution × Root 
dry weight

5 436.36 109 1098.7 9.51***

Sotuba, Mali

Host cultivar 4 2075.56 120 2860.6 89.82***

Dilution 1 1435.94 119 1424.6 248.55***

Root dry weight 1 36.19 118 1388.4 6.26*

Host cultivar × Dilution 4 538.44 114 850.0 23.30***

Dilution × Root dry weight 4 186.21 110 663.8 8.06***

2.3.1.3  Germination  responses  to  neat  root  exudate:  Striga population  × host

interactions

The preceding analysis indicates that  the germination sensitivities of the three Striga

populations to  the  five  sorghum hosts were similar:  apart from the dilution factor,  the

identity of the sorghum cultivar appeared to be the main determinant of how the Striga

populations reacted to host  root exudate (Fig. 2.7 a–c; Table 2.2).  In order to further

investigate the  effect of  Striga population on germination  in response to the different

sorghum hosts, and to enable a comparison of the strength of any pre-attachment Striga
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population × sorghum host interaction with any such interactions occurring at the post-

attachment stage (section 2.3.2),  the germination data  from  only  one of the dilution

points (1×; i.e. neat host root exudate) were examined across all three Striga populations

(Table 2.3; Fig. 2.8a–c). These data were modelled using a quasi-binomial generalised

linear model, with a standard logit link function (Crawley 2007). Tukey's HSD post hoc

contrasts were used within each Striga population to compare the germination responses

to neat root exudate between the five host cultivars; the post hoc contrasts were carried

out on percentage germination once these  had been adjusted for the effect of root dry

weight  (Fig. 2.8a–c).  Although there was a statistically detectable interaction of host

cultivar  ×  Striga population  for the neat root exudate data (Table 2.3), the graphs of

these data, and the post hoc tests (Fig. 2.8a–c), suggested that this interaction effect was

not of a size sufficient to change  the order in which the different  Striga populations

responded to the five sorghum cultivar root exudates: the two categories of high (CSM;

Malisor;  MG)  and  low  (Brhan;  SRN)  germination  stimulant-producing  sorghum

cultivars remained broadly the same between the three Striga populations (Fig. 2.8a–c).

Table 2.3. Model terms for the minimum adequate model of percentage germination of three S.
hermonthica populations  in  response  to  the  neat  root  exudates of  five  different  sorghum
cultivars. D.f. = degrees of freedom; p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***.

Model terms D.f. Deviance
Residual

d.f.
Residual
deviance

F

Host cultivar 4 1112.45 68 1068.90 47.85***

Root dry weight 1 107.22 67 961.68 18.45***

Striga population 2 238.94 65 722.74 20.56***

Host cultivar × Root dry weight 4 95.51 61 624.23 4.24**

Host cultivar × Striga population 8 261.01 53 363.22 5.61***

Root dry weight × Striga population 2 46.92 51 316.30 4.04*
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Figure 2.8a–c. Striga population percentage germination after exposure to neat root exudate of
each of five sorghum cultivars. Tukey's HSDs (p < 0.05, d.f. = 1) are shown on each graph.
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2.3.2 Post-attachment resistance assays

Post-attachment  resistance  was  quantified  for  all  Striga population/sorghum cultivar

combinations in three different ways: as a count of the number of attached Striga (Fig.

2.9a–c), as the total dry weight of attached  Striga  (Fig. 2.10a–c), and as the median

length of attached  Striga  (Fig. 2.11a–c). The number of attached  Striga parasites was

significantly affected by sorghum cultivar (F = 40.30, p < 0.0001, d.f. = 4), and by the

Striga population (F = 51.41, p < 0.0001, d.f. = 2; Fig. 2.9a–c). There was also evidence

for  an  interaction  between  host  cultivar  and  the  Striga population  (F =  16.15,  p <

0.0001, d.f. = 8; Fig. 2.9a–c), as for pre-attachment resistance (section 2.3.1), indicating

the importance of G × G interactions in post-attachment Striga virulence/host resistance

outcomes.  Inspection  of  Figure  2.9a–c  indicated  that  the  differential  resistance  of

sorghum cultivars Brhan and MG between the three different  Striga populations was

likely to be driving the significant interaction: Brhan and MG were largely resistant to

S. hermonthica from Samanko and Sotuba, but susceptible to the Striga from Kouare.

There was also evidence for Malisor having lower resistance to the Kouare Striga (Fig.

2.9a).

Total dry weight of attached Striga was also significantly affected by sorghum cultivar

(F = 59.94, p < 0.0001, d.f. = 4; Fig. 2.10a–c), Striga population (F = 53.13, p < 0.0001,

d.f. = 2; Fig. 2.10a–c), and again by an interaction between them (F = 11.94, p < 0.0001,

d.f. = 8; Fig. 2.10a–c). Figure 2.10a–c suggests a similar pattern driving the G  × G

interaction to  that  for the number of  attached  Striga:  Brhan and MG most  strongly

displayed differential resistance between Kaoure and the two  Striga populations from

Mali (Samanko and Sotuba); and, again, Malisor appeared to have lower resistance to

Kouare Striga (Fig. 2.10a).
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Finally, median length of  Striga attachments was significantly affected by host (F =

13.86, p < 0.0001, d.f. = 4; Fig. 2.11a–c), but not, in this case, by Striga population (F =

1.88,  p = 0.159, d.f. = 2; Fig. 2.11a–c). Correspondingly, Figure 2.11a–c reveals little

difference in the way in which the five sorghum cultivars interact with the three Striga

populations, whilst the differences between cultivars appear to be consistent between

populations. The interaction between host and Striga population was again significant

(F = 2.33, p = 0.027, d.f. = 8; Fig. 2.11a–c), although this interaction was weaker than

for the  Striga count and dry weight data.  This, and the absence of a main effect of

Striga population, suggests that the median length of attached Striga is a less sensitive

metric  for  revealing  differential  interactions  between  host  cultivars  and  Striga

populations.

Post hoc Tukey's  HSD contrasts  (1 degree of freedom) between host  cultivars were

performed  within  Striga populations  for  each  post-attachment  metric  of  parasite

virulence, and are given in Figures 2.9a–c, 2.10a–c and 2.11a–c, where a difference in

letter indicates a significant difference at the 5% level. For one virulence metric/Striga

population  combination  (median  length  of  Striga for  the  Samanko  population;  Fig.

2.11b),  heteroscedasticity  was  detected  (Breusch-Pagan  test,  p <  0.01);

heteroscedasticity can affect the standard errors of estimates, and so the conclusions of

post hoc tests  (Westfall  et al. 2011). Therefore for the median length of Striga for the

Samanko  population,  the  post  hoc tests  were  adjusted  for  the  observed

heteroscedasticity using a covariance matrix estimated from the data using functions in

the R package 'sandwich' v. 2.2-9 (Zeileis 2004). The post hoc Tukey's HSD tests were

implemented in R using the package 'multcomp' v. 1.2-14 (Hothorn et al. 2008).
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Figure 2.9a–c. Evaluation of the resistance of the five sorghum cultivars against the three Striga
populations, as measured by the number of attached Striga. Tukey's HSDs (p < 0.05, d.f. = 1)
are shown on each graph.

63



Figure 2.10a–c.  Evaluation of the  resistance of the five  sorghum cultivars  against  the three
Striga populations, as measured by the total dry weight of  Striga harvested from a rhizotron.
Tukey's HSDs (p < 0.05, d.f. = 1) are shown on each graph.
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Figure 2.11a–c.  Evaluation of  the  resistance of the five  sorghum cultivars  against  the  three
Striga populations, as measured by the median length of the Striga harvested from a rhizotron.
Tukey's HSDs (p < 0.05, d.f. = 1) are shown on each graph.
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2.3.3 Field trials of sorghum cultivar resistance

2.3.3.1 Sorghum cultivar resistance over multiple sites and years

The amount of S. hermonthica parasitising the five sorghum cultivars in the field trials

varied significantly between years, sites and sorghum host cultivars (Fig. 2.12; Table

2.4).  Surprisingly, in contrast to the G  × G interaction revealed by the lab assay data

(sections 2.3.1 and 2.3.2), the field emergence data provided no evidence for a host

cultivar  × site interaction (Table 2.4).  However, the overall emergence at a site varied

strongly between years (Fig. 2.12), and this interaction effect was the strongest factor in

the minimum adequate model (Table 2.4). At Samanko in 2008 and 2010, and Sotuba in

2008 and 2011,  Striga emergence was generally low, and subsequently there was less

information on the relative resistances of the sorghum cultivars evaluated (Fig. 2.12).

The low emergence was presumed to be due to unmeasured environmental variation that

also affected sorghum grain production (Dr T. van Mourik, pers. comm.) Even though

Striga emergence was low at Samanko in 2008 and 2010 (Fig. 2.12), the grain harvest

per sorghum plant per sub-plot from these field trials was significantly lower for these

years than in 2009 (Kruskal-Wallis  χ2  = 58.83,  p < 0.0001, d.f.  = 2, Fig. 2.13; data

provided  by  Dr  T.  van  Mourik,  ICRISAT,  Mali)  when  there  was  higher  Striga

emergence (Fig. 2.12), indicating that environmental factors, such as rainfall, affected

both the crop and the parasite. In some sites and years (Kouare in 2008 and Samanko in

2009)  there  was  greater  Striga emergence,  and  distinctions  in  parasite  resistance

between cultivars then became clearer (Fig.  2.12). However,  Tukey's  HSD  post hoc

contrasts within sites and years revealed few significant differences in Striga emergence

between host cultivars: the exception was for Samanko in 2009 (Fig. 2.12), where the

resistance of Malisor was significantly different from all of the other cultivars except

SRN (all differences  p < 0.05), and, additionally, SRN was different from CSM (p =
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0.01).

Table 2.4. Statistics for the model terms included in the minimum adequate linear model of
emerged Striga at 90 d host plant-1 sub-plot-1. D.f. = degrees of freedom; p < 0.001 = ***.

Model term D.f. Sum of squares Mean square F

Host cultivar 4 14.87 3.72 6.26***

Site 2 21.31 10.65 17.94***

Year 3 20.12 6.71 11.29***

Site × year 2 52.17 26.08 43.92***

Figure 2.12. Emerged Striga at 90 d host plant-1 sub-plot-1 for the three West African sorghum
resistance field trials conducted between 2008 and 2011. Within field sites and years, the lines
connect the means of the sub-plot replicates for particular sorghum cultivars.
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Figure 2.13. Grain production (g host plant-1 sub-plot-1) across all sorghum cultivars in the three
years  of  the  sorghum  S.  hermonthica resistance  trials  at  Samanko,  Mali.  Different  letters
indicate significant post hoc differences at the p < 0.05 (d.f. = 1) level following a significant
global Kruskal-Wallis test (p < 0.0001).

2.3.3.2 Testing the explanatory power of pre- and post-attachment resistance estimates

from lab-assays

The different estimates of pre- and post-attachment resistance (as defined in section

2.2.5.4) of the five sorghum cultivars to the three  Striga populations varied in their

ability  to  explain  the  observed  variation  in  sorghum  cultivar  resistance  to  S.

hermonthica across the field trials. If either of pre- or post-attachment resistance (or

their combination), as observed in the lab, were strong influences on sorghum resistance

as observed in the field, then estimates of these metrics would be expected to display

strong explanatory power as covariates in statistical models of Striga field emergence,

i.e. cultivars with high post-attachment resistance in rhizotron assays would show low

field emergence, and vice versa.

An assessment of the relative explanatory power of the lab-assay metrics for the Striga

field  emergence  data  for  each  site  is  given in  Table  2.5;  each  model  contained the

resistance metric specified (table rows) and 'year' as covariates. One commonly used
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rule-of-thumb suggests that models within 2 AIC units of the best model can be thought

of  as  not  significantly different  from the  best  model  (Gelman & Hill  2006;  Bolker

2008); these models are given in bold in Table 2.5. Even if all models are poor, AIC will

still provide a relative ranking of the various models which have been hypothesised to

have some explanatory power (Anderson 2008).

Table 2.5. The relative ability (as measured by AIC) of pre- and post-attachment lab-derived
metrics of resistance to explain the observed variation in the emerged Striga at 90 d host plant-1

sub-plot-1 at three different West African field sites across multiple years. AIC results in bold
within a field site are within 2 AIC units of the best model. All models contained 'year' as an
explanatory factor, as well as one of the covariates given in the first column.

AIC estimates (and rank)

Covariate Burkina Faso Samanko Sotuba

Post-attachment estimates

Striga number 89.90 (7) 132.10 (2) 102.40 (6)

Striga total dry weight 88.21 (5) 132.40 (=4) 102.30 (5)

Striga median length 87.58 (3) 123.50 (1) 103.50 (7)

Germination estimates 
(pre-attachment)

89.10 (6) 139.90 (7) 98.19 (1)

Weighted post-attachment estimates
(post-attachment × germination)

Striga number 87.67 (4) 132.20 (3) 100.80 (4)

Striga total dry weight 87.10 (1) 132.40 (=4) 100.00 (3)

Striga median length 87.18 (2) 133.10 (6) 99.29 (2)

The  best  explanatory  metric  depended  on  the  Striga population  (i.e.  field  site).  At

Burkina Faso no single resistance metric stood out as the best, whereas at Samanko the

unweighted  Striga length  metric  captured  the  patterns  in  the  field  data  well.  The

measure  of  seed  germination  sensitivity  (pre-attachment  resistance)  was  the  top

predictor of emerged Striga at Sotuba, with the germination-weighted post-attachment

metrics  close  behind.  Inspection  of  the  within-year  model  R2  values  for  each  site

indicated  considerable  inter-annual  variation  in  the  variance  explained  by  any  one

resistance  metric,  suggesting  a  considerable  environmental  component  to  the  Striga
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field emergence data (Table 2.6). In some sites and years (Samanko in 2008 and 2009),

the post-attachment resistance metrics showed reasonably good correspondence to the

field data, but the germination pre-attachment metrics were poor. In other places and

years (e.g. Sotuba in 2010 and 2011) germination sensitivity was a good predictor, and

correspondingly,  the  weighted  metrics  also  outperformed the  unweighted  ones.  This

appears to have been driven by the low sensitivity of the Sotuba Striga to the Brhan and

SRN root exudates matching the low Striga field emergence for these cultivars. 

It was also notable that even in years with low Striga emergence, such as Samanko in

2008  and  Sotuba  in  2011  (Fig.  2.12),  the  resistance  metrics  could  still  explain  a

considerable amount of the variance in  Striga field emergence (Table 2.6), suggesting

that some of the patterns of sorghum cultivar resistance observed in the lab experiments

were in evidence in the field, even when parasite emergence was apparently limited by

environmental conditions. Conversely, the strong G × G interactions suggested by the

post-attachment rhizotron metrics, such as the differences in resistance for Brhan and

MG between the Burkina Faso and Mali Striga populations (Figs 2.9a–c and 2.10a–c),

were not clearly shown in the field emergence data (Fig. 2.12).
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Table 2.6.  The relative ability (as  measured by  R2)  of  pre-  and post-attachment lab-derived
metrics of resistance to explain the observed variation in the emerged Striga at 90 d host plant-1

sub-plot-1 at three different West African field sites in different years.

Burkina
Faso

Samanko Sotuba

Model term 2008 2010 2008 2009 2010 2009 2010 2011

Post-attachment estimates

Striga number 0.104 0.001 0.258 0.239 0.057 0.169 0.000 0.250

Striga total dry weight 0.158 0.020 0.304 0.229 0.048 0.184 0.001 0.231

Striga median length 0.176 0.035 0.244 0.526 0.102 0.115 0.002 0.220

Germination estimates 
(pre-attachment)

0.026 0.109 0.000 0.015 0.010 0.076 0.116 0.405

Weighted post-attachment 
estimates 
(post-attachment × germination)

Striga number 0.180 0.028 0.204 0.237 0.061 0.133 0.018 0.361

Striga total dry weight 0.144 0.085 0.212 0.234 0.057 0.136 0.031 0.382

Striga median length 0.159 0.065 0.076 0.243 0.059 0.114 0.054 0.410

2.4 Discussion

Interactions between species may often be dependent on the genetic composition of the

populations or individuals involved (Whitham et al. 2006). Understanding when this is

important can provide insights into the dynamics of particular communities, which may

be of fundamental interest for ecology and its applications (Hersch-Green et al. 2011).

Sorghum and  S. hermonthica  have a long coevolutionary history (Welsh & Mohamed

2011),  and  some  research has  already  been  performed  on  the  variable  interactions

between these species (Omanya et al. 2000). Given the numerous varieties of sorghum,

and the fact that  S. hermonthica is geographically widespread and genetically diverse

(Mohamed et al. 2007), these two species provide many opportunities to investigate the

importance  of  G  ×  G interactions  for  plant-plant  parasitism.  Their  agricultural

importance  increases  the  likelihood  that  large,  multi-site  experiments  can  be  run,
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providing valuable insights for crop breeding, as well as more general insights into host-

parasite ecology.

This chapter has shown that G × G interactions can be highly significant in controlled

host-parasite experiments, and may depend both on which stage of the interaction is

examined, and on the virulence/resistance metric used, indicating the complexities of

these  species'  interactions.  The  high  inter-annual  and  inter-site  variability  of  Striga

emergence in field experiments suggests the presence of  G ×  G × E interactions, and

indicates that direct extrapolations from the lab to the field may not always be merited

in this system.

For pre-attachment sorghum resistance, or, conversely, Striga sensitivity to germination

stimulants, G × G interactions were detected, but post hoc tests suggested that the three

populations of S. hermonthica exhibited the same rank order of germination sensitivity

to the five sorghum cultivars tested.  If biological variation is likely to influence the

concentration of root exudates in the soil in the field (e.g. soil nutrient concentrations;

Yoneyama et al. 2007), or other influences on germination  (e.g. soil microorganisms or

decaying plant matter; Haussmann, Hess, Welz, et al. 2000; Haussmann et al. 2001) are

taken into account,  it  is  likely that  the  G  ×  G interaction detected here  at  the  pre-

attachment stage has little biological significance in the field. Two broad categories of

Striga germination stimulant activity (CSM, Malisor and MG as high stimulant cultivars

and SRN and Brhan as low stimulant cultivars) seem all that the evidence from the

current  study  of  three  Striga populations  would  support.  However,  some  inter-

population  variability  was  observed:  compared  to  the  Kouare  and  Samanko  Striga

populations,  the  Sotuba  population  appeared  to  have  lower  sensitivity  to  all  of  the

cultivars except CSM. A similar overall pattern was found in a lab study by Haussmann
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et  al. (2001): these  authors  also  tested  the  germination  of  three  populations  of  S.

hermonthica exposed to root exudate from five sorghum cultivars. They found that host

identity  was  the  most  important  factor  influencing  Striga germination,  followed  by

Striga population, with only a small interaction effect. In my experiments, the effect of

root dry weight was also important (the variation in dry weight was around ten-fold:

range = 0.02-0.18 mg), suggesting that workers should make a greater effort to quantify

the  effects  of  root  biomass  variation  in  assays  for  germination  stimulation  and

germination stimulant production (cf. Hess  et al. 1992; Vasey et al. 2005; Jamil  et al.

2011).

The rhizotron studies of sorghum post-attachment resistance indicated the presence of

significant  G  ×  G interactions  for  all  three metrics;  this  was supported by different

resistance rankings and post hoc results between the three Striga populations, especially

for the cultivars Brhan and MG. For the number of Striga attachments and the total dry

weight, both Brhan and MG appeared less resistant to the Striga from Burkina Faso than

they did to the two neighbouring populations of S. hermonthica from Mali, suggesting a

geographic component to the genetics underlying Striga virulence.

The three  different  post-attachment  metrics  used  in  this  study may reflect  different

underlying  aspects  of  the  host-parasite  interaction.  Rhizotron  studies  of  Striga-host

interactions  have  used  a  variety  of  scoring  methods  that  have  either  categorised

attachments  into  different  parasite  developmental  stages,  and  have  interpreted  these

directly and/or analysed derivatives of these  (Gurney  et al. 2003, 2006; Huang  et al.

2012), or have used parasite length and/or dry weight (Gurney et al. 2003; Cissoko et

al. 2011). Different  cellular  and  molecular  interactions  may  lie  behind  different

phenotypic measures of a parasite's success on its host. For example, in rhizotrons, the
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number of attachments on a host may be high, but individual parasites may not develop

to any great size (Cissoko  et al. 2011); indeed, Drs M. Cissoko & A. Boisnard (pers.

comm.) found that using Striga total dry weight as the response metric in a quantitative

genetic study of rice resistance led to clearer identification of QTL than when using the

number of  Striga attachments. The results reported here indicate that parasite number

and total  dry weight  provide a  greater  separation in  parasite  resistance between the

different  hosts  than  the  median  length  of  a  parasite,  although  all  three  responses

differentiated hosts to some extent;  this  suggests the choice of  a  response metric  is

important  when reaching conclusions  about  host-parasite  interactions.  Some metrics

may not reflect important aspects of parasite fitness in the field, just as some measures

of parasite  field virulence correlate  better  with measures  of host  fitness  than others

(Omanya  et  al. 2000).  Whilst  rhizotron-derived  metrics  have  been  used  to  identify

resistant host germplasm (Gurney et al. 2003) and QTL for Striga resistance (Gurney et

al. 2006;  Swarbrick  et  al. 2009),  correlations  with  field  responses  have  not  been

investigated,  as  has  been  the  case  for  germination  assays  or  pot  studies  of  Striga

virulence  (Omanya  et  al. 2000).  Of  course,  if  different  rhizotron  metrics  represent

different underlying aspects of the host-parasite interaction, it is possible that they may

correlate better with field metrics other than Striga emergence.

In  the  field,  a  wide  range  of  measures  have  been  used  to  quantify  the  Striga

virulence/host resistance relationship (Omanya et al. 2004; Rodenburg et al. 2005), and

studies have arrived at broadly similar conclusions as to which measures are the most

stable for evaluating the heritable component of a host response. In the current study,

Striga field emergence at 90 days, found to be a reasonably stable measure by Omanya

et  al. (2004),  was  used.  However,  considerable  variability  in  response  was  still
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observed, mainly caused by site, year and their interaction, but, perhaps surprisingly

given the rhizotron results for post-attachment resistance, no host × site interaction was

detected,  suggesting  that  environmental  conditions  overrode  the  G  ×  G interactions

detected in the lab. The variable R2 values for the models testing the explanatory power

of  the  lab-assay  measures  between  years,  but  within  sites,  also  suggested  that

unmeasured environmental variables were the main determinants of Striga emergence.

Although the most important focus for field studies of host resistance to  Striga will

often be the stability of host resistance (because stable genetic variation is required for

breeding programs; Rodenburg  et al. 2005), in other areas, such as for more general

research into host-parasite coevolution (Wolinska & King 2009) or community genetics

(Rowntree  et  al. 2011),  the  effects  of  enviromental  variation  on  host-parasite

interactions  may  be  at  least  as  important  as  G  ×  G  interactions  and  host/parasite

genotype main effects (Tack  et al. 2012).  Indirectly assessing the predictive value of

lab-derived  G  ×  G  interactions  is  one  way  to  investigate  the  importance  of  the

environment  (Omanya  et  al. 2000),  especially  where  reciprocal  common  garden

experiments are challenging to perform. Here, the use of AIC values to compare models

of  Striga field emergence indicated that  the best  lab predictor  of the field response

varied between sites and years. At Burkina Faso there was no clear predictive advantage

to  any of  the  metrics  tested,  whilst  at  Sotuba  germination  sensitivity  was  the  best

predictor,  no  doubt  because  of  the  correspondence  of  the  low  Striga emergence  on

Brhan and SRN with the low sensitivity of the Sotuba  Striga  to the root exudates of

these cultivars. Whilst length was selected as the best predictor for Samanko by AIC

across all years, inspection of the yearly R2 values at this site showed that this measure

was often high for several of the different metrics, and that the selection of length as the

75



best explanatory variable seemed to be driven by its particularly close correspondence

to the  Striga field emergence in 2009. Despite reasonable  R2 values (e.g. for Burkina

Faso in 2008, Samanko in 2008 and 2009, and Sotuba in 2011) for virulence metrics

that resulted in significant differences between cultivars in the lab, only for Samanko in

2009 did post hoc tests indicate significant differences between host cultivars for Striga

field  emergence.  This  demonstrates the  importance  of  multi-year  testing  when

evaluating the significance of lab-derived information on  G  ×  G interactions for real

field  outcomes.  Realism  in  experimentation  is  clearly  of  great  importance  when

attempting to extrapolate inferences to field studies of species' interactions (Fenton  et

al. 2012).

Omanya et al. (2004) reported R2 values of 0.000-0.281 (mean = 0.10, their Table 7) for

the relationship between pot studies and the field metric 'area under the Striga number

progress curve' (ASNPC; obtained by integrating the curve of  Striga emergence over

time); whilst they reported R2  values of 0.002-0.397 (mean = 0.091, their Table 8) for

the relationship between their germination assay (maximum germination distance; Hess

et al., 1992) and ASNPC. Omanya et al. (2004) also report larger correlations between

ASNPC and germination distance (R2 =  0.608 and 0.818, their Table 9), although these

higher values were derived from correlating ASNPC averaged across two Mali  sites

with the germination data averaged between a site from Mali (Samanko) and one from

Niger (Bengou), so these  R2 values do not truly represent the relationship between a

Striga population that has been simultaneously tested in the field and the lab; that is, the

change in metric  was partially confounded with a change in  Striga population.  The

mean R2 value of the rhizotron and germination metrics presented in the current study is

0.147, very close to the mean values from Omanya et al. (2004). I found no differences
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between  the  average  R2 values  of  the  different  metrics:  all  of  them varied  in  their

predictive ability, and no single metric consistently outperformed the others. In contrast,

Omanya et al. (2000, 2004) contended that their germination assay results were superior

to their pot study in explaining Striga field emergence, although their confidence in this

measure  was  due  to  good results  at  one site,  and even these  results  were  not  very

different from some of the better results that they obtained with pot studies.

Recent research on a selection of new upland 'NERICA' rice cultivars has suggested

reasonable  correspondence  between  rhizotron-based  measures  of  post-attachment

resistance and field studies (Cissoko et al. 2011; Atera et al. 2012); however, the field

study (Atera  et al. 2012) also showed significant year-to-year variation, and indicated

that one rice cultivar, NERICA 4, that has been found to be resistant in rhizotron and

germination  stimulant  assays  (Cissoko  et  al. 2011;  Jamil  et  al. 2011),  was  very

susceptible in the field site in Western Kenya where the study was conducted; it is not

known  whether  is  this  due  to  differences  in  S.  hermonthica genotypes  or  to

environmental  factors.  Omanya  et  al. (2004)  outlined  some  reasons  why  pot

experiments may sometimes be an unrealistic representation of the field environment

for  the  Striga-host  interaction,  and  it  is  clear  that  further  knowledge  of  the

environmental influences on host-parasite interactions will be required if predictions of

G × G interactions in the field are to be consistently realistic (Wolinska & King 2009).

Lab assays may be useful for assessing G × G interactions in some instances: they often

represent  a  cost-effective  way  of  screening  large  amounts  of  germplasm,  or  of

minimising  the  variability  in  environmental  influences  on  species'  interactions.

However, the data presented here, and the results of other workers on parasitic plants

(Omanya  et al. 2000; Omanya  et al. 2004), suggest that interactions observed under
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assay conditions may deviate considerably from the field situation, or vary so much

with environmental  influences  across  field sites  that  any  G  ×  G effect  found under

controlled conditions may be biologically insignificant. Mitchell et al. (2005) came to a

similar conclusion after finding strong effects  of temperature on G  ×  G interactions

between the crustacean  Daphnia magna and its  bacterial  parasite  Pasteuria ramosa.

Alternatively,  the  fact  that  G  ×  G  interactions  can  be  demonstrated  between  S.

hermonthica and sorghum, and that rice and sorghum hosts have been shown to select

for certain genotypes of  Striga in the lab  (Koyama 2000a; Huang  et al. 2012), also

suggests  that,  even  though environmental  influences  on  species' interactions can  be

large,  over  time  the  high  fecundity  of  Striga, coupled  with  repeated  exposure  to  a

particular host cultivar, may still lead to strong G × G interactions of the type that are

often  thought  of  in  terms  of  host  specificity  (Vasudeva  Rao  &  Musselman  1987;

Mohamed  et al. 2007).  Indeed, the presence of host specialisation among species in

many parasitic plant genera (Parker & Riches 1993; Stace 2010) suggests that this must

be so: variation among coevolution in demes across space and time is likely to lead to

differing degrees of host adaptation (Thompson 2005), and understanding the variables

that influence this at different temporal and spatial scales is a major challenge (Burdon

& Thrall 2009).

The absence of a strong G  ×  G interaction at the pre-attachment stage of the parasite

life-cycle  suggests  that  populations  of  Striga may  be  less  likely  to  evolve  higher

sensitivity against low-germination stimulant hosts (i.e. populations seem less likely to

become  locally  adapated  at  this  life-stage),  although  germination  itself  was  not

universally better at predicting field responses than the post-attachment metrics in the

current  study.  However,  it  seems  likely  that  even  the  low  germination  stimulant
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cultivars in  this  study,  Brhan and SRN, still  produce enough stimulant,  under  some

circumstances, to lead to levels of parasite infection that could easily maintain levels of

soil  infestation  (Van Delft  et al. 1997; Van Mourik  et al. 2008), reduce crop yields

(Gurney et al. 1999), and lead to adaptation at the post-attachment life-stage.

2.4.1 Conclusions

Here I have shown the existence of strong G × G interactions between S. hermonthica

populations  and  sorghum  cultivars  at  the  post-attachment  life-stage.  Evidence  for

interactions  at  the pre-attachment life-stage was less convincing, suggesting that  the

different steps necessary for successful parasitism (or resistance) may evolve at different

rates. Field trials of sorghum cultivar resistance showed that environmental influences

can mask G × G interactions found in lab experiments; further to this, there was little

evidence  for  any  particular  lab-derived  resistance  metric  being  a  universally  good

predictor  of  sorghum  resistance  in  the  field.  Temporal  environmental  variation  in

selection pressure for host resistance or parasite virulence may constrain the ability of

pathogens to adapt to their hosts  (Kisdi 2002; Kawecki & Ebert 2004); in the current

agricultural  system,  periodic  changes  of  crop  may already place  constraints  on  the

adaptation of S. hermonthica to particular sorghum genotypes. The discovery of G × G

interactions in the current work does not demonstrate the adaptation of Striga to specific

crop genotypes because historical information on previous host-parasite exposure is not

available. However, the presence of G  × G interactions based on pre-existing genetic

diversity suggests that host genotype-specific parasite adaptation is very likely in this

system. Further work in this area should seek to correlate historical knowledge of crop

hosts planted in a location with the existence of host-parasite G × G interactions, and

seek to quantify the effects of environmental variation on the development of  Striga
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adaptation to crop host genotypes.

80



Chapter 3. Detecting locus-specific host selection in the field

3.1 Introduction

Striga hermonthica has a wide distribution in Africa (Mohamed et al. 2001) and is an

obligate outbreeder (Safa et al. 1984). Variation in corolla shape and colour, and in plant

architecture, suggests that the species is genetically variable (Parker & Riches 1993; O.

Pescott, personal observations). Indeed, it is now well-established that S. hermonthica is

a species containing a high level of genetic variation (Table 3.1), as would be expected

for an outbreeding and weedy annual plant  (Loveless & Hamrick 1984; Hamrick &

Godt  1996). The  other  main  motivating  factor  for  population  genetic  work  on  S.

hermonthica has been the question of whether genetic variation correlating with host

specificity can be observed (Bharathalakshmi et al. 1990; Olivier et al. 1998; Kuiper et

al. 1998; Koyama 2000a; Ali et al. 2009; Yoshida et al. 2010; Estep et al. 2011; Welsh

& Mohamed 2011; Huang et al. 2012; Table 3.1).

Due to its wide distribution, and its ability to parasitise the commonest cereal crops in

Africa,  researchers  have  long  been  interested  in  the  relationship  between  S.

hermonthica genetic  diversity  and  host  range  (Vasudeva  Rao  &  Musselman  1987;

Mohamed et al. 2007). Reports of S. hermonthica populations specific to sorghum and

pearl millet in the Sudan (Musselman & Hepper 1986), and experimental work on the

physiological  basis  of  these  interactions  (Parker  & Reid  1979), have  led  to  a  now

considerable  body  of  genetic  research  on  variation  in  the  host  specificity  of  S.

hermonthica across  Africa  (Table  3.1).  One  often  stated  aim  of  this  research  is  to

identify geographic regions containing S. hermonthica populations with particular host

specificities in order to inform the testing and deployment of resistant host germplasm,

81



and the provision of advice to farmers  (e.g. Estep  et al. 2011). However, very little

evidence for host adaptation at the genetic level has been found to date (Table 3.1). This

is in contrast to physiological work which has found host specificity (which is more

clearly thought of as an  interaction between host and parasite genotypes i.e. a G × G

interaction) at both the pre-attachment (germination stimulation) (Parker & Reid 1979;

Bebawi et al. 1986; Vasudeva Rao & Musselman 1987; Jamil  et al. 2011; Chapter 2),

and parasite attachment levels (Kim et al. 1994; Freitag et al. 1996; Cissoko et al. 2011;

Huang et al. 2012; Chapter 2).

.
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Table 3.1. A summary of studies that have investigated genetic variation and population differentiation in S. hermonthica. Hexp is the average expected heterozygosity.

Study
Location & host(s) of S.
hermonthica sample(s)

Sampling
method

Molecular
markers

Mean Hexp

or Hobs

FST (or
analogue)

range Conclusions Comments

Bharathalaksmi et 
al. (1990)

Burkina Faso: Sorghum; 
millet.
Sudan: Sorghum.
(Cultivars not specified).

Field sampling. 9 allozyme loci Hexp = 0.317 0.011-0.214 Some genetic 
differentiation; geographic 
factors appeared more 
important than host 
adaptation.

-

Kuiper et al. (1996) Benin: Maize; wild grasses.
Burkina Faso: Pearl millet.
Mali: Sorghum.
Kenya: Maize; sorghum; wild
sorghum; wild grasses
(Cultivars not specified).

Field sampling of
seed, followed by
axenic culture.

14 allozyme loci Hobs = 0.180 0.116-0.552 East and West African S. 
hermonthica clustered 
together; no indication of 
host specificity.

UPGMA cluster analysis 
not bootstrapped.

Olivier et al. (1996) - - - - - - Identical to Olivier et al. 
(1998).

Olivier et al. (1998) Burkina Faso: Sorghum; 
maize; millet; wild grasses.
Mali: Sorghum; millet.
Niger: Millet.
(Cultivars not specified).

Field sampling. 2 allozyme loci Hexp = 0.400
(calculated 
from data 
presented)

-0.038-0.065
(calculated 
from data 
presented)

No signal of either 
geography or host 
adaptation detected.

-

Koyama (2000b) Kenya: Sorghum.
Mali: Sorghum.
Nigeria: Sorghum.
(Cultivars not specified).

Lab-based 
sampling on one 
sorghum cultivar 
(ICSV 111).

10 allozyme loci
33 RAPD loci

- - Geographic genetic 
variation found, both within
and between populations. 

1. Selection within field 
samples by host in the lab 
means underlying 
population variation in the 
field not exactly known. 
2. Host adaptation not 
addressed.
3. UPGMA cluster analysis 
not bootstrapped.
4.  Discriminant analysis 
technique seeks to separate 
populations by maximising 
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the variance between pre-
defined groups, and is 
therefore, arguably, 
inappropriate for testing a 
null hypothesis that groups 
are not distinct.

Koyama (2000a) Kenya: Sorghum. 
(Cultivar not specified).

Lab-based 
sampling on 
sorghum cultivars
(cvs ICSV 111; 
ICSV 400; 
Serena; ICSV 
1007; SRN39).

10 allozyme loci
33 RAPD loci

- - Strong clustering of 
S.hermonthica sub-samples 
selected by sorghum 
cultivars in pot experiments.

1. UPGMA cluster analysis 
not bootstrapped.
2.  Discriminant analysis 
technique seeks to separate 
populations by maximising 
the variance between pre-
defined groups, and is 
therefore, arguably, 
inappropriate for testing a 
null hypothesis that groups 
are not distinct.

Gethi et al. (2005) Kenya: Sorghum; maize.
(Cultivars not specified).

Field sampling. 349 AFLP loci - D = 0.007-
0.025

Generally low 
differentiation; no 
relationship between 
pairwise genetic distances 
and geographic distance.

Host adaptation not 
addressed.

Ali et al. (2009) Sudan: Sorghum (cvs Wad 
Ahmed and Abu-70); millet 
(cvs Ashana and Sudanil); 
maize (cvs Hudalba and 
Banar).

Lab-based 
sampling using 
the same hosts 
that the Striga 
seed was sampled
from in the field.

23 AFLP loci - - Some evidence that Striga 
from maize and sorghum 
were more closely related to
each other than to a 
population collected on 
millet.

1. UPGMA cluster analysis 
not bootstrapped.
2. Possible partial 
confounding of host-
identity with geographic 
distance.

Yoshida et al. 
(2010)

Kenya: Maize.
Sudan: Maize; sorghum; pearl
millet.
(Cultivars not specified).

Field sampling. 10 microsatellite
loci

Hexp = 0.549 - No correlation between 
genetic distance and host 
specificity found.

-
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Estep et al. (2011) Mali: Sorghum; pearl millet.
(Cultivars not specified).

Field sampling. 12 microsatellite
loci

Hexp = 0.715 RST = 0.048 Little between-population 
genetic differentiation, but 
two population clusters 
identified. These clusters 
did not correlate with host-
identity or with obvious 
environmental factors or 
geographic distance.

-

Welsh & Mohamed
(2011)

Ethiopia: Maize (farmer's 
variety); millet (land race); 
sorghum (land races, and the 
improved varieties Gubiye 
and Meko); tef (an improved 
variety and a land race).

Field sampling. 385 AFLP loci Hexp = 0.204 0.032–0.293 High levels of 
differentiation between 
some populations; 
geographic factors, not host 
adaptation, appeared to be 
responsible.

-

Huang et al. (2012) Kenya: Maize (cv. H511). Lab-based 
sampling on rice 
cultivars 
(IAC165; 
Kasalath; 
Nipponbare).

191 AFLP loci Hexp = 0.234 0.013
(only one seed
population 
sampled)

Different rice hosts shown 
to select for different 
genotypes within one Striga
population.

-
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In general, for genetic work, investigating the host adaptation of Striga to species rather

than to genotypes within species (e.g. cultivars) has been the preferred approach (Table

3.1). This is because crop hosts can be instantly grouped by species, and associations

between  groupings  of  related  Striga populations  and  the  species  that  these  most

successfully parasitise (or have been found to be parasitising) can be quickly assessed

(e.g.  Bharathalaksmi  et  al. 1990;  Welsh & Mohamed 2011).  However,  investigating

associations  between  Striga population  relatedness  and  host  cultivar  genotype

relatedness  would  also  require  the  genotyping  of  host  cultivars.  These  approaches

essentially rely on establishing the  degree  of  congruence  between parasite  and host

population-level phylogenies in order to demonstrate host adaptation (cf. Nieberding &

Olivieri 2007). This approach can also be seen from a G × G interaction perspective:

parasite populations with similar reactions against related sets of host genotypes would

be expected to be genetically similar. However, at the intra-specific host genotype level,

G  × G interactions may have diverse foundations, and the hypothesis of congruence

between host and parasite phylogenies may deserve less weight a priori  (cf. Huyse et

al. 2005).  In  other  words,  there  may  be  multiple  independent  genetic  mechanisms

underlying  the  parasitism  of  a  specific  host  genotype  (species  or  cultivar)  by  S.

hermonthica, and therefore Striga populations that have similar success in parasitising a

particular host genotype(s) need not be closely related. Indeed, circumstantial evidence

for  this  being  the  case  is  provided  by  the  fact  that  African  cereal  crops  can  be

successfully parasitised by both S. hermonthica and S. asiatica (Parker & Riches 1993).

The lack of a strong genetic signal for host-parasite G  × G interactions to date (i.e.

strong  congruence  between  Striga relatedness  and  host  relatedness),  but  abundant

physiological evidence for G × G interactions across host species and genotypes (Parker
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& Reid 1979; Bebawi et al. 1986; Vasudeva Rao & Musselman 1987; Kim et al. 1994;

Freitag et al. 1996; Cissoko et al. 2011; Jamil et al., 2011; Huang et al. 2012; Chapter

2),  strongly  suggests  that  S.  hermonthica can  rapidly  adapt  to  new hosts,  and  this

conclusion has been reached by several authors (Welsh & Mohamed 2011; Huang et al.

2012).

Another potential reason for this discrepancy lies in the different experimental designs

that physiological and genetic studies have used.  Physiological approaches generally

expose different host genotypes to populations of S. hermonthica, either in the lab or in

a common field environment, using an orthogonal design to ensure all combinations of

host  and parasite are investigated  (Haussmann  et al. 2004; Dr T. van Mourik,  pers.

comm.) Genetic  approaches  have,  for  the  most  part,  used  opportunistic  sampling

regimes.  This  has  meant  that  different  host  species  or  genotypes  have  not  been

represented  at  all  Striga sampling  sites  (Table  3.1);  this  results  in  some  degree  of

confounding between geographic variation and variation due to host selection. Ideally,

the same set of hosts would be planted at all sites: that is, a replicated, randomised field

trial across multiple sites would provide the greatest ability to partition  Striga genetic

variation into host-specific and geographic components  (see Manel  et al. 2009 for an

example  of  this  type  of  approach). The  opportunistic  sampling  that  has  dominated

research into the genetic basis of host adaptation in  S. hermonthica is only likely to

uncover long established, broad patterns of population differentiation, whereas, in fact,

rapid, subtle micro-evolutionary responses of Striga to recently encountered hosts may

underlie  host  adaptation  (cf.  Hendry  et  al. 2007). The  uncovering  of  patterns  of

relatively  large-scale  population  differentiation  may  fulfil  the  aim  of  characterising

broad genetic structure across Striga populations (e.g. Estep et al. 2011), but it is not at
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all certain that S. hermonthica will have uniform responses to different host genotypes

within the populations so delimited; especially when, locally, populations are likely to

contain the raw genetic material for adaptation to novel hosts (Koyama 2000a; Huang et

al. 2012), and physiological G  × G interactions are common (see above). Looking at

within-population genetic  diversity  (Koyama 2000a;  Huang  et  al. 2012) is  therefore

likely to be the most effective way of uncovering the genetic basis of host adaptation. I

emphasise that this is a shift from the prevailing approach to host adaptation in Striga,

in  which  it  has  been assumed that  patterns  of  specificity  in  the  landscape  are  well

enough established (or well enough differentiated in the seed bank) to be uncovered by

simply assessing the association of host identity with some measure of genetic distance

(Barathalaksmi  et al. 1990; Kuiper  et al. 1996; Olivier  et al. 1998; Ali  et al. 2009;

Yoshida  et  al. 2010;  Estep  et  al. 2011;  Welsh  & Mohamed  2011;  Table  3.1).  The

prevailing  approach  essentially  assumes  that  genome-wide  patterns  of  diversity  are

sufficient to reveal host adaptation, whereas a focus on locating specific loci underlying

specificity  is  likely  to  be  more  successful  in  the  early  stages  of  host  adaptation

(Strasburg et al. 2012).

Koyama  (2000a) and Huang  et al. (2012) have both shown that, in the lab, different

hosts can select for different genotypes from a single population of S. hermonthica. The

work of Koyama (2000a) shows this in a particularly striking manner: using 33 random

amplified  polymorphic  DNA  (RAPD)  loci  (checked  for  Mendelian  segregation),

unweighted  pair  group-mean averaging (UPGMA) clustering  (based on a  Euclidean

distance  matrix  calculated  from RAPD fragment  presences  and  absences)  clustered

sorghum cultivar-selected  Striga individuals into groups that showed no overlap.  No

formal permutation test or bootstrapping was applied to this analysis, but the results
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appear, at least, to be clear. Huang et al. (2012) used a similar approach, and found a

low level of differentiation between three rice cultivar-selected sub-populations of  S.

hermonthica  (FST = 0.013); they also used outlier tests to identify 24 AFLP loci that

were significantly differentiated between the host-selected Striga sub-populations; these

loci were postulated to represent, or be linked to, specific areas of the S. hermonthica

genome involved in host adaptation.

The aim of this chapter is to extend this within-population approach to the genetics of

host  specificity  to  the  field,  and  to  provide  further  insight  into  the  frequency  of

occurrence of within-population selection of Striga parasites by their hosts. Originally,

the intention was to sample from three field sites, and to investigate the occurrence of

outliers within  Striga populations, to compare these between populations. However in

the event, genomic DNA usable for AFLP was only available from one field population;

this  removed the possibility of obtaining insights into variation in within-population

host specificity in the field, but has still allowed for the investigation of several points

of interest. Specifically, the following questions have been addressed: (1) In the field,

are host-selected S. hermonthica sub-populations genetically differentiated, and, if so, at

what level? (2) Can individual AFLP loci (outliers) that are driving this differentiation

be identified? And, (3), are outlier loci associated with parasite virulence, as measured

by the emergence of S. hermonthica in the field?

3.2 Materials and methods

3.2.1 Plant materials and field experiments

I utilised an African field experiment which was primarily intended to to characterise

Striga-resistant  and  Striga-tolerant  varieties  of  sorghum  (Dr  T.  van  Mourik,  pers.
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comm.; see Chapter 2 for further information). This assessment took place across three

sites  in  West  Africa;  these  sites  are  part  of  the  International  Sorghum  and  Millet

Collaborative  Research  Support  Program  (INTSORMIL CRSP;  http://intsormil.org).

One site was at Kouare, Burkina Faso (11°95'N:00°30'E), and two sites were in Mali, at

Sotuba (12°66'N:07°91'W) and Samanko (12°52'N:08°07'W). The field trials evaluated

15 sorghum genotypes. The intention was to sample  S. hermonthica growing on 9 of

these  15  genotypes;  the  9 sorghum hosts  were  initially chosen for  their  differential

reactions  to  Striga across  the  field  sites  (Table  3.2).  The  trials  used  a  randomized

complete block design with either three or four replicates. Each replicate consisted of a

row of sub-plots, one sub-plot for each of the 15 sorghum cultivars (see Chapter 2 for

further  details).  Ten  Striga plants  were  harvested  from each  replicate  sub-plot;  all

sampling took place in November 2009. To promote uniform parasite pressure, either

the  planting  holes  (Sotuba  and  Kouare)  or  the  planting  ridges  (Samanko)  were

artificially infested with S. hermonthica seed previously harvested at the test site.

Table  3.2.  Average  reactions  of  9  sorghum  genotypes  to  S.  hermonthica in  2009  at  the
INTSORMIL trial  sites,  as  qualitatively assessed  by Dr  T.  van  Mourik  (pers.  comm.)  R =
Resistant; S = Susceptible; N = Neutral.

Sorghum
genotype

Kouare,
Burkina Faso Samanko, Mali Sotuba, Mali

Overall
assessment

Brhan R N R Resistant

CEF 322/35-1-2 S N R Contrasting

CSM388 S S S Susceptible

Malisor 92-1 R R R Resistant

Mota Galmi R S N Contrasting

Lina3 N S S Susceptible

Sariaso9 S S N Susceptible

SRN39 R R N Resistant

Wassa N N R Intermediate

The harvesting of Striga was coordinated by Drs Tom van Mourik (ICRISAT, Mali) and
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Hamidou Traore (INERA, Burkina Faso).  Low  Striga emergence at  Sotuba led to  a

decision being taken by the field coordinators not to sample at this site. Leaves from

individual S. hermonthica plants were sampled from the Kouare and Samanko sites and

were oven-dried at 40°C (Drs T. van Mourik and H. Traore, pers. comm.) In total, dried

leaf tissue samples of 10  S. hermonthica plants  × 4 sub-plot replicates  × 9 sorghum

genotypes  ×  2  sites  =  720  were  received  at  the  University  of  Sheffield  for  DNA

extraction. 

3.2.2 High-throughput DNA extraction

Between 4–6 mg of dried Striga tissue was placed in 2 mL grinding tubes with 5 mm

steel ball bearings (Qiagen) and ground in a tissue homogeniser (Qiagen, 5 min at 25

Hz). Two-hundred and fifty μL of pre-heated extraction buffer (100 mM Tris-HCl (pH

7.4); 500 mM NaCl; 50 mM EDTA; 0.7% sodium dodecyl sulphate; 52 mM sodium

sulphite;  1.6  μg  RNAse  A;  16  μg  Proteinase  K)  was  added;  tubes  were  vortexed

thoroughly and incubated on a rotating rack at 55°C for 30 min. Two-hundred and fifty

μL of precipitation buffer (3.6 M potassium; 6 M acetate) was added to each sample

tube, whereupon samples were placed at -20°C for 15 min, with occasional inversions.

The samples (with the tubes still containing the grinding bearings) were then spun at

13,000 rpm for 5 min in a desktop centrifuge (Hawk 15/05, Sanyo Ltd, Japan). The

supernatants were transferred to the wells of Millipore 'DV' filter plates. Samples had

already been assigned a number, and these numbers were randomly assigned to wells

across eight 96-well plate templates; the transfer of supernatants to filter plates matched

these templates, and from this point forward all steps were performed in 96-well plates.

Millipore filter plates were placed atop new 1.2 mL storage plates (ABgene, UK). A

plate  centrifuge (Hermle Z 300K, Hermle Labortechnik Ltd,  Germany) was used at
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3500 rpm for 5 min to filter the samples into the storage plates. Six-hundred and fifty

μL of binding buffer (NaI 6 M; pH 7.0) was added to the filtered samples and mixed in

the tips of an automatic, 1000 μL multichannel pipette (StarLab, UK). The samples were

then transferred in 225 μL aliquots to Millipore silica 'FB' filter plates, atop old 1.2 mL

storage plates for waste collection. These plates were spun at 500 rpm for 1 min. This

was repeated until all of the sample mixture had been passed through the silica filter

plate. The DNA samples, now bound to the silica filters, were then washed twice (1000

rpm for 1 min) using 225 μL of freshly prepared, cold, washing buffer (10 mM Tris; 0.5

mM EDTA; 50 mM NaCl; 50% ethanol). An extra spin was performed at 3500 rpm for

2 min to remove residual wash buffer; the plates were then dried at 37°C to ensure any

remaining ethanol had evaporated. Two lots of 40 μL of elution buffer (10 mM Tris-HCl

pH 8.0; 0.1 mM EDTA), preheated to 80°C, were sequentially applied to the plates to

elute the DNA into new, 96-well, v-bottomed tissue culture plates (VWR International

Ltd, UK). Samples (5 μL) were subsequently loaded onto 1% (w/v) TAE-agarose gels (4

mm thick; 40 mM Tris-acetate; 1 mM EDTA; 0.1 μg mL -1 ethidium bromide) for DNA

quality checking via gel electrophoresis (gels ran at 70 V for 40 min). DNA size-marker

ladders (Bioline, UK) were used for comparison. A representative gel is shown in Figure

3.1.
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Figure 3.1. A representative gel from the DNA extraction procedure. Generally, samples from
Kouare  were  intact,  with  an  obvious  band  of  intact  genomic  DNA,  while  samples  from
Samanko  show a  smear  without  evidence  of  a  high  molecular  weight  band.  K =  Kaoure,
Burkina Faso; S = Samanko, Mali; n = negative controls. The top left lane contains Hyperladder
I, with nucleotide fragments running from 10,000 base pairs to 200 base pairs.

From Figure 3.1 it can be seen that several samples were degraded and failed to show

any  evidence  of  high  molecular  weight  DNA.  These  degraded  samples  originated

overwhelmingly from Samanko, Mali. Over all the samples, in excess of 75% of the

Samanko  samples  were  degraded;  re-extractions  were  performed  on  subsets  of  the

degraded Samanko samples, but no improvement in DNA quality was found. Because

intact, high molecular weight DNA is a prerequisite for reliable AFLP (Meudt & Clarke

2007), the Samanko samples were not taken forward for molecular marker generation.

Therefore, from this point onwards, all analyses were restricted to Striga from Kouare,

Burkina Faso.
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Figure 3.2 Overview of the fluorescent AFLP procedure. From Meudt & Clake (2007).

3.2.3 AFLP analysis

AFLP analysis involves the digestion of genomic DNA using two restriction enzymes

followed by polymerase  chain  reaction  (PCR)-based  amplication  of  a  subset  of  the

resulting  fragments,  thus  producing a  reduced,  'fingerprint'-like  representation  of  an

individual's genome (Vos et al. 1995; Figure 3.2). Polymorphisms between individuals

are  created  either  by  genetic  changes creating  or  destroying  restriction  sites  in  the

genome, or from nucleotide insertions or deletions between restriction sites. Normally,

the two restriction enzymes comprise a 'rare cutter' which has a larger cutting motif,
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such as EcoRI, and a frequent cutter with a smaller cutting motif, such as MseI (Figure

3.2 Step 1). This typically creates a fragment size distribution with lots of smaller (<

600  bp)  fragments  that  are  subsequently  amenable  to  PCR.  Double-stranded  DNA

adapters are then ligated to the ends of the DNA fragments (Figure 3.2 Step 2). These

adapters contain a sequence which serves as a binding site for PCR primers which are

then used to amplify selected fragment subsets. The fragment subsets are selected by

adding extra base pairs to the primers, which then only amplify those fragments having

the complementary base next in their sequence; for example, only 1 in 16 fragments

(assuming all bases are equally likely) will be amplified if one extra base is added to

each of the two primers. This subset selection is usually done in two stages, first a 'pre-

amplification'  stage  selects  a  subset  using  just  one  extra  overhanging  base  on  each

primer (Figure 3.2 Step 3), then a second 'selective amplification' selects for the final

subset  of  fragments  by the addition  of  an extra  two selective bases  to  each primer

(Figure 3.2 Step 4). At the selective amplification stage, one of the selective primers is

labelled with a 5' fluorescent dye; this ensures that any fragments amplified with this

primer will be detectable using capillary electrophoresis.  In theory, different numbers

of selective bases can be used at each of the two amplification stages, and research has

been carried out  on the number  of  selective  bases  that  are  likely to  be  optimal  for

different  genome  sizes  (Fay  et  al. 2005). S.  hermonthica  is  diploid,  with  n  =  19

(Aigbokhan et al. 1998); the genome has been estimated at 1,801 Mbp ± 321 (2C value;

Yoshida  et al., 2010). This is 1.84 pg ± 0.33, which is within the genome size range

suggested by Fay  et  al. (2005) as being appropriate  for an AFLP approach using 3

selective bases for both selective amplification primers. Indeed, this '+3/+3' approach

has been successfully used for work with S. hermonthica (Gethi  et al. 2005; Welsh &
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Mohamed 2011; Huang et al. 2012). Table 3.3 reports the nucleotide sequences used for

AFLP marker generation.

Table 3.3. PCR primers used in the AFLP procedure.

Primer name
Primer sequence 5'-3' 5'

fluorescent
dyeCore Restriction site Selective bases

Pre-selective

Eco+T GACTGCGTACC AATTC T -

Eco+A GACTGCGTACC AATTC A -

Mse+C GATGAGTCCTGAG TAA C -

Mse+G GATGAGTCCTGAG TAA G -

Selective

Eco+AGA GACTGCGTACC AATTC AGA 6-FAM

Eco+ATC GACTGCGTACC AATTC ATC NED

Eco+TGA GACTGCGTACC AATTC TGA HEX

Mse+CGT GATGAGTCCTGAG TAA CGT -

Mse+CGC GATGAGTCCTGAG TAA CGC -

Mse+CAG GATGAGTCCTGAG TAA CAG -

Mse+CAC GATGAGTCCTGAG TAA CAC -

Mse+GAC GATGAGTCCTGAG TAA GAC -

Mse+GAG GATGAGTCCTGAG TAA GAG -

Mse+GCT GATGAGTCCTGAG TAA GCT -

3.2.4 DNA restriction and AFLP adaptor ligation

For each sample, genomic DNA (approximately 300 ng) was digested at 37°C for 3 h

using 1 U EcoRI (New England Biolabs) and 1 U MseI (Roche) in 100 mM Tris-acetate

pH  7.9,  100  mM  magnesium  acetate,  500  mM  potassium  acetate  and  10  mM
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dithiothreitol,  with  0.26  μg  μL-1 BSA.  Then,  5.5  μL of  an  AFLP adaptor  ligation

mastermix (0.9× T4 DNA ligase buffer; 0.5 U T4 DNA ligase; 25 pmol EcoRI adaptor;

25 pmol MseI adaptor) was added to each sample, and plates were incubated overnight

in a water-bath at 16°C. The ligated samples were subsequently diluted by the addition

of 50 μL double-distilled (dd) H2O.

3.2.5 AFLP fragment PCR amplifications

Three  sets  of  pre-selective  amplifications  were  carried  out:  Eco+A/Mse+C;

Eco+A/Mse+G;  and,  Eco+T/Mse+C.  The  PCR reactions  were  carried  out  in  10  μL

reactions consisting of: 2 μL of diluted ligation mixture; 2% deionised formamide; 1×

Thermoprime PCR buffer; 2 mM MgCl2; 0.2 mM dNTPs (Bioline); 3  μg μL-1 BSA;

0.175 U Thermoprime Taq DNA polymerase; and 2.5 pmol of each pre-selective primer.

Reactions  were  overlaid  with  mineral  oil  (Sigma)  to  stop  evaporation.  The  PCR

program was: 2 min at 72°C (extension); 20 cycles of: 20 s at 94°C (denaturing), 30 s at

56°C (annealing), 2 min at 72°C (extension); and a final extension of 10 min at 72°C. A

subset of pre-amplified samples was run on 1% agarose gels in order to check that the

previous  steps  had been  successful;  a  faint  smear  should  be  observed (Figure  3.3).

Although this is not a necessary part of the AFLP procedure, it confirms that the prior

steps  were  successful  before  embarking  on  selective  amplification  and  capillary

electrophoresis of the resulting DNA fragments.
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Figure 3.3 An agarose gel showing AFLP pre-amplification success. The faintness of the pre-
amplified samples in this case is indicated by the over-exposure of the ladders (Hyperladder V,
500–25 base pairs).

The pre-selective  amplifications  were  diluted  by a  factor  of  1:4  by the  addition  of

ddH2O. The final selective amplifications were carried out in 10 μL reactions consisting

of: 2 μL diluted pre-amplification product; 2% deionised formamide; 1× Thermoprime

PCR buffer; 2 mM MgCl2; 0.2 mM dNTPs (Bioline); 0.175 U Thermoprime Taq DNA

polymerase; and 2.5 pmol of each selective primer. Reactions were again overlaid with

mineral  oil.  A touch-down  PCR  was  used  to  ensure  high  stringency  of  fragment

amplification  (Table  3.4;  Bonin  et  al. 2005). Selective  amplifications  were  finally

diluted by a factor of 1:30 by the addition of ddH2O.

Table 3.4. Touch-down PCR for AFLP selective amplification.
Step Temp (oC) Time (min:sec) Cycles Touch-down

1 Denature 94 2:00 1 -
2 Denature

Anneal

Extension

94

66

72

0:20

0:30

2:00

10 -1.0 oC/cycle

3 Denature

Anneal

Extension

94

56

72

0:30

0:30

3:00

25

-

4 Adenylation 72 10:00 1 -

The selective amplification primer pairs used were: Eco+AGA & Mse+CGT; Eco+ATC
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&  Mse+CGC;   Eco+TGA  &  Mse+CAG;  Eco+TGA  &  Mse+CAC;  Eco+TGA  &

Mse+CGT; Eco+AGA & Mse+GAG; Eco+ATC & Mse+GCT; Eco+AGA & Mse+GAC.

The first  five of these pairings were used by Huang  et  al. (2012)  in  their  study of

genetic variability within an East African S. hermonthica population. The last three were

chosen as additional pairings after testing 19 Eco/Mse primer combinations on a subset

of  8  samples.  The  new  selective  amplification  pairings  were  chosen  based  on  an

assessment of the base pair range over which peaks appeared, the number of peaks, the

signal-to-noise ratio and the evenness of the peaks' heights.

3.2.6 DNA fragment electrophoresis

Capillary electrophoresis of fluorescent AFLP fragments was carried out on an ABI3730

DNA sequencer. One μL of a diluted selective amplification was added to 9 μL of HiDi

deionised formamide (ABI) containing 1 μL of the ROX 500 internal sizing standard.

Plates were then heated at 95°C for 3 min to denature the DNA fragments (necessary for

the entry of fragments into the capillaries), and were then quenched on ice for 1 min,

helping to stop fragments re-annealing. The intensity of the detected fluorescence of the

fragments  is  a  function  of  how much  sample  is  injected  into  the  capillaries  at  the

commencement of electrophoresis, if too much sample is injected background noise can

interfere  with  the  detection  of  the  DNA fragments  (Trybush  et  al. 2006). Tests  of

different injection periods led to a 10 s injection being selected.

3.2.7 Locus selection

The data files produced by the ABI3730 were viewed in GeneMapper v. 3.7 (Applied

Biosystems, CA, USA). Samples for which the fluorescent traces were judged to have

been  poorly  amplified  (using  the  same  criteria  as  detailed  above  for  primer  pair

selection) were separated again by capillary electrophoresis. For samples where this did
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not improve traces, the selective amplification stage PCR was performed again. AFLP

loci for each primer pair were chosen manually by using GeneMapper to inspect the

presence  or  absence  of  bands  at  specific  fragment  sizes  (loci)  across  all  Striga

individuals.

3.2.8 AFLP error rate

Once the loci have been selected in GeneMapper, a  Striga sample-by-locus matrix of

peak-height  intensities  can  be  exported.  However,  attributing  fragment

presence/absence scores at loci across samples is not necessarily straightforward: some

loci may show fluorescence peak-height variation which does not obviously show a

clear  cut-off  point  distinguishing  fragment  absence  homozygotes  from  fragment

presence heterozygotes and homozygotes. For this reason, and to guard against other

sources of error such as labelling mistakes or sample cross-contamination,  it  is best

practice  to  include  duplicate  samples  in  order  to  check  the  reproducibility  of

amplification at the selected loci  (Bonin  et al. 2004). These duplicates can be used to

assess the error rate associated with any given fluorescence cut-off point that may be

used to distinguish AFLP fragment presence from absence at a locus (the 'allele-calling'

threshold). Here, 20 duplicated samples were used to assess the genotyping error rate.

The  error  rate  is  defined  as  the  number  of  mismatching  genotype  calls  between

replicates divided by the total number of loci for the 20 duplicated samples; that is, the

percentage of replicated loci that do not have matching genotype calls (Bonin et al.,

2004). The R script AFLPScore (Whitlock, Hipperson, Mannarelli, Butlin, et al. 2008)

was  used  to  assess  the  error  rate,  and  to  produce  the  resulting  fragment

presence/absence  matrix.  The  published  version  of  this  program,  v.  1.4  (Whitlock,

Hipperson,  Mannarelli,  Butlin,  et  al. 2008), allowed the  user  to  specify a  range of
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fluorescence thresholds, either as an absolute fluorescence value or as a percentage of

the  maximum peak-height  at  a  locus,  and  calculated  the  corresponding  error  rates.

Because of potential variation in PCR amplification between primer pairs, this meant

that it was preferable to assess primer pairs separately, to allow for the fact that different

primer pairs may have different scoring optima, thus producing the most accurate AFLP

genotype matrix. However, this method does not allow for the fact that individual loci

within  primer  pairs  may  have  different  scoring  optima  due  to  differential  PCR

amplification success. A developmental version of AFLPScore (v. 2.0) seeks to rectify

this, and was used here with the permission of the author, Dr Raj Whitlock (University

of Liverpool).

AFLPScore v. 2.0 operates on a similar principle to its predecessor, but, instead of just

using  the  duplicated  samples  to  assess  the  relationship  between  the  allele-calling

threshold and the error rate, an optimisation algorithm is run across all samples at a

locus.  The  AFLPScore  v.  2.0  algorithm  still  considers  the  error  rate  across  the

duplicated samples, but also considers the distribution of all peak-heights at a locus and

the  proportion  of  peaks  included  as  the  fragment  present  genotype.  These  three

variables are combined into a cost function, which, when minimised, has been found to

provide sensible results for test datasets (Dr R. Whitlock, pers. comm.) Graphs of the

value of the cost function compared to the error rate are assessed by eye to choose a cost

function  value  that  trades-off  the  error  rate  across  all  loci  with  the  number  of  loci

included in the final dataset. AFLPScore also performs a peak-height normalisation (to

the median height of a sample's fingerprint) to ensure that variation between samples in

total AFLP fingerprint intensity does not bias genotype calls. This is an important part

of AFLP scoring regardless of the scoring method used, and other scoring programs
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normally  incorporate  a  normalisation  step,  or  require  normalised  data.  The  final

genotyping error rate was 4.65%, which is around the level typically reported for AFLP

studies (Bonin et al. 2004). The final numbers of AFLP loci analysed for each primer

pair are reported in Table 3.5.

Table 3.5. Primer pairs used for AFLP analysis and the final number of loci used in genetic
analyses.

Selective primer pair Number of loci

Eco+AGA and Mse+CGT 217

Eco+AGA and Mse+GAC 210

Eco+AGA and Mse+GAG 166

Eco+ATC and Mse+CGC 146

Eco+ATC and Mse+GCT 70

Eco+TGA and Mse+CAC 94

Eco+TGA and Mse+CGT 203

Eco+TGA and Mse+CAG 169

Total: 1275

3.2.9 Analyses of genetic variation and differentiation

AFLP-surv v. 1.0 (Vekemans et al. 2002) was used to calculate the percentage of loci

that were polymorphic (PLP) at the 5% level; this is an estimate of polymorphism that

only counts a locus as polymorphic if the least frequent AFLP genotype exceeds the 5%

level. This is designed to screen out polymorphic loci caused by genotyping error; for

example,  low-frequency  fragments  may  appear  occasionally  due  to  PCR  mis-

amplification,  or,  conversely,  high-frequency  fragments  may  drop-out  due  to  PCR

failure. Assessing PLP at the 5% level should also reduce any correlation between PLP

and sample size (rare alleles are more likely to appear in larger samples; Avise 2004).

AFLP-surv was also used to calculate the average expected heterozygosity (Hexp) of the

total  Striga population  sample,  as  well  as  for  each  of  the  9  host-associated  sub-

102



populations. Hexp  is a measure that requires the estimation of allele frequencies from the

AFLP fragment presence/absence data. Recalling that the AFLP fragment presence band

is  assumed to  represent  both  fragment  present  homozygotes  and heterozygotes,  this

means that the frequency of the fragment absence allele (q) can be calculated by taking

the square root of the number of fragment absence homozgotes. In practice this has been

found to  result  in  biased  estimates  of  q  (Lynch & Milligan 1994), and  appropriate

adjustments have been formulated  (Lynch & Milligan 1994; Zhivotovsky 1999). The

AFLP-surv  implementation  of  Zhivotovsky's  (1999)  Bayesian  method  was  used  to

estimate the population and sub-population allele frequencies, and the method of Lynch

& Milligan (1994) was used to calculate Hexp.

Wright's  (1951) measure  of  genetic  differentiation,  FST, is  a  standard  measure  of

population  structure.   FST can  be  interpreted  as  'the  proportion  of  genetic  variation

distributed among (as opposed to within) [demes of a] subdivided population'  (Avise

2004). One often used formulation (due to Nei 1973) is: FST = (HT–HS)/HT, where HS is

the  mean  expected  heterozygosity  within  sub-populations  under  Hardy-Weinberg

equilibrium, and  HT  is the overall expected heterozygosity across the total population,

also assuming Hardy-Weinberg equilibrium (Avise 2004). An  FST of 1 would indicate

that  sub-populations  were fixed for  different  alleles,  whilst  0 would mean that  sub-

populations  were  identical  (Avise  2004).  AFLP-surv  v.  1.0  (Vekemans  et  al. 2002)

implements a permutation routine, where individuals are randomly permuted between

sub-populations, to test whether the observed value of FST is significantly different from

zero. After simulating a given number of datasets (here 1000), the observed FST value is

compared to the 95th and 99th percentiles of the distribution of the simulated FST values

to  assess  its  significance.  FST among  sub-population  pairs  ('pairwise'  FST)  was  also
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calculated in AFLP-surv.

A non-metric multidimensional-scaling (NMDS) ordination was also used to visualise

the  relationships  between  Striga individuals  and sub-populations.  NMDS is  used  to

ordinate  objects  for which (dis)similarity indices have been calculated based on the

presence or absence of descriptors, e.g., ordinating sites using dissimilarities calculated

between  sites  based  on  the  presence  or  absence  of  species.  NMDS  uses  a  ranked

distance method that seeks to represent the distances between objects in the dissimilarity

matrix in (usually) 2 dimensions. Here, a Jaccard dissimilarity matrix was calculated

from AFLP fragment presence/absence  (Bonin  et al. 2007) in order to ordinate  Striga

individuals in genetic space. This approach is a useful complement to measures, such as

FST,  that  require  the  extra  step  of  allele-frequency estimation.  A permutation-based

multivariate ANOVA (PerMANOVA; 999 permutations) was used to assess the amount

of genetic variation between Striga sub-populations explained by sorghum host identity.

These multivariate analyses were implemented in R using the 'vegan' package v. 2.0-5

(Oksanen et al. 2011).

3.2.10 Outlier tests for differentiated loci

Outlier tests, or genome scans, have rapidly increased in popularity over the past few

years  (Bierne  et al. 2011). They aim to identify individual loci that are significantly

differentiated  between  populations.  One  of  the  first  proposals  that  loci  subject  to

selection could be differentiated from 'neutral' loci was that of Lewontin & Krakauer

(1973). They postulated that whilst demographic processes (e.g. drift, gene flow etc.)

should have random effects  on neutral  loci  across the genome,  selected loci  should

display a recognisable pattern differentiating them from neutral loci. Specifically, those

loci that have been recently selected for, or are under current selection, should have an
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FST value  that  significantly  exceeds  the  genome-wide  average  for  neutral

polymorphisms  (Storz 2005), although the decision on what constitutes a 'significant'

departure from neutrality is not uncomplicated (Butlin 2010; Strasburg et al. 2012). As

neutral genetic variation can ‘hitch-hike’ with loci that are directly under selection, such

closely linked neutral  markers can show differentiation (i.e.  be identified as 'outlier'

loci) that suggests linkage to genomic sites under selection. At the time, the Lewontin &

Krakauer (1973) approach was quickly abandoned after it was shown by several critics

that the assumptions which it made were likely to be violated in natural populations

(Beaumont 2005). However, their ideas have recently been resurrected in the form of

‘population genomics’ (Luikart et al. 2003) and are proving of considerable value in the

study of adaptation and speciation (Storz 2005; Butlin 2010; Strasburg et al. 2012). A

variety of simulation approaches now suggest that the ideas of Lewontin & Krakauer

(1973), and more modern methods based upon similar reasoning, are relatively robust to

violations of the assumptions underlying them (Beaumont 2005; Butlin 2010; but see

Hermisson 2009). A potential strength of the population genomic approach is that it is

not necessary for a  researcher  to have any  a priori knowledge of what  an adaptive

phenotype might be within a target species (Storz 2005); however, the assumption that

an outlier locus is the result of extrinsic selective forces should be carefully evaluated in

each situation (Bierne et al. 2011).

In this study the program BayeScan v. 1.0 (Foll & Gaggiotti 2008) was used to assess

AFLP loci for signatures of selection. BayeScan estimates the likelihood of selection at

any given locus by using a logistic regression to decompose overall FST coefficients into

a  population-specific  component  (beta)  shared  by  all  loci  and  a  locus-specific

component  (alpha)  shared  by all  populations  (Foll  2012). The  presence  of  a  locus-
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specific component suggests either that there is diversifying selection (alpha is greater

than zero) or balancing or purifying selection (alpha is less than zero). The posterior

probabilities of the model with the locus-specific component (that is, alpha significantly

different from zero) and the model without this component are compared in order to

produce a Bayesian measure of the strength of evidence for accepting that alpha is not

zero for any given locus (Foll 2012).

3.2.11 Tests of correlation between field virulence and sub-population allele frequencies

BayeScan can also be requested to output sub-population allele frequencies (Foll 2012)

estimated using  the  method  of  Zhivotovsky (1999).  Given  the  hypothesis  that  host

selection is  the  underlying cause of  any locus-specific  differentiation  between host-

selected  sub-populations,  a  complementary  approach  to  the  identification  of

differentiated loci by BayeScan is to seek to correlate sub-population allele frequencies

with some indicator of host selection pressure (Bonin et al. 2007). Field data on average

Striga emergence  were  available  for  Burkina  Faso  in  2009,  the  year  in  which  the

samples  were  harvested  (provided  by  Dr  T.  van  Mourik),  therefore  I  investigated

whether  there were any significant  correlations  between  Striga field  emergence and

allele frequency across the 9 Striga sub-populations. This was performed by writing an

R  program  that,  for  every  AFLP locus,  permuted  the  estimated  allele  frequencies

between sub-populations 1000 times, and, for each permutation, calculated Pearson's r

between the allele frequencies and the average number of emerged  Striga across sub-

populations. The observed correlations were compared to the 2.5th and 97.5th percentiles

of this null distribution to assess significance (the quantiles were calculated using the R

function 'quantile', which uses interpolation to estimate the continuous distribution of

the  sample  statistic,  and  is  approximately  unbiased  regardless  of  the  underlying
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distribution of the statistic) (Frohne & Hyndman 2012). Because of the number of loci

being  tested  (1275),  the  Benjamini-Hochberg  false-discovery  rate  (FDR)  correction

(Benjamini  et al. 2001) was implemented at  the 5% level in a spreadsheet program

(LibreOffice Calc v. 3.5) to reduce the number of false positives, whilst also controlling

the false negative rate.

3.2.12 Population structure simulations for a differentiated virulence locus

BayeScan produces estimates of locus-specific FST. For loci which are determined to be

under  selection  by  BayeScan,  we  can  inspect  the  magnitude  of  FST at  these  loci

compared  to  those  loci  which  are  estimated  to  be  neutral.  If  hosts  are  driving  the

selection of outlier loci, simulations may be useful for investigating if the observed FST

at outlier  loci  is  what  would be expected if  a simple hypothesis  of differential  host

selection were true. For this purpose I used the statistical software R (R Core Team

2012)  to  simulate  selection  at  a  single  AFLP locus  involved  in  differential  Striga

virulence on hosts of differing susceptibilities. The sorghum hosts were divided into two

groups  (Table  3.2),  resistant  (Malisor  92-1;  SRN39;  Brhan;  and  Mota  Galmi)  and

susceptible (CSM388; Sariaso9; Lina3; CEF 322/35-1-2; and Wassa). The mean (± s.e.)

Striga field emergence for the resistant group was 23.3 ± 3.4, for the susceptible group

it was 110.0 ± 8.7. 

The  first  step  in  the  simulation  used  a  Bernoulli  distribution,  with  the  probability

determined by the underlying fragment frequency, to produce the distribution for an

AFLP fragment across 360 individuals in the Striga population (40 Striga × 9 sorghum

hosts). A second round of  selection was then implemented within the resistant  sub-

populations. In these sub-populations the fragment was assumed to be associated with

successful parasitism, therefore plants with the fragment survived. For those plants that
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did not receive the fragment, the probability of survival was 0.5. If the plant was lost, it

was replaced by a random draw from the global pool of individuals where fragment

presence  was  at  the  global  underlying  frequency  for  that  simulation.  Neither  the

fragment  presence  or  absence  states  were  assumed  to  have  any  effect  on  plants

parasitising susceptible sorghum hosts (i.e. there was no cost to having the virulence

fragment  on  the  susceptible  host).  For  these  sub-populations  the  distribution  of  the

fragment was simply determined by random picks from the underlying global fragment

frequency distribution. The simulation was performed 5 times for each initial frequency

of the AFLP fragment ranging from 0.1–1.0 in increments of 0.1.  The resulting data

were formatted in R for input to AFLP-surv using code from AFLPDAT (Ehrich 2006).

AFLP-surv v. 1.0 (Vekemans et al. 2002) was used to estimate FST at the locus using the

Bayesian method of Zhivotovsky (1999); 1000 permutations were used to assess the

significance of these estimates.  For each fragment frequency the mean  FST of  the 5

simulation runs is presented. The resulting FST values provide a point of comparison for

the estimates produced by BayeScan for outlier loci.

3.3 Results

3.3.1 Genetic diversity within the field-collected Burkina Faso S. hermonthica

Ten AFLP primer pairs produced 1275 scored loci, with fragment sizes between 50 and

500 base pairs, across  356 S. hermonthica plants harvested from 9 sorghum cultivars.

The AFLP analysis was restricted to plants harvested in Burkina Faso, due to problems

with sample harvesting and DNA quality at the two Mali sites (see above). Data on

population genetic variation, analysed in terms of the percentage of polymorphic loci

(PLP) and average expected heterozygosities (Hexp), are presented in Table 3.6 for host-
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associated Striga sub-populations and the overall Striga population sample.

Table  3.6.  Measures  of  genetic  variation  for  sorghum host-associated  S.  hermonthica  from
Burkina Faso, estimated from AFLP data. PLP = percentage of polymorphic loci; Hexp = average
expected heterozygosity.

S. hermonthica host Number of samples PLP at 5% Hexp ± s.e.

Malisor 92-1 38 29.7 0.097 ± 0.004

SRN39 40 36.3 0.106 ± 0.004

Brhan 40 37.5 0.114 ± 0.004

CSM388 40 37.3 0.116 ± 0.004

Sariaso9 40 38.3 0.114 ± 0.004

Lina3 39 35.5 0.116 ± 0.004

CEF 322/35-1-2 39 42.5 0.126 ± 0.004

Mota Galmi 40 40.0 0.118 ± 0.004

Wassa 40 36.7 0.106 ± 0.004

Total 356 37.1 0.113 ± 0.003

3.3.2 Genetic differentiation between host-associated sub-populations of S. hermonthica

Genetic differentiation (FST) between host-associated sub-populations was estimated at

0.004. The 0.5th and 99.5th percentiles of the null distribution of FST, generated in AFLP-

surv by permuting individuals between sub-populations 1000 times, were  -0.0027 and

0.0020. This indicates that the observed value of  FST was significantly different from

zero at the 1% confidence level.  The pairwise  FST estimates between sub-populations

were variable, with 9 of the 36 estimates at 0.000 (Table 3.7). The highest estimate was

between  the  CSM388-  and Malisor  92-1-associated  sub-populations  (pairwise  FST  =

0.011). There was no clear indication that sub-populations were more closely related to

each other within the categories of field resistance estimated at Kouare (Table 3.2).
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Table 3.7. Pairwise FST estimates between all sorghum cultivar-associated sub-populations of S.
hermonthica. (Sorghum cultivar names are given here in abbreviated form.)

Cultivar Malisor SRN Brhan CSM Sariaso Lina CEF M.G. Wassa

Malisor - - - - - - - - -

SRN 0.000 - - - - - - - -

Brhan 0.007 0.006 - - - - - - -

CSM 0.011 0.009 0.000 - - - - - -

Sariaso 0.002 0.001 0.000 0.002 - - - - -

Lina 0.010 0.008 0.000 0.000 0.002 - - - -

CEF 0.010 0.007 0.000 0.000 0.000 0.003 - - -

M.G. 0.009 0.008 0.002 0.002 0.001 0.007 0.000 - -

Wassa 0.007 0.005 0.008 0.009 0.003 0.016 0.005 0.003 -

A NMDS  ordination was  also  used  to  visualise  the  relationships  between  Striga

individuals collected from the different sorghum hosts (Fig. 3.5). The stress measure of

this ordination was 0.20; values of less than 0.30 are considered acceptable (Kent 2012).

Stress  is  here a  measure of  the difference between the actual  multivariate  distances

between objects and the distances as represented in  2 dimensions (Kent 2012).  The

NMDS ordination also suggested very little genetic differentiation between the host-

associated  Striga sub-populations; indeed, the PerMANOVA found that host identity,

although statistically significant, explained less than 1% of the genetic variation in the

population (r2 = 0.007, p = 0.001).
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Figure 3.5. Non-metric multidimensional scaling (NMDS) ordination showing the effects of the
9 sorghum hosts on S. hermonthica sub-populations. For clarity, the 95% confidence ellipses of
each host-associated sub-population, but not the individual Striga plants, have been shown. The
number of each sorghum host is at the centre of its 95% confidence ellipse, and numbers and
ellipses are shown in the same colour. (NMDS stress = 0.20.)

3.3.3 Putative outlier loci between host-associated sub-populations of S. hermonthica

The BayeScan outlier analysis identified 14 loci for which the evidence for the inclusion

of locus-specific selection was deemed at least 'strong' on the Jeffreys scale of evidence

for Bayes factors (Foll, 2012; Table 3.8). The Bayes factor provides an estimate of the

evidence for the choice of one model over another; here, the choice was between a

model including a locus-specific selection effect and one without it. Jeffreys scale of

evidence provides a  simple interpretation of Bayes factors:  'strong'  evidence,  in  this

case,  indicates  that  P(alpha  ≠ 0)  is  at  least  0.91  (where  alpha  is  the  locus-specific

selection effect; Foll 2012).
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Figure 3.6. Locus-specific FST plotted against the logarithm of the Bayes factor for each locus.
The bold vertical line at log(BF) = 1 designates the cut-off point for which all loci to the right-
hand side of the line have P(alpha ≠ 0) > 0.91, where alpha is the locus-specific selection effect.

Table 3.8.  Numbers of AFLP loci  and mean locus-specific  FST for  the different  strength of
evidence categories used by BayeScan to estimate the probability that a locus-specific selection
effect does not equal zero.

P(alpha ≠ 0)
Jeffreys scale of

evidence Number of AFLP loci
Mean locus-specific

FST

0.91–0.97 Strong 10 0.022

0.97–0.99 Very strong 2 0.027

0.99–1.00 Decisive 2 0.029
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3.3.4  Test  of  association  between  sub-population  allele  frequencies  and  Striga

emergence

No loci were found to have significant correlations with average Striga field emergence

at  the  5% level after  using  the  Benjamini-Hochberg  FDR adjustment.  Without  the

multiple test adjustment, 53 loci were significant at the 5% level, and 15 at the 1% level.

However, none of these loci was among those selected by BayeScan as outliers.

3.3.5 Simulation of locus-specific genetic differentiation under a model of host selection

Simulations of host selection at a virulence locus with different intial AFLP fragment

frequencies  indicated  that  population  differentiation  (as  measured  by  FST)  became

significant when the virulence fragment was at an underlying frequency of 0.2 in the

total population (Table 3.9). Initial AFLP fragment frequencies of 0.4–0.5 resulted in

FST values around the size estimated by BayeScan for outlying loci (~ 0.03; Table 3.8).

Table 3.9. Mean FST values for 5 simulated experiments with varied initial global frequencies of
a  virulence  fragment  of  differential  importance  between  resistant  (fragment  favoured  for
parasite  growth)  and  susceptible  (fragment  has  no  effect  on  parasite  growth)  host  plants.
Significance is given as the proportion of the individual simulations that were significant at the
given level.

Initial fragment frequency Mean FST Significant at 5% Significant at 1%

0.1 0.003 0/5 0/5

0.2 0.008 2/5 2/5

0.3 0.024 3/5 2/5

0.4 0.024 3/5 3/5

0.5 0.048 4/5 3/5

0.6 0.037 3/5 2/5

0.7 0.054 4/5 3/5

0.8 0.071 4/5 4/5

0.9 0.039 4/5 1/5

1.0 -0.005 0/5 0/5
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3.4 Discussion

Although a  number  of  studies  have  now investigated  the  population  genetics  of  S.

hermonthica (Table 3.1),  this  is  the first  detailed study of within-population genetic

variation  as  it  relates  to  differential  host  selection  under  field  conditions.  I  have

investigated the genetic component of host range within a population of S. hermonthica,

and assessed whether loci with outlying values of FST correlate with simple measures of

host  resistance  in  the  field,  and  whether  simulations  based  on  simple  models  of

pathogen  virulence  produce  locus-specific  values  of  FST of  a  similar  magnitude  to

observed outliers.

3.4.1 Genetic diversity within a S. hermonthica population from Burkina Faso

My results provide more evidence of within-population variability for S. hermonthica.

The Burkina Faso population sampled had an average expected heterozygosity (Hexp) of

0.113 and a percentage of polymorphic loci (PLP) of 37.1% at the 5% level. These

figures  are  lower  than  the  findings  of  other  comparable  investigations  using  AFLP

(Welsh  &  Mohamed  2011:  mean  (among-population)  Hexp =  0.204;  mean  (among-

population)  absolute  PLP =  60.9%;  Huang  et  al.,  2012:  (within-population)  Hexp =

0.234; (within-population) PLP at 5% = 72.8%). Comparisons are only made with other

studies  utilising  AFLP,  because  the  molecular  marker  system used can  be  a  strong

determinant  of  results  (Nybom 2004). Hamrick  & Godt  (1996), in  a  review of  98

population  genetic  studies  using  allozymes,  reported  similar  values  for  annual,

outcrossing species (mean among-study Hexp = 0.186; mean among-study absolute PLP

=  59.1%).  Nybom  (2004),  investigating  the  effect  of  molecular  marker  system  on

measures of genetic variation, found that estimates of  Hexp  from dominant RAPD data

were lower than for microsatellites, and gave mean RAPD-derived Hexp  values of 0.13
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for annual species and 0.27 for outcrossers.

Compared to these informal meta-analytical studies (Hamrick & Godt 1996; Nybom

2004),  the  slightly  lower  value  of  Hexp in  the  current  study may simply be  due  to

variation between study species, the number of populations of a species investigated in

any one primary study, and the loss of information on among-population variance in

Hexp within any particular species. Specifically focusing on  S. hermonthica, the lower

variation  found  in  this  chapter  could  be  an  artefact  of  the  artificial  planting-hole

infestation used in the field-trials to help promote even parasite pressure across the field

experiment: if the harvested seed came from a small field, inter-breeding between close

relatives  might  have  depressed the variation in  the  S.  hermonthica sample used  for

infestation.  Alternatively,  the discrepancy may arise  from technical  issues associated

with the AFLP methodology. The number of loci per primer pair scored in the current

study is at the high end reported for AFLP studies (Caballero et al. 2008); this is likely

to mean that more markers with low polymorphism have been scored. In addition, larger

samples of individuals (356 here, compared to 99 in Huang et al. 2012 and 107 in Welsh

& Mohamed 2011) will detect more low-frequency loci in a population. Given the error

rate reported here (4.65%), it is assumed that the scored loci are reliable; it should be

noted however that low-frequency loci are by definition less likely to appear in samples

replicated for error rate analyses, therefore, it is possible that some loci with a very low

occurrence of the presence or absence fragment may be erroneous without inflating the

reported error rate. If the resources are available, it is recommended that AFLP scoring

should be repeated independently by another researcher (Bonin et al. 2004), or software

that  seeks  to  make the locus  selection  step,  as  well  as  the allele-calling step,  more

repeatable could be used  (Arrigo  et al. 2009). However,  whilst  these strategies may
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mean  that  a  smaller  number  of  markers  are  scored,  which  is  likely  to  reduce  the

variation resulting from different scoring decisions between observers (i.e. increasing

the  precision  of  estimates  that  could  be  made  from a  single  data-set),  it  does  not

guarantee  increased  accuracy:  the  'true'  underlying  state  of  the  system  remains

unknown. Indeed, different methods of AFLP data analysis have been shown to affect

population genetic parameters and the error rate (Herrmann et al. 2010), and this should

always be borne in mind when assessing statistics derived from AFLP data, especially

where studies make inferences based on the distribution of alleles at  individual loci

(Herrmann et al. 2013).

3.4.2 Genetic differentiation between host-selected sub-populations

Overall,  FST across the sorghum host-selected sub-populations was lower (0.004), than

that  reported  by Huang  et  al. (2012)  for  rice  host-selected  sub-populations  (0.013).

These low values may correspond to a situation in which only a low percentage of loci

are determining host adaptation;  FST can be interpreted as the percentage of variation

accounted for by a between-population component, and in that sense these figures agree

with the PerMANOVA in attributing less than 1% of genetic variation to a between-

population source (host adaptation in this  case). However, it  also possible that host-

adaptation is dependent on many loci, each with a small effect. In this  situation the

changes in allele frequencies between host-adapted sub-populations would also be low,

again producing low values of FST.

Compared to Huang et al. (2012), the lower value of FST found here may also be due to

some of  the  technical  issues  described  above that  may have  lowered  Hexp and  PLP

(section 3.4.1). Pairwise  FST values did not reveal any evidence for the clustering of

resistant hosts, contrary to the situation found for the three rice cultivars of Huang et al.
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(2012). Striga from Malisor and SRN39, two of the most resistant cultivars, showed no

differentiation (pairwise FST = 0.000), although this was also true for the resistant Brhan

when compared to several of the susceptible cultivars. The lack of clear differentiation

between  the  Striga harvested  from  resistant  and  susceptible  hosts  may  be  due  to

variation in the underlying resistance mechanisms between resistant cultivars (e.g. pre-

attachment versus post-attachment; Chapter 2), or because the Striga plants are subject

to other sources of selection,  e.g.  unmeasured environmental variation was found to

affect both sorghum hosts and Striga emergence in the field trials analysed in Chapter 2,

or strong stochastic effects. These situations would essentially mean that interactions

between species'  genomes would not  be the only factors  determining the growth of

individual  S. hermonthica plants on resistant hosts, meaning that the detection of loci

with small effects is likely to be less effective than in the controlled environment lab

study of Huang et al. (2012).

3.4.3 Outlier analyses and putative host selection on loci

Even with low differentiation between host-selected sub-populations, it may still be the

case that individual loci are responding to host identity. Outlier analyses were conducted

in  order  to  identify  loci  displaying  a  signature  of  selection.  The  BayeScan  outlier

analysis  is  relatively  conservative  in  that  it  allows  for  a  background  level  of

differentiation within the population under investigation (Foll & Gaggiotti 2008; Huang

et al. 2012). Fourteen loci were identified by BayeScan v. 1.0 as potentially responding

to  host  selection.  The two loci  with  the  strongest  level  of  support  for  an  effect  of

selection had an average locus-specific  FST of  0.029. Simulation models  of a single

locus at which host adaptation was occurring in a common response to resistant hosts,

but not susceptible ones, indicated that a locus-specific FST value around this level could
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be  produced  by  an  AFLP fragment  with  a  global  frequency  of  0.4  (indicating  an

underlying allele frequency of p = 0.33). Whilst a single gene was found to underly the

virulence of a population of the autogamous  S. gesnerioides on cowpea  (Li & Timko

2009), and point mutations can often have large effects in plant-pathogen interactions

(Sacristán & García-Arenal 2008), it is far from certain that a locus in S. hermonthica

would  respond to  selection  in  this  simple  fashion between resistant  and susceptible

hosts.  The  simulation,  however,  does  indicate  that  alleles  potentially  underlying

differential host responses, such as reported here and in Huang et al. (2012), may exist

at intermediate frequencies in populations of S. hermonthica.

The attempt to correlate underlying population allele frequencies with average  Striga

field emergence did not yield any clear result. This may again be due to environmental

variation in field measures of virulence (Chapter 2), or to the fact that the global allele

frequencies used in this analysis were estimated, and are likely to be subject to some

degree of uncertainty. Alternatively, virulence may be the result of interactions between

many loci of small effect, reducing correlations between any one locus and virulence;

another possibility is that different loci may be responsible for virulence on different

hosts,  especially if  resistance mechanisms vary between cultivars  (Yoder  & Scholes

2010).

Perhaps  even  more  than  for  the  measures  of  genetic  variation  and  differentiation

discussed above, errors in AFLP bin selection and allele calling are likely to affect the

outcomes  of  outlier  analyses,  because  accurate  conclusions  depend  entirely  on

inferences based on the distribution of alleles at  single loci. Again, ideally,  analyses

should be subject to checking by re-scoring raw data, especially if an investment of

effort  in  the  sequencing  of  outlier  AFLP loci  is  intended.  A similar  study  of  the
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population genetics of host adaptation in  S. hermonthica starting today would almost

certainly utilise sequenced loci, such as single-nucleotide polymorphisms located from

restriction enzyme-associated next-generation sequencing  (Baird  et  al. 2008). Whilst

such systems are not error free  (Davey  et al. 2011), they do allow the genotyping of

thousands of loci, which can be checked against increasing amounts of genomic data

from related species, allowing a stronger probability of finding links between signatures

of selection and predictions of molecular function. However, such approaches still have

to contend with the problem of distinguishing intrinsic from extrinsic selection if the

aim of a study is to ultimately understand the actual role of selected loci in adaptation

(Bierne et al. 2011).

3.4.4 Conclusions

This chapter has demonstrated that variation within  S. hermonthica populations in the

field can lead to the host selection of loci, as has been demonstrated for lab experiments

(Koyama 2000a; Huang et al. 2012). This supports the idea that virulence alleles may

accumulate  in  populations  in  response  to  host  selection,  resulting,  locally,  in  the

adaptation  of  Striga to  host  genotypes,  and  the  gradual  erosion  of  host  resistance.

Further,  well-replicated studies would help to shed light on the question of whether

outlier loci are the same over time or across the landscape. The use of sequenced loci

should make these questions more amenable to accurate genetic analyses in the future.
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Chapter 4. Epistasis, segregation distortion, and maternal identity are all linked to

virulence in the parasitic plant Striga hermonthica

4.1 Introduction

Ecotypic  differentiation  is  the  phenomenon  whereby  environmental  heterogeneity

results in genetically differentiated populations within a species, the hypothesis usually

being  that  this  has  been  caused  by  the  adaptation  of  populations  to  their  local

environment  (Linhart  &  Grant  1996;  Hufford  &  Mazer  2003).  Additionally,  if

environmental variability is high at the scale of the population, we may also predict the

presence of (pre-)adaptive genetic variation (Byers 2005). The evolution of phenotypic

plasticity is also a possibility, and whether evolution leads to genetic polymorphism or

plasticity may depend on the 'grain' of environmental variation relative to generation

time  (Meyers  &  Bull  2002;  Wennersten  &  Forsman  2012).  Between-population

variation  in  parasite  adaptation  to  different  hosts  can  be  thought  of  in  terms  of  a

population-level  genotype-by-genotype  (G  × G)  interaction,  just  as  ecotypic

differentiation  could  be  considered  the  result  of  a  population-level  genotype-by-

environment (G × E) interaction, with the mean fitness of populations varying between

locations. G × G host-parasite interactions may be due to local (mal)adaptation (Koskela

et al. 2000; Gandon 2002), but this may not always be the most appropriate conceptual

approach.  For  example,  obligate  parasitic  weeds  of  agroecosystems,  such  as  Striga

hermonthica,  may regularly encounter  different  host  genotypes,  with the  rotation  of

crop-hosts by the farmer potentially working against the evolution of local adaptation of

the parasite to a single host population. This may be especially true if a parasite species

is an obligate outcrosser  (Hufford & Mazer 2003; Gandon & Nuismer 2009), like  S.
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hermonthica (Safa  et al. 1984). Annual changes of crop-host could be considered an

example  of  a  fine-grained  environment  (i.e.  an  enviroment  where  the  scale  of

heterogeneity is similar to the generation time; Rodríguez 2012), whereas if a farmer

grew  the  same  crop  for  many  seasons,  this  could  be  considered  a  coarse-grained

environment. At the individual genotype level, Rodríguez (2012) found some evidence

for  G  × E interactions being stronger in heterogeneous environments with a coarse-

grain, and predicted that this was due to the increased time available for adaptation to a

particular environmental state.  However, even if environmental heterogeneity is fine-

grained, populations of allogamous parasites may still be genetically differentiated due

to  isolation-by-distance,  genetic  drift,  population  history,  differential  selection  by

different farming regimes (including particular sequences of crop-hosts), or other biotic

or physical habitat differences. This can lead to genetic variation within and between

populations,  potentially  resulting  in  pre-adaptation  to  unencountered  host  genotypes

(Wennersten & Forsman 2012). Population-level host-parasite  G × G interactions may

not be unusual in such a situation  (Lambrechts  et al. 2006; Wolinska & King 2009)

because  genetically  diverse  populations  are  more  likely  to  contain  pre-adapted

genotypes that can take advantage of changes in the environment to differing degrees

(Hughes et al. 2008; Wennersten & Forsman 2012).

For S. hermonthica, successful parasitism of its host has been shown to depend, at least

partially  (Chapter  2),  on  a  population-level  G  × G interaction:  different  Striga

populations may have different responses to a set of host genotypes, which could be

different crop species, or cultivars of that species (Kim et al. 1994; Freitag et al. 1996;

Cissoko et al. 2011; Huang et al. 2012). This indicates the presence of genetic variation

for  virulence  between  Striga populations,  and  has  important  consequences  for  the
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resilience  of  resistant  hosts.  The  call  for  a  better  understanding  of  the  relationship

between variability in Striga virulence and the resistance of different host genotypes has

been repeated regularly in recent times  (Vasudeva Rao & Musselman 1987; Parker &

Riches 1993; Haussmann, Hess, Welz,  et al. 2000; Mohamed  et al. 2007; Scholes &

Press 2008). However, none of these authors have drawn upon the extensive literature

on  plant  or  parasite  population  differentiation  and  adaptation  to  speculate  on  the

possible genetic bases of population-level G × G interactions between S. hermonthica

and its hosts, or to suggest that investigations of this topic are broadened to incorporate

insights or techniques used in these areas of research.

If assessed in the field, perceived population-level G × G interactions between  Striga

populations  and  their  hosts  may be  partially  due  to  environmental  factors,  such  as

infestation  differences  (seed  bank  density  and  distribution),  or  soil  and  other

environmental  factors  which  affect  the  resistance  of  the  host  (Vasudeva  Rao  &

Musselman  1987). Host  resistance  may also  depend  on phenotypes  which  work  by

avoiding  parasite seed, for example, by root architecture variation, or by having low

levels of root-exuded germination stimulants  (Haussmann  et al. 2004), meaning that

there may be several gene-based resistance mechanisms at work. Understanding these

various factors is likely to aid the development and deployment of resistant crop-hosts.

However,  here  I  focus  on  examining  post-attachment  resistance  to  Striga under

controlled conditions. This has been found to be a reliable way of evaluating what part

of the population-level host specificity of S. hermonthica has a genetic basis (Lane et al.

1993; Huang et al. 2012), and allows the attribution of this specificity to a particular,

well-studied stage (Yoder & Scholes 2010) of the host-parasite interaction (cf. Chapter

2).
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Studies  of  genetic  variation  in  S.  hermonthica across  Africa (Chapter  3;

Bharathalakshmi  et al. 1990; Kuiper  et al. 1996; Olivier  et al. 1998; Koyama 2000b;

Gethi  et  al. 2005;  Ali  et  al. 2009;  Yoshida  et  al. 2010;  Welsh  & Mohamed  2011)

together  suggest  that  geographic  distance,  not  host  genotype,  is  the  main  factor

structuring genetic variation; however, as expected for an outcrossing plant (McDonald

& Linde 2002), variation within populations can be considerable  (Welsh & Mohamed

2011), and  a  host  selection  pressure  for  particular  parasite  genotypes  has  been

demonstrated  (Koyama  2000a;  Huang  et  al. 2012). This  suggests  that  crop-host

resistance is likely to be highly vulnerable to parasite virulence evolution, and indeed,

this has apparently been the case  (Yoder  et al. 2007; Parker 2009). The potential for

many  different  population-level  interactions  between  parasite  genepools  and  host

genotypes clearly exists  (Huang  et al. 2012), irrespective of the failure of the above

studies to find strong evidence for host-determined genetic structure among populations.

Population-level virulence can be thought of as the chance that a randomly selected

individual from a particular population has of parasitising a particular host. The pool of

hosts that a S. hermonthica population can parasitise may be very broad: for example,

the following studies all used the same  S. hermonthica seed collection: Gurney et al.

(2003): infecting maize and the maize wild relative  Tripsacum dactyloides; Gurney et

al. (2006): infecting rice cultivars;  Huang  et al. (2012): infecting rice cultivars;  this

study: infecting sorghum cultivars. Even if a host is relatively resistant to a population

of  S.  hermonthica,  there  are  always  likely  to  be  individual  parasites  capable  of

overcoming host resistance: even the most resistant sorghum genotypes in this study

will support some parasites. Indeed, a host genotype that is completely immune to  S.

hermonthica  has not yet been observed. All these observations support the contention
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that genetically diverse populations of S. hermonthica are likely to be pre-adapted to a

range of different host genotypes, with the 'host range potential'  of these adaptations

potentially  differing  between  genepools.  The  fact  that  different  populations  of  S.

hermonthica can exhibit G  × G interactions against sets of host genotypes offers an

opportunity to  investigate  the genetic  architecture of virulence through experimental

crossing  and linkage mapping. Experimental crossing between differently adapted (or

pre-adapted) populations can be used to reveal the genetic architecture of adaptive traits

(Lynch 1991; Hufford & Mazer 2003; Dybdahl et al. 2008; Crémieux et al. 2010).

Trait genetic architectures are important for any discussion of differentiation between

populations, and are a part of the raw material of evolution (Wade & Goodnight 1998;

Thompson 1999). Heterosis (hybrid vigour) and epistasis (interaction between loci) may

be important characteristics of the underlying genetic architecture of any particular trait

(Falconer & Mackay 1996); epistasis may be particularly important for the evolution of

incompatibilities between populations, potentially leading to speciation (Whitlock et al.

1995; Wade & Goodnight 1998; Demuth & Wade 2005). A number of studies have

investigated the presence of heterotic and epistatic components for a variety of traits in

wild animals (e.g. Bradshaw & Holzapfel 2000; Meffert 2000) and plants (e.g. Fenster

& Galloway 2000; Rhode & Cruzan 2005), and, in the study of pathogenic interactions,

it  is  increasingly realised that  epistasis  can  contribute  to  host  resistance  (Wilfert  &

Schmid-Hempel  2008;  Wegner  et  al. 2009;  Lambrechts  2010). The  importance  of

individual-level G × G interactions in pathogenic interactions has also received attention

(Lambrechts  et al. 2006; Lambrechts 2011). If individual-level G × G interactions are

common,  and  the  genetic  architecture  of  host  resistance  can  depend  on  parasite

genotype (Little  et al. 2006; Wegner et al. 2009), then it is reasonable to suppose that
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the converse may also sometimes be true: that is, in some pathogenic interactions, the

genetic architecture of a pathogen's virulence traits may depend on host genotype. As

recently highlighted by Detwiler & Criscione (2010), there has been surprisingly little

work on the genetic architecture of virulence traits in parasites, despite a burgeoning

literature on the modelling of host-parasite systems, much of which has predicted an

important role for parasite epistasis (Peters & Lively 1999; Fenton & Brockhurst 2007;

Dybdahl et al. 2008). In the field of animal parasitology, Detwiler & Criscione (2010)

list  several  exceptions  to  this  general  trend,  including  the  work  of  Wright  & Ross

(1980), Trouvé et al. (1998), Pagès et al. (2002), Volf et al. (2007) and Dybdahl et al.

(2008). These studies have investigated the virulence of F1 or later generation parasite

hybrids  in  different  host  species  or  genotypes  (Pagès  et  al. 2002;  Volf  et  al. 2007;

Dybdahl et al. 2008) or in a single host background (Wright & Ross 1980; Trouvé et al.

1998).  Wright  & Ross  (1980),  Pagès  et  al. (2002)  and Volf  et  al. (2007)  all  found

evidence for F1 heterosis in traits related to fecundity and virulence in different species

of trematode flatworms (Wright & Ross 1980; Pagès et al. 2002) and a protozoan (Volf

et al. 2007). Unfortunately, the studies of Wright & Ross (1980) and Volf et al. (2007)

did  not  investigate  later  hybrid  generations,  which  is  often  necessary  for  detecting

epistasis (Lynch 1991). Trouvé et al. (1998) and Pagès et al. (2002) both found epistasis

(hybrid  breakdown)  for  fecundity  in  late-generation  hybrids  between  two  different

trematode flatworms; Trouvé et al. (1998), however, did not find evidence for heterosis

in  the  F1.  In  a  particularly  notable  study,  Dybdahl  et  al. (2008)  were  able  to  find

evidence  for  hybrid  breakdown  in  F1 populations  of  a  trematode  flatworm

(Microphallus  sp.);  these  authors  were  able  to  relate  the  observed  outbreeding

depression to local adaptation using sympatric and allopatric snail hosts, demonstrating
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that non-additive gene effects underlaid host adaptation.

The presence of individual- or population-level G × G interactions between hosts and

parasites, and of epistasis for host resistance or parasite virulence, has implications for

host-parasite coevolution,  as it  can create the necessary conditions for a 'geographic

mosaic' of coevolution, where different populations are undergoing different reciprocal

evolutionary  interactions,  with  host  and  parasite  traits  varying  across  the  species'

distributions  (Thompson  1999). However,  it  should  be  recalled  that  the  Striga-host

system differs  from systems involving two wild  species  due to  the absence  of  host

evolution in the usual sense (Huang et al. 2012): the action of Striga upon its human-

managed crop-host is unlikely to cause micro-evolutionary change, although farmers

may save the seed of open-pollinated landraces, possibly allowing some selection by the

parasite on the host, and reciprocal selection with wild grass hosts may also occur in

fallow years, or at the edges of fields. However, there may still be a type of selection of

Striga on its crop-host, in that if the intensity of parasitism on a host genotype becomes

so intense that the farmer changes crop cultivar or species, variation in host resistance

through time will be created, albeit in a less gradual way than for a wild host-parasite

interaction. It seems likely therefore that many of the conditions that Thompson (1999)

sets out as necessary for a geographic mosaic of coevolution may occur in the Striga-

host system: given G × G interactions between S. hermonthica and its hosts, reciprocal

selection is likely to differ geographically, and virulence traits are also likely to differ

between populations, at the cellular level for example (Yoshida & Shirasu 2009; Ali et

al. 2009). As noted above, the genetic architectures of phenotypes that might underlay

these  variable  population-level  interactions  are  an  under-explored  subject  area,

particularly  for  parasite  virulence  (Detwiler  &  Criscione  2010).  Understanding  the
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genetic architecture of the  Striga-sorghum host-parasite interaction may then help to

shed light on the molecular basis of plant-plant parasitism, and to better understand its

evolution.

As well as the results of crossing experiments providing insights into the genetic bases

of  traits  (e.g.  heterosis  and  epistasis),  experimental  crosses  also  allow insights  into

segregation  distortion  and  cyto-nuclear  interactions,  and  into  marker  arrangement

through  the  creation  of  linkage  maps. Here,  I  investigate  the  basis  of  host-parasite

population-level G × G interactions, via the first examination of the genetic architecture

of S. hermonthica virulence, using experimental crosses and a linkage map created with

codominant fluorescent AFLP markers. A pseudo-backcross F1 (BCF1) population of

recombinant parasitic plants was created by crossing individuals from two populations

of S. hermonthica divergent in their virulence reactions against three sorghum cultivars.

The BCF1 plants were assessed under these host conditions, as well as in the absence of

a host, with the aim of investigating the following questions: (1) Does S. hermonthica

virulence exhibit  heterosis  or epistasis,  and does this  depend on host?  (2) Do cyto-

nuclear interactions affect virulence? (3) How much segregation distortion is there, and

does this depend on host? (4) Is there any evidence for segregation distortion at different

levels (allelic, zygotic, or genotypic) in response to different hosts? (5) Are markers

which  are  differentially  selected  between  host  types  clustered  or  separated  on  the

linkage map? 

It  is  also intended that  the  markers  identified  in  this  study will  be useful  in  future

experimental genome scans  (e.g. Huang  et al. 2012), either using AFLP, or using the

same  restriction  enzymes  and  selective  nucleotide  bases  to  generate  co-localised

sequenced  single  nucleotide  polymorphism-based  markers,  such  as  sequenced

127



restriction enzyme associated DNA (sRAD) markers (Baird et al. 2008).

4.2 Materials and methods

4.2.1 Plant materials

The individuals crossed to create the pedigree used in this  study were from two  S.

hermonthica  seed populations collected from different host species and from different

regions of Africa, increasing the potential for genetic variation between the populations

(Koyama  2000b). The  seed  populations  were  collected  from  S.  hermonthica  plants

parasitising  either  maize  (H5  hybrid)  in  Kibos,  Kisumu,  Western  Province,  Kenya

(collected 1997, called 'ShK97' hereafter),  or rice in northern Ivory Coast (collected

1997, called 'ShIC97' hereafter). The approximate distance between these sites is 4,600

km. These two Striga seed populations have been previously noted to exhibit differing

virulence reactions against the sorghum hosts E36 and N13 (A. Boisnard, pers. comm.)

4.2.2 Experimental crosses and growing conditions

A three generation, pseudo-backcross pedigree was originally chosen to maximise the

number of markers segregating in the 'testcross' configuration (Grattapaglia & Sederoff

1994), thereby increasing linkage disequilibrium between alleles of the donor parent

genome and the number of recombination events that can be detected with dominant

markers (Kirst et al. 2004). Three generations of crossing can improve the mapping of

dominant markers by increasing the proportion of phase-known marker pairs (Williams

1998).

The  parental  populations  ShK97  and  ShIC97  were  grown  in  pots  (1:1  mixture  of

sand:M3  John  Innes  potting  compost)  in  a  controlled  environment  growth  room

(irradiance: 500 μmol m-2 s-1 at plant height; 12 h photoperiod; relative humidity 60%).
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Thirty mg of  S. hermonthica seed was mixed with sand, and distributed in a layer 60

mm below the final soil surface; the hosts were planted two weeks after the soil was

inoculated to allow for seed conditioning. Pots were hand-watered as required with 40%

Long Ashton solution containing 2 mM ammonium nitrate (Hewitt 1966). The hosts in

the parental  generation were either the highly susceptible maize hybrid WH502 (for

ShK97), or the highly susceptible rice cultivar IAC165 (for  ShIC97). Different plant

hosts were used to ensure that  the  S. hermonthica plants selected for crossing were

divergent for any genomic regions involved in differential virulence; using susceptible

hosts  at  this  stage  was  also  important  to  ensure  parasite  growth.  Two  parental

individuals  from  ShIC97  were  crossed  with  each  other  to  create  a  ShIC97  F1

(ShIC97/ShIC97; all crosses given in Purdy notation); the cross in the other half of the

pedigree was the hybridisation of  individuals  from ShK97 and  ShIC97, with  ShK97

providing the mother  plant  (ShK97/ShIC97) (Fig. 4.1). The  ShIC97 F1 plant was also

grown on the rice cultivar IAC165, whilst the hybrid ShK97/ShIC97 F1 was grown on

the highly susceptible maize hybrid cultivar H511, again, this was intended to promote

the  retention  of  ShK97  alleles  for  host-specific  virulence. The  two  F1  plants  were

crossed  reciprocally  to  create  two  BCF1  seed  populations:

ShK97/ShIC97//ShIC97/ShIC97 (hybrid F1 as the mother, hereafter called BCF1HyMo)

and ShIC97/ShIC97//ShK97/ShIC97  (hybrid  F1  as  the  father,  hereafter  called

BCF1HyFa) (Fig. 4.1).  (The  ShIC97/ShIC97 F1  cross was originally included  with the

intention of increasing the homozygosity of recurrent parent alleles, and so the number

of testcross loci informative for the donor parent, before the usage of codominant AFLP

[see below, section 4.2.4] was arrived at.) All crosses were performed by emasculating

the pollen donor by removing the corolla tube and transferring the pollen using a fine
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paint brush to the dorsal (upper) surface of the flattened stigma of the pollen recipient

(Safa et al. 1984). Separate brushes were used for different cross-pollinations and kept

in individual sealed bags between crossing events. Capsules were harvested when they

were observed to be dry on the mother plant and were subsequently stored at 27°C for 8

weeks  of  ripening.  In  agreement  with  research  demonstrating  S.  hermonthica to  be

obligately outcrossing (Safa et al. 1984), no mature capsules were observed to form at

flowers that had not been manually outcrossed. Tissue samples of all parental and F1

plants were dried on silica gel in air-tight tubes and stored in the dark until required for

DNA extraction.  All  germination tests were conducted after 12 days  conditioning at

27°C by the addition of 2 mL of the germination stimulant  GR-24 at 0.1 mg L-1 (Gurney

et al. 2006).

Figure 4.1. Crossing design used to produce the F1 and BCF1 populations. One-way crosses
were performed for the first (parental) generation; for the ShK97/ShIC97 cross the Kibos plant
was  the  mother.  The  second  round  of  crossing  was  reciprocal,  producing  both
ShK97/ShIC97//ShIC97/ShIC97  and  ShIC97/ShIC97//ShK97/ShIC97  pseudo-backcross
populations.

130



Each of the two reciprocal BCF1 seed populations was grown in three different ways: on

agar  without  a  host;  on the relatively susceptible  sorghum cultivar  E36;  and on the

relatively resistant  sorghum cultivar  Malisor. S.  hermonthica BCF1 seeds  for  axenic

culture were surface sterilised with 70% ethanol for 2 min, then with fresh 20% bleach

solution (with 2 drops Tween-20/500 mL water) for 10 min, followed by washing at

least 6 times with sterile distilled water. Seeds were transferred to 0.9% water agar for

conditioning. Conditioning on agar, as suggested by Yoshida et al. (2010), was found to

be the best way of avoiding contamination by microorganisms originating in the Striga

testa. Yoshida et al. (2010) added sucrose (1%) to their conditioning medium, however,

here  it  was  found  that  pure  agar  was  best  for  discouraging  microbial  growth.

Germination was triggered after 12 days at 27°C by the addition of approximately 2 mL

filter-sterilised GR-24 (0.1 mg L-1) to the agar plates. After 3−5 days germinated seeds

were transferred, using sterile technique, to a 0.9% agar medium (pH 5.7) containing

1% sucrose and 4.3 g L-1 MS salts  (Berner  et al. 1997). As the seedlings outgrew the

Petri  dishes  they  were  transferred  to  Phytatray   containers  (Sigma)  with  the  same

medium (Fig. 4.2). After two weeks in the dark at 27°C Phytatrays were transferred to a

growth room under the  environmental  conditions described above at the beginning of

this section (4.2.2). No fungal or bacterial contamination was observed in any of the

Phytatrays from which Striga plants were harvested for genotyping.
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Figure 4.2. Striga hermonthica plants growing on water agar medium in a Phytatray (top), and,
the hostless Striga plants immediately after harvesting for DNA extraction (bottom).

Sorghum cultivars  E36  and  Malisor  were  established  in  root  observation  chambers

(rhizotrons) and maintained in a growth room; again, under the conditions described

above (section 4.2.2). Sorghum host roots were inoculated 12 days after sowing with

pre-germinated seed of one of the two reciprocal S. hermonthica BCF1 seed populations

(BCF1HyMo or  BCF1HyFa); at least 10 rhizotrons were used for each reciprocal/host

combination. S. hermonthica BCF1 plants were harvested from the sorghum hosts 34−40
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days post-infection, and from agar 8−10 weeks post-germination. All harvested Striga

plants  were  taken  forward  directly  for  DNA extraction,  described  in  the  section

immediately below (4.2.3).

4.2.3 DNA extraction and AFLP

For DNA extraction and AFLP genotyping, the total numbers of plants in each growing

condition were: agar:  n = 163 (BCF1HyMo = 108;  BCF1HyFa = 55); E36:  n = 179

(BCF1HyMo = 128; BCF1HyFa = 51); Malisor: n = 189 (BCF1HyMo = 134; BCF1HyFa

=  55).  The  reciprocal  population  sizes  across  growing  conditions  were  therefore:

BCF1HyMo:  n = 370;  BCF1HyFa:  n = 161. The lower sample size of the  BCF1HyFa

population was due to less seed being produced from that direction of the reciprocal

cross.

For all  three growing conditions,  10−60 mg of  S. hermonthica  tissue was harvested

from individual plants directly into grinding tubes and kept on ice until drying. Tissue

samples  were  dried  for  5  h  at  45°C,  whereupon  they  were  ground  in  a  tissue

homogeniser (Qiagen, 5 min at 25 Hz). Extraction buffer containing: 100 mM Tris-HCl

(pH 7.4); 500 mM NaCl; 50 mM EDTA; 0.7% sodium dodecyl sulphate; 52 mM sodium

sulphite; 1.6 μg RNAse A; and 16 μg Proteinase K  (Mogg & Bond 2003; Whitlock,

Hipperson, Mannarelli, & Burke 2008) was added to each sample. Sample tubes were

vortexed thoroughly and incubated overnight at 55°C on a rotating rack. The rest of the

extraction followed Whitlock,  Hipperson, Mannarelli, & Burke (2008) except for the

following pH adjustments: the 6 M NaI chaotropic DNA binding buffer was at pH 7.0;

the 10 mM Tris-HCl elution buffer was at pH 8.0. All steps were performed manually

(cf. Whitlock, Hipperson, Mannarelli, & Burke 2008).

DNA solutions were quality and quantity checked using a Nanodrop spectrophotometer
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(ND-1000,  Thermo  Scientific)  and  on  1%  agarose  gels  with  uncut  Lambda  DNA

standards (New England BioLabs). DNA samples were normalised to approximately 1

ng  μL-1.  Dilution  factors  for  normalisation  were  calculated  from  the  agarose  gel

estimated concentrations and subsets of the normalised samples were re-checked for

approximate equality. Ten ng of DNA were then digested at 37°C for 3 h with either 1 U

EcoRI/1U  MseI  in  1×  Tris-Acetate  buffer  with  3  μg  BSA  (Whitlock,  Hipperson,

Mannarelli, & Burke 2008), or 1 U PstI-HF/1 U MseI in 1× NEBuffer 4 with 3 μg BSA

(all restriction enzymes from New England BioLabs). The decision to use an additional

restriction  enzyme  pair  (PstI/MseI),  in  addition  to  the  EcoRI/MseI  pairing  used  in

Chapter 3, was due to evidence that PstI may target gene-rich genomic regions due to its

sensitivity to cytosine-methylated DNA (Young et al. 1999).

Ligation,  preselective  amplification  and  selective  amplification  followed  Whitlock,

Hipperson,  Mannarelli,  &  Burke (2008) except  for  the  following  modifications:

preselective amplifications were performed in 10 μL volumes using 2 μL of diluted,

ligated DNA with both primers at 0.5 μM, these were diluted 1:4 with sterile, distilled

water;  selective  amplifications  were  performed  likewise.  Optimal  selective

amplification dilutions and capillary electrophoresis injection times were selected by

testing  a  range of  both  variables  (Trybush  et  al. 2006); a  1:10  dilution  with  a  5  s

injection  time  was  determined  to  give  good  signal  to  noise  ratio,  peak  shape,  and

amplification range for peak scoring. A fuller description of the DNA extraction and

AFLP procedures used in this chapter is given in Chapter 3, section 3.2.

4.2.4 Genotyping and segregation

I used 10 primer pair combinations to genotype the mapping population pedigree (Table

4.1). The four original parental and two F1 plants (Fig. 4.1) were genotyped in triplicate
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to check the reproducibility of fragments. Initial bin sets were generated automatically

using the following settings in GeneMapper v. 3.7 (GM; Applied Biosystems): peak-

height threshold: 100 relative fluorescence units;  max bin-width: 1.0 base pair  (bp);

smoothing = 'no smoothing'  (see Holland  et  al. 2008 for  an  example of  how these

settings can affect inferences made from fluorescent AFLP data, indicating that they

should be explicitly stated). Bin sets for each primer combination were screened for

polymorphic  fragments  (considering  both  presence/absence  and  peak  amplification

intensity differences) in the BCF1 agar population in the range 65−600 bp ('Primary GM

bin set';  Table 4.1,  section 4.3.1).  These polymorphic fragments were then analysed

using the pedigree,  and were kept  in  the marker  set  if  they could be assigned to  a

Mendelian  segregation  type,  whilst  also  allowing  for  the  possibility  of  segregation

distortion in the BCF1 ('Manual pedigree edit'; Table 4.1, section 4.3.1). The GM 'sum of

signal'  normalisation option was applied across markers  within the edited bin set  to

create the matrix of normalised peak heights to be exported for further analysis.

Scoring AFLP codominantly means that there are six different ways in which markers

can segregate in the BCF1, where  a  is the fragment presence allele and  o the absence

allele: (♀)ao × ao(♂) (1:2:1; B3.7); ao × ao (3:1; C.8); ao × aa (1:1; D1.10); ao × oo

(1:1; D1.13);  aa  ×  ao (1:1; D2.15);  oo ×  ao (1:1; D2.18).  The codes following the

segregation  ratios  are  those  used  in  Wu  et  al. (2002); types  B3.7  and  C.8  are  in

'intercross' configuration, whilst all D-types are in 'testcross' configuration (Kirst  et al.

2004). The R function CodomAFLP (Gort & van Eeuwijk 2010) was used at individual

loci to classify bands into genotypic categories within segregation types. As well as

allocating segregating marker  bands across individuals into the genotypic categories

listed above, CodomAFLP also allows for bands to be classified as a- or o-, that is, not
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homozygous absent (not  oo) or not homozygous present (not  aa). Classification was

informed  by knowledge  of  the  segregation  type  inferred  from inspecting  the  three

generations of the pedigree. A conservative posterior probability threshold of 0.98 was

used to semi-manually classify bands into genotypic categories  (Gort & van Eeuwijk

2010). Examples  of  two  loci  classified  in  this  manner  are  given  in  Figure  4.3.  At

individual  marker  loci,  allelic  intensity  distributions  that  did  not  clearly  fit  the

segregation  type  indicated  by  the  pedigree  were  discarded  ('Manual  CdAFLP edit';

Table 4.1, section 4.3.1). Allowing genotypes with missing information to be classified

partially may  bias  our  ability  to  accurately  detect  segregation  distortion.  However,

where the amplification intensity distributions of different genotypes overlap, and the

partial  a- or  o-  genotype calls are most likely to be made, it is not possible to say  a

priori whether these missing-information genotypes are most likely to be outliers from

the lower-intensity or higher-intensity fully-assigned genotypes. Given that my primary

purpose  was  to  assess  comparative  segregation  distortion  between  the  growing

conditions  of  the  BCF1,  I  assume  that  the  partially  classified  a- or  o-  calls  were

randomly drawn from the true lower- and higher-intensity genotype distributions that

they deviate from, and so removed them from the segregation distortion estimates.

136



Figure 4.3. Screenshots of two loci scored in CodomAFLP. a) shows a B3.7-type loci (ao × ao) that has been scored using mixed normal distributions; individuals at the junctions
of aa/Aa and Aa/AA may receive partial genotype scores. b) shows a D.13-type (ao × oo) locus that has been scored using mixed quasi-Poisson distributions. In b), two intensely
amplified samples have been manually excluded from the automatic classification in order to achieve a better fit.
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Deviations from Mendelian segregation ratios at individual loci were assessed by chi-

squared  goodness-of-fit  tests  with  1  or  2  degrees  of  freedom  (d.f.)  depending  on

whether  the  loci  were  in  testcross  (1:1),  intercross  (3:1),  or  intercross  (1:2:1)

configuration.  I  used  a  'locus-by-locus' significance  level  of  α = 0.05  (essentially a

Bonferroni correction), as is the current standard for analyses of segregation distortion

(e.g.  Schwarz-Sommer  et  al. 2003;  Kuittinen  et  al. 2004;  Koevoets  et  al. 2012).

Comparisons  of  the  proportion  of  distorted  loci  between  growing  conditions  and

reciprocal familes were conducted using binomial GLMs;  a priori,  orthogonal GLM

contrasts  compared  distortion  between  the  two  plant  hosts  {E36  vs  Malisor},  and

between the two plant hosts and agar {0.5 E36 + 0.5 Malisor vs agar}. Spearman's rho

was also used to compare trends in segregation distortion between growing conditions

and reciprocal families; a non-parametric measure of correlation was used because the

distribution of p values across loci was not always normally distributed (as assessed by

Kolmogorov-Smirnov tests), and Pearson's r is not robust to departures from normality

(Dytham 2003). All other statistical tests were post hoc investigations and are detailed

in the results as appropriate.

4.2.5 Linkage mapping

To perform the linkage analyses within reciprocal families I used CRI-MAP version 2.4

(Green  et al. 1990), as well as the 'improved' CRI-MAP v. 2.503  (Evans & Maddox

2009) and  the  CRIGEN  utilities  package  (Liu  &  Grosz  2006). CRI-MAP  v.  2.4

(TWOPOINT option) and the AUTOGROUP option of the CRIGEN package were used

to calculate two-point recombination fractions between markers and to create linkage

groups, whilst CRI-MAP v. 2.503 was used to test marker positions. Linkage groups

were determined with  a  logarithmic  odds (LOD) score  threshold  of  3.  LOD scores

138



assess the probability that two loci are linked using a likelihood ratio test; this compares

the estimated recombination fraction (θ) between two loci to the null hypothesis that θ =

0.5, which would be the case if there was no linkage (Saccone 2011). A LOD threshold

of 3 is equivalent to a chi-square of 13.8 with 1 d.f., this equals a p value of 0.0001 for a

one-sided test of the null hypothesis that θ = 0.5 (Saccone 2011). Linked markers within

groups  were  ordered  using  the  BUILD,  FLIPSn and  ALL  options  of  CRI-MAP

(Featherston 1995). For the larger linkage groups (> 6 markers) I tested marker orders

by running BUILD several times, starting each time with different subsets of markers

(Featherston  1995); the  function  CHROMPIC was  also  used  to  check  for  unlikely

genotypes,  such as triple recombinants (Featherston 1995). CRI-MAP accepts markers

with partial information (that is, a- and o-) therefore all genotype information generated

by CodomAFLP was  used  directly  in  linkage  mapping.  CRI-MAP can  also  accept

information from three generations of  a pedigree, enabling linkage between testcross

markers in repulsion to be more accurately assessed (Williams 1998; Sham & McGuffin

2002).

4.2.6 Screening for virulence differences across the pedigree

S. hermonthica seed populations (ShK97; ShIC97; ShIC97 F1; Hybrid F1;  BCF1HyMo;

and  BCF1HyFa)  were  conditioned,  germinated,  and  used  to  inoculate  rhizotrons  as

described  above  for  the  plants  grown  for  DNA extraction.  The  resistant  sorghum

cultivar N13 was also used for virulence screening, in addition to E36 and Malisor. At

least  5  rhizotrons  were  used  for  each  population/host  combination.  Two  different

measures of virulence were used: the number of Striga plants attached to the host roots

(Cissoko et al. 2011), and the height of the host plant. Host height, relative to uninfected

control plants, is used here as an easily measured proxy for parasite fitness impacts on
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the host (Kim et al. 1994); Graves et al. (1989) also found height, as well as grain yield

and other biomass components of Striga-infected sorghum plants, to be reduced relative

to uninfected controls. The attached Striga plants were harvested from their hosts at 30

days  after  infection  using  a  stereomicroscope;  counts  were  performed  subsequently

from digital photographs of Petri dishes containing the harvested  Striga plants using

ImageJ v.  1.45  (http://rsb.info.nih.gov/ij/).  Sorghum heights were measured from the

base of the main stem to the uppermost exposed ligule.

Striga attachment counts on the different hosts were analysed in a negative binomial

generalised linear model (GLM); the negative binomial distribution was chosen over the

Poisson  because  of  aggregation  and  over-dispersion  in  the  dataset  (Crawley 2007).

Likelihood ratio deletion tests were used to calculate the minimum adequate model in

all cases (Crawley 2007). The negative binomial GLMs used the function 'glm.nb' from

the R package 'MASS'  (Venables & Ripley 2002).  A priori contrasts, specified in the

GLM (Crawley 2007), were used to test for heterotic or epistatic effects on virulence for

each host,  and to  compare the parental  Striga populations.  The three contrasts  used

were: {ShK97 vs ShIC97}; {0.5 ShK97 + 0.5 ShIC97 vs hybrid F1}; and, {0.5 ShIC97 +

0.5 hybrid F1 vs BCF1} (Falconer & Mackay 1996; Galloway & Fenster 2001). The first

contrast is the parental comparison. The second contrast compares the F1  to the mid-

parent value as a test for heterosis  (sometimes known as mid-parent heterosis; Lynch

1991; Falconer & Mackay 1996 p. 255; Lamkey & Edwards 1999); whilst the third

contrast compares the BCF1 to the average of the F1 and the line used as the recurrent

parent  in the pseudo-backcross,  this  is  a test  for epistasis  (Lynch 1991;  Falconer  &

Mackay 1996 p. 285; Kelly 2005). These two tests are part of the set of 'scaling tests'

originally developed by Mather (1949). It is worth noting that some authors restrict the
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use of the terms 'heterosis' and 'hybrid vigour' to those situations where F1 trait values

exceed those of the parents; however, the use of these words to describe non-additive

departures in the F1 from a mid-parent average is well established in the quantitative

genetics literature (Lynch 1991; Falconer & Mackay 1996; Lamkey & Edwards 1999;

Kelly 2005). Due to the fact that only certain crosses were performed in my pedigree

(e.g. the backcross was only performed to one of the original parents, and no F2 or later

generation plants were produced), the additional scaling tests required to decompose

deviations from the non-epistatic model into particular components, such as additive ×

additive or additive × dominant interactions, could not be carried out (cf. Kelly 2005).

Additionally, it  should be noted that the test for heterosis used here differs from the

normal scenario in that we are not comparing individual-level genotype traits, but are

comparing  the  parental  population  genepools  to  an  F1 population  formed  from two

individual representatives of these populations. The heterosis tests are therefore only

accurate if the population-level fitness is equal to the trait value (here, the probability of

successful attachment, or pathogenicity) expectation for any randomly chosen genotype

from the population; this is unlikely for the highly heterozygous  S. hermonthica, and,

ideally,  multiple  replicates  of  the  pedigree  examined here  would  be  produced.  This

would reveal whether the virulence of the F1 populations averaged around the mid-

parent  value,  with  highly  virulent  F1 populatons  appearing  merely  as  the  result  of

crosses between fit genotypes, or whether the mean of the multiple F1 populations was

significantly above the mid-parent value, suggesting that heterosis was a general feature

of crosses between the two parental populations.

Host  height  data,  normalised  for  each  host  to  the  average  height  of  the  uninfected

control plants, were analysed in a general linear model. Model checking was carried out
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by inspecting  plots  of  residuals  for  heteroscedasticity  and  by using  the  R  package

'gvlma',  which performs a suite of tests  of linear  model assumptions  (Peña & Slate

2006).

4.3 Results

4.3.1 DNA extraction and AFLP genotyping

Estimated DNA concentrations ranged from 0.5−20 ng μL-1.  The correlation between

tissue fresh weight and final DNA concentration was low (Pearson's r = 0.33, p < 0.01).

It is probable that this reflects different drying and grinding efficiencies between tissue

samples. S. hermonthica tissue bruises and blackens very quickly on handling (personal

observations); because blackening is often attributed to nucleolytic degradation via the

production of polyphenols (e.g. Angeles et al. 2005), differences in handling and drying

time  are  likely to  lead  to  different  amounts  of  genomic  DNA degradation  between

samples of a similar fresh weight. The relatively low amount of genomic DNA used in

this study (10 ng per sample) did not prohibit the production of strong, reproducible

fluorescent AFLP traces, as has been found elsewhere (Vos et al. 1995; Trybush et al.

2006). After the three rounds of checking and selection of loci described above (section

4.2.4), 173 AFLP loci remained  (Table 4.1). The segregation classes of these loci are

given in Table 4.2.
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Table 4.1. Numbers of polymorphic loci at each stage of analysis for each primer pair in the
AFLP data set. (GM = GeneMapper; CdAFLP = CodomAFLP; Ec = EcoRI; Ms = MseI;  Ps =
PstI). The stages of analysis used here are described in section 4.2.4.

Primer pair Primary GM bin set Manual pedigree edit Manual CdAFLP edit

EcAGA.MsGAG 68 32 30

EcAGA.MsGAC 72 42 30

EcAGA.MsCGT 62 38 32

EcATC.MsGCT 33 18 17

EcATC.MsCGT 43 13 11

EcATC.MsCGC 28 9 8

PsTCC.MsGCG 34 9 9

PsTCC.MsGCT 45 10 9

PsTCC.MsGGC 51 13 11

PsTCC.MsGGG 41 19 16

Total 477 203 173

Table 4.2. Numbers of AFLP loci in each segregation class.

B3.7 (1:2:1) C.8 (3:1) D1.10 (1:1) D1.13 (1:1) D2.15 (1:1) D2.18 (1:1)

(ao × ao) (ao × ao) (ao × aa) (ao × oo) (aa × ao) (oo × ao) Total

28 4 14 69 8 50 173

4.3.2 Segregation patterns in the BCF1 generation

4.3.2.1 Segregation distortion

Segregation distortion at the locus-by-locus significance level α = 0.05 was high under

all three growing conditions (Table 4.3). There was a significant effect of host (deviance

= 30.28,  p < 0.0001, d.f.  = 2) and of reciprocal  population (deviance = 16.33,  p  <

0.0001, d.f. = 1) on the proportion of distorted loci, as assessed by analyses of deviance

of binomial GLMs, but no interaction between them (deviance = 0.328, p = 0.849, d.f. =

2). The binomial GLM containing reciprocal population and host as covariates revealed

significant differences in segregation distortion, both between the two plant hosts (z =

2.58, p = 0.01, d.f. = 1) and between the combined plant hosts and agar (z = -4.71, p <

0.0001,  d.f.  =  1).  The  contrast  between  the  two  reciprocal  populations  was  also
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significant (z = 4.02, p < 0.0001, d.f. = 1).

Table  4.3.  Numbers  (and  percentages)  of  distorted  loci  for  each  growing  condition  and
reciprocal population.

Growing condition BCF1HyMo BCF1HyFa

Agar 51 (29%) 35 (20%)

E36 73 (42%) 48 (28%)

Malisor 87 (50%) 67 (39%)

Plant (E36 + Malisor) 97 (56%) 71 (41%)

Comparing  distorted  loci  across  all  three  growing  conditions,  32  loci  (19%)  were

distorted in common; this changed to 48 (28%) and 13 (8%) within  BCF1HyMo and

BCF1HyFa respectively. Although there was more absolute distortion at the  locus-by-

locus  0.05  level  in  BCF1HyMo  than  in  BCF1HyFa  (Table  4.3),  the  sizes  of  the

distortions at  individual  loci,  as estimated by the  p  values,  were correlated between

reciprocals within growing conditions (agar: Spearman's  rho = 0.62,  p < 0.001; E36:

rho = 0.68,  p < 0.001; Malisor:  rho = 0.76,  p < 0.001). A strong correlation of the

deviations from Mendelian expectation was also found between reciprocals in the plant-

grown subset (Spearman's  rho = 0.77,  p < 0.001). However, the segregation distortion

patterns between growing conditions were not strongly correlated: between the agar and

plant data sets (reciprocal populations combined) Spearman's  rho = 0.38 (p < 0.001);

this  was  the  same  for  correlations  performed  within  reciprocal  populations

(BCF1HyMo: Spearman's  rho = 0.31,  p  < 0.001;  BCF1HyFa:  rho = 0.39,  p  < 0.001).

Between the two plant hosts these correlations were of a similar size, again, both for the

combined data and within reciprocals (combined: Spearman's  rho = 0.37,  p  < 0.001;

BCF1HyMo: rho = 0.36, p < 0.001; BCF1HyFa: rho = 0.28, p < 0.001).
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4.3.2.2 Relative differences in segregation between growing conditions

The  relative  difference  in  segregation  ratio  between  growing  conditions  was  also

considered; this is simply the comparison of observed segregation ratios (at any given

locus)  between  populations,  without  reference  to  Mendelian  expectations.  For  the

agar/plant comparison 59 loci (34%) were segregating differently between the growing

conditions (chi-squared tests with 1 or 2 d.f. depending on locus type, using a locus-by-

locus significance level of α = 0.05); for the plant/plant (E36 vs Malisor) comparison

this was 63 (36%). Thirty-one loci (18%) were found to be differentiated in common

between  these  two  comparisons,  indicating  that  around  half  of  the  loci  behaving

differently between agar  and plant-grown  Striga also  did so within the  plant-grown

subset, that is, between E36 and Malisor. This suggests that, in these cases, only one of

the  two  plant  hosts  was  driving  the  difference  between  the  agar  and  plant-grown

populations,  rather  than  a  general  plant/agar  difference  being responsible.  However,

overall, the correlation between the sizes of the differences in segregation ratio was low

between the agar/plant and plant/plant comparisons (Spearman's rho = 0.32, p < 0.001).

4.3.2.3 Segregation distortion at intercross loci

For intercross loci (B3.7-type; Table 4.2) there are three ways in which distortion can

occur: allelic, zygotic and genotypic distortion (Leppälä et al. 2008). Allelic distortion is

the  distortion  of  observed  allele  frequencies  away  from  the  expected  frequencies;

zygotic  distortion  is  the  distortion  of  observed  genotypes  away  from the  expected

genotype frequencies given the observed allele frequencies; and genotypic (or 'overall')

distortion is the distortion of observed genotype frequencies away from those expected

under  a  Mendelian  model.  Genotypic  distortion  can  be  caused  by  either  allelic

distortion, zygotic distortion, or both. Testcross loci (D-types; Table 4.2) can only be

investigated for overall distortion, as it is not possible to separate allelic and zygotic
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effects  (Bechsgaard  et  al. 2004). The  numbers  of  distorted  intercross  loci  for  each

growing condition (combined across reciprocals) are given in Table 4.4. The sample of

intercross  loci  in  Table  4.4  suggests  that  allelic  distortion  may have  contributed  to

differences between growing conditions more than zygotic distortions. This conclusion

was  also  supported  if  the  different  types  of distortion  were  examined  between

reciprocals within growing conditions (Table 4.5).

Table 4.4.  Numbers (and percentages) of  intercross loci  distorted at  the allelic,  zygotic and
genotype levels across growing conditions. Distortions were judged to be significant if they
exceeded the experiment-wide locus-by-locus α = 0.05 level (p = 0.05/173). 

Growing condition

Number (and percentage) distorted

Allelic Zygotic Genotypic

Agar 5 (18%) 5 (18%) 9 (32%)

E36 11 (39%) 4 (14%) 14 (50%)

Malisor 13 (46%) 4 (14%) 14 (50%)

Plant (E36 + Malisor) 15 (54%) 5 (18%) 15 (54%)

Table 4.5.  Numbers (and percentages) of  intercross loci  distorted at  the allelic,  zygotic and
genotypic  levels across within reciprocal  populations across growing conditions.  Distortions
were judged to be significant if they exceeded the experiment-wide locus-by-locus  α = 0.05
level (p = 0.05/173).

Growing
condition

Allelic Zygotic Genotypic

BCF1HyMo BCF1HyFa BCF1HyMo BCF1HyFa BCF1HyMo BCF1HyFa

Agar 4 (14%) 2 (7%) 3 (11%) 2 (7%) 7 (25%) 4 (14%)

E36 10 (36%) 7 (25%) 3 (11%) 3 (11%) 11 (39%) 8 (29%)

Malisor 13 (46%) 9 (32%) 3 (11%) 5 (18%) 13 (46%) 9 (32%)

Plant (E36 + 
Malisor)

14 (50%) 11 (39%) 2 (7%) 1 (4%) 14 (50%) 10 (36%)

4.3.2.4 Segregation distortion and parental alleles at testcross loci

Where distorted testcross loci (D-types; Table 4.2) had the hybrid plant ShK97/ShIC97

as the heterozygous parent in the  F1, it was possible in some cases to trace back the

heterozygous allele to the parental generation, and determine if the allelle originated in
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the ShK97 or ShIC97 plant (Table 4.6). There was no evidence for the distortion of loci

with ShK97 alleles being associated with growing condition, either for loci at which the

allele was in excess (Fisher's exact test: p = 0.999, d.f. = 2), or deficient (Fisher's exact

test: p = 0.655, d.f. = 2) (Table 4.6).

Table  4.6.  Proportions  of  distorted  testcross  loci  in  BCF1 populations  for  which  the
heterozygous allele could be traced back to one of the two Striga parental populations.

Growing
condition

Proportion of loci with the
hybrid as the heterozygous

F1 plant

Proportion of loci traced to
the ShK97 or ShIC97

parent

Proportion of loci with
ShK97 allele

Heterozygote
in excess

Heterozygote
deficient

Heterozygote
in excess

Heterozygote
deficient

Heterozygote
in excess

Heterozygote
deficient

Agar 14/22 (63%) 8/22 (37%) 12/14 (86%) 7/8 (88%) 11/12 (92%) 4/7 (57%)

E36 20/33 (61%) 13/33 (39%) 18/20 (90%) 11/13 (85%) 16/18 (89%) 6/11 (55%)

Malisor 22/42 (52%) 20/42 (48%) 19/22 (86%) 17/20 (85%) 16/19 (84%) 12/17 (71%)

Overall - - - - 43/49 (88%) 22/35 (63%)

However, the ShK97 parent was found to be the source of the heterozygous allele at loci

with an over-representation of heterozygotes more frequently than at loci with an under-

representation; across all growing conditions this trend was significant (heterozygotes in

excess:  43/49 (88%); heterozygotes deficient:  22/35 (63%); chi-squared = 5.88,  p =

0.015, d.f. = 1) (Table 4.6).

Where distorted loci with an excess of a ShK97 heterozygous allele could be assigned to

a linkage group (agar:  8  loci;  E36:  10 loci;  Malisor:  12 loci),  I  tested  for  epistasis

between loci  (e.g. McDaniel  et al. 2007; Li  et al. 2011). Here, epistasis indicates the

presence  of  evidence  for  digenic  interactions  between  particular  loci;   that  is,  loci

appearing  together  in  the  same  individual  more  often  than  would  be  expected  by

independent assortment alone. Pair-wise comparisons for digenic epistatic interactions

were only performed for markers  on separate  linkage groups (markers  on the same

group are likely to show non-independence due to linkage, irrespective of epistasis).
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Seventeen, 40 and 56 chi-squared tests with one d.f. were performed for agar-, E36-,

and  Malisor-grown  Striga plants  respectively.  Using  an  uncorrected  one  per  cent

significant level, one significant interaction was found on agar, 9 for Malisor, but none

on the E36-grown plants. The significant interactions between distorted loci with an

excess of the ShK97 allele on Malisor involved linkage groups 2, 3, 4, 5 and 7 (Figs 4.4

& 4.5), whilst the interaction between the distorted loci for the agar-grown plants was

between linkage groups 4 and 7 (Figs 4.4 & 4.5).

4.3.3 Linkage mapping

Linkage groups were created using all testcross and intercross markers in one data set

for each reciprocal BCF1 population. The reciprocal maps were constructed separately

because  of  differences  in  recombination  frequency:  the  mean  pairwise  marker

recombination frequencies for BCF1Mo were 0.177, 0.171, and 0.169 for the agar, E36

and Malisor growing conditions respecitively; and for BCF1Fa these figures were 0.097,

0.102 and 0.132. Due to the non-independence of genetic material between reciprocal

populations,  it  is  difficult  to directly assess the significance of the apparently lower

recombination in the BCF1Fa population from mean values, but pairwise comparisons

using shared marker pairs can be used to make comparisons (Beukeboom et al. 2010).

The  Wilcoxon  signed  rank  test  was  used  to  compare  the  subset  of  pairwise

recombination frequencies shared between reciprocal families for a particular growing

conditions, although for Malisor the number of shared linked marker pairs was low,

meaning that the negative result may be due to low power (agar: Wilcoxon's V = 7735,

p < 0.0001, n = 46; E36: Wilcoxon's V = 87, p = 0.015, n = 31; Malisor: Wilcoxon's V =

37, p = 0.89, n = 13).

The  inclusion  of  distorted  loci  in  these  datasets  appeared  to  seriously  affect  map
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construction: their inclusion resulted in the linkage groupings being dominated by one

large linkage group (90/173 loci, 52%), probably resulting from pseudo-linkage caused

by segregation distortion in the dataset (Table 4.3). This remained the case even when

maps  were  constructed  for  each  growing  condition  separately.  Therefore,  for  each

reciprocal  population,  I  removed those subsets  of  genotype  data  that  were distorted

within particular growing conditions; for example, if a locus was distorted within the

agar-grown population, but not within the E36- or Malisor-grown populations, then the

data from the agar population were recoded as missing data. In this way I hoped to

retain  as  many  loci  as  possible  in  the  final  map,  whilst  minimising  the  effects  of

segregation  distortion;  a  comparable  approach  was  recently  used  to  construct  a

consensus map from  six mapping populations containing distorted loci in the hybrid

cereal triticale (Alheit et al. 2011).

After removing the distorted subsets, the BCF1HyMo reciprocal population retained 125

markers  with at  least  some genotypic information,  whilst  the  BCF1HyFa population

retained 160. However, there was little difference between reciprocals in the number of

markers finally mapped: the BCF1HyMo reciprocal map had 92 markers grouped in 17

linkage groups, whilst BCF1HyFa had 94 markers in 21 linkage groups (Figs 4.4 & 4.5).

In total the aligned maps have 116 unique markers (67% of all markers scored), and the

linkage groups align across reciprocals into 17 groups, slightly less than the estimated

haploid  number  of  19  chromosomes  for  S.  hermonthica (Aigbokhan  et  al. 1998),

although linkage groups with gaps  > 50  cM may represent  artefactual  joins due  to

remaining  segregation  distortion  (Schwarz-Sommer  et  al. 2003). There  were  no

conflicts  in  the  linkage group assignments  between the  populations,  and the  groups
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could be aligned; however, the groups were fragmented between the reciprocal maps,

and some minor changes in marker order were also observed (Figs 4.4 & 4.5). Markers

that  segregated  differently  between  the  agar  and  plant  growing  conditions,  and/or

between E36 and Malisor (see section 4.3.2.2), are displayed on the maps where those

markers  were assigned to  a  linkage group (Figs  4.4  & 4.5).  For  markers  that  only

segregated differently between the plant and agar growing conditions, 6 of 28 markers

were placed on the map;  for  E36 and Malisor,  this  was 20 of  32;  whilst  for  those

markers that segregated significantly differently in both of these comparisons, 16 out of

31 makers were mapped (Figs 4.4 & 4.5).
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Figure 4.4. AFLP linkage map for  S. hermonthica  derived from an intraspecific cross between a West African (ShIC97) and an East Africa population (ShK97).
Linkage groups from the two directions of the reciprocal cross are aligned, and the positions of common markers between reciprocal linkage groups are joined with a
line. Distances are given in centiMorgans (Kosambi). Loci that segregated significantly differently between the agar and plant growing conditions are underlined; the
colour red indicates loci that segregated differently between E36 and Malisor; loci that segregated differently in both situations are both red and underlined (see
section 4.3.2.2 for details of the analysis of differences in segregation). HyFa = BCF1HyFa; HyMo = BCF1HyMo; LG = linkage group.
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Figure 4.5. See Figure 4.4 for details.
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4.3.4 Heterosis and epistasis of S. hermonthica traits in the pedigree

4.3.4.1 S. hermonthica germination across the pedigree

Using the artificial germination stimulant GR-24, there were no significant differences

in germination between any of the seed populations in the pedigree: a null model was

preferred to one including seed population as a covariate (quasi-binomial GLM:  F =

0.240, p = 0.913, d.f. = 4; Table 4.7).

Table  4.7.  Mean  (± binomial  standard  error)  germination  across  the  generations  in  the  S.
hermonthica pedigree, as assessed by stimulation with the artificial germination stimulant GR-
24.

Pedigree generation Mean ± s.e.

ShK97 53.2% ± 4.7

ShIC97 54.9% ± 4.1

ShIC97 F1 51.3% ± 5.0

Hybrid F1 51.5% ± 5.2

BCF1HyMo 52.7% ± 4.5

BCF1HyFa 48.9% ± 4.7

4.3.4.2 S. hermonthica virulence across the pedigree

The number of attachments on the three host genotypes varied strongly depending on

the Striga generation assessed (Fig. 4.6). Across all  Striga generations, the susceptible

host  E36 usually had more attachments,  but the hybrid F1  generation was also very

virulent on the normally resistant hosts N13 and Malisor (Fig. 4.6). The likelihood ratio

deletion tests revealed significant effects of both host genotype (deviance = 100.65, p <

0.001,  d.f.  = 2)  and  Striga population  (deviance = 115.91,  p < 0.001,  d.f.  =  4)  on

parasite  virulence,  as  estimated  by  the  number  of  Striga attached  (Fig.  4.6).  The

interaction between host genotype and Striga population was also significant (deviance

= 52.93, p < 0.001, d.f. = 8; Fig. 4.6). (For this analysis, the reciprocal populations of

the  BCF1 were not differentiated, this was due to there being either no difference, or
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only very small differences between reciprocals; see section 4.3.5.) The GLM contrasts

showed that the two parental seed populations (ShK97 and ShIC97) were significantly

different in virulence on N13 (z = 10.11, p < 0.001, d.f. = 1) and Malisor (z = 2.92, p =

0.004, d.f. = 1), but not on E36 (z = -0.69, p = 0.491, d.f. = 1; Fig. 4.6); this result

highlights the strong population-level G × G interaction for which this combination of

parasite and host populations was chosen. The scaling test contrasts revealed that the

hybrid F1 displayed  (putative) heterosis on N13 (z = -7.68,  p < 0.001, d.f. = 1) and

Malisor (z = -2.31, p = 0.021, d.f. = 1), but not on the susceptible host E36 (z = -1.51, p

= 0.130,  d.f.  =  1;  Fig.  4.6).  The  final  scaling  test  contrast  showed that  significant

epistasis in the BCF1 was observed on N13 (z = 7.05, p < 0.001, d.f. = 1) and E36 (z =

4.15, p < 0.001, d.f. = 1), but was only marginal for Malisor (z = 1.80, p = 0.072, d.f. =

1; Fig. 4.6).

The effect  of  Striga on the  height  of  the  host  plant  (relative to  controls)  depended

strongly on the host genotype (Fig. 4.7). The varying levels of  Striga attachment on

E36, shown in Figure 4.6, caused a constant reduction in height of around 50% (Fig.

4.7). The effect was more variable for N13 and Malisor (Fig. 4.7), apparently due to the

low virulence displayed by the  ShIC97,  ShIC97 F1 and BCF1 generations (Fig. 4.6).

Again, the hybrid F1 generation appeared to have an unsually large effect on host height

when parasitising the resistant cultivars N13 and Malisor (Fig. 4.7), commensurate with

the increased Striga attachment observed (Fig. 4.6).

Models of the host height data  failed to meet several of the assumptions of a linear

model  (heteroscedasticity  and  skewness  were  detected).  Inspecting  Cook's  distances

(Crawley 2005) for the model showed that there was one very influential outlier. After

re-running the model with this datapoint removed, the model met all of the necessary
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assumptions. The removed datapoint was from population ShIC97 growing on Malisor:

the host plant  was unusually tall.  Compared to  other  replicates  of  this  host-parasite

combination the number of Striga growing on this host plant was not atypical, however,

the roots of the host sorghum did display a high degree of colouring, noted during the

experiment, possibly suggesting an atypical host response.

The final model for host height found host (F = 38.92, p < 0.001, d.f.  = 2),  Striga

population (F = 30.02, p < 0.001, d.f. = 4), and the interaction between these (F = 16.54.

p < 0.001, d.f. = 8) to be significant (Fig. 4.7). The contrasts were implemented for each

host  as  before.  The two parental  populations (ShK97 and  ShIC97) had significantly

different effects on N13 (t = -13.33,  p < 0.001, d.f. = 1) and Malisor (t = -5.83,  p <

0.001, d.f. = 1), but not on E36 (t = -1.07,  p = 0.295, d.f. = 1; Fig. 4.7).  Heterosis,

realised here as a reduction in host height compared to the mid-parent value (that is,

increased parasite virulence) was significant on the resistant host N13 (t = 6.45,  p <

0.001, d.f. = 1), marginal on the resistant host Malisor (t = 1.77, p = 0.096, d.f. = 1), but

not significant on the susceptible host E36 (t = -0.39,  p = 0.697, d.f. = 1; Fig. 4.7).

Epistasis,  realised  as  a  reduced  impact  of  Striga  on  host  height  compared  to  that

expected from the parental values, was significant on the resistant hosts N13 (t = -11.66,

p < 0.001, d.f. = 1) and Malisor (t = -3.41,  p = 0.003, d.f. = 1), but not on E36 (t =

0.304, p = 0.764, d.f. = 1; Fig. 4.7).
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Figure 4.6.  Mean (± s.e.)  S. hermonthica attachment in rhizotrons on three sorghum hosts across all
generations of the Striga pedigree. The BCF1 is BCF1HyMo and BCF1HyFa combined. Heterosis can be
seen by the degree to which the hybrid F1 exceeds the average of the parental populations {0.5 ShK97 +
0.5 ShIC97 vs hybrid F1}; epistasis can be seen by the degree to which the BCF1 exceeds the average of
the hybrid F1 and ShIC97 {0.5 hybrid F1 + 0.5 ShIC97 vs BCF1}.

Figure 4.7. Mean (± s.e.) relative heights of three sorghum hosts parasitised by different generations of
the  Striga pedigree.  The BCF1 is BCF1HyMo and BCF1HyFa combined. Heterosis is displayed if the
height of a host parasitised by the hybrid F1 deceeds the average of the parental populations {0.5 ShK97 +
0.5 ShIC97 vs hybrid F1}; epistasis can be seen by the degree to which the BCF1 deceeds the average of
the hybrid F1 and ShIC97 {0.5 hybrid F1 + 0.5 ShIC97 vs BCF1}.
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4.3.5 F1 maternal identity and virulence

Reciprocal  populations  of  the  BCF1 (BCF1HyMo  and  BCF1HyFa)  were  tested

separately in the post-attachment virulence experiments, in order to test for an effect of

maternal identity on virulence. On the resistant host N13 there was a significant effect

of maternal identity:  BCF1HyMo (mean  Striga attachment  ± s.e. = 6.11  ± 1.97)  was

more virulent than BCF1HyFa (mean ± s.e. = 2.60 ± 0.64) (negative binomial GLM: z =

3.06,  p = 0.002,  d.f. = 1). However, this difference was not found when growing the

reciprocal  populations  on  the  resistant  Malisor (BCF1HyMo mean  ± s.e. =  27.40  ±

14.57;  BCF1HyFa mean  ± s.e. = 16.64  ± 6.39; z = 1.17,  p = 0.242, d.f. = 1) or the

susceptible E36 (BCF1HyMo mean  ± s.e. = 52.00  ± 17.60;  BCF1HyFa mean  ± s.e. =

44.75 ± 11.39; z = 0.52, p = 0.606, d.f. = 1).

4.4 Discussion

4.4.1 Heterosis and epistasis for S. hermonthica virulence

I  have  exploited  a  population-level  G  × G interaction  between two  S.  hermonthica

populations and three sorghum cultivars to investigate the genetic architecture of two

Striga virulence traits. The use of an outbred line cross analysis and simple scaling tests,

which provide insights into the genetic basis of differences in traits between populations

and/or individuals (Falconer & Mackay 1996; Fenster et al. 1997; Kelly 2005; Demuth

& Wade 2006), revealed the existence of epistasis for  Striga host attachment and for

parasite effects on host height, and indicated the possible existence of heterosis. The use

of three different sorghum genotypes to evaluate the different generations in the Striga

pedigree also indicated that the inferred architecture of these traits can depend on host

genotype, suggesting that the presence of a population-level G × G interaction between

host and parasite can also affect the genetic architecture of virulence within a parasite
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population, and so its coevolution (Detwiler & Criscione 2010).

The F1 hybrid (ShK97/ShIC97) did not show any difference in germination from the

other generations in the pedigree, but on the two resistant hosts, N13 and Malisor, there

was possible evidence for a strong heterotic effect on parasite attachment, although this

depends on the individual-level distribution of pathogenicity in the base populations

(see section 4.2.6). The effect of the F1 hybrid on host height displayed a similar pattern:

the impact of  Striga on the susceptible host E36 did not show a significant heterotic

effect, in contrast to N13 and Malisor. The lack of the potential heterotic effect of Striga

on E36 height may be due to the non-linear relationship between Striga-attachment and

host  physiology,  where  small  increases  in  parasite  attachment  rapidly  lead  to  the

maximum  reduction  in  host  biomass  components  (Gurney  et  al. 1999). Allelic

dominance and overdominance are often given as  the  two main  potential  causes  of

heterosis  (Charlesworth  & Willis  2009). Empirical  evidence  has  generally  favoured

dominance as the main explanation of heterosis  (Fenster & Galloway 2000; Waser &

Williams 2001), suggesting that the masking of deleterious recessive alleles in the F1

often underlies hybrid vigour. Heterosis has been observed in a number of studies of

plant  inter-population  crosses,  for  example,  in  Chamaecrista (Fenster  &  Galloway

2000), Phlox (Levin 1984), Piriqueta (Rhode & Cruzan 2005) and Scabiosa (Treuren et

al. 1993), leading some authors to suggest that the fixation of deleterious alleles within

populations due to drift may be a general phenomenon  (Fenster & Galloway 2000).

However,  plant  populations  are  often  small  and  partially  inbred  (Charlesworth  &

Charlesworth  1987),  and  so  high  levels  of  inbreeding  may  be  the  reason  for  the

frequency with which dominance has been found to be the main cause of heterosis in

plants.
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Heterosis has, to my knowledge, not been demonstrated for a parasitic plant, although

both heterosis and epistasis have been shown to occur in animal parasites (see section

4.1); therefore it would be of interest to replicate the pedigree generated in this study to

see if the potential heterosis found here can be supported. If the heterosis is a real effect

of  interaction  between  genomes,  rather  than  the  result  of  crossing  particularly  fit

individuals from the parental populations, then it is particularly strong on the resistant

hosts N13 and Malisor, where the amount of parasite attachment outperfomed not only

the mid-parent value but also both of the parents. This would suggest that within the

parental Striga populations, ShK97 and ShIC97, the loss of virulence due to deleterious

recessives  might  be  considerable.  However,  both  dominance  and overdominance  as

explanations of heterosis assume that the F1 has higher heterozygosity than the parents

(i.e.  the  parents  must  be  homozygous  for  some  deleterious  recessives  in  order  for

hybridization to cause heterosis). In the current case, with  S. hermonthica being self-

incompatible  and  within-population  genetic  variability  being  high  (e.g.  Welsh  &

Mohamed 2011), and with  it being a highly fecund annual plant with seeds that may

survive  in  the  seed-bank  for  over  10  years  (Yoder  &  Musselman  2006),  it  seems

unlikely that the Striga parents used in this cross were inbred to any great extent. It is,

therefore, not clear that there will have been an increase in heterozygosity in the F1

sufficient to cause strong heterosis on the resistant sorghum hosts.

An alternative explanation is that epistasis plays an important part in heterosis  (Lynch

1991; Lamkey & Edwards 1999). Lynch (1991) states that, in the absence of inbreeding,

and when only considering epistasis between two loci, “outcrossing enhancement in the

F1 can  be  caused  by  dominance  of  favorable  genes  isolated  in  the  two  parental

populations …, or by the existence of favorable additive × additive epistatic interactions
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between genes from different sources …, or both”. Lynch (1991) reanalysed grain yield

data  from  line  crosses  between  maize  genotypes  of  differing  levels  of  genetic

divergence,  demonstrating  the  existence  of  favourable  additive  × additive  epistatic

effects  underlying  heterosis.  This  is  a  particularly  interesting  result,  because  it  is

normally  assumed  that  epistasis  is  due  the  existence  of  within,  and  not  among,

population coadapted gene complexes (Lynch 1991). In the current situation, where the

parental populations were harvested from different host crops (ShIC97 from rice and

ShK97 from maize), it  is possible that the parental populations contain host-adapted

alleles, that, in combination, are beneficial on particular sorghum cultivars. Given that

S. hermonthica is thought to have coevolved with sorghum and wild grasses, and later

adapted to rice and maize  (Weber  et al. 1995), the chance of favourable interactions

between  population  genepools  may  be  increased  by  the  retention  of  ancestral

mechanisms of parasitism. Complementary molecular pathways for parasitism, or the

concealment of avirulence genes from the host, could underlay the between-population

component of heterosis on the resistant hosts N13 and Malisor. It should also be noted

that the interpretation of the genetic architectures uncovered in this  Striga  pedigree is

complicated  by the  host-genotype  dependence  of  the  results.  Typically,  theories  of

heterosis have been based on unconditional increases in fitness, although genotype  ×

environment  interactions  for  heterosis  have  been  observed,  and  techniques  for

partitioning the contribution of 'intrinsic' heterosis have been developed for certain line

cross scenarios (Xu & Zhu 1999).

The BCF1  generation displayed a striking breakdown of  both  Striga  attachment  and

parasite  effects  on  host-height  for  the  majority  of  the  host-parasite  combinations,

although, again, there was no effect on germination. The effect of the BCF1 on E36
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height did not display hybrid breakdown, presumably due to there still being enough

attached  Striga to  have  the  maximum phenotypic  effect  on  this  highly  susceptible

sorghum host (Gurney et al. 1999). BCF1 Striga attachment on Malisor did not show a

significant effect of hybrid breakdown, but there was still a departure from the average

value  of  the  recurrent  parent  (ShIC97)  and  the  F1 in  the  expected  direction.  The

occurrence of hybrid breakdown is  normally taken as  evidence for  the existence of

genetic  interactions  (coadapted  gene  complexes)  that  affect  the  trait  for  which  the

breakdown is observed, i.e. there is epistasis for the trait  (Falconer & Mackay 1996).

Due to the backcross design, any additive × additive between-population coadaptation

that  contributed  to  F1 heterosis  would  be  likely to  be  disrupted,  especially  if  these

interactions involved several ShK97 loci.  Alternatively, the hybrid breakdown of Striga

attachment observed on N13 may not be due to the disruption of coadaptation, but could

be due to the reconstituting of deleterious recessive homozygotes (e.g.  host-detected

avirulence factors) in the  ShIC97 genome. Potentially, both disruption of coadaptation

and the reconstitution of deleterious recessives could be occurring together; this has a

parallel  in  the  composite  explanations  of  Haldane's  rule  (hybrid  breakdown  in  the

heterogametic sex) that are now often favoured (Koevoets et al. 2012).

Where hybrid breakdown was found, it  was found in both of the BCF1 populations

derived from the reciprocal cross, suggesting that the hybrid breakdown itself was not

due to a cytoplasmic effect. However, the size of this breakdown did differ significantly

for reciprocal populations of the BCF1 Striga when grown on the resistant host N13.

The BCF1 with the hybrid mother plant (having  ShK97 cytoplasm) was found to be

more  virulent.  Other  authors  have  found  a  cytoplasmic  component  to  the  genetic

architecture of  hybrid breakdown in inter-population crosses  in  plants  (Campbell  &
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Waser 2001; Galloway & Fenster 2001; Rhode & Cruzan 2005; Etterson  et al. 2007)

and other organisms (e.g. Pritchard et al. 2011), suggesting that this phenomenon may

not be uncommon. However, even though a significant difference was found for host

N13,  in  absolute  terms  the  difference  in  average  Striga attachment  between  the

reciprocals  on  N13  was  small  (although  the  effect  size  would  be  classed  as  large:

Cohen's  d =  1.08).  Replicate  crosses  of  the  type  made  here,  as  well  as  reciprocal

crossing  at  the  F1  stage  (Rhode  & Cruzan  2005), would  provide  a  more  thorough

understanding  of  the  subtle,  and  apparently  host-genotype  specific,  effects  of

cytoplasmic  background  on  S.  hermonthica virulence.  Pritchard  et  al. (2011) give

examples of where cyto-nuclear incompatibilities between copepod populations have

been  traced  to  particular  combinations  of  genes  involved  in  ATP production;  this

suggests  the  possibility  that  cyto-nuclear  effects  on  virulence  in  Striga may not  be

directly tied to cellular machinery involved in parasitism, but may simply be a small,

though significant, indirect effect of generally lower cellular efficiency.

4.4.2 Segregation distortion

Segregation, or transmission ratio, distortion is an increasing focus for genomic studies

(Lexer  &  Widmer  2008).  It  is  of  particular  importance  to  studies  of  interspecific

hybridisation, where it is often linked to the existence of Bateson-Dobzhansky-Muller

interactions  (e.g.  Koevoets  et  al. 2012). Likewise,  it  has  also  been  identified  in

intraspecific crosses (Jenczewski et al. 1997; Hall & Willis 2005; McDaniel et al. 2007;

Leppälä  et  al. 2008;  Bikard  et  al. 2009;  Li  et  al. 2011;  Pritchard  et  al. 2011).

Segregation distortion has generally been found to be lower for intraspecific than for

interspecific crosses (Jenczewski et al. 1997), but intraspecific levels can still be high.

For example, Hall & Willis (2005) found 48% of molecular markers to be distorted in
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an inter-population cross of the North American herb Mimulus guttatus; this was later

found to be largely due to a chromosomal inversion containing genes involved in local

adaptation to soils  (Lowry & Willis 2010). The amount, and patterns, of segregation

distortion can be a useful guide to the architecture of intrinsic incompatibilities that may

exist  between  populations  (McDaniel  et  al. 2007), although  proving  whether  the

observed genetic incompatibilities arose in response to, or as a by-product of, extrinsic

(e.g. local adaptation) or intrinsic (i.e. intra-genomic) factors may be harder to achieve

(Bierne  et  al. 2011). Distorted  loci  have  also  been  implicated  in  digenic  epistasis

(Schwarz-Sommer et al. 2003; McDaniel et al. 2007; Li et al. 2011; Alheit et al. 2011),

lending support to the Wrightian view of populations as coadapted complexes of genes

with significant non-additive interactions leading to inter-population hybrid breakdown

(Wade & Goodnight 1998). Knowledge of whether distortion acts primarily at the allelic

or zygotic level may also provide information about the causative mechanism (Fishman

et al. 2001; Bechsgaard et al. 2004).

Here, for the first time, I have revealed a relationship between segregation distortion in

a parasite and host resistance. Segregation distortion levels for S. hermonthica on agar

were not dissimilar to other intraspecific crosses  (Jenczewski  et al. 1997), despite the

considerable geographic distance between the populations crossed (4,600 km); however,

distortion  was  significantly  higher  when  assessed  in  Striga grown  on  plant  hosts.

Growth on a host exerted a selection pressure that resulted in alleles at certain loci being

over- or under-represented in those Striga plants that could successfully parasitise a host

compared to growth on agar. Once Striga seedlings were in the sterile agar environment

all germinated seed transplanted survived, unless there was contamination of the growth

medium, indicating minimal selective pressure for growth from the agar environment
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itself.  This  suggests  that  distortion  observed  in  the  agar-grown  population  is  a

reasonable  proxy for  intrinsic  distortion,  operating  pre-attachment, between the  two

Striga populations, and that the difference in distortion between the agar and the plant-

grown populations (8–21%, depending on reciprocal population and plant host; Table

4.3)  represents extrinsic  host  selection  pressure.  Non-parametric,  rank-based

correlations were used to assess the similarity of distortion between growing conditions

and reciprocals because assessing distortion at a locus as a binary variable using the α =

0.05 locus-by-locus cut-off could miss similarities due to the different sample sizes, and

so power, between  the  reciprocal populations. The correlations also provide different

information  on  the  patterns  in  the  magnitude  of  segregation  distortion  across  loci

between growing conditions and reciprocals. The correlations showed that, despite a

significant  difference  between  reciprocals  using  the  α =  0.05  level,  the  patterns  of

distortion across loci between reciprocals were similar within growing conditions. The

correlations also showed a lack of similarity between growing conditions, both between

agar and the two plants combined, and between the two different plant hosts. Relative

differences in segregation ratios between growing conditions again suggested a similar

pattern, with clear indications that a number of loci were responding differently to the

different host environments.

The  results  from  the  28  loci  in  intercross  configuration  (B3.7-type)  that  could  be

analysed for distortion at the allelic and zygotic levels indicated that allelic distortion

may have contributed more to the differences between growing conditions than zygotic

distortion. Allelic distortion does not necessarily mean that the distorting mechanism

occurs pre-zygotically, selection against particular alleles could occur in the sporophyte

independently of their heterospecific allelic partner (i.e. an additive effect). Overall, the
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results from the novel approach used here to distinguish segregation distortion with an

apparently intrinsic basis  from that  with a host-related,  extrinsic  cause,  supports  the

hypothesis  of  the  host-specific  nature  of  differential  G  × G  interactions  in  S.

hermonthica–sorghum parasitism. This provides direct genetic evidence to support the

indirect evidence from phenotypic means used in the line cross analysis (section 4.4.1).

In the small number of cases where the parental origin of alleles could be determined,

there appeared to be a general bias towards the over-representation of ShK97 alleles in

all growing conditions. It is possible that the asymmetric introgression of ShK97 alleles

is a result of inbreeding depression caused by the backcross of the F1 hybrid to a ShIC97

F1  plant that was itself the result of crossing two individuals from the ShIC97 parental

population. However, the ShIC97 parents were both randomly chosen from a very large

batch of field-collected seed,  and  S. hermonthica individuals have been found to be

highly heterozygous  (Bharathalakshmi  et al. 1990; Huang 2007; Welsh & Mohamed

2011), as expected for a self-incompatible, annual plant  (Hamrick & Godt 1996). The

ShIC97/ShIC97 F1  seed population  also displayed identical  reactions  to  the  parental

population in  rhizotron assays,  although it  is  possible  that  fitness  reductions  in  this

generation may not have been manifest in the two bio-assays performed. Furthermore,

although there were slightly fewer testcross loci informative for the  ShIC97 F1  parent

(D2-types; Table 4.2) in the BCF1 compared to the F1 hybrid (D1-types; Table 4.2), the

number was of a similar magnitude, suggesting that the ShIC97/ShIC97 F1 plant was not

significantly less heterozygous than the ShK97/ShIC97 F1 hybrid. However, the AFLP

loci assayed may only represent a small portion of the S. hermonthica genome, and it

remains  possible  that  deleterious  recessives  from  the  ShIC97  population  may  be

responsible  for  some part  of  the  observed distortion  towards  the  ShK97 parent.  An
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alternative explanation, not requiring the invocation of  ShIC97 deleterious recessives,

implicates interactions between  ShK97 alleles: epistasis for general fitness, operating

pre-attachment, could have meant that BCF1 individuals were more likely to survive if

they retained a larger fraction of the ShK97 genome, regardless of the host environment.

However,  mitigating  against  this  hypothesis,  tests  of  digenic  interactions  between a

small number of loci with excesses of ShK97 alleles found most evidence for significant

interactions restricted to Malisor, although higher-order interactions were not evaluated.

4.4.3 The linkage map

The  comparison  of  the  17  linkage  groups  constructed  here  with  the  estimated  19

chromosomes of  S. hermonthica is suggestive,  but, given that several of the linkage

groups formed only consisted of small numbers of markers, it seems likely that these

may,  in fact,  be due to spurious linkage,  possibly because of remaining segregation

distortion in reponse to the different host environments. As such, any inferences drawn

from the linkage map should probably be tempered with considerable caution.

Due to apparent large-scale pseudo-linkage, possibly created by segregation distortion

(Schwarz-Sommer  et  al. 2003), a  linkage  map  including  all  markers  could  not  be

resolved,  with the end result  that  I  cannot  comment on the  distribution  of  absolute

segregation  distortion  across  linkage  groups.  Plotting  loci  that  showed  relative

differences in segregation onto the linkage map was a compromise between plotting no

information relating to host environments, and plotting absolute segregation distortion

for each growing condition, for which many of the most distorted markers would be

absent due to their not having been mapped. It was considered that relative segregation

differences  would  provide  a  less  biased  picture  of  the  distribution  of  host-specific

differences in segregation effects, because it is not necessarily associated with strong
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absolute segregation distortion in any one host environment. The final picture portrayed

by this information was of an absence of strong clustering between the mapped markers

that segregated differently for the agar/plant comparison or between the plant/plant host

comparison, suggesting again that the genetic architecture of virulence is likely to be

complex, and that loci involved generally in parasitism are not necessarily the same as

those that respond differently to different hosts.

4.4.4 Conclusions

Segregation distortion is not an unusual phenomenon in inter-population crosses, but

very few studies have examined whether, for a particular cross, distortion varies with

the environment (but see Ellstrand & Devlin 1989), and, to my knowledge, none have

looked at host genotype effects. Launey & Hedgecock  (2001), Rogers & Bernatchez

(2006), Niehuis  et al. (2008) and Pritchard  et al. (2011) have all identified life-stage

specific distortion by comparing genetic maps generated from different life-stages of the

oyster Crassostrea gigas, the lake whitefish Coregonus clupeaformis, the wasp Nasonia

and the copepod Tigriopus californicus respectively. The closest type of investigation to

the segregation distortion approach has involved replicated analyses of genetic variation

for  hybridisation  compatibility  within  species:  low  intraspecific  variation  for

compatibility was found in an analysis of two Helianthus species (Buerkle & Rieseberg

2001), whereas some loci involved in hybridisation success for two  Mimulus species

were found to be polymorphic across populations (Sweigart et al. 2007). If the genetic

architecture of a trait, such as virulence, can be shown to depend on host genotype or

the environment, and distortion is linked to epistasis and Bateson-Dobzhansky-Muller

incompatibilities  between  hybridizing  gene  pools  (whether  intraspecific  or

interspecific),  then examining the effects  of  host  or  the environment  on segregation
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distortion would appear to be an important part  of understanding the variability that

exists in inter-population compatibility within species  (Lexer & Widmer 2008; Cutter

2012), potentially also providing insights into the early stages of speciation (Pritchard et

al. 2011). The importance of this variability is of clear importance for parasites, where

variation in  host  adaptation can determine the outcome of  a  parasite  challenge,  and

potentially drive speciation (Huyse et al. 2005; Thorogood et al. 2008, 2009).

A final point should be made regarding the replicability of the results presented in this

chapter: the  putative heterosis, epistasis and levels of segregation distortion observed

here are all the result of one set of crosses between particular individuals. High levels of

variation between individuals within populations has been found for  S. hermonthica

(Welsh & Mohamed 2011; Huang et al. 2012), and therefore it should be emphasised

that a different set of crosses from the populations used here may have yielded different

results.  Johansen-Morris  &  Latta  (2006) found  considerable  variation  in  hybrid

breakdown between F6 recombinant inbred lines of the wild oat  Avena barbata,  and

studies of this type would be useful in putting the results found here for S. hermonthica

into  a  broader  context.  Moreover,  studies  of  crosses  between  different  populations

separated  by  different  spatial,  temporal  or  genetic  distances  would  also  assist  in

uncovering  how  pervasive  heterosis,  epistasis  and  segregation  distortion  are  in  S.

hermonthica, and so provide further insight into the genetic basis of G × G interactions

between Striga and its hosts.
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Chapter 5: Investigating the links between segregation distortion and locus-specific

selection in S. hermonthica using an intra-population outlier analysis

5.1 Introduction

In  Chapter  4  I  posited  that  epistasis  may  partly  explain  the  heterosis  and  hybrid

breakdown  of  Striga hermonthica virulence  observed  in  a  backcross  F1 (BCF1)

population on three different sorghum host genotypes. Segregation distortion (SD) at

individual loci was also shown to be an important feature of these interactions: BCF1

Striga growing on the sorghum cultivar Malisor exhibited significantly more SD than

those growing on the sorghum cultivar E36.  Additionally,  non-recurrent  Kibos 1997

Striga alleles  appeared  to  constitute  the  majority  of  the  over-represented  alleles  at

distorted  loci  in  the  BCF1 population  for  all  hosts,  potentially  indicating  a  general

favouring of Kibos 1997 alleles (although the disfavouring of I.C. 1997 alleles remains

a possibility). Despite these indicators of different parasite genetic responses to different

host  genotypes  (viz. high  SD with  an  over-representation  of  Kibos  1997  alleles  on

Malisor; lower SD, but also with an over-representation of Kibos 1997 alleles on E36),

no difference in virulence was observed at the parasite attachment stage between the

parental S. hermonthica Kibos 1997 on the hosts E36 and Malisor (Chapter 4, Fig. 4.6).

In contrast, in Chapter 2, I demonstrated in lab-based rhizotron experiments that the

sorghum cultivar  Malisor had consistently strong post-attachment resistance to three

separate populations of S. hermonthica collected in West Africa. This evidence for the

existence  of  a  Striga-genotype-dependent  resistance  mechanism in  Malisor,  coupled

with the genetic evidence that Kibos 1997 alleles appeared to be over-represented more

often in the BCF1 population parasitising Malisor (due to the higher SD), suggests the
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hypothesis that, at some loci, certain Kibos 1997 alleles may be favoured on the Malisor

host.

The  S.  hermonthica population  Kibos  1997  has  been  shown  to  contain  within-

population genetic  variation that can respond to hosts  of widely differing resistance

levels  (Huang  et  al. 2012).  Therefore,  it  is  possible  that  the  similar  attachment

phenotypes shown by this Striga population on the hosts Malisor and E36 in Chapter 4

are actually masking genetic variation for virulence within the Kibos 1997 population.

That is,  similar population-level virulence phenotypes may be underlain by different

individual-level genetic mechanisms. The strong post-attachment resistance shown by

Malisor to some  Striga populations (Chapter 2), in contrast to the highly susceptible

host  E36  (Grenier  et  al. 2007), again  suggests  the  hypothesis  that  subsets  of  S.

hermonthica Kibos  1997  parasitising  Malisor  and  E36  may  differ  genetically  at

virulence loci,  overcoming different  types  of  resistance  mechanisms,  despite  similar

levels of overall population-level attachment success (cf. Huang et al. 2012).

The methodology of the outlier analysis, or genome scan, has generally been used to

investigate genetic differentiation in the context of speciation or adaptation, where these

processes can create  islands  of differentiation between  hybridising genomes in  their

early stages (Butlin 2010; Strasburg et al. 2012). However, as shown in Chapter 3, and

in Huang et al. (2012), the outlier analysis approach can also be applied to experimental

situations. If there is a large amount of genetic variation within a population, and a

strong selective pressure is applied, then an outlier analysis methodology can be used to

identify differentially selected loci between sub-populations (Huang et al. 2012). Under

certain  conditions,  large  populations,  large  samples,  and  low  FST,  for  example,  the

ability to detect outliers should be enhanced (Pérez-Figueroa et al. 2010; Strasburg et
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al. 2012). The experimental approach to detecting host-selected loci within populations

of S. hermonthica meets, or can be made to meet, all of these requirements.

In this chapter I use a rhizotron-based host selection experiment to investigate whether

the  two  sorghum  hosts  Malisor  and  E36,  both  appearing  alike  in  resistance  to  S.

hermonthica Kibos 1997, are actually selecting for different subsets of parasites. This

question is addressed using AFLP markers and an outlier analysis approach to identify

loci which are differentially selected between two host-selected Striga populations. The

set  of  AFLP  loci  scored  codominantly  in  Chapter  4  form  the  basis  of  the  loci

investigated  in  this  study.  However,  the  loci  scored  in  Chapter  4  segregated  in  a

backcross population with an individual from the Kibos 1997 Striga population as the

donor parent; this means that some of the loci scored in Chapter 4 will have originated

in the recurrent (I.C. 1997) parent. In addition, Kibos 1997 loci that did not segregate in

the mapping cross are  also likely to  occur  in  the present  analysis  of a much larger

population sample. In light of these two facts, whilst the set of loci used in Chapter 4

forms the basis  of the loci  scored in this  chapter,  a number of extra  loci were also

selected and scored.

If the current experiment identifies outlier loci, it may therefore be possible in some

cases to also assess the following points: whether these loci were distorted in the BCF1,

and under which growing conditions; if  loci segregated differently between growing

conditions; whether the loci were placed on the genetic map; and, if more than one locus

is found, whether these loci cluster together on the map. The mapping of outliers should

increase  their  value  by  allowing  researchers  to  see  whether  multiple  outliers  mark

multiple  selected  genomic  regions,  or,  in  fact,  cluster  in  one  area  of  the  genome

(Strasburg et al. 2012). Information about the SD, or relative segregation differences, at
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outlier loci may also provide more confidence that a locus is involved in host adaptation

(Lexer  &  Widmer  2008), especially  if  differences  have  been  noted  between  host

growing conditions.

5.2 Materials and methods

5.2.1 Plant materials

The  Sorghum  bicolor cultivar  Malisor  was  obtained  from  the  International  Crops

Research Institute for the Semi-Arid Tropics (ICRISAT), Mali, courtesy of Drs T. van

Mourik and H. Traore; S. bicolor cultivar E36 was sourced from stock held by Prof. J.D.

Scholes in the Department of Animal and Plant Sciences, University of Sheffield. The

S. hermonthica seed population ('Kibos 1997') was collected from plants parasitising

maize (H5 hybrid) in Kibos, Kisumu, Western Province, Kenya in 1997.

5.2.2 Growth and harvesting of S. hermonthica

The rhizotron experiments conducted here follow the experimental set-up described in

Chapter 2. Ten replicate rhizotrons for each sorghum cultivar were infected with 12.5

mg of preconditioned  Striga  seed at 12 days after sowing. Rhizotrons were placed in

growth  rooms  under  the  following conditions:  irradiance:  500 μmol  m-2 s-1
 at  plant

height;  12 h photoperiod;  relative humidity 60%. The sorghum plants were watered

automatically 4 times a day with approximately 100 mL of 40% Long Ashton solution,

containing 2  mM  ammonium  nitrate  (Hewitt  1966). Eighty  and  93  parasites  were

harvested for DNA extraction from E36 and Malisor respectively, from across the ten

replicate rhizotrons, at 30 days post-inoculation. Twenty samples (11%) were replicated

at this stage in order to assess the genotyping error rate inherent in the generation of

AFLPs (Bonin et al. 2004).
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5.2.3 DNA extractions

The DNA extraction method followed the method described in Chapter 4. The extracted

DNA was visualised on agarose gels  (1%) to check the quality and to  estimate the

quantity by comparison with Lamda DNA standards (New England Biolabs; Fig. 5.1). A

representative gel is shown in Figure 5.1. DNA samples were subsequently normalised

to 1 ng μL-1 by the addition of sterile ddH2O. 

Figure 5.1. A representative agarose gel (1%) image showing intact genomic DNA. The Lamda
DNA standards for quantification are labelled with their concentrations in ng µL-1.

5.2.4 AFLP generation and analysis

The generation of AFLPs also followed the method described in Chapter 4; the same ten

primer pairs were used. The final locus sets used in Chapter 4 were used here as the

starting point for choosing AFLP loci to score. In the final instance, 101 of 173 (58%) of

the loci used in Chapter 4 were scored for this analysis; an extra 213 loci were also

scored, bringing the final number of loci analysed to 314 (Table 5.1). AFLPScore v. 2.0

(Chapter 3, section 3.2.8) was used to check the error rate associated with scoring these

loci dominantly: the final error rate was 2.1%. 
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Table 5.1. Numbers of mapped loci and additional loci used for each primer pair in the AFLP
data set. (Ec = EcoRI; Ms = MseI; Ps = PstI.)

Primer pair

Final mapping
population loci

set

Final mapping
population loci

scored in outlier
analysis

Additional loci
scored in outlier

analysis Total

EcAGA.MsGAG 30 18 17 35

EcAGA.MsGAC 30 19 47 66

EcAGA.MsCGT 32 23 28 51

EcATC.MsGCT 17 15 15 30

EcATC.MsCGT 11 5 18 23

EcATC.MsCGC 8 4 14 18

PsTCC.MsGCG 9 2 22 24

PsTCC.MsGCT 9 0 19 19

PsTCC.MsGGC 11 7 12 19

PsTCC.MsGGG 16 8 21 29

Total 173 101 213 314

5.2.5 Genetic variation, differentiation, and outlier analyses of dominant AFLP data

AFLP-surv  v.  1.0  (Vekemans  et  al. 2002) was  used  to  calculate  the  percentage  of

polymorphic loci at the 5% level (PLP) and the average expected heterozygosity (Hexp),

both for the two host-selected sub-populations and for the total population (Table 5.2).

AFLP-surv was also used to calculate FST; the significance of the estimate was assessed

using a null distribution of FST values calculated from 999 permutations of individuals

between the two sub-populations (Vekemans et al. 2002).

The outlier analysis for the dominant AFLP data set was conducted using BayeScan v.

2.1 (Fischer et al. 2011; Foll 2012) (see Chapter 3, section 3.2.10 for an overview of the

workings of this method). BayeScan v. 2.1 allows the user to set the prior odds of the

model with a selection effect at a locus compared to the model without selection, where

previously in BayeScan v. 1.0 (Foll & Gaggiotti 2008) they were set at 1:1. Fischer et
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al. (2011) chose  a  prior  probability  of  1/10  for  the  model  with  selection,  thereby

reducing the chance that BayeScan will predict an effect of selection at any given loci.

Fischer et al. (2011) and Foll (2012) state that this choice, set as the default in BayeScan

v. 2.1, is intended to adjust for multiple testing, and that it reflects a reasonable prior

belief  that  only around 10% of  loci  will  be under  selection.  Following other  recent

genome scan analyses using BayeScan v. 2.1 (Girard & Angers 2011; Kautt et al. 2012;

Deagle  et  al. 2012), I  present  the  results  from analyses  using both  a  prior  odds of

selection of 10:1 and 1:1.

An additional feature of BayeScan v. 2.1 is that the program calculates q values for each

locus. A q value is the False Discovery Rate (FDR) analogue of the p value; that is, for

any individual locus it is the “minimum FDR that can be attained when calling that

feature significant” (Storey & Tibshirani 2003). The FDR used will depend on the 'cost'

of  making  false  discoveries  (Stephens  &  Balding  2009): here,  the  main  aim  is  to

establish the presence or absence of outliers, and the presence of some false positives is

tolerable: therefore FDRs of 10 and 25% were used.

5.2.6 Outlier analysis of codominant AFLP data

As of version 2.0, BayeScan can also use AFLP fluorescence data (Fischer et al. 2011)

to assess information on AFLP codominance represented by the amount of amplification

observed at  a locus.  Fifty-eight percent of the loci scored in the current study were

chosen due to their codominant information content identified in Chapter 4 using the

method of Gort & Van Eeuwijk (2010) and knowledge of segregation class gained from

the  experimental  pedigree.  Here,  the  use  of  a  larger  population  sample  of  S.

hermonthica Kibos 1997 means that homoplasy of AFLP loci may be higher than in the

pedigree analysed in Chapter 4 (the two generations of crossing in the pedigree should
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have resulted in a reduction in homoplasy at loci due to the fixation of some alleles;

and, the larger population samples used here will increase the probability of homoplasy

occurring).  However,  Foll  et al. (2010)  and Fischer  et al. (2011) demonstrated that

AFLP codominance could be inferred and exploited even when precise knowledge of

individual  genotypes  are  lacking.  Foll  et  al. (2010) used  a  Bayesian  approach  to

estimate  population-specific  FIS and  FST coefficients  using  the  distribution  of

amplification  intensities  at  a  locus  to  estimate  the  frequencies  of  heterozygous  and

homozygous  dominant  individuals.  Foll  et  al. (2010) showed,  by  investigating

simulated  data,  that  both  high  quality  and  low quality  fluorescence  information  on

amplification  intensity  at  loci  considerably  improves  the  estimation  of  F-statistics,

compared to  treating  AFLP loci  dominantly.  'Low quality'  information  indicates  the

situation where there is  poor  separation of  heterozygous and dominant  homozygous

fluorescence intensities at a locus  (Foll  et al. 2010). Indeed, the method of Foll  et al.

(2010) was shown to be almost as accurate, and to have as low variance, as the use of

single-nucleotide polymorphisms (SNPs) in estimating population-specific  FIS and  FST

coefficients.  This  improved  inference  of  F-statistics  from  AFLP markers  can  also

improve the identification of outlier loci (Fischer et al. 2011). The codominant scoring

method of Foll et al. (2010) is different to that of Gort & Van Eeuwijk (2010) (utilised

in Chapter 4 to produce individual genotypes for genetic mapping) because genotype

predictions  for  individuals  are  not  made,  instead,  an  assessment  of  the  relative

frequencies of genotypes are made at each locus. This information is then used in a

hierarchical Bayesian framework for the estimation of  F-statistics  (Foll  et al. 2010).

Fischer et al. (2011) emphasize the importance of overcoming AFLP technical issues for

ensuring  that  systematic  biases  in  AFLP amplification  intensity do  not  occur:  these
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include the need to equalise DNA starting concentrations, and the need to ensure that all

samples for a particular primer pair are processed together (and randomised with respect

to  DNA  extraction  and  PCR  plates),  thus  removing  variation  associated  with

instrumentation or laboratory reagents as far as possible. These precautions have been

standard procedure for AFLP generation throughout the work presented in this thesis.

AFLP  amplification  intensities  were  exported  from  GeneMapper  v.  3.7  (Applied

Biosystems)  for  direct  use  in  BayeScan  v.  2.1  (Foll  2012). Fischer  et  al. (2011)

recommend  the  removal  of  extreme  outlier  values  from the  amplification  intensity

matrix, defining extreme values as those more than three times the 95% quantile of the

amplification intensity distribution at a locus: this operation was performed using an R

script provided with BayeScan v. 2.1 for this purpose (Foll 2012). For codominant data,

BayeScan v. 2.1 designates homozygous recessive genotypes as those intensities that

fall below 10% of the maximum amplification intensity (post-extreme value processing)

at a locus; however, this parameter can be altered, and, after inspecting histograms of

the distribution of intensities at a selection of loci, 5% of the maximum amplification

intensity  was  determined  to  be  a  better  cut-off  point  for  assigning  homozygous-

recessive genotypes in this dataset. For loci that appear to be monomorphic in the sense

of all individuals having band-presence genotypes, a 'DIP' test for bimodality (Hartigan

& Hartigan 1985) was performed to assess whether the distribution of amplification

intensities at a locus is bimodal. This is intended to test whether such a locus might

actually be polymorphic in the codominant sense, i.e. having a mix of heterozygotes and

homozygous-dominant genotypes. This test for bimodality was performed using an R

script provided with BayeScan v. 2.1 (Foll 2012). Fischer et al. (2011) suggest that even

a  small  number  of  AFLP  markers  with  a  band-presence  component  that  can  be
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interpreted  codominantly is  sufficient  to  considerably  improve  the  estimation  of  F-

statistics and population allele frequencies. As with the dominant BayeScan analyses, I

present the results from codominant analyses using both a prior odds of selection of

10:1 and 1:1.

5.3 Results

5.3.1 Genetic diversity and differentiation estimated from dominant AFLP data

Ten AFLP primer pairs produced 314 scored loci, with fragment sizes between 65 and

550 base pairs, across 173 S. hermonthica  plants harvested from 2 sorghum cultivars.

Data on population genetic variation analysed in terms of the percentage of polymorphic

loci  (PLP)  and  average  expected  heterozygosities  (Hexp),  estimated  from  dominant

scoring of AFLPs, are presented in Table 5.2 for the two host-associated  Striga  sub-

populations and the overall Striga population sample.

Table 5.2.  Measures of  genetic  variation for sorghum host-associated  S.  hermonthica Kibos
1997,  estimated  from dominant  AFLP data.  PLP = percentage  of  polymorphic  loci;  Hexp =
average expected heterozygosity.

S. hermonthica host Number of samples PLP at 5% Hexp ± s.e.

E36 93 81.0 0.258 ± 0.009

Malisor 80 82.4 0.258 ± 0.009

Total population 173 81.7 0.259 ± 0.000

Genetic  differentiation  (FST)  between  the  two  host-associated  sub-populations  was

estimated at 0.003 (p = 0.01).

5.3.2 Outlier analyses using dominant AFLPs

The BayeScan v.  2.1  outlier  analysis  using  dominantly scored  AFLP loci  found no

outlier loci when the ratio of prior probabilities of non-selection to selection was set to

10:1 or 1:1 (Figures 5.2 and 5.3). However, one locus under the 1:1 priors scenario had
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a q value of 0.255, suggesting that this locus has a 1/4 chance of being a false positive

result.

5.3.3 Outlier analyses using codominant AFLPs

The BayeScan v. 2.1 outlier analysis using codominantly scored AFLP loci found no

outlier loci when the ratio of prior probabilities of non-selection to selection was set to

10:1 (Figure 5.4); however, when the ratio was set to 1:1, 6 outlier loci were detected

(Figure 5.5) with q values below 0.25. This suggests that 1–2 of these detected loci are

likely to be false positives.
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Figure 5.2. Locus-specific FST plotted against the logarithm of the q value for each dominantly
scored AFLP locus;  data  estimated  using a  10:1 odds ratio  of  priors.  No outlier  loci  were
detected using q values of either 0.10 or 0.25; the q = 0.25 cut-off point is shown on the right-
hand side of the graph.

Figure 5.3. Locus-specific FST plotted against the logarithm of the q value for each dominantly
scored AFLP locus; data estimated using a 1:1 odds ratio of priors. No outlier loci were detected
using either a q value of 0.10 or 0.25; however, one outlier (q = 0.255) was very close to q =
0.25; this cut-off point is shown on the right-hand side of the graph.
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Figure 5.4. Locus-specific FST plotted against the logarithm of the q value for each codominantly
scored AFLP locus;  data  estimated  using a  10:1  odds  ratio  of  priors.  No outlier  loci  were
detected using a q value of either 0.10 and 0.25; the q = 0.25 cut-off point is shown on the right-
hand side of the graph.

Figure 5.5. Locus-specific FST plotted against the logarithm of the q value for each codominantly
scored AFLP locus; data estimated using a 1:1 odds ratio of priors. No outlier loci were detected
using a  q value of 0.10; 6 outliers were detected with a  q value < 0.25; this cut-off point is
shown on the graph.
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5.3.4 Characteristics of detected outlier loci

Table  5.3  lists  the  7  outlier  loci  detected,  reporting  their  q values,  the  posterior

probabilities of selection, and the alpha selection coefficient as estimated by BayeScan

v. 2.1 (Foll,  2012).  Three of these loci were found to have also been scored in  the

experimental pedigree reported in Chapter 4. These three loci were investigated for their

segregation behaviour under the three experimental growth conditions used in Chapter

4; that is, when the BCF1 S. hermonthica were grown on agar without a host, on the

sorghum cultivar E36 and on the sorghum cultivar Malisor (Table 5.4). All three outlier

loci were found to have been distorted in the BCF1 under at least one growth condition:

locus  EcATC.MsCGC.178 was distorted within the populations growing on agar, E36

and Malisor; locus EcATC.MsGCT.203 was distorted only within the BCF1  population

growing on E36; and locus PsTCC.MsGGC.288 was distorted for all conditions (Table

5.4).  Generally,  few differences  were  found for  these  three  loci  between  reciprocal

populations  for  a  given growing condition,  although locus  EcATC.MsCGC.178 was

found to be distorted within both reciprocal populations but not overall. This was due to

the distortion being in different directions in the  separate  reciprocal populations. Two

outlier  loci  (EcATC.MsCGC.178  and  EcATC.MsGCT.203)  were  found  to  have

significantly  different  segregation  patterns  between  the  E36  and  Malisor  growing

conditions, whilst  no locus was found to segregate differently between the agar and

plant conditions (Table 5.4).
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Table 5.3. Outlier AFLP loci detected in genome scans using BayeScan v. 2.1 with 1:1 prior odds ratio. (Ec = EcoRI; Ms = MseI; Ps = PstI.)

AFLP outlier loci P(selection) q value α Scored in pedigree? Mapped? (linkage group)

Dominant scan

EcATC.MsGCT.109 0.745 0.255 0.793 N -

Codominant scan

EcATC.MsCGC.178 0.831 0.169 1.079 Y Y (LG7)

EcATC.MsGCT.203 0.818 0.175 1.038 Y N

EcATC.MsCGT.141 0.748 0.201 0.890 N -

EcATC.MsCGT.226 0.734 0.217 0.829 N -

PsTCC.MsGGC.288 0.723 0.229 0.795 Y N

EcAGA.MsCGT.347 0.700 0.241 0.727 N -

Table 5.4. Outlier AFLP loci also scored in the BCF1 population, as assessed for segregation distortion (SD) and relative differences in segregation pattern using a
Bonferroni-corrected cut-off of  p = 0.00028 (locus-by-locus α = 0.05). The data are presented for the overall BCF1  population, with the situation for SD in the
reciprocal populations given in parentheses as (BCF1HyMo/ BCF1HyFa). (Ec = EcoRI; Ms = MseI; Ps = PstI.)

AFLP outlier loci

Locus showed segregation distortion in BCF1? Relative difference in BCF1 segregation pattern at locus?

Across all
conditions

Agar
Plant

(E36 +
Malisor)

E36 Malisor Agar v. Plant E36 v. Malisor

Codominant scan

EcATC.MsCGC.178 N (Y/Y) Y (Y/Y) N (Y/Y) Y (N/Y) Y (Y/Y) N Y

EcATC.MsGCT.203 N (N/N) N (N/N) N (N/N) Y (Y/N) N (N/N) N Y

PsTCC.MsGGC.288 Y (Y/Y) Y (Y/Y) Y (Y/Y) Y (Y/Y) Y (Y/Y) N N
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5.4 Discussion

5.4.1 Genetic variation and differentiation in the S. hermonthica Kibos 1997 population

In this chapter I have used an experimental outlier analysis to investigate the potential

host  selection  of  AFLP  markers  within  one  population  of  S.  hermonthica.  This

population was previously investigated with respect to both segregation and virulence

in relation to the two sorghum hosts used in the current experiment (Chapter 4). The

genetic diversity (Hexp = 0.259; PLP at 5% = 81.7%) of the S. hermonthica Kibos 1997

population sample genotyped here was very similar to the results obtained by Huang et

al. (2012)  for samples of the same population parasitising three rice cultivars (Hexp =

0.234; PLP at 5% = 72.8%). FST was found to be lower in the current study (0.003) than

for the experiment reported by Huang et al. (2012) (FST = 0.013), but was very close to

that  reported  in  Chapter  3  of  this  thesis  for  a  West  African  S.  hermonthica field

population sampled across 9 sorghum cultivars (FST = 0.004). 

Restricting the comparison to the two rhizotron-based lab experiments using the same

Striga population,  the difference in  FST may be due to  the higher  selective pressure

exerted on the Striga population by the rice cultivars in Huang et al. (2012) compared to

the sorghum cultivars used here. This suggests that the resistance mechanisms which act

in Malisor against the populations of West African Striga (Chapter 2) still allow for the

parasitism of a larger variety of individual genotypes from the East African Kibos 1997

population  compared  to  the  resistant  rice  cultivar  Nipponbare;  that  is,  the  higher

population  FST in Huang  et al. (2012) may  indicate that host selection is affecting a

larger proportion of the genome compared to the sorghum hosts in the current chapter.

The similarity in  FST between the West African field population sampled in Chapter 3

and the Kibos 1997 population sampled in the current chapter is surprising given that
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some of the cultivars in the West African experiments, including Malisor, showed strong

resistance to the S. hermonthica populations used, both in the lab and the field (Chapter

2).  The  low  FST in  the  field  experiment  may  be  due  to  environmental  variation

swamping any host effect, or due to the technical issues associated with scoring a larger

number of AFLP loci discussed in Chapter 3.

5.4.2 The host selection of outlier loci

Seven loci with reasonable evidence of selection were detected from outlier analyses of

AFLPs between S. hermonthica Kibos 1997 samples growing on the sorghum cultivars

E36 and Malisor. This indicates that, despite no overall difference in Striga attachment

between the cultivars (Chapter 4), some differential genetic response was still occurring.

The differential SD results obtained in Chapter 4 for the BCF1 population are therefore

likely to  have  been at  least  partially driven by differential  interactions  between the

sorghum cultivars and Kibos 1997 alleles, even if there was also active selection against

I.C.  1997  alleles  by  Malisor.  Further  evidence  for  the  differential  selection  of  the

identified Kibos 1997 outlier loci is provided by the fact that, of the three outlier loci

that were also scored in the BCF1 population,  two were found to have significantly

different segregation patterns between the E36- and Malisor-grown BCF1 populations.

Despite the generally high levels of SD on the plant hosts (28–50%, depending on the

reciprocal  family),  and the  significant  difference  in  SD observed  between  E36  and

Malisor  (Chapter  4),  the  identification  here  of  a  maximum of  7  positively selected

outliers (2.2% of loci scored) appears to indicate that strong directional selection is rare,

but that weaker selective forces may be common across the genome (although, again,

the caveat  that  some of the SD difference between the hosts  is  likely to  be due to

host/I.C. 1997 allelic interactions should be stated). Genome scans in plants have, on
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average, identified 8.9% of loci (range = 0.4–35.5%) as outliers in any given set of

markers  (Strasburg et al. 2012), whereas investigations of intraspecific SD have often

found much higher proportions of affected loci, similar to the levels reported in this

thesis  (e.g.  Jenczewski  et  al. 1997;  Bratteler  et  al. 2006;  McDaniel  et  al. 2007).

Strasburg  et  al. (2012) suggest  that  “loci  identified  in  genome  scans  for  selection

probably reflect an unrepresentative subset of traits whose genetic architecture lends

itself more easily to such detection”. These authors point out that differences between

hard sweeps (selection on newly arisen mutations) and soft sweeps (selection on pre-

existing  genetic  variation)  may lead to  different  probabilities  of  detection in  outlier

analyses  (also see Prezeworski  et al. 2005; Barrett & Schluter 2008). Pritchard  et al.

(2010) suggest that traits based on polygenic standing variation could also allow for

rapid adaptation whilst not producing the classical signatures of selection characteristic

of hard sweeps. The epistasis found in the BCF1 population (Chapter 4) suggests that

this may be the case in the current Striga-sorghum system. Recent work on plant host-

associations  in  the  apple  maggot  fly  Rhagoletis  pomonella has  also  indicated  that

selection  may  be  widespread  across  the  genome,  even  when  few  FST outliers  are

detected by standard methods  (Michel  et al. 2010). Selection acting via soft  sweeps

seems likely to underlie the host selection found in the current chapter and in Chapter 4;

these experiments, by their nature as experimental tests of host-selection conducted on

an undifferentiated population over only one generation, will clearly favour adaptive

responses  based  on  pre-existing  genetic  variation  (Barrett  &  Schluter  2008). This

conclusion  allows  for  the  integration  of  the  considerable  host-driven  SD,  and

differential segregation, observed in Chapter 4 with the small number of outlier loci

observed in the current chapter; it also supports the contention that selection may be
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much more widespread across genomes than the 8.9% average found in plant outlier

analyses suggests (Strasburg et al. 2012). The idea of outlier versus non-oulier loci may,

then, actually misrepresent the genomic reality of selection (Butlin 2010).

5.4.3 The prior probability of selection and the detection of outlier loci

An important feature of the analysis reported here is that the detection of outliers was

dependent  both  on  the  way in  which  AFLP markers  were  scored  and on the  prior

probability assigned to the model including an effect of selection at a locus: the most

outliers were detected for codominantly-scored AFLP using a 1:1 odds ratio for the prior

probabilities  of selection to non-selection at  a  locus.  Codominant AFLP scoring has

previously  been  found  to  provide  more  information  for  the  estimation  of  allele

frequencies, and so to improve the detection of outliers (Fischer et al. 2011), but there

has been little  clear  discussion on the choice of a  prior  probability for an effect  of

selection within the outlier analysis literature. 

Beaumont & Balding (2004) were the first authors to put forward a Bayesian method

for outlier analyses, with the probability of selection at a locus being estimated by the

posterior distribution of the locus-specific effect alpha. These authors also noted that an

extension of their method, using Bayesian model selection, would allow for the use of

different prior probabilities for the opposing models (selection v. non-selection), thus

allowing  researchers  to  address  the  issue  of  multiple  testing,  to  include  prior

information about loci, and to directly make probability statements about selection at a

locus (Beaumont & Balding 2004). However, the outlier detection method described in

Beaumont  &  Balding  (2004), and  incorporated  into  the  popular  Bayesian  outlier

detection  software  'BayesFst',  did  not  include  this  extension.  BayesFst  attempts  to

address the issue of multiple testing by the setting of a Gaussian prior with a mean of
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zero and a standard deviation of 1 for the locus-specific effect alpha. For an effect of

selection to be accepted for a locus, the posterior density of alpha has to exclude zero at

some specified two-tailed level P; this can be thought of as a Bayesian p value, P(data |

null model), rather than a Bayesian posterior probability, P(selection | data)  (Beaumont

& Balding 2004; Riebler  et al. 2008). Although BayesFst  does not allow for a formal

statement of the posterior probability of selection at a locus, it appears to yield results

that are marginally better  (in terms of the type 1 and 2 error rates) than the earlier

frequentist method 'Fdist' (Beaumont & Balding 2004).

The alternative Bayesian model selection method briefly put forward in the discussion

of Beaumont & Balding (2004) was first implemented by Riebler et al. (2008). Riebler

et al. (2008) used a Bernoulli-distributed auxiliary variable to estimate the posterior

probability of selection at a locus; a beta prior was used for this variable, which allowed

the authors to formally address the problem of multiple testing, setting the parameters of

the beta distribution such that only a small fraction of loci (10%) were expected to be

under selection a priori. Using simulated data, the model selection method of Riebler et

al. (2008) was found to correctly identify all loci under directional selection, with a

lower false positive rate (higher specificity) for any given power (true positive rate),

compared to the Bayesian method without model selection. However, when analysing a

Drosophila  melanogaster allozyme  dataset  previously  investigated  by  Beaumont  &

Balding  (2004), the new method appeared to be much more conservative, identifying

only 1 of the 10 loci selected by the method of Beaumont & Balding (2004) as being

under  selection  (Riebler  et  al. 2008); of  course,  for  these  empirical  data,  the  true

situation is not known.

Independently,  a similar Bayesian model selection method was developed by Foll &
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Gaggiotti  (2008), who  incorporated  their  method  into  the  now  popular  software

'BayeScan'. Under the Foll & Gaggiotti  (2008) method, the posterior probabilities of

both models, with and without selection, are estimated for a locus. The final estimate of

selection  at  a  locus,  P(alpha  ≠  0), is  estimated  from the  number  of  times  that  the

selective effect is incorporated into the model at a locus. This approach also allows for

the setting of an  odds ratio for the prior probability of selection to non-selection, which

was set at 1:1 for BayeScan v. 1.0 (Foll & Gaggiotti 2008); in common with Beaumont

& Balding (2004), a normal prior with a mean of zero and a standard deviation of 1 was

used by Foll & Gaggiotti (2008) for the locus-specific effect alpha.

The recent simulation-based study of Pérez-Figueroa et al. (2010) compared BayeScan

v.  1.0  with  two  other  outlier  analysis  methods  (Dfdist  and  DetselD).  Dfdist  is  the

dominant  marker  version  of  Fdist  (Beaumont  &  Nichols  1996); DetselD  is  an

unpublished  version  of  Detsel  (Vitalis  et  al. 2003), also  for  dominant  data  (Pérez-

Figueroa  et  al. 2010). Pérez-Figueroa  et  al. (2010) found  that  BayeScan  v.  1.0

performed in a similar way to the FDR-corrected Dfdist; for example, for a neutral FST

of 0.025, and mean selection coefficients of 0.5 and 0.05, BayeScan and Dfdist had

similar false positive and false negative rates, whilst DetselD had a higher rate of false

negatives. The results of Pérez-Figueroa et al. (2010) suggest that, in common with the

BayesFst/Fdist  comparison  performed  by  Beaumont  &  Balding  (2004), the  prior

distribution for alpha used in BayeScan corrected for multiple testing at a similar level

to the FDR-corrected frequentist method Dfdist. 

Fischer  et al. (2011) introduced a modified version of BayeScan, version 2.0, which

included the ability for the user to change the prior odds ratio of selection versus non-

selection. These authors set the default ratio to 10:1, comparable to the strategy used by
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Riebler et al. (2008); this approach should minimise the number of false positives, for a

given power  (Riebler  et al. 2008). The decision of Fischer  et al. (2011) to set their

default odds ratio to 10:1, with little discussion of the choice, is perhaps unfortunate, as

recent studies now appear to be in two minds as to which prior odds ratio is the most

appropriate. For example, Girard & Anger (2011), in their analysis of the mechanisms

driving  patterns  of  diversity  of  functional  genes  in  the  longnose  dace  Rhinichthys

cataractae, presented separate analyses of selection using BayeScan v. 2.01 with prior

odds of both 1 and 10 for the model with selection, stating that, “[i]ncreasing the prior

odds value will tend to eliminate [false positives] but does so at the cost of reducing the

power of the method”, even though Riebler  et al. (2008) showed in their simulations

that reducing the prior odds of selection actually increased the specificity (i.e. reduced

the  proportion  of  false  positives)  without  reducing  the  power  to  detect  directional

selection. Deagle et al. (2012), in their analysis of parallel evolution in the three-spined

stickleback Gasterosteus aculeatus, also used separate BayeScan v. 2.01 tests with prior

odds of both 1 and 10, using the more stringent prior odds for the global analysis, whilst

using  the  1:1  prior  odds test  for  the multiple  independent  local  comparisons.  In  an

investigation  into  an  adaptive  radiation  of  the  Midas  cichlid  fish  (Amphilophus

citrinellus) species complex in Nicaragua, Kautt  et al. (2012) followed the strategy of

Deagle et al. (2012), although adding the qualification that the outliers detected in the

local analyses would not be followed up unless they were also detected in the more

conservative  global  analysis.  This  brief  survey  of  recent  Bayesian  outlier  analysis

strategies confirms the conclusion of Butlin  (2010) and Strasburg  et  al. (2012) that

different approaches make generalisations about the extent of genomic selection across

taxa hazardous.
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In their overview of Bayesian statisical methods in genetic association studies, Stephens

& Balding  (2009) recommend the use of the prior distribution to correct for multiple

testing, pointing out that if the prior probability of an effect at a locus is assumed to be

constant across loci, then this probability can also be interpreted as an estimate of the

overall proportion of loci that are associated with a phenotype. This is the approach

taken by Riebler et al. (2008) and Fischer et al. (2011) in setting the prior probability of

selection  at  10:1;  that  is,  around  10% of  loci  are  expected,  a  priori, to  be  under

selection.  However,  given that the simulation studies discussed above  (Beaumont &

Balding 2004; Pérez-Figueroa et al. 2010) have found that Bayesian methods without a

prior odds adjustment seemingly already correct for multiple testing, due to the prior

distribution  used  for  the  selection  effect  alpha  (at  least  in  comparison  with  FDR-

corrected frequentist methods) it appears that further investigation of the necessity for

the adjustment of the prior odds ratio in Bayesian outlier analysis methods is required.

Bayesian  statisticians  often  incorporate  'loss  functions'  into  their  analyses  (Scott  &

Berger 2006), where the cost of following up a false positive can be explicitly included

in  decision  making.  Given  the  declining  cost  of  population  genomic  analyses,  the

relative absence of ethical issues in ecological and evolutionary studies, the relative or

absolute  lack of  prior  information concerning loci  in  non-model  organisms,  and the

ability to choose outliers based on an FDR cut-off  (Foll 2012), the use of a 1:1 prior

odds ratio currently still seems to be the best approach for locating candidate outlier loci

in non-model species. False positives seem unlikely to have very serious consequences

in genic tests for selection, especially if, in general, there is more likely to be a spectrum

of selective effects rather than a cut-off, due to the action of soft sweeps (Pritchard et al.

2010), and  where  the  existence  of  multiple  algorithmic  approaches  make  between-

191



species comparisons of the proportion of sites affected by selection potentially highly

misleading and of dubious utility.

5.4.4 Conclusions

This chapter has provided further evidence for the presence of genetic variation for host

adaptation within populations of  S. hermonthica. Surprisingly, even when phenotypic

evidence does not indicate the presence of differential  interactions at  the population

level,  subtle  host  adaptation  may  still  be  occuring.  The  use  of  a  Striga population

previously used to produce an inter-population pedigree (Chapter 4) has also provided a

link between evidence for widespread effects of host identity on segregation patterns

and the strong directional selection detected by an intra-population outlier analysis. In

particular, the contrast between the apparent extent of these effects was revealed. The

effects  of  the  importance  of  the  prior  odds  ratio  for  detecting  selection  was  also

demonstrated.
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6. General Discussion

6.1 Conclusions

Striga  hermonthica has  been  considered  the  largest  biological  constraint  to  food

production in sub-Saharan Africa (Parker & Riches 1993), and its impact as a weed of

subsistence agriculture in that region is thought to be increasing (Ejeta 2007; Parker

2009). Currently, relatively little resistant germplasm is available in host cereal crops,

therefore it is important that what resistance is available is deployed with an awareness

of how genetic variation within and between populations of S. hermonthica may affect

its durability (Scholes & Press 2008). The main research paradigm in this area has been

that of host specificity, where populations of S. hermonthica have been investigated for

particular  virulence reactions against  sets  of host  species or cultivars.  I  have earlier

emphasised (Chapter 1, section 1.4) the conceptual problems associated with using this

framework for an obligate outbreeding pathogen in an agroecosystem: there is doubtless

value in characterising geographic zones containing races of host-specific Striga for the

strongly  inbreeding  species  S.  asiatica (Botanga  et  al. 2002)  and  S.  gesnerioides

(Botanga & Timko 2006), but for the rapidly adaptable and outcrossing S. hermonthica,

we may doubt the utility of this approach. This doubt is amplified by the fact that, in

order to test for host adaptation, many studies have simply assumed that observed field

hosts  of  sampled  Striga represent  those  hosts  to  which  the  parasites  are  uniquely

adapted,  and  because  ad  hoc sampling  regimes  can  easily  confound  geographic

variability with host identity (e.g. Olivier  et al. 1998; Yoshida  et al. 2010; Welsh &

Mohamed  2011;  Estep  et  al. 2011).  Additionally,  neutral  genetic  variation  is,  by

definition,  unable  to  provide  an insight  into  adaptation  at  functional  genetic  loci  in
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situations where these are restricted in genomic extent, and regular exchange of non-

adaptive genetic material occurs between incipient host-adapted Striga sub-populations

(i.e. host-related lineage sorting is only present at adaptive loci; Bierne et al. 2013).

In this thesis, I have expanded the toolbox of approaches used to investigate the patterns

and process of host adaptation in S. hermonthica. I achieved this via several routes: 

(1)  Via  lab-based  investigations  of  differential  virulence  between  populations  of  S.

hermonthica and genotypes of its sorghum host; I developed this approach to consider

the relative extent of adaptation at different life history stages, and the extent to which

such population-level G  × G interactions examined in the lab can be used to predict

actual outcomes in the field over several years.

(2)  Via  the  investigation  of  the  within-population  component  of  host  adaptation;

showing, for the first time, that locus-specific signatures of selection associated with

host genotype can be identified in the field. 

(3) Via the creation of an experimental pedigree, allowing a preliminary investigation of

heterosis, epistasis, segregation distortion and maternal identity as genetic mechanisms

associated with host adaptation in S. hermonthica.

And, (4),  via the use of an outlier  analysis  to investigate the correspondence of the

results  from  this  methodology  with  data  on  locus-specific  segregation  distortion

obtained from the experimental pedigree. This last experiment also indicated that locus-

specific selection can occur at the individual-level, even when studies of differential

virulence do not indicate population-level G × G interactions.

Overall, these experiments suggest a complex basis to virulence in S. hermonthica, that

seems unlikely to be resolved into a simple, qualitative, genetic mechanism, such as has

been found to be the case between certain races of S. gesnerioides and cultivars of its
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cowpea host (Timko  et al.  2012). However, the results presented in this thesis do not

prove  the  absence  of  resistance  gene-based,  qualitative  interactions  between  S.

hermonthica  and its hosts. Indeed, the distinction between qualitative and quantitative

virulence may be blurred in some pathosystems (Burdon et al. 1996). Host populations

can contain multiple resistance genes: Burdon and colleagues (1996, 2006) report that

there  is  evidence  for  up  to  10  resistance  genes,  and  possibly  more,  in  some

pathosystems; at the corresponding, outbred, parasite population level this may appear

as a form of quantitative virulence, as with the parasite attachment measure often used

for  S. hermonthica. This seems especially likely to be the case for genetically diverse

pathogen populations,  and could lead to pathosystems of 'considerable genotypic and

phenotypic  complexity'  (Burdon  et  al. 2006).  Ecological  predictions  concerning the

occurrence  of  qualitative  resistance  have  been put  forward  suggesting  that  endemic

pathogens (that is, continuously present ones, like S. hermonthica) may be less likely to

exhibit gene-for-gene interactions with their hosts than pathogens causing disease in a

boom-and-bust, epidemic fashion (Burdon et al. 1996). Burdon et al. (1996) suggested

that, in wild pathosystems, qualitative resistance is most likely to occur where the host

only encounters particular pathogen genotypes periodically, with qualitative resistance

acting to reduce the chance of a pathogen establishing in a particular host population.

The contention of Burdon et al. (1996) is that, where pathogens undergo boom-and-bust

dynamics in local host populations, different pathogen genotypes may be present in the

landscape, and, therefore, a population with qualitative resistance to particular pathogen

genotypes may escape a proportion of infection events, with a corresponding increase in

the fitness of the host population proportional to the frequency of the relevant resistance

genes in the population, and to the frequency of particular pathogen genotypes in the

195



landscape.  Notably,  some of  the conditions put  forward by Burdon  et  al. (1996) as

promoting  qualitative  resistance  overlap  with  those  predicted  to  decrease  pathogen

effective population size and increase genetic structure (Chapter 1, section 1.6; Huyse et

al. 2005;  Barrett  et  al. 2008);  for  example,  the  presence  of  epidemics,  and regular

pathogen  local  extinction  events.  Whilst  S.  hermonthica exhibits  many  life  history

features  thought  to  be  associated  with  low  genetic  structure  and  large  effective

population  size  (e.g.  multiple  hosts,  sexual  reproduction,  human-aided long-distance

dispersal,  stable  populations  due  to  the  ability  to  survive  as  seeds  until  hosts  are

available; Huyse  et al. 2005; Barrett  et al. 2008), the impacts of the environment on

Striga and its hosts may cause occasional reductions in effective population size; one

study has shown that adverse environmental conditions can considerably reduce the S.

hermonthica seed bank  (Gbèhounou  et al. 2003); therefore, in some areas, conditions

may make the occurrence of qualitative resistance interactions more likely. Furthermore,

qualitative, gene-for-gene systems have been discovered in other plant pathogens with

obligately outbreeding life histories  (e.g.  the biotrophic wheat smut fungus  Ustilago

hordei; Martínez-Espinoza et al. 2002).

Overall, it seems that considerably more work on obligately outbreeding parasites will

be required before strong generalisations can be made about the nature of their expected

interactions with hosts in different pathosystems. The theory concerning the evolution

of qualitative resistance put forward by Burdon  et al. (1996), and the observations of

McDonald  &  Linde  (2002),  Huyse  et  al. (2005),  and  Barrett  et  al. (2008)  on  the

relationships between parasite life history and population genetics, together suggest that

gene-for-gene systems may be relatively uncommon in outbred parasites, or, of a level

of complexity such that the appearance of a quantitative interaction is generated at the
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population-level through the presence of multiple genotypes. In theory, if the within-

population  diversity  of  S.  hermonthica virulence  were  founded  upon  different

constituent sub-populations exhibiting different qualitative, gene-for-gene interactions

with different hosts, then we might have expected to find very strong locus-specific

outliers in our analyses. If an outlier  were linked to a virulence gene,  targeted by a

resistance gene in  one host-selected sub-population but not another,  then we should

expect that parasite locus to be completely differentiated between sub-populations. This

is the standard, strong, trade-off implied by qualitative, gene-for-gene resistance, where

the presence of a virulence gene in a particular pathogen genotype is detected by a

corresponding  host  resistance  gene  (thereby  becoming  an  avirulence  gene  instead;

Agrios 2005). In a monocultural agroecosystem, host resistance genes may be rapidly

overcome by parasites,  rendering them useless  (Thompson & Burdon 1992).  In this

case, we might expect that alternative, unnecessary, virulence mechanisms would be lost

from the population if they imposed some cost on the parasite. For S. hermonthica, the

presence of a seed bank, and regular changes of host crop, especially for populations

from experimental stations, might mean that multiple virulence mechanisms could be

retained  in  the  longer-term,  especially  if  they  were  not  detected  by  the  resistance

mechanisms  of  the  hosts  encountered.  However,  evidence  for  a  qualitative  basis  to

differential virulence in S. hermonthica was not found in the current work. Very highly

differentiated loci were not identified (Chapters 3 and 5), and neither were they reported

by Huang  et al. (2012); it should however be recalled that the detection of outliers is

dependent on how thoroughly the molecular markers used cover the genome: qualitative

virulence loci could easily have been missed if they were not in linkage disequilibrium

with the molecular markers scored.
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The presence of population-level differential virulence between S. hermonthica and its

hosts at a particular life-stage, which can be influenced by the environment (Chapter 2),

the discovery of host-selected loci in the field that  do not map straightforwardly to

commonly used metrics of Striga population-level virulence (Chapter 3), and the strong

evidence for epistasis and host-specific segregation distortion (Chapter 4), which can

partly be linked to locus-specific selection (Chapter 5), all suggest that the genetic basis

of the S. hermonthica-sorghum pathosystem involves interactions among many loci in

the  parasite  and  host  genomes.  As  previously  observed  (Chapter  5,  section  5.4),

approaches based on  FST outlier  analyses may only detect a subset of loci that have

historically  undergone,  or  are  currently  undergoing  selection  (Michel  et  al. 2010;

Strasburg et al. 2012), and additional approaches, such as those presented in this thesis,

that  investigate  the  potential  for  phenomena  such  as  standing  genetic  variation

(Pritchard et al. 2010) and epistasis (Wolf et al. 2000) to contribute to adaptation, may

broaden our understanding of this most complex process.

6.2 Future Directions for Research

It is unfortunate that true genotype-by-genotype interaction studies cannot be conducted

easily for S. hermonthica; even though genotypes could be asexually propagated using

similar  techniques  to  those  used  in  Chapter  4  of  this  thesis,  initiating  functional

parasitism  for  clones  cultivated  in  vitro would  be  extremely  challenging,  and  the

impacts of single parasites on host fitness may be very low (Gurney et al. 1999), and of

little relevance for agroecosystems. Population genetic methods are therefore likely to

remain the best way forward for the characterisation and discovery of genetic variation

for  virulence  in  S.  hermonthica.  The  use  of  modern  spatial  genetic  methods  to

characterise significant barriers to gene flow between demes (e.g. Welsh & Mohamed
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2011), and the use of multiple, hierarchical levels of  F statistics to apportion genetic

variation within and between populations at different spatial scales (Goudet 2005), will

increase our understanding of the population structures exhibited by  S. hermonthica.

Human movement of genotypes may confuse this picture, but it is also possible that the

movement  of  migrants  between  populations  could  be  revealed  using  genetic

'assignment' methods (Manel et al. 2005). However, for the identification of functional

variation, and an understanding of the genetic basis of differential virulence, sampling

regimes using replicated field trials  and sequenced markers,  rather  than PCR-based,

anonymous ones, are likely to be the most effective approach for identifying virulence

loci, particularly if detailed information on the molecular basis of resistance in the host

cultivars  used  is  available.  Despite  calls  for  a  better  understanding  of  the  genetic

structure of  S. hermonthica  (Mohamed et al. 2007), practically, for the deployment of

resistant cultivars, it seems that the most important requirement is for the widespread

appreciation by plant breeders of the fact that different S. hermonthica populations may

differ  in  virulence,  and  that  this  requires  a  precautionary  approach  to  cultivar

deployment, as well as comprehensive monitoring for host resistance breakdown. As

previously stated, knowledge of broad population genetic structure of  S. hermonthica

may not be a guarantee of uniform virulence characteristics within populations (e.g., see

Burdon & Thrall 2000 for an exemplary review of how spatial scale influences host-

pathogen  interactions  in  the  Linum  marginale-Melampsora  lini pathosystem).

Functional  sites  for  virulence,  and  the  interaction  of  virulence  traits  with  the

environment, may vary across the landscape where neutral markers do not (Barrett et al.

2008; Bierne et al. 2013).

In  the  absence  of  detailed  historical  information  about  different  populations  of  S.
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hermonthica and the hosts that have been grown in different places at different times,

and of knowledge of the impacts of the environment upon these interactions, studies that

seek to unpick the effects of different hosts and environments on virulence via well

designed,  replicated  field  trials  and  supporting  lab  analyses,  and  that  attempt  to

associate  particular  genetic  loci  with these extrinsic  phenomena,  seem the best  way

forward. The rapid development of sophisticated next-generation sequencing techniques

that generate thousands of single-nucleotide polymorphism markers (Baird et al. 2008;

Seeb  et al. 2011), and the development of multivariate ordination techniques that can

partition genetic variation between spatial and environmental causes (Manel et al. 2010,

2012), suggest that,  with the correct infrastructure,  support and collaborations,  rapid

progress could be made on the genetic basis of S. hermonthica virulence in the coming

years.
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