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Abstract

The recent interest in life extension of ageing aircraft and the need to address the

repair challenges in the new age composite ones, led to the investigation of new

repair methodologies such as adhesively bonded repair patches. The present the-

sis focuses on structural health monitoring aspects of the repairs, evaluating their

performance with guided ultrasonic waves aiming to develop a monitoring strategy

which would eliminate unscheduled maintenance and unnecessary inspection costs.

To address the complex nature of the wave propagation phenomena, a finite ele-

ment based model identified the existing challenges by exploring the interaction of

the excitation waves with different levels of damage. The damage sensitivity of the

first antisymmetric mode was numerically investigated. An external bonded patch

and a scarf repair, were further tested in static and dynamic loadings, and their per-

formance was monitored with Lamb waves, excited by surface-bonded piezoelectric

transducers. The response was processed by means of advanced pattern recognition

and data dimension reduction techniques such as novelty detection and principal

component analysis. An optimisation of these tools enabled an accurate damage

detection under complex conditions. The phenomena of mode isolation and precise

arrival time determination under a noisy environment and the problem of inade-

quate training data were investigated and solved through appropriate transducer

arrangements and advanced signal processing respectively. The applicability of the

established techniques was demonstrated on an aluminium repaired helicopter tail

stabilizer. Each case study utilised alternative nondestructive techniques for vali-

dation such as 3D digital image correlation, X-ray radiography and thermography.

Finally a feature selection strategy was developed through the analysis of the in-

stantaneous properties of guided waves for damage detection purposes.
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Chapter 1

Introduction

This chapter provides a brief introduction to the objectives of this thesis. First the

main industry area the thesis focused on is demonstrated, namely the repair of criti-

cal damage of primary structures in aerospace industry. Then the concept of in-situ

monitoring is presented and the current challenges with respect to maintenance in

aerospace industry are briefly explained. Finally an overview of the most repre-

sentative nondestructive testing (NDT) techniques will be presented as well as the

next step ahead of these techniques which is the use of structural health monitoring

(SHM) strategies. At the end of the chapter, the motivation and main objectives of

this work will be stated as well as a brief overview of the thesis.

1.1 Composite repairs in aerospace industry

The aerospace industry is currently required to deal with the problem of ageing

aerostructures. Approximately 30% of the current world wide fleet is estimated to

be over 15 years in age. These metallic structures mainly suffer from fatigue and

corrosion damage. In addition, aerospace industry has recently moved towards the

implementation of advanced polymer-based composite materials for the manufactur-

ing of the new age commercial aircraft such as the Airbus 380 and Boeing 787 [1].

These are made of a high percentage of composite materials while the new Airbus

350 has primarily used carbon fibre reinforced polymer (CFRP) for both fuselage

and wing structures. The composite materials in aerospace industry aim to create a

1
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whole new era where the maximised stiffness-to-weight ratio and the fuel efficiency

are the key requirements. Composite structures can exhibit damage mainly due to

low velocity impact. In this case, damage can remain invisible and undetected, while

its propagation can be catastrophic under certain loading conditions [1].

It is therefore clear that aerospace industry needs to address the demanding problem

of repair and maintenance in order to prolong the life of the ageing aircraft and to ad-

dress the repair challenges in the new composite ones through a reliable, robust and

cost effective repair scenario. This work focuses on the proposed repair technique

of adhesively bonded repair patches, mainly made of composites. This technology

was first introduced to Australian military industry in the early 1970s and later

in the USA in the early 1980s [2]. The considerable performance of the technique

extended its application to civil industry. However, extensive research over the last

years highlighted the technological challenges related to their design, manufactur-

ing, application and in-service performance. The current thesis will investigate the

monitoring of the in-service performance of this technology when subjected to a

variety of representative loading scenarios in different applications and will address

the key problems related to the efficient assessment of the repaired region. This is

a very critical step towards the certification of the technique by the Civil Aviation

Authorities, especially of primary carrying load structures [1].

1.2 The concept of in-situ monitoring

As stated in [3], the damage tolerance chain in aerospace industry is as strong as its

weakest link (e.g. the inspection), which would lead to appropriate maintenance if

needed, in order to prevent any failures. The cost of inspection though is a consider-

able aspect which spurred the interest in the utilisation of smart monitoring systems.

The term smart refers to any system that can respond and adapt to changes in its

environment. Studies performed in metal and composite aircraft structures showed

that more than 40% of the inspection time and approximately 20% of the mainte-

nance/inspection cost would be saved if a smart monitoring system was integrated

[3]. Smart monitoring systems involve the implementation of a series of sensors, ac-

tuators, controllers and signal processors which would perform in-situ, on-line mon-

itoring. This technology aims to provide extra performance reliability by offering

certain implementation and sensitivity advantages over the conventional inspection
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Figure 1.1: Rytter’s hierarchy model. [4]

strategies while keeping the number of scheduled and unscheduled inspections low

and the downtime of the aircraft to a minimum.

The continuous monitoring of a structure aims to provide information about the

structural integrity of the monitored region and to predict its residual life following

a hierarchical model as described by Rytter [4] (Figure 1.1). The first level of

the hierarchy examines the presence of damage in the structure. The second level

provides information about the possible location of the damage. In the third level

an estimation of the extent or the type of the damage is performed. The fourth

step predicts the residual life of the structure. It is sensible that each level is

dependent on the previous one. The first level which is the most vital one for the

damage identification is preferably implemented on-line and it might be successfully

accomplished even if the physics of the damage are not known. However the fourth

level cannot be implemented without the theoretical background of the structure

and the damage. The current work mostly focused on the first step of Rytter’s

model, while in combination with more conventional off-line techniques, the second

and third levels were performed.

This work focused on the application of the in-situ monitoring of the repaired area

when a critical damaged area has been first removed and subsequently repaired by a

composite adhesively bonded patch. Figure 1.2 illustrates the proposed monitoring

scenario which is based on an active damage monitoring concept where the excitation

of the system is required. First the system is excited with a suitable source, and

as the induced energy (here in the form of stress waves) propagates through the

system and through the region of interest such as the repaired region, the output

response can be recorded, post-processed and further assessed in order to determine

its residual life. This monitoring system can be continuous, monitoring the structure
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Figure 1.2: On-line monitoring scenario of repaired aerospace structures.

in an in-situ mode, and it can identify if patch debonding is happening during the

real time health monitoring of the repaired region.

1.3 Nondestructive testing

A variety of conventional NDT methods have been used for years in several engineer-

ing disciplines in order to detect defects and evaluate structural integrity, with the

most basic ones dating back to the mid-1960s. The technological advances in many

fields of sciences have resulted in a significant progress in NDT technologies over the

last few years. NDT technologies are required to reliably detect flaws over a critical

size, to be least affected by local geometry and property variations and to operate

fast with the least possible cost. Some of the most established techniques that are

employed by the aircraft maintenance operators include: visual inspection, the eddy

current technique, ultrasonic inspection and acoustic emission. Some background

information will be provided for each of these methods while the reader can refer to

the more extended work performed by Bar-Cohen [5], [6] and Staszewski et al. [3]

for further details.

Visual inspection is one of the most widely used NDT techniques, for the evaluation

of the structural integrity of metallic aircraft accounting for the detection of up

to 80% of cracks. It provides immediate results with the least possible required
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training but it is not recommended for composite structures since its efficiency is

mostly restricted to surface or near surface damage, rather than internally, between

plies.

The Eddy current technique monitors the change in the electromagnetic impedance

due to damage. Closed loops of current are induced in the monitored structure by

a coil [7]. All possible flaws in a conductor (inspected component/part) behave as

an obstacle for these eddy currents, modify the magnetic field, and are eventually

sensed by impedance change in the coil. The change of the impedance can be related

to the depth, length and orientation of the defect. This technique has proved to be

successful in detecting surface and subsurface damage (up to 6 mm depth). A

requirement for its application is that the material is an electrical conductor. Its

applicability is sometimes restricted due to the high power that is required and due

to the difficulty in the data interpretation.

Acoustic emission is defined as the rapid release of elastic energy which could occur

in composites due to a variety of failure modes such as fibre/resin cracking, fibre

debonding or delaminations (ply separations). The released energy is captured in

the form of an acoustic signal by appropriate sensors, bonded or embedded into

the structure, such as accelerometers. Monitoring of discontinuities, fatigue failure,

material flaws, welding flaws in metals and stress corrosion cracking has been suc-

cessfully applied in many engineering areas. A limitation arises from the fact that

this is a passive method, hence it requires loading of the inspected panel. As a

consequence, the inspected part might fail to detect stabilised damage [8].

Ultrasonic inspection is probably the most established method for the inspection

of both metallic and composite structures. Damage is located using the travel of

ultrasonic waves within the material. The waves reflect and refract when they meet

boundaries and the signal is received by sensors which are attached on the surface

of the component. Ultrasonic waves can travel long distances (few metres long) in

solid materials. When the waves travel through a damaged area, they are scattered

or absorbed and the received signal is attenuated. A result of damage presence could

be a change in velocity or amplitude or even conversion of modes.

Other conventional or emerging NDT methods and which have been used in the

current work include: X-ray radiography, digital image correlation (DIC) and ther-

mography. Radiography utilises gamma rays or X-rays and measures the degree of

absorption from the inspected structure, which in turn indicates the presence of



1.3. NONDESTRUCTIVE TESTING 6

defect or damage. The application of a penetrant solution is first required, therefore

it can only detect open damage [9].

Digital Image Correlation is an optical method, which estimates the surface dis-

placement and strain fields of an object when under loading in two possible pat-

terns, 2-dimensional and 3-dimensional. The main principle of this method is to

match the speckle pattern that covers the surface of the tested panel before and

after the loading [10]. The speckle is created by applying a black and white paint

on the examined surface. Then the estimation of the surface displacement vector is

possible by means of sub-image correlations in the two pictures that are recorded by

cameras [11]. The correlation of the sub-images is performed with certain softwares

which are based on well established algorithms that utilise either subset-based cross

correlation (CC) criteria or sum-squared difference (SSD) correlation criteria [12].

DIC can be performed on-line. More information can be found in Appendix A.

Thermography detects potential damage by collecting thermal images after thermal

waves have been generated within the inspected material. Then the material emits

thermal energy based on its thermal conductivity, its temperature and its emissivity

of defects. Each time the generated energy meets a defect, it is reflected back and

absorbed by a thermal camera [3]. Thermography can be performed on-line. More

information can be found in Appendix B.

The aforementioned methods usually require an a priori knowledge of the presence

of damage and its location, while the implementation of most of them is performed

off-line in a local manner. The area to be inspected needs to be accessible and

properly processed and sometimes expensive equipment needs to be utilised. A point

to point measurement is usually performed which dramatically increases the cost

and the duration of the inspections. In addition, some of these techniques require

the removal of the tested component for an off-line inspection which increases the

downtime of the structure. Finally their damage sensitivity is often reduced when

complex structures are considered while the bulky transducers that are sometimes

used can limit their efficiency and ease of application. Therefore the next step in

damage detection moves towards the so called structural health monitoring area.
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1.4 Structural health monitoring

Structural health monitoring (SHM) has shown considerable progress over the years

with promising applications in aerospace, marine, automotive and civil industry.

Research on SHM methods has proved their remarkable advantages over the tradi-

tionally used NDT due to the cost-effective and reliable damage detection abilities

they provide. SHM is referred to as the process of implementing a damage identifica-

tion strategy to aerospace, civil and mechanical infrastructure [13]. More generally,

SHM systems have the ability to monitor the tested structures in a continuous and

in-situ mode, to detect and interpret adverse changes and attribute those changes

to critical damage. A robust SHM system can provide life-cycle health monitoring

in order to avoid extended periods of inspections, reduce maintenance costs and

avoid unexpected catastrophic failures. There are many categories in SHM testing

which can be implemented on-line, among which perhaps the most common are

vibration-based and wave propagation methods. This work focuses on the latter

and more specifically on guided ultrasonic waves which will be discussed in detail.

More detailed reviews can be found in literature [14], [3].

1.5 Motivation and objectives of the thesis

The main objective of this work is to set the basis for an on-line monitoring system

that could be permanently installed in the repaired area and perform continuous

monitoring. The author has identified the following main points which need to be

addressed towards that direction.

1) Simulation and understanding of the underlying mechanisms of the Lamb wave

propagation through metallic and polymer-based composite repaired structures with

finite element analysis (FEA).

2) Study of the effect of different damage scenarios on the propagating waves and

determination of damage indices which can identify critical damage and locations

through FEA.

3) Experimental validation of the proposed monitoring technique on a variety of

representative repairs, of different types, ranging from small scale to large scale

industrial demonstrators and under aerospace typical loads, with additional support
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from most established NDT methods for extra validation.

4) Establishment of advanced signal processing tools ranging from linear to non-

linear statistical pattern recognition for damage assessment, and investigation of

their performance and limitations for each experimental case study.

5) Exploration of potential solutions for the aforementioned limitations which aim

to overcome problems related to undesirable noise and environmental effects or in-

adequate training data-sets.

6) Analysis of different ways of excitation of a pure Lamb wave mode based on

simple and more elaborate excitation techniques and realisation of techniques to

reliably determine the efficiency of the excitation methods through analysis of the

obtained signals.

7) Investigation of the factors that could affect pattern recognition analysis such as

the selection of features, and definition of alternative feature selection approaches

through the definition of indices after the time-frequency analysis of the obtained

signals.

1.6 Outline

Chapter 1. In this chapter the key points that motivated the current thesis are

briefly introduced such as the need for a new repair methodology for the adhesively

bonded composite patches in aircraft industry. Attention is focused on the need for

on-line monitoring while its benefits are emphasised. A brief outline of the most

representative NDT methods in aerospace industry is given and the advantages of

the new SHM techniques are investigated. Finally the motivation and the objectives

of the work are explained and an overview of the thesis is briefly presented.

Chapter 2. This chapter aims to address the most important characteristics of the

technology of bonded repairs. First a general illustration of the application of this

technology in aerospace industry is given and then the most critical design parame-

ters are explained for the most representative types of repairs, namely the external

patch and the scarf repairs. Finally the key problems related to this technology are

demonstrated, justifying the need for SHM of the repaired area aiming towards a

built-in monitoring system.
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Chapter 3. A general background on the wave propagation theory in elastic solids

is presented in this chapter, focusing on the bulk and guided waves and more specif-

ically on the propagation of Lamb waves at isotropic and anisotropic plates. Finally

the chapter demonstrates the fundamental theory regarding the generation and de-

tection of Lamb waves and their applicability on nondestructive testing.

Chapter 4. A theoretical background and examples are presented in this chap-

ter focusing on the pattern recognition and dimension reduction methods for high

dimensional, multivariate data. A general introduction as well as a basic litera-

ture review are given aiming to explain the fundamental theory behind the outlier

analysis, principal component analysis and nonlinear principal component analysis.

The chapter also presents a brief literature review on the theory and the previously

conducted work on various Fourier-based methods reaching the concepts of the in-

stantaneous properties of nonstationary signals as well as some recent approaches

for their estimation, such as the Hilbert-Huang transform. These methods were

subsequently used for analysing data of specific applications.

Chapter 5. The complications that arise from inappropriate features are outlined in

this chapter, and an alternative post-processing approach is proposed which would

determine more reliable features, based on the time-frequency analysis of Lamb

waves. An aluminium panel repaired with an aluminium, adhesively bonded patch

was tested under fatigue. The proposed time-frequency analysis tools are evaluated

first on simple Lamb wave responses and then a physical interpretation is attempted

to be given on the basis of the effect of damage on the instantaneous properties of

the acquired waves. Appropriate damage indices are defined and the performance

of the selected features is assessed with respect to the developed damage.

Chapter 6. The aim of this chapter is the investigation of the effect of different

kinds of damage on a simplified model of a repaired composite plate with a composite

patch through modelling with finite elements. First the built model is presented and

a validation study is performed. Then a study is demonstrated which focuses on the

effect of different damage types on the first antisymmetric mode, namely debonding

of different areas of the patch, degradation of the substrate and both types combined

together.

Chapter 7. The objective here is to apply the outlier analysis and the linear and

nonlinear principal component analysis, in experimental cases and to investigate the

efficiency of each proposed method for the purpose of the successful damage clas-
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sification under representative loading conditions. Two different repaired scenarios

were considered, namely one scarf repair and one external patch repair, subjected to

two different loading conditions, namely static and dynamic loading. Each repaired

scenario investigates different pattern recognition concepts while the attempt of a

pure mode excitation is performed at the external patch repair. The study deals

with certain problems that can arise in realistic testing conditions such as noise and

inadequate training data.

Chapter 8. This chapter presents the experimental testing of an aluminium he-

licopter stabilizer repaired with a composite patch under bending fatigue with the

purpose of scaling up the previously investigated methods and determining the key

challenges arising in real industrial applications. The chapter concludes on the per-

formance of each processing method and establishes a benchmark for real industrial

cases.

Chapter 9. The final chapter summarises the most important conclusions of the

current work as well as the contribution to knowledge and presents some ideas

regarding near future work.



Chapter 2

Bonded Repairs

Research on composite patches as a repair method has received considerable interest

over the last years in many industries such as aerospace, automotive and marine.

The big challenge of aircraft companies is to ensure operational life extension of

ageing aircraft with the lowest possible maintenance cost [15]. Composite patch

repair is a promising method which could meet the increasing aerospace industry

demands for aircraft maintenance in an affordable, efficient and relatively easy to

apply way [16]. SHM methods are an essential part for the design of a reliable and

robust repair system. In-situ continuous damage assessment of the repaired region

can provide information about the integrity of the repaired structure when it is

subjected to mechanical and thermal loads. The ‘smart’ maintenance system will

lead to the elimination of unscheduled maintenance after the implementation of the

repair patch. A very good review of composite patches with applications in industry

can be found in Baker’s work [17], [18]. A brief literature review background will

be outlined in this chapter concerning design and structural integrity monitoring

aspects.

2.1 Composite repair patches

When metallic aircraft structures are subject to fatigue loads and corrosion, cracks

might start propagating which can lead to unpredictable failures. These cracks can

initiate in unexpected regions due to local stress concentration. This could be the

11
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Figure 2.1: Panel with adhesively bonded composite patches [AMRC with Boeing
research centre].

result of material defects, poor manufacturing procedures or in-service introduced

damage. Traditional repair methods involved the disassembling of the damaged

part and its repair with a mechanically fastened doubler. This approach leads to

increased local overloads through the load transfer paths of the mechanical fasteners

and results in high maintenance cost due to the required aircraft downtime [19]. The

new age polymer-based composite aircraft are mostly susceptible to damage due to

low velocity impact, the so-called barely visible impact damage (BVID). This type

of damage can be the result of runaway debris, bird strikes or tool drop during

manufacturing and can cause internal damage in the form of delamination or resin

cracking which can lead to complete failure under loading. The traditional fastened

doubler has no application on composite airframes, since mechanical fastening can

cut fibres and cause further damage due to stress concentration. Representative

external repairs performed on a fuselage-like structure are illustrated in Figure 2.1.

One of the most important advantages of composite repair patches is that they

provide a lightweight solution, easy to design in order to address the shape and

stiffness requirements of the repair, which is rather critical for aerospace structures.

Compared to mechanical methods, adhesive bonding provides efficient load transfer

paths and introduces less stress concentration into the structure [20]. Moreover,

adhesive bonding seals the interface preventing in this way any possible fuel leakage

and reduces the risk of fretting fatigue between the patch and the component. The

application of the patch can be carried out in-situ, is suitable for emergency (field)

cases and if performed carefully it can be considered as a permanent repair. It

can either be pre-cured prior to its adhesion in the repaired region or co-cured. The

damaged part is removed and the composite patch is adhesively bonded on the dam-

aged region after the careful preparation of the surface [21]. The appropriate surface

preparation specifically in the case of metallic substrates is of significant importance
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in order to ensure a strong repair with long term environmental durability. Some

of the most widely used methods include the grit blast/silane & primer (BR127)

method, the phosphoric acid anodize surface preparation method (PACS) and the

pasa-jell 105 surface preparation method. The surface preparation though, is more

critical for cases where the patch aims to repair cracks. In this case, the surface

treatment should be avoided in case the pre-existing crack propagates faster due to

stress-corrosion. In such cases the phosphoric acid gel anodising surface treatment

has shown better results [22], [23].

There is a variety of adhesively bonded repairs that are available depending on

the severity of the damage. Cosmetic repairs refer to any type of damage that is

structurally insignificant such as scratches or missing surface plies and only aims to

restore the surface smoothness through the spread of a liquid adhesive or a resin

compound into the damaged region, which then cures at room temperature. Injec-

tion repairs are used for minor disbonds or delaminations, in which case holes are

drilled to the depth of the damage and filler resin is injected under pressure until

the excess resin starts flowing out of them. A prior heating ensures the decrease in

the resin’s viscosity while the pressure ensures that the resin will fill any gaps in

the repaired region. However when the severity of the damage is more critical, then

other types of more elaborate repairs need to be employed such as scarf repairs and

external patch repairs which are the focus of the current work [23].

2.1.1 External patch repairs

External patch repair is a type of repair that can be implemented following an easy

procedure; it aims to provide a temporary restoration of the mechanical strength

at regions that are not so critical in terms of structural performance. These repairs

can be either one-sided or two-sided depending on the accessibility. This method

usually follows the tapering design approach, according to which each repair ply

overlaps the ply below in a way that it provides a straighter, stronger, load path,

reducing the shear stresses that develop in the adhesive and the peel stresses that

develop at the ends of the patch. There are certain design parameters which need to

be considered before the application of an external patch. In Figure 2.2 a repaired

configuration with a double external patch is illustrated. Here only a brief summary

will be presented based on the results of a theoretical model by Hart-Smith [24], [25]

and further developed by Hu and Soutis [21]. In this model, the repair is approached
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as a single or double-lap joint on which a shear-lag model can be applied together

with the maximum shear-strain criterion in the adhesive.

 

z 

x P P tP 
tR tA 

L 

Figure 2.2: Double-lap joint [21].

The optimum patch thickness (tR) is responsible for the overall strength of the joint

and its selection is of critical importance. A thin patch or a patch with low elastic

modulus leads to a repaired region of low strength. However, a patch that is overstiff

might lead to increased weight and reduced strength due to higher shear stresses

developed in the joint. In addition, as the thickness of the patch increases, then the

through-thickness tensile stresses (peel stresses) can increase, potentially limiting

the joint strength and causing failure in an adherent with a low through-thickness

tensile strength. Therefore a good balance of membrane stiffness (i.e. the product of

elastic modulus and thickness) should be kept between patches and the parent plate.

If an appropriate stiffness ratio (SR) can be defined as the ratio of patch stiffness

to skin stiffness, then the ideal SR value can be defined as 1. If the thickness of the

patch is higher than the thickness of the substrate then bending moments could be

introduced to the repaired region.

The optimum overlap length (L) is defined by the designer according to the me-

chanical conditions that the structure is expected to be subjected to and according

to the various environmental conditions. Short overlap length leads to high shear

stresses that can develop in the adhesive material. As the overlap length increases,

the failure strength of the adhesive increases until the length reaches a critical point

after which there is no considerable benefit. However the limiting overlap for current

carbon fibre-epoxy systems is around 30tR, where tR is the repair patch thickness.

The reason for that is that several factors should be taken into account such as im-

perfect bonding, patch delamination, environmental effects and a safety factor. In

practice it is recommended that a patch length of 80–100 times the repair thickness

be used.

The adhesive thickness (tA) is perhaps the most important design parameter in

repair patches since it carries most of the developed shear loads. Therefore an adhe-
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Figure 2.3: Illustration of the tapering manufacturing technique on a 4-plies external
patch repair.

sive material with high shear properties is desirable. An important manufacturing

characteristic that contributes to the reduction of the stress concentration in the

adhesive layer is tapering of the patch (Figure 2.3). Based on this method, each

repair ply overlaps the ply that it is repairing giving a straighter, stronger load path.

This method will eventually reduce the developed peel stresses which are introduced

at the ends of the patch [26]. Additionally the tip thickness is reduced and the ad-

hesive layer at that region is deliberately increased in order to minimise the shear

strain developed at the edges. However, thick bonds could be porous and weak. The

selection of the adhesive relies on a variety of parameters such as its shear modulus,

its performance in environmental conditions that the structure might be exposed to,

cure temperatures and ease of application.

It has been widely accepted by many researchers that double-sided symmetric bonded

repairs offer significant advantages over single-sided bonded composite repairs. The

first category provides a significant reduction in the stress intensity of the repaired

region and improves the structural behaviour under fatigue by increasing its fatigue

life up to two times compared to the single-sided repair [27]. This is on one hand

due to the double stress transfer in the double-sided configuration and on the other

hand due to the eccentricity of the composite patch which avoids the development

of the bending effect that can be observed in the single-sided patch. In addition, the

stress distribution in the case of the symmetric repair is uniform. The stress inten-

sity factor is reduced by up to 30% compared to single-sided repair. If the bending

effect is considered on top of that, then the difference can reach the percentage of

40%. One of the significant disadvantages that needs to be taken into consideration
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though is the fact that with double-sided repairs there is the risk of higher residual

stress development due to the double adhesive curing. This can be a problem mainly

when the repaired component is metallic. It is reported that the use of a circular

shape of the patch can potentially reduce the intensity of the developed thermal

residual stresses [27].

2.1.2 Scarf patch repairs

Scarf patch repair technology is performed when severe damage needs to be repaired

and when the key requirements are the maintenance of the surface smoothness and of

the aerodynamic properties of the repaired structure. Scarf repairs are also preferred

when the component that has to be repaired is relatively thick, since a scarf does

not add an excessive out-of-mould line thickness such as external patches do and it

also offers higher peel and shear strengths [28]. Also scarf repairs are more flexible

when different shapes have to be considered in order to match the geometry that

has to be repaired.

This type of repair is implemented after the damaged region is removed and then

the patch is implemented while matching ply to ply the original structure [21]. For

the implementation, a careful preparation of the region is required (step sand) in

order to obtain the correct scarf angle and dimensional tolerances while removing the

damaged region. The tapered area is a function of the number of plies or structure

thickness with most common taper ratios of length to thickness for thin structures

being 50:1 and 30:1 for thicker structures. The ply orientation of the patch and the

laminate should be the same. In commercial applications sometimes additional plies

are required, overlapping the patch in order to protect the tip of the scarf patch and

provide extra reinforcement by more effectively carrying the loads [29].

There are two main techniques for the manufacturing of the scarf repairs, namely

the soft-patch and the hard-patch. The first involves the lay up of the plies in

the scarf cavity and its subsequent curing on the plate, while the later involves the

adhesive bonding of a pre-formed patch into the scarf cavity. In the second method

the patch can either be manufactured in a mould (moulded approach) or machined

from a composite panel following the geometry requirements of the scarf cavity [29].

The most commonly employed shape of the patch is a concentric ellipse since lower

stresses develop.
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There are certain disadvantages that have to be considered before the implementa-

tion of a scarf repair such as the design procedure. First of all, the manufacturing

of a scarf repair requires a higher level of expertise than the other types. More-

over it results in the removal of an excessive amount of undamaged material for

the achievement of an appropriate scarf angle, which has to be approximately 3◦

in order to ensure the stiffness and strength recovery [29]. This might reduce the

buckling resistance of the repaired configuration when loaded under compression or

bending.

2.2 Structural health monitoring of repair patches

In recent years, researchers have become increasingly interested in the problems

related to repair patches that can emerge either from design issues or from extensive

loading, such as the risk of debonding between the patch and the substrate [20]. That

might occur if the ultimate shear strength of the adhesive is exceeded. Moreover,

the rate at which the stress intensity factor of the crack tip increases under loading

under the patch in metallic structures might exceed the threshold resulting in failure.

In the same way, composite structures might develop resin microcracks around the

removed damaged area which can propagate under the patch. In addition, failure

might be caused by the peel stresses introduced at the ends of the patch. The

thickness of the patch is of high importance since it can fail under bending stresses

if it is too thin. Additionally the surface preparation prior to bonding can affect

the effectiveness of the repair. Finally one of the most significant weaknesses of the

application of composite patches like boron/epoxy and graphite/epoxy on metallic

substrates is the development of residual tensile stresses due to the mismatch in the

thermal expansion coefficients which occurs in the final stage of the curing process

(cooling down). This in the end will introduce compressive or tensile strains which

will affect the structural integrity of the repaired region [30].

An example that displays the necessity of monitoring of the repair can be seen in

Figure 2.4. A composite plate, 250 mm long and 300 mm wide, is illustrated on which

a pre-preg patch has been attached and cured. The patch was attached at the centre

of the plate, and it consisted of 5 plies following a 20 mm step wise configuration.

The overall size of the patch was 160 x 160 mm. Four areas of no adhesion were

introduced between the substrate and the first patch layer (5 mm, 10 mm, 15 mm
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(a) External patch repair (b) C-scan (c) Sampling phased array

Figure 2.4: C-scan and sampling phased array scanning of an external composite
patch with pre introduced defects (shown by arrows). [31]

and 20 mm). As is clearly observed from the picture of the repaired configuration

in Figure 2.4(a), no visible damage can be detected. However, ultrasonic C-scan

testing was performed which confirmed the extensive damaged areas underneath

the surface (indicated in Figure 2.4(b) with red arrows). Additionally the result of

an alternative NDT method is illustrated, namely sampling phased array, illustrated

in Figure 2.4(c). This technique is a novel phased array technology developed in

the Fraunhofer Institute for nondestructive testing, Germany (IZFP) and the test

was conducted during the visit of the author to the institute. The technique aims

to reconstruct the defects at high inspection speeds through the scanning of the

tested panel with a single shot compared to the conventional phased array, providing

higher sensitivity and resolution especially for anisotropic materials [32]. Both NDT

techniques successfully identified the pre-introduced defects as well as possible voids

in the repaired region.

Consequently, there are several critical reasons which make the design of a continu-

ous monitoring system of high importance in order to ensure the high performance

of the repaired components. Recent interest has been focused on the continuous life

cycle health monitoring of the repaired site which will ensure the reliability of the

repair and will avoid any unexpected failure [33]. The key point that makes such

health monitoring systems necessary, is the increase of portability which will elimi-

nate any restrictions like the removal of parts for lab testing. Baker [34] highlighted

the importance of a smart patch to perform on-line structural health monitoring

which will be necessary to get industrial approval for the wide application of repair

patches as a repair method.

Built-in structural diagnosis is a concept which has relatively lately emerged and

which is one of the most promising approaches related to patch repair monitoring.
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Figure 2.5: SMART layer inserted in the plies of a composite repair patch. [35]

SMART layers consist of a network of built-in sensors which can be inserted in the

critical plies of the patch. These sensors can be piezoelectric sensor arrays, strain

gauge-based techniques or optic fibres. Jones et al. demonstrated the effectiveness

of an optical fibre sensor array in monitoring crack growth and delamination under

a bonded repair [36]. In recent work by Soutis et al. two SMART layers with an

embedded network of piezoelectric actuators/sensors were inserted into a boron/e-

poxy laminated patch at different ply-locations to successfully monitor crack growth

via Lamb wave excitation [37]. A similar experimental set-up for SMART layer im-

plementation in a composite repaired configuration which has been efficiently used

for cure monitoring, bond evaluation and damage under fatigue detection [38] is

illustrated in Figure 2.5. The vast majority of these techniques utilise Lamb waves

which will be discussed in the next chapter.

2.3 Discussion

This chapter presented a brief introduction in the underlying concepts of repairs

with a more specific focus on the composite adhesively bonded patch repair. Among

the most common categories, two are the most commercially promising which will

be the consideration of this work, namely external patch repairs and scarf patch

repairs. Their main design features were discussed and the risks that make the need

of continuous monitoring of their structural integrity were realised. The most recent

approach is on-line monitoring with built-in diagnostics which is expected to help

towards an industrial approval and certification. In the next chapter, ultrasonic

waves, their propagation characteristics and properties are presented and discussed.



Chapter 3

Ultrasonic Waves

Techniques utilising ultrasonic waves have been extensively used in a wide range

of fields with more significant applications in nondestructive testing and medical

diagnosis. These fields have extensively taken advantage of the physical principles

of the ultrasonic waves in order to describe the underlying mechanisms in each field.

This chapter aims to provide a general background on the wave propagation theory

in elastic solids, focusing on the different mechanisms that describe the bulk waves

and the Lamb waves and to highlight important concepts such as the concept of

dispersion and cut-off frequencies as well as the physical meaning of the propagation

modes. More attention will be given on the propagation of Lamb waves in anisotropic

elastic solids which is the primary case study of this thesis. Finally, the chapter

will demonstrate the fundamental theory regarding the generation and detection of

Lamb waves, analysis of signals and relation to damage, and their applicability in

nondestructive testing.

3.1 Wave propagation in isotropic elastic solids

There is a variety of waves that can propagate in solids which primarily depends on

the boundary conditions. The easier type of wave in terms of physical interpretation

is the one that propagates through unbounded solids, namely the bulk waves. In this

case, there are basically two types of waves, the dilatational and the distorsional.

Each of these types can be explained by examining the particle’s motion with re-

20
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Figure 3.1: Particles motion with respect to the direction of the propagation for
shear (a) and longitudinal (b) waves.

spect to the direction of propagation. More specifically, the first category, otherwise

referred to as longitudinal, pressure, or primary (P) waves, describes a parallel par-

ticle’s motion to the wave propagation direction. The second category, otherwise

referred to as transverse, shear or secondary (S) waves, describes a transverse parti-

cle’s motion to the wave propagation direction. In addition, the later category can

be further divided into two sub-categories, based on the polarisation of the waves.

Therefore if they are horizontally polarised, they are referred to as shear horizontal

waves (SH), while if they are vertically polarised (z-axis) they are referred to as

shear vertical waves (SV). Figures 3.1 and 3.2 illustrate the underlying differences.
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Figure 3.2: Types of bulk waves that can propagate in solids.

Wave propagation mechanisms become more complicated when a bounded media is

considered where the propagating waves interact with the boundaries. In this case,

the type of the wave is referred to as a guided wave as the wave is ‘guided’ by the

boundaries of the media, the names of which have been given after the names of

their investigators. Some examples of guided waves are the Rayleigh waves which
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propagate on the surface of semi-infinite solids. This type of waves travels very close

to the surface of the plate and decays in amplitude at a certain distance from the

surface. Such waves are typically produced by earthquakes at the surface of the

earth. In addition to Rayleigh waves, Stonely waves travel at the interface between

two media. The amplitude of the wave is high when it travels close to the interface of

the media while it decays as it travels away from it. Lamb waves is another category

of guided waves, which are plane strain waves that occur in a free plate, exhibiting

different propagation modes and depending upon the frequency of the wave and the

thickness of the plate. The last category will be investigated in more detail in later

section.

In principle, the equations that govern the bulk and the guided waves are similar,

while the main difference lies in the fact that the equations that describe the latter

should satisfy the boundary conditions which makes the solution of such equations

a quite demanding task. In addition, there is an infinite number of modes that

can occur in guided wave propagation in contrast to bulk waves where the number

of modes is finite. In this chapter, a more detailed approach of the basic motion

equations will be given with focus only on the bulk waves and the propagation of

Lamb waves in isotropic media.

3.1.1 Bulk waves

The mathematical expression of the wave propagation as bulk waves that is presented

in this section is based on the theoretical approaches demonstrated by Kolsky [39].

The equation of motion for an elastic media which is approached by the investiga-

tion of the stress variation across a small rectangular parallelepiped is derived from

Newton’s second law. If the body forces are neglected the equation can be expressed

as:

ρ
∂2ui
∂t2

=
∂σij
∂xj

(3.1)

where i, j =1, 2, 3, ui is the particle’s displacement in the 1, 2, 3 or x, y, z directions,

σij is the stress field tensor and ρ is the density of the material. According to

the generalised Hooke’s law, the stress σij of a given isotropic elastic material is

proportional to the stiffness tensor Cijkl and the strain εij:

σij = Cijklεkl (3.2)
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where i, j, k, l=1, 2, 3 and the strain tensor εij is linked to the displacement u

equations by:

εij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) (3.3)

where i, j =1, 2, 3. Based on the stress symmetry σij=σji and on the strain symmetry

εij=εji, the stiffness tensor derives the following symmetry expressions: Cijkl=Cjikl

and Cijkl=Cijlk respectively. In addition, if the following matrix notation is defined:

[σ] =



σ11

σ22

σ33

σ23

σ31

σ12


≡



σ1

σ2

σ3

σ4

σ5

σ6


; [ε] =



ε11

ε22

ε33

2ε23

2ε31

2ε12


≡



ε1

ε2

ε3

ε4

ε5

ε6


(3.4)

then the stiffness tensor can be analytically expressed as:

C11 C12 C13 C14 C15 C16

.. C22 C23 C24 C25 C26

.. .. C33 C34 C35 C36

.. .. .. C44 C45 C46

.. .. .. .. C55 C56

.. .. .. .. .. C66


(3.5)

Hooke’s law can also be written as:

σij = λδijεkk + 2µεij (3.6)

where δ is the Kronecker delta and λ, µ are the Lamé constants which describe the

only non-zero elastic coefficients of an isotropic material and they are sufficient for

describing its elastic behaviour:

C12 = C13 = C21 = C23 = C31 = C32 = λ (3.7)

C44 = C55 = C66 = µ (3.8)

C11 = C22 = C33 = λ+ 2µ (3.9)

The Lamé constants can also be expressed in terms of the Young’s modulus E, Pois-

son’s ratio ν and bulk modulus µ, for more practical convenience. These expressions
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are based on the definition of E as the ratio between the applied stress and fractional

extension when an uniform stress is applied to the plane ends of an unconstrained

cylindrical or prismatic specimen, and on the definition of ν as the ratio between

the lateral contraction and longitudinal extension of the specimen:

E =
µ(3λ+ 2µ)

λ+ µ
(3.10)

ν =
λ

2(λ+ µ)
(3.11)

Taking into consideration the expressions above, equation (3.1) (Navier equation),

can be rewritten as:

ρ
∂2ui
∂t2

= (λ+ µ)
∂4
∂xi

+ µ52 ui (3.12)

where i, j =1, 2, 3; 4=ε11+ε22+ε33, which represents the change in the volume

of a unit cube, is referred to as dilatation, and the operator 52 is defined to be

equal to ∂2/∂x1
2+∂2/∂x2

2+∂2/∂x3
2. If equation (3.12) is further processed, then it

can be proved that two different velocities propagate in the interior of the medium.

These two velocities correspond to the previously mentioned longitudinal and shear

waves, among which the first represents motion where no rotation takes place and

the second represents motion where no dilatation occurs. The Lamé constants can

be expressed as:

λ = ρc2L − 2µ (3.13)

µ = ρc2T (3.14)

where cL represents the longitudinal propagation velocity and cT represents the

transverse propagation velocity, hence enabling the separate representation of the

two propagation modes as demonstrated below for the longitudinal and the shear

waves.
∂2ui
∂t2

= c2L52 ui (3.15)

∂2ui
∂t2

= c2T 52 ui (3.16)

Based on Helmholtz’s theorem, the displacement vector u can be decomposed into

a scalar potential φ and a vector potential ψ as:

u = 5φ+5× ψ (3.17)
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If this equation is substituted into the Navier equation (3.12), one obtains the fol-

lowing:

5 [(λ+ 2µ)52 φ− ρ(
∂2φ

∂t2
)] +5× [µ42 ψ − %∂

2ψ

∂t2
] = 0 (3.18)

This equation requires that both terms are zero, which eventually leads to the wave

equations that describe each mode (longitudinal and shear) as:

52 φ =
1

c2L

∂2φ

∂t2
(3.19)

52 ψ =
1

c2T

∂2ψ

∂t2
(3.20)

The resulting equations are uncoupled. The physical meaning of the scalar potential

φ is associated with the dilatation and the vector potential ψ is associated with the

rotation enabling the effect of each mode on the media’s motion. Finally from

equations (3.13) and (3.14) the general expression for the longitudinal (x1) and the

transverse (x3) propagation velocities for the infinite isotropic medium can be given

respectively as:

cL =

√
(λ+ 2µ)

ρ
, cT =

√
µ

ρ
(3.21)

while the respective wavelengths can be defined as:

λL =
cL
f

=
2πcL
ω

=
2π

kL
, λT =

cT
f

=
2πcT
ω

=
2π

kT
(3.22)

where kL and kT are the respective wave numbers, ω is the circular frequency and

f is the temporal frequency.

3.1.2 Lamb waves

Lamb waves were first proposed by Horace Lamb in 1917 and since then a remarkable

progress has been made in understanding their complicated mechanisms. The model

that describes the basic approach of the governing equations that will be given here,

is based on the free plate problem as described in [40] which is illustrated in Figure

3.3. This is a infinite plate with thickness d=2h.

When an elastic perturbation occurs at the plate, then the particles of the material

propagate both in a parallel and perpendicular direction to the propagation. It needs
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Figure 3.3: Free plate of thickness d=2h for the estimation of Lamb wave equations
for isotropic materials.

to be reminded at this point, that shear waves can propagate in two polarisation

modes, creating a series of SH and SV modes. If we assume that the propagation

occurs at direction x1, and only plane strain is considered (∂/∂x2=0 u2=0), then

based on the Helmholtz decomposition, the longitudinal and shear wave equations

are given respectively as:
∂2φ

∂x21
+
∂2φ

∂x23
=

1

c2L

∂2φ

∂t2
(3.23)

∂2ψ

∂x21
+
∂2ψ

∂x23
=

1

c2T

∂2ψ

∂t2
(3.24)

and the resulting displacements and stresses can be obtained as:

u1 =
∂φ

∂x1
+
∂ψ

∂x3
(3.25)

u3 =
∂φ

∂x3
− ∂ψ

∂x1
(3.26)

σ31 = µ(
∂u3
∂x1

+
∂u1
∂x3

) = µ(
∂2φ

∂x1∂x3
− ∂2ψ

∂x21
+
∂2ψ

∂x23
) (3.27)

σ33 = λ(
∂u1
∂x1

+
∂u3
∂x3

) + 2µ
∂u3
∂x3

= λ(
∂2φ

∂x
2

1

+
∂2φ

∂x23
) + 2µ(

∂2φ

∂x23
− ∂2ψ

∂x1∂x3
) (3.28)

In order to solve equations (3.23) and (3.24), a solution has been proposed which as

described in [41], represents travelling waves in the x1 direction and standing waves

in the x3 direction. This suggested solution is called transverse resonance and it

represents only waves that travel along the direction of the plate while the distribu-

tions in the transverse direction are assumed to be fixed. This can be understood

from the fact that only the variable x1 is contained in the complex exponential term
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in the following equations.

φ = Φ(x3) exp[i(kx1 − ωt)] (3.29)

ψ = Ψ(x3) exp[i(kx1 − ωt)] (3.30)

If these equations are substituted into equations (3.23) and (3.24) aiming to express

the unknown functions Φ and Ψ, then the following expressions can be obtained:

Φ(x3) = B1 sin(px3) +B2 cos(px3) (3.31)

Ψ(x3) = C1 sin(qx3) + C2 cos(qx3) (3.32)

where B1, B2, C1 and C2 are arbitrary constants, k is the Lamb wave number, ω=2πf

and

p2 =
ω2

c2L
− k2 and q2 =

ω2

c2T
− k2 (3.33)

Substitution of equations (3.29) and (3.30) into the obtained equations for the dis-

placements (3.25), (3.26) and the stresses (3.27), (3.28) and if the term exp[i(kx1-ωt)]

is omitted from the resulting equations, then the following expressions are obtained:

u1 = [ikΦ(x3) +
dΨ(x3)

dx3
] (3.34)

u3 = [
dΦ(x3)

dx3
− ikΨ(x3)] (3.35)

σ33 = [λ(−k2Φ(x3) +
d2Φ(x3)

dx23
) + 2µ(

d2Φ(x3)

dx23
− ikdΨ(x3)

dx3
)] (3.36)

σ31 = µ(2ik
dΦ(x3)

dx3
+ k2Ψ(x3) +

d2Ψ(x3)

dx23
) (3.37)

3.1.3 Propagation modes

What is clear from equations (3.31), (3.32), (3.36) and (3.37), is that the obtained

expressions involve symmetric and antisymmetric modes, which are represented with

the sines and cosines functions which are odd and even about x3=0 respectively. This

enables the separation of two solutions, each one governing each mode. Displace-

ments in direction x1 are assumed to be symmetric when the respective displacement

u1 contains only cosines and antisymmetric when it contains only sines. The opposite
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happens with the displacements in direction x3.

First the equations for the symmetric modes will be demonstrated. Therefore we

assume that the constants B1, C2 which are associated with the antisymmetric modes

are zero. If equations (3.31), (3.32), (3.36) and (3.37) are combined, the following

expressions regarding the displacements and stresses of the symmetric modes can

be obtained.

u1 = ikB2 cos(px3) + qC1 cos(qx3) (3.38)

u3 = −pB2 sin(px3)− ikC1 sin(qx3) (3.39)

σ31 = µ[−2ikpB2 sin(px3) + (k2 − q2)C1 sin(qx3)] (3.40)

σ33 = −λ(k2 + p2)B2 cos(px3)− 2µ[p2B2 cos(px3) + ikqC1 cos(qx3)] (3.41)

The displacements in direction along the propagation are symmetric with respect

to the mid-plane of the plate and the displacements in the direction vertical to the

propagation are antisymmetric. This property is very important and it will be later

exploited for verifying the isolation of specific modes for finite elements analysis by

monitoring the displacements at the middle plane of the tested plates. If the plane

strain traction-free boundary conditions that have been assumed for the plate model

are considered (σ31=σ33≡0 at x3=±d/2= ±h), then the unknown constants B2, C1

can be defined. This can be done if the determinant of the coefficient matrix of the

homogeneous system that will result from the equations that define the constants

is zero, in order to ensure solutions other than trivial one. This would lead to the

following expression:[
−2ikp sin(ph) (k2 − q2) sin(qh)

−(λk2 + λp2 + 2µp2) cos(ph) −2µikq cos(qh)

]
·

[
B2

C1

]
=

[
σ11

σ31

]
= 0 (3.42)

After some manipulation of the equation above, the following expression is obtained.

tan(qh)

tan(ph)
=

4k2qpµ

(λk2 + λp2 + 2µp2)(k2 − q2)
(3.43)

If the expression above is further simplified by assuming the expressions defined for

the longitudinal cL and the transverse cT velocities in equation (3.21), then the final

equation, often referred to as Rayleigh-Lamb frequency relation, for the symmetric

mode is derived:
tan(qh)

tan(ph)
= − 4k2pq

(q2 − k2)2
(3.44)
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Figure 3.4: Illustration of the antisymmetric (a) and symmetric (b) Lamb wave
modes.

In the same way the respective equations for the antisymmetric modes can be deter-

mined if the constants B2, C1 which are associated with the symmetric modes are

zero.

u1 = ikB1 sin(px3)− qC2 sin(qx3) (3.45)

u3 = pB1 cos(px3)− ikC2 cos(qx3) (3.46)

σ31 = µ[2ikpB1 cos(px3) + (k2 − q2)C2 cos(qx3)] (3.47)

σ33 = −λ(k2 + p2)B1 sin(px3)− 2µ[p2B1 sin(px3)− ikqC2 sin(qx3)] (3.48)

Similarly, the nature of the propagation for the antisymmetric modes across the

thickness, is symmetric at a vertical direction to the propagation and antisymmetric

at a parallel direction to the propagation. Then following the same procedure as

with the symmetric modes, the Rayleigh-Lamb frequency relations can be obtained

for the antisymmetric modes as below:

tan(qh)

tan(ph)
= −(q2 − k2)2

4k2pq
(3.49)

It should be reminded that, k is the Lamb wave number and is equal to ω/cp, where

cp is the phase velocity of the Lamb wave mode and ω is the circular frequency.

The illustration of the two Lamb wave modes is presented in Figure 3.4. The

Rayleigh-Lamb frequency equations were derived following the method of potentials

as proposed by Achenbach [42]. It is clear however, that this approach can only be

valid for isotropic materials; yet it is considered a fundamental interpretation of the

basic equations that govern Lamb waves. An alternative approach proposed by Solie
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Figure 3.5: Phase (cp) and group velocities (cgr) of a pulse.

and Auld [43] attempts to derive the Lamb wave equations through the partial wave

technique which aims to include the case of wave propagation in anisotropic media.

This approach will be discussed later. The solution of the Rayleigh-Lamb equations

can be a quite demanding task, often requiring advanced numerical methods.

3.1.4 Phase and group velocities

Two of the most important aspects of Lamb waves that determine their behaviour

are the phase velocity (cp) and group velocity (cgr). The phase velocity of the Lamb

wave mode has been previously introduced as equal to ω/k. The phase velocity is

associated with the velocity of the phase of a wave mode at a given frequency. How-

ever, in cases where wave packages form, such as in the propagation of Lamb waves,

the introduction of the concept of group velocity is necessary. Therefore as group

velocity one could define the velocity at which a group of waves propagates, which

can be lower than the phase velocity as a wave package advances through a group

and it decays as it approaches its interior limit (Figure 3.5). A brief explanation of

how the group velocity of the Lamb waves is derived will be given in this section as

explained in the work of Stokes [44] and Graff [45].

If two propagating harmonic waves are considered which have equal amplitude but

different frequencies, ω1 and ω2, then the displacement formula will be given as:

u = A cos(k1x− ω1t) + A cos(k2x− ω2t) (3.50)
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where k1=ω1/c1 and k2=ω2/c2. Based on the following trigonometric identity:

A(cosα + cos β) = 2A[cos(
α− β

2
) · cos(

α + β

2
)] (3.51)

then:

u = 2A cos[
1

2
(k2 − k1)x−

1

2
(ω2 − ω1)t] · cos[

1

2
(k2 + k1)x−

1

2
(ω2 + ω1)t] (3.52)

where the following can be defined:

ω2 − ω1 = ∆ω (3.53)

k2 − k1 = ∆k (3.54)

and the average circular frequency and the wave number are defined as:

ω̄ =
1

2
(ω1 + ω2) (3.55)

k̄ =
1

2
(k1 + k2) (3.56)

and then the representation of equation (3.52) is possible as:

u = 2A cos[
1

2
∆kx− 1

2
∆ωt] · cos(k̄x− ω̄t) (3.57)

The first term of the expression above is a low-frequency term which enables the

definition of the group velocity as:

cg =
∆ω

∆k
(3.58)

which is otherwise represented with the differential operator d as:

cg =
dω

dk
(3.59)

If the equation k=ω/cp=2πf /cp is substituted into equation (3.59) then the general

expression of the group velocity of a Lamb wave mode is given as:

cg = c2p[cp − (fd)
dcp
d(fd)

]−1 (3.60)

It can be noted that both the group and phase velocities of each Lamb wave mode,
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Figure 3.6: Dispersion curves diagrams of an Aluminium plate (thickness=2mm).[46]

depend upon the frequency-thickness product (fd). This property is often referred

to as dispersion. The understanding of the dispersive nature of the Lamb waves is

essential for the understanding of the physics when a wave propagates through a

plate. Dispersion is often undesirable in practical applications such as nondestructive

testing, due to the difficulty in the data interpretation. Information about the

relationships between the wave velocities, the wavelength and the frequency for a

given material and thickness, can be estimated through dispersion curves.

The calculation of the dispersion curves is a relatively straightforward task for

isotropic materials but it exhibits a certain level of complexity in the case of anisotropic

materials. Commercially available programmes can provide fast and reliable solu-

tions for the dispersion curves of plates. Vallen dispersion [46], is a freeware which

was used in the current study for the estimation of the dispersion curves for single

layered isotropic solids such as the one illustrated in Figure 3.6. Disperse [47] has

been widely used in order to obtain the dispersion curves of isotropic and anisotropic,

layered materials and cylindrical structures or structures immersed in a fluid or em-

bedded in a solid. For the purposes of the current study, the semi-analytical finite

element (SAFE) method was employed for the calculation of the dispersion curves

of the anisotropic plates as can be found in the previous work carried out by Ahmad

[48]. This approach is expected to overcome the restrictions met with the finite

element method (FEM) for Lamb wave propagation analysis, since it reduces the

required computational time by performing discretisation only to the plate cross

section and by employing an exponential function in the wave propagation direction

[49].
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3.1.5 Mode cut-off frequencies

Cut-off frequencies are those points on the dispersion curves, that only exist at

fd values for modes higher than the fundamental S0 and A0 symmetric and anti-

symmetric modes, respectively. At these values, the phase velocities tend to the

infinite while the group velocities tend to zero. Another explanation of the physical

meaning of these frequencies as proposed by Rose [41] is that at these values only

standing longitudinal and shear waves are present at a given thickness of the plate.

The mathematical expression of these values will be here demonstrated as presented

in Rose [41], after assuming that the wave number approaches zero k→0. If this

is substituted to the Rayleigh-Lamb equation (3.44) that describes the symmetric

modes, then the following expression is obtained:

sin(qh) cos(ph) = 0 (3.61)

Assuming that qh=nπ and ph=n(π/2) while n=0,1,2,.. then with some simple

manipulations the following expressions are derived:

qh =
ω

cT

d

2
=

2π

cT

fd

2
= nπ or fd = ncT (3.62)

ph =
ω

cL

d

2
=

2π

cL

fd

2
=
nπ

2
or fd =

ncL
2

(3.63)

This leads to the general fd values that are given by the following expressions:

fd = {cT , 2cT , 3cT , ..} (3.64)

fd =

{
cL
2
,
3cL
2
,
5cL
2
, ...

}
(3.65)

In a similar way and after the same manipulations, the respective expressions for

the frequency-thickness of the antisymmetric modes are given below.

fd = {cL, 2cL, 3cL, ..} (3.66)

fd =

{
cT
2
,
3cT
2
,
5cT
2
, ...

}
(3.67)

The estimation of the cut-off frequencies for a given plate and at a given thickness

(d), has proved to be a valuable tool in nondestructive testing applications. The
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estimation of the first cut-off frequency enables the determination of the excitation

frequency, in such a way that only the two fundamental symmetric and antisymmet-

ric modes propagate. This significantly simplifies the problem of data interpretation,

hence signal processing and computational power required.

3.2 Lamb waves in anisotropic elastic solids

The propagation of Lamb waves in anisotropic solids has recently attracted a lot of

interest due to the wide application of composite materials in most of the prevailing

industries. However due to the anisotropy in the materials’ properties the under-

standing of the physical mechanisms is more demanding compared to the isotropic

materials. This lies in the fact that in the case of the anisotropic materials, several

phenomena occur that are not observed in the isotropic, such as three different wave

speeds, wave skewing, differences in the group and phase velocities and others. Al-

though there has been an extensive effort lately to solve the Lamb wave governing

equations for anisotropic materials, no established theoretical background is avail-

able yet. This section will present the most prevailing theories, omitting elaborate

mathematical formulae due to space restrictions.

Recalling from equations, (3.1), (3.2) and (3.3), the equation of motion assuming

zero body forces for an anisotropic material, is expressed as:

ρ
∂2ui
∂t2

= Cijkl
∂2uk
∂xj∂xl

(3.68)

So it is clear that the case of anisotropic solids becomes more difficult since the num-

ber of the elastic constants in the stiffness matrix increases considerably depending

on the material. In the case of an orthotropic anisotropic material, which has at

least two orthogonal planes of symmetry, the stiffness matrix can be written as:

C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

C55 0

C66


(3.69)
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Figure 3.7: Six partial waves considered for the demonstration of Lamb wave prop-
agation in isotropic plates through the partial wave technique.

These can be further simplified in case the material is transversely isotropic, where

C44=C55 and C66=(C11-C12)/2. In the more complicated orthotropic case, the equa-

tions of wave motion for a plain strain problem for a propagation in the direction of

the material’s symmetry, would be given as:

ρ
∂2u1
∂t2

= C11
∂2u1
∂x21

+ C13
∂2u3
∂x1∂x3

+ C55(
∂2u1
∂x23

+
∂2u3
∂x1∂x3

) (3.70)

ρ
∂2u3
∂t2

= C33
∂2u3
∂x23

+ C13
∂2u1
∂x1∂x3

+ C55(
∂2u1
∂x1∂x3

+
∂2u3
∂x21

) (3.71)

As mentioned before the problem of Lamb wave propagation in anisotropic materials

can only be approached with partial wave techniques, which aim to solve the gov-

erning equations based on the boundary conditions by assuming that three upward

and three downward waves superimpose each other when travelling in the considered

anisotropic layer [41], each of which is referred to as a partial wave while they all

contribute to the formation of a single Lamb wave mode (Figure 3.7). Each of these

waves is assumed to obey the following type of solution:

ui = αi exp[ik(x+ Izz)] exp(−iωt) (3.72)

where Iz is the angle of each propagation wave with respect to the layer surfaces and

Iz=tan(θi)=kz/kx. If equation (3.72) is substituted into (3.68) then the following

expression is derived. [
Cijklkjkl − ρω2δik

]
αk = 0 (3.73)

and the general displacement field of each Lamb wave mode in the anisotropic layer
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can be obtained from the following:

ui(x, z, t) = ξi(z)eik(x−ct) (3.74)

where k is assumed to be the wave number of the general mode after the superimpo-

sition of the partial waves, which are assumed to have equal k in the x component.

The component ξi(z ) represents the variation of the displacements with respect to

the depth z of the layer. In addition the phase velocity will be c=cp=ω/k. A possible

solution of the equation above can be obtained if the determinant of the left hand

side in equation (3.73) is set to zero in an attempt to find non-trivial solutions.

det
[
Cijklkjkl − ρω2δik

]
= 0 (3.75)

If a linear combination of the six different partial waves is considered as:

uj =
6∑
1

Cnα
n
j exp[ik(x+ Inz z)] (3.76)

and through the boundary conditions which assume zero traction on the upper and

lower surfaces of the model layer (Txz=Tyz=Tzz=0) the traction components can

be calculated based on the generalised Hooke’s law,

Tij = Cijklεkl (3.77)

on equation (3.3) and on the symmetrical property of the elastic constant tensors

Cijkl=Cijlk as:

Txz = T13 = C13kl
∂uk
∂xl

(3.78)

Tyz = T23 = C23kl
∂uk
∂xl

(3.79)

Tzz = T33 = C33kl
∂uk
∂xl

(3.80)

The resulting set of equations will have the form:

Bij(ρ, Cijkl, hk)Cj = 0 (3.81)

where Cj are the six amplitudes of the partial waves and the matrix [B ] is determined

through the density, the elastic properties, the thickness of the layer and the assigned

x component for the wavenumber k. Non-trivial solution of the equation above,
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requires that the determinant of the matrix [B ] is zero, and this finally derives the

dispersion equation for the anisotropic layer.

det[B(ρ, Cijkl, hk, ω)] = 0 (3.82)

3.3 Lamb waves in media with varying thickness

The majority of the previous studies that have exploited Lamb waves for nonde-

structive testing have only focused on case studies which employed media of uni-

form thickness (d). However in many practical applications, the problem of varying

thickness is inevitable. One significant example in aerospace industry is the lap

joints on the aircraft fuselage or wings. In such cases the skin is thicker near the

root and gets thinner near the wing tip. In addition, apart from the initial design

characteristics of the system, variations in thickness can occur when the surface is

subjected to a corrosive environment or when actual damage takes place in the form

of cracks and holes.

The variation in the thickness imposes a significant difficulty factor in the under-

standing of the propagation mechanisms, since it will lead to multiple mode con-

versions. This means that when a mode propagates through a media and meets

a thickness variation, it will convert into another mode which will be very differ-

ent from the incident mode with respect to phase, group velocity, amplitude and

sensitivity. The mode conversion can be easier understood if a dispersion curve

diagram is analysed. Even though the excitation mode ensures the propagation of

only the two fundamental symmetric (S0) and antisymmetric (A0) modes, the in-

crease in the thickness can be such that the working points on the curves can move

to a frequency-thickness product where more modes might appear. Only very few

studies have explored the phenomenon of mode conversion in systems with varying

thickness.

Cho [50] employed the hybrid boundary element method in order to investigate the

mode conversion phenomena caused by a waveguide thickness variation in different

symmetric and antisymmetric configurations reaching the conclusion that in work-

ing areas before a new mode appears, the symmetric configurations cause mode

conversion only within the same mode families as with the incident wave, while in

the antisymmetric configuration, there can be mode conversion from symmetric to
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Figure 3.8: Wedge transducer’s operation.

antisymmetric and vice versa. On the other hand, the work performed by Alleyne

et al. [51] focused on the study of Lamb wave propagation in plates containing a

variety of defects in the form of notches with finite elements and proved that the

mode conversions due to the thickness variation can provide an advantage for non-

destructive testing. This conclusion relies on the fact that when a pure mode is

excited it only generates additional modes when a discontinuity (or defect) exists.

3.4 Generation and detection of Lamb waves

The widespread application of Lamb waves over the last years imposed the need

for development of necessary generation and detection transducers. The substantial

materials’ progress over the last years led to a number of generation and detection

techniques that are available depending on the application and the required cost.

These techniques can be divided into five general categories based on the physical

principles employed. These are: ultrasonic probes, piezoelectric wafers and piezo-

composite transducers, laser-based ultrasonics, interdigital transducers (IDTs) and

fibre optic sensors [52]. This section will briefly present the most basic techniques

that exist among these categories, while extra attention will be drawn to the piezo-

electric transducers which were utilised within the frame of the current work.

Among the ultrasonic probes, the most popular transducers which have been em-

ployed for Lamb wave problems are the angle transducers such as the wedge and

the comb transducers and the non-contact electro-magnetic acoustic transducers

(EMATs). The angle of the wedge and the comb transducers can be appropriately

tuned in order to activate a specific Lamb wave mode by exciting the desired wave-

length of a given velocity and excitation frequency [53]. This is performed through
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Snell’s law (Figure 3.8):

sin θ =
λL
λP

=
cL
cP

(3.83)

The EMATs were primarily introduced in order to provide a non-contact source

of excitation aiming to avoid all problems related to coupling conditions [54]. The

required mode is excited through the spacing of the coil limbs of a wire which

is placed close to the monitored surface and a magnet, where the geometry of the

coil can favour specific wave propagations. Non-contact probes enable the excitation

and generation of Lamb waves in complex geometries. However, complications might

arise when the precision is minimum due to potential acoustic mismatch between the

air/fluid and the monitored surface. In addition, their use is restricted to metallic

objects since electrical conductivity is necessary.

Laser-based generation and detection of Lamb waves has relatively lately emerged

following the advances in the technology of 3-D laser interferometers where the

generation of the waves is usually performed through the monitoring of out-of-plane

displacements [55]. The laser source can excite specific modes of Lamb waves in

cases where the approach is restricted or in irregular surfaces where the coupling

of a transducer would be impossible. However the significant cost, size as well as

safety issues of the adopted equipment are significant limitation factors for practical

applications.

IDTs use the widely commercially available piezoelectric material polyvinylidene

fluoride (PVDF) and they consist of a number of electrodes which are connected

alternately to two electrode strips on a piezoelectric substrate. These transducers

take advantage of the piezoelectric effect in order to convert a periodic introduced

electric field to periodic mechanic stress waves on the monitored surface. The spacing

between the electrodes can tune the required wavelength. This type is suitable for

cases where the key requirement is the impedance of the transducers within the

layers of a composite laminate or when a permanent attachment is necessary. They

are cheap and easy to manufacture, although their operation frequencies are limited

to be within the range of 0.5–4 MHz [56].

3.4.1 Fundamentals on the piezoelectric transducers

The generation and detection of Lamb waves in this work was performed with piezo-

electric transducers (PZT). These exploit the piezoelectric effect in order to convert
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Figure 3.9: Resonance modes of circular piezoelectric transducers.

electric energy into mechanical strains and vice versa. The piezoelectric effect was

first discovered by the Curie brothers and the word piezo was given after the Greek

word piezen which means press. This effect can be found in natural crystals (quartz)

and artificially polarised ceramics and polymers such as polyvinylidene flouride. Ac-

cording to this effect, when stress is applied on a crystalline material, it generates

electric charge. This phenomenon is reversible, namely when voltage is applied on

the crystal, then mechanical strains are produced. The current technology of piezo-

electric transducers, exploits several electrodes that can be placed on the crystal,

one pair of which is used to generate voltage to the crystal and the other pair to

receive charge as a result of developed strain.

The crystallites or crystal cells operate as electric dipoles. These exist in some

natural crystals in which these cells have a specific orientation along the crystal

axes, naturally enabling the aforementioned voltage-strain conversion. However in

artificially polarised materials, the dipoles follow a random orientation and therefore

there is need for the material to be polarised. The most common technique used

for this process involves the following steps [57]. First the crystalline material is

exposed to temperatures slightly below its Curie temperature in order to enable an

easier orientation of the dipoles in the desirable direction. Then an electric field E

is applied on the material, where the dipoles align along the field lines, after which

the material is allowed to cool down under the electric field. Finally the electric field

is removed. The polarisation is maintained for as long as the materials are exposed

to temperatures lower than the Curie temperatures. In the current study, the Curie

temperature of the piezoelectric transducers used was 340oC.

The use of piezoelectric transducers for nondestructive testing has attracted signifi-

cant attention over the last years; probably the most comprehensive analysis in this

field has been carried out by Giurgiutiu [58]. PZTs offer a low-cost and low-weight

and size means of generation and detection of Lamb waves, they can be surface-
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mounted or inserted between layers of lap joints or of composites where they are

non-intrusive and they can operate over a wide range of frequencies. In this work,

circular piezoelectric transducers were used for the excitation and detection of Lamb

waves in an attempt to minimise the resonance modes. The circular transducers have

two main resonance modes; the radial or planar resonance mode and the thickness

resonance mode (Figure 3.9). A limitation of this type of transducers is that they

unavoidably excite multiple wave modes compared to wedge transducers.

3.5 Nondestructive testing with Lamb waves

Inspection with Lamb waves is currently considered to be the most promising SHM

technique for aluminium and composite structures. The whole thickness of the

structure can be excited by small and conformable transducers which require little

power. Those can be wireless, targeting an on-line continuous health monitoring.

There are two basic modes for the configuration of the sensors: the pulse-echo mode

and the pitch-catch mode. These will be further explained later. When Lamb

waves interact with discontinuities, then changes occur in the form of attenuation,

scattering, modes conversion, reflection or refraction.

Attenuation refers to the drop of the pulse amplitude as a result of energy absorption

when the wave interacts with a defect or even with geometrical features. Scattering

is defined as the combined drop in the magnitude and the pulse spreading. This

phenomenon can occur when the wave meets a flaw or any kind of obstacle. Mode

conversion is generally caused by the local reduction of the thickness due to a

geometrical feature or due to a defect such as a crack or corrosion. Reflection and

refraction can occur at boundaries (either of the tested structure or of defects) and

they refer to the turning back of a wave when it interacts with a boundary or its

passing through the interface respectively. Finally a significant property of Lamb

waves is their dispersive nature. The effect of dispersion is that the duration of the

wave packet propagating through the structure will increase and its amplitude will

decrease. These two phenomena will eventually lead to the loss of resolution and in

the decrease in the sensitivity of the testing system [59].
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3.5.1 Excitation signal and modes selection

The selection of the appropriate excitation signal in order to excite Lamb waves is

a challenging task due to their dispersive nature. This is further complicated due

to the propagation of a number of different symmetric and antisymmetric modes

as previously explained. Therefore the selection of the excitation signal is of high

importance for NDT applications in order to ensure that the obtained response

signals are easy to interpret.

First of all, the dispersive nature of the Lamb waves can be minimised through the

limitation of the bandwidth of the excitation signal, an operation called window-

ing. The most common window that is selected is the Hanning window whose effect

can be visualised in Figure 3.10. A 5-cycle tone pulse is selected and its frequency

response after windowing is clearly more preferable since the magnitude of the un-

desired side lobes has been largely minimised, resulting in a strong main carrier

lobe. This is expected to minimise the dispersive nature of Lamb waves. A higher

number of cycles would further minimise the dispersion effect and it would increase

the signal-to-noise ratio. However, it would lead to undesirable overlapping of the

reflected echoes at closely spaced features in the monitored structure [53]. The am-

plitude of the pulse affects the magnitude of the Lamb wave strain introduced to

the monitored structure. Higher amplitude helps in minimising the captured noise;

however, it can increase the drift in the signal leading to lower resolution [60].
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Figure 3.10: The effect of windowing on the excitation pulse for Lamb waves and
on its frequency content.
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Furthermore, the isolation of a pure mode in complex structures and more specif-

ically in anisotropic materials, is considered to be a quite challenging task which

requires a very good prior understanding of the dispersion mechanisms of the tested

material. Therefore the plot of the dispersion curves is the first step, which will re-

duce the number of the excited modes to only the first two by focusing on a specific

frequency range, namely below the first cut-off frequency. As previously illustrated,

the circular piezoelectric transducers have two resonance modes, hence two reso-

nance frequencies. The transducers maximise the output energy when driven close

to or at these frequencies. These though can significantly change due to the damp-

ing effect of the adhesive used to bond them on the tested surface as well as the

material of the structure. In addition, based on the dispersion properties of the

material, these frequencies might not be suitable for the isolation of a pure mode.

Moreover, the excited mode and frequency will finally determine the wavelength.

The size of the wavelength is critical for the nondestructive testing applications,

since it basically determines the minimum size of the discontinuity that can be de-

tected. More specifically, studies suggest that the minimum size that can be detected

by ultrasonic nondestructive testing, is associated with the diffraction limit, which

is half the wavelength λ. According to this suggestion, only two scatterers that are

separated by more than the diffraction limit can be detected [61]. It is therefore

obvious that the smaller the wavelength the higher the damage sensitivity. This

directly means that at a given velocity c, higher frequency (f ) Lamb waves can po-

tentially provide higher damage sensitivity (λ=c/f ). Some studies have shown that

the detectability of defects is possible even below the diffraction limit. Alleyne et al.

[51] showed that notches could be detected with Lamb waves when the wavelength-

to-notch depth ratio was of the order of 40 and when the notch width was small with

respect to the wavelength. Also it was highlighted that although higher frequency-

thickness products provide higher damage sensitivity, yet other parameters like the

appropriate mode selection could be more critical. However, problems that are re-

lated to higher frequencies are the high sensitivity to undesirable material features

which will inevitably lead to high noise [61]. It is therefore clear that monitoring

with Lamb waves is a rather demanding technique, the efficiency of which depends

upon several factors. More explicit mode excitation scenarios will be demonstrated

in the practical case studies in the next chapters.

The selection of the fundamental mode (S0 or A0) relies on the matching of the

resolution of each mode with the application. Due to the fact that the S0 mode
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travels faster than the A0, the A0 mode is usually preferable since the corresponding

wavelength is shorter, hence it can detect smaller defect sizes. However, the A0

mode exhibits a considerable dispersive behaviour at low frequencies which results

in an energy leakage. In terms of modelling, the simulation of the A0 propagation

can also be more demanding due to the short wavelength which in turn requires

fine meshing and hence high computational power [62]. On the other hand, the S0

mode travels faster than the A0, leading to lower damage sensitivity. However, the

resulting mode shapes are simpler and it exhibits a more uniform distribution of

stresses through the thickness of the plate, with potential good sensitivity to defects

that can occur at any depth [63].

3.6 Modelling methods for Lamb waves

Analytical solution of guided wave propagation problems in complex structures is a

very demanding task due to the complicated mechanisms that take place during the

interaction of the waves with the material and discontinuities’ boundaries. The ex-

citation of multiple propagating modes and the dispersive nature of the waves make

the modelling aspects of Lamb waves even more challenging. One more parameter

that needs to be considered is that the actual wave propagation in composite materi-

als is by itself complex due to the anisotropy of the microscopic structure. Therefore

numerical solutions have been extensively investigated by many researchers since

they provide quick and efficient solutions under various conditions as long as the

operating parameters are carefully selected.

The most popular methods that have been used to address the Lamb waves propa-

gation problem are the finite difference method (FDM) [64] and the finite elements

method (FEM) [65]. There are various methods that have been used in the past

that are either FEM-based or FDM-based. The boundary element method (BEM)

is a popular method that was implemented by Cho and Rose [66] for inspection

with Lamb waves and it is FEM-based. The basic concept of the method is that it

simulates the integrated numerical equations by converting the volume integrals to

surface integrals through the Green’s functions [67]. The BEM has computational

advantage over FEM when simple geometries are considered. However, when the

analysed geometry is complex, the BEM is less efficient than FEM or FDM. The

spectral element method (SEM) has lately attracted the attention of researchers for
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the numerical simulation of guided waves [68]. SEM is a FEM-based technique which

utilises the finite element concepts, but also takes advantage of spectral method ac-

curacy. Its basic difference though is that it provides a global simulation of the

partial differential equations in contrast to FEM and FDM which are only local.

This means that it approximates functions as a sum of smooth basis functions that

are non-zero over the solution domain and not only on local subdomains [69]. One

more FDM-based numerical modelling method for wave propagation that has been

developed is the mass-spring lattice model (MSLM). This model simulates the tested

structure by means of mass points interconnected to each other with linear and ro-

tational spring elements which represent the stiffness whose behaviour is described

by finite difference equations [70]. The advantage of MSLM over the FDM is the

simulation of discontinuities with spring disconnections [71].

The current work will focus on the investigation of the propagation of Lamb waves

through the numerical simulation with FEM and more specifically with the commer-

cially available package ABAQUS [72]. For the sake of completeness a brief literature

review of the work carried out so far in the field of numerical analysis of Lamb wave

propagation in aluminium and composite materials will be given here. Fromme et

al. [73] explored the scattering behaviour of the A0 Lamb wave mode in Aluminium

plates containing partially through and through-thickness cracks while he developed

a sensitivity prediction hybrid model for the detection of defects at potential loca-

tions and orientations. Wilcox [74] performed a detailed analysis on the excitation

methods of Lamb and shear horizontal waves by point and line sources in isotropic

plates, demonstrating the effect of each method on the excitability functions. Yang

et al. [75] developed models of surface-bonded PZT discs in order to investigate

aspects of the Lamb wave propagation in composite materials using 3D solid/shell

elements. Diamanti et al. [76] simulated the A0 mode at low frequencies in order to

successfully detect and locate low velocity impact damage in composite laminates

and in stiffened panels, mainly by exploiting the time of flight (TOF) concept. This

concept in a plate excited with pitch-catch mode, is given as x=L·∆td/TOF, where

x is the location of the defect, ∆td is the time difference between the reflection from

the damage and the excitation pulse, and TOF is the time difference between the

excitation pulse and the reflection from the boundary.

Although extensive work has been focused on isotropic and anisotropic plates of

uniform thickness, little effort has been made in simulating and understanding the

propagating mechanisms of Lamb waves in anisotropic panels of varying thickness
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such as the repairs investigated in the current work. Among the very few works that

can be found in literature, the most notable was performed by Diamanti et al. [77]

where the excitation of A0 mode was performed at low frequencies in sandwiches

and composite single and double-lap repairs in order to detect impact damage. The

FEM model was approached with shell elements and debonding between the patch

and the substrate was modelled by means of node release. The debonded area was

detected in the captured waveforms through the analysis of the TOF. Koh et al.

[78] demonstrated the disbond growth beneath a composite repair patch through

FEM and detected the initiation of the disbond through the power transmitted

between a pair of surface mounted PZTs. These cases can be complex in terms of

interpretation, since the nature of the waves that propagate in this type of structures,

can be considerably affected by their interaction with the multiple interfaces, and

could lead to other types of waves, such as Stoneley waves. These waves propagate

along interfaces (solid-fluid or solid-solid) as previously explored.

3.7 Discussion

This chapter presented an introduction to the theory of wave propagation in solids

in order to explain the field of interest, namely the propagation of Lamb waves in

isotropic and anisotropic plates. The basic concepts were explained and the charac-

teristic equations were derived. The chapter demonstrated the basic background on

significant aspects related to Lamb waves such as the generation and detection meth-

ods, excitation concepts and numerical modelling. The nature of the Lamb waves

was evaluated in order to highlight the complications as well as the benefits that

emerge from their application in nondestructive testing studies. In the next chap-

ter, the signal processing techniques employed in this work are illustrated, namely

pattern recognition-dimensional reduction techniques and time-frequency analysis

approaches.



Chapter 4

Signal Processing Techniques

This chapter attempts to investigate and analyse the signal processing approaches

that fall into the category of pattern recognition, dimension reduction analysis for

high-dimensional, multivariate data and time-frequency analysis for nonstationary

signals. It aims to give some background information that is required for a general

understanding of the employed methods, with extra focus on the techniques of outlier

analysis, linear and nonlinear principal component analysis, the Hilbert transform

and the Hilbert-Huang transform. All necessary mathematical concepts related to

these techniques will be briefly explained with given examples where applicable.

4.1 Pattern recognition and dimensional reduc-

tion

4.1.1 Outlier analysis

Outlier analysis (OA) is a pattern recognition technique which can be in general

defined as the process of statistical determination of the class of a set of data. This

is an approach that applies to the general novelty detection tools and deals with

two general classes: ‘normal’ or ‘damaged’. Being an unsupervised learning method,

it only requires data from the normal condition and not from all damage classes,

enabling the implementation of a fast and reliable algorithm that performs a first

47
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assessment of the structural integrity of the tested system and provides a visually

friendly result that can be easily interpreted. This tool is applicable to systems

that involve both univariate (consisting of one variable or else consisting of a single

scalar component) and multivariate (consisting of more than one variables at each

sampling point) data although the current analysis will focus only on multivariate.

The aim of the method is to detect outliers among a set of given data. As an outlier,

one would define any value that comes from the recorded data and which seems to

follow a different behaviour than the rest. As a result it is assumed that it reflects

the value that makes the monitored system deviate from the normal condition. It is

important to mention at this point, that this deviation might refer to any possible

parameter that could affect the recorded signals including damage, environmental

and coupling conditions among others. The current work focused on experimental

conditions where any other potential effect than the damage (such as temperature

variation or mounting conditions) was kept constant. The deviation is estimated on

the basis that the normal condition data follow a Gaussian distribution.

Outlier Analysis has been investigated by some researchers for damage detection ap-

plications. Worden et al. [79] have performed damage detection using outlier analysis

on four engineering case studies with successful results, although assumptions such

as, the normal condition set follows a Gaussian distribution are highlighted. Wor-

den et al. [80] performed novelty detection analysis on two composite plates using

outlier analysis, an auto-associative neural network and kernel density estimation to

detect the effect of delamination with Lamb waves. Outlier analysis proved to be the

fastest technique, however the weakness of the assumption of Gaussian statistics is

not present in the other methods. Finally, Pavlopoulou et al. [31] performed outlier

analysis in order to detect the crack propagation and the debonding of an external

patch in an Aluminium repaired structure, with significant success. However the

Mahalanobis squared-distance exhibited a slight drop in cases where damage kept

increasing, a complication which will be further examined in this work.

4.1.2 Outlier analysis in multivariate data

The steps that are followed for the application of outlier analysis on multivariate data

can be illustrated in Figure 4.1. The discordancy value in the case of multivariate

data is called the Mahalanobis squared-distance and it can be estimated through the
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Figure 4.1: Outlier analysis steps.

following equation:

Dζ = ({xζ} − {x̄})T [S]−1({xζ} − {x̄}) (4.1)

where, {xζ} is the potential outlier and {x} and S are the mean value and the

covariance matrix of the training data, respectively. T indicates transpose and

the notation {} indicates vector. The estimation of the assigned threshold in the

final step, is performed through the employment of a Monte Carlo approach and by

taking into consideration the dimensions of the extracted features for the monitored

system. Any observation that lies above the threshold is classified as an outlier. The

followed steps can be briefly summarised below as suggested in previous work [79].

• Step 1: Generation of a p x n matrix of random numbers which follow a Gaussian

distribution and whose dimensions match the dimensions of the extracted features

(p - observations, n - dimensions).

• Step 2: Application of equation (4.1) for all of the observations and storing of
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Figure 4.2: Example of outlier analysis.

the largest value.

• Step 3: Repetition of Steps 1 and 2 for a large number of trials and ordering of

the largest values in terms of magnitude.

• Step 4: The threshold is assigned as a percentage of the resulting array in Step 3.

In the current work a 99 % confidence threshold was utilised, which means that any

values above that threshold have less than 1 % probability of occurring as extracted

from the random variation of the normal condition set.

An example of the performed algorithm on a panel which was loaded under fatigue,

is illustrated in Figure 4.2. Details on the monitored system are later explained in

Section 8. Here the figure is only given as an example of how the approach works.

The data set (isolated features) was 50-dimensional while the training set consisted of

100 observations and each subsequent set consisted of 10 observations. The threshold

was estimated based on the Monte Carlo approach by taking into consideration

the dimensions of the tested features. Then the Mahalanobis squared-distance was

measured and the values were plotted with respect to the test sets. Each test set

corresponds to the observations of a specific structural condition of the monitored

system (10 observations for each condition). The higher the test set number, the

higher loads the monitored system was subjected to. Test sets 0-10 correspond to

the normal condition (usually before any loading takes place), which also functions

as a baseline reference condition. These observations are usually obtained from the

training data in order to validate the performance of the algorithm, hence they are

not considered for its training. Figure 4.2 demonstrates that the normal condition is

successfully identified as unfaulted (e.g. below the assigned threshold) while the rest

of the structural conditions gradually exhibit a certain deviation from the normal
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Figure 4.3: Principal component analysis steps.

condition and the threshold, hence identifying the presence of damage.

4.1.3 Linear principal component analysis

In the case of multivariate sets of data, it is often essential to represent the required

information in a reduced-dimensional space for purposes of easier interpretation.

One very common technique for implementing that is principal component analysis.

This technique projects the data into a lower-dimensional space (e.g. a new set

of axes) through orthogonal linear transformations in such a way that each new

variable is a linear combination of the original variables. The values of the new

variables are estimated on the basis of coordinates of each projected observation

on each orthogonal axis. The resulting axes are called principal components and

the new variables are called principal component scores . Every new variable that

is estimated after the transformation, accounts for a certain percentage of the total

variance of the data. Therefore, the first new variable accounts for the maximum

variance in the data, the second new variable accounts for the maximum variance
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that has not been accounted for by the first variable; the pth new variable accounts

for the variance that has not been accounted for by the p-1 variables. The resulting

variables are uncorrelated to each other. For the purpose of the current work,

the concept of principal component analysis was further developed for nonlinear

cases, therefore the standard principal component analysis is referred here as linear

principal component analysis (PCA). The general theoretical steps that are followed

for the application of PCA on multivariate data are illustrated in Figure 4.3. In

the current work PCA was estimated through the application of the singular value

decomposition (SVD).

Principal component analysis is a rather useful tool in pattern recognition problems

for damage detection applications, since it can provide information about the sepa-

ration between the clusters of each data set and it enables the understanding of their

behaviour with respect to damage growth. Two-dimensional and three-dimensional

representations are preferable in terms of visual illustration, while at the same time

the selection of the first two or three principal components has to ensure that most

of the system’s information is maintained and hence accurately represented. The

loss of information can be estimated via the components that were not selected. At

these first stages of damage detection analyses, the efficiency of the selected feature

can be evaluated on the basis of how clear separation between the data clusters of

the different damage sets is obtained.

PCA has been used as a tool for damage detection purposes in the past. Chetwynd et

al. [81] identified optimal Lamb wave propagation paths for detection of damage that

was introduced in a curved aluminium plate in the form of drilled holes and saw cuts.

The investigation was performed through the post-processing of the signals with

OA after the application of PCA to ensure the appropriate selection of the tested

features. Yan et al. [82] used a PCA-based approach in order to discriminate between

damage and environmental effects for vibration features in a bridge model. In the

present work, PCA has only been used as a tool for setting the basis of understanding

damage detection problems and for further development of more advanced damage

prognosis tools.
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Figure 4.4: Schematic illustration of the data projection nature for the linear (a)
and nonlinear (b) principal component analysis (arc length λ).

4.1.4 Nonlinear principal component analysis

Principal component analysis only extracts linear relationships in order to project

the data on the principal components. In simple words, this means that the sets

of the analysed data are projected into lines. This limitation led to the establish-

ment of a more generalised concept, namely nonlinear principal component analysis

(NLPCA). This approach extracts both linear and nonlinear relationships such as

higher-order statistics, and enables the projection of the data into curves or surfaces

instead of lines or planes in such a manner that the length of the orthogonal projec-

tions from the data points to the curve is minimised. Figure 4.4 graphically indicates

the basic difference between the two methods. NLPCA is a technique which can fur-

ther reduce the dimensions in an accurate way for damage detection problems where

high-dimensional sets of data are acquired. However it has not been systematically

exploited for such applications yet. Among the very few applications, Worden et al.

[83] performed NLPCA on Lamb waves obtained from a composite plate exposed

to temperature variation in order to achieve data compression. The work demon-

strated that the NLPCA scores exhibited a monotonic behaviour with respect to

the increasing temperature hence making Lamb waves a temperature sensor. Hsu

et al. [84] performed NLPCA using an auto-associative neural network in order to

extract the environmental factors and estimated the damage extent by carrying out

modal analysis in a road bridge subject to varying environmental conditions.
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Implementation algorithm

Several algorithms have been proposed for the estimation of the principal curves

but that proposed by Hastie and Stuetzle [85] is the one that was implemented in

this work. This algorithm starts with a prior line which is usually the first principal

component. For the current study, a FORTRAN programme [83] was used, which

can be briefly summarised in the following two steps.

Each curve is parametrised by its arc length λ (Figure 4.4). The arc length is

translated as the scores which are the coordinates of the projections of the data into

the new axis. There are two basic steps which alternate for each iteration until the

mean orthogonal distance between the data points and the curve is minimised. This

is achieved when the relative change in the mean distance between the iterations is

below a threshold. The data points here are expressed as xi and the resulting curve

after each iteration is expressed as fi. As span here one would define the number of

points in the neighbourhood of the respective λi. This is a user-defined parameter

and its function is to control the smoothness of the curve.

Step 1 (Projection): Each xi is projected on the curve fi and the coordinates of

the projection on the closest point of the curve are estimated along with the arc

length λi. The arc length of each point is defined from the end point of the curve

denoted as λ1=0. Then the points are reordered in order of increasing λ and the

arc lengths are recalculated. The algorithm starts with a prior line which is the first

linear principal component.

Step 2 (Conditional - expectation): For each point of the curve fi, the span is

defined. Next, for all the points xj associated with λj within this span, a weighted

regression line is fitted coordinate wise to the pairs (λj, xj) and the new values of fi

are defined as the evaluated linear curve-fits λi.

Demonstration of the algorithm

A schematic illustration of how the algorithm works can be seen in Figure 4.5. As

explained before, the algorithm defines as a starting point the first linear principal

component whose arc length is denoted here as λ0. As illustrated, this line does

not perfectly fit the data set, which can be evaluated through the estimation of the

mean orthogonal distance between the points and the curve. This is clearly not the
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Figure 4.5: Schematic illustration of the iterative nature of the algorithm and an
example of its final result on a set of data.

minimum possible. The curve in the first iteration is a function of the obtained λ(0)

from the previous step and the new λ(1) are estimated through the projection of

the data to the new curve. This procedure is repeated for n iterations after which

the curve has bent to the optimum shape. The successive bending of the starting

line, is achieved through the fact that the same data point is not projected into the

same point of the curve at each iteration. Finally an example is presented here,

illustrating a principal curve fitted to a set of Gaussian distributions. The curve has

bent to obtain the required shape.
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4.2 Time-frequency analysis of nonstationary sig-

nals

4.2.1 Classical frequency analysis concepts: Fourier-based

methods

There are several approaches that have been employed in the past which look at

the representation of the spectrum of time signals in order to extract useful in-

formation. Some of the most representative ones are discussed here. The Fourier

transform (FT) is a very well established method and has been extensively used in

the past as a feature selection approach for SHM problems with Lamb waves. This

approach is based on the decomposition of any periodic function x (t) into a sum

of simple oscillating functions, sines and cosines (or complex exponentials), the so

called Fourier series. The Fourier representation of a function x (t) defined on the

interval [-τ/2,τ/2] is:

x(t) = α0 +
∞∑
n=1

ancos(nωt) +
∞∑
n=1

bnsin(nωt) (4.2)

where ω=2π/τ and the period τ and the amplitudes an and bn are associated with

each of the decomposed oscillating functions.

If the Moivre’s theorem is applied, then one obtains:

cos(nωt) =
1

2
(einωt + e−inωt) (4.3)

sin(nωt) =
1

2i
(einωt − e−inωt) (4.4)

Following the equations (4.3), (4.4), the Fourier series can be written in the following

form:

x(t) =
∞∑

n=−∞

cne
inωt (4.5)

where

cn =


(an − ibn)/2 if n > 0

(an + ibn)/2 if n < 0

a0 if n = 0

(4.6)
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The orthogonality relation, ∫ τ
2

− τ
2

einωte−imωtdt = τδmn (4.7)

allows the exponential representation of cn as:

cn =
1

τ

∫ τ
2

− τ
2

x(t)e−inωtdt (4.8)

If equations (4.5) and (4.8) are combined, and if τ→∞, and ωk=kdω for the kth

spectral line, then in the limit, the following expression is obtained:

x(t) =
1

2π

∫ ∞
−∞

{∫ ∞
−∞

x(t
′
)e−iωt

′

dt
′
}
eiωtdt (4.9)

From equation (4.9) the Fourier transform (FT) can be derived as following:

F [x(t)] = X(ω) =

∫ ∞
−∞

x(t)e−iωtdt (4.10)

which represents the spectral content of the time signal in terms of frequency ω and

of magnitude X (ω). Although the FT provides a useful tool that easily manipulates

the analysed signals, it cannot represent the spectrum of the signal with respect

to its time-varying behaviour, namely it cannot interrogate nonstationary signals.

This means that it fails to identify when each frequency component of the same

magnitude occurs. This poses a significant limitation since most signals that are

dealt with in real problems are nonlinear and nonstationary.

Since this limitation proved to be crucial for certain signal processing analyses,

the short time Fourier transform (STFT) approach attempted to make up for the

shortcomings of the FT by introducing a sliding window to the decomposed signal

which extracts small portions of the signal which in turn is considered as stationary

if the window is sufficiently narrow and then the FT can be performed.

STFT [x(t)] = X(τ, ω) =

∫ ∞
−∞

x(t)w(t− τ)e−iωtdt (4.11)

where w(t-τ) is the selected time window that provides a time resolution equal to

the defined coefficient τ . STFT highly depends on the size and shape of the selected

time window. A short time window leads to high time resolution and poor frequency
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resolution and vice versa. The degree of overlapping between the selected windows

is also of significant importance, since non-zero overlap provides good results but

high computational time while a certain degree of overlap can affect the accuracy

of the resulting spectrum [86].

Another significant approach to the time-variant interpretation of the spectrum,

also based on the FT, is the continuous wavelet transform (CWT) [87] which aims

to overcome the limitations of STFT by building a window function that can be

adjusted according to the changing of the signal and which can be defined as:

WT [x(t)] = X(a, b) =

∫ ∞
−∞

x(t)w(
t− a
b

)dt (4.12)

where the decomposition depends on the so-called wavelets w( t−a
b

) instead of in-

finitely long harmonic functions. Coefficient α indicates the translation of the

wavelet while b indicates a scaling factor which corresponds to the inverse of the fre-

quency. This approach has been investigated by many researchers for SHM problems

with a considerable degree of success. However, the disadvantage of the method lies

in the fact that the resolution of CWT depends on the selection of the basic wavelet

function and only provides a non-locally adaptive approach. This means that the

wavelet base is constant during the processing and cannot change which can lead to

energy leakage in certain frequency regions [88].

Another popular method for time-varying signals representation is Wigner-Ville

distribution (WVD). This is based on the FT of the central covariance function of

the signal. If the central covariance of a signal x (t) is:

Cc(τ, t) = x(t− 1

2
τ)x∗(t+

1

2
τ) (4.13)

then its Wigner-Ville distribution is defined as:

V (ω, t) =

∫ ∞
−∞

Cc(τ, t)e
−iωtdτ (4.14)

The reader is referred to further explanation if needed [89]. One of the most signifi-

cant limitations of this method is that it fails to deal with the existence of negative

power for some frequency ranges. It is therefore clear that new approaches needed

to be employed for the accurate representation of nonstationary signals that would

enable the appropriate feature selection of the obtained signals in the current work,
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Figure 4.6: The instantaneous properties of a chirp signal.

which are by definition transient signals, hence nonstationary and nonlinear.

4.2.2 The concept of instantaneous properties

The concept of the instantaneous properties (frequency and phase) emerged from the

need to represent the spectrum of nonstationary signals. Nonstationary signals are

defined as those signals whose statistic characteristics vary with time. According to

its classical definition, frequency is defined as the number of cycles that take place

during one unit of time when a body performs an oscillatory (periodic) motion.

This means that if the body does not perform a full circle then the frequency cannot

be defined. This definition does not provide any finer temporal information of the

frequency and it can only be established for multi-component signals, namely signals

which can be decomposed into more frequency components. However when the

signal is mono-component, namely signal whose energy distribution spreads around

a single frequency or a narrow range of frequencies, then the instantaneous frequency

(IF) can be estimated for each sampling point of the signal. A general definition

for the IF is that it is a time-varying parameter which provides information about

the location of the signal’s spectral peak as it varies with time. Accordingly the

instantaneous phase (IP) can be extracted. Further details can be found in the work

of Boashash [90],[91] and Huang et al. [92]. As an illustration of the aforementioned

concept, a nonlinear and nonstationary signal was selected, namely a chirp signal.

Its instantaneous properties were extracted through a Hilbert transform which will

be discussed later. The results are displayed in Figure 4.6. It is clear that both

properties vary with time.
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4.2.3 Instantaneous frequency through the Hilbert trans-

form

Among the most popular definitions of instantaneous frequency is the one proposed

by Gabor [93] and Ville [94] which will be investigated in the current study and

which is based on the Hilbert transform (HT). According to these definitions, the

analytical signal associated with the real signal x (t) is first defined as:

z(t) = A(t) exp[iϕ(t)] = x(t) + iH[x(t)] (4.15)

The HT of a real-valued function x (t) can be defined through the convolution the-

orem as:

x̂(t) = H[x(t)] =
1

π

∫ ∞
−∞

x(t)
1

t− τ
dτ (4.16)

and A(t) is the time-varying amplitude of the envelope of z (t), also defined as

instantaneous amplitude (IA) which is given by:

A(t) = |x(t) + iH[x(t)]| (4.17)

The phase of z (t), φ(t) is defined as the IP:

φ(t) = tan−1
H[x(t)]

x(t)
(4.18)

Finally the IF ω(t) can be obtained through φ(t) and can be expressed as:

ω(t) =
1

2π
· dφ(t)

dt
(4.19)

From equation (4.16), three properties of the HT can be derived. First of all, the

HT preserves the domain in which the signal is defined; this is necessary since the

analytical signal that is defined through the HT maintains its time domain nature.

Secondly, the HT shifts the phase of a signal by 90◦. Positive frequency components

are shifted by -90◦ and negative frequency components are shifted by +90◦. Finally

the analytical signal which is composed by the real signal and its HT has a spectrum

which exists only in the positive frequency domain. This is based on the fact that

the imaginary part that is added to the signal is equivalent to the suppression of the

negative frequencies and the magnification (x2) of the positive frequencies in order
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to preserve the total energy of the original signal [94] as illustrated in Figure 4.7.

 

ℋ(f) 

f 

f<0 
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+π/2 

-π/2 

Figure 4.7: Phase shift property of the Hilbert transform. [93]

The definition of the IF through the HT requires a prior decomposition of the

analysed signal since it is only meaningful for mono-component signals, which also

poses one of its limitations. In addition, the definition of the analytical signal

through which the IF can be obtained, cannot be defined for some signals. In

these cases, the original and analytical signals might have different spectra or the

analytical signal that will be constructed might not be unique for a specific time

signal [95]. Nevertheless, the interpretation of the IF is a promising signal processing

tool that can reveal important information hidden in the obtained signals which can

be exploited for SHM purposes.

Several multi-component signal decomposition methods have been proposed in the

past. However, the current study focuses on the most recent ones, namely the empir-

ical mode decomposition (EMD) [96] and the ensemble empirical mode decomposition

(EEMD) [97]. The main principal of these methods is the decomposition of the time

signal into signals that admit a well behaved HT, namely mono-component signals.

Each of these signals is called an intrinsic mode function (IMF).

4.2.4 The intrinsic mode function

The demodulation approach followed in the current study, is based on the decom-

position of a time signal x (t) into its IMFs. An IMF is a narrow-band signal that

should fulfil the two following principles. If these two principles are followed, then

the decomposed signal is assumed to consist only of those fundamental components

[96]:
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• Principle 1: Its number of extrema Ne (minima and maxima) and the number

of zero crossings Nz should either be equal or differ at most by one over its entire

length.

(Nz − 1) ≤ Ne ≤ (Nz + 1) (4.20)

• Principle 2: The mean value of the envelope of the signal defined by the local

maxima emax and the envelope of the local minima emin should be zero at any point

ti in order to ensure that the IMF will be locally symmetric.

|fmax(ti) + fmin(ti)|
2

= 0 (4.21)

When the IMF is properly defined, then the decomposition of the time signal can

be performed by means of a sifting process as described in the following sections.

4.2.5 Empirical mode decomposition

Huang et al. [96] developed the EMD which employs a sifting procedure in order

to decompose a nonstationary signal into its IMFs. The steps followed for the

decomposition of a time signal x (t) into its IMFs, are summarised below:

• Step 1: Identification of the local maxima and minima of the time signal x (t).

• Step 2: Generation of upper emax(t) and lower emin(t) envelopes by initialising

the method of cubic spline interpolation.

• Step 3: Calculation of the mean m1(t) from the upper and lower envelope.

m1(t) =
emin(t) + emax(t)

2
(4.22)

• Step 4: Subtraction of the mean m1(t) from the signal and calculation of the

difference d1(t) between x (t) and m1(t):

d1(t) = x(t)−m1(t) (4.23)

Then d1(t) is tested whether it satisfies the principles of the IMFs or not. If the

principles are not satisfied then x (t) is replaced by d2(t) and the procedure is re-

peated.

d2(t) = d1(t)−m2(t) (4.24)
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Figure 4.8: Illustration of the sifting procedure during the EMD.

The procedure is repeated from 1 to k times until an IMF is found, in which case a

stopping criterion is fulfilled and dk(t) is denoted as the first IMF, c1(t).

• Step 5: The residue r1(t) is estimated by subtracting c1(t) from the initial time

signal x (t). This is treated as new data.

r1(t) = x(t)− c1(t) (4.25)

Steps 1-5 are repeated until the nth residual rn(t) after the n trial is a monotonic

function or constant, hence no more IMFs can be extracted. Then the original

decomposed signal x (t) can be reconstructed through the sum of all IMFs.

x(t) =
n∑
i=1

ci(t) + rn(t) (4.26)

This sifting procedure produces IMFs with decreasing frequency content as the algo-

rithm iterates. An illustration of the sifting procedure is graphically shown in Figure

4.8 where a representative Lamb wave response is used. The maximum and mini-

mum envelopes (emax(t), emin(t)) are first estimated as well as their mean value and

then the mean is subtracted from the original signal x (t) and the result is treated

as the new signal. After the decomposition of the original time signal, the HT can

be performed on its IMFs in a method named after Huang as the Hilbert-Huang

transform (HHT).

Even though this approach seems to be a very straightforward decomposition method,

yet it has certain drawbacks. First of all a considerable limitation is the absence of
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strong mathematical background, hence its empirical nature cannot guarantee that

all signals can be analysed. Secondly, the decomposition into the IMFs in some cases

might fail to separate signals with very close frequencies, while the IMFs themselves

do not have a specific physical meaning. In addition, the effect of the utilised spline

fitting algorithm and the selection of the stopping criterion on the efficiency of the

decomposition need to be further explored. Finally, two problems related to the

EMD are the end effect and the mode mixing. In the first case, the application of

spline fitting for the estimation of the envelopes could possibly lead to large swings

in its envelope which could propagate inwards and corrupt the signal. This problem

has been addressed by Rilling et al. [98] through the mirroring of the extrema close

to the edges. In the second case, the resulting IMFs after the decomposition, could

either involve a single IMF component which comprises of signals with different

scales, or a signal of similar scale residing in different IMF components.

Other user-defined options that can affect the efficiency of the algorithm are the

selection of the stopping criteria as well as the maximum number of sifting itera-

tions for the computation of each mode. In the current work, the criteria proposed

by Rilling et al. [98] as well as the freeware codes developed for this work were

used. According to those, a stopping criterion was defined, based on two thresholds,

namely θ1 and θ2. These thresholds would ensure globally small fluctuations in the

mean and locally large excursions. Then a mode amplitude is defined as α=(emax(t)-

emin(t))/2 and an evaluation function as σ=|m(t)/α(t)|. Then the iteration process

progresses until σ(t)<θ1 for a prescribed function (1-α) of the total duration while

σ(t)<θ2 for the remaining fraction. In the employed algorithm, these parameters

were set as α≈0.05, θ1≈0.05 and θ2≈10θ1. Finally the default maximum number of

sifting iteration for each mode in this study was 2,000 [98].

4.2.6 Ensemble empirical mode decomposition

The ensemble empirical mode decomposition (EEMD) is a noise-assisted method

which was suggested by Wu et al. [97] with the aim of overcoming the problems

related to the EMD which were briefly described in Section 4.2.5. This is mainly

accomplished through the addition of white noise to the original time signal. This

solves the problem of mode mixing by the projection of parts of the signal on proper

scales of reference established by the white noise, which effectively occupies the

entire time-frequency space [99]. After the extraction of the IMFs, the added noise is
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removed by a timespace ensemble mean. The steps of the procedure are summarised

below [97]:

• Step I: Set the number of ensembles NE and the amplitude of the added white

noise An.

• Step II: Generation and addition of white noise nm(t). The new time signal is

then defined as the sum of the original time signal x (t) and the defined noise as:

xm(t) = x(t) + nm(t) (4.27)

The same sifting procedure is performed for the decomposition of the new signal into

its IMFs as described in Steps 1-5 in Section 4.2.5 until the i th IMF, ci,m is extracted

and the residual rm(t) after the m trial is a monotonic function or constant, hence

no more IMFs can be extracted. If the trial number m is smaller than the number of

the defined ensemble NE, m<NE, then the algorithm goes back to Step II and defines

m=m+1. In this way the algorithm generates new white noise and the procedure

is repeated again.

• Step III: Calculation of the ensemble mean of the corresponding IMFs of the

decomposition ci(t) as well as the corresponding residue ri(t)

¯ci(t) =
1

NE

NE∑
m=1

ci,m(t) (4.28)

¯ri(t) =
1

NE

NE∑
m=1

rm(t) (4.29)

There are two user-defined parameters in the specific algorithm, namely the number

in the ensemble and the amplitude of the added white noise. The selection of the

ensemble number in general followed the rule εn=ε/
√
N , where N is the number in

the ensemble, ε the amplitude of the white noise and εn is the standard deviation

of the error that represents the difference between the input signal and the IMFs.

In addition the amplitude of the added white noise will not have any effect on the

decomposition if too small or it will complicate the analysis if too big. The current

analysis followed the general suggestion by Wu et al. [100], that it should be about

0.2–0.4 of the standard deviation of the amplitude of the raw data.
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4.3 Discussion

The pattern recognition and data dimensions reduction techniques that were demon-

strated in this chapter, aim to set a basis for the subsequent damage monitoring

analysis of the current work. The selection of these tools was performed on the

basis of novelty and on ease of application in the field of damage detection, where

the main objective is the expression of a set of obtained signals in a way that can be

readily attributed to the structural integrity state of the monitored system. Outlier

analysis has been used so far for simple idealised damage detection case studies when

there was an a priori knowledge of damage. Principal component analysis is a well

established method leading to nonlinear principal component analysis which as an

advanced method has not been systematically established yet for damage detection

purposes.

A brief but fundamental illustration of the theoretical background around the Hilbert-

Huang transform was also presented in this chapter while its advantages and disad-

vantages compared to previously employed methods were identified and discussed.

In terms of SHM applications, this method provides certain advantages over the

more traditional time-frequency approaches since it is an adaptive method with no

need for an a priori defined basis, which reduces the energy leakage problem and

provides higher accuracy for nonlinear and nonstationary signals. Several studies

previously performed, have attempted to evaluate structural integrity problems on

simple structures while the gap in the physical interpretation of the obtained result

is prominent. The next chapter demonstrates an application of Lamb wave prop-

agation on an Aluminium repaired plate, processed through the aforementioned

concepts of time-frequency analysis.



Chapter 5

Time-Frequency Analysis of

Lamb Waves for Feature

Selection

Time-frequency analysis has been a powerful tool for nondestructive testing, widely

used in the past by many researchers. Most of the studies aim to employ a feature

selection process through relevant time-frequency analysis algorithms, that would

provide potential features with damage detection capabilities. This chapter aims

to exploit the time-frequency analysis methods demonstrated in Chapter 4 in order

to extract appropriate features from an aluminium panel which is repaired with

an aluminium patch. The repaired panel was interrogated with Lamb waves. The

proposed time-frequency analysis tools are evaluated first on simple Lamb wave

responses and then a physical interpretation is attempted on the basis of the effect of

damage on the instantaneous properties of the acquired waves. Finally, the selected

features are assessed and compared with respect to the damage development and

relevant conclusions are derived. This study deals with a simple system, namely

an aluminium flat plate, which exhibits a much more expected failure mode than a

composite repaired panel, in order to better illustrate the proposed feature selection

strategy. This work has already been published in [101].

67
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5.1 Feature selection strategies

In pattern recognition the analysis of the obtained signals is performed after the

selection of appropriate features. Such a selection is usually performed on the basis

of separate modes, wave packages that interact with the region of interest or mov-

ing windows over the time waveform. All these methods, could be categorised as

amplitude-based methods. This means that these methods utilise amplitude mon-

itoring of the acquired signals including attenuation and/or mode conversion, and

compare any observed changes with a baseline reference set of data i.e. data repre-

senting a pristine condition. However, there are several factors that could influence

the amplitude of the acquired signal and which could consequently distort the ob-

tained signals and lead to false alarms or undetected critical defects. These factors

can be noise, variation in the environmental conditions, specimen mounting condi-

tions or poor coupling between the transducer and the tested surface. Environmental

changes could involve unmeasured temperature and moisture variation especially in

systems that are exposed to such extreme conditions such as in aerospace industry.

In addition, in the case of complex systems, such as systems with variable thickness,

the extraction and isolation of specific modes requires a very good understanding of

the wave propagation mechanisms so that the appropriate excitation scenario and

the transducers arrangement are selected. If those parameters are not properly se-

lected, then complications like mixed wave packages or extensive wave attenuation

over large inspected distances, might lead to the misinterpretation of the amplitude-

based analysis. Moreover, when all the above complications apply to the baseline

reference, then the reliability of the monitoring analysis becomes weaker from the

very early stages. It is therefore reasonable that a more advanced approach for the

feature selection needs to be employed, in such a way that more repeatable features

of the signal can be isolated.

5.2 Damage detection based on the Hilbert-Huang

transform

The concept of the estimation of the instantaneous properties through the HHT in

the SHM field has recently emerged and been tested for various applications. Some

of the most notable work will be presented here. Ghazalli et al. [102] estimated
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the instantaneous phase and frequency signals obtained by pressure transducers

through the HT and HHT in order to detect leaks and pipe ends. Yan et al. [103]

used the HHT for analysing transient vibration signals of a bearing test bed in order

to effectively detect the deterioration of a test bearing. Liu et al. [104] employed

the EMD and HT in order to perform localised gearbox fault diagnosis in a gearbox

with a tooth crack highlighting the advantages over wavelet transform. Chen et

al. [105] developed an optimal sensor placement procedure using genetic algorithms

and a finite element analysis technique and then they successfully used the HHT

for damage detection on a composite wingbox while they introduced axis symmetry

signal extension in order to solve the end effect of the EMD. Quek et al. [106]

investigated the effect of the HHT for locating anomalies in the form of cracks,

delaminations, stiffness loss or boundaries in beams and plates with a considerable

level of success. Although many of the aforementioned studies have managed to

effectively correlate the instantaneous properties of the obtained signals with the

developed damage, yet very little effort has been made in terms of understanding

of the physical mechanisms that lead to the observed changes in the indices. In

addition, there is little work on Lamb waves to the knowledge of the author.

5.3 Experiment

The experimental set up and the obtained signals have been previously used by

the author in [9]. However a brief explanation of the experimental procedure is

considered important for the understanding of the underlying mechanisms. For the

purpose of the experimental demonstration, a typical aerospace aluminium-2024

plate of 2 mm thickness was employed, while an artificially introduced damage in the

form of a 10 mm hole was introduced into it. Two notches of 2 mm were introduced

at either side of the hole for the faster initiation of the fatigue cracks. The bonding

of the transducers and of the patch was carefully performed since the aluminium can

develop severe deformations under fatigue which can have an immediate effect on

the bonding quality. Therefore the surface was prior processed by means of sanding

with a fine 180-grit sandpaper and was afterwards cleaned by acetone. The patch

which was made out of the same material as the substrate and of the same thickness,

was bonded with epoxy adhesive (Araldite 2015 provided by Huntsman) which was

then left to cure at room temperature. The set up is displayed in Figure 5.1.
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Figure 5.1: Experimental set up.

The metallic panel was subjected to cyclic loading between 10–70 kN which cor-

responds to approximately 7–50 % of the panel’s strength at a 3 Hz frequency.

Two types of damage were expected to initiate and simultaneously propagate in

the repaired region during cycling. First was the propagation of two cracks in the

aluminium plate, initiating at the tips of the notches. A microscope was employed

for the monitoring of the cracks at the reverse side of the plate where there is no

patch. Second was the debonding of the patch as a result of crack initiation in the

adhesive when the ultimate shear strain of the adhesive would be exceeded under

loading. The debonding of the patch was verified with visual inspection. Cycling

was stopped every 5,000–10,000 cycles (starting after 15,000 cycles) at a pre-tension

(40 kN) at which stage signals were recorded. This ensured the least interference

of the obtained signals with the machine while the pre-tension would help with the

damage detection by keeping the cracks open. The experiment was stopped after

70,655 cycles, a step at which the panel had developed a substantial level of dam-

age. Also the temperature conditions in the laboratory facilities were considered to

be relatively unchanged during the performance of the experiment. The developed

damage is illustrated in the crack propagation curves in Figure 5.2.

For the monitoring of the panel, eight PZT transducers were surface-bonded with the

same type of glue that was used for the patch. Four operated as actuators and four



5.3. EXPERIMENT 71

Right crack (R)

Left crack (L)

Hole on substrate 
filled with resin

Patch 
debonding 

PZTs

Figure 5.2: Developed damage in the form of cracks propagation in the substrate
and patch debonding; crack propagation curves.
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Figure 5.3: Dispersion curves for the Aluminium substrate (thickness=2 mm). [46]

as receivers, forming in total 16 propagation paths. The excitation signal was a five-

cycle sine pulse enclosed in a Hanning window of a 10-Volt peak-to-peak amplitude

generated by a TTi TGA1230 30 MHz wave generator. The data acquisition was

performed at a 10 MHz sampling rate by a LeCroy LT224 oscilloscope and the

excitation frequency was 240 kHz. At this frequency, only the two fundamental
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A0 and S0 modes were excited as illustrated in the dispersion curves (Figure 5.3).

This frequency was selected on the basis of an observed maximum energy for all

propagation paths.

5.4 Instantaneous frequency of guided waves

The instantaneous frequency (IF) represents the energy content of nonstationary

signals such as transient signals. Therefore this tool is employed in this study in an

attempt to isolate damage sensitive features which would focus on more fundamental

characteristics of the obtained signals rather than on amplitude-based tools. A pre-

liminary investigation of the instantaneous frequency as extracted from the guided

waves was essential in order to understand its behaviour. Due to space restrictions,

only one propagation path was selected for benchmarking of the approach, namely

propagation path 3-B. This path is considered to directly propagate through the

monitored region of interest. In Figure 5.4 the IF of a response from the aluminium

substrate prior to the patch bonding is illustrated along with the original time wave-

form. The method that was followed for the estimation of the following indices is

explained in Section 4.2.2.
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Figure 5.4: Instantaneous frequency of a time signal obtained from the aluminium
substrate prior to patch bonding.

As illustrated, the trace exhibits several ‘spikes’ at specific time intervals of the

time signal. These spikes are observed in areas with low amplitude. Low ampli-

tude regions are present in guided waves in the beginning of the waveform or in
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the transition areas between the wave packets. Since the IF is obtained after the

differentiation of the IP, then it is possible that these spikes are the result of the

amplification of the noise that is more prominent in the low amplitude regions of

the original time signal. This means that for the subsequent feature selection, spe-

cific regions of the resulting IF traces need to be selected. The following sections

will focus on the exploitation of the signal decomposition as a means of minimizing

the spikes by converting the multi-component guided wave into a mono-component

one and on a strategy for feature selection. Finally the correlation of the selected

features with the developed damage will be displayed.

5.5 Empirical mode decomposition and ensemble

empirical mode decomposition as noise filter-

ing tools

Multi-component waves can be defined as waves that at any given time, involve

more than one oscillatory mode. When guided ultrasonic waves propagate through

a bounded media, then two basic modes coexist, namely the symmetric and the anti-

symmetric; as they interact with the boundaries of the plate or with the defects,

they undergo reflection, refraction and mode conversion which can result in the

superposition of certain wave packages. Therefore, decomposition of the guided

waves would be essential in this case in order to obtain mono-component signals

before the application of the HT. In addition, the hypothesis that motivated this

work supported the idea that the decomposition would effectively filter the high-

frequency regions observed in Figure 5.4 and would produce signals that are easier

to interpret.

Figure 5.5 displays a time signal obtained after the panel was cycled for 20,000 cycles.

This signal exhibits areas of very low amplitude, in which the first wave packages

have been considerably attenuated while the amplitude of subsequent wave packages

has been magnified, due to the complex mechanisms during the interaction of the

wave with the boundaries of the patch, the substrate, the hole and the developed

cracks. The resulting IF prior to decomposition, contains a considerable level of

noise. Decomposition of the time signal was performed with the EMD and the

EEMD and the IF of some of the most representative IMFs were further plotted
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Figure 5.5: Behaviour of the instantaneous frequency of the time signal obtained
after 20,000 cycles before and after its decomposition.

as illustrated in Figure 5.5. The most representative IMFs were selected after the

high-frequency IMFs were removed, namely the first IMF for EMD and the first

two for EEMD, and the remaining IMFs were added. The sum of the low-frequency

IMFs was considered to be the new decomposed time signal as reconstructed by its

IMFs; its IF was estimated through the HT.

The analysis was performed with an ensemble of N =100, and the ratio of the stan-

dard deviation of the added white noise and that of the original time signal was 0.1.

These parameters were maintained for the rest of the analysis. The results demon-

strate that both decomposition methods filter out almost all of the noise, highlighting

the advantage of the EEMD over the EMD with respect to the percentage of filtered

noise. Therefore the EEMD was considered as the optimum decomposition method

for the rest of the analysis.

In Figure 5.6, the IMF components obtained by the EEMD method are illustrated

for the time signal investigated in Figure 5.5 for comparable reasons. The time

signal was decomposed into nine IMFs among which the first two are in the high-

frequency region exhibiting a significant level of noise. The rest of the IMFs are in

the low-frequency region. The corresponding residue is clearly monotonic.
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Figure 5.6: EEMD analysis of the time signal obtained after 20,000 cycles (nor-
malised amplitudes).

5.6 The effect of damage on the instantaneous fre-

quency of Lamb waves

This section investigates the effect of damage on the instantaneous frequency of the

obtained signals and attempts to conclude on a sensible damage index for assessing

the developed damage. For the understanding of the physical mechanism of the effect

of damage on the behaviour of instantaneous frequency, a simple analytic simulation

was conducted. Figure 5.7 illustrates the IF and the frequency content of the time

signal that was presented in Figure 5.4. The IF curve is focused on the interesting
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Figure 5.7: Instantaneous frequency and Fourier transform of the time signal in
Figure 5.4; the dotted lines (a) correspond to the average IF value together the
upper and lower boundaries.

region (0–480 kHz) in order to visually isolate the observed spikes. Dashed lines have

been added to both plots in order to display the observed phenomenon, according

to which, the obtained frequency oscillates around a mean value that corresponds

to the excitation frequency (i.e. 240 kHz) while its maximum and minimum values

correspond to 350 kHz and 150 kHz respectively. The frequency content of the same

signal exhibits a peak that agrees with the excitation frequency while the boundaries

of the lobe expand at frequency values that agree with the maximum/minimum

values of the IF oscillation.
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Figure 5.8: Undamped and damped single degree of freedom system.

Figure 5.8 demonstrates the behaviour of a single degree of freedom (SDOF) oscil-
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latory system when the damping coefficient factor is artificially increased. The time

signals have an initial displacement equal to 10 at a sampling rate of 500 Hz, while

the natural frequency was 15 rad/s. Its frequency spectra shows that as damping

increases, then the main peak slightly moves towards lower frequency values and

the sides of the main lobe expand significantly towards lower minimum and higher

maximum frequency values, while the magnitude of the main lobe drops. This ob-

servation is better illustrated in Figure 5.9 where the normalised behaviour of the

frequency domain curves are plotted. In the same figure the IF of the signals shows

that although the dominant phenomenon is the amplification of noise when the am-

plitude drops, yet the variance of the curves increases as the damping coefficient

factor increases.
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Figure 5.9: Normalised Fourier spectrum (a) and behaviour of the IF (b) for a single
degree of freedom system under varying damping.

Although it can not be claimed that the response of such a complex system like

the tested panel of the current work can be described by a SDOF system, the

demonstrated physical interpretation can explain the underlying mechanism of the

effect of damage on the behaviour of the instantaneous frequency. As damage grows,

namely as damping increases, then the peak-to-peak amplitude of the instantaneous

frequency is expected to increase since the change of the mean value is considered

to be negligible compared to the change of the maximum and minimum values.

The physical explanation is ultimately verified through the study of the experimen-

tal response. Figure 5.10 displays the IF traces for two different damage levels as

obtained for propagation path 3-B, namely 20,000 and 70,000 cycles. The tested

time interval is 135–204 µs in order to better visualise the phenomenon. The hy-
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Figure 5.10: Instantaneous frequency compared for two damage cases (20,000 and
70,000 cycles) for propagation path 3-B and for time interval (135–204 µs).

pothesis is that the propagation paths that are mostly affected by the damage will

exhibit a more distinctive effect on the resulting IF. Path 3-B is considered to prop-

agate directly through the damaged region, hence it interacts with the damage more

intensively than the rest. As illustrated, the IF traces oscillate around a mean value

that corresponds to the excitation frequency (240 kHz). However, as damage grows

with respect to the cycles, then the IF exhibits an increasing behaviour reaching

higher peak-to-peak amplitudes.

In order to evaluate the developed damage and test the sensitivity level of the

investigated tools, a prior feature selection had to be performed. Therefore all

resulting signals from all propagation paths, were first pre-processed by means of

the EEMD decomposition and IF estimation and then appropriate time intervals

were selected on the basis of the waveform regions that exhibited areas with no

noise. IF was performed on the reconstructed signal from the IMFs. In order to

select which IMFs would be further used for the signal reconstruction, the power

spectrum of each one of them was estimated, and only the ones whose spectral

density gave results that were closer to the original time signal (i.e. peak) were

selected and added. These IMFs were IMF 4–IMF 8. In addition, the illustrated

results are limited only up to 60,000 cycles, because after that stage, the patch

was debonded and the interference of the propagating waves with the structure’s

boundaries resulted in high attenuation, hence significant areas of noise in the IF

curves were apparent. The selected time intervals for each propagation path are

summarised in Table 5.1.
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Path dt(1)(µs) dt(2)(µs) dt(3)(µs) dt(4)(µs)

3–B 71–101 105–112 115–123 139–203

2–C 82–87 111–121 122–136 154–157

4–D 73–85 87–149 159–171 179–209

1–A 56–61 69–99 158–163 179–209

Table 5.1: Time intervals for the estimation of the instantaneous frequency.

After the selection of the tested features, an appropriate damage index DI(IF) had

to be established in order to assess the features with respect to damage, as following:

DI(IF) = ∆F = [IF(t)max − IF(t)min)]t1t2 (5.1)

where dt=t2-t1 is the tested time interval for each IF curve (Table 5.1). Figure 5.11

displays the results for the damage indices for all the propagation paths and for all

the considered time intervals. The crack propagation curves have been also displayed

for comparison reasons. The figure has been divided in two phases based on the

extent of the developed damage as extracted from the crack propagation curves. The

dominant characteristic of phase I is that damage is negligible in contrast to phase

II where damage accumulated in the panel in the form of cracks on the substrate

and patch debonding.

In the same figure, the defined threshold represents the average amplitude of the

traces that were captured in phase I where no damage was apparent, and it is the

same for all paths and equal to 124 kHz. As can be deduced from Figure 5.1, the

propagation paths that interact with the repaired region where the damage is de-

veloped are the paths 3-B and 2-C, while paths 4-D and 1-A propagate outside the

critical region. This is effectively reflected at the behaviour of the resulting DI which

showed good sensitivity with the developed damage for paths 3-B and 2-C. The DI

exhibits no significant deviation from the defined threshold in phase I where no

damage is present, whereas in phase II, the DI clearly deviated from the threshold.

On the other hand, propagation paths 1-A and 4-D show little sensitivity at the

developed damage for both phases, with insignificant change in the employed DI.

These observations suggest that the employed damage index could provide a poten-

tial tool that could distinguish between critical regions in complex SHM problems

like the current one, exhibiting substantial damage sensitivity.
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Figure 5.11: Damage index DI(IF) for four propagation paths in different considered
time intervals (units in kHz).

5.7 The effect of damage on the instantaneous

phase

The next step was the interpretation of the instantaneous phase as a consequence

of the increasing level of damage. The hypothesis is obviously that the IP increases

with respect to damage exhibiting a similar behaviour as the IF. Figure 5.12 displays

the estimated IP traces for propagation path 3-B, prior to the signal decomposition.

The respective damage index ID(IP) that was defined for the damage assessment is

expressed with the following equation:

DI(IP) = ∆P = [IP(t)max − IP(t)min]t2t1 (5.2)

where t1=0 and t2=240 µs for all propagation paths. The results are displayed in

Figure 5.13 for the investigated propagation paths and up to 60,000 cycles. Two
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Figure 5.13: Damage index DI(IP) for four propagation paths.

phases are illustrated in a similar mode as in Figure 5.11 based on the degree of

measured damage. The DI(IP) exhibits a similar behaviour with the DI(IF). In a

similar way, a threshold that expresses the average values of the DI amplitude for

phase I was defined and which is equal to 522 rad. Phase I shows no remarkable

change of the DI with respect to the damage while in phase II the DI of the critical

paths (3-B and 2-C) is estimated to be above the threshold while exhibiting an

increasing mode with respect to the cycles. On the other hand, paths 1-A and 4-D

show no considerable variation over phase II.

This short study indicates that the IP exhibits same damage sensitivity as the IF.

The resulting damage index is only affected when estimated for propagation paths
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that are mostly affected by the developed damage, hence providing a tool that could

potentially distinguish critical areas for further damage assessment cases. In contrast

to the features extracted from the IF, the respective IP traces do not need any prior

processing or filtering which is quite an important advantage.

5.8 Discussion

In this chapter, an effort was made to understand the effect of the HHT on Lamb

waves and to extract features that could provide some damage diagnostic capabili-

ties. An Aluminium panel was tested under fatigue and the obtained signals were

subsequently assessed through the concepts of the HT and the HHT. The result-

ing IF traces exhibited big artefacts as a consequence of the amplification of noise

during the differentiation of the IP in order to obtain the IF. The EEMD was then

employed in an attempt to remove most of these undesirable artefacts through a

clean-up process, which removed most of the ‘spikes’. This decomposition, enabled

the isolation of certain parts of the waveforms, to be studied as potential features

for damage detection. However, the level of artefacts was still high enough, espe-

cially as we moved towards higher damage levels. This fact poses a certain degree

of limitation with respect to the efficiency of the analysis, since only four very small

time intervals could be isolated, with the risk of masking important information

hidden in other parts of the waveform. The effect of damage on the IF traces, was

interpreted through the analysis of a single degree of freedom oscillatory system,

which showed that the peak to peak amplitude of the IF is possibly increasing with

respect to the increasing damping (e.g. increasing level of damage). This physical

phenomenon was represented by most of the isolated features in the experimental

study. Finally, simple damage indices derived from the IF and IP traces exhibited a

relatively good agreement with the level of damage and a potential sensitivity with

respect to wave paths that propagated through the most critical regions.

This study showed some relatively good results that provided an insight into time-

frequency analysis tools which has not been so widely explored yet and which offer

the advantage of an adaptive nature compared to other time-frequency approaches.

This is considered to be a very preliminary stage of analysis, with results that on

one hand provide certain damage diagnostic potentials, but on the other hand the

damage sensitivity might not be at the necessary level that is required for the study
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of complex structures such as repaired composite ones. From the experimental

point of view, the effect of the interruption of the fatigue loading for the data

acquisition, as well as the environmental variations need to be further investigated.

Moreover the effect of structural features such as the boundaries of the patch or of

the adhesive itself should be analysed in order to gain more confidence as to what

causes the sensitivity in the paths that directly propagate through the critical region

of the repair. Finally further tests should take into consideration more tested time

intervals and more measurement points for a more reliable validation of the results.

Overall, the most important limitation of the explored tools, is the lack of physical

meaning of the resulting indices, which prohibits the association of the acquired

features with the required damage sensitivity level. Therefore the author decided

not to proceed with these tools for the rest of this work, as a result of their limited

performance. Future work that could probably enhance the confidence these tools

provide is essential. The numerical simulation of Lamb wave propagation in patch

repair configurations is explored in the next chapter.



Chapter 6

Numerical Analysis of Lamb

Wave Propagation

The objective of the current chapter is to investigate the physics of the wave propa-

gation mechanisms that take place in composite repaired structures with numerical

techniques, to analyse the effect of the developed damage and to conclude in terms

of the efficiency and applicability of the physics-based processing approach as well

as to locate the existing challenges in terms of modelling. The analysis focused on

different types of damage based on a simple external patch repair. These types

involve the debonding of the patch at representative locations, the degradation of

the substrate and the simultaneous effect of both. The input files of the ABAQUS

models can be found in Appendix C.

6.1 Introduction in explicit finite elements anal-

ysis

The general equation of motion in matrix form for linear structural dynamics, is

given by:

Mü+ Cu̇+Ku = R (6.1)

where M is the structural mass matrix, C is the structural damping matrix, K is

the structural stiffness matrix, R is the vector of the applied loads, and u, u̇ and ü

84



6.1. INTRODUCTION IN EXPLICIT FINITE ELEMENTS ANALYSIS 85

are the displacement vector and its first two time derivatives, respectively.

In the current work, only the explicit dynamic analysis was selected since it is an ideal

tool for high speed dynamic events, providing a computationally efficient solution

for the analysis of large models with relatively short dynamic response times [107].

The explicit central difference integration rule is given as described below:

u̇(i+
1
2
) = u̇(i−

1
2
) +

∆t(i+1) + ∆t(i)

2
ü(i) (6.2)

u(i+1) = u(i) + ∆t(i+1)u̇
(i+1

2 )

(6.3)

where i refers to the increment number in an explicit dynamic step and i-1
2

and i+1
2

refer to mid-increment values. The kinematic state is advanced in each increment

by considering the values of u̇(i−
1
2
) and ü(i) at the last increment. The advantage

of the computational efficiency of the explicit analysis lies in the use of diagonal

or ’lumped’ element mass matrices since the inversion of the mass matrix that is

used in the computation for the accelerations at the beginning of each increments

is trivial. The accelerations are described as:

ü(i) = M (−1) · (F (i) − I(i)) (6.4)

where M is the diagonal lumped mass matrix, F is the applied load and I is the

internal force. No iterations and no tangent stiffness matrix is required for each

time increment. The mean velocities u̇(i+
1
2
) and u̇(i−

1
2
) should be specially treated

since the state velocities for each increment are defined as linear interpolations of

the mean velocities:

u̇(i+1) = u̇(i+
1
2
) +

1

2
∆t(i+1)ü(i+1) (6.5)

For the integration procedure to advance, the mean velocity u̇(−
1
2
) needs to be de-

fined. At time t = 0, the default values of the velocity and the acceleration are zero

if not otherwise used-defined. This would lead to the following definition for u̇(−
1
2
).

u̇(−
1
2
) = u̇(0) − ∆t(0)

2
ü(0) (6.6)
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E1 E2 E3 G12 G13

153 GPa 10.3 GPa 10.3 GPa 6 GPa 6 GPa

G23 v12 v13 v23 ρ

3.7 GPa 0.3 0.3 0.4 1600 kg/m3

Table 6.1: Material properties of HTS40/977-2 (UD).
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Figure 6.1: Schematic illustration of FEA model; dimensions in mm.

6.2 Model

For the purposes of the current analysis an adhesively bonded patch attached to a

composite substrate was considered (single-lap repair). Each part was made of 8

plies from carbon fibre/epoxy resin pre-preg with a stacking ply sequence [(0/90)s]2.

The pre-preg was made from continuous unidirectional high tensile strength carbon

fibres (Tenax HTS40 12 K 300) impregnated with a typical high temperature curing

aerospace grade system Cycom 977-2 epoxy resin the properties of which are sum-

marised in Table 6.1. The substrate was 130 x 130 mm and the patch 40 x 40 mm

while the thickness of both was 2 mm. No tapering was considered, Figure 6.1(a).

The substrate’s dimensions were symmetric in order to avoid undesirable reflections

from the edges and to favour the propagation of the wave in the required direction.

The patch was attached at the centre of the substrate, it had the same stacking

ply sequence with the substrate, and it was made out of the same material. In real

applications, the substrate has a hole underneath the patch, which represents the

removed damaged area but usually filled with a plug made of the same material.

Therefore two configurations were considered for the substrate, namely one with a

hole of 6 mm and one without a hole, in order to investigate the effect of the hole on

the behaviour of the propagating Lamb waves as illustrated in Figure 6.1(b). The
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Figure 6.2: Schematic illustration of the model and the wave propagation modes (a)
pitch-catch mode (b) pulse-echo mode (dimensions in mm).

aforementioned details comply with the general design characteristics represented

in Chapter 2. The stiffness ratio of the patch to the structure should be equal to 1.

This can be defined as:

S =
ER · tR
ES · tS

(6.7)

where ER and ES are the Young’s moduli of the patch and the substrate, respectively

while tR and tS are the thicknesses of the patch and the substrate. In addition, the

limiting overlap for current carbon fibre-epoxy systems is around 30tR, where tR

is the patch thickness. For the current study, the aim was the demonstration of

the wave propagation mechanisms based on artificially introduced damage, so the

overlap length was not of critical importance since the panel would not be subjected

to real loading.

Two cases were considered for the excitation and detection of Lamb waves, namely

pitch-catch mode and pulse-echo mode (Figure 6.2). In both cases, two sets of

actuating points were defined at the top and at the bottom surface of the substrate
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Figure 6.3: (a) Excitation time signal (b) Fourier transform.

exciting the plate with displacements that correspond to the actuating pulse. In the

first case a sensing point defined at the other side of the patch was set to capture

the response signals and in the second case the same points at which the excitation

was induced, operated as sensing points after the wave had interacted with the

discontinuities and the boundaries of the plate. The actuating and sensing points

were defined at a distance 20 mm from the left and the right edge of the patch,

respectively. The excitation signal is a five cycles pulse enclosed in a Hanning

window (Figure 6.3). Figure 6.4 illustrates the dispersion curves for the current

material and for the given thickness of the substrate [48].
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Figure 6.4: Dispersion curves for a [(0/90)s]2 laminate of 2 mm thickness. [48]
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The selection of the desired Lamb wave mode was decided on the basis of the most

widely employed mode for composite testing in the previous literature review, which

is the A0 mode. First of all as it can be observed from the dispersion curves, the

A0 mode has a sufficiently shorter wavelength (λ=cg/f ) at a given frequency which

can provide a monitoring system with higher resolution, offering the potential of

capturing smaller sizes of damage. Secondly, the A0 mode produces a more uniform

shear stress distribution through the thickness of the tested composite laminates

than the S0 which indicates that it would be more appropriate for debonding de-

tection. Finally, in composite materials, below the cut-off frequency, there are more

than one symmetric modes that could propagate, namely the Lamb waves S0 modes

and shear horizontal SH0 modes. It is therefore suggested that the analysis would

provide sufficiently easier to interpret results when only a pure mode is excited.

The model was built with the Abaqus CAE pre-processing package and it was solved

using Abaqus (version 6-10.2) explicit analysis which utilises an explicit integration

based on the central difference method. The temporal and spatial resolutions are

of significant importance since they both highly affect the stability of the numerical

solution [108]. The definition of the size of the finite element Le, depends on the

wavelength of interest, hence on the required damage sensitivity of the model. A

general criterion that has been proposed is the assignment of 10 or 20 nodes per

wavelength [109]. For the current study 10 nodes per wavelength proved to ensure

the required resolution. This condition can be expressed as:

Le = λmin/10 (6.8)

As far as the time step is concerned, a stability limit is recommended by ABAQUS

Explicit for the integration time step δt in cases of wave propagation in the longi-

tudinal direction across the element:

∆t = Lmin/cL (6.9)

where Lmin is the smallest dimension of the smallest finite element of the model

and cL is the bulk longitudinal wave velocity through the material. However best

resolution is achieved when the criterion is adjusted to the studied dynamic problem.

In this case, certain studies suggest that at least 20 points need to be used for each

cycle at the highest frequency f max of the problem [110]. This can be expressed as:

∆t = 1/(20fmax) (6.10)
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Figure 6.5: Model and meshing realisation for the patch repaired plate.

The element type employed in this model was a general purpose C3D8R element (3D-

solids, 8-node linear brick of reduced integration) since it has been extensively used in

the past with successful results. The mesh was uniform, consisting of square elements

in order to avoid any reflections occurring from the differences in the mesh and to

favour similar wave propagation in all directions as illustrated in Figure 6.5. The

current study focused on point force excitation for the purpose of simplicity. Based

on this approach, the effect of the transducers on the parent plate, was modelled

as a pair of in-phase forces applied on nodes on the upper and lower surface of

the plate and which corresponded to the centre of a real PZT sensor of a diameter

equal to 10 mm. The in-phase force excitation would ensure the excitation of a

pure A0 mode. These forces were given an amplitude that followed the excitation

signal in Figure 6.3. The model assumed perfect bonding between the patch and

the substrate assuming that the effect of the adhesive on the propagating signals

was negligible. Figure 6.2 displays the in-phase assignment of the displacements at

the actuating points, in order to excite the A0 mode. This is the effect that a pair

of real transducers would have when operating out-of-phase.

As previously mentioned, in modelling applications of wave propagation with finite

elements (FE), it is required that an appropriate mesh will be used and which

would enable the uniform propagation of the wave in all directions. Therefore an

appropriate meshing approximation had to be employed in terms of modelling the

hole at the substrate. As illustrated in Figure 6.6, the square mesh elements were

employed by approximating the shape and size of the hole through a Cartesian

approach. The nodes were selected in such a way that they lay either on the radius

of the circular hole or at the closest inside point, assuming that if the grid size is

sufficiently small compared to the hole radius and the smallest wavelength, then no

considerable deviation would be observed in the analysis [111].
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Figure 6.6: Meshing approach for the modelling of the hole.

Additional parameters that were investigated were the effect of the aspect ratio

(AR) and the effect of the contact interaction on the response signals. Normally the

aspect ratio of the mesh should be close to unity for the achievement of maximum

accuracy with an unavoidable trade off with respect to the computational time.

A mesh convergence study between AR=2 and AR=4 was conducted without any

effect on the acquired waveforms but with significant increase in the computational

time for the first case. Therefore an AR=4 was considered in the current study.

Furthermore, a brief analysis showed that the assignment of contact interaction

between the debonded surfaces of the patch and the substrate resulted in more

accurate results compared to models where the surfaces were allowed to penetrate

each other. The excitation frequency was selected to be below the cut-off frequency

Wavelength (λ) Excitation frequency (f ) Time step (dt) Element size (Le)

10 mm 200 kHz 10−7 s 1 mm

Table 6.2: Model characteristics.

(200 kHz) in order to avoid the excitation of the A1 mode, and in addition it was

ensured to be high enough in order to allow a short wavelength (10 mm), hence a

high resolution analysis. Table 6.2 summarises the modelling parameters considered

for this model after appropriate estimations based on the dispersion curves and the

aforementioned criteria.
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Figure 6.7: Validation of the antisymmetric mode through the middle plane dis-
placements.

6.3 Verification and validation of the model

For the theoretical verification of the model, two approaches were employed, one

qualitative and one quantitative, respectively. It needs to be highlighted at this

point that any theoretical verification could only be conducted for the substrate

without the hole, since the hole would lead to mode conversion. The first was the

investigation of the behaviour of the middle plane of the built model. As illustrated

in Figure 6.7, when a plate is excited with an antisymmetric mode, then the in-plane

displacements in the middle plane (half thickness plane) are zero. The respective

signals were recorded at the middle plane of the substrate, namely the in-plane and

out-of-plane displacements, and the in-plane proved to be negligible compared to

the out-of-plane, verifying the excitation of a pure antisymmetric mode.

For a more quantitative verification, the theoretical and the numerical group veloc-

ities of the substrate were compared. The numerical group velocity was estimated

for the given distance between the actuating and the sensing point (as defined in

the pulse-echo mode), and by measuring the arrival time of the response signals

for a wide range of frequencies (50 kHz–200 kHz). The arrival time was visually

selected in this case since there was no noise present and this task was straightfor-

ward. However, the application of a more elaborate algorithm has been explored in
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Figure 6.8: Theoretical and numerical arrival time for the first antisymmetric mode.

this work for the identification of the accurate arrival time, where the arrival time

in experimental cases was ‘buried’ in noise. Figure 6.8 shows the numerical and the

theoretical group velocity. The numerical and theoretical results show a remarkable

agreement.

Different failure modes will be further considered for the current analysis. However

the most common failure mode under loading, involves the debonding of the patch

as a first level of damage and then when the patch can no longer carry the loads, the

plate starts failing around the hole. As a result, for the experimental validation of

the model, only the debonding of the patch was primarily considered in a numerical

and experimental level as visually illustrated in Figure 6.2.

The plates were manufactured in accordance to the characteristics described in Sec-

tion 6.2. Three PZT transducers were surface bonded with instant glue on the

pre-defined locations (Figure 6.2), while the distance of their centres was equal to

40 mm from the centre of the plate and 20 mm from the edges of the patch hence

forming a 80 mm propagation path for the pitch-catch mode. The third PZT trans-

ducer was surface-bonded at the bottom side of the substrate in order to approximate

the interrogation of the panel with pulse-echo mode. The wave generator that was

used was a TTi TGA 1230 30 MHz model exciting the panels with the pre-defined

excitation signal (Figure 6.3) and the data acquisition was performed by a LeCroy

LT224 oscilloscope. The patch was attached at the centre of the plate using rapid

Araldite after the cleaning of the surface with acetone. The amount of glue was as



6.3. VERIFICATION AND VALIDATION OF THE MODEL 94

little as it was required for the patch to effectively bond while the adhesive would

form a very thin almost negligible layer in order to avoid any deviations from the

employed FE model. Two levels of debonding were simulated for the validation of

the model, namely 1/4 of the patch and 1/2. This was achieved through the use

of PTFE coated fibreglass sheets cut at the dimensions of the debonded area. The

debonded area was all the way across the width of the bonding line between the

patch and the substrate.

As previously investigated, the excitation of a single Lamb wave mode with PZTs

can be a quite demanding task. Giurgiutiu [112] has developed a model using the

space domain Fourier transform, based on which the tuning of certain modes at

specific frequencies is possible for the excitation and detection with PZT transducers.

This concept is based on the fact that Lamb wave mode wavelengths vary with

frequency. He then performed an experimental validation on aluminium plate and

derived appropriate tuning curves which showed that the A0 mode is preferably

excited at lower frequencies than the S0 mode.
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Figure 6.9: Modes tuning result for excitation frequencies 30 kHz (a) and 65 kHz
(b).

In a similar way, PZT transducers were used in this study for the experimental

validation of the FE model and their tuning was performed experimentally after

exciting the substrate (without the hole) at a number of frequencies belonging to

the range that is found to be below the cut-off frequency. This would ensure only

the excitation of the two fundamental A0 and S0 modes. Then the estimation of the

theoretical arrival time of each mode was carried out through the dispersion curves,

and the characterisation of the response signals was performed in an attempt to

identify which mode is excited at each frequency. It was found that a relatively pure
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A0 mode could only exist at 30 kHz or below as shown in Figure 6.9(a), while after

that frequency, a perturbation started propagating at the region of the S0 mode

which started getting stronger at 65 kHz, Figure 6.9(b). Therefore the validation of

the model was performed at 30 kHz.

0.1 0.2 0.3 0.4 0.5
−1

0

1

Time (msec)

N
o

rm
a

lis
e

d
 a

m
p

lit
u

d
e

 

 
Experiment FE

0.1 0.2 0.3 0.4
−1

0

1

Time (msec)

N
o

rm
a

lis
e

d
 a

m
p

lit
u

d
e

 

 

Experiment FE

Pitch-catch mode; substrate Pitch-catch mode; substrate-hole

0 0.1 0.2 0.3 0.4 0.5
−1

0

1

Time (msec)

N
o

rm
a

lis
e

d
 a

m
p

lit
u

d
e

 

 

Experiment FE

0 0.1 0.2 0.3 0.4
−1

0

1

Time (msec)

N
o

rm
a

lis
e

d
 a

m
p

lit
u

d
e

 

 

Experiment FE

Pulse-echo mode; substrate Pulse-echo mode; substrate-hole

Figure 6.10: Validation of the FE model for the substrates of both configurations.

First the validation of the response signals for both configurations (with and without

hole) and for both actuation modes (pitch-catch and pulse-echo) had to be validated

before the bonding of the patch (Figure 6.10). As illustrated, the experimental and

the FE signals exhibit a good agreement which is more profound for the first wave

packages in both pitch-catch and pulse-echo modes. The model accurately simulated

the developed phenomena during the reception of the incident signal as well as the

reflected packages from the boundaries. Slight disagreement can be observed at the

arrival time of the reflections for the pitch-catch mode and at the amplitude of the

reflections at the pulse-echo modes as a result of the material imperfections, the

modelling approximation with respect to the excitation method and the Cartesian
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Figure 6.11: Validation of the FE model for the repaired plate without debonding
of both configurations.

simulation of the hole. Also the adhesive of the PZT transducers might affect the

accuracy of the acquired signals.

Approximately the same results can be observed in Figures 6.11, 6.12 and 6.13

when the patch bonding took place. For the case that no debonding took place, the

model can accurately capture the arrival times for both excitation modes, however

the boundary reflections in the experimental set up, exhibit a significant attenuation

especially for the configuration 2 (substrate with hole). This could be attributed to

the effect of the energy scattering over the adhesive which significantly attenuates the

reflections from the boundaries of the patch, while those in the case of the model are

superimposed with the reflections of the substrate’s boundaries resulting in stronger

wave packets after the first incident wave. Similar observations can be extracted

from the considered cases of the debonded patch at different levels. It needs to be

highlighted that any differences between the incident waves for the pulse-echo mode
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Figure 6.12: Validation of the FE model for the repaired plate of both configurations
for the case of patch debonding equal to 1/4 of its total bonding area.

lie in the fact that different plates were manufactured for each bonding scenario

resulting in possible slightly different alignment of the PZT transducers or different

material imperfections. Overall the level of agreement is considered to be sufficient,

which gives confidence that the model can successfully represent the underlying

mechanisms during the wave propagation in bonded and debonded repaired plates.

6.4 Propagation mechanisms

The propagation mechanisms that take place during the testing of a composite

repaired panel with Lamb waves are the scope of the current section. Figure 6.14

illustrates contour plots of the field output at representative time instants. These

results only refer to the pristine condition of configuration 1. As shown, the substrate
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Figure 6.13: Validation of the FE model for the repaired plate of both configurations
for the case of patch debonding equal to 1/2 of its total bonding area.

is excited with the excitation signal and the waves propagate around the excitation

point uniformly. At t1=24 µs the incident wave interacts with the left boundary

of the patch and with the left boundary of the substrate. The interaction with

the substrate’s boundary is expected to cause reflection while the interaction with

the boundary of the patch will cause a portion of the signal to be transmitted

through the repaired area and another portion to be reflected as illustrated at t2=34

µs. In addition, the increase in the panel’s thickness at this stage will cause mode

conversion.

The same mechanisms of reflection, mode conversion and transmission take place

every time any wave package meets the boundaries of the substrate or of the patch.

Needless to say, the same mechanisms take place for any wave packet which is

the result of the same mechanisms occurred at a prior time instant. An example is

illustrated at t3=48 µs and at t4=64 µs. At these time instants, the wave propagates
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t1=24 µs t2=34 µs

t3=48 µs t4=64 µs

t5=84 µs 3D at t2

Figure 6.14: Field output results of configuration 1 (substrate without hole) for the
pristine condition at representative time instants.

through the repaired area, it reaches the sensor assigned for the pitch-catch mode

while it also interacts with the right boundary of the patch. In addition the reflected

waves are reflected again at the boundaries of the left side of the panel. Finally at

t4=84 µs several wave packages superimpose each other, forming mixed packages, as

a result of the multiple reflections. Another significant parameter that complicates

the propagation mechanisms is the presence of hole at configuration 2. It is expected

that the hole will lead to further mode conversions and it will substantially distort

the propagating signals. As illustrated in the contour plot captured at the back of

the repaired panel at t=35.5 µs, (Figure 6.15), the hole causes a certain degree of

reflections at its boundaries when the incident wave first reaches the hole.
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Figure 6.15: Propagation of A0 mode through the hole of the substrate at t=35.5
µs.
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Figure 6.16: History output results of configurations 1 and 2 for the pristine condi-
tion.

Therefore as observed, reflections can occur at all possible structural features and

boundaries, each of which will eventually lead to mode conversions. Figure 6.16

illustrates the results obtained for the two configurations at the pristine condition.

Each wave packet is denoted accordingly at both excitation modes, while the re-

sponse signals for the two configurations are overlaid for comparison purposes. The

first wave to arrive is the incident wave for both pitch-catch and pulse-echo modes

(Figure 6.14, t1=24 µs, t4=64 µs). R1 represents the wave packet which is the result

of the reflection of the incident wave at the left edge of the patch superimposed with

the reflection of the incident wave at the left edge of the substrate (Figure 6.14,

t2=34 µs). The considerably attenuated wave package R2 was formed when the

reflections of the wave package produced at R1 at the left edge of the substrate and

at the left edge of the patch were superimposed (Figure 6.14, t4=64 µs). R3 is the
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result of multiple reflections at the boundaries of the patch and the substrate. R4

represents the backscattering of the incident wave at the right edge of the substrate

and it is the second wave packet to arrive after the incident wave for the pitch-catch

mode. It is assumed that this wave packet is superimposed with the package that

occurred after the incident wave was reflected at the left boundary of the substrate

(Figure 6.14, t5=84 µs). Finally R5 is caused due to multiple reflections at the

boundaries of the patch and the substrate. The comparison between the response

signals for the two configurations (substrate with and without hole) shows no con-

siderable differences for the pulse-echo mode, while for the pitch-catch mode, the

signal obtained from the configuration 2 shows a drop in amplitude and a distortion

in the wave shape as a consequence of energy scattering over the hole.

6.5 Failure modes and their effect on the propa-

gating waves

There are several types of damage that can occur when a repaired configuration like

the one of the current model is subjected to mechanical loads. The most represen-

tative ones involve:

Damage mode 1: Debonding of the patch initiated at the edges due to loads most

commonly occurred at a perpendicular direction to the orientation of the debonding.

The damage propagates towards the centre of the repair until the patch is completely

debonded.

Damage mode 2: Debonding of the patch at the centre and propagation towards

the edges until the patch is completely debonded. This type of damage usually

occurs at the location above the hole (e.g. removed damage) or at other features

that might be present such as rivets as it will be experimentally shown later.

Damage mode 3: Damage initiation at the substrate, most commonly met around

the repaired region (e.g. around the hole) and propagation at the substrate. This

type of damage can be more common when the debonding of the patch has reached

a certain level at which the load transfer paths can no longer carry the asserted

loads and the substrate is subjected to them, with the most critical area being the

one around the removed damage. This damage mode is more prominent when the

patch is used to repair cracks.
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Figure 6.17: Schematic illustration of the damage scenarios.

Damage mode 4: It is rather uncommon that only one damage mode will be

present. In most cases, a combination of damage modes takes place, resulting in

complex failure mode mechanisms.

The purpose of the current section is to study the effect of each damage mode on

the A0 mode and to investigate its damage sensitivity for the two excitation modes

and the two configurations. Figure 6.17 illustrates the damage scenarios that were

considered and Table 6.3 summarises the details needed for the understanding of

each damage step. Damage scenario 1 represents damage mode 1. Two debonded

areas were first assigned after the appropriate partitioning of the model. One at

the left and one at the right edge of the patch. The debonding was modelled by

releasing the nodes at the interphase between the patch and the substrate, while

surface properties were introduced to the debonded areas, in order to avoid any

penetration of the one surface to the other during the wave propagation. The level

of debonding is denoted here as Di where i=0,...,9. Equal length of debonding is

assumed at both sides at each damage step for simplification. Damage scenario 2

represents damage mode 2. A debonded area was assigned at the centre of the patch

with the same method as in damage scenario 1. The length of each side of the area is

denoted as Dj where i=0,...,9. The damage scenario assumes a uniform propagation
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Damage Damage Damage Damage
scenario 1 scenario 2 scenario 3 scenario 4

D0 0 mm 0 mm 0 mm Di=Dj=0 mm

D1 2 mm 3 mm 3 mm Di=2 mm,Dj=3 mm

D2 4 mm 5 mm 5 mm Di=4 mm,Dj=5 mm

D3 6 mm 7 mm 7 mm Di=6 mm,Dj=7 mm

D4 8 mm 9 mm 9 mm Di=8 mm,Dj=9 mm

D5 10 mm 11 mm 11 mm Di=10 mm,Dj=11 mm

D6 12 mm 13 mm 13 mm Di=12 mm,Dj=13 mm

D7 14 mm 15 mm 15 mm Di=14 mm,Dj=15 mm

D8 16 mm 17 mm 17 mm Di=16 mm,Dj=17 mm

D9 18 mm 19 mm 19 mm Di=18 mm,Dj=19 mm

Table 6.3: Damage scenarios.

of the debonding, with the smallest debonding level being (D1=3 mm), enough

to cover the hole and the biggest (D9=19 mm), resulting to an almost complete

debonding of the patch. Damage scenario 3 represents damage mode 3. An area

was isolated at the centre of the substrate whose properties were 10% lower. This

area represented the degradation of the properties when naturally damage develops.

The degraded area is denoted as Dj where i=0,...,9. The propagation of the damage

on the substrate is uniform starting at the location that corresponds to the edges of

the hole and propagating towards the edges of the patch. Finally damage scenario

4, assumes a combination of the aforementioned damage modes.

The effect of each damage scenario on the response signals is illustrated in Figures

6.18–6.21. In Figure 6.18 (damage scenario 1), the pitch-catch mode exhibits a time

delay with respect to damage which is more evident in configuration 2. In addition,

a drop in amplitude indicates the energy dissipation over the debonded edges of the

patch. The pitch-catch mode exhibits only very small differences while the responses

for both configurations are identical since the waves have not interacted with the

hole yet. In Figure 6.19 (damage scenario 2), the time delay in the pitch-catch mode

is more obvious in this case accounting for a phase shift of almost half a cycle for

both configurations while the pulse-echo mode shows almost no differences. This was

somehow expected since the wave packages are a product of superimposed reflections

that do not interfere with the centre of the patch.
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Figure 6.18: Response for pitch-catch mode (above) and pulse-echo mode (below)
at steps D0 and D3 for damage scenario 1.

In Figure 6.20 (damage scenario 3), the pitch-catch mode does not show a significant

damage sensitivity for configuration 1, while configuration 2 exhibits a distinctive

amplitude drop. The pulse-echo mode shows no change for the same reason why

damage scenario 2 shows little damage sensitivity in the pulse-echo mode. Finally in

Figure 6.21 (damage scenario 4), the effect of multiple damage modes on the prop-

agating waves is much more distinctive in this case, with extensive time delay and

superimposition of wave packages in the pitch-catch mode, for both configurations.

The pulse-echo mode on the other hand, shows a certain level of damage sensitivity

compared to the other damage scenarios.

In order to evaluate the effect of all damage conditions, a damage index was defined,

namely the correlation coefficient. This damage index can estimate the level of

correlation between two variables based on the assumption of a linear dependence.

The cross correlation coefficient R for the two variables x and y is given below:

R(x, y) =
cov(x, y)

σxσy
(6.11)
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Figure 6.19: Response for pitch-catch mode (above) and pulse-echo mode (below)
at steps D0 and D3 for damage scenario 2.

R(x, y) =
cov(x, y)√

cov(x, x)cov(y, y)
(6.12)

where cov represents the covariance, and σ represents the standard deviation. The

two variables x and y represent the response time signals for the pristine condition

and damage stages Di, Dj respectively. The correlation coefficient can also be written

in the following form.

R(x, y) =
E[(x− x̄)(y − ȳ)]

σxσy
(6.13)

where x̄ and ȳ represent the mean values.

This coefficient can take values between +1 and -1 inclusive. If the coefficient is

equal to +1, then this means that the two variables lie on a line which perfectly fits

them, and if the one variable increases then the other variable also increases. If the

coefficient is -1 then this can be interpreted by picturing the two variables lying on
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Figure 6.20: Response for pitch-catch mode (above) and pulse-echo mode (below)
at steps D0 and D3 for damage scenario 3.

a line, but as the one variable increases, the other one decreases. If the coefficient

is 0 then there is no correlation between the two variables.

Figure 6.22 displays the corresponding results of the correlation coefficient for the

two excitation modes, pulse-echo (PE) and pitch-catch (PC), and for the two con-

figurations, 1 (C1) and 2 (C2). The y-axis is scaled in the same way for all subplots,

for comparison purposes. The pulse-echo mode for both configurations is very close

to unity for all damage scenarios, hence underlying the fact that the pulse-echo

mode does not exhibit a significant damage sensitivity for the considered damage

scenarios. This is due to the fact that the waves are significantly attenuated after

the multiple reflections at the substrate and at the patch before they even propagate

through the critical region (e.g. the repaired region). However it would be possible

to achieve a better damage sensitivity if a specific feature was to be selected, and

not the whole waveform. This feature would better represent the effect of specific

location such as the edges of the patch. In this case a single wavepackage could

be isolated. However it is obvious that the determination and isolation of such a

package can be very demanding in more complex configurations.
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Figure 6.21: Response for pitch-catch mode (above) and pulse-echo mode (below)
at steps D0 and D3 for damage scenario 4.

The pitch-catch mode for both configurations exhibits a monotonic behaviour for

all damage scenarios except for the first. This might be due to the fact that as

the waves interact with the debonded surfaces of the patch, they are reflected and

refracted in such a way that in some cases they form superimposed packages and

they lead to multiple mode conversions. Damage scenario 4 as expected shows the

lower correlation coefficient while in general the correlation drops with respect to

the damage. Damage scenario 3 indicates very low damage sensitivity compared to

the rest. This might be due to the fact that the level of damage (10 % properties

reduction at the substrate) is not readily comparable with the effect of debonding.

In addition the damage on the substrate usually comprises cracks initiating around

the repaired hole, which would under normal conditions have a more considerable

effect on the waves.
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Figure 6.22: Correlation coefficient (R) for pitch-catch (PC) mode and pulse-echo
(PE) mode for both configurations 1 and 2 (C1, C2 respectively) at all considered
damage scenarios.

6.6 Discussion

This work illustrated step by step the methodology for the built model with ABAQUS

whose verification and validation was performed through theory and experiment re-

spectively. The propagation mechanisms of Lamb waves in repaired structures were

evaluated in all possible configurations and excitations modes, while the damage

sensitivity of the first antisymmetric mode A0 was evaluated at the most represen-

tative damage modes that can occur at composite plates with adhesively bonded

repairs.

The results indicate that the presence of the hole at the substrate significantly com-

plicates the propagation phenomena. In addition the pitch-catch mode exhibits

considerable damage sensitivity for the damage scenarios while the pulse-echo mode

is less sensitive due to the multiple reflections that occur at the waves before they

propagate through the repaired region. However, the pulse-echo mode can be poten-

tially used for assessing the debonding of the patch mostly at the side which is closer

to the actuating/sensing points since then the effect of the substrate hole could be

isolated.

Overall this study aims to identify the key challenges in terms of physics-based
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interpretation of the Lamb wave propagation in composite repaired structures. The

model is a simplified model assuming that there are no other features that could

interact with the propagating waves. However in real applications these phenomena

are not straightforward since these mechanisms can be far more complicated with the

presence of extra features such as rivets or stringers. The rest of the work focuses on

feature selection strategies and follows a signal processing-based approach in order

to identify the presence of damage.



Chapter 7

Damage Detection in Composite

Repaired Structures

The objective of the current chapter is to apply the methods presented in section

4.1 to certain experimental set ups and to investigate the efficiency of each proposed

method for the purpose of the successful damage classification under representa-

tive loading conditions. Two different repaired scenarios were considered, namely

one scarf repair and one external patch repair, covering the most common repair

methodologies. Also two different loading scenarios were employed for exploring all

possible loading conditions that can occur in real applications, namely static and

dynamic loading. In both cases alternative monitoring methods were implemented

in order to validate the extent of the developed damage. The signal post-processing

techniques focused on the extraction of the appropriate testing features, on the ap-

plication of the pattern recognition and dimension reduction algorithms and on their

subsequent correlation with the developed damage.

7.1 Scarf patch repair

7.1.1 Specimen geometry

The repaired plate was made out of woven carbon fibre (HTA) with toughened

epoxy resin system (M21) which was supplied by Hexcel Composites and moulded

110
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Top view Side view

Removed damage Scarf repair

Figure 7.1: Illustration of the repaired plate and the implemented scarf repair.

by Hurel-Hispano UK at a 58 % fibre volume fraction. The panel’s total thickness

was 2.8 mm and its lay-up was [0/90/±45/0/90]3T. After the manufacturing of

the panel, an impact test was performed and the damaged area was removed. The

impact height was 0.5 m and produced an impact velocity of 3 m/s. This panel was

obtained from previous work [113]. Then the surface was properly processed and

the scarf repair was implemented following the Boeing 767 structural repair manual

(SRM) [114]. The scarf repair was made out of an aerospace qualified material and it

was accomplished at the composite shop facility of Icelandair technical services (ITS)

at Keflavik airport, Iceland for the purpose of previous work [115]. The damaged

and the repaired plate are illustrated in Figure 7.1. The panel was mounted in a

SCHENK hydraulic testing machine and was loaded in quasi-static tension.

7.1.2 Digital image correlation & Lamb wave experimental

set up

Two techniques were employed for the monitoring of the panel during the tensile

testing, 3D digital image correlation (DIC) and Lamb wave testing. DIC was used in

order to provide full-field strain measurements from the surface of the tested panel

during loading, which were further correlated with the results obtained from Lamb

waves (Figure 7.2). More information on DIC can be found in Appendix A.
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1 

2 3 

4 5 

6 

Figure 7.2: Experimental set up; 1© Lamb wave testing equipment, 2©, 3© DIC digital
cameras, 4©, 5© lights, 6© scarf patch repair mounted on the testing machine.

For the first method, the surface was cleaned by acetone, a speckle pattern was

applied on the surface of interest and two cameras were calibrated in order to take

images during the testing. The images used in the 3D-DIC analysis were obtained

by two digital cameras with a CCD matrix of more than five million pixels, model

DCP 5.0 of LIMESS Messtechnik & Software GmbH. Schneider-Kreuznach Xenoplan

2.8/50 mm lens were mounted in the cameras and they were positioned symmetri-

cally about the specimen in order to keep the magnification level consistent.
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Figure 7.3: PZT arrangement for Lamb wave testing (1– 4: Actuators, A– D: Re-
ceivers).

In addition, eight PZTs of thickness 1 mm and diameter 10 mm supplied by Cer-

amTec AG were surface bonded with instant glue on the repaired plate as shown in

Figure 7.3, in order to avoid any possible transducer contact loss as a consequence

of the patch debonding during the test, which was the first failure mode to be ex-
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pected. Four of these transducers operated as actuators (1, 2, 3, 4) and the rest

operated as receivers (A, B, C, D) functioning in a pitch-catch mode, forming 16

wave propagation paths in total and covering all critical areas. The excitation signal

was a 10-Volt peak-to-peak amplitude, 5-cycle sine pulse modulated by a Hanning

window and the excitation frequency was 225 kHz. The excitation frequency was

selected in such a way that it provided maximum response signal power for all of

the propagation paths. The wave generator that was used was a TTi TGA 1230

30 MHz model and the data acquisition was performed by a LeCroy LT224 oscil-

loscope at a 50 MHz sampling rate. DIC images and Lamb waves were recorded

at approximate intervals of 10–20 kN until the final failure of the panel. The test

was performed on the same day so the laboratory environmental conditions were

considered to be constant. The specimen was illuminated by ordinary white light

during the experiment.

Lamb wave signals and DIC images were successfully recorded up to 170 kN. At

this load, the panel failed prematurely due to cracks that initiated around the holes

that were drilled for gripping the specimen. This is a common complication in

composite testing since composites exhibit relatively brittle behaviour, hence they

cannot undergo plastic flow to relieve the local stresses that initiate around the

holes. The failure might also be the result to some extent, of internally developed

resin cracks and delaminations. As a result manufacturing characteristics such as

specimen gripping and specimen design should follow appropriate specifications for

successful testing under static or dynamic loads; the specimen end-tab should be of

an appropriate size in relation to the gauge length in order to achieve valid failures.

7.1.3 Test results

Preliminary tensile tests that were performed on notched and unnotched specimens

made of the same material as the repaired plate and with the same stacking ply

sequence, along with the calculation of the locally developed stresses that were

obtained from the DIC images, allowed an approximate estimation of the level of

the internally developed damage [115]. In Table 7.1 the tensile strength of the

unnotched and the notched specimens is illustrated as well as the estimated ultimate

strength of the repaired plate. The size of the unnotched and notched panels was

175 x 50 mm and the hole was 5 mm. The tensile strength of the scarf patch repair

is expected to be between the tensile strength of the unnotched and the notched
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Material Panel Ultimate strength (σf)

HTA/M21
Unnotched 585 MPa

[0/90/±45/0/90]3T

Notched 379 MPa
Scarf repair 70–80 % of the σf (unnotched)=409–468 MPa

Table 7.1: Tensile strength of notched, unnotched and repaired panels.

sample. However for precision purposes, it is well accepted that the optimum patch

configuration can recover 70–80 % of the undamaged laminates strength. Therefore

the tensile strength of the scarf repair can be estimated to be approximately between

409–468 MPa. In addition there are several factors that can lead to lower strength

such as the defects and other imperfections introduced during the manufacturing

process. According to the estimation of the maximum stress that developed at 160

kN locally around the hole, the stress was 415 MPa which is close to the failure

stress of the repaired panel. This value was measured through the strain analysis of

the DIC figures at an applied load of 160 kN. The current analysis concludes that

it is possible that even though the load did not reach the ultimate strength of the

scarf repair due to the premature grip failure, yet local internal damage is expected

to develop. This assumption is well supported both from the DIC figures and the

Lamb wave analysis as is later discussed.

In Figure 7.4 the results obtained from the DIC analysis are illustrated for all load

levels. These images were processed with Vic-3D software from Correlated Solutions,

Inc. The subset size was selected large enough to ensure that there is a sufficiently

distinctive pattern contained in the area used for correlation. The surface strains

that were obtained from the DIC analysis enabled the definition of 4 levels for the

subsequent wave propagation paths of interest (Figure 7.3), each of which corre-

sponded to groups of load levels that exhibited similar strain intensity. These levels

are displayed in Table 7.2. Level 1 corresponds to normal and near normal condition

(20 kN) where no substantial change has been introduced to the system (low applied

strains). Level 2 which involves slightly different damage levels for the two paths,

starts at 40 kN and is the stage at which the first noticeable change in the developed

surface deformations can be observed from the DIC images. Level 3 starts at 80 kN

for path 2A and at 100 kN for path 2C and it stops at 120 kN. At this stage DIC

images show a more distinctive distribution of the strains depending on the most

critical areas of the repaired panel; these are around the hole in the centre of the

panel and at the tips of the patch where debonding of the outer plies was expected

to initiate due to high interlaminar normal and shear stresses.
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20 kN 40 kN 60 kN 80 kN

100 kN 110 kN 120 kN 130 kN

140 kN 150 kN 160 kN 180 kN

Figure 7.4: 2D Digital image correlation images (yy strains).

Levels
Load sets (kN)

Propagation path 2A Propagation path 2C
1st Level 0–20 0–20
2nd Level 40–60 40–80
3rd Level 80–120 100–120
4th Level 130–160 130–160

Table 7.2: Damage levels as obtained from DIC strains for paths 2A and 2C.

7.1.4 Feature selection and pre-processing

As explained in the introduction, the focus of this part of the work in terms of

pre-processing is based on the selection of appropriate features and their subsequent

analysis for the reduction of the data dimensions and for their correlation with the

internally developed damage. What this study aims to prove is that the employed

analysis techniques can provide a fast and easy interpretation of the structural in-

tegrity of the tested component with the least possible required dimensions. The



7.1. SCARF PATCH REPAIR 116

0 0.05 0.01 0.15
−1

0

1
N

o
rm

a
lis

e
d

 a
m

p
lit

u
d

e

 

 

0 0.05 0.01 0.15
−1

0

1

 

 

0 0.05 0.01 0.15
−1

0

1

 

 

0 0.05 0.01 0.15
−1

0

1

Time(ms)

 

 

Path 2C

Path 4B

Path 2A

Excitation signal

Figure 7.5: Response signals for paths 2A, 2C and 4B for the unloaded condition;
selected features.

current work will only investigate these parameters on selected wave propagation

paths due to size limitation. These paths are assumed to propagate through the

most critical areas, covering the edges of the patch and the hole where damage was

expected to be more severe even from the early stages of loading.

As a first step, all obtained signals were filtered with a lowpass filter in order to elimi-

nate the noise. Then all signals were evaluated and the ones that were obtained from

sensor 1 after 130 kN, were discarded since their peak-to-peak amplitude dropped by

such an unexpected extent that it was assumed that the sensor lost perfect contact

with the tested panel. Moreover, some waveforms exhibited a slight DC offset which

was removed. In Figure 7.5 the excitation signal and the time signals recorded for

the unloaded condition and for the propagation paths of interest are illustrated. It

is interesting to note that the arrival time of each signal varies according to the

distance of the actuator from the respective sensor. At this frequency, only the first

two fundamental modes (S0 and A0) are expected to propagate in thin plates made

of standard CFRP materials. However, as previously shown, these wave packets

cannot be attributed to specific modes, since a single and pure Lamb wave mode

can generate a variety of other modes when it interacts with defects that can be
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Figure 7.6: Response signals for paths 2A, 2C and 4B for the unloaded condition;
selected features.

introduced during manufacturing of the laminate or with the different boundaries

between the repaired plate and the implemented scarf patch repair. Therefore the

recording of a baseline reference signal was essential in this case which corresponded

to the unloaded condition.

The recorded figures show a distinctive first wave package for most of the propagation

paths (path 2A and path 2C). In these cases this package was selected as the feature

for further analysis due to its immediate interaction with the developed damage

and in an attempt to avoid the signal’s interference with the plate’s boundaries.

In some other cases though, like in path 4B, the selection of the feature was not

straightforward, due to the observed mixed waves packages. In this case, the selected

feature was selected to be a bit bigger than the previous ones in order to take

into consideration the activity of the mixed wave packages and identify how this

would affect the subsequent analysis. The selected features are illustrated in Figure

7.5. For further reduction of the dimensions, each feature was subsampled in order

to finally get a 50-dimensional feature. The effect of this procedure on the final

obtained features is illustrated in Figure 7.6. The dimensions are reduced without

any considerable loss of information.

In order to construct a suitable mean vector and a covariance matrix for the nor-

mal condition, the selected features that served as the baseline reference (unloaded
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Test sets Load levels (kN)
1-200 0

201-700 20
701-1200 40
1201-1700 60
1701-2200 80
2201-2700 100
2701-3200 110
3201-3700 120
3701-4200 130
4201-4700 140
4701-5200 150
5201-5700 160

Table 7.3: Test set numbers and load sets for OA.

condition) were copied 1,000 times and each copy was subsequently corrupted with

different Gaussian noise of signal-to-noise ratio (SNR) equal to 30. This SNR is

considered to be representative of experimental noise levels. Each testing data set

was copied 500 times and corrupted with the same noise level. The total testing data

set consisted of 6,500 observations. It needs to be noted though that in real appli-

cations ideally a full set of signals needs to be recorded for a more efficient training

of the employed algorithms. In this case, this was not possible due to equipment

restrictions. In Table 7.3 the test sets and the load levels they correspond to are

summarised. These test sets will be used to distinguish between each class in the

following analysis.

7.1.5 Damage classification through principal component anal-

ysis and outlier analysis

After the pre-processing of the obtained signals, OA and PCA were performed in

a comparative way in order to identify the agreement between the two methods

and in order to explain the behaviour of the OA classes based on the orientation

of the respective clusters in a 2-dimensional subspace. For the illustration of the

PCA results, only the first two principal components were considered, since they

accounted for the highest percentage of variance. For the purpose of the OA, the

1 % exclusive threshold value for novelty for a 1,000-observation, 50-dimensional

problem was estimated after 1,000 trials which was found to be approximately the
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same for all paths, namely 110. The first 800 observations of the unloaded condition

were used as a training set in order to train the algorithm, and the remaining 200

observations were used as a validation set in order to evaluate how effectively the

algorithm can identify the normal condition.
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Figure 7.7: Outlier analysis (a) and principal component analysis (b) for path 2A.

In Figure 7.7, the results obtained from both processing methods are illustrated for

wave propagation path 2A. All of the set that corresponds to the unloaded condition

is successfully labelled as an ‘inlier’, positioned below the threshold which indicates

that the training of the algorithm was accurate and that the observations obtained

for the normal condition followed a Gaussian distribution as first assumed. OA shows
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that as soon as damage started accumulating in the specimen, the sets are labelled as

‘outliers’, exhibiting a clear deviation from the normal condition while being flagged

well above the assigned threshold. As load levels increase, the deviation level also

increases, following a specific pattern which was further analysed through the PCA.
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Figure 7.8: Outlier analysis (a) and principal component analysis (b) for path 2C.

The results obtained from PCA, resulted in significantly distinctive clusters, whose

position in the 2-dimensional space changes with respect to the load level. This

behaviour proves that the application of the novelty detection analysis is well sup-

ported in this case. The resulting clusters, can be visually further grouped into

more precise categories as illustrated in Figure 7.7 with the circles and the same
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colour notation. These categories agree with the assigned damage levels that are

summarised in Table 7.2. In an attempt to comparatively assess the methods, one

can observe that clusters that belong to the same level in PCA, exhibit equal val-

ues of Mahalanobis distance, an observation which highlights the agreement of the

employed methods.
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Figure 7.9: Outlier analysis (a) and principal component analysis (b) for path 4B.

Figure 7.8 illustrates the same results for the second wave propagation path of

interest, path 2C. The path exhibits the same behaviour following an increasing

deviation from the normal condition and from the threshold as loading increases,

in a pattern that agrees with the orientation of the respective clusters in the 2-
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dimensional space. In a similar way, the PCA clusters are grouped in categories

that agree with the assigned damage levels for the specific path.

Figure 7.9 illustrates the PCA as well as the OA results for wave propagation path

4B. The reason why this path was selected among others is because it shows a

different behaviour which was considered to be important to discuss. PCA exhibits

very well separated data clusters which correspond to the increasing levels of loading.

However, after 120 kN the recorded data exhibit a significant deviation from the

normal condition in such a manner that the clusters move closer to the cluster

that corresponds to the normal condition (0 kN) as it is illustrated in the same

figure. This phenomenon has an immediate effect on the resulting OA results. Even

though all the load sets are labelled as ‘outliers’ exhibiting increasing deviation from

0kN, the Mahalanobis squared-distance after 130 kN, drops to lower values than the

previous loads. This is attributed to the significant deviation of the system in such

an extent that the algorithm classifies these data as closer to the normal condition,

as justified from the PCA results. This phenomenon could be a limitation in the

application of outlier analysis in specific cases where significant damage scenarios

might be labelled as ‘inliers’. However in the specific study, the resulting indices were

labelled well above the assigned threshold, hence successfully indicating damage.

Final step of the current analysis is the investigation of the sensitivity of the em-

ployed processing tool when compared with the results obtained from the DIC anal-

ysis for each path. The defined damage index in this case is expressed in equation

(7.1), where MNI stands for mean novelty index and MSD stands for Mahalanobis

squared-distance.

MNI =
1

2
[(MSD)max + (MSD)min] (7.1)

Therefore, here a representative value that corresponds to the previous analysis is

assigned for each path and for each corresponding load level and the results are

plotted against the load levels.

The results are illustrated in Figure 7.10. The figure is divided in four plots; each

of which corresponds to a different actuator and includes all sensors. The y-axis

has the same scale for all four plots for comparison reasons, and the Monte Carlo

threshold is defined for all plots to be equal to 110. The plot for actuator 1 involves

less analysed load levels, due to the debonding of the respective transducer after
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Figure 7.10: Mean novelty index (MNI) for all wave propagation paths.

130 kN as previously mentioned. The main damage mechanism that is investigate

here, is the common failure mode under which repair patches fail, which is first

debonding of edges of the upper plies of the repair, followed by a propagation of the

debonding towards the centre of the repair until the plies can no longer carry the

applied loads and the plate fails around the removed damaged area of the substrate.

The main paths that represent these mechanisms in the current work, are paths 2B,

4B, 2D and 4D which directly propagate through the removed damaged area (hole),

paths 1A and 3C which propagate through the regions where the first ply debonding

was expected to initiate, and paths 3B, 3D, 1B, 1D, which propagate through the

regions where the repair debonding would further propagate until it reached the

hole. It needs to be mentioned at this point, that in reality Lamb waves propagate

through bounded media and as they interact with the different boundaries, one can

not easily attribute a specific propagation path to a precise region of the tested

system. However, in this case the selected feature is the first wave package which is

the direct response the sensor receives before the wave meets any other boundaries

or interphases. The results show that all paths that are associated with the patch

debonding seem to have a similar behaviour with the paths that are associated with
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the damage initiating around the hole at the early stages of loading. This behaviour

changes as the load levels increase, and the paths that propagate through the hole

exhibit higher damage index from the rest of the paths, possibly indicating that the

damage around the hole was becoming more intense.

7.1.6 Dimensions reduction through the fitting of principal

curves
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Figure 7.11: NLPCA for wave propagation paths 2A (a) and 2C (b).

An investigation into further dimensional reduction of the post-processing analysis

was performed through the application of the NLPCA and the fitting of the principal
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Figure 7.12: Comparative study between MNI and arc length for wave propagation
paths 2A (a) and 2C (b).

curves. The principal curves were applied to the results of the previously analysed

PCA, namely the data clusters. The algorithm started with a prior line which was

the first linear principal component and it bent in order to obtain the optimum

shape following successively the steps that were described in Section 4.1.

There were certain user-specified parameters in the applied algorithm such as the

threshold for the relative change in the mean orthogonal distance which was de-

fined to be 0.01. Also the initial span was defined to be 0.6 times the number of

points. The span was reduced by a factor 5/6 per iteration. A brief convergence

study showed that the optimum number of iterations was 10. The arc length was
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Figure 7.13: NLPCA for wave propagation path 4B.

interpreted as the NLPCA score and it was plotted with respect to the increasing

loading.

Figure 7.11 exhibits the results after the application of the principal curves on the

clusters that were previously obtained from the linear PCA. The curve is initially

specified as the first linear principal component between the clusters and then bends

until it fits the illustrated data points. The curve starts from the normal-early stage

damage (Level 1) and then connects the clusters that correspond to increasing loads

until it stops at 160kN which is identified as the last point. The curve represents

the variation of the data-clusters with only a one dimensional curve, hence leading

to a significant reduction in the dimensions of the data.

For the validation of the current results, the interpretation of the arc length of

the curve was performed with respect to the load levels. The hypothesis was that

the arc length increases according to the increase in the load level since all other

parameters that can affect the signal’s behaviour such as environmental conditions

were kept under control. This variation is believed to be caused by the accumulating

damage that develops within the repaired region of the tested panel. Figure 7.12

illustrates the resulting variations for both wave propagation paths 2A and 2C. For

the purpose of connecting the current approach with the previously investigated

MNI, both curves were included in the same plot for each path. MNI in this case is

plotted on a linear scale for comparison reasons. The results show that the variation

of the arc length depicts the increase in the MNI quite accurately, while at the same
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Figure 7.14: Outlier analysis (a) and principal component analysis (b) for path 4B
with signal-to-noise ratio equal to 19.

time it shows approximately the same sensitivity as the MNI does for the different

load increments between the two paths, hence reflecting the damage accumulation

mode that was previously analysed. This conclusion is rather important since the

same results were obtained from a very simple data manipulation that resulted in

just a one dimensional curve.

One limitation of the NLPCA is graphically illustrated in Figure 7.13. The principal

curve here is fitted in the clusters obtained for the wave propagation path 4B. As
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observed, the principal curve identifies as a starting point the 80 kN and ends at 100

kN. This means that the curve does not successively connect clusters that correspond

to increasing levels of load. Therefore the correlation of the arc length with the

increasing damage would not be reliable in this case. Reordering is a potential

solution to this problem which is proposed as a future work step since it is not

within the scope of the current work.

7.1.7 Effect of noise

Noise in aerospace industry can occur due to various operational conditions such

as the normal operation of rotors, propellers, engine drive shafts and transmissions.

This could reduce the sensitivity of the previously investigated methods and impose

a limitation to the efficiency in the structural monitoring of the aircraft’s critical

areas. Since the signal-to-noise ratio (SNR) that was considered in this chapter was

artificially introduced based on previous experimental work, there was a need to

investigate how the employed methods would be affected by higher noise levels.

In order to demonstrate the aforementioned study, a brief analysis is presented here

after the original data were corrupted with a noise of a SNR equal to 19. It has

to be noted that this is the level of noise at which PCA started showing different

behaviour. In Figure 7.14, the results from the implementation of OA and PCA

are demonstrated for propagation path 4B for comparison reasons. As illustrated,

OA exhibits similar behaviour with the original results in Figure 7.9, only in this

case, the values of discordancy are lower as an immediate effect of the high SNR.

However, the damage cases are still flagged as outliers and the method seems to

provide reliable results. On the other hand, the same results for PCA exhibit clusters

that can not easily be distinguished from each other and hence be attributed to the

different damage levels. This means that the proposed damage prognosis tool based

on the principal curves would not be reliably applied in this case. Nevertheless,

the considered level of noise is too high for normal operational conditions, which

makes the proposed post-processing tools a strong candidate for a robust analysis

in complex structures, although some further refinement may be required.
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7.2 External patch repair

7.2.1 Experiment

This section focuses on a different type of repair namely an external bonded patch

repair, in order to cover all representative configurations. A composite plate was

used, repaired with an external composite patch provided by TECNALIA (San

Sebastian, Spain). The substrate and the patch were made out of 2 x 2 Twill woven

fabric pre-preg (MTM56/CF0300) provided by ACG, UK with area weight equal to

200 g/m2. The properties of the material are illustrated in Table 7.4.

E1 E2 G12 v12 v13 ρ

65 GPa 65 GPa 4.24 GPa 0.04 0.04 1524 kg/m3

Table 7.4: Material properties of MTM56/HTA5131 Fabric/CF0304 (normalised to
55 % Vf).

The substrate consisted of 300 mm length by 50 mm width made of 8 layers with a

stacking ply sequence [0/90]8T, whose thickness was 1.6 mm. A hole of 5 mm was

introduced in the centre of the substrate in order to simulate the removed amount

of material in the repaired region that the patch would cover. The patch consisted

of 4 layers of the same material following a step wise configuration as illustrated

in Figure 7.15; the size of the first ply was 120 x 50 mm while the total thickness

of the patch was 0.4 mm. The subsequent curing took place under pressure of 6.2

bar. The temperature was increased up to 120◦C at a rate of 3◦/min. Both pressure

and temperature were held for 10 min until the laminate was allowed to cool under

pressure down to 80◦C at a rate of 3◦/min, after which the pressure was released.

GFRP tabs of 60 mm length and 50 mm width were bonded on the panel for gripping

purposes after the surface was properly processed with sand blasting. A tension-

tension fatigue was performed with cyclic frequency f=5 Hz and stress ratio R=0.1.

The mechanical loading started from low levels and increased until it reached 95

% of the ultimate strength of the laminate which according to the manufacturer’s

technical specifications was 600 MPa. The number of cycles was also increasing with

respect to the level of loading, starting from 500 cycles and ending up at 10,000 cycles

per step. For better understanding of the effect of the damage propagation on the
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Figure 7.15: Schematic illustration of the tested external patch repair; dimensions
in mm.

Load Number of cycles Phase
31 %σf 0–500

Phase I
31 %σf 500–1,500
31 %σf 1,500–2,500
31 %σf 2,500–4,500
31 %σf 4,500–6,500

Phase II
62 %σf 6,500–7,500
80 %σf 7,500–9,500

Phase III

80 %σf 9,500–11,500
80 %σf 11,500–16,500
90 %σf 16,500–21,500
90 %σf 21,500–31,500
95 %σf 31,500–41,500
95 %σf 41,500–61,500

Table 7.5: Loading steps and phases

recorded signals, the damage steps were divided in three categories based on the

extent of the loading level and number of cycles. These categories are illustrated in

Table 7.5. A SCHENK hydraulic testing machine equipped with a 250 kN load cell

was used for the test.

Four piezoelectric transducers of the same type as for the work carried out in Section

7.1, were attached on the tested surface with instant glue after the cleaning of the
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surface, operating in pitch-catch mode. The arrangement of the transducers will be

explained in detail in Section 7.2.2. Figure 7.16 illustrates a schematic representation

of the panel along with the locations of the attached transducers. In the same

figure, two photos of the front and the rear side of the panel are displayed, when

the panel was mounted on the fatigue machine. As shown, the transducers were

surface-bonded on the substrate, at a 5 mm distance from the closest repair ply.
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Figure 7.16: Schematic illustration and photos of the experimental set up.

A 5-cycle sine burst signal modulated by a Hanning window was selected for the

excitation of the tested configuration. The peak-to-peak amplitude of the input

signal was 10 V and the sampling frequency was 50 MHz. The input signal was

generated by a TTi TGA1230 30 MHz wave generator. The data acquisitions were

performed by a Le Croy LT224 waverunner oscilloscope. The data acquisition was

performed in a stop & go mode, which means that each set of signals was recorded

before and after each set of loading scenario. A set of signals was recorded before

any loading was applied which was used as a baseline reference set.

The panel failed in the grips after 61,500 cycles at 95 % of the ultimate strength as a

result of the damage accumulation at each different loading phase (Figure 7.17). At
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Figure 7.17: Final damage after 61,500 cycles at 95% of the ultimate strength.

this load, the panel failed prematurely due to cracks that initiated around the holes

that were drilled for gripping the specimen. The reasons for this were also previ-

ously explored in Section 7.1. Along with the failure in the grips, patch debonding of

a considerable extent took place. X-ray radiography and microscopic analysis were

performed in order to investigate the extent and the type of the internally developed

damage. These results are illustrated in Figure 7.18. X-ray radiography showed that

axial splitting developed around the hole of the substrate and propagated parallel

to the loading direction. The axial splitting, acts as a ‘crack stopper’ reducing the

stress concentration factor at the hole edge, hence delaying fibre fracture at a higher

applied load. At that high load though the patch debonded much further (patch

debonding areas No. 1 and No. 2). A more accurate image in the microscope showed

that debonding took place not only on the ply that is directly bonded on the sub-

strate (fourth ply) but also on the direct overlapping ply (third ply). Therefore the

amount of data that was collected was sufficient for reaching some useful conclusions

in relation to damage monitoring.
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Figure 7.18: X-ray radiography and microscopic analysis images of the developed
damage.

7.2.2 Excitation of the first symmetric and antisymmetric

modes

In this section, the excitation of the first two fundamental Lamb wave modes in

the frame of a real experimental study on a small scale configuration, which is yet

representative of a real repair, is performed. This work demonstrates an alternative

excitation method, for cases in which a sufficiently small wavelength is needed,

therefore the excitation frequency can not be too small. This excitation method is

based on the principle of the particles motion in the tested material during the wave

propagation for each mode (symmetric and antisymmetric) as has been previously

shown in Figure 3.4.

The applied method is illustrated in Figure 7.19. As presented, PZT1 and PZT3,

operated as actuators and PZT2 and PZT4, operated as receivers. Each pair was

bonded on the surface of the tested panel in an attempt for each PZT to be perfectly

aligned with its respective PZT bonded at the other side of the panel. The actuators

were driven in-phase for the excitation of the S0 mode and out-of-phase for the

excitation of the A0 mode. In addition, the sensors operated in-phase during the
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Figure 7.19: Polling directions for the excitation of the fundamental modes during
testing.

whole testing, capturing the response signals.

When Lamb waves propagate through a repaired panel of such type, they will in-

teract with any sudden change in the thickness which in this case is the different

plies of the repair patch and the hole on the substrate. Therefore every time each

mode interacts with one of the layers of the patch or with the hole in the substrate,

a portion of the wave will be reflected by the surface of the extra thickness and

another portion will be transmitted through it as previously exhibited in Chapter

6. This means that the transmitted wave that was obtained from the receivers will

be subjected to multiple mode conversions by the time it arrives at the sensors.

This phenomenon has been thoroughly explored by other researchers [50], and it is

not within the scope of the current work since the subsequent analysis will focus on

pattern recognition. The only effect of the excitation of an appropriate mode here is

the benefit of a sufficiently small wavelength and the sensitivity of the excited mode

as will be later displayed.

First the dispersion curves of the substrate were plotted, in order to identify the

working area for the excitation frequency. Both phase and group velocities are

illustrated in Figure 7.20 where the two fundamental symmetric and antisymmetric

Lamb wave modes are displayed as well as the fundamental shear horizontal mode

SH0 which is coupled with the Lamb wave modes. The cut-off frequency of the

higher order modes in this case, allows selection of excitation frequency among a

wide range, namely between 0 and 500 kHz. The aim here is the selection of as
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Figure 7.20: Dispersion curves for a [0/90]8T 2 mm thick plate made out of
MTM56/CF0304. [48]

Figure 7.21: Extra PZT for the validation of the excitation of the fundamental
modes.

high a frequency as possible in order to achieve a smaller wavelength and hence

increase the sensitivity of the monitoring procedure. As analysed in Chapter 3, the

PZTs that are widely used in similar tests, can only isolate specific modes in specific

frequency ranges, posing a limitation on the required wavelength. Therefore, here

the proposed excitation method was validated for a wide range of frequencies in

order to conclude whether the separation of the two fundamental modes is possible

or not. For that purpose, an extra PZT (PZT5) was attached next to PZT3. The

distance between the centre of the transducers was equal to 20 mm, as illustrated in

Figures 7.16 and 7.21. This operated as sensor when the pair of actuators operated

in-phase and out-of-phase in order to record the response signal before it interacts

with any discontinuities and hence undergoes mode conversion.
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Figure 7.22: Comparison between the theoretical and the experimental arrival time
for A0 and S0 modes at 210 kHz.

Figure 7.22 displays the response signals obtained, based on the aforementioned

excitation set up, from one representative excitation frequency (210 kHz). The A0

and S0 mode waveforms are illustrated along with the theoretical arrival time (red

line). The agreement between the theoretical and experimental arrival time seems

to be relatively good for both modes.

In Figure 7.23 the two separate modes are illustrated together with the response

signal when only PZT3 was excited, hence exciting both modes. In the same figure,

the waveform that resulted after adding the separate A0 and S0 mode waveforms as

well as the waveform that resulted when only PZT3 was excited are compared. It

needs to be highlighted at this point that before adding the two separate A0 and S0

waveforms, the one that corresponded to A0 mode, was multiplied by two, to account

for the amount of energy that is dissipated when the transducers operate out-of-

phase instead of in-phase. The two final waveforms exhibit a good agreement. This

qualitative analysis was based on visual interpretation of the results and proved that

the underlying principle behind the excitation of the separate modes was successful.

However, a more quantitative approach has to be performed.



7.2. EXTERNAL PATCH REPAIR 137

0 0.1 0.2
−0.1

0

0.1

Time (ms)

A
m

p
lit

u
d

e

 

 

S0 mode A0 mode S0 and A0 mode

0 0.1 0.2
−0.1

0

0.1

Time (ms)

A
m

p
lit

u
d

e

 

 

A0+S0 mode S0 and A0 mode

210 kHz

210 kHz

(a)
0 0.1 0.2

−0.1

0

0.1

Time (ms)

A
m

p
lit

u
d

e

 

 

S0 mode A0 mode S0 and A0 mode

0 0.1 0.2
−0.1

0

0.1

Time (ms)

A
m

p
lit

u
d

e

 

 

A0+S0 mode S0 and A0 mode

210 kHz

210 kHz

(b)

Figure 7.23: Response signals for A0 and S0 modes separately and waveform when
both modes are excited (a), A0 and S0 modes added together compared with the
response when both modes are experimentally excited (b) at 210 kHz.

7.2.3 Estimation of the group velocities through the Akaike

information criterion

In Chapter 6 as well as in Section 7.2.2, the arrival time of the response signals in

both cases of numerical and experimental tests, were visually estimated. This can

be considered reliable in cases where the level of noise is low enough and errors due

the arrival point being ‘buried’ in noise are negligible. However in the current work,

a high level of noise was observed in the resulting signals due to the interference

of the testing machine with the signals and due to the environmental conditions in

the laboratory. As a consequence, an alternative approach for the estimation of the

arrival time was investigated here, which is expected to minimise the errors due to

noise, and which could be potentially applied in industrial applications carried out

under real operating conditions and not under the idealised, controlled laboratory

ones.

One of the most basic methods for determining the onset time of an ultrasound signal
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apart from visual picking, is the use of an amplitude threshold picker. However in

cases where the obtained signals are of very low amplitude this method might fail

to distinguish between the noise and the actual signal. There have been several

methods proposed for time picking following in general two main trends. The first

focuses on the whole signal as a part of a global strategy and the second focuses on

a preselected region which involves the onset which is called iterative strategy. A

detailed review of those approaches can be found in [116].

The current work will focus on an approach that involves an autoregressive process

first proposed by Akaike [117] also known as Akaike information criterion (AIC).

According to this approach, the investigated time series is divided into two locally

stationary segments after a first estimate of the onset time is performed. Each

segment is modelled as an autoregressive process and represents the part of the time

series mostly dominated by the noise and the original signal, respectively. Then the

accurate onset point is determined as the separation point between the two segments

which is the point at which the AIC is minimised. The application of the AIC-picker

first needs the pre-arrangement of the onset (e.g. the point that divides the two

segments). This can be performed either through the complex wavelet transform

or through the Hilbert transform. In the current work the Hilbert transform was

implemented.

The Hilbert transform (HT) was defined in some detail in Section 4.2. After the

HT has been applied, the envelope of each signal is normalised, so that the same

threshold can be applied to all signals. The threshold is defined in such a way

that it picks the onset point as soon as the amplitude of the envelope has exceeded

approximately 20% of its total amplitude which is equal to 0.2 for all normalised

envelopes. This threshold ensured that the selected amplitude is well above the

amplitude of the observed noise. Next, the selected window was defined to start from

the start of the waveform and to end 200 samples after the preselected onset point.

The AIC function that is further applied to the selected window is demonstrated in

Equation 7.2:

AIC(tw) = tw · log(var(Rw(tw, 1))) + (Tw − tw − 1) · log(var(Rw(1 + tw, Tw))) (7.2)

where Rw is the selected window, Tw is the last sample of the selected window, tw

ranges through all samples of Rw and var is the variance function. Rw(tw,1) expresses

the variance that is measured from the beginning of the window until the current
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Figure 7.24: Estimation of the onset time of a Lamb wave waveform, after the
application of the Hilbert transform and the application of the AIC function.

value tw, while Rw(1+tw,Tw) expresses the variance that is taken for all samples

ranging from 1+tw to Tw. In Figure 7.24 an example of how the approach works

is illustrated, where the global minimum of the AIC function determines the onset

point of a representative Lamb wave signal recorded for the current work.
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Figure 7.25: Comparison between the theoretical and the experimental group veloc-
ity as extracted through the Akaike information criterion.

In Figure 7.25, the experimental and theoretical group velocity is plotted for A0

and S0 modes. The theoretical curves were extracted from the dispersion curves.

The experimental curves were estimated after the experimental arrival time for each
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waveform was measured through the AIC. Then the distance between the two trans-

ducers was divided by the arrival time and the group velocity was obtained according

to the following equation.

cgr =
∆s

tarr
(7.3)

where cgr is the group velocity, ∆s is the distance between the transducers (20 mm)

and tarr is the arrival time of each waveform, as estimated by AIC.

The threshold defined for the AIC algorithm was 0.2 for the waveforms in the higher

frequency range (40 kHz–250 kHz), and it was increased up to 0.5 for lower frequency

signals since the observed level of noise in these frequencies was considerably higher.

The window around the prearranged onset, was selected to be from the starting

point of the waveform until 150 sampling points after the prearranged onset point

providing pretty accurate results. However in the lower frequency range signals,

this interval had to be adjusted starting from the beginning of the waveform until

450–650 sampling points after the prearranged onset point. This secured that the

onset point would not be ‘buried’ in the high levels of noise.

The results show that the agreement between the experimental and the theoretical

group velocities is significantly high for the A0 mode and especially at the higher

frequencies, namely from 100 kHz on. However, the same agreement can not be

observed for the S0 mode. In the second case, the experimental group velocity is

considerably lower than the respective experimental, fluctuating between low and

higher values. The results indicate that the excitation of S0 mode was not successful,

possibly due to the corruption of the pure Lamb wave mode with the respective

slower shear horizontal mode, which in the case of composite materials is coupled

with the Lamb wave mode. In addition, the low level of agreement between the

theoretical and the experimental antisymmetric mode at frequencies below 100 kHz,

could be attributed to the fact that at low frequencies, the shear horizontal mode

propagates faster in the panel at a region very close to the excitation region of the

A0 mode exhibiting a dispersive behaviour, hence corrupting it. Therefore for the

subsequent analysis, only the A0 mode was selected at a frequency equal to 175 kHz

where the correlation between the experimental and theoretical values was sufficient.

This gives a wavelength equal to λ= 10.9 mm. Finally the current analysis highlights

the advantage of the employed method for estimating the accurate arrival time of

ultrasonic waves, which would lead to false results if visually implemented.
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7.2.4 The problem of inadequate training data set

For the application of pattern recognition analysis, a strong baseline reference set

is usually required. This set needs to include as many observations as possible; the

bigger the training data set the more accurate the training of the algorithm will be,

hence the more robust the analysis will be. However, in practical engineering cases,

the recording of so many data sets might not be possible due to certain reasons.

First of all, depending on the number of locations that are considered to be critical,

transducers should be incorporated at all of them sometimes forming several prop-

agation paths as has been previously illustrated, in order to capture damage that

might unexpectedly occur at any direction. This means in practice, that the number

of observations required for all of the paths, can be significantly high. In turn, there

are certain complications that might arise in real industrial problems. First of all,

the cost of pre-processing and storing all these data as well as transforming them

into suitable features, can be considerably high, requiring highly trained personnel

and high computational power as well as storage. Secondly, the recording of the

observations at a pristine condition might be interrupted by an unexpected opera-

tional condition, or the coupling/mounting conditions might change in such a way

that the original baseline reference data set might comprise of observations which

have themselves been corrupted by external factors. Therefore it is important to

investigate the effect of what would be considered as ’inadequate training data set’

which would have an immediate consequence on the analysis proposed in Section

7.1.

In the current study, a set of 10 observations was obtained for each of the conditions

summarised in Table 7.5. Although there is no general rule as to which is the

optimal size for a sufficient training data set, a general rule of thumb that has been

followed is that the training data set should be 10 x n x c, where n is the number

of features and c the number of classes in the problem [118]. From the previous

analysis in Section 7.1, one could conclude that if the selected feature comprises

sampling points extracted from the original time waveform, then as many sampling

points as possible are required, at least 50. This leads to the conclusion that the

minimum number of observations needed for a 50-dimensions and 2-classes problem,

would be 100 which is not the case for the current example.

After post-processing, the obtained signals from phase II had to be discarded from

the analysis, due to interference of the monitoring technique with the machine. In
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addition, the mounting conditions between phase I and phase III were different,

since the machine in the first case was in force mode during the acquisition of the

signals and in the second case, the load was completely removed. Therefore these

experimental conditions pose a certain degree of difficulty in the post processing

of the obtained signals and their subsequent correlation with the observed damage

in a sensible way. Within the concept of the current section, two methods will be

evaluated for overcoming the aforementioned complications the level of success of

which will be assessed accordingly.

The tested features obtained from the raw time signals, are 50-dimensional consisting

of 50 sampling points for phase I (1,373–3,223 sampling points for PZT1 and 2,357–

4,607 for PZT3) and the same for phase III (1,426–3,976 sampling points for PZT1

and 2,420–4,070 sampling points for PZT3). All features were subsampled in order

to obtain the required dimensions. The captured waveform for the pristine condition

for both investigated phases I and III are displayed in Figure 7.26 where the assigned

features are also shown. The selection of the features was based on the isolation

of the first two strong wave packages (Figure 7.26 shown with dotted red lines).

In Figure 7.27, the results of the outlier analysis for phase III are displayed when

A0 is excited and received by PZT1. The training was performed with the first 8

observations from the baseline reference set while the rest were used for validation.

The first two observations belong to the validation set, while each of the rest of the

sets consists of 10 observations and corresponds to the rest of the 6 damage sets

that were recorded for phase III (Table 7.5). The 1 % exclusive threshold value for

an 8 observations, 50-dimensional problem was estimated after 1,000 trials.

As demonstrated, the Mahalanobis squared-distance is negative for all the test sets.

This is by definition very unlikely. However, the problem seems to stem out of the

definition of the covariance matrix of the training data which is required for the

training of the algorithm (equation 4.1). If the training data set is insufficient, then

this leads to a covariance matrix which is non-positive-definite. In turn, the resulting

smallest eigenvalues are negative, which become the largest when the covariance

matrix is inverted as prescribed in equation 4.1. An additional problem that can

arise is the fact that the dimensions of the feature are considerably higher than

the number of the observations, which does not result in a well behaved feature.

Therefore other approaches need to be investigated towards two directions. First is

the singular value decomposition of the covariance matrix and second is the decrease

of the features. Both directions will be investigated in the following sections.
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Figure 7.26: Pristine condition for phase I (a) and phase III (b) of the single patch
repair configuration; dotted red lines indicate the selected features.
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Figure 7.27: Negative Mahalanobis squared-distance due to a non positive-definite
covariance matrix (A0 mode received by PZT1).

7.2.5 Singular value decomposition and dimensional reduc-

tion for non-positive-definite covariance matrix

The problem of a non-positive-definite covariance matrix was also observed in the

work carried out by Worden et al. [119] in which a reference set parametrised by an

environmental variable is established in order to account for the problem of novelty

detection in a changing environment. In this work, it is proposed as a possible

solution, the modification of the distance measure in order to make it positive semi-

definite through the singular value decomposition. According to this approach, the

covariance matrix is decomposed as following:

[S] = [U ][s][U ]T (7.4)

where [s ]=diag(s1,s2,...,sp) is a diagonal matrix which contains the eigenvalues in

descending order of magnitude. Then the positive semi-infinite inverse of the original
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Figure 7.28: Singular value decomposition as a solution to the non-positive-definite
covariance matrix for phase III (A0 mode received by PZT1.)

covariance matrix [S]d, [Sd]−1 is given as:

[Sd]−1 = [U ][sd]−1[U ]T (7.5)

where [sd]−1=diag(s1
−1,s2

−1,...,sn−1
−1,0,...,0).

The result of the implemented approach is illustrated in Figure 7.28. The threshold

and the test sets correspond to the same set up as the one of Figure 7.27. The prob-

lem seems to have been successfully solved, since the negative eigenvalues have been

deleted. However, as mentioned in [119], the degree of accuracy of the illustrated

results is subject to the percentage of the eigenvalues that were eliminated through

the aforementioned approach which in this case is approximately 40 %. Moreover,

the Mahalanobis squared-distance is expected to be lower due to the fact that the

deleted negative eigenvalues, are the ones that would be the higher after the inverse

of the covariance matrix. Therefore the level of accuracy of the employed solution

to the problem of inadequate size of the training data, was evaluated through the

PCA. In addition, a reduction in the dimensions of the feature is required since a 10-
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Figure 7.29: Principal component analysis (a) and variance variation (b) for phase
III (A0 mode received by PZT1.)

dimensions/50-observations training set of data is not considered to be adequate for

a well behaved outlier analysis. Furthermore, the reduction of the feature through

the reduction of the selected sampling points would lead to significant resolution

loss.

Figure 7.29, shows the PCA and the respective drop in the variance with respect

to the principal components for the tested feature and phase that is illustrated in

Figure 7.28. PCA shows a clear separation between the different cycles levels, while

the drop in the variance shows that almost all of the variance is contained in the

first ten principal components. This indicated that the data has effective dimension

10 and so the covariance matrix estimated by SVD does not lose in accuracy by

deleting 40 % of the eigenvalues. This result allows an alternative feature extraction

through the principal components which is equivalent to the effect of SVD to the

data sets. This would enable the reduction of the features dimension to a number

which is lower than the corresponding number of the observations and would lead

to a well behaved outlier analysis. In order to define the appropriate number of the

principal components that would serve as the new features, a convergence study was

performed as illustrated in Figure 7.30 where the Mahalanobis squared distance was

plotted against the test sets for phase III and for the A0 mode received by PZT1 as in

Figure 7.29. The figure shows that 2 principal components (PCs) are not sufficient

to describe the behaviour of the monitored system while when the number of PCs

increases from 3 onwards, little variation is exhibited. Some slight differences in the
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Figure 7.30: Convergence study for phase III, loadings at 80–95 % σf (A0 mode
received by PZT1).

amplitude are not important since the assigned threshold for each considered case is

not the same either. It increases as the number of principal components increases.

This behaviour is reasonable since the first 3 PCs account for almost 60 % of the

variance while the first 2 account for about 48 % which is less than half. Therefore

the first 3 principal components were selected.

The results have been estimated without any need for SVD application for the inverse

of the covariance matrix which is singular. In addition, the dimensions of the selected

features are lower than the number of the observations while at the same time they

contain a sufficient amount of variance of the total variance of the feature extracted

from the original time waveforms (Figure 7.26). Therefore the partial solution of

the problem was possible with a simple processing of the features enabling a robust

analysis without any substantial loss of information. It is interesting to note that

the Mahalanobis squared-distance values after the dimensional reduction, exhibits

higher values than the respective values after the performance of SVD (Figure 7.28),

which is an extra indication that the extracted features are well behaved and the

analysis is more reliable.

After the reduction of the features’ dimensions, the outlier analysis for each received

waveform and for both phases I and III was assessed in order to evaluate the struc-

tural integrity of the panel and the damage sensitivity of the A0 mode (Figure 7.31).

The threshold, the training and validation sets and the test sets were assigned in
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Figure 7.31: Outlier analysis results after the features reduction for phase I and
phase III for both PZT1 and PZT3.

the same way as in the previous examples of the section. Only the first three princi-

pal components were selected which accounted for 80 % of the variance for phase I

(PZT1), 88 % for phase I (PZT3), 60 % for phase III (PZT1) and 58 % for phase III

(PZT3). The y-axis is scaled in the same way for comparative reasons for all figures.

Even though the training sets of data are different for phase I and phase III, the

difference with respect to the assigned threshold which is different for each phase is

clear. Phase I exhibits almost no damage with only very few individual observations
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being flagged as outliers except for PZT1 which shows a more distinctive deviation

at the last set (after 4,500 cycles). On the other hand, phase III shows a significant

deviation from the normal condition, which is more evident for PZT1 and which

further accumulates as the cycling advances. At this stage extensive debonding has

been developed and observed between the patch and the substrate.

7.3 Discussion

This chapter demonstrated different concepts of Lamb wave excitation and acquisi-

tion as well as certain signal processing scenarios aiming at the damage detection.

Alternative nondestructive techniques proved the accuracy of the extracted results.

More specifically, a scarf patch repair was tested under tension with Lamb waves

and digital image correlation. The obtained Lamb wave signals were further pro-

cessed with outlier analysis, principal component analysis (liner and nonlinear). All

methods proved to be efficient, successfully representing the structural status of

the monitoring system as captured by DIC, while the concept of the fitted princi-

pal curves exhibited a considerable efficiency. The only limitation of the principal

curves lies in the difficulty in assigning a certain initiation and finishing point or in

assigning a certain fitting path.

In addition, an external repair patch was tested under tension tension fatigue, while

X-ray radiography and microscopic analysis further assessed the developed dam-

age. Piezoelectric transducers bonded on the top and bottom of the tested surface

were utilised in-phase and out-of-phase in order to excite separately the symmet-

ric and antisymmetric fundamental Lamb wave modes. The estimation of each

mode’s arrival time was performed through the Akaike information criterion which

indicated that only the excitation of the antisymmetric mode was successful due

to the possible corruption of the symmetric mode with the shear horizontal mode.

The study dealt with the problem of inadequate training data set by suggesting a

pseudoinverse approach for the inverse of the covariance matrix and a reduction in

the selected feature through the principal component analysis and the isolation of

the most representative principal components. Finally outlier analysis was applied

which successfully represented the condition of the structural integrity. The next

chapter demonstrates the application of the aforementioned processing tools in a

bigger scale demonstrator, namely a vertical helicopter tail stabilizer.



Chapter 8

Monitoring of a Repaired

Helicopter Tail Stabilizer

After the investigation of the key challenges in the in-situ monitoring of different

repaired configurations of a small scale and the examination of the applicability of

certain signal processing techniques in the previous chapters, the current chapter

aims to scale-up the tested configuration. Therefore, a larger scale demonstrator

of a real structure was selected for testing under representative loading. The most

successful methods that have been extracted by the previous chapters are chosen

in order to demonstrate their efficiency in helicopter structures. The demonstra-

tor is an aluminium helicopter tail stabilizer loaded under bending fatigue. The

current work was performed within the framework of the EU project which pro-

vided the funding to the author of the thesis, the EU 7th Framework Programme

(ACP8-GA-2009-234333), IAPETUS (innovative repair of aerospace structures with

curing optimization & life cycle monitoring abilities). Detailed description of the

experimental set up will be given which aims to set a realisation platform for future

testing while the processing approaches have been extensively explored in previous

chapters.
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Figure 8.1: (a) SW 4 helicopter (b) schematic illustration of the cross section of the
tested demonstrator.1

8.1 Repaired helicopter aluminium stabilizer

The aeronautical structure which was selected as a representative demonstrator was

a vertical stabilizer of a helicopter located on the tail boom and manufactured by

PZL-Swidnik/AgustaWestland (Poland). The panel was a honeycomb construction,

the core of which was made of HexWeb CRIII-5/32-5052-.001N-3.8 and the skin was

made of AL-2024 T3 alloy sheet, 1.5 mm to 0.6 mm thickness (Figure 8.1).

Prior to the selection of the area to be repaired, fatigue was performed and the most

critical region was identified to be around the holes at the centre of the stabilizer as

illustrated in Figure 8.2(a). The artificially introduced crack that would be repaired

by a bonded composite patch was 35 mm long, located close to the hole as shown

in Figure 8.2(b).

The repair patch consisted of 4 plies AGP 280 (Hexcel 43280S) with a stacking ply

1The contained data are belonging to PZL-Swidnik S.A. and any further reprinting and usage
cannot be made without PZL-Swidnik S.A. written permission

2The contained data are belonging to PZL-Swidnik S.A. and any further reprinting and usage
cannot be made without PZL-Swidnik S.A. written permission
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Figure 8.2: (a) Critical area and proposed location (blue line) for the attachment
of the repair patch (b) schematic illustration of the repaired region (c) image of
the processed surface of the stabilizer around the crack and the hole before the
attachment of the patch (d) final implementation of the patch.2

Number of layers Direction Dimension (mm)
L1 90◦ 80 x 120
L2 0◦ 74 x 114
L3 90◦ 68 x 108
L4 0◦ 62 x 102

Table 8.1: Stepping configuration scenario for the patch (total thickness=1.16 mm).

sequence [90/0]2 and total thickness equal to 1.16 mm. First the repaired surface

was prepared using BR127 primer, Figure 8.2(c), and each ply was impregnated

with carbon nanotubes (CNT) doped epocast which aimed to improve the electric

conductivity of the patch (not used by the current method) as shown in Figure

8.2(d). Then each ply was cut to the final dimensions and laid up on the repaired

region following a stepwise configuration as outlined in Table 8.1. Finally, a heating

blanket was used for 2 hours at 93◦C under vacuum conditions. A C-scan was

performed on the demonstrator prior to testing for evaluation of the bonding quality

of the composite patch which showed no uncured areas.
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8.2 Testing and monitoring techniques

Figure 8.3: Schematic illustration of the repaired stabilizer.3

The testing scenario selected was representative of the kind of loading such structures

are subject to, namely bending fatigue. As illustrated in Figure 8.3, there are two

loading points (P1 and P2) the load of which was different in such a way that the

moment about the fixed (repaired region) area, was equal both at the right and left

side. The distance between the centre of the repaired region and the two loading

points P1 and P2 was 580 mm and 520 mm respectively. The fatigue history is

illustrated in figure 8.4. All tests were performed at a frequency equal to 20 Hz.
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Figure 8.4: Load history of the stabilizer.

3The contained data are belonging to PZL-Swidnik S.A. and any further reprinting and usage
cannot be made without PZL-Swidnik S.A. written permission
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Figure 8.5: (a) Schematic illustration of the repaired stabilizer.

The aim was the monitoring of the structure through Lamb waves. In addition,

lock-in thermography was implemented in order to confirm the results obtained

from Lamb waves since thermography is considered to be a relatively better estab-

lished technique (Appendix B). Images from an infra red (IR) camera which was

positioned above the demonstrator were captured in an on-line mode during the

testing. Prior to testing, 4 piezoelectric transducers were attached on the surface

which would perform off-line monitoring with Lamb waves, at specific intervals. The

demonstrator was first mounted on the test machine, appropriate calibrations for

the monitoring techniques were performed and a baseline reference set of data was

recorded for the Lamb wave testing. The final set up is illustrated in Figures 8.5(a),

8.5(b).

The first step was the surface preparation of the aluminium stabilizer prior to the

bonding of the transducers. The preparation involved the use of sandpaper for

obtaining a relatively rough surface which would ensure a good quality bonding

of the sensors to the surface. Additionally a blade cutter was used in order to

further sharpen the surface for extra security since the aluminium stabilizer would

be subjected to significant deformations. Then the surface was cleaned with acetone

in order to remove any excess material and dust remaining and the transducers were

prepared.
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Figure 8.6: Schematic illustration of the PZTs arrangement (A=actuator,
S=sensor); dimensions in mm.

The transducer set up consisted of two parts, the piezoelectric disc and the head

connector. First two wires are stripped at both ends and coated with a thin layer

of solder, then the piezoelectric transducer is held in a small clamp and two drops

of solder are placed at the locations where the wires would be attached. Then

the stripped ends of the wires are placed in contact with the soldered areas of the

transducer and with the heated solder they are fixed in place. The same procedure

is followed for the connector which is soldered at the other end of the stripped

wires. The PZT operated in contact to the tested surface in order to excite it with

stress waves. The connector is used to connect the transducer with the waveform

generator which would provide the transducer with the required electric signal; this

would be converted to stress signals as an effect of piezoelectricity. Finally both

disc and connector were installed on the surface of the stabilizer by applying cyano-

acrylate rapid bonding glue, while the application of uniform pressure ensured the

effective bonding as shown in Figure 8.5(c). Four piezoelectric transducers were

used (diameter=10 mm, thickness=1 mm) supplied by CeramTec, Germany.

Two of the PZTs (A1, A2) operated as actuators, exciting the tested demonstrator

and the other two (S1, S2) operated as sensors receiving the output response, form-

ing two propagation paths (Figure 8.6). This means that when actuator A1 was

exciting the demonstrator only sensor S1 was recording the obtained signals, and

when actuator A2 was exciting the demonstrator, only sensor S2 was recording the
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resulting signals. All transducers were properly named and BNC cables which have

two pins at one end were connected to each head connector, while the cables were

glued with tape on the stabiliser for keeping them stable during testing.
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Figure 8.7: A schematic (a) of the PZT excitation and a photo (b) of the data
acquisition equipment; when actuator A1 was exciting the demonstrator only sen-
sor S1 was recording the obtained signals, and when actuator A2 was exciting the
demonstrator, only sensor S2 was recording the resulting signals.

The location of the employed transducers was selected in such a way that the stronger

incident output signal would directly interact with the most interesting regions where

damage was expected to develop, vertically to the crack’s orientation. These were

the edges of the patch and the crack of the stabilizer. In addition, their placement

was intended to be as close to the patch as possible in order to minimise reflection

of the propagating wave with other features such as strain gauges, electrodes and

cables that were used for the other monitoring techniques. The placement of the

PZTs was restricted in terms of space due to the prior attachment of the rest of

the structural features. Finally the only suitable location for the attachment of the

PZTs would be on the aluminium stabilizer and not on the repair patch, in order

to avoid any loss of PZTs contact due to a potential local debonding of the patch.

In addition, the PZTs would interfere with the images recorded by thermography,

masking the focus of the camera.

The excitation signal was a 10-Volt peak-to-peak amplitude, 5-cycle sine pulse mod-

ulated by a Hanning window and the excitation frequency was 200 kHz. At this

frequency only the two fundamental symmetric and antisymmetric modes propa-

gate in Aluminium, enabling an easier interpretation of the acquired signals. The

wave generator that was used was a TTi TGA 1230 30 MHz model and the data ac-

quisition was performed with a HAMEG HMO 2022 digital oscilloscope at sampling
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frequency equal to 25 MHz (Figure 8.7). The signals were saved at an external USB

stick properly categorised in appropriate file names and they were later passed to a

computer for further processing. For each set of signals, 512 averages were captured

in order to minimise the effect of noise.
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Figure 8.8: (a) Excitation signal at 200 kHz and (b) its Fourier spectrum.

The excitation signal is illustrated in Figure 8.8(a). The signal was modulated by

a Hanning window in order to maximise the energy that would be ‘guided’ to the
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Figure 8.9: Phase dispersion diagram for Aluminium (E=70 GPa , v=0.33); phase
velocity versus frequency x plate thickness product. [46]
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Figure 8.10: Response for the baseline reference state - ‘healthy’ condition along
with the selected features for paths 1 and 2.

tested demonstrator. This can be verified by the Fourier spectrum of the time signal

in Figure 8.8(b). The side lobes of the spectrum are almost negligible while the main

lobe carries most of the energy. At this frequency, only the two fundamental modes,

S0 and A0, propagate through the plate as illustrated in the dispersion curves in

Figure 8.9. The working area is clearly below the cut-off frequency.

As part of the post-processing of the recorded waveforms, appropriate features had

to be selected in order to reduce the dimensions of the data sets while isolating the

regions of interest. Figure 8.10 illustrates the resulting waveforms for the baseline

reference set, meaning the response prior to any loading, which is used in order

to represent the ‘healthy’ condition. In the same figure, the selected features are

illustrated for both paths considered for each demonstrator. Two features were

selected for each waveform, the first corresponding to the incident wave which di-

rectly propagates through the bonded area and the edge of the crack and the second

corresponding to the first reflection occurring from the edges of the patch and the

crack. The rest of the captured waveform exhibits extensive attenuation as the

waves undergo multiple reflections at the boundaries of the different features.

All monitoring methods started capturing failure indices at around 400– 500 kcycles.

At the end of the test a clear debonding could be even visually captured as illustrated

in 8.11. Thermography showed clear debonding that initiated around the hole and

propagated, therefore the test was stopped. In addition, close examination of the



8.3. POST-PROCESSING 159

Figure 8.11: A photograph showing the final debonding after 580,000 cycles of
testing.

area below the patch, showed that the length of the crack remained the same.

8.3 Post-processing

8.3.1 Outlier analysis and principal component analysis (lin-

ear and nonlinear) of the raw signals

In order to build the appropriate matrices for the subsequent analysis, 100 signals

were recorded for each baseline reference set and 10 signals were recorded for each

subsequent damage set; this would ensure a sufficient set of data after the obser-

vations derived by the previous chapters. After the pre-processing of the obtained

signals, OA and PCA were performed in a comparative way in order to identify

the agreement between the two methods and in order to explain the behaviour of

the outlier analysis classes based on the orientation of the respective clusters in

a 2-dimensional subspace. The aim of the analysis was the classification of the

recorded waveforms and the estimation of their deviation from the baseline refer-

ence set. Based on the amount of deviation, appropriate assumptions were made for

the presence of damage in the tested demonstrator.

For the illustration of the PCA results, only the first two principal components were

considered, since they accounted for the highest percentage of variance. For the

purpose of the outlier analysis, the 1 % exclusive threshold value for novelty for

a 100-observation, 50-dimensional problem was estimated after 1,000 trials which
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was found to be approximately the same for all paths, namely 100. This threshold

(estimated through the Monte Carlo approach) is here denoted as Threshold 1.

From the baseline reference data set, 90 observations were used as a training set

in order to train the algorithm, and the remaining 10 observations were used as a

validation set in order to evaluate how effectively the algorithm can identify the

normal condition. This was performed for all methods. Table 8.2 illustrates the test

sets of the outlier analysis and the respective cycles. It needs to be noted that the

reference sets correspond to sets of data that were recorded when the test continued

the next day, in which case a baseline reference set was captured prior to testing

in order to ensure that the system was not affected by any possible temperature

variations or other parameters.

Test sets Cycles
1–10 0
11–20 500
21–30 5,000
31–40 15,000
41–50 25,000
51–60 25,000 (Reference set)
61–70 50,000
71–80 100,000
81–90 150,000
91–100 200,000
101–110 280,000
111–120 305,000
121–130 330,000
131–140 3555,000
141–150 380,000
151–160 405,000
161–170 430,000
171–180 455,000
181–190 480,000
191–200 480,000 (Reference set)
201—210 505,000
211–220 530,000 (Reference set)
221–230 580,000

Table 8.2: Test sets and cycles for the outlier analysis.

Figures 8.12 and 8.13 illustrate the OA results and the PCA results for the selected

features for propagation path 1. The OA figures have the same scale in the y-axis for

comparison purposes. It needs to be reminded at this point that the Mahalanobis
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squared-distance represents in this case the damage index which shows how much the

monitored system has deviated from the normal condition and from a pre-assigned

statistical threshold.
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Figure 8.12: Outlier analysis (a) and principal component analysis (b) for path 1 -
1st feature.

Five areas can be distinguished based on the level of deviation from the assigned

threshold (Threshold 1), noted in the figure as R1 (1st region), R2 (2nd region), R3

(3rd region), R4 (4th region) and R5 (5th region), each region corresponding to a dif-

ferent colour. The same colours have been assigned to the corresponding clusters in

the PCA figures. 1st and 2nd regions (from 0 to 15,000 cycles) are for both features

very close to the threshold, while the deviation from the normal condition is not

significant. However, the 2nd region is flagged as outlier (e.g. above the threshold).

At this stage, the stabilizer was loaded for just 15,000 cycles at low loads. Given

the testing conditions and the little deviation of the region from the threshold, it
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was assumed that no critical damage could have occurred at this stage. Neverthe-

less, something in the structure changed, leading to the change of the boundary

conditions. An assumption of the possible reason for this behaviour is the increase

in the temperature of the stabilizer after a few loading cycles, or micro-cracks at

the adhesive of the transducers as soon as the testing started. These small changes

could be sufficient for the observed behaviour, without necessarily notifying about
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Figure 8.13: Outlier analysis (a) and principal component analysis (b) for path 1 -
2nd feature.

a critical damage. Therefore a second threshold was defined (Threshold 2). For

the estimation of this threshold, the data set of the 2nd region (R2) was divided in

two subsets, in the following way; Subset 1: 11-25 test sets, Subset 2: 26-40 test

sets. Then the maximum value of the estimated Mahalanobis squared-distance was

denoted as the threshold value for each subset. Then the final threshold 2 was esti-

mated by taking the mean of the two aforementioned values. This method can be
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expressed by:

Threshold 2 =
max(MSDSubset2) + max(MSDSubset1)

2
(8.1)

where Subset 1=11–25 test sets and Subset 2=26–40 test sets and MSD is the

Mahalanobis squared-distance. The test sets are summarised in Table 8.2.
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Figure 8.14: Outlier analysis (a) and principal component analysis (b) for path 2 -
1st feature.

Threshold 2 could not be estimated through the Monte Carlo technique since the

data sets that correspond to this stage no longer follow a Gaussian distribution. Both

thresholds have been plotted at all subsequent figures, in an attempt to demonstrate

the monitored system’s behaviour in a more representative way. It is worth mention-

ing though, that threshold 2 required a prior knowledge of the system’s status, while



8.3. POST-PROCESSING 164

(a)
0 40 80 120 160 200 240

10
0

10
2

10
4

10
6

10
8

Test sets

M
a
h
a
la

n
o
b
is

 s
q
u
a
re

d
 d

is
ta

n
c
e

Path 2 - 2nd Feature

R2

Threshold 2

Threshold 1

R3 R5R1 R4

(b)

−40 −20 0 20 40 60
−25

−20

−15

−10

−5

0

5

10

Principal Component 1

P
ri
n

c
ip

a
l 
C

o
m

p
o

n
e

n
t 

2

Path 2 - 2nd Feature

 

 

Principal curve

Figure 8.15: Outlier analysis (a) and principal component analysis (b) for path 2 -
2nd feature.

threshold 1 was estimated without any prior knowledge of the system’s behaviour.

This approach is a simple way to overcome what has been previously described.

According to Tarassenko [120], in cases of on-line learning, it is important to enable

the algorithm to adapt to novel data instead of simply converging to a stable model,

in order to account for complex cases such as the one discussed here. This by itself

is a case that needs to be further studied for future applications.

The 3rd region (15,000– 405,000 cycles) is only slightly flagged above the thresh-

olds but without any considerable deviation. However, there is a certain increasing

tendency which suggests that damage has started accumulating in the monitored

area (path 1). The 4th region (405,000 – 480,000 cycles) shows a higher deviation

from the thresholds than the 3rd region while the 5th region (480,000–580,000 cycles)
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clearly corresponds to a stage where significant damage has developed. Feature 1

which corresponds to the part of the waveform that has been captured by the sensor

without interacting with any other features/boundaries, shows more distinctive dif-

ferences than feature 2. However feature 2 exhibits higher values of deviation from

the two thresholds (areas R3–R5).

PCA results show how well the clusters that correspond to each region separate when

they are projected on the baseline reference set. The first feature which is shown

in Figure 8.12(b) exhibits a quite clear separation between the clusters, indicating

the successful assignment of the regions in the OA, and verifying the deviation of

the behaviour of the monitored system from the normal condition. For the second

feature, even though there is a certain separation of the orange dots (R5 - 5th region)

from the rest of the clusters, in general the technique does not provide the resolution

of the OA.

Figures 8.14 and 8.15 illustrate the same results but for path 2. The y-axis is scaled

in the same way as for path 1 for comparison purposes. The first observation is

that the same regions can be assigned in the OA figures, which indicate the level

of deviation from the normal condition and from the assigned thresholds. One

difference is that the 4th (R4) region starts one set of data later (e.g. 170 test sets)

for the 2nd feature compared to the 1st feature for the same path and both features

for path 1. Furthermore, PCA exhibits quite mixed clusters, from which only the

area R5 can be separated for the 1st feature.

A comparison between the two paths shows that, their behaviour is in general sim-

ilar. The area R3 is the one which mostly draws the attention, since it is the one

which shows a certain deviation from the normal condition. The key requirement

here is the identification of the damage sensitivity of each path with respect to an

early stage damage onset detection, namely area R3. The OA for path 1 and path

2 exhibits similar results except for the 2nd feature, which shows significantly higher

levels of deviation for path 1. In addition, PCA shows a more distinctive separation

between the resulting clusters for the 1st feature of path 1 compared to the same

feature for path 2. Even though this is not very clear at this stage, one could in

general conclude that Path 1 exhibits a relatively higher damage sensitivity, espe-

cially at the area where the first notable damage seems to develop (e.g. R3). This

observation is important since it will later verify the agreement of the tested analysis

tools with the results obtained from thermography, in terms of early stage damage

initiation.
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In addition, the proposed technique of the principal curves based on the NLPCA is

performed here, the results of which can be found in the respective figure of the PCA

results (Figure 8.12– Figure 8.15). As illustrated, after 10 iterations, the principal

curve fits very successfully the principal component clusters, starting from the first

principal component and iteratively bending to match the required shape. The arc

length of the curve is not plotted for this case study but it can be observed from

the principal curves, that for all cases it would successfully describe the deviation

of the clusters above 480,000 cycles from the rest which appear to be very close to

each other. The same conclusion can not be derived for path 2 (2nd feature, Figure

8.15) where the clusters are quite mixed without a substantial separation.

8.3.2 Outlier analysis at the principal components

In the current section an alternative approach is attempted to assess the structural

integrity of the tail stabilizer which has been previously discussed in Chapter 7.

This approach focuses on the OA of the principal components that are derived from

the principal component analysis. The number of the selected principal compo-

nents is selected based on the drop of variance. In this case, the first 10 principal

components for all steps were considered to be adequate since they accounted for

approximately 80 % of the total variance of the set with some slight differences for

each path/feature.

In the same way as with OA, the first 90 observations of the pristine condition were

used as a training set while the rest were used for validation of the algorithm. The 1

% exclusive threshold value for novelty for a 100-observation, 10-dimensional prob-

lem was estimated after 1,000 trials which was found to be approximately the same

for all paths (Threshold 1). As previously explained in Section 8.3, the Threshold 2

was defined in a similar way.

Figures 8.16(a) and 8.16(b) illustrate the variance drop that resulted from the linear

PCA for propagation path 1 and for both considered features. It was decided that

the first 10 principal components accurately represent the higher percentage of the

data variance. Therefore they were selected for the subsequent outlier analysis. The

1st feature shows that the results are more representative of the assumption made

for the OA on the raw signals; it verifies that area R2 is not indicative of damage.

This means that the 1st (R1) and 2nd (R2) regions are indeed labelled as inliers
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Figure 8.16: Variance drop (a), (b) and outlier analysis at the first 10 principal
components (c), (d) for path 1, corresponding to 1st and 2nd features.

(below the Threshold 1) while the 3rd region (R3) is very close to the threshold

only slightly flagged above it without any considerable variation. In this case there

was no need to assign Threshold 2. It is only after 480,000 cycles that OA gives

clear outliers (R4 and R5). On the other hand, the 2nd feature illustrates a slightly

different behaviour, almost similar to the OA of the respective path/feature for the

raw signals although the values of the deviation are smaller due to the change in the

number of the dimensions of the feature (10-dimensional instead of 50-dimensional).

Figure 8.17 illustrates the same results for propagation path 2. The 1st feature ex-

hibits a similar behaviour for the same feature of path 1 in Figure 8.16, exhibiting

lower deviation from the normal condition and the thresholds than what the re-

spective raw signal showed. In addition, 1st (R1) and 2nd (R2) regions are below
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Figure 8.17: Variance drop (a), (b) and outlier analysis at the first 10 principal
components (c), (d) for path 2, corresponding to 1st and 2nd features.

the threshold 1 and threshold 2 respectively, while the 3rd region (R3) is very close

to threshold 2, exhibiting a relatively steady behaviour. In a similar way as with

propagation path 1, R4 and R5 (above 480,000 cycles) are clearly flagged as outliers

while the boundaries between the two regions are quite distinctive. On the other

hand the 2nd feature exhibits a similar behaviour with the feature taken from the

raw signal, without any underlying difference. The main assumption derived here

is that at least the 1st feature for both paths shows an improved behaviour and

represents in a more reasonable way the structural integrity of the stabilizer. This is

attributed to the fact that among the whole tested data set, only the main principal

components were taken into consideration, which account for the highest percentage

of the variance, hence carrying most of the vital information needed, while leaving

out any other parameters that could have corrupted the signals, such as noise.
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8.4 Validation with thermography

The main objective of the current study was the verification of the relatively new

monitoring technique (Lamb waves) which has not been extensively established yet

with the better established lock-in thermography [121]. Therefore, on-line lock-in

thermography was employed for the monitoring of patch debonding. A Jade 510

(Cedip) MWIR infrared camera was used. The camera was appropriately fixed on

a stand facing perpendicularly the top (repaired) surface of the tail stabilizer after

the monitored area was sprayed with black paint. Figure 8.18 illustrates the results

obtained at representative loads (25, 405, 480 and 561 kcycles) while the Lamb

wave propagation paths 1 and 2 are marked on the figures for illustration purposes

with white arrows. Amplitude images represent the recorded temperature difference

on the structure, on a pixel-by-pixel basis as depicted by the colourbars aside the

images. The deterioration of the patch is reflected by the colour change on the

particular images.

Path 1

Path 2

Path 2

Path 1

Path 2

Path 1

Path 1

Path 2

Patch debonding

Debonding 
between 
honeycomb 
and skin

Bonded area

25kcycles 405kcycles

480kcycles 561kcycles

Figure 8.18: Amplitude images obtained from lock-in thermography at representa-
tive loading cycles. [122]

The debonding area initiated around the rivet and started developing around it,

until it reached a stage at which only a small area maintained bonding at 561,000
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cycles (Figure 8.18). The assigned areas (R1, R2, R3, R4 and R5) show a consid-

erable consistency with the captured damage by the IR camera. Areas R1 and R2

clearly exhibit slight damage (below the assigned thresholds) and only after 25,000

cycles (R3) more significant damage started occurring around the hole accumulating

throughout the loading steps until 405,000 cycles (end of R3, beginning of R4) where

damage is extensive. At this stage it is clear that propagation path 1 is exhibiting

higher deviation from the normal condition since the damage developed at the area

covered by the respective propagation path (see Figure 8.18) is slightly higher than

the respective one developed at the side of path 2. Finally at 561,000 cycles where

R4 region ends the final debonding of the patch is illustrated, a level at which only a

small area was maintained bonded. The results show a good agreement between the

estimation of the presence and approximate location of damage performed through

the Lamb waves and the images obtained with the IR thermocamera. In addition

the location of the piezoelectric transducers proved to be correct since it enabled a

relatively easy analysis with respect to the area of the developed damage. It needs to

be highlighted though, that the images obtained from thermography, indicate that

debonding between the honeycomb and skin was present, as verified by the stress

concentrations observed around the rivet outside the repaired area and in between

the two rivets. The internal core of the stabilizer was detached from the aluminium

skin as a result of the fatigue testing, at locations that coincided with the bolted

joints. However, the thermography results can distinguish between the effect of the

patch debonding and the core detachments, since at loads where complete debond-

ing took place (e.g. 561 kcycles), the stress distributions at the repaired area drop

due to stress relaxation, but they increase around the other bolted joint.

Overall testing with Lamb waves proved to be an efficient technique which success-

fully captured the initiation and the extent of the developed damage through pattern

recognition and data dimensional reduction analysis. Moreover the appropriate def-

inition of features, that exploited certain parts of the waveform (wave packets),

provided some useful information about the possible location of the damage. In

addition the analysis only employed four PZTs which are cheap, light and easy to

implement; the data acquisition was performed with very basic equipment and the

data processing was implemented with fast and computationally efficient algorithms.

These features on top of the efficiency of the technique prove the promising poten-

tials that emerge for on-line monitoring with Lamb waves in aerospace industry. The

potential effect of noise was minimised through the acquisition of 512 averages for

each set of signals. In addition, the effect of temperature and other environmental
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conditions was monitored through the acquisition of extra baseline reference sets

throughout the test, every time the test had to stop for a considerable time period

(e.g. overnight). It is worth noticing though that the characterisation of the type of

damage is not possible at this stage of analysis, hence the proposed methods aim

only to identify the presence of damage, while the study of the effect of each type

(e.g. patch debonding or skin debonding) can be far more complicated.

8.5 Discussion

An aluminium helicopter tail stabilizer with an artificially introduced through-

thickness crack was tested under bending fatigue. The crack was repaired with

a composite patch cured with a heating blanket. The demonstrator was monitored

with lock-in thermography and Lamb waves. Four PZTs were surface-bonded on the

aluminium stabilizer at appropriate locations close to the patch, forming two propa-

gation paths. Appropriate features were selected which enabled the characterisation

of different part of the signals. OA and PCA were performed on the selected features

for all paths. The results indicate that debonding of the patch started developing

after 15,000 cycles probably in the form of resin micro cracks at the adhesive which

steadily accumulated, yet no significant degradation of the structural integrity of

the repaired region is observed until after 405,000 cycles. At this stage significant

deviation of the system is observed which further increased until the end of the test,

suggesting that extensive debonding of the patch took place. It needs to be noted

though that the technique cannot distinguish between debonding of the patch and

the detachment between the skin and honeycomb of the stabilizer. However, the

selected features indicate that damage started propagating at the centre of each

monitored area that is separated by the two paths. This suggested that the first

damage occurred was debonding of the patch at the centre. In addition, comparison

between the two paths showed more distinctive damage indices captured from path 1

at a level that corresponded to an early stage of damage initiation, which is an indi-

cation that the most severe damage occurred at that region. Lock-in thermography

verified the aforementioned results.



Chapter 9

Summary and Conclusions

9.1 Thesis summary

The growing demand for new repair methodologies in aircraft industry, and the need

for a built-in monitoring system which will enable the continuous assessment of the

repaired regions, were the main motivations of the current thesis. The investigation

of new repair approaches which would replace the conventional mechanical fasteners

and which would exhibit high performance under critical loads with the least intru-

sive effect, led to the proposal of the adhesively bonded repairs. This repair method

shows considerable potential due to the high performance, to its low weight, and

to the flexibility in terms of shape and stiffness requirements. The risks associated

with premature failure due to critical mechanical and thermal loads, highlighted

the key requirement for continuous monitoring through a robust structural health

monitoring system. This will eventually help towards an industrial approval. These

points are explained in detail in Chapter 1.

Previous work on the nondestructive testing of such complex structures, has utilised

conventional off-line methods which show little success towards the proposal of a

built-in on-line monitoring scenario, while a number of the more recent structural

health monitoring techniques that have been explored in the past, deal primarily

with simple geometries and damage configurations. This work, aims to overcome

some of the aforementioned limitation, by exploring different damage prognostic

approaches for the monitoring of a variety of panels subjected to representative loads

172
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with guided ultrasonic waves. The basic concept was the benchmarking of these

approaches in small-scale configurations, before the scaling-up to real applications

in aircraft industry, such as a helicopter tail stabilizer. The understanding of the

underlying mechanisms was first performed through the modelling of simple models

with finite elements, where the key challenges were identified. The current work was

performed within the framework of the EU project which provided the funding to the

author of the thesis, the EU 7th Framework Programme (ACP8-GA-2009-234333),

IAPETUS (innovative repair of aerospace structures with curing optimization & life

cycle monitoring abilities).

9.2 Conclusions

Chapter 2 - Bonded repairs

In Chapter 2, an introduction to the background concerning design and structural

integrity monitoring aspects of the composite adhesively patch repairs was presented.

Two are the most commercially applicable types, the external patch repairs and the

scarf patch repairs. Their main design characteristics and procedures were discussed

for each of them, and the most notable work conducted in the area was presented.

The selection criteria of the repair type lies in the design features that will match

the required stiffness, weight, shape, out of mould thickness and ease of application.

The risks that make the continuous monitoring of their structural integrity necessary

were also outlined, supported by the relevant literature review. The most recent

approach is on-line monitoring with built-in diagnostics which is expected to help

towards an industrial approval and certification.

Chapter 3 - Ultrasonic waves

In Chapter 3, the area of the employed structural health monitoring is thoroughly

investigated. The propagation of ultrasonic waves has emerged as a powerful tool

for several applications in a number of research fields. An introduction to the theory

of wave propagation in solids, isotropic and anisotropic, is outlined. The chapter

first presents the propagation of bulk waves in elastic solids, advancing with the fun-

damental principals of the propagation of Lamb waves in isotropic and anisotropic
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plates. The characteristic equations and relevant examples are given where applica-

ble. Significant aspects associated with the Lamb waves were demonstrated, such as

the concepts of dispersion, cut-off frequencies, propagation modes, generation and

detection strategies and numerical modelling techniques. Extra attention was given

to the application of the Lamb waves on nondestructive studies, highlighting the

benefits as well as the challenges. A relevant literature review was given based on

the most representative work that has been conducted in the area.

Chapter 4 - Signal processing techniques

Chapter 4 demonstrated the signal processing techniques that are explored in this

thesis. These techniques fall into the category of pattern recognition, dimension

reduction analysis for high-dimensional, multivariate data and time-frequency anal-

ysis for nonstationary signals. Extra focus was given on the outlier analysis, linear

and nonlinear principal component analysis, the Hilbert transform and the Hilbert-

Huang transform. Some mathematical supporting material was presented as well

as simple examples that demonstrate the applicability of the aforementioned tools

on representative sets of data. The selection of the techniques was performed on

the basis of novelty and damage prognostics potential. The main objective of the

work was the utilisation of these techniques in order to process the obtained ultra-

sonic waves and attribute the processed featured to the structural integrity state of

the monitored system with a certain level of confidence. Outlier analysis has been

used so far for simple idealised damage detection case studies when there was an

a priori knowledge of damage. Principal component analysis is a well established

method leading to nonlinear principal component analysis which as an advanced

method, has not been systematically established yet for damage detection purposes.

In addition, the Hilbert-Huang transform exhibits certain advantages over the more

traditional time-frequency approaches since it is an adaptive method with no need

for an a priori defined basis.

Chapter 5 - Time-frequency analysis of Lamb waves for feature selection

Chapter 5 presents a time-frequency application of Lamb wave propagation on a

simple system; an aluminium flat plate repaired with an aluminium one-sided ex-

ternal patch subjected to tension-tension fatigue loads. The selection of this system
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was based on the low level of complexity in the developed failure modes compared to

the composite repaired configurations. Lamb waves were excited by surface-bonded

piezoelectric transducers, and the instantaneous properties of the obtained signals

were further processed. The resulting instantaneous frequency exhibited consider-

able noisy areas due to the magnification of noise that is the effect of the differ-

entiation of the instantaneous phase prior to the estimation of the instantaneous

frequency. The EEMD was then used in order to decompose the obtained signals

and clean up the observed artefacts. The EEMD in this study operated as a filter-

ing method which removed most of the undesirable noise but not completely. This

manipulation enabled the isolation of certain parts of the captured Lamb waves that

were further assessed with a simple damage index. The developed damage showed

a good consistency with the employed damage index, enabling the association of

the wave propagation paths that were affected by damage with respective defined

features that exhibited higher damage index sensitivity. In addition, a single degree

of freedom system was modelled with different levels of damping, hence represent-

ing different levels of damage. This showed that the peak-to-peak amplitude of

the instantaneous frequency is possibly increasing with respect to the increasing

damping (e.g. increasing level of damage). This phenomenon agreed with the ob-

served experimental behaviour. Despite the potentials of the analysis described in

the chapter, there are several limitation factors that led the author to reconsider

the applicability of the techniques on more complex parts of the future work. Such

limitations primarily involve the few monitoring points and the limited features that

could be isolated from the recorded Lamb waves, the lack of physical meaning of

the resulting indices and the lack of understanding of the effect of the boundaries on

the developed indices (e.g. patch). Parts of this work appear in [123], [124], [101].

Chapter 6 - Numerical analysis of Lamb wave propagation

In Chapter 6, a finite element model built with ABAQUS was developed in order

to investigate the physics of the wave propagation mechanisms that take place in

composite repaired structures. 3D solid elements were utilised to model a cross-ply

carbon reinforced polymer-based laminate repaired with a one-sided external patch

made out of the same material and with the same ply orientation. In addition,

two configurations were considered for the repaired plate (e.g. with and without

a hole). Different damage scenarios were employed, namely the debonding of the

patch at representative locations, the degradation of the substrate and the simulta-
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neous effect of both. The first antisymmetric mode (A0 mode) was excited by means

of point force excitation in pulse-echo and pitch-catch modes following an explicit

analysis. A theoretical verification and an experimental validation were conducted

which proved the efficiency of the built model. The experimental excitation of the A0

mode was successfully performed at low frequencies through the approach of mode

tuning. The objective of the current chapter was the investigation of the physics

of the wave propagation mechanisms that take place in composite repaired struc-

tures and the analysis of the effect of the developed damage in order to evaluate the

efficiency and applicability of the physics-based processing approaches. The study

concludes on the complex phenomena in terms of wave interpretation that follow

the design characteristics of the repaired structures, such as the extra thickness of

the patch and the hole underneath it, which will lead to multiple mode conver-

sions. The pitch-catch mode exhibits a higher damage sensitivity compared to the

pulse-echo mode, with the second leading to considerable wave attenuation due to

the multiple reflections that occur at the waves before they propagate through the

repaired region. The study highlights that in real applications these phenomena are

not straightforward since these mechanisms can be far more complicated with the

presence of extra features such as rivets or stringers, hence underlying the existing

challenges in the physics-based evaluation approaches.

Chapter 7 - Damage detection in composite repaired structures

In Chapter 7, two representative small-scale composite structures repaired with ad-

hesively bonded repairs were tested under representative loads. The objective was

the demonstration of different concepts towards the realisation of a damage prog-

nosis strategy along with the identification of the level of success and the potential

limitations for each of them. The chapter employed Lamb waves monitoring together

with alternative nondestructive techniques in order to verify the observed phenom-

ena. More specifically, a scarf repair patch was implemented on an impacted com-

posite laminate and it was tested under tension and monitored with Lamb waves

and on-line digital image correlation. The recorded Lamb waves were treated as

multivariate data and further assessed by means of outlier analysis and principal

component analysis (linear and nonlinear) after the appropriate feature selection.

The principal curves were proposed as a novel damage prognosis tool through whose

fitting, the damage mapping of a relatively complex system was possible with just a

one-dimensional curve. The study investigated the level of success of the employed
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methods through a comparative manner and managed to identify potential limita-

tion that are associated with extreme damage loading scenarios. The effect of noise

was also explored in order to locate potential effects, proving that outlier analysis

can successfully detect damage even under extremely noisy conditions. All methods

exhibited a considerable agreement with the results obtained from the digital image

correlation, successfully validating the extent of the damage. The only limitation of

the principal curves lies in the difficulty in assigning a certain initiation and finishing

point or in assigning a certain fitting path.

In addition, a composite external repair patch was used to repair a composite lam-

inate and it was further tested under tension-tension fatigue. The panel was moni-

tored with Lamb waves while X-rays radiography and microscopic analysis were used

in order to assess the internally developed damage at 95 % of the panel’s ultimate

strength, a step at which the panel failed. The excitation of the first antisymmet-

ric (A0) and symmetric (S0) modes was attempted through the out-of-phase and

in-phase operation of two surface-bonded piezoelectric transducers respectively, at-

tached at the bottom and the top surface of the monitored panel. The estimation of

the theoretical dispersion curves enabled the validation of the excitation approach,

verifying the excitation of the A0 mode only. The estimation of the experimental

group velocity was performed through the application of the Akaike information

criterion, as a more reliable way of tracking the onset time of ultrasonic waves. This

mode was further processed in order to deal with the problem of inadequate train-

ing data through a pseudoinverse approach for the inverse of the covariance matrix.

The reduction of the dimensions of the obtained data was proposed through the

isolation of the most representative principal components, estimated through the

principal component analysis. This allowed the application of the outlier analysis in

a successful manner in what appeared to be a complex problem. Parts of this work

appear in [125], [126], [127], [128], [129], [10].

Chapter 8 - Monitoring of a repaired helicopter tail stabilizer

The final chapter of the work, Chapter 8, aimed to scale up the tested configuration

and to examine the applicability and efficiency of the aforementioned techniques

in a helicopter structure. The demonstrator is an aluminium helicopter tail stabi-

lizer loaded under bending fatigue. An artificially introduced crack was repaired

with a composite one-sided external patch after the critical location was identified.
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The demonstrator was monitored with Lamb waves and lock-in thermography. The

two fundamental modes (A0 and S0) were excited with piezoelectric transducers

surface-bonded at appropriate locations on the aluminium stabilizer, forming two

propagation paths in such a way that the most critical areas of the repaired region

would be covered. Appropriate features were selected which enabled the characteri-

sation of different part of the signals. Outlier and principal component analysis were

conducted in order to identify the number of cycles where damage started develop-

ing in the form of patch debonding and honeycomb detachment from the skin. Both

methods proved damage sensitive, enabling a relatively good characterisation of the

deviation of the monitored system from the captured baseline reference at each wave

propagation path. In particular, for the outlier analysis technique, the assignment of

a second threshold apart from the Monte Carlo was performed, in order to account

for the irregularities introduced to a number of factors that could affect the ob-

tained data at early normal or near-normal condition stages and potentially lead to

false alarms. The observed results were further correlated with the images obtained

from thermography with a remarkable agreement. However, the technique cannot

distinguish between debonding of the patch and the detachment between the skin

and honeycomb of the stabilizer. The principal curves were further fitted on the

selected features and the reduction of the dimensions prior to the outlier analysis

was possible through the isolation of appropriate principal components.

9.3 Contribution to knowledge

• The concept of adhesively bonded repairs has been proposed and tested for

its structural and design advantages by many researchers before. However

little effort has been made to investigate the damage prognostic potentials

that would emerge from a structural health monitoring strategy. The thesis

explored the applicability of Lamb waves for the continuous monitoring of the

repaired area aiming to develop a concept that can accurately identify the

initiation and growth of internal damage.

• Different repair types were tested under real testing conditions (e.g. external

repair patches and scarf repair patches), which were manufactured following

standard procedures used by airline companies. The testing employed different

configurations, including scaled repairs to large-scale demonstrators such as
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a helicopter vertical tail stabilizer. This secured that the proposed damage

prognosis tools will be demonstrated under representative conditions on real

structures as met in aircraft industry.

• A variety of alternative nondestructive techniques was used in order to fully

support the monitoring results of the current thesis such as digital image cor-

relation, lock-in thermography, X-ray radiography. In all cases Lamb wave

monitoring proved to be consistent with the alternative techniques while its

portability and cost efficiency were highlighted.

• An FE model aimed to explain the physical phenomena that take place during

the propagation of Lamb waves through repaired composite panels with differ-

ent types of pre-introduced damage. This step enabled a good understanding of

the underlying mechanisms on how each type of damage affects the propagat-

ing waves. The realisation of the optimum excitation approach was performed

(e.g. pitch-catch), and the limitations of a potential physics-based approach

to the problem investigated in the current thesis were explored. This step was

considered crucial since it sets a realistic basis also on future work that might

aim to deal with similar problems on a physics-based approach.

• The study of the instantaneous properties of the Lamb waves along with the

Hilbert-Huang transform was performed on a repaired aluminium configura-

tion. Even though these tools have been widely explored in the past as a

time-frequency approach to damage detection problems, little effort has been

made on understanding the physics of the mechanisms. Although the Hilbert-

Huang transform is an attractive tool due to its adaptive nature, the current

thesis attempted to show the limitations in a potential use with Lamb waves

due to the lack of sufficient theoretical background.

• The outlier analysis was successfully applied for damage detection, which ac-

curately identified the initiation and propagation of damage for the tested

configurations. The effect of noise was tested which showed that outlier anal-

ysis can detect damage even under extremely noisy environments. Along with

the principal component analysis which is a well established technique, the

possibility of the drop in the Mahalanobis squared-distance was explored al-

though damage propagated. This phenomenon was attributed to the extreme

deviation of the monitored system from the baseline reference which was pic-

tured in the two-dimensional space captured from the principal component
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analysis.

• The concept of nonlinear principal component analysis was utilised in order to

extract the principal curves as a potential damage prognosis tool. These were

further applied on the estimated clusters of the linear principal component

analysis. The proposed approach is based on the interpretation of the variation

of the arc length of the curves with respect to the loads. The motivation of this

proposal lay in the attempt to reduce the dimensionality of the multivariate

data sets and depict the structural integrity of a complex system with simply

a curve.

• Two proposed ideas for the excitation of the two fundamental Lamb wave

modes (A0 and S0) were experimentally validated. More specifically, the modes

tuning that was initially proposed by Giurgiutiu [112] was validated on a

unidirectional carbon fibre laminate for the validation of the finite element

model. The A0 mode was successfully excited at low frequencies (e.g. below

30 kHz). Additionally, the excitation of both A0 and S0 modes was explored

through the exploitation of the polarity of piezoelectric transducers attached

at the top and bottom surface of a woven carbon fibre laminate (external repair

patch). The excitation of the A0 mode was successful while the excitation of

the S0 mode was corrupted possibly due to the coupled shear horizontal mode.

• The problem of inadequate training data for the outlier analysis was studied for

the experimental investigation of the external repair patch and two methods

were explored in order to overcome the problem. The one was based on the

pseudoinverse approach for the inverse of the covariance matrix. The second

was based on the reduction of the dimensions of the obtained data through the

isolation of the most representative principal components, estimated through

the principal component analysis.

• The use of Akaike information criterion was employed in order to estimate

the onset time of the recorded Lamb waves for the damage detection of the

external repair patch, in order to accurately estimate the experimental group

velocity. This method aimed to overcome the problem of identifying the arrival

time under noisy conditions, which was successfully demonstrated.
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9.4 Recommendations for future work

The future work could be divided into three main categories following the main

areas this thesis deals with, namely the numerical modelling, the signal processing

and the experimental testing.

Numerical modelling

Future work could potentially explore how the different design parameters of the re-

pairs can affect the propagation mechanisms such as different shapes, ply orientation,

double-sided external repairs and scarf repairs. Additionally, more work could be

carried out on optimising the excitation of the Lamb waves by accurately modelling

the piezoelectric transducers through the use of sub-routines in ABAQUS, in or-

der to better approximate the experimental conditions. Towards that direction, the

meshing approach could also be investigated, in order to better represent the shape

of the hole under the patch. Extra cases can be taken into consideration, such as re-

paired cracks that further propagate under the patch, a case that was experimentally

tested for the stabilizer. With respect to the model’s validation, the identification of

those features that affect the accuracy can be made, such as the mode tuning with

the piezoelectric transducers. Moreover, the phenomenon of mode conversion at the

boundaries of the repair patch could be further examined. All these points could

probably enable a better understanding of how a physics-based approach could be

exploited for the damage detection and location on composite repaired structures.

Signal processing

First of all, the optimisation of the principal curves code could be conducted in order

to account for cases where the arc length does not connect data sets with increasing

order of damage. This would provide extra confidence with respect to the use of this

proposal as a damage prognosis tool. Furthermore, the training approach for the

outlier analysis, could be modified in such a way that it would take into consideration

data sets that come from the normal condition, and which do not follow a Gaussian

distribution. This case was met in the analysis of the stabilizer, where a second

threshold had to be assigned in order to account for the data sets that appeared

to have a near-normal condition but no longer followed a Gaussian distribution. In
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terms of the time-frequency analysis tools, although the author would not directly

suggest the use of the Hilbert-Huang transform for damage detection with Lamb

waves, nevertheless a better understanding of the effect of damage on the obtained

results could probably improve the applicability of this approach. It should then

be further tested in experimental conditions that would consider a large number

of testing steps. Analysis on signals obtained from validated finite elements models

could be potentially easier, since the conditions would be under control with no noise

or interference by any experimental set up. Finally, the training of the presented

pattern recognition methods could be attempted with data obtained from a finite

element model. In this case a test could determine whether experimental data

could be accurately flagged as inliers or outliers. In this case all the complications

associated with obtaining a strong baseline reference would be minimised.

Experimental testing

Even though the experimental testing conducted within the framework of this thesis

is considered to be quite representative, taking into consideration the most common

repair types and quite representative loading conditions regularly met in aircraft

industry, some further work could potentially be of interest. For instance, different

kind of loads could be investigated such as 4-point bending and impact in order to

produce more localised and more controllable kinds of damage. Then in this case,

the employed damage prognosis strategy could focus on ways to identify the location

and the type of the developed damage.
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Appendix A

Digital Image Correlation

Digital image correlation (DIC) is a non-contact optical techniques which was first

introduced to experimental mechanics by Peter and Ramson in 1981 who first pro-

posed the use of computer-based image acquisition and deformation measurements

in materials systems [130]. This technique has been lately used for nondestructive

purposes, where 2-dimensional (2D) and 3-dimensional (3D) surface displacements

and strain fields are estimated for the tested object.

One properly calibrated camera for the 2D and two cameras for the 3D DIC, record

images of the object before (reference image) and after loading. The cameras em-

ployed, have CCD (charge couple device-sensor) arrays which are photosensitive cells

of thousand or more pixels. These record the intensity of the light that targets a

specific pixel. The recorded signal from each array is digitized in order to provide a

reading in terms of the intensity of the light. A calibration grid is required for the

establishment of the working parameters of the cameras. The surface of the object

is sprayed with paint in order to create a speckle pattern that will provide a random

texture (grey-scale pattern). This will guarantee that each signature taken from the

surface is unique, hence the surface should have a non repetitive, high contrast pat-

tern. The speckles size should be of a few pixels. The readings are then processed

by means of matching sub-images of the images that are recorded before and after

the loading.

In Figure A.1 illustrates a simplified approach on the correlation between the base-

line image and the deformed image during the 2D DIC. In the figure, the baseline
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Figure A.1: Schematic illustration of the basic principle of DIC technique.

image and the deformed image are illustrated. The principal will be explained on

the basis of the points R and S. Assuming that the set of neighbouring points R and

S will remain neighbouring points even after the deformation, the estimation of the

deformation of the point R is performed by taking into consideration the point S.

If the coordinates of the two points are R:(xR,yR), S:(xS,yS) before the deformation

and R:(x’R,y’R), S:(x’S,y’S) after the deformation, then the in-plane displacements

of the point R (uR, νR) can be found through the approximation of the first-order

Taylor expansion [131],[132]:

x′S = xR + uR +
∂uR
∂x

∆x+
∂uR
∂y

∆y (A.1)

y′S = yR + νR +
∂νR
∂x

∆x+
∂νR
∂y

∆y (A.2)

where ∆x and ∆y are the sub-image from the point R. Then the displacement vector

is expressed by:

~VR = [uR, νR,
∂uR
∂x

,
∂νR
∂y

,
∂uR
∂y

,
∂νR
∂x

]T (A.3)

The basic mechanism behind DIC is the correlation of the recorded sub-images

in order to determine the displacement vector. The correlation of the sub-images

is performed with certain commercial codes which are based on well established

algorithms that utilise either criteria based on the cross-correlation coefficient or

on the least-square correlation coefficient [133]. If f(xR,yR) is the light intensity



value of the the point R, then f (x’R,y’R), is the intensity value of the point R after

the deformation. Then the least squares correlation coefficient can be expressed as

[131],[132]:

C =

∑
S[f(xR, yR)− f(x′R, y

′
R)]2∑

S f(xR, yR)2
(A.4)

where (xR,yR) belongs to the subset S in the baseline image and (x’R,y’R) belongs

to the subset S’ which is the deformed image (7.4). The cross correlation coefficient

can be expressed by:

C = 1−
∑

S[f(xR, yR)f(x′R, y
′
R)]∑

S f
2(xR, yR)]

∑
S f

2(x′R, y
′
R)]

1
2

(A.5)

In comparison with other experimental techniques such as Moiré interferometry and

electric speckle interferometry, DIC is simple and robust because complicated surface

treatment is not needed and its requirement for testing environment is low. On the

other hand, the subset size accuracy and the quality of a speckle pattern are of vital

importance [133], [10].



Appendix B

Lock-in Thermography

Infrared thermography (IrT) has been widely used for nondestructive techniques, in

order to detect subsurface defects and features, by monitoring their thermal gradient

at the near surface regions, following a thermal stimulation. The defects result to a

delay in the cooling process since they act as heat traps within the material [121].

There are two main categories for IrT, based on the stimulation method, namely

the active and passive thermography. For the passive approach, the temperature of

the material is exploited without any external stimulation source, if the material’s

temperature is naturally higher than the surrounding area. On the other hand, the

active thermography requires a thermal stimulation, in order to enable the charac-

terisation of the defects based on the thermal differences of the surface [121]. There

is a wide range of external excitations such as optical, mechanical or inductive.

Optical excitations (e.g. infrared lamps) are externally stimulated, and the energy

is transferred to the tested material in the form of light which is transformed into

heat. Then these thermal waves, interact with the defects, and depending on the

thermal properties of the material, they either slow down or speed up. Mechani-

cal excitations (also known as vibro-thermography) are usually performed through

a mechanical oscillation that utilises waves. These mechanical waves propagate

through the material and they produce dissipated heat waves as they interact with

the discontinuities. The inductive excitation, can only applied to electro-conductive

materials, where eddy currents heat the specimen [134].

The most popular active IrT approaches are the pulse thermography (PT), the

pulsed phased thermography (PPT) and the lock-in thermography (LT). The first
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employs an excitation source that follows a square pulse, enabling two possible

modes, the transmission and the reflection modes. This approach allows for the

duration of the pulse to be modified (from milliseconds to a few seconds) in order to

account for materials with different conductivity. The second method, employs the

same principals as with the PT, only in this case the Fourier transform is utilised to

provide both phase and amplitude images of the tested object. This work focused

on an active thermography approach (i.e. the lock-in thermography) [135].

Thermal wave 
(sinusoidal)

Thermal wave 
(sinusoidal)

IR camera

Thermal wave 
source

Thermal wave 
source

Processing 
unit

Defect

Figure B.1: Schematic illustration of the lock-in thermography experimental set up.

In the lock-in thermography (IrT) also known as modulated thermography (MT),

the external source is periodic, more usually sinusoidal. A typical experimental set-

up that is followed for this case is illustrated in Figure B.1. The monitored system

needs to be coupled to a thermal wave source, which can result to a sinusoidal

temperature modulation. These waves can be generated, if the acquisition device

and the source of heating are synchronised. Therefore the heat source needs to

be properly calibrated for each frequency in order to achieve a constant sinusoidal

temperature waveform. The equation that expressed the thermal wave in the case

of lock-in thermography is given by [136]:

T (t, z) = T0e
− z
µ cos(ωt− 2πx

λ
) (B.1)

where is the temperature, z is the depth, t is the time and λ is the thermal wave-

length (λ=2πµ).

The signals are then recorded by the lock-in amplifier at each time instant and

local changes in the amplitude and phase provide information about the presence



and location of internal defects as a response to the modulated thermal input. The

depth the can be monitored depends on a variety of factors, such as the wave cycle

time, the heat conductivity and capacity of the material and its density. For the

thermal wave to penetrate into the object, it needs to attenuate. The inverse of the

thermal diffusion length µ, can be defined by [136], [137]:

µ =

√
α

πf
(B.2)

where α is the thermal diffusivity and f is the wave frequency. The inverse of the

thermal diffusion expresses the real and imaginary parts of the complex wave number

of a heavily damped wave. This is associated with the modulated heat transport.

The depth range for the amplitude image that can be monitored is given by µ while

the maximum depth that can be inspected for the phase image is 1.8 µ. The wave

frequencies can get a wide range [137]. However at lower frequencies, higher depths

values can be achieved while at high frequencies, only surface or near-surface defects

can be detected.



Appendix C

ABAQUS input files

This Appendix contains a representative input file that was used for the ABAQUS

FE analysis that was demonstrated throughout this work. Due to space restriction,

the respective file does not include all the elements and the nodes of the model and

only the model of the damage scenario 4 (D2) is displayed as a more representative

example.

*Heading

** Job name: SC4_D2 Model name: D2

** Generated by: Abaqus/CAE 6.10-2

*Preprint , echo=NO, model=NO , history=NO , contact=NO

**

** PARTS

**

*Part , name=Patch

*Node

1, 0.0160000008 , 0.00499999989 , 0.00200000009

2, 0.0160000008 , 0.00600000005 , 0.00200000009

3, 0.0149999997 , 0.00600000005 , 0.00200000009....

*Element , type=C3D8R

1, 128, 142, 141, 127, 1, 2, 3, 4

2, 129, 143, 140, 126, 128, 142, 141, 127

3, 130, 144, 139, 125, 129, 143, 140, 126....

*Nset , nset=_PickedSet12 , internal , generate

1, 15129, 1

*Elset , elset=_PickedSet12 , internal , generate

1, 12800, 1

*Elset , elset=Patch1

1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 ,...

*Elset , elset=Patch2

2, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,...

*Elset , elset=Patch3

3, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,...

*Elset , elset=Patch4
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4, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,...

*Elset , elset=Patch5

5, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,...

*Elset , elset=Patch6

6, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,...

*Elset , elset=Patch7

7, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102 ,...

*Elset , elset=Patch8

8, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116 ,...

*Orientation , name=Ori -1

1., 0., 0., 0., 1., 0.

3, 0.

** Region: (CFRP 997/2: Picked), (Material Orientation:Patch1)

*Elset , elset=_I1 , internal

1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 ,...

** Section: CFRP 997/2

*Solid Section , elset=_I1 , orientation=Ori -1, material ="CFRP 997/2"

,

*Orientation , name=Ori -2

1., 0., 0., 0., 1., 0.

3, 90.

** Region: (CFRP 997/2: Picked), (Material Orientation:Patch2)

*Elset , elset=_I2 , internal

2, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,...

** Section: CFRP 997/2

*Solid Section , elset=_I2 , orientation=Ori -2, material ="CFRP 997/2"

,

*Orientation , name=Ori -3

1., 0., 0., 0., 1., 0.

3, 90.

** Region: (CFRP 997/2: Picked), (Material Orientation:Patch3)

*Elset , elset=_I3 , internal

3, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,...

*Solid Section , elset=_I3 , orientation=Ori -3, material ="CFRP 997/2"

,

*Orientation , name=Ori -4

1., 0., 0., 0., 1., 0.

3, 0.

** Region: (CFRP 997/2: Picked), (Material Orientation:Patch4)

*Elset , elset=_I4 , internal

4, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,...

** Section: CFRP 997/2

*Solid Section , elset=_I4 , orientation=Ori -4, material ="CFRP 997/2"

,

*Orientation , name=Ori -5

1., 0., 0., 0., 1., 0.

3, 0.

** Region: (CFRP 997/2: Picked), (Material Orientation:Patch5)

*Elset , elset=_I5 , internal

5, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,...

** Section: CFRP 997/2

*Solid Section , elset=_I5 , orientation=Ori -5, material ="CFRP 997/2"

,

*Orientation , name=Ori -6

1., 0., 0., 0., 1., 0.



3, 90.

** Region: (CFRP 997/2: Picked), (Material Orientation:Patch6)

*Elset , elset=_I6 , internal

6, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,...

** Section: CFRP 997/2

*Solid Section , elset=_I6 , orientation=Ori -6, material ="CFRP 997/2"

,

*Orientation , name=Ori -7

1., 0., 0., 0., 1., 0.

3, 90.

** Region: (CFRP 997/2: Picked), (Material Orientation:Patch7)

*Elset , elset=_I7 , internal

7, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102 ,...

** Section: CFRP 997/2

*Solid Section , elset=_I7 , orientation=Ori -7, material ="CFRP 997/2"

,

*Orientation , name=Ori -8

1., 0., 0., 0., 1., 0.

3, 0.

** Region: (CFRP 997/2: Picked), (Material Orientation:Patch8)

*Elset , elset=_I8 , internal

8, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116 ,...

** Section: CFRP 997/2

*Solid Section , elset=_I8 , orientation=Ori -8, material ="CFRP 997/2"

,

*End Part

**

*Part , name=Substrate

*Node

1, 0.0199999996 , -0.0649999976 , 0.00200000009

2, 0.0199999996 , -0.0199999996 , 0.00200000009

3, 0.0160000008 , -0.0199999996 , 0.00200000009 ...

*Element , type=C3D8R

1, 394, 6027, 51991, 5985, 1, 193, 5721, 286

2, 6027, 6028, 51992 , 51991, 193, 194, 5722, 5721

3, 6028, 6029, 51993 , 51992, 194, 195, 5723, 5722 ...

*Nset , nset=_PickedSet329 , internal

1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,...

*Elset , elset=_PickedSet329 , internal

1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,...

*Nset , nset=_PickedSet330 , internal

80, 83, 85, 86, 96, 98, 117, 120, 2399, 2400 ,...

*Elset , elset=_PickedSet330 , internal , generate

67961, 68760, 1

*Elset , elset=Substrate1

1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,...

*Elset , elset=Substrate2

181, 182, 183, 184, 185, 186, 187, 188, 189, 190 ,...

*Elset , elset=Substrate3

361, 362, 363, 364, 365, 366, 367, 368, 369, 370 ,...

*Elset , elset=Substrate4

541, 542, 543, 544, 545, 546, 547, 548, 549, 550 ,...

*Elset , elset=Substrate5

721, 722, 723, 724, 725, 726, 727, 728, 729, 730 ,...

*Elset , elset=Substrate6



901, 902, 903, 904, 905, 906, 907, 908, 909, 910 ,...

*Elset , elset=Substrate7

1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1090 ,...

*Elset , elset=Substrate8

1261, 1262, 1263, 1264, 1265, 1266, 1267, 1268, 1269, 1270 ,...

*Orientation , name=Ori -1

1., 0., 0., 0., 1., 0.

3, 0.

** Region: (CFRP 997/2: Picked), (Material Orientation:Substrate1)

*Elset , elset=_I1 , internal

1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,...

** Section: CFRP 997/2

*Solid Section , elset=_I1 , orientation=Ori -1, material ="CFRP 997/2"

,

*Orientation , name=Ori -2

1., 0., 0., 0., 1., 0.

3, 90.

** Region: (CFRP 997/2: Picked), (Material Orientation:Substrate2)

*Elset , elset=_I2 , internal

181, 182, 183, 184, 185, 186, 187, 188, 189, 190 ,...

** Section: CFRP 997/2

*Solid Section , elset=_I2 , orientation=Ori -2, material ="CFRP 997/2"

,

*Orientation , name=Ori -3

1., 0., 0., 0., 1., 0.

3, 90.

** Region: (CFRP 997/2: Picked), (Material Orientation:Substrate3)

*Elset , elset=_I3 , internal

361, 362, 363, 364, 365, 366, 367, 368, 369, 370 ,...

** Section: CFRP 997/2

*Solid Section , elset=_I3 , orientation=Ori -3, material ="CFRP 997/2"

,

*Orientation , name=Ori -4

1., 0., 0., 0., 1., 0.

3, 0.

** Region: (CFRP 997/2: Picked), (Material Orientation:Substrate4)

*Elset , elset=_I4 , internal

541, 542, 543, 544, 545, 546, 547, 548, 549, 550 ,...

** Section: CFRP 997/2

*Solid Section , elset=_I4 , orientation=Ori -4, material ="CFRP 997/2"

,

*Orientation , name=Ori -5

1., 0., 0., 0., 1., 0.

3, 0.

** Region: (CFRP 997/2: Picked), (Material Orientation:Substrate5)

*Elset , elset=_I5 , internal

721, 722, 723, 724, 725, 726, 727, 728, 729, 730 ,...

** Section: CFRP 997/2

*Solid Section , elset=_I5 , orientation=Ori -5, material ="CFRP 997/2"

,

*Orientation , name=Ori -6

1., 0., 0., 0., 1., 0.

3, 90.

** Region: (CFRP 997/2: Picked), (Material Orientation:Substrate6)

*Elset , elset=_I6 , internal



901, 902, 903, 904, 905, 906, 907, 908, 909, 910 ,...

** Section: CFRP 997/2

*Solid Section , elset=_I6 , orientation=Ori -6, material ="CFRP 997/2"

,

*Orientation , name=Ori -7

1., 0., 0., 0., 1., 0.

3, 90.

** Region: (CFRP 997/2: Picked), (Material Orientation:Substrate7)

*Elset , elset=_I7 , internal

1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1090 ,...

** Section: CFRP 997/2

*Solid Section , elset=_I7 , orientation=Ori -7, material ="CFRP 997/2"

,

*Orientation , name=Ori -8

1., 0., 0., 0., 1., 0.

3, 0.

** Region: (CFRP 997/2: Picked), (Material Orientation:Substrate8)

*Elset , elset=_I8 , internal

1261, 1262, 1263, 1264, 1265, 1266, 1267, 1268, 1269, 1270 ,...

** Section: CFRP 997/2

*Solid Section , elset=_I8 , orientation=Ori -8, material ="CFRP 997/2"

,

** Region: (Damage:Picked), (Material Orientation:Substrate8)

*Elset , elset=_I9 , internal , generate

67961, 68060, 1

** Section: Damage

*Solid Section , elset=_I9 , orientation=Ori -8, material =" Damage 10% off"

,

** Region: (Damage:Picked), (Material Orientation:Substrate7)

*Elset , elset=_I10 , internal , generate

68061, 68160, 1

** Section: Damage

*Solid Section , elset=_I10 , orientation=Ori -7, material =" Damage 10% off"

,

** Region: (Damage:Picked), (Material Orientation:Substrate6)

*Elset , elset=_I11 , internal , generate

68161, 68260, 1

** Section: Damage

*Solid Section , elset=_I11 , orientation=Ori -6, material =" Damage 10% off"

,

** Region: (Damage:Picked), (Material Orientation:Substrate5)

*Elset , elset=_I12 , internal , generate

68261, 68360, 1

** Section: Damage

*Solid Section , elset=_I12 , orientation=Ori -5, material =" Damage 10% off"

,

** Region: (Damage:Picked), (Material Orientation:Substrate4)

*Elset , elset=_I13 , internal , generate

68361, 68460, 1

** Section: Damage

*Solid Section , elset=_I13 , orientation=Ori -4, material =" Damage 10% off"

,

** Region: (Damage:Picked), (Material Orientation:Substrate3)

*Elset , elset=_I14 , internal , generate

68461, 68560, 1



** Section: Damage

*Solid Section , elset=_I14 , orientation=Ori -3, material =" Damage 10% off"

,

** Region: (Damage:Picked), (Material Orientation:Substrate2)

*Elset , elset=_I15 , internal , generate

68561, 68660, 1

** Section: Damage

*Solid Section , elset=_I15 , orientation=Ori -2, material =" Damage 10% off"

,

** Region: (Damage:Picked), (Material Orientation:Substrate1)

*Elset , elset=_I16 , internal , generate

68661, 68760, 1

** Section: Damage

*Solid Section , elset=_I16 , orientation=Ori -1, material =" Damage 10% off"

,

*End Part

**

**

** ASSEMBLY

**

*Assembly , name=Assembly

**

*Instance , name=Substrate -1, part=Substrate

*End Instance

**

*Instance , name=Patch -1, part=Patch

0., 0., 0.002

*End Instance

**

*Nset , nset=_PickedSet307 , internal , instance=Patch -1

95, 96, 97, 101, 102, 104, 105, 106, 110, 116, 119 ,...

*Elset , elset=_PickedSet307 , internal , instance=Patch -1

10961, 10962 , 10963 , 10964, 11465, 11466, 11467 , 11468 , 11469, 11470 ,...

*Nset , nset=_PickedSet309 , internal , instance=Patch -1

5, 8, 11, 13, 14, 15, 16, 21, 22, 25, 112 ,...

*Elset , elset=_PickedSet309 , internal , instance=Patch -1

121, 122, 123, 124, 153, 154, 155, 156, 157, 158 ,...

*Nset , nset=_PickedSet311 , internal , instance=Patch -1

45, 54, 59, 60, 723, 724, 725, 726, 727, 728, 729 ,...

*Elset , elset=_PickedSet311 , internal , instance=Patch -1, generate

6021, 6120, 1

*Nset , nset=_PickedSet312 , internal , instance=Substrate -1

44, 46, 49, 50, 53, 54, 65, 69, 70, 75,...

*Elset , elset=_PickedSet312 , internal , instance=Substrate -1

54873, 54874 , 54875 , 54876, 54877, 54878, 54879 , 54880 , 54881, 55411 ,...

*Nset , nset=_PickedSet313 , internal , instance=Patch -1

6, 7, 12, 29, 30, 32, 37, 38, 39, 40, 43, 44 ,...

*Elset , elset=_PickedSet313 , internal , instance=Patch -1

984, 985, 986, 987, 988, 989, 990, 991, 992, 1875, ...

*Nset , nset=A(bel), instance=Substrate -1

38358,

*Nset , nset=A(up), instance=Substrate -1

38754,

*Nset , nset=S1, instance=Substrate -1

16340,



*Nset , nset=S2, instance=Substrate -1

38753,

*Elset , elset=__PickedSurf306_S4 , internal , instance=Substrate -1

93728, 93736 , 93744 , 93752, 98800, 98808, 98816 , 98824 , 98832, 98840, 98848 ,...

*Elset , elset=__PickedSurf306_S1 , internal , instance=Substrate -1, generate

83637, 83640, 1

*Elset , elset=__PickedSurf306_S2 , internal , instance=Substrate -1, generate

77649, 77704, 1

*Surface , type=ELEMENT , name=_PickedSurf306 , internal

__PickedSurf306_S4 , S4

__PickedSurf306_S1 , S1

__PickedSurf306_S2 , S2

*Elset , elset=__PickedSurf308_S2 , internal , instance=Substrate -1

1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448, 1449, 1450, 1451, 1452, 1453 ,...

*Elset , elset=__PickedSurf308_S1 , internal , instance=Substrate -1, generate

20717, 20720, 1

*Surface , type=ELEMENT , name=_PickedSurf308 , internal

__PickedSurf308_S2 , S2

__PickedSurf308_S1 , S1

*Elset , elset=__PickedSurf310_S1 , internal , instance=Substrate -1, generate

68661, 68760, 1

*Surface , type=ELEMENT , name=_PickedSurf310 , internal

__PickedSurf310_S1 , S1

*Surface , type=NODE , name=_PickedSet307_CNS_ , internal

_PickedSet307 , 1.

*Surface , type=NODE , name=_PickedSet309_CNS_ , internal

_PickedSet309 , 1.

*Surface , type=NODE , name=_PickedSet311_CNS_ , internal

_PickedSet311 , 1.

*Surface , type=NODE , name=_PickedSet312_CNS_ , internal

_PickedSet312 , 1.

*Surface , type=NODE , name=_PickedSet313_CNS_ , internal

_PickedSet313 , 1.

** Constraint: Constraint -1

*Tie , name=Constraint -1, adjust=yes

_PickedSet313_CNS_ , _PickedSet312_CNS_

*End Assembly

*Amplitude , name=Hanning

0., 0., 3.8e-07, 0.00523585711 , 7.6e-07,

0.0371164798 , 1.14e-06, 0.100940171

1.52e-06, 0.16994021 , 1.9e-06, 0.191439676 , 2.28e-06, 0.109000677 ,

2.66e-06, -0.107477371

3.04e-06, -0.436166895 , 3.42e-06, -0.794460923 , 3.8e-06, -1.05398433 ,

4.18e-06, -1.07813585

4.56e-06, -0.771892574 , 4.94e-06, -0.127429809 , 5.32e-06, 0.751816998 ,

5.7e-06, 1.66086

6.08e-06, 2.338816 , 6.46e-06, 2.54077407 , 6.84e-06, 2.11618394 ,

7.22e-06, 1.06958203

7.6e-06, -0.417616458 , 7.98e-06, -2.01554313 , 8.36e-06, -3.32136963 ,

8.74e-06, -3.96406228

9.12e-06, -3.71026587 , 9.5e-06, -2.54065565 , 9.88e-06, -0.672606754 ,

1.026e-05, 1.48089154

1.064e-05, 3.40834328 , 1.102e-05, 4.62873797 , 1.14e-05, 4.81818692 ,

1.178e-05, 3.89934614



1.216e-05, 2.06809803 , 1.254e-05, -0.251215244 , 1.292e-05, -2.51110806 ,

1.33e-05, -4.17911727

1.368e-05, -4.87195393 , 1.406e-05, -4.44989842 , 1.444e-05, -3.04677857 ,

1.482e-05, -1.02871372

1.52e-05, 1.10571397 , 1.558e-05, 2.85562341 , 1.596e-05, 3.8427494 ,

1.634e-05, 3.89827728

1.672e-05, 3.09053753 , 1.71e-05, 1.68963832 , 1.748e-05, 0.0825393965 ,

1.786e-05, -1.33519284

1.824e-05, -2.2600708 , 1.862e-05, -2.54729442 , 1.9e-05, -2.22834796 ,

1.938e-05, -1.4796482

1.976e-05, -0.556118714 , 2.014e-05, 0.287789304 , 2.052e-05, 0.865811214 ,

2.09e-05, 1.09837061

2.128e-05, 1.01460775 , 2.166e-05, 0.722503746 , 2.204e-05, 0.360875034 ,

2.242e-05, 0.050924501

2.28e-05, -0.137131474 , 2.318e-05, -0.193848799 , 2.356e-05, -0.157351505 ,

2.394e-05, -0.0856905724

2.432e-05, -0.0274704866 , 2.47e-05, -0.00261469643 , 2.508e-05,

0., 2.546e-05, 0.

2.584e-05, 0., 2.622e-05, 0., 2.66e-05, 0.,

2.698e-05, 0.

2.736e-05, 0., 2.774e-05, 0., 2.812e-05, 0.,

2.85e-05, 0.

2.888e-05, 0., 2.926e-05, 0., 2.964e-05, 0.,

3.002e-05, 0.

3.04e-05, 0., 3.078e-05, 0., 3.116e-05, 0.,

3.154e-05, 0.

**

** MATERIALS

**

*Material , name="CFRP 997/2"

*Density

1600.,

*Elastic , type=ENGINEERING CONSTANTS

1.53e+11, 1.03e+10, 1.03e+10, 0.3, 0.3, 0.4, 6e+09, 6e+09

3.7e+09,

*Material , name=" Damage 10% off"

*Density

1600.,

*Elastic , type=ENGINEERING CONSTANTS

1.37e+11, 9.27e+09, 9.27e+09, 0.27, 0.27, 0.36, 5.4e+09, 5.4e+09

3.33e+09,

**

** INTERACTION PROPERTIES

**

*Surface Interaction , name=IntProp -1

*Friction

0.,

*Surface Behavior , no separation , pressure -overclosure=HARD

** ----------------------------------------------------------------

**

** STEP: Step -1

**

*Step , name=Step -1, nlgeom=NO

*Dynamic , Explicit



, 0.0002

*Bulk Viscosity

0.06, 1.2

**

** BOUNDARY CONDITIONS

**

** Name: A(bel) Type: Displacement/Rotation

*Boundary , amplitude=Hanning

A(bel), 3, 3, 1e-09

** Name: A(up) Type: Displacement/Rotation

*Boundary , amplitude=Hanning

A(up), 3, 3, 1e-09

**

** INTERACTIONS

**

** Interaction: Int -1

*Contact Pair , interaction=IntProp -1, mechanical constraint=PENALTY , cpset=Int -1

_PickedSurf306 , _PickedSet307_CNS_

** Interaction: Int -2

*Contact Pair , interaction=IntProp -1, mechanical constraint=PENALTY , cpset=Int -2

_PickedSurf308 , _PickedSet309_CNS_

** Interaction: Int -3

*Contact Pair , interaction=IntProp -1, mechanical constraint=PENALTY , cpset=Int -3

_PickedSurf310 , _PickedSet311_CNS_

**

** OUTPUT REQUESTS

**

*Restart , write , number interval=1, time marks=NO

**

** FIELD OUTPUT: F-Output -1

**

*Output , field , number interval =400

*Node Output

U,

**

** HISTORY OUTPUT: A(bel)

**

*Output , history , time interval =1e-07

*Node Output , nset=A(bel)

U3,

**

** HISTORY OUTPUT: A(up)

**

*Node Output , nset=A(up)

U3,

**

** HISTORY OUTPUT: S1

**

*Node Output , nset=S1

U3,

**

** HISTORY OUTPUT: S2

**

*Node Output , nset=S2

U3,



*End Step
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