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Abstract

Coinfection by multiple species of parasite, including viruses, bacteria,
protozoa, fungal pathogens, and helminths, affects hundreds of millions of
people. Despite the potential for significant health effects, and important
implications for treatment of infections, relatively little is know about the
structure of coinfecting communities, the processes responsible for this
structure, and the consequences for host health. This lack of knowledge
limits the extent to which treatment of infection can account for coinfec-
tion.

The four original research chapters of this thesis include collation and
analyses of large databases of coinfection information collected from pub-
lished papers, analyses of coinfection data in a large database of death
certificates, and analyses of the behaviour of a theoretical model of two
coinfecting parasites.

Coinfection information in previously published literature indicates
that coinfection tends to enhance parasite abundance and harm human
health. The same literature shows that interactions among coinfecting
parasites are likely to involve shared resources, as opposed to being medi-
ated via the immune system.

Analysis of death certificates showed that the proportion of deaths at-
tributed to coinfection was greatest in early adulthood, and that, positive
associations between pairs of coinfections on death certificates were more
common than negative associations.

The theoretical model of two coinfecting parasites revealed that indi-
rect effects of treatment on untreated parasites may be predictable given
information about the direction of interspecific interactions among para-
sites.

In sum, these findings indicate that coinfection in humans involves hun-
dreds of different species combinations, that these communities are likely
to be structured by bottom-up rather than top-down processes, and that
coinfection can present a serious health risk. Furthermore, a better un-
derstanding of interspecific interactions among parasites could be used to
improve treatment outcomes. Further research could show where specific
treatments indirectly suppress more parasites than currently estimated.
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Chapter 1

Introduction

Over the last century, vaccines and antibiotics have improved the preven-

tion and treatment of many infectious diseases, and, in the case of small-

pox, even enabled eradication (Winslow, 1980). These interventions have

significantly reduced deaths from infection so that by the 1970s human life

expectancy in countries like the USA, UK, and Sweden was more limited

by chronic, degenerative diseases like heart disease and cancer (Finch and

Crimmins, 2004; Horiuchi, 2000; Omran, 1971; Rosenberg, 2009). In fact,

between 1990 and 2010 the global health burden switched from mainly

infectious to noninfectious causes (Murray et al., 2013).

However, in the 21st century infectious diseases remain a large chal-

lenge for individual health, in terms of morbidity and mortality, on a

global scale. While many countries have relatively little infectious disease

mortality, the economic burdens are substantial; in 2003 influenza cost

the USA over $87 billion in disease prevention, healthcare, and lost pro-

ductivity (Molinari et al., 2007). In many poorer countries the majority of

human deaths are still caused by infectious disease (Sanders et al., 2008).

Many twentieth century efforts to locally eliminate or globally eradicate

infections were very costly, and not always successful (Hopkins, 2013).

One of the difficulties in treating or preventing morbidity (illness) and

mortality (death) from infectious disease is that existing interventions

often ignore the potential for different infections to affect one another

(Ameisen, 1999; Singer, 2009; Singer and Clair, 2003). Health services

are faced by many infection-related challenges including sexually trans-
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1. Introduction

mitted infectious diseases (Eng and Butler, 1997; Forhan et al., 2009),

hospital-acquired infections (Curtis, 2008; Meyer et al., 2011; Sandora

and Goldmann, 2012), and children missing multiple vaccines (Duckworth

et al., 2012), all of which increase the chances for infections to co-occur

within individuals. To improve global health, health burdens from in-

fectious diseases must be tackled, and to do this effectively interactions

among infectious agents need to be considered (Wilson, 1995). This thesis

aims to better understand how different infectious diseases interact within

humans, and to determine what the consequences of these interactions are

for effective treatment. To achieve this important goal, we need to under-

stand the distribution and impact of coinfection in human populations.

What is known about coinfection in humans

Coinfection is the simultaneous infection of an individual by more than

one type of parasite. Although the effects of coinfection on human health

are rarely assessed (King, 2010; Pullan and Brooker, 2008), and there is

no estimate of the number of coinfected individuals worldwide, studies

of particular taxa and groups of individuals suggest that coinfection is

extremely widespread. Over three billion individuals have parasitic worm

(helminth) infections (Drake and Bundy, 2001), one billion of whom are

coinfected with multiple helminth species (Crompton, 1999). One study

in the Ivory Coast found that 75% of villagers were heavily coinfected

with between three and ten intestinal parasite species (Raso et al., 2004).

Beyond helminths, over 10 million individuals are coinfected with HIV

and tuberculosis (World Health Organization, 2012). Bacterial coinfection

has also been identified as a major cause of death among pandemic and

seasonal influenza patients because the virus enables more bacteria to

colonise and cause more severe infection than would occur in patients with

just a bacterial infection (Chertow and Memoli, 2013; Dushoff et al., 2006;

Finelli et al., 2008; Morens et al., 2008; World Health Organization, 2010).

Marginalised groups within human populations are the most likely to be

coinfected, due to high exposure, and inadequate prevention or treatment

options (Boraschi et al., 2008). These groups include the global poor

8
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(Bonds et al., 2010; Buck et al., 1978a; Lustigman et al., 2012; Steinmann

et al., 2010), sex workers and injecting drug users (Singer, 2009; Singer and

Clair, 2003), and men who have sex with men (Guo et al., 2009; Keystone

et al., 1980).

Taken together, these studies suggest that coinfection is commonplace

in humans and involves parasites of different taxa, transmission routes,

and pathologies. How these patterns of coinfection arise and how they

differ by parasite types is unknown because data on human coinfections

have not yet been synthesised. Before attempting such a synthesis we

must first consider the kinds of parasites that infect humans, and then

consider what defines coinfection.

Parasites that infect humans

Across all taxa and ecosystems, more than half the species on earth, in-

cluding the most abundant species (Zhao et al., 2013), are parasitic. These

parasites live in and rely on the organism they infect (their host) for nu-

trition and survival during their life cycle (Begon et al., 2006; Brooks and

Hoberg, 2000). “Parasite” is used broadly here to include viruses, bacte-

ria, fungal parasites, protozoa, and helminths (i.e. micro-parasites - often

called pathogens - and macroparasites sensu Anderson and May (1992)).

Humans are infected by many different parasites (Anderson, 1990); a

comprehensive search published in 2001 counted 1, 415 disease-causing

(pathogenic) species reported as infecting humans (Taylor et al., 2001).

The number of parasites of humans will likely increase as further sampling

and better diagnostic tests reveal previously undiscovered parasites, and

as new parasites invade the human population (Henderson and Morse,

1993), recent examples being influenza A (H1N1) in 2009, SARS in 2002,

and Nipah virus in 1999 (Tabish, 2010).

Non-human hosts are also infected by various parasites, and coinfec-

tion is commonplace in domesticated animals including livestock and pets

(Nieto and Foley, 2009), wild buffalo (Budischak et al., 2012; Ezenwa et al.,

2010), rodents (Behnke et al., 2001; Telfer et al., 2010), and Soay sheep

(Craig et al., 2008). There are growing concerns about how these parasite

species may interact within animal hosts, as these interactions may affect

9



1. Introduction

treatment and parasite dynamics (Lello et al., 2004; Telfer et al., 2010).

This thesis focuses on coinfection in humans because much is known about

the range of infectious diseases that are found to infect humans, as well

as their pathologies. The concepts, techniques, and findings regarding

coinfection in humans are likely to be relevant to other host systems.

Defining coinfection

This thesis defines coinfection as multiple pathogenic parasite species si-

multaneously infecting the same individual. In the literature, the term

“coinfection” has various meanings, from parasites of different taxonomic

kingdoms, to a mix of pathogenic and non-pathogenic parasites, to even

multiple strains of the same parasite species. Some papers discuss coin-

fection of bacteriophages (Mills et al., 2013; Refardt, 2011), and prions

(Leblanc et al., 2012). These groups are relatively little studied and are

not considered in this thesis. By including viruses, bacteria, protozoa,

fungi, and helminths in the definition of coinfection, the effects of a range

of parasites on human health can be explored.

Commensal organisms are like parasites because they derive energy

from their host, though they are not normally pathogenic. Commensals

can be difficult to distinguish from mutualists or pathogens because their

relationship with the host varies over time and under different conditions

(Mims et al., 2000). While commensals are thought to affect the suscep-

tibility, immunity to (Abt and Artis, 2013; Naik et al., 2012; Stecher and

Hardt, 2008), and virulence (Lysenko et al., 2010) of parasites co-occurring

in their host, these commensals also confer benefits to host physiology

(Turnbaugh et al., 2008). While not addressed in this thesis, the role

of commensals in coinfection is an important area for future study. For

this thesis a pathogenic definition of coinfection seems reasonable since

the aim is to understand the effects of coinfection on human health, and

pathogenic organisms directly damage human health while commensals

generally do not.

Some authors use coinfection to refer to multiple subspecies, like differ-

ent malarial strains (De Roode et al., 2005), or genotypes of a trematode

species (Karvonen et al., 2012). Across infection publications, 11% re-
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port conspecific strains (Balmer and Tanner, 2011). This thesis does not

consider co-occurring subspecies as coinfections because multi-genotype

coinfections can involve different processes from multi-species infections

(Louhi et al., 2013), such as viral recombination only occurring with su-

perinfection of a conspecific strain (Blackard et al., 2002). This distinction

is complicated by the fact that the differences between multi-genotype and

multi-species infections often depends on the taxonomic group (Alizon

et al., 2013). While further research is needed into how parasite species

or subspecies differ and what the biological implications are (Alizon et al.,

2013), before we can make such a comparison, we first need to establish

the general patterns of coinfection when the line is drawn at each scales.

Since differences within species are likely to be smaller, this thesis focuses

on interactions between species to enable the breadth of interactions in

coinfected humans to be studied more efficiently. Comparisons with multi-

genotype research are an important subject for future research. Having

defined coinfection as simultaneous infections of multiple pathogenic par-

asite species in the same host, the next step is to consider how coinfecting

parasite species interact.

How do coinfecting parasites interact?

An interaction is the effect of an individual of one species on an individual

of another species (Wootton and Emmerson, 2005). Parasites of different

species do not always interact; the species might be independent, but the

presence of multiple species in the same host can exert additive burdens

on host health (Brogden et al., 2005; Brooker et al., 2007). Coinfection

can also just be an association, for example two species may often coin-

fect humans if the same host characteristics are a risk factor for infection

by both parasite species (Sousa, 1994). There are also debates over which

statistical tools to use to detect parasite interactions (Cobey and Lipsitch,

2013; Fenton et al., 2010; Haukisalmi, 1994; Sousa, 1994), but they can

be classified by the biological processes between the two parasites. In-

teractions between parasite species can be direct or indirect, analogous

to the types of interspecific interactions found in free-living ecosystems.

Accordingly, indirect interactions between parasites are top-down when
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1. Introduction

mediated by predators (the immune system), or bottom-up when me-

diated by a shared host resource (Graham, 2008; Pedersen and Fenton,

2007).

Direct interactions include viruses infecting bacteria (Flores et al.,

2011; Hanlon, 2007), helminths transmitting bacteria (Perkins and Fenton,

2006), and bacterial colonies releasing exoproducts that hinder other bac-

terial species (Hoffman et al., 2006). Indirect interactions that are medi-

ated by the immune response (Kasprowicz et al., 2008) can be opportunis-

tic coinfection by normally commensal bacteria when the immune system

is suppressed by another infection (Chonmaitree et al., 2008; Cox, 2001),

and trade-offs between different branches of host immunity (Bradley and

Jackson, 2008; Graham, 2001; Maizels and Yazdanbakhsh, 2003; Page

et al., 2006; Stewart et al., 1999). Lastly, examples of indirect interac-

tions involving host resources are competition between malarial parasites

for red blood cells (Antia et al., 2008; Read and Taylor, 2001), or influenza

infection creating more pneumococcal binding sites (Peltola et al., 2005).

There are many mechanisms by which parasites of different species in-

teract in a host (Dobson, 1985), and these can have positive or negative

effects (Brogden et al. (2005), also called synergistic or antagonistic) on the

abundance of coinfecting parasites, and, in turn, on host health. Whether

interactions are positive or negative, direct or indirect, they could affect

parasite community dynamics, and treatment outcomes (Jackson et al.,

2006; Lello et al., 2004).

Importance of coinfection for prevention and

treatment of infectious disease

Finding parasite species that interact strongly is urgent given the many,

and potentially large effects of parasite interactions on the outcomes of

treatment and prevention efforts. For example, immune-mediated inter-

actions can hinder preventative measures like vaccination. Generally, if

one parasite affects the immune response, then vaccines and certain diag-

nostic tests are less effective (Buck et al., 1978c; De Bruyn, 2010). Vaccines

that are less effective in individuals with other infections include helminths
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(Cooper et al., 2001; Geiger et al., 2011; Harris et al., 2009), HIV (van den

Berg et al., 2009), human papillomavirus (Pons-Salort et al., 2013), and

enteric viruses (Armah et al., 2010; Guerrant et al., 1990; Madhi et al.,

2010; Wang et al., 2012; Zaman et al., 2009, 2010). While these pre-

ventative measures are an important area for coinfection research, this

thesis focuses on treatments because these are administered to coinfected

individuals, whereas many of the aforementioned vaccine studies include

individuals with single-species infections.

As with vaccines, treatments targeted toward particular parasite species

can fail to improve the health of individuals who are infected by other

species. Treatment of infection using drugs can be impeded or counter-

productive because of interactions between coinfecting parasites (Behnke

et al., 2001). One otherwise successful treatment had such serious side

effects in coinfected patients that subsequent treatment programmes took

extra precautions in coinfected populations (Diggle et al., 2007). In this

case, treating onchocerciasis with a standard drug (ivermectin) triggered

severe, and sometimes lethal, encephalitis within three days in patients

with high burden Loa loa infections (Boussinesq et al., 1998, 2001; Chio-

dini, 2001; Gardon et al., 1997). This is thought to be because the drug

caused a high rate of nematode death behind the eyes (Gardon et al., 1997;

Twum-Danso, 2003). Thus, treatments can have reduced benefits for, and

even damaging effects on, individuals coinfected with other parasites.

Knowledge of how parasite species and existing treatments affect the

health of coinfected individuals is therefore needed to develop new, im-

proved treatment options. Knowledge of parasite interactions is not always

available and, where it is, its use in treatment programmes is just begin-

ning. The only treatment guidelines for coinfection are for patients with

Hepatitis B or C virus (HBV or HCV) or tuberculosis and HIV (Brook

et al., 2010; Daftary et al., 2006; England et al., 2009; Pozniak et al.,

2005), with prescription of existing drugs for both infections being the first

treatment option (Firnhaber and Ive, 2009). The recommended drugs fail

in two thirds of HCV-HIV coinfection cases, so new treatments are be-

ing developed that combine standard interferon with new HCV protease

inhibitors (Chary and Holodniy, 2011) or microRNA blockers (Janssen

13
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et al., 2013). Even for relatively well-studied hepatitis coinfection where

treatment guidelines are being developed, there is much scope to better

understand interactions between the viruses to improve treatment.

Treating coinfecting parasites simultaneously

Some treatment programmes are beginning to consider which parasites

co-occur in human populations. One approach is to use integrated treat-

ments that administer all available drugs together to tackle each infec-

tion (Molyneux et al., 2005; Zaman et al., 2009). Integrated treatment

programmes have begun in communities with high helminth coinfection

prevalence (Hotez, 2009; Hotez et al., 2007). Treating several helminth

infections in communities with many coinfected individuals can be highly

efficient and beneficial to health; the largest health improvements from

deworming school children have been found in populations where 96%

of children had hookworm and Trichuris coinfection (Stephenson et al.,

1993; Taylor-Robinson et al., 2012). However, the potential for interac-

tions between the drugs is poorly understood (Lammie et al., 2006), proper

evaluation of these programmes is rare (Parker and Allen, 2011; Yamey,

2009), and effects on non-target parasites are rarely monitored (Basáñez

et al., 2012; Eziefula and Brown, 2008; Righetti et al., 2012).

There is also integrated treatment in terms antiretroviral therapy for

HIV during tuberculosis therapy. This reduced patient mortality in a ran-

domised controlled trial (Abdool Karim et al., 2010), but the best time

for initiating the treatments is unclear (Abdool Karim et al., 2011). Sim-

ilarly for HIV-malaria coinfection it is unclear when integrated treatment

should be preferred (Skinner-Adams et al., 2008).

Although current treatment guidelines recommend it, integrated treat-

ment could be unnecessary if targeting a single infection indirectly reduces

the burden of other infections. For example, malaria elimination efforts

also bring reductions in cases of lymphatic filariasis (van den Berg et al.,

2013). Research into optimal coinfection treatment is in its infancy, and

other options besides integrated treatment are being considered.
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New treatments based on the direction of parasite interactions

Rather than administering separate drugs for each infection, recent studies

have suggested that treatments could be tailored to how parasites inter-

act within coinfected hosts (Pasman, 2012; Shrestha, 2011; Siqueira Jr

and Rocas, 2009). Traditionally, infection research studied each parasite

independently (Belia, 2009), and often ignored how different infections

affect one another (Kuramitsu et al., 2007). Understanding positive in-

teractions between particular pairs of parasites has led to novel methods

of infectious disease control, such as using antibiotics to kill the commen-

sal bacteria Wolbachia in various host species. While the Wolbachia do

not directly parasitise humans, antibiotics clear these commensals from

their adult filarial nematode hosts, such as Wuchereria bancrofti, which

are sterilised and die prematurely (Landmann et al., 2011; Slatko et al.,

2010; Tamarozzi et al., 2011; Taylor et al., 2010). I know of no exam-

ples where one pathogenic species was targeted in order to also suppress

another parasite species.

Treatments could also be improved by use of parasites that interact

negatively with other parasite species. For example, parasites like sym-

biotic bacteria that compete with more pathogenic organisms are given

to patients as probiotics after surgery or after antibiotics to reduce the

risk of subsequent infection by more pathogenic species (Khodadad et al.,

2013; Rayes et al., 2004). Viruses that delay progression of coinfection

are also being considered as potential vaccines, as with GBvC or HIV-2

that can produce some protective immunity against HIV-1 (Bagasra et al.,

2012; Esbjernsson et al., 2012). Introducing Wolbachia from Aedes aegypti

mosquitoes can reduce transmission of dengue among humans (Hoffmann

et al., 2011). Treatment of parasites that interact negatively with other

parasites should also be avoided since treating parasites that confer cross-

protective immunity to other parasites, as with Plasmodium falciparum

malaria in some age groups (Bruce et al., 2000; Smith et al., 1999), might

lessen the target infection and exacerbate non-target infections.

Appropriate manipulation of interactions among coinfecting parasites

could improve treatment for millions of coinfected individuals worldwide
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(Brogden et al., 2005; Costello et al., 2012; Cox, 2001). It is possible to

make general statements about treatment of coinfection based on parasite

interactions. For instance, if one parasite, like a helminth, induces anti-

inflammatory immune responses then treatment could exacerbate coinfec-

tions (Jackson et al., 2004; Kamal and El Sayed Khalifa, 2006; Smith et al.,

2011). However, altering treatments based on likely negative interactions

does not necessarily improve patient health; randomised trials show that

treating immunosuppressive parasites like helminths does not delay pro-

gression of other immunosuppressive parasites like HIV (Whitaker et al.,

2012). A general theory of coinfection in humans would need to explain

why non-target parasites respond to treatment in sometimes unexpected

ways. This thesis aims to contribute to such a general perspective, and

various approaches are available for this research.

Approaches to coinfection research

From pairs of parasites to whole communities

Most of the above studies only consider a few coinfecting species, but

humans encounter a more diverse parasite community. There are also

many concurrent within-host processes that may affect treatment success.

Whether there are general rules governing how certain types of parasite

species interact within the same host, and how these interactions can be

manipulated to improve human health, is an open question, and one this

thesis seeks to address.

Spanning multiple disciplines and scales

Parasite communities within individual hosts have been discussed previ-

ously, including a 1950s description of ecological understanding of para-

sitism and host immunology (Cameron, 1956), a 1986 chapter on helminth

communities (Holmes and Price, 1986), and a 1992 symposium on ecolog-

ical studies of immune responses to infection (Wassom, 1993). Nowadays

coinfection is studied by many specialisms, including parasitologists, mi-

crobiologists, and public health practitioners. Just as knowledge of inter-
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actions at the protein level requires a mix of biology, chemistry, and physics

(Kastritis and Bonvin, 2013), so too is cross-disciplinary research of par-

asites needed to improve coinfection treatment (Fincham et al., 2003).

In this thesis I therefore use a variety of relevant tools in an “antedisci-

plinary” endeavour (Eddy, 2005) in order to identify interspecific parasite

interactions, and test their impact on health and treatment outcomes.

Not only are there multiple parasite species involved in coinfection, but

processes occur at various biological scales to affect individual health. Par-

asite interactions occur at levels from the cellular level within coinfected in-

dividuals (Durmuş Tekir and Ülgen, 2013; Schneider and Klabunde, 2013;

Zengler and Palsson, 2012), to migration through multiple organ systems,

up to the human population level where complex, multi-stage diseases

are currently a major medical challenge (Auffray et al., 2009; Tappenden,

2011; West, 2012). To help research this multi-scale problem, concepts

and techniques normally applied to free-living communities can be use-

ful for studying the community of parasites within coinfected individuals

(Costello et al., 2012; Gonzalez et al., 2011; Meyer and Leveau, 2012;

Pedersen and Fenton, 2007; Roche et al., 2012; Siqueira Jr and Rocas,

2009).

Making the most of existing data

Broad studies will most efficiently find how best to control complex dis-

eases like coinfection (Barabási et al., 2011; Wolfram, 2002) and patterns

of interaction among coinfecting parasites. Holistic understanding comes

from combining knowledge of individual components (Pavlopoulos et al.,

2011; Wilson, 1998), and published findings spanning cellular processes

up to whole organ systems offer a good start for beginning to build up

knowledge of interactions among the parasite community of humans. By

bringing together specific insights from studies that each focused on a few

parasite species, we can develop a systems level understanding of complex

host organisms and their parasites (Moulin, 2005). This thesis will at-

tempt to collate and describe these interactions using recently published

reports of coinfected humans. Given the wealth of expert knowledge on

the wide array of human parasites, it would be prudent to use existing
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publications to gain an overview of the parasites and health of coinfected

individuals. Data from these publications could reveal, for the first time,

the types of parasites known to coinfect humans, and differences between

the health status of coinfected individuals and those with single infections.

In this thesis I present a systematic survey of a full year of publications on

coinfection in humans to seek to fill these large gaps in current knowledge

about coinfection.

Another way to collate existing data on coinfection is to construct a

network from known parasite interactions. Finding out how parasites, re-

sources, and immune system components interact in coinfected humans

would improve mechanistic understanding of parasite community struc-

ture. Food webs are networks that have been used to study the structure

of trophic (feeding) relationships among free-living organisms. Parasites

are increasingly being included in these networks by describing the host

species fed on by different parasite species, predominantly in marine or

estuarine ecosystems (Hechinger et al., 2007; Kuris et al., 2008; Lafferty

and Kuris, 2009; Lafferty et al., 2006, 2008; Lima Jr et al., 2012).

Applying these network ideas to coinfection, we can view parasitism as

a trophic interaction within a host, where a parasite is the consumer and

cells of the host are the resources, and where the host’s immune system is

the predator (Wassom, 1993). Were a network of trophic relationships of

parasites within humans to be constructed, it would reveal the potential

way for coinfecting parasites to interact (Pedersen and Fenton, 2007). This

thesis will assemble such a network to understand the types of interaction

that structure the parasite community of humans, the first network of its

kind for any host species.

Further data on many infections in human populations are routinely

collected by many organisations. Some datasets contain information on

concurrent infections of individuals, but to my knowledge these have not

yet been used to study coinfection. For example, in the constituent coun-

tries of the UK, every human death is recorded with its cause or causes.

These causes of death can include infectious diseases. Accessing such data

would provide unique insight into the kinds of parasites involved in human

mortality. This thesis will analyse the relative proportions of single and
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coinfection deaths in these data to infer how strongly one infection affects

the odds of other infections being reported as a cause of death.

Testing the implications of parasite interactions using theoret-

ical models

Developing a network to describe interactions in coinfected humans, analysing

reports of the effects of coinfection from recent publications, and analysing

a national dataset on causes of death to understand the odds of coinfec-

tion death, will provide suggestive evidence of how parasite interactions

affect human health. Understanding how interactions affect each parasite

species’ abundance over time is also vital if treatment outcomes are to

be improved. Coinfection has been recognised among many human com-

munities for decades, but its effects are unclear and coinfecting parasites

are rarely monitored by treatment programmes targeting particular in-

fections (Buck et al., 1978d; Keusch and Migasena, 1982). One could do

field experiments in humans to assess interactions, and do clinical trials of

different treatments to infer how treatment affects the abundance of coin-

fecting parasites. Some such studies are underway, but besides the few

examples highlighted above where treatments are known to be affected

by interspecific parasite interactions, we have no general understanding of

how treatments targeting particular species affect non-target parasites.

Theoretical models can test the effects of treatment on coinfecting par-

asites and host health in parasite communities across a range of various

interaction types and strengths. Developing a general, theoretical model

could also show effects of drug treatment over multi-year programmes

using a range of scenarios more quickly, efficiently, and at lower cost

than field trials (Westerhoff et al., 2009). Theoretical models also allow

for greater experimental control than real human treatment programmes

where ethical concerns make it difficult to conduct randomised, double-

blind, placebo-controlled trials.

Several models have been used to study the dynamics of simultaneous

infections for particular pairs of parasites, such as gonorrhoea and HIV

coinfection (Mushayabasa et al., 2011), and malaria and trypanosomiasis
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(Nannyonga et al., 2012). However, the findings from such models are

relevant only to specific coinfections. More general models can show the

range of possible outcomes, for instance by varying the efficacy of treat-

ments or the types of coinfecting parasite. General theoretical models

have been used to show the effect of treatments of single-species infections

(Anderson and May, 1992). More recent general models relating to coin-

fection have explored the effects of species interactions on populations of

coinfecting bacteria (Eswarappa et al., 2012), and of vaccination and im-

mune interactions in a three-species helminth system (Lello et al., 2004).

The findings from these models are more widely relevant as they were not

created for specific parasites. However, I know of no models that measure

treatment outcomes amidst within-host parasite interactions of varying

type and strength in a heterogeneous host population. In this thesis, I

build this type of model to better understand how a village-sized human

population receiving treatment for one of two helminth infections will be

affected by interactions between the parasites.

Objectives of this thesis

The goal of this thesis is to better understand the effects of coinfection on

human health on a general level. I aim to study the effects of coinfection

on morbidity and mortality, interactions among coinfecting parasites, and

how these interactions affect treatment outcomes. To understand the type

and strength of interactions among the parasites community of humans,

I collected several novel sources of data on the parasite community of

humans and used various tools to describe the structure of this community

and study its implications for human health and treatment.

In Chapter 2 I systematically reviewed recent coinfection publications

and analysed the data they reported to find the taxonomic groups of par-

asites that coinfect humans, and their health effects. I compared the re-

ported coinfecting parasites with infectious diseases causing highest global

morbidity and mortality. The results suggest that coinfection often in-

volves micro-parasites, and is associated with higher parasite abundance

and worse host health when compared with single species infections. This
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is the first broad-scale test of whether coinfections have a higher health

burden than single infections.

In Chapter 3 I collated specific information about the within-host inter-

actions among coinfecting parasites reported in the publications reviewed

for Chapter 2. I assembled these interactions into the first ever network of

within-host interactions for any host species. This network suggests that

there are strong parallels between the structure of within-host parasite

communities and free-living communities of other organisms, and that in-

teractions involving shared host resources are the most common type of

interaction.

For Chapter 4 I compiled a dataset of reported causes of death from

England and Wales to test whether coinfection affects mortality risk. This

is another broad-scale analysis of the health effects of coinfection, but,

unlike in Chapter 2, I focus on mortality using cross-sectional, national

data. Results suggest that the odds of coinfection being reported on a

death certificate is not randomly distributed and that, when compared

with the occurrence of single infection deaths, the odds of coinfection

were higher than expected for many pairs of parasites.

In Chapter 5 I take a different approach again and develop a theoret-

ical model to test the effects of different parasite interactions, coinfection

prevalences, and treatment regimes on host health. This model includes

both immune- and resource-mediated interactions, and results show that

the direction of the effect of species-specific treatment on non-target par-

asites could be predictable if the direction of parasite interactions and

related within-host processes are understood.

Lastly, in Chapter 6, I conclude the thesis by discussing the results

of each of the four research chapters, and drawing together these find-

ings to address general patterns of coinfection in humans. I then discuss

the broader implications of my work, specifically how treatments could

be modified with knowledge of parasite interactions, and possible future

directions for coinfection research.
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Chapter 2

The nature and consequences

of coinfection in humans

Abstract

The kinds of parasites that coinfect humans, how frequently they occur,

and their human health impacts are poorly understood. One way to study

these patterns is to collate data from publications on coinfection in hu-

mans. In this chapter I systematically reviewed a recent sample of such

publications to find the parasites involved, their reported effects on host

health, and their reported effects on parasite abundance. I also compared

the proportion of coinfections involving these parasites with parasites caus-

ing the most global morbidity and mortality. Reported coinfections in-

cluded all kinds of parasites, but were most likely to contain viruses and

bacteria. Generally coinfected individuals had worse health (78% of pub-

lications, 40% of parasite pairs) and higher parasite abundance (57% of

publications, 37% of parasite pairs) than individuals with only one infec-

tion. The most commonly reported coinfections differed from infections

causing highest global mortality, with a lack of serious childhood infec-

tions. This suggests that coinfection tends to have deleterious effects on

human health, and often involves different parasites from those of highest

global health concern. The skew towards negative health effects, and un-

known levels of sampling or reporting biases in coinfection research should

prompt further collation and evaluation of human coinfection data.
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2. Nature and consequences of coinfection

Introduction

The many parasites that infect humans (e.g., viruses, bacteria, protozoa,

fungal parasites, helminths) often co-occur within individuals (Brogden

et al., 2005; Cox, 2001; Esch et al., 1990; Petney and Andrews, 1998;

Rigaud et al., 2010). Helminth coinfections alone are thought to occur in

over 800 million individuals (Hotez et al., 2007), and are especially preva-

lent among the global poor (Boraschi et al., 2008; Hotez, 2009; Steinmann

et al., 2010). Other coinfections involve globally important diseases such

as HIV (Lawn, 2004), tuberculosis (Resende et al., 2007), malaria (Muturi

et al., 2006), hepatitis (Sagnelli et al., 2004), leishmaniasis (Alvar et al.,

2008), and dengue fever (Pancharoen and Thisyakorn, 1998). It seems

likely, therefore, that the true prevalence of coinfection exceeds one sixth

of the global population and often involves infectious diseases of pressing

human concern.

Improved understanding of coinfection prevalence is greatly needed

(Brooker et al., 2010), partly because coinfecting parasites can interact

either directly with one another or indirectly via the host’s resources or

immune system (Cox, 2001). Compared to infections of single parasite

species, these interactions within coinfected hosts can alter the transmis-

sion, clinical progression and control of multiple infectious diseases (Chio-

dini, 2001; Pedersen and Fenton, 2007; Sternberg et al., 2011). Establish-

ing the nature and consequences of coinfection requires data about the

various infections individuals have (Esch et al., 1990), but such data are

rare (Brooker and Utzinger, 2007; Pullan and Brooker, 2008; Steinmann

et al., 2010).

Coinfection involves a range of parasites and can have various effects

on host health (Cox, 2001). Studies in wild bats and Soay sheep suggest

positive interactions are dominant (Craig et al., 2008; Lotz et al., 1991),

though findings in wild mammals are highly variable (Marzal et al., 2008).

Reviews of coinfection emphasise the need for further research, especially

in humans (Cox, 2001; Holmes and Price, 1986; Petney and Andrews, 1998;

Pullan and Brooker, 2008), where coinfection outnumbers single infection

in many communities (Petney and Andrews, 1998; Raso et al., 2004), and
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where helminth coinfections appear to worsen human health (Pullan and

Brooker, 2008). There are many individual studies concerning coinfec-

tion, but these use different methods and are often narrowly focused. To

gain a coherent picture of the nature and consequences of coinfection in

humans the published literature was systematically reviewed for coinfect-

ing parasites and their effects on other infecting organisms and human

health. Coinfections involve a huge variety of parasites, and most stud-

ies report negative effects on host health. However, current coinfection

research rarely focuses on parasites with highest global mortality.

Methods

Literature search

Published studies of coinfection in humans were found using the largest on-

line citation database, Scopus (Elsevier Ltd.). Many disciplines study in-

fectious diseases and various terms are used to describe coinfection. Search

terms were: coinfection, co-infection, concomitant infection, concurrent

infection, multiple infection, simultaneous infection, double infection bi-

infection, bystander infection, polyparasitism, or multiple parasitism in

the Title, Abstract, or Keywords of publications from 1995 up to 2010.

An equivalent search on an alternative online citation database, Web of

Science (Thomson Reuters), yielded similar trends in publications through

time, but fewer results (grey vs. black dots, Fig. 2.1).

Due to the large number of publications matching the search terms,

further study focused on publications from 2009. Publications about non-

human hosts, non-infectious diseases or multiple genotypes of only one par-

asite species were excluded. A separate search for “infection” in the Title,

Abstract, or Keywords of publications on Scopus was done to compare

publication trends with the background trend in infection publications

(triangles, Fig. 2.1).
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26



2. Nature and consequences of coinfection

Data collection

Data collected from each publication were: coinfecting parasites, jour-

nal, study type, and maximum number of parasite species per individual.

Study types included experiments to find the effects of treating each infec-

tion, observational studies, and reviews or meta-analyses. Observational

studies were either case notes on particular patients, studies of patient

groups, or epidemiological surveys of human communities, most of which

involved treatment.

Many publications reported the stated effect of one parasite on coin-

fecting parasite abundance (i.e. proxies for the intensity of infection, e.g.

from measures of viral load, faecal egg counts, antibody response, bacte-

rial cultures etc.) and/or host health (e.g. survival time, anaemia, liver

fibrosis, immune cell counts). These effects of coinfection are relative to

conditions observed under infections of single parasite species. Where

these effects were reported the pair of coinfecting parasites, quality of

measurement (rated as low e.g. anecdotal, adequate e.g. correlation, and

high i.e. full reporting of appropriate statistical test supported by theo-

retical mechanisms), and other data (see below) were recorded. Data from

review-type publications, case notes, and from publications not mention-

ing the effects of coinfection (93 publications for parasite abundance and

83 for host health) were excluded to avoid double counting, undue in-

fluence of individual cases, and the inclusion of irrelevant publications.

Reported effects based on low quality evidence were also omitted (e.g.

anecdotal or single patient data, 10 publications for parasite abundance,

24 for host health).

There was heterogeneity in the reporting of coinfection effects, both

in the response variable (e.g. cell counts, biomarkers, survival rates), and

the quantitative measure given (e.g. odds ratios, adjusted odds ratios,

p-values, hazards ratios, raw comparisons). Many publications gave only

qualitative statements of effect direction. Further study therefore focused

on the direction of reported effects (positive, negative and no-effect) to

maximise the data available. Reported directions of the effects on both

parasite abundance and host health for each pair of coinfecting parasites
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was coded +1 for positive effect, 0 for neutral, −1 for negative effects,

and NA if no information about effect direction was given. The resulting

dataset includes some repeated measures because some publications re-

ported multiple pairs of coinfecting parasites and some coinfections were

reported in multiple publications.

Analysis

I created two independent datasets containing the mean effect direction

(i) per publication, and (ii) per coinfection to eliminate these sources of

pseudoreplication. A negative mean implied a predominance of negative

effects; a positive mean implied a dominance of positive effects. A mean

close to 0 could result from either many neutral effects (parasite con-

sistently had no discernible effect) or nearly equal numbers of positive

and negative effects (parasite had different, possibly context-dependent

effects). In either case, there is no clear indication of these parasites

having a consistent effect on each other (or on host health), so conser-

vatively I infer that there is no effect. These means were converted into

three categories: negative (−1 to − 1
3
), neutral (−1

3
to + 1

3
) and posi-

tive (+1
3

to + 1). Chi-squared tests (Bushman, 1994) based on double

log-likelihood values (Crawley, 2007; Sokal and Rohlf, 1981) were done

to establish whether totals in each category differed from those expected

from two different null hypotheses (random and no-effect). The random

null model had equal proportions of positive, neutral, and negative effects,

while the no-effect null model was that coinfecting parasites do not inter-

act, allowing for a 5% error rate (hence 2.5% negative, 2.5% positive, and

95% neutral reported effects). This follows a recommended vote-counting

method using continuous response variables and 95% confidence intervals

(Hedges and Olkin, 1985).

I explored the potential influence of missing data (NAs) on the analy-

sis of coinfection effects (56 for parasite abundance, 47 for host health).

These values represent reported coinfections where the effect on either

parasite abundance or host health was not reported, despite the possibil-

ity that these coinfecting parasites did interact with each other or altered

host health. I therefore assessed how potential interactions from these
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unreported effects may alter the overall patterns of coinfection effects. To

determine their potential impact, NAs were assigned one of three values

with equal probability (+1, 0,−1). The mean effect was then calculated

per publication or coinfection pair as before, and a grand mean taken

across all publications or coinfection-pairs. The grand mean represents an

estimate of overall effect of coinfection on either host health or parasite

abundance across either publications or coinfections, given a particular

random assignment of −1, 0,+1 to NAs. Repeating this random assign-

ment 1000 times produced a distribution of grand means.

Whether recent coinfection research focuses on the parasites causing

the highest global mortality is considered in the discussion. Global totals

for the number of deaths for each infection were reported by the World

Health Organisation for the closest year available, 2008 (obtained from the

Global Health Observatory website, World Health Organization (2009)).

The ten categories causing the highest percentage of global deaths were

compared with the percentage of reports of coinfection from 2009 involv-

ing these infections, and with their morbidity (years of life lost to disability,

again for the closest year available, 2010, obtained from IHME (2012)).

Analyses were done in R version 2.15.1 (R Development Core Team,

2012).

Results

Hundreds of publications on coinfection are published annually and the

numbers increased from 389 publications in the first year of search results

to 1407 publications in 2009 (Fig. 2.1). This rate of increase has been

almost double the rate of overall infection publications (linear regression

log10 (search results) year slope= 0.041 for coinfection, slope= 0.023 for

infection, compare black dots with black triangles on the log-linear plot

Fig. 2.1). These search results include studies of human and non-human

hosts, and in vitro experiments. Of the 1407 publications retrieved for

2009, 253 reported multiple parasite species coinfecting humans. Publi-

cations came from 152 journals, but many journals (46, 30.3%) published

a single coinfection article in 2009.
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The majority of relevant publications from 2009 were observational

studies (191 of 253, 75.5%), of which 126 (65.9%) involved patient

groups, 46 (24.1%) were case notes and 17 (8.9%) surveyed a popu-

lation. Two observational studies (1.0%) analysed death records. Fifty-

seven publications (22.5%) were reviews or meta-analyses. Five publi-

cations (2.0%) were experimental, whereby treatment and controls were

applied to both singly infected and coinfected groups. A majority of the

relevant publications concerned coinfection by two parasite species (204

of 253, 80.6%), but more parasite species per individual were occasion-

ally reported; a maximum of six parasites was reported once (Peng et al.,

2009).

A total of 207 parasite taxa were reported in coinfection publications

from 2009 across 677 reports of coinfections comprising 447 different

pairs of coinfecting parasite taxa. All parasite types (viruses, bacteria,

protozoa, fungal parasites, helminths) were reported in coinfections; the

most common parasite group were viruses (796 viruses of 1354 coinfect-

ing parasites [58.7%]), then bacteria (320, 23.6%), protozoa (107, 7.9%),

helminths (78, 5.8%), fungal parasites (27, 2.0%), and undisclosed infec-

tions (26, 1.9%). In terms of specific parasites, HIV and hepatitis viruses

featured highly in reported coinfections. The most frequently reported

coinfections were: Hepatitis C (HCV) and HIV (82 reports of 677 total

coinfections, 12.1%), Hepatitis B (HBV) and HIV (31, 4.6%), HBV and

HCV (30, 4.4%), HIV and Human Papillomavirus (HPV, 27, 4.0%), and

HIV and Mycobacterium tuberculosis (27, 4.0%).

Reported effects of coinfection

Effects of coinfection on parasite abundance and host health were sampled

across 146 suitable publications according to parasite abundance and host

health for 444 coinfections, involving 119 parasites. Among these coin-

fections, 191 (43.0%) measured the size or direction of effects on parasite

abundance and 172 (38.7%) measured the size or direction of effects on

host health. The remainder of coinfections had no effects reported.

Overall, positive effects of coinfection on parasite abundance were the

most common reported across publications (6 negative, 14 neutral, 27
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positive reports across 47 publications; Fig. 2.2A). Among specific pairs of

coinfecting parasites neutral effects exceeded positive effects (7 negative,

91 neutral, 66 positive across 164 unique parasite pairs; Fig. 2.2C). In

both cases these patterns were strongly significantly different from the ran-

dom null model (grey line on Fig. 2.2, by publication [X2 = 14.7, d.f. =

2, p < 0.001], by coinfection [X2 = 88.8, d.f. = 2, p < 0.001]), and

from the no-effect null model (black line on Fig. 2.2, by publication

[X2 = 156.4, d.f. = 2, p < 0.001], by coinfection [X2 = 276.4, d.f. =

2, p < 0.001]).

Regarding the impact of coinfection on host health, there was a much

greater number of negative effects reported in publications than either

positive, neutral, or NA categories (46 negative, 10 neutral, 3 positive

across 59 publications; Fig. 2.2B). When data were aggregated by spe-

cific parasite pairs the neutral effects exceed the negative effects (45 neg-

ative, 74 neutral, 4 positive across 123 unique parasite pairs; Fig. 2.2D).

In both cases these patterns were significantly different from the ran-

dom null model (grey line, by publication [X2 = 53.4, d.f. = 2, p <

0.001, Fig. 2.2B], by coinfection [X2 = 77.2, d.f. = 2, p < 0.001,

Fig. 2.2D]), and from the no-effect null model (black line, by publi-

cation [X2 = 286.3, d.f. = 2, p < 0.001, Fig. 2.2A], by coinfection

[X2 = 176.0, d.f. = 2, p < 0.001, Fig. 2.2C]).

It is unlikely that these patterns of the effects of coinfection would

be changed by knowledge of the unreported effects (the NAs in Fig. 2.2).

Even after NA values were assigned predominantly to the neutral category

(i.e. under the no-effect null model), the distribution of the grand mean

effect was positive for the effects on parasite abundance (Fig. 2.3A and

C), and negative for effects on host health (Fig. 2.3B and D). None of the

distributions of grand means overlapped zero (Fig. 2.3).

Reported coinfections compared with infections of global health

importance

There were differences between the most commonly reported coinfecting

parasites and the infections causing most global health burden (Fig. 2.4).
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Fig. 2.2: Direction of reported effects of coinfection on the abundance
of infecting parasites and host health averaged across publications and
coinfections published in 2009. Horizontal lines indicate expected values
of null hypotheses (black=no-effect, grey=random).
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Fig. 2.3: Distribution of grand mean effects of coinfection including simu-
lations of missing values according to the random (grey line) and no-effect
(black line) null models. Lines generated by a Gaussian kernel estimator
(smoothing bandwidths: random = 5.1 × 10−3 , no-effect = 1.2 × 10−3 ).
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Respiratory infections causing the most (40.5%) infection deaths, with

the next greatest causes, diarrhoea and HIV/AIDS, causing half as many

deaths. Other important infections by global mortality are tuberculo-

sis, malaria, and predominantly childhood infections (measles, meningitis,

pertussis, and tetanus).

Comparing the infections causing highest global mortality, global in-

fectious disease morbidity, measured by years of disability caused by infec-

tion, are proportionately lower for respiratory infections and HIV/AIDS,

but higher for diarrhoea and tuberculosis (compare grey and white bars

on Fig. 2.4).

The tenth biggest infectious cause of mortality worldwide, HBV, is the

only hepatitis virus featuring in the top ten infectious causes of mortality,

causing 1.1% of infectious disease deaths, and 0.4% of years of disability

from infection. In comparison, hepatitis viruses featured in one third of

reported coinfections (220 of 677, 32.5%, fourth black bar from the left

in Fig. 2.4)).

The top ten parasite species reported in coinfections were HIV (in 266

[39.3%] of 677 coinfections), HCV (20.4%), HBV (12.3%), M. tubercu-

losis (5.9%), Cytomegalovirus (CMV, 5.2%), Hepatitis D (HDV, 3.8%),

unidentified bacterial infections (2.8%), Herpes Simplex virus (HSV, 2.7%),

HPV (2.51%), and unidentified helminth infections (2.51%). While five

of these viruses (CMV, HCV, HDV, HPV, and HSV) are among the most

common reported coinfecting parasites, they contribute relatively little to

global infection mortality. Four of the globally most common infectious

causes of mortality received no, or very few, reports of coinfection in 2009

publications (all of them childhood infections: meningitis [0.15% of re-

ports], tetanus [0.08% reports], pertussis [no reports], and measles [no

reports]).

Discussion

Interest in coinfection has increased in recent years, with publications on

human coinfection involving hundreds of parasite taxa across all major

parasite groups. Recent publications show that negative effects of coinfec-
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tion on human health are more frequent than no effect or positive effects.

The most commonly reported coinfecting parasites are not the infections

causing highest global mortality. These results raise questions concerning

the occurrence and study of coinfection in humans and their implications

for effective infectious disease management.

The overall consequence of reported coinfections was poorer host health

and enhanced parasite abundance, compared with single infections. This

is strongly supported by differences in the reported direction of effects

(p < 0.001) from expectations of either no-effect or of random distribu-

tions, by the robustness of these trends to missing values, and by the

diverse publications in which these coinfections were reported. The ten-

dency for positive effects on parasite abundance also corroborates the neg-

ative effects on host health because larger infections are a mechanism by

which disease can be exacerbated. The consistency of these detrimental

coinfection effects across a wide range of parasites suggests a general ten-

dency towards positive interspecific interactions. In publications about

leprosy and tuberculosis coinfections there has been a recent turn away

from antagonistic interactions toward more synergistic theories (Hohmann

and Voss-Böhme, 2013). A majority of positive interactions is also seen

in the animal coinfection literature (Manenti, 2011), and in Tanzanian

children (Lello et al., 2013).

The reported coinfection effects could have at least two explanations.

First, coinfection may be more likely to occur or be detected in individuals

of poor health, which in turn leads to poorer prognosis among coinfected

cases. The failure to always undertake a full-range of initial diagnostic

tests and the relative paucity of experimental studies of coinfection in

humans means sampling bias towards individuals of poorer health is pos-

sible, though there may be recall bias in the opposite direction because

coinfected patients are less likely to take part in follow-up observations

(Nansera et al., 2012). Such biases were difficult to account for in my

analyses. The second explanation is that coinfecting parasites interact

synergistically with each other, for example via the host’s immune sys-

tem, so that the presence of one enhances the abundance or virulence of

the other. A clear example of this is HIV, which causes immunosuppres-
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sion, increases the likelihood of additional infections, and occurred in two

fifths of reported coinfections (Fig. 2.4).

Differences between reported coinfections and global mortality figures

also suggest interactions between coinfecting parasites. Coinfections that

were more commonly reported than their relative contribution to global

mortality may involve particular synergistic parasite-parasite interactions,

such as herpes viruses like CMV or HSV infection enhancing the risk of

HPV coinfection (Baldauf et al., 1996). Conversely, infections that cause

high mortality but had relatively few reports of coinfection could result

from antagonistic interactions, reducing the likelihood of such coinfections

occurring and being reported, like Pseudomonas aeruginosa exoproduct

limiting Staphylococcus aureus colony formation (Hoffman et al., 2006).

An alternative, and possibly more likely, explanation of the discrepan-

cies between reported coinfections and global mortalities from infections

could be greater funding availability (e.g. HIV/AIDS research), higher

interests of virologists in coinfection and/or easier observations or more

routine screening compared with other parasite types, for instance the

greater difficulty of detecting intestinal helminths to the species level in a

living patient. The lack of coinfection publications reporting on major in-

fectious causes of childhood mortality remains unexplained. While some

publications do consider childhood coinfection (Lello et al., 2013), and

coinfection appears to be more common in childhood (Plata-Nazar et al.,

2009), recently published coinfection research does not include the infec-

tions that kill the most infants globally. Fewer than 1 in 20 publications

reported coinfections involving helminths, despite hundreds of millions of

helminth coinfections globally (Hotez et al., 2007), which could arise from

limited published research on helminthiases. To what extent disparities

between global mortality data reflect real patterns, or biases in either re-

search attention or reporting, remains to be seen. Proper evaluation of

these potential biases is hindered by inadequate coinfection surveillance.

The disparity between infections that feature highly in global mortal-

ity statistics and those receiving most attention in published coinfection

studies poses a challenge to infectious disease research. A general under-

standing of the effects of coinfection is important for appropriate control
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of infectious diseases (Boraschi et al., 2008; Brogden et al., 2005; Hotez,

2009; Laserson and Wells, 2007). Poor or uncertain observational data

regarding coinfection hinders efforts to improve health strategies for infec-

tious disease in at-risk populations (Steinmann et al., 2010). For example,

global infectious disease mortality data (World Health Organization, 2009)

report only single causes of death, even if comorbidities were identified.

If health statistics better represented coinfection, published coinfection

research could be better evaluated. True patterns of coinfection remain

unknown (Brooker and Utzinger, 2007), but my results suggest that it

may differ from existing data on important infectious diseases.

Recently published reports of coinfection in humans show that coinfec-

tion tends to be detrimental to human health. Understanding the nature

and consequences of coinfection is vital for accurate estimates of infec-

tious disease burden. More holistic data on infectious diseases would help

to quantify the size of the human health effects of coinfection. Improved

knowledge of the factors controlling an individual’s risk of coinfection,

circumstances when coinfecting parasites interact, and the mechanisms

behind these parasite-parasite interactions, especially from experimental

studies, will also aid the design and evaluation of infectious disease man-

agement programmes. To date, most treatment programmes typically

treat each parasite species as if it were in isolation. If coinfecting parasites

tend to interact to worsen human health, as suggested here, treatments

may need to be more integrated and specialist treatments developed for

coinfection.
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Chapter 3

Parasites interact most via

shared resources in a summary

human coinfection network

Abstract

Coinfection can have negative effects on human health (Chapter 2). How

coinfecting parasites interact within a complex human host to produce

these effects is currently unknown. Understanding the mechanisms that

underly parasite interactions within a host could lead to improved coin-

fection treatments. In this chapter I use data from hundreds of published

studies of coinfected humans to assemble a summary within-host coinfec-

tion network comprising direct and indirect interactions among parasites,

resources, and host immune components. I then investigated the net-

works structure by quantifying parasite interaction types, and detecting

modules of closely interacting components. Interactions between pairs of

parasites were more often mediated indirectly through shared resources

than through immune components or other parasites. Furthermore, the

network comprised 10 groups of closely interacting parasites, resources

and immune components, eight of which were associated with particu-

lar body parts, and seven of which were dominated by parasite-resource

interactions. The summary network of reported coinfection in humans

had a compartmentalised structure, with physical location and bottom-
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up, resource-mediated processes most often influencing how, where, and

which coinfecting parasites interact. This shows the utility of networks for

understanding how coinfecting parasites interact, gives evidence for why

parasite communities in human populations may be resistant to treat-

ment, and provides hypotheses for how new treatments could modify the

processes within coinfected humans.

Introduction

More than 1400 parasite species, including viruses, bacteria, helminths,

protozoa, and fungi, infect humans (Taylor et al., 2001). Simultaneous in-

fection of humans by multiple species (coinfection) is commonplace (Brog-

den et al., 2005; Cox, 2001; Petney and Andrews, 1998); helminth coinfec-

tion alone affects 800 million individuals (Hotez et al., 2007). Coinfection

involves globally important diseases like HIV and tuberculosis (Fatken-

heuer et al., 1999), is concentrated among the poor (Boraschi et al., 2008;

Steinmann et al., 2010), and is often associated with worse host health

and higher parasite abundance (Chapter 2). Coinfection can also reduce

treatment efficacy (Chiodini, 2001; Cooper et al., 2001; Harris et al., 2009),

and increase treatment costs (Rizzardini et al., 2011). These phenomena

are likely driven by within-host interactions among coinfecting parasites.

Coinfecting parasites interact when individuals of one species affect in-

dividuals of another (an interspecific interaction, Wootton and Emmerson

(2005)). Interactions may be direct (Hoffman et al., 2006), or indirect, me-

diated by other parasites, host immunity (Bruce et al., 2000; Christensen

et al., 1987; Cox, 2001) or host resources (Antia et al. (2008), i.e. body

parts consumed, damaged, or inhabited by parasites). These bottom-up

resource-mediated and top-down immune-mediated interactions between

coinfecting parasites have been likened to how species interact in free-

living ecosystems (Pedersen and Fenton, 2007). Accordingly, treatment of

one species could result in unexpected changes to another non-target par-

asite (Bruce et al., 2000; Druilhe et al., 2005; Lello et al., 2004). However,

we currently know little about the frequency of these different interac-

tion types, or how they are distributed in the human body (Franco et al.,

40



3. Coinfection interaction network

2003). Indeed, the potentially overwhelming diversity of coinfecting para-

site types, and their many possible interactions, means that understanding

the consequences of coinfection remains difficult.

Before the effects of treatment on coinfecting parasites can be pre-

dicted, we need to know how within-host parasite communities are struc-

tured. If parasite communities have consistent, non-random assembly

processes, these could be used to develop general treatment guidelines.

However, at present, we do not know the overall structure of the wider

parasite community because most studies of coinfection are typically re-

stricted to measuring interspecific interactions between pairs of parasites

(80% of publications reviewed in Chapter 2 reported a single species pair).

Here, I move beyond this pairwise view to study interspecific interactions

among the parasite community of humans.

Network structure can reveal the biological function of complex sys-

tems (Albert and Barabasi, 2002; Strogatz, 2001), and networks have fre-

quently been used to study free-living ecological communities. Summary

networks, comprising aggregated samples across multiple places or times,

are particularly useful for finding consistent forces influencing commu-

nity composition or interaction pathways among groups of components,

even when they are not directly measured from a single sample (Pimm,

2002). Researchers have begun to include parasites in ecosystem-wide net-

works (Lafferty et al., 2006), and in disease transmission networks (Danon

et al., 2011; Poulin, 2010). Networks are also being applied to complex

diseases (Cho et al., 2012), and within-host ecosystems, revealing relation-

ships between the host and single parasite infections (e.g. Mycobacterium

tuberculosis, Raman et al. (2010)), humans and their microbes (Thiele

et al., 2012), and a summary network of many parasites across many fish

species (Lima Jr et al., 2012). However, there has been no attempt to

construct a comprehensive within-host interaction network for a single

host species. Such a network could be constructed with three trophic lev-

els of parasites, resources consumed by them, and host immune defences

to show whether interactions among parasites are direct or indirect, or

are predominantly resource-mediated or immune-mediated (Pedersen and

Fenton, 2007). Understanding such community-wide patterns could in
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the future help understand and predict treatment responses in individual

coinfected patients.

Here I constructed the first summary network of within-host coinfec-

tion from published reports of coinfection in humans. The components

(nodes) of the network are parasites (e.g. HIV, Aspergillus, hookworm),

host immune system components (e.g. IgA, IL-10, macrophages), and

host resources (including nutrients or cells consumed and cells, bodily flu-

ids, tissues, organs, anatomic sites occupied or damaged by parasites). I

then analyzed (i) the structure of the full network in terms of the dis-

tribution of links (interactions between nodes), (ii) the frequency of par-

asite interaction types (direct, immune-mediated, resource-mediated, or

parasite-mediated), and (iii) how the network is arranged in modules of

highly-connected nodes (see Table 3.1 and Fig. 3.1). I found the structure

of interactions among parasites within coinfected humans to be similar to

other ecological networks and, contrary to expectations from other re-

search, to mainly be subject to bottom-up control.

Methods

Network development

A network of parasites, resources, and immune components (nodes) was

assembled from 316 articles on human hosts with established coinfections

published in 2009 (one year due to time constraints; see Chapter 2 for

inclusion and exclusion criteria). Analyses later in this chapter show that

results are unlikely to be affected by the restricted dataset (see accumu-

lation curves and effects of publication sampling in Fig. 3.7).

Interactions in the network are denoted by links between two nodes,

and all links in the network were binary (present or absent), since data for

interaction strengths were unavailable from most publications. Quantified

interaction strengths are useful when modelling network dynamics, and

when some interactions may only occur under certain conditions (e.g. at

particular points in the infection cycle, with plasticity of parasite pheno-

types (Mideo and Reece, 2012; Viney, 2001). However, a binary network
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Fig. 3.1: Illustrative diagrams of network analyses undertaken: (a) node
degree, (b) assortativity, (c) direct and indirect connections, and (d) mod-
ularity, where the modularity scores correspond to the maximum modu-
larity obtained by sequentially collapsing nodes into modules. The left
network in (d) was designed to have three modules and high modularity.
The right network in (d) is a random network with the same number of
nodes, links, and modules, but has lower peak modularity.
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Table 3.1: Network metrics used herein and their biological relevance for
understanding interactions among coinfecting parasites.

Measure Meaning Importance to coinfection Outline

Degree Number of nodes
linked to a given
node.

Reveals how interactive a node is. Fig. 1a

Assortativity Correlation of node
degree across all
pairs of linked
nodes.

Strong positive correlation indicates
polarisation between nodes with few
and many interactions; cliques of
highly interactive nodes may need
special treatment.

Fig. 1b

Direct
parasite
interactions

Number of parasites
linked to a given par-
asite.

Reveals coinfections where inte-
grated treatment may be advisable.

Fig. 1c

Indirect
parasite
interactions

Number of parasites
connected to each
parasite by two links
via an intermediary
node.

Reveals interactions between coin-
fecting parasites mediated by an-
other parasite or by host immunity
or resources, where treatment choice
may depend on host condition.

Fig. 1c

Modules Groups in the net-
work that have many
links within them
and fewer links to
other groups.

Reveals areas of highly connected
immune components, parasites & re-
sources. Could enable typing of coin-
fection cases.

Fig. 1d
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is sufficient for revealing the coarse topology of biotic interactions (see

Chapter 2 for a fuller discussion of the difficulty of quantifying interaction

strengths from this dataset).

Each individual publication reports only a subset of resource- and

immune-interactions relevant to that specific study. To understand the

wider potential for interactions among parasites I therefore combined in-

teractions from many publications into a summary network (also called a

community food web by Cohen (1978)), akin to many ecological networks

of free-living systems that aggregate all the possible links between nodes in

one ecosystem type (e.g. a freshwater stream, Woodward (2010)). Hence,

the full network does not represent an individual coinfected host, but re-

flects all potential within-host interactions reported among the parasite

community within humans.

Nodes

Nodes from reports collated across the sampled publications were named

consistently by aggregating closely related nodes. This aggregation helps

detect functionally similar interactions and is standard practice in net-

work science (Dunne, 2006). Following common use in genetics (Bard

and Rhee, 2004), I used an ontology (National Cancer Institute, 2011),

the Universal Medical Language Service (UMLS) semantic hierarchy (US

National Library of Medicine, 2010), and the following rules to ensure

consistent node aggregation: (i) immune and resource nodes aggregated

to cell type or above, except for components that interact directly with

parasites, (ii) substance nodes designated by the UMLS type were aggre-

gated by their biological function, and (iii) nodes relating to the human

reproductive system were classified into gender-specific classes (e.g. female

genitals, male genitals, and pregnancy), because differences between the

sexes and reproductive status have been biologically important in other

coinfection studies (Cattadori et al., 2008; Luong et al., 2010; Ned et al.,

2005). Accordingly, some nodes above the cellular level were subsets of

one another, such as knee and joint, gums and mouth, or colon and gas-

trointestinal. These nodes were not aggregated so as not to confound how

particular interaction patterns were counted, for example, the number of
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indirect links between parasites will increase as intermediary nodes are

aggregated. Many links would be unrealistic if two parasites occupying

very distinct parts of, for instance, the alimentary canal were linked to

the same, aggregated resource node. Relations between nested nodes (like

colon and gastrointestinal) are biologically important, and the module

analysis allows these nodes to cluster together.

Since the amount of node aggregation (e.g. taxonomic resolution of

nodes) can affect ecological network structure (Gilljam et al., 2011), I as-

sessed the effect of three different node aggregation methods on the con-

clusions: (i) no aggregation, where node names matched those reported in

publications, (ii) medium aggregation of cells into tissues, immune recep-

tors into functional groups (Th1/Th2), and parasites to genus level, and

(iii) high aggregation where tissues were aggregated into body parts, and

parasites were aggregated to the family level.

Links

Links between nodes were first derived from the same publications that

reported those nodes. Resource or immune links for some parasites were

not mentioned in the publications, but in many of these cases the re-

sources they consume and immune responses they triggered were known

so were assigned using an encyclopedia of infections (Topley, 2006). Each

link was classified in one of three ways according to the strength of ev-

idence: (1) co-occurrences (two nodes observed in the same individual,

(2) correlations (an association between two nodes is reported, without

a known biological mechanism), or (3) mechanistic links (connected by a

demonstrated biological process). While known mechanisms are a reliable

basis for an interaction, there are potential causal processes that remain

unknown, especially for poorly studied parasites. Establishing causality

over mere association is particularly problematic in humans where experi-

mentation is difficult. Two components found simultaneously in the same

individual could potentially interact, even if the connecting mechanisms

have not been identified or the interaction is so weak that it has not yet

been detected. Therefore three versions of the network were analysed

based on the link types described above: mechanistic links only, mecha-
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nistic and correlative links, and all three link types together. The three

versions cover a spectrum from a network with high degree of certainty

(mechanistic only) to one where the mechanism of interaction has not been

reported (all link types).

In most cases there was insufficient data to infer directionality between

parasites and their various linked host (resource and immune) components.

The presence of many undirected links, or ones where the direction of

energy flow is ambiguous (e.g. non-mechanistic links between parasites,

damage from migration through tissues, or immune interdependencies),

and the inability to compute a network with a mixture of directed and

undirected links means all three versions of the network were undirected.

Most of the metrics I used (assortativity, direct/indirect interactions, and

modularity) do not depend on link direction. Node degree can depend on

direction by counting links to or from a node (in- and out-degree), but for

this undirected network I used total degree.

A summary network

All the nodes and links across the time course of infections and across in-

dividuals form a summary network of coinfection in humans, akin to many

ecological networks of free-living systems that aggregate all the possible

links between nodes in one ecosystem type (Woodward, 2010). Hence,

the full network does not represent an individual coinfected host, but re-

flects all potential within-host interactions reported among the parasite

community within humans.

Network analysis

I analysed three structural features of each of the networks (Fig. 3.1

and Table 3.1): (i) how much the components interact with one another

(distribution of node degree, Fig. 3.1a-b), (ii) the relative importance

of different types of interaction between parasites (Fig. 3.1c), and (iii)

whether the network contains modules of tightly interacting nodes (Fig.

3.1d). While many other network structural features exist, I chose these

particular features because they reveal functionally important patterns
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regarding interactions in coinfected humans (see Table 3.1). Many other

analyses can be done to understand within-host networks of coinfection,

but I present a selection of results to highlight what a summary within-

host parasite network can reveal about coinfection. Analyses were done

in R version 2.15.1 (R Development Core Team, 2012).

Degree distribution

I summarised the overall network structure by calculating node degree.

A node’s degree is the number of nodes that are one link away (i.e. the

number of other nodes connected to each focal node). A networks degree

distribution reveals how links are distributed among nodes, can indicate

how resistant the network is to perturbation, and, being a commonly used

network metric, enables us to directly compare the within-host coinfec-

tion network with other networks. Parameter(s) for exponential, power-

law, Poisson, normal, and uniform degree distributions were estimated by

maximum likelihood and the coefficient of determination (R2 ) was calcu-

lated to find the model closest to the observed degree distribution (Dunne

et al., 2002).

I also analysed the tendency for well-connected (high degree) nodes

to be linked to other well-connected nodes (i.e. evidence for assortative

mixing, or assortativity). If highly linked nodes are also connected to

other highly linked nodes (high assortativity) there is greater potential for

perturbations to spread across the network (Maslov and Sneppen, 2002).

Assortativity was measured via Pearson’s correlation coefficient (r) of the

degree of each node either side of each link (Newman, 2003). Networks

with high assortativity have high positive values of r (close to +1) be-

cause high degree nodes are also likely to be linked to other high degree

nodes. Values of r close to 0 indicate a more even distribution of links,

similar to a random network. Negative values of r (close to −1) indi-

cate disassortativity whereby high degree nodes are dispersed across the

network and are typically connected to low degree nodes.
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Frequency of parasite interaction types

I counted the total number of direct and indirect links between every

pair of parasites to reveal the reported frequency of each type of parasite

interaction. Indirect links occur when two parasite nodes are linked via

an intermediate node (either a resource, parasite, or immune component).

The number of each type of parasite-parasite interaction was calculated

by isolating only the links relevant to a certain type of interaction, and

then counting the number of unique routes linking any parasite pair.

I compared the observed number of direct and indirect links with that

expected from chance using 1000 randomly rewired networks. I used a

constrained Poisson process to create random networks that had the same

number of nodes in each trophic level but each node had equal probability

of being linked to another node (Erdos-Renyi process of independent link

assignment, following Erdos and Rényi (1959); Strogatz (2001)). Many

networks deviate from such random distributions, but I used this null dis-

tribution to test whether the community of parasites coinfecting humans

was assembled by a neutral, independent process. Randomisations with

more biological detail could be explored in future, but as this is the first

summary network of parasites within humans I begin with a null model of

a Poisson distribution of links. I implemented the randomisation by reas-

signing the links from the upper triangle of the observed adjacency matrix

in random order. The total number of nodes and links was therefore equal

to the empirical network, though the redistribution of links meant that

individual node degrees differed (and hence the number of particular in-

teractions between certain nodes types in the network also differed). The

observed numbers of each type of interaction are significantly different

from the expected numbers of interactions if they lie beyond two stan-

dard deviations from the mean of the randomisation results. I calculated

p-values by comparing the observed number with the expected normal dis-

tribution using the mean and standard deviation from the randomisations

(at large means the Poisson tends toward a normal distribution). Ran-

domisations are an adequate significance test for frequency of interaction

types, but can fail to account for broader network structures like clusters
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of nodes (Schwobbermeyer, 2007), which is why I also studied network

modularity.

Modules

Modules were found using three search algorithms (Fig. 3.7a): (i) by se-

quentially removing the most peripheral link (Newman and Girvan, 2004);

(ii) using statistical mechanics (the methodology of Reichardt and Born-

holdt (2006), iterated 100 times); and (iii) using short random walks (Pons

and Latapy, 2005). In brief, these algorithms search for classifications of

nodes into groups (modules) that maximize the modularity. One measure

of modularity, termed Q, ranges from 0 (no modular structure, many links

between modules) to 1 (strong modular structure, few links between mod-

ules, Newman and Girvan (2004)). I analysed the set of modules with peak

modularity (Q) for the mechanistic network, since this network makes a

conservative assumption about the presence of interactions and reveals

the strongest functional similarities (and differences) within the network.

For each module I recorded the type (parasite, resource, immune) and

identity of the node with highest within-module degree. These nodes con-

tribute strongly to modularity and reveal the defining characteristics of

each module.

I also looked within each module to test whether node types had more

within-module links than would be expected from chance. I compared the

observed number of within-module links to that expected from a binomial

distribution where the number of trials was the total number of links

to nodes of each type in the module. The number of observed links was

considered significantly different from expected if the number was less than

5% probability in a two-tailed binomial distribution (i.e. p < 0.025 or

p > 0.975). I repeated this test for two interaction types (immune-parasite

and resource-parasite). Parasite-parasite links were omitted because this

interaction type was very rare in the mechanistic network.

To test the robustness of the modularity analyses and results, specifi-

cally whether resource-dominated modules were also present in other pos-

sible module sets (identified by the same algorithms but having lower

modularity), I compared the optimal module set with alternative module
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sets. These alternatives had slightly lower Q values than the maximal

value found (i.e. for four module sets with next-highest Q-values where

0.469 < Q < 0.4695; see Results). Visually comparing the nodes in each

module in these other high modularity sets with the 10 modules described

above confirmed that all modules were consistently associated with bodily

locations and the node with highest within-module degree was a resource

node.

Results

The summary network of coinfected humans comprised 124 host resources,

305 parasite taxa, 98 immune system components, and 2922 links between

these components. The network was compiled from 316 published papers.

Most publications (256/316, 81%) reported data from multiple coinfected

patients. The majority of links (1578) were based on mechanistic evidence,

while 812 were from co-occurrence, and 532 from correlational evidence.

I derived three versions of the summary network from these different link

types: mechanistic links only, mechanistic and correlative links, and all

links. I primarily describe results for the mechanistic-only version because

these links have the greatest biological support. However, I also compare

these results with those from the two other network versions.

Degree distribution

I calculated the degree of each node (the number of connections that each

node has with other nodes; Fig. 3.1a, metrics defined in Table 3.1). The

degree distribution for the network containing only mechanistic links most

closely resembled an exponential distribution with the exponent 0.16 (s.d.

0.007, R2=0.87, p < 0.001, Fig. 3.2a). This means that most nodes (i.e.

parasites, resources or immune components) in the network were linked

to few other nodes, in fact 89.7% of nodes (456/508) had < 15 unique

links. Only 9 nodes (0.018%) had degree ≥ 35. These highly connected

nodes were blood (70 unique links), respiratory tract (47), skin (40),

lungs (39), HIV (37), IgG (37), macrophage (37), dental abscess (37),

and liver (36).
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Fig. 3.2: (a) Degree distribution for the network containing only mech-
anistic links. Thick black line corresponds to the observed proportion
of nodes with a degree greater than or equal to the value on the x-axis.
Dashed line indicates the best-fitting statistical model, the exponential
model (exponent 0.016, p < 0.001, R2 = 0.87). (b) Assortativity: the
degree of each node plotted against the degree of their linked nodes for all
unique links for a network with only mechanistic links (Pearsons correla-
tion r = −0.12, p < 0.001). Plotting symbols are transparent such that
ten overlaid data points are black.

There was generally weak assortativity across all three versions of the

summary within host network (r close to zero, ranging from −0.12 to

0.12, Fig. 3.3a, and Table 3.2), but significant disassortativity in the

mechanistic network (r = −0.12, p < 0.001, Fig. 3.2b). Hence, most

nodes were connected to a range of low, medium, and high degree nodes.

Frequency of parasite interaction types

Indirect interactions (i.e. paths of two links with an intermediate node,

Fig. 3.1c) between parasites were more common than direct links. The

ratio of indirect to direct links ranged from 1.09 times higher for parasite-

mediated interactions within mechanistic and correlative link networks,

to 829 times higher for resource-mediated interactions in the mechanistic-

only network (Fig. 3.4, Table 3.2). Indirect parasite interactions were

most often resource-mediated, and these were significantly more com-

mon than expected by chance (p < 0.001; rewiring randomisation test).

Immune-mediated indirect interactions were about half as common as
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Fig. 3.3: Degree of nodes plotted against the degree of their linked nodes
for all unique links. Plotting symbols are transparent such that 10 overlaid
data points are black. (a) For mechanistic and correlative links and (b)
all link types. The correlation for both networks was weak but significant,
p < 0.001.

Table 3.2: Node degree, assortativity, number of each type of interaction
between parasite species, and the number of modules for three versions
of the summary within-host coinfection network containing different link
types, with standard aggregation of node names. Indirect parasite inter-
actions are represented as: I = Immune mediated, P = parasite mediated,
and R = Resource mediated. *** denotes significantly different from ran-
domised values (p < 0.001)

Measure Mechanistic Mechanistic &
Correlative

All link types

Degree distribution Exponential
(λ=0.16,
R2 =0.866***)

Exponential
(λ=0.12,
R2 =0.874***)

Exponential
(λ=0.09,
R2 =0.895***)

Assortativity −0.12*** +0.07*** +0.12***
Direct interactions 9*** 128*** 875***
Indirect interactions P=1***,

R=7464***,
I=3652***

P=140***,
R=9408***,
I=5429***

P=4064***,
R=11492***,
I=5429***

Modules 10 9 8
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Fig. 3.4: The number of direct and indirect paths between parasites for
(a) all link types, (b) mechanistic and correlative links, and (c) mech-
anistic links only. Vertical black lines represent expected distributions
(2 sd, dot=mean) from 1000 simulations. All observed results devi-
ated significantly from expected values (tested against normal distribution
p < 0.001). Vertical axis scales for (a), (b), and (c) are identical.

resource-mediated interactions, though still significantly more common

than expected by chance (p < 0.001). Furthermore, 167 publications

(167/316, 53%) reported multiple parasite-resource interactions, but only

85 (27%) reported multiple parasite-immune interactions. The relative

frequency of reported resource- and immune-mediated interactions were

robust to the potential under-reporting of parasite-immune links (Fig.

3.5), and to the exclusion of publications relating to individual patients

(Fig. 3.6).

Most parasite-parasite links were based on co-occurrence; networks

excluding this type of evidence had relatively few direct or indirect in-

teractions involving only parasites (and fewer than expected by chance;

p < 0.001, Fig. 3.4b and c). The relative frequency of each type of

parasite-parasite interaction was qualitatively similar for all three network

versions (Fig. 3.4a-c, all p < 0.001; Table 3.2).
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Fig. 3.5: Number of direct and indirect paths between parasites, with par-
asites lacking immune links removed from the network. Vertical black lines
represent expected distributions from 1000 simulations (2 sd, point=mean,
see Methods). (Right) All link types, (middle) mechanistic and correla-
tive links, and (left) mechanistic links only. All observed results deviated
significantly from expected values (p < 0.001).
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Fig. 3.6: Number of direct and indirect paths between parasites, with
links from individual patients (case note publications) removed from the
network. Vertical black lines represent expected distributions from 1000
simulations (2 sd, point=mean, see Methods). (Right) All link types,
(middle) mechanistic and correlative links, and (left) mechanistic links
only. All observed results deviated significantly from expected values (p <
0.001).
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Modules

The mechanistic network contained a set of modules with highest mod-

ularity (peak Q value, illustrated in Fig. 3.1d) that best distinguished

clusters of dense interactions, and included 10 modules ranging in size

from 12 to 90 nodes (Q = 0.4695, Table 3.3, Fig. 3.7). Each of those

modules contained a mix of parasites, immune components and resources.

One module contained only bacterial parasites, however, all other modules

contained multiple parasite types. Parasites were the most common node

in 9 of the 10 modules (Table 3.3, except module 2 with 30 immune and

22 parasite nodes). All but two modules had more resource than immune

nodes (except module 2 with 30 immune and 15 resource nodes, and

module 4 with 25 immune and 9 resource nodes).

These 10 modules were associated with particular microhabitats within

the human body (Fig. 3.8, Table 3.3), and this association was also found

in other module sets with next highest modularity values. Visual in-

spection of these 10 modules showed associations with particular bodily

systems (Modules 3, 4, 7, 9), body parts (Modules 1, 8, 10), and tissues

(Module 6). Two modules were classified as mixed because they contained

several sites of infection including the liver, oesophagus, genitals, and eyes

(Module 2), and nose, skin, and urinary tract infections (Module 5). Re-

source nodes had the highest within-module degree for seven out of the 10

modules, and were more common than expected by chance in all modules

(Fig. 3.9, p < 0.001). Parasite-immune interactions dominated the struc-

ture of the remaining three modules where they were also more common

than expected by chance (p < 0.001). Of the three modules where non-

resource nodes had the highest within-module degree, two were immune

nodes (IgG and macrophages), and a parasite dominated the other (HIV).
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Figure S4: (a) Number of modules and modularity score for each set of modules generated
by different algorithms from the mechanistic network (black line = sequential deletion of
the weakest link from each individual node having its own module to one large module
containing all nodes, light grey dots = statistical mechanics, and black dots = random
walks). Modularity (Q) is a measure of the strength of association within the proposed
modules and strength of division between different modules. (b) Accumulation of nodes
and links in the network with each sampled 2009 publication. All nodes (red line, right
y-axis) resolved into immune (purple), resource (green), and parasite nodes (blue). Left
y-axis for all links (black line)

Fig. 3.7: (a) Number of modules and modularity score for each set of
modules generated by different algorithms from the mechanistic network.
Black line = sequential deletion of the weakest link from each individual
node having its own module to one large module containing all nodes,
light grey dots (indistinguishable from one another) = statistical mechan-
ics, and black dots (indistinguishable) = random walks. Modularity (Q)
is a measure of the strength of association within modules and division
between modules. (b) Accumulation of nodes and links in the network
with each sampled publication. All nodes (red line, right y-axis) resolved
into immune (purple), resource (green), and parasite nodes (blue). Left
y-axis for all links (black line).
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Table 3.3: Classification of each module in the module set with peak
modularity for the summary network containing only mechanistic links. I
describe the number of nodes of each type in each module, and the identity
and degree of the node with the highest number of links to other nodes
in that module and proportion of within-module links these represent. I
= immune, P = parasite, R = resource, GI = Gastrointestinal, UTI =
Urinary Tract Infection, LRT=Lower Respiratory Tract.

Module Name I P R Highest
degree
node

Degree % of
module
links

1 Throat 1 11 3 Tonsil 9 69
2 Mixed 30 22 15 HIV 23 16
3 GI 12 39 17 IgG 20 17
4 Genitals 25 30 8 Macrophage 18 12
5 UTI,

Skin
4 59 27 Urinary

tract
24 11

6 Mucosa 11 30 11 Respiratory
tract

19 18

7 Bowel 1 9 6 Colon 5 25
8 LRT 3 18 4 Lungs 15 45
9 Blood 1 29 10 Blood 24 42
10 Mouth 3 52 17 Dental

abscess
27 23
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Fig. 3.8: The within-human coinfection network comprising parasite
(blue), immune (green), and resource (pink) nodes connected by mech-
anistic links has ten modules, eight of which are associated with a par-
ticular bodily sites. Module numbers refer to Table 3.3. Grey and black
numbers and dotted lines are stylistic only; the different shades are used
to more clearly distinguish the lines corresponding to each module.
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Fig. 3.9: Number of within-module interactions between host immune
components and parasites, and between host resources and parasites in
each of the ten modules of the mechanistic network. Thick black lines
indicate 95% confidence intervals expected from the binomial test (see
Methods). Bars that do that overlap with black lines (immune-parasite
links for modules 1, 7, and 9) are not significantly different from random
distributions (p > 0.05). The number of within-module links for all other
modules and link types are significantly higher than expected by chance
(p < 0.001)
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Robustness of results

I tested whether measures of network structure were sensitive to the ag-

gregation of nodes and the sample of publications (Tables 3.4-3.6, Fig.

3.10-3.14). The key findings of exponential degree distributions (Fig.

3.10), weak (dis)assortativity (Fig. 3.11), the relative frequency of par-

asite interaction types (Fig. 3.12), and resource-mediated outnumbering

immune-mediated within-module interactions (Fig. 3.13) were all robust

to node aggregation. While the number of nodes and links in the net-

work increased linearly with each new publication (Fig. 3.7b), the ratio

of resource- to immune-mediated links levelled off once 40 publications

were sampled with resource-mediated interactions being dominant (Fig.

3.14a). The degree distribution exponent also reached an asymptote af-

ter 100 publications, but the R2 value was unchanged even with only 5

papers sampled (Fig. 3.14b). Assortativity became weakly positive with

a very low p-value, reaching an asymptote after 100 publications (Fig.

3.14c). The number of modules and the modularity score peaked once 50

publications were sampled, levelling off at lower values with fewer modules

with more sampling (Fig. 3.14d).
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Table 3.4: Summary of the results for number of nodes and links, node
degree, assortativity, number of each type of interaction between parasite
species, and the number of modules & associated Q value for different link
types in a version of the network where node names were not aggregated.
Indirect parasite interactions are represented as: I = Immune mediated,
P = parasite mediated, and R = Resource mediated. *** denotes signif-
icantly different from randomised values with p < 0.001, ** p < 0.01, *
p < 0.05, no asterisk means NS.

Measure Mechanistic Mechanistic &
Correlative

All link types

Nodes 612 644 664
Links 1651 2219 3073
Degree distribution Exponential

(λ=0.18,
R2=0.975***)

Exponential
(λ=0.14,
R2=0.976***)

Exponential
(λ=0.11,
R2=0.986***)

Assortativity −0.02* +0.05** +0.11***
Direct interactions 16 163 854
Indirect interactions P=5,

R=9538***,
I=3449***

P=177,
R=10749***,
I=5418***

P=934,
R=10698***,
I=5148***

Modules 10, Q = 0.507 12, Q = 0.458 13, Q = 0.499

Table 3.5: Summary of the results for the version of the network with
medium aggregation, i.e. node names were more aggregated than with
standard aggregation. Indirect parasite interactions are represented as: I
= Immune mediated, P = parasite mediated, and R = Resource mediated.
*** denotes significantly different from randomised values with p < 0.001,
** p < 0.01, * p < 0.05, no asterisk means NS.

Measure Mechanistic Mechanistic &
Correlative

All link types

Nodes 281 291 292
Links 1177 1606 2282
Degree distribution Exponential

(λ=0.12,
R2=0.887***)

Exponential
(λ=0.09,
R2=0.849***)

Exponential
(λ=0.06,
R2=0.887***)

Assortativity −0.06* +0.11*** +0.09***
Direct interactions 10 ∗ ∗ 124 ∗ ∗ 648∗
Indirect interactions P=3***,

R=7316***,
I=5009***

P=157***,
R=8482***,
I=6382***

P=6477,
R=8415***,
I=6382***

Modules 8, Q = 0.358 8, Q = 0.335 5, Q = 0.374
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Fig. 3.10: Degree distribution for networks with (top row; a-c) no aggrega-
tion of node names, (middle row; d-f) medium aggregation, and (bottom
row; g-i) high aggregation. Split by the link types in each network with
(left column; a, d, g) mechanistic links only, (middle column; b, e, h)
mechanistic and correlative links, and (right column; c, f, i) all link types.
Thick black line is the observed proportion of nodes with a degree greater
than or equal to the value on the x-axis. In all cases the best fitting
model for the degree distribution was the exponential model (dashed line,
see Tables 3.4-3.6- for statistics, all p < 0.01).
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Fig. 3.11: Assortativity: the degree of each node plotted against the degree
of their linked nodes for all unique links for networks with (top row; a-
c) no aggregation of node names, (middle row; d-f) medium aggregation,
and (bottom row; g-i) high aggregation. Split by the link types in each
network with (left column; a, d, g) mechanistic links only, (middle column;
b, e, h) mechanistic and correlative links, and (right column; c, f, i) all
link types. Plotting symbols are transparent such that ten overlaid data
points are black.
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Fig. 3.12: Number of direct and indirect interactions between parasites for
networks with (top row; a-c) no aggregation of node names, (middle row;
d-f) medium aggregation, and (bottom row; g-i) high aggregation. Split
by the link types in each network with (left column; a, d, g) mechanistic
links only, (middle column; b, e, h) mechanistic and correlative links, and
(right column; c, f, i) all link types. Vertical black lines represent expected
distributions (2 sd, point=mean) from 1000 simulations (see Methods).
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Fig. 3.13: Number of within-module interactions between parasites and
immune components or resources in the module sets with peak modularity
for networks with (top row; a-c) no aggregation of node names, (middle
row; d-f) medium aggregation, and (bottom row; g-i) high aggregation.
Split by the link types in each network with (left column; a, d, g) mecha-
nistic links only, (middle column; b, e, h) mechanistic and correlative links,
and (right column; c, f, i) all link types. Thick black lines indicate 95%
confidence intervals from the binomial distribution (see Methods). Bars
that overlap with CI lines are not significantly different from random dis-
tributions. Bar colours denote the type of nodes connected by a link: green
= immune-parasite, blue = parasite-immune, purple = parasite-resource,
pink bars = resource-parasite.
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(a) (b)

(c) (d)

Fig. 3.14: Robustness of network structure to sampling within 2009 coin-
fection publications. (a) Ratio of resource- to immune-mediated parasite-
parasite interaction frequency, (b) exponent and R2 of model fit to degree
distribution, (c) coefficient and p-value of Pearsons correlation between
node degrees (assortativity), and (d) number of modules and Q mod-
ularity score for module set with peak modularity. Networks had only
mechanistic links and standard aggregation of node names. Sampled from
five to 336 publications. Links from Topley and Wilsons encyclopedia
were broken down to reflect the average number of links reported in each
2009 paper, which increased the total number of publications to 337.
Vertical black lines represent two standard errors around the mean (small
horizontal black bar) from 50 simulations.
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Table 3.6: Summary of the results for the version of the network with
high aggregation, i.e. node names were much more aggregated than stan-
dard aggregation. Indirect parasite interactions are represented as: I =
Immune mediated, P = parasite mediated, and R = Resource mediated.
*** denotes significantly different from randomised values with p < 0.001,
** p < 0.01, * p < 0.05, no asterisk means NS.

Measure Mechanistic Mechanistic &
Correlative

All link types

Nodes 163 167 167
Links 837 1187 1685
Degree distribution Exponential

(λ=0.09,
R2=0.877***)

Exponential
(λ=0.07,
R2=0.856***)

Exponential
(λ=0.06,
R2=0.887***)

Assortativity −0.10** +0.09*** +0.08***
Direct interactions 32 ∗ ∗∗ 118** 462***
Indirect interactions P=32***,

R=5815***,
I=3490***

P=218***,
R=6753***,
I=4571***

P=2798***,
R=6680***,
I=4571***

Modules 6, Q = 0.269 6, Q = 0.253 4, Q = 0.289

Discussion

I developed a summary network of human coinfection from published re-

ports of coinfecting parasites, the resources they consumed or inhabited,

and immune components reacting with them. Although the summary

within-host coinfection network is complex, it contains several clear struc-

tural patterns. First, most components interact with few other compo-

nents, although some parasite species were highly interactive, e.g. HIV,

Staphylococcus aureus and Hepatitis C virus each interacted with dozens of

other nodes. Second, of all possible interactions between pairs of parasites,

most were indirect. While many studies highlight immune-modulation by

parasites (Bradley and Jackson, 2008; Lijek and Weiser, 2012; Maizels

et al., 2004), I found twice as many interactions via shared resources than

through shared immune responses. Finally, interactions were clustered

around particular locations of the human body, suggesting that the para-

site community of humans may be divided into microhabitat modules.

These findings indicate that the human summary coinfection network

is similar to many free-living ecological communities, confirming prior
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suggestions that coinfection can be understood using ecological concepts

(Bruce et al., 2000; Graham, 2008; Pedersen and Fenton, 2007). In partic-

ular, assortative and disassortative processes were found in the summary

coinfection network, similar to directed ecological networks (Foster et al.,

2010; Hao and Li, 2011). This suggests that, while well-connected parasite

species tend to interact with one another, other well-connected resource

and immune nodes tend to interact with poorly-connected components.

This feature may limit how far perturbations are likely to spread across

the network (Maslov and Sneppen, 2002). Furthermore, the exponen-

tial degree distribution that I observed in the summary within-human

network matches that of many food webs (Camacho et al., 2002; Dunne

et al., 2002). The summary networks modularity (Q = 0.469) was within

the range seen for many food webs (range 0.15 to 0.6) (Guimerà et al.,

2010), suggesting that well-connected nodes are somewhat isolated and,

again, restricting the wider effects of perturbations and maintaining net-

work robustness (Alcántara and Rey, 2012; Krause et al., 2003; Maslov and

Sneppen, 2002). Overall, therefore, many structural aspects of the sum-

mary coinfection network suggest it is robust to perturbations, such that

treatment or vaccination of a particular parasite may have little impact on

the remaining network. This finding is consistent with observations from

treatment programmes in human communities where parasite populations

rapidly return to pretreatment levels, and secondary effects on other par-

asites are rarely reported (Basáñez et al., 2012). Perturbation studies

of parasite communities in other host species, more extensive monitoring

of human treatment programmes, and dynamic coinfection networks are

needed to more fully determine stability of parasite communities.

Resource- and immune-mediated indirect interactions between para-

sites were more common than expected by chance in the summary network.

Coinfecting parasites were most likely to interact indirectly through shared

resources than via the immune system, and network modules tended to

be associated with microhabitats rather than immune phenotypes. The

dominance of indirect effects matches other ecological systems and could

be another reason why controlling parasites in coinfected populations is

difficult (Borrett et al., 2010). While much coinfection research has fo-
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cussed on immune-mediated interactions, and interactions between para-

sites are often apparently presumed to be immunological (e.g. du Plessis

et al. (2012)), the role of resource-mediated interactions has received less

attention (Tompkins et al., 2011). However, host resources control the

within-host dynamics of various taxa: red blood cell density affects malaria

intensity in lab mice and in humans (Antia et al., 2008; Graham, 2008),

associations among microbiota (Faust et al., 2012), exclusion of another

hepatitis virus or Trypanosoma strain from certain tissues (Amaku et al.,

2013; Franco et al., 2003), and microhabitat associations in parasite com-

munities of nonhuman hosts (Lello et al., 2004; Stock and Holmes, 1988).

My results indicate that resources may be more widely involved in struc-

turing parasite interactions in humans than currently appreciated.

Such bottom-up control of the summary network could be produced by

either facilitation or competition among parasites. In the case of facilita-

tion, infection by one parasite encourages coinfection of the same resource,

as with polymicrobial wound infection (Dalton et al., 2011). Conversely,

ecological guilds of parasites may compete for particular resources (Lello

and Hussell, 2008; Pedersen and Fenton, 2007). We need further stud-

ies of the relative contributions of competition, facilitation, and how best

to manipulate these interactions to improve treatment of coinfected pa-

tients. If coinfecting parasites do interact more via resources, then new

treatments could be developed that disrupt parasite colonisation, feed-

ing, or reproduction using resources shared by coinfecting parasites. For

instance, if certain dietary constituents like cranberry juice prevent ad-

herence of bacteria to epithelial cells (Raz et al., 2004), do they prevent

bacterial coinfection to the same extent? Within the recent specialism of

nutritional and environmental medicine, research into how nutrients affect

infection, let alone coinfection, has so far been relatively scant (Downing,

2009).

The apparent lesser influence of top-down immune control in the net-

work suggests that either a strong immune response involving a few key

components may prevent coinfection, or that the immune system tends

to have weak interactions with specific parasites. Studies that consider

both resource- and immune-mediated interactions are rare (see Chouvenc
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et al. (2012) for an example in termites), so the relative contribution of

immune and resource control on coinfecting parasite populations needs

further study.

As with any analysis of literature-derived data, the results may be in-

fluenced by observational and reporting biases (as detailed in Chapter 2).

In this analysis I attempted to address these issues where possible (see

Fig. 3.10-3.14). Beyond this evaluation of the sensitivity of the results to

possible biases, there may also be reporting biases in the sampled publica-

tions, for example toward describing infections in terms of the parasite’s

resource (Loscalzo, 2011). In addition, the publications may be subject to

detection biases, for instance where establishing immune mechanisms may

be relatively more difficult in humans than, say, in vivo experiments. Fur-

ther research could identify whether individual networks assembled from

particular coinfected patients are also resource dominated, could test for

physiological or genomic shifts and biomarkers of coinfection, and com-

pare networks from different patients and points in the infection cycle to

measure the health consequences of particular topologies and dynamics.

Such focused efforts would allow interaction strength and direction to be

measured to enable probabilistic module detection (Tsuda and Georgii,

2013; Yang et al., 2013), and to help predict patient-specific treatment

effects.

Reported interactions were most often indirect, and this result was

robust to node aggregation and sampling of publications. It is therefore

important to understand how treating one parasite species indirectly af-

fects the community of coinfecting parasites. Given the growing interest in

integrated control strategies where multiple species are treated simultae-

nously (Hotez et al., 2007; Lammie et al., 2006), we need to test whether

knowledge of parasite interactions could improve treatment outcomes in

human populations where coinfection is prevalent. Whilst the complexity

of the parasite community of humans makes this process somewhat daunt-

ing, the summary network and analyses presented herein make this prob-

lem more tractable. In particular, the modules resolve interactions into

potentially more manageable clusters of taxa. Some studies suggest that

modules are a general biological pattern with evolutionary underpinnings
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(Clune et al., 2012). Whether coevolution of host and parasite communi-

ties has resulted in resource-related modules because of increased stability

or biological constraints like human physiology remains to be seen. With

better understanding of the ecological interactions structuring parasite

communities, the effects of treatment on the wider parasite community

and on patient health could perhaps be predicted.
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Chapter 4

Coinfection mortality in

England and Wales from 2005

to 2008

Abstract

The parasites that tend to coinfect and cause death are unknown for any

host species. Causes of human deaths, including infectious causes, are

registered in many countries, and offer a unique but hitherto unexploited

opportunity to study coinfection mortality.

I analysed a cross-sectional dataset of reported deaths from infectious

causes in England and Wales. I tested whether the proportion of deaths

from infectious causes involving coinfection differed across age and sex

cohorts, and whether the number of infectious causes was randomly dis-

tributed across death certificates. I used two-way contingency tests to find

the odds of each pair of infectious causes causing death from coinfection,

and then analysed whether the strength of association between each pair

was related to the similarity of the pair of infectious causes across four

biological characteristics.

The proportion of deaths from certain infectious causes that involved

coinfection peaked in adults in their 30s, and was higher in males. Death

certificates contained between one and six infectious causes, and there were

more death certificates with one or two infectious causes than expected
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from a Poisson distribution. The reporting of most pairs of infectious

causes were not associated with co-occurrence on death certificates (54%),

but 39% of pairs were positively associated. The strength of these associ-

ations was not related to the similarity of the pair of infectious causes in

the four characteristics tested.

These results indicate that coinfection causes many deaths in England

and Wales, especially among younger adults, and that there is a tendency

for infectious causes to co-occur on death certificates with higher odds

than expected.

Introduction

Infectious diseases are the main cause of death of one in four individuals

worldwide; for example, respiratory infectious disease caused 4.26 million

deaths in 2008, diarrhoea caused 2.16 million, and HIV/AIDS caused 2

million (World Health Organization, 2009). Although HIV-tuberculosis

caused 350, 000 deaths worldwide in 2008 (World Health Organization,

2012), the number of deaths involving other coinfections is unknown on a

global or even national level.

Some coinfections increase the risk of death in humans, such as tu-

berculosis and HIV (Ditiu et al., 2011), HCV and HIV (Branch et al.,

2012), and bacterial pneumonia with influenza (Chertow and Memoli,

2013; Dushoff et al., 2006; Finelli et al., 2008; Morens et al., 2008; Palacios

et al., 2009; Rothberg et al., 2008; von Baum et al., 2011; World Health

Organization, 2010). In contrast, some coinfections may decrease mor-

tality rates, such as GBvC coinfection slowing HIV disease progression

(Bagasra et al., 2012). Apart from these few examples, relatively little is

know about which coinfections are associated with increased or decreased

mortality risk, or indeed if there is a general pattern of coinfection in

causes of death data.

One way to study the general associations between coinfection and

death (or lack thereof) is to analyse a composite dataset of causes of death

that were recorded on death certificates. Infectious diseases were the un-

derlying cause of 1.2% of deaths in England and Wales between 2001 and
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2011 (Office for National Statistics, 2011). While this level of infectious

disease mortality may be relatively low compared with global levels, these

data provide a national dataset of the distribution of infections recorded

at death. These data enable tests of hypotheses about coinfection that

are relevant to public health in England and Wales, and to understanding

of coinfection in humans in general.

While coinfection could be an important determinant of human mor-

tality, characteristics of coinfected individuals such as age and sex can also

be important. These can be important risk factors for helminth coinfection

status (Buck et al., 1978b), though not among the children from Zanzibar

studied by Lello et al. (2013) where infection by a species of gastrointesti-

nal helminth was the only consistent risk factor for coinfection. The role

of age and sex in deaths from coinfecting helminths or other parasite types

has, to my knowledge, never been studied. Older individuals are likely to

be more susceptible to infectious disease (Weinberger et al., 2008), and

less responsive to vaccines (Goodwin et al., 2006) as their immune sys-

tem deteriorates. Health differences between the sexes are commonplace

and are most likely attributable to biological and social factors (Arber

and Ginn, 1993; Macintyre et al., 1996; Rieker and Bird, 2005; Verbrugge,

1989). These may also contribute to sex differences in coinfection deaths,

but whether there is a consistent difference between males and females is

unclear. For instance, hospitalised females have higher pneumonia mor-

tality rates than males (Crabtree et al., 1999), and most fatal cases of

measles are from viral or bacterial coinfection, especially in young females

(Beckford et al., 1985; Dabbagh et al., 2009; Garenne, 1994; Griffin et al.,

2012). In contrast, sepsis mortality rates are higher in males than females

(Melamed and Sorvillo, 2009; Wehren et al., 2003).

To better understand how coinfections affect human mortality, it is

also important to measure whether parasite species tend to co-occur, and

what types of infectious disease are associated with this. The chance of

a particular pair of infectious causes co-occurring could be higher if they

are similar. For instance, it has been suggested that taxonomically similar

parasite species may coinfect a host more often than expect by chance, due

to similarities in life cycles, resource use, or immune responses (Pedersen
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and Fenton, 2007). The immune response to two coinfecting species of

different taxonomic groups may stimulate divergent and weaker immune

responses that limit damage to the host that would otherwise occur in

single infected individuals (Graham, 2001). For example, anaemia was less

severe in mice with malaria and helminth coinfection than in mice with

just malaria (Fairlie-Clarke, 2011). Shared transmission routes may also

increase the risk of coinfection, disease, and possibly death, e.g. blood-

borne viral infections often coinfect injecting drug users (Chu and Lee,

2008; Singer, 2009). Similarly, having two infectious diseases that share a

resource (i.e. have the same tropism) may exacerbate the health burden.

For instance, hepatitis viruses A and C compete strongly in the livers

of coinfected patients and this enhances pathology (Amaku et al., 2013).

Coinfection by infections with the same timescale may also co-occur often.

For instance, two chronic infections may have more of a chance for a serious

interaction or complication to arise, and acute coinfection may enhance the

risk of death because of severe stress exerted by two short-lived, virulent

infections. Here, I test whether these characteristics are significant risk

factors in reported coinfection death.

Other factors besides the age and sex of the individual, and the char-

acteristics of infections reported on death certificates may well affect mor-

tality rates. While further data were unavailable (see Methods), I consider

other potential influences in the Discussion.

Infections often reported as causes of death may also be common but

often mild infections, as opposed to rare but often deadly infections. It is

therefore important to also test for a relationship between the number of

individuals infected in the wider population, and the number of reported

deaths caused by that infection.

Hypotheses

Using death certificate data on infectious causes of death from a recent

four-year time period from England and Wales, and separate data on the

numbers of reported infections in the same population and time period, I

tested five hypotheses:
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1. The number of deaths with a single infectious cause are positively

correlated with the number of those infections reported in the pop-

ulation.

2. The proportion of deaths attributed to multiple infectious causes (as

opposed to a single infectious cause) is related to age and sex.

3. The distribution of the number of different infections reported on

death certificates is not random, indicating that infectious causes of

death are not independent.

4. The occurrence on death certificates of a particular pair of infections

is different from that expected given the occurrence of each infectious

cause in isolation.

5. Associations between pairs of infections are positively related to sim-

ilarity (or lack thereof) in their biological characteristics (i.e., taxo-

nomic group, transmission route, tropism, or timescale).

Methods

Dataset

Death certificates in England and Wales report one underlying cause of

death and up to 15 contributory factors; these are coded by the Interna-

tional Classification of Diseases (ICD, World Health Organization (1992)).

The 139, 459 death certificates used here were registered from 2005 to

2008, contained at least one infectious disease and followed the coding

system for causes of death in ICD-10 version 2005 (World Health Organi-

zation, 2005). Data were obtained via the Office for National Statistics.

In ICD-10 infectious diseases are coded in categories A and B, and

numbers within these can indicate a parasite’s genus (e.g. B68 Taenia)

or species (e.g. B51 Plasmodium falciparum). Coinfection is indicated

by multiple infectious causes reported on the death certificate, i.e. the

doctor signing the death certificate attributed the death to more than

one infectious cause. In addition, one specific code indicated coinfection
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(B20, which denotes other infections arising from HIV infection). Any

other code in isolation was assumed to be a single infection. This is a

conservative assumption since other infections may have contributed to

death but were not identified and so were not reported. The Discussion

considers some possible implications of this assumption. Hereafter, the

term “single infection death” indicates death certificates with one infec-

tious cause reported in the underlying and contributing causes of death,

and “coinfection death” indicates death certificates with more than one

infectious cause reported.

Other data from the death certificates used here were sex and age at

death (age categorised as 0−20 then in decadal intervals up to 80+). This

type of categorisation of age is common in patient studies, and reflects the

different care services accessed by different age cohorts (Freeman Jr, 1987),

and ageing-associated diseases. All other information were removed by the

Office for National Statistics to comply with data protection regulations.

In addition to the death certificate data, independent data on the

number of notifiable infections in England and Wales from 2005 to 2008

(notifiable infections are those of interest to the government and reported

by doctors) were obtained from the Health Protection Agency. This sec-

ond dataset comprises the best data with national coverage on number

of cases of certain infections, but only include a restricted number of in-

fections: 10 notifiable infections did not appear on any death certificate,

and 83 infectious causes of death were not notifiable infections. There

were 96 infectious causes of death on death certificates, thus there were

13 infectious causes of death that were also notifiable infections.
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Statistical analysis

All analyses were done in R version 2.15.1 (R Development Core Team,

2012).

Hypothesis 1: prevalence and mortality rate for certain infec-

tious diseases

Spearman’s rank correlation was used to test for a positive correlation

between the number of reported cases of each notifiable infection and the

number of single infection deaths. This analysis was done separately for

males and females, because both datasets included information on sex and

this is relevant for hypothesis 2.

Hypothesis 2: age, sex, and coinfection death

The relationship between age, sex, and coinfection death was modelled

by logistic regression (generalised linear model (glm) with binomial error

structure and a logit link function). The response variable in these models

was the number of “successes” (coinfection death) and “failures” (single

infection death). Age was fit as an eight level factor (described above)

and sex was a two level factor. I tested for an interaction between age

and sex in the glm. To aid interpretation, a binomial generalised additive

model (gam) with a spline for age was also used. Splines with age have

shown a good fit in other coinfection studies, e.g. Fenton et al. (2010).

Analysis of deviance (χ2 ) tests showed whether the interaction between

age and sex should be dropped from the glm, or whether the age spline in

the gam should be modified by sex or dropped from the model.

Hypothesis 3: distribution of infectious causes of death

The observed distribution of the number of infectious causes reported per

death certificate was compared to a null expectation of independence fol-

lowing a Poisson distribution. I fit a Poisson distribution to the counts of

each number of infectious causes per death certificate using the pois.exact
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function in the R package epitools (Aragon, 2010). If the observed frequen-

cies of number of infections per death certificate was beyond the values

expected from this distribution (greater or lesser than 95% CI) then the

chance of a death certificate having a given number of reported infections

was non-randomly distributed.

Hypothesis 4: associations between pairs of infections

To test for associations between pairs of infectious causes of death, a two-

way contingency test was performed for each pair of infections. A Fisher’s

exact contingency test was used because for many pairs of infections there

were low numbers of occurrences (< 5). A negative association using

this analysis (odds ratio< 1) indicates lower occurrence of coinfection

than expected by chance, a positive association (odds ratio> 1) indicates

a higher occurrence of coinfection than expected by chance. Here the

critical value for determining a significant association was corrected for

multiple comparisons using a Bonferroni correction of α = 0.05
k

, where k

is the number of pairs of infections, and hence the number of comparisons,

that were tested.

Each pair of coinfections was categorised as having a positive asso-

ciation (significant OR> 1), negative association (significant OR< 1),

or no association (OR not significantly different from 1). The observed

proportions of these categories were compared to two null models using

Chi-squared tests. The first null model had equal proportions of positive,

no, and negative associations. The second null model was that coinfec-

tions do not interact, allowing for a 5% error rate (hence 2.5% negative,

2.5% positive, and 95% neutral reported effects). These tests use the

same methods as those used and described in greater detail in Chapter 2.

Hypothesis 5: are similar pairs of infectious causes associated with coin-

fection death?

The above analyses for hypothesis 4 provided an estimate of the associa-

tion between pairs of infections (i.e., the odds ratio). Linear models with

log10 odds ratio as a response variable were used to test whether the asso-
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ciation of a pair of infectious causes of death was related to the similarity

of the biology of the pair.

Biological characteristics used were taxonomic group, transmission

route, tropism, or timescale. Each infectious cause was assigned a cat-

egory for each characteristic using a PubMedHealth (NCBI, 2012) search

for its name in ICD-10 (World Health Organization, 2005), and two exist-

ing sources: a database of known human parasites (Taylor et al., 2001),

and a database of characteristics of RNA viruses of humans (Brierly (in

prep)). Taxonomic groups of infectious causes were: viruses, bacteria,

fungal parasites, protozoa, helminths, or other (where the ICD code could

refer to more than one of those five types, e.g. A09 diarrhoea or gas-

troenteritis of presumed infectious origin). Categories used for transmis-

sion routes were: contaminated food/water, inhalation, insect bites, via

open wounds, contact with animals, skin contact, sexual contact, or en-

vironmental pathogens (following Taylor et al. (2001)). Tropisms were

grouped into: neuronal, respiratory, circulatory, gastrointestinal, geni-

tal, skin, glandular, or multiorgan (following Brierly (in prep)). Lastly,

timescales of infection were acute, chronic, or both (for diseases with both

short- and long-term infections like Chlamydia, Q fever, or Nocardia).

Next the similarities between every pair of infections reported together

on the death certificates was described in terms of four binary variables,

one for each of the characteristics described above. In these four binary

variables, a 1 indicates a match between the two infections, and a 0 no

match. The lowest similarity was, therefore, four zeros, and highest four

ones.

Parametric multiple regression was used with the four binary variables

as explanatory variables, and the log odds ratio as the response variable.

Starting with the full model (including the four way interaction), terms

were removed in a stepwise manner using analysis of deviance (χ2 ) tests.

The final model showed large deviations from the assumptions of linear

regression, even with other transformations of the response variable, re-

moval of outliers, or removal of pairs of infections where no association was

observed (OR= 1). For this reason, localised non-parametric regression

was used, with one explanatory variable that was a single index of sim-
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ilarity combining all four binary explanatory variables (i.e. one variable

ranging from 0 to 4).

Results

From the 2, 028, 734 death certificates in England and Wales between 2005

and 2008, 130, 758 (6.4% out of 2, 028, 734, 72, 080 female, 58, 678 male)

death certificates attribute death to single infection, while 8, 695 (0.4%,

4, 623 female, 4, 072 male) listed multiple infections as causes of death.

All other death certificates contained only non-infectious causes of death

and were excluded from the analysis. In total there were 96 different

infectious causes listed on the death certificates.

Hypothesis 1: prevalence and mortality rate for certain infec-

tious diseases

There was no significant relationship between the number of death cer-

tificates with a particular infectious cause reported and the number of

notified cases of that infectious disease for either sex (paired Spearman’s

Rank correlation for males ρ = −0.14, P > 0.64, df = 12 and for females

ρ = −0.02, P > 0.93, df = 12, Fig. 4.1).

Hypothesis 2: age, sex, and coinfection death

The proportion of deaths that were coinfection deaths rose from < 20

years old to a peak in the 30− 39 age category, subsiding to lowest levels

in the over 60s (Fig. 4.2, binomial gam with age spline by sex, deviance

explained = 99.2%). Sex modified the effect of age so that the rate of

decline in the proportion of coinfection deaths from the peak in ages 30−39

was greater in females than males (grey vs. black solid lines > 2 standard

errors apart for ages 40 − 49 and 50 − 59 on Fig. 4.2). There was a

significant increase in residual deviance when sex or age were removed

from gam (deviance −46 and −978 respectively, both P < 0.001 using

χ2 -test).
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Fig. 4.1: Number of reported deaths from the 13 infectious causes of death
for which there was data on the number of reported cases in England and
Wales for (A) females, and (B) males.

Hypothesis 3: distribution of infectious causes of death

Out of 8, 695 reported coinfection deaths, 7, 980 (91.8%) had two infec-

tions, 609 (7.0%) had three, and 106 (1.2%]) had four or more (Fig.

4.3). This observed distribution is broadly consistent with expectations

based on independent and random distribution of infectious causes across

the death certificates (bars for 3 to 6 reported infectious causes over-

lap with 95% CI from Poisson density function where λ was the observed

mean number of reported infections per death certificate (1.07), Fig. 4.3).

However, there were slightly more single and dual infection deaths than

expected (bars for 1 to 2 reported infections higher than 95% CI, Fig.

4.3).

Hypothesis 4: associations between pairs of infections

The majority of pairs of infectious causes showed no association on death

certificates (197/366, 53.7%, odds ratio (OR) not significantly different

from zero using Bonferroni correction where α = 1.37× 10−4 , neutral bar

on Fig. 4.4). Next most common were positive associations (144/366, 39.3%,

Fig. 4.4, OR significantly > 1). Only 25 infectious pairs were negatively
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Fig. 4.2: Proportions of death certificates in the dataset that were coinfec-
tion deaths in decadal age categories and sex (female=grey, male=black).
Points are the observed proportions, solid lines are the model predictions
from a binomial gam P(multiple infection)=s(age):Sex, dotted lines are
±2s.e. around the model prediction.
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Fig. 4.3: Frequency distribution of reported infections on death certificates
between 2005 and 2008 from England and Wales. Black lines are 95%
confidence intervals from a Poisson distribution with λ = 1.068371.

associated (6.8%, Fig. 4.4, OR significantly < 1)

The distribution of these associations was significantly different from

both the random and no-effect null hypotheses (χ2 = 127, df = 2, P <

2.2 × 10−16 and χ2 = 2080, df = 2, P < 2.2 × 10−16 respectively, bars

significantly different heights from grey and black lines on Fig. 4.4).

Hypothesis 5: are similar pairs of infectious causes associated

with coinfection death?

Among the 311 pairs of infectious causes, there was no relationship be-

tween the similarity in biology of the pair (in terms of taxonomy, trans-

mission mode, tropism, and timescale of infection) and the odds of both

infectious causes being reported on the same death certificate (horizontal

regression line, Fig. 4.5). Other modelling approaches were attempted

but flouted statistical assumptions (see Methods).
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Fig. 4.4: Associations between every possible pair of infectious causes cat-
egorised into positive, negative, or neutral. Associations were derived from
two-way contingency tests on the number of deaths reported with neither
infection, each single infection, or both infections. Neutral indicates odds
ratio not significantly different from one. Lines indicate null hypotheses
(grey=random, black=no-effect).
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Fig. 4.5: Similarity in biology of pairs of infectious causes and the log10

odd ratio of their association on death certificates (from two-way contin-
gency tests). The x-axis is the sum of four factors indicating whether the
infectious causes shared the same tropism, transmission route, timescale
of infection, or taxonomic group. For each factor, 1 denoted a shared
characteristic (e.g. two chronic infectious causes would share the same
timescale of infection), and 0 denoted different characteristics (e.g. a bac-
terial and a viral coinfection would have different taxonomic groups), so
a pair of infectious causes with 4 on the x-axis had all four characteris-
tics in common, while 0 means the infectious causes were different in all
four characteristics. Points are transparent such that ten or more over-
laid points are black. Black line is the locally smoothed non-parametric
regression line with degree of smoothing α = 0.5 Grey polygon is ±2se.
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Discussion

A four-year long dataset of human mortality in England and Wales, com-

prising almost 140,000 deaths with reported infectious causes, yielded

the first ever national cross-sectional analysis of coinfection as a cause of

death. The infectious causes reported on these death certificates allowed

estimation of whether pairs of infectious causes are more or less likely to

be reported together. Adults between the ages of 20 and 40 had the high-

est probability of coinfections being reported on their death certificates.

This probability of reported coinfection decreased into older age groups,

but until age 60 was slightly higher in males than females. Positive as-

sociations of pairs of infectious causes co-occurring on death certificates

were found for almost 40% of pairs. The strength of association between

these pairs of infectious causes was not related to the number of biologi-

cal characteristics shared by the pair. I now discuss the factors that may

contribute to these patterns, before considering the limitations of the data.

Possible causes of observed patterns

There was a hump-shaped relationship between age and the proportion

of infectious disease deaths that had multiple infectious causes reported.

This early-to-mid adulthood peak in coinfection death contrasts with theo-

ries that the immune system’s ability to respond to antigens declines in old

age (Goodwin et al., 2006; Weinberger et al., 2008), and with noninfectious

diseases where the risk of multiple simultaneous diseases (comorbidities)

increases with age (Valderas et al., 2011). One possible explanation is that

older adults are more frail from the inevitable decay of their complex bod-

ily system (Topolski, 2009) and so have a higher risk of death from just a

single infection, whereas younger adults are generally stronger so it takes

multiple infectious diseases to kill them. Alternatively, those who survive

to old age may have immune phenotypes that enable them to effectively

respond to coinfections, but they eventually die from a single virulent in-

fection, perhaps in conjunction with other diseases that are more common

with age (Campbell et al., 1985), like cancer (Ferlay et al., 2007). There is

evidence that young adults are more prone to severe immunopathologies
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following infection. For example, critically ill hospitalised patients in the

USA and Canada with influenza A(H1N1) tended to be 20− 30 years old

(Jhung et al., 2011; Kumar et al., 2009) and had deficient adaptive im-

mune responses (Bermejo-Martin et al., 2010). In coinfected individuals

parasite abundance may also peak at intermediate age in rabbits and sheep

(Fenton et al., 2010), which may translate to a higher risk of coinfection

mortality in early adulthood in humans.

The number of death certificates with one or two reported infectious

causes of death was higher than expected from random, but the number

of deaths with three or more infectious causes was within expectations.

This could be because infectious diseases with high virulence tend to com-

petitively exclude other infections (as seen with higher virulence malaria

strains outcompeting others Bell et al. (2006); De Roode et al. (2005)).

In contrast, deaths from three or more infectious causes may be more of

a random-draw process involving lower virulence infections. Reductions

in the number of deaths reported from more than two infectious causes

could also be explained by competition for resources suppressing parasite

abundance (Dobson, 1985), coinfections of diverse taxa triggering immune

responses that are less damaging to the host (Graham, 2001), or patients

with many coinfections receiving closer medical attention.

While more than half of pairs of infectious causes of death were not

associated with being reported together on the same death certificate,

positive associations were four times more common than negative associa-

tions. These results are consistent with the skew toward positive interac-

tions between parasites found in published reports of coinfection morbidity

in humans (Fig. 2.2C). This skew could suggest that interspecific competi-

tion discussed above tends not to be strong enough to prevent coinfection

of individuals before death, and that facilitation between pairs of infec-

tious causes is more common. Such corroboration of findings suggests

that medical care of coinfected patients is more problematic than those

with single infections, being associated with higher parasite abundance,

worse health outcomes, and often higher risk of multiple infectious causes

of death.

More than four fifths of pairs of infectious causes were positively asso-
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ciated, many with odds of reported coinfection death over three orders of

magnitude greater than reported single infection death. Pairs with these

higher odds ratios included: mycobacteria and gastrointestinal protozoa

(A31 and A07, OR= 1795), mycobacteria and measles (A31 and B05,

OR= 1570), streptococcal sepsis and malaria (A40 and B54, OR= 1212).

Some of these same taxa also had significantly lower odds ratios when

paired with other infectious causes, including respiratory tuberculosis and

streptococcal sepsis (A40 and A16, OR= 0.244), and acute encephalitis

and septicaemia (A41 and A86, OR=0.006). The direction of association

for each taxon is therefore not consistent, but the strength of these as-

sociations means finding whether there are general causes behind these

associations is important.

The odds of pairs of infectious causes being reported together was

not associated with whether or not the pair shared the same transmis-

sion route, taxonomic group, timescale of infection, or tropism. This does

not rule out the role of biological characteristics of parasites in modifying

coinfection mortality risk. Further analyses could consider the particular

categories within each factor rather than a binary variable of whether or

not the pair shared the same category. Other biological characteristics

could also be studied with continuous variables, for instance measuring

generation time of the infecting organisms, time to transmission, average

time infecting one host, etc. Further analysis could also compare the char-

acteristics of the 20 out of 96 infectious causes that were never reported

in coinfection deaths against the infectious causes that only occurred in

coinfection deaths (e.g. B20 − 23 denoted HIV infections).

Quality of data available for studying coinfection mortality

As with any results based on reported disease, it is important to consider

the influence of potential biases in reporting. There may be underreport-

ing of coinfection death on death certificates if other infectious diseases

were undetected, deemed not to have contributed to death, or reported

using an ambiguous code. For example, some codes may conceal multiple

species infecting the same individual (e.g. Streptococcus and Staphylo-

coccus both in B95, Klebsiella, Clostridium, and others in B96). Using
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multiple infectious causes (and code B20 as HIV coinfection) as indicators

of coinfection therefore probably underestimates the number of coinfection

deaths. Nevertheless death certificates offer novel insight into coinfection

mortality, and there is no evidence that reporting of infectious causes of

death is biased by age, sex, or infectious cause. Underreporting of mul-

tiple causes of death and wrong attribution of the cause of death was

highlighted as a problem in the 1990s (James and Bull, 1996; Leadbeat-

ter and Knight, 1993; Maudsley and Williams, 1996), and there have since

been legal and education reforms for doctors completing the certificates

(Aung et al., 2010; Swift and West, 2002; Tuffin et al., 2008). Inaccuracies

on death certificates can be subject to legal challenge and lead to medical

malpractice claims (Waldman and Spector, 2003). The Office for National

Statistics also issues official guidance to doctors completing death certifi-

cates (Devis and Rooney, 1999; Tuffin et al., 2008). For all these reasons

we can be confident that, in large causes of death datasets from recent

years like the one used here, relationships among the number of reported

causes of death, biological characteristics of infections, and host character-

istics (age and sex) are detectable. Even if the extent of underreporting of

infectious causes were known there is no reason to expect that this would

detract from the patterns presented here.

There was no association between reporting of a subset of infectious

causes on death certificates and the number of cases of those infectious

diseases reported in England and Wales. This suggests that infections

differ in their background risks of causing death. It is difficult to assess

whether the number of reported coinfection deaths was proportional to

the number of coinfection cases without data on coinfection prevalence

in the wider population. To test for variation in the risk of coinfection

death (coinfection mortality rate weighted by coinfection prevalence) be-

tween coinfections, we would need a coinfection dataset from a different

cutoff in the infection cycle, such as recovery rates after hospitalisation,

hospital diagnosis rates, symptomatic coinfection in doctors clinics, or

the prevalence of asymptomatic coinfection surveyed in the population.

Unfortunately none such data is currently available.

At a time when there are calls for greater reporting of causes of death
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globally (Editorial, 2013), it should be noted that multiple causes of death

must be reported in order to study interactions between different diseases

(Chamblee and Evans, 1982; Goodman et al., 1982; Redelings et al., 2005,

2007). Adding to these calls for data on multiple causes of death to be

more widely collected, this study has shown the utility of these data for

studying coinfection mortality by inferring associations among infectious

causes of death. Further such analyses are needed for accurate assessment

of infectious disease mortality burden in countries with different parasite

communities, human demographics, and health systems. Other oppor-

tunities for further research include estimating the sensitivity of results

to different disease coding systems (Wilson and Bhopal, 1998) and death

certificates from other years. Longitudinal studies can often reveal effect

of ageing on disease better than cross-sectional data with chronological

age categories (Hofer and Sliwinski, 2001). Tracking individuals with sin-

gle infection or coinfection could also help control for parasite abundance,

which is one of the key determinants of the type of immune response

(Menon and Bretscher, 1998).

Causes of death can be associated with various factors including health-

care, socioeconomic status, family structure, geography, behaviour, host

physiology, infectious dose, or virulence. Determining what factors con-

trol patterns of causes of death using national observational data alone is

therefore difficult (Hansen et al., 2007). It is especially difficult as other

health conditions, diagnostic tests, and treatment were not included in

the dataset used here. The above discussion of causes of the observed

patterns in single infection and coinfection deaths is therefore speculative,

but raises many hypotheses to be tested in future. This study is the first

of its kind to study coinfection mortality across the range of parasite types

(from viruses to helminths). Several patterns have never been described

before in humans or indeed any other host species, namely the distribu-

tion of coinfection deaths across age and sex cohorts, the distribution of

number of infectious causes reported at death, and the odds of reported

co-occurrence of hundreds of pairs of infectious causes. Understanding

how coinfection modifies mortality risk will help target health resources

to prevent deaths from multiple infectious causes.
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Chapter 5

Indirect effects of treatment

on non-target parasites under

different one-way interactions

Abstract

There is potential for interactions among coinfecting parasites to under-

mine treatment efforts because treating one parasite species could indi-

rectly exacerbate untreated parasites. To study how interactions among

parasites modify treatment outcomes, an agent-based model of mass drug

administration in a village-sized human population with two endemic

macroparasites was developed.

The abundance of both parasite species was monitored in simulations

with and without targeted drug treatment of one species, with three lev-

els of coinfection. Simulations included one-way immune- or resource-

mediated interactions of varying strengths and directions in coinfected

hosts where target parasites affected the non-target parasite population.

In each scenario the effects of either single or repeat treatments on non-

target parasite abundance, and host morbidity (target plus non-target

species abundance) were recorded. Simulations were repeated for each

scenario using randomly generated initial conditions to test for variability

in non-target parasite abundance. A sensitivity analysis of total treatment

effects using half and double the original value of each parameter was also
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done.

As may be expected, treating positively interacting parasites tended

to also reduce non-target parasite abundance, whereas treating negatively

interacting parasites generally increased non-target parasite abundance.

However, the magnitude of this effect was sometimes negligibly or non-

monotonically related to interaction strength, with the shape of this rela-

tionship depending on whether the interaction was resource- or immune-

mediated. Indirect effects of treatment were amplified by higher coinfec-

tion prevalence and higher treatment frequency.

These results indicate that the direction of interspecific parasite in-

teractions may be a good indicator of whether species-specific treatment

programmes will have greater or lesser benefits for coinfected individu-

als. However, other within-host processes, such as resource- or immune-

mediated intraspecific density dependence, can mask the effects of inter-

action direction such that the size of the indirect treatment effect may

be less predictable. The model is theoretical, in that it represents a sim-

plified and generalised one-host two-parasite system. Nevertheless, this

model provides valuable insight into the potential indirect effects of tar-

geted drug treatment under coinfection, and highlights areas where such

future work may be directed, including quantifying the most influential

parameters like rates of immune killing, and refining models of the rela-

tionships among parasites within coinfected humans.

Introduction

Parasite infections have been traditionally studied in isolation (Anderson

and May, 1985; Cox, 2001), but coinfection by multiple parasite species

is commonplace in humans (Buck et al., 1978a; Crompton, 1999; Petney

and Andrews, 1998), and animals (Budischak et al., 2012; Ezenwa et al.,

2010; Lello et al., 2004). Coinfected patients tend to have higher parasite

abundance and worse health than those with one infection (Chapter 2).

Thus we need to better understand the factors affecting the abundance

of coinfecting parasites to help improve treatment of coinfected patients

(Bruce et al., 2000; dos Santos et al., 2010; Hotez et al., 2010; Lello et al.,
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2004; Lustigman et al., 2012).

Most treatment programmes are parasite-specific and therefore im-

plicitly assume that parasite species can be managed independently (Cox,

2001; Gibson et al., 2010; Singer, 2009; Wenzel and Edmond, 2010). Here,

I focus on drug treatments, but similar principles apply to other species-

specific interventions like vaccination or prophylaxis. Successful parasite-

specific drug treatments improve host health by suppressing target par-

asite abundance by using drugs to reduce or clear the target parasites.

Drugs often vary in their efficacy against parasite species in the same or

different phyla. For example, praziquantel is effective against schistosomi-

asis, but not directly on hookworm (Utzinger et al., 2002), and combined

treatment of ivermectin and albendazole in cattle is effective against gas-

trointestinal nematodes except the resistant Cooperia genus (Entrocasso

et al., 2008). Since many infections overlap in distribution (Brooker and

Clements, 2009; Brooker and Utzinger, 2007; Brooker et al., 2000b, 2007,

2010; Molyneux et al., 2009; Soares Magalhães et al., 2011), there is high

potential for drugs to indirectly affect other, non-target parasite species

(Basáñez et al., 2012; Pasman, 2012). In such cases, the effect of drug

treatment on non-target parasite abundance depends on how the target

and non-target species interact within coinfected hosts. The health bene-

fits of drug treatment will be reduced, or even overturned, if species not

directly affected by the drug (non-target parasites) increase in abundance

after treatment.

Interactions between parasite species can affect treatment outcomes,

such as deworming treatments worsening HIV and tuberculosis epidemics

(Bentwich et al., 1999, 2008; Elias et al., 2006; Nacher, 2002; Rafi et al.,

2012; Sangaré et al., 2011; Wolday et al., 2002). There are new, integrated

parasite treatment programmes for humans (Crompton, 2006; Fenwick,

2006; Hotez et al., 2008), but the effects of combining these drugs are only

beginning to be explored (Gryseels, 2006; Lammie et al., 2006; van Gen-

deren and van Hellemond, 2012), and the within-host interactions of most

parasites are poorly understood (Alizon et al., 2013). Although rarely

tested for, the occurrence, direction and magnitude of such interspecific

parasite interactions could profoundly alter the net effects of targeted drug
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treatment programmes.

Direction, magnitude, and mechanisms of parasite interaction

Within-host interactions between parasite species can be negative (antag-

onistic) from processes like resource competition, or positive (synergistic)

from mutualisms or immunosuppression. Treating a positively interacting

parasite will further reduce host morbidity because the non-target para-

site population will also decline in coinfected hosts. Conversely, treating a

negatively interacting parasite might bring reduced benefits to host health

because the non-target parasite population will grow.

Parasites can interact directly with one another, for example by releas-

ing an exoproduct that repels another species, or by consuming or infecting

the other parasite. However, there appears to be greater capacity for in-

direct interactions mediated by resources available to the parasites, or the

coinfected host’s immune system (Chapter 3). Immune-mediated interac-

tions include cross-reactivity, where one host antibody type or lympho-

cyte receptor binds to multiple parasite antigens, resulting in a negative

interaction between parasites (Tanaka and Feldman, 1999), and trade-

offs, where an immune reaction to one parasite reduces the reaction to a

coinfecting parasite (a positive interaction, such as immunosuppression;

see, for example, Austin et al. (1996)). Immune-mediated interactions are

one cause of ineffective vaccines (De Bruyn, 2010), and has been observed

in vaccines for Vibrio cholerae (Cooper et al., 2000, 2001; Harris et al.,

2009), tetanus (Cooper et al., 1998, 1999), Mycobacterium tuberculosis

(Elias et al., 2001; Wammes et al., 2010), and HBV (van den Berg et al.,

2009), crossreactivity in influenza-HCV coinfection (Kasprowicz et al.,

2008), and for gastrointestinal helminth-malaria coinfection in lab mice

(Fairlie-Clarke et al., 2009, 2010).

Resource-mediated interactions involve parasites altering the space,

energy, and nutrients available to coinfecting parasites. Where data on

resource availability are lacking, resource-mediated interactions can be

modeled by density dependent feedback loops. Negative density depen-

dence means every additional parasite reduces the availability of resources

(Anderson and May, 1978; Dietz, 1988), which can affect the stability of
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the parasite population after chemotherapy (Churcher et al., 2006; Duerr

et al., 2005; Nasell, 1976). Positive density dependence represents facilita-

tion where population growth rates increase the more parasites there are

(Basáñez et al., 1995).

Indirect effects of treatment on a non-target parasite population are

likely to depend on the direction, strength, and mechanism of the interspe-

cific parasite interaction (positive or negative, from weak to strong, and

immune- or resource-mediated respectively). Furthermore, interactions

within individual coinfected hosts can affect treatment outcomes at the

population level, depending on how interactions affect parasite fecundity,

how parasites transmit between hosts, and the proportion of hosts that

are coinfected (coinfection prevalence). The indirect effects of treatment

on coinfecting parasites will likely increase with coinfection prevalence be-

cause coinfected hosts, within which the parasites interact, are at higher

density. Coinfection prevalence is enhanced by common risk factors in-

cluding shared transmission routes, poor host hygiene or environment, and

genetic susceptibility. Conversely, different risk factors for target and non-

target parasites, such as environmental preferences, will lower coinfection

prevalence.

Focus on coinfecting helminths

To explore the effect of treatment on non-target parasite abundance and

host health (total parasite abundance) in different interaction scenarios, I

focus on perhaps the most common coinfection globally. One billion indi-

viduals worldwide are estimated to be coinfected with multiple helminths

(Crompton, 1999). Finding the most successful treatment options for

helminths is important because they afflict the world’s poorest (Bonds

et al., 2010; King, 2010), and have a larger health burden than malaria or

tuberculosis (Hotez et al., 2008). World Health Organisation guidelines

recommend drug treatment for helminth infections (there are no vaccines,

McSorley and Maizels (2012)). Treatment should be repeated at least

annually depending on political will, budgetary constraints, attitudes, ex-

perience, and parasite prevalence in the population (Crompton, 2006).

Differences in treatment frequency could affect non-target parasite dy-
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Fig. 5.1: Treatment at t = 1 perturbs the host-parasite system. Re-
peat treatment will move parasite abundance to a lower equilibrium (solid
line), whereas after a pulse treatment parasite abundance will return to
its former equilibrium (dotted line).

namics; a large or long-term indirect effect on the non-target parasite

might only occur if the target parasite is treated repeatedly. One-off treat-

ments can cause short-term, transient dynamics where the system reacts

to treatment with an initial deviation that dampens over time (damp-

ing oscillation), before returning to its original equilibrium and closely

matches the dynamics of an untreated system (Fig. 5.1 dashed line).

Repeat treatments, if strong and long enough, also cause damping oscil-

lations, but cause the system to move to a new equilibrium that is also

dependent on species interactions (Fig. 5.1 solid line, see Bender et al.

(1984)).

A mathematical modeling approach

Studies into how treatment frequency, coinfection prevalence, and inter-

specific interactions affect treatment outcomes at the population level are

rare, even though understanding indirect effects is crucial for effective
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treatment (Brooker et al., 2012; Lafferty, 2010). The complexity of coin-

fection in terms of the range of interactions described above, difficulties

in ascertaining how parasites interact (Fenton et al., 2010; Hellard et al.,

2012; Johnson and Buller, 2011), and the diversity of parasites that could

simultaneously infect an individual means identifying particular coinfec-

tions and epidemiological contexts with significant indirect treatment ef-

fects is formidable. Meanwhile, projections from mathematical models can

suggest optimal treatment strategies under different scenarios (e.g. Stolk

et al. (2003); Winnen et al. (2002)), and offer useful opportunities for

understanding within-host interactions and guiding policies for helminth

treatment (Antia and Lipsitch, 1997; Michael et al., 2006, 2007; World

Health Organization and TDR Disease Reference Group on Helminth In-

fections, 2012).

The effects of direct and indirect parasite interactions and are impor-

tant in explaining patterns of host health (Bottomley et al., 2005), con-

trolling energy flows in an estuarine ecosystem (Lafferty et al., 2006), and

for increasing virulence and destabilising parasite dynamics (Eswarappa

et al., 2012). There are models of treatment for specific coinfections in-

cluding gonorrhea and HIV (Mushayabasa et al., 2011), and malaria and

trypanosomiasis (Nannyonga et al., 2012), and of multiple untreated geno-

types interacting via immunity or resources (Hellriegel, 1997). Lello et al.

(2004) present an ordinary differential equation model with vaccination

and immune-mediated interactions among three helminth species. How-

ever, the impact of immune- or resource-mediated interactions on drug

treatment outcomes in a host population infected by two helminth species

has not yet been modeled.

Here I develop a mathematical model to explore how different forms

of interspecific parasite interaction mediate the effects of targeted anti-

parasite treatment. The model represents two helminth species in a human

population, where the target parasite species can be treated, and the non-

target parasite species is never treated. Although interactions between

parasite species can be reciprocal, and can be among three or more species,

for simplicity I assume only a one-way interaction where one species, the

target species, interacts with a coinfecting, non-target parasite species. I
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also assume that parasite abundance is positively related to host morbidity

(following Eswarappa et al. (2012)).

Hypotheses

The following hypotheses relate to the mean abundance of the non-target

parasite in the host population across ten years:

1. Non-target parasite abundance with and without treatment will de-

pend on the sign of the interaction between target and non-target

parasite species.

a. With a positive interaction and no treatment of the target par-

asite, there will be higher non-target parasite abundance, and

when there is a negative interaction abundance will be lower.

b. After the target parasite is treated, when there is a positive

interaction non-target parasite abundance will decrease, and

when there is a negative interaction abundance will increase.

2. Stronger interactions will have greater effects on non-target parasite

abundance both with and without treatment.

3. The effects of the interspecific interaction and of treatment will also

depend on whether the interaction is mediated by resources or im-

munity.

4. The effects of treatment on non-target parasite abundance will be

proportional to the coinfection prevalence.

5. Repeat treatments will have greater effects on non-target parasite

abundance than single treatments.

I also hypothesise that:

6. Treatment effects on host morbidity (assumed to be proportional to

combined abundance of target and non-target parasites) will depend

on the type, sign, and strength of the parasite interaction. Assuming

the two species have equal virulence, host morbidity will be lower
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when a positively interacting parasite is treated because non-target

parasite abundance will also decrease.

Modeling framework

These hypotheses are tested using an agent-based model of two co-endemic

helminth species in a notional human village-sized population. Agent-

based models are suited to modeling complex biological systems (Grimm

and Railsback, 2005; Holcombe et al., 2012), and have three advantages for

modeling parasite coinfection: (i) they can readily include variation among

hosts, such as aggregated distributions of parasite abundance, which are

fundamental to parasite dynamics and treatment success (Brogden et al.,

2005; Grenfell et al., 1995; Johnson et al., 2012; King, 2010; Sabatelli

et al., 2008; Schur et al., 2012; Soares Magalhães et al., 2011; Stein, 2011;

Woolhouse et al., 1997), (ii) they simulate across scales, i.e. within and

between-host infection dynamics (Bauer et al., 2009; Sabatelli et al., 2008),

for example parasite abundance in each host, and transmission in the pop-

ulation (Plaisier et al., 1990), and (iii) they can have short-term, transient,

nonequilibrium dynamics that often follow treatment.

Using this framework, different treatment regimes (single vs. repeated)

are applied to the target parasite when target parasites have different ef-

fects on non-target parasites (immune- or resource-mediated, from strongly

negative to strongly positive), in populations with different coinfection

prevalences (low, moderate, or high). Some simulations had higher vari-

ability around mean non-target parasite abundance, prompting additional

investigation of the contribution of stochastic processes.

Methods

Model overview

Each timestep of the discrete time model included an entire life cycle

for each parasite species, including transmission, establishment, repro-

duction, and death of parasites, and possible death of a host. Target

parasite abundance was reduced by treatment applied once or repeatedly,
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and the indirect effect of treatment on non-target or total parasite abun-

dance was measured. Simulations covered every unique combination of

magnitude, direction (positive to negative), and mechanism (immune- or

resource-mediated) of the interaction between the treated “target” para-

site and the other “non-target” parasite, and repeat or single treatment.

Individual hosts varied in their exposure to infection, and setting different

correlations of exposure to the two parasites gave coinfection prevalence

ranging from low (< 20%), medium (35%) to high (> 50%). Target

and non-target parasites interacted either via resources (facilitation as a

positive interaction, competition for resources as a negative interaction,

modeled as a density dependent process based on contemporary parasite

abundances), or via immune responses (crossimmunity as a negative in-

teraction, an immune tradeoff as a positive interaction, modeled via an

explicit immune component for each parasite species).

Each simulation recorded each parasite species’ abundance and fecun-

dity, and magnitude of the immune response specific to each parasite

species in each host at each timestep for ten years after the first treatment.

Parasite abundance was recorded at the end of each timestep, i.e. after

establishment of new larvae, and after immune attack. Each timestep

is roughly a year long, incorporating all parasite life stages. The mean

and variability of non-target parasite abundance across the host popula-

tion were calculated. Morbidity was the total abundance of both parasite

species in each host, and the mean was calculated across hosts. There

were 50 replicate simulations for each parasite interaction scenario. The

agent-based model is described in more detail in the Appendix using an

established and recommended protocol (Grimm et al., 2006).

Analysis

To show the effects of treatment, parasite abundance time series can be

analysed in various ways (Chen and Cohen, 2001; Grimm and Wissel,

1997; Neubert and Caswell, 1997; Stott et al., 2011). Mean abundance

across the ten timesteps after treatment was used as a proxy for how large

a net effect treatment has. Ten timesteps was long enough to include

the initial direct effects of treatment, rebound, and, in most simulations,
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Fig. 5.2: Life stages of the target and non-target parasites (subscripted as
species 1 and 2 respectively). Variables recorded within each host at each
timestep are: specific immune response of host (I) that is stimulated by
and kills adult parasites (P) infecting the host that reproduce and release
eggs (black circles) that contribute to the environmental pool of larvae
(E). The parasite species can interact within a coinfected host through
immunity or resources (black lines). We model resources available for adult
parasites (R) implicitly as interspecific density dependence. Eggs hatch
into larvae that survive in the environmental pool and can be ingested by
susceptible hosts next timestep.
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equilibration. Ten years is also the timescale of many long-term helminth

treatment programmes. The hypotheses focus on non-target and total

parasite abundance because abundance was used in many original stud-

ies, and remains a good indicator, of interspecific interactions (Goldberg

et al., 1999; Hutchinson, 1978; Poulin, 2001). Mean abundance in a hu-

man population is also used to evaluate helminth treatment programmes

(Brooker et al., 2000a).

All simulations and analyses were done in R version 2.15.1 (R Devel-

opment Core Team, 2012).

Sensitivity analyses

Results from model simulations can be sensitive to stochasticity, initial

conditions, model structure, and the choice of parameter values. The

50 replicates using different sets of random numbers reveal uncertainty

regarding stochastic dynamics and initial conditions assigned from prob-

ability distributions (i.e. host exposure). The model presents a basic

macroparasite life cycle so there is little structural uncertainty. In terms

of parameter values, global sensitivity analyses of other individual based

ecological models of particular infections have sampled all variables within

known confidence intervals to inform further experiments to refine pa-

rameter estimates of the most sensitive (Magori et al., 2009; Xu et al.,

2010). The model presented here represents no specific coinfection, and

consequently there are no empirical confidence intervals within which to

sample parameter values for sensitivity tests. Nevertheless, even over ar-

bitrary parameter ranges, sensitivity analyses are still useful to find the

parameters relating to within-host interactions that most strongly control

treatment effects on the non-target parasite.

Sensitivity tests were done for each parameter that related to the

resource- or immune-mediated interactions. The metric used to assess

sensitivity to changes in parameter values was total treatment effect on

mean non-target abundance (the different in mean non-target parasite

abundance between treatment and non-treatment runs), which was mea-

sured by taking the mean treatment effect across 50 simulations for each

interaction value (from −1 to +1 in decimal intervals), and then calculat-
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ing the absolute sum across those interaction values. This was repeated

in turn for each parameter using half and double its original value (see

Appendix table 6.1) under resource- and immune-mediated interactions.

The only exception to this was the parameter for the proportion of the

population treated where the upper parameter value was 1, since the orig-

inal value of 0.7 could not be doubled (no more than the whole population

can be treated). Press treatment and populations with medium coinfection

prevalence were used for all sensitivity tests. By subjecting each parame-

ter to the same treatment in turn allows the parameters to be ranked in

terms of their relative sensitivities under each interaction type, and also

provides insight into the impact of uncertainties in estimates of the effect

of treatment in the model given particular within-host conditions.

Results

The model was simulated to test hypotheses that the (1) sign, (2) strength,

and (3) type of interaction affected the mean abundance of the non-target

parasite across ten timesteps with or without treatment of the other para-

site. The effects of (4) coinfection prevalence and (5) treatment frequency

on mean non-target parasite abundance were also tested, and how these

interaction and treatment scenarios affected (6) host morbidity (total par-

asite abundance).

Hypothesis 1a: mean non-target parasite abundance in the ab-

sence of treatment depends on the sign of the interaction

Without treatment the target parasite generally led to lower non-target

parasite abundance when there was a negative, immune-mediated interac-

tion, and higher abundance when there was a positive interaction (treat-

ment effect below and above y = 0 when interaction negative and positive

respectively, Fig. 5.3A), supporting hypothesis 1a. However, the effects

of resource-mediated interactions were sometimes the reverse of hypoth-

esis 1a (Fig. 5.3B). Here, non-target abundance increased under weakly

negative resource-mediated interactions before subsiding and going ex-

105



5. Treatment effects on non-target parasites

-1.0 -0.5 0.0 0.5 1.0

0

20

40

60

80

100
A

Immune-mediated interaction

M
ea

n 
no

n-
ta

rg
et

 a
bu

nd
an

ce

-1.0 -0.5 0.0 0.5 1.0

0

20

40

60

80

100
B

Resource-mediated interaction

M
ea

n 
no

n-
ta

rg
et

 a
bu

nd
an

ce

Fig. 5.3: Mean abundance of non-target parasite in the absence of treat-
ment with either an interspecific immune- (A) or resource-mediated inter-
action (B).

tinct under strongly negative interactions (positive gradient for interaction

strengths between 0.5 and 0, subsiding at interaction strengths around

−0.5, and reaching zero for interaction strengths ≥ −0.9 Fig. 5.3B).

Positive resource-mediated interactions did not alter parasite abundance

(horizontal line for all interaction strengths > 0, Fig. 5.3B).

Hypothesis 1b: mean non-target parasite abundance in the

presence of treatment depends on the sign of the interaction

Treatment of the target parasite generally increased non-target parasite

abundance when there was a negative interaction, and decreased it when

there was a positive interaction (treatment effect above and below y = 0

with negative and positive interaction respectively, Fig. 5.4), supporting

hypothesis 1b. Treatment exacerbated the effect of resource-mediated

interactions on non-target parasite abundance; the shape of the treatment

response with a resource-mediated interaction (Fig. 5.4A, C, and E) is
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similar to abundance without treatment (cf. Fig. 5.3B).

Treatment of a negative immune-mediated interaction consistently in-

creased non-target parasite abundance (treatment effect on mean non-

target abundance greater than 0 when interaction strength < 0, Fig.

5.4B, D, and F). Under positive immune-mediated interactions the treat-

ment effect was negative, more stochastic, than seen under negative in-

teractions, and non-linear (spoon-shaped), showing recovery of the non-

target parasite under very strong positive interactions (Fig. 5.4B, D, and

F).

Hypothesis 2: stronger interactions have greater effects on

non-target parasite abundance

In untreated simulations the strength of the immune interaction resulted

in a gentle S-shaped curve in non-target parasite abundance in untreated

simulations (Fig. 5.3A), supporting the hypothesis that stronger interac-

tions have greater effects on the non-target parasite. However, this is the

only result consistent with hypothesis 2 across the interaction parameter

space in either untreated or treated scenarios.

In treated scenarios under immune-mediated interactions (Fig. 5.4B,

D, and F), the peak reduction in non-target parasite abundance was not at

the strongest positive interaction, but at intermediate strength, with the

effect diminishing at higher interaction strengths. Increasing the strength

of negative immune-mediated interactions led to slightly higher non-target

abundances after treatment.

For resource-mediated interactions, in both treated and untreated sim-

ulations, the highest levels of non-target parasite abundance occurred at

intermediate negative interaction strength. Under strong negative inter-

actions the non-target parasite went extinct before treatment was applied,

so no treatment effect was observed here (abundance = 0 when interaction

strength ≥ 0.9 in Fig. 5.3B corresponds with no change in abundance af-

ter treatment in Fig. 5.4A, C, and E). Increasing the strength of positive

resource-mediated interactions caused little change in mean non-target

parasite abundance either with or without treatment.
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Fig. 5.4: Difference in mean non-target parasite abundance between
treated and untreated simulations (red=single treatment, blue=repeat
treatment) in low, medium, and high prevalence populations (top, middle,
and bottom respectively) for resource- and immune-mediated interactions
(left and right columns respectively).
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Hypothesis 3: interaction and treatment effects depend on

whether the interaction is mediated by resources or immunity

As seen in the contrasts made above, immune- and resource-mediated

interactions produced different patterns of non-target abundance, both

under untreated and treated scenarios (Fig 5.3 A vs. B, and Fig. 5.4

left vs. right column). Both mechanisms of interaction had some areas of

negligible response of non-target parasite abundance to varying interaction

strength (positive resource-mediated interactions, and negative immune-

mediated interactions) or non-monotonicity (negative resource-mediated

interactions, and positive immune-mediated interactions). Only immune-

mediated interactions, particularly under strongly positive interactions,

saw increased variability between simulations, with variability between

simulations involving resource-mediated interactions remaining constant

across the interaction parameter space (see Discussion).

Hypothesis 4: treatment effects on non-target parasite abun-

dance are proportional to coinfection prevalence

As hypothesised, increasing the prevalence of coinfection in the host popu-

lation accentuated the indirect effects of treatment on non-target parasite

abundance for both interaction types (values stretch along y-axis from low

to high prevalence from Fig. 5.4A to C to E, and from Fig. 5.4 B to D to

F).

Hypothesis 5: repeat treatments have greater effects on non-

target parasite abundance than single treatments

Again, as hypothesised, repeat treatments enhanced the effects on non-

target parasite abundance compared with single treatments (blue points

further from y = 0 than red points, Fig. 5.4).
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Hypothesis 6: treatment effects on host morbidity depend on

the type, sign, and strength of the parasite interaction

Treatment of the target parasite always reduced host morbidity (assumed

to be proportional to total parasite load, with equal virulence of the par-

asite species, y < 0 for all interaction strengths, Fig. 5.5). However, in

accordance with hypothesis 6, the size of this reduction was moderated by

the interaction between target and non-target parasite, and by treatment

frequency: repeat treatments (Fig. 5.5, red points) brought greater reduc-

tions in morbidity than single treatments (Fig. 5.5, blue points), and host

morbidity was further reduced where there was a positive interaction, and

not reduced as greatly when there was a negative interaction. The great-

est reductions in morbidity were seen under positive immune-mediated

interactions, although there was substantial variation in treatment effects

by this criterion between replicate simulations under immune-mediated

interactions (Fig. 5.5B, D, and F show wide distance between blue and

especially red points).

Sensitivity analysis results

The ranking of the variables from the sensitivity tests is shown in Fig. 5.6

where higher absolute treatment effects indicate a greater deviation be-

tween treated and untreated simulations across the relevant interaction.

Treatment causes the biggest changes in non-target parasite abundance

for parameters with lines higher up the y-axis on Fig. 5.6, and steeper

lines indicate greater sensitivity to the value of that parameter. For both

interactions, total absolute treatment effect was most sensitive to the pro-

portion of the population treated (T ), the effect of parasites on the host’s

specific immune response to them (γi ), and the effect of immunity on

parasite survival (SI ). Total absolute treatment effect was relatively in-

sensitive to changes in virulence (V ), parasite survival (S ), the effect

of immunity on parasite fecundity (FI ), and intraspecific density depen-

dence (Dhalf ). The ranking of the parameters depended on the interaction

type (Fig. 5.6A vs. B), and on whether the parameter was half or double

its original value.
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Fig. 5.5: Difference between mean total parasite abundance in treated and
untreated simulations (red=single treatment, blue=repeat treatment) in
low, medium, and high prevalence populations (top, middle, and bottom
respectively) for resource- and immune-mediated interactions (left and
right columns respectively).
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Fig. 5.6: Sum of the absolute difference between treated and untreated
mean total parasite abundance across interaction parameter values for
resource- (A) and immune-mediated (B) interactions. Each parameter
is indicated by a label next to its line: δ = rate of decay of immune
memory (red line), Dhalf = parasite density for half of larvae to establish
(orange), FI = effect of immunity on adult parasite fecundity (olive),
γi = species-specific immune stimulation (dark blue), M = maximum
life expectancy (light blue), S = survival rate of adult parasites (medium
blue), SI = effect of immunity on adult parasite survival (bright green),
T = proportion of population treated (purple), V = virulence of parasites
(magenta), and X = inflexion point of logistic virulence curve (teal). See
Appendix table 6.1 for original parameter values corresponding with this
notation.
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Discussion

To test the indirect effects of treatment on coinfecting parasites, I sim-

ulated the population dynamics of two endemic helminth species in a

village-sized population of humans with and without treatment of a tar-

get species, and with a range of interactions between the target and non-

target species. Treatment either increased or decreased non-target parasite

abundance, in a manner largely consistent with whether the underlying

interaction between the species was negative or positive. However, this

indirect effect of treatment was amplified by repeat treatments and higher

coinfection prevalence, and modified by interaction type and strength in a

complex manner, sometimes resulting in negligible and sometimes in non-

monotonic relationships between interaction strength and the effect of

treatment. As I will discuss, these responses have important implications

for predicting or evaluating the outcomes of species-specific treatment pro-

grammes in coinfected populations. The results also prompt consideration

of how parasite interactions can be inferred from perturbation studies, and

highlight opportunities for future research.

Implications for treatment

In the model, the mean abundance of the non-target parasite was both

raised and lowered when the target parasite interacted with the non-target

parasite. Similarly, the change in morbidity in a treated population de-

pends not just on how the targeted species is treated, but also on the

presence of coinfecting species not directly affected by the drug. These

results suggest that the net health benefits of the treatment programmes

may be over- or under-estimated unless we account for the indirect effects

of treatment on non-target parasites. Therefore surveys need to monitor

for co-occurring species as well as target parasites before initiating treat-

ment, and close attention paid to their responses following treatment. The

implications of non-target parasites for the health of treated individuals

should also be assessed.

To help predict or evaluate how non-target parasites are likely to mod-

ify treatment outcomes, the model highlights various factors that deter-
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mine the indirect effects of treatment on non-target parasites, and condi-

tions under which these effects do or do not arise. Key factors to consider

are coinfection prevalence, treatment frequency and coverage, and the di-

rection of the underlying one-way interspecific interaction. For example,

in the model, when two species interacted, the longer treatment continued,

or the higher the coinfection prevalence, the greater the deviation between

treated and untreated simulations. The sensitivity tests also showed the

proportion of the population receiving treatment to also be correlated with

treatment effect. Another possible indicator is that the direction of a one-

way interaction often corresponds to indirect effects of treatment of the

opposite direction (e.g., a negative underlying interaction often results in

a positive treatment effect, such that non-target parasite abundance in-

creases post-treatment). Increases in non-target parasite abundance after

treatment reliably reflected negative resource- or immune-mediated inter-

actions, and decreases in non-target abundance reliably reflected positive

resource- or immune-mediated interactions. However, some interactions,

e.g. positive resource-mediated interactions, did not alter treatment out-

comes. Thus, treatment may not necessarily affect non-target parasites

despite the presence of an interaction. Such non-responsiveness happens

when the effects of the interspecific interaction were obscured by intraspe-

cific regulation (e.g. resource-mediated interspecific interactions were of-

ten obscured by intraspecific immune-mediated regulation). To under-

stand the impact of parasite interactions on treatment success, interac-

tions should therefore be understood in the context of other within-host

processes. However, the nonlinear nature of the intraspecific processes

produced non-monotonic relationships between post-treatment non-target

abundance and interaction strength, so interaction strength may be an un-

reliable indicator of indirect effects of treatment programmes.

Studying parasite interactions

Intraspecific processes like species-specific density dependent immune re-

sponses affected the abundance of non-target parasites so strongly that

they obscured the effects positive interspecific resource-mediated interac-

tions. It is therefore important to know the form (direction, mechanism,
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and magnitude) of all interactions among parasite species within coin-

fected individuals in order to predict treatment outcomes. In particular

the sensitivity tests suggest that precise parameterisation of the stimula-

tion of immunity by adult parasites and the effect of immunity on parasite

eggs is particularly important. However, detection of interspecific interac-

tions is known to be difficult from perturbed time series in general (Bender

et al., 1984), and between coinfecting parasites in particular (Fenton et al.,

2010; Hellard et al., 2012; Johnson and Buller, 2011). Appropriate models

for many within-host processes are also unclear. How the rate of immune

killing responds to parasite abundance is rarely discussed, but is crucial to

indirect treatment effects when species interact via immunity in this and

other coinfection models (e.g. Fenton and Perkins (2010)). The feeding

relationships between parasites and host resources are perhaps discussed

even less frequently, except in rare cases like the relationship between

malaria and red blood cells (e.g. Savill et al. (2009)). The results from

the sensitivity analysis suggest that estimating the inflexion point of any

resource competition curve can have a large influence on the indirect of

treatment on non-target parasites. Without quantified measurements of

these relationships among parasites and host components, especially those

parameters that treatment effects are most sensitive to, it will be difficult

to predict the effects of treatment on communities of interacting parasites.

Further to these challenges to understanding the dynamics of coin-

fection within hosts, various model results suggest that inferences of in-

teraction strength from mean treatment responses are uncertain because

increases or decreases in treatment effects are not always correlated with

interaction strength. The model results give at least three reasons for such

uncertainty: wide regions of non-response, non-monotonic relationships,

and high variability in treatment effects between replicate simulations.

First, negligible treatment effects were observed at various interaction

strengths, including from very weak to very strong resource-mediated in-

teractions. When effects of drug treatment were observed these tended

to reliably reflect the direction of underlying interactions. However, the

absence of a treatment response does not necessarily indicate the ab-

sence of an interspecific interaction. While certain interactions may be
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occurring, as often occurred under resource-mediated interactions, other,

stronger within-host processes like immune-killing can counteract these

effects. Similar compensatory immune responses have also been shown to

mask interspecific interactions in other multi-parasite systems (Bull et al.,

2012).

Second, the largest treatment effect under positive immune interactions

occurred at intermediate interaction strength; either side of this value

treatment indirectly lowered mean non-target abundance, but to a lesser

extent. When a negative treatment effect is smaller than this peak value

there is therefore ambiguity in whether the immune interaction was weak

or strong. Hence, a larger treatment effect is not necessarily indicative of

a stronger interaction between the parasites.

Third, replicate host populations of identical size with identical pro-

cesses, but with different randomly-selected values of host exposure, varied

in the size of the treatment effect on mean non-target abundance. Indeed,

the between-simulation variability under positive immune-mediated in-

teractions (immunosuppression) was so high as to create a large area of

ambiguity where the same treatment effect could have been caused by a

wide range of interaction strengths.

These three possibilities need to be considered when interpreting the

results of future studies of parasite communities. Indeterminacy of long

term (equilibrial) effects of press perturbations in multi-species commu-

nities has long been known (Yodzis, 1988). In addition, the simulations

presented herein show that there are areas of indeterminacy in the disequi-

librium phase in the years after single or repeat treatment for a community

of two parasite species.

Variability in non-target parasite abundance

Of particular interest in the model results were some immune-mediated

interaction strengths that increased variability in mean non-target abun-

dance between populations. To further understand what contributes to

variation in mean parasite abundance, variability around the mean was

measured in high prevalence simulations in two ways: (i) the amplitude of

parasite dynamics (taken as the difference between the minimum and max-
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imum mean parasite abundance per host in ten timesteps after treatment),

which indicates temporal variability, and (ii) the distribution of non-target

parasites across the host population (taken as the 95% confidence interval

of the non-target abundance ten-year mean), which indicates between-host

variability.

Post-treatment variability under resource-mediated interactions fol-

lowed the same pattern as mean abundance for both temporal and inter-

host variability (5.7A and C, cf. Fig. 5.4A, C, and E), with greater

increases when treatment was repeated (red vs. blue points), and greatest

increases at negative interactions up to −0.7, before parasite extinction

reduced variability to zero.

Variability was larger for immune- rather than resource-mediated in-

teractions (note same scales on Fig. 5.7A-B and C-D). For immune-

mediated interactions, repeat treatments increased temporal variability

more than single treatments when there was a positive interaction (blue

points further from zero for positive interactions, Fig. 5.7B). Conversely,

negative interactions increased temporal variability after single treatment

more than repeat treatments (blue points closer to zero for negative in-

teraction values, Fig. 5.7B). In terms of variability between hosts, nega-

tive immune-mediated interactions resulted in very little variability (Fig.

5.7D), whereas variability greatly increased under positive interactions,

and these effects were magnified under repeat treatments.

These results (Fig. 5.7B and D) indicate that the observed increased

stochasticity between replicates under positive immune-mediated inter-

actions (Fig. 5.4 right column) is caused by increasing fluctuations in

the parasite dynamics through time, and that inter-host variability con-

tributes less to stochasticity because immunity tends to homogenise the

host population by reducing the number of high burden hosts. It seems

that positive immune interactions (immunosuppression) and the loss of

immune memory as parasite populations decline contribute to delayed

density dependence resulting in unstable population cycles. This con-

trasts with the more stable equilibrium observed even after treatment

when immune interactions were weaker or negative. The potential for

both stability and instability from delayed density dependence is known
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Fig. 5.7: Difference in variability in non-target parasite abundance
between treated and untreated simulations (red=single treatment,
blue=repeat treatment) in medium prevalence populations with a resource
(A and C) or immune interspecific interaction (B and D). Variability is
measured by the difference between minimum and maximum mean abun-
dance in ten timesteps after treatment (temporal variability: A and B),
and 95% CI in the abundance of non-target parasites among hosts (inter-
host variability: C and D).
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from lagged predator-prey systems (Sih, 1987; Turchin et al., 1999). The

possibility of these dynamics being present within coinfected hosts is per-

haps a new observation, though whether this is an artefact of the discrete

model used here, or whether this is a real feature of immune interactions

between parasites needs further testing.

Further research

In this chapter I have begun to explore how interactions among parasite

species and variability between hosts affects population-level treatment

outcomes. I developed an agent-based model with treatment of one par-

asite species that interacted via shared resources or immune responses.

Further scenarios could be tested with small modifications to this model.

• How individual variation in interaction strengths affects ecosystems

is a growing area of research (Wells and O’Hara, 2012), but how

interactions between coinfecting parasites vary among hosts, and

what impact it has on treatment programmes, is largely unknown.

Components involved in immune- or resource-mediated interactions

that vary between individuals, such as different parasite epitopes and

immune receptors, nutritional status, or tissue repair rates, could

easily be included in the model as another source of agent-based

variation.

• Parasite communities are far more complex than presented in the

model, and how these complexities alter the indirect effects of treat-

ment need to be explored. For instance, greater parasite diversity

exponentially increases the number of interactions and treatment op-

tions to be considered. Two-way interactions where both parasites

affect one another, or where resource- and immune-mediated inter-

actions occur simultaneously are also possible. And there are also

evolutionary feedbacks, for instance drug treatments are likely to

select for drug-resistant parasite strains, which adds to the parasites

responding indirectly to treatment.

• The model should be parameterised for a specific pair of parasites,
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and could be used to compare between real treatment options, for

instance nutrition or environmental improvements as well as drug

treatment.

Perhaps most importantly, to test whether these simulations are re-

alistic, we need more monitoring of the effects of specific treatments on

the wider parasite community, and studies of interactions among parasite

species. More empirical studies of interactions in coinfected populations

have been called for by other authors too (Basáñez et al., 2012; Righetti

et al., 2012). Would a metanalysis of treatment effects on non-target

parasites experiencing different interactions look like Fig. 5.4? The simu-

lation presented here is just the beginning of research into how health in

treated human populations is affected by interactions among the parasite

community.
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Chapter 6

Discussion

Infectious diseases pose a serious challenge to global health (Hopkins, 2013;

Sanders et al., 2008), but the contribution of coinfection to this morbidity

and mortality burden is only beginning to be investigated (Pullan and

Brooker, 2008). This thesis has expanded the typical approaches used to

study particular parasite coinfections to instead study the range of inter-

actions among the diverse parasite community of humans using various

cross-disciplinary methods. I have compiled three of the largest datasets

of coinfection in humans, covering hundreds of species combinations and

hundreds of thousands of individuals. I also developed a unique model

representing treatment of a small human population infected by two in-

teracting parasite species.

My research shows that coinfection is not rare, nor does it have ran-

dom or negligible effects on human health. Rather, the published reports

that I collated showed coinfection to be a diverse problem involving hun-

dreds of parasite species. Coinfections reportedly have a tendency towards

higher abundance infections, and towards worse host health than single

infections. Most of the data contributing to these results comes from pa-

tients already receiving healthcare. Therefore, we can make, for the first

time, a general conclusion about treatment of coinfected patients, namely

that coinfection appears to have worse health outcomes than for those

with only one infection, likely contributed to by the difficulties of tackling

multiple species.

My research also revealed some other previously unknown general pat-
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terns of reported interactions among coinfecting parasites, most notably

that they are mostly indirect and often mediated by shared resources. My

simulations of treatment effects on two parasite species in a heterogeneous

host population suggested that the direction of a one-way interaction could

inform decisions of the optimal treatment program in coinfected popula-

tions. Together these results suggest that, while treatment of coinfected

patients appears to be more difficult than for those with one infection,

treatments could be improved if parasite interactions were better under-

stood. The findings from each research chapter are now discussed in turn,

before considering shared themes and issues highlighted by the research

chapters, and finally considering opportunities for advancing knowledge

of this important global health issue.

Findings from research chapters

Patterns of human coinfection

Prior to this thesis many fundamental patterns of coinfection were not

known, such as the different nutritional or pathological consequences for

single- and co-infected hosts (Pullan and Brooker, 2008). The research

in Chapter 2 collated data from recent publications on coinfecting para-

sites, and their reported effects on host health and parasite abundance.

Reported coinfections included all kinds of parasites, but were most likely

to involve viruses and bacteria. The most commonly reported coinfect-

ing parasites differed from those causing highest global mortality, with a

notable lack of serious childhood infections in reported coinfections. Coin-

fected individuals were generally reported to have worse health (78% pub-

lications) and higher parasite abundance (57% publications) than those

with single infections.

Given the large and very significant effects observed, I am confident

that these general findings are robust. It is still worthwhile to consider

possible biases in and limitations of the data. The results do suggest bi-

ases in the coverage of coinfection research. For example helminth coinfec-

tion is estimated to affect between 800 million and one billion individuals
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(Crompton, 1999; Hotez et al., 2007), but there were relatively few re-

ports of this in the sampled publications. Also, most publications showed

negative effects of coinfection on host health, but grouping the same data

by the pair of coinfecting parasites led to most effects being negligible

(though positive effects where parasite abundance was higher than single

infections still exceeded negative ones, Fig. 2.2). Another caveat is the in-

sufficient and inconsistent reporting of quantitative data, which precluded

full meta-analysis. Nevertheless, having analysed the reported direction

of associations and found a tendency toward reported negative effects of

coinfection on human health (and positive effects on parasite abundance),

the question emerges of how this arose.

The observational nature of the dataset from Chapter 2 means we

can only speculate on the likely cause of this skewed distribution. Three

explanations are plausible. (1) Coinfected individuals may have had worse

health to begin with, such as a weakened immune system. Thus, the lower

health status reported for coinfected individuals was the cause, rather than

the consequence, of their coinfection. (2) The multiple infections could

have had an additive effect where one infection causes a health burden, and

a coinfection causes further health burden. Accordingly coinfection simply

causes more damage to the host. (3) Coinfecting parasite populations

might not have been independent and were interacting by some mechanism

so that the presence of a parasite of another species alters the life history

of a coinfecting parasite. To assess the interactions among parasites that

may cause the statistical associations observed in published reports, the

frequency of different interaction types was tested in Chapter 3.

Summary network of coinfecting parasites

The parasites infecting a host, the host’s immune system, and the re-

sources used by the parasites (e.g. host tissues) can be viewed as a network

of interacting components, in the same way as one can characterise trophic

relationships among species in a free-living community as a network (i.e. a

food web). Just as in free-living communities, it is possible that communi-

ties of coinfecting parasites are controlled by top-down (immune control)

or bottom up (resource control) processes (Pedersen and Fenton, 2007).
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While some studies have collated all the host-parasite interactions for par-

ticular parasite species (e.g. Raman et al. (2010)), or included parasites in

free-living food webs (Lafferty et al., 2006), in Chapter 3 I made the first

attempt to construct a summary coinfection network for humans. Data

on host-parasite interactions from the same set of recent publications used

in Chapter 2 were assembled into a within-host network comprising direct

and indirect interactions among parasites, resources, and immune com-

ponents. Inclusion of resources consumed by coinfecting parasites as well

as their immune interactions offered a novel comparison of the number of

known routes for either top-down or bottom-up control.

Analyses of the structure of this network showed that interactions

between pairs of parasites were more often mediated indirectly through

shared resources than through immune components or other parasites.

Interacting components of the network were also grouped into modules

that were each associated with particular body parts. This structuring of

the network by resource relationships offers the first indication that phys-

ical compartments within the body and bottom-up processes most often

influence how, where, and which coinfecting parasites interact.

These findings underline the importance of studying resource-mediated

interspecific interactions, and raises further questions. For example, these

patterns originate from the same publications from Chapter 2 where coin-

fection was associated with worse host health, so does bottom-up control

determine the health burden of coinfection? Although resource-mediated

interactions were relatively common reported mechanisms for interactions

between pairs of parasites, these interactions do not necessarily have the

strongest effects on the parasite community. Measuring the strength of

parasite interactions and their pathological consequences would enable

further tests of the importance of resource-associated modules via new

methods such as quantitative analyses of compartmentation via Bayesian

clustering methods (Bogich et al., 2013; Tsuda and Georgii, 2013), and

simulations to estimate the resilience and resistance of the parasite com-

munity of humans. There are various methodological difficulties in how

to measure the strength of interactions between parasites and host com-

ponents, and directly between parasites. For instance, how the rate of
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consumption of host resources by parasites changes with parasite abun-

dance or resource availability is rarely discussed. Even relationships be-

tween host immunity and parasites are difficult to model, especially as

there is insufficient data for parameter estimation (Fenton and Perkins,

2010). The network I developed in Chapter 3 is an initial step towards

studying all the interactions among parasites known to coinfect humans,

and opens the door for future research.

Coinfection deaths in England and Wales

As well as not knowing how strongly coinfecting parasite species interact,

the cohorts most at risk of coinfection were little studied. Risk factors for,

and prevalence of, coinfection have so far been studied in narrow datasets,

such as three gastrointestinal helminths and fever among 350 children

in Tanzania (Lello et al., 2013), sexually transmitted infections among

teenage girls in the USA (Forhan et al., 2009), and two tick-borne bacterial

species in humans and other hosts (Nieto and Foley, 2009). Until now no

study had considered the full range of parasites or the number of people

coinfected across any national population. Moreover some studies implied

coinfection was a problem of poorer countries (e.g. Lello et al. (2013)),

though the mortality burden of coinfection in countries that invest heavily

in universal access to healthcare was unknown.

Using data on reported causes of death from England and Wales, I

showed in Chapter 4 that from 2005 to 2008 more than 135, 000 people

died from infectious causes, and 6% of these were associated with coin-

fection. By analysing the first national-level distribution of coinfection

deaths across age and sex cohorts, I showed that adults between their 20s

and 40s were most likely to have coinfection reported on their death cer-

tificate, and relatively high proportions continued to slightly later ages in

males. I found no consistent relationship between pairs of infections and

the similarity of their biological characteristics. Most pairs of parasites

co-occurred on death certificates at rates comparable with what was ex-

pected if the two infections caused death independently. However among

the pairs of parasites where the odds of coinfection death were significantly

different, the odds were most often higher than expected (Fig. 4.4). In
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other words, the odds of coinfection death were, for more than half of pairs

of infectious causes of death, based on the additive probability of having

two infections. For two fifths of pairs, there were significantly higher odds

of deaths reported as being from both causes. Referring back to the three

potential drivers of association between coinfection and host health (page

123), for coinfection mortality in England and Wales we can conclude that

pairs of infections mostly have additive effects on host mortality, but often

the odds of coinfection were higher than the sum of their parts. Whether

this association is because of host susceptibility, parasite interactions, or

a mix of the two warrants further examination.

The network I assembled in Chapter 3 demonstrates that there is much

evidence in publications that coinfecting parasite species have the poten-

tial to interact with one another within a human host. There is also

evidence that host factors can affect the way individuals respond to their

infections, and for those with weak, inappropriate, or pathological immune

responses, worse health outcomes may be more likely (Ingram et al., 2011;

Meyrelles et al., 2013). Generally speaking we would expect the propor-

tion of coinfection deaths to be higher in older individuals because ageing

of the immune system leads to higher susceptibility to infections (Wein-

berger et al., 2008) and lower immune responses (Goodwin et al., 2006).

The results of Chapter 4 showed instead that the proportion of coinfection

deaths was highest in early adulthood. People in this age bracket could be

viewed as being in their prime, and that the higher proportion of coinfec-

tion deaths are indicative of highly pathological within-host interactions.

This explanation is preferred among many infectious disease researchers

nowadays, but wider anthropological factors should still be considered

Singer (2009), especially as the dataset in Chapter 4 only revealed age,

sex, and causes of death. Also in the analyses undertaken, the biologi-

cal characteristics of co-occurring infections were not associated with the

odds of coinfection death, so the nature of any within-host interactions is

unclear. Whether those aged 20− 40 had characteristics that made them

more susceptible to coinfection, or whether their immune response makes

them more likely to die from coinfection remains to be seen.

While it is not possible, at least at this stage, to attribute the skew
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towards higher odds of coinfection being reported on death certificates

to individual characteristics, parasite interactions, or both, these results

corroborate the finding from Chapter 2 that coinfection is associated with

worse host health. Moreover the lack of coinfections reported in the litera-

ture that involve childhood infections can be attributed to a lack of study;

coinfections involving varicella zoster virus (chicken pox) and measles were

reported on death certificates in England and Wales, and had a higher

odds of coinfection death than deaths reported as being caused by either

infection alone (infectious causes B01 and B05 had an odds ratio of 2096).

Certain childhood infections are therefore associated with higher odds of

coinfection death.

The lack of association between pairs of infections with similar biolog-

ical characteristics, particularly shared tropisms, casts doubt on whether

consuming the same host resource confers greater risk of coinfection and

damage to health, as had been suggested when the results of Chapter 2

and 3 were taken together. However, more nuanced analyses of the biolog-

ical characteristics of infections on death certificates and of relationships

between coinfecting parasites and host resources are required. Neverthe-

less, my initial analysis of reported infectious causes of death shows that

coinfection could have significant, detrimental health implications even in

richer countries with universal healthcare.

Modelling indirect effects of treatment on coinfecting parasites

The fact that coinfection was associated with higher reported parasitemia

(Chapter 2), worse health (Chapter 2), and higher odds of death (Chapter

4) despite most of the individuals in this dataset having access to health-

care suggests that current treatments developed to target single infections

may be impeded by interactions among coinfecting parasites. This has

been previously suggested in papers about coinfection in animals (Behnke

et al., 2001; Lello et al., 2004). There were some models of vaccination

and immune interactions (Lello et al., 2004), and of treatments for spe-

cific coinfections (Alemu et al., 2013; Mushayabasa et al., 2011). Yet there

were no tests of how the indirect interactions among coinfecting parasites,

that were so common in the network in Chapter 3, affect treatment of
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parasite communities in humans. In Chapter 5 I developed a theoret-

ical model of mass drug administration in a village-sized population to

test how immune- or resource-mediated interactions between two endemic

helminth species altered treatment outcomes.

I found that the indirect effect of treatment on non-target parasites

was consistently related to the direction of the interaction between tar-

get and non-target parasite. Indirect treatment effects also increased in

magnitude the higher the coinfection prevalence, and the more frequently

treatment was applied. These results suggest that, for a two-parasite one-

host species system, the direction of treatment outcomes on non-target

parasites at the population level could be predicted using the direction

of an interaction, the proportion of individuals coinfected, and treatment

frequency. This indicates, at least theoretically for a one-way interaction,

that understanding parasite interactions could help design better treat-

ment programs for coinfected populations.

However, at certain interaction strengths I also found that the non-

target parasite was unaffected by treatment, and where variability between

simulations increased. These phenomena would hinder either precise pre-

diction of treatment effects from interaction parameters, or inference of in-

teraction parameters from observations of perturbed systems. This raises

the question of how well we can understand the direction and strength

of statistical associations and any underlying mechanistic interactions be-

tween coinfecting parasites.

Shared themes from the research chapters

Are observational patterns of coinfection meaningful?

For parasite interactions to be translated into clinical applications that

could improve patient health, data about the presence and strength of in-

terspecific interactions among parasites needs to be reliable. Using reports

in the published literature and reports on death certificates, I showed that

the overall effect of coinfection on human health appears to be negative.

The extent to which such patterns are biologically meaningful rather than
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artefacts of processes by which the data was produced and assembled, is

crucial, but often unclear (Sutherland et al., 2013). Errors in the collec-

tion and presentation of empirical data can arise from random variation

or structural biases at various stages: choice of system, sampling, mea-

surement, statistical analysis, reporting of particular results, and biased

publication of research (Levitt et al., 1993). Such errors may occur in

the three datasets in this thesis (Chapters 2-4), though I have shown that

results are robust to certain sources of error. The structure of the network

that I collated from published papers in Chapter 3 is robust to the method

used for sampling publications and the aggregation of node names, but it

was not possible to assess the extent of publication or reporting bias in the

source data. The key results in Chapter 2 were similarly robust to pairs

of parasites where the presence (or absence) of an effect on host health

or parasitemia was not reported in the reviewed publications. Tests for

robustness were not done for the reported causes of death in Chapter 4.

The sensitivity of all these Chapters’ results to sampling by the original

investigators is difficult to determine, but can be speculated upon. Such

consideration is crucial if we are to have confidence in the main conclusion

of this thesis that coinfection is commonplace and, in general, has nega-

tive effects on host health. While trends among biomedical publications

(discussed below) might indicate biases that undermine this thesis’ con-

clusions, this is counteracted by the diverse data sources presented herein

corroborating one another.

Biomedical publications, like the infectious disease publications sur-

veyed in Chapters 2 and 3, may report conclusions that are rarely sup-

ported by repeat studies or reanalysis (Easterbrook et al., 1991). Biomed-

ical papers tend to report significant results, but between 14% and a

majority contain false positives (Ioannidis, 2005; Jager and Leek, 2013).

Accordingly, there could be consistent bias among infectious disease re-

searchers to report data that show negative health effects, or to focus their

research on more pathogenic parasites. There could also be a persistent

bias towards, say, authors tending to describe the sites of infection rather

than immune responses (Loscalzo, 2011).

Death certificates are very different sources of information compared
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to published articles. Death certificates are legal documents signed by

two doctors and collated by the state to study all causes of death, not just

particular infectious diseases of research interest. The dataset in Chapter

4 includes a subset of all death certificates in England and Wales for

which any infectious cause of death was reported. It is therefore unlikely

that these data contain the same potential biases as in published articles,

such as reporting biases toward worse coinfection outcomes, or biased

documentation of sites of infection compared to immune responses.

Recently published studies using still other methods also suggest a

general detrimental effect of coinfection on host health. For example,

Schistosoma spp. coinfections (Abruzzi and Fried, 2011), polymicrobial

Staphylococcus aureus infection (Park et al., 2012), and reported coinfec-

tions in non-human hosts (Manenti, 2011) have overall negative effects on

host health. With increasing evidence, and a variety of data sources, we

can reasonably conclude that coinfected hosts tend to suffer more from

infectious disease than those with one infection.

How do parasites interact within a coinfected human?

Having established that coinfection often has general negative effects on

human health, the interactions that could produce these effects need con-

sideration. The network presented in Chapter 3 showed parasite feeding on

shared resources to be the most commonly reported indirect interaction in

coinfected humans. While the frequency of occurrence of this interaction

type may be inflated by infection being often described in terms of host

resources (Loscalzo, 2011), this finding should provoke greater consider-

ation of non-immune interactions. Prior to this thesis immune-mediated

interactions had been proposed as the major type of interaction in empir-

ical and modelling studies (see citations and discussion in Graham (2008)

and Tompkins et al. (2011), and Fenton and Perkins (2010) respectively),

though the possibilities of bottom-up control had been discussed partic-

ularly in relation to coinfected mice (Fairlie-Clarke, 2011; Knowles, 2011;

Pedersen and Fenton, 2007). The network shows that indirect interac-

tions sharing a resource are relatively common in published reports; it

is unclear whether publications fairly represent within-host interactions,
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or how large an effect resource-mediated interactions have on coinfection

dynamics relative to other interaction types. Nevertheless the network

adds to existing calls for resource-mediated interactions to be considered

alongside immune-mediated ones.

There are various options for how to develop methods to measure the

strength of interactions among parasite species and their host. There are

some computer and lab models of physiological changes caused by coin-

fection in host cells and parasites (Lutermann et al., 2012; Romano et al.,

2013), but further work is needed. Where immune responses to parasites

can be modeled using predator-prey models, there is uncertainty over how

to model coinfection (Fenton and Perkins, 2010). How parasite popula-

tions respond to the availability of host resources is only discussed for

certain parasites, like malaria (Savill et al., 2009), and no general model

for within-host coinfection has been described. As an extension includ-

ing theories of foraging in free-living systems (e.g. Petchey et al. (2008)),

mechanistic functions of immune components attacking parasites, and par-

asites feeding on their resources (potentially being immune components)

could be developed. Thus, foraging of parasites on host cells and tis-

sues could explain rates of parasite growth within the host. While body

size of consumers and their prey are important determinants of interac-

tions in free-living ecological networks (Eklöf et al., 2013), they are yet

to be applied to within-host parasite interactions. It is unclear how one

would measure body size, handling time, or gape size of, say, cytotoxic

T-cells fighting liver cells infected with hepatitis virus. Another compli-

cation is the wide range of within-host scales, with interactions involving

components from molecules to tissues to populations of organisms. How

descriptions of interactions among parasites should account for biologi-

cal scale and different processes compared with free-living systems needs

further work.

The typology I have presented in terms of direct, or resource- or

immune-mediated also needs to be critically examined. The dichotomy

this thesis has posed between resources and immunity as bottom-up and

top-down respectively is blurred in at least five ways. First, many globally

serious infections inhabit immune components, such as HIV infecting CD4
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T-cells, or Mycobacteria infecting macrophages. Second, definitions of the

immune system are broad, with some researchers considering anti-parasite

behaviour relating to their offspring’s food source to be immunological

(Kacsoh et al., 2013). Third, both immune and resource components

are limited by the host’s energy intake so that there is a tradeoff be-

tween immune investment and tolerance of metabolic losses (McFall-Ngai,

2007; Rauw, 2012). Fourth, parasites’ resource use can be determined

by the host’s immune phenotype, such as interferon type determining

whether leprosy produces small, localised lesions or more disseminated

disease (Teles et al., 2013), or Salmonella attracting neutrophils that lyse

the red blood cells inhabited by malarial parasites (Cunnington et al.,

2012). Fifth, immune components can be restricted to particular body

parts, such as regulatory immune cells being specific to an organ (Mal-

chow et al., 2013). Distinguishing between resources and immunity is

therefore a non-trivial matter.

These ambiguities between immunity and resources affect the inter-

pretation of Chapter 3’s results in two ways. First, nodes like CD4 cells

and macrophages are only classified as immune, even though they may be

inhabited by many parasites. Consequently, the undirected links between

immune components and parasites could reflect energy flows in either di-

rection. Second, the module detection algorithms used in Chapter 3 mean

that immune components like T-cells, macrophages, or antibodies are only

assigned to a single module, even though they circulate around many parts

of the body.

Future research could overcome some of these limitations by assigning

direction(s) to indicate whether it is the immune component reacting to

the parasite, or the parasite infecting the immune component (or both,

in a bidirectional link). If the strength as well as the direction of each

interaction were estimated, prediction of treatment effects would likely be

more accurate (Novak et al., 2011), and the Bayesian clustering meth-

ods mentioned above could be used to allow nodes to appear in multiple

modules. However, inferring interaction strength is particularly problem-

atic for coinfecting parasites because, as mentioned above, there is no

consensus on the functions and parameters to describe them. Even with
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appropriate functions, gathering data to quantify the strength of hundreds

of links in the network presented in Chapter 3 would be arduous. An ini-

tial option is to quantify interaction strength for a subset of the network.

Even so, detecting interactions between parasite species is nontrivial.

How to detect parasite interactions

When publications report interactions between parasite species, this is of-

ten based on statistical associations (e.g. higher than expected rates of

coinfection) rather than one species causing changes in the population size

of coinfecting parasites (Poulin, 2001). However, establishing whether this

association is caused by an interaction within a coinfected host is nontriv-

ial. Much evidence is needed before concluding a particular interaction

is occurring, as seen with debates over HIV-Mycobacterium leprae inter-

actions (Hohmann and Voss-Böhme, 2013; Massone et al., 2011), inter-

actions between sexually-transmitted viruses (Bollen et al., 2008; Cohen,

2006; Rotchford et al., 2000), and why differences in between single- and

co-infected hosts appear at certain times post infection (Fairlie-Clarke,

2011). Furthermore, appropriate statistical methods for studying parasite

interactions are strongly debated (Fenton et al., 2010; Hellard et al., 2012;

Johnson and Buller, 2011).

My thesis work adds two further considerations for research into par-

asite interactions: potential non-response of perturbed systems, and vari-

ability through time and between hosts. I found in Chapter 5 that treat-

ment effects on non-target parasites depended on the direction of an in-

teraction, but that the absence or dampening of such a treatment effect

did not necessarily indicate the absence or weakening of an interaction.

Even when treatment effects were observed, the strength of the under-

lying interaction was sometimes obscured by temporal and demographic

stochasticity. While binary questions of whether or not there is an asso-

ciation, or categorisation of coinfection effects into positive, negative, and

neutral seems intuitive and is the focus of much debate, my research shows

that we also need to consider the identity of the parasites involved, the

mechanisms that link them, and how variable parasite populations are.

Understandably coinfection in humans is often described as complex.
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Coinfection is a complex system: how much do we under-

stand?

Complex systems, such as the global climate system, brains, and human

economies, have diverse and aggregated components, stable states, and

locally intense, often nonlinear, interactions (Levin, 1998). Throughout

the thesis I have shown that coinfection in humans, like communities of

free-living species, has many if not all these characteristics of complex sys-

tems. Previously, the potentially overwhelming diversity of parasites and

interactions among them had been spoken of, but evidence of complexity

was lacking.

In terms of diversity, a survey of known human parasites numbered

> 1400 species (Taylor et al., 2001). Further to this, the dataset collected

in a single year of publications demonstrated that there are hundreds of

different reported species co-occurrences, and in the human coinfection

network built from these publications the number of nodes (infections)

was still linearly increasing. In addition to the great diversity of parasites

found, the network I analysed in Chapter 3 showed elements of robust-

ness, such as an exponential distribution, weak, if any, assortativity, and

compartments, which suggest that perturbations, such as drug treatments

or vaccination, will affect few other nodes. Stability in terms of resistance

was also found in the model of a two-species parasite community in Chap-

ter 5, in that parasites were resilient to one-off treatment, and resistant to

extinction even under repeat treatment. Lastly, the network had localised

parasite interactions with 10 modules of interacting nodes largely centred

around certain bodily sites. This thesis has advanced understanding of

coinfection as a complex system, but treatments based on interactions

among parasites are still rare.

Challenges to treating the complex system

Translating studies of complex systems into treatments is challenging for

many reasons (Schadt and Björkegren, 2012). For coinfection in humans

these include: (i) many components performing the same functions, (ii)

multiple, nonlinear processes occurring simultaneously, and (iii) many in-
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direct interactions confounding predictions of treatment effects. Studies

of coinfection need to recognise that these three issues are inherent to

complex systems, and find ways to deal with them.

In the immune system, different components perform the same func-

tion, such as multiple cytokines causing the same response in target host

cells (Segel and Cohen, 2001). There is also the possibility that elimi-

nation of one parasite could simply open a niche for a different parasite

to invade. Ideally treatments should be robust to this, but knowing that

two or more nodes in a network share the same function is difficult a pri-

ori without experiments that knockout each node in turn. Such tests are

often precluded in humans on ethical grounds, but the use of laboratory

animals could be model systems.

I attempted to overcome these difficulties by representing coinfection

within humans in silico using a network and a simulation. As mentioned

above, there is no consensus over which functions should describe within-

host interactions either in the model developed in Chapter 5, or for quanti-

fying interaction strength in any future version of the network in Chapter

3. Where nonlinear functions for within-host processes are posited, as

in the model in Chapter 5 following the models of Fenton et al. (2010)

and Hauzy et al. (2010), the necessary data to parameterise models in

humans are lacking. Thus I developed a theoretical model for a range

of helminths species with different interspecific interactions. The results

from this model showed that complex treatment responses are possible

including non-monotonic or flat relationships with increases in the inter-

action parameter. When multiple nonlinear processes like density depen-

dent establishment, fecundity, and immune attack occur simultaneously,

perturbations like drug treatment might have counterintuitive effects. Im-

proving our understanding of within-host biology, modelling it, and using

the models to make predictions for treatment programs is therefore vital.

To translate model simulations into recommendations for real treat-

ments the model presented in Chapter 5 is only the beginning. Future

versions of the model could include more diverse parasite communities

and species with different life histories, say varying in virulence, or having

other hosts or vectors. Other treatment types could be modeled, such as
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vaccination, nutritional improvements, or only treating high burden hosts.

Two-way interactions can also be modeled where both species affect the

another, as has been done for HIV and malaria coinfection (Alemu et al.,

2013). However, the major caveat to such work is that, as I showed in

Chapter 5, the simulated effects of treatment are sensitive to nonlinear-

ities. Establishing the nonlinear functions of within-host processes, and

collecting data to infer parameters are crucial.

Another potential caveat is that prediction might be difficult even when

interspecific interactions are quantified. Perturbations of models of eco-

logical communities of more than two species where the only process is

population growth are predicted to often have effects of indeterminate

direction and size (Yodzis, 1988), even with recent technical and comput-

ing advances (Novak et al., 2011). Nevertheless, this thesis indicates that

whether non-target parasite populations in patients coinfected by a pair

of parasites are higher or lower after treatment might be predictable when

there is one-way interaction between the parasite species. While the im-

pact of treatment on the wider parasite community of humans might be

difficult to determine, decisions about target or integrated treatment that

are informed by parasite interactions could be made for pairs of parasites

and in individuals.

Personalised networks of coinfection

To test the potential for treating pairs of coinfecting parasites in terms of

their interspecific interaction, first we would need to observe such coinfec-

tion systems in individuals, and then compare their outcomes with what

was simulated by a computer model. Simulations of a realistic model could

suggest the optimal treatment of coinfected patients that could then be

tested by a medical trial. This could be part of a translational math-

ematical modelling branch alongside current efforts to incorporate new

information for more personalised medical decisions (Auffray et al., 2009;

Loscalzo, 2011; Ma et al., 2011; Milgrom and Tran, 2010). This could also

extend the findings from the summary network in Chapter 3 to reveal the

variability between individuals and their disease progression, which may

require more flexibility in coinfection treatment strategies.
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A move towards personalised networks would also incorporate esti-

mates of interaction strength and various possible interventions, enabling

evaluation of different treatment options. For example, many studies of

hepatitis focus on interactions between HBV and HCV, but HDV coinfec-

tion and alcohol consumption have bigger effects on liver damage (Sagnelli

et al., 2012). Hepatitis would be a good coinfection for developing net-

works to predict the outcomes of different treatment options, given that I

found in Chapter 2 that almost two fifths of 2009 coinfection publications

included hepatitis coinfection.

How could treatment of coinfection be improved?

Commensal parasites are being targeted by treatments to benefit host

health (e.g. Wolbachia, Taylor et al. (2010)). Whether interactions be-

tween pathogenic parasites can be translated into treatments is still un-

clear. However, having reduced the complexity down to a theoretical

model involving only two parasite species, I can make some of the first

predictions of the general outcomes of species-specific treatment in coin-

fected populations. Results of simulations from Chapter 5 showed that

reductions in non-target parasites can occur when a positively interacting

parasite is treated. Coinfection, even at high prevalences, is therefore not

sufficient justification for an integrated treatment program because tar-

geting treatment at a positively interacting parasite can indirectly reduce

the burden of coinfecting parasites.

Deciding on integrated treatment based solely on parasites co-occurring

is therefore questionable; the presence of positive interspecific interactions

should also be tested for. Treatments that target facilitatory parasites

would be expected to indirectly reduce morbidity from non-target para-

sites. Extrapolating this finding from the model of helminth coinfection

in Chapter 5 to other parasite types that are thought to interact posi-

tively, such as bacterial coinfection being fostered by malaria or influenza,

this calls into question recommendations for integrated treatments. Such

recent recommendations included giving antibiotics for suspected bacte-

rial coinfections in malaria or influenza patients (Sandlund et al. (2013)

and Davies (2011) respectively). Further tests for interactions and new
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models of treatment of microparasite coinfection are needed. Ideally ran-

domised trials comparing the outcomes of targeted and integrated treat-

ments should be done before such medical guidance is given. At a mini-

mum, data recording the multiple diseases that simultaneously affect pa-

tients should be collated (Sánchez et al., 2010; Schur et al., 2011). With

more data on the disease trajectory of coinfected patients and their treat-

ments, we could compare infected and coinfected patients, and coinfected

patients receiving different treatments with fewer sampling, reporting, or

publication biases.

Future research opportunities

The research in this thesis pioneered a broader approach to coinfection

research, and has identified many avenues for future research.

Patterns of coinfection and related diseases

To further evaluate the general effects of coinfection on human health,

more datasets are needed. The analytical approach of Chapter 4 could

be extended by comparing coinfecting parasites in living patients with

those reported on death certificates, analysing death certificates from

other countries and years, or looking at other causes of death. For ex-

ample, coinfection deaths could be associated with noncommunicable dis-

eases because there are similarities between health services for infectious

and noncommunicable diseases (Bygbjerg, 2012), the human immune sys-

tem fights parasites, cancer, and autoimmune disease (Thompson, 1995;

Vincent, 2006), and various infections can lead to cancer (Parkin, 2006).

In addition, more systematic reviews of the human coinfection literature

for years before and beyond 2009 would likely expand the database of

parasites known to coinfect humans.

Evolution and treatment of complex systems

Studying complex systems often means a move toward big data and large

networks, but these can be technically challenging, and, perhaps more im-

138



6. Discussion

portantly, the biological understanding is often lacking (Anderson, 1994;

Callebaut, 2012). Theory of coinfection as a complex system could be

particularly advanced by study of evolution. This thesis has only con-

sidered the population dynamics arising from parasite interactions, but

how the parasites, and, in turn, their interactions, evolve should also be

studied. The evolution of resistance to drugs is a particular challenge for

treatment of infectious diseases (Baquero, 1997; Hirsch et al., 1998; Koul

et al., 2011). Pertinent to coinfection treatment, broad-spectrum drugs or

combinations of drugs used in integrated control programs may select for

parasites resistant to the most widely used drugs. For instance, applying

antibiotics that target diverse coinfecting bacteria has been attributed to

severe infections like necrotising fasciitis being increasingly dominated by

single bacterial strains resistant to multiple antibiotics (Tsitsilonis et al.,

2013). The double complication of coinfection with two differently re-

sistant bacterial types is also increasingly common (Meyer et al., 2011).

Whether administering multiple treatments to coinfected patients selects

for resistance at a different rate from patients with single infections or

coinfected patients receiving a single treatment needs further monitor-

ing and modelling. While adding evolution to parasite interactions often

makes the problem less tractable (Woolhouse et al., 2002), evolutionary

feedbacks such as the evolution of resistance to drugs could easily be added

to the model I developed in Chapter 5. This research is urgently needed

to inform prudent drug treatments in coinfected patients.

Coinfection diagnosis and treatment in practice

The possibility that current treatments might be unnecessary or counter-

productive must be tempered, given the dearth of data on how coinfected

patients are being treated. The datasets used in Chapters 2 to 4 included

treated individuals, but how their parasite communities were changed by

treatment is unclear. Studies of how coinfected patients are diagnosed

and treated in clinical practice would enable assessment of how parasite

communities are being perturbed. Diagnosis of coinfection is often re-

ported as occurring solely by symptoms, or once a patient’s condition did

not improve after initial treatment (Alavi et al., 2012; Baba et al., 2013;
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Xuefei et al., 2013). How often does this occur? Which diagnostic tests

are done first? Once diagnosed, how are coinfection treatments decided?

What is the relative importance of patient condition, patient characteris-

tics like age and sex, and guidelines for treatment of the infections? What

are the strategies used by physicians treating patients with multiple dis-

eases besides infection (Fortin et al., 2007), and can they be applied to

coinfection?

As well as understanding parasite interactions within coinfected pa-

tients, we also need to find how social and clinical environments affect

parasite communities parasites (Utzinger et al., 2011; Waldman et al.,

2013). The model presented in Chapter 5 could be made more relevant

to public health by considering societal inequalities, risky behaviours, and

poor environments. Coinfected individuals are often from marginalised

groups like criminals or drug abusers, and these social factors contribute to

the particular vulnerabilities of these individuals to coinfection (Freuden-

berg and Galea, 2006; La Fleur et al., 2012; Ruan et al., 2004; Singer,

2009; Tshikuka Mulumba et al., 2012; Zhou et al., 2012). Reducing so-

cial inequalities and risk factors is one of the most promising avenues for

reducing HIV-HCV coinfection (Klein et al., 2012). Models could thus

be expanded to consider the role of altered social structure, sanitation,

or needle exchange in coinfection dynamics. These models often rely on

biomedical indicators (e.g. parasite abundance) to indicate health, but so-

cial attitudes to health will affect the behaviour of coinfected patients and

their clinicians and the use of model findings in treatment programmes.

Research into biological systems like coinfection often dehumanises and

objectifies coinfection, but social factors like emotion, culture, and stigma

around diagnoses are important for patients (Daftary, 2012; Farrell and

Comiskey, 2013; Hansen et al., 2007; Rödlach et al., 2012; Singer, 2009;

Singer and Clair, 2003), and can affect compliance with treatment (Allen

and Parker, 2011; Parker and Allen, 2011; Parker et al., 2008; Soriano

et al., 2004). How can compliance with multiple treatments for multiple

infections be maximised? What is the effect of patients’ noncompliance

on health outcomes? While health is defined in this thesis as the presence

of disease causing morbidity or mortality, in other discourses “health” in-
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cludes more social aspects to mean either complete wellbeing, or, increas-

ingly, how resilient individuals are to changes in their lives (Jadad and

O’Grady, 2008). There is considerable disagreement within and among

patients and professionals how to define health (Tikkinen et al., 2012).

How do coinfected individuals view their health? Do other measures of

health also differentiate between coinfected and single infected individuals,

and for which kinds of parasites? Exploring social aspects of coinfection

is an important next step because human behaviour affects individual

health, treatment compliance, and the parasite community.

Final conclusions

Through the varied datasets, methods, and investigations presented in this

thesis, I have shown that coinfection, while diverse and complex, tends to

have detrimental effects on the morbidity and mortality of human hosts.

By building a network of parasites, host resources, and host immune com-

ponents, I was able to show that most interactions among coinfecting

parasites appear to be indirect, and are clustered around shared sites of

infection. Simulations of an agent-based model showed that, despite the

indirect nature of resource- and immune-mediated interactions, if we knew

the direction of an interaction, we could often predict treatment outcomes

of non-target parasites. This opens the way for recommendation of op-

timal treatment regimes based on interactions between pairs of parasite

species. If there is a positive interaction between the parasites then spe-

cific treatment of the facilitatory species may be sufficient. If there is a

negative interaction, co-treatment may be advisable. Most pairs of para-

sites appear to not be associated, but given the severe harm to host health

in terms of morbidity and mortality we need to find the types of parasites

that do co-occur more frequently than expected and that interact to dam-

age host health. Taking a broader view of interspecific interactions in

coinfected humans has opened up many more avenues for study of this

complex system, including how treatment can be improved to maximise

host health.
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Hohmann, N., and A. Voss-Böhme. The epidemiological consequences of
leprosy-tuberculosis co-infection. Mathematical Biosciences, 241:225–
237, 2013.

Holcombe, M. et al. Modelling complex biological systems using an agent-
based approach. Integrative Biology, 4:53–64, 2012.

Holland, C. Predisposition to ascariasis: patterns, mechanisms and impli-
cations. Parasitology, 136:1537–1547, 2009.

Holmes, J. C., and P. W. Price. Communities of parasites. In Anderson,
D. J., and J. Kikkawa, editors, Community ecology: pattern and process.
Blackwell, Oxford, 1986.

157



References

Hopkins, D. R. Disease eradication. New England Journal of Medicine,
368:54–63, 2013.

Horiuchi, S. Greater lifetime expectations. Nature, 405:744–745, 2000.

Hotez, P. J. Mass drug administration and integrated control for the
world’s high-prevalence neglected tropical diseases. Clinical Pharma-
cology and Therapeutics, 85:659–664, 2009.

Hotez, P. J. et al. Control of neglected tropical diseases. New England
Journal of Medicine, 357:1018–1027, 2007.

Hotez, P. J. et al. Helminth infections: the great neglected tropical dis-
eases. Journal of Clinical Investigation, 118:1311–1321, 2008.

Hotez, P. J. et al. Developing vaccines to combat hookworm infection
and intestinal schistosomiasis. Nature Reviews Microbiology, 8:814–826,
2010.

Hutchinson, G. An introduction to population ecology. Yale University
Press New Haven, 1978.

IHME. Years lived with disability (YLDs) for 1,160 sequelae of
289 diseases and injuries, 1990–2010: a systematic analysis for
the Global Burden of Disease study 2010, 2012. URL http:
//www.healthmetricsandevaluation.org/sites/default/files/
publication_summary/2012/YLDs%20Appendix%2012122012.pdf.

Iman, R. L. Considerations with regard to input variables for computer
simulations. In Proceedings of the 14th conference on Winter Simulation
- Volume 2, WSC ’82, pages 597–597. Winter Simulation Conference,
1982.

Ingram, J. T., J. S. Yi, and A. J. Zajac. Exhausted CD8 T cells down-
regulate the IL-18 receptor and become unresponsive to inflammatory
cytokines and bacterial co-infections. PLoS Pathogens, 7, 2011.

Ioannidis, J. Why most published research findings are false. PLoS
Medicine, 2:e124, 2005.

Jackson, J. et al. T helper cell type 2 responsiveness predicts future suscep-
tibility to gastrointestinal nematodes in humans. Journal of Infectious
Diseases, 190:1804–1811, 2004.

Jackson, J. et al. Heterogenous interspecific interactions in a host–parasite
system. International Journal for Parasitology, 36:1341–1349, 2006.

Jadad, A. R., and L. O’Grady. How should health be defined? BMJ, 337:
a2900, 2008.

Jager, L., and J. Leek. Empirical estimates suggest most published medical
research is true. arXiv, 1301.3718, 2013.

James, D., and A. Bull. Information on death certificates: cause for con-
cern? Journal of Clinical Pathology, 49:213–216, 1996.

158



References

Janssen, H. L. et al. Treatment of HCV infection by targeting microRNA.
New England Journal of Medicine, Online preprint, 2013.

Jhung, M. A. et al. Epidemiology of 2009 pandemic influenza A (H1N1)
in the United States. Clinical Infectious Diseases, 52:S13–26, 2011.

Johnson, P. et al. Living fast and dying of infection: host life history drives
interspecific variation in infection and disease risk. Ecology Letters, 15:
235–242, 2012.

Johnson, P. T. J., and I. D. Buller. Parasite competition hidden by corre-
lated coinfection: Using surveys and experiments to understand parasite
interactions. Ecology, 92:535–541, 2011.

Jong-Wook, L. Global health improvement and WHO: shaping the future.
The Lancet, 362:2083–2088, 2003.

Kacsoh, B. Z., Z. R. Lynch, N. T. Mortimer, and T. A. Schlenke. Fruit flies
medicate offspring after seeing parasites. Science, 339:947–950, 2013.

Kamal, S. M., and K. El Sayed Khalifa. Immune modulation by helminthic
infections: worms and viral infections. Parasite Immunology, 28:483–96,
2006.

Karvonen, A., C. Rellstab, K. Louhi, and J. Jokela. Synchronous attack is
advantageous: mixed genotype infections lead to higher infection suc-
cess in trematode parasites. Proceedings of the Royal Society B, 279:
171–176, 2012.

Kasprowicz, V. et al. Defining the directionality and quality of influenza
virus–specific CD8+ T cell cross-reactivity in individuals infected with
hepatitis C virus. The Journal of Clinical Investigation, 118:1143, 2008.

Kastritis, P. L., and A. M. J. J. Bonvin. On the binding affinity of macro-
molecular interactions: Daring to ask why proteins interact. Journal of
the Royal Society Interface, 10:20120835, 2013.

Kepler, G. M., H. T. Banks, M. Davidian, and E. S. Rosenberg. A
model for HCMV infection in immunosuppressed patients. Math Com-
put Model, 49:1653–1663, 2009.

Keusch, G. T., and P. Migasena. Biological implications of polyparasitism.
Review of Infectious Diseases, 4:880–882, 1982.

Keystone, J., D. Keystone, and E. Proctor. Intestinal parasitic infections
in homosexual men: prevalence, symptoms and factors in transmission.
Canadian Medical Association Journal, 123:512–514, 1980.

Khodadad, A., F. Farahmand, M. Najafi, and M. Shoaran. Probiotics for
the treatment of pediatric Helicobacter pylori infection: A randomized
double blind clinical trial. Iranian Journal of Pediatrics, 23:79–84, 2013.

King, C. Parasites and poverty: the case of schistosomiasis. Acta Tropica,
113:95–104, 2010.

159



References

Klein, M. et al. HIV and hepatitis C virus coinfection in Canada: chal-
lenges and opportunities for reducing preventable morbidity and mor-
tality. HIV Medicine, 14:10–20, 2012.

Knowles, S. C. L. The effect of helminth co-infection on malaria in mice:
A meta-analysis. International Journal for Parasitology, 41:1041–1051,
2011.

Kotze, A., and S. Kopp. The potential impact of density dependent fecun-
dity on the use of the faecal egg count reduction test for detecting drug
resistance in human hookworms. PLoS Neglected Tropical Diseases, 2:
e297, 2008.

Koul, A. et al. The challenge of new drug discovery for tuberculosis.
Nature, 469:483–90, 2011.

Krause, A. et al. Compartments revealed in food-web structure. Nature,
426:282–285, 2003.

Krebs, C. Two paradigms of population regulation. Wildlife Research, 22:
1–10, 1995.

Kumar, A. et al. Critically ill patients with 2009 influenza A (H1N1)
infection in Canada. Journal of the American Medical Association, 302:
1872–1879, 2009.

Kuramitsu, H. et al. Interspecies interactions within oral microbial com-
munities. Microbiology and Molecular Biology Reviews, 71:653–670,
2007.

Kuris, A. et al. Ecosystem energetic implications of parasite and free-living
biomass in three estuaries. Nature, 454:515–518, 2008.

La Fleur, C. et al. Tuberculosis, incarceration, and HIV at a crossroads
in Guyana. International Journal of Infectious Diseases, 16:e684–686,
2012.

Lafferty, K. Microbiology. interacting parasites. Science, 330:187–8, 2010.

Lafferty, K., and A. Kuris. Parasites reduce food web robustness because
they are sensitive to secondary extinction as illustrated by an invasive
estuarine snail. Philosophical Transactions of the Royal Society B, 364:
1659–1663, 2009.

Lafferty, K., A. Dobson, and A. Kuris. Parasites dominate food web
links. Proceedings of the National Academy of Sciences, 103:11211–
11215, 2006.

Lafferty, K. et al. Parasites in food webs: the ultimate missing links.
Ecology Letters, 11:533–546, 2008.

Lammie, P. J., A. Fenwick, and J. Utzinger. A blueprint for success:
integration of neglected tropical disease control programmes. Trends in
Parasitology, 22:313–321, 2006.

160



References

Landmann, F., D. Voronin, W. Sullivan, and M. Taylor. Anti-filarial ac-
tivity of antibiotic therapy is due to extensive apoptosis after Wolbachia
depletion from filarial nematodes. PLoS Pathogens, 7:e1002351, 2011.

Laserson, K. F., and C. D. Wells. Reaching the targets for tuberculosis
control: the impact of HIV. Bulletin of the World Health Organization,
85:377–386, 2007.

Lawn, S. D. AIDS in Africa: the impact of coinfections on the pathogenesis
of HIV-1 infection. Journal of Infection, 48:1–12, 2004.

Leadbeatter, S., and B. Knight. Reporting deaths to coroners. British
Medical Journal, 306:1018, 1993.

Leblanc, P. et al. Co-infection with the friend retrovirus and mouse scrapie
does not alter prion disease pathogenesis in susceptible mice. PLoS one,
7:e30872, 2012.

Lello, J., and T. Hussell. Functional group/guild modelling of inter-specific
pathogen interactions: A potential tool for predicting the consequences
of co-infection. Parasitology, 135:825–839, 2008.

Lello, J. et al. Competition and mutualism among the gut helminths of a
mammalian host. Nature, 428:840–844, 2004.

Lello, J. et al. The relative contribution of co-infection to focal infection
risk in children. Proceedings of the Royal Society B, 280:20122813, 2013.

Levin, S. Ecosystems and the biosphere as complex adaptive systems.
Ecosystems, 1:431–436, 1998.

Levitt, S. H. et al. Influences on inferences. effect of errors in data on
statistical evaluation. Cancer, 72:2075–2082, 1993.

Lijek, R. S., and J. N. Weiser. Co-infection subverts mucosal immunity
in the upper respiratory tract. Current Opinion in Immunology, 24:
417–423, 2012.

Lima Jr, D. et al. Patterns of interactions of a large fish–parasite network
in a tropical floodplain. Journal of Animal Ecology, 81:905–913, 2012.

Loscalzo, J. Systems biology and personalized medicine: A network ap-
proach to human disease. Proceedings of the American Thoracic Society,
8:196–198, 2011.

Lotz, J., W. Font, et al. The role of positive and negative interspecific
associations in the organization of communities of intestinal helminths
of bats. Parasitology, 103:127–138, 1991.

Louhi, K. R. et al. Prevalence of infection as a predictor of multiple
genotype infection frequency in parasites with multiple-host life cycle.
Journal of Animal Ecology, 82:191–200, 2013.

Luong, L. T. et al. The relative importance of host characteristics and
co-infection in generating variation in Heligmosomoides polygyrus fe-

161



References

cundity. Parasitology, 137:1003–1012, 2010.

Lustigman, S. et al. A research agenda for helminth diseases of humans:
The problem of helminthiases. PLoS Neglected Tropical Diseases, 6:
e1582, 2012.

Lutermann, H., C. Bodenstein, and N. Bennett. Natural parasite infection
affects the tolerance but not the response to a simulated secondary
parasite infection. PLoS one, 7:e52077, 2012.

Lysenko, E., R. Lijek, S. Brown, and J. Weiser. Within-host competition
drives selection for the capsule virulence determinant of Streptococcus
pneumoniae. Current Biology, 20:1222–1226, 2010.

Ma, Z., Z. Abdo, and L. J. Forney. Caring about trees in the forest: Incor-
porating frailty in risk analysis for personalized medicine. Personalized
Medicine, 8:681–688, 2011.

Macintyre, S., K. Hunt, and H. Sweeting. Gender differences in health:
are things really as simple as they seem? Social Science & Medicine,
42:617–624, 1996.

Madhi, S. et al. Effect of human rotavirus vaccine on severe diarrhea in
African infants. New England Journal of Medicine, 362:289–298, 2010.

Magori, K. et al. Skeeter Buster: a stochastic, spatially explicit modeling
tool for studying Aedes aegypti population replacement and population
suppression strategies. PLoS Neglected Tropical Diseases, 3:e508, 2009.

Maizels, R., and M. Yazdanbakhsh. Immune regulation by helminth para-
sites: cellular and molecular mechanisms. Nature Reviews Immunology,
3:733–744, 2003.

Maizels, R. et al. Helminth parasites–masters of regulation. Immunological
Reviews, 201:89–116, 2004.

Malchow, S. et al. Aire-dependent thymic development of tumor-
associated regulatory T cells. Science, 339:1219–1224, 2013.

Manenti, B. Interazioni tra specie parassitarie nei mammiferi domestici
e selvatici: analisi dei pattern di distribuzione. PhD thesis, Facolta di
Medicina Veterinaria, Universita’degli studi di Milano, 2011.

Marzal, A. et al. Effects of malaria double infection in birds: one plus one
is not two. Journal of Evolutionary Biology, 21:979–987, 2008.

Maslov, S., and K. Sneppen. Specificity and stability in topology of protein
networks. Science, 296:910–913, 2002.

Massone, C. et al. Leprosy and HIV coinfection: A critical approach.
Expert Review of Anti-Infective Therapy, 9:701–710, 2011.

Mathieu, E. et al. Participation in three consecutive mass drug adminis-
trations in Leogane, Haiti. Tropical Medicine & International Health,
11:862–868, 2006.

162



References

Maudsley, G., and E. Williams. ‘inaccuracy’in death certification–where
are we now? Journal of Public Health, 18:59–66, 1996.

McFall-Ngai, M. Adaptive immunity: care for the community. Nature,
445:153–153, 2007.

McSorley, H. J., and R. M. Maizels. Helminth infections and host immune
regulation. Clinical Microbiology Reviews, 25:585–608, 2012.

Medley, G., and R. Anderson. Density-dependent fecundity in Schistosoma
mansoni infections in man. Transactions of the Royal Society of Tropical
Medicine and Hygiene, 79:532–534, 1985.

Melamed, A., and F. Sorvillo. The burden of sepsis-associated mortality
in the United States from 1999 to 2005: an analysis of multiple-cause-
of-death data. Critical Care, 13:R28, 2009.

Menon, J., and P. Bretscher. Parasite dose determines the Th1/Th2 nature
of the response to leishmania major independently of infection route
and strain of host or parasite. European Journal of Immunology, 28:
4020–4028, 1998.

Meyer, E. et al. Increase of patients co-colonised or co-infected with
methicillin-resistant Staphylococcus aureus, vancomycin-resistant En-
terococcus faecium or extended-spectrum -lactamase-producing enter-
obacteriaceae. Infection, 39:501–506, 2011.

Meyer, K. M., and J. H. J. Leveau. Microbiology of the phyllosphere:
A playground for testing ecological concepts. Oecologia, 168:621–629,
2012.

Meyrelles, A. R. I. et al. Hiv/hpv co-infection during pregnancy in south-
eastern brazil: Prevalence, hpv types, cytological abnormalities and risk
factors. Gynecologic Oncology, 128:107–112, 2013.

Michael, E. et al. Mathematical models and lymphatic filariasis control:
endpoints and optimal interventions. Trends in Parasitology, 22:226–
233, 2006.

Michael, E., M. Malecela-Lazaro, and J. Kazura. Epidemiological mod-
elling for monitoring and evaluation of lymphatic filariasis control. Ad-
vances in Parasitology, 65:191–237, 2007.

Mideo, N., and S. Reece. Plasticity in parasite phenotypes: evolutionary
and ecological implications for disease. Future Microbiology, 7:17–24,
2012.

Milgrom, H., and Z. V. Tran. The rise of health information technology.
Current Opinion in Allergy and Clinical Immunology, 10:178–180, 2010.

Mills, S. et al. Movers and shakers: Influence of bacteriophages in shaping
the mammalian gut microbiota. Gut Microbes, 4:4–16, 2013.

Milne, E. M. The natural distribution of survival. Journal of Theoretical
Biology, 255:223 – 236, 2008.

163



References

Mims, C. A., A. Nash, J. Stephen, and R. Fitzgerald. Mims’ pathogenesis
of infectious disease. Academic Press, 2000.

Molinari, N. et al. The annual impact of seasonal influenza in the US:
measuring disease burden and costs. Vaccine, 25:5086–5096, 2007.

Molyneux, D., P. Hotez, and A. Fenwick. “rapid-impact interventions”:
How a policy of integrated control for Africa’s neglected tropical diseases
could benefit the poor. PLoS Medicine, 2:e336, 2005.

Molyneux, D. et al. Neglected tropical diseases and the global fund. The
Lancet, 373:296–297, 2009.

Morens, D., J. Taubenberger, and A. Fauci. Predominant role of bacterial
pneumonia as a cause of death in pandemic influenza: implications for
pandemic influenza preparedness. Journal of Infectious Diseases, 198:
962–970, 2008.

Moulin, A.-M. History. In Topley, W., G. Wilson, and B. Mahy, editors,
Topley & Wilson’s Microbiology & Microbial Infections: . Immunology,
Topley & Wilson’s Microbiology & Microbial Infections. Hodder Arnold,
10th edition, 2005.

Murray, C. J. et al. Disability-adjusted life years (dalys) for 291 diseases
and injuries in 21 regions, 1990–2010: a systematic analysis for the
global burden of disease study 2010. The Lancet, 380:2197–2223, 2013.

Mushayabasa, S., J. M. Tchuenche, C. P. Bhunu, and E. Ngarakana-
Gwasira. Modeling gonorrhea and HIV co-interaction. BioSystems,
103:27–37, 2011.

Muturi, E. J. et al. Concomitant infections of Plasmodium falciparum and
Wuchereria bancrofti on the Kenyan coast. Filaria Journal, 5:8, 2006.

Nacher, M. Worms and malaria: noisy nuisances and silent benefits. Par-
asite Immunology, 24:391–3, 2002.

Naik, S. et al. Compartmentalized control of skin immunity by resident
commensals. Science, 337:1115–1119, 2012.

Nannyonga, B., J. Y. T. Mugisha, and L. S. Luboobi. Does co-infection
with malaria boost persistence of trypanosomiasis? Nonlinear Analysis:
Real World Applications, 13:1379–1390, 2012.

Nansera, D. et al. Mortality and loss to follow-up among tuberculosis and
HIV co-infected patients in rural southwestern Uganda. International
Journal of Tuberculosis and Lung Disease, 16:1371–1376, 2012.

Nasell, I. On eradication of schistosomiasis. Theoretical Population Biol-
ogy, 10:133–144, 1976.

National Cancer Institute. NCI Enterprise Vocabulary Service, 2011. URL
http://ncit.nci.nih.gov.

NCBI. Pubmedhealth, 2012. URL http://www.ncbi.nlm.nih.gov/

164



References

pubmedhealth/.

Ned, R. M., J. M. Moore, S. Chaisavaneeyakorn, and V. Udhayakumar.
Modulation of immune responses during HIV-malaria co-infection in
pregnancy. Trends in Parasitology, 21:284–291, 2005.

Neubert, M., and H. Caswell. Alternatives to resilience for measuring the
responses of ecological systems to perturbations. Ecology, 78:653–665,
1997.

Newman, M. The structure and function of complex networks. SIAM
Review, 45:167–256, 2003.

Newman, M., and M. Girvan. Finding and evaluating community structure
in networks. Physical Review E, 69:026113, 2004.

Nieto, N. C., and J. E. Foley. Meta-analysis of coinfection and coexposure
with Borrelia burgdorferi and Anaplasma phagocytophilum in humans,
domestic animals, wildlife, and Ixodes ricinus-complex ticks. Vector-
Borne and Zoonotic Diseases, 9:93–102, 2009.

Norozian-Amiri, S., J. Behnke, et al. Density-dependent regulation of
the growth of the hookworms Necator americanus and Ancylostoma
ceylanicum. Parasitology, 109:119–128, 1994.

Novak, M. et al. Predicting community responses to perturbations in
the face of imperfect knowledge and network complexity. Ecology, 92:
836–846, 2011.

O’Connor, L., S. Walkden-Brown, and L. Kahn. Ecology of the free-
living stages of major trichostrongylid parasites of sheep. Veterinary
Parasitology, 142:1–15, 2006.

Office for National Statistics. Mortality statistics: Cause. review of
the registrar general on deaths by cause, sex and age, in England
and Wales, 2011. URL http://www.ons.gov.uk/ons/rel/vsob1/
mortality-statistics--cause--england-and-wales--series-
dh2--discontinued-/no--32--2005/mortality-statistics--
cause.pdf.

Olsen, A. The proportion of helminth infections in a community in western
kenya which would be treated by mass chemotherapy of schoolchildren.
Transactions of the Royal Society of Tropical Medicine and Hygiene, 92:
144–148, 1998.

Omran, A. R. The epidemiologic transition: a theory of the epidemiology
of population change. The Milbank Memorial Fund Quarterly, 49:509–
538, 1971.

Page, K., A. Scott, and Y. Manabe. The expanding realm of heterologous
immunity: friend or foe? Cellular Immunology, 8:185–196, 2006.

Palacios, G. et al. Streptococcus pneumoniae coinfection is correlated with
the severity of H1N1 pandemic influenza. PLoS one, 4:e8540, 2009.

165



References

Pancharoen, C., and U. Thisyakorn. Coinfections in dengue patients. Pe-
diatric Infectious Disease Journal, 17:81–82, 1998.

Park, S. Y. et al. Clinical significance and outcome of polymicrobial
Staphylococcus aureus bacteremia. Journal of Infection, 65:119–127,
2012.

Parker, M., and T. Allen. Does mass drug administration for the integrated
treatment of neglected tropical diseases really work? Assessing evi-
dence for the control of schistosomiasis and soil-transmitted helminths
in Uganda. Health Research Policy and Systems, 9:3, 2011.

Parker, M., T. Allen, and J. Hastings. Resisting control of neglected
tropical diseases: dilemmas in the mass treatment of schistosomiasis and
soil-transmitted helminths in north-west Uganda. Journal of Biosocial
Science, 40:161–181, 2008.

Parkin, D. M. The global health burden of infection-associated cancers in
the year 2002. International Journal of Cancer, 118:3030–3044, 2006.

Pasman, L. The complication of coinfection. The Yale Journal of Biology
and Medicine, 85:127–132, 2012.

Paterson, S., and M. E. Viney. Host immune responses are necessary for
density dependence in nematode infections. Parasitology, 125:283–292,
2003.

Pavlopoulos, G. A. et al. Using graph theory to analyze biological net-
works. BioData Mining, 4:10, 2011.

Pedersen, A. B., and A. Fenton. Emphasizing the ecology in parasite
community ecology. Trends in Ecology and Evolution, 22:133–139, 2007.

Peltola, V., K. Murti, and J. McCullers. Influenza virus neuraminidase
contributes to secondary bacterial pneumonia. Journal of Infectious
Diseases, 192:249–257, 2005.

Peng, D. et al. Multipathogen infections in hospitalized children with
acute respiratory infections. Virology Journal, 6:155, 2009.

Perkins, S. E., and A. Fenton. Helminths as vectors of pathogens in ver-
tebrate hosts: A theoretical approach. International Journal for Para-
sitology, 36:887–894, 2006.

Petchey, O., A. Beckerman, J. Riede, and P. Warren. Size, foraging, and
food web structure. PNAS, 105:4191–4196, 2008.

Petney, T. N., and R. H. Andrews. Multiparasite communities in animals
and humans: frequency, structure and pathogenic significance. Interna-
tional Journal for Parasitology, 28:377–393, 1998.

Pimm, S. Food Webs. University of Chicago Press, 2002.

Plaisier, A. et al. Onchosim: a model and computer simulation program
for the transmission and control of onchocerciasis. Computer Methods

166



References

and Programs in Biomedicine, 31:43–56, 1990.

Plata-Nazar, K., B. Kamiaska, and J. Jurczyk. Prevention of hospital
infections in pediatric department. Przeglad Pediatryczny, 39:35–38,
2009.

Pons, P., and M. Latapy. Computing communities in large networks using
random walks. Computer and Information Sciences-ISCIS 2005, pages
284–293, 2005.

Pons-Salort, M. et al. Exploring individual HPV coinfections is essential
to predict HPV-vaccination impact on genotype distribution: A model-
based approach. Vaccine, 31:1238–1245, 2013.

Pouillot, R., and M. L. Delignette-Muller. Evaluating variability and un-
certainty separately in microbial quantitative risk assessment using two
R packages. International Journal of Food Microbiology, 142:330–340,
2010.

Pouillot, R., M.-L. Delignette-Muller, D. Kelly, and J.-B. Denis. The mc2d
package. Comprehensive R Archive Network, 2010.

Poulin, R. Interactions between species and the structure of helminth
communities. Parasitology, 122:S3–11, 2001.

Poulin, R. Network analysis shining light on parasite ecology and diversity.
Trends in Parasitology, 26:492–498, 2010.

Pozniak, A. et al. BHIVA treatment guidelines for tuberculosis (TB)/HIV
infection 2005. HIV medicine, 6:S62–83, 2005.

Pullan, R., and S. Brooker. The health impact of polyparasitism in hu-
mans: Are we under-estimating the burden of parasitic diseases? Par-
asitology, 135:783–794, 2008.

Quinnell, R. et al. Predisposition to hookworm infection in Papua New
Guinea. Transactions of the Royal Society of Tropical Medicine and
Hygiene, 95:139–142, 2001.

R Development Core Team. The R environment for statistical computing
and graphics. Comprehensive R Archive Network, 2012.

Rafi, W., R. Ribeiro-Rodrigues, J. Ellner, and P. Salgame. Coinfection-
helminthes and tuberculosis. Current Opinion in HIV and AIDS, 7:
239–244, 2012.

Raman, K., A. G. Bhat, and N. Chandra. A systems perspective of
host-pathogen interactions: predicting disease outcome in tuberculosis.
Molecular Biosystems, 6:516–530, 2010.

Raso, G., A. Luginbuhl, C. A. Adjoua, and N. Tian-Bi. Multiple parasite
infections and their relationship to self-reported morbidity in a commu-
nity of rural Cote d’Ivoire. International Journal of Epidemiology, 33:
1092–1102, 2004.

167



References

Rauw, W. M. Immune response from a resource allocation perspective.
Frontiers in Genetics, 3:267, 2012.

Rayes, N. et al. Supply of pre-and probiotics reduces bacterial infec-
tion rates after liver transplantation—a randomized, double-blind trial.
American Journal of Transplantation, 5:125–130, 2004.

Raz, R., B. Chazan, and M. Dan. Cranberry juice and urinary tract
infection. Clinical Infectious Diseases, 38:1413–1419, 2004.

Read, A., and L. Taylor. The ecology of genetically diverse infections.
Science, 292:1099–1102, 2001.

Redelings, M., N. Lee, and F. Sorvillo. Pressure ulcers: More lethal than
we thought? Advances in Skin & Wound Care, 18:367–372, 2005.

Redelings, M. D., M. Wise, and F. Sorvillo. Using multiple cause-of-death
data to investigate associations and causality between conditions listed
on the death certificate. American Journal of Epidemiology, 166:104–
108, 2007.

Refardt, D. Within-host competition determines reproductive success of
temperate bacteriophages. ISME Journal, 5:1451–1460, 2011.

Reichardt, J., and S. Bornholdt. Statistical mechanics of community de-
tection. Physical Review E, 74:016110, 2006.

Resende, T. et al. Intestinal helminth co-infection has a negative impact on
both anti-Mycobacterium tuberculosis immunity and clinical response to
tuberculosis therapy. Clinical and Experimental Immunology, 147:45–
52, 2007.

Richardson, D. et al. Geohelminth infection in rural cameroonian villages.
Comparative Parasitology, 78:161–179, 2011.

Rieker, P., and C. Bird. Rethinking gender differences in health: why we
need to integrate social and biological perspectives. The Journals of
Gerontology Series B, 60:S40–47, 2005.

Rigaud, T., M.-J. Perrot-Minnot, and M. J. F. Brown. Parasite and host
assemblages: Embracing the reality will improve our knowledge of par-
asite transmission and virulence. Proceedings of the Royal Society B,
277:3693–3702, 2010.

Righetti, A. A. et al. Interactions and potential implications of Plasmod-
ium falciparum-hookworm coinfection in different age groups in South-
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Appendix: Agent-based model

from Chapter 5

Purpose

The purpose of this model was to explore how treating one parasite affects

non-target parasite abundance, and overall host morbidity, under a range

of interaction scenarios. Specifically the model explores the effects of an-

tihelminthic drug treatment applied singly or repeatedly across a range of

parasite interaction strengths, mechanisms, and directions in populations

with low, medium, and high coinfection prevalence.

State variables

State variables were: each host’s exposure to two parasite species, the

number of adults of each species (parasite abundance), size of the specific

immune response to each species, number of eggs released by each parasite

population into the environment (Fig. 5.2). The size of the environmental

pool of each parasite species, and each host’s age and mortality risk were

also calculated each timestep.

Processes

The model represents a village-sized human population living in a common

environment with two direct-transmitted endemic helminth species. Each

timestep includes a full parasite life cycle comprising transmission from

environment to hosts, establishment in hosts, immune response of hosts
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to parasites contributing to parasite mortality and reduced fecundity, and

reproduction of surviving parasites releasing eggs from hosts into the envi-

ronment. This model structure reflects a typical macroparasite life history

where host exposure, establishment of parasites, and density dependence

regulate helminth infections in sheep (Grenfell et al., 1987) and humans

(Basáñez and Boussinesq, 1999).

The host population is assumed to be at equilibrium, with every host

having the chance of dying each timestep, calculated from a background

age-dependent mortality rate and the combined burden of both parasite

species. Dead hosts were immediately replaced by identical, but unin-

fected new hosts (age 0). 70% of randomly selected hosts received treat-

ment during treatment timestep(s), reflecting treatment coverage similar

to other repeated mass drug administration programs (Mathieu et al.,

2006; Wanji et al., 2009). The model was iterated for 500 hosts until

state variables and host age distribution reached equilibrium (timestep

45).

Permanent residence in dense populations has been an important driver

of infectious disease dynamics in human history (Dobson and Carper,

1996), but I chose a village-sized population because mass drug admin-

istration to a majority of the host population is more feasible here, and

such settlements represent nearly half of the world population who live

outside large urban areas. Modeling a population of 500 hosts is large

enough to include a range of parasite susceptibilities, while also being

computationally tractable. Submodels (see below) of parasite life stages

were iterated in the same order every timestep for each host (e.g. infec-

tion, establishment within host, immune stimulation, death and immune

attack on worms, parasite reproduction, immune attack on eggs, then pos-

sible host death). The order of hosts to which this sequence of submodels

was applied was randomized in each iteration. Once at equilibrium the

hosts were treated with antihelminthic drug for either one timestep (one-

off treatment) or each timestep (repeat treatment) until the model run

ended 10 timesteps later. Each parameter set was simulated 50 times,

after which point the mean of all state variables was at equilibrium.
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Design concepts

The model is a double-programmed, updated R version of the Fenton

et al. (2010) Mathematica model of two macroparasites interacting within

a mammalian host population. Such independent rewriting of code im-

proves confidence in model features and results (e.g. Magori et al. (2009)).

Parasite life history stages and their order are unchanged between the two

models. Modifications include adapting the method for correlating host

exposure rates for both parasites to allow for negative correlation, adding

resource-mediated interactions, increased host longevity and increasing

risk of host death with age (to represent typical human survivorship rather

than the constant higher mortality rates of the original shorter-lived rab-

bits or sheep), and including treatment in the model.

Correlated exposure to infection

Each host has a lifelong exposure score to each parasite species that is

a probability of that host encountering parasite larvae in the environ-

ment, reflecting fixed genetic, environmental, or behavioural risk factors

to infection (Bensted-Smith et al., 1987; Bundy et al., 1987; Hall et al.,

1992; Jong-Wook, 2003; Quinnell et al., 2001; Schad and Anderson, 1985).

Host exposure to the two parasite species could be correlated (positively or

negatively) to represent hosts with certain tendencies or environs that fos-

ter coinfection of similar parasite species like shared transmission routes

(positive correlations in exposure) or differential exposure to the para-

sites like asynchronous parasite phenology (negative correlations). The

values of the correlated exposure parameter were −0.9 (strong negative

correlation, for low coinfection prevalence), 0 (no correlation, medium

prevalence), and +0.9 (strong positive correlation, high prevalence). Cor-

related exposure is an association based on between-host parasite ecology,

and is not a within-host interaction between parasite species. In other

words although infection rates can be correlated in the host population,

they behave independently within individual hosts unless an interaction

is added.
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Host immunity and immune-mediated parasite interactions

Immune responses associated with helminth infection are complex and

some may be defective (Schweitzer et al., 1992). Following other mod-

els of immunity to parasites, details like particular cell types are ignored,

and the size of an overall immune response is modeled. This immunity

increases with parasite density (Kepler et al., 2009), and with cumulative

experience of infection, albeit with some decay of immune memory with

time post infection (Anderson and May, 1992). Immunity to each parasite

accumulated over each host’s lifespan at a rate determined by that par-

asites cumulative population size within that host (Haswell-Elkins et al.,

1989), but immune memory decayed slowly over time so that immunity

diminished without parasite stimulation (see Bleay et al. (2009)). Host

immunity had a large negative effect on parasite numbers by increasing

adult parasite mortality and reducing per capita fecundity, concuring with

macroparasite infections in mammalian models (Bleay et al., 2007; Pater-

son and Viney, 2003; Roberts, 1999; Stear et al., 2007).

In simulations where the parasite species interacted via immunity, the

crossimmunity parameter ranged from −1 (immunosuppression propor-

tional to entire abundance of target parasite) to +1 (enhancement of

immune response proportional to entire abundance of target parasite),

reflecting differences in immune affinity caused by one parasite species

(following Fenton et al. (2010)).

Parasite density and resource-mediated interactions

The model also included the possibility of a resource-mediated interaction.

Progression of parasite life stages can change with parasite abundance

(density), affecting establishment, growth, survival, and reproduction of

each parasite species (Medley and Anderson, 1985; Paterson and Viney,

2003; Shostak and Scott, 1993). In the model non-target parasite species’

density could also affect target species’ density. This mimics one-way re-

source availability without tracking resources explicitly (Krebs, 1995). A

density-dependent function was used where the rate of parasite establish-

ment or fecundity of parasite species i at timestep T (Ei,T ) varied with
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total parasite density either positively or negatively using equation 2 from

Hauzy et al. (2010):

Ei,T = Emax ·
DT

xi

Dhalf
xi +DT

xi
(6.1)

where Emax is the highest proportion of larvae that can establish or

worms that can reproduce, Dhalf is the density of total parasites when

half the maximum establishment or reproductive rate is reached, DT is

the total parasite density at time T , and xi is the shape parameter, that

is the effect of parasite density either positive or negative on parasite i .

The shape of the function can represent competitive (−1 < xi < 0), fa-

cilitative (0 < xi < 1), or no interaction between the parasites (0, Fig.

6.1). As well as allowing the density of the target species to affect the non-

target species, intraspecific density dependence is modeled so that mortal-

ity rates increase and fecundity decreases at higher conspecific densities

(following studies of hookworm, Kotze and Kopp (2008); Norozian-Amiri

et al. (1994)).

Treatment

Single (“pulse”) and repeated (“press”) treatments (sensu Bender et al.

(Bender et al., 1984)) were simulated. Sometimes treatments are slightly

effective at killing coinfecting parasites (e.g. Waikagul et al. (2005)), but

for simplicity I assumed that a drug only directly affects the target par-

asite and has no effect on non-targets. Treatment was applied at speci-

fied time(s) to a random sample of 70% of hosts after parasite dynamics

had equilibrated. Treated hosts were assumed to clear their adult worms

for that timestep, representing a totally effective dose of antihelminthic

drugs, like praziquantel for schistosomiasis, ivermectin for onchocerciasis,

or albendazole for hookworm. The effect of treatment was instantaneous

(i.e. same timestep, not persisting to the next timestep); consequently

susceptible hosts can be reinfected. Mass drug administration was mod-

eled because this is WHO-recommended practice (Crompton, 2006) and

is generally more effective than selective or targeted treatments at reach-

ing infected individuals and reducing mean worm abundance (Richardson
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Fig. 6.1: Response of the establishment rate (E ) of the non-target larvae
to the abundance of adult target parasites depending on the shaping co-
efficient, x . Follows equation 6.1. This density dependent function is also
applied to fecundity.
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et al., 2011), even when subtotal enrollment is accounted for (Asaolu et al.,

1991; Olsen, 1998).

Stochasticity

There were four stochastic aspects to the model that enable tests of treat-

ment in varying host populations: (i) the initial assignment of host sus-

ceptibilities, (ii) the order of hosts at each timestep, (iii) demographic

stochasticity by rounding population size of parasite adults and eggs to

integer values, and (iv) host death. The demographic stochasticity from

discretising numbers of adult parasites and their progeny is especially im-

portant for modeling infections at the individual host scale when parasite

numbers within each host are small (n < 100), such as gastrointestinal

helminths of humans. All parasite dynamics were deterministic, i.e. trans-

mission, reproduction, parasite mortality, and interspecific interactions.

Initialisation

The model was first parameterised with the values of Fenton et al.’s the-

oretical model (Fenton et al., 2010). New parameters, such as for host

mortality, were set at biologically realistic values (Table 6.1). Host ex-

posure was assigned from the negative binomial distribution, which is a

good statistical model for worm burden (Crofton, 1971; Richardson et al.,

2011), of which host genetic susceptibility is a major driver (Holland, 2009;

Wilson et al., 2002).

Input

The model was simulated for each parasite interaction term in intervals of

0.05 between −1 and +1. All functions were applied at every timestep to

every host, except for treatment, which was applied at specified time(s).

Each set of parameters was simulated 50 times.
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Table 6.1: Values of parameters used in the Individual Based Model. No-
tation corresponds with the equations in the Supplementary Methods,
with - denoting that there is no relevant equation presented.

Parameter Notation Value

Number of hosts - 500
Number of parasite species - 2
Number of timesteps - 100
Replicate simulations - 50
Host exposure P

Mean for negative binomial distribution - 1
Dispersion for negative binomial distribution - 6000
Coexposure to both species - −0.9, 0, 0.9
General parasite dynamics -

Initial environmental egg pool 1000
Density dependent shaping parameter x −1 to +1
Maximum fecundity and establishment rate Emax 1
Parasite density for half density dependent rate Dhalf 40
Adult parasite survival rate S 0.8
Immune decay rate δ 0.5
Adult parasite fecundity F 200
Immune effect on adult parasite survival SI 0.001
Immune effect on adult parasite fecundity FI 0.001
Environmental egg pool decay rate - 0.75
Parasite-specific immune responses

Impact of parasite 1 on immune response to parasite 1 γ1,1 +1
Impact of parasite 2 on immune response to parasite 2 γ2,2 +1
Impact of parasite 1 on immune response to parasite 2 γ1,2 −1 to +1
Impact of parasite 2 on immune response to parasite 1 γ2,1 0
Host mortality

Maximum host life expectancy M 70
Virulence inflexion point X 2000
Treatment

Effect of drug on adult parasite number - 1
Proportion of hosts treated T 0.7
Timestep when treatment started - 50
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Submodels

Parasite life history stages and host mortality were calculated for each

host at each timestep in the same order as the following submodels. These

submodels correspond to those of Fenton et al. (2010), with some modifi-

cations detailed below.

Host exposure to parasites

Individual host exposure to parasites is modeled by a probability of in-

fection sampled from a negative binomial distribution (X ∼ NB(µ, k),

with mean µ and dispersion parameter k ). I converted each integer into

a probability by dividing by the total. These randomly assigned probabil-

ities were shuffled to create coexposure using the Iman Conover method

until exposure was rank correlated as close as possible to a target cor-

relation (Iman, 1982) (using the R package mc2d version 0.1-8 (Pouillot

and Delignette-Muller, 2010; Pouillot et al., 2010)). This alteration to the

method of Fenton et al. enables negative and positive correlation.

Larval parasite transmission

The number of parasite larvae of parasites species i ingested by a host

(NU ) at timestep T is given by:

NU
i,T = Pi · Li,T (6.2)

where Pi is host exposure to species i , and Li is the number of parasite

larvae of species i remaining in the environmental pool from the previous

timestep. In this function larvae remaining in the environment do not die

between timesteps. Larvae of nematodes infecting sheep like Ostertagia

spp. are known to live on pasture into the following year (Boag and

Thomas, 1970; Gibson and Everett, 1972; Gibson et al., 1967; Gulland

and Fox, 1992), and, depending on climate, larvae can survive round the

year (Gupta et al., 1987; O’Connor et al., 2006).
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Establishment of parasite larvae

The number of ingested larvae of species i establishing and reaching ma-

turity within a host at timestep T (NA
i,T ) is given by:

NA
i,T = NU

i,T · Ei (6.3)

where E is the larval establishment rate for species i .

Specific host immune responses

The magnitude of a host’s specific immune response (I ) of species i at

time T is given by:

Ii,T = Ii,T−1(1 − δ) + γi,i ·NA
i,T + γj,i ·NA

j,T (6.4)

where δ is the decay rate of immunity per unit time, j is the other

parasite species (i.e. not species i), γ is the effect of the first subscripted

species on the immune response to the second subscripted species, and

NA is the number of adult parasites infecting the host.

Adult parasite survival

The number of adult parasites of species i in a host at the end of timestep

T (Ni,T ) is given by:

Ni,T = (NA
i,T +Ni,T−1) · Si.e

−Si·Ni,T−1−SI·Ii,T (6.5)

where Si is parasite survival rate of species i , SI is the effect of

immunity on parasite survival.
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Adult parasite fecundity

The number of parasite eggs (faecal egg count, FEC of species i released

from a host in timestep T is given by:

FECi,T = Ni,T · Fi.e
−F,·Ni,T−FI·Ii,T (6.6)

where F is the reproductive rate (per capita fecundity) of an adult

parasite of species i and FI is the effect of immunity on fecundity. In

each timestep the model predicts that the more adult worms in an in-

dividual, the more eggs produced, although the relationship is nonlinear

and variable (Fig. 6.2). Hosts die after parasite reproduction so some in-

fected hosts release eggs, but subsequently die and lose all their parasites

(eggs> 0 when worms= 0 on Fig. 6.2). Many publications report wide

variation in individual fecundity and worm abundance relationships, with

hosts with few worms releasing many eggs, and hosts releasing few eggs

having many worms. The model does not exhibit such wide variation (few

points along the axes on Fig. 6.2) because it represents a year, rather than

the shorter daily to weekly timescales of most empirical data. Studies of

nematodes in sheep show egg counts close to animal death are positively

correlated and that eggs and adult parasites follow similar distributions

across hosts (Grenfell et al., 1995).

Host mortality risk

The risk of a host’s death P (dYT ) related to its age Y at timestep T is

given by:

P (dYT ) = 1 − 0.5
1

(M−YT )/2 (6.7)

where M is the maximum host life expectancy. This is the Gompertz-

Makeham model and replaces the constant background host mortality risk

in the original model (Fenton et al., 2010) with one where mortality risk

increases exponentially with host age (Milne, 2008).

Mortality risk was also associated with parasite burden (reflecting im-

munopathology like inflammation (Finch and Crimmins, 2004), severe
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Fig. 6.2: Number of eggs produced in one timestep by adult parasites of
the target species for 500 hosts.

malnutrition, organ failure etc.) by a sigmoidal relationship (Equation

6.8). The shape of this sigmoidal curve was equal for both parasite species

so that the parasites had equal virulence. The probability of a host’s death

related to total parasite burden N at timestep T (P (dNT )) is given by:

P (dNT ) =
1

1 + e(−V ·(
∑n

i (Ni,T )−X)
(6.8)

where n is the number of the parasite species, V is the virulence of

adult parasites, and X is the inflexion parameter for the sigmoid curve.

Mortality risks associated with age (Equation 6.7) and parasite burden

(Equation 6.8) each contributed to two separate failure functions with a

single-draw process determining host death P (death) = mortality risk.
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