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SUMMARY

3D ultimate limit state analysis using discontinuity layout optimization

The recently developed discontinuity layout optimization (DLO) procedure uses

limit analysis theory to directly obtain upper bounds on plane strain collapse

loads of bodies and has successfully been applied to geotechnical problems. In this

thesis, a new three-dimensional formulation of DLO is described. The new formu-

lation is capable of directly estimating the collapse load of bodies involving Tresca

and Mohr-Coulomb yield criteria, using efficient second order cone programming.

The new formulation can be stated in kinematic, energy balance form or static,

equilibrium form. The derivation from first principles of both kinematic and equi-

librium forms is described, allowing full conceptualization of the DLO procedure.

A number of simple benchmark problems are considered, demonstrating that good

results can be obtained using the new formulation even when very coarse numerical

discretisations are employed. The best reported upper bound for the compression

of a purely cohesive block between two perfectly rough platens was improved upon.

In DLO, the yield condition is only checked on predefined discontinuities, used

to discretize the problem. Consequently, the estimated collapse loads are greater

than the ‘exact’ collapse load ( i.e. they are ‘unsafe’). New methods generating

continuous stress fields from discontinuous DLO solutions are developed based

on the plane strain and three-dimensional equilibrium forms of DLO. These new

fields are discretized in plane strain and three-dimensions using solid triangular and

tetrahedral elements, respectively. The stress fields are explained in the context

of determining alternative ‘lower bound’ forms of solution. An alternative method

determining a continuum stress field directly ( i.e. not from a DLO solution) was

also developed.
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1 Introduction

1.1 Background

In geotechnical design, two design criteria are typically considered: one avoiding

collapse and the other limiting movements. These criteria are incorporated into

modern design codes (such as Eurocode 7) via the ultimate limit state (ULS) and

serviceability limit state (SLS). Ideally, these checks might be considered via a

single elasto-plastic analysis. Accurate prediction of the collapse load and inter-

mediate soil movements using elasto-plastic analysis requires the determination of

numerous parameters due to the complex nature of soil behaviour. Additionally,

different partial factors may apply to the different limit states. The elasto-plastic

analysis itself is complicated and requires considerable user expertise. Conse-

quently, elasto-plastic analysis is applied in practice only to a small percentage of

projects.

Separating ULS and SLS checks allows the use of simplified limit analysis methods

to determine collapse loads. In contrast to elasto-plastic analysis, the rigid-plastic

material model assumed in limit analysis and shown in Figure 1.1 only requires

strength parameters, readily determined from conventional shearbox and triaxial

testing. The upper and lower bound theorems of limit analysis can be used to

bound the collapse load directly, without intermediate steps. Relative to elasto-

plastic methods, limit analysis allows engineers to be undertake ULS checks in a

much more straightforward and efficient manner.

1
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Stress

Strain

real soil behaviour

rigid-plastic

Figure 1.1: Rigid-plastic material model versus real soil behaviour

The application of limit analysis to geotechnical engineering dates back to the earth

pressure theorems of Coulomb (1776) and Rankine (1857). Early applications con-

sisted of simple hand-based calculations. Chen (1975) provides a comprehensive

review of early limit analysis solutions to geotechnical problems. Early research

found particular success using the method of characteristics (Sokolovski, 1965);

however, this cannot be used to solve three-dimensional problems. Researchers,

therefore, had to resort to simple trial and error hand calculations to solve three-

dimensional problems. More recently, finite element limit analysis (FELA) has

found favour among researchers (Lysmer, 1970; Bottero et al., 1980; Sloan, 1988;

Makrodimopoulos and Martin, 2006). However, the quality of FELA solutions is

sensitive to mesh layout in the region of stress singularities. Consequently, prior in-

sight into the form of the solutions is required. Alternatively, adaptive refinement

techniques maybe employed (Lyamin et al., 2005).

The recently developed discontinuity layout optimization (DLO) determines the

critical mechanism from among a large number of potential mechanisms and may

be stated in kinematic form or, alternatively, in equilibrium form (Smith and

Gilbert, 2007). DLO automates this procedure making use of efficient convex

optimization algorithms and is able to handle complex geometries and mecha-

nisms involving thousands of sliding blocks (see Figure 1.2). Unlike FELA, DLO

handles stress singularities without any need for tailoring of the mesh or nodal

grid. DLO has successfully been implemented in the commercial software pack-

age LimitState:GEO (LimitState, 2012) and validated against numerous plane
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Figure 1.2: Pipeline and berm problem – LimitState:GEO 3.0 solution (cour-
tesy of LimitState)

strain benchmarks. Figure 1.2 shows a critical mechanism obtained from Limit-

State:GEO for a problem involving complex geometry and boundary conditions.

Methods such as FELA can provide both upper and lower bounds on the ‘exact’

solution. DLO, however, can only provide upper bounds on the ‘exact’ limit

load. A lower bound equivalent to DLO, retaining its advantages, is also desirable

allowing the ‘exact’ limit load to be bracketed and solution accuracy estimated.

To date, the application of limit analysis to three-dimensional problems has been

extremely limited. Researchers have focused primarily on three-dimensional FELA.

Three-dimensional FELA has been limited by the computation expense involved

and only relatively loose bounds have been achieved (Lyamin and Sloan, 2002a,b;

Martin and Makrodimopoulos, 2008; Krabbenhøft et al., 2008). Other researchers

have used predefined mechanisms to obtain upper bound solutions (Michalowski,

2001; Puzrin and Randolph, 2003; Michalowski and Drescher, 2009). Despite the

successful application of DLO to plane strain problems, no three-dimensional for-

mulation of DLO has yet been developed.

1.2 Aims of research

The principal aims of the research described in this thesis are to
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(i) develop a kinematic three-dimensional formulation of the DLO procedure;

(ii) validate the new three-dimensional formulation against existing benchmarks;

(iii) derive the equilibrium formulations of the plane strain and three-dimensional

DLO formulations from first principles;

(iv) use the plane strain derivation to develop a lower bound type equivalent to

plane strain DLO;

(v) use the insights, gained from the derivation of a lower bound type equivalent

to plane strain DLO, to develop a lower bound type equivalent to the new

three-dimensional formulation of DLO.

1.3 Outline of thesis

This thesis contains seven core chapters. This chapter (Chapter 1) provides an

introduction as well as brief outline of subsequent chapters.

Chapter 2 provides an overview of the published literature and important funda-

mental concepts. Firstly, the fundamentals of the upper and lower bound theorems

of limit analysis are presented allowing these to be placed in the context of math-

ematical optimization. Different direct methods of determining the limit load are

then reviewed. Particular emphasis will be placed on the treatment of the problem

domain as a continuum or discontinuum. A more detailed discussion of the issues

involved in finite element limit analysis (FELA) is then presented, followed by

an introduction to the fundamentals of the plane strain DLO procedure. Finally,

three-dimensional benchmarks will be identified for validating a three-dimensional

formulation of DLO.
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In Chapter 3, a three-dimensional formulation of the DLO procedure is developed

and validated against the benchmarks identified in Chapter 2. Chapter 3 is based

on a paper1 published in the Proceedings of the Royal Society A.

In Chapter 4, the dual, equilibrium formulation of the plane strain DLO formu-

lation is derived from first principles using stress functions and vector calculus.

Insights gained from this derivation allow the upper bound nature of the equi-

librium formulation to be better understood. Finally, relaxed plane strain lower

bound methods are developed and tested against benchmark problems.

In Chapter 5, the dual, equilibrium formulation of the new three-dimensional

formulation of the DLO procedure is derived from first principles using stress

functions and vector calculus. A relaxed lower bound method is then developed

and tested against a benchmark problem.

Chapter 6 discusses the broader issues that are raised through the course of the

thesis. In particular, computational aspects of the three-dimensional formulation

are tackled, including recommendations for future enhancements. Finally, the

merits of the relaxed lower bound methods developed in Chapters 4 and 5 are

considered.

Chapter 7 summarises the key conclusion of this thesis and recommendations for

future work.

1Hawksbee, S., Smith, C. and Gilbert, M. (2013). “Application of discontinuity layout
optimization to three-dimensional plasticity problems”, Proc. R. Soc. A , Vol. 469, pp. 1471-
2946.





2 Literature review

2.1 Introduction

In the following chapter, the fundamental theorems of limit analysis are intro-

duced and placed in the context of mathematical optimization. Direct methods

are then reviewed in the context of these theorems. These methods are reviewed

with particular emphasis on their discontinuum/continuum treatment of the prob-

lem domain, allowing DLO to be placed within a wider context. More detailed

consideration is then given to finite element limit analysis (FELA) before an in-

troduction to the plane strain DLO procedure. Finally, the literature is reviewed

in order to identify suitable three-dimensional benchmarks.

2.2 Limit analysis

2.2.1 Introduction

Plastic methods have long been used to estimate the collapse load of geotechnical

problems. Plastic methods make use of the simple rigid-plastic material model

described in Chapter 1 to directly estimate the collapse load. The rigid-plastic

model assumes that elastic strain at failure is insignificant when compared to the

total plastic strain, as is the case for many geotechnical problems. Building on

earlier plastic theory, Hill (1950) and Drucker et al. (1952) among others developed

7
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a sophisticated theoretical framework, limit analysis, allowing an ‘exact’ collapse

load to be bracketed.

M

Af

Au

Figure 2.1: Body forces g acting on a body M with applied loads f acting on
boundary Af and fixed displacements on boundary Au

Assume the rigid-plastic body M , shown in Figure 2.1, is at the point of impending

plastic collapse; where the velocities u̇ = 0 on Au. Assuming body forces g act on

M and loads f act on boundaryAf , g and f are defined as g = λg0 and f = λf0;

where g0 and f0 are reference loads and λ is the exact limiting load multiplier. λ

is chosen such that stress state on M is at the point of impending collapse. Limit

analysis is concerned with bracketing the exact limiting load multiplier λ using

the upper and lower bound theorems of limit analysis. The upper bound theorem

allows the determination of ‘unsafe’ load multipliers λ+ ≥ λ. The lower bound

theorem allows the determination of ‘safe’ load multipliers λ− ≤ λ. The exact

limiting load multiplier λ is found when λ− = λ+.

2.2.2 Assumptions

The theorems of limit analysis rest on two key assumptions. The first of these

states that a material’s yield function f(σ) = 0, defining when yield occurs, must

be convex. Any stress state within the yield function, f(σ) < 0, is non-yielding

and consistent with the rigid-plastic model, no strain will occur. f(σ) > 0 is an
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inaccesable region. Fortunately, the two most commonly used yield functions in

geotechnics, the Tresca and Mohr-Coulomb yield functions, are convex.

τ,

σ ,n n

.

.
n

φ

γ.

φ

o

( - o)

f( ) > 0

f( ) < 0

f( ) = 0

f( ) = 0

f( ) > 0

f( ) > 0

.
.
n

.
.

.
.

γ.

Figure 2.2: Plane strain Mohr-Coulomb yield surface and associated flow rule;
where f(σ) = 0 is the yield function; σn is the normal stress; τ is the shear
stress; ε̇ is the plastic strain rate; ε̇n is the normal component of the strain rate;
γ̇ is the shear component of the strain rate; σ is a stress state on the yield

surface; and σ0 is a non-yielding stress state.

The second key assumption is that the increment of plastic strain ε̇ must be normal

to the yield surface f(σ). This is know as the associated flow rule. The associated

flow rule is demonstrated for the plane strain Mohr-Coulomb yield surface by

Figure 2.2. Singularities, such as at the apex in Figure 2.2, are dealt with by

assuming that ε̇ must lie between the normals of the two surfaces adjacent to

the singularity. The associated flow rule requires that dilation ε̇n = γ̇ tan φ and

implies that shearing resistance is entirely due to dilation. In a real soil, shearing

resistance will be due to a number of contributing factors. Consequently, the

associated flow rule tends to over-predict dilation. It has, however, been found to

produce good results for many geotechnical problems.



Chapter 2. Literature review 10

As demonstrated in Figure 2.2, it follows from these two assumptions that the

angle between (σ − σ0) and ε̇ must be less than 90◦; where σ is any stress state

on the yield surface and σ0 any non-yielding stress state, f(σ) < 0. This results

in the principle of maximum plastic dissipation

(σ − σ0) ∙ ε̇ ≥ 0. (2.1)

2.2.3 Upper bound

Before describing the upper bound theorem, it is necessary to define the kinematic

and plastic admissibility of a strain rate field ε̇ (Le, 2009). ε̇ is kinematically

admissible, when it satisfies compatibility

ε̇ = Lu̇ in M (2.2)

and the kinematic boundary conditions

u̇ = 0 on Au; (2.3)

where L is a differential operator

LT =












∂

∂x
0 0

∂

∂y
0

∂

∂z

0
∂

∂y
0

∂

∂x

∂

∂z
0

0 0
∂

∂z
0

∂

∂y

∂

∂x












(2.4)

ε̇ is said to be plastically admissible if it satisfies the associated flow rule and the

rate of work done by the loads Wext is positive:

Wext =

∫

M

g0 ∙ u̇ dM +

∫

Af

f0 ∙ u̇ dAf ≥ 0. (2.5)



Chapter 2. Literature review 11

The upper bound theorem can now be used determine a load multiplier λ+ for a

kinematically and plastically admissible strain rate field ε̇. From the equation of

virtual work, the Wext must equal the internal rate of dissipation Dint and

λ+ =
Dint

Wext

, (2.6)

where

Dint = max
σ

∫

M

σ ∙ ε̇ dM (2.7)

and σ is the stress field on M .

Le (2009) states the upper bound theorem of limit analysis as:

The exact collapse load multiplier λ is the smallest one among all possible kine-

matic solutions λ+ corresponding to the set of all kinematically and plastically

admissible velocity fields u̇, that is

λ ≤ λ+ (2.8)

Therefore, the goal of an upper bound analysis can be written as:

λ+ = min Dint

subject to

ε̇ = Lu̇ in M ;

u̇ = 0 on Au; (2.9)

Wext = 1.

2.2.4 Lower bound

Before describing the lower bound theorem, it is necessary define the static and

plastic admissibility of a stress field σ. σ is statically admissible when it satisfies
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the equilibrium equations

L ∙ σ = −λ−g0 in M (2.10)

and stress boundary conditions

n ∙ σ = λ−f0 on Af ; (2.11)

where n is a matrix containing the components of the outward normal vector to

M :

n =







nx 0 0 ny 0 nz

0 ny 0 nx nz 0

0 0 nz 0 ny nx





 (2.12)

and λ− is a statically admissible load multiplier (Le, 2009).

σ is plastically admissible when

f(σ) ≤ 0 in M. (2.13)

Assuming a statically and plastically admissible stress field σ, the lower bound

theorem allows load multiplier λ− to be found from static equilibrium.

Le (2009) states the lower bound theorem of limit analysis as:

The exact collapse load multiplier λ is the largest one among all possible static

solutions λ− corresponding to the set of all statically and plastically admissible

stress fields σ, that is

λ− ≤ λ (2.14)

Therefore, the goal of a lower bound analysis is to determine

max λ−
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subject to

L ∙ σ = −λ−g0 in M ;

n ∙ σ = λ−f0 on Af ; (2.15)

f(σ) ≤ 0 in M.

2.3 Mathematical optimization

Mathematical optimization is concerned with obtaining the minimum or maximum

value of an objective function fo subject to equality and/or inequality constraints.

A mathematical optimization problem typically takes the following form:

min f0(x)

subject to

fi(x) = 0 ∀i ∈ {1, . . . ,m}; (2.16)

where xT = {x1, . . . , xn} is a vector of optimization variables; fi ∀i ∈ {1, . . . ,m}

are constraint functions; and n and m are the total number of optimization vari-

ables and constraints, respectively.

The upper and lower bound theorems of limit analysis can readily be understood

as mathematical optimization problems with an infinite number of constraints and

variables (see equations (2.9) and (2.15)). Various discretization techniques, lim-

iting the number of (pointwise) constraints, have been employed allowing upper

and lower bounds to be obtained using optimization algorithms. The accuracy of

these bounds will depend greatly on the discretization used. Limit analysis, typi-

cally, minimizes or maximises a linear objective function subject to linear equality

constraints enforcing kinematic or static admissibility and convex equality and/or

inequality constraints enforcing plastic admissibility. Limit analysis is, therefore,

primarily concerned with convex optimization. The optimization algorithm used is

a key factor in determining the computational efficiency of a particular numerical

technique.
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In limit analysis, the algorithm used is largely determined by the yield function.

Yield functions including singularities, such as the three-dimensional Tresca and

Mohr-Coulomb yield function (shown in Figure 2.3), are particularly problematic.

The ability of different optimization classes to handle the Mohr-Coulomb yield

condition are summarised in Table 2.1. Nonlinear programming (NLP), for ex-

ample, cannot deal with the Mohr-Coulomb yield condition directly; although a

smoothed approximation may be used. In recent years, conic programming has at-

tracted particular attention due both to its efficiency and ability to handle the two-

and three-dimensional Mohr-Coulomb yield conditions directly (Makrodimopou-

los and Martin, 2006; Krabbenhoøft et al., 2007; Krabbenhøft et al., 2008; Martin

and Makrodimopoulos, 2008).

(a) Tresca (b) Mohr-Coulomb

Figure 2.3: Three-dimensional yield surface (from Clarke (2009))

Conic programming is concerned with optimization problems of the form (Makrodi-

mopoulos, 2010):

min cTx

subject to

Ax = b; (2.17)

x ∈ Ki ∀i = 1, . . . , N ;
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where c and b are vectors of problem coefficients; A is a constraint matrix; Ki is

a cone; and N is the number of conic constrains. As with all convex optimization

problems, the conic program in equation (2.17) can be stated in an equivalent,

dual form:

max bTy

subject to

ATy + s = c; (2.18)

s ∈ K ∗
i ∀i ∈ {1, . . . , N};

where y is a vector of dual optimization variables; s is a vector of dual cone

variables; and K ∗
i is the dual of cone Ki .

The most relevant cones to limit analysis are summarized below.

• The non-negative orthant:

K = Rn
+ = {x|x ≥ 0}. (2.19)

• The Lorentz cone:

K = K n
q = {x ∈ Rn|x ≥

√
x2

2 + . . . + x2
n}. (2.20)

• The rotated quadratic cone:

K = K n
r = {x ∈ Rn|2x1x2 ≥ x2

2 + . . . + x2
n, x1, x2 ≥ 0}. (2.21)

• The semi-definite cone:

K = Sn
+ = {X ∈ Rn×n|X �0,X = XT}; (2.22)

where � denotes that matrix X is positive semi-definite (i.e. zTXz ≥ 0,

where z is a vector of arbitrary real numbers).



Chapter 2. Literature review 16

Table 2.1: Optimization classes enforcing the Mohr-Coulomb yield function

optimization class 2D
D

is
co

n
ti
n
u
it
y

2D
C

on
ti
n
u
u
m

3D
D

is
co

n
ti
n
u
it
y

3D
C

on
ti
n
u
u
m

linear programming (LP) • ◦ ◦
second order cone programming (SOCP) • • •

semidefinite programming (SDP) • • • •
nonlinear programming (NLP) ◦ ◦ ◦ ◦

• yield condition can be exactly enforced; ◦ yield condition can be
enforced approximately.

Rn
+, Kq , Kr and Sn

+ are all self-dual cones; that is Ki = K ∗
i .

Conic programming can be grouped into several classes: linear programming (LP)

allowing consideration of K = Rn
+; second order cone programming (SOCP)

allowing consideration of K = Kq and K = Kr in addition to K = Rn
+; and

semi-definite programming (SDP) allowing consideration of K = S+ in addition

to K = Rn
+, K = Kq, K = Kr. Of these, SDP is the most general allowing

consideration of SOCP and LP problems, and LP is the least general.

The efficiency of algorithms used to solve different classes of conic programs varies.

LP technology is well established and LP algorithms are, generally, the most robust

and efficient, followed by SOCP algorithms. LP problems can be solved using a

choice of simplex or interior point optimizers. SOCP and SDP problems, on the

other hand, can only be solved using interior point optimizers.

In Section 2.5.4, optimization algorithms are discussed further in the context of

finite element limit analysis (FELA).
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2.4 Direct methods

2.4.1 Introduction

Direct methods, such as limit analysis, estimate the collapse load directly. In limit

analysis, upper bound methods, typically formulated in terms of strain and dis-

placement, will always overestimate the collapse load. Lower bound methods, on

the other hand, always underestimate the collapse load and are typically formu-

lated in terms of stress. Alternatively, mixed formulations, typically, involve both

stress and strains fields. The status of solutions obtained using mixed formulations

are not known a priori and may be upper or lower bounds on the ‘exact’ collapse

load. Differing definitions of term mixed exist. Henceforth, any method will be

referred to as mixed, where the limit analysis status of the solution is not known

a priori.

At collapse, discontinuities or jumps in the stress and velocity fields can develop.

For certain classes of problem, the ability of a direct method to handle such dis-

continuities can greatly influence the accuracy of solutions obtained. Continuous

methods allow smooth variations of stress or velocity, but discontinuities are not

permitted. In continuous methods, discontinuities must be modelled by rapid

changes in velocity or stress across narrow bands. Discontinuous methods allow

discontinuities; however, smooth variations are not permitted. In discontinuous

methods, smooth variations must be modelled using high concentrations of dis-

continuities. Hybrid methods are more versatile and allow both discontinuous

and smooth variations. In Table 2.2, continuous, discontinuous and hybrid meth-

ods are grouped according to the limit analysis status of their solutions. Both

discontinuous and hybrid methods allow direct consideration of discontinuities.

In the following sections, the relative strengths and weaknesses of commonly used

direct methods will be reviewed. In particular, their ability to handle disconti-

nuities will be emphasized. Their ability to solve three-dimensional problems will

also be noted in passing.
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Table 2.2: Continuous, discontinuous and hybrid methods by limit analysis
status

continuous hybrid discontinuous

⇐⇒

limit analysis status

upper bound
FELA FELA hand calc.
MC MC RFEM
LM DLO

mixed
finite difference

meshless LEM
FELA

lower bound
FELA FELA hand calc.
MC† MC†

† incomplete lower bound, stress field must be extended outside the mecha-
nism

2.4.2 Trial and error

Simple hand based calculations have been widely used in geotechnical engineering

to estimate the collapse load. In particular, the limit equilibrium method (LEM)

has been widely used in slope stability analysis. In limit equilibrium, a simple

discontinuous failure mechanism is investigated and a stress distribution assumed

on the discontinuities. A collapse load is then calculated from equilibrium. The

failure mechanism need not be plastically admissible and the resulting collapse load

is not a priori an upper bound. The process is manually repeated for different

mechanisms to obtain a minimum collapse load.

Similarly, the upper bound theorem allows the collapse load to be estimated by

assuming simple discontinuous failure mechanisms. Unlike LEM, the assumed

mechanism must be plastically admissible, allowing strict upper bounds to be
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determined. Chen (1975) reviews a number of simple upper bound solutions to

geotechnical problems. Trial and error methods involving more complex mecha-

nisms including deforming regions have been used more recently by Michalowski

(2001), Puzrin and Randolph (2003) and Michalowski and Drescher (2009) to

obtain upper solutions to three-dimensional problems. Simple trial and error ap-

plications of the lower bound theorem are more involved and consequently less

widely used.

2.4.3 Method of characteristics

The method of characteristics (MC) has been used to successfully obtain highly

accurate, in some cases ‘exact’, solutions. Sokolovski (1965) provides solutions to

a number of geotechnical problems. The method of characteristics allows both

smooth or discontinuous variations of the stress and strain fields. However, it

is necessary to know the general form of the solution. Consequently, only sim-

ple boundary and geometries are generally considered, considerably limiting its

applicability.

Recently, Martin (2011) has used the MC to refine highly accurate finite element

limit analysis (FELA) solutions, demonstrating a new potentially fruitful applica-

tion. In MC, information on the stress field is limited to the plastically deforming

regions. Therefore, it is necessary to find a compatible admissible stress field in

any rigid regions to obtain a complete lower bound. Furthermore, the MC is not

applicable to three-dimensional problems, an important limitation.

2.4.4 Numerical methods

2.4.4.1 Introduction

Numerical methods discretize the problem domain, allowing approximations to the

limit load to be obtained. Optimization is, typically, employed to determine the

best approximation possible for a particular discretization. Numerical methods
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have proved popular among researchers and different numerical techniques have

been developed variously considering the problem domain as continuum, discon-

tinuum or a hybrid of the two. An overview of the methods applicable to continua,

discontinua and hybrid continua/discontinua will be presented in the following sec-

tions. Of these methods, finite element limit analysis (FELA) has attracted the

most attention among researchers (see Section 2.5).

2.4.4.2 Continuous methods

The finite difference method was among the first direct numerical methods devel-

oped (Koopman and Lance, 1965). In the finite difference method, nodes are dis-

tributed on a rectangular grid. While well-suited to rectangular problem domains

and simple boundary conditions, consideration of arbitrary boundary conditions

and geometry is complicated by the rectangular grid (Chakrabarty, 2006). In con-

trast, meshless methods use nodes scattered within the domain and on domain

boundaries (Belytschko et al., 1994; Le, 2009; Le et al., 2012). While arbitrary

geometries are possible, strict enforcement of the boundary conditions is not. The

status of both finite difference and meshless solutions are not known a priori.

A major challenge to any continuous limit analysis method is avoiding volumetric

locking. FELA using constant strain elements can result in volumetric locking

unless elements are specially arranged (see Nagtegaal et al. (1974)), a significant

limitation. Therefore, researchers have resorted to higher order elements or hy-

brid FELA to obtain rigorous upper bounds (Makrodimopoulos and Martin, 2007;

Sloan, 1989). Vicente da Silva and Antão (2007) used specially arranged constant

strain elements to consider three-dimensional problems. Martin and Makrodi-

mopoulos (2008), Krabbenhøft et al. (2008) and Antão et al. (2012) used contin-

uous higher order elements thus avoiding the need for specially arranged elements

to obtained three-dimensional upper bounds.

Alternatively, mixed FELA may be used to obtain approximations to the limit

load, avoiding volumetric locking. For example, the rigid-plastic finite element

method relaxes the von Mises yield criteria by enforcing incompressibility only in
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an average manner (Lee and Kobayashi, 1973; Tamura et al., 1984) and Capsoni

and Corradi (1997) relax compatibility to overcome volumetric locking. Park

and Kobayashi (1984) have developed a variant of the rigid-plastic finite ele-

ment method for the incompressible von Mises yield criteria; which solves three-

dimensional problems using a finite but large bulk modulus. All these methods

require special measures to deal with rigid regions; either by eliminating these or

locally adopting a linear elastic model. Other notable contributions are the mixed

finite element formulations of Casciaro and Cascini (1982) and Christiansen (1981).

Another continuous method, the linear matching (LM) method, developed by

Ponter and Carter (1997) and Ponter et al. (2000), uses linear elastic methods to

iteratively obtain upper bound solutions. In each iteration, the elastic strain is

matched to a stress state on the yield surface by spatially varying elastic moduli.

These spatially varying moduli are used produce a new linear elastic solution.

The procedure is then repeated. Corners in the three-dimensional Tresca and

Mohr-Coulomb yield criteria make selecting appropriate elastic material properties

particularly problematic. The author is unaware of any applications of LM using

these yield criteria.

2.4.4.3 Hybrid

Many continuous methods perform poorly when considering problems containing

stress and strain singularities. Continuous FELA using linear stress or constant

strain elements are such methods. By incorporating discontinuities between el-

ements, hybrid FELA seeks to overcome this limitation. Hybrid FELA has the

added benefit of improved performance with respect to volumetric locking. Fol-

lowing the pioneering work of Lysmer (1970) and Bottero et al. (1980), hybrid

FELA has, typically, employed linear stress or constant strain elements (Sloan,

1988; Makrodimopoulos and Martin, 2006; Muñoz et al., 2009). However, the

quality of solutions obtained from such discretizations is highly dependant on the

location of inter-element discontinuities, particular in the vicinity of stress and

strain singularities. Therefore, effective mesh design requires the form of the ‘ex-

act’ solution to be known a priori. Adaptive schemes seek to overcome these
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short comings by automatically refining the mesh (see Section 2.5.3). Hybrid for-

mulations using higher order elements, unsurprisingly, do not suffer from these

limitations (Makrodimopoulos and Martin, 2008; Yu et al., 1994).

Recently, hybrid FELA methods for three-dimensional analysis have been devel-

oped using constant strain or linear stress elements (Lyamin and Sloan, 2002b,a;

Vicente da Silva and Antão, 2008; Krabbenhøft et al., 2008); however, these suffer

from the same shortcoming as their two-dimensional equivalents.

2.4.4.4 Discontinuous

The discontinuous, upper bound rigid finite element method (RFEM) has been

developed recognizing the importance of discontinuities (van Rij and Hodge, 1978;

Alwis, 2000). Deformations are only permitted along discontinuities at the bound-

aries of predefined solid elements. Unlike hybrid FELA, the elements themselves

are not free to deform. Clearly, the range of mechanisms that can be identified is

severely limited and accurate solutions are only possible for meshes closely that

capture the ‘exact’ collapse mechanism. Therefore, an accurate solution requires

the form of the ‘exact’ solution to be known a priori.

By considering yield only on the discontinuities, RFEM can adopt simpler, more ef-

ficient optimizations algorithms relative to FELA. For example, the Mohr-Coulomb

yield criteria can be enforced exactly on a plane strain discontinuity using LP,

without need for any approximation; however, SOCP is need to enforce the Mohr-

Coulomb yield criteria exactly over a plane strain continuum (see Table 2.3).

(Note linearization of the plane strain continuum yield function is possible but

an accurate solution, typically, requires a large number of additional constraints).

Similarly, the Mohr-Coulomb yield criteria can be enforced exactly on a three-

dimensional discontinuity using SOCP; however, SDP is required over a three-

dimensional continuum. Chen et al. (2003), for example, has used RFEM to ob-

tained upper bounds to three-dimensional slope stability problems using sequential

quadratic programming.
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Unlike RFEM, discontinuity layout optimization (DLO) is posed entirely in terms

of velocity discontinuities (Smith and Gilbert, 2007). DLO can be viewed as an

automation of the simple hand based calculations discussed in Section 2.4.2; where

optimization is used to determine the critical layout of the discontinuities (and

associated upper bound) from among a large set of potential discontinuities. DLO

retains the simplier, more efficient algorithms (relative to continuous or hybrid

numerical methods) associated with RFEM; however unlike RFEM, a large number

of potential mechanisms can be identified, allowing the procedure to be largely

mesh independent. This is because in DLO discontinuities are no longer restricted

to the boundaries of predefined solid elements but can connect any node to any

other node. DLO and RFEM are compared in Figure 2.4 using a simple example.

In Figures 2.4(c) and 2.4(d), a rectangular nodal grid is connected to form RFEM

and DLO meshes, respectively; where the RFEM mesh consists of rigid triangular

elements, separated by linear discontinuities, and the DLO mesh consists purely

of linear discontinuities. Both the RFEM and DLO meshes allow the mechanism

in Figure 2.4(e). However, mechanism in Figure 2.4(f) can only be identified using

the DLO mesh.

Smith and Gilbert (2007) have validated DLO against a number of established

plane strain benchmarks, obtaining accurate results at moderate computational

expense. The plane strain DLO procedure has successfully been commercialized as

software package LimitState:GEO (LimitState, 2012). The objective of the current

research is to develop a three-dimensional implementation of this promising new

procedure. A more detailed overview of the DLO will follow in Section 2.6.
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(a) (b) (c)

(d) (e) (f)

Figure 2.4: Comparison of RFEM and DLO using a simple example: (a)
Starting problem – Prandtl problem (taking advantage of symmetry) (b) dis-
cretized using a rectangular grid of nodes. (c) shows a RFEM mesh formed
from solid elements, separated by linear discontinuities, with the nodes in (b)
as vertices. (d) shows a DLO mesh of linear discontinuities connecting every
node in (b) to every other node in (b). (e) shows a mechanism identifiable by
both the RFEM mesh in (c) and the DLO mesh in (d); however, the mechanism

shown in (f) can only be identified by the DLO mesh in (d).

2.5 Finite element limit analysis

2.5.1 Introduction

In recent years, limit analysis research, particularly three-dimensional applica-

tions of, has focused on finite element limit analysis (FELA), both continuous (Vi-

cente da Silva and Antão, 2007; Martin and Makrodimopoulos, 2008; Krabbenhøft

et al., 2008) and hybrid (Lyamin and Sloan, 2002a,b; Krabbenhøft et al., 2008).

In the following sections, FELA will be examined in more depth, focusing on three

aspects: (i) volumetric locking, (ii) enhancements to improve solution accuracy or

computational efficiency, (iii) optimization algorithms.
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2.5.2 Volumetric locking

The problem of volumetric locking was first identified by Nagtegaal et al. (1974).

Volumetric locking phenomena is normally associated with incompressive mate-

rials; however, similar difficulties are encountered when considering the Mohr-

Coulomb material model. Volumetric locking occurs in upper bound analysis when

the constraints enforcing the flow rule exceed the available degrees of freedom.

Consequently, a feasible mechanism cannot be identified. Nagtegaal et al. (1974)

demonstrated that many conventional elements result in locking, particularly lower

order elements. A number of strategies have been developed to overcome locking.

(i) Lower order elements arranged in specific layouts. These arrangement reduce

the number of constraints necessary to enforce the flow rule (Nagtegaal et al.,

1974; Vicente da Silva and Antão, 2007). However, this places an important

restriction on the class of mechanism that can be identified.

(ii) Hybrid FELA is, perhaps, the most commonly used strategy (Sloan, 1989;

Lyamin and Sloan, 2002b; Krabbenhøft et al., 2008). The introduction of

discontinuities results in additional degrees of freedom. However, some at-

tention to the layout of elements is still needed to avoid locking.

(iii) Higher order elements are the most rubust and effective approach for avoiding

locking (Yu et al., 1994; Makrodimopoulos and Martin, 2007). However,

higher order elements result in increased computational cost.

(iv) Mixed finite elements have also been used to avoid locking (Casciaro and

Cascini, 1982; Capsoni and Corradi, 1997). However, the status of solutions

is no longer known a priori.

2.5.3 Enhancements

In the following section, two enhancements to FELA will be reviewed: adaptive

remeshing and decompositional procedures. These procedures can be used to
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improve the accuracy of solutions or, alternatively, reduce computational effort

and/or runtime.

Adaptive remeshing aims to improve accuracy of the solution in the most cost

effective manner. In adaptive remeshing, an initial mesh is successively improved,

guided by specific criteria. An improved mesh may achieved by (i) locally sub-

stituting higher order elements for lower order elements, (ii) locally rearranging

the geometry of existing elements or (iii) locally splitting existing elements into

smaller elements. The last is the most commonly adopted strategy in FELA and

differing criteria have been used to select candidates for refinement. For example,

Borges et al. (2001) and Lyamin et al. (2005) have used local directional error

estimates to guide the adaptive procedure. Muñoz et al. (2009) have used the

contribution of individual elements and discontinuities to the gap between upper

and lower bound solutions to select candidates for refinement. Christiansen and

Pedersen (2001) and Martin (2011) present adaptive procedures guided by strain

rate; however, these adaptive procedures may not converge toward the global op-

timum. Martin (2011) has used this procedure to obtain highly accurate bounds

for some traditionally difficult benchmark problems. Alternatively, Christiansen

and Pedersen (2001) also use proximity to yield to guide the adaptive procedure;

however, a large proportion of elements are, typically, close to yield, resulting in

a large number of candidates for refinement.

In recent years, improved parallel processing technology has stimulated interest in

decompositional procedures. Decompositional procedures seek to split a problem

into smaller subproblems. Ideally, these sub-problems could solved in parallel,

exploiting parallel processing. Pastor et al. (2009) and Kammoun et al. (2010) have

developed a decompositional procedure based on overlapping regions and allowing

highly accurate upper and lower bounds to be obtained. Figure 2.5 illustrates this

procedure using a simple example.
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Solve initial problem
using coarse mesh

Update boundary
conditions on

using initial solution

Split problem into
subproblems and

Solve subproblems
and

Use subproblem solutions
and to update

boundary conditions
on and

Solve overlapping
subproblem

Update boundary
conditions on
using solution

from

Figure 2.5: Simple example illustrating the decompositional procedure of Pas-
tor et al. (2009).

2.5.4 Optimization

The computational efficiency of a FELA formulation is normally closely linked

to that of its optimization algorithm. Suitable optimization techniques for the

Mohr-Coulomb yield criterion are summarised in Table 2.3. Linearization of the

three-dimensional Mohr-Coulomb yield function for a continuum is not straightfor-

ward; however, the two-dimensional Mohr-Coulomb yield condition for a contin-

uum can be approximated using predefined linear constraints (Bottero et al., 1980;

Sloan, 1988, 1989). This linearization allows efficient LP algorithms to be used. A

large number of constraints is, typically, required for accurate solution, resulting

in increased computational expense. Observing that very few of these constraints
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are active, Lysmer (1970) used a small number of constraints to iteratively ap-

proximated the yield function. These constraints are adjusted using the solution

from the previous iteration; however, such an approach may result in cycling or

instability. Alternatively, the cutting plane method may be used (Kelley, 1960).

In the cutting plane method, constraints are added based on previous iterations;

however, existing constraints remain unchanged thus avoiding the cycling and in-

stability, observed in Lysmer’s approach. Krabbenhøft and Damkilde (2000) have

successfully applied the cutting plane method to plates using the Nielsen yield

criterion.

Zouain and Herskovits (1993), Lyamin and Sloan (2002a,b) and Krabbenhøft and

Damkilde (2003) have used nonlinear programming (NLP) to consider limit anal-

ysis problems. NLP allows nonlinear constraints to be included directly in the

optimization, provided these constraints are differentiable everywhere. The Mohr-

Coulomb yield function, however, cannot be handled directly as this is not differ-

entiable at its apex. Instead, Lyamin and Sloan (2002a,b) have used NLP with

smoothed approximations to the two- and three-dimensional Mohr-Coulomb yield

functions.

Alternatively, conic programming may be used to directly enforce the Mohr-

Coulomb yield condition (see Section 2.3 and Table 2.1). For example, Makrodi-

mopoulos and Martin (2006, 2007, 2008) and Krabbenhoøft et al. (2007) have used

efficient SOCP to considered the two-dimensional Mohr-Coulomb yield condition.

Martin and Makrodimopoulos (2008) and Krabbenhøft et al. (2008) have used

SDP to considered the three-dimensional Mohr-Coulomb yield condition.

2.6 Discontinuity layout optimization

2.6.1 Introduction

Discontinuity layout optimization (DLO), developed by Smith and Gilbert (2007)

for plane strain, allows translational mechanisms to be identified. (DLO has been
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extended to including rotations (Gilbert et al., 2010a; Smith, 2012); however, these

extensions are not covered in the current overview.) DLO determines the criti-

cal layout of velocity discontinuities, with the least upper bound solution, from

among a large set of potential discontinuities. From duality principles, two equiv-

alent formulations of DLO are possible, known as the kinematic and equilibrium

formulations, respectively.

2.6.2 Kinematic formulation

2.6.2.1 Introduction

The DLO procedure for plane strain problems is outlined in Figure 2.6. Firstly,

the initial problem is discretized using nodes distributed across the body under

consideration. Potential discontinuity lines (i.e. ‘slip lines’), along which jumps in

rate of displacements d can occur, are created by linking each node to every other

node and linear programming is used to identify the subset of discontinuities active

in the critical failure mechanism. (Note that henceforth, ‘energy dissipation’ and

‘displacement’ will be used as shorthand for ‘rate of energy dissipation’ and ‘rate

of displacement’, respectively.) Provided a sufficiently large number of nodes are

employed, this allows a very wide range of potential mechanisms to be considered.

(a) (b) (c) (d)

Figure 2.6: Stages in DLO procedure: (a) starting problem (surcharge applied
to block of soil close to a vertical cut); (b) discretization of soil using nodes;
(c) interconnection of nodes with potential discontinuities; (d) identification of
critical subset of potential discontinuities using optimisation (giving the layout

of slip-lines in the critical failure mechanism) (after Gilbert et al. (2010b))
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In mathematical terms, the corresponding kinematic formulation is given in equa-

tions (2.23-2.27), posed entirely in terms of potential discontinuities (after Smith

and Gilbert (2007)).

min λfT
L d = −fT

Dd + gTp (2.23)

subject to

Bd = 0, (2.24)

Np − d = 0, (2.25)

fT
L d = 1, (2.26)

p ≥ 0; (2.27)

where λ is a multiplier on the live load; fD and fL are vectors containing live and

dead loads, respectively; d is a vector containing relative jumps in displacement

at the discontinuities; and g is a vector of dissipation coefficients. B is a global

compatibility matrix; N is a global matrix enforcing the flow rule; and p is a

vector of plastic multipliers.

2.6.2.2 Compatibility

The kinematic formulation identifies the critical mechanism from among a wide

range of potential mechanisms. These mechanisms are constructed from rigid-

blocks separated by discontinuities. At each discontinuity i, a shear jump si in

displacement and normal jump ni in displacement are permitted. In equation

(2.24), compatibility of the mechanism is enforced by constraints at each node.

This is illustrated with the help of Figure 2.7, showing all discontinuities meeting

at a single node. Examining Figure 2.7, it is clear that the following summations

5∑

i=1

αisi − βini = 0, (2.28)
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Figure 2.7: Compatibility at a node (from Smith and Gilbert (2007))

5∑

i=1

βisi + αini = 0 (2.29)

must hold at the node for compatibility; where αi = cos θi and βi = sin θi; and

θi is the anticlockwise angle between discontinuity i and the x axis. Repeating

summations (2.28) and (2.29) at each node, equation (2.24) is constructed; where

B is a 2n × 2m global compatibility matrix, containing direction cosines; dT =

{s1, n1, s2, . . . , nm}; and n, m are the total number of nodes and discontinuities,

respectively.

In DLO, intersections or ‘crossovers’ between potential discontinuities arise natu-

rally at locations other than the original nodes. Compatibility, while not explicitly

enforced at the ‘crossovers’, is implicitly maintained. This is illustrated with the

help of Figure 2.8, showing the ‘crossover’ or intersection between two discontinu-

ities (1 & 2). Discontinuities 1 and 2 are split into halves 1 ′, 1′′ and 2′, 2′′, respec-

tively, either side of the ‘crossover’. Obviously, θ1′′ = θ1′ + 180◦, θ2′′ = θ2′ + 180◦.

The displacement jumps s1, n1, s2 and n2 remain unchanged. Applying a summa-

tion procedure similar to equations (2.28) and (2.29) at the ‘crossover’ point, the

displacements jumps on 1′ and 1′′ cancel out as do the displacements jumps on 2 ′

and 2′′. It can, therefore, be concluded that compatibility is always maintained at

a ‘crossover’.
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Figure 2.8: Compatibility at a ‘crossover’ point

2.6.2.3 Flow rule and energy dissipation

Energy dissipation from all the discontinuities is included in the objective function,

enforcing work balance, via global vectors g = {g1, g2, . . . , gm} and p. The

energy dissipation on a discontinuity i is simply cili|si|, where ci is the shear

strength on discontinuity i and li is the length of discontinuity i. cili|si| = gT
i pi =

{cili, cili}{p1
i , p

2
i }

T , where the optimizer minimizes the energy dissipated so that

either p1
i = |si|, p2

i = 0 or p1
i = 0, p2

i = |si|.

For the solution to be an upper bound, the associated flow rule must be satisfied.

In DLO, the flow rule is enforced by equations (2.25) and (2.27). Locally on a

discontinuity i, equations (2.25) and (2.27) enforce the associated Mohr-Coulomb

flow rule

Nipi − di =

[
1 −1

tan φi tan φi

][
p1

i

p2
i

]

−

[
si

ni

]

= 0; (2.30)

where φi is the angle of friction on discontinuity i; p1
i , p2

i ≥ 0 are plastic multi-

pliers; Ni is a local plastic flow matrix; and pi is a vector containing the plastic

multipliers. Ni and pi on discontinuities i(i = 1, 2, . . . ,m) are assembled to form

the global matrix N and the global vector pT = {p1
i , p

2
i , p

1
2, . . . , p

2
m}, respectively.

The flow rule is always strictly enforced as either p1
i = |si|, p2

i = 0 or p1
i = 0,

p2
i = |si| in the critical solution.
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Boundary conditions can now be conveniently applied by including variables (and

corresponding columns) and constraints, as demonstrated by Table 2.3.

Table 2.3: Applying plain strain flow rule conditions in DLO

Apply Include Include Include
Eq. (2.30) ni si p1

i , p
2
i

Interior discontinuity
φi > 0, ci ≥ 0 • • • •
ci, φi = 0 •
ci > 0, φi = 0∗ • • •

Boundary discontinuity
free • •
symmetry •
rigid • • • •

Key: ∗ only include the top half of equation 2.30

2.6.2.4 Specification of loads

Dead loads are specified via vector fD in the objective function or work bal-

ance, equation (2.23); where fT
D = {f s

D1, f
n
D1, f

s
D2, f

n
D2, . . . , f

n
Dm}; and f s

Di, fn
Di are

the shear and normal dead loads, respectively, on discontinuity i(i = 1, . . . ,m).

Live loads are applied via vector fL in equation (2.26); where fT
L = {f s

L1, f
n
L1,

f s
L2, f

n
L2, . . . , f

n
Lm}; and f s

Li, fn
Li are the shear and normal live loads, respectively,

on discontinuity i.

At external boundaries, displacements jumps must be identical to absolute dis-

placement. For a discontinuity i on an external boundary, fT
Di = {f s

Di, f
n
Di} and

fLi = {f s
Li, f

n
Li} simply contain the dead and live loads, respectively, applied di-

rectly to discontinuity i. Within a body, displacement jumps no longer equal

absolute displacement. Therefore, loads applied within a body must be applied

via a summation. For self-weight, this is illustrated with the help of Figure 2.9.
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Figure 2.9(a) shows a vertical column slice through a simple DLO mesh. The

vertical slice is traversed by four discontinuities 1−4. Examining this vertical slice

more closely in Figure 2.9(b), it becomes clear that discontinuities 1 −4 divide the

slice into three solids (A, B and C) with self-weights wA, wB and wC , respectively.

Figure 2.9(c) shows the same slice but this time through a deformed mechanism.

Solids A, B and C are now associated with absolute vertical displacements VA,

VB and VC , respectively. As the lower boundary is rigid, VA = −β1s1 − α1n1,

VB = VA − β2s2 − α2n2 and VC = VB − β3s3 − α3n3. Therefore, the work Ω done

by the column self-weight is

Ω = VAwA + VBwB + VCwC

= (−β1s1 − α1n1)wA + (−β1s1 − α1n1 − β2s2 − α2n2)wB

+(−β1s1 − α1n1 − β2s2 − α2n2 − β3s3 − α3n3)wC . (2.31)

Rearranging equation (2.31)

Ω = (−β1s1 − α1n1)(wA + wB + wC)

+(−β2s2 − α2n2)(wB + wC) + (−β3s3 − α3n3)(wC)

= W1(−β1s1 − α1n1) + W2(−β2s2 − α2n2) + W3(−β3s3 − α3n3); (2.32)

where W1 = wA+wB +wC , W2 = wB +wC and W2 = wC are the total weight of the

material lying vertically above discontinuities 1, 2 and 3, respectively. Therefore,

the contribution made by discontinuity i to the work balance is simply:

fT
Didi =

[
−Wiβi −Wiαi

]
[
si

ni

]

(2.33)

where Wi is the total weight of the material lying vertically above discontinuity

i. (Note that loads applied to external boundaries are not included in Wi.) The

summation need not be vertical, but could be carried out in an arbitrary direction

Smith and Cubrinovski (2011a).
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Figure 2.9: Summation of dead loads. (a) Vertical strip through a DLO mesh,
split into three solids A, B, and C by discontinuities 1-4. (b) Solids A, B, and
C are associated with self-weights wA, wB and wC . (c) Deformed vertical strip

with absolute vertical displacements VA, VB , and VC for the solids.

2.6.3 Equilibrium formulation

Smith and Gilbert (2007) used duality principles to derive the following dual,

equilibrium formulation:

max λ (2.34)

subject to

BT t + λfL − q = −fD, (2.35)

NTq ≤ g; (2.36)

where t = {tx1 , t
y
1, t

x
2 , t

y
2, . . . , t

y
n}; txj and tyj were interpreted as equivalent nodal

forces in the x and y directions, respectively, on nodes j(j = 1, . . . , n); qT = {S1,

N1,S2, N2, . . . , Nm}, where Si and Ni are the internal shear and normal forces

acting on discontinuity i.
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On a discontinuity i, equations (2.35) and (2.36) enforce an equilibrium condition

[
αi βi −αi −βi

−βi αi βi −αi

]









txA

tyA

txB

tyB









+ λ

[
f s

Li

fn
Li

]

−

[
Si

Ni

]

= −

[
f s

Di

fn
Di

]

(2.37)

and an average yield condition

[
1 tan φi

−1 tan φi

][
Si

Ni

]

≤

[
cili

cili

]

(2.38)

respectively; where tensile forces are taken as positive. The relationship between

discontinuity forces and the equivalent nodal forces is illustrated in Figure 2.10

using a simple example.

2.6.3.1 Adaptive nodal connection procedure

Millions of potential discontinuities may be required to obtain accurate solu-

tions using DLO (Smith and Gilbert, 2007). The total number mall of poten-

tial discontinuities grows disproportionately with n; where mall is bounded by

mall ≤ n(n − 1)/2. Solution of LP problems involving such large numbers of

variables and constraints is not possible using the current generation of personal

computers and LP solvers. Fortunately, the equilibrium formulation allows the

yield condition to be checked on discontinuities not included in the original LP

problem. This can be achieved by rearranging equation (2.37).

[
S̃i

Ñi

]

=

[
αi βi −αi −βi

−βi αi βi −αi

]









txA

tyA

txB

tyB









+ λ

[
f s

Li

fn
Li

]

+

[
f s

Di

fn
Di

]

(2.39)
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(a) Problem definition: loaded block fixed to a base (b) Discretisation using 6 nodes and 11 discontinuities
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from (c) (NAB uncorrected for λ); yielding lines high-
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Figure 2.10: Relationship between discontinuity forces and equivalent nodal
forces for a simple problem (2 × 1 unit block composed of weightless material

possessing unit cohesive strength)(from Smith and Gilbert (2007))

where S̃i and Ñi are identical to Si and Ni, respectively, but are not variables in

the LP problem. fDi, fLi, αi and βi are purely functions of discontinuity geometry

or problem specification and, therefore, known a priori. txA, tyA, txB, tyB and λ can be

obtained by solving a LP problem including only a small subset of mall; therefore,

S̃i, Ñi can be determined and violation of the yield condition, equation (2.38),

checked. This procedure can be repeated for all discontinuities not included in

the LP problem. The subset used in the LP problem must include at least one

discontinuity per node; otherwise, tx and ty values will not be available at every

node.

Smith and Gilbert (2007) developed an adaptive procedure, based on the philos-

ophy of Gilbert and Tyas (2003), termed adaptive nodal connection, whereby a
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percentage of the potential discontinuities most exceeding yield are added to the

original LP problem. The procedure is then repeated using the new LP solution.

The adaptive procedure can be summarised as follows:

(i) select an initial subset of potential discontinuities;

(ii) set up an LP problem using this initial set;

(iii) solve the LP problem;

(iv) check violation of the yield condition on discontinuities not include the LP

problem;

(v) add discontinuities most violating yield to the LP problem and repeat from

(iii) or terminate adaptive procedure;

The adaptive procedure is terminated when no violations of the yield condition are

detected on the discontinuities not included in the LP problem. Therefore, the final

solution is a global optimum for the LP problem including all mall discontinuities.

Adaptive nodal connection allows efficient solution of problems involving very large

numbers of potential discontinuities.

2.7 Three-dimensional limit analysis benchmarks

2.7.1 Introduction

One or more benchmarks testing the following scenarios are required for validation

purposes.

(i) Weightless cohesive soil (c > 0, φ = 0, γ = 0) – many cohesive problems

are insensitive to self-weight and are, therefore, ideal for initial validation.

(ii) Cohesive soil with self-weight (c > 0, φ = 0, γ >0) – cohesive problems

sensitive to self-weight are ideal for verifying self-weight is correctly applied.
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(iii) Frictional soil with self-weight (c = 0, φ > 0, γ >0) – frictional problems

allow dilation to be verified.

(iv) Cohesive-frictional problem (c > 0, φ > 0, γ ≥ 0)

where c is the cohesive strength, φ the angle of shearing resistance and γ the

unit weight. The published literature has been reviewed to identify suitable three-

dimensional benchmarks. Problems should be fully three-dimensional ( i.e. not

axially symmetrical or spherically symmetrical) and have simple geometry.

2.7.2 Bearing capacity

Geotechnical engineers have traditionally used the bearing capacity equation

q = c(scdcNc) + q0(sqdqNq) +
1

2
γB(sγdγNγ) (2.40)

to determine the bearing capacity of shallow foundations; where Nc, Nq and Nγ

are plane strain bearing capacity factors; sc, sq and sγ are shape factors; dc, dq

and dγ are depth factors; B is the foundation width; q is the bearing pressure and

q0 is the overburden pressure. Nc, Nq and Nγ for a three-dimensional foundation

will be redefined, henceforth, as Nc = scdcNc,Nq = sqdqNq and Nγ = sγdγNγ ,

respectively, and equation (2.40) rewritten as

q = cNc + q0Nq +
1

2
γBNγ . (2.41)

Nc, Nq and Nγ for a particular foundation geometry can be be determined by con-

sidering (c >0, φ = 0, γ = 0, q0 = 0), (c = 0, φ > 0, γ = 0, q0 > 0) and (c = 0, φ

> 0, γ > 0, q0 = 0), respectively. Due to symmetry, only one-eighth of a square

foundation (or punch) needs to be modelled. Therefore, a square foundation on

the soil surface is a useful standard problem for validation purposes.
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Nc (c > 0, φ = 0, γ = 0, q0 = 0)

The best available lower bound Nc = 5.523 and upper bound Nc = 6.051 are due

to Salgado et al. (2004) and Vicente da Silva and Antão (2007, 2008), respectively.

Salgado et al. (2004) used FELA to determine upper and lower bound Nc values

for different combinations of foundation embedment and geometry. Vicente da

Silva and Antão (2008) used FELA to determined upper bound Nc values for

rectangular foundations on the soil surface. Nc is independent of self-weight and

is, therefore, an ideal benchmark for the c > 0, φ = 0 and γ = 0 scenario.

Nq (c = 0, φ > 0, γ = 0, q0 > 0)

Michalowski (2001) used ‘horn’ shaped mechanisms to obtain upper bound Nq

values; while Antão et al. (2012) used FELA to obtain upper bound Nq values.

Lyamin et al. (2007) combined the last two terms of the bearing capacity formula

to determine upper and lower bound values of sq using FELA. The results of

Lyamin et al. (2007) are not directly comparable with those of Michalowski (2001)

and Antão et al. (2012). However, a large gap between available upper and lower

bounds is suggested; consequently, Nq has not been selected.

Nγ (c = 0, φ > 0, γ > 0, q0 = 0)

Michalowski (2001) used ‘horn’ shaped mechanisms to obtain upper bound Nγ

values; while Antão et al. (2012) used FELA to determine upper bound Nγ values.

Lyamin et al. (2007) and Krabbenhøft et al. (2008) used FELA to determined

upper and lower bound Nγ values. Nγ has not been selected due the large gap

(>25%) between published upper and lower bounds.

2.7.3 Compression of a block

Martin and Makrodimopoulos (2008) have obtained bounds for the unconfined

compression of a block, shown in Figure 2.11, between two rough platens; the best

bounds for which are presented in Table 2.4. The quantity of interest for this

problem is the ratio q/c; where q is the average bearing pressure. Both cases in



Chapter 2. Literature review 41

Table 2.4 have been selected for validating a new three-dimensional formulation.

For (c = 1, φ = 30◦, γ = 0), the gap between upper and lower bounds is large;

however, the author is unaware of any alternative three-dimensional benchmarks

for cohesive-frictional materials.

2 2

1

Figure 2.11: Compression of a block – relative dimensions

Table 2.4: Compression of a block – best published bounds (Martin and
Makrodimopoulos, 2008)

c φ(◦) γ Upper bound Lower bound
q/c q/c

1 0 0 2.305 2.230
1 30 0 10.06 8.352

2.7.4 Anchors

Cohesive soil (c > 0, φ = 0◦, γ ≥ 0)

The break-out factor

Nc =
q

c
= Nc0 +

γH

c
(2.42)

for an anchor in cohesive soil; where Nco is the break-out factor for a weightless

material; H is the depth of embedment and q is the ultimate bearing pressure.

The superposition of the self-weight term onto Nco term is ideal for testing the

correct application of self-weight (i.e. the c > 0, φ = 0◦, γ ≥ 0 scenario). Due to

symmetry, only one-eighth of a square anchor needs to be modelled. Therefore, a

square anchor at different depths of embedment is a useful standard problem for
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Figure 2.12: Lower bounds from Merifield et al. (2003) on the break-out factor
N0c for a square anchor in a weightless cohesive soil

validation purposes. Merifield et al. (2003) has obtained lower bound estimates of

Nco for rectangular, perfectly rough, anchors embedded at different H/B ratios;

where B is the anchor width. Merifield et al. (2003)’s results for a square anchor

are presented in Figure 2.12.

Frictional soil (c = 0, φ > 0◦, γ ≥ 0)

Merifield et al. (2006) determined lower bound estimates of the break-out factor

Nγ = q/γH for square, perfectly rough, anchors at different depths of embedment

H using FELA. Murray and Geddes (1987) proposed the upper bound

Nγ = 1 +
H

B
tan φ (2 +

π

3
Htan φ), (2.43)

assuming a simple, rigid block mechanism; where B is the anchor width. These

upper and lower bounds Nγ are presented in Figure 2.13. The problem of a square

anchor embedded in a frictional soil has been selected for validation purposes as

this allows consideration of the c = 0, φ > 0◦, γ ≥ 0 scenario.



Chapter 2. Literature review 43

0

10

20

30

40

50

60

70

80

90

100

N
γ

0 1 2 3 4 5 6 7 8 9 10

H/B

Lower bound Merifield et. al. (2006)

Upper bound Murray & Geddes. (1987)
φ = 40°

φ = 30°

φ = 20°

Figure 2.13: Break-out factors Nγ for a square anchor in a frictional soil

2.7.5 Slopes

Consideration of slope problems, generally, requires complex problem geometry

(due to the foot of the slope). Slope problems have, therefore, been discarded

for initial validation but may prove useful for additional validation. See Li et al.

(2009), Michalowski and Drescher (2009), Michalowski (2010) and Chen et al.

(2003) for examples of three-dimensional slope problems solved using limit analy-

sis.

2.7.6 Summary

The following benchmarks have been selected as suitable for validation purposes:

(i) c > 0, φ = 0, γ = 0 –

(a) bearing capacity of a square foundation or punch,

(b) unconfined compression of a square block between two rough platens;

(ii) c > 0, φ = 0, γ > 0 – breakout of a square anchor;

(iii) c = 0, φ > 0, γ ≥ 0 – breakout of a square anchor;
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(iv) c > 0, φ > 0, γ ≥ 0 – unconfined compression of a square block between

two rough platens.

2.8 Conclusions

(i) The upper and lower bound theorems of limit analysis allow an ‘exact’ col-

lapse load to be bounded directly. The upper and lower theorems are conve-

niently framed as mathematical optimization problems; allowing numerical

formulations of limit analysis to be solved using powerful optimization algo-

rithms.

(ii) The efficiency of a numerical direct method is largely determined by the opti-

mization algorithm used. The choice of optimization algorithm is constrained

by the dimensionality of the problem, yield surface and representation of the

problem domain. Direct methods using a discontinuous representation of

the problem domain can make use of simpler, more efficient optimization

algorithms relative to continuous or hybrid methods.

(iii) For certain classes of problem, the ability of direct methods to accurately

model the discontinuities developing at failure is critical to the accuracy

of solutions obtained. Discontinuous and hybrid continuous/discontinuous

methods model these discontinuities directly. However, these methods are

typically very sensitive to discontinuity orientation. Therefore, considerable

insight into the form of the solution is required. Alternatively, complex

adaptive schemes may be used. Discontinuity layout optimization (DLO)

allows very large numbers of potential discontinuities at a wide range of

orientations to be considered, overcoming this limitation.

(iv) Plane strain DLO has sucessfully been tested against numerous benchmarks

and allows consideration of complex boundary conditions. An adaptive pro-

cedure based on the dual, equilibrium formulation allows very large problems

to be solved efficiently. The objective of the current research is to develop a

three-dimensional formulation of DLO.
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(v) Three-dimensional benchmarks suitable for validation have been selected

from the literature.





3 Application of discontinuity layout op-

timization to three-dimensional plas-

ticity problems1

In Chapter 2, the plane strain formulation of discontinuity layout optimization

(DLO) was introduced. In plane strain, DLO is capable of obtaining accurate

upper bounds on the collapse load at moderate computational expense. To date,

no three-dimensional formulation of DLO has been developed. In the following

sections, a new three-dimensional formulation of DLO is described in kinematic

form. Firstly, the yield condition and flow rule on a three-dimensional discontinu-

ity are examined. The three-dimensional formulation of DLO is then developed

in kinematic form, considering compatibility and energy dissipation, where the

discontinuities in this new formulation are polygonal rather the line segments (as

plane strain). The new formulation is then summarized before validating the new

formulation against the benchmark problems selected in Section 2.7.

1based on Hawksbee, S., Smith, C. and Gilbert, M. (2013). “Application of discontinuity
layout optimization to three-dimensional plasticity problems”, Proc. R. Soc. A , Vol. 469, pp.
1471-2946.

47
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3.1 Yield condition on three-dimensional discon-

tinuities

DLO is formulated entirely in terms of potential discontinuities and yield/de-

formation is only permitted along these potential discontinuities. Therefore in

three-dimensions, DLO can be cast as a second order cone program (SOCP) (see

Table 2.1).

It is now convenient to use an orthogonal coordinate system local to each dis-

continuity, comprising axes n, s and t, where n is a unit vector normal to the

discontinuity and s and t are unit vectors in the plane of the discontinuity. Con-

sidering translational mechanisms, the Mohr-Coulomb yield criterion can now be

enforced for stress resultants acting on the plane of the discontinuity by equations

(3.1) and (3.2):

P + N tan φ ≤ ac, (3.1)

P =
√

S2 + T 2, (3.2)

where c and φ are the material cohesion and angle of shearing resistance and a

is the face area of the discontinuity. N , S and T denote respectively the normal

force and shear traction components along the n, s and t axes respectively, and P

is the maximum shear traction on the discontinuity, as indicated in Figure 3.1.

Similarly, the associative flow rule for a Mohr-Coulomb material can be expressed

by equations (3.3) and (3.4):

p tan φ − n = 0, (3.3)

p ≥
√

s2 + t2, (3.4)

where n, s and t denote the component of the relative jump in displacement rate

across the discontinuity in the n, s and t directions respectively, and p is a plastic

multiplier, as indicated in Figure 3.1. (Note that henceforth, ‘energy dissipation’

and ‘displacement’ will be used as shorthand for ‘rate of energy dissipation’ and
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‘rate of displacement’, respectively.) Using equation (3.4), it is now possible to

formulate three-dimensional DLO as a SOCP problem.

N

S

T
P

S

T
P

N

(a) (b)

Figure 3.1: Mohr-Coloumb yield criteria: (a) yielding discontinuity between
two rigid blocks showing: normal force N , resultant shear force P and its compo-
nents S and T ; (b) conic yield surface, where N̂ is normal axis (tension positive)
and Ŝ and T̂ are orthogonal shear axes. The displacement jump orthogonal to
the yield surface, is shown, where n is the normal component of the displacement

jump and p is a plastic multiplier.

3.2 Three-dimensional formulation of DLO

In the following sections, a three-dimensional kinematic formulation of DLO is

developed using a three-dimensional grid of nodes and polygonal discontinuities.

While any simple polygonal shape or combination of simple polygonal shapes

may be used for the discontinuities, triangular discontinuities provide the most

flexibility and will be used in the numerical examples. However, for the purposes

of explaining the method, discontinuities of both rectangular and triangular shape

will be used. In general when using triangular discontinuities all combinations of
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three nodes are connected to create a total of n(n − 1)(n − 2)/6 discontinuities,

where n is the total number of nodes used to discretize the problem (cf. a total of

n(n− 1)/2 discontinuities in plane strain problems). As in plane strain problems,

this results in a rich field of potential translational mechanisms and reduces the

need to refine the mesh in the region of singularities.

3.2.1 Compatibility

A scheme guaranteeing compatibility is required. In plane strain DLO, compat-

ibility is enforced on a nodal basis. In three-dimensional DLO, compatibility is

conveniently enforced along shared edges. Figure 3.2 shows a set of triangular

prisms sharing a common edge OO′ and with absolute displacements, vAB to vEA.

The prisms are separated by rectangular discontinuities O′OXX ′, where X = A,

B . . . E. Each discontinuity O′OXX ′ has a normal nX and a relative displacement

jump ΔvX that denotes the difference in absolute displacement of the prisms meet-

ing at this discontinuity. It follows from this definition that Equation (3.5), which

involves summing all relative displacement jumps around edge OO′, must hold:

(vEA−vAB)+(vAB−vBC)+(vBC−vCD)+(vCD−vDE)+(vDE−vEA) = 0 (3.5)

A sign convention for determining the directions of nA to nE and ΔvA to ΔvE

is presented in Appendix A. Using this sign convention and the vertex ordering in

Figure 3.2(b), the following must also be true along edge OO′:

ΔvA + ΔvB + ΔvC + ΔvD + ΔvE = 0 (3.6)

Compatibility can be similarly enforced along the remaining edges, using the sign

convention given in Appendix B. Moreover, equation (3.6) can be reformulated

along edge j(j = 1, 2, . . . , , l) in terms of coordinate systems local to each discon-

tinuity i and defined as follows:
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Figure 3.2: Solid bodies meeting at a common edge, (a) prior to, and (b) after

movement, with prisms separated by discontinuities
−−−−−−→
O′OXX ′, where X = A,

B . . . E. For clarity O′ has not been shown, but lies in in the plane A′B′C ′D′E′.

∑

i∈Sj

Bijdi = 0 (3.7)

where l is the total number of edges used to discretize the problem; Sj is a subset

of the total number of discontinuities m and contains all discontinuities meeting

at edge j.

di = TT
i Δvi; (3.8)

where Ti is a 3 × 3 transformation matrix converting local to global displacement

jumps. Ti is chosen such that one axis aligns with ni, the unit column vector

in the normal direction using the ‘righthand screw rule’; the two remaining or-

thogonal axes, si and ti, are in plane of discontinuity i such that Ti = {ni si ti}.

And where di ={ni si ti}T , where ni, si and ti are the local displacement jumps

across discontinuity i in the ni, si and ti directions respectively. Bij is a local

compatibility matrix equal to kijTi, where the kij is defined in Appendix B.

The DLO procedure results in intersections and overlaps between discontinuities

that do not coincide with nodal connections, however compatibility at these is

inherently enforced, as demonstrated in Appendix C.
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3.2.2 Flow rule

The local coordinate system described allows the associative flow rule for a Mohr-

Coulomb material to be enforced using equations (3.3) and (3.4). Taking advantage

of SOCP, the flow rule on a discontinuity i can be restated as follows:

pi tan φi − ni = 0 (3.9)

pi ≥
√

s2
i + t2i (3.10)

where pi is a plastic multiplier; φi is the angle of friction on discontinuity i. Equa-

tion (3.9) is a linear constraint and equation (3.10) is a second order cone. In

matrix form equation (3.9) can be stated as follows:

Np − dn = 0 (3.11)

where dn is a subset of d containing only the displacement jumps normal to

discontinuities i(i = 1, . . . ,m), p is a global vector containing plastic multipliers

and m is now the total number of discontinuities in the problem. N is a global

m × m matrix enforcing the flow rule and equal to diag(tan φ1, tan φ2, . . . , tan φm).

It is noted that it is not always necessary to apply constraint equations (3.9) and/or

(3.10). The relevant combinations are summarized shown in the first half of Table

3.1.

3.2.3 Dissipation function

The energy dissipated on a given discontinuity i is simply gipi, where gi is a

dissipation coefficient equal to
∫

i
c da, the integral of the cohesive strength over

the area a of discontinuity i. In the case of uniform cohesive strength across
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Table 3.1: Discontinuity flow rule conditions - applicable constraints and vari-
ables

Constraints Variables
Eq. (3.9) Eq. (3.10) ni si & ti pi

Interior discontinuity
φi > 0, ci ≥ 0 • • • • •
ci, φi = 0 •
ci > 0, φi = 0 • • •

Boundary discontinuity
free • •
symmetry •
rigid • • • • •

discontinuity i, the dissipation coefficient gi = aici, where ai and ci are respectively

the area and cohesion of the discontinuity.

On overlapping regions, the upper bound nature of the solution is maintained, as

demonstrated in Appendix C.2.

3.2.4 Mathematical formulation

A three-dimensional kinematic formulation for a cohesive-frictional body discretized

using m polygonal discontinuities and l edges can be summarised as follows:

min λfT
L d = −fT

Dd + gTp (3.12)
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subject to

Bd = 0 (3.13)

Np − dn = 0 (3.14)

fT
L d = 1 (3.15)

pi ≥
√

s2
i + t2i ∀i ∈ {1, . . . , m} (3.16)

where fD and fL are vectors containing, respectively, the specified dead and live

loads; d contains displacement jumps across the discontinuities, dT = {n1, s1, t1,

n2, s2, t2, . . . , tm}, where ni is the displacement jump normal to discontinuity i

and si and ti are the displacement jumps within the plane of discontinuity i; g is a

vector of dissipation coefficients. B is a suitable 3l × 3m compatibility matrix; N is

a suitable m × m flow matrix; dn (a subset of d) is a vector containing the normal

displacement jumps, dT
n = {n1, n2, . . . , nm}; and p is a vector of plastic multipliers,

pT = {p1, p2, . . . , pm}, where pi is the plastic multiplier for discontinuity i given

by equation (3.16). The optimization variables are the displacement jumps in d

(and dn) and the plastic multipliers in p. The objective function and the first

three constraints are linear. The final constraints on the plastic multipliers pi are

second order cones, so that the formulation is amenable to solution using SOCP.

The problem can also be posed in an equilibrium form, established using duality

principles (see e.g. Boyd and Vandenbershe (2004)).

3.2.5 Boundary conditions and loads

Many common boundary conditions can readily be modelled by using a reduced

number of variables and constraints, as indicated in Table 3.1. This shows that a

discontinuity on a rigid boundary is dealt with in exactly the same manner as a

discontinuity in the interior of a domain.

Dead and live loads fT
D and fT

L , in equations (3.12) and (3.15), are now defined such

that fT
D = {fn

D1, f s
D1, f

t
D1 , fn

D2, . . . , f
t
Dm} and fT

L = {fn
L1, f

s
L1, f t

L1, f
n
L2, . . . , f t

Lm},

where fn
Di, f s

Di, f t
Di and fn

Li, f s
Li, f t

Li are, respectively, the dead and live loads
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acting in the ni, si and ti directions on discontinuity i. Areas of flexible loading

can be applied directly to the discontinuities with no special treatment. Rigid

loads can be applied using a discontinuity covering the whole loaded area and

reducing the degrees of freedom of underlying discontinuities appropriately.

At an external boundary, after taking account of any overlapping regions, displace-

ment jumps must equal the absolute displacement of that boundary. Hence fDi

and fLi are simply the local dead and live loads on discontinuity i resolved to the

local coordinate system when applied at boundary discontinuity i. For disconti-

nuities within a body, the contents of fDi and fLi can be obtained by summing up

the total overlying dead or live loads, excluding boundary loads. For example, for

the case where dead loads are due to self weight only, and this is applied in the

negative z direction, the contribution to the summation made by discontinuity i

is as follows:

fT
Didi = Widi, (3.17)

where Wi is a 1 × 3 row vector containing the components in the ni, si and ti

directions of the total weight of the column lying vertically above discontinuity i.

3.2.6 Summary of procedure

Steps in the DLO procedure for three-dimensional problems can be summarised

as follows:

(i) discretize the problem using nodes;

(ii) connect nodes to create edges;

(iii) join edges to create polygonal discontinuities;

(iv) set up problem, using equations (3.12) - (3.16);

(v) solve the resulting SOCP problem.
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3.3 Numerical Examples

In order to verify the potential of the method, various three-dimensional examples

are now considered (i.e. the benchmarks selected in Section 2.7). All computations

were performed using 2.6 GHz AMD Opteron 6140 processors equipped with 8 GB

RAM and running 64 bit Scientific Linux. The Mosek interior point solver with

SOCP capability was used (Mosek, 2011). The default settings of the optimizer

were used, including the pre-solve feature. The CPU times reported are for the

optimizer only and include the optimizer’s pre-solve routine, but exclude the time

taken to read in and set up a given problem.

Prior to solving, various measures were taken to condition and/or reduce the

size of a given problem. Firstly the coefficients in the objective function (3.12)

and unit displacement constraint (3.15) were scaled to ensure the problem was

well posed. Secondly, as overlapping edges do not provide any extra degrees of

freedom, these were removed. Thirdly, discontinuities covering areas which could

be reconstructed by combining several discontinuities covering smaller areas were

removed. Fourthly, noting that the formulation naturally results in 3(n − 1) linear

dependencies in the constraint matrix, where n is the total number of nodes, such

linear dependencies were identified and removed prior to passing the problem to

the optimizer. Lastly, while the basic DLO procedure involves positioning nodes

on a Cartesian grid, the use of other nodal arrangements is possible, and, where

clearly indicated, regular grids with differing x, y and z spacings are used in this

paper. However, it should be noted that an adaptive solution procedure capable

of dramatically reducing problem size (of the sort described in Smith and Gilbert

(2007) for plane strain problems) was not utilized. Thus the size of a problem

increases rapidly as nodal resolution is increased, and consequently details of only

relatively small problems are reported here.
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3.3.1 Compression of a block

The unconfined compression of a square block with shear strength parameters c, φ

between two perfectly rough rigid platens (see Section 2.7.3) has previously been

considered by Martin and Makrodimopoulos (2008), who have obtained upper

and lower bound solutions which can be used to benchmark the proposed 3D

DLO procedure. For the geometry shown in Figure 3.3, the objective is to find

the ratio of the average bearing pressure q to cohesive shear strength c.

Symmetry means that only one-sixteenth of the block needs to be modelled, as

indicated in Figure 3.3. Nodes were initially positioned on a Cartesian grid (equal

nodal spacings in the x, y and z directions) and solutions are presented in Table

3.2, along with the results obtained by Martin and Makrodimopoulos (2008) taken

as benchmark. For φ = 0◦, the new solutions presented are close (within 0.39%) to

the benchmark upper bound solutions of Martin and Makrodimopoulos (2008). A

representative collapse mechanism is shown in Figure 3.4. In the case of φ = 30◦,

the new solution compares less favourably with the benchmark (diff. 10%).

Noting that the active discontinuities in Figure 3.4 radiate from the centre, the

use of different nodal spacings for φ = 0◦ have been used in the x direction to

those in the y and z directions. By reducing nodal spacings in the x direction

and increasing them in the y and z directions, it has been possible to improve on

the upper bound obtained by Martin and Makrodimopoulos (2008). Results for

various nodal spacings are presented in Table 3.3.

Firstly it is evident that a solution matching the best reported value of 2.314

presented previously could be obtained in only 0.22 seconds (Table 3.3), compared

with 9700 seconds previously (Table 3.2). This is because only a small subset of

the discontinuities present previously are now present. Secondly it is evident that

it has been possible to improve on the upper bound obtained by Martin and

Makrodimopoulos (2008).
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Figure 3.3: Compression of a block – problem geometry, nodal spacings Δx,
Δy and Δz, and one-sixteenth of the problem taking advantage of symmetry

Table 3.2: Compression of a 2 × 2× 1 unit block (as depicted in Figure 3.3) -
comparison with benchmark solutions

φ (◦) Benchmark Spacing Discontinuities Solution Diff CPU
UB LB Δ Total no. Active (%) (%) (s)

0 2.305 2.230 1/4 7, 704 2.7 2.319 0.60 12
1/6 117, 936 2.7 2.314 0.39 9, 700

30 10.06 8.352 1/4 7, 704 10 12.48 18 2.0
1/6 117, 936 4.0 11.69 10 5, 000

Key: UB & LB = upper & lower bound solutions from Martin and Makrodimopoulos (2008);
the UB has been used to benchmark the present solutions; Δ = Δx = Δy = Δz.

3.3.2 Punch indentation

The bearing capacity of a perfectly rough square indenter resting on the surface of

a purely cohesive Tresca material is now considered (see Section 2.7.2). The value

of interest is once again the ratio q/c, otherwise known as the bearing capacity

factor Nc. Salgado et al. (2004) have established upper and lower bounds for a

variety of indenter embedment depths and geometries using finite element limit

analysis. Michalowski (2001) and Vicente da Silva and Antão (2008) have also

established upper bounds for a number of indenter geometries bearing onto the
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Table 3.3: Compression of a 2 × 2× 1 unit block (as depicted in Figure 3.3) -
use of different nodal grid spacings

φ (◦) Benchmark Spacing Discontinuities Solution Diff CPU
UB LB Δy, Δz Total no. Active (%) % (s)

0 2.305 2.230 1/4 356 29 2.319 0.60 0.04
1/6 1, 500 30 2.314 0.39 0.22
1/8 4, 452 26 2.309 0.18 1.9
1/12 23, 100 21 2.307 0.072 50
1/18 133, 884 16 2.304 −0.043 1, 800

Key: UB & LB = upper & lower bound solutions from Martin and Makrodimopoulos (2008);
the UB has been used to benchmark the present solutions; Δx = 1.

Figure 3.4: Compression of a 2 × 2 × 1 unit block (as depicted in Figure 3.3)
- typical failure mechanism for φ = 0◦ case (Δx, Δy, Δz = 1

4)

material surface. The best reported upper and lower bounds for a square indenter

are included in Table 3.4.

The problem geometry used is shown in Figure 3.5. Taking advantage of sym-

metry, only one-eighth of the problem needs to be modelled, as shown in Figure
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3.5. Table 3.4 presents new solutions for three nodal nodal spacings, with all

nodes positioned on a Cartesian grid (equal nodal spacings in the x, y and z

directions). These solutions compare well with the best reported upper bound,

especially considering the comparatively low nodal resolutions employed. A rep-

resentative failure mechanism is shown in Figure 3.6. It should be noted that the

critical mechanisms for all three nodal grids extend up to the fixed boundaries.

However, extending the problem domain relative to the foundation quickly leads

to impractically large problem sizes, so this issue was not investigated further.

1

1

ΔΔ

Δ

2

2

1
2

z

x

y

Figure 3.5: Punch indentation – problem geometry, nodal spacing Δ and
one-eighth of the problem taking advantage of symmetry

Table 3.4: Indentation of a 1 × 1 unit punch (as depicted in Figure 3.5) -
comparison with benchmark solutions

Benchmark Spacing Discontinuities Solution Diff CPU
UB LB Δ Total no. Active (%) % (s)

6.051 5.52 1/2 157 17 6.521 7.8 0.02
1/4 7, 365 4.6 6.405 5.9 13
1/6 114, 310 1.6 6.226 2.9 6, 400

Key: UB & LB = upper & lower bound solutions respectively from Vicente da Silva and Antão
(2008) and Salgado et al. (2004); the UB has been used to benchmark the present solutions.
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Figure 3.6: Indentation of a 1 × 1 unit punch (as depicted in Figure 3.5) -
representative failure mechanism (Δ = 1

2 , φ = 0) (Note for presentation the
extent of the stationary region has been increased)

3.3.3 Anchor in a purely cohesive soil (φ = 0)

Consider a perfectly rough anchor of width B embedded at a depth H in a purely

cohesive Tresca soil (see Section 2.7.4), as shown in Figure 3.7. Immediate break-

away (no suction or transmission of tensile stresses) is assumed between the anchor

base and the soil. Taking advantage of symmetry, only one-eighth of the problem

needs to be modelled, as shown in Figure 3.7. Various H/B ratios have been

considered by fixing B = 2, W = 10, Δx = Δy = 1 , Δz = H/4 and varying H.

Merifield et al. (2003) used lower bound finite element limit analysis to establish

bounds on the break-out factor at various embedment depths. The break-out

factor Nc0 for an anchor in a weightless cohesive soil is defined as average bearing

pressure q divided by the cohesive strength c. For a soil with unit weight γ,

Merifield et al. (2003) defined the break-out factor Ncγ as:
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B

B

ΔyΔx

Δz

W

W

H z

x

y

Figure 3.7: Anchor – problem geometry, nodal spacings, Δx, Δy and Δz, and
the one-eighth of the volume modelled, due to symmetry

Ncγ = Nc0 +
γH

c
(3.18)

Failure mechanisms can be classified as ‘shallow’, where the failure mechanism

extends up from the anchor to the soil surface, and ‘deep’, where the mechanism

involves only localized deformations around the anchor, and where the break-out

factor Nc∗ is independent of the embedment depth H. For a given ratio γ/c, the

deep mechanism becomes critical at depths greater than or equal to Hcr. If both

deep and shallow mechanisms are considered, Ncγ must be less than or equal to

Nc∗. Merifield et al. (2003) established a lower bound on Nc∗ ≈ 11.9. For γ/c = 0,

Merifield et al. (2003) found Hcr ≈ 7.

Figure 3.8 shows break-out factors for shallow failures at various embedment

depths. These show good agreement with those of Merifield et al. (2003) when

γ/c = 0 and H < Hcr. Furthermore the results for γ/c = 1 and γ/c = 2 are

consistent with the relationship described in equation (3.18). The mechanisms
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developed did not extend to the lateral fixed bounary, suggesting that Nc and Ncγ

were not influenced by the extent of the domain modelled.

0

10

20

30

40

N
γ

c

0 1 2 3 4 5 6
H/B

γ
c = 0

γ
c = 1

γ
c = 2

Lower bound(Merifield et. al. 2003)

Upper bound(3D DLO)

Figure 3.8: Anchor in cohesive soil - break-out factors

3.3.4 Anchor in a purely frictional soil

Now, consider a perfectly rough anchor of width B embedded at depth H in a

purely frictional soil with an angle of friction φ = 30◦ and a unit self weight γ (see

Section 2.7.4). Assuming an associative flow rule, only mechanisms that extend

to the surface are possible. The break-out factor Nγ in this case can be expressed

as:

Nγ =
q

γH
(3.19)

where q is the average pressure on the anchor. Merifield et al. (2006) used a

lower bound finite element analysis procedure to establish bounds on the break-out

factor for various angles of friction and embedment depths. Murray and Geddes
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(1987) proposed the upper bound in equation (3.20), assuming a simple rigid block

mechanism.

Nγ = 1 +
H

B
tan φ (2 +

π

3
Htan φ) (3.20)

Using nodal grids of the general form in Figure 3.7 and fixing B = 2, W = 10,

Δx = Δy = 1 , Δz = H/4 (denoted GRID 1) and varying H, a very close fit, shown

in Figure 3.9, to equation (3.20) has been found for 0.5 ≤ H/B ≤ 2.5. Above this

range, the mechanism reaches the lateral fixed boundary and no solution was

obtained. The critical mechanism is relatively simple and very similar results can

be obtained using an alternative grid, where B = 2, W = 16, Δx = Δy = 1,

Δz = H (denoted GRID 2). GRID 2 also has been used to determine Nγ for

2.5 < H/B ≤ 5, which also compare well with equation (3.20).

0

10

20

Nγ

0 1 2 3 4 5 6
H/B

Upper bound φ = 30◦ (Murray & Geddes 1987)

Lower bound φ = 30◦ (Merifield et. al. 2006)

Upper bound φ = 30◦ (3D DLO GRID 1)

Upper bound φ = 30◦ (3D DLO GRID 2)

Figure 3.9: Break-out factors for a square anchor in frictional soil using two
different nodal grids: GRID 1 and GRID 2
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3.4 Discussion

As can be seen in the previous section, three-dimensional DLO is capable of obtain-

ing results comparable with those found in the literature. In one case, an improved

upper bound solution was obtained. However, refining the nodal grid even slightly

leads to a large increase in the number of potential discontinuities, and problems

quickly become impractically large using currently available computational power,

and enhancements to improve performance are required.

3.5 Conclusions

(i) A new three-dimensional kinematic formulation of discontinuity layout opti-

mization (DLO) has been described that can be used to solve general three-

dimensional plasticity problems. In this new formulation, unlike the existing

plane strain formulation, compatibility is enforced along the edges between

discontinues. The formulation makes use of efficient second order cone pro-

gramming to handle the Mohr-Coulomb flow rule, and to directly determine

optimal translational collapse mechanisms. These collapse mechanisms are

based on an optimal subset of planar discontinuities drawn from a large set

of potential planar triangular discontinuities whose corners are located on

nodes within a three-dimensional grid of nodal points in the problem domain.

(ii) Good correlation was found with benchmarks available in the literature de-

spite the low nodal resolutions employed. The best reported upper bound

for the compression of a purely cohesive block between two perfectly rough

platens was improved upon.





4 Plane strain stress functions

4.1 Introduction

In Chapter 3, a three-dimensional discontinuity layout optimization (DLO) for-

mulation was developed. In the kinematic formulation presented, the sum of the

energy dissipated in the material and the work done by the dead loads was min-

imized. However, an equivalent problem, maximizing the load factor applied to

the live loads, can be derived from duality principles. Valuable insights into the

plane strain DLO formulation have been gained by understanding the dual form

of the plane strain formulation (see Section 2.6.3). Direct derivation of the three-

dimensional dual formulation from first principles appears to have the potential

to lead to similar insights, potentially allowing more efficient solution schemes to

be developed. However, before proceeding to investigate the three-dimensional

formulation in more detail, the dual, equilibrium, plane strain formulation will be

explored.

Smith and Gilbert (2007) used linear programming duality principles to derive the

equilibrium plane strain DLO formulation. This appears to resemble a traditional

lower bound formulation, but in fact produces upper bound solutions identical to

those obtained using the primal, kinematic, formulation. In the following sections,

the plane strain equilibrium formulation will be derived again but here using vector

calculus (see Appendix D) and so-called ‘stress functions’. Differences between the

plane strain equilibrium formulation and formulations complying with the lower

bound theorem will be explored, and relaxed lower bounds, referred to as pseudo

lower bounds, developed. In Chapter 5, a similar derivation will be employed to

67
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find the dual of the three-dimensional formulation, and to develop a pseudo lower

bound method.

4.2 Background

4.2.1 Equilibrium equations

A body in plane strain equilibrium must satisfy the following equilibrium equations

∇ ∙ σx + px = 0 (4.1)

∇ ∙ σy + py = 0 (4.2)

σxy = σyx (4.3)

where px and py are components of body force in the x and y directions, respec-

tively;

σx = σxxi + σyxj; (4.4)

σy = σxyi + σyyj; (4.5)

and the sign convention is given by Figure 4.1. Equation (4.3) requires that the

stress tensor

σ =

[
σxx σxy

σyx σyy

]

(4.6)

must be symmetric.

4.2.2 Translational equilibrium

In simple upper bound methods, rotational mechanisms are often assumed not to

occur. For example, a classical Coulomb wedge mechanism is shown in Figure

4.2. Here the wedge is assumed to slide along a straight rupture surface, and
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σyy

σyy

σxx
σxx

σxy

σxy

σyx

σyxy

x

Figure 4.1: Sign convention: plane strain stress components

therefore only translational movements are involved. For sake of simplicity as-

suming a weightless Tresca material, the limiting surface load F on the wedge in

translational equilibrium can be found from

S cos θ − N sin θ = 0 (4.7)

F = S sin θ + N cos θ (4.8)

where S and N are the shear and normal forces on the rupture surface. A further

check, taking moments about a point, is necessary to ensure rotational equilibrium.

However, the true limit analysis collapse load for this problem can be found from

equations (4.7) and (4.8) by varying angle θ to find minimum F and setting S = cl,

where c is the shear strength of the soil and l the length of the rupture surface.

This approach is equivalent to equating the energy dissipated along the rupture

surface to the work done by F .

In equilibrium terms, equations (4.7) and (4.8) are equivalent to enforcing equa-

tions (4.1) and (4.2). However, equation (4.3) and, therefore, symmetry of the

stress tensor σ is not enforced. In which case, the Mohr’s circle representation of
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F

S

N

θ

Figure 4.2: Coulomb wedge for a cohesive soil behind a smooth wall

the stress state (assumed the same everywhere) is displaced a distance

h =
1

2
(σyx − σxy) (4.9)

above or below the normal stress σ-axis as shown in Figure 4.3 (see, for example,

Iordache and Willam (1998) and Coelho and C. (2008)). An antisymmetric tensor

is simply a special case, i.e. where σyx = σxy and h = 0.

σ

τ

(σ , σ )yy yx

(σ , σ )xx xy

r

Figure 4.3: Mohr’s circle for a plane strain tensor



Chapter 4. Plane strain stress functions 71

Purely translational problems, such as the Coulomb wedge problem, represent an

important subset of geotechnical problems, including strip footings. Therefore,

purely translational analysis can be a valuable tool for a number of commonly oc-

curring problems. Additionally, these purely translational mechanisms will always

be upper bounds and can, therefore, be used to bound the true collapse load.

4.2.3 Stress functions

Stress functions are functions automatically satisfying the equilibrium equations.

Stress functions were commonly used by engineers in the past to solve a variety of

engineering problems. A well known example of a stress function is Airy’s stress

function given by equations (4.10), where Ω satisfies equations (4.11). Airy’s stress

function satisfies plane strain equilibrium, equations (4.1-4.3).

σxx =
∂2φ

∂y2
+ Ω; σyy =

∂2φ

∂x2
+ Ω; σxy = σyx = −

∂2φ

∂x∂y
(4.10)

px = −
∂Ω

∂x
; py = −

∂Ω

∂y
(4.11)

In the following sections, stress functions automatically satisfying translational

equilibrium will be used to derive the translational, equilibrium form of DLO.

These stress functions will not necessarily satisfy rotational equilibrium, equation

(4.3).

4.3 Derivation of DLO equilibrium formulation

In the following sections, the plane strain equilibrium DLO formulation will be

derived. The derivation will be framed in terms of vector calculus and stress

functions, allowing the use of the powerful theorems in Appendix D. Firstly, a

set of stress functions satisfying translation equilibrium will be derived in Section

4.3.1. In Section 4.3.2, the integral forms of the translational equilibrium equations

will be developed. In Sections 4.3.3 and 4.3.4, these integral forms will be used
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to find the applied loads and internal forces on a path, leading to equation (2.37).

(Note the term ‘path’ is used for consistency with vector calculus, but the term

‘discontinuity’ could equally be used.) These internal forces will then be used to

enforce the Mohr-Coulomb yield condition on a path. Finally, the equilibrium

formulation will be found by discretizing the problem domain and setting up a

constrained optimization problem. In Section 4.3.7, the status of the equilibrium

formulation in the context of the formal theorems of limit analysis will be discussed

in light of this derivation.

4.3.1 Translational stress functions

In Section 4.3.2, the integral form of the translational equilibrium equations will

be used to find the total body forces acting on a body, and the total change in

the internal stresses across it. For this translational stress functions are required,

satisfying equations (4.1) and (4.2).

Assuming that

px = ∇ ∙ Px, (4.12)

py = ∇ ∙ Py, (4.13)

where

Px = ωxi + εxj, (4.14)

Py = εyi + ωyj; (4.15)

and where ωx is a function describing the force per unit area acting in the x

direction on the y plane; εx is a function describing the force per unit area acting

in the x direction on the x plane; ωy is a function describing the force per unit

area acting in the y direction on the x plane; and εy is a function describing the

force per unit area acting in the y direction on the y plane. ωx, εx, ωy and εy are

illustrated in Figure 4.4.
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ωx
ωx

(a) ωx: acting in the x direction on
the y plane

εx

εx

(b) εx: acting in the x di-
rection on the x plane

ωy

ωy

(c) ωy : acting in the y di-
rection on the x plane

εyεy

(d) εy : acting in the y direction
on the y plane

Figure 4.4: Functions ωx, εx, ωy and εy describing body force per unit area

Equations (4.1) and (4.2) are satisfied by stress functions tx and ty, where

σxx = −ωx +
∂tx

∂y
, σyx = −εx −

∂tx

∂x
, (4.16a)

σyy = −ωy +
∂ty

∂x
, σxy = −εy −

∂ty

∂y
. (4.16b)

Now σx, σy and σ can be rewritten as

σx = ∇× Φx − Px = (−ωx +
∂tx

∂y
)i + (−εx −

∂tx

∂x
)j, (4.17)

σy = ∇× Φy − Py = (−εy +
∂ty

∂y
)i + (−ωy −

∂ty

∂x
)j, (4.18)
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σ =

[
−ωx + ∂tx

∂y
−εx − ∂tx

∂x

−εy + ∂ty

∂y
−ωy − ∂ty

∂x

]

; (4.19)

where σ is, generally, not symmetric and

Φx = (0)i + (0)j + (tx)k, (4.20)

Φy = (0)i + (0)j + (ty)k. (4.21)

4.3.2 Integral form

In the following section, the integral forms of equations (4.1) and (4.2), with stress

functions tx and ty substituted in, will be found by considering a body G, shown

in Figure 4.5(a). These integral forms will be used in Sections 4.3.3 and 4.3.4, to

determined the external and internal forces on an arbitrary path.

G

(a) Body G

M H

(b) A region M within G en-
closed by path H.

A
B

CD

(c) Path H divided into
smaller sub-paths AB, BC,
CD and DA.

A
B

(d) Different paths connecting
points A and B.

(e) Nodes within and on the
boundary of body G.

(f) Straight line paths connect-
ing the nodes in (e).

Figure 4.5: Nodes, paths and regions within a body G

For body G to be in translational equilibrium, any arbitrary region M (shown

in Figure 4.5(b)), enclosed by a path H, must satisfy equations (4.1) and (4.2).

Integrating equations (4.1) and (4.2) over M leads to equations (4.22) and (4.23)
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being obtained, where the right hand sides equal the total body forces on M in

the x and y directions respectively. The left hand sides of the equations equal the

negative of the total change in the internal stress over M in the x and y directions

respectively.

−
x

M

∇ ∙ σx dxdy =
x

M

∇ ∙ Px dxdy (4.22)

−
x

M

∇ ∙ σy dxdy =
x

M

∇ ∙ Py dxdy (4.23)

Equations (4.22) and (4.23) are necessary but not sufficient to ensure translational

equilibrium. As tx, ty, ∇ ∙ Px and ∇ ∙ Py from Section 4.3.1 satisfy translational

equilibrium, these must also satisfy equations (4.22) and (4.23).

Considering the left hand and right hand sides separately, the total body forces

on M can be found using Stokes’ theorem (note that anticlockwise closed paths

are taken as positive throughout this chapter):

x

M

∇ ∙ Px dxdy =

∮

H

Px ∙ dr = −
∮

H

εx dx +

∮

H

wx dy, (4.24)

x

M

∇ ∙ Py dxdy =

∮

H

Py ∙ dr = −
∮

H

wy dx +

∮

H

εy dy. (4.25)

The total change in the internal forces on M in the x and y directions, respectively,

can also be found using Stokes’ theorem:

x

M

∇ ∙ σx dxdy =

∮

H

σx ∙ dr (4.26)

=

∮

H

∇× Φx ∙ dr −
∮

H

Px ∙ dr

= −
∮

H

(−
∂tx

∂x
)dx +

∮

H

(−
∂tx

∂y
)dy −

∮

H

Px ∙ dr

=

∮

H

∇tx ∙ dr −
∮

H

Px ∙ dr,
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x

M

∇ ∙ σy dxdy =

∮

H

σy ∙ dr (4.27)

=

∮

H

∇× Φy ∙ dr −
∮

H

Py ∙ dr

= −
∮

H

(−
∂ty

∂x
)dx +

∮

H

(−
∂ty

∂y
)dy −

∮

H

Px ∙ dr

=

∮

H

∇ty ∙ dr −
∮

H

Py ∙ dr,

This reveals that
∮

H
∇tx ∙ dr = 0 and

∮
H
∇ty ∙ dr = 0, as would be expected from

vector calculus, and therefore that
∮

H
∇× Φx ∙ dr = 0 and

∮
H
∇× Φy ∙ dr = 0.

The line integral of a closed path can be found by dividing the path into a series

of sub-paths. The line integral is now simply the sum of individual sub-path line

integrals. For the example shown in Figure 4.5(c):

∮

H

σx ∙ dr =

∫ D

A

σx ∙ dr +

∫ C

D

σx ∙ dr +

∫ B

C

σx ∙ dr +

∫ A

B

σx ∙ dr, (4.28)

∮

H

σy ∙ dr =

∫ D

A

σy ∙ dr +

∫ C

D

σy ∙ dr +

∫ B

C

σy ∙ dr +

∫ A

B

σy ∙ dr, (4.29)

∮

H

Px ∙ dr =

∫ D

A

Px ∙ dr +

∫ C

D

Px ∙ dr +

∫ D

C

Px ∙ dr +

∫ A

B

Px ∙ dr, (4.30)

∮

H

Py ∙ dr =

∫ D

A

Py ∙ dr +

∫ C

D

Py ∙ dr +

∫ D

C

Py ∙ dr +

∫ A

B

Py ∙ dr. (4.31)

4.3.3 Applying loads

Discretely applied loads are present in many engineering problems. Therefore, a

method capable of applying discrete loads other than distributed body forces is

required. The integral forms developed in Section 4.3.2 allow discrete application

of loads to a body via its boundaries (see Appendix E for further information).
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Consider forces fx and f y applied discretely to a triangular body ABO via bound-

aries OA and BO, respectively, where BO and OA are parallel to the x and y axes,

respectively, as shown in Figure 4.6(a).
∫ B

A
Px ∙ dr,

∫ O

B
Px dr and

∫ A

O
Px ∙ dr can

be interpreted as the loads on AB, BO and OA, respectively, in the x direction

and
∫ B

A
Py ∙ dr,

∫ O

B
Py dr and

∫ A

O
Py ∙ dr as the loads on AB, BO and OA respec-

tively, in the y direction. Therefore, fx and f y can be applied perpendicular to

boundaries AO and OC respectively, using, for example, the variations of ωx, εx,

ωy and εy in Figures 4.6(b) and 4.6(c). Using the variations in Figures 4.6(b) and

4.6(c), ωx = 0, εx = 0, ωy = 0 and εy = 0 on AB, therefore,

∫ B

A

Px ∙ dr = −
∫ B

A
εx dx +

∫ B

A
wx dy (4.32)

= 0 ∙
∫ B

A
1 dx + 0 ∙

∫ B

A
1 dy = 0,

∫ B

A

Py ∙ dr = −
∫ B

A
ωy dx +

∫ B

A
εy dy (4.33)

= 0 ∙
∫ B

A
1 dx + 0 ∙

∫ B

A
1 dy = 0;

ωx = 0, εx = 0, ωy = fy

(xB−xO)
and εy = 0 on BO, therefore,

∫ O

B

Px ∙ dr = −
∫ O

B
εx dx +

∫ O

B
wx dy (4.34)

= 0 ∙
∫ O

B
1 dx + 0 ∙

∫ O

B
1 dy = 0,

∫ O

B

Py ∙ dr = −
∫ O

B
wy dx +

∫ O

B
εx dy (4.35)

= − fy

(xO−xB)
∙
∫ O

B
1 dx + 0 ∙

∫ O

B
1 dy

= − fy

(xB−xO)
∙ (xO − xB) = f y,
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resulting in a load f y applied across BO; ωx = 0, εx = − fx

(yO−yA)
, ωy = 0 and

εy = 0 on OA, therefore,

∫ A

O

Px ∙ dr = −
∫ A

O
εx dx +

∫ A

O
wx dy (4.36)

= 0 ∙
∫ A

O
1 dx − fx

(yO−yA)
∙
∫ A

O
1 dy

= − fx

(yO−yA)
∙ (yA − yO) = fx,

∫ A

O

Py ∙ dr = −
∫ A

O
ωy dx +

∫ A

O
εy dy

= 0 ∙
∫ A

O
1 dx + 0 ∙

∫ A

O
1 dx = 0, (4.37)

resulting in a load fx applied across OA.

Using equations (4.24) and (4.25), the total applied loads fx
ABO and f y

ABO on ABO

in the x and y directions, respectively, can be found.

fx
ABO =

∫ B

A

Px ∙ dr +

∫ O

B

Px dr +

∫ A

O

Px ∙ dr = fx (4.38)

f y
ABO =

∫ B

A

Py ∙ dr +

∫ O

B

Py dr +

∫ A

O

Py ∙ dr = f y (4.39)

Similarly, fx and f y can be applied as tractions (shown in Figure 4.6(d)) to BO

and OA, respectively, using, for example, the variations of ωx, εx, ωy and εy in

Figures 4.6(e) and 4.6(f). This therefore confirms the definitions of ωx, εx, ωy and

εy given in Figure 4.4.

Consider an arbitrary path i, inclined at an angle θi. Take, for example, path AB

in Figure 4.7(a). Loads fx
i and f y

i in Figure 4.7(b) can be applied to a body ABC

via path AB by line integrals
∫ B

A
Px ∙ dr = fx

i and
∫ B

A
Py ∙ dr = f y

i . Assuming

Px = Py = 0 at every point not located on AB, the total applied loads on ABC

in the x and y directions must equal fx
i and f y

i , respectively. This can easily be

demonstrated using equations (4.24) and (4.25).
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(a) fx and fy applied perpendicularly to OA and
BO, respectively.
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(b) ωx and εx applying load fx in (a).

0
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{ f /(x -x )   for y
0         for y
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(c) ωy and εy applying load fy in (a).

f x
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A(x ,y )O A

B(x , y )B OO(x , y )O O
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(d) fx and fy applied parallel to BO and OA, re-
spectively.
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(e) ωx and εx applying load fx in (b).
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εy

ε
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(x) =
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{ -f /(y -y )  for x
0          for x

y
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O

ω
y
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(f) ωy and εy applying load fy in (b).

Figure 4.6: Application of loads fx and fy to body ABO
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A

B
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x

C

(a) Path AB inclined at angle θi

to the x axis

fi
x

fi
y

A

BC

fi
x

fi
y

(b) Loads fx
i and fy

i in the x and
y directions, respectively, applied
to a body ABC via path AB

f i
sf i

n

A

BC

(c) Loads fx
i and fy

i transformed
to a coordinate system local to
path AB; where fs

i and fn
i are

normal and shear loads on AB.

Figure 4.7: Loads applied to an inclined path AB

As shown in Figure 4.7(c), loads fx
i and f y

i can be transformed to a coordinate

system local to path i (in this case AB):

[
f s

i

fn
i

]

=

[
αi βi

−βi αi

][
fx

i

f y
i

]

=

[
αi βi

−βi αi

][∫ B

A
Px ∙ dr

∫ B

A
Py ∙ dr

]

; (4.40)

where αi = cos θi and βi = sin θi; f s
i and fn

i are normal and shear loads on i,

respectively. fn
i is positive in tension and f s

i is positive when applied clockwise.

f s
i and fn

i can be split into dead and live load components

[
f s

i

fn
i

]

=

[
f s

Di

fn
Di

]

+ λ

[
f s

Li

fn
Li

]

(4.41)

where f s
Di and f s

Li are dead and live shear loads, respectively, on i; fn
Di and fn

Li are

dead and live normal loads, respectively, on i; and λ is an adequacy factor on the

live load. If path i is an internal boundary, f s
i and fn

i must be the sum of the total

load applied between the path and an external boundary (see Appendix E.2 and

E.4), excluding any load applied to the external boundary (see Appendix E.3).

The direction of this summation is arbitrary, but must be consistent for all paths

considered. This definition of f s
i and fn

i is consistent with that given in Section

2.6.2.4.
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4.3.4 Internal forces on a path

In the following section, the forces on a path i due to the internal stresses will

be determined. In Section 4.3.5, these internal forces will be used to enforce the

Mohr-Coulomb yield condition.

Firstly, consider an arbitrary path i, inclined at an angle θi. Take, for example,

path AB in Figure 4.8(a), bounding an infinitesimal element. Examining equations

(4.26) and (4.27) and the gradient theorem (see Appendix D.1.3.1), it is clear that

F x
i =

∫ B

A

σx ∙ dr = −
∫ B

A

σyx dx +

∫ B

A

σxx dy = txB − txA −
∫ B

A

Px ∙ dr (4.42)

F y
i =

∫ B

A

σy ∙ dr = −
∫ B

A

σyy dx +

∫ B

A

σxy dy = tyB − tyA −
∫ B

A

Py ∙ dr (4.43)

where F x
i and F y

i (see Figure 4.8(b)) are the forces in the x and y direction respec-

tively, due to the internal stresses on AB; txA, tyA and txB, tyB are the magnitudes

of tx and ty at A and B, respectively. In the absence of body forces, line integrals

F x and F y are path independent and remain unchanged for any path joining A

and B; for example, those shown in Figure 4.5(d).

Equations (4.42) and (4.43) can be transformed to the local coordinate system in

Figure 4.8(c) as follows:

[
Si

Ni

]

=

[
αi βi −αi −βi

−βi αi βi −αi

]









txA

tyA

txB

tyB









+

[
αi βi

−βi αi

][∫ B

A
Px ∙ dr

∫ B

A
Py ∙ dr

]

; (4.45)

where Si and Ni are internal shear and normal forces on i, respectively. Si is posi-

tive when clockwise and Ni is tensile positive. After rearranging and substituting

in f s
Li, fn

Li, f s
Di, fn

Di and λ (see equations (4.40) and (4.41)), the following equation
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(a) Path AB inclined at an angle θi to the x
axis and bounding an infinitesimal element.
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B
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-σyx

Fy
i

(b) Internal forces F x
i and F y

i on path AB in the
x and y directions, respectively.
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B

Si Ni

-σyy
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(c) Internal forces F x
i and F y

i transformed to a co-
ordinate axis local to path AB; where

[
Si

Ni

]

=

[
−αi −βi

βi −αi

] [
F x

i

F y
i

]

(4.44)

Figure 4.8: Internal forces on a path AB (where αi = cos θi and βi = sin θi)

is obtained:

[
αi βi −αi −βi

−βi αi βi −αi

]









txA

tyA

txB

tyB









+ λ

[
f s

Li

fn
Li

]

−

[
Si

Ni

]

= −

[
f s

Di

fn
Di

]

(4.46)
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This is identical to equation (2.37).

4.3.5 Enforcing the Mohr-Coulomb yield condition on a

path

Generally, direct methods require the yield function or flow rule to be enforced at

least in a relaxed form. In this section, the internal forces obtained for an arbitrary

path i will be used to enforce yield in a relaxed (averaged) sense.

In the uniform distribution of stresses in Figure 4.9, the normal σn and shear

τ stresses must equal the average normal and shear stresses, respectively, along

the whole length of i. Assuming failure occurs along i, the Mohr-Coulomb yield

condition can be enforced for uniform distributions of σn and τ as follows:

[
1 tan φi

−1 tan φi

][
Si

Ni

]

≤

[
cili

cili

]

; (4.47)

where li is the length of path i; ci is the cohesive strength on i; and φi is angle of

friction on i.

tB

tA
y

tB
y

xtB

xtA

Figure 4.9: Uniform distribution of shear τ and normal stresses σn across a
discontinuity i
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4.3.6 Discretization

Assuming that the magnitude of tx and ty can only be determined at a specific

number of locations, n, or at nodes within the domain (see Figure 4.5(e), for

example). Suppose also that the nodes are connected by m number of straight

line paths (see Figure 4.5(f), for example) and that f s
Li, fn

Li, f s
Di and fn

Di are

known for all paths, i = 1, 2, 3 . . . ,m. Applying equations (4.46) and (4.47) for

all m paths as constraints, an optimization problem, determining the maximum

adequacy factor λ, can be set up. In matrix form, this is the equilibrium form of

DLO:

max λ (4.48)

subject to

BT t + λfL − q = −fD (4.49)

NTq ≤ g (4.50)

where t = {tx1 , t
y
1, t

x
2 , t

y
2, . . . , t

y
n} ; qT = {S1, N1, S2, N2, . . . , Nm}; fT

L = {f s
L1, f

n
L1,

f s
L2, f

n
L2, . . . , f

n
Lm}; fT

D = {f s
D1, f

n
D1, f s

D2, f
n
D2, . . . , f

n
Dm} and gT = {c1l1, c1l1, c2l2,

. . . , cmlm}. B is a 2m × 2n matrix containing direction cosines αi and βi. N is a

2m × 2m matrix enforcing equation (4.47) on all paths i(i = 1, 2, . . . ,m).

4.3.7 Discussion

The form of equilibrium formulation above is similar to that of lower bound for-

mulation (see Section 2.2.4). However, duality theory clearly states that this

equilibrium formulation must be an upper bound. The upper bound nature of

the equilibrium formulation can be explained by the following insights obtained

during the preceding derivations:

(i) The stress functions used to derive the formulation do not enforce rotational

equilibrium.
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tB

tA
y

tB
y

xtB

xtA
c /i li

c /i li

Figure 4.10: Distribution of shear stress τ exceeding the Tresca yield condition
(ci > 0, φi = 0) locally on a discontinuity i, but satisfying equation (4.47) across

its length li

(ii) The yield condition is not enforced in the interior of the bodies bounded by

paths i(i = 1, 2, . . . ,m).

(iii) As shown in Figure 4.3.7, the distribution of σn and τ across i will not

necessarily be uniform. Furthermore, equation (4.47) may be satisfied, but

yield may be exceeded locally. An equality in equation (4.47) can only occur

when yield is exceeded at at least one point along path i. Therefore, equation

(4.47) can be said to satisfy the upper bound theorem.

(iv) A stress field is only generated within the domain populated by the nodes.

The method does extend the stress field to ensure a statically admissible

field outside this domain.

These insights clearly demonstrate the upper bound nature of the aforementioned

equilibrium DLO formulation. However, it seems possible that a modified formu-

lation capable of obtaining lower bound solutions could be developed.

4.4 Pseudo lower bounds

In Section 4.3.7, the upper bound nature of the DLO equilibrium formulation was

examined, and the possibility of modifying the formulation so as to be able to
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obtain lower bound solutions was raised. In the following section, relaxed lower

bound methods, capable of obtaining ‘pseudo lower bounds’ on the true solution,

will be developed for weightless Tresca materials using the stress functions tx and

ty considered in Section 4.3.1. The methods described relax the lower bound

theorem (see Section 2.2.4) as follows:

(i) In a strict lower bound, the stress field must be statically admissible every-

where. This condition is relaxed so that the stress field is only required to

be statically admissible over a defined domain. The stress field outside the

domain need not be statically admissible and is ignored. Provided care is

taken to define a sufficiently large domain, this relaxation should not signif-

icantly influence results. (Obviously, problems involving finite domains are

clearly unaffected by this assumption.)

(ii) Statical admissibility is relaxed. In particular, rotational equilibrium is no

longer required, recalling that tx and ty only satisfy translational equilibrium.

Therefore, these pseudo lower bounds can be used to bound the best solution

attainable using upper bound translational limit analysis. Many important

geotechnical problems involve translational mechanisms, and in such cases

not enforcing rotational equilibrium is unlikely to significantly affect the

results obtained (see Section 4.2.2).

Pseudo lower bounds can be obtained, for example, by dividing the domain into

a mesh of triangular elements (for example, the mesh in Figure 4.11(a)). tx and

ty are assumed to vary linearly across each triangular element. A linear variation

of tx and ty across element j (shown Figure 4.11) is defined by

tx = aj1x + aj2y + aj3, (4.51)

ty = aj4x + aj5y + aj6; (4.52)

where aj1-aj6 are scalar coefficients and can be obtained from standard shape

function theory (e.g. Chakrabarty (2006)). Assuming no body forces or loads

are applied to internal boundaries, the stress tensor σj on j can be found from
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(a) Body G (see Figure 4.5) divided into triangular
elements.

A(x ,y )A      A

B(x ,y )B B

C(x ,y )C Cj

tA
y

xtA

tB
y

xtB tC
y

xtC

(b) A triangular element j with vertices A, B and
C.

Figure 4.11: Pseudo lower bound mesh and element

equation (4.19) and must be constant as demonstrated by equation (4.53).

σj =

[
∂tx

∂y
−∂tx

∂x

∂ty

∂y
−∂ty

∂x

]

=

[
aj2 −aj1

aj5 −aj4

]

(4.53)

σj will, generally, not be antisymmetric and can represented using a Mohr’s cir-

cle displaced a distance hj = 0.5(aj1 + aj5) from the σ-axis (see Figure 4.3 and

Equation 4.9). The maximum shear stress τmax
j on j is, therefore,

τmax
j = rj + |hj| =

1

2

√
(aj2 + aj4)2 + (aj5 − aj1)2 +

1

2
|aj1 + aj5|; (4.54)

where rj is the radius of the Mohr’s circle. Assuming a weightless Tresca material,

equation (4.54) allows the yield condition, τmax
j ≤ cj , to be checked, where cj is

the shear strength of the material on j.
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If tx and ty at the vertices are known, this results in six simultaneous equations

and six unknowns, allowing aj1-aj6 to be determined from shape function theory.















txA

tyA

txB

tyB

txC

tyC















=















xA yA 1 0 0 0

0 0 0 xA yA 1

xB yB 1 0 0 0

0 0 0 xB yB 1

xC yC 1 0 0 0

0 0 0 xC yC 1





























aj1

aj2

aj3

aj4

aj5

aj6















(4.55a)

tj = Pjζj (4.55b)

Equation (4.55) applies equations (4.51) and (4.52) at the vertices of element j,

where Pj , ζj and tj are local vectors and matrices defined as indicated. In Sections

4.4.1 and 4.4.2, two pseudo lower bound methods, employing different methods of

determining tx and ty at the vertices, will be developed.

4.4.1 Method I

The equilibrium (or ‘dual’) DLO formulation is defined in terms of tx and ty values

at specified nodal points. Assuming a mesh of κ triangular elements, whose vertices

coincide with nodal points in an equivalent upper bound DLO analysis, the tx and

ty values from a DLO analysis can be used to obtain aj1-aj6 for j = 1, 2, . . . , κ

(Smith, 2011b). For each element j (j=1,2,. . . , κ), a factor

Fj =
rj + |hj|

cj

(4.56)

on yield can be obtained, where yield is violated for any Fj > 1. An overall factor

F = max({F1, F2, . . . , Fκ}) (4.57)

can be obtained. Scaling all tx and ty values by F produces a new solution satisfy-

ing the yield condition everywhere and meeting the requirements for a pseudo lower
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bound solution. The pseudo lower bound adequacy factor λl is simply λl = λ/ F ,

where λ is the upper bound adequacy factor.

4.4.2 Method II

In method I, tx and ty are determined from an upper bound analysis. In method

II, the tx and ty values at the element vertices are optimized directly to obtain the

best possible lower bound solution for the given mesh employed. The optimized

solution must satisfy equations (4.58-4.61) enforcing the Tresca yield condition

and linear variation of tx and ty on each element j (see Figure 4.11).

0 = Pjζj − tj (4.58)









0

0

0

0









=









−0.5 0 0 −0.5 0 0

0.5 0 0 0.5 0 0

−1 0 0 1 0 0

0 1 0 0 1 0
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
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
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


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

aj1
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aj4
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









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


−


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
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

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(4.59a)

= Qjζj − μj (4.59b)

cj ≥
[
1 1 0 0

]









hj1

hj2

fj1

fj2









+ 0.5ϑj (4.60a)

≥ Rjμj + 0.5ϑj (4.60b)

ϑj ≥
√

(fj1)
2 + (fj2)

2 (4.61)

Equation (4.58) is simply a rearranged equation (4.55). Equations (4.59-4.61)

apply the Tresca yield criteria using equation (4.54), where Qj , Rj and μj are local
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vectors and matrices, defined within equations (4.59) and (4.60); also hj1, hj2 ≥ 0.

ϑj is an upper bound on the diameter of the Mohr’s circle. (Note the inequality in

equation (4.61)). However, as the stress state on element j approaches yield, the

optimizer will ensure ϑj approaches the diameter of the Mohr’s circle. External

boundary conditions and loads can also be applied as constraints using equations

(4.46), where λ is replaced by λl to emphasize its pseudo lower bound nature.

Assuming a mesh comprising κ elements, equations (4.58-4.61) for all elements j

(j = 1, 2, . . . , κ) are applied as constraints to an optimization problem, maximiz-

ing λl.

max λl (4.62)

subject to

Bbt + λlfLb − qb = −fDb (4.63)

Nbqb ≤ gb (4.64)

Pζ − t = 0 (4.65)

Qζ − μ = 0 (4.66)

c ≥ Rμ + 0.5ϑ (4.67)

ϑj ≥
√

(fj1)
2 + (fj2)

2 ∀j ∈ {1, . . . , κ} (4.68)

h ≥ 0 (4.69)

where Bb, fLb, qb, fDb, Nb and gb are the same as B, fL, q, fD, N and g, respec-

tively (see equations (4.48-4.50)), but are only applied to the external boundaries.

P is a 6κ× 6κ global matrix enforcing linear variation of tx and ty across elements

j = 1, 2, . . . , κ. Q is a 4κ×6κ global matrix containing the local Qj for all elements

j (j = 1, 2, . . . , κ). R is a κ× 4κ global matrix containing the local Rj for all el-

ements j (j = 1, 2, . . . , κ). ζT = {a11, a12, a13, a14, a15, a16, a21, . . ., aκ6}, μT =

{h11, h12, f11, f12, h21, . . . , fκ2}, ϑT = {ϑ1, ϑ2, . . . , ϑκ} and hT = {h11, h12, h21,

. . . , hκ2}. Examining equations (4.62-4.69) reveals that the optimization problem

can be solved using second order cone programming (SOCP). (Note plane strain
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DLO results in a linear programming problem when applied to Mohr-Coulomb

and Tresca materials.)

Comparison of this formulation with a conventional finite element limit analysis

(FELA) formulation (see for example: Lysmer (1970); Lyamin and Sloan (2002a);

Makrodimopoulos and Martin (2006)) reveals many similarities. However, unlike a

FELA formulation, the problem is formulated in terms of stress functions automat-

ically satisfying translational equilibrium. As a consequence, it is not necessary

to explicitly enforce translational equilibrium as in FELA. However, additional

constraints are needed to determine the components of the stress tensors on each

element. Additional constraints are also necessary to determine h as in a stan-

dard FELA formulation both rotational and translational equilibrium is generally

enforced.

4.5 Numerical examples

The performance of the pseudo lower bound methods was evaluated by considering

two examples. All computations were performed using a 3.0GHz Intel Dual Core

E8400 processor with 3.5GB RAM and running Windows XP. Both pseudo lower

bound methods were implemented using MATLAB 7.12. tx and ty for use with

method I were obtained from a customized version of LimitState:GEO v. 3.0

Beta, a commercial DLO software application (LimitState, 2012). For method

II, Mosek v. 6.0, an interior point algorithm with SOCP capability, was used

(Mosek, 2011).

For each example, LimitState:GEO was used to identify upper bound failure mech-

anisms for uniform rectangular nodal grids of increasing nodal density. Limit-

State:GEO identifies the rigid polygonal solids forming each failure mechanism.

To allow the forces along the sides of the solids forming the mechanism to be estab-

lished additional ‘crossover nodes’, not present in the original rectangular nodal

grid, are frequently created in LimitState:GEO. In each case, the original rectan-

gular nodal grid will be referred to as the ‘original grid’. Additionally, ‘kinks’ can
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occur due to the use of a finite cutoff to filter out inactive discontinuities. (Note

the solid identification procedure is primarily intended for visualization purposes

and is approximate in nature.) A ‘kink’ is defined as a nodal point where a bound-

ary separating two solids changes direction, but the nodal point is not a vertex of

a third solid.

Making use of the solids forming the mechanism and the constrained Delaunay

triangulation function in MATLAB, four different meshes were generated for each

‘original grid’ (see e.g. Figures 4.12 and 4.15).

(i) Mesh A – is formed using the vertices of the solids forming the mechanism as

the vertices of the elements. The remaining nodal points and corresponding

tx and ty values are discarded. Individual elements are not allowed to cross

the boundaries of solids.

(ii) Mesh B – is similar to mesh A except ‘kinks’ in the solid boundaries are

removed. The vertices of the solids forming the mechanism, excluding any

‘kinks’, are used as the vertices of the elements. The remaining nodal points

are discarded as are the corresponding tx and ty values. Individual finite

elements are not allowed to cross the boundaries of solids (with ‘kinks’ re-

moved).

(iii) Mesh C – is formed using the ‘original grid’ plus any additional ‘crossover

nodes’ as the vertices of the finite elements. Individual finite elements are

not allowed to cross the boundaries of solids.

(iv) Mesh D – is formed using the ‘original grid’ as the vertices of the elements.

‘Crossover nodes’ and corresponding tx and ty values are discarded. Individ-

ual elements are free to cross the boundaries of solids.

For each example, method I was applied using meshes A-C and method II was

applied using meshes A-D. A weightless Tresca material with a shear strength c

was used in both examples and in each case the upper bounds for the corresponding

LimitState:GEO grid are reported.
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Note that to maintain consistency with the conventions adopted in LimitState:GEO,

compressive normal stresses and anticlockwise shear stresses are taken as positive

throughout.

4.5.1 Compression of a block

In the following section, the unconfined compression of a rectangular block between

two perfectly rough rigid platens is considered. A block with height h and width

w = 2h is considered. Taking advantage of symmetry, only the upper left hand

corner needs to be considered. The exact solution to this problem is q/c = 2.42768

(Saleçon, 1967; Chakrabarty, 2006), where q is the average pressure on the platens.

In Figure 4.12, a representative ‘original grid’ and the meshes described in the

preceding section are presented.

Pseudo lower bounds using method I have been computed for a number of ‘original

grids’ and are presented in Table 4.1. The distributions of yield violations, prior

to scaling by F , are presented in Figure 4.13 for the representative meshes shown

in Figure 4.12.

Pseudo lower bounds using method II have also been computed and are presented

in Table 4.2. The proximity to yield on individual elements is presented in Figure

4.14.

4.5.2 Prandtl problem

In the following section, the well known Prandtl problem is considered. A problem

domain with height h and width w = 7h/4 is used. A perfectly rough indenter

of width 2h is used throughout, unless otherwise stated. Taking advantage of

symmetry about the centreline of the indenter, only the right hand side of the

domain needs to be considered. The exact bearing capacity factor Nc for both

rough and smooth indentors is Nc = π + 2.
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Table 4.1: Compression of a plate – pseudo lower bound method I

nodes∗ upper bound‡ pseudo lower bound

mesh A mesh B mesh C
no. q/c e(%) q/c e (%) q/c e (%) q/c e(%)

66 2.442 0.598 1.878 22.6 1.059 56.4 0.5646 76.7
231 2.434 0.256 1.880 22.6 2.271 6.44 0.3323 86.3
496 2.432 0.157 2.115 12.9 2.364 2.64 0.4616 81.0
861 2.430 0.104 2.125 12.5 2.334 3.85 0.1120 95.4

1, 326 2.430 0.0791 2.060 15.1 2.381 1.91 0.07700 96.8
1, 830 2.429 0.0626 1.472 39.4 2.361 2.75 0.3114 87.2
2, 556 2.429 0.0544 1.810 25.4 1.832 24.5 0.1646 93.2

Key: ∗ in ‘original grid’ ; ‡ from LimitState:GEO; e percentage error.

The solution to the Prandtl problem involves a fan shaped mechanism overlying a

stationary region. In Figure 4.15, a representative ‘original grid’ and corresponding

meshes A-D are presented. Meshes A and B are identical for all the ‘original grids’

considered, since no ‘kinks’ were present in the upper bound failure mechanisms.

Additionally, meshes Ã, B̃ and C̃ were considered; where Ã, B̃ and C̃ are identical

to meshes A, B and C respectively, but discard the stationary region and consider

the mechanism only.

Pseudo lower bounds using method I have been computed for a number of ‘original

grids’ and are presented in Table 4.3. The distributions of yield violations, prior to

scaling by F, are presented in Figure 4.16 for the representative meshes in Figure

4.15.

Pseudo lower bounds using method II have also been computed and are presented

in Table 4.4. The proximity to yield on individual elements, in the representative

meshes in Figure 4.15, is presented graphically in Figure 4.17.

Figure 4.18 presents some selected results using mesh Ã for an ‘original grid’ with

1,075 nodes. These selected results illustrate the difference between method I

solutions for the smooth and rough indenter but also the difference between the
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solutions for methods I and II, respectively. (In Figure 4.18, the furthest right of

the Mohr’s circles correspond to the furthest left of the elements and vice versa.)
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h/
2

w/2 = h
(a) ‘original grid’ with 496 nodes (dashed lines in-
dicate lines of symmetry)

(b) mesh A (black lines indicate solid boundaries)

(c) mesh B (d) mesh C (black lines indicate solid boundaries)

(e) mesh D

Figure 4.12: Compression of a block – ‘original grid’ and corresponding meshes
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<5%

10%

15%

Violation

(a) mesh A

0%

1.5%

3%
Violation

(b) mesh B

<20%

40%

>60%
Violation

(c) mesh C (note that the worst violations are on
slender elements close to solid boundaries)

Figure 4.13: Compression of a block – distribution of yield violation, prior to
scaling, using method I for the representative meshes shown in Figure 4.12

100%

97.25%

94.5%

Proximity
to yield

(a) mesh A

99.125%

98.25%

100%

Proximity
to yield

(b) mesh B

97.5%

>95%

100%

Proximity
to yield

(c) mesh C

100%

98.5%

>94.5%

Proximity
to yield

(d) mesh D

Figure 4.14: Compression of a block – proximity to yield on individual ele-
ments using method II for the representative meshes shown in Figure 4.12
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h/4

h/
2

w/2 = 8h/7
(a) ‘original grid’ with 286 nodes (dashed lines in-
dicate lines of symmetry)

(b) mesh A & B

(c) mesh C (black lines indicate solid boundaries) (d) mesh D

Figure 4.15: Prandtl punch – ‘original grid’ and corresponding meshes

0%

>4%

2%

Violation

(a) mesh A & B

<0%

5%

Violation
>10%

(b) mesh C

Figure 4.16: Prandtl punch – distribution of yield violation, prior to scaling,
using method I for the representative meshes shown in Figure 4.15
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>75%

100%

87.5%

Proximity
to yield

(a)

>75%

100%

87.5%

Proximity
to yield

(b)

>75%

100%

87.5%

Proximity
to yield

(c)

Figure 4.17: Prandtl punch – proximity to yield on individual elements using
method II for the representative meshes shown in Figure 4.15
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0%

4%

2%

Violation

(a) Distribution of yield violation, prior to scaling,
using method I for a rough based indentor

c 2c 3c 4c 5c

-c

0

c

0

(b) Mohr’s circle of elements in (a) (the stress on
the indenter base is marked)

0%

4%

2%

Violation

0%

4%

2%

(c) distribution of yield violation, prior to scaling,
using method I for a smooth based indentor

c 2c 3c 4c 5c

-c

0

c

0

(d) Mohr’s circle of elements in (c) (the stress on
the indenter base is marked)

>99.9999%

100%

99.99999%

Proximity
to yield

(e) Proximity to yield on individual elements using
method II for rough based indentor

c 2c 3c 4c 5c

-c

0

c

0

(f) Mohr’s circle of elements in (e) (the stress on
the indenter base is marked)

Figure 4.18: Selected results for Prandtl punch – mesh Ã for ‘original grid’
comprising 1,075 nodes
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Ã

&
B̃

m
es

h
C

&
C̃

(s
m

o
ot

h
in

d
en

to
r)

N
o.

N
c

e
(%

)
N

c
e

(%
)

N
c

e
(%

)
N

c
e

(%
)

N
c

e
(%

)

28
6

5.
19

1
0.

95
5

1.
24

8
75

.7
4.

86
4

5.
40

4.
86

4
5.

40
1.

11
6

78
.3

49
3

5.
17

0
0.

55
4

1.
46

8
71

.5
4.

84
9

5.
68

4.
84

9
5.

68
1.

32
7

74
.2

75
6

5.
16

4
0.

42
6

1.
42

5
72

.3
4.

95
1

3.
70

4.
95

1
3.

70
0.

81
60

84
.2

1,
07

5
5.

15
4

0.
24

3
1.

40
7

72
.6

4.
94

9
3.

75
5.

00
6

2.
63

0.
77

87
84

.9
1,

45
0

5.
15

7
0.

29
0

1.
39

3
72

.9
4.

94
0

3.
92

5.
02

7
2.

23
0.

71
34

86
.1

1,
88

1
5.

15
2

0.
20

4
1.

38
3

73
.1

4.
93

4
4.

04
5.

02
6

2.
25

0.
86

71
83

.1
2,

36
8

5.
15

2
0.

19
7

1.
37

3
73

.3
4.

91
6

4.
39

5.
05

3
1.

73
0.

29
37

94
.3

2,
91

1
5.

14
9

0.
15

2
1.

43
6

72
.1

4.
92

0
4.

32
5.

03
4

2.
10

0.
55

44
89

.2
3,

51
0

5.
15

0
0.

16
4

1.
24

8
75

.7
4.

91
1

4.
49

5.
03

1
2.

15
0.

42
56

91
.7

K
ey

:
∗

in
‘o

ri
gi

na
l
gr

id
’;

‡
fr

om
L
im

it
St

at
e:

G
E

O
(b

ot
h

sm
oo

th
an

d
ro

ug
h

in
de

nt
or

);
e

p
er

ce
nt

ag
e

er
ro

r;
†
M

o
se

k
re

p
or

te
d

a
ne

ar
op

ti
m

al
so

lu
ti
on

;
al

l
re

su
lt
s

fo
r

a
ro

ug
h

in
de

nt
or

,
un

le
ss

ot
he

rw
is

e
in

di
ca

te
d.



Chapter 4. Plane strain stress functions 103

T
a
b
l
e

4
.4

:
P

ra
nd

tl
pu

nc
h

–
ps

eu
do

lo
w

er
b
ou

nd
m

et
ho

d
II

N
o
d
es

∗
U

p
p
er

b
ou

n
d
‡

P
se

u
d
o

lo
w

er
b
ou

n
d

M
es

h
A

&
B

M
es

h
Ã
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4.5.3 Discussion

4.5.3.1 Method I

Examining Tables 4.1 and 4.3, it is obvious that method I compares poorly with

equivalent upper bounds (errors are at least an order of magnitude greater). This

discrepancy can be ascribed to factors, both stemming from nodal tx and ty values

being obtained from upper bound analyses.

(i) Take for example, the simple mechanism in Figure 4.19(a), resulting in an

upper bound Nc = 6.000 (error 16.7%). Yield must occur on the active

discontinuities ( i.e. τ1 = 0, τ2 = c, τ3 = c, τ4 = c, τ5 = 0 and σ5 = 0).

σ1 = 6c, σ2 = 4c, σ3 = 3c and σ4 = 2c are determined from translational

equilibrium. Assuming constant stress states on each block, the stress state

on each is fully determined (see Figure 4.19(b)). By scaling the stress state,

a pseudo lower bound Nc = 2.883 (error 43.9%, i.e 2-3 that in the upper

bound) is obtained. As the stress state is fully determined, an improved

method I solution is not possible for this mesh. Scaling reduces the stresses

so that yield is no longer violated but the relative magnitude of the stresses

remains unchanged.

(ii) The optimizer has little freedom in selecting tx and ty values at the in-

tersections between active discontinuities but still has considerable freedom

elsewhere. Consider the compression of a square block between two perfectly

rough platens. In Figure 4.20(a), a simple mechanism is shown, resulting in

the ‘exact’ solution q/c = 2. For the mechanism to develop, τ2 = 0, τ3 = c,

τ4 = 0, τ5 = 0 and σ5 = 0. σ2 = σ4 = 2c, σ3 = c and σ1 = 2c can be deter-

mined from translational equilibrium. However, τ1 and σ2 cannot be uniquely

determined. Assuming constant stress states on each block, the stress state

on the lower block is fully determined but not the stress state on the upper

block. Figures 4.20(b) and 4.20(c) show two valid stress states, satisfying

translational equilibrium, resulting in pseudo lower bounds q/c = 2 (error

0%) and q/c = 1.913 (error 4.35%), respectively. An upper bound analysis
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is free to select tx and ty values resulting in either stress state. Therefore,

upper bound analysis does not necessarily result in the best possible method

I pseudo lower bound for a mesh.

σ3

τ3

σ4

τ4

σ5τ5
σ1τ1

σ2

τ2

(a) Two block mechanism, showing the average
internal stresses on the discontinuities

c 2c 3c 4c 5c

-c

0

c

0
0 1 2 3 4 5

6c

( )σ   τ2 2,

( )σ τ5 5,

( )σ   τ3 3,

( )σ   τ1 1,

( , )4 4σ   τ( , )4 4σ   τ

(b) Mohr’s circles for the two blocks

Figure 4.19: Solution to the Prandtl problem (assuming a smooth based
indentor) using a simple two block mechanism

σ1τ1

σ4
τ4

σ5

τ5

σ2

τ2

σ3

τ3

(a) Simple two block mecha-
nism, resulting in the ‘exact’
solution. The average internal
stresses on the discontinuities
are also shown.
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(b) Mohr’s circles represent-
ing a valid stress state for the
mechanism in (a) and satisfy-
ing the lower bound theorem.
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0

( )σ   τ4 4,

( )σ   τ1 1,

( )σ   τ3 3,

( , )5 5σ   τ
( , )2 2σ   τ

(c) Mohr’s circles representing
a valid alternative stress state
for the mechanism in (a), but
no longer satisfying the lower
bound theorem.

Figure 4.20: Compression of a plate of equal height and width between two
rough platens
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For meshes containing nodes with poorly constrained tx and ty values, Fj is likely to

be large on at least a fraction of the elements (remember F = max({1, 2, . . . , Fκ});

hence, the largest Fj will govern). Take, for example, the results for the Prandtl

problem using an ‘original grid’ with 1,075 nodes (see Figure 4.18). For a rough

indenter, the most violating element, prior to scaling, is located directly under the

indenter (see Figures 4.18(a) and 4.18(b)). The upper boundary of this element

is not at yield; therefore, the optimizer has some freedom when selecting the tx

and ty values at the vertices of this discontinuity. For a smooth indenter, a more

accurate pseudo lower bound is obtained as the tx and ty values at the vertices of

this discontinuity are well constrained (see Figures 4.18(c) and 4.18(d)). Clearly,

the pseudo lower bound stress state for the smooth indenter is valid for a rough

indenter. Similarly, the results for the compressed plate using mesh C (see Table

4.1 and Figure 4.13(c)) or the Prandtl problem using meshes A, B, C and C̃ (see

Table 4.3 and Figures 4.16(a), (b)) are poor. In contrast, the results for the

compressed plate using meshes A and B (see Table 4.1 and Figures 4.13(a), (b))

or the Prandtl problem using meshes Ã and B̃ (see Table 4.3 and Figures 4.16(a),

(b)) are much more accurate.

For the compressed block, ‘kinks’ are observed in the mechanism identified by

LimitState:GEO and clearly violate compatibility. The quality of the resulting

meshes is, therefore, variable and is reflected in the results. Mesh B attempted

to correct this deficiency by removing the ‘kinks’. However while better method I

results were generally obtained using Mesh B, these results were still variable.

It would therefore appear that method I is not particularly promising, although

better solid identification may improve accuracy.

4.5.3.2 Method II

In method II, the tx and ty values at the nodes are directly optimized to produce

the best pseudo lower bound for a particular mesh. The principal factors resulting
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in the poor performance of method I are thus avoided (contrast Figures 4.18(a)-

(d) with Figures 4.18(e), (f)). Tables 4.1-4.4 reveal that method II does, indeed,

perform much better; however, equivalent upper bounds are still more accurate.

Discontinua are only permitted at the boundary between predefined elements ( i.e.

very similar to the rigid finite element method (RFEM)). Consequently, mesh

sensitivity was observed in the results presented in Tables 4.2 and 4.4 (see also

Figure 4.17). This mesh sensitivity is the most likely cause of the larger errors

(compared to equivalent upper bound solutions). Unsurprisingly, the best results

were generally produced for those meshes based on DLO mechanisms (as DLO has

the power to identify these reasonably accurately). As these mechanisms do not

include stationary regions, further work is needed to identify optimal meshes in

stationary regions (for example in the Prandtl problem). The similarity of method

II to FELA suggests that FELA may be used with meshes generated from DLO

mechanisms.

4.6 Conclusions

(i) The equilibrium formulation of plane strain translational discontinuity lay-

out optimization (DLO) has been derived using translational stress functions

and vector calculus. It has been shown that the derivation allows a deeper

understanding of the equilibrium formulation to be obtained. In particu-

lar, the reasons for the upper bound nature of the equilibrium formulation

become clear.

(ii) The equilibrium plane strain DLO formulation allows the total internal forces

on the potential discontinuities to be determined from scalar values of trans-

lational stress functions tx and ty at the nodes.

(iii) Translational stress functions have been used to derived two relaxed, pseudo

lower bound methods. Solutions obtained are not required to satisfy rota-

tional equilibrium and are, therefore, lower bounds on the translation only
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limit analysis solution. In these methods, a linear variation of the stress func-

tions is assumed across individual triangular elements, used to discretize the

problem domain, resulting in a constant stress on individual elements. In

method I, nodal tx and ty values are determined from an upper bound anal-

ysis and are used in the interpolation. The resulting field is scaled to find

a pseudo lower bound satisfying the yield condition. In method II, nodal tx

and ty values are optimized to directly obtain the best possible pseudo lower

bound for a particular mesh.

(iv) The errors in the pseudo lower bounds obtained using method I were much

larger than the errors in the corresponding upper bound solutions obtained

using LimitState:GEO. This is primarily due to the tx and ty values at the

nodes being determined from an upper bound analysis.

(v) Using identical meshes, method II generally obtained considerably better

pseudo lower bounds. This can be explained by the direct optimization in

method II of the nodal tx and ty values. This allows the best possible pseudo

lower bound for a given mesh to be obtained. Pseudo lower bounds within

0.5% were obtained for some meshes using method II.

(vi) However, the errors in the pseudo lower bounds obtained using method II

are still larger than the errors in the corresponding upper bound solutions

obtained using LimitState:GEO. A possible explanation for this discrepancy

is mesh sensitivity. In general better pseudo lower bounds were obtained

when using meshes based on mechanisms identified using LimitState:GEO.

However, further work is needed to identify optimal meshes in stationary

regions.



5 Three-dimensional stress functions

5.1 Introduction

Alternative but equivalent forms of the plane strain and three-dimensional dis-

continuity layout optimization (DLO) formulations can be obtained from duality

principles. In Chapter 4, the dual plane strain formulation was derived from first

principles using vector calculus and translational stress functions. This allowed a

deeper understanding of the dual formulation and its upper bound status to be

obtained. Furthermore, pseudo lower bound formulations which enabled the best

translational solution to be bounded were also described in Chapter 4.

Building on this, in this chapter a three-dimensional equilibrium formulation is

derived using vector calculus and translational stress functions, allowing further

insights into the three-dimensional formulation to be obtained. Translational stress

functions are also used to develop a three-dimensional pseudo lower bound formu-

lation, similar to one of the formulations developed in Chapter 4.

109
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5.2 Background

5.2.1 Equilibrium equations

For a three-dimensional body to be in equilibrium, it must satisfy the equilibrium

equations

∇ ∙ σx + px = 0 (5.1)

∇ ∙ σy + py = 0 (5.2)

∇ ∙ σz + pz = 0 (5.3)

σxy = σyx; σxz = σzx; σyz = σzy (5.4)

where px, py, pz are body forces in the x, y and z directions, respectively;

σx = σxxi + σyxj + σzxk, (5.5)

σy = σxyi + σyyj + σzyk, (5.6)

σz = σxzi + σyzj + σzzk; (5.7)

and where the sign convention is given by Figure 5.1.

The normal stress σn and shear stress τ on a plane can be determined from

σn = nT σn (5.8)

τ =
√

nT σσTn − σ2
n (5.9)

where n is a unit vector normal to the plane and

σ =







σxx σxy σxz

σyx σyy σyz

σzx σzy σzz





 (5.10)
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σyy

σxx

σxx

σyy

σzz

σzz

σyx

σyz

σyx

σyz

σxz

σxy

σxz

σxy

σzx

σzx

σzy

σzy

Figure 5.1: Sign convention: three-dimensional stress components

Equation (5.4) requires that the stress tensor σ is symmetric and can, therefore,

be represented by the three Mohr’s circles shown in Figure 5.2. In this case, the

maximum shear stress τmax can be determined from

τmax = (σ1 − σ3)/2; (5.11)

where σ1 and σ3 are the maximum and minimum principal stresses, respectively.
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σnσ1σ2σ3

τ

Figure 5.2: Mohr’s circles representing a symmetric stress tensor; where σ1,
σ2 and σ3 are the principal stresses.

5.2.2 Translational equilibrium

A body in translational equilibrium must satisfy equations (5.1-5.3) but rotational

equilibrium, i.e. as enforced in equation (5.4), is not necessarily satisfied. There-

fore the stress tensor is no longer required to be symmetric. A nonsymmetric

stress tensor can no longer be represented by Mohr’s circles, as demonstrated by

the examples shown in Figure 5.3 (see also e.g. de Figueiredo et al. (2004)). There-

fore, τmax can no longer be determined from simple expressions such as equation

(5.11). (Note that principal stresses no longer coincide with the extremal normal

stresses.) τmax must therefore be obtained by optimizing n in equation (5.9). Gen-

erally, equation (5.9) is non-convex and has multiple local maxima. It is therefore

impossible to guarantee that τmax has indeed been found.

Upper bounds on the ‘exact’ limit load can be obtained by relaxing equilibrium

and enforcing only translation equilibrium (see Section 4.2.2). Furthermore, the

‘exact’ limit load can be obtained for purely translational problems, representing

an important subset of geotechnical problems.
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σn

τ

(a) nonsymmetric tensor

σn

τ

(b) nonsymmetric tensor

Figure 5.3: Shear stress τ plotted against normal stress σn for nonsymmetric
tensors

5.2.3 Stress functions

In the absence of body forces, the most general three-dimensional stress function

is the Beltrami stress function, expressed in tensor calculus form as

σ = ∇×∇× Φs (5.12)

where Φs is an arbitrary second-rank symmetric tensor (see Chou and Pagano

(1967)). The well known Airy, Maxwell and Morera stress functions are all spe-

cialized versions of the Beltrami stress function.

Translational stress functions guarantee translational equilibrium, but do not nec-

essarily satisfy rotational equilibrium. In the following sections, translational stress

functions will be used to derive the translational equilibrium form of the three-

dimensional DLO formulation.
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5.3 Derivation of DLO equilibrium formulation

In the following sections, the three-dimensional equilibrium DLO formulation will

be derived. Using an approach similar to that outlined in Section 4.3, the deriva-

tion will be framed in terms of vector calculus and stress functions. Firstly, a set of

stress functions satisfying translation equilibrium will be derived in Section 5.3.1.

In Section 5.3.2, the integral forms of the translational equilibrium equations and

stress functions will be developed. In Sections 5.3.3 and 5.3.4, these integral forms

will be used to find the applied loads and internal forces on a surface. (Note the

term ‘surface’ is used for consistency with vector calculus, but the term ‘disconti-

nuity’ could equally be used.) These internal forces will then be used to enforce

the Mohr-Coulomb yield condition. Finally, the equilibrium formulation will be

found by discretizing the problem domain and setting up a constrained optimiza-

tion problem. In Section 5.3.7, insights gained from the derivation will be used

make some observations on the three-dimensional formulation.

5.3.1 Translational stress functions

To determine the total body forces acting on a body, and the total change in the

internal stresses across a body, the integral form of the translational equilibrium

equations will be used. Translational stress functions are required to achieve this,

satisfying equations (5.1-5.3).

Assuming that

px = ∇ ∙ Px, (5.13)

py = ∇ ∙ Py, (5.14)

pz = ∇ ∙ Pz; (5.15)

where

Px = ρxxi + ρxyj + ρxzk, (5.16)

Py = ρyxi + ρyyj + ρyzk, (5.17)
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Pz = ρzxi + ρzyj + ρzzk. (5.18)

ρxx, ρyx and ρzx are forces per unit area acting on the zy plane in the x, y and

z directions, respectively. ρxy, ρyy and ρzy are forces per unit area acting on the

xz plane in the x, y and z directions, respectively. ρxz, ρyz and ρzz are forces per

unit area acting on the xy plane in the x, y and z directions, respectively. ρxx ,

ρyx, . . ., ρzz are analogous to ωx, εx, ωy and εy in Chapter 4.

Vector functions

Φx = φxxi + φxyj + φxzk, (5.19)

Φy = φyxi + φyyj + φyzk, (5.20)

Φz = φzxi + φzyj + φzzk, (5.21)

satisfying equations (5.1-5.3), must be translational stress functions (see Chou and

Pagano (1967)); where

σx = ∇× Φx − Px, (5.22)

σy = ∇× Φy − Py, (5.23)

σz = ∇× Φz − Pz. (5.24)

The stress tensor σ can now be rewritten as

σ =







(
∂φxz

∂y
− ∂φxy

∂z

)
− ρxx

(
∂φyz

∂y
− ∂φyy

∂z

)
− ρyx

(
∂φzz

∂y
− ∂φzy

∂z

)
− ρzx

(
∂φxx

∂z
− ∂φxz

∂x

)
− ρxy

(
∂φyx

∂z
− ∂φyz

∂x

)
− ρyy

(
∂φzx

∂z
− ∂φzz

∂x

)
− ρzy

(
∂φxy

∂x
− ∂φxx

∂y

)
− ρxz

(
∂φyy

∂x
− ∂φyx

∂y

)
− ρyz

(
∂φzy

∂x
− ∂φzx

∂y

)
− ρzz





 (5.25)

where σ is, generally, nonsymmetric.

5.3.2 Integral form

The integral forms of equations (5.1-5.3) and, hence, of the stress functions can

be found by considering a body U , shown in Figure 5.4. Body U is bounded

by a closed surface V , comprised of surfaces ABCD, CEFD, ADFG, AGHB,
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B

A

C
D

E
F

G

H

Figure 5.4: A body U bounded by a closed surface V

EHGF and BHEC. These integral forms will be used in Sections 5.3.3 and 5.3.4

to determine the external and internal forces on an arbitrary surface.

Integrating equations (5.1-5.3) over U , equations (5.26-5.28) are obtained, where

the right hand sides equal the total body forces on U in the x, y and z directions,

respectively. The left hand sides of the equations equal the negative of the total

change in the internal stress over U in the x, y and z directions, respectively.

−
y

U

∇ ∙ σx dV =
y

U

∇ ∙ Px dV (5.26)

−
y

U

∇ ∙ σy dV =
y

U

∇ ∙ Py dV (5.27)

−
y

U

∇ ∙ σz dV =
y

U

∇ ∙ Pz dV (5.28)

Equations (5.26-5.28) are necessary, but not sufficient, to ensure translational equi-

librium. As Φx, Φy, Φz, Px, Py and Pz from Section 5.3.1 satisfy translational,

these must also satisfy equations (5.26-5.28).
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Considering the left hand and right hand sides separately, the total body forces

on U can be found using Gauss’s theorem (note that a closed surface with out-

ward facing normals, as shown in Figure 5.4, is taken as positive throughout this

chapter): y

U

∇ ∙ Px dV =
{

V

Px ∙ dS, (5.29)

y

U

∇ ∙ Py dV =
{

V

Py ∙ dS, (5.30)

y

U

∇ ∙ Pz dV =
{

V

Pz ∙ dS. (5.31)

The total change in the internal stresses on U in the x, y and z directions, respec-

tively, can also be found using Gauss’s theorem:

y

G

∇ ∙ σx dV =
{

V

σx ∙ dS =
{

V

∇× Φx ∙ dS −
{

V

Px ∙ dS, (5.32)

y

G

∇ ∙ σy dV =
{

V

σx ∙ dS =
{

V

∇× Φy ∙ dS −
{

V

Py ∙ dS, (5.33)

y

G

∇ ∙ σz dV =
{

V

σz ∙ dS =
{

V

∇× Φz ∙ dS −
{

V

Pz ∙ dS (5.34)

revealing that

{

V

∇× σz ∙ dS = 0,
{

V

∇× σy ∙ dS = 0,
{

V

∇× σz ∙ dS = 0

as would be expected from vector calculus.

The integral of a closed surface can be found by summing the integrals of compo-

nent surfaces. For the example shown in Figure 5.4:

{

V

σx ∙ dS =
x

ABCD

σx ∙ dS +
x

CEFD

σx ∙ dS +
x

ADFG

σx ∙ dS

+
x

AGHB

σx ∙ dS +
x

EHGF

σx ∙ dS +
x

BHEC

σx ∙ dS;
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where ABCD, CEFD, ADFG, AGHB, EHGF and BHEC all have outward

normals.

5.3.3 Application of loads

The integral forms, developed in Section 5.3.2, allow application of loads to a body

via its boundaries in a manner similar to that outlined in Section 4.3.3. Consider

the cuboidal body U shown in Figure 5.5. A load f y in the positive y direction

is applied to CEFD, where boundary CEFD is parallel to the xz plane and has

an outward facing normal vector {0, 1, 0}T . Assuming Py = 0 at every point

not located on CEFD,
s

CEFD
Py ∙ dS = f y. This can easily be demonstrated

using equation (5.30). Observing that CEFD is located on plane described by

0 ∙ x + 1 ∙ y + 0 ∙ z = 1,

x

CEFD

Py ∙ dS =
x

CEFD

(

−ρyx ∂y

∂x
+ ρyy − ρyz ∂y

∂z

)

dxdz (5.36)

=
x

CEFD

(−ρyx ∙ 0 + ρyy − ρyz ∙ 0) dxdz

=
x

CEFD

ρyy dxdz

It can therefore be concluded from equation (5.36) that ρyy must be the force per

unit area acting in the y direction on the xz plane. The definitions of ρxx, ρxy, . . .,

ρzz in Section 5.3.1 can be, similarly, confirmed.

Consider an arbitrary internal surface i with a unit normal ni. Take, for example,

the surface
−−−→
ABC in Figure 5.6(a). Loads fx

i , f y
i and f z

i in Figure 5.6(b) can be

applied to body ABCD via surface
−−−→
ABC by surface integrals

s
ABC

Px ∙ dS = fx
i ,

s
ABC

Py ∙ dS = f y
i and

s
ABC

Pz ∙ dS = f z
i . Assuming Px = Py = Pz = 0 at every

point not located on
−−−→
ABC, the total applied loads on ABCD in the x, y and z

directions must equal fx
i , f y

i and f z
i , respectively. This can easily be demonstrated

using equations (5.29-5.31).
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H

G

F

E

B

A

C
D

x

y

z

f y

Figure 5.5: A body with load fy applied to boundary CEFD

As shown in Figure 5.6(c), fx
i , f y

i and f z
i can be transformed to a coordinate

system local to surface i (in this case
−−−→
ABC) as follows:







fn
i

f s
i

f t
i





 = −







nT
i

sT
i

tT
i













s
AHF

Px ∙ dS
s

AHF
Py ∙ dS

s
AHF

Pz ∙ dS





 = −TT

i







fx
i

f y
i

f z
i





 (5.37)

where si and ti are unit column vectors describing the local axes on the surface

i, fn
i , f s

i and f t
i are forces in the ni, si and ti directions respectively and Ti is

the transformation matrix described in Section 3.2.1. In this coordinate system,

positive fx
i , f y

i and f z
i result in a tensile force fn

i . Therefore, tensile forces fn
i must

be positive in this new coordinate system.
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i
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x

z

(a) Arbitrary surface
−−−→
ABC with a normal ni (deter-

mined using the ‘right hand screw rule’++). si and

ti are orthogonal axis in the plane of
−−−→
ABC.
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z

(b) Loads fx
i , fy

i and fz
i applied to body ABCD via

−−−→
ABC.

D
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A

B

y

x

z

fi
s

fi
t

fi
n

(c) Loads fx
i , fy

i and fz
i transformed to a coordi-

nate system local to
−−−→
ABC; where fn

i , fs
i and f t

i are
loads in the ni, si and ti directions, respectively.

Figure 5.6: Load applied to a surface
−−−→
ABC.
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Also fn
i , f s

i and f t
i can be split into dead and live load components as follows:







fn
i

f s
i

f t
i





 =







fn
Di

f s
Di

f t
Di





+ λ







fn
Li

f s
Li

f t
Li





 (5.38)

where fn
Di, f

n
Li; f s

Di, f
s
Li and f t

Di, f
t
Liare respectively the dead and live loads in the

ni, si and ti directions, and λ is an adequacy factor on the live loads. If path i

is an internal boundary, fn
i , f s

i , and f t
i must be the sum of the total load applied

between the path and an external boundary, excluding any load applied to the

external boundary. The direction of this summation is arbitrary, but must be

consistent for all paths considered. This definition of fn
i , f s

i and f t
i is consistent

with that described in Section 3.2.5 and can be derived using a similar approach

to that outlined Appendix E.4.

5.3.4 Internal forces on a surface

In the following section, the forces on an arbitrary internal surface i due to the

internal stresses will be determined. In Section 5.3.5, these internal forces will be

used to enforce the Mohr-Coulomb yield condition.

Firstly, consider an arbitrary surface i with a normal ni. Take, for example, surface
−−−→
ABC in Figure 5.7(a), bounding an infinitesimal element. Examining equations

(5.32-5.34), it is clear that

F x
i =

s
ABC

σx ∙ dS (5.39)

=
s

ABC
σxx ∙ dzdy +

s
ABC

σyx ∙ dzdx +
s

ABC
σzx ∙ dxdy

=
s

ABC
∇× Φx ∙ dS −

s
ABC

Px ∙ dS,

F y
i =

s
ABC

σy ∙ dS (5.40)

=
s

ABC
σxy ∙ dzdy +

s
ABC

σyy ∙ dzdx +
s

ABC
σzy ∙ dxdy

=
s

ABC
∇× Φy ∙ dS −

s
ABC

Py ∙ dS,
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z

(a) Arbitrary surface
−−−→
ABC, bounding an infinitesimal

tetrahedral element, with a normal ni (determined
using the ‘righthand screw rule’). si and ti are or-

thogonal axis in the plane of
−−−→
ABC.
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(b) Internal forces F x
i , F y

i and F z
i on

−−−→
ABC in the x,

y and z directions, respectively. The internal stresses
on the remaining faces of the element are also shown.

C

A

B

y

x

z

Ni

Si

Ti

(c) Internal forces F x
i , F y

i and F z
i transformed into a

coordinate system local to
−−−→
ABC; where Ni is a force

normal to
−−−→
ABC and positive in tension; and Si and Ti

are shear forces on
−−−→
ABC.

Figure 5.7: Internal forces on an arbitrary surface
−−−→
ABC
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F z
i =

s
ABC

σz ∙ dS (5.41)

=
s

ABC
σxz ∙ dzdy +

s
ABC

σyz ∙ dzdx +
s

ABC
σzz ∙ dxdy

=
s

ABC
∇× Φz ∙ dS −

s
ABC

Pz ∙ dS;

where F x
i , F y

i and F z
i (see Figure 5.7(b)) are the total forces on

−−−→
ABC due to the

internal stresses, in the x, y and z directions respectively.

The surface integrals
s

ABC
∇×Φx ∙ dS,

s
ABC

∇×Φy ∙ dS and
s

ABC
∇×Φz ∙ dS

can be found using Stokes’ theorem.
s

ABC
∇×Φx ∙dS, for example, can be found

as follows:

x

ABC

∇×Φx ∙ dS =

∮

ABC

Φx ∙ dr =

∫ B

A

Φx ∙ dr +

∫ C

B

Φx ∙ dr +

∫ A

C

Φx ∙ dr. (5.42)

Therefore, equations (5.39-5.41) can be rewritten as







F x
i

F y
i

F z
i





 =







txAB txBC txCA

tyAB tyBC tyCA

tzAB tzBC tzCA













1

1

1





−







fx
i

f y
i

f z
i





 (5.43)

where tMAB, tMBC and tMCA equal the line integrals
∫ B

A
ΦM ∙dr ,

∫ C

B
ΦM ∙dr and

∫ A

C
ΦM ∙

dr, respectively, where M = x, y or z. Also
s

ABC
Px ∙dS = fx

i ,
s

ABC
Py ∙dS = f y

i

and
s

ABC
Pz ∙ dS = f z

i (see Section 5.3.3).

As shown in Figure 5.7(c), F x
i , F y

i and F z
i can be transformed into a coordinate

system local to surface i as follows:







Ni

−Si

−Ti





 = TT

i







txAB

tyAB

tzAB





+ TT

i







txBC

tyBC

tzBC





+TT

i







txCA

tyCA

tzCA





− TT

i







fx
i

f y
i

f z
i





 (5.44)

where Ni is a normal force to surface i in the ni direction, Si and Ti are shear

loads in the −si and −ti directions respectively, and Ni is taken as tensile positive.

Equation (5.44) can be rewritten as
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− fDi = λfLi − qi +
∑

j∈Ki

BT
ijtj ; (5.45)

where set Ki = {AB,BC,CA}, Bij is a local compatibility matrix defined in

Appendix B and Section 3.2.1. Also tT
j = {txj , t

y
j , t

z
j}, qT

i = {Ni,−Si,−Ti}, fT
Di =

{fn
Di, f

s
Di, f

t
Di} and fT

Li = {fn
Li, f

s
Li, f

t
Li} (see equations (5.37) and (5.38)).

5.3.5 Enforcing the Mohr-Coulomb yield condition on a

surface

Assuming a uniform distribution of the stresses across surface i, the normal stress

and the maximum shear stress must equal Ni/ai and
(√

S2
i + T 2

i

)
/ai, respectively,

where ai is the area of surface i. Assuming also that failure occurs along i, the

Mohr-Coulomb yield condition can be enforced as follows:

Pi + Ni tan φi ≤ aici, (5.46)

Pi =
√

S2
i + N2

i ; (5.47)

where ci and φi are respectively the cohesive strength and angle of friction on

surface i, and Pi is the resultant shear force.

Equations (5.46) and (5.47) can be written as

Pi + χi + Ni tan φi = aici, (5.48)

Pi + χi ≥
√

S2
i + N2

i ; (5.49)

where χi ≥ 0 is a positive slack variable. Introducing a variable Li = Pi + χi,

equations (5.48) and (5.49) become

Li + Ni tan φi = aici, (5.50)

Li ≥
√

S2
i + N2

i ; (5.51)
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where equation (5.51) is a second order cone. As Li ≥ 0, equations (5.50) and

(5.51) must be equivalent to equations (5.46) and (5.47).

5.3.6 Discretization

Given a problem domain with known boundary and loading conditions, a con-

strained optimization problem can be set up to find the maximum adequacy factor

λ on the live loads. For this it is necessary to discretize the problem domain using

n nodes and to assume that the line integrals tx, ty and tz can only be determined

along l paths, joining every unique pair of nodes. Suppose also that these paths

are joined to create m simple polygonal surfaces and that fn
Li, f s

Li, f t
Li, fn

Di, f s
Di and

f t
Di are known for all paths (i = 1, 2, . . . ,m). Applying equations (5.45), (5.50)

and (5.51) for all m surfaces leads to a constrained SOCP problem, identical to

the dual of kinematic formulation outlined in Section 3.2.4. In matrix form, the

dual equilibrium formulation is as follows:

max λ (5.52a)

subject to

BT t + λfL − q = −fD (5.52b)

NT t + L = 0 (5.52c)

Li ≥
√

S2
i + T 2

i ∀i ∈ {1, . . . , m} (5.52d)

where tt = {tx1 , t
y
1, t

z
i , t

x
2 , t

y
2, t

z
2, . . . , t

z
l }

T , L = {L1, L2, . . . , Lm}T , q = {N1,−S1,−T2,

N2,−S2,−T2, . . . ,−Tm}T and where B, fL, fD are identical to those described in

Chapter 3.

5.3.7 Discussion

As confirmed by the derivation, the observations made in Section 4.3.7 on the

upper bound nature of the DLO procedure are still valid. The observations are

summarized below.
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(i) Rotational equilibrium is not enforced.

(ii) The yield condition is only enforced on the (surface) discontinuities.

(iii) The yield condition is only enforced in an average sense on the (surface)

discontinuities.

(iv) The stress field is not extended to ensure the stress field is admissible outside

the discretized problem domain.

In the three-dimensional kinematic formulation, compatibility is enforced along

the edges. In the dual the t values are similarly associated with edges rather

nodes (as in the plane strain formulation). Consider for example the line integral
∫ B

A
σx ∙ dr in the plane strain formulation (see Chapter 4):

∫ B

A

σx ∙ dr =

∫ B

A

∇tx ∙ dr −
∫ B

A

Px ∙ dr (5.53a)

= txB − txA − fx
i (5.53b)

fx
i =

∫ B

A
Px ∙ dr is path dependant, but is known a priori.

∫ B

A
∇tx ∙ dr, however, is

not known a priori, but can be determined using the gradient theorem and from

the txB, txA values associated with the nodes. In contrast, consider the line integral

in the three-dimensional formulation:

∫ B

A

Φx ∙ dr =

∫ B

A

φxx dx +

∫ B

A

φxy dy +

∫ B

A

φxz dz (5.54)

In this case, the gradient theorem cannot be used and, therefore,
∫ B

A
Φx ∙dr cannot

be determined from the t values at the nodes. Consequently,
∫ B

A
Φx ∙ dr must be

obtained by some other means.
∫ B

A
Φx ∙dr, for example, could be included directly

as an optimization variable (as in the dual formulation described above). In the

three-dimensional equilibrium formulation, line integrals along the edges are used

to determine the internal forces on the discontinuities or surfaces.
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5.4 Pseudo lower bound

D

A

C

B

Figure 5.8: A tetrahedral element j with vertices A, B, C and D

In the following section, a three-dimensional method, similar to method I described

in Section 4.4, will be developed for a weightless Tresca material. In this method,

the problem domain is split into tetrahedral elements. The stress functions Φx, Φy

and Φz from Section 5.3 are assumed to vary linearly across each element, resulting

in a constant stress state on each tetrahedral element. The linear variation of the

stress functions across the tetrahedral element j in Figure 5.8 are described by

equation (5.55).
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Assuming no forces are applied on the internal boundaries, the stress tensor

σj =







(
∂φxz

∂y
− ∂φxy

∂z

) (
∂φyz

∂y
− ∂φyy

∂z

) (
∂φzz

∂y
− ∂φzy

∂z

)

(
∂φxx

∂z
− ∂φxz

∂x

) (
∂φyx

∂z
− ∂φyz

∂x

) (
∂φzx

∂z
− ∂φzz

∂x

)
(

∂φxy

∂x
− ∂φxx

∂y

) (
∂φyy

∂x
− ∂φyx

∂y

) (
∂φzy

∂x
− ∂φzx

∂y

)
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on j, obtained from equation (5.25), must be both constant and nonsymmetric;

therefore, obtaining the maximum shear stress is not straightforward (see Section

5.2.2).

If the tx, ty and tz values along each edge of element j are known, the internal

forces on surfaces
−−−→
ABC,

−−−→
ABD,

−−−→
ACD and

−−−→
BCD can be determined using equation

(5.45). For example, the internal forces on surface
−−−→
ABC (assuming no external

loads are applied to surface
−−−→
ABC ) can be calculated from:







F x
ABC

F y
ABC

F z
ABC





 =







txAB + txBC − txAC

tyAB + tyBC − tyAC

tzAB + tzBC − tzAC





 (5.57a)

=







∫ B

A
Φx ∙ dr +

∫ C

B
Φx ∙ dr −

∫ C

A
Φx ∙ dr

∫ B

A
Φy ∙ dr +

∫ C

B
Φy ∙ dr −

∫ C

A
Φy ∙ dr

∫ B

A
Φz ∙ dr +

∫ C

B
Φz ∙ dr −

∫ C

A
Φz ∙ dr





 (5.57b)

Assuming Φx, Φy and Φz vary linearly (see equation (5.55)), F x
ABC , F y

ABC and

F z
ABC are functions of stress tensor σj and the vertex coordinates.







F x
ABC

F y
ABC

F z
ABC





 = σjG; (5.58a)
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where

G =
1

2







(zB − zC) yA + (zC − zA) yB + (zA − zB) yC

(zC − zB) xA + (zA − zC) xB + (zB − zA) xC

(yB − yC) xA + (yC − yA) xB + (xA − yB) xC







is obtained from evaluating line integrals and F x
ABC , F y

ABC and F z
ABC are known.

Equations relating internal forces to vertex coordinates (i.e. similar to equation

(5.58)) can be obtained for three remaining boundaries of element j, resulting in

twelve equations (three per boundary) in nine unknowns (i.e. the components of

σj). Therefore σj can be determined uniquely, revealing that three equations must

be linearly dependent. (Note that the thirty-six coefficients in equation (5.55) are

normally not uniquely defined.)

The equilibrium or dual formulation of three-dimensional DLO is defined in terms

of tx, ty and tz values along specific edges. Assuming a mesh of κ tetrahedral

elements, whose edges coincide with edges in an equivalent upper bound DLO

analysis, the tx, ty and tz values from the DLO analysis can be used to obtain

σj for j = 1, 2, . . . , κ. Assuming the maximum shear stress τmax
j on element j

can be determined, a factor Fj on yield can be determined for each element j

(j = 1, 2, . . . , κ) from equation (5.59), where yield is violated for any Fj > 1.

Fj =
τmax
j

cj

(5.59)

An overall factor

F = max({F1, F2, . . . , Fκ}) (5.60)

on yield can also be obtained. Scaling all tx, ty and tz values by F produces a new

solution satisfying the yield condition everywhere and meeting the requirements

for a pseudo lower bound solution. The pseudo lower bound adequacy factor

λl = λ/F ; where λ is the upper bound adequacy factor.
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5.5 Numerical Example

In Section 3.3.1, upper bound solutions for the compression of a weightless co-

hesive block between two rough platens were obtained. In the following section,

the performance of the pseudo lower bound method is evaluated using this bench-

mark problem. Exploiting symmetry (see Figure 3.3), tx, ty and tz values were

determined using the basic three-dimensional formulation in Chapter 3. All com-

putations were performed on a 3.0GHz Intel Dual Core E8400 processor with

3.5GB RAM and running Windows XP. The pseudo lower bound method was

implemented using MATLAB 7.3.0.

In the absence of a rigourous procedure to determine τmax
j , the following iterative

procedure was adopted to estimate τmax
j on a given element j.

(i) Express the normal n to an arbitrary plane in terms of solid angles θ1 and

θ2 in Figure 5.9:

n =
1

√
cos2 θ2 − cos2 θ2 cos2 θ1 + cos2 θ1







cos θ2 sin θ1

sin θ2 cos θ1

− cos θ2 sin θ1





 (5.61)

(ii) Set τmax
j = 0, θmax

1 = 0 and θmax
2 = 0.

(iii) Using equation (5.9), find τ for all combinations of θ1 = {−90,−89,−88

, . . . , 0, . . . 89, 90} and θ2 = {−89,−88,−87, . . . , 0, . . . 88, 89}. For all combi-

nations, if τ > τmax
j then τmax

j = τ , θmax
1 = θ1 and θmax

2 = θ2.

(iv) Refine τmax
j by finding the local maximum, satisfying

∂τj

∂θ1
= 0 and

∂τj

∂θ2
= 0,

in the vicinity of θmax
1 and θmax

2 .

Pseudo lower bounds were obtained for two mesh types.

(i) Mesh A – arbitrarily splits the cubes formed by neighbouring nodes into six

tetrahedral elements.
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Figure 5.9: Solid angles θ1 and θ2 describing the inclination of an arbitrary
plane with respect to the xy plane

(ii) Mesh B – splits the individual solids forming the upper bound mechanism

(and identified in the equivalent upper bound analysis) into tetrahedral ele-

ments. The vertices of these element must be vertices of the solids forming

the mechanism. In some cases, the edges of the solids in the mechanism were

not included in the original upper bound analysis. After adding of these miss-

ing edges and splitting any active discontinuities traversed by these edges,

the upper bound analysis was repeated to obtain the missing tx, ty and tz

values.

5.5.1 Results

Pseudo lower bound results for the compression of a weightless cohesive block

between two rough platens are present in Table 5.1. For the largest nodal grid

considered, the solids forming the upper bound mechanism were not available due

to limitations in the algorithm used to identify these.
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Table 5.1: Compression of a block – pseudo lower bounds

Spacings∗ upper bound? pseudo lower bound
mesh A mesh B

Δ q/c diff. † (%) q/c diff‡ (%) q/c diff. ‡ (%)

1/2 2.321 0.74 0.819 63 1.425 36
1/2 2.319(2.316�) 0.65(0.52�) 0.636 69 1.390 38
1/6 2.314 0.43 0.574 75 n/a n/a

Key: Δ = Δx = Δy = Δz (see Figure 3.3); ?from three-dimensional DLO; †relative to best

upper bound from Chapter 3; �improved result after solid identification; ‡relative to best

published lower bounds (see Table 2.4).

5.5.2 Discussion

(i) The pseudo lower bound errors are much greater than the equivalent upper

bound errors. As with method I described in Chapter 4, tx, ty and tz val-

ues along the edges are determined from an upper bound analysis and are

therefore not optimal for a pseudo lower bound analysis, at least partially

explaining the poor results.

(ii) A global optimization problem (or a three-dimensional equivalent to method

II in Chapter 4) which automatically identifies the best pseudo lower bound

for a given mesh was not considered practical as equation (5.9) and, conse-

quently, the yield condition is non-convex for nonsymmetric tensors.

5.6 Conclusion

(i) The equilibrium discontinuity layout optimization (DLO) formulation for

three-dimensional problems has been derived using translational stress func-

tions and vector calculus. It has been shown that the derivation allows

a deeper understanding of the equilibrium formulation to be obtained. In

particular, it has been shown that line integrals of the translational stress
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functions Φx, Φy and Φz along the edges are used to obtain the internal

forces on the discontinuities.

(ii) Translational stress functions have been used to derive a relaxed, pseudo

lower bound formulation. Linear variation of the stress functions Φx, Φy and

Φz is assumed across tetrahedral constant stress elements, used to discretize

the problem domain. tx, ty and tz values from an upper bound analysis

are used to find the stresses on these elements, and these stresses were then

scaled to obtain a pseudo lower bound solution.

(iii) However, the pseudo lower bound solutions obtained were found to be much

poorer than corresponding upper bound solutions. This is at least partly

explained by the fact that the tx, ty and tz values along the edges were

determined from an upper bound analysis.





6 Discussion

6.1 Introduction

DLO is a flexible, intuitive tool capable of considering complex problems; where

the failure mechanism is not known beforehand (as illustrated by the pipeline and

berm problem in Figure 1.2). Plane strain DLO is capable of obtaining accurate

solutions at moderate computational expense. For example, solutions to the Pran-

dlt problem obtained using LimitState:GEO 3.0 (LimitState, 2012), a commercial

software implementation of DLO, are presented in Table 6.1. Solutions within

1% of the ‘exact’ solution, accurate enough for most engineering applications, are

obtained in less than 4 seconds using a desktop computer with a 3.0 GHz Intel

processor and running Windows XP.

Table 6.1: Prandtl punch problem – LimitState:GEO 3.0 results (using sym-
metry about the punch centerline)

Nodes Discontinuities Nc Error Time
no. no. % s

224 18,732 5.194 1.02 1.42
483 81,826 5.175 0.642 3.02
949 298,258 5.158 0.323 9.63

1,898 1,075,576 5.155 0.255 49.6
3,962 3,785,468 5.151 0.173 335

In Chapter 3, a three-dimensional, kinematic formulation of the DLO procedure

for translational problems was sucessfully developed. The new formulation is able

to directly identify the discontinuities developing at failure and is posed entirely in

135
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terms of potential discontinuities. These potential discontinuities are not restricted

to the boundaries of predefined solid regions as in rigid finite element (RFEM) or

finite element limit analysis (FELA); thus stress or strain singularities can be dealt

with naturally without any need for special treatment. The formulation’s ability

to handle stress singularities has been demonstrated by the punch indentation

example, considered in Section 3.3.2, and represents an important advantage as

such singularities are commonly encountered. Volumetric locking is also avoided

without need for special treatment. Furthermore, three-dimensional DLO is able

to strictly enforce the associated Mohr-Coulomb flow rule using efficient SOCP;

unlike three-dimensional FELA requiring more complex SDP.

Using the basic fully connected formulation, good correlation was found with

benchmarks available in the literature. However, only relatively small nodal grids

were considered due the rapid increase in the total number mall of discontinuities

with the number n of nodes. Assuming triangular discontinuities, the maximum

number of potential discontinuities mup = n(n−1)(n−2)/6 (cf. mup = n(n−1)/2

for plane strain problems). Figure 6.1 compares the maximum number of discon-

tinuities mup for by the basic plane strain and three-dimensional formulations. In

plane strain, accurate solutions require discretizations involving perhaps millions

of potential discontinuities (Smith and Gilbert, 2007). In the three-dimensional

formulation, mup grows much more rapidly with n. Additionally, more nodes are,

typically, required to discretize a three-dimensional problem. Therefore, the num-

ber of discontinuities required to obtain highly accurate solutions is likely to be

much larger.

Direct solution of the resulting large SOCP problems is impractical. In fact, even

direct solution of the resulting linear programming (LP) problem in the basic

plane strain formulation quickly becomes impractical with increasing n. However,

Smith and Gilbert (2007) observe that displacement typically only occurs on a

small proportion of discontinuities, referred to as active discontinuities. There-

fore, an identical solution can be obtained using only the active discontinuities

thus significantly reducing the size of the resulting LP problem. A similar trend

was observed in the three-dimensional examples even at the low nodal resolutions



Chapter 6. Discussion 137

0

5000

10000

15000

20000
m

u
p

0 10 20 30 40 50
total number of nodes n

Plane strain DLO
Three-dimensional DLO

Figure 6.1: Maximum number of potential discontinuities mup in basic plane
strain and three-dimensional DLO formulations

considered. Furthermore, the proportion of active discontinuities was observed to

reduce with increasing problem size.

In plane strain, Smith and Gilbert (2007) use this observation to develop an adap-

tive nodal connection scheme (see Section 2.6.3.1). The adaptive nodal connection

scheme allows a subset of the total discontinuities, containing the critical set of

active discontinuities, to be definitely identified without solving the basic fully

connected problem directly. The subset identified will typically contain a number

of nonactive discontinuities in addition to the active discontinuities, but remains a

small proportion of the total. Smith and Gilbert (2007) have sucessfully used this

adaptive scheme to solve problem involving millions of potential discontinuities.

The proportion of active discontinuities in the three-dimensional formulation is

similarly small suggesting an analogous scheme might be successful.

Understanding the plane strain dual, equilibrium formulation of DLO is central to

the adaptive nodal connection scheme. Similarly, understanding the dual formu-

lation is essential to developing an analogous three-dimensional scheme. Conse-

quently, the plane strain and three-dimensional equilibrium formulations have been
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derived from first principles in Chapters 4 and 5, respectively. These derivations

have allowed a deeper understanding of the dual plane strain and three-dimensional

formulations.

6.2 Equilibrium formulation of DLO and adap-

tive procedures

The plane strain and three-dimensional equilibrium formulations are given in Sec-

tions 5.3.6 and 2.6.3, respectively. Initial examination of these formulations reveals

important similarities: an objective function maximizing a multiplier on the live

load, constraints enforcing equilibrium and yield conditions. The internal forces

q̃i on a discontinuity i not contained in the original LP or SOCP problem can be

found by rearranging the equilibrium constraint

q̃i = λfLi + fDi + BT
i ti; (6.1)

where fLi and fDi are the dead and live loads, respectively, on discontinuity i; and

Bi contains the columns of global compatibility matrix B corresponding to the

displacement jumps across discontinuity i. An important distinction, however, is

found upon examining the respective definitions of vector ti in the plane strain

and three-dimensional formulations. In the plane strain formulation, ti contains

values of scalar, translational stress functions tx and ty at the vertices of linear

discontinuity i. In the three-dimensional formulation, ti now contains line integrals

of vector, translational stress functions Φx, Φy and Φz along the edges of polygonal

discontinuity i. Equivalently in the primal kinematic formulations, compatibility is

enforced at the nodes and along the edges in the plane strain and three-dimensional

formulations, respectively.

The plane strain adaptive nodal connection procedure, described in Section 2.6.3.1,

uses the internal forces q̃i determined from equation (6.1) to check the yield condi-

tion on potential discontinuities not included in the LP problem. tx and ty values
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at every node must be available to allow determination of q̃i values for all disconti-

nuities i in the basic fully connected problem. Therefore, at least one discontinuity

per node is necessary to guarantee a rigorous solution to the basic fully connected

problem using the adaptive nodal connection procedure. Generally, it is neces-

sary to include more than one discontinuity per node to ensure rapid convergence

towards the final solution.

In the three-dimensional formulation, edges are connected to create polygonal dis-

continuities. The internal forces q̃i on polygonal discontinuities not included in the

SOCP problem can be calculated using equation (6.1) and tx, ty, tz values attached

to the edges. Therefore, an adaptive scheme, termed adaptive edge connection,

analogous to adaptive nodal connection is possible for the three-dimensional formu-

lation. The steps involved in this procedure are essentially the same, but existing

t values along the edges are connected to find the internal forces on discontinuities

not included in the SOCP problem. A rigorous solution using adaptive edge con-

nection requires that line integrals txj , tyj and tzj at every edge j(j = 1, 2, . . . , l) must

be available to allow determination of q̃i for all discontinuities i(i = 1, 2, . . . ,mall);

where l is the total number of edges used to discretize the problem. Therefore, at

least one discontinuity at every edge must be included in the original SOCP prob-

lem. The maximum number of edges lup = n(n − 1)/2. (Note lup equals mup for

a plane strain problem with same number of nodes n.) Therefore, the size of the

initial SOCP problem required for a rigorous solution quickly becomes impractical

with increasing n. Generally, it is necessary to include more discontinuities to

achieve rapid convergence towards the final solution. Initial studies have been un-

dertaken using adaptive edge connection. These reveal that determining an initial

subset balancing subset size against speed of convergence to be extremely chal-

lenging. In conclusion, the reductions in problem size achieved from adaptive edge

connection are insufficient to allow highly accurate solutions. However, adaptive

edge connection may be used in conjunction with other adaptive or decomposition

procedures.
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6.3 Potential enhancements

6.3.1 Introduction

The rapid increase in the number of discontinuities with the number of nodes calls

for enhancements to the three-dimensional DLO procedure. These enhancements

are needed to allow solution of larger problems, obtaining more accurate solutions.

For the problems considered in Chapter 3, the stability and runtime of the SOCP

optimizer limited the size of problem that could be considered. Therefore, the

enhancements discussed in the following sections concentrate on either reducing

the size of the problem passed to the optimizer or improving the performance of

the optimizer. It is thought that the former approach has the greater potential to

deliver improved performance.

6.3.2 Improving optimizer performance

For analyses larger than those reported in Chapter 3, the SOCP solver, Mosek v.

6 (Mosek, 2011), terminated before converging, due to slow progress. Furthermore

although the constraint matrix A generated is sparse, Cholesky decomposition of

matrix AAT during optimization resulted in considerable infill. However, SOCP

is a rapidly developing field and further developments and/or better conditioning

of A may deliver improved robustness. Gurobi v. 5 (Gurobi, 2012), for example,

has recently been extended to include SOCP capability. Comparison of Gurobi v.

5 and Mosek v. 6 for a LP slab problem suggests Gurobi v. 5 to be the more

efficient algorithm (see Figure 6.2); while performance at low nodal resolutions

is comparable, for larger problems Mosek v. 6 runtimes vary hugely and are

consistently longer than Gurobi v. 5 runtimes. Therefore, a similar study that

in Figure 6.2 is recommended to compare the performance of the two solvers for

three-dimensional DLO problems.
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Figure 6.2: Mosek v. 6 and Gurobi v. 5 performance for a linear program-
ming slab problem (courtesy of Linwei He)

6.3.3 Alternative adaptive procedures

For the adaptive edge connection procedure described in Section 6.2, it is nec-

essary to include at least one discontinuity at every edge in the initial iteration.

Therefore, the solution of the initial optimization problem becomes impractical

for even moderately sized nodal grids. However, other adaptive procedures are

possible. As with adaptive edge connection, a solution based an initial subset of

discontinuities is determined. Discontinuities missing from the initial subset are

then added to the subset based on specific criteria. An optimization problem based

on the updated subset is then solved and the procedure repeated. If the criteria

for adaptive procedure are no longer based on the tx, ty and tz values, the initial

subset may no longer be required to include a discontinuity at every edge. For

example, the geometry of the critical failure mechanism from previous iterations

may be used to grow the initial subset from one iteration to the next. The aim of

these criteria is to add only those discontinuities which will result in an improved

solution. However, these methods no longer guarantee that the global optimum is

found for a particular nodal grid.
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6.3.4 Decomposition

By splitting the problem domain into overlapping regions, a decompositional ap-

proach similar to that of Pastor et al. (2009) and Kammoun et al. (2010) could be

developed (see Section 2.5.3). A potential decompositional procedure for DLO is

illustrated in Figure 6.3 using a plane strain example and three overlapping regions

but could equally be used with an arbitrary number of regions. (Note that the

procedure is framed in terms of the equilibrium formulation and hence maximizes

the load). The steps in a similar three-dimensional procedure would be identical

except tx, ty and tz values along the edges must now be fixed. Decompositional

procedures are ideal for exploiting parallel processing. To facilitate parallel maxi-

mization of loads on regions I and II, discontinuities crossing the boundary between

regions I and II are not permitted, as illustrated in Figure 6.3(d). Therefore, some

of the flexibility inherent in the DLO procedure will be lost. However, this may

not be significant if sufficiently large regions are employed. This decompositional

procedure could allow larger problems to be considered. However, it cannot be

guaranteed to converge towards the basic DLO solution for the nodal grid.

Numerous variations on the decompositional procedure described above can be

envisioned. For example, the decompositional procedure described below using

the plane strain example in Figure 6.4 .

(i) Discretize the problem domain using a nodal grid and connecting disconti-

nuities (see Figure 6.4(a)).

(ii) Split discontinuities into a master subset (see Figure 6.4(b)), two slave sub-

sets (see Figures 6.4(c) and 6.4(d)) and a subset containing the remaining

discontinuities (see Figure 6.4(e)). The master and slave subsets must con-

tain discontinuities joining every node.

(iii) Use the equilibrium formulation to maximize the load on the master subset.

(iv) Fix the tx and ty values on nodes in mater nodal subset •.
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(a)

III
(b)

III
(c)

(d)

Figure 6.3: Plane strain example of decompositional procedure using overlap-
ping regions: (a) solve small initial problem; (b) fix tx and ty values on boundary
between regions I and II; maximize loads on regions I and II; (c) fix tx and ty

values from (b) on boundary and outside of region III; maximize load on region
III; repeat steps (b)-(c) or terminate. (d) example of a prohibited discontinuity

crossing boundary between regions I and II.

(v) Minimize the maximum violation on the slave subsets by varying the tx and

ty values on nodal subsets � and �, respectively. These two operations could

be done in parallel thus reducing runtime.

(vi) Use the tx and ty values from (iii) and (v) to determined the maximum

violation on the remain discontinuities (see Figure 6.4(e)).

(vii) Transfer the most violating discontinuities from (v) and (vi) to the master

subset (see Figure 6.4(f)). Removing any overlapping discontinuities.

(viii) Transfer the vertices of discontinuities added to the master subset in (vii)

from � and � to • (see Figure 6.4(f)).

(ix) Repeat from (iii) or terminate.
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(a) (b) (c)

(d) (e) (f)

Figure 6.4: Plane strain example of decompositional procedure using master
and slave subsets. (a) Discretize problem domain using nodes and disconti-
nuities. (b-d) Split discontinuities into (b) a master subset, (c) and (d) slave
subsets and (e) a subset containing the remaining discontinuities. Solve opti-
mization problems based on master and slave subsets to determined tx and ty

values at the nodes. (f) Transfer most violating discontinuities and correspond-
ing vertices to the master subset and master nodal subset •, respectively.

In the decompositional procedure described above, the slave subsets need not be

constrained to a particular region but rather must join specific nodal subsets, such

as ◦ or � in the example. Additionally, the slave subsets must link the nodal

subsets to the master subset. The procedure described resembles adaptive nodal

connection except the tx and ty values are determined by an alternative strategy.

It may, therefore, be possible to prove convergence to the basic DLO solution for

the nodal grid. A three-dimensional version of the procedure would use subsets of

discontinuities joining subsets of edges.

It is recommend that the decompositional procedures described in this section

be investigated in plane strain before proceeding to implement these in three-

dimensions.
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6.4 Pseudo lower bounds

In Chapters 4 and 5, relaxed, pseudo lower bound methods were developed for

plane strain and three-dimensional problems, respectively. The aim was to de-

velop lower bound type formulations incorporating the advantages of DLO. How-

ever, unlike DLO, discontinua were only permitted at the boundary between pre-

defined solid regions (i.e. very similar to RFEM). Consequently, mesh sensitivity

was observed to varying degrees for all three pseudo lower bound methods. Fur-

thermore, the yield condition must be satisfied everywhere and not just along

specific planes. Therefore, more complex algorithms are necessary (compared to

upper bound discontinuous methods) to directly optimize t values (at the nodes

or edges) for pseudo lower bound analysis. In plane strain, method II resulted in

a SOCP rather than a LP problem. The three-dimensional equivalent to method

II results in a complex non-convex, optimization problem and was, consequently,

not developed further.

The possibility of automatically refining a DLO grid, based on an equivalent

pseudo lower bound solution, to obtain an improved upper bound naturally arises.

However, pseudo lower bounds for the examples considered compare poorly to

equivalent DLO results. It is, therefore, the author’s opinion that pseudo lower

bounds are poor guides for nodal refinement. However, they can provide a valuable

lower bound estimate on the best purely translational upper bound.

6.5 Rotations

The formulation developed in Chapter 3 does not consider rotations. This can

be an important limitation for certain classes of problems. In plane strain DLO,

rotations have been incorporated by including circular arcs or log spirals among the

potential discontinuities (Gilbert et al., 2010a; Smith, 2012). A similar approach

may be possible for including rotations in the three-dimensional formulation using

non-planar discontinuities.





7 Conclusions and future work

7.1 Introduction

In this chapter, the key conclusions of this thesis are summarized and directions

for future work suggested.

7.2 Conclusions

(i) A new three-dimensional discontinuity layout optimization (DLO) formula-

tion has been described that can be used to solve general three-dimensional

plasticity problems. The upper bound formulation makes use of efficient sec-

ond order cone programming (SOCP) to handle the Mohr-Coulomb flow rule

and to directly determine optimal translational collapse mechanisms. These

collapse mechanisms are based on an optimal subset of planar discontinuities

drawn from a large set of potential polygonal discontinuities whose vertices

are located on nodes within a three-dimensional grid of nodal points.

(ii) The new three-dimensional formulation was validated against benchmarks

available in the literature. Good correlation was found despite the low nodal

resolutions employed. The best reported upper bound for the compression

of a purely cohesive block between two perfectly rough platens was improved

upon.

147
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(iii) In all the cases considered using the basic three-dimensional formulation,

the percentage of active discontinuities in the critical mechanism was small;

active discontinuities are defined as those discontinuities on which an actual

jump in displacement occurs. This suggests an adaptive iterative procedure

may be effective if it can identify these discontinuities and add them to an

initial small subset of discontinuities; while keeping non-active discontinuities

in the optimization to a minimum.

(iv) The dual, equilibrium formulation of plane strain DLO has been derived

from first principles making use of translational stress functions and vector

calculus, allowing a deeper insight into the nature of DLO solutions. Impor-

tantly, the dual formulation allows the total internal forces on discontinuities

to be determined. In the dual, these forces are determined from scalar values

of stress functions at the nodes. In previous work, the dual formulation had

been derived from duality principles.

(v) The dual, equilibrium formulation of three-dimensional DLO has also been

derived from first principles making use of translational stress functions and

vector calculus, revealing important differences with plain strain DLO. Un-

like plane strain DLO, the line integrals of vector, stress functions along

the edges are used to determined the total internal forces on the potential

discontinuities.

(vi) Preliminary investigation of an adaptive scheme, termed adaptive edge con-

nection, for three-dimensional DLO has been undertaken. The adaptive

scheme relies on line integrals of stress functions along the edges, determined

from an original optimization problem. Therefore, discontinuities must be

included at every edge in the original optimization problem, in order to allow

the line integrals to be determined along every edge. It was found that the

number of edges grows rapidly with the number of nodes. Consequently, it

was found that the original optimization quickly becomes impractical with

increasing problem size.
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(vii) Plane strain and three-dimensional relaxed lower bound methods, ignoring

rotational equilibrium, have been developed using translational stress func-

tions. Unlike in DLO, the yield condition is exactly satisfied everywhere

within the problem domain. Therefore, these lower bounds can provide a

bound on the best translational upper bound. However, results were less

accurate then equivalent upper bounds obtained using DLO. Mesh sensitiv-

ity was also observed in the numerical examples due to stress discontinuities

only being permitted at the boundaries of predefined solid regions.

7.3 Suggestions for future work

A new three-dimensional formulation of the DLO procedure for translational prob-

lems has been successfully developed. The new formulation is widely applicable

and handles stress singularities without any need for special treatment. However,

it is only practical to determine the collapse loads for relatively small nodal grids

due the rapid increase in the number of discontinuities with the number of nodes.

The robustness and long runtimes of the optimizer were found to be limiting fac-

tors. Therefore, future work should focus on improving the optimizer performance

and/or reducing the size of problem passed to the optimizer. The following are

recommended for future consideration.

(i) Improvements to the structure and conditioning of the constraint matrix

passed to the optimizer.

(ii) Investigate the performance of available SOCP optimizers including Gurobi

v. 5.

(iii) Decompositional procedures that split the problem into smaller subproblems.

Decomposition allows the problem to be considered as a series of smaller op-

timization problems rather than a single larger optimization problem. These

smaller problems can be solved in parallel using powerful parallel processing

technologies.
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Additionally, rotations could be incorporated into the formulation by including

non-planar discontinuities. These would extend the applicability of the new pro-

cedure to rotational problems but would not enhance computational efficiency.
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A Sign convention for jumps in displace-

ment

In DLO, the optimization problem is formulated purely in terms of the displace-

ment jump across a set of potential discontinuities. This requires a consistent sign

convention to be adopted. Figure A.1(a) shows two triangular prisms separated by

a discontinuity ABC and with absolute displacements v1 and v2 respectively. The

displacement jump ΔvABC across discontinuity ABC must equal either v1 − v2

or v2 − v1. Using the ‘right hand screw rule’, the normal n to the discontinuity

can be determined for a particular ordering of the vertices as demonstrated in

Figures A.1(b & c) for discontinuity ABC. ΔvABC is simply defined as v+ − v−,

where v+ and v− are the velocities of the blocks on the n positive and n negative

sides of the discontinuity respectively for a chosen ordering of the vertices. Any

ordering of a particular discontinuity’s vertices is permitted provided this remains

fixed throughout the analysis and adjacent vertices remain adjacent in the chosen

ordering.
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Figure A.1: Sign convention: (a) two triangular prisms separated by a dis-
continuity ABC, the dashed outline shows the prisms’ original position; (b)

discontinuity vertex ordering
−−−→
ABC; (c) discontinuity vertex ordering

−−−→
ACB.



B Sign convention for compatibility

In general, a sign convention is necessary for equations (3.6) and (3.7) to be valid

along edge j; where j = 1, 2, . . . , l and l is the total number of edges used to

discretize the problem. Taking account of the sign convention these equations can

be rewritten as follows:

∑

i∈Sj

kijΔvi = 0, (B.1)

∑

i∈Sj

kijTidi =
∑

i∈Sj

Bijdi = 0 (B.2)

where Sj is the subset of all discontinuities meeting at edge j. kij = ±1 depends

on the relative vertex orderings of discontinuity i and edge j.

Each discontinuity i(i = 1, 2, . . . ,m) is defined by a subset Di of the total nodes

n; where m is the total number of discontinuities and Di contains the vertices of

discontinuity i. Discontinuity i has a boundary formed by a subset Ki of the total

number of edges l. Each edge j(j = 1, 2, . . . , l) is defined by subset Ej of the total

nodes n; where Ej contains the two vertices of edge j. The following is a suitable

convention for selecting kij for all edges j(j = 1, 2, . . . ,m) and all discontinuities

i(i = 1, 2, . . . ,m).

(i) For each discontinuity i(i = 1, 2, . . . ,m) define a positive ordering of the

vertices in Di. The two vertices of each edge j(j ∈ Ki) must be adjacent in

this ordering. The ordering defined is cyclical(the first vertex is adjacent to

the last) and is also used to define ni (see Appendix A).
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(ii) For each edge j(j = 1, 2, . . . , l) define a particular ordering of the vertices

Ej as positive.

(iii) For each edge j(j = 1, 2, . . . , l) and discontinuity i(i ∈ Sj) with common

vertices {X,Y } = Di ∩Ej compare the orderings of X and Y in the positive

orderings of Ej and Di defined in (i) and (ii), respectively, remembering

that the ordering of Di in (i) is cyclical. If these orderings coincide, kij = 1;

otherwise, kij = −1.



C Crossovers & Overlaps

C.1 Crossovers

Intersections between discontinuities can occur, much like in plane strain problems.

The intersections between discontinuities on different planes are line segments or

‘crossovers’. Compatibility is implicitly ensured at these crossovers rather than

being explicitly enforced. This can be demonstrated using the two intersecting

rectangular discontinuities, shown in Figure C.1(a). In Figure C.1(b), the discon-

tinuities are split into smaller discontinuities so that the crossover is eliminated.

In DLO it is assumed that the displacement jump across each of these smaller

discontinuities is equal to that of its parent, taking account of the conventions in

Appendices A and B. It is clear that equation (B.1) is satisfied for the new edges

and the original crossover itself must also be compatible.

C.2 Overlaps

Intersections also occur between discontinuities in the same plane, resulting in

‘overlaps’. As with crossovers, compatibility is implicitly ensured. In Figure

C.2(a), two overlapping discontinuities are shown. These are divided in Figure

C.2(b) so that the original overlap is eliminated, but two overlapping disconti-

nuities
−−−−−→
I1I3I4I2

ABC and
−−−−−→
I1I3I4I2

DEF remain. Discontinuities located on different

planes and sharing edges AB, BC, EF and FD are similarly divided (not shown

in Figure C.2). The displacement jump for each new discontinuity equals that of
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(a)

D

C

B

A

E

F

G

H

I1

I2

I3

I4

I5

I6

(b)

Figure C.1: Crossovers: (a) discontinuity
−−−−→
ABCD, displacement jump

ΔvABCD, intersecting discontinuity
−−−−−→
EFGH , displacement jump ΔvEFGH ; (b)

−−−−→
ABCD split into

−−−−−→
ABI2I1 and

−−−−−→
I1I2CD, both with a displacement jump ΔvABCD

;
−−−−−→
EFGH split into

−−−−−→
I1I2I6I5,

−−−−−→
I3I4I2I1,

−−−−−−→
EI3I1I5H and

−−−−−−→
I4FGI6I2, all with a dis-

placement jump ΔvEFGH .

its parent discontinuity, taking account of the conventions in Appendices A and

B. Using equation (B.1), it is simple to prove that compatibility is maintained

and that the displacement jump ΔvI on the overlapping region I1I3I4I2 equals

ΔvABC + ΔvDEF .

Calculating pABC , pEDF and pI from equation (3.10), it is clear that pABC + pDEF

≥ pI since these terms are not added vectorially in the SOCP solver. It can,

therefore, be concluded that overlaps will overestimate both the dilation and en-

ergy dissipated. This is equivalent to the overlapping region having a cohesive

strength c and angle of friction φ greater than those of the original discontinu-

ities, thus maintaining the upper bound nature of the solution. The solver will

tend to avoid such overlaps where these result in more energy being dissipated.

Therefore the significance of these overlaps is likely to reduce with increasing nodal

resolution.

The load distribution across discontinuities ABC and DEF is unknown and can
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I3
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Figure C.2: Overlaps: (a) a discontinuity
−−−→
ABC, displacement jump ΔvABC ,

overlapping a discontinuity
−−−→
DEF , displacement jump ΔvDEF ; (b)

−−−→
ABC split

into
−−−−−→
AI1I2C,

−−−−−→
I1I3I4I2

ABC and
−−−→
I3BI4, each with a displacement jump ±ΔvABC ;

−−−→
DEF split into

−−−−−→
DEI3I1,

−−−−−→
I1I3I4I2

DEF (note there are two discontinuities
−−−−−→
I1I3I4I2) and

−−−→
I2I4F , each with a displacement jumps ±ΔvDEF .

be interpreted in any manner consistent with the work done by ΔvABC , ΔvDEF

and ΔvI . Note that the load on I1I3I4I2, LI , cannot be the sum of the loads on
−−−−−→
I1I3I4I2

ABC and
−−−−−→
I1I3I4I2

DEF , LABC
I and LDEF

I respectively (LI 6= LABC
I + LDEF

I ).

Load distributions resulting in LI = LABC
I = LDEF

I will always be consistent with

the work done.





D Vector Calculus

D.1 Introduction

Vector calculus is a powerful mathematical toolbox used in Chapters 4 and 5 to

derive the equilibrium formulation of discontinuity layout optimization (DLO) in

two and three-dimensions, respectively. A basic introduction to the differential

operators and theorems used in these derivations is presented in the following

sections. Further background information can be found in James (1999).

A lower case letter or symbol with a normal typeface, for example f , will be

used to represent a scalar function, unless otherwise indicated. A bold upper case

letter or symbol, for example F, will be used to represent a vector function. Two

and three-dimensional vector functions are comprised of two or three components,

respectively (see equations (D.1) and (D.2)).

F = f1i + f2j (D.1)

F = f1i + f2j + f3k (D.2)

Two-dimensional vector calculus differential operators will be presented in Section

D.1.1. Three-dimensional vector calculus differential operators will be presented

in Section D.1.2. Finally, vector calculus theorems applicable to both two and

three-dimensions will be presented in Section D.1.3.
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D.1.1 Two dimensional differential operators

The gradient of a two-dimensional scalar function f is a two-dimensional vector

function given by equation (D.3).

gradient of f = ∇f =
∂f

∂x
i +

∂f

∂y
j (D.3)

The divergence of a two-dimensional vector function F is a scalar function given

by equation (D.4).

divergence of F = ∇ ∙ F =
∂f1

∂x
+

∂f2

∂y
(D.4)

The curl of a two-dimensional vector function F is a scalar function given by

equation (D.5).

curl of F = ∇× F =
∂f2

∂x
−

∂f1

∂y
(D.5)

The line integral of a two dimensional vector function F along a path AB can be

found from equation (D.6).

∫ B

A

F ∙ dr =

∫ B

A

f1 dx +

∫ B

A

f2 dy (D.6)

D.1.2 Three dimensional differential operators

The gradient of a three dimensional scalar function f is a three-dimensional vector

function given by equation (D.7).

gradient of f = ∇f =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k (D.7)

The divergence of a three-dimensional vector function F is a scalar function given

by equation (D.8).

divergence of F = ∇ ∙ F =
∂f1

∂x
+

∂f2

∂y
+

∂f2

∂z
(D.8)
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The curl of a three-dimensional vector function F is a three-dimensional vector

function given by equation (D.9). Note that the three term is the curl of a two-

dimensional vector in equation (D.5).

curl of F = ∇× F =

(
∂f3

∂y
−

∂f2

∂z

)

i +

(
∂f1

∂z
−

∂f3

∂x

)

i +

(
∂f2

∂x
−

∂f1

∂y

)

k (D.9)

The line integral of a three-dimensional vector function F along a path AB can

be found from equation (D.10).

∫ B

A

F ∙ dr =

∫ B

A

f1 dx +

∫ B

A

f2 dy +

∫ B

A

f3 dz (D.10)

The surface integral of a three-dimensional vector function F across a surface S,

for example y = y(x, z), can be found from equation (D.11); where dS = n ∙ dS is

the vector element of the surface area and n is a unit vector normal to element S.

x

S

F ∙ dS =
x (

−f1
∂y

∂x
+ f2 − f2

∂y

∂x

)

dxdz (D.11)

D.1.3 Vector calculus theorems

The theorems presented in this section are applicable to both two and three-

dimensional operators, unless otherwise indicated.

D.1.3.1 Gradient theorem

The line integral of a gradient along a path
−→
AB can be found using the gradient

theorem in equation (D.12).

∫ B

A

∇f dr = f(B) − f(A) (D.12)
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D.1.3.2 Stokes’ theorem

Stokes’ theorem relates the integral of the curl of a function F over a surface S

to the line integral of F along the surrounding closed path C via equation (D.13);

where the symbol
∮

indicates a closed path, dS = n ∙ dS is the vector element of

the surface area and n is a unit vector normal to element S.

x

S

∇× F ∙ dS =

∮

C

F ∙ dr (D.13)

In two-dimensions, Stokes’ theorem becomes Green’s theorem given in equation

(D.14).

x

S

∇× F dxdy =

∮

C

F ∙ dr (D.14a)

x

S

(
∂f2

∂x
−

∂f1

∂y

)

dxdy =

∮

C

f1 dx +

∮

C

f2 dy (D.14b)

For a vector function F = ∇f , equation (D.15) must hold.

x

S

∇× F ∙ dS =

∮

C

∇f ∙ dr = 0 (D.15)

D.1.3.3 Gauss’s theorem

The divergence (or Gauss’s) theorem relates the integral of the divergence of a

vector function F over a volume V to the surface integrals integral over the surface

S surrounding V via equation (D.16); where the symbol
v

indicates a closed

surface, dS = n ∙dS is the vector element of the surface area and n is a unit vector

normal to element S. {

S

F ∙ dS =
y

V

∇ ∙ F dV (D.16)

For a vector function F = ∇× F1, equation (D.17) must hold.
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{

S

∇× F1 ∙ dS =
y

V

∇ ∙ F dV = 0 (D.17)

D.1.3.4 Miscellaneous relationships

∇ ∙ (∇× F) = 0 (D.18)

∇× (∇f) = 0 (D.19)





E Applying loads using functions Px and

Py

E.1 Introduction

In the following appendix, the application of loads using functions Px and Py

from Chapter 4 will be demonstrated. In many cases, loads are applied directly

to an internal or external boundary (i.e. they are not body forces). An internal

boundary is defined as a surface separating the problem domain into smaller bod-

ies. External boundaries, on the other hand, are located on the boundary of the

problem domain. In this appendix, the direct application of loads to internal and

external boundaries will be explored. In addition, the application of body forces

will be examined, confirming the summation in Section 2.6.2.4.

E.2 Loads applied to internal boundaries

Figure E.1(a) shows a problem domain comprising two bodies, P and Q, separated

by an internal boundary AB; where P and Q are bounded by closed paths M and

N , respectively. Consider a load f y applied in the positive y direction across AB

to body P as shown in Figure E.1(b). This is distinct from the scenario shown in

Figure E.1(c); where f y is applied to Q. (Note that the scenario shown in Figure

E.1(b) results in tensile stresses across AB; while the scenario shown in Figure

E.1(c) results in compressive stresses.)
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f y can be understood as the integral of the body force py across a body G (shown

in Figure E.2) of length ds and infinitesimal width dt. (Note that py = ∇×Py, see

equation (4.13)). Body G coincides with AB and is enclosed by an anticlockwise

closed path H = A′A′′B′′B′.

f y =
x

G

py dxdy (E.1)

=
x

G

∇ ∙ Py dxdy

=

∮

H

Py dr

=

∫ A′′

A′

Py dr +

∫ B′′

A′′

Py dr −
∫ B′′

B′

Py dr −
∫ A′

B′

Py dr

can be determined by applying equation (4.25) to G. Assuming Py changes only

across the width dt and not along the length ds of G then
∫ A′′

A′ Py dr =
∫ B′′

B′ Py dr.

Remembering the A′B′ must be the top boundary of Q and A′′B′′ the bottom

boundary of P ; Py must equal Py
Q along A′B′ and Py

P along A′′B′′, resulting in

f y =

∫ B′′

A′′

Py
Q dr −

∫ B′

A′

Py
P dr; (E.2)

where Py
Q and Py

P are Py on Q and P , respectively. It can be concluded from

equation (E.2) that load f y can be applied by selecting appropriate values for Py
Q

and Py
P . This will be demonstrated using some simple examples.

Assuming for simplicity that no body forces are applied to P and Q (i.e. ∇∙Py
Q = 0

and ∇ ∙ Py
P = 0, see equations (4.12) and (4.13)), yA = yB and εy

Q = εy
P = 0;

Py
Q = ωy

Qj and Py
P = ωy

P j. From equation (4.25),
∫ B

A
Py

Q dr = −
∫ B

A
ωy

Q dx and
∫ B

A
Py

P dr = −
∫ B

A
ωy

P dx. (Note that as ds approaches zero, A′, A′′ and B′, B′′

approach A and B, respectively.)

Figure E.1(d) shows a choice of ωy
Q and ωy

P resulting in a load f y on AB. (Note

that ωy
Q = f y/(xA − xB) over shaped area and ωy

Q = 0 elsewhere.) From equation
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(E.2) and Figure E.1(d),

f y =

∫ B′

A′

Py
Q dr −

∫ B′′

A′′

Py
P dr (E.3)

= −
∫ B′

A′

ωy
Q dx +

∫ B′′

A′′

ωy
P dx

= −[x ∙ ωy
Q

]B′

A′ + [x ∙ ωy
P ]B

′′

A′′

= −(xB − xA) ∙ ωy
Q + (xB − xA) ∙ ωy

P

= (xB − xA) ∙
f y

(xB − xA)
− (xB − xA) ∙ 0

= f y − 0 = f y.

The loads fP and fQ in the y direction on P and Q, respectively, can be determined

by applying equation (4.25) to P and Q, respectively.

fP =
x

P

∇ ∙ Py ∙ dS (E.4)

= −
∮

M

wy dx +

∮

M

εy dy

= −
∫ B

A

wy dx −
∫ F

B

wy dx −
∫ E

F

wy dx −
∫ A

E

wy dx

and

fQ =
x

Q

∇ ∙ Py ∙ dS (E.5)

= −
∮

N

wy dx +

∮

N

εy dy

= −
∫ A

B

wy dx −
∫ C

A

wy dx −
∫ D

C

wy dx −
∫ B

D

wy dx.
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If ωy
Q and ωy

P have been chosen correctly then fP = f y and fQ = 0. wy along AB,

wy
AB, could equal either ωy

Q or ωy
P . Assuming ωy

AB = ωy
Q = −f y/(xB − xA),

fP = −
∫ B

A

wy dx −
∫ F

B

wy dx −
∫ E

F

wy dx −
∫ A

E

wy dx

= −
∫ B

A

wy
Q dx −

∫ F

B

wy
P dx −

∫ E

F

wy
P dx −

∫ A

E

wy
P dx

= f y − 0 − 0 − 0

= f y

and

fQ = −
∫ A

B

wy dx −
∫ C

A

wy dx −
∫ D

C

wy dx −
∫ B

D

wy dx

= −
∫ A

B

wy
Q dx −

∫ C

A

wy
Q dx −

∫ D

C

wy
Q dx −

∫ B

D

wy
Q dx

= −f y(xA − xB)/(xB − xA) − 0 − 0 − f y(xD − xC)/(xB − xA)

= 0

thus proving this assumption correct. (Note that xA = xC and xB = xD.)

The alternative field for wy shown in Figure E.1(f) also satisfies fP = f y and

fQ = 0 (note that ωy
AB = ωy

Q = 0); again this can be demonstrated by applying

equation (4.25) to P and Q. Loads can be applied to internal boundaries in a

similar manner using εy, εx and ωx.

Numerous potential sub-paths are located within bodies Q and P ; Py
Q and Py

P will

also be applied to these sub-paths. As demonstrated in Section 4.3.3,
∫

Py dr for

a sub-path can be viewed as the force in the y direction applied on that sub-path.

Therefore, it can be concluded that a load can only be applied to a body via an

internal boundary by applying Px and Py not only to the internal boundary in

question, but to all sub-paths located between the internal boundary and an exter-

nal boundary. The choice of the external boundary is arbitrary as demonstrated

by the fields in Figures E.1(d) and E.1(e).
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To be consistent with the assumption of no body forces on P and Q, the load on

closed paths (enclosing a sub-body) within P and Q must equal zero. For example,

the forces on bodies U and V in Figure E.1(e) must equal zero. In fact, this is

implicitly enforced and can be verified by applying equation (4.25) to U and W .

Applying equations (4.25) to W , fW must equal f y(xH −xG)/(xB −xA), where fW

is the load on W . In this case, fW is entirely due to f y and is, therefore, consistent

with no body forces.

E.3 Loads applied to external boundaries

Figure E.3(a) shows a load f y applied to a body P across an external boundary

AB. Loads can be applied to AB by imagining a fictitious body E (shown in

Figure E.3(b)). f y can now be applied in much the same manner as described in

Section E.2, assuming for simplicity that yA = yB. The loads fP and fE in the

y direction on P and E, respectively, can be determined using equation (4.25).

Figure E.3(d) shows a choice of ωy
P and ωy

E resulting in fP = fy and fE = 0.

Alternative fields for ωy applying f y to AB are possible; however, the advantage

of this field for ωy is that no loading is applied to sub-paths within P as ωy
P = 0.

Loads are applied to sub-paths within imaginary body E; however, these can be

ignored in any analysis (i.e. yield and equilibrium do not need to be checked).

E.4 Body forces

In many cases, loading results from body forces. Body forces can be readily be

applied using functions Px = ωxi+εxj and Py = εyi+ωyj, as demonstrated in the

following example. Consider a column of material, shown in Figure E.4, bounded

by a horizontal free surface Y Y ′, a horizontal rigid surface CC ′ and two vertical

rigid surfaces, AY and A′Y ′. The column of material is split into three blocks,

Y AA′Y ′, ABB′A′ and BCC ′B′. A body force py = γ due to gravity acts in the y
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direction, where γ is the unit weight of the material. As a result, each block has

an associated self-weight, w1, w2 and w3, as shown in Figure E.4.

Self-weight can be applied by assuming ωy = γ(yY − y) and εy = 0 across the

column of material, yY is the y coordinate of Y Y ′. In this case, equation (E.6)

must be true and the self-weight of the individual blocks can be obtained by

applying equation (4.25) to paths Y AA′Y ′, ABB′A′ and BCC ′B′.

−
∫ Y ′

Y
ωy dx = 0 ; −

∫ A′

A
ωy dx = w1 ; −

∫ B′

B
ωy dx = w1 + w2 ;

−
∫ C′

C
ωy dx = w1 + w2 + w3

(E.6)

Setting the each of the integrals in equation (E.6) equal to f y
Di and also setting

fx
Di = 0, this clearly equivalent to the summation procedure described in Sec-

tion 2.6.2.4 but in terms of global coordinates. The summation procedure could

similarly be confirmed for loads applied to internal and external boundaries. How-

ever, the summation procedure becomes irrelevant for loads applied to external

boundaries using fields such as that described in Section E.3 and Figure E.3(c).
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(a) Problem domain comprised of two bodies,
P and Q, separated by internal boundary AB.
Bodies P and Q are bounded by anticlockwise
closed paths M and N , respectively.
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y

x

P
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f y

(b) Load fy applied to P via AB.
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P
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f y

(c) Load fy applied to Q via AB.
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ω ωy y y
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(d) Field ωy applying fy to P ; where ωy
P , ωy

Q

and ωy
AB are ωy on P , Q and AB, respectively.

(Note that xA = xC and xB = xD .)
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y
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C D
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(e) Bodies U , V and V located within field ωy

in Figure E.1(d).
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P B Aω
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y P
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ω
0
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(f) Alternative field for ωy applying fy to P .

Figure E.1: Application of a load to an internal boundary
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Figure E.2: Body G with length dt and infinitesimal width ds; where G
coincides with internal boundary AB and is bounded by a closed path H =

A′A′′B′′B′.
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(a) A load fy applied to a body P surround by an
external boundary M.

A B

y

x
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(b) A fictitious body E located below AB.
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ω 0y
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ω ωy y y
AB E B A= = -f  /(x -x )y

x

E F

(c) Field for ωy applying fy to P ; where ωy
P , ωy

E
and ωy

AB are ωy on P , E and AB, respectively.

Figure E.3: Application of a load to an external boundary
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Figure E.4: Application of self-weight to a column of material
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