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Abstract

The `Neural Pipeline' is introduced as an arti�cial neural network architecture that

controls information �ow using its own connection structure. The architecture is

multi-layered with `external' connections between the layers to control the data.

Excitatory connections transfer data from each layer to the next and inhibitory feed-

back connections run from each layer to the previous layer. Using these connections

a layer can temporarily silence the previous layer and stop further inputs until it

�nishes processing.

When excitation and inhibition are balanced, waves of activity propagate se-

quentially through the layers after each input; this is `correct' behaviour. When

the system is `over' inhibited, the inhibitory feedback outweighs the excitation from

the input. At least one layer remains inhibited for too long so further inputs cannot

stimulate the layer. Over inhibition can be corrected by increasing the delay between

inputs. When the system is `under' inhibited the excitation in the layer is larger than

the inhibition. The layer is therefore not silenced and continues to spike.

In the layers, excitatory and inhibitory spiking neurons are randomly inter-

connected. Changing layer parameters in�uences the system behaviour. Recommen-

dations for correct behaviour include: low neuron connectivity and balancing the

external inhibition and layer activity. With variations of only the internal topology

and weights, all three behaviours can be exhibited.

Each layer is trained as a separate Liquid State Machine, with readout neurons

trained to respond to a particular input. A set of six shapes can be learnt by all

layers of a three layer Neural Pipeline. The layers are trained to recognise di�erent

features; layer 1 recognising the position while layer 2 identi�es the shape. The

system can cope when the same noisy signal is applied to all inputs, but begins to

make mistakes when di�erent noise is applied to each input neuron.

The thesis introduces and develops the Neural Pipeline architecture to provide a

platform for further work.
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Chapter 1

Introduction

1.1 Background

Our brains perform computational tasks using completely di�erent hardware to tra-

ditional computer systems. Arti�cial neural networks are computer architectures

inspired by the structure of brains. The aim of such biologically inspired computa-

tion is to borrow and simplify biological components where they may be useful while

remaining free from the limitations imposed upon biological systems.

Arti�cial neural networks use the same high level concepts as biological neural

networks. They both use interconnected groups of neural cells that each have a

changeable internal state. The state is determined by the cell inputs. When the

state reaches a speci�ed threshold value the cell produces an output. The models that

are most similar to biology produce spikes, this type of model is used in this work.

When considered as an entire system a biological neural network and an arti�cial

neural network have the same high level properties. They both represent some form

of memory, in that they provide certain responses to di�erent input stimuli. Both

types of system can learn, by adapting this memory and therefore their behaviour

in di�erent situations.

Timing of information is important for both traditional computers and for bi-

ological neural systems. In traditional computer systems pipelines can be used to

perform this task. Synchronous pipelines use a global clock to keep the timing correct

but there are problems with providing a synchronised clock pulse to every section of

the pipeline. Asynchronous pipelines use a handshaking mechanism to remove the

need for a global clock.

In biology there is no global clock or designer to control the order of information

for each new task. The structure of the architecture in the brain must regulate the

�ow of information. Based on this assumption it should be possible to develop an

arti�cial neural network architecture similar to an asynchronous computer pipeline,

to regulate information �ow. The Neural Pipeline architecture introduced in this

thesis aims to do just this.

1.2 Aim

The primary aim of the thesis is to investigate the following hypothesis:

`Coordinating the activity of �ring neurons represents a method of con-

trolling behaviour in spiking neural network memory.'
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In this context `coordinating the activity' is taken to mean using the neurons to

regulate the spiking of other neurons in the system. The term `controlling behaviour'

here means to regulate the timing of the system. A `�ring neuron' is a neuron that

is actively spiking.

The secondary aim of the work is to identify how parameter choices such as the

connections, their weights and delays can be used to in�uence coordination.

These aims will be achieved by developing a layered arti�cial neural network

architecture. The architecture should coordinate activity across its layers using the

activity produced by the system, without the need for a system clock. This should

be achieved using the objectives outlined below.

1.2.1 Objectives

In order to achieve the aims a number of objectives are set out. These are listed

below:

1. Compare the di�erent methods of achieving the aim and any similar

work by surveying relevant literature.

The choices made for the architecture should be based on this review. It should

consider the di�erent possibilities for the components that will make up the

structure of the architecture, for example di�erent arti�cial neuron models.

This will allow comparison and a selection of the most appropriate options.

This objective is addressed in chapter 2.

2. Model and simulate the architecture using suitable software.

The simulation should include tests of the in�uence of di�erent system param-

eters on the system and situations in which di�erent parameter settings are

preferable. The parameters should be adjusted to improve the performance of

the architecture under di�erent conditions. To identify the impact of any given

parameter, this parameter should be varied while �xing the others. This will

expand understanding of the architecture and how it may be set up to perform

particular tasks. This objective is addressed in chapters 3 and 4.

3. Produce analysis of the architecture.

The analysis should help to gain an understanding of why the architecture

behaves as it does. This analysis can be either experimental or mathematical.

This objective is addressed in chapter 3.

4. Train the system to recognise a set of di�erent input patterns.

As the architecture to be developed is a neural network memory it should be

tested using pattern recognition. The architecture should be able to correctly

identify a number of di�erent inputs. This objective is addressed in chapter 6.

5. Evaluate the success of the architecture from a computational and a

biological point of view.
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The computational success is considered to be more important than the bio-

logical success, because the system is designed as a computational architecture

with biological inspiration. The architecture is considered to be successful bio-

logically if it represents a biologically plausible architecture, that may be found

in the brain. It is considered to be particularly successful if it is possible that

the brain may use architectures such as this for coordination. Computationally

the architecture is considered successful if it ful�ls the descriptions outlined in

the aim and in objective 4. The evaluation should also consider possible appli-

cations of the architecture, in addition to the pattern recognition speci�ed in

objective 4. This objective is addressed in chapter 7.

1.3 Thesis structure

The document is organised into seven chapters, beginning with this, the introduction

chapter. This provides the motivation to the work that has been carried out. It also

introduces the aim of the work and objectives used to achieve this aim.

Chapter 2 provides an overview of the literature background to the thesis. The

literature is split into two parts: the background required for neural network ar-

chitectures and alternative architectures that partially achieve the aim set out for

the thesis. The background covers biological neural networks, the development of

arti�cial neural networks, di�erent types of network and neuron model and learning

methods that are used to train the networks. The architectures are broadly cate-

gorised as timing architectures such as computer pipelines and memory architectures

such as liquid state machines. When work in the following chapters relies on or refers

to this literature a reference is given to the corresponding section in the literature

chapter.

The Neural Pipeline architecture is introduced in chapter 3. The chapter intro-

duces the structure of the architecture, split into the external and internal structure.

The external connection structure de�nes the Neural Pipeline architecture although

the parameters used on the connections can be varied. The chapter also describes

the internal structure that has been used in this thesis, although the same architec-

ture could be used with di�erent internal structures. The three fundamental types

of behaviour that a Neural Pipeline can exhibit are introduced.

Chapter 4 describes the preliminary results that were used to determine suitable

parameter values for the architecture. These results also contribute to the analysis of

the architecture in chapter 5. All of the parameters that have been investigated are

discussed, with reasoning for which parameters have been chosen for the architecture.

Analysis of the Neural Pipeline architecture is provided in chapter 5. Two main

features of the architecture are analysed. Firstly the factors that in�uence the three

behaviour types are investigated. The second part of the analysis concerns the du-

ration that a speci�c input remains recognisable to the system.

The results of training a Neural Pipeline using the principle of Liquid State

Machines are shown in chapter 6. Three di�erent experiments are presented, the

�rst trains a Neural Pipeline to recognise di�erent shapes. Each of the layers of

the architecture performs the same task. The second experiment is an extension of
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this where layer 1 identi�es the position of an input and layer 2 identi�es the shape.

Experiment 3 considers the impact of noise on the system input.

Chapters 3, 4, 5 and 6 are formatted with the work that has been done presented

in the main body of the chapter. At the end of each chapter there is a discussion of

this work. The discussion includes ideas for further work, these ideas are introduced

throughout the chapters when �rst mentioning the work that could be extended.

The further work section in the discussion provides a more detailed account of the

suggested work. Each of these main chapters has a summary section to give a concise

account of the chapter.

Conclusions drawn from the work are presented in chapter 7, these conclusions

are based on the work presented in the rest of the thesis. This chapter draws together

the ideas presented in the discussion sections of the earlier chapters. The conclusion

chapter also includes an evaluation of the architecture and work in the thesis, based

on the objectives outlined in section 1.2.1. The possibilities for future work outlined

in the earlier chapters are summarised in broader categories. The �nal section of

this chapter is a summary of the key �ndings of the thesis.



Chapter 2

Spiking ANNs: Inspiration and

Operation

2.1 Introduction

The Neural Pipeline architecture has been developed in this thesis to ful�l the aims

outlined in section 1.2. Before introducing the architecture, it is necessary �rst to

introduce the di�erent concepts that the architecture uses. The �rst part of this

chapter provides an introduction to Arti�cial Neural Networks (ANNs), the biology

that inspires them and how they can be used to construct computational systems.

The second part describes alternative architectures that can be used to perform the

same type of task as a Neural Pipeline and compares the strengths and limitations

of these approaches.

From the very early examples of ANNs the motivation has been that biological

nervous systems are valuable sources of inspiration for Computer Science. A brief

introduction to the cells and connections that make up these biological systems is

given to provide background. This leads into the development of ANNs and how

they have become more complex. These ANNs use di�erent neuron models, some

very simple, others able to more closely represent the underlying biology. High level

structures of network are described, in terms of feedforward and recurrent networks.

For ANNs to be used for computation they must be trained to produce a partic-

ular response when given certain inputs. Di�erent training methods are introduced

to illustrate how they can be achieved and why they may be preferable. Usually

the network itself is trained using one of these methods, but it is possible to add

additional `readout' layers to the network instead. These readout layers are trained

instead of the original network. This is the technique used in the �eld of reservoir

computing and particularly Liquid State Machines (LSM).

The aim which lead to the development of the Neural Pipeline architecture is to

investigate the use of neurons to control the timing of other neurons within a system.

This constructs an internal timing system for the architecture, so that it can provide

a response to a set of computational tasks in the correct order. For this reason

the architectures introduced here are considered in terms of their timing structure,

applicability to perform computational tasks and their biological inspiration.

The architectures that are compared are types of associative memory, computer

pipelines, syn�re chains and liquid state machines. Associative memory and liq-

uid state machines are considered because the aim is to investigate coordination in

a neural network memory. These are both ways of implementing memory which

can be used to perform computational tasks. Associative memory uses traditional
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computing approaches but liquid state machines represent a biologically plausible

method. These memory structures do not use inherent timing mechanisms. Com-

puter pipelines and syn�re chains are introduced because of their timing structures.

Syn�re chains are not used to perform computational tasks (on their own) and com-

puter pipelines are not biologically inspired. A comparison table of the architectures

is provided to give a summary of their di�erences. None of the architectures on their

own match the aims set out for the Neural Pipeline, which is the reason that the

architecture has been developed.

2.2 Biological Neurons

Arti�cial neural networks draw inspiration, to di�erent degrees, from biological neu-

rons. Typically they are not intended to replicate biology precisely but to use an

interpretation of biological behaviour to provide computational function. There are

several reasons for this, the complexity of a biological system is di�cult to repli-

cate and highly computationally expensive. It is possible to represent the overall

behaviour without the same level of detail, for example learning and memory. An

outline of biological neurons is provided as an introduction to the neuron models

later in the chapter.

2.2.1 Neural cells

Although neural cells were observed as early as the 1830s, the complete structure of

neurons was only discovered in the 1950s with the use of electron microscopes [58].

It is this structure that is useful when determining the function of the neural cells.

An example of a neuron structure is shown in �gure 2.1. This is a pyramidal

cell, one of the most common neurons in the brain. It is composed of a number

of dendrites, a cell body and an axon. The dendrites provide inputs to the neuron

from other neurons and the axon provides the output. The majority of neurons

communicate using a change in voltage, these changes are known as pulses or spikes.

The cell body has electrical potential and this changes in response to input spikes

from its dendrites. The cell body triggers a spike when enough inputs appear (within

a certain time) at the dendrites, the spike travels along the axon toward the connected

neurons. As axons are comparatively long and thin they have the same characteristics

as electronic transmission lines.

Each of the neurons themselves has a complex internal structure. The neurons are

composed of many components and each has a speci�c function. The most important

with regard to arti�cial neural networks is the cell membrane. The membrane has

capacitance and an electrical potential when compared to the inside of the neuron,

this is necessary for the neuron to generate spikes. Other organelles control cell

maintenance and development, digestion, energy production and protein synthesis

[58]. These types of property are not necessary in arti�cial neural networks.

Brains have di�erent types of neurons and also di�erent types of cell used to

support and repair the neurons. The di�erent neurons can be identi�ed by di�erences

in their physical features, for example the presence of a long axon or in some no axon
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Figure 2.1: A pyramidal cell neuron based on a diagram in [28].
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at all. The other cells are known as glial cells and `nerve sheaths'. There are di�erent

types of glial cell with properties including the reception of neurotransmitters and

release of other neurochemicals. The cells are thought to aid with the operation

and development of synapses this allows them to increase plasticity in the brain [9].

Other roles are to in�uence blood �ow [9] as well as repairing neurons and providing

structural support [58].

Nerve sheaths are provided by the neuroglia, they surround long axons. They

provide protection for the axons and can modify axons that must carry long distance

signals. [58]. Arti�cial networks are not generally concerned with this level of detail.

2.2.2 Neural connections

The connections between neurons in a network are known as synapses, taken from the

Greek word for connect. As in arti�cial networks the overall behaviour of synapses

is to pass information only in one direction, from the outputs of one neuron into the

dendrites of others. On a small scale the mechanism is more complicated, but this

need not apply to arti�cial networks.

There are three stages in interaction between nerve cells; presynaptic, postsy-

naptic, and intervening. As the names suggest the presynaptic process involves the

neuron before the synapse, the postsynaptic the neuron after the synapse and inter-

vening between the two.

In real networks the positioning or `relatedness' of the cells is important unlike

neurons in arti�cial networks which are either connected or not. In real neurons

the connectivity is less black and white. Neurons are closely packed together so

they can often in�uence other neurons even when not directly connected. When the

membranes of multiple neurons are `next to' each other they can cause interference,

similar to the concept of crosstalk in electronic transmission lines.

The nearest contact is when the cell membranes are in contact with one another.

One situation where the membranes are in contact is a `gap junction', this is known

as an electrical synapse because it allows electrical signals to pass between neurons.

Electrical synapses are able to respond more quickly than the alternative chemical

type of synapse. This is because they do not use transmitter chemicals. Electrical

synapses are considered to be important in synchronisation [1].

There are comparatively few electrical synapses in the brains of mammals. The

majority of synaptic connections are chemical synapses. They take an electrical input

spike from a presynaptic neuron and convert this into an electrical output using a

`neurotransmitter' chemical that travels across the synapse [58]. There are many

di�erent types of neurotransmitter chemical and their behaviour is complex. Most

arti�cial neural networks use only their main features, the strength of response and

whether the connection is excitatory or inhibitory. If the synapse is inhibitory it

decreases the response of the postsynaptic neuron, excitatory connections increase

the response [63].

There are also di�erent ways to connect synapses. Single connections can be

formed from axon to axon (axoaxonic), dendrite to dendrite (dendrodendritic), axon

to dendrite (axodendritic) or axon to cell body (axosomantic). Often synapses are
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Figure 2.2: A reciprocal pair between two neurons.

grouped together, when they are in the same direction they are all axodendritic. If

they form a path from one neuron to another, then from that neuron to a third they

are called `serial synapses'. It is also possible for there to be a synapse between one

neuron and another and a second synapse connecting from the second neuron to the

�rst. If they are together they are considered to be a `reciprocal pair' (shown in

�gure 2.2) and if they are separate a `reciprocal arrangement' [58].

Just like electrical circuits biological systems tend to have similar units that

connect together to produce more complex behaviour. In biology the lowest level

is formed using synapses connected to a particular point such as an axon or a cell

body. These low levels are `microcircuits' and are often repeated within this layer,

as for example electronic logic gates could be used to make higher components. The

next level, a `local circuit', provides longer distance connections using a dendritic

branch or axon. It is contained in one region. Connecting di�erent regions occurs

at the next level. Higher still the connections can pass through several regions. The

highest level, a `distributed system', is considered to be a connection between regions

that will cause behaviour that involves the entire system. Changes can be made to

the system by altering weights of the synapses or by constructing new connections

between neurons [28].

2.2.3 Dale's Principle

The use of Dale's principle in arti�cial neural networks is an interesting example

of biological grounding. Dale's principle states that every synapse from a given

neuron uses the same neurotransmitter or set of neurotransmitters [20]. This has the

result that the outputs from any particular neuron cannot be both excitatory and

inhibitory. There are only a few known exceptions to this in biology so it is a good

general rule.

Most arti�cial neural networks do not follow Dale's principle, although it has been

considered in some. The resulting networks are generally known as `sign-constrained'.

Abbott [2] splits from Dale's principle the idea of sign changes in synaptic weights

when learning. Most learning algorithms allow a given synaptic weight to change

sign as well as to contradict Dale's principle. Certain implementations of networks
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impose only a constraint to stop sign changes [17], while others implement Dale's

principle fully [59]. When the networks learn new information there is a mechanism

in place to prevent Dale's principle being contravened. This can be achieved either

by ignoring proposed changes to the synaptic weights which would change sign or

setting them to zero as discussed in [4].

2.3 Development of the Arti�cial Neural Network

Arti�cial Neural Networks are a surprisingly long established �eld, the earliest work

is usually traced back to the 1940s with the advent of the �rst electronic computers

(for example in [29, 28]). People were considering how groups of neurons may interact

as far back as Bain in the 1870s. He suggested that it would be possible for groups

of neurons to be used to store multiple memories [68]. Arti�cial neural networks

use terminology originally used for biological networks, the nodes being `neurons'

and the connections `synapses'. Both of these terms were introduced in the 1890s,

neuron slightly pre-dating synapse because neural cells were discovered before their

interconnections.

There was a good deal of progress in the �eld through the 1950s and 60s. New

structures of network were created such as the perceptron introduced in section

2.3.1.1. Associative memories (section 2.8) were introduced in this period, an ex-

ample of which is the Learning matrix described in section 2.8.2. Di�erent methods

of training the networks were introduced, such as the Widrow Ho� delta rule (sec-

tion 2.5.2). ANN hardware was commercialised in this era with the foundation of

Adaptronics Corp.

In 1969 Minsky and Papert published a paper that is believed by some to have

caused the slowdown in the research into neural networks that occurred for around

a decade after this [38]. In it they proved the limitations of single layer perceptrons

and cast doubt on the viability of training multi-layer perceptron networks. Other

factors such as a lack of computing power may have in�uenced this slowdown [28].

The 1980s showed a regained interest in neural networks research with key devel-

opments by many researchers including Hop�eld, Kohonen and Rumelhart. Hop�eld

created Hop�eld networks (section 2.8.1) that use feedback from the outputs. Ko-

honen expanded work on unsupervised (self-organising) networks while Rumelhart

developed back-propagation as a new learning method. These developments helped

to overcome the limitations of the perceptron architecture.

In the following decades there has been further expansion of the �eld, particularly

with the development of spiking neuron models. These models are more similar to

the underlying biology, they are discussed further in section 2.4.

The �eld has developed greatly over time, although many of the original ideas are

still used today. Maass [46] splits the di�erent types of ANN into three generations.

They progress from the �rst generation of digital neurons to the more biologically re-

alistic third generation of spiking neurons. The generations relate to when each type

was developed, but there are still reasons to use the earlier generations today. These

networks tend to be less computationally expensive than their spiking counterparts.
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Figure 2.3: Generic neuron model. Inputs are fed into an activation function that

uses the threshold to determine its output.

A neuron model of any generation produces an output from a weighted sum of

inputs using an `activation function'. The activation function is the function that

controls the response of the neuron depending on the value on its inputs. A threshold

value is used as a parameter for the activation function to determine its output. All

of the neuron models can be represented using the simple diagram shown in �gure

2.3.

2.3.1 First generation

First generation neural networks use McCulloch-Pitts neurons. McCulloch and Pitts

constructed this binary neuron model (as shown in �gure 2.4) in 1943 [54]. These

neurons produce a digital output of 0 or 1 depending on their input. If the sum of

their weighted inputs is greater than a given threshold the output is 1 otherwise it is

0. For example with a threshold of 0, this means that their activation function is a

step function. The step function is simply 0 for negative outputs and 1 for positive

and zero outputs. Thus it can be expressed as:

s(x) =

{
1, if x ≥ 0

0, if x < 0
A diagram of such a neuron is shown in �gure 2.4. The threshold is represented

by t while the input weights are denoted by w. Where the weights w are positive

the inputs are excitatory and where they are negative the inputs are inhibitory.

Figure 2.4: A McCulloch-Pitts neuron.

These individual neuron models are combined to form �rst generation networks.
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Figure 2.5: The perceptron structure based on a diagram in [54].

They include perceptrons and multi-layer perceptrons (described in the following

section) and Hop�eld networks (section 2.8.1). A key characteristic of �rst generation

neural networks is that they are only able to provide digital outputs. They use

thresholding functions to provide their output.

A possible advantage over the next generations is their relative simplicity for

implementation and understanding. Disadvantages are their lack of biological realism

and related lack of complexity in behaviour.

2.3.1.1 Perceptrons

The perceptron is an example of a �rst generation structure. Rosenblatt �rst intro-

duced the perceptron in [57]. The structure of a single layer perceptron is shown in

�gure 2.5. Although it appears to have two layers, it is considered to be a `single

layer perceptron' because only the response layer can be trained. This is due to the

changeable weight values on its connections. This means that people consider this

response layer to be the single layer of importance.

Rosenblatt used the structure for image recognition so the inputs are provided

by a retina grid. The association layer is made up of association cells, each of

which is the equivalent of a McCulloch-Pitts neuron (�gure 2.4) and has a number of

inputs. These inputs are randomly chosen from the retina to split up the input. The

connections to the response cells can be trained using their weight values. There is

also feedback between this response layer and the association layer. Each node uses

feedback to encourage its own inputs, or to inhibit inputs to the other output nodes.

This means that only one output is active at a given time.

Single layer perceptrons can only handle linearly separable functions [54]. Instead

non-linearly separable functions can be handled using an extension to the perceptron

architecture: multi-layer perceptrons. An example of a multi-layer perceptron ar-

chitecture can be seen in �gure 2.6. The development and successful training of the

multi-layered perceptron was important in the revival of the �eld of neural networks

in the 1980s (as described in section 2.3). The networks tend to be fully connected

and can be extended using multiple hidden layers.
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Figure 2.6: A three layer perceptron architecture based on an example in [54].

2.3.2 Second generation

Second generation neural networks di�er from �rst generation networks as they can

produce analogue outputs and can handle analogue inputs. They use a continuous

activation function, rather than the thresholding step function of �rst generation

networks, to cope with the continuous analogue input. Examples of continuous

activation functions include the piecewise linear function and the sigmoid function.

The piecewise linear function represents a sloping increase between negative and

positive values, rather than a discrete step. The length of the slope can be altered

by changing the `ampli�cation factor', if the ampli�cation factor is set to be in�nite

the piecewise linear function is the same as a step function [28] . Sigmoid means

`s-shaped' [11], and an s-shaped sigmoid function represents a continuous transition

between positive and negative values. In neural networks it is the most frequently

used activation function [28]. As with the piecewise function it is possible to alter the

shape by altering a parameter of the function. An advantage over the step function

is that the sigmoid function is continuously di�erentiable.

Second generation neural networks represent a step closer to biology when com-

pared with the �rst generation of neural networks. This is an advantage when trying

to model biological behaviour.

2.3.3 Third generation

Spiking neural networks are the most similar to biological networks of neurons. In-

dividual spikes are used to represent the inputs to and outputs from neurons. Infor-

mation can be encoded using the timing of the spikes.

The neurons in spiking networks are di�erent to the earlier generations because

they must handle spike trains. A simple spiking neuron is the `integrate and �re'

model (section 2.4.1), more speci�cally leaky integrate and �re. Integrate and �re

neurons become more active as more spikes are received, the leaky component means

that their activity decreases over time. The neurons �re when their activity reaches

a certain level and often a lag is introduced so that their activity does not increase

for a time after the neuron has �red.

An advantage of third generation networks is their improved biological accuracy.

This is of particular relevance to this work. Another advantage is that it is possible to
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represent networks of previous generations using them [46]. The main disadvantage

of the third generation networks is their increased complexity. As computational

power improves, the simulation of such networks becomes easier.

2.4 Spiking Neuron Models

There are various di�erent types of spiking neuron model with di�erent levels of

complexity. All of the neurons respond to inputs by producing an output spike, but

they use di�erent equations to implement this. An overview of three types are given

below in order to compare them, to show why one type may be chosen over another.

The models described here are the commonly used integrate and �re neuron, the

more biologically realistic Hodgkin-Huxley neuron and the Izhikevich neuron which

attempts to combine the best aspects of the other two. There are alternatives and

variations of these models. A review of di�erent models is carried out by Long and

Fang in [44].

2.4.1 Leaky integrate and Fire

A simple spiking neuron model is the `leaky integrate and �re' model. This is the

equivalent of taking the weighted sum of inputs with a spiking input. The neuron

can be modelled as an electric circuit with one resistor R in parallel with a capacitor

C the input to this circuit is a current I(t).

Equation 2.1 can be produced from this circuit [47] with u representing the

voltage across C.

I(t) =
u(t)

R
+ C

du

dt
(2.1)

It can be rewritten as equation 2.2. Here u is called the membrane potential

with τm introduced as the time constant of the membrane potential. The in�uence

of each input spike is incorporated into the internal state of the neuron. The leaky

aspect is that the internal state steadily decreases, this has the e�ect of reducing the

likelihood of �ring after periods of inactivity.

τm
du

dt
= −u(t) +RI(t) (2.2)

The di�erential equation 2.2 does not fully describe the neuron, there is the

additional aspect of a threshold. When the membrane potential u crosses the de�ned

threshold the neuron will spike. After this spike the membrane potential is reset to

a resting potential.

The input I(t) can either be a constant current, a varying current or a series of

input spikes. The graphs in �gure 2.7 demonstrate how a single LIF neuron responds

to either a constant input (graph a) or a varying input (graph b). The constant input

current produces a periodic response, with the neuron spiking when it reaches the

threshold of 1. With a varying input current the membrane potential rises irregularly

until it reaches the threshold. The response to a spiking input would be similar to

that of graph (b).
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Figure 2.7: Graphs from [23] showing the membrane potential response of a single

LIF neuron to (a) a constant input current and (b) a varying input current.

2.4.2 Hodgkin Huxley

The Hodgkin-Huxley equations are based on biological results from squid neurons

[63]. This means that they are more biologically accurate than the integrate and �re

model. They are four di�erential equations, the equations themselves can be found

in [63].

To cause a spike to be produced two or more voltage dependent ion channels and

one �xed channel are needed. One voltage dependent channel causes the increase

in membrane potential, the other causes the decrease. In neurons the two voltage

dependent channels are sodium and potassium and the �xed one is also for potassium.

The �xed potassium channel maintains the resting potential, by allowing potassium

to leave the cell. When the ion channels controlled by the neurotransmitters change

the membrane potential the voltage dependent sodium ion channel opens. This

causes the membrane potential to rise. The sodium channel then becomes inactive,

and the potassium channel opens, causing the membrane potential to fall down to

below the resting potential. Then both voltage dependent channels close and the

potential returns to the resting value [63].

The Hodgkin-Huxley equations describe this channel behaviour. The three equa-

tions that represent the activation and inactivation or the sodium channel and the

activation of the potassium channel all use the same formula. The fourth equation

gives the capacitance of the neuron.

The potassium channel reducing the potential to below the resting potential

means that there is a `turn around' time before another spike can be generated.

This limits the frequency of �ring.

When compared to the integrate and �re model the Hodgkin-Huxley equations

have the advantage of being more biologically accurate. However they are more

computationally expensive. Izhikevich [35] constructs a model that he claims has

the advantages of both.

2.4.3 Izhikevich

Izhikevich [35] simpli�es the Hodgkin-Huxley equations into two equations and tests

their ability to model the biology by attempting to represent di�erent types of neuron

with di�erent properties. One such property is bursting. A burst of spikes is con-
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sidered to be a number of spikes received over a short time period, with a particular

pattern [36]. Bursting is thought to strengthen signals, because it provides repeti-

tion. In addition to this Izhikevich suggests that the frequency of the spikes within a

burst can allow certain neurons to be targeted [36]. This occurs when the interspike

frequency within a burst is the same as the resonant frequency of the neurons. This

allows a preference for certain neurons without having to alter the synaptic weights

(as discussed in section 2.5).

Di�erent types of neuron have di�erent characteristic patterns of �ring. The most

common is `regular spiking', which settle into a periodic spike train after an initial

period with more frequent spikes. The period is slower than the fastest possible time.

`Intrinsically bursting' have more frequent spikes in the initial period and `chattering'

have regular periods of bursts of spikes. The inhibitory patterns are `fast spiking'

or `low threshold' spiking. Fast spiking is the same as regular spiking with a higher

frequency and a very short initial period. Low threshold spiking as suggested by

their name have a smaller threshold. In [35] Izhikevich shows that the model is able

to provide the responses of each of these di�erent types of neuron, so one of the

strengths of the model is that it can represent complex biology.

The computational e�ciency is indicated by the simplicity of the equations when

compared to the Hodgkin-Huxley and the ability to represent a large network of neu-

rons on an outdated computer. A possible criticism is the lack of direct comparison

with either Hodgkin-Huxley or Integrate and Fire neuron models in [35].

2.5 Learning

Learning is the process of the network adapting in response to the inputs that it is

given in order to perform the desired task. This section introduces di�erent methods

used for training a network and some of the rules that can be used for this training.

2.5.1 Learning Methods

There are three di�erent methods for training a network so that it learns how to

respond. These three types are supervised, reinforcement and unsupervised learning.

They relate to the amount of prior knowledge the system is given about the data it

will be classifying. Supervised means that the system is trained to recognise a set

of prede�ned patterns, this is useful if all of the types of input pattern are known

beforehand. Training on a Neural Pipeline in this thesis is supervised for this reason.

If the categories of pattern are unknown then the system can determine classes by

itself, this is unsupervised learning. Reinforcement learning lies between the two of

these approaches. All three are described below to give a comparison of when they

are best used.

Supervised learning

In supervised learning the desired output of the system is known for a particular

input. The input vector is presented to the inputs of the network and the desired



2.5. Learning 35

output is compared with the actual result from the system. This comparison provides

a measure of the error which is then fed back into the system and used to adjust

the weight values to create an output closer to the desired one. The process is

repeated until the weight values allow the network to produce a value that matches

the desired output. It is done for the di�erent inputs and outputs that the system is

to be trained to recognise. Supervised learning uses a closed loop feedback system,

and can be considered to be an optimisation problem. The weights must be set to

give the optimum output for all of the inputs encountered. In supervised learning

the system can have gradient information which makes this optimisation easier [28].

Reinforcement learning

In reinforcement learning the desired outputs for input patterns are not provided for

the system. Instead the neural network is told whether the output it has produced

is correct or incorrect. Learning takes place using a measure of `reward' with the

areas that provide a correct output having their weights strengthened. A penalty is

applied to the areas that provide an incorrect output by decreasing their weights [53].

The name reinforcement is important because the system behaviour is reinforced by

continuous input from the network environment.

An advantage of reinforcement learning is that the system is able to adapt online

[28]. A disadvantage compared to supervised learning is that it is more di�cult to

implement. It is used less frequently than either supervised or unsupervised learning

[53].

Unsupervised learning

In unsupervised learning example input patterns are presented to the network, but

no matching outputs are given. It di�ers from reinforcement learning because there

is no feedback to tell the network whether the output is correct or not. The network

must determine characteristics of the input patterns itself in order to classify them.

An advantage of this compared to the other forms of learning is that it should not

need setting up depending on the particular task. A disadvantage is that it is more

complicated to implement.

2.5.2 Learning Rules

There are many di�erent rules used to train neural networks. They can be broken

down into di�erent categories including gradient descent, Hebbian, competitive and

stochastic. A brief description of each of these types is given below.

• Gradient Descent rules minimise an error function. The network weights

are changed by comparing the actual output of the network with the desired

output. They are updated at a speci�ed learning rate which controls how much

the weight can change with each update. The Delta rule and backpropagation

are both Gradient Descent methods.
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Figure 2.8: Learning rules categorised by the learning method. This �gure is from

chapter 2 of [53].

• Hebbian learning strengthens connection weights when the neurons at either

side of the connection �re simultaneously.

• Competitive learning has neurons compete to represent a particular input.

The weights are changed so that the most active neurons have their weights

increased. Winner takes all is an example of competitive learning in which only

one neuron represents the input.

• Stochastic learning uses a probability distribution to alter the weight values.

An example of a stochastic learning rule is Simulated Annealing.

These rules are related to the learning method used. Some are speci�cally used

for supervised learning, others unsupervised and some for both. Gradient descent

methods are used for supervised learning, Competitive for unsupervised and Hebbian

can be used for either. This is shown in �gure 2.8 from chapter 2 of [53].

Two of these learning rules are explored in more detail. The earliest learning

method, Hebbian learning, is introduced as it is used in a number of the architectures

described later in the chapter. The delta rule is used for training the Neural Pipeline

architecture in chapter 6. There are other ways to perform learning in an arti�cial

neural network, such as backpropagation which extends the Delta rule so that it

is suitable for the multi-layer perceptron (see section 2.3.1.1). More details about

backpropagation can be found in [54].

Hebbian Learning

Hebb proposed a learning method, now known as Hebbian learning, in 1949. As

a psychologist his work was based on real neurons, but the same principles can be

applied to neuron models. He proposed a method of associating the physical process

of neurons �ring with creating memories, this is the basis of learning in a neural

network.

Hebb's rule is that a synapse should be strengthened if the neurons on both

sides of it are active at the same time (as shown in �gure 2.9 i). These neurons are

known as pre-synaptic and post-synaptic neurons. This process allows a network to

become specialised towards certain patterns, as the strengthened synapse increases
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Figure 2.9: Hebbian learning in situation i) an increase in weight w occurs and in

situation ii) a decrease occurs.

the likelihood of the neurons �ring at the same time which in turn strengthens the

synapse [38].

An extension to the original rule permits decreases too, because increases alone

can lead to errors. An example of such an error can be found in chapter 2 of [54].

Decreases occur when a neuron at either side is active when the other is not (as

shown in �gure 2.9 ii).

Haykin [28] provides a list of the four mechanisms that de�ne a `Hebbian synapse'.

1. Time dependency: Hebbian synapses are time dependent because their state

is changed due to the precise timing of the input signals

2. Local: The synapse makes use of local information in order to change its state.

3. Interactive: The change in the synapse depends on the interaction between

both of its input signals, neither one on its own can be used to predict how the

weight should change.

4. Conjunctional or correlational: A Hebbian synapse may be thought of

as conjunctional because the conjunction of input signals triggers a weight

change. It can also be thought of as correlational because the input signals

become correlated over some time period in order to change the weight.

In the same way that a system can be Hebbian, it is possible for it to be anti-

Hebbian or non-Hebbian. Anti-Hebbian is the opposite of Hebbian, in that signals

which arrive together decrease the associated weight and signals that arrive inde-

pendently increase the weight. Non-Hebbian does not exhibit Hebbian behaviour at

all.

Delta rule

The delta rule was introduced by Widrow and Ho� in 1960. It is more �exible than

Hebbian learning as described above, because it uses an error value to decide by how
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much to alter the weights. The error is the di�erence between the required output

and the actual response. With each weight adjustment the actual output is brought

closer to the desired output. This is known as gradient descent. So for example in a

binary network if the actual output value is 1 and the expected output is 0 then the

weight is too high, so it is reduced.

The rule used for performing the update is given in equation 2.3. ∆w is the

change to be applied to the weight. The term Dop − Cop is the error, the desired

output Dop minus the current output Cop. The size of the change is dictated by the

learning rate r. This controls how quickly the weight is able to converge on a value

that will provide the correct output.

∆w = r(Dop − Cop) (2.3)

This rule is applied to each of the input connections of each of the neurons in the

network. For a single pattern the rule can be used in this format. To store multiple

patterns it is run for each of the patterns in turn. Details of how the rule was used

in Widrow and Ho�'s ADALINE network can be found in [54].

2.6 Structures of neural network

Arti�cial neural networks can be split broadly into two types based on the direction

of information �ow through the system. These types are feedforward where the

information �ows in only one direction and recurrent where there is feedback in

the system. The Syn�re Chain introduced later in section 2.10 is an example of a

feedforward network and the Hop�eld network (2.8.1) is an example of a recurrent

system. The Neural Pipeline architecture developed in this thesis is a recurrent

architecture. The descriptions below describe these structures in more detail.

2.6.1 Feedforward Neural networks

Feedforward refers to the direction in which the data travels through the network. In

feedforward systems the data is only passed forwards, there is no feedback. Examples

of feedforward network are single or multiple layer perceptrons. In a single layer

system data is passed from the input nodes to the output nodes. In a multiple layer

system there can be any number of hidden layers between input and output, but

data always progresses from one layer to the next. Figure 2.6 illustrates a multiple

layer feedforward network. Another example of a feedforward network is that used

in [64]. They used this network for the purpose of binding individual words into

sentences and found that it performed this task.

2.6.2 Recurrent neural networks

Recurrent neural networks include the concept of feedback. Data is passed not

only from input to output nodes, but is passed back from the output to the input.

Recurrent neural networks can be single or multiple layer. A speci�c example of a

recurrent network is the Hop�eld network (section 2.8.1)
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When directly compared for prediction both [18] and [10] found feedforward net-

works to outperform recurrent. In a comparison for pattern recognition [65] the

recurrent network outperformed the feedforward network. This suggests that di�er-

ent architectures are useful for di�erent tasks.

Advantages of feedforward networks include their relative simplicity. However

recurrent networks are able to exhibit dynamic behaviour, because of their feedback

loops. This means that they are able to change and re�ne their value using the

additional information provided by the feedback connections. It allows them to

produce more complex behaviour than feedforward networks, but also means that

they must settle onto a value before the output is taken.

Other examples of recurrent neural networks of particular interest, because of

their use of reciprocal connections, are bidirectional associative memories (BAM)

and recirculation networks. Bidirectional memories use the same synaptic weights

for both sides of each reciprocal pair, but recirculation networks can use di�erent

weights. An example use of a recirculation network is for face recognition in [16].

Bryliuk et al [16] found that the network was useful for extracting image features

and recognising images successfully, this means that recirculation networks are of

interest for vision.

2.7 Architectures for Memory and Coordination

The following sections outline architectures that address di�erent aspects required to

achieve the primary aim of this work (set out in section 1.2). Two di�erent types of

architecture are presented, architectures used for coordinating activity and memory

architectures for storing information used to perform a computational task. As the

aim is to investigate coordination, it is clear why architectures developed for this

purpose are presented. The aim speci�es that the system should provide coordination

in a neural network memory so di�erent memory architectures are introduced for

comparison.

The memory architectures are presented �rst. They are split into associative

memory and reservoir computers. Associative memory, as the name suggests are

used to associate a particular input pattern with a given output response. Reservoir

computers use randomly connected networks to form a fading memory. The input

patterns cause particular perturbations in the network and these perturbations can

be associated with a given output.

Computer pipelines and Syn�re chains are architectures that coordinate activity.

Computer pipelines provide a mechanism of splitting a large processing task into

several smaller ones in order to speed up the overall throughput. In a pipeline it is

important that the subtasks are coordinated so that they receive the correct data

to process at the right time. Syn�re chains are neural architecture that coordinate

activity, they are found in biological neural networks. They are composed of a number

of layers with feedforward connections between them. Activity passes through each

layer in turn so the architecture can be used as a timing structure.

A comparison of each of the architectures is given in section 2.12. The strengths

and weaknesses of the di�erent architectures are given, with regard to the aims
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of this thesis. Particular attention is given to the timing structure, suitability for

performing a series of computational tasks and their biological plausibility. The table

demonstrates that no single architecture in the literature achieves the required aims

for the Neural Pipeline architecture.

2.8 Associative Memory

The �rst category of architectures introduced for comparison with the Neural

Pipeline architecture is associative memories. These memories provide a location

in which to store the information that a system learns. The information must be

retrieved from the memory to produce a usable system. Computational memories

are similar to their biological counterparts in these respects, but they use a di�erent

storage method.

Associative memories allow an input to be associated with a particular output

pattern. When the system learning is supervised the input pattern can be presented

to a network at the same time as the desired output pattern. When the output

pattern di�ers from the input it is known as `hetero-associative', and when they

are the same `auto-associative'. Hetero-associative systems do not even need to have

inputs and outputs of the same type, so an input sound (for example birdsong) could

produce a pictorial output (a picture of the type of bird).

The concept of associative memory is important for pattern recognition because it

allows generalisation. That is to say that an imperfect input, for example corrupted

with noise, can be correctly classi�ed.

Associative networks are given the same two main classes that are applied to

neural networks more generally; feedforward and recurrent [29]. Feedforward have a

single layer of nodes with separate inputs and outputs whereas recurrent networks

have feedback in terms of their outputs being connected back to their inputs. The

Hop�eld network is introduced as an example of a recurrent network.

The Learning Matrix and CMMs are both types of associative memories that

use matrices. The Learning Matrix provides background for CMMs, and CMMs

considered to be a way of implementing the Neural Pipeline in hardware in the

future.

2.8.1 Hop�eld Network

Hop�eld networks are recurrent, they have a single layer of neurons and the outputs of

each neuron are connected to the inputs of every other neuron. Hop�eld showed that

the network would converge in this instance [32]. There are instances of the Hop�eld

network with both excitatory and inhibitory `self-connections' for example Li [43]

shows that a network with positive feedback will converge and from experimentation

could perform better than the original.

Hop�eld networks are auto-associative [55], the required output is the same as

the given input. This could seem like an unlikely requirement for a system, but it is

important because the system can be used to handle imperfect versions of the input.

An example would be noise corrupted inputs could be restored using the system.
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The network is composed of a single layer of neurons. It uses feedback by con-

necting each output back to the inputs of each neuron except itself. Each of these

neurons takes the sum of its weighted inputs, if this is over a given threshold then

the neuron �res.

Hop�eld networks are represented using values of +1 and -1 rather than the more

traditional values of 1 and 0. This is because Hop�eld networks are recurrent and the

use of only positive (and 0) values would cause positive feedback. This is undesirable

because it would stop the system from stabilising on an output value. The use of +1

and -1 also means that it is possible to use a �xed cut-o� of 0 on the output to �nd

the result.

A strength of the Hop�eld Network is that, because it is recurrent, it can handle

non-linearly separable data.

A limitation of Hop�eld networks is that they must stabilise on an output value.

The feedback in the system means that the initial value is not necessarily the correct

response. The threshold required depends on the set of patterns that is to be learnt,

[54] describes how this threshold can be found.

The desired outputs should be in stable states. A stable state is considered to be

one in which the system will �nish when all of the outputs have �nished updating.

If there are more stable states than classes then it is possible that the stable state

entered will be an unknown state, this can be recti�ed by adding more neurons to

the network [54].

Another limitation of Hop�eld networks is a low storage capacity. In [5] Amit et

al �nd the theoretical maximum number of patterns that can be stored to be 0.138

times the number of neurons in the network.

2.8.2 Learning Matrix

The learning matrix represents an early example of associative memory, Steinbuch

conceived the network in 1958. An advantage of the system is that it can be re-

alised as a physical device; a matrix with the inputs on the horizontal x lines, and

the outputs on the vertical y lines. There are connections with associated weights

between these lines, and in the physical device these are resistors. Not only can it

be physically realised electronically, [29] shows that it is possible to represent the

learning matrix optically using light. The matrix is trained by applying the input

and desired output, then using a binary form of Hebbian learning the weights are

determined.

It is possible that pairs of vectors can damage the recall of one another, as 1s are

stored in the matrix for one vector they can overwrite a 0 in another vector. This

is more likely to occur the higher the number of vectors that are stored within the

matrix. Therefore there is some optimal capacity of the matrix for the number of

vectors it can store while still performing well at recall. In [29] it is shown that this

capacity can be up to 69% of the possible capacity of this size of matrix. They use

the method from [69] by Willshaw et al to calculate the capacity. The maximum

capacity of the matrix is n2 where n is the size of the input vector and the maximum

capacity of the Learning Matrix is n2ln(2) or 69% as much. The maximum capacity
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is achieved when the matrix is sparsely populated with ones [29].

A strength of the learning matrix is often able to deal with inputs that are

corrupted, an example of this is shown in chapter 5 of [54]. In the example an

erroneous 1 is set in the input pattern, but the output is still correct. Another

strength is the ease of implementation in hardware.

Disadvantages include a restriction to linearly separable problems and the sizes

of the input and output patterns needing to be the same.

2.8.3 Correlation Matrix Memories

Correlation Matrix Memories or CMMs are a matrix of integer values used to store

data. Each of the inputs and their required output patterns produce a corresponding

set of weights. If all of the input and output pairs are considered it is possible to

form a matrix of the sum of all of these weights. A correlation matrix memory is an

estimate of this matrix using the outer product of all of the pairs of inputs [28].

In order to recall data from the memory an input vector is applied to the CMM.

This will provide an output which is composed of the desired output and a `noise

vector'. This noise vector occurs because of interference between the di�erent rela-

tionships that are stored in the memory. It causes the possibility of mistakes when

recalling data [28]. It is possible that the input to the CMM is an exact match, a

partial match or an overlap [41]. An exact match perfectly maps onto a result stored

in the CMM, a partial match has some bits in common with one of the results and

an overlap has multiple matches.

A CMM uses a matrix of values to store the information it needs about the classes

it will identify. More speci�cally it uses a binary CMM using only 0 or 1 values.

2.8.3.1 Binary CMMs

Binary correlation matrix memories or binary CMMs have a number of de�ning

characteristics, these are [8];

1. E�cient memory usage; data does not take up much space

2. Training can be done while the system is running, this is advantageous when

training a conventional neural network would take too long

3. The possibility to create large processing systems using modular formation of

neural networks

4. Easy to implement in hardware

5. Easy to calculate the storage and speed properties of the network

They can be considered to be a matrix of 0s and 1s that indicate if there is

a connection present between the input and output at this point. 1 represents a

connection. The binary CMM is trained using Hebbian learning; with a pattern

being applied to both the rows and the columns of the matrix. Initially all memory

locations are set to 0. A connection is formed when both patterns have a 1 present,
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Figure 2.10: An example of recall using a binary CMM.

by placing a 1 in memory. The matrix can then be shown patterns to classify. Recall

is performed by applying an input to the matrix, then summing the connections in

each column. The result is thresholded in order to �nd the original pattern. An

example of this can be seen in �gure 2.10.

Possible choices of threshold function include L-max, Willshaw and Maximum

activation. These functions and others are discussed in the following papers [40, 14,

27]. In L-max for example the L highest values are allocated a 1 and all other values

a 0. L-max is used in the example in �gure 2.10. The choice of the thresholding

function allows the system to handle corrupted inputs; for this L-max is preferable

to Willshaw. This is because it has more e�cient memory usage and it does not

su�er from additional bits being set in the output of a perfect match as Willshaw

can.

One disadvantage is that small binary CMM systems are limited by poor memory

capacity [37]. An advantage is that CMMs use lock-step synchronisation, each output

is produced in its entirety and the input and output frequencies are the same. This

means that the system does not need to stabilise as a Hop�eld network does.

Further disadvantages are the same as for the Learning Matrix. CMMs sizes are

also de�ned by the size of the input and output patterns and are only suitable for

linearly separable problems [31].
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2.8.3.2 Spiking CMMs

Spiking CMMs are trained in the same way as binary CMMs. They also use the same

structure for recall, however the inputs presented to the matrix are spike trains. Each

of the matrix elements (neurons) has a state which is determined by the arrival rate of

the input spikes and the neuron's previous state [40]. This state can be implemented

in the form of the sum of inputs as shown in �gure 2.10. When the input spikes

occur close together in time there is a large change in the sum, as the spikes arrive

further apart from one another the sum only changes by a small amount. The sum

can be a leaky integrator, with all of the values gradually decreasing. This means

that if no spikes arrive on the input for a certain duration then the sum can be reset

back to 0.

A possible disadvantage of spiking CMMs is that their encoding is more complex

than a standard CMM. Advantages include a more biological approach and the ability

to train the system to produce an output probability rather than a simple `true' or

`false' response [41]. This method is used by Brewer in [14] for image recognition.

2.8.3.3 Pattern Recognition using CMMs

Pattern recognition is a suitable application for associative memory and it is the

method used for testing the Neural Pipeline architecture. For this reason Advanced

Uncertain Reasoning Architecture (AURA) [37] is introduced as an example. AURA

has been used on applications including 3D face recognition, postal address compar-

ison and trademark matching.

AURA can be considered to be a fully connected one layer neural network that

uses binary weights and L-max thresholding [8]. The system uses Hebbian learning

for binary data, where a 1 is present in both input and output a 1 is stored in the

network. AURA uses an array of CMMs, the training data is split between the

CMMs with similar inputs appearing in the same CMM. AURA uses online training

which is advantageous because it is easy to add new pattern pairs to the memory

[8]. The use of CMMS makes the system easy to implement in hardware [37].

AURA is based on an earlier system ADAM (Advanced Distributed Associative

Memory), which was mainly used for image processing. ADAM uses the same method

as the Bledsoe and Browning model. In this model a grid of pixels is used for the

input, and every pixel is randomly paired up with one other pixel. The values of

these two pixels are used to address a location in memory. The system is trained by

presenting examples of each of the symbols to be identi�ed to the inputs. For each of

the examples a 1 is written into each of the memories at the position which correlates

to the symbol being presented, and the value of the two pixels. An example is shown

in �gure 2.11; memory A has a 1 placed in position ((1,1),(0)) when it is shown the

example `0', and another placed in ((0,1),(5)) when the `5' example is presented.

The memory is �lled up when examples of all ten di�erent symbols are presented.

Memory B represents a di�erent pair of pixels, and there are memories that represent

all other pixel pairs.

When the training is complete the memories outputs are summed for each of the

symbols (here the ten numerals) and the highest one is taken to be the result. Where
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Figure 2.11: Illustration of how the Bledsoe Browning model stores data based on

the example in [54].
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there are multiple highest values they are chosen between at random.

ADAM uses a more general version with groups of n pixels, Bledsoe and Browning

called these groups `n tuples'. As n is increased the memory requirements also

increase, so there is a physical limit on the value of n. If n is set to 1 then the

system is able to recognise presented patterns not identical to its training set, to

`generalise'. However the system is likely to classify incorrectly, because the memory

becomes saturated with 1 values. This occurs if there is any di�erence between

training patterns, as 1s are written wherever a black pixel occurs. If n is very large

the issue of saturation will not occur however the system is unable to generalise.

This shows that there is a trade o� between small and large values of n.

AURA di�ers from this in that it is not con�ned to `n tuple' inputs, instead it

changes data from numbers or symbols into binary patterns. This allows a larger

range of input data than the image based n-tuple ADAM input.

As AURA uses associative memory it can be trained to recognise noisy or incom-

plete data. One example is that it can be used for boolean sum of products inputs,

and is able to identify these even when some of the terms are missing. As inputs with

di�erent numbers of terms are stored in di�erent CMMS mistakes can mean that the

wrong CMM is accessed, so this must be accounted for. Even if the number of terms

is correct the value will be di�erent, so the response threshold must be changed.

2.9 Computer Pipelines

Computer pipelines are an example of an architecture used for keeping a number of

processes in time with one another. The aim of the Neural Pipeline is to provide this

type timing structure using spiking neurons, so it is bene�cial to introduce traditional

computer pipelines.

In computing a pipeline is used when a task can be split into several subtasks. A

pipeline is advantageous when compared to a single processing unit used to complete

the entire task because although the task takes the same amount of time to execute

it is possible to operate all subtasks at the same time. This means that when a

stream of sequential inputs are provided the throughput is greatly increased.

There are di�erent types of pipeline, the �rst distinction is the number of di�erent

functions that a pipeline can perform. A pipeline with a single function is known as

`unifunctional' and one with more than one function is called `multifunctional'. The

second distinction is whether di�erent function layouts are possible at the same time,

if only one is possible the pipeline is `static' and if it can have multiple con�gurations

at once then it is `dynamic'. A unifunctional pipeline by de�nition must be static,

but a multifunctional pipeline can be of either type [34].

Pipelines are also classi�ed by the way they perform timing, as synchronous

or asynchronous. This is a particularly important distinction considering the aims

of this thesis. In a synchronous pipeline each subtask must take the same time

to execute and each subtask is able to operate at the same time because of the

underlying hardware.
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Figure 2.12: A sequence of inputs provided to (a) a pipeline made of 4 10ms subpro-

cesses and (b) a single 40ms process.

2.9.1 Synchronous Pipelines

In a synchronous pipeline all of the subprocesses receive their input at the same

time. This process is controlled by a global clock that is fed to each subprocess.

This means that the di�erent subprocesses must take the same time to execute.

An example of the advantage gained by using a synchronous pipeline rather than

a using single process can be illustrated with a process that takes 40ms that can

be split into 4 individual subprocesses. Each subprocess takes 10ms to complete.

When a sequential stream of inputs is given to the pipeline each stage will become

active in turn and the pipeline will �ll up. This process is shown in �gure 2.12a from

timesteps 1 to 4. At timestep 4 the pipeline has �lled up and will return its �rst

output after 40ms, the same as a single process (�gure 2.12b). However after this

timestep the pipeline can produce outputs every 10ms. If a single process is used

rather than a pipeline of 4 subprocesses then it will take 40ms for every input to be

processed. This is shown in �gure 2.12b.

In a synchronous pipeline architecture a global clock is used to keep all of the

processing units in time. The timing is important because each subprocess relies on

the previous subprocess for its input, if they get out of time then they will not have

the correct input. This can be a disadvantage because it can be a di�cult problem

to ensure that all of the clock pulses are synchronised. There are other disadvantages

including �exibility of the number of outputs processed and di�erent delay lengths

for the subprocesses. These are discussed further as advantages of the asynchronous

pipeline in the following section.
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Synchronous pipelines have the advantage that they use more simple circuitry

than asynchronous pipelines. They are also have a predictable output, because they

always provide an result a certain number of clock pulses.

2.9.2 Asynchronous Pipelines

Asynchronous pipelines use a handshaking mechanism to control the timing of sub-

processes rather than a global clock. The �rst subprocess sends a request signal, if

it receives an acknowledgement signal from the second subprocess then the data is

transferred. This means that unlike a synchronous pipeline, where all of the data

must be passed forwards at the same time, di�erent subprocesses can pass on data at

di�erent times. Their ability to do so is de�ned by the readiness of the subprocesses

before and after. The subprocess before must be ready to provide an input and the

subprocess after must be ready to accept the output.

The �rst asynchronous pipeline was developed by Muller using earlier asyn-

chronous circuit design. Di�erent handshaking mechanisms can be used but the

general principle is the same. Each of the subprocesses has a control circuit known

as a `C-element' [61]. The C-element has two inputs; the request signal from the pre-

vious subprocess and the acknowledgement signal from the next subprocess. It uses

the state of these two signals to provide an output to enable the current subprocess.

A change in output state is triggered when both inputs have the same value. The

C-elements are chained together so that the activity propagates through the pipeline

as the states of the other elements change.

The advantages that asynchronous pipelines have over synchronous ones include

the ability to include subprocesses that require di�erent delays in which to process

their data. In a synchronous system each of the subprocesses must use the same

delay. There is no need to provide a consistent global clock to each subprocess in an

asynchronous pipeline. Another advantage is the ability to process a variable num-

ber of data items at a given time. If inputs arrive sparsely they will be processed

when they arrive rather than waiting for the next clock signal, as with a synchronous

pipeline. Lower power consumption is another advantage, because only active sub-

processes consume full power. Nowick and Singh [52] provide an overview of all of

these advantages.

A disadvantage of asynchronous pipelines is that the hardware is more compli-

cated than for a synchronous pipeline. Another possible disadvantage is that the

precise timing of outputs is unknown.

2.10 Syn�re chains

The Syn�re Chain [3] is an example of a feedforward, biologically plausible, neural

architecture. It is the most similar neural architecture to a computer pipeline that

has been discovered in the literature.

This architecture consists of a number of layers which are connected using ex-

citatory feedforward connections. Every neuron in one layer is connected to many

of the neurons in the next layer. The number of connections from one layer to the
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next is approximately the same for each layer. The number of neurons per layer is

also roughly the same, but the same neuron can appear in more than one layer. The

mean number of connections is known as the `multiplicity' and the mean neurons

per layer is known as the Syn�re Chain `width'.

There are two ways in which activity may be passed through a Syn�re Chain:

synchronously or asynchronously. When �ring synchronously the neurons in one

layer cause a synchronous burst of �ring in the next layer. This synchronous wave

propagates through the architecture. When the neurons �re asynchronously there is

a gradual build up of activity in the next layer. This increases until the layer is able

to stimulate the next layer, and so on through the architecture. In [19] Diesmann et

al show that when enough neurons �re synchronously a wave can propagate through

the system. With asynchronous behaviour the activity can pass through a number of

layers but will disperse. This means that synchronised �ring is required to produce

a stable response.

In [60] Shinozaki et al explore the use of inhibition to help to enhance the wave

of activity as it propagates. They �nd that inhibition applied prior to the arrival of

the synchronised burst of spikes enhances the signal. If the inhibition is applied at

the mid point of the burst then it is suppressed. This inhibition is from an external

source to one of the layers in the chain. They also test applying excitation and �nd

that it can only enhance the signal and does so when applied during the burst, but it

overwrites the timing of the original signal. Therefore an inhibitory signal is found

to be more suitable. While this use of inhibition may seem similar to the mechanism

used in the Neural Pipeline (see chapter 3) the systems are di�erent. The Neural

Pipeline uses inhibition on every layer and the key di�erence is that the inhibition

is triggered by the system itself not at speci�ed times.

A strength of the Syn�re Chain is that it is considered to be a biologically plau-

sible architecture. In [19] Diesmann et al consider that the timing requirements they

�nd for synchronous behaviour are consistent with recordings from neurons in the

cortex. The architecture is also used for biological modelling. An example of this is

the modelling of birdsong [25]. Glaze and Troyer �nd that a Syn�re Chain is able

to demonstrate three di�erent properties of birdsong found by analysing samples of

real birdsong.

Another strength is that the architecture can also be used for computation, an

example of this is image recognition by Arnoldi et al in [6]. The Syn�re Chain

principle is used to coordinate two separate system modules; one module provides

the memory and the other is a detector. Each of these modules contains a Syn�re

Chain and these two chains are connected, this causes synchronous �ring of neurons

that represent a particular feature in both modules. The synchronous spiking allows

the presented input to be matched to a stored pattern.

A limitation of the Syn�re Chain is that it cannot be used on its own to perform

a computational memory task. It is a structure that is suitable for timing, but it

needs an additional to perform pattern recognition. An example of such a structure

is a reservoir computer as introduced in the following section.
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2.11 Reservoir Computing

Reservoir Computers are a particular type of neural network composed of two distinct

layers, the `reservoir' and a `readout' layer. The reservoir layer is an interconnected

layer with connections allocated randomly between its neurons with a certain prob-

ability. The network input is provided to this reservoir and is transformed to a

particular internal state. The readout layer is connected to the reservoir and these

connections are trained to map the input state to the desired output.

The �eld of reservoir computing includes Liquid State Machines (LSM) [49], Echo

State Networks (ESN) and the Backpropagation Decorrelation learning rule (BPD).

The di�erences between the three types are quite subtle; Liquid State Machines

tend to use spiking neurons whereas Echo State Networks use analogue ones. Back-

propagation Decorrelation trained networks also use analogue neurons but they are

distinct from Echo State Networks because there is feedback from the readouts to

the reservoir.

An experimental review of all three is given in [66]. The three di�erent methods

are not always comparable for each task that they perform. They �nd that LSM

produce fewer errors than ESN for a speech recognition task. This is the case for

reservoir sizes of between 50 and 300 neurons. The word error rate is consistently

0.05 less than the best ESN performance. On a di�erent task (Non-Linear Auto-

Regressive Moving Average) to model a particular tenth-order system BPD is found

to perform comparably to ESN with integrator neurons, but ESN with linear neurons

outperform both. Their results suggest that the di�erent types of network are useful

for di�erent tasks, and that for recognition tasks the LSM may be advantageous.

Liquid State Machines are the most relevant to this work because they use spiking

neurons. The results from [66] also suggest that they may be a good choice for image

recognition. An introduction is given below in order to explain their use for training

the Neural Pipeline.

2.11.1 Liquid State Machines

Liquid state machines (LSM) were introduced by Maass et al in [49]. LSM are made

up of a reservoir of LIF neurons, which is perturbed by inputs. A set of readout

neurons are connected to this reservoir to interpret the perturbations and identify

what the input was. In [49] they show that LSM have `universal computational

power' when used with ideal conditions for continuous inputs, by analysing the sys-

tem mathematically. This means that the architecture should be applicable to any

computational task.

There are two important properties which determine how e�ective a liquid state

machine is. The separation property relates to the liquid layer and the approxima-

tion property relates to the readout layer. Separation is the distance between the

trajectories of the liquid state when di�erent inputs are presented to the system.

The approximation property relates to the ability of the readouts identify the liquid

state and transform it to the required output.

The same liquid can be used to solve many di�erent tasks, because only the
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readout layer is trained. An example of this is given in the experiments in [48]; the

di�erent tasks all use the same underlying network. This could be useful in com-

putation because the architecture itself does not need altering to perform di�erent

processes. It may also explain how the same brain regions can be used for di�erent

tasks.

Liquid state machines have advantages including their biological plausibility and

their applicability to di�erent computational tasks. Disadvantages include their high

simulation cost and in for this work their lack of a timing structure.

2.11.1.1 LSM for Pattern Recognition

To achieve the aims set out for this thesis the Neural Pipeline architecture has

been tested on the computational task of pattern recognition. For this reason the

use of LSM for pattern recognition tasks is introduced. As LSM have universal

computational power [49] they should be applicable to any computational task. This

does not necessarily mean that they are a preferred method for any particular task,

however the existing literature shows that LSM are a suitable architecture for pattern

recognition.

LSM have been used for pattern recognition for both sound [22, 67] and image

recognition [39, 70, 71, 48, 12] as well as producing a simpli�ed model of the visual

system [70]. In [48] a LSM is used to recognise an input of a moving object showing

that the architecture is suitable for more realistic vision applications.

Kaminski and Wojcik produce and analyse a visual system model made as a

multi-layer LSM in their three papers [39, 70, 71]. They use a 16 by 16 pixel grid to

provide input to the system, which they break down into smaller blocks (2 by 2, 4

by 4). Black pixels received an input of a randomly allocated train of spikes. They

use recognisable shapes as input as well as more abstract patterns. They claim that

their model is able to correctly classify inputs even with noise present, but do not

provide quantitative results.

Boukhari and Benyettou [12] use a LSM for palm print recognition. They use

actual data of 200 individuals from a palm print scanner with a size of 384 by 284

pixels. They compare three learning rules to train the LSM outputs and �nd a

highest accuracy of 98% using backpropagation.

Maass et al [48] use moving image stimuli on an 8 by 8 sensor array sampled every

5ms. Each of the sensors has a value of between 0 and 1. The presented inputs are

`bars' or `balls' which move across the sensor grid at di�erent speeds with one of a

number of di�erent trajectories. The recognition in this case is not as straightforward

as identifying which shape is presented, rather the system was trained to predict the

next 25ms or 50ms of activity on the sensor grid. This was achieved with fairly low

error rates when considering the task complexity. For the 25ms test there was a 8.5%

false positive rate, and a 4.8% true negative rate. The 50 ms case had a 16.5 % false

positive rate and a 4.6 % true negative rate. They use unsupervised learning so the

system is adaptable to new inputs.

In [22] Fernando and Sojakka achieve sound recognition via image recognition.

The image here is of the liquid layer of the LSM, rather than of an input. The liquid
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layer rather than being simulated as a network of arti�cial neurons is a physical tank

of water. It is perturbed using one or more of four motors, one in each corner of

the tank. The water is monitored using a webcam and the image is compressed to

a 32 by 24 pixel grid. This grid is used as the input to the readout neurons. This

is distinct from the image recognition examples because it is the response from the

liquid that is provided in this form rather than the input.

The visual cortex model in [70] and [71] is an example of a multi layered LSM.

The layers are mainly connected in a feedforward manner with the only the �nal layer

providing feedback (to the �rst layer). The input retina is connected to the �rst layer

LGN using excitatory connections. The layers are not examined separately in the

papers, they are considered in their entirety. The layers are therefore a topology

imposed on the liquid layer rather than functional structures.

Traditional LSMs use a liquid with a randomly chosen connectivity. It is possible

to train the liquid to improve the performance for a speci�c task [51, 33, 15]. This

performance di�erence is measured using the separation property, and an improve-

ment is found using Hebbian learning [51, 15], Particle Swarm Optimisation [33] and

multifractal learning [15].

2.11.1.2 Biological Plausibility of LSM

In [49] Maass et al describe the LSM as biologically plausible because it is able

to handle time-varying inputs. This is demonstrated in [48] in which Maass et al

use a LSM to predict the next position of a moving object. They use the dynamic

behaviour to operate and do not need the system to convergence to attractor states

to provide an output.

The neuron models and structure of LSM as proposed by Maass et al are more

biologically realistic than traditional ANNs. Unlike many arti�cial neural network

models (such as Hop�eld networks or Multi-layer Perceptrons) LSM use spiking

neurons, these models are more closely matched to real neurons than binary neurons

as discussed in section 2.3. In [48] they use models with structures which match

microcircuits found from actual recordings of cortical neurons. This means that the

structure is biologically plausible.

The connectivity in a LSM can be brain like, but the readout mechanism does

not have to be. A computationally suitable readout mechanism can be chosen for

testing a LSM but it can be assumed that the brain uses a di�erent mechanism. This

split is possible because the reservoir and readout are separate.

The use of LSM for modelling brain areas also suggests that they are biologically

plausible architectures. Examples of this are the visual cortex modelled in [71] and

the cerebellum in [72].

2.12 Comparison of Architectures

Each of the architectures that have been introduced has di�erent strengths and

limitations in relation to the aim of this thesis. A summary of these is given in

�gure 2.13. The more traditional computer architectures of pipelines and CMMs
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Approach Strengths Limitations

Hopfield Network  Applicable to
computing problems

 Not biologically
plausible

 Needs to stabilise on an
output value

CMMs  Applicable to
computing problems

 Suited to hardware
implementation

 Noise tolerance

 No need to stabilise on
an output

 Not biologically
plausible

Synchronous Pipelines  Applicable to
computing problems

 Suited to hardware
implementation

 Inherent timing
structure

 Not biologically
plausible

 Timing must be
synchronous

Asynchronous Pipelines  Applicable to
computing problems

 Suited to hardware
implementation

 Inherent timing
structure

 Not biologically
plausible

Synfire Chain  Biologically plausible

 Can be used for timing
in ANNs

 Inherent timing
structure

 Noise tolerance

 Cannot perform
computational
problems alone

LSM  Applicable to
computing problems

 Biologically Plausible

 Noise tolerance

 No inherent timing
structure

Figure 2.13: Comparison of the strengths and limitations of the di�erent architec-

tures for ful�lling the aims of this thesis.
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have advantages such as computational e�ciency and being well suited to hardware

implementation. They are not, however, biologically inspired methods. As the aim

in this thesis is to test timing using a neural network architecture the biological

plausibility of the method is important. Therefore these architectures do not ful�l

this part of the aim. Pipelines are able to ful�l the timing aspect and CMMs the

memory aspect of the aim.

The Hop�eld network is biologically inspired so ful�ls this requirement, but it is

not biologically plausible because the outputs have to stabilise. It does not have a

timing structure, so does not meet this part of the aim. The biologically inspired

methods of the Syn�re Chain and LSM have weaknesses such as their additional

computational expense. As the work in this thesis is biologically inspired this lim-

itation also applies here. In terms of the aim presented for this thesis the Syn�re

Chain is limited because it does not have memory, so it cannot be used on its own

to perform memory based recognition tasks. LSM do have memory, but they lack

the timing structure required by the aim.

None of the architectures presented here provides a neural timing mechanism

that can control data within a computer memory. The work in this thesis sets out to

demonstrate that an architecture can be developed to achieve the aim by combining

desirable features of these architectures.

2.13 Summary

The various �elds introduced here build up a picture of ANNs; the biology that

they have developed from and how the neuron models have become more complex

as computational resources have increased. These models can be built into di�erent

structures and can be taught to classify inputs. Di�erent architectures that each

partially ful�l the aim have been discussed to provide a basis for the work. The

Neural Pipeline architecture introduced in the following chapter to address the aim

fully.
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Neural Pipeline Architecture

3.1 Introduction

This chapter outlines the architecture of the Neural Pipeline. It describes the char-

acteristics that are fundamental to the architecture and the other settings that have

been used throughout the thesis. The settings can be changed depending on the

application, while retaining the structure that de�nes the Neural Pipeline.

High level design decisions taken in order to produce the architecture are pre-

sented in this chapter, with lower level parameter choices described in chapter 4. The

preliminary parameter exploration experiments in chapter 4 provide the background

required to choose parameters for the experiments presented in chapter 6.

The architecture has been developed so that using the structure of its connec-

tions it is able to control how the activity progresses through each of its layers. This

has been achieved using the `external connections'. They are the part of the struc-

ture fundamental to the Neural Pipeline architecture. The feedforward connections

transmit data between the layers, and the feedback connections control when the

layers are allowed to process the data. These inter-layer connections have three pa-

rameters; weights, delays and connectivity. The settings that have been chosen for

these parameters are given in this chapter.

The layers themselves have a separate set of parameters. There are a number

of neurons in each layer with connections between them. These connections have

weights, delays and a connectivity value. These internal settings can be changed

depending on the task to be completed, unlike the inter-layer connections which

de�ne the architecture. The settings presented here are suitable for the tasks that

are carried out throughout this thesis.

The three types of behaviour that the architecture can exhibit are de�ned. The

behaviours relate to the ability of the architecture to inhibit each layer in turn after

it has had time to become active. `Correctly inhibited' behaviour has activation for

each layer in turn when an input is presented, which is shut o� as the next layer

becomes active. In the case of `over inhibited' behaviour at least one of the layers

provides more inhibition than is necessary when it becomes active. This stops a

second input to the system from reaching the �nal layer. The de�nition depends on

the required time delay between presenting inputs, if a larger delay is left a system

which produces over inhibited behaviour can be made to produce correct behaviour.

`Under inhibited' behaviour occurs when the external inhibition from at least one of

the layers is not su�cient to stop the previous layer from spiking.

In summary, this chapter contains the information required to construct a Neural

Pipeline. It includes a description of suitable internal settings that can be used,
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Figure 3.1: The external connections between layers of a Neural Pipeline.

although there are many possible alternatives. The di�erent types of behaviour that

the architecture can exhibit are also introduced.

3.2 Neural Pipeline Structure

The Neural Pipeline is composed of multiple layers, there can be as many layers as is

required for the task to be performed. Typical sizes presented in this thesis are 3 or 5

layers. Each layer is a subsection of the network, and can be thought of as a network

in its own right. The structure that de�nes the Neural Pipeline are the connections

that run between the network layers. Figure 3.1 shows the external connections of the

Neural Pipeline architecture. There are feedforward connections which convey the

signal from one layer to the next and there are feedback connections that determine

when data is allowed to �ow. The forward connections are excitatory to allow the

signal to pass through the system. The feedback connections are inhibitory and are

used to stop a layer from receiving input while it is processing. If a layer is active

then the previous layer, which provides it with an input, is inhibited. If a layer

is inactive then the previous layer is uninhibited and can provide an input. It is

these inhibitory connections that provide the sought-after means of the architecture

controlling its own coordination using the data in the system (introduced as the aim

in section 1.2). Figure 3.2 shows how the activity �ows through the system using

these external connections.

The inhibitory connections must come from within the system, rather than being

applied from an external source (as Shinozaki et al do in their paper [60]). This is

because having an external source means that the timing of data �ow is controlled

externally, rather than by the system itself. This does not solve the issue of timing,

just moves it outside the system, much like a clock. It would be an option if the

timing were triggered by the next layer becoming active, but this step just adds extra

overhead. Equally it is not suitable for a layer simply to inhibit itself after a delay,

because each layer should be free to operate until the next layer is su�ciently active.

This means that a �xed delay may prematurely silence the layer.

The inputs to the system are presented to a subset of the �rst layer, this subset

are known as `input neurons'. The input can be of di�erent sizes depending on the

application. An example input size used in this thesis is 81 neurons out of 100 in

the �rst layer. This is used for all of the learning experiments that are presented in

chapter 6.
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Figure 3.2: The activity �ow through the system when one input is presented. The

grey shading represents where the activity is at that time.
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The feedforward connections between layers are labelled X; in �gure 3.1. These

connections have an excitatory weight of 5 and a delay of 1ms. The external exci-

tatory connections run from every neuron in layer n provide input to a randomly

chosen subset of neurons from layer n+1. The subset for each neuron is chosen in-

dependently, with a uniform chance of picking any of the neurons in layer n+1. The

connectivity used for the Neural Pipeline is 1/10 of the layer size.

The feedback connections between layers are labelled Y; in �gure 3.1. These

connections are inhibitory with weight -0.3 and are used to suppress activity in

layer n-1 when layer n becomes active. None of the Y connections have excitatory

values because they would just introduce noise into the previous layer, and encourage

spiking rather than suppressing the activity. There is a time delay of 5ms on these

inhibitory connections to allow the layers some time to operate before they are shut

o�. The inhibitory connections run from all neurons in layer n to all neurons in layer

n-1.

The last layer of the architecture is inhibited in a di�erent way to the other layers.

This is because it has no `next layer' to provide it with inhibition. This layer must

be inhibited because it has the same internal settings as the other layers (see the

following section for details of these internal settings), so relies on inhibition to stop

the layer spiking. If the layer is not inhibited then it will continue to spike and no

further inputs will be able to pass through the system.

The inhibition to the �nal layer is provided from the system input. This is shown

as connection Yn in �gure 3.1. There is a delay of 10ms multiplied by the number

of layers on the connection. The delay is chosen to be long enough to allow the last

layer to become active but not so long that it continues to spike for much longer

than the other layers.

The inhibition to the last layer could be provided from any point in the system.

It is chosen to be from the input so that there is �exible behaviour depending on

the length of the delay on the connection. If the delay on connection Yn (in �gure

3.1) is longer than the time taken for the activity to reach Bn, then the stimulus will

suppress its future self. If the delay is shorter than the time for activity to reach Bn
then the last layer (Bn) is permitted to remain active until another input is presented

to the system.

It can be seen that the structure of the Neural Pipeline (�gure 3.1) closely matches

that of an asynchronous pipeline (see [52] �gure 1 for a simple diagram). The feedfor-

ward connections are the equivalent of the asynchronous pipeline's request signal and

the feedback connections the equivalent of the acknowledgement signal. The overall

activity �ow in �gure 3.2 is also comparable to that of an asynchronous pipeline,

with the activity propagating through the layers sequentially. The main distinction

is that the neural pipeline has a more �uid transition between states. The timing

diagram is a simpli�ed representation, showing the layers as either on or o�, but in

reality the layers gradually transition as the neurons stop �ring. Another di�erence

is that the feedforward and feedback connections are not digital signals (as the req,

ack signals are), but a series of connections that propagate spikes.
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3.3 Layer Structure

Each layer in the architecture is e�ectively an individual network that is able to

perform a task. The external connections do not interfere with the internal func-

tionality of the layer, so any type of network could be used as a layer. The external

connections transfer data between the layers and shut them o� when no input is to

be provided to the next layer.

The type of layer that has been used throughout the experiments presented here

is a randomly connected group of neurons. Each neuron has a set number of connec-

tions and each connection target is chosen uniformly from all of the neurons in the

layer. This randomised connectivity is useful for two reasons. When examining the

behaviour of the system the random connections can be considered to be a network

that has been trained to do something unknown. This means that the behaviour of

the system can be examined for di�erent examples of network without training. The

second reason is that, when used for learning (in chapter 6), the randomly connected

network can be used as a liquid state machine.

For practicality of simulation time, sizes of 100 neurons or fewer have been used

for the majority of experiments presented in this thesis. These sizes have been shown

to be su�cient for the learning tasks carried out in chapter 6, and should extend to

larger examples.

The neurons in each layer are all leaky integrate and �re neurons, with the

parameters given in the following section. The neurons are either excitatory or

inhibitory to follow Dale's Principle (see section 2.2.3). This means that all of the

outgoing connections from the neuron have the same sign, positive for excitatory or

negative for inhibitory. All neurons can receive connections of either type. Each

layer has an equal number of excitatory and inhibitory neurons.

The connections within the layer are known as the `internal connections'. All

of the neurons in a layer have the same connectivity. That is to say, the same

number of connections from them to neurons within the layer. The neurons and

their connections are described in the following sections.

3.3.1 Neuron Type

There are many di�erent types of neuron model that are used for arti�cial neural

networks. An introduction to the di�erent types was given in section 2.4. They vary

from the simple binary ones to more complex spiking types. Spiking neurons were

chosen to use for the Neural Pipeline architecture, because they are more biologically

realistic and are able to represent more complex behaviour.

The speci�c type of spiking neuron that has been chosen for the architecture is

the leaky integrate and �re (LIF) neuron (introduced in section 2.4.1). LIF neurons

were chosen for several reasons: they represent a simple model of spiking neurons and

therefore strike a balance between computational e�ciency and biological realism.

They are also used for a Liquid State Machine in [49] and for analysis of a randomly

connected network in [56], allowing for easier comparison with these results. Only

LIF neurons have been tested in this thesis, but the architecture could use any type
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of neuron. This is a possibility discussed in the further work section 3.5.1.

The simulations presented in the thesis use the NEST neural simulator. The

architecture is not restricted to a particular simulator or even to a computer simula-

tion. The simulation represents the easiest method of identifying how successful the

architecture is under di�erent conditions and suitable parameter choices. It is possi-

ble that the architecture could be constructed in electronic hardware or even using

actual neurons. This is another possibility presented in the further work section.

The neuron parameters that have been used for the tests using the architecture

are given in table 3.1. The neuron parameter names in the table relate to the

ones used in NEST, but the same values could be used in di�erent simulators. All

parameters with the exception of the threshold are set to the defaults for the NEST

simulator. This decision was made because the parameters are biologically sensible

and because it is necessary to have a starting point from which to adjust the other

system parameters, these settings would appear to be a good starting point. Static

synapses are used for all experiments.

The threshold value is set to be lower than the more biologically realistic value of

50mV, which is the default simulator value. This is because the size of the network is

very small compared to that of a biological neural network. Here there are typically a

few hundred neurons, as opposed to the approximately 10 billion neurons in a human

brain [28]. In order for the neurons to spike with only a limited number of inputs

the threshold value was reduced. The value of -69.931mV was chosen by running

an experiment, with three layers of 100 neurons and an input spike train of 10ms

(as is used in most of the experiments through the thesis). The threshold value was

reduced until this spike train produced enough spikes in layer 1 to propagate to layer

2.

The LIF neuron is modelled in NEST using equation 3.1. The variables are set to

the values given in table 3.1. The neuron input Isyn is generated by spikes that appear

on the input of the neuron over time. The spikes are produced by other, connected,

neurons in the network. Each individual spike produces an alpha current, the shape

of which is calculated using the alpha function given in equation 3.3. An example

of the function shape is graphed in �gure 3.3. Isyn is calculated by summing these

inputs over a given time as shown in equation 3.2. In this equation Ip represents a

list of all input spike times.

These equations are taken from the NEST documentation, which can be accessed

by downloading NEST [24].

dVm
dt

= − (Vm − EL)

taum + Isyn(t)
× Cm

(Cm + Ie)
(3.1)

Isyn(t) =
∑
tj∈Ip

[wjalpha(t− tj)] (3.2)

alpha(t) = e× (t/taus)× (e−t/taus)× StepFunction(t) (3.3)
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Figure 3.3: The graph shape of the alpha function used in the NEST simulator as

given in equation 3.3.

Neuron Model

Leaky IAF neuron

Variable name Value Description

Vth -69.931 Threshold voltage in mV

EL -70.0 The resting potential of the membrane in mV

Cm 250.0 Membrane capacitance in pF

taum 10.0 The time constant of the membrane in ms

tref 2.0 Length of the refractory period in ms

Vreset -70.0 The reset voltage in mV

taus 2.0 Synaptic alpha function rise time in ms

Table 3.1: Neuron parameters.
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Model Summary

Internal excitation 0.5

Internal inhibition -0.5

External excitation 5.0

External inhibition -0.3

Internal delay 1.0 ms

External excitatory delay 1.0 ms

External inhibitory delay 5.0 ms

External excitatory connectivity 10%

Table 3.2: Connection parameters.

3.3.2 Connections

Each of the neurons within a layer is given the same connectivity value. The con-

nectivity is the number of connections from the neuron to other neurons within the

layer. A connectivity of 10 is found to be the most versatile for providing correct

behaviour when other parameters are varied. The 10 connections from each neuron

to neurons in its own layer are chosen at random. There is an equal probability of

choosing any of the neurons within the layer as the connection target, including the

neuron itself and neurons that it has already been connected to. This allows for

multiple connections between a pair of neurons and also allows for self connections.

The weights on these connections are all set to +w for excitatory connections

and -w for inhibitory ones. A variation is to use weight values randomly chosen from

a range 0 to +w for excitatory connections and 0 to -w for inhibitory connections.

The value of w is one of the parameters used to control the level of activity in the

system. All internal delays are set to 1ms, this is because the connections have to

have a delay that is not 0 (a simulation constraint). 1ms was chosen as a short delay.

The same value is used for all the connections because this allows the delays on the

external connections to control the data �ow, without delayed signals from inside

the layer altering the behaviour.

Table 3.2 gives typical values for the internal parameters, chosen using the work

in chapter 4. These are used for the learning experiments that are presented in

chapter 6.

3.4 Fundamental types of Behaviour

The Neural Pipeline architecture is a system that has been designed to handle a

stream of inputs. When the architecture is presented with two or more inputs in

sequence, there are three types of behaviour that it can exhibit.

These three behaviour types are labelled `under inhibited', `correctly inhibited'

and `over inhibited'. They have de�nitions based on how the activity �ows through

the system. Correctly inhibited is, unsurprisingly, the desired type of behaviour.

Under and over inhibited are undesirable behaviour types, with under inhibited con-

sidered to be worse than over inhibited. The reasons for this are described below.
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Examples of these three types of behaviour are illustrated in �gure 3.4 when

two inputs are presented 30ms apart. All neurons are initialised to be silent, having

experienced no prior activity, and there is no background noise.

Correctly inhibited behaviour has the following de�nition:

`Upon the presentation of an input each layer becomes active in turn and

after a time is suppressed'

In all of the cases presented in this thesis the system has no background noise,

so the suppression should make the layer silent for a time. This is not a requirement

for correct behaviour, the suppression must just be to the `normal' background level.

An example of correct behaviour is shown in �gure 3.4 (a). In this case activity

from both inputs can be seen in each of the layers, and importantly the activity is

suppressed again after activation.

Over inhibited behaviour is de�ned as:

`For any of the inputs the activation of layers in turn stops before the

last layer'

`Over inhibited' behaviour is shown in �gure 3.4 (b). In this case the inhibition

from layer 2 is too strong, because the second input does not produce any activity

in the �rst layer and therefore any subsequent layers.

Over inhibited is the preferable of the two undesired types of behaviour, because

it is easier for the system to recover from. This behaviour is dependent on the

required time between inputs, because the inhibition in the layer slowly returns to

the resting potential, over time. This means that instead of presenting the second

stimulus after 30ms as shown in �gure 3.4 it could be presented after 50ms. By

50ms the inhibition within the �rst layer would have decreased and the input would

be able to make the layer active and pass through the system correctly.

Under inhibited behaviour has this de�nition:

`Any of the layers resumes spiking after suppression before another input

arrives at the layer'

The least desirable type of behaviour is shown in �gure 3.4 (c), this is known as

`under inhibited'. When there is too little inhibition between layers n-1 and n, layer

n fails to suppress the activity in n-1. This means that layer n-1 continues to �re

and prevents any other activity from being provided as input. If this occurs then the

pipeline needs to be �ushed of activity before any further inputs can be provided.

Infrequently, when compared to the other responses, a run which appears to be a

combination of under and over inhibited is produced. An example is shown in �gure

3.5.

These responses are classi�ed as under inhibited, because `under inhibited' is

the over-riding behaviour, as it is the least desirable type of behaviour. Even if
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Figure 3.4: Examples of the three types of behaviour that can be exhibited by the

Neural Pipeline.
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Figure 3.5: An example of a run that exhibits both under and over inhibited be-

haviour. The second input does not appear in layer 1, which is a symptom of over

inhibited behaviour. At the same time layer 5 continues to spike after it has been

inhibited, which indicates under inhibited behaviour.

the over inhibited behaviour was overcome by waiting longer before applying the

next input, the under inhibited behaviour would still be present. That is the reason

for this classi�cation. Only correct behaviour is required for the system to work,

so although this property is interesting it has not been investigated further. It is

therefore recommended for investigation in the further work section 3.5.1.

The correct behaviour seen in �gure 3.4 is the same behaviour that would be seen

in an asynchronous pipeline. The activity propagates through each layer in turn as

the layers communicate using feedforward and feedback connections. The other two

types of behaviour are not seen in asynchronous pipelines.

3.5 Discussion

The architecture has been developed as a neural network that can control the timing

of data �owing through the system using its own �ring neurons, rather than an exter-

nal source. The fundamental structure of the pipeline that allows this is the external

connections. These connections are the part of the architecture that de�nes it as

a Neural Pipeline. The layers are connected using excitatory forward connections

that pass the data from one layer to the next. The feedback connections between

the layers are inhibitory and they are used to shut o� the layers. The last layer also

requires inhibition and this is provided from the system input.

The weights and delays on the external connections can be changed depending on

the application. The connectivity could also be changed, but the choice of connec-

tivity is more constrained. For example, to preserve the signal information between
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one layer and the next the excitatory connections cannot run from all neurons in one

layer to only one neuron in the next.

The internal parameters of number of neurons, weights, delays and connectivity

are necessary in any arti�cial neural network. It is important to note that the

parameter choices are used to make the Neural Pipeline operate correctly for the

tasks presented here but they are not inherent to the architecture. Any arti�cial

neural network could be used as a Neural Pipeline layer. The weight on the external

inhibitory connections should be adjusted depending on the level of activity that the

layer provides. It is possible for di�erent layers to have di�erent settings, because

the inhibition for each layer can be adjusted separately.

There are three types of behaviour that a Neural Pipeline can exhibit. They

relate to the balance between activity in the layers and the amount of inhibition on

the external connections. The required behaviour is `correctly inhibited' and this

occurs when the inhibition is balanced with the activity. This causes all of the layers

to become active and then be shut o� in turn, and for the data to pass through the

entire architecture. There are two undesirable types of behaviour: `under inhibited'

and `over inhibited'. Over inhibited behaviour occurs when the inhibition between

the layers is large compared to the activity within them. It inhibits a layer so that

it is unable to respond to the next input, a solution to this behaviour is to increase

the time between inputs. Under inhibited behaviour is caused when the external

inhibition is low compared to the activity within the layer. It means that the data

in a layer is not suppressed su�ciently by the inhibition, so the �rst of the inputs

continues to spike on one of the layers. This prevents new inputs from passing

through the system.

3.5.1 Future Work

During the development of the Neural Pipeline architecture, decisions have had to

be taken about which way to progress. Due to the scope of the thesis not all avenues

could be explored. The decisions taken were determined to be the best way of

progressing the architecture and the reasons that they were chosen are described

in the relevant sections. This section describes the alternative proposals, they are

suggested as further work.

The layers in the versions of the Neural Pipeline architecture tested here have

all used leaky integrate and �re neurons. Di�erent types of neurons have not been

tested. There are alternative spiking models and non-spiking neurons as discussed

in section 2.4. It is believed that the architecture will work independent of the type

of neuron that is used. The architecture has not been developed speci�cally for the

LIF neuron, this has just been the mechanism for testing it. Future work includes

testing the system with di�erent neuron types to make sure that this is the case.

Once the architecture has been tested further it is possible that it could be

implemented in hardware. The simulation is easier to test and make changes to,

so the production of hardware is suitable for a more developed version. The main

advantage to having a hardware implementation would be the speed that the system

could run. The easiest method of producing a hardware version would be to use some
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existing hardware such as an FPGA. The hardware implementation on FPGAs may

be able to use CMMs to represent the layers. CMMs are suitable for implementation

on FPGAs [42]. The weight values on the connections within the layers would be

represented as the values in the CMM matrix. There is also the possibility of testing

the architecture using real neurons, to test the biological plausibility.

The mixed behaviour mentioned in section 3.4 represents another possibility for

investigation. It is believed that this behaviour is caused when one or more of the

layers exhibits under inhibited behaviour and one or more of the layers exhibits over

inhibited behaviour. It is also thought that the over inhibited layer (or layers) must

appear before the under inhibited layer (or layers), because otherwise the behaviour

would only be under inhibited. Understanding what causes this mixed behaviour may

make it easier to balance the behaviour across the layers. It should help to con�rm

whether it is necessary for all of the layers to behave correctly independently, or if

it is possible to balance under and over inhibited layers to achieve correct behaviour

overall.

A possibility for further analysis of the architecture is to compare the dynamics

with the Syn�re Chain (see section 2.10). In the Syn�re Chain only synchronised

�ring of neurons allows stable propagation of activity through each layer. It is

believed that the internal connections and the feedback in the Neural Pipeline mean

that synchronised activity should not be required for a stable system. This is because

the layers can stimulate themselves to produce a lot of activity and then be made

quiet by feedback. In the Syn�re Chain the layers do not stimulate themselves so

synchronised spikes are needed to stop the activity dispersing. The ability of the

architecture to perform without the neurons being synchronised is hinted at by the

lack of a synchronous �ring pattern in the layers when inputs are presented. Further

work is required to demonstrate this.

Dale's principle has been used within the layers, but has not been extended to

the external connections. It is possible to use inhibitory inter-neurons to handle the

external inhibitory connections from excitatory neurons. Implementing this should

result in exactly the same behaviour as the architecture currently exhibits, because

it is an implementation detail. To make the feedforward connections follow Dale's

principle too, one possibility is to connect only the excitatory neurons to the next

layer. This may impact the behaviour, because less of the data will be transferred

between the layers. It is believed that the reduction of activity may improve the

probability of producing a correct run because it will reduce the activity in the later

layers. It is also thought that the information will be reduced, because only half

of the neurons are able to communicate with the next layer. This will make the

identi�cation of distinct inputs more di�cult. A second possibility for the excitatory

connections to follow Dale's principle is to add a circuit of neurons that will allow an

inhibitory signal to be converted to an excitatory one. This option would add com-

putational expense to the network, because an additional two neurons are required

for each of the connections, plus connections to a new spike generator. All of these

additional spikes must be processed, so this mechanism is not very e�cient. The

two di�erent options should be tested and compared to the existing system (with-

out Dale's principle on the external connections). This will show whether removing
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the external connections from inhibitory neurons removes information and therefore

whether the overheads of the second option would be preferable. These suggestions

are explained further in appendix A.1.

Another possibility for future work is to consider alternative architectures based

on the Neural Pipeline. It is thought that a variation using two Neural Pipelines,

one for control and one to process data, could provide additional functionality but

still operate in the same way. It would allow one signal to provide an input and

a di�erent signal to control the timing. This is a more versatile architecture but

testing would be required to show that it could perform in the same manner as the

existing architecture. It is discussed further in appendix A.2.

A useful way of extending the work would be to introduce generalisation, so that

the system is able to classify similar inputs or noisy inputs as the correct output. In

the examples in chapter 6 there is no generalisation. A suggested way of achieving

this comes from the way that di�erent inputs follow di�erent trajectories through

the state space, that is to say that di�erent neurons �re at di�erent times. If similar

inputs take similar trajectories then it may represent a way of generalising. This is

discussed further in appendix A.3. Investigating the trajectories of di�erent inputs

is therefore a useful area for future work.

3.5.2 Summary

The Neural Pipeline is a multi-layered computational architecture that uses a combi-

nation of excitatory and inhibitory connections to control information �ow through

the system. The layers can theoretically contain any neural network, here they are

composed of LIF neurons with randomised connections. The architecture demon-

strates one of three types of behaviours; correctly inhibited, over inhibited or under

inhibited. The following chapter introduces the background work used to make the

decisions for the parameters to use in the architecture in this chapter.
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Preliminary Parameter

Exploration

4.1 Introduction

The Neural Pipeline has been designed as a neural network architecture that can

control its own data coordination. The structure that achieves this is a series of

neural network layers, with two sets of connections running between them. One

set carries information forwards to be processed in the next layer, and the other

set running in the opposite direction suppresses the activity in previous layer. This

suppression stops input arriving at a layer for a time, allowing it to process the

current signal.

Initial parameter investigations are presented in this chapter, along with the

decisions that were made based on their results. As the simulations here were part

of the development of the architecture they use di�erent parameter settings to each

other. Di�erent parameters are introduced at some stages, they are based on the

results found here. The points at which they were introduced and why are described

in this chapter.

There are three types of behaviour that the Neural Pipeline can exhibit (correct,

under inhibited and over inhibited), that are independent of the task that the archi-

tecture is carrying out. Investigations into how the behaviour changes as parameters

are varied is introduced.

These investigations include testing the parameters to achieve correct behaviour,

and investigating the transitions between types of behaviour. The parameter tests

for the external and internal connections are performed on the weights, delays and

connectivity. The requirement for inhibition to the last layer was discovered during

development. The reasons for the introduction of this inhibition are discussed. The

settings within the layers themselves are investigated. They include weights, delays,

connectivity and number of neurons. Changes to the size of the system input are

also discussed.

All simulations of the Neural Pipeline (at the various stages of development) are

carried out using NEST, the NEural Simulation Tool [24]. The reasons for choosing

this environment are outlined in section 4.2.

The parameters must be investigated to identify suitable values to use in compu-

tational tasks. In this work there are no on-line updates to the parameters while the

system is running, they are set to particular values for each experiment. As this work

is developing the Neural Pipeline as a new architecture it is important to investigate

the parameters manually to gain an understanding of their in�uence.
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Although the experiments are separated out into their relevant sections, many

examine two or more parameters. The tests show that to achieve correct operation

there are no `perfect' values, rather a balance between di�erent parameters must be

achieved. In particular the balance between the activation within a layer and the

external inhibition is found to be important. This is described in more detail in the

discussion section of the chapter (section 4.9).

4.2 Simulation Environment

For e�ciency an existing simulation environment was used for the simulations, rather

than implementing such an environment from scratch. Another advantage of the

available environments is that they include implementations of many di�erent types

of neuron, so extensions to the architecture do not require that these new types are

implemented.

Many standard packages used to simulate arti�cial neural networks for Computer

Science (such as Matlab's Neural Network Toolbox) do not include spiking neuron

models. As an initial decision for the Neural Pipeline was to use spiking neurons (as

introduced in section 3.3.1) these types of environment were not suitable.

Other environments are speci�cally designed for computational neuroscience, so

include spiking neurons. Examples of these environments include Neuron [30], NEST

[24] and BRIAN [26]. The simulators provide similar functionality and although there

may be advantages and disadvantages to each of them it is not possible to review

them without simulating the network in each of them. The investigation in this case

is not to review simulation environments, but to use one to investigate the Neural

Pipeline architecture. An extensive review of types of simulator can be found in [13].

The simulation environment that has been used throughout the investigations into

the Neural Pipeline is NEST (NEural Simulation Tool) [24]. PyNEST is a Python

interface for NEST, this was chosen as the implementation method because it is

simpler to use than the alternative SLI language [21].

4.3 Interpreting the Behaviour

Figure 4.1 shows how the columns in the behaviour graphs presented in many sections

of this chapter are made up. Each simulation run produces an output which can be

graphed in the same way as the behaviour graphs in �gure 3.4. From this trace each

individual run is classi�ed according to their behaviour type. The column shows the

total number of each type of behaviour.

The behaviour of the system is investigated in the following sections. These

sections explain how the di�erent parameters of the architecture have been tested to

identify values which promote correct behaviour.
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Figure 4.1: This diagram explains how the graphs of behaviour should be interpreted.

This bar is an example from �gure 4.12 (a) which contains all three types of behaviour

with the same parameter settings. The bar represents 100 simulation runs, all with

the same parameter settings but with di�erent randomly chosen connections within

the layers. Each of the three colours represents a behaviour type. In this case 80 of

the 100 runs are over inhibited, so have a trace similar to that shown for over. 18 of

the runs are correct and 2 are under inhibited.
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4.4 External Excitation

The external excitation provides the input from one layer to the next (these connec-

tions are labelled X in �gure 3.1). The weights on the connections dictate how strong

the input to the next layer will be. The delays determine how long the input takes

to arrive after the previous layer is stimulated. The connectivity itself determines

which inputs can be distinguished, and how many of the neurons in the layer receive

input from the previous layer. All of these choices have an impact on how the system

behaves.

4.4.1 Weights

To identify the in�uence of the external weight values on the architecture di�erent

values were tested, while leaving the other parameters �xed. The tested network has

3 layers, each with 5 neurons with a connectivity of 3. The behaviour of neuron 1 is

representative of the entire layer because in this experiment the external excitatory

connections run from all neurons in layer n to just neuron 1 in layer n+1.

Examples of the tests are shown in �gure 4.2. All of the graphs in (a) show

the membrane potential of the �rst neuron in layer 2 and the graphs in (b) show

the membrane potential of the �rst neuron in layer 3. The graphs show how the

change in excitatory weight alters the membrane potential when the same input is

provided to the system (graph (i) has the lowest value of excitatory weight and graph

(iv) has the highest). From the graphs it is possible to see that as the excitatory

weight is increased that the B2 neuron goes from producing some spikes (graph i) to

being very strongly inhibited (graph iv), represented by the large drop in membrane

potential. The oscillations seen in graphs (ii) and (iii) are seen in the transition to

under inhibited behaviour. The layer is inhibited (shown by the troughs in the graph)

but is able to recover and spike again (the peaks in the graph). At the same time as

the B2 neuron is strongly inhibited, the corresponding trace for the B3 neuron (�gure

4.2(b)(iv)) is spiking constantly. This is typical of the under inhibited behaviour,

with one layer continuously spiking and inhibiting the previous layer.

The important aspect of the �gure is the graph shape, illustrating whether the

neurons are �ring or not. The actual values of membrane potential do not give

any further insight, because they were performed on an early version of the Neural

Pipeline, so are not representative of the current architecture. The key point is

that if the external excitatory weights are set to be high, when compared

to the threshold of the neurons and the magnitude of the input, then the

behaviour can change from correct to under inhibited. Di�erent parameter

setups of the Neural Pipeline will have di�erent values where the behaviour switch

occurs. This is a future avenue to be explored (see section 4.9.1)

4.4.2 Delays

To allow the layers time to process the current data, there needs to be a

delay on either the external excitatory or external inhibitory connections,

or on both sets. It is the sum of the delay on the excitatory and inhibitory
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Figure 4.2: Each subplot shows the trace of membrane potential over time for a

particular neuron. The (a) plots show neuron 1 in layer 2 and the (b) plots show

neuron 1 in layer 3. This neuron is representative of the layer activity because the

layers are fully connected to neuron 1. The excitatory weight value is increased from

plots (i) through to (iv). (i) has value 2.0, (ii) 2.125, (iii) 2.875 and (iv) 3.0. The

peaks in the plots represent spike events. Comparing plots (i) and (iv) shows that

as the weight is increased the behaviour changes from correct to under inhibited.

Correct behaviour can be seen by the low level spiking in both (i) plots compared to

the suppression seen in (a)(iv) and high levels of excitation in (b)(iv). These together

are characteristics of under inhibited behaviour.
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delays that dictates the time available for the layer to process data. For all

other experiments on the Neural Pipeline architecture the delay has been set on the

inhibitory connections, so that the forward activity is transferred quickly between

layers, but there is a delay before the previous layer is shut o�. This decision is

arbitrary because the total time that the layer has to process the data is the same

either way round.

For the tasks presented in this thesis the absolute time that the architecture

takes is not considered important. It is the processing of data in a relative order

as it progresses through the layers of the architecture. For this reason the choice of

delay in milliseconds is not examined. A total of 6ms is chosen as a suitable delay,

because it gives each layer time to become active before being shut o�. In real world

problems the absolute time will be important, so absolute time is a consideration for

future work.

To test that the behaviour is the same whether the larger delay appears on the

excitatory or the inhibitory connections, a simulation was run with the delay of 5ms

on the excitatory connections and 1ms the inhibitory ones. The result of presenting a

`square' twice to such a system can be seen in �gure 4.3 (b) with results of presenting

same input to the original system (5ms delay on the inhibitory connections) shown

in (a). There are subtle di�erences in the two responses, but they are very similar.

The most noticeable di�erence is that the activity in layers 2 and 3 takes longer to

start, resulting in a graph which looks stepped. This is an expected consequence,

because the delay means that the activity takes longer to be passed to the next layer.

There is also a little less spiking in layer 3 graph (b) this is easily explained. It occurs

because the activity takes longer to reach layer 3 when the delay is on the excitatory

connections, but the delay to the �nal layer is the same in both cases. This means

that the last layer has less time to spike in graph (b) than (a).

The length of the delay on the inhibitory connections has been �xed at 5ms with

the excitatory delay �xed at 1ms throughout the tests on the Neural Pipeline archi-

tecture. This amount of delay allows correct behaviour to be seen with many di�erent

parameter settings (all correct runs presented here use this delay) and is su�cient

to allow recognition of the inputs presented in chapter 6. As it has been usable for

all of the experiments presented here, the delay length has not been examined. This

is a task suggested for future work (see section 4.9.1). The reason to investigate

the parameter is so that a suitable value can be chosen for di�erent requirements.

It should become increasingly important as the tasks that the architecture is being

trained to carry out become harder, because the time required per layer is likely to

increase.

Another aspect to be investigated is the in�uence of delay on over inhibited

behaviour. The length of time between inputs has some control over whether a

system is correct or over inhibited (described in section 3.4). The delay also de�nes

how many inputs can go through the system within a particular time, this suggests

that the type of behaviour will have a relationship with the delay length. Another

possibility to consider is both excitatory and inhibitory connections having a delay,

though as with switching the delays this should perform in the same way as the

original system, just with a greater delay.
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Figure 4.3: The result when square is presented twice, at times 1ms and 50ms to

a system with (a) 1ms delay on the external excitatory connections and 5ms on

the external inhibitory connections and (b) 5ms delay on the external excitatory

connections and 1ms on the external inhibitory connections.
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Figure 4.4: The di�erent external excitatory connectivity patterns that have been

tested (a) all neurons in layer 1 are connected only to neuron 1 in layer 2 and (b)

neurons in layer 2 are connected randomly to a subset of the neurons in layer 2, the

subset here is of size 1.

4.4.3 Connectivity and Topology

The majority of the tests in this chapter were carried out using excitatory connections

to only the �rst neuron in the layer, as shown in �gure 4.4 (a). This is acceptable

when carrying out tests on the behaviour without learning, but once learning is

introduced to the system this type of connectivity is no longer appropriate. This

is because all of the activity is �ltered through the �rst neuron, making each input

look the same in the second layer.

To allow the di�erent inputs to retain their di�erences from the second

layer onwards an alternative connection pattern was chosen. It connects

each neuron to multiple neurons in the next layer and therefore allows the

di�erent inputs to retain their di�erences from the second layer onwards.

This alternative is to connect each neuron in layer n-1 to a di�erent, ran-

domly chosen, subset of neurons in layer n . An example of this, with a subset

of 1 neuron, is shown in �gure 4.4 (b). The setting is 1/10 of the number of neurons

in the layer, so that it scales with the layer size. Thus a value of 10 connections per

neuron was used for all experiments with 100 neurons per layer. This was found to

provide enough activity in the layer, without over exciting it. It is because of the

possibility of over excitement that a fully connected version of excitation has not

been used. Another reason for choosing to use a sparse connectivity over a fully

connected set is that each neuron in one layer connects to di�erent neurons in the

following layer. This is likely to improve the separation of di�erent inputs as they

progress through the system, so this is the preferred choice.
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Figure 4.5: Each subplot shows the trace of membrane potential over time for a

particular neuron. The (a) plots show neuron 1 in layer 2 and the (b) plots show

neuron 1 in layer 3. This neuron is representative of the layer activity because the

layers are fully connected to neuron 1. The inhibitory weight value is increased from

plots (i) through to (iv). (i) has value 0, (ii) 1, (iii) 5 and (iv) 20. The peaks in

the plots represent spike events. Comparing the plots from (i) through to (iv) shows

that as the weight is increased the behaviour changes from under inhibited (with no

inhibition) to over inhibited. When under inhibited the traces show large amounts

of activity. When over inhibited there is barely any activity in the traces.
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Figure 4.6: The type of behaviour exhibited by the Neural Pipeline with di�erent

external inhibitory weight values. 100 runs of each value were carried out and the

behaviour of each of the runs coloured by type.

4.5 External Inhibition

The external inhibitory connections provide feedback from one layer to the previous

layer (they are represented as the Y connections in �gure 3.1). As with the excitatory

connections the weights, delays and connectivity must be decided upon. Additionally

for the inhibition there is the consideration of how to inhibit the last layer, because

it does not have a `next layer' to inhibit it.

4.5.1 Weights

The external inhibitory weights have an impact on behaviour. Initial tests demon-

strate that without any inhibition between stages, the resulting behaviour

is, unsurprisingly, under inhibited. This can be seen in �gure 4.5 graphs (a)(i)

and (b)(i) when compared to (a)(ii) and (b)(ii). Both (i) graphs show that the sys-

tem continues to spike until the end of the simulation at 1000ms, but both (ii) graphs

show that the inhibition suppresses the activity after spiking. The input is presented

for 200ms and with inhibition spiking �nishes soon after the stimulus stops.

The graphs also show that the larger the level of inhibition, the fewer spikes there

are. This can be seen by the reduction in changes of membrane potential from graphs

(i) to (iv). The inhibition will start to take e�ect after 6ms due to then total delay

on the external connections, so it is active for the majority of these graphs.

Although it can be seen that (i) is under inhibited when compared to (ii), because

it continues to spike until the end of the simulation, it is not possible to say from

these results whether the behaviour (in graphs (ii) to (iv)) is correct or over inhib-
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Figure 4.7: The number of runs with each type of behaviour, with 100 runs for each

of the inhibitory values plotted. The graphs show the transition between the di�erent

types of behaviour. Graph (a) shows the result when using mixed neurons and graph

(b) shows the result using neurons that follow Dale's Principle.
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ited. This is because only one input is presented to the system, so it is not possible

to see whether the second input is prevented by the inhibition. The in�uence of the

inhibitory weight on the system behaviour has been investigated further by compar-

ing 100 runs for inhibitory weight values between -0.5 and -1. The results of this are

shown in �gure 4.6. They show that there is an optimal value of inhibitory weight of

-0.75 for these parameter settings. In the graph even with the optimal value of -0.75

for inhibition only 15% of the runs had correct behaviour, this is not a re�ection of a

poor choice of inhibitory weight. Instead it is the high level of excitation, caused by

the high connectivity value, that is overriding the behaviour. No choice of inhibition

is able to compensate for this. Once the excitation is reduced the system can achieve

100 correct runs using an external inhibitory value of -0.75 (and a range of other

values). This is shown in �gure 4.7.

Figure 4.7 shows tests on a wider range of inhibitory weight value than �gure

4.6, with values between -0.1 and -15. The �gure compares mixed neurons in graph

(a) with Dale's principle neurons in graph (b). These graphs show that with the

correct value of connectivity (here it is set to 10) it is possible to achieve 100 runs

all with correct behaviour for a wide range of inhibitory values. The internal weight

values have are +2.5 for excitatory connections and -2.5 for inhibitory ones, and the

graphs show that the system can have 100 correct runs with external inhibition in

the range 0.3 to 5. There are some correct runs within the range 0.1 to 14 with

both types of neuron. Both types of neuron have almost the same response to the

di�erent inhibitory weight values, with the one main di�erence being that the drop

o� of correct behaviour is slightly steeper using mixed neurons. This is shown by

the less rounded appearance of the `correct' line on the mixed neuron graph in �gure

4.7 (a).

Examples of the types of response that the system gives with di�erent values of

inhibitory weight are shown in �gure 4.8 (b). Each one of these graphs represents

one individual run from the graph shown in �gure 4.6. When compared with the

behaviour de�nitions (section 3.4) they demonstrate that high external inhibition

results in over inhibited behaviour, and low external inhibition results in

under inhibited behaviour. These types of traces are used to determine the

behaviour type for all of the graphs of behaviour.

4.5.2 Delays

The delay on the external inhibitory connections is set at 5ms for all of the

experiments using the Neural Pipeline, with the exception of the test described

above in section 4.4.2. This delay has been su�cient for all of the tests performed

here, but it is likely that it will need adjustment depending on the particular task.

Investigating this is an extension to the work outlined in section 4.9.1.

4.5.3 Connectivity

The connectivity of the external inhibition in�uences the behaviour of the system.

Figure 4.8 (a) shows example runs of di�erent numbers of connections. With those

parameter settings the fully connected system, 1/2 connected and 1/3 connected are
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Figure 4.8: A visual representation of examples of di�erent types of behaviour with

(a) di�erent external inhibitory connectivity and (b) di�erent external inhibitory

weights.
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all over inhibited. 1/4 is correctly inhibited and 1/5 is under inhibited. The result

seen with di�erent levels of connectivity depends on the other system parameters.

This is not shown by these graphs, but by the other graphs presented in this chapter

because all of the other experiments use fully connected external inhibition. So for

example later in �gure 4.10 all correct runs are achieved with full connectivity on

the external inhibition. As the example in 4.8 (a) is over inhibited, this shows that

an adjustment of other parameters can have an impact.

The decision was taken to fully connect the external inhibition from

each layer to the previous one in the Neural Pipeline architecture. Al-

though from the graphs presented in 4.8 (a) this may not seem an intuitive decision,

as shown through this chapter, many di�erent parameters in�uence the correct be-

haviour of the system. It is therefore sensible to �x at least one of the parameters

and to balance the other ones to achieve correct behaviour. It was determined that

the connectivity would be �xed at 100% but using a lower weight than the examples

presented in �gure 4.8 (a).

This was decided because for correct behaviour it is necessary to reduce the

spiking in a layer to the usual background level. No noise is used in these tests,

so this background level is silent. This complete suppression is not a biological

constraint, but is a decision taken for ease of identifying the behaviour types. The

higher the background level of spiking, the more di�cult to identify from the plots

whether the behaviour is correct or under inhibited. The quickest method of stopping

all neurons at the same time is to have inhibitory connections to all of them.

4.5.4 Inhibition to the Last Layer

The last layer in the system (layer Bn in �gure 3.1) has a set of inhibitory

connections running from the system input. These connections were intro-

duced into the architecture because without giving the last layer di�erent parameters

to the other layers (which would also be possible) it relies on the inhibition to

shut it o� after �nishing processing. Without inhibition the �nal layer con-

tinues to spike until the end of the simulation as shown in �gure 4.9 (a). This is

under inhibited behaviour, for the obvious reason that the last layer is not inhib-

ited. Figure 4.9 (b) shows the associated problem that any further input cannot get

through because layer 4 is being heavily inhibited by the continuous spiking of layer

5. The same simulations with inhibition to the last layer are shown in 4.9 graphs

(c) and (d). The �nal layer is now stopped after a set delay. Graph (d) shows that

two inputs presented to the system now result in correct behaviour. Both inputs go

through all of the layers and are shut o� after a time to process.

The delay set on the inhibitory connections can either be longer than the time it

takes data to traverse the entire system, or shorter. When it is set to be longer the

input will stop its own activity in the future. This could be achieved by attaching

the inhibitory connection to any of the layers in the Neural Pipeline. The reason that

the inhibition is connected to the input, rather than to the �nal stage, is so that the

delay may be set to be shorter than the duration of the whole system. This means

that rather than stopping itself, an input will stop the signal that is currently active
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Figure 4.9: Graphs to show a particular instance of the consequences of having no

inhibitory connection to the last layer (a and b) and having an inhibitory connection

(c and d).
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on the output. This means that the output can be left on for as long as necessary

before the next signal comes.

For all of the experiments presented here the delay has been set to be longer than

the time for data to go through the Neural Pipeline. The use of a shorter delay is an

avenue for future work (section 4.9.1). Even with this constraint the actual length

of the delay in ms needs to be considered. The length of delay needed depends on

how the system is set up; with higher numbers of layers the delay must be longer.

The parameter choices for these connections are the same as those for the external

inhibition; weight, delay and connectivity. These values have been matched to the

ones used for the external inhibition connections by factoring in the di�erence in

the input magnitude and timing. For this reason the delay has been �xed at 10ms

multiplied by the number of layers. 10ms was chosen as in the initial tests it takes

less than 5ms for the activity to pass through each layer to the next. 10ms is used as

an overestimate because the delay can be too long and the system will still operate

correctly, it just means that inputs must be provided with a larger gap between them.

Also as di�erent parameter setups of the system will take di�erent lengths of time,

it is better to have an overestimate.

The delay chosen to the last layer is suitable for the experiments carried out

in this thesis. It is possible that the value used here will be unsuitable for Neural

Pipelines with more layers, because the delay is multiplied by the number of layers

so with larger numbers the potential for error is higher. This is an important aspect

to test before increasing the size of the architecture. It is discussed in the future

work section 4.9.1.

The weight on this inhibitory connection is set to be 10 times larger than the

inhibitory weight between the other layers. This is because the number of spikes in

the input is much lower than the number of spikes in the other layers. As the input

size and the activity in the layers is di�erent in di�erent simulations it is not possible

to �nd a precise value. 10 spikes on input is typical this tends to produce upwards

of 100 spikes in the layers. This is the reason that 10 was chosen for the multiplier.

If the inhibition was taken directly from one of the layers then the multiplier would

not be needed.

The inhibitory connections to the �nal layer are fully connected from the spike

generator that provides the system input. Full connectivity was considered a suitable

choice, because the layer must be completely quiet before the next input. It is the

same as for the other inhibitory connections.

It is important to note that no attuning has taken place with these parameters.

These values were chosen for the reasons outlined above and they work correctly for

the architecture as it has been tested. Once determined the chosen values were not

altered for any of the experiments, which shows robustness. The values do not need

to be precise, as with the other parameters they must be balanced. For example if

the connectivity was decreased then the weight value should be increased to maintain

the same overall level of inhibition.
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4.6 Internal Layer Parameters

The connections within each of the layers are known as the internal connections. The

internal connections have the same choices for parameters as the external connec-

tions: level of connectivity, weight and delay. In each layer there are both positive

and negative connections and there are two di�erent con�gurations of these. Each

experiment uses either one of the con�gurations. The �rst con�guration is to have

every neuron with a mixture of excitatory and inhibitory connections from it to other

neurons. The second follows Dale's principle, so each neuron only has connections

that are either excitatory or inhibitory going from it to the other neurons. This is

explained in more detail in section 2.2.3.

The following sections describe how the weight, delay and connectivity values

were chosen for the Neural Pipeline architecture. They also illustrate how these

parameters can be changed to in�uence the system behaviour.

4.6.1 Weights

The Neural Pipeline architecture has both excitatory and inhibitory weights within

the layers. Early versions of the architecture had only excitatory weights, but in-

hibitory weights were introduced to reduce the level of spiking within the layers.

As seen earlier in section 4.5.1 high levels of spiking are a trait of under inhibited

behaviour, so are undesirable. The distribution of the weights on the connections

within the layers determine whether the network follows Dale's Principle. When

they are distributed so any given neuron has only positive or negative weights on

its output connections, then the network follows Dale's Principle, otherwise they are

mixed. In all tests where mixed neurons are used each neuron has an equal number of

positive and negative output connections. All of the tests using Dale's principle have

used half excitatory and half inhibitory neurons. Half of each type of neuron was

chosen because it allows a balance of excitation and inhibition. It was determined

that this parameter would not be investigated, because the weights on the excitatory

and inhibitory connections could be altered instead of the number of each type of

neuron. Varying the number of each type is a possibility discussed in the further

work section 4.9.1.

Some tests have used randomly chosen internal weights within a range of values.

Others use �xed values for all connections of plus or minus the same value. As the

randomly chosen values are uniformly chosen the average value of these two sets

of values is the same. The weights were �xed (to plus or minus the weight value)

for many of the experiments so that the impact of the other parameters could be

explored without randomised weights.

The graphs shown in �gure 4.10 illustrate how the behaviour changes with dif-

ferent internal weight values. The connectivity is also varied in these graphs to show

how this relates to the weights. The other parameters are �xed throughout, with 50

neurons per layer and 5 layers.

It can be seen by comparing �gure 4.10 (a) and (c) that the advantage of

having a low internal weight value is that it is possible to have a wider
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Figure 4.10: The type of behaviour found during 100 runs of each value of connec-

tivity between 10 and 90, for layers with internal weight values of (a) 1 and -1, (b)

2 and -2 and (c) 3 and -3.
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choice of number of connections per neuron with 100% correct behaviour.

With larger weight values the overall number of correct runs is smaller, particularly

at high values of connectivity. With a weight value of 3, only 10 connections per

neuron has 100 correct runs, but with a weight value of 1, up to 60 connections per

neuron still generated 100 correct runs. Therefore low weight values are more robust

to variation in the number of connections. This shows that even if the values

chosen for the architecture are not optimal, choosing other values well

can compensate. So here even if the weight value is high, having a lower

value of connectivity can still allow the system to have a high probability

of producing a correct run. Conversely if the weight value is chosen wisely there

is a large choice of connection values that will be likey to provide correct behaviour.

4.6.2 Delays

The delays on the internal connections have not been altered during the

development of the Neural Pipeline architecture. This is because it is not

necessary for these connections to have long delays, or di�erent delays to one an-

other in order for the architecture to perform correctly. 1ms was chosen as a �xed

parameter for the delays, because it is a small delay and is the same value as on

the external excitatory connections. If the application that the architecture is being

used for requires delays within the layers, for example to improve the training then

they can be introduced. For example the delays of a network are trained in [33].

This may require parameter changes elsewhere, but should not stop the architecture

operating correctly. This is discussed in the future work section 4.9.1.

4.6.3 Connectivity

The connectivity within the layers of the Neural Pipeline architecture has an impact

on the type of behaviour that the system exhibits. Preliminary tests here show how

this changes with the size of the layer.

Figure 4.11 shows the results of 100 di�erent simulation runs of each connectivity

value for layers of (a) 20 and (b) 50 neurons. Figure 4.12 shows the same experiment

with layer size (a) 100 and (b) 250. The graphs are plotted every 10 connections until

there are no correct runs. These graphs show that it is possible to achieve

all 100 runs with correct behaviour for each of these layer sizes. They also

indicate that there appears to be an upper limit for connectivity that gives 100%

correct behaviour. This appears to be at 40 connections per neuron. The transition

was examined more closely for 100 and for 50 neurons, and the largest number of

connections with 100 correct runs was found in both cases to be 42. The way that

the other types of behaviour start to take over gradually, suggests that lower values

of connectivity have a higher probablity of achieving correct behaviour, and is the

reason for choosing a low connectivity value in the �nal architecture (chapter 3) and

for the learning experiments presented in chapter 6. This connectivity constraint

is not a biological one, it depends on the other network parameters used. Here

the network is small, measured in hundreds of neurons compared to the billions of

neurons found in the brain. For this reason the threshold of each neuron is set to be
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Figure 4.11: The type of behaviour over 100 runs of di�erent values of connectivity

with layer sizes of (a) 20 and (b) 50 neurons.
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Figure 4.12: The type of behaviour over 100 runs of di�erent values of connectivity

with layer sizes of (a) 100 and (b) 250 neurons.
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low so that a few input spikes are su�cent to produce an output spike. This means

that the limit on connections for the architecture is low when compared to biology.

The smaller layer sizes have correct behaviour with a higher proportion

of connections compared to their size. In the 20 neuron case with 20 connections

per neuron (enough to be fully connected) all 100 runs show correct behaviour. With

50 neurons per layer and 50 connections 97 of them are correct. However in the larger

sizes of network there are many fewer correct runs when the connectivity is the same

size as the layer. Size 100 has only 18, and size 250 already has 0 correct runs by a

connectivity of 230.

The region in which over inhibited behaviour is more frequent is much larger

for the higher layer sizes. In �gure 4.11 (a) there are no instances of over inhibited

behaviour, as the connectivity is increased the system tends towards under inhibited

behaviour. In the largest tested layer size of 250 neurons (�gure 4.12 (b)) there is

a region of 100% over inhibited behaviour between connectivity 80 and 100. This

over inhibited region provides an area of compromise for these layer sizes. If for

some reason the connectivity of the network had to be higher than 40 (where 100%

correct behaviour stops) then while in an over inhibited region (between 50 and 100)

the time between inputs could be increased to change the behaviour to correct (see

de�nitions of behaviour for why this occurs 3.4).

Depending on the application, it may be acceptable to have an expectation of

correct runs less than 100% of the time. If other factors dictate the layer size and

connectivity then the simulation could be run multiple times and the output could

be taken as the most frequently produced response. The system can be tailored to

whether a correct response is most important, or the initial setup of the architecture.

The regions of behaviour are an interesting result, although the main result to

be taken from these graphs is the usable region of correct behaviour. There are

likely reasons for the other regions of behaviour, which are discussed here. These

reasons are speculative, and have not been investigated further because only cor-

rect behaviour is desirable and these graphs were used to select a connectivity that

provides a high level of correct runs. Suggested reasons are given here and ways to

investigate whether they are true are suggested as further work (section 4.9.1).

The under inhibited region starts to appear as the connectivity is increased. With

high levels of connectivity every neuron is connected to more of the other neurons.

This means that every spike generated can produce more spikes, meaning that the

activity level is higher than with lower connectivity. It is thought that the inhibition

between the layers is unable to completely suppress this increased activity, so the

behaviour becomes under inhibited.

There are two aspects that may suggest the switch to completely under inhibited

behaviour is unexpected. One is that there are 50% inhibitory connections in each

of the layers, so these neurons should prevent the activity getting too high. It is

believed that the inhibition within the layers will limit how high the activity is able

to become, but this limit is higher than the level of activity required to cause under

inhibited behaviour. The random allocation of the connections may also have an

impact on this, as although the average connectivity is the same, individual neurons

may be very active and therefore di�cult to inhibit. The second aspect is that the
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Figure 4.13: A graph illustrating the probability of a neuron having a particular level

of membrane potential. A neuron is able to have a more negative value of membrane

potential than positive. This is because the threshold voltage setting means that it

is not possible for a neuron to be in the shaded region of the graph.

amount of external inhibition should increase too, as the activity in all layers should

increase with the connectivity. It is thought that the delay on the inhibition means

that the �rst layer can start spiking more heavily, so it is harder for the second layer

to stop it.

The over inhibited behaviour is not seen at all for low numbers of neurons and it

increases as the number of neurons is increased (see �gures 4.11 and 4.12). With 250

neurons per layer (�gure 4.12 b) there is a clearly de�ned region of over inhibition.

This region appears at a higher connectivity than the correct region, but lower than

the under inhibited region.

Two di�erent hypotheses are proposed to explain the behaviour. They are sug-

gestions to be tested in future work (section 4.9.1). The �rst relates to the over

inhibited behaviour, so explains the transition for the 20 neuron case. The second

may explain the two transitions with larger numbers of neurons.

Hypothesis 1 is that as the amount of activity in each of the layers increases,

the balance of the layer will become increasingly inhibitory. This is because the

neurons are able to store a large amount of inhibition. Storage in this case relates to

the value of the membrane potential, and how long it remains at the value. Figure

4.13 illustrates how the neurons are able to store inhibition but not excitation. Every

inhibitory spike received as input will decrease the membrane potential of the neuron.

This is di�erent to the excitatory case, because as soon as the membrane potential

reaches the threshold it is reset. This means that a layer can store inhibition over

longer periods than excitation. As the connectivity of the layer is increased, more

activity will be present, and the layer will have more neurons with a higher level of

inhibition. This will make over inhibited behaviour more likely.

The second hypothesis relates to the multiplication provided by the weights on
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the external excitatory connections. This means that each layer has more spikes than

the previous layer. It is suggested that when the system is operating in the correct

behaviour region the balance of spikes in layers 1 and 2 is correct, so that 2 shuts o�

1 but not so strongly that it cannot respond to the next input. In the over inhibited

region it is proposed that the activity in layer 2 is `too high' when compared to layer

1 so it stops the next input. Importantly in the over inhibited region the activity in

layer 3 is not `too high' when compared to layer 2, or it would stop this occurring.

In the under inhibited region layer 3 is now `too high' compared to layer 2. This

allows the second input to pass through layer 1 but no further, because layer 2 is

being strongly inhibited. This means that layer 1 can continue spiking, uninhibited,

and cause under inhibited behaviour.

4.6.4 Dale's Principle

Dale's Principle [20] (described further in section 2.2.3) states that almost all neurons

are either excitatory or inhibitory. The neurons in the earlier tests of the Neural

Pipeline architecture described above (�gures 4.11 and 4.12) use neurons that have

both excitatory and inhibitory connections. To make the architecture more similar

to a biological neural network, Dale's Principle was introduced. The impact of this

upon the system behaviour can be seen in �gure 4.14 (a) when it is compared with

�gure 4.11 (b). It is possible to see that there are several di�erences between the

two graphs. Firstly the region with 100% correct behaviour is shorter in

the system that uses Dale's Principle. Only connectivity 10 has 100 runs with

correct behaviour, as opposed to up to connectivity 40 without. This alone would

make it seem that the system using separate excitatory and inhibitory neurons is

less desirable than the mixed neuron version. However when the rest of the graph is

considered, when Dale's Principle is used there are some (although a low

number of) correct runs for all of the connectivity values tested. When

mixed neurons are used, the correct runs stop at 150 connections. This observation

is consistent with the earlier comparison of mixed and Dale's neurons for di�erent

external inhibitory weights in �gure 4.7. In that case too Dale's principle neurons can

produce correct runs at more extreme values than mixed neurons. The system using

Dale's Principle has fewer over inhibited runs per column, but these too continue for

all of the values of connectivity after the correctly inhibited region.

It is likely that the continuation of correct runs at large connectivity values is

due to the more extreme possibilities of connection when using Dale's Principle.

By this it is meant that when mixed neurons are used the extreme values tend to

be averaged out, because each of the neurons has equal numbers of excitatory and

inhibitory connection. With Dale's Principle it is more likely that a neuron

can extremely excite or inhibit other neurons. This means that for some of

the runs the activity is kept at the right level for correct and over inhibited

runs. The reason that 100% correct behaviour �nishes at a lower connectivity value

is probably similar. The more extreme values make it likely that some of the runs

with low connectivity will be incorrect. As with the results for the system without

Dale's Principle, this reasoning is speculative and has not been tested here, because
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Figure 4.14: The behaviour over 100 runs for di�erent values of connectivity when

neurons that follow Dale's Principle are used. Graph (a) shows the situation when

the input is presented to both inhibitory and excitatory neurons and graph (b) shows

the case when the input is only presented to the excitatory neurons.
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the correct region is the area that has been concentated on. Instead it represents

another possibility for future work (section 4.9.1).

Neurons that follow Dale's Principle were chosen for the Neural Pipeline archi-

tecture, because they are more biologically realistic and because it had been shown

here that with low connectivity values it is possible to achieve 100 correct runs. The

ability to �nd a number of correct runs even with very high values of connectivity is

also considered to be an advantage, although there is a trade o� with the size of the

region with all correct runs.

The result when Dale's Principle is used, but the stimulus is provided only to

excitatory connections is shown in �gure 4.14 (b). There are clear di�erences between

this and the case when the input is presented to both excitatory and inhibitory

neurons (�gure 4.14 (a)). The correct behaviour is all in the region of 70 connections

per neuron or fewer, there are no correct runs at higher levels of connectivity. There

are more over inhibited runs in the over inhibited region in graph (b) than graph

(a). The drop o� in correct behaviour is worse when only excitatory inputs receive

a stimulus.

It is thought that when the stimulus is presented to just the excitatory neurons

there is much more stimulation initially. This will mean there is a much lower chance

of correct runs occurring, because the inhibitory neurons do not get the chance to

keep the activity within the layer low enough for correct behaviour. It is for this

reason that the input stimulus in the Neural Pipeline architecture is presented to

both excitatory and inhibitory neurons.

The connectivity is varied at the same time as the external inhibition to identify

how the parameters interact. The result of this is given in �gure 4.15. The graph

shows that the connectivity has much more of an impact than the external

inhibition for the values tested. With a high level of inhibition there are more

correct runs, but the variation between the highest and lowest values is small. The

low connectivity levels perform consistently well independently of the inhibition.

With very high levels of connectivity a slight improvement is found by using larger

levels of inhibition. This suggests it is more important to choose a good value of

connectivity.

4.6.5 Number of neurons in a layer

The number of neurons needed within each of the layers is in�uenced by the size of

the input required. This is particularly important if the each input is presented to

a di�erent neuron to avoid compression, as is the case in the experiments presented

here. This means that the size of the input is the minimum layer size. If the input

can be compressed then this restriction does not apply.

Larger layer sizes allow larger inputs, however there is a limit to this

depending on the settings of other parameters, particularly the external

inhibition. It shows the importance of using reasonable values for each of the

parameters, rather than a `perfect' value for just one of them.

When considering the impact of layer size on the behaviour of the system, 100

runs of layer sizes from 10 to 100 were run. This used an early version of the
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Figure 4.15: The number of correct runs out of 100 for each of the di�erent parameter

settings, when varying both the external inhibition and the internal connectivity. The

system uses Dale's Principle neurons.
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Figure 4.16: The type of behaviour exhibited by the system, when using di�erent

numbers of neurons in the layers. All layers have the same number of neurons and

100 runs of each layer size are run.

architecture with connectivity of the same size as the layer. The results of this test

are shown in �gure 4.16. The number of correct runs drops steeply as the number of

neurons is increased above 60. This result, however, is actually thought to be because

of the connectivity of the layers. The results presented in the previous section (4.6.3)

show why this is the case, as it is shown that networks with layers of 250 neurons

can exhibit correct behaviour.

The input for the system was the same throughout the experiment, with 2 neurons

receiving the input. This meant that the proportion of the neurons in the layer that

received the input varied depending on the size. To make sure this did not in�uence

the results a scaled input test was carried out, with 10% of the neurons receiving

the input. The results of this can be seen in �gure 4.17. This graph shows the

same pattern of reduced correct runs with increasing numbers of neurons

as �gure 4.16 shows with the unscaled input. Therefore the argument that the

connectivity is the cause of this behaviour (section 4.6.3) is not disproved by

this.

There are some di�erences in the two graphs, �rstly there is no under inhibited

behaviour when the input is scaled, and secondly the behaviour stops being correct

at lower numbers of neurons with a scaled input. This is suggestive that there is a

limit for input size that will provide correct runs.

The number of neurons in a layer also has an impact on the transition between

behaviour types with varying connectivity. This is shown in �gures 4.10, 4.11 and

4.12 and is described in the previous section. With low numbers of neurons there is

no over inhibited region, but as the number of neurons is increased the over inhibited

region increases in size.
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Figure 4.17: The type of behaviour exhibited over 100 runs for each layer size, when

the stimulus size is scaled with the layer size.

The size of the layers is one of the most varied parameters in the experiments

carried out. Layer sizes of up to 10,000 were tested to identify the largest input size

for di�erent sizes of layer with di�erent internal weight values, with layers as small

as 5. Other experiments in this chapter use di�erent sized layers with 50 and 100

being the most frequently used.

Throughout the experiments presented here each of the individual Neural Pipeline

layers is set to the same size as one another. This was a decision taken for simplicity,

and because introducing di�erent layer sizes in one Neural Pipeline introduces a

combinatorial choice. As there are too many parameters to investigate fully during

the scope of this work this is one option chosen not to be investigated. It does provide

another possibility for future work as described in section 4.9.1.

4.7 Input

The input that the system is required to process also in�uences the parameter choices

for the Neural Pipeline. The experiments presented here are concerned with the

throughput of the system and with the input size. The throughput is considered by

looking at how long it is necessary to wait between inputs. The input size is the

number of input neurons that can be activated simultaneously. The parameters that

must be changed to allow larger inputs are discussed.

For the experiments presented in this thesis the inputs are presented and then

stopped after 10ms. With the exception of the experiments with a noisy input in

section 6.5, the spikes appear at regular intervals of 1ms. This level of spiking was

chosen because it provided su�cient activity in the �rst layer to see correct behaviour.
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Figure 4.18: A graph to show the type of behaviour found with di�erent lengths of

time between two inputs.

An extension to this proposed for future work (see section 4.9.1) is to provide the

system with a continuous input. The architecture should then break up the input

from a continuous stream into blocks, using the external inhibition. This may be a

useful extension, because splitting the continuous stream permits the output to be

given at a particular time.

4.7.1 Time between inputs

The throughput of the system varies depending on the parameters that are used.

The initial experiments presented here show that the crossover between correct

and incorrect behaviour has a sharp cut o�. With a layer size of 50 neurons,

the switch occurs with a 45ms gap between inputs, lower than this the behaviour is

over inhibited and higher than this the behaviour is correct. This is shown in �gure

4.18. This shows a well de�ned limit for how long the gap between inputs must be.

4.7.2 Size of input

The input size, in these experiments, is taken to be the number of neurons in the

�rst layer that receive an input. Larger inputs require a larger layer size, if each

input is to be presented to a di�erent neuron on the �rst layer. This is used for all

of the experiments presented here, to avoid the input being compressed.

Larger inputs can also provide more excitation in the �rst layer, this means that

some of the parameters can be adjusted to promote correct behaviour for di�erent
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sizes of input. This is shown for the internal weight values in �gure 4.19. There are

200 neurons per layer in this test and di�erent input sizes are used with each internal

weight value, (a) has the highest internal weight value of 1 and (d) the lowest at 0.1.

With a weight of 1 the highest input size where all 100 runs are correct is 24, but

once the weight is dropped to 0.25 the system can handle 45 inputs with all 100

runs behaving correctly. A weight of 0.5 results in 100 correct runs for 30 inputs,

between these two values. It appears from these results that 45 may be a limit (or

approaching a limit) for a network using these parameter values, even if the weight

is reduced. This is backed up by the results shown in table 4.1, where even with

layer sizes of up to 10000 neurons, with weights as low as 0.001, the highest number

of inputs with 100 correct runs is 45.

To allow larger numbers of inputs to be presented to the system the

external inhibition can be lowered. With a lower inhibition level the system

does not become over inhibited as quickly with large numbers of inputs. With an

inhibitory weight of -0.3 it is possible to have 81 inputs with a layer size of 81

neurons. This is the largest input size that has been tested, because it is the size

of input required for the learning experiments in chapter 6. However, adjusting the

parameters further should allow larger inputs still.

No. of Neurons Weights Highest 100% Correct Inputs

200 0.25 45

200 0.1 45

200 0.05 45

500 0.5 25

500 0.1 45

500 0.01 44

500 0.005 44

1000 0.005 44

10000 0.001 44

Table 4.1: The highest number of inputs with 100 correct runs for di�erent layer

sizes.

Another point to note from the graphs presented in �gure 4.19 is that as the

internal weights are decreased the switch in behaviour from correct to over inhibited

is much more sudden. With weights set to 1 (graph a) there are several sizes of input

with some correct runs and some over inhibited runs, but when a weight of 0.25

(graph b) is used, the transition is from 100 runs correct to 100 runs over inhibited.

This suggests that changing some parameters can make the other parameter choices

more sensitive.

For other parameters, the transition between behaviour types is less clear, for

example when internal weights of 0.5 are used. In this case the number of correct runs

starts to decrease, then increases sharply before decreasing again. The graph is shown

in �gure A.8 (b) in the appendix. This is not considered to be a problem, because

the parameters are chosen to be within the correct region, not near the boundary.

Also this particular example may be an artefact of the simulation environment being
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Figure 4.19: The behaviour type for 100 runs of each number of active inputs, with

di�erent internal weight values. (a) has a internals weight of 1, (b) 0.25 and (c) 0.1.
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used, because internal weight values either side of this (0.49 and 0.51) show a smooth

transition. These graphs are presented in �gure A.8 in the appendix.

The size of input was also investigated with regard to the layer size in section

4.6.5. Figure 4.17 shows that there are no correct runs with over 70 neurons with

7 inputs, whereas in �gure 4.16 over 50 of the 100 runs are correct with 70 neurons

(and only 2 inputs). This suggests the same response as the results presented in

table 4.1, that there is a limit for the size of input, even as the layer size is increased.

The limit in the case of �gure 4.17 is lower than in the table, but this is because the

architecture was not as developed in 4.17 and used di�erent parameter settings. It

still provides additional evidence for the limit of input size, with the weight values

constant.

4.8 Pieron's Law

A biological trait that falls naturally out of the operation of the system is Pieron's

Law. Pieron's Law describes the relationship between stimulus intensity and reaction

time. This relationship is given in equation 4.1 where RT is the average reaction

time, R0 is the minimum possible reaction time, I is the stimulus intensity and k

and β are constants. Figure 4.20 gives a generalised graph of Pieron's law.

RT = R0 + kI−β (4.1)

Figure 4.20: A graph of Pieron's Law adapted from a more speci�c graph in [62].

It is perhaps unsurprising that an integrate and �re neuron follows Pieron's Law,

because the larger the number of inputs (or the larger the input weight) the sooner
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Figure 4.21: Graph (a) shows the amount of time a single neuron takes to �re when

the stimulus intensity is varied. Graph (b) shows the time that it takes for layer 5 to

produce a spike with di�erent stimulus intensities in a Neural Pipeline with 5 layers.
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the membrane potential reaches its threshold. There will be a limit to the speed of

the response, based on the smallest possible rise time to the threshold. This was

tested using a single LIF neuron in NEST and the result is shown in �gure 4.21 (a).

When this response is compared with 4.20, the graph shape is the same in both. This

suggests that Pieron's Law holds for LIF neurons. It does not necessarily follow that

Pieron's Law is applicable in a Neural Pipeline. To test this for a �ve layer Neural

Pipeline the frequency of the input was varied and the �rst spike response from the

last layer was measured.

The result of a single test is shown in �gure 4.21 (b). A comparison of �gures 4.21

(b) and 4.20 shows that the pipeline is consistent with Pieron's law for this example.

Taking the average over �ve input stimuli and �ve di�erent setups produces the same

graph shape. Varying the number of layers does also. All of these graphs can be

found in the appendix in �gures A.9 and A.10.

4.9 Discussion

The experiments presented in this chapter demonstrate how the behaviour of the

Neural Pipeline architecture is in�uenced by the di�erent parameters. The various

tests have also justi�ed the design decisions that were taken during the development

of the Neural Pipeline architecture.

The parameters can be broken down into: external inhibitory connections, exter-

nal excitatory connections, internal parameters and the input. Both sets of external

connections have weight, delay and connectivity. The internal connections also have

these parameters with the additional parameter of `number of neurons'. The input

can be varied by altering how many neurons receive it, and by altering the time delay

between inputs.

Each parameter in�uences the behaviour to a di�erent extent and it is the balance

between these parameters that produce correct behaviour. The key parameters that

have been found to alter the system behaviour are the external inhibitory weight,

the internal connectivity and the size of input. These parameters control the activity

seen within the layers and the inhibition used to stop this activity. The results show

how the parameters interact, so that if a particular value is required for one of them

then the other parameters may be altered to produce correct behaviour.

To increase the chance of correct behaviour a low value of internal connectivity

should be used. A value of 20 connections per neuron gives 100 correct runs out of

100 for sizes of layer between 20 and 250. As the size of the layer is increased it is

possible to increase the connectivity and still achieve 100% correct runs. When Dale's

principle is introduced, a connectivity value of 10 is required for 100 correct runs.

This is the connectivity value that has been used for the Neural Pipeline architecture.

The low connectivity values also perform consistently well with di�erent external

inhibitory weight values.

When the external inhibition is investigated, high values of inhibition result in

over inhibited behaviour and low values in under inhibited behaviour. This is ex-

pected from the de�nitions of over and under inhibited behaviour. In the experiment
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which investigates external inhibition only a small proportion of the results are cor-

rect. This is a limitation of the other settings for this experiment and not a limitation

of the system, because it is demonstrated in other tests that these values of inhibition

can produce 100 runs of correct behaviour out of 100.

It is found that the size of input can be increased by increasing the number of

neurons within a layer. There is a limit to this while leaving the other parameters

�xed. With external inhibition set to -0.75 (as identi�ed in section 4.5.1) 45 is

the maximum number of inputs to produce 100 correct runs. However, setting the

external inhibition to -0.3 allows a larger input size to be used (here 81).

The balance required is between the amount of activation in the layer and the

amount of external inhibition. Many of the parameters, including the size of the

input and connectivity, contribute to the activity within a layer. When there is more

activity within a layer then there needs to be correspondingly more inhibition to

switch it o�. It is this activity level that determines whether behaviour is correct,

with too much activity the incorrect behaviour types become more likely. This is

seen by increasing the size of the input or the connectivity.

The weight values and threshold values of the neurons are likely to have the same

type of impact as the size of input and connectivity, because e�ectively they are all

controlling the level of activity within the layer. These parameters were not chosen

to be tested, so are addressed in the following section.

All of the tests presented here use 100 runs for each parameter setting, so where

there is 100% correct behaviour it means that 100 runs were correct. It is possible

that if more runs are examined there will be some incorrect responses. The results

re�ect the probability of getting a correct run rather than a certainty. The trends

they show increase the likelihood of choosing values that will provide correct runs.

For example, low values of connectivity tend to produce more correct runs.

The results presented in this chapter illustrate that there is a wide range of param-

eter values in which the architecture produces a correct response. If one parameter

must be set to a particularly high or suboptimal value, then the other parameters

can be adjusted so that the architecture performs correctly.

4.9.1 Further work

The tests presented in this chapter have cover the parameters that were considered

to have the largest impact on behaviour. Due to time constraints other parameters

have not been investigated (or not investigated extensively) in the development of the

architecture. These include the threshold of the neurons, the external weights, the

internal delays and the internal weights. The in�uence of changing these parameters

should be examined.

Rather than vary each of the parameters individually and compare their e�ects,

an estimate of their in�uence on activity within a layer could be produced using

a model that approximates the system. The parameters could be balanced using

this model. It would not be possible to �nd the exact level of activity in the layer

because of the random connectivity. This is not necessary, however, to balance the

parameters.
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The tests on the architecture consider layers processing time relative to one an-

other to determine the behaviour type. The absolute time that it takes for the

architecture to process is not examined. When the architecture is used for real world

tasks the time taken is important, with a shorter time being advantageous. It is

the summation of the delays on the external connections that dictates the time that

the architecture takes to perform a task. The shortest time should be identi�ed by

reducing the delays until the behaviour is no longer correct. The delay could appear

on the external excitatory connections, the inhibitory ones, or both. Di�erent choices

of delay set up may be preferable for di�erent tasks and these should be established.

In the current architecture the delay to the last layer is set so that an input will

provide a signal that will inhibit its resulting activity. This is because the delay is set

to be longer than the time it takes for the activity to reach the last layer. It is possible

to allow the last layer to continue to remain active until the next input is presented

to the system by reducing the delay. This may be advantageous if the output from

the system is still required, but the information content degrades over time. The

extent of this degradation should be investigated to identify the limitations of this

shorter delay length.

The delay to the last layer is multiplied by the number of layers so that it scales

with the system size. The delay length has been suitable for this work using fairly

small numbers of layers (three or �ve). It is important to test the suitability of this

delay when carrying out tests with larger numbers of layers. In these cases the delay

length is increased, so if there is a slight error with low numbers of layers then it will

be made bigger.

Two hypotheses for the di�erent regions of activity were presented in section 4.6.3

should be tested. If hypothesis 2 is correct then it suggests a way to improve the

extent of the correct region by reducing the weight value on the external excitatory

connections to reduce the level of multiplication in each layer. The reasoning sug-

gested for the change in this behaviour when Dale's Principle is introduced (section

4.6.3) should also be investigated.

The in�uence of di�erent numbers of neurons in di�erent layers on the system

behaviour should be investigated. It may be that by reducing the number of neurons

in later layers, under inhibited behaviour could be converted to correct behaviour,

by limiting the excitation within the layer. This might also be achievable by varying

di�erent parameters in the di�erent layers, so that the activation level is controlled

independently for each layer.

The input to the system is a factor that should be explored. In these experi-

ments the input is presented for a burst and then stopped, but understanding the

system's response to a continuous input will be important for applications. The lay-

ered structure of the architecture should split the input into bands of activity to be

processed. This may mean that some portions of the input would be ignored, which

may reduce the system's ability to respond correctly to inputs. An alternative form

of the architecture which may be more appropriate for continuous input is suggested

in section A.2.
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4.9.2 Summary

The key to increasing the probability of correct behaviour is to balance the internal

layer activity with the external inhibition. The activity is controlled by a number of

parameters including the internal weights, connectivity and input size. They can be

adjusted to correctly balance with the external inhibition. Typically, low values of

connectivity are preferred, to keep the activity low. The number of neurons in the

layer is also important, for larger inputs the number of neurons needs to be increased.

This may need coupling with a reduction in external inhibition, depending on the

input size.

This chapter has explored the in�uence of the di�erent parameters on the system

behaviour, but there is still variance between simulations with the same parameter

settings. The following chapter analyses the di�erence in behaviour between these

simulations. The use of parameters to controlling the system behaviour allows suit-

able choices to be made for the architecture for the application of learning. This is

described in chapter 6.
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Analysis of Behaviour

5.1 Introduction

In this chapter the Neural Pipeline architecture is analysed in two ways. The �rst

relates to the system behaviour; the architecture is able to demonstrate three fun-

damental types of behaviour. The analysis investigates the system properties that

cause di�erent simulation runs to exhibit di�erent types of behaviour. The second is

an investigation into how di�erent inputs can be identi�ed by the system, and how

the layers in�uence this identi�cation.

The behaviour of the system can be altered by changing the system parameters

as identi�ed in chapter 4, but it is also shown that the behaviour changes between

di�erent simulation runs using the same parameter values. The only changes be-

tween simulation runs are the randomly chosen internal layer connections. Di�erent

properties of these connections are considered to identify their in�uence on the be-

haviour. These properties are the number of self connections, the value of the weights

on each neuron's inputs and the number of input connections that each neuron has.

The di�erence in each property is examined for examples of the three di�erent types

of behaviour. From this it is suggested that extreme weight values on individual

neurons contribute to incorrect behaviour.

In order for a layer to be able to identify inputs, when di�erent inputs are pre-

sented to the system the internal response should also be di�erent. Each input

should cause di�erent neurons in a layer to �re at di�erent times. Analysis of the

distinguishability of two di�erent input signals is performed using a metric which

compares the number of times each neuron �res for di�erent inputs. Using this met-

ric it is possible to identify how identi�able the signals remain over time and through

the di�erent layers of the architecture. This provides an indication of how easy it is

for the system to be trained on sets of inputs. Inputs with more distinct responses

within the layers are easier to train the system on.

5.2 Behaviour Analysis

As correct behaviour is the desirable behaviour type it is bene�cial to identify a sys-

tem property that causes a particular simulation run to exhibit correct behaviour.

More generally it is interesting to identify why each behaviour type occurs, though

this is not necessary to use the architecture. In chapter 4 the parameters that have

most impact on behaviour are identi�ed as the internal weights, external inhibition

and the connectivity. Together, these parameters control the amount of activation
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within the layers and the amount of inhibition needed to suppress them. The con-

clusion from this is that correct behaviour is caused by balancing the activation with

the inhibition used to shut o� the layer. This is not the only requirement, because

incorrect behaviour can be seen in some simulations even when these parameters are

balanced. The only di�erence between the simulation runs is the randomly allocated

connections within each of the layers. This means that the particular connections

between neurons have an impact on the behaviour of the system.

The analysis in this section is therefore concerned with the layer connectivity,

and attempts to �nd a general property of this connectivity that will indicate the

probability of a run being correct. For a particular parameter set the `connectivity'

is �xed, so all of the neurons have the same number of outgoing connections. This

is not true of the incoming connections to each neuron, because for each connection

the target neuron is chosen randomly from all of the neurons in the layer. This

means that some neurons have more incoming connections than others. This will

give them di�erent incoming weight values, even when randomised weights are not

used. For this reason the weights and number of connections that go to each neuron

are examined in the following sections. Additionally, as self-connections are able to

cause a neuron to keep itself spiking they are considered as a possible contributor to

the behaviour.

5.2.1 Self Connections

The number of self connections that each neuron has is important, because the more

self connections there are in the network, the more extreme the spiking could become.

In a situation where a neuron only requires one input spike to produce an output

spike a neuron will be able to keep itself �ring inde�nitely. This may not be as

extreme using the thresholds chosen for the neurons in the simulations presented

here, because each neuron requires multiple spikes to produce an output. From

testing using these parameters it is found that six spikes of weight 1 are required to

produce an output. If a neuron has multiple self connections then it will be more

likely to maintain spiking.

To identify what impact the number of self connections has on the behaviour,

three di�erent examples of each type of behaviour are compared. This is shown in

�gure 5.1. From these examples it can be seen that there is no trend for the number

of self connections per neuron with behaviour type. There are some �uctuations

between runs, but all show a mean of close to 1 connection per neuron. The median

value of all three runs for each behaviour type is 1 self connection per neuron, for all

of the layers.

The number of self connections that each neuron has is therefore not

a measure that can be used to determine the type of behaviour that a

particular con�guration of connections will exhibit.

5.2.2 Input Weights

As the target neurons are chosen from the neurons in the layer with equal probabil-

ity, not only do di�erent neurons have di�erent numbers of connections they have
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Figure 5.1: The mean number of self connections per neuron for each type of be-

haviour. There are three di�erent runs of each behaviour type.

di�erent total weight values on their inputs. The larger the weight values are the

more quickly a neuron can be in�uenced, because integrate and �re neurons follow

Pieron's Law (introduced in section 4.8). In the examples where randomised weight

values are used the sum of inputs is continuous, but in the cases where a �xed weight

is used the sums are discrete values (multiples of the �xed weight). The results pre-

sented here (�gure 5.2) use randomised weight values, because it is easier to compare

graphs where the values are spread out rather than clustered about the same points.

To identify the di�erence in connection weight for the three types of behaviour an

example of each di�erent behaviour type is examined. The sum of the input weights

for each neuron is made up of both excitatory and inhibitory weights. The total of

both values are plotted as coordinates for every neuron in the �rst layer in �gure

5.2. The three behaviour types are represented by the di�erent types of point. The

excitatory and inhibitory values could be summed to give an overall weight value,

but this would unnecessarily remove information. The location of the three groups

of points on the graph, if they are shown to be separable, will allow classi�cation of

the behaviour type using the weight values.

Dale's Principle is not considered for these tests, because it only restricts the

type of the outgoing connections from each neuron. These tests consider only the

incoming connections to the neurons which can be either excitatory or inhibitory

even when Dale's Principle is followed.

The di�erent types of behaviour could be caused by the connections in any of

the layers individually, or by a combination of many or all of the layers. For this
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reason all of the layers are considered separately. Layer 1 is shown in �gure 5.2 and

the rest of the layers are given in the appendix (�gures A.3 and A.4). The example

presented here uses 80 neurons per layer.

The graphs show that there is a great deal of overlap between in the distribution

of points for the three di�erent behaviour types in all of the layers. As there is so

much overlap in all layers, it is not possible to conclusively say that if the weights lie

in a particular region then the behaviour will be of a certain type. However, there

is a pattern in the outlying points on the graph. The outlying points belong to the

incorrect types of behaviour. The three points that have an inhibitory sum of less

than -140 all belong to the over inhibited simulation run, and three of the four points

with an excitatory sum of more than 140 belong to under inhibited (the fourth point

is over inhibited).

To examine the distribution of the points for each of the runs the standard

deviation can be considered. Di�erent measures of spread could be used, for example

the range of the data points. In this case the standard deviation is chosen because it

re�ects the distribution of all of the points in relation to the mean. This is considered

useful because it is believed that a system with extreme values, further from the

mean, will have a larger in�uence on system behaviour. Systems with extreme values

should therefore be more likely to show incorrect behaviour and conversely systems

with values close to the mean would be more likely to exhibit correct behaviour.

This is suggested by the outlying data points on the graph. If there are a number of

points that lie further away from the mean then their in�uence should be larger than

a single point, and therefore there should be more chance of incorrect behaviour. The

standard deviation will re�ect the number of extreme values, but the range will only

indicate the magnitude of the most extreme value. The range would be preferable in

the case of a single outlier, but the standard deviation can re�ect presence of such

an outlier and incorporates the values of multiple outliers. So while other measures

of spread are possible the standard deviation is considered the most suitable choice

for this analysis.

The standard deviation for correct behaviour is 15.8 for the inhibitory sum and

14.8 for the excitatory sum. The standard deviation for over inhibited is 18.4 for

inhibitory and 18.1 for excitatory, and for under inhibited 19.7 for inhibitory and

17.6 for excitatory. This shows the distribution of points tends to be closer to the

mean when the behaviour is correct than when it is incorrect.

The statistical signi�cance of these results can be assessed using the F-test. This

test is used to compare two sets of data and to give a level of con�dence whether they

come from normal distributions that have the same variance. Further details of the

test used can be found in the appendix section A.4. The results of applying this test

show that for layer 1 the di�erence in the variance (and therefore standard deviation)

of the correct behaviour and both incorrect types is statistically signi�cant with 90%

con�dence. The di�erence for all of the other layers is not statistically signi�cant.

The p values for all of the layers are provided in the appendix in table A.1.

This suggests that the data points having a smaller standard devia-

tion, which means fewer neurons have higher than average input weights,

should improve the chances of correct behaviour. The values of standard
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Figure 5.2: The sum of the excitatory weights plotted against the sum of inhibitory

weights for the incoming connections of each neuron. One point on the graph repre-

sents one neuron in the network. The di�erent types of point represent the type of

behaviour seen with those weight values
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deviation for all layers and all three behaviour types can be found in the appendix

in table A.2.

Although the runs in �gure 5.2 are single examples of each behaviour type, the

di�erences in standard deviation suggest that it is not the average weight values

that are important, but the distribution of the values. This suggests it is unlikely

that having a number of neurons with large inhibitory weights and others with large

excitatory weights could average out each other's in�uence and result in correct

behaviour. The results suggest that it is possible for just two or three of the neurons

with large weight values to adjust the system behaviour.

The standard deviation of the weights cannot be used to guarantee correct be-

haviour, instead it indicates the probability of a set of weights producing correct

behaviour. This can be demonstrated by considering the following situations.

It is possible that a neuron with a large weight on its input connections may not

in�uence the network much. This could be because it only has low weight values on

its output connections or because it forms an island with other inactive neurons. As

only some of the neurons in the �rst layer receive the system input not all of the

neurons are stimulated, if some form an independent loop then none of these neurons

will �re. Their weights could be very high and skew the standard deviation, while

having no impact on the behaviour. This is the most extreme example, but there

may be other cases where high weight values do not cause incorrect behaviour for

example because they are connected to neurons with a low �ring rate.

It is possible to imagine particular sets of connections that, even without extreme

weight values, may cause incorrect behaviour. For example a chain of excitatory

connections that are slightly higher than the average weight value may be enough to

cause enough excitation in layer n to over inhibit layer n-1.

In the other layers there is not a distinct di�erence in standard deviation. The

mean standard deviation over all of the layers for correct is 17.5, for over 18.0 and for

under 18.6, but this is likely to be due to the large di�erence in the �rst layer. Apart

from layer 1, only layer 4 has both excitatory and inhibitory standard deviations

smaller for the correct run. This suggests that with only one layer having a

high standard deviation it is possible to cause incorrect behaviour. This

is reasonable, because as the external excitatory connections are only from one layer

to the next, the data must pass through each layer. If only one of the layers provides

too much or too little inhibition then it can prevent the data reaching the next stage.

5.2.3 The number of input connections per neuron

The previous section considers the impact of the weights on the inputs to each of

the neurons on the behaviour of the system. Having some neurons with higher

total input weights is thought to increase the chance of the run exhibiting incorrect

behaviour. The larger weight values could be due to higher randomly chosen weight

values on the connections, or because of a larger number of inputs to the neuron. To

investigate this the number of inputs that each of the neurons receive is examined

here. As with section 5.2.2 there is one run of each behaviour type for a network

with layers of size 80. The weights in this example are �xed at plus or minus 2.5
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to help identify whether it is the number of connections rather than the individual

weight values.

Figure 5.3 shows the number of excitatory input connections that each neuron

has, plotted against the number of inhibitory input connections. In this case the

standard deviations of the three di�erent behaviour types do not show the same

pattern as in �gure 5.2. The standard deviation of the correct run is not signi�cantly

less than that of the under or over run for any of the layers for excitation, and only

one of the layers for inhibition. The p values are given in table A.3 in the appendix.

This suggests that it is extreme weight values on the connections that

cause the variation found in section 5.2.2, not the number of connections.

When �xed weight values are used (for example ±2.5) the weight value and

the number of connections are directly correlated. This means that there should

be some information in the number of connections that helps to determine the be-

haviour. Therefore an alternative consideration is the overall weight value (number

of excitatory compared to the number of inhibitory inputs). This represents how

well the data is clustered about the diagonal x = y in �gure 5.3. The data for layer 1

is shown in �gure 5.4, the standard deviation of the correct run is lower than for the

two incorrect behaviour types, although the di�erence is not found to be statistically

signi�cant (using the F-test). The other layers also have no statistical di�erence

between the di�erent standard deviations.

The same process has been repeated for layer sizes of 70 and 60 neurons to

test di�erent examples of each behaviour type. It is found that for the examples

of behaviour with 70 neurons there is no signi�cant di�erence on any of the layers.

With 60 neurons there is a signi�cant di�erence on layer 1. The p values are given

in table A.4 in the appendix.

These results suggest that it is not possible to use the number of input

connections to each neuron to determine the overall behaviour of the

system. This is reasonable, because as described in section 5.2.2 there it is possible

to invent examples that have a high standard deviation and exhibit correct behaviour

or a low standard deviation and exhibit incorrect behaviour. When the total sum

of the input weights on each neuron are considered the standard deviations vary for

correct and incorrect runs, sometimes signi�cantly. The results do suggest that

the balance of excitatory and inhibitory inputs that each neuron has can

sometimes be used to predict behaviour. Using a low standard deviation

is a possible way to improve the likelihood of having correct behaviour.

This goes some way towards explaining the behaviour when �xed weights are used.

5.3 Identifying Inputs from Layer Activation

When the Neural Pipeline architecture is presented with a sequence of di�erent

inputs to process, it is important that it is able to distinguish between them. The

system input is only applied to layer 1 so if two inputs result in patterns of activation

that quickly degenerate to a state that cannot be told apart in layer 1, then it is

unlikely that the later layers will be able to identify them as separate inputs. In [56]

Rochel and Cohen investigate the preservation of identi�able patterns over time using
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Figure 5.3: The number of internal connections that provide an input to each of

the neurons in layer 1. The number of excitatory connections is plotted against the

number of inhibitory connections. Each point represents the values for one neuron

in the layer. The type of point (cross, circle or diamond) shows the behaviour type

that is seen with these values.
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Figure 5.4: The sum of weights on the internal input connections to each of the

neurons within layer 1, for an example simulation run of each behaviour type.

population coding. They use a randomly connected single layer network, similar in

structure to one layer of a Neural Pipeline.

In order to measure how distinguishable the patterns of activation in the network

are, Rochel and Cohen propose a distance metric. The metric compares the activity

of each neuron in the network for two distinct inputs. This metric is found to be a

mechanism for telling the duration that real inputs that are presented to a Neural

Pipeline remain distinguishable. A variation on the method used in [56] is used to

do this. Their original method must be introduced initially to explain the variation.

To consider how the distinguishability changes over time the metric is applied to

windows of the simulation, rather than the entire simulation. Two di�erent ways to

choose the window are used, the �rst is simply to split the simulation into windows

of time. If the spikes are not regularly spaced through the simulation, then windows

of a certain number of spikes are used instead. In this case the window over which

the comparison is made is de�ned by the time taken to accumulate n spikes in the

network. In the �rst case time in ms is used for the x axis of any graphs produced

using this metric and in the second case it is the cumulative total number of spikes.

The distance metric used to compare the patterns is given in equation 5.1. Here

A and B are di�erent input stimuli, where A corresponds to an input presented to

a particular set of neurons and B an input presented to a di�erent set. NA,i(x) is

the total number of spikes that neuron i produces in a given window x in response

to stimulus A. NB,i(x) is corresponding value for input B. In each window any of

the neurons in the network can either �re or not �re. The neurons that �re make a

contribution to the distance. To allow comparison the value is normalised to a value
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Figure 5.5: Graph from [56] showing the average value of the distance metric for

two di�erent inputs A and B. Line dA represents the distance between the initial

response to input A and the current state of the network after A is applied. Line

dB represents the distance between the initial response to input A and the current

state of the network after B is applied. The x axis is `cumulative activity' because

it uses a number of spikes per window, rather than an absolute time. The ∆ line is

the di�erence between dA and dB. (The vertical lines represent the readout window

de�ned by Rochel and Cohen, this de�nition is speci�c to their work, so these lines

are not considered further.)

between 0 and 1, where 0 means that the two windows contain exactly the same

number of spikes from each neuron, so there is no distance between them.∑
i

|NA,i(x)−NB,i(x)| (5.1)

To compare the behaviour the spike response from the �rst window of stimulus

A is used as a reference. Using the distance metric, this is compared to the response

from all other windows of stimulus A. It is also compared to all windows of stimulus

B. A sliding window is used to produce the graph shown in �gure 5.5

The line dA represents the distance between the response from A and the ref-

erence. The line dB is the distance between the response from stimulus B and the

reference. This means that dA always starts at 0, because for the �rst window it is

compared to itself. It then increases as the pattern of activity changes and becomes

more di�erent. The graph shows that over time the two unique inputs become indis-

tinguishable. The aspects of interest are the initial distance between the signals and

the duration (in cumulative spikes or ms) that the two inputs remain distinguishable.

The results of using the distance metric in equation 5.1 for a 5 layer Neural

Pipeline are shown in �gure 5.6. The parameters used can be found in the appendix

in table A.5.

The simulation is averaged over 10 di�erent inputs each with 10 di�erent sets of

internal connections. Each run had di�erent internal connections, chosen at random,

so the number of spikes produced in each individual simulation varies. Since the

metric is based on observed spikes, the comparison can only be made when the neu-

rons are active. This means that the comparison stops after the shortest simulation

run. This is the reason for the di�erence in length seen between runs for input A

and input B.
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The window size used for the simulation is 50 spikes to follow the requirement in

[56] that the size is chosen `to be su�ciently large to ensure our distance metric is

viable yet su�ciently small that all or nearly all neurons have �red at most once'.

The importance of the window size is investigated in the appendix section A.4.1.

When comparing the results of applying the metric to a Neural Pipeline (�gure

5.6) with the results on a single layer from [56] (�gure 5.5) it can be seen that a similar

result is found for each layer. Both inputs are well separated at the beginning of the

simulation but then degenerate to a similar state. The main di�erence is that layers

1 to 4 are terminated by the external inhibition of the system cutting o� the activity

in the layer more quickly in these layers than the last.

5.3.1 Comparing Speci�c Inputs

In the previous section the tests used a series of randomly chosen inputs to test the

average distance. The following tests use speci�c shape inputs, that are used in the

following chapter to test how the architecture can be trained on simple images. These

tests show how distinct the shapes are as they propagate through the architecture.

The tests use the parameters from those experiments (given in table A.7 in the

appendix). The examples presented here measure the distance between the three

shapes shown in �gure 5.7. These examples are chosen because square and plus have

similar shapes, with the same number of active inputs, but cross has fewer active

inputs and a more distinct shape.

When these speci�c inputs are used the cumulative spike total is not a sensible

way of examining the data. This is because the number of spikes in the layers is small

compared to the results in the previous section. This means that any individual

neuron can make a large di�erence to the distance value. This is explained further in

the appendix section A.4.1. To avoid this sensitivity time windows are used instead.

An example of the response for square compared to cross is given in �gure 5.8 (a)

and square compared to plus in (b). A window size of 30ms is used for these tests.

In both cases the di�erent inputs start o� with di�erent values and then converge

towards the same value. Compared to the example in [56] the simulation takes fewer

milliseconds to complete, so when the two values converge it is because there are no

longer any spikes in the layer so they automatically have the same value.

Square and plus are more similar to one another than square and cross are, as

can be seen by looking at the number of active neurons that the shapes share in

�gure 6.5. When the square and plus graphs are compared to the graphs for square

and cross in �gure 5.8, by the time the signal reaches layer 3 the distance between

them is much smaller. This is expected because the inputs are more similar. In

[56] the cut o� used for when a signal is considered distinguishable is 20%, but the

di�erence in this case is less than 5%. It is shown in section 6.3.2 that the system is

able to learn all of the shapes on all three of the layers. This means that either 5%

is a su�cient di�erence to allow the system to learn correctly, or the measure used

does not convey all of the information that is present in the signal.

The metric compares the current window of one input to the �rst window of the

other input, but in training the architecture the same two windows are compared
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Figure 5.6: The distance metric plotted for each layer in a Neural Pipeline. The

graphs averaged over 10 di�erent input stimuli and 10 di�erent internal setups for

each stimulus.
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Figure 5.7: The three input shapes used to test the distinguishability of example

inputs on each layer of the architecture.

directly. For this reason an alternative version of the metric is considered, which

compares input B to input A at each time window. The results are shown in �gure

5.8. The comparison of A is now always 0, because it is compared to itself. It is

the comparison of A with B that is interesting. This now shows that the signals are

very di�erent (have a large distance) until around 10ms. When layer 3 is compared

for (a) square and cross and (b) square and plus, it can be seen that there is a

larger distance in graph (a) than (b). This version of the metric is considered

to be more useful when comparing the inputs for training in a Neural

Pipeline, because it is easier to compare how di�erent two inputs are

after a duration. This is useful when deciding which window to use for

training, and to tell which of the inputs will be more distinct.

5.4 Discussion

Two di�erent ways of analysing the system have been presented. The �rst considers

the underlying cause of three di�erent types of behaviour. The second considers how

the system is able to distinguish two di�erent inputs as they pass through each of

the layers of the architecture.

The behaviour of the system depends on the random nature of the connection

choices and of the connection weight values. Three di�erent properties have been

examined to identify how they contribute to the behaviour. These are the number

of self connections, the total input weight to each neuron and the number of inputs

that each neuron has.

It is found that the average number of self connections a neuron does not control

the system behaviour. The three di�erent behaviour types were all found to have

an average of 1 self connection per neuron. This means that it is not possible to

identify whether a run will be correct by observing the number of self connections in

the network.

The standard deviation of the sum of input weights of the neurons within a layer

is a contributing factor in the behaviour of the system. The value can be used to give

a prediction of the behaviour type, because large values of standard deviation mean

that the system is more likely to behave incorrectly. This is identi�ed using an exam-
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Figure 5.8: (a) The distance between square and cross, using the distance metric

with real time and (b) the distance between square and plus. Window size of 30ms.
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Figure 5.9: A revised version of the metric that compares each window with the

corresponding window from the other signal.
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ple of each type of behaviour and �nding that the correct and incorrect behaviours

have a statistically signi�cant probability of coming from di�erent distributions. It

is believed that as the neurons with larger weight values have a higher in�uence on

the network, they will be more likely to contribute to high or low excitation and to

cause incorrect behaviour.

Restricting the standard deviation, either by manipulating the choice of connec-

tions when they are generated or by selecting only certain networks from all of those

generated, should improve the chance that the system will behave correctly. The

stochastic nature of the connections means that even with these constraints it is

not possible to stop incorrect behaviour completely, just to minimise the chance of

choosing connections that will cause it. The example presented demonstrates that

prediction is possible, but the actual values of standard deviation are still to be de-

termined. They should be addressed in future work as described in the following

section. In the example examined only the �rst layer showed a signi�cant di�erence

in standard deviation between the three types of behaviour. The interaction of the

layers has not been identi�ed in this work, this is also recommended for future work.

The number of connections contributes to the weight value, because the higher the

number of connections the higher the weight can be. The standard deviation of the

number of connections is not shown to be a mechanism for predicting the behaviour

type. Instead the balance between inhibitory and excitatory connections is found to

give some indication of behaviour type, although only one of the presented examples

has a signi�cant di�erence in standard deviation. This means that the standard

deviation of the excitatory to inhibitory connection balance cannot be used as a

reliable measure of behaviour type.

To identify the preservation of information through the system a distance metric

proposed by Rochel and Cohen [56] is used. It is found that a variation of the

comparison method can be used to show how distinct two di�erent inputs are at

any time in the simulation. Comparing the graphs allows for a possible method

of selecting which window to train the system on, training and window selection is

described further in section the learning tasks carried out in chapter 6. The metric

can also give an indication of how similar the di�erent inputs are when compared

to one another, this gives an indication of how di�cult the training will be. It is a

possible way of choosing how to split the inputs between the di�erent layers when

learning.

5.4.1 Future Work

The analysis carried out provides an initial insight into the possible causes of correct

and incorrect behaviour, but further tests would provide a wider understanding.

The graphs shown in section 5.2.2 suggest that layers with a high standard de-

viation of excitatory and inhibitory input sums are more likely to produce incorrect

behaviour. It is suggested from this that a value of standard deviation could be

found that will provide correct behaviour with a probability of for example 95%.

This provides a mechanism for replacing sets of connections that are likely to cause

incorrect behaviour. This may be useful when choosing a set of connections for the
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architecture, so is a possibility for further work. It may however be more bene�cial

to investigate other aspects because it is easy to generate a new set of connections

and test whether it behaves correctly under the required conditions.

The results from the sum of input weights (section 5.2.2) also suggest that the

layers may have a di�erent impact on the system. Two alternative hypotheses are

proposed to suggest which of the layers may have more or less chance of altering

behaviour.

The �rst hypothesis is that the middle layers may be more likely to have an

impact on the behaviour than the end layers because they have both feedforward and

feedback connections, so can in�uence two other layers. This does not mean that

layers 1 and 5 cannot cause incorrect behaviour, just that they can only in�uence

one other layer. The example correct run shown here has a higher value of standard

deviation on layer 5 than either the over or under inhibited run. This may be because

layer 5 has a lower impact, or it may be because any of the layers can have a higher

standard deviation but still be correct because of their particular connections.

The second hypothesis is that earlier layers can have more of an in�uence on

behaviour because the input is only provided to the �rst layer of the system. If layer

1 has very extreme values then the e�ects of this may be seen throughout, but if

layer 5 has extreme values there are no further layers to pass the signal to.

The two hypotheses cannot both be true, so they should be tested to identify

if either one is true. Knowing this will mean that it will be easier to in�uence the

system to have correct behaviour by concentrating on improving the parameters of

those layers that have the most impact.

Another consideration is that the layers may interact to cause incorrect be-

haviour. One layer that has a high standard deviation, followed by another may

cause more extreme levels of activity. For example if a layer that has more extreme

negative input connections is followed by a layer with more positive input connec-

tions, it may increase the chance of over inhibited behaviour. This is because the

second layer can more strongly inhibit the �rst layer and any spikes in the �rst layer

are likely to cause more inhibition. It is also possible that if two consecutive lay-

ers have larger standard deviations then they could improve the overall behaviour,

because one could balance out the other.

Another possibility is that the direction of skew of the data could be suggestive

of type of behaviour. Anecdotally, from �gure 5.2 the over inhibited run has more

neurons with a high inhibitory sum and the under inhibited run has more with a high

excitatory sum. It may provide an interesting avenue for future work, but it is not

essential because it is not important which of the incorrect behaviours is exhibited,

just that the run is not correct.

When the architecture is tested on larger and more complex sets of inputs the

distance metric can be used to give an indication of how di�cult the inputs will

be to learn and their separation within the architecture. This should enable more

careful choice of which input should be learnt by which layer in the system. This is

a consideration for future work.
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5.4.2 Summary

A Neural Pipeline has been analysed in two di�erent ways, to identify the cause of

the di�erent types of behaviour and to identify the distinguishability of inputs. The

behaviour of the architecture is in�uenced by the speci�c connectivity of each of the

layers. A general property that contributes to the behaviour is the sum of weights on

the input to each of the neurons within a layer. The chance of a correct run can be

increased by having a low standard deviation of input weight. The distinguishability

of di�erent inputs, as they pass through each layer, can be identi�ed using a distance

metric.

The following chapter presents empirical tests that illustrate the preservation of

data through the layers of the architecture. It demonstrates how di�erent features

of an input can be extracted using di�erent layers of the architecture and examines

the impact of noise on the system.



Chapter 6

Neural Pipeline as a Reservoir

Computer

6.1 Introduction

The Neural Pipeline architecture has been developed to investigate the hypothesis

that coordinating the activity of �ring neurons represents a method of controlling

behaviour in spiking neural network memory, in the context of computational appli-

cations. Chapters 3 and 4 have demonstrated that the architecture can control the

�ow of activity from one layer to the next. For the application of the architecture

to pattern recognition, the Neural Pipeline must be able to learn to process speci�c

inputs and respond accordingly with an output. Di�erent shape inputs are presented

to neurons in the �rst layer in the system. The activity then propagates through

the layers in turn. Each layer has a separate set of readout neurons attached to it,

these are neurons that are trained to display a relevant output when they detect a

particular pattern within the layer. This is achieved by viewing each layer as an

individual Liquid State Machine (LSM). This approach has been chosen because it

captures a way of introducing learning within a randomly connected architecture.

Each layer of a Neural Pipeline is a randomly connected network so with the addi-

tion of readout neurons a layer can be used as a LSM. As the training takes place

on the connections to the readout neurons the process of training does not in�uence

the layers themselves. This means that the results seen in the earlier chapters still

hold if the LSM method is used to train the system. LSM have been successfully

applied to similar tasks [49, 39, 70, 71, 48, 12] and are biologically plausible because

they can respond to time-varying inputs in real time [49]. As the Neural Pipeline is

biologically inspired for computation of time varying inputs the LSM is a suitable

choice. To test the system as a multi-layer LSM, three hypotheses are proposed and

tested in the following experiments.

The �rst hypothesis:

`Data presented to the input layer of the pipeline can be recognised at

every layer'

is tested using the shape experiment (section 6.3). This experiment considers

whether the multi-layer system is able to identify a set of shapes. The input is

presented only to the �rst layer and the shapes must be identi�ed by each of the

layers. The layers are considered to successfully identify the input if the readout

neuron trained to recognise that input �res most strongly. This experiment tests

whether information is still identi�able after it has passed through the system.
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The second hypothesis is based on the requirement of the system to abstract

di�erent properties from a given input. It is hypothesised that:

`Di�erent layers can recognise di�erent properties of the same input'.

Example properties could be the size, shape, colour, position or rotation of an

image. The second experiment is used to determine whether it is possible to �lter

out di�erent properties of the input in di�erent layers of the system.

The third hypothesis relates to the introduction of imperfect inputs to the system.

`Noisy system inputs should cause a system trained on perfect inputs to

fail gradually, depending on the magnitude of the noise.'

The third experiment introduces di�erent types of noise into the inputs to identify

the robustness of the system, to see how quickly and to what extent the system fails.

The design decisions common to all three experiments are outlined and justi�ed

in the following section. Many of the parameter choices for the Neural Pipeline are

in�uenced by the paper that introduced the concept of the Liquid State Machine [49].

The experiments from the paper are not replicated, because here the application is

image recognition and none of the three learning experiments in [49] perform this

task. Instead, a set of experiments based on image recognition have been carried out.

They use an input grid, drawing inspiration from existing work on image recognition

in LSM [39, 70, 71, 48, 12].

This chapter demonstrates how the Neural Pipeline can be used for learning and

how the di�erent layers can be used to perform di�erent tasks. The examples given

here are considered to be a proof of concept, to show that the Neural Pipeline is a

usable architecture. The future work section outlines how the architecture can be

developed further for use on more realistic tasks.

6.2 Experimental Setup

The application chosen to test the Neural Pipeline is image recognition, because

it is a task well suited to neural network memories. To provide input for these

experiments a grid of 81 pixels is used, arranged into a 9 by 9 square. Each pixel

in the grid provides the input to one of the neurons in the �rst layer of the Neural

Pipeline. Black pixels provide a spiking input to the neuron that they are connected

to and white ones remain silent.

Each pixel stimulates a di�erent neuron in the �rst layer so that the data is not

compressed. This means that there are a minimum of 81 neurons in the �rst layer.

If the same neuron received inputs from multiple pixels the layer could not identify

which of the inputs was active, only the average behaviour. A 9 by 9 grid is used

because it balances the need to have a grid large enough to convey di�erent images

and the need to reduce computational expense. Larger grids mean larger layer sizes,

which produce more spikes and increase the simulation time. It is the smallest grid

that could be used for the positional experiment (section 6.4), with a distinct shape

in each of the sections. A simple black and white grid was chosen to produce a
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simple image recognition problem. The background colour (white) was chosen as the

non-spiking colour to reduce the number of spikes and therefore improve simulation

e�ciency. It would be possible to extend the experiments by using a larger grid size

or introducing di�erent colours in the input. Each colour could be represented using

a di�erent �ring rate.

Once the size of input grid is set at 81 neurons, the number of neurons per layer

is based on this choice. As one neuron receives each input pixel there is a lower

limit of 81 neurons in the �rst layer. The experiments carried out in section 4.6.5

suggest that a smaller input compared to the layer size can increase the chance of

correct behaviour, so 100 neurons was chosen as a suitable layer size to compromise

between this and keeping simulation time to a minimum. Testing 100 runs, with

the parameters to be used for the experiments, all 100 had correct behaviour. This

shows that 100 neurons is a large enough choice of layer. As with the standard Neural

Pipeline architecture described in section 3.2 the same number of neurons were used

in each layer. This does not compress the data to fewer spikes between stages, but

this is a consideration for further work (see section 6.6.1).

In these experiments the input stimulus presentation duration is 10ms for the

shape and positional experiments (sections 6.3 and 6.4) but varies in the input ex-

periment (section 6.5). This di�ers from the examples in [49] where the input is

provided for the entire run time. It is important to present and stop the stimulus

for these experiments because the Neural Pipeline has been designed to be presented

with a stream of inputs to process. It is possible to present a continuous input, but

the architecture will ignore the input while it is processing. If a response is required

from each of the inputs then a separated stream needs to be presented. This means

that unlike the readout in [49] the readouts in the Neural Pipeline will only display

the result for a short interval rather than the entire run time. This is more similar

to the behaviour of the readouts in [48] where the input is a stream of data. In this

case though the stimulus is presented and removed, rather than being continuous.

The learning algorithm used in the experiments outlined in sections 6.3 and 6.4 is

the delta rule (see section 2.5.2 for a description). The delta rule was chosen rather

than the p-delta rule [7] used in [49] because of the choice of a single readout per

input rather than a large group of readout neurons. The p-delta rule is used for

parallel perceptrons, but can also be used for groups of integrate and �re neurons

[49]. The p-delta rule comprises two parts. The �rst is the standard delta rule, the

second is a rule to determine which of the weights the delta rule should be applied to.

In [7] they choose to apply the rule to all weights that are incorrect, but introduce a

margin of error to stop weight values changing sign when they are close to zero. This

margin of error is not necessary in the following experiments because they are trained

without noise. For larger groups of readouts or noisy simulations the p-delta rule is

preferable, but for these simulations the delta rule is su�cient. Alternative learning

methods could be used to train the Neural Pipeline (for example those discussed in

2.5), but in this case the delta rule was chosen because it has been successfully used

for LSM in [49] and [22].

The delta rule, when applied to a spiking network, takes the total number of

spikes from each neuron and adjusts the weights by this sum multiplied by the
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for all readout neurons do

if current_readout_output > required_output then

for all weights do

new_weight = old_weight− (learning_rate× neuron_output)
else if current_readout_output < required_output then

for all weights do

new_weight = old_weight+ (learning_rate× neuron_output)
else if current_readout_output == required_output then

for all weights do

new_weight = old_weight

Figure 6.1: Pseudocode for the Delta Rule.

learning weight. Therefore if the neuron does not spike no change will be made

to the weight, otherwise the weight is adjusted proportionally with the number of

spikes. It is increased if the output is too low, when the readout does not �re and

is meant to, but decreased if the output is too high, when the readout �res when it

should not. Pseudocode showing the delta rule when used for LSM is given in �gure

6.1.

To use the delta rule in a LSM the internal state is used to train the system

rather than the system input. As the state is dynamic a suitable way to identify a

particular state is to split the activity into time windows and record how frequently

each neuron spikes in a given time window. Training on a time window means that

the readout neurons will identify the pattern as it passes through that particular

time.

The examples in [49] are not split into windows for training, so it is assumed that

they use the entire simulation duration to train the system. Even if the training is

not broken into windows it is e�ectively a window of the same size as the training

time. If the simulation is run for longer than the training time then this is equivalent

to breaking up the signal into windows for training. The Neural Pipeline architecture

is designed to be run for longer than the training simulation time, because a series of

inputs is to be presented to it, therefore training based on time windows is a sensible

choice.

Throughout this series of experiments the window size is �xed at 5ms. This

duration was chosen so that each neuron tends to only spike one or two times within

a window. The reason for limiting spiking is to try to increase the likelihood of �nding

a unique window for each of the inputs. The choice of window size may in�uence

learning, but as the experiments were designed to investigate other properties of the

Neural Pipeline this parameter was �xed throughout the experiments.

The window selection method used for this set of experiments is to choose the

�rst (chronological) set of windows which is unique and non-zero for each shape. All

of the windows must be non-zero, because if there are no spikes it is not possible for

the readout neuron to �re. In these experiments the same numbered time window

(e.g. window number 5) is used for all of the shapes, so that the readouts take the

same amount of time to respond for each of the shapes. Figure 6.7 on page 137
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shows the results of a simulation with the resulting spike times displayed by splitting

them into time windows. These windows were then used to train the system for the

experiment. So for example in layer 1 the chosen window in this case is window 2,

because it is the �rst where all shapes have a unique, non-zero response. In this

instance it is the only choice of window that meets these criteria. This suggests

the possibility of two unique shapes being presented, but no unique windows being

available upon which to train the system. In this case the window size could be

reduced to achieve a �ner representation, and hopefully a set of unique windows. An

example of this is given in �gure 6.2. The raw spike time data is shown in (a), each

neuron spikes twice over a 20ms period. When the data is split into two 10ms time

windows in (c) both windows are identical, so there is no unique window on which

to train the system. By halving the window size, as shown in (b), it is possible to

produce three (non-zero) unique windows, any of which could be used to train the

system. There are instances when this technique would not work, such as if none of

the inputs produced any activity within the layers. In this case other parameters such

as the neuron threshold or the magnitude of the input would need to be adjusted.

There are clearly alternative methods for choosing which set of windows to use,

because there are a large number of windows. So for example the second set could

be used rather than the �rst, and so on. It is possible to choose windows with

the greatest possible separation between the shapes, using separation as de�ned by

Maass et al in [49] or using the distance metric from section 5.3. In this case the �rst

window was chosen in order to minimise the amount of preprocessing required before

training. In order to �nd the windows with the greatest separation it is necessary to

search through all of the windows. Even if it was determined that the most separated

windows were likely to appear within a certain time, based on the `distance metric'

which suggests they should be early in the simulation (see section 5.3), it would still

take longer to search through all of these windows than using the �rst set. The use of

the �rst unique set of windows also serves to illustrate whether the Neural Pipeline

is able to distinguish shapes even without idealised separation.

As in [49] the readout neurons are connected to all of the neurons in the LSM

layer. There are no lateral connections between the readout neurons either intra-

layer or inter-layer so that the output is based solely on the response from the liquid

layer. If connections were added between readout neurons then additional parameter

choices would have to be made and this could in�uence learning ability, so as a

baseline these experiments have no such connections. Adding these connections is a

possible extension of the work. The initial weights for the readout neurons are set to

values chosen randomly between 0 and the internal excitatory weight value (in these

examples 0.5). The choice of initial weights is not a parameter that has been chosen

to be varied.

The initial values are scaled to be in the same region as the internal weight values

because the internal weights in�uence how frequently the neurons spike. The weight

change during learning is calculated using the number of spikes multiplied by the

learning rate, so if this is very small compared to the initial values then learning

will take a long time. Therefore keeping the initial weight values similar to the

internal values should minimise excessively long learning times. The values are not
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Figure 6.2: Example of the loss of unique windows when a larger window size is

used. Example spike times produced by 10 di�erent neurons are shown in graph (a).

Graphs (b) and (c) both represent the same data by splitting it into di�erent time

windows. (a) has a window size of 5ms and (b) is twice as big with a size of 10ms. In

(a) there are 3 unique (non-zero) windows, but there are none in (b). This illustrates

how choosing a large grained window can lose information.
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Input = First Input

while Any readout response is incorrect do

Run simulation with current input

Update weight values

Check readout correctness for all inputs

Next input

if Input == Last Input + 1 then

Input = First Input

Figure 6.3: Pseudocode for learning algorithm 1.

optimised, because the actual learning time is not investigated here. The problem of

initial weights meaning that the learning will get stuck in local optima is overcome

by rerunning the learning algorithm with di�erent initial weights if no progress is

being made.

The learning rate is the step size that the weight takes each time it is updated.

The learning rate is set to 0.1 throughout the experiments. This value was chosen to

be lower than the average initial weight value (with few spikes per window) but large

enough so that it could change the sign of the initial weight in only a few learning

steps. The choice of learning rate mainly alters the speed of convergence on a set

of weights that provide the correct output. It is possible with too large a learning

rate that the steps will be too large making it impossible to arrive at a correct set of

weights. A description of the in�uence of the learning rate can be found in [50]. If

the result is correct then only the time taken is changed, therefore the learning rate

parameter is not investigated.

Two alternative learning algorithms were considered; the �rst loops through the

individual inputs (e.g. each of the six shapes in the shape experiment section 6.3) and

performs one update per shape until the output is correct. This algorithm is shown

in pseudocode in �gure 6.3. The second updates the weights for one input pattern

until it is completely learnt then moves onto the next pattern, pseudocode is shown

in �gure 6.4. As learning a new pattern can unlearn an old one, this process must be

repeated until all patterns are correctly learnt, rather than being able to exit after

any one of the input patterns is correctly learnt. This is shown by the `For all inputs'

loop in the pseudocode for learning algorithm 2 (�gure 6.4), and absence of the same

loop in the pseudocode for learning algorithm 1 (�gure 6.3). Both algorithms were

shown to work for the shape example in section 6.3. It was determined that the

�rst algorithm would be preferable because it makes incremental progress each time

rather than taking steps which may be in the wrong direction before correcting them.

The number of readout neurons used was chosen to minimise computation and

to be easy to observe. The lowest number of neurons that is easy to observe is one

neuron for each pattern property. For the shape experiment (section 6.3) the patterns

are shapes, so there is one readout neuron per shape. For the positional experiment

(section 6.4) the properties are shape and position, so there is a readout for each

shape and one for each position. The noiseless inputs and lack of noise internally

mean that single readout neurons are acceptable, although a group of readout neurons
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while Any readout response is incorrect do

for all inputs do

while any readout response is incorrect for this input do

Run with current input

Update weight values

Check correctness for current input

Check readout correctness for all inputs

Figure 6.4: Pseudocode for learning algorithm 2.

would make the system better able to generalise (this is discussed in the further work

section 6.6.1). As there is no noise the training for the readout neurons was chosen

to be fairly strict. The readouts may only spike for their corresponding pattern, they

must not spike for any other pattern. They may spike any number of times for their

own pattern. Alternative responses would be to spike with a certainty relating to the

input, with larger numbers of spikes representing a higher certainty that the pattern

matches what the readout is trained to recognise.

The �rst two experiments (section 6.3 and 6.4) have been designed to be noiseless.

This is because the experiments are designed to test whether information is still

identi�able through all layers of a Neural Pipeline, rather than the ability of the

system to identify imperfect inputs. The third experiment (section 6.5) addresses

this ability, once it has been shown that the information is available in all three

layers.

Maass et al [49] show that recurrent connections are important in LSM. This

in�uenced the decision to allow multiple connections between a pair of neurons and

self connections for the Neural Pipeline architecture (as described in section 4.6.3).

The choice of randomised connections uniformly chosen between all neurons in a layer

should also provide recurrence. In [49] they adjust a parameter (λ) which controls the

connectivity provides to �nd the best average correctness over 50 runs. The result

matches that found in the tests on a Neural Pipeline, that a lower level of connectivity

produces more correct behaviour as seen in section 4.6.3. In Maass' results there is

a drop o� seen at lower values, which is not found in the Neural Pipeline tests.

A possibility is that it may occur lower than the lowest tested connectivity. This

means that the connectivity value chosen for the Neural Pipeline, based on these

tests, should be acceptable.

LSM liquid layers can be trained to improve the system performance, as seen in

[51, 33, 15]. The layers in the Neural Pipeline have randomly chosen connections

and are not trained. There are several reasons for this choice, not training the layers

means that the data in the later layers is not altered. Training one layer may be

detrimental to the following layers by reducing information content. Training is not

necessary for the operation of the system, it can just o�er an improvement for a

speci�c task. The focus here is not to optimise performance, but to identify how the

information is preserved through the Neural Pipeline.

Static alpha function synapses are used for the connections as they are the

synapses that the behaviour of the architecture has been examined with. In [49]
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Figure 6.5: The shapes that the pipeline has been trained on (a) square, (b) cross,

(c) triangle, (d) circle, (e) plus and (f) rectangle.

they �nd that dynamic synapses outperform static synapses, for the preservation

of information over time. Here the settings for the architecture have been chosen

based on tests with static synapses, so static synapses are used despite being the

less optimal choice. Information preservation is important in the Neural Pipeline,

so replacing these synapses with dynamic synapses and testing the behaviour is a

proposal for further work (section 6.6.1).

An overview of the parameters used for the experiments presented in this chapter

can be found in table A.7 in the appendix.

6.3 Simple Shape Recognition

While it has been demonstrated that a single LSM can perform pattern recognition

[48, 12] and that it is also true for multi-layered LSM [39, 70, 71]; it does not

necessarily follow that the Neural Pipeline can. As there are multiple layers and

the input is only presented to the �rst layer the later layers must receive enough of

the original data to perform recognition. To demonstrate that pattern recognition is

possible using the Neural Pipeline, a simple image recognition task was carried out.

A set of six shapes was produced to �t in the input grid described in section

6.2. These six shapes are shown in �gure 6.5. The shapes were chosen as identi�able

shapes for a human observer rather than abstract patterns. Hollow shapes have been

chosen to reduce the number of input spikes, in turn reducing the level of spiking

within the layers and therefore decreasing simulation time. There is intentionally

some overlap between the inputs that are black between the di�erent shapes to make

the task more challenging for the system. Some have di�erent numbers of black

pixels, some the same, to test that the system is not just using the number of active

inputs to make a selection.

The objective of this experiment is to test the hypothesis `Data presented to the

input layer of the pipeline can be recognised at every layer' using a set of readout

neurons to assess the correctness of the response. The limitations of this ability are

also considered and extensions to the experiment are suggested.
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Figure 6.6: The neural pipeline architecture with readout neurons used for learning

six shapes.

6.3.1 Method

The Neural Pipeline has been trained to recognise a set of six shapes (�gure 6.5) on

each of three layers as shown in �gure 6.6. The shapes are presented (at 1 spike per

ms) for 10ms to layer 1 at the start of the simulation. Before this all neurons are

silent. The 81 inputs are connected to 81 of the 100 neurons in the �rst layer only.

There are 100 neurons per layer with 6 readout neurons on each layer, one for each

of the input shapes. The simulation is run for 100ms. The training and recognition

both take place using perfect copies of the shapes and input train with no noise. The

case when noise is added to the input is considered in the experiment in section 6.5.

The readout neurons are fully connected to the layer and the initial weights on

these connections are randomised between 0 and the `internal excitation' value of

0.5. The weights are trained using the delta learning rule (as described in section

2.5.2) to identify the input shapes at a particular time window. The times of all

of the spikes that occur in the layer are recorded and divided into time windows of

5ms. The �rst chronological set of unique windows all with non-zero values is used

to train the network. The windows must be unique for each shape so that the system

can recognise that pattern as belonging to a single shape. They must be non-zero

because with no spikes it is not possible for the readouts to �re.

The readout neurons are trained to spike any number of times when their shape

is the presented input, but to remain silent when the input presented is not their

shape. So for each shape only one readout neuron will spike. Training is carried out

until this is true for all of the readout neurons.

The six shapes have been tested on one set of arbitrarily chosen internal con-

nections. The weights to the readouts are trained based on the activity within the

layer.

6.3.1.1 Topology Experiment

To determine that a set of inputs can be learnt with di�erent topologies of internal

connections, a smaller experiment was run 100 times. 50 neurons were used per layer,
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with 10 di�erent inputs of size 40. Of the 40 input bits each pattern had 5 active

bits and 35 inactive ones. The reduction in neurons per layer and the number of

active input bits (when compared to the shape experiment) was chosen to decrease

the simulation time as this experiment was to be repeated 100 times. Only the �rst

layer readout was trained. In each of the 100 runs the connections were varied by

seeding the random number generator with di�erent values.

All 100 trials successfully learnt the series of 10 inputs correctly. This is indica-

tive that a speci�c connection structure is not necessary to allow patterns to be

learnt. The average connectivity is important in determining behaviour, as outlined

in section 4.6.3.

6.3.1.2 Capacity Experiment

To demonstrate su�cient capacity for the learning experiments in this chapter a

preliminary experiment was performed. The experiment was carried out using three

layer Neural Pipelines, with layers of size 10 or 20 neurons. The aim of the experiment

was to train the system to recognise a number of patterns to identify that the capacity

was su�cient for the following tests. This size of network was chosen to reduce

simulation time, because the readout neurons are fully connected to the layers so

every additional neuron in a layer adds computational expense. The size of input

was chosen to be 80% of the neurons in the layer, approximately the same as the size

of the grid used for the shape recognition experiments. Five of the input neurons were

active at any time. For 10 neurons this gives 56 possible permutations (8 choose 5)

and 4368 permutations for 20 neurons (16 choose 5). For 10 neurons all 56 patterns

were tested, and for 20 neurons 200 patterns were tested. This was chosen as a

stopping point, because it showed a capacity of 200 which is more than su�cient for

the following experiments. As the size of the readout layer increases, the simulation

time also increases, so it becomes more sensible to have multiple layers with smaller

numbers of readouts.

The inputs were only learnt by the �rst layer, because all of the layers in the

system are the same and should therefore have the same capacity. The inputs here

could be presented to any of the layers (from any other layer) and would still have

the same outcome with regard to capacity. Training all of the layers in this case

would only increase the simulation time. The inputs were speci�cally chosen to have

a high degree of overlap, to make telling them apart harder for the system. This

means that the capacity is representative of a lower limit, rather than an upper limit.

The results of the experiment are that the 10 neuron system was correctly able

to learn all 56 of the possible inputs. The 20 neuron network was tested with up to

200 inputs, and was able to store all 200 of them.

6.3.2 Results

The internal state of the Neural Pipeline when each of the six shapes shown in

�gure 6.5 are presented is shown in �gures 6.7, 6.8 and 6.9. Each unit of the graph

represents the number of times that a particular neuron within each layer has �red

in the time window.
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The active neurons in the �rst layer are those that receive the input. This means

that time window 2 in �gures 6.7, 6.8 and 6.9 are equivalent to the original shapes.

This can be seen by rearranging the window 2 row in the graph into a 9 by 9 square

grid, which will produce the same 6 input patterns as shown in �gure 6.5. By the

time the shape has reached the second layer it can no longer be seen in its original

form, but the system can be trained to associate the new pattern with the correct

shape.

The response from the readout neurons is shown in �gure 6.10, this shows that

the neurons all respond correctly to each shape being presented. The corresponding

neuron �res for each shape and all other neurons do not �re. There is no reward or

punishment for �ring multiple times, so the presence of 2 spikes in layer 3 for circle

is no better (or worse) than the single spike for any of the other shapes. The graph

demonstrates that all three layers correctly recognise each of the six shapes.

6.3.3 Discussion

The results outlined in section 6.3.2 show that it is possible to train a 3 layered

Neural Pipeline to recognise a set of six shapes on each of the three layers. This is a

proof of concept that the information can be passed through the pipeline

and can still be classi�ed by the �nal stage. The secondary section of

the experiment illustrates that recognition is possible independent of the

internal topology, this is a property of LSM [49]. The advantage of iden-

tifying the input patterns on each of the layers is to output the historical

sequence of inputs in order. The layers can preserve the relative timing of the

inputs as they are presented. Each layer can respond to the same property as shown

here, or to di�erent properties as addressed in the following section.

An inevitable consequence of randomised networks is the degradation of infor-

mation from the input pattern as the activity propagates through the system. This

is shown in [56] for a single network and in section 5.3 for the Neural Pipeline. With

this knowledge the following questions are provoked: `how many layers can informa-

tion survive through?' and `how do the parameters in�uence this?'. In the Neural

Pipeline the decrease in separation between distinct inputs may be magni�ed by each

layer, because they are chained and the input is only presented to the �rst layer. The

parameter choices made for the Neural Pipeline are likely to in�uence the change in

separation over time. Identifying this relationship is suggested for future work in

section 6.6.1. It is possible that the readouts from the earlier layers may be used to

improve the response of later layers, to reduce the impact of the inevitable loss of

information.

The capacity of the Neural Pipeline architecture has been demonstrated to be

large enough to carry out extensions to the experiments presented here. Further tests

are needed to determine the limits of the capacity with di�erent sizes of layer, but it

is likely that they will depend on the data to be stored and the learning algorithm

used. These extensions are discussed in the further work section 6.6.1.
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Figure 6.7: The response of each layer in the Neural Pipeline when an input shape

is presented. These graphs show the output for Square and Cross.
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Figure 6.8: The response of each layer in the Neural Pipeline when an input shape

is presented. These graphs show the output for Triangle and Circle.
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Figure 6.9: The response of each layer in the Neural Pipeline when an input shape

is presented. These graphs show the output for Plus and Rectangle.
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Figure 6.10: The spike totals from the readout neurons from the shape experiment.

6.4 Position

The positional experiment expands upon the shape experiment outlined in section

6.3, but rather than testing whether the same shape can be identi�ed at each layer,

this experiment tests the following hypothesis `Di�erent layers can recognise di�erent

properties of the same input'. This is a key aspect in the functionality of the Neural

Pipeline as an architecture for use in pattern recognition, because the di�erent layers

perform di�erent processing tasks. They will each carry out a distinct task rather

than repeating the same one.

The two features being extracted in this experiment are the shape and the posi-

tion. The shape is chosen because it was the focus of the previous experiment, the

position is added as a second feature because it can be achieved easily using the 81

pixel black and white grid. Alternative properties include orientation, size, colour

and movement. The reasons for selecting position over the other alternatives are

outlined below. The limitations are not general limitations of the architecture but

of this particular choice of input grid.

Colour would require a more complex encoding than inputs being on or o� (spik-

ing or not spiking) as is the case for the black and white grid. This is discussed in

the further work (section 6.6.1). Movement would require a much longer input and

thus much longer simulation time, making it an undesirable choice for this experi-

ment. Using a small grid such as this the orientation is not suitable, because the

coarse grained pixels would provide very few possible orientations and the shapes
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Figure 6.11: a) Three possible rotations of a square, constrained by the 81 pixel grid.

b) How these squares would look if not constrained by the grid.

would be deformed by reorienting them. An example of this is shown in �gure 6.11,

three rotations are shown as constrained by the grid (column a). Only the top image

matches the unconstrained version (shown in column b) very well, the lower two

shapes appear dissimilar because of the low resolution of the grid. The issue is that

with this square grid, two shapes which appear di�erent initially (e.g. square and

circle) once rotated can start to look much more similar. This makes rotation a poor

choice in this instance.

Resizing the shapes is the most suitable alternative to position, however there

are fewer possible sizes than positions with the 81 pixel grid. The granularity of the

grid will cause problems as with the rotation, making some of the shapes deform as

they are resized. An example of this is shown in �gure 6.12. The circle (column

b) changes its shape as it is rescaled. Although the length scales linearly, (reducing

by 2 pixels each step) the proportions of the sides compared to the curved section

changes. The cross (column a) retains the same proportions for each of the three

sizes. The variance in how di�erent shapes are in�uenced is a problem, as well as

the deformation itself. The position is independent of the shape, therefore position

has been chosen as the preferred option.

The shapes shown in �gure 6.5 are too large to reposition on the grid to provide

di�erent positions. Therefore two shapes (cross and square) have been shrunk to

3 by 3 pixels to reposition around the grid. Cross and square were chosen because

they are still easily recognisable at this size. Five di�erent positions have been used

for each shape, they have been chosen with no overlap to make the recognition task

simpler.
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Figure 6.12: Three di�erent sizes of circle (column a) and cross (column b). Cross

scales well, each of the three images have the same shape, circle scales poorly each

of the three have slightly di�erent shapes.

Figure 6.13: The positional inputs that the pipeline has been trained on.
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6.4.1 Method

The inputs provided to the system use the same 9 by 9 grid as the inputs in the

shape experiment (section 6.3). Here, two of the same shapes (cross and square) are

used and are shrunk and repositioned about the input grid, in �ve speci�c locations.

The ten di�erent images shown in �gure 6.13 are presented in the same way as the

shape experiment (section 6.3) as an 81 pixel grid. The inputs are again presented

to layer 1 over the �rst 10ms of the simulation at 1 spike per ms. Each of the 81

pixels from the grid is connected to a di�erent neuron in the �rst layer. As with the

shape experiment there are 100 neurons per layer, but there are now �ve readouts

to recognise the position on layer 1, and two readouts to recognise the shape on

layers 2 and 3. The layers were allocated with position �rst and shape second based

anecdotally on the idea of a person (or animal) noticing that `something' is in a

particular position, before identifying what it is.

As the architecture is a computational system rather than an evolved system it

is not constrained to have the attributes in this order. As discussed earlier 6.3.3

the information degrades over time, so it may be bene�cial to extract more subtle

attributes in the earlier layers, but this is not a strict requirement. This means that

the system is �exible and can be adapted to the requirements of the user, with the

attributes being addressed by their layer of choice.

The readout neurons are fully connected, with weights initialised to between 0

and 0.5 and trained using the delta learning rule. The system is trained using time

windows as explained in section 6.2. The readout neurons are trained to spike only

when an image of their shape or position is presented, and not to spike for any of the

other shapes or positions. The corresponding readouts are allowed to spike one or

more times when the correct image is presented. The presented inputs are noiseless

and the simulation is run for 100ms. All of these decisions are common between the

experiments and justi�cation of the choices is given in section 6.2.

6.4.2 Results

The results of the positional experiment are shown in �gure 6.14. From the graph

it can be seen that the �rst layer can correctly identify the position of the input in

each of the �ve locations, independently of shape information. Layers 2 and 3 are

able to recognise the shape independent of the position. As described for the shape

experiment (section 6.3.2) the presence of multiple spikes from the correct readout

neuron (in this case in layer 3) is not better (or worse) than a single spike.

The results show that using inputs without noise, in speci�ed positions, it is

possible to identify both the shape and position di�erent layers of a three layered

Neural Pipeline.

6.4.3 Discussion

The system could correctly identify all positions and shapes correctly when each of

10 images (5 positions for 2 shapes) were presented. /textbfThey represent a proof
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Figure 6.14: Results when a three layer pipeline is trained to recognise position using

layer 1 and shape using layers 2 and 3.
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of concept that it is possible for di�erent layers to identify di�erent properties of the

input pattern.

The results presented here do not show position invariance, because only �ve

speci�ed positions are used. To test this the input shapes could be presented at

any location on the input grid. This needs to be addressed in future work, see

section 6.6.1 for more details. Other extensions include increasing the number of

input properties investigated and testing for how many layers the information is

identi�able. This may vary depending on the property (because some may be harder

to identify than others, and require more separation). Further tests are required to

suggest a reasonable order for the properties, e.g. position on the �rst layer, shape

on the second and colour on the third.

6.5 Introducing input noise

The inputs and training used in the experiments described in sections 6.3 and 6.4

have no noise. They test whether signal information is present throughout a Neural

Pipeline of three stages. Noise was not added because the aim of the experiments was

not to test robustness. The results of these experiments show that the information

is available in all three layers, so this experiment addresses the system when noise is

applied. The hypothesis to be tested is `Noisy system inputs should cause a system

trained on perfect inputs to fail gradually, depending on the magnitude of the noise'.

The hypothesis was based on the idea that a small amount of noise will produce

a pattern quite similar to the intended one, but with larger amounts of noise the

pattern will be more dissimilar. This is expected to produce a gradual failure rather

than a sudden failure.

In a single layer LSM in [49] noise is added to the signal by shifting each of

the input spikes by an amount sampled from a Gaussian distribution, they call this

shift `jitter'. Each of the original spike times are used as the mean value for a set

of Gaussian probability density functions (PDFs), a new spike time is then chosen

using the Gaussian PDF to construct the noisy signal. In their speech recognition

experiment, a pool of 50 readout neurons is used for output and the overall activity

of the readouts is used to determine the response. This is a more robust method

than a single neuron per input. The aim of this experiment is to investigate whether

it is possible to recognise a noisy signal using only the single neuron per shape and

strict response (no �ring for inputs that do not match) from the shape experiment

(section 6.3).

In the shape and position experiments the input is a consistent 10 spikes at 1ms

intervals over the �rst 10ms, provided as input to all input neurons at the same

time. Five di�erent methods of applying noise to the input have been investigated

and the inputs used for training have been varied. Comparing each of these methods

shows whether noise corrupting the synchronisation of inputs or the rate of inputs

has the biggest impact. The tests consider completely synchronised input spikes

across all neurons with di�erent rates (in spikes per ms), synchronised inputs with

the same rate but di�erent timing, unsynchronised inputs with the same rate and

two combinations of unsynchronised and synchronised spikes. It is expected that
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either the rate or the synchronisation will have a larger impact on the degradation

of the output, but it is not possible to predict which.

The simplest form of alternative input is to provide a consistent spike train, one

every ms, over a di�erent number of ms. This is not a noisy input, but is di�erent

to the input used for training. It illustrates how tolerant the system is to the wrong

magnitude of input. The second applies the Gaussian noise used in [49]. When

the method is applied to the Neural Pipeline input, each of the 10 input spikes is

moved to a new position chosen from a Gaussian PDF with a mean value of the

original spike location. The original locations are shown in �gure 6.15 diagram (a)

and the Gaussian distributions that the new spike times are chosen from are shown

in �gure 6.15 diagram (b). The standard deviations of the Gaussian distributions

are varied in experiment 2 `Gaussian shifted spike train' (see the following section).

The overlap that the Gaussian distributions have with one another depends on the

standard deviation. If there is overlap then the order of the spikes can be changed,

as shown in the example spike train in �gure 6.15 diagram (c), where spikes 4 and 5

have switched. This makes no di�erence to the simulation, because it just receives

a list of spike times. Negative values of time are not permitted, so if any of the

Gaussians extend below 0 they are given a positive value instead. This is shown in

Gaussian 1 �gure 6.15 diagram (b), and the resulting spike 1 in �gure 6.15 diagram

(c).

In both of these cases (a di�erent length regular spike train and a Gaussian

shifted spike train) all input neurons receive the spike train at the same times. To

test whether this synchronisation has an in�uence, the next stage of the experiment

uses di�erent spike trains for di�erent input neurons. For ease of implementation

a Poisson spike generator was used. This produces a spike train with an average

number of spikes per ms, chosen from a Poisson distribution. The resulting train is

similar to the Gaussian shifted spike train. This distribution is chosen to reduce the

run time of the simulation.

The �nal part of the experiment uses a combination of a Poisson and regular

spike train. This tests the extent to which the system, using this readout structure

and learning method, requires the input neurons to receive their input spikes at the

same time. Two types of combination are used. The �rst combines a 5ms regular

spike train with di�erent Poisson trains to all neurons. It means that every neuron

receives a number of spikes synchronised with the other neurons and a number of

spikes that are unsynchronised. The second combination applies the 10ms regular

spike train to a proportion of the input neurons and di�erent Poisson spike trains

to each of the other input neurons. Testing these two di�erent combinations allows

a comparison between the case where all neurons receive a slightly noise corrupted

signal (combination 1) with one where some neurons receive a perfect input and

others a noisy input (combination 2).
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Figure 6.15: (a) shows the original input with spikes every ms, (b) is the same

regular train with Gaussian distributions overlaid. Negative times are not allowed,

so Gaussians which go below 0 are �ipped about the y axis, this is illustrated on

the �rst Gaussian in (b). From these distributions a new spike train is chosen, an

example of this is shown in (c). The overlap means that spikes can swap positions,

such as 4 and 5 in (c), this is not a problem because the input is just a list of spike

times.
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6.5.1 Method

The experiment looks at how di�erent types of input in�uence the response of the

system. The �ve di�erent types of input are summarised below:

1. Regular spike train - a train of 1 spike per ms is presented to all neurons.

This is `noisy' because the tests use di�erent durations to the one used for

training.

2. Gaussian shifted spike train - 10 spikes are shifted about Gaussian PDFs

with mean values corresponding to the original spike train.

3. Poisson spike train - Di�erent Poisson spike trains are presented to each of

the input neurons.

4. Poisson and Regular combination - A regular spike train and a Poisson

spike train are combined to provide input to all of the neurons.

5. Poisson and Regular split between inputs - A regular spike train is pre-

sented to some of the input neurons and a Poisson spike train to the others.

For all of the tests the system is trained on a 10ms regular spike train. In

additional a variant trained on a Poisson spike train is provided for the Poisson

tests. The Poisson spike train used in training is di�erent to the one used in the

simulation run. The parameter values and settings for each of the di�erent inputs

are outlined in the following sections.

A single run is used to test each of the regular spike trains. This is because the

same internal connections are used and the regular spike trains have no variation.

The result for one run is therefore the same as a number of runs averaged.

The experiment using a Gaussian shifted spike train is repeated 100 times for

each of 7 di�erent standard deviations of distribution. A number of runs are carried

out because each run is di�erent, so the average behaviour is considered. 100 runs

was chosen to generate enough runs to produce a range of inputs while keeping

simulation time reasonable.

The Poisson tests represent examples of individual runs. These illustrate the type

of impact noise has on the input The decision was taken not to run many repetitions

of these experiments to minimise the time taken, so that di�erent combinations of

Poisson trains and regular trains could be run instead. From these runs, suggestions

for more complete experiments using noise have been suggested (section 6.6.1).

All experiments are conducted using the same Neural Pipeline architecture as

used in the shape experiment (section 6.3), so that the results can be compared.

Two measures of correctness are de�ned to compare the in�uence of the noise; a

correctness value and a `perfect' count. The `perfect' count is the simplest measure, it

is the number of input shapes that produce an output with only their corresponding

neuron �ring, as this is considered a perfect response. This produces an integer

value between 0 and the number of inputs (6 in this case). The correctness value

is a score of +1 when the highest spiking readout is correct, 0 when there is no
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response from any readout and -1 when the highest �ring readout is not correct

(or there is more than one with the highest �ring rate). This produces a score of

between plus and minus the number of inputs (here plus and minus 6). The 0 case is

not counted as positive or negative because it is considered better for the system to

respond that it cannot identify the shape, rather than responding incorrectly. The

case where multiple readout neurons have the highest �ring rate is given a negative

score because even if one of the highest �ring readouts is the correct one it is not

possible to tell this from the system output. These scores are calculated for all of

the layers, because each layer has its own independent set of readout neurons.

The results of each of the experiments are presented and described in the following

sections. In all graphs the shapes are abbreviated to their numbers: 1 Square, 2

Cross, 3 Triangle, 4 Circle, 5 Plus and 6 Rectangle, to save space. A discussion of

these �ndings is provided in section 6.5.

6.5.2 Regular spike train

For this experiment a regular input was provided, with 1 spike every ms. The

di�erence from the input in the shape experiment (section 6.3) was the number of

ms that the input was provided for. The di�erent durations used for the test are

all of the trains between 5 and 14ms. 5ms was the lowest number used because it

produced 0 spikes in all layers, this means that any smaller input would also produce

0 spikes and therefore no output from the readout. 14ms was the highest input

tested because the response was already very noisy at 14ms, so continuing to add

more input spikes would not test the `gradual failure' described in the hypothesis.

The system uses the same parameters as the shape experiment and is trained on

a 10ms regular spike train.

The correctness values and number of perfect responses for all tested lengths

are shown in �gures 6.17 and 6.18 respectively. When 5 regularly spaced spikes are

presented as input there is no activity at any stage of the architecture. All neurons

(and therefore readouts) remain silent. This means that the correctness value and

perfect runs values are 0, and it sets a lower limit on how many spikes the system

must receive in order to produce an output. This limit is controlled by the system

parameters, such as the internal excitation.

The results for durations of 6,7,8,9 and 10 all behaved completely correctly, this

is shown by the perfect and correctness values of 6 in all layers. Their responses are

identical to the graph shown in �gure 6.10.

The results from 11 to 14 ms are shown in �gure 6.16. These graphs and �gures

6.17 and 6.18 show that the correctness and number of perfect runs reduces as the

number of input spikes is increased. For all of these values the correctness value is

better in layer 2 than in 1 or 3. This suggests that there is a trade o� between too

many spikes causing many of the readouts to become active and information loss

through the system. Layer 1 has more readouts spiking than layers 2 or 3, this can

be seen in �gure 6.16, this is because the layer is being provided with more spikes

than it was trained with, so the readouts are too sensitive. It suggests that the spikes

are becoming more spread out by the time they reach the second layer, causing fewer
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Figure 6.16: The response of the readout neurons when applying more regularly

spaced input spikes than in training, from (a) 11 to (d) 14.
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Figure 6.17: The correctness value for each of the runs using di�erent lengths of

regular input, of between 5 and 14 spikes. Correctness is de�ned in section 6.5.1.

Figure 6.18: The number of perfect responses for each of the di�erent lengths of

regular input, of between 5 and 14 spikes.
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of the readout neurons to spike. To test this theory properly an extension of the

experiment using more layers (described in the further work section 6.6.1) would

need to be run, to make sure that the peak is at a mid point in the system, rather

than there being multiple peaks or an improvement in later layers. It is not possible

to rule this out using only three layers.

When only considering `perfect runs' (�gure 6.18) layer 3 performs best when the

number of input spikes is greater than 10. This is because by layer 3 the readouts

spike less than for the other layers and a `perfect' response does not spike for any

shape but its own.

6.5.3 Gaussian shifted spike train

Each spike time is chosen using a Gaussian distribution with a mean value of the

original spike time from the regular spike train. A Gaussian PDF is used to choose

new spike times for each of the 10 original spikes. This process is described further

in the introduction section 6.5. Standard deviations of 0.25, 0.5, 1, 2, 4, 8 and 16ms

were used for the Gaussian distributions. This provides a range of values where those

with the lowest standard deviation produce spikes that are likely to be close to their

original locations, but with the higher values they are more likely to be further away.

0.25 was used as the lowest standard deviation because all 100 runs were perfect for

layers 1 and 2 and 85 were perfect in layer 3 (with the other 15 having scores of 5,

meaning only one shape without a perfect response). This was considered to be a

close enough response to the noiseless input to be used as a minimum value. 16 was

chosen as the �nal standard deviation because it is the �rst value that has complete

failures in the �rst layer, with some of the runs not correctly identifying any of the

shapes. This represents the end of the `gradual failure' from the hypothesis.

A shifted version of the original 10ms spike train was produced using the method

described in section 6.5.3. This was run 100 times with 7 di�erent values of standard

deviation. The perfect runs and correctness values are shown in a series of box plots

in �gure 6.19. All of the perfect responses are shown in (a) and the correctness

values in (b), with one graph representing 100 runs using the standard deviation

stated. The mid-line of the box represents the median value, and the top and bottom

the quartiles. Whiskers are 1.5 times the interquartile range, with outliers plotted

separately.

Examples of some of the incorrect runs are shown in �gure 6.20 to illustrate the

type of mistakes that the system is making.

The hypothesis to be investigated for this series of experiments is that the system

will fail gradually as more noise is applied. The results from this Gaussian shifted

experiment demonstrate that for this type of noise the hypothesis is true. In �gure

6.19 it can be seen that as the standard deviations of the Gaussians are increased,

the number of perfect runs and the correctness value tend to reduce. This can be

seen most clearly in layer 3, but also by the outliers (marked with a plus) in layer 2.

Other patterns, too, emerge from the data. The performance decreases in the

later layers, with layer 3 having a smaller median value for both perfect runs and

correctness value. This suggests that once noise is introduced into the system at the
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Figure 6.19: Results from running the Gaussian shifted spike train input 100 times

for each of the standard deviations. Column (a) shows how many responses are

perfect, (b) the correctness value.
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Figure 6.20: Examples of incorrect responses from Gaussian shifted spike trains with

di�erent values of standard deviation.
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input, the impact is increased the longer the signal is in the system. It could be

that the noisy signal diverges more quickly from the original signal, making it more

di�cult to identify.

The system is still reliable on the �rst layer until the standard deviation reaches

16, because all 100 runs are perfect for standard deviations of between 0.25 and 8.

For layers 1 and 2 the majority of responses are still perfect even with a standard

deviation of 16. Even on layer 3 the median number of perfect responses is 4 out

of 6. This shows robustness in the system. A standard deviation of 8 or

16ms is very large considering the intervals are usually every 1ms, and

the spike train itself only lasts for 10ms. This shows that as long as the

inputs are synchronised the input spike train can be very di�erent to the

training and still produce the correct response.

Another property that can be seen from the results is that the response on the

�rst layer is either 0 or 6. So for any particular noisy input the system either responds

perfectly or not at all. This particular result does not match the hypothesis of gradual

failure. In this case (on the �rst layer) it could be preferable to the system failing

slowly, because with a slow failure it is not possible to tell which of the shapes the

system is correctly identifying. If the system just stops responding if it does not

recognise the shape then this is a good signal to the observer that there is too much

noise on the input for the system to perform properly.

6.5.4 Poisson spike train

For this test, each input neuron received a di�erent Poisson spike train over the �rst

10ms of the simulation, with a mean �ring rate of either 1 spike/ms or 1.4 spikes/ms.

These rates were chosen because they represent an average of 10 spikes in 10ms and

14 spikes in 10ms, the same as the original regular spike train and the highest regular

spike train that was tested in section 6.5.2. This allows a comparison between the

two.

Test examples were generated for a system trained on a regular spike train of

10ms as with the original shape experiment (section 6.3). Additionally, some runs

were generated with a system trained on a di�erent Poisson train for comparison.

The results from both were expected to show similar levels of noise in the readout

response, because a regular train is a speci�c instance of a Poisson train.

The results from two example simulation runs of both spike rates are shown in

�gures 6.21 and 6.22. For both �gures (a) is 1 spike per ms (b) 1.4 spikes per ms.

Figure 6.21 is the response when the system is trained on the regular 10ms spike

train and �gure 6.22 is when the system is trained on Poisson spike train di�erent

to those received by the neurons.

When a di�erent Poisson spike train is presented on each of the inputs the re-

sponse of the system is poorer than when the same Gaussian shifted input is applied

to all of the neurons (in the previous experiment). The examples in �gure 6.21 show

perfect scores of only 3 or 4 on each of the layers, rather than the median value of

6 for all of the layers up to a standard deviation of 8 in �gure 6.19. These are only

example runs, so it is not possible to provide a complete comparison, but with the
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Figure 6.21: Example responses from runs with a di�erent Poisson spike train for

each active input, when trained on a regular input. (a) has an average of 1 spike per

ms (b) an average of 1.4 spikes per ms.
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Figure 6.22: Example responses from runs with a di�erent Poisson spike train for

each active input, when trained on a di�erent Poisson input. (a) has an average of

1 spike per ms (b) an average of 1.4 spikes per ms.
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Figure 6.23: An example of the type of spike train used as input when a Regular

train and a Poisson train are combined.

Gaussian noise all 100 of the runs had scores of 6 for layer 1 and here both of the

examples have a score of 4. This di�erence between responses suggests that

the synchronisation of the inputs, with respect to each other, is important

for the system to correctly recognise the inputs.

The increase in readout activity seen with 14 regular spikes rather than 10 (�gure

6.16) is also seen with a noisy input in �gure 6.19. There is also a drop in correctness

and perfect responses as the spike rate is increased, as was seen with the regular

spikes.

The results using Poisson training were expected to be very similar to the regular

training results, but there are some di�erences. When trained on a Poisson distribu-

tion there are fewer spikes on the readout neurons, this may be because there were

more spikes in the Poisson spike train used for training, than for testing. To identify

whether this is the case the tests would need to be repeated in the same way as the

Gaussian experiment.

6.5.5 Poisson and Regular combination

The two combinations of Poisson and regular spike trains are provided to try to

understand how the system degrades. The �rst is described here and the second

in the following section. As the results from the previous experiments (sections

6.5.2 and 6.5.3) suggest that the neurons receiving spikes at the same time is more

important than the timing itself, these experiments aim to identify a crossover point

between them.

Here, each input neuron received �ve regular spikes at a rate of one spike every
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2ms, starting at time 1ms (times 1,3,5,7 and 9ms). In addition to this, a di�erent

Poisson train was generated for each of the input neurons. These two trains were

combined to provide the input. Examples of these combinations can be seen in �gure

6.23.

In this case the Poisson train was reduced to an average spike rate of only 2

spikes over the 10ms input. This rate of Poisson spiking was chosen because the

aim of this experiment is to test whether the spikes received out of time cause the

readout response to degrade. In the regular spike train experiment (section 6.5.2) it

was found that extra spikes caused the system to produce a poor readout response.

To separate the presence of `too many' spikes from spikes that are not synchronised,

the Poisson rate is set to be lower than half of the original, regular, spike train

(10 spikes). 2 was chosen as a benchmark, so that if the readout response did not

su�er much degradation then the number of Poisson spikes could be increased, while

remaining below 5.

This input was also tested using a system trained on the original regular spike

train and on a Poisson train. This allows comparison with the same results for the

Poisson input experiment described above in section 6.5.4.

Figure 6.24 shows two examples of presenting this type of input to a system (a)

trained on a Poisson spike train and (b) trained on a regular spike train. When

comparing the example results to the regular spike train (section 6.5.2) it can be

seen that the system performs less well. The noise causes some of the readout

neurons to respond incorrectly. This suggests that even a small amount of

unsynchronised noise, applied to the system input, can cause an imperfect

response.

When compared with the Poisson input graphs in �gure 6.22 the combination

graphs in �gure 6.24 have fewer readout spikes. This may be because the inputs are

likely to have fewer spikes in this case, an average of 7 (5 regular and 2 Poisson)

rather than 10 or 14 in the Poisson input case.

The two examples have comparable (slightly worse) correctness values to the case

when di�erent Poisson distributions are used on all inputs. This suggests that a

compromise of some regular spikes with the Poisson noise is not su�cient

to provide completely correct readout responses.

6.5.6 Poisson and Regular split between inputs

This experiment also aims to identify how important the arrival of spikes at the

same time is, to prevent degradation of the readout response. To compare with the

combination experiment outlined above (section 6.5.5) an alternative combination

method was tested. In this case some of the input neurons receive a 10ms regular

signal and others a di�erent `noisy' Poisson signal.

As the di�erent shapes have di�erent numbers of active input neurons it is not

fair to specify a �xed number of inputs that receive either type of signal. Rather

a proportion of the input neurons are given each signal. This proportion ranges

between 1/2 and 1/12 of the input neurons receiving a di�erent Poisson spike train.

Where the numbers do not divide exactly they are rounded down to the nearest
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Figure 6.24: Examples of the response when a combination of Poisson spike trains

and a regular spike train are applied to the system. (a) shows two examples using a

system trained on a di�erent Poisson spike train and (b) shows two examples using

a system trained on a regular spike train.
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integer.

To identify whether it is the regular spike train or the synchronisation of the

inputs that causes the correct behaviour in this case, the same experiment was run

using the same Poisson train rather than a regular spike train. Di�erent Poisson

trains were used on the other inputs and training was still performed using the

regular train.

The higher spike rate of 1.4 spikes/ms was used for both experiments. As only a

proportion of the inputs were noisy, it was decided that they should use the higher

�ring rate.

The graphs shown in �gure 6.25 represent example cases when n/2, n/8 and n/12

of the active inputs receive a Poisson train and the rest receive a regular 10ms spike

train. Example cases for n/2, n/8 and n/12 of the inputs receiving a di�erent Poisson

train while the rest receive the same Poisson spike train are shown in �gure 6.26.

The examples shown in �gure 6.25 show that this type of noise follows the

hypothesis that increasing the noise will gradually cause the system to fail.

With more of the input neurons receiving di�erent inputs there are more mistakes

in the readout. When the number is reduced so that it is only n/12 of the inputs

that receive a di�erent input signal, the majority of the responses are correct, though

there are still some mistakes.

The response when the same Poisson signal is applied, rather than

the same regular spike train, is shown in �gure 6.26. This graph shows

the same pattern, with lower numbers receiving di�erent inputs having

more correct responses. It also illustrates that it is not the precise regular

timing of the spikes that causes correct readouts, but the synchronisation

of the inputs. It shows this because the responses are comparable in correctness

and perfect runs to the version with regular spikes (�gure 6.25).

6.6 Discussion

The three sets of experiments have shown that it is possible to train a Neural Pipeline

to learn simple patterns. These input patterns can all be recognised by three layers

independently. The separate layers are used to produce outputs in sequence of the

order in which they were presented. The later layers displaying the earlier inputs,

while the new inputs are displayed on the �rst layers. The architecture has been

shown to achieve this performance using di�erent connection topologies.

Information is lost the longer the input remains in the system, the amount of

information lost within three layers is su�ciently small that each input pattern can

be recognised by all layers. When larger numbers of layers are used input to the

later layers could be supplemented by information from the readout neurons from

the earlier layers, this may extend the time that the information remains within the

system.

The experiments show that di�erent properties can be recognised using the dif-

ferent layers. This is an important property of the architecture. It means that the

relevant information about the input can be extracted in a speci�ed order. So in this
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Figure 6.25: The response of the system when di�erent numbers of the inputs receive

di�erent Poisson inputs and the rest receive the same regular spike train.
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Figure 6.26: The response of the system when di�erent numbers of the inputs receive

di�erent Poisson inputs and the rest receive the same Poisson spike train.
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example we can identify that `something' is in a particular position, before deter-

mining what it is. If the task required the input be identi�ed before its position was

established then the layers could be trained to perform this task instead. This ability

of the system to handle data in di�erent orders does not match what we would see in

biology. The brain has evolved to handle data in a particular order, over millions of

years. This system is being trained without the in�uence of this evolution. The abil-

ity is, however, computationally advantageous and as it is a computational system

this is a suitable outcome.

This splitting of information between layers may have other advantages the inputs

to be learnt could be split between the layers in such a way as to �lter out content.

The early layers providing a general �lter and the later layers being more specialised.

Reasons for choosing this method over a single layer are for timing, so that particular

inputs are given as output earlier than others and an e�cient use of readout neurons.

As the readouts are fully connected to the layer, having more readout neurons per

layer greatly increases the number of connections and thus increases simulation time.

There are multiple ways of splitting the inputs. A coarse grained �lter could be

applied using the �rst layer, say to classify into rounded or square shapes. Then a

more specialised �lter on the second layer, using the readouts on the �rst layer to

inhibit the options that are not possible based on the �rst classi�cation. One issue

with this is that the information content degrades over time as it passes through

the layers. There are alternatives that can be tested. One possible solution to the

degradation of information would be to enhance the di�erences between the inputs

by training the layers. If this enhancement were present in every layer, then it

may be possible to have the data become more focused over time rather than losing

information. Another possibility is to �lter out the most similar inputs with a low

separation value in the �rst layer, where there is the most information content. Then

use the later layers to recognise the more di�erent shapes.

It is possible the di�erent layers, in order to specialise for a particular task, could

use di�erent parameters to one another. A good example would be the number of

neurons in the layer. To reduce computational load, a layer with a simpler task to

perform may be able to have fewer neurons in it than a layer performing a complex

task.

It could be argued that based on the results in [49] it would be possible to achieve

the same splitting out properties of inputs using a single liquid layer. However this

does not stop the Neural Pipeline architecture being useful. The work presented

here is a proof of concept and the same architecture will be able to do more complex

processes within the layers, that will not be achievable with a single layer. The

individual layers can provide task specialisation, so that the pipeline can recognise

more inputs than a single layer. Additionally it is possible that the architecture may

allow the use of fewer neurons to perform the same tasks as a single layer, because

of this specialisation. Further experimentation will be needed to show whether this

is the case. Currently the architecture o�ers the advantage of providing the outputs

from each layer in sequence, after a delay, rather than at once as would be the

case with a single layer. Additionally the Neural Pipeline o�ers the computational

throughput advantage provided by a traditional computer pipeline.
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It has been shown that a system trained with a noiseless input responds di�erently

to di�erent types of input noise. It is seen that the system responds correctly for

synchronised inputs even when the rate of the spikes is very di�erent to the training

set (in the Gaussian noise experiment). It is found that providing unsynchronised

inputs causes the system to respond incorrectly, with even small variations causing

incorrect responses. This demonstrates that the synchronisation of inputs is more

important for a correct response than the precise spike timing. With synchronisation

the system is robust to �uctuations in timing.

It has also been seen that increasing the amount of noise tends to gradually

reduce the number of correct responses that the system gives. This result matches

the hypothesis introduced in section 6.1. The result is important because the more

similar an input is the the desired one, the more easily the system should recognise

it. If the input di�ers too much from the original input then the system should not

recognise it, because this increases the risk of misclassi�cation.

6.6.1 Further work

One of the most informative extensions to the work would be to continue adding

layers onto the system to test for how many layers the information provided only

to layer 1 remains distinct. This is an important factor for the Neural Pipeline to

be used in real world applications. The experiments (sections 6.3 and 6.4) show

that information is still recognisable after three layers, but the limit still needs to be

tested. This limit may be adjusted by changing the parameter settings of the Neural

Pipeline, and this is also an avenue for further investigation. When the experiments

are extended to include more layers, a useful extension would be to include di�erent

properties of the input pattern. For the image examples explored here colour, scale

and rotation are possibilities.

The ideas proposed in the discussion above for splitting the inputs between the

layers, with specialisation in later layers, to show that this can be achieved. Addition-

ally a comparison with a single layer for computational e�ciency would demonstrate

the advantages of splitting the input patterns between layers. The use of di�erent pa-

rameters to aid in specialisation should also be tested. The use of dynamic synapses

should be considered in all layers, as Maass et al [49] �nd that correct responses are

found more frequently with dynamic rather than static synapses.

More complete capacity tests for a full scale system should be carried out to

test the memory limits. The factors that in�uence this should also be investigated,

these are likely to include the separation of the inputs, the learning method used

and the size of the layers. It may be that with the choice of the same number of

fully connected readout neurons as system inputs, that there is no real limit imposed

by the size of the layer (before the simulator's limit or the computer system limit).

The limit is then going to be imposed by the time that it takes to train and run

the system. Another probable outcome is that splitting n inputs between two layers,

so that each layer recognises n/2 of the inputs, will take less time to train and run

than a single larger layer. This leads to another optimisation between the number of

layers and the number of inputs to be identi�ed by each layer, because it is believed
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that the data will degrade over time. Too many layers will be problematic, but too

few will mean that the system takes a long time to train.

One parameter that may in�uence capacity and duration of signal is the choice of

window that the system is trained on. There are so many parameters in the system

that could be varied, and time constraints meant that it was not possible to test

every one of these. The methods for choosing windows and window size were �xed

throughout the experiments. As illustrated in the example in �gure 6.2, the choice of

window size can be important in �nding a unique pattern for each shape. It suggests

that there is a trade o� between splitting into very small windows for a larger chance

of a unique set of windows, or using larger window sizes so that the process of �nding

a window takes less time. Also the smaller the window size, the shorter the time that

the system identi�es the shape for. This may not be a problem, for example, if the

readouts are trained to keep spiking, but it is something that should be investigated.

It is possible that smaller windows could be advantageous, because they may allow

the system to respond more quickly to a particular shape. This may improve the

potential throughput of the system, because the next stimulus will be able to be

presented more quickly.

The method of choosing the window itself could be optimised to enhance separa-

tion. Rather than picking the �rst unique set of windows, all of the possible windows

could be searched through to �nd the set with the largest amount of separation be-

tween all of the inputs. The search through all of the windows would take time to

perform, but when using o�ine learning it only needs to be done once before training

the system. If the system had to learn new inputs online then this extra step would

be costly.

Generalisation should be introduced to the system via noise tolerance and posi-

tion invariance. As the system trained on a perfect input is shown to be susceptible

to noise, a useful extension if the working system is likely to encounter noise would

be to include it in the training. This could take a number of forms, either using noisy

inputs when the system is initially trained, altering the training method that is used

or the readout system. If various noisy examples were presented to the system for

each of the inputs, instead of a single perfect example, then the robustness to noise

would be likely to increase. The use of a di�erent and more robust training method

could improve the noise tolerance of the system. An example to test is the P-delta

rule [7] which leaves a margin around zero when training. This margin means that

small changes to the input do not cause the sign of the response to change.

The readout mechanism used for these experiments is not biologically realistic, it

was chosen here as the simplest method of displaying which input was presented. It

is a �lter which displays which of the inputs is being presented in a high level form

using a single neuron per input. This form of readout is shown to be suitable when

the input has low levels of noise, but a di�erent readout mechanism may provide a

more robust response when noise is introduced. Instead it would be possible to have

a group of neurons to represent each of the inputs and use some form of averaging to

determine which output is selected. Maass et al use such a system in [49]. This would

mean that even if some of the readouts were altered by the noise, if the majority

were correct then the system would still respond correctly. An alternative is to have
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a bank of neurons that match the input grid. Using the grid the readout neurons

could be trained to display the original input and a human observer can recognise

the input pattern from this.

In the noise experiments (in section 6.5) where examples have been given they

are used to provide insight to the in�uence of noise. They do not represent a way of

analysing exactly what type of in�uence a particular level of noise will have. They

represent a suggestion of what can happen if di�erent types of noise are applied. For

a more in depth analysis of the in�uence of noise, these cases should be repeated in

the same manner as the Gaussian noise experiment (section 6.5.3). In addition to

this, di�erent types of noise could be investigated including internal noise present in

the system rather than superimposed onto the input.

The positional information provided to the system in this experiment was re-

stricted to only �ve locations on the input grid. This is useful to show that di�erent

properties can be extracted, but with this small example the system is probably

learning each of the 10 inputs as a separate image. To make the position informa-

tion independent, the experiment could be extended so that the system can identify

an image at any possible position on the grid. The system should be trained with

only the 3 by 3 pixel shape image, rather than the entire grid.

6.6.2 Summary

A Neural Pipeline can be used as an architecture for pattern recognition. Information

presented as an input to the �rst layer can be identi�ed by each of the layers in the

system. The layers can be trained to specialise for particular features of the input,

so the recognition task can be split. When noise is introduced into the system input

the system fails gradually as the noise level is increased, so that some inputs are

classi�ed correctly with low levels of noise. If the inputs are synchronised then there

is inherent noise tolerance to �uctuations in timing, with the training that has been

used.

The following chapter provides an overview and discussion of the work that has

been done in this thesis. It describes how the Neural Pipeline architecture has been

developed and tested, and summarises the main �ndings of the work.





Chapter 7

Conclusions and Further Work

7.1 Introduction

This chapter provides an overview of the work that has been carried out in the thesis.

The Neural Pipeline architecture is described as a multi-layered neural network, with

external feedforward connections that are excitatory and inhibitory feedback connec-

tions. The progress that has been made in developing and testing the architecture

is summarised.

The Neural Pipeline architecture is evaluated against the objectives set out for

the work in section 1.2.1. It is found that the objectives for the thesis have been

achieved. In achieving the objectives the aim of the thesis has also been met. The

Neural Pipeline illustrates that it is possible for a spiking neural memory to control

its own data �ow.

Further work suggested in the previous chapters is summarised. It is grouped

into work relating to: testing the parameters, extending the architecture, training

the system and analysis. Some of the suggestions are requirements to show that the

architecture is usable, others are more fanciful possibilities.

7.2 Overview

This section provides an overview of the work that has been achieved in the thesis.

7.2.1 Architecture

The Neural Pipeline architecture is proposed in chapter 3, as a computational archi-

tecture that can control the timing of its own data �ow, using the data itself. This

inherent timing is more suited to the biologically inspired arti�cial neural network

than alternative timing methods such as a regular clock pulse. The Neural Pipeline

architecture ful�ls the thesis aim of using coordinated �ring to control the timing of

the system.

The Neural Pipeline uses two sets of `external' connections between the layers

to control this data �ow. There are excitatory connections providing a forward �ow

of data from one layer to the next. Inhibitory connections provide feedback from

one layer to the previous layer to shut o� the layer while processing occurs in the

current layer. Through this mechanism they control when an input is allowed to pass

through the system. These connections allow timing to occur in the same manner as

an asynchronous pipeline with handshaking between layers to pass on the data. It

is these external connections that are necessary for the Neural Pipeline architecture.
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The inhibition to the last layer is provided using the system input, because there

is no `next layer' to inhibit it. In this work it is necessary to inhibit the last layer

because it uses the same parameter settings as the other layers, and needs to be

shut o� between inputs. The inhibition to this layer is provided from the input

rather than an alternative layer to allow �exibility. It means that if the delay on the

connection is longer than the time for the data to pass through the entire pipeline

then the input will shut o� its future self in the last layer. If the delay is set to be

shorter than the amount of time that it takes to pass through the architecture, then

it will stop the previous signal. This allows a signal to remain active in the last layer

until another input is presented.

In this thesis the layers are composed of randomly connected leaky integrate and

�re neurons. They are not constrained to this type of network and could theoreti-

cally be any arti�cial neural network. The use of any type of neural network layer

means that the architecture is a general structure. The only required elements of the

architecture are the sets of external connections.

7.2.2 Behaviour

While simulating a Neural Pipeline architecture three di�erent types of behaviour

have been identi�ed and de�ned. The type of behaviour that is exhibited is deter-

mined by the balance between activity in a layer and inhibition shutting down the

layer. They are named according to whether the level of inhibition is correct, out-

weighs the activity or is too low compared to the activity. Thus they are known as

`correctly inhibited', `over inhibited' and `under inhibited' respectively.

When the system is correctly inhibited each input that is presented �ows through

each layer of the architecture, it causes activity and is then shut o�. With over

inhibited behaviour, after the �rst input has passed through the layers, the inhibition

it causes is too high and prevents the next input from passing through all of the layers.

In the case of under inhibited behaviour, there is not enough inhibition between layers

to su�ciently shut them o�.

Correct behaviour is the desired type, with `over' the preferable of the two un-

desirable types. Over is preferable because it is possible to modify the input timing

in order to change the behaviour to correct . If under inhibited behaviour occurs

then no further inputs can be passed through without �rst reseting the layers to stop

the spiking. These de�nitions help users of the architecture to identify whether the

parameter settings they are using will produce the desired response.

7.2.3 Parameter Exploration

The parameters of a Neural Pipeline are split into two types; the external parameters

and the internal parameters. The external parameters are those belonging to the

connections that run between the layers. The internal parameters are those within

the layers. The external connections have weight, delay and connectivity parameters.

The internal parameters are the number of neurons and the connection parameters

of weight, delay and connectivity. There are additional parameters related to the

input, these are the size of the input (how many neurons it is presented to) and the
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duration between inputs. Finally, there are restrictions that can be applied to the

choice of random connections within a layer. If a neuron is permitted to have only

excitatory or inhibitory connections then it follows Dale's principle, otherwise it does

not.

These parameters are investigated in chapter 4 to identify their in�uence on

the behaviour of the system. Through the experiments it is found that the key to

correct behaviour is to achieve a balance of the spiking activity within the layers and

the external inhibition. Three main parameters are found to in�uence this balance,

through experimentation. These parameters are the external inhibitory weight, the

internal connectivity and the size of the input. The internal connectivity and size of

input control the amount of spiking within the layers and the external inhibition is

controlled by its weight. It is not necessary to use a speci�c value for any of these

parameters, but is important to adjust the others in response when one is set. So a

high value of internal connectivity or a high input size will require a high external

inhibitory weight value.

In addition to this balance there are certain general choices that will make correct

behaviour more likely. These choices are a low internal connectivity value and a low

internal weight value. Having a low weight value increases the number of runs that

exhibit correct behaviour, because the activity within the layers is reduced so less

external inhibition is required to shut o� the layer. A low value of connectivity

produces higher numbers of correct simulation runs. Layers with a larger number of

neurons are able to have a higher connectivity value and still produce correct runs.

There is a limit for the connectivity value, even as the layer size is increased, and

this limit is imposed by the external inhibition. As the connectivity is increased

the external inhibition must be decreased to prevent over inhibited behaviour. With

low connectivity values the choice of inhibitory weight is not as important, this

emphasises the required balance between the parameters.

The choice of connection topology for the external connections is also important.

Throughout the thesis the inhibitory connections have been fully connected, fewer

connections could be used but the weights would need increasing on the remaining

connections to allow the same behaviour. The excitatory connection topology is

important for preserving the inputs as they are transferred along the pipeline. If the

connections compress the data, for example providing input to only one neuron on

the next layer, then the di�erent inputs look the same in the second layer. If, on the

other hand, di�erent randomised connections are used from each neuron then the

pattern can be preserved.

The required system input provides constraints for some of the parameters. To

have a larger (uncompressed) input, a higher number of neurons are required per

layer. As the size of the input is increased, the activity in the layer will increase so

the external inhibition should be reduced accordingly.

A di�erent parameter, relating to the structure of the randomised connections is

whether the neurons follow Dale's principle. Dale's principle states that any partic-

ular neuron must only have connections of one type, either excitatory or inhibitory,

but not both. The architecture is found to operate correctly either using Dale's

principle or not, though there are some di�erences. The simulations that use Dale's
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principle have fewer parameter settings that achieve all correct runs, but retain some

correct runs at more extreme parameter settings. This suggests that the system us-

ing Dale's principle could be more robust to parameter settings depending on the

randomised settings of the run.

The key �ndings are that the Neural Pipeline architecture can operate correctly

within a wide range of parameter values. The parameters can be tuned so that if one

must be a particular value, the others can be adjusted to produce correct behaviour.

The only system constraint for the parameters is to balance the spiking activity

within the layers with the external inhibition. This illustrates that the architecture

can be set up using di�erent values depending on the desired task.

7.2.4 Analysis

Analysis of the system is given in chapter 5. The �rst part of analysis work concerns

the causes of the three di�erent behaviour types. It is the randomised connectivity

within the layers that allows simulation runs with the same parameter settings to

exhibit di�erent types of behaviour.

As the connectivity value is equal for each neuron, this means that every neuron

in the network has the same number of outgoing internal connections. They do

not, however, have to have the same number of incoming connections, because the

targets are chosen at random. It is found that balancing the number of excitatory and

inhibitory inputs that a neuron has is more important than restricting the number of

connections that it has. Having a low standard deviation for this sum of excitatory

and inhibitory connections is a suggested way of encouraging correct behaviour.

The weights used for the internal connections are set either to plus or minus the

same value (e.g. 2.5) or randomly within a range of values (0 to 2.5 for excitatory and

-2.5 to 0 for inhibitory). When randomised weight values are used, this represents

another di�erence in the network that contributes to determining the behaviour

types. It is found that when there are neurons with more extreme values on their

internal inputs, the behaviour appears to be more likely to be incorrect. Reducing the

standard deviation of the input weights is therefore suggested as a way of increasing

the likelihood of a correct run. Having extreme values on just one of the layers

appears to be enough to cause incorrect behaviour.

The complex nature of the architecture means that it is not possible to guarantee

correct behaviour by having a low standard deviation of input balance or weights.

Neither will every set of values with a high standard deviation give incorrect be-

haviour.

The second part of analysis looks at the preservation of information through the

architecture. Using a metric it is shown that information is preserved through a �ve

layer Neural Pipeline. A variant of the metric can be used to identify how similar two

inputs are and how the di�erence compares over time in each subsequent layer. The

metric shows that the two inputs which share fewer input neurons remain distinct

for longer than the two inputs which share more input neurons. The metric can be

used to determine which inputs should be learnt by which layer.
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7.2.5 Learning Application

The architecture has been tested on simple examples of image recognition using the

principle of Liquid State Machines. Each layer can represent a single LSM because

it is a randomly connected group of neurons. A separate set of readout neurons is

fully connected to each of the layers, here one neuron is used per input property that

is to be learnt. This was considered the simplest way for the system to display its

output. Training takes place by altering the weights only on the connections between

the layer and the readout. Training is performed using the delta rule for a 5ms time

window of the simulation.

In chapter 6 it is shown that the architecture can be trained to recognise di�er-

ent inputs. In one experiment six di�erent shapes can be identi�ed, all shapes are

recognised by all three layers in the architecture. This demonstrates that there is

enough information present in the signals to tell the shapes apart, as identi�ed in

the analysis using the metric. A di�erent test illustrates that it is possible to identify

di�erent properties of an input using di�erent layers. In this test the position and

the shape are the two properties that are examined, the position is identi�ed by layer

1 and the shape by layer 2.

The impact of noise on a system trained without noise is examined, and it is

found that di�erent types of noise in�uence the system in di�erent ways. With noise

applied synchronously to all of the inputs, the system can perform without fault.

When a large amount of noise is applied the system begins to misclassify the inputs.

When the inputs have noise applied independently (rather than synchronously) the

system misclassi�es inputs with a much lower level of noise. This shows that the

synchronisation of the spikes is more important than the actual timings themselves.

The system exhibits a gradual failure as the amount of noise is increased. The

conclusion from these results is that a system with a single readout neuron for each

input, trained only on a perfect input, is likely to produce at least some incorrect

responses when presented with an unsynchronised noisy input. There is an inherent

degree of tolerance when the noise is synchronised. Including noise when training or

using a more robust readout mechanism are suggestions for overcoming the sensitivity

to unsynchronised noise.

These tests illustrate that the architecture is suitable for training as a LSM

and is appropriate for pattern recognition tasks. It meets the aim of coordinating

information in a neural network memory. The experiments show that the di�erent

layers can be used to perform di�erent tasks, by splitting the properties of the inputs

over the layers. This work provides a basis for the Neural Pipeline to be developed

further and suggests ways of achieving this with future work.

7.3 Evaluation against objectives

The work completed in this thesis is evaluated according to the objectives outlined

in the introduction in section 1.2.1. The ful�lment of these objectives was speci�ed

to achieve the aim outlined in section 1.2. The aim of the work was to investigate

the ability of using spiking neurons to control information �ow through a network
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Figure 7.1: The strengths and limitations of the Neural Pipeline architecture

by designing and simulating a spiking neural architecture.

Each of the objectives described in the introduction is evaluated below, with a

discussion of the extent to which it has been achieved.

7.3.1 Objective 1. Compare Methods and Alternatives

The literature review in chapter 2 illustrates examples of both methods useful for

achieving the aim and alternative architectures with similar functions. Chapters 3

and 4 provide justi�cation for which of the methods from the literature were chosen

for use in the architecture. Examples of choices include the neuron model and the

network structure.

Various alternative architectures are examined to give an insight into the problem

but also to draw inspiration from. Computer pipelines and the Syn�re chain provide

examples of timing architectures. Associative memories and Reservoir computers are

introduced as di�erent types of memory.

These di�erent architectures are compared in �gure 2.13 to identify how well

they meet the aim outlined in this thesis. It can be seen that none of the exist-

ing architectures when used alone can meet the three key criteria required for the

aim. These criteria are: being biologically inspired (neural network); applicable to

computational tasks and having a timing system built into the architecture.

For comparison strengths and limitations of the Neural Pipeline architecture

are outlined in �gure 7.1. The strengths show that the Neural Pipeline is a novel

structure which ful�ls the speci�ed aim better than any of the existing architectures.

The limitations are addressed in the further work.

This objective is considered to have been met because di�erent options were

presented before a choice was made for the architecture. Existing architectures were

compared and found not to meet the necessary criteria for the aim. The Neural

Pipeline combines elements of LSM, Syn�re Chains and asynchronous pipelines to

achieve the aim.

7.3.2 Objective 2. Model and Simulate the Architecture

The architecture model is described in chapter 3, with motivation for the decisions

based on the preliminary tests in chapter 4. Di�erent parameters are tested to

identify their in�uence on the system's behaviour, and from this the most suitable

settings are chosen for the architecture generally, but also for the tests in chapter 6.

As there are so many parameters only certain ones could be investigated within

the scope of the thesis. Many of the parameters are tested, with a focus on the
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ones considered to have the most in�uence. This work can be extended to include

additional parameters, this is a suggestion for future work.

The architecture is simulated in its developing form in chapter 4 and in its �-

nalised form in chapter 6. The spiking neural simulator NEST is chosen as a suitable

tool for simulation.

This objective is considered complete because su�cient parameters were tested to

produce a working simulation of the architecture. Chapter 3 is considered to provide

an adequate description of the model so that it can be reproduced using di�erent

simulation environments.

7.3.3 Objective 3. Produce Analysis

The analysis of the system mainly relates to the three di�erent types of behaviour

that can be exhibited when the system is run. These three behaviours were identi�ed

and de�ned through experimentation using a simulation of a Neural Pipeline. They

are de�ned in section 3.4. These de�nitions have been particularly useful when

determining which parameters are most suitable. The tests in chapter 4 show how

di�erent parameters in�uence behaviour.

Analysis of the system is provided in chapter 5. Firstly the factors that con-

tribute to the behaviour type seen for a particular simulation run were investigated.

The behaviour of any given run depends on the exact connections of the randomly

generated topology. The analysis shows that it is possible to increase the chance of

having correct behaviour by having a low standard deviation for the weights on the

input connections to each neuron. Balancing the number of excitatory and inhibitory

connections that each neuron has is also found to have some in�uence. As discussed

in the analysis, it is not possible to guarantee any type behaviour for any randomly

generated set of connections. This is demonstrated by considering particular con-

nection scenarios (e.g. all connections are self connections).

The second type of analysis concerns the duration that distinct inputs remain

recognisable in the architecture. This is carried out using a variation of Rochel

and Cohen's distance metric. It indicates that over time the inputs become less

recognisable. This particularly in�uences later layers because the input is provided

only to the �rst layer. The metric shows that the shapes learnt in this thesis remain

distinct for three layers. The metric itself will be useful for further work when larger

data sets are tested or more layers are added.

This objective has been completed because di�erent types of analysis have been

produced. Further analysis of the architecture is still possible and suggestions for

this are made in the further work section.

7.3.4 Objective 4. Introduce Learning

In chapter 6 a Neural Pipeline is successfully trained to recognise di�erent input

shapes. The system is able to recognise each shape independently with each of its

layers. Additional tests show that it is possible to extract di�erent features using

the di�erent layers of the architecture.
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In demonstrating that the Neural Pipeline is suitable for a simple image recogni-

tion application this objective has been achieved. The suggestions for extending the

tests proposed in the further work section are necessary before the architecture can

be used on more complex examples such as real world images.

7.3.5 Objective 5. Evaluate the Success Computationally and Bio-

logically

Computationally, the Neural Pipeline architecture is considered to be successful be-

cause it ful�ls the aim of being a neural network memory that can control the timing

of its information by coordinating how its neurons �re. As it is a memory it can be

trained to perform a useful computational task, here image recognition. The exam-

ples here are simple and demonstrate that it is possible to perform this type of task

rather than aiming to solve a complex problem.

The architecture is applicable more generally to classi�cation because di�erent

types of input can be encoded as a spike train. The architecture itself does not

consider the shapes presented in chapter 6 as images but as spike trains. This means

that the architecture can be applied to other types of recognition, such as sound.

This is backed up by the use of LSM for di�erent classi�cation tasks in the literature

and the fact that LSM have been shown to be universally computational.

From the experiments, although there is some inherent noise tolerance, the system

could not always recognise noisy inputs. This is not a fundamental limitation of the

architecture, but a limitation of the training carried out and the readout mechanism.

Here, only perfect inputs were used to train the system, but noisy examples could be

used. A a set of readout neurons could be used instead of the single readout neuron.

The architecture has certain limitations. One such limitation is that it is not

possible, given a set of parameters, to guarantee correct behaviour. This is because

the behaviour depends on the topology of the connections. This is not a large

limitation because it is easy to detect whether the system behaves correctly and to

choose a new set of parameters if it does not. Additionally, there are ways to increase

the chances of achieving correct behaviour. Minimising the number of individual

neurons with particularly high input weights is one method. The choice of reasonable

parameters, such as low connectivity, is another way to encourage correct behaviour.

Another limitation is the need to choose parameters for a task. So for example to

perform the experiments in chapter 6, a layer size of 100 neurons was required along

with a reduced external inhibition. This limitation is considered to be acceptable,

because it is not expected that such a system can handle wide variations in input

without any change. Chapter 4 outlines suggestions for parameter choice, such as a

low connectivity. The experiments presented in this chapter suggest that the system

is able to produce correct behaviour for a wide range of values. This means that the

parameter choice does not need to be `perfect' to make a working system.

To evaluate the system biologically is more di�cult. Through the study no

matching architecture has been identi�ed in the biological literature. The Syn�re

Chain is believed to be biologically plausible and it is a similar architecture. The

Syn�re Chain is, however, less biologically restrictive than the Neural Pipeline in
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terms of its connection structure. It is feedforward and has no interconnections

within layers.

While it is not possible to say that such an architecture could be found in a brain,

the use of biologically sensible components (spiking neuron models) and connectivity

(Dale's principle), along with the observation of Pieron's Law, mean that a similar

architecture could be possible.

7.4 Further Work

There are many suggestions, from the work that has been done, to extend the archi-

tecture further. These ideas have been introduced in the discussion section of each

chapter (sections 3.5.1, 4.9.1, 5.4.1 and 6.6.1). These di�erent possibilities can be

grouped into the following categories: continued parameter exploration, extensions

to the architecture, improvements to learning and further analysis of the architecture.

7.4.1 Parameter Exploration

During the development of the architecture, only certain parameters have been in-

vestigated. The remaining parameters have been �xed at only one or a few values

for the experiments. In order to explore how the architecture responds to changes

in these parameters, they could be investigated in the same way as those presented

here, by �xing the other values and varying the test parameter. To perform these

tests for every parameter would be time consuming. Instead it may be possible to

work out how the most of the parameters contribute to the overall layer activity.

From the experiments already conducted, it has been found that it is the balance of

the activity in the layers with the external inhibition, that controls the behaviour

of the system. If an equation could be produced using these parameters then an

estimate of their in�uence on the layer activity could be found, thus indicating their

in�uence on the behaviour. The internal weight values, external excitatory weight,

input size and neuron parameters could be combined to produce an estimate of the

activity.

Some of the parameters, such as the internal and external delays, describe the

timing of the activity rather than the the level of activity. It may therefore be best to

investigate these parameters separately, as with the experiments presented here. The

choice of whether to put a delay on the external inhibition or the external excitation

is an important factor to investigate. This choice impacts the length of time that

the layer can operate for before the next layer is started, so dictates the timing of

the outputs from the readout neurons. The best length of delay for a particular

task should also be considered, some tasks may require more time for the layers to

calculate than other tasks. Investigating the length of delay includes the longer delay

to the last layer. In this work this delay has been set to be longer than it takes for

the data to pass through all of the layers. It is suggested that with a shorter delay,

an input would be able to stop the result of the previous input, instead of its own

signal. This needs to be tested to see whether it provides an advantage. Allowing

the last layer to continue to spike may mean that the information contained in the
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activity degrades, so there may not be an advantage when the inputs are presented

with a large gap between them.

7.4.2 Adjustments to the Architecture

Several possible changes are proposed that could be made to the architecture. It is

believed that some of these changes will make the architecture more specialised for a

particular task. Other changes, such as changing neuron type, test that the system

will work under di�erent conditions to those tested in the thesis. They should retain

the same operation that the architecture currently has.

The experiments here all use LIF neurons but the architecture should be able to

use any type of spiking neuron. The system is trained in the same way as LSMs,

which traditionally use LIF neurons, but LSMs have successfully been constructed

from Hodgkin-Huxley neurons [39]. This suggests that the Neural Pipeline should

also be able to use Hodgkin-Huxley neurons.

Internally the layers follow Dale's principle, but the external connections do not.

There are two possible ways to apply Dale's principle to the external connections.

Firstly just to remove the connections that do not follow Dale's principle and sec-

ondly to insert circuits of inter-neurons to correct the connections that violate Dale's

principle. Both of these alternatives should be compared to the existing architecture,

for correct behaviour and computational expense. The best of the three should then

be used as part of the architecture.

The architecture has been developed so that it can have any number of layers,

but has only been tested with fairly small numbers, most frequently three or �ve. It

is important to test the number of layers that can be used while still being able to

recognise di�erent inputs. It may be the case that parameter changes can be made

that will improve this number, for example a smaller external excitatory weight

and corresponding reduction in layer activity may help. The bene�t of introducing

additional layers is that the di�erent layers can be trained to recognise di�erent

inputs or di�erent properties of the inputs. It is necessary to identify how many

layers are suitable for di�erent numbers of inputs.

The suggestions of alternative forms of the architecture could be tested as future

work. One is suggested to handle continuous input in a di�erent fashion to the

standard Neural Pipeline architecture. They should be compared when presented

with a continuous input stream to identify which is preferable. The second alternative

allows a di�erent signal to control the timing of the system, this architecture would

also allow the same operation as the traditional architecture by using the same input

for both timing and processing. This still ful�ls the objective of a self coordinated

system, because the second signal is just a trigger to begin the timing from within

the system.

A later possibility for future work is to implement the architecture in hardware.

Once extensive testing is completed using the simulation it may be desirable to have

an implementation of the architecture that can respond more quickly. One of the

current limitations of the architecture is the speed of the simulation. Producing

a hardware version of the system, for example on an FPGA, would be a way of
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addressing this. It may also be possible to produce the architecture using real neurons

in order to gain further insight into the biological plausibility of the system.

7.4.3 Extensions to Learning

The examples of training the network presented in chapter 6 are simple examples to

test that the architecture is able to perform image recognition. The set of shapes

used is small and they are noiseless. This means that the system is not able to

generalise or to cope with large amounts of input noise. If the architecture is to

be used for more realistic examples of image recognition then these are necessary

extensions.

The method of training the system used in the experiments presented here does

not train the system to generalise. A useful extension would be to introduce general-

isation so that the system could recognise inputs that are presented in any position,

rather than just speci�ed locations. The system should also be trained to deal with

noisy inputs. This should improve the ability to deal with di�erent types of noise and

with larger amounts of noise. It should be achievable because LSM are trained to

produce the correct response while using noisy inputs in [49]. It may require a more

robust readout system and di�erent training. Internal noise could be introduced in

addition to noise on the input.

The training in the examples presented here uses `time windows', so the readout

neurons recognise an input at a particular point in time. The window size is not

investigated here, but may be useful when learning larger numbers of inputs. The

choice of window size will cause a trade o� between the length of time it takes to train

and the number of possible patterns that can be learnt. The choice of which window

to use is an area that could allow improvement in telling apart the di�erent inputs,

and also in generalising. Currently the �rst unique set of windows is chosen, with

no consideration as to how similar the windows are for di�erent inputs. It would

be possible to choose the most dissimilar windows, so that it is easier to identify

di�erent inputs. To help with generalising, windows could be taken at a time when

the inputs to be classi�ed as the same shape are more similar.

There are possibilities for introducing di�erent types of input, for example with

shape, position, orientation, scale and colour. Once simple examples of these are

tested, the system can be trained to recognise real world images. Another consider-

ation is applying a continuous input such as a stream of images or a video, and how

the splitting of the signal by the layer will in�uence this. Testing the application of

a continuous input should help to identify the limitations of the architecture.

7.4.4 Analysis of the Architecture

Further analysis of the system is the �nal area for future work that is discussed here.

There are several areas that have been identi�ed that provide areas for analysis.

The system behaviour represents a possible area for analysis. By considering

the sum of input weights to each neuron from within the layer, it is suggested that

where there are extreme values incorrect behaviour is more likely. These extreme

values increase the standard deviation of input weight. It may be possible to identify
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a value of standard deviation below which a certain percentage (say 95%) of runs

will be correct. It is thought that although this may help with the understanding of

behaviour, it would be simpler to generate a randomised set of connections and test

the behaviour rather than trying to produce sets that are correct using the analysis.

Two hypotheses are presented to try to explain the change from correct, to over

inhibited, to under inhibited behaviour seen when the connectivity of the layers is

increased. These hypotheses should be tested to identify if either are correct in their

explanation. This may not be as useful as the extensions for learning or exploring

the parameters of the architecture, but may help to provide an understanding of the

behaviour.

The idea that the system may be able to produce under inhibited behaviour

between certain layers and over inhibited between others is another consideration. If

it can be identi�ed under which conditions this type of behaviour occurs then it will

aid with understanding whether all layers of the architecture have to have particular

settings for the system as a whole to behave correctly. The standard deviation of the

weights on the inputs to the neurons may be a way of analysing each of the layers

independently.

The capacity of the architecture, when used for learning, is a useful area for

analysis. The capacity will be altered depending on the system parameters, from

the preliminary tests presented in this work it is suggested that the layer size is

important. The training method and the di�erence between the inputs is also likely

to have an in�uence. The number of di�erent inputs (or input properties) that can be

stored by a layer is important when choosing parameter values for the architecture.

It is suggested that by splitting the inputs that are to be recognised between layers,

the system could be made more e�cient because it will be easier to train. The

signal does appear to degrade as it passes through the layers, so this will need to be

addressed. This could be achieved using feedback from the readout neurons in the

earlier layers or alternatively by classifying the inputs with least separation with the

earlier layers.

7.5 Summary and Key �ndings

The Neural Pipeline demonstrates that a neural network memory architecture can

produce internal timing using structured connections. The novel architecture shows

that it is possible to use handshaking principles to control the behaviour of a layered

neural network. The excitatory feedforward connections between each layer of the

architecture provide the input to the following layer. Inhibitory feedback connections

are used to prevent data transfer while the layer is busy processing.

Three types of behaviour have been identi�ed and investigated. The behaviour

type is determined by the strength of the inhibition compared to the level of activity

within the layer. The balance can be correct or can be over or under inhibited.

When in the correct region, each input produces a wave of activity that propagates

through each of the layers. The activity within the layers is controlled mainly by the

connectivity and input size, this is balanced with the external inhibition to encourage

correct behaviour.
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As an application example it is demonstrated that a Neural Pipeline can be used

for image recognition. Di�erent system layers can be trained to perform di�erent

computational tasks, here identifying shape and position. There is some inherent

noise tolerance which could be improved by training for noise.

The Neural Pipeline architecture has the potential to be further developed for

use in more complex problems, such as computer vision. The analysis of how distinct

input signals remain with time will be useful as the data sets and number of layers

are increased. The Neural Pipeline is a general architecture. Each of its layers is a

Liquid State Machine which is universally computational so a Neural Pipeline should

be applicable to any computational task.
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Appendix

The appendix contains additional information, �gures and tables to supplement the

work.

A.1 Dale's Principle on the External Connections

Dale's Principle (introduced in section 2.2.3) is used for the internal connections

within the layers, this is described in section 4.6.3. The external connectivity does

not, however, follow Dale's Principle because all of the neurons, including the excita-

tory ones, have inhibitory connections. This is not an issue, because although Dale's

Principle was used to make the system more biologically sensible, it is not necessary

for the architecture to operate correctly. This is shown by the results presented in

section 4.6.3.

It is also possible to make the system follow Dale's Principle, with certain alter-

ations. For the the feedback this could be achieved using inhibitory inter-neurons

between each of the excitatory neurons in layer n+1 and the neurons in layer n.

This is shown in �gure A.1 (a). The inhibitory neurons can connect directly to the

neurons in layer n as they do currently. Each excitatory neuron in layer n+1 has its

own inhibitory inter-neuron which is fully connected to the neurons in layer n. This

allows each of the neurons to have outgoing connections only of their own type, thus

following Dale's Principle.

This method would not work on the feedforward connections, because an exci-

tatory inter-neuron cannot be made to spike using an inhibitory connection. This

is shown in �gure A.1 (b). Alternatives would be to only connect the excitatory

neurons to the next layer. This may reduce the amount of spiking seen in later lay-

ers, compared with the current architecture, because fewer spikes are being passed

forward. This need not be a problem as the weight on the external excitatory con-

nections actually increases the number of spikes in subsequent layers as discussed in

section 4.6.3. It could even improve the region of correct behaviour shown in �gures

4.11 and 4.12, by delaying the onset of over inhibited behaviour as the connectivity

is increased. This is consistent with hypothesis 2 presented in section 4.6.3. It is a

possibility to be investigated in further work (section 3.5.1), to see if the system still

works correctly and whether this change can improve the behaviour as suggested.

Another alternative would be to replace the connection with a neural circuit that

is capable of changing a negative input to a positive output. An example of this is

shown in �gure A.1 (c). This clearly adds more overhead to the system than only

using connections from the excitatory connections or breaking Dale's principle. The

spike generator is used to provide a continuous input spike train. The overhead
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is not trivial because this set of neurons would be required for every one of the

excitatory external connections from an inhibitory neuron. This option will also

have the possibly unwanted side e�ect of synchronising the timing of the signals

with the spike generator, as the circuit is of the same form as the `synchronisation

module' introduced by Maass in [45]. In this case, as the circuit is being used for

a di�erent purpose, the synchronisation of the signals with the spike generator may

lose signal information. The results for introducing input noise to the system in

section 6.5 suggest that this may not be an issue, if the system is trained with the

synchronised signal. These complications mean that Dale's Principle is not used for

the external connections in this thesis.

The last of these solutions (with individual neural circuits for each connection) is

not biologically likely because of the large overheads and speci�c connection structure

required. As Dale's Principle is introduced to improve the biological plausibility

this option appears to be a poorer choice. It is preferable either to remove the

connections which contravene Dale's Principle or to let the external connections

contravene Dale's Principle. The choice of which of these options is the most suitable

should be addressed through further work and is discussed in section 3.5.1.

A.2 Alternative Layouts

There are possible alternatives for the structure, which still follow the same principle

of data progressing using excitatory connections and being controlled using inhibitory

ones. These possibilities have not been tested, as the decision was made to focus on

setting up and testing the original architecture initially.

Two suggestions are shown in �gure A.2, in (a) the stages are separated into

computational stages C and bu�er stages B. The computational stages each perform

a required task and the bu�er stages provide a mechanism for producing output at

a given time. Not inhibiting the computational stages means that they can contin-

uously compute rather than being completely stopped between inputs. This would

allow a continuous input to be sampled in a di�erent way to the traditional Neu-

ral Pipeline architecture (see section 4.9.1 for suggestions of continuous inputs to a

Neural Pipeline). It would not be suitable for the stream of separated inputs that

is presented to the Neural Pipeline, because it would always exhibit under inhib-

ited behaviour as the computational stages are not inhibited. This means that the

structure of architecture should be chosen based on the required input.

Architecture (b) in �gure �gure A.2 uses a Neural Pipeline architecture to provide

the timing for a set of computational processes. This allows a second input to control

the timing of the process. This still ful�ls the requirement of achieving timing using

the system data, because an external input is not required. It does not restrict

the architecture to using its own input for timing, as the existing Neural Pipeline

architecture does.

Either of these architectures may be useful depending on the requirements. Other

possibilities for variations also exist and could be created for speci�c tasks. These

variations form an area for future work and are discussed in section 3.5.1.
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Figure A.1: The use of inter-neurons to make the external connections follow Dale's

Principle. (a) shows the feedback connections, and that the inter-neuron can make

the system follow Dale's Principle. (b) Shows why this will not work for the feedfor-

ward connection, because the excitatory inter-neuron cannot be made to spike using

an inhibitory input. c) Shows an alternative circuit of inter-neurons that would work

for the feedforward connections from inhibitory neurons.



188 Appendix A. Appendix

Figure A.2: Two alternative architectures. (a) has computational layers that do

not receive inhibition, followed by the standard pipeline layers. These layers act

as bu�ers to delay the signal. (b) Has a separate timing pipeline to control the

architecture that performs the task.

A.3 State Space

The Neural Pipeline has a large state space, because at any given time any of its

neurons can �re or not �re. The experiments presented in chapter 6 do not require

this space to be investigated, because it is so large when compared to the number of

shapes that are stored. It is important that di�erent inputs should take a di�erent

trajectory through the space so that they can be identi�ed. As the network is

randomly connected and di�erent inputs are de�ned by being connected to di�erent

neurons it is expected that this true. Liquid state machines work on this principle

(see section 2.11.1 for an overview of LSM). The trajectory that the di�erent inputs

take has not been investigated here, because they have been found to be su�ciently

di�erent for learning in the experiments presented in chapter 6. They do represent a

useful area for future work, because it is possible that it could be used as a method

of generalising if similar inputs tend towards similar trajectories.

A.4 Analysis

The F-Test is used in section 5.2.2 to compare two sets of data. It is used to determine

how probable it is that both data sets have the same variance. The null hypothesis

is that the two variances are the same. A one tailed test is performed to test whether

the correct data has a lower variance than either of the incorrect runs. The p value

returned by the test shows how likely it is that this result would be found by chance

assuming that the two variances are the same.
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Figure A.3: The sum of the excitatory weights that are on the input connections

plotted against the sum of inhibitory connections. The plots show a point for all

neurons for an example of each type of behaviour. Layer 2 is shown in plot (a) and

layer 3 in plot (b).
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Figure A.4: The sum of the excitatory weights that are on the input connections

plotted against the sum of inhibitory connections. The plots show a point for all

neurons for an example of each type of behaviour. Layer 4 is shown in plot (a) and

layer 5 in plot (b).
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Layer correct < over correct < under

1 0.0907 0.0256

2 0.2188 0.0378

Excitatory Weights 3 0.6682 0.4587

4 0.2593 0.1868

5 0.7528 0.6343

1 0.0347 0.0594

2 0.5494 0.1554

Inhibitory Weights 3 0.1593 0.8634

4 0.4346 0.1796

5 0.8923 0.8746

Table A.1: The p value found using the f-test with a null hypothesis that the variances

of the weight values are the same for the di�erent behaviours.

Layer Behaviour excitatory st dev inhibitory st dev

Over 18.36749 18.09698

B1 Correct 15.80634 14.75267

Under 19.68606 17.58079

Over 19.04961 17.13632

B2 Correct 17.46023 17.37653

Under 21.32417 19.47103

Over 16.806 19.27073

B3 Correct 17.64629 17.22947

Under 17.85296 15.2348

Over 17.26477 17.88932

B4 Correct 16.05858 17.56199

Under 17.74548 19.46617

Over 17.94465 18.65316

B5 Correct 19.37446 21.43778

Under 18.64251 18.84346

Over 17.8865 18.2093

Mean Correct 17.26918 17.67169

Under 19.05024 18.11925

Table A.2: Standard deviations of the input connections to each neuron, for all layers

for one run of each type of behaviour.
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Layer correct < over correct < under

1 0.7393 0.6066

2 0.5586 0.9741

Excitatory Weights 3 0.1046 0.5484

4 0.9375 0.6648

5 0.8721 0.5903

1 0.9679 0.3491

2 0.8302 0.6418

Inhibitory Weights 3 0.0399 0.5180

4 0.7540 0.9116

5 0.7521 0.5876

Table A.3: The p value found using the f-test with a null hypothesis that the variances

of the number of connections are the same for the di�erent behaviours.

Layer correct < over correct < under

1 0.2894 0.2227

2 0.6318 0.6154

80 neurons 3 0.1120 0.3599

4 0.7001 0.8349

5 0.4302 0.3147

1 0.6249 0.8307

2 0.3710 0.2439

70 neurons 3 0.2201 0.1570

4 0.2057 0.8326

5 0.7159 0.9566

1 0.0669 0.0624

2 0.5219 0.3631

60 neurons 3 0.9403 0.8254

4 0.9181 0.5354

5 0.1909 0.7660

Table A.4: The p value found using the f-test with a null hypothesis that the variances

of the sum of the weights is the same for the di�erent behaviours. This test is

performed for three di�erent layer sizes.
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A.4.1 Distance Metric

A.4.1.1 Parameters

The parameters used here are di�erent from those used in [56] because they are chosen

to produce correct behaviour in the Neural Pipeline architecture. The reason for this

is because the experiment is performed to examine the behaviour of the architecture

with parameters that it is likely to use rather than to replicate the experiment in

[56] using multiple layers.

A.4.1.2 Window Size

The chosen size of window can alter the results that are seen using the metric. In

[56] the size is chosen `to be su�ciently large to ensure our distance metric is viable

yet su�ciently small that all or nearly all neurons have �red at most once'. The

impact of window size on the results is shown in �gure A.5 for four di�erent window

sizes for which almost all neurons �re at most once. The larger sizes of window (c

and d) average the activity, so that the large peak that can be seen in the size 10

case (a) is barely seen. The small window sizes mean that a single neuron can have

a larger impact on the overall distance. So the window should be large while still

�tting the criterion of almost all neurons spiking at most once per window.

With the Neural Pipeline there is the additional di�culty of keeping the layers

comparable, because the number of spikes seen in each layer varies considerably. To

keep the layers comparable with each other it is sensible to use the same size of

window. With the subjective time measure the choice of window must be small,

because there are few spikes on the �rst layer. If the window size is bigger than the

number of spikes then layer 1 has no comparison data. With the real time version it

is possible to have larger windows, because all layers are run for the same duration.

However larger windows can result in multiple spikes per window for some of the

neurons in the later layers.

A.4.1.3 Presenting speci�c shape inputs

When the subjective time metric is used to compare the shapes, the response is

di�erent to the result found in the architecture with a random stimulus. The graphs

are shown in �gure A.6. The two inputs remain di�erent for around the �rst 10

spikes on each layer. On layers 2 and 3 the di�erence then oscillates between a large

and a small di�erence in signals. This is because a small sliding window is used.

The oscillations occur as the in�uence of a particular neuron slides into or out of the

window. The window size in �gure A.6 is 10 spikes per window dictated by layer 1

which was observed to have as few as 13 spikes. Layer 2 and 3 have more spikes so

can have larger windows, the graphs are shown in �gure A.7. The behaviour is still

oscillatory, but the oscillations are smaller and are smoothed. These results are an

artefact of the metric rather than a property of the Neural Pipeline.
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Figure A.5: The average distance over 5 internal settings and 5 di�erent inputs for

each of 4 di�erent window sizes.
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Figure A.6: The distance metric when applied to all layers of a Neural Pipeline.

Square and Cross are the two inputs being compared, using a cumulative spike total

for a `subjective' time measure.
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Figure A.7: The distance metric comparing square and cross for a) layer 2 with

window size 30 and b) layer 3 with window size 50.
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A.5 Parameter tests

The transition between correct and over inhibited behaviour is shown in �gure A.8.

An internal weight value of 0.5 (graph b) shows an unusual transition between the two

behaviour types. There are two peaks rather than the smooth change experienced

for all of the other experiments. This smooth change is shown for weights of 0.49

(graph c) and 0.51 (graph a). This suggests that there is something particular about

a weight of 0.5 that causes this strange transition. It is believed to be a symptom of

the simulation itself rather than something fundamental to the architecture.

Figures A.9 and A.10 display the tests for Pieron's law when the number of layers

and the number of neurons in a layer are varied. It can be seen that the graph shapes

are consistent as these values are changed.

The full correctness values and numbers of perfect runs for the graphs in �gures

6.21 to 6.26 are provided in table A.6. These values are provided for a complete

comparison, but the overall trends are illustrated by the graphs.

A.6 Learning as a LSM

The parameters used for the learning experiments presented in chapter 6 are given

in table A.7 to allow the experiments to be reproduced.
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Figure A.8: Graphs showing the strange transition between correct and over inhibited

behaviour with internal weights 0.5 (graph b). Graphs (a) and (c) show that weights

0.01 either side of these do not exhibit this type of transition.
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Figure A.9: The mean response time with di�erent sizes of stimulus over 5 runs. The

graphs show the data and a best �t line. Graph (a) shows the result with 3 layers,

(b) has 5 layers and (c) 10.
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Figure A.10: The mean response time with di�erent sizes of stimulus over 5 runs.

The graphs show the data and a best �t line. Graph (a) shows the result with 10

neurons per layer, (b) has 50 neurons and (c) 100.
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