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Abstract 

 

This work addresses the way in which a viscoelastic granular medium dissipates 

vibration energy over broad ranges of frequency, amplitude and direction of 

excitation.  

The viscoelastic properties (modulus and loss factor) of polymer particles are 

obtained experimentally both by deriving the master curve of the material and by 

measuring the stiffness of these spherical particles at different frequencies using a 

test rig designed for this purpose. Three dimensional Discrete Element Method 

(DEM) is used to develop a numerical model of the granular medium and is 

validated by comparison with experimental results. Despite the simplifications the 

model was found to be in good agreement with experiments under vertical and 

horizontal vibrations with different numbers of particles over a range of frequencies 

and amplitudes of excitation. 

The study is extended to investigate different phases that occur under vibrations of 

granular materials. The low amplitude vibrations when the particles are permanently 

in contact without rolling on each other is called solid phase. In this phase, most 

energy is dissipated internally in the material. A theoretical/numerical approach is 

considered for this phase and it is validated by experiment. At higher amplitude 

vibrations when the particles start to move and roll on each other (the convection 

phase) there is a trade-off between energy dissipation by friction and 

viscous/viscoelastic effects. Energy dissipation is relatively insensitive to the 

damping of individual particles. At extremely high amplitude vibrations particles 

spend more time out of contact with each other (the particles are separated from each 

other – gas region). It can be seen the particles with lower damping reach the gas 

region earlier because they are less sticky and more collisions can happen so 

although the damping for each individual particle it less, the total damping increases.  
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The effect of parameters of particles on energy dissipation is also studied using 

sensitivity analysis. The benefit of doing this is to better understand how each 

parameter influences the total system damping.  
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1 Introduction  

 

 

 

It is often desirable to reduce the weight of structures and machines for performance 

and economic reasons. However, reducing the weight can, at times, cause vibrational 

problems. The control of vibrations is therefore vital in designing many structures. 

Failure to address vibrations issues can lead over a period of time, to catastrophic 

failure due to fatigue. To eliminate or reduce the vibrations to an acceptable level, 

damping may be added to a structure to remove energy from the system and dissipate 

it as heat. 

There are many passive vibration reduction techniques available. Vibration isolation 

is one of the techniques used to reduce vibrations between structures and vibrations 

source. The airplane landing gear is an example of vibration isolation, however it 

needs the source of the vibrations to be separated from the body which is not 

possible in all cases. Vibration absorption technique is another technique that stores 

the energy in a separate mass-spring system and applies to discrete frequencies. An 

absorber requires tuning and if the system moves away from the target frequency, the 

absorber may amplify the vibrations. The use of viscoelastic material layers attached 

to structures is another technique which is used to increase damping. In this 

technique, bending deformations of the base structure cause deformations in the 

viscoelastic material that dissipate vibration energy [1]. However applying layer 

damping treatments to large surface areas can be expensive, add weight to the 

structures and require complex shapes for practical applications. In some cases, the 
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high strain areas may not be accessible making the use of viscoelastic layer dampers 

difficult. 

Particle dampers are an alternative technique for damping structural vibrations and 

are particularly suitable for hollow structures. A particle damper comprises a 

granular material (e.g. polymer spheres or metallic beads) enclosed to the structure. 

Figure 1.1 is an example of a spacecraft structure with integrated particle dampers 

that were located at the points of highest acceleration. 

 

Figure 1.1: Spacecraft structure with integrated particle dampers [2, 3]. 

 

Granular materials are found in a variety of forms and are used in many applications. 

In a general sense, the term granular refers to several discrete particles. Unlike other 

materials, the behaviour of granular materials, when excited, often resembles various 

thermodynamic phases (solids, liquids and gases) [4, 5]. Therefore, it is complicated 

to describe their behaviour. During the various phases, different levels of elastic and 

plastic interactions and frictional contact occur. Vibration energy is dissipated 

through these inelastic collisions and also from the friction between the particles 

making them suitable for damping of vibrationally excited structures. 

One particular advantage to granular materials is their level of compliance. Because 

they possess fluid-like properties, they can easily be used for filling structures with 

complex geometries such as by placing them within the voids in honeycomb and 

cavities in hollow structures. To extend this, they can easily be removed too making 

them serviceable. Using granular materials as dampers can also increase damping 

without significant compromise to the design or increasing total mass of the 

structure. 
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Damping strategies that use granular materials to attenuate structural vibrations 

generally rely on one of two very different mechanisms for dissipating energy. For 

low vibration amplitudes, where particles remain in contact and do not slip relative 

to one another, damping depends on the ability to maximise energy dissipation 

within individual particles [6, 7]. However, if the excitation is such that separation 

and slip between particles does occur, optimisation of the energy loss at the contact 

points becomes important and even particles with low internal loss, for example steel 

ball bearings, can give vibration suppression exceeding that of the material with high 

loss factor. Traditionally, particle dampers utilise low-loss hard spheres, such as 

metal particles, that are small in diameter. These dampers generally work well for 

large temperature ranges since the material is not as sensitive to temperature as 

viscoelastic materials [8-10]. 

In practice, it is often desirable to have good damping performance over a wide 

range of amplitudes. For low amplitude vibrations, the most effective particles tend 

to be made from low modulus materials with a high loss factor.    

Viscoelastic materials (VEM) are widely used as amplitude-independent damping 

elements in engineering structures. It has been shown that viscoelastic particles are 

effective as granular fillers for low amplitude vibrations for hollow structures. One 

of the advantages for this kind of filler is that they are low density, minimising the 

added weight to structures. At low vibration amplitudes, a granular viscoelastic 

medium behaves as a highly flexible solid through which stress waves travel at low 

velocity. A filler of this kind reduces the resonant vibrations in the structure over 

frequency ranges in which standing waves are generated within the granular 

medium. A characteristic of particle dampers is that noise can be produced from the 

collisions of the particles. When metal spheres are used this has been shown to be 

higher than for viscoelastic particles. This also holds for the reception of acoustic 

noise [11, 12]. 

It is necessary to study the dynamic behaviour of viscoelastic particle dampers (PD) 

as they have high levels of damping and their properties change with frequency. 

Very little information is currently available for systems based on moderately large 

particles made from materials with significant internal energy dissipation capacity. 
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This thesis will focus on the behaviour for VEM particles under different excitation 

levels and under vertical and horizontal excitations. In this work, experiments are 

performed and validated using simulations. The simulations are based on the 

Discrete Element Method (DEM). DEM is a numerical method to simulate this 

medium and is based on the application of Newton’s Second Law to the particles and 

force-displacement law at the contacts.  

1.1 Aims and  Objectives of this Research 

The current research aims to understand the behaviour of granular systems 

comprising viscoelastic particles within a structure subjected to sinusoidal vibration 

excitation. 

The main objectives of this research are listed below. 

 Investigate existing methods for predicting and measuring the vibration 

damping performance of viscoelastic granular systems at low vibration 

amplitudes where the medium behaves as a solid. 

 Design and manufacture a test rig to measure the properties of individual 

viscoelastic particles. 

 Use the Discrete Element Method to develop a model that predicts the energy 

dissipation of a granular medium consisting of spherical polymeric particles. 

 Investigate the behaviour of viscoelastic granular systems at higher 

amplitudes, where the particles collide with each other. 

 Consider the sensitivity of the power dissipated by a granular medium to 

physical parameters. 

 

1.2 Brief Summary of Chapters 

This thesis is structured as follows: 

Chapter 2 

In Chapter 2, the available literature on the topic is reviewed. Research on granular 

materials in different scientific fields such as physics and agriculture are briefly 

mentioned. Benefits and limitations and also different parameters which are effective 
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in the behaviour of existing granular materials as particle dampers are addressed 

followed by different applications in the structures. A modelling strategy of this 

medium by using the Discrete Element Method is described. As this research 

ultimately utilises polymeric particle dampers (high-loss), recent developments in 

this field are explained. At the end, the use of polymeric particles as a low density 

and low-wave speed medium is reviewed.  

Chapter 3 

Different models for viscoelastic materials are discussed. The viscoelastic properties 

namely, Young’s modulus and loss factor of the principal polymer to be studied in 

this work are extracted by experiment at different frequencies and temperatures. The 

Master curve for properties is developed. A suitable Prony series model to represent 

viscoelastic behaviour is fitted to the data. Two different approaches for measuring 

of damping of the granular systems and individual particles which were used in this 

thesis are also explained.  

Chapter 4 

Chapter 4 provides the understanding regarding the effect of low-amplitude 

excitation on the energy dissipation of viscoelastic granular medium. In this case it 

has been shown that the medium can be approximated as a solid homogenous 

material attached to the host structure. Energy is dissipated by the generation of 

internal standing waves within the granular medium. A theoretical/numerical 

approach was taken. In this approach the equivalent elastic properties of the medium 

were estimated and then used in conjunction with finite element analysis. In low-

amplitude vibration the particles are in contact without sliding and behave as an 

equivalent solid zone. In this case properties of medium change significantly over 

the frequency range considered. This chapter is concluded by drawing a comparison 

between approach taken including numerical analysis and experiment is presented. 

Chapter 5 

The stiffness contact properties in both normal and tangential direction for individual 

spherical particles are further explored by using finite element analysis and 

compared with related theories. The models were validated using impact/rebound 
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and steady-state tests. A test rig was designed to measure the properties of spherical 

particles. This chapter is concluded by measurement of the dynamic stiffness and 

damping for individual particles which are used for the numerical modelling of the 

granular medium in Chapter 6. 

Chapter 6 

A numerical approach based on Discrete Element Method (DEM) is introduced to 

identify the behaviour and energy dissipated of granular medium. The three-

dimensional DEM used here is based on the commercial software, PFC3D v4.1. All 

steps in order to build the model are explained. This chapter is concluded by 

simulating the granular medium which was validated by experiments in Chapters 4 

and 7 and further discussion by parametric studies. 

Chapter 7 

The purpose is to understand the performance of high-loss granular fillers at higher 

amplitude vibrations. The approach taken involves experimental and numerical 

studies and relates observed behaviour to existing understanding. Validation of the 

numerical model for predicting energy dissipation in vertical vibration (same 

direction as gravity) of a granular medium comprising several hundred particles is 

described. The validated model is then used to investigate the importance of different 

parameters and discussed on results. Finally, new conclusions regarding the 

behaviour of this type of granular system are presented. 

Chapter 8 

A sensitivity approach is taken to investigate the effectiveness of particle properties 

including, stiffness, damping ratio and friction coefficient on energy dissipation of 

the granular medium. Furthermore to understand of the behaviour and effects of 

friction better, a simple SDOF sliding system is modelled. It was shown that the 

power dissipated of the system is more sensitive to very low friction coefficient and 

damping ratio. 
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Chapter 9 

Comprehensive conclusions are detailed, and areas for the future work are 

recommended.  

The main contributions to the knowledge: 

 Understanding of the behaviour of a granular damper made from viscoelastic 

particle and excited at different frequencies and amplitudes. 

 Development of the DEM to model this type of damper. 

 Investigation on theory/numerical approach of viscoelastic granular medium 

when it is subjected to low amplitude vibration (the particles are permanently 

in contact and without any rolling on each other).  

 Understanding of effective particle properties (coefficient of friction, loss 

factor and stiffness) on the energy dissipation of the granular medium.  
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2 Literature Review 

 

 

2.1 Aspects of a Granular Medium 

Granular materials consist of grains in contact and surrounding voids [13]. These 

grains can be made of nearly any material and can be nearly any morphology. 

Materials in granular form are widely employed in various industries such as mining, 

pharmaceutics and agriculture. The study of granular materials has long been an 

active area of research. In 1895 when considering grain silos, Janssen [14] proposed 

a model based on a coefficient describing the redirection of gravity-induced forces 

toward the wall and derived an equation for the relationship between pressure on the 

walls and depth of grains. Describing the flow of the granular material has been a 

consistent problem that still persists [15, 16]. The mechanics of granular materials is 

often studied by formulating the macro-behaviour in terms of micro-quantities [16], 

where the dynamic behaviour is derived from the analysis of individual particles. 

Researchers have studied the granular medium for different purposes – some 

important topics are described in this section. 

2.1.1 Segregation, bed depth, heaping and arching forms 

Granular materials display several phenomena when exposed to dynamic loading, 

such as: segregation, heaping and arching. Segregation occurs when materials of 

either varying size or densities exist and the materials with like sizes and densities 

are attracted to one another. The first recorded explanation of the segregation 
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phenomenon in three-dimensions was provided by Oyama [17]. He studied two 

granular materials differing by their density, shape and size to find the fundamental 

laws governing the physics of the segregation process. Wassgren [18, 19] 

investigated the different behaviour of granular materials under vertical vibrations. 

He identified different behaviours in deep particle beds. In his work, a deep bed was 

defined as,  

 

                                                           40

d

h
                                                        (2-1) 

where 0h is initial depth and d the diameter of particles. He also found that the 

particle bed behaved differently at different levels of dimensionless acceleration, 

defined as, 

 

                                                         
g

X 2

                                                      (2-2) 

where X  is the displacement amplitude,  is the excitation frequency in rad/s and 

g is the acceleration due to gravity. Where ≈ 1.2 a phenomenon known as heaping 

was observed. Heap formation results from the convection flow of particles as shown 

schematically in Figure 2.1. As was increased to 2.2 (this value changes slightly 

depending on the bed depth value) small-amplitude surface waves began to appear 

on the slope of the heap. Increasing further causes the heap to disappear and 

surface waves become clearer. As approached 3.7, the sections of the particle bed 

could oscillate out-of-phase producing the behaviour known as arching where nodes 

and antinodes appear on the bed.  
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Figure 2.1: Heap and the convection roll of a vibrated container, a) cylindrical 

container. b) Initial height h0 and h(r,t) is height of pattern formation at any position 

and time. c) Downward heap and convection current profile. d) Upward heap and 

convection current profile [20]. 

 

2.1.2  Phases in granular material beds 

Some researchers have identified different phases in granular material beds subjected 

to vibration – it is anticipated that similar phases may be present in particle dampers. 

The subject of the onset of fluidization for vertically vibrated granular materials was 

presented by Renard et al. [21]. They proposed that there are several phases in 

granular materials subjected to vertical vibration. The first phase is similar to a solid 

that moves as a block with one layer surface in contact with the container. This 

occurs when 1. As  increases, the bulk of the bed will remain nominally solid 

but some of the particles on the surface may begin to fluidise. The next phase is a 

bouncing bed where the particle bed leaves the lower surface exciting the bed and is 

temporarily airborne. In this phase, critical dimensionless acceleration is defined as, 

                                                 
)1(

)1(

p

p

c
                                                (2-3) 

h0 
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where p is the coefficient of restitution for collisions with the container. The next 

phase reported is a granular gas, where the particles in the bed move about randomly 

in relation to one another [4,5, 22]. 

The phases in horizontally excited granular beds are less clearly defined because 

particles are under different static pressures along the plane perpendicular to the 

direction of excitation. This results in different behaviour at different vertical 

positions in the particle damper under excitation. The first reported phase is a glassy 

solid phase which occurs when 1 . The second phase transition is to a liquid like 

phase where convection occurs. It is not entirely clear whether this is a phase in itself 

or just a transition between solid and gas phases. The final phase is a gas phase 

which the particles move randomly in relation to one another [8, 23, 24].  

Tennakoon et al. [25, 26] also performed experimental observations of the onset of 

flow for a horizontally vibrated granular system. They observed in convection flow 

that grains rise up in the middle of the container and flow transversely along the 

surface towards the side walls and then sink at the wall boundaries giving the top 

surface of the liquefied layer a dome shape. They showed that the initial acceleration 

for transition depends on whether vibration is increasing or decreasing. If, when 

increasing vibration level, a critical value 1 is reached, a dome is formed. Reduction 

in amplitude reduces the height of this dome but does not remove it until the 

amplitude drops below a second critical value 2 after which flow stops. They 

explained that this phenomenon happens because the onset of flow must occur by the 

breaking static friction. 

Tennakoon and Behringer [27] studied the flow characteristics that appear in a 

granular bed subjected to simultaneous horizontal and vertical sinusoidal vibrations. 

The heap formation and the onset of flow are captured. They showed that, for 

instance, in the case that there is no phase difference in horizontal and vertical 

vibrations as h (horizontal dimensionless acceleration) is increased at fixed 

068v  
(vertical dimensionless acceleration). In this case the vertical acceleration 

is less than 1; therefore no convective flow occurs due to purely vertical shaking.  

Static heap is gradually formed between 6.039.0 h  when h exceed from 0.6, 
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the top layer along the slope liquefies and starts to decreasing the average slope. A 

simple Coulomb friction model was used to capture the features observed in 

experiments. The friction model simply considered a block static friction coefficient 

which is placed on a surface inclined at a heap angle. King [28] investigated the 

stability conditions of the surface of a granular pile under horizontal and vertical 

harmonic vibrations and the relation between the effective coefficient of friction and 

the slope angle. The experimental findings were interpreted within the context of a 

Coulumb friction model that showed that there are deviations from the predictions of 

the Coulumb model at higher frequencies and small grains (75-150 micron). From 

this, a parameter was introduced that is a function of the frequency. This parameter is 

used as a factor to reduce the effective magnitude of the horizontal and vertical 

forces. 

2.1.3  Packing and bulk density 

One of the key parameters controlling the performance of a granular medium is its 

packing density. Often, this can be approximated by sphere packing theories – 

studied in many fields including; condensed mater physics [29], to investigate the 

different configurations due to crystals; computer science and mathematics on 

group/number theory [30,31]. From this, it has been shown that a random 

arrangement results in an amorphous structure with a packing factor of 0.64 [32] or 

less while crystalline packing results in higher density with face-centred cubic (FCC) 

structures (See Figure 2.2) achieving a packing factor as high as 0.74. 

Figure 2.2: Face-centred cubic (FCC) lattice, this is the highest fraction of space 

occupied by spheres, theoretically is equal to 0.74 [33]. 
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The arrangement of particles in a granular medium affects the bulk density of the 

medium. This is important in industries that involve transportation and packing. The 

identification of the factors that affect bulk density is important. A common way to 

increase bulk density is to employ vibration. Knight and Nowak [34, 35] considered 

that the way in which the density of a vibrated granular system slowly reaches a final 

steady-state value. They found an experimental equation that explained the related 

bulk density of the granular medium to the amplitude and frequency of acceleration 

which were applied to the container. Zhang and Rosato [36] showed that for a vessel 

filled deeply with acrylic spheres, when the ratio of excitation amplitude to the 

diameter of spheres is between 0.06 and 0.1, the maximum in bulk density is 

achieved using 75  with improvement more than 5%. By increasing ,  the 

improvement in the bulk density slightly decreases. 

 

2.1.4   Other applications 

 

Due to the similarities of flowing granular materials to fluids, some researchers use 

hydrodynamic models such as conservation of energy and constitutive models 

(relation between stress field and energy flux) to deal with granular material 

behaviours [37, 38]. Some researchers model granular gases by hydrodynamic 

equations of motions. Analogous to definitions of different phases for granular 

materials, in the case of molecular gases/liquids, the macroscopic field also has been 

defined by expressions such as granular temperature. Granular temperature is 

defined as the ensemble average of the square of the fluctuating velocity of the 

particles [39]. 

 

 

2.2 Traditional dampers containing metal spheres 

 

An important application of granular materials is in passive damping of vibration. A 

particle damper comprises a granular material enclosed in a container that is attached 

to or is part of a vibrating structure. There are two types of dampers: an impact 

damper and a particle damper. An impact damper is composed of a container with 
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one large mass whereas particle dampers consist of a large number of smaller masses 

– see Figure 2.3. 

 

 

 

 

 

Figure 2.3:  Impact damper (left) and particle dampers (right), l is the gap inside the 

container [40]. 

There has been considerable research attention given to amplitude-dependent 

behaviour in particle dampers where the granular material is in the form of small 

metal spheres [41-43]. The main advantage of metal spheres is temperature 

independence and they can be used in harsh environmental conditions. However, 

metal spheres can increase the total weight of the system and during the impact 

process the impact loads transmitted between the particles and the walls can cause 

high levels of noise. These also can create large contact forces resulting in material 

deterioration and plastic deformation. 

2.2.1 Impact damper 

Impact dampers are used in special applications. They should be tuned for a specific 

frequency and specific amplitude of excitation [40]. Because of this limitation, this 

type of damping rarely is used especially for applications in which operating 

conditions change. 

The impact of a single particle, in a container with a ceiling, under the influence of 

gravity and harmonically base excited was studied by Ramachandran et al. [44]. The 

effects of various parameters such as the gap clearance (Figure 2.3) on damping were 

investigated. It was concluded that the damping increases by increasing the gap. 

However for higher gap values, the dynamics of the particle becomes very complex 

and damping decreased. There is an intermediate range with optimum high loss 

l 

l 
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factors. Popplewell et al [45] discussed analytically on the effectiveness of damping 

in a SDOF system (host/primary structure) using an impact damper. The procedure 

for an optimum impact damper showed that under sinusoidal excitation, damping 

increases by increasing the mass of the damper and also by decreasing the damping 

ratio of the host structure. Li [46] studied the effect of an impact damper in MDOF 

primary system. One of his results showed that only for the first mode, the higher 

mass ratio is better for damping performance while for the second mode, it is worse, 

in contrary with an SDOF system. 

 

2.2.2 Metal particle dampers and their applications 

Particle dampers can be added to a structure by attaching them to the outer surface 

or, for hollow structures, by filling voids. The first method is a quick-fix [10] 

solution for an existing design and the latter method saves space and does not 

compromise the structural integrity. 

Honeycomb structures are convenient for use with particle dampers as they have 

large number of voids that can be filled. Vibration attenuation was achieved without 

significantly shifting the natural frequency of a laminated honeycomb cantilever 

beam [47]. It was concluded that in order to avoid increasing mass, particles should 

be inserted into particular cells where the maximum amplitude normally occurs. In 

sandwich structures, partial filling with sand within the honeycomb core achieved 

increase by factor of 10 in the damping, although weight increased about 75% [48].  

Simonian et al. [49-51] employed more standard applications of particle dampers by 

mounting a hollow base plate to a structure. The base plate had machined cylindrical 

cavities that were filled by different type of particles. It was shown that there is an 

optimum fill ratio for particles and effectiveness, which drops at very high 

frequencies (>1000 Hz). Tungsten powder generally showed better performance than 

2mm tungsten spheres. As another application analogous to SDOF systems, a piston-

base particle damper under free vibration was studied [52]. In this case the piston 

was attached to the system from one side, and the other side was submerged in a 

container consisting of particles. It was concluded that the piston immersion depth 

was a crucial parameter for damper design and that there is a critical length above 

which its effect on the damping is less significant. It was also found that nanometre 
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size particles showed a poor damping because the piston displacement caused a hole 

in this medium during vibration due to adhesion effects (Van der Waals forces) and 

the particles could not flow properly. 

2.2.3 Metal particle dampers and design procedures 

 

There are many studies for characterization of particle dampers and design 

procedures. Papalou and Masri [53-55] studied key parameters such as container 

dimensions and the level of excitation. They introduced design procedures based on 

an equivalent single particle damper, under random excitation. One of their results 

showed that the response amplitude reduces by increasing the distance between walls 

which are perpendicular to the direction of excitation although there is an optimum 

for this clearance. 

A design methodology for particle dampers was recommended by Fowler et al. [56]. 

They showed that, particle mass has a significant effect on the damping, but 

coefficient of friction does not. Also modelling and analytical techniques of particles 

as vibration control devices (vibro-impact dynamics) have been considered [57]. The 

optimum design strategy for maximizing the performance (i.e., response attenuation 

capability) of particle damping under different excitations was discussed and showed 

that properly designed particle dampers (vertical and horizontal) can significantly 

attenuate the response of lightly-damped primary systems (SDOF and MDOF) [58]. 

2.2.4 Metal particle dampers under vertical excitation 

 

Hollkamp et al [59] performed experimental work on a cantilever beam with 8 holes 

along its length and filled with particles. Their findings showed that the value of 

damping strongly depends on the excitation amplitude. The damping increased with 

amplitude to a maximum and then decreased by a further increase in amplitude. The 

optimal location of the particles is the area of highest kinetic energy and it is not 

linearly cumulative so that the summation of damping which obtained from placing 

particles individually in chambers is not comparable to that obtained those same 

chambers are simultaneously filled. 
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Extensive analysis of the behaviour of particle dampers was performed by Friend 

and Kinra [60-61]. An analytical approach was derived for a cantilever beam with 

particle dampers attached at the tip. The performance also was estimated as an SDOF 

model. It was found that the damping was highly nonlinear, amplitude dependent 

and depends on the clearance (particle fill ratio) inside the enclosure on the particle 

dampers. It was shown from three different clearances that the higher clearances 

gives higher damping (total mass was kept constant and 251 ). The previous 

work was extended and investigated on different materials (steel, lead and glass with 

similar diameter and clearance) and showed that the normalised specific damping 

capacity with total particle mass is independent of those materials [62]. 

The Power Flow method was first used by Yang to find damping from experimental 

analysis of particles in an enclosure under vertical excitation [40]. In this application, 

the average power dissipated as active power (terms borrowed from electrical 

engineering) and maximum power trapped (e.g. kinetic energy of particles) named as 

reactive power, by the vibrating particle damper can be estimated directly by cross 

spectrum of the force and response signal of  the particle dampers [10].  

2.2.5 Metal particle dampers under horizontal excitation 

 

Experimental work on small metal spheres in a disc shape container whose axes 

were horizontal and parallel to the applied sinusoidal vibration was carried out by 

Tomlinson et al [63,64]. They examined the behaviour of particles in a damper 

attached to a SDOF system under different amplitudes of excitation. It was observed 

that by increasing the excitation level, the damping rises dramatically and the 

resonance frequency of the SDOF system shifts gradually towards that measured 

with the empty particle damper (dashed line − Figure 2.4). It also can be seen that at 

the very low amplitude level (0.1g) the particles behave as an added mass and 

therefore the resonance frequency of the system decreases from around 246 Hz 

(empty container) to 234 Hz. It was shown that the cavity geometry has a very 

important role in the particle behaviour. By increasing the aspect ratio (length 

divided by the diameter of the cylindrical damper container) particle fluidisation 

appeared at a lower excitation level and so more FRF curves shifted from left to right 
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(see Figure 2.4). Also it was shown that for smaller aspect ratio, higher excitation 

amplitudes cause better damping and conversely at higher aspect ratio, smaller 

excitation amplitude could give better damping. Nonlinear behaviour of metallic 

particle dampers also observed experimentally in the literature [65]. 

 

Figure 2.4: Dynamic behaviour of SDOF system with a PD, FRF marked 1-11 

shows different acceleration amplitude from 0.1g to 40g and aspect ratio 0.4, [63] 

The influence of mass ratio and container dimensions of particles were studied in 

multi-unit cylindrical containers (vertically seated on a primary support – as a base – 

which has horizontal harmonic motion). The results showed that in containers with a 

smaller radius, when the mass ratio of the particles is lower, better damping in the 

system appears. This happens because for the higher mass ratio it is more difficult 

for the granular particles to move as the cavity radius decreases. It was also shown 

that there is an optimum cavity radius [66]. In transient vibrations on a cantilever 

beam with particle dampers attached on the tip, it was concluded that the damping 

capacity significantly increase for 125.0  and decreases for greater than 1 [67]. 
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A new concept named effective momentum exchange (EME) was used to 

quantitatively characterise some of the physics of particle dampers. It was shown 

that lower damping ratios lead to less reduction of the primary system’s response in 

small-size container and more reduction in large-size container, compared to higher 

damping ratio. This phenomenon also can be seen in this thesis that in gas region 

(particles moving completely separated – analogy to large-size container) particles 

with lower damping ratio give higher total damping [9].  

2.2.6 Metal particle dampers under centrifugal excitation 

 

Some researchers considered particle damping for applications where high 

centrifugal loads exist such as turbine and fan blades. The performance parameters 

of particles under centrifugal loads were investigated [2,68]. A rotating cantilever 

beam filled with steel particle dampers in an aluminium container attached at the tip 

was tested. The tip of the beam was remotely activated vertically with a cam (the 

beam was in a free decay vibration mode) [2]. It was concluded that the ratio 

between the peak vertical vibration acceleration and the centrifugal acceleration is a 

fundamental property of the performance of particle dampers under centrifugal 

loads. It was shown that there are two zones of damping for low and high damping 

factor which these zones depend on that ratio. Zones are limited in terms of 

centrifugal loading beyond which the particles can not operate if the vibration 

amplitude is fixed. 

2.3 Numerical Modelling for granular medium 

There are many reasons for simulations of granular materials. One of the main 

reasons is that there is no comprehensive analytical theory on granular materials for 

example to reliably predict the behaviour of machinery in powder technology before 

they are produced. Experiments are expensive, time consuming and even sometimes 

dangerous [69]. Many researchers have studied the simulations of granular medium. 

2.3.1  Event-Driven Method 

The Event-Driven method in particle dynamic simulation methods uses the hard 

spheres model where particles are assumed rigid. In fact an event driven method is 
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used so that the particles undergo an undisturbed motion under gravity until an event 

(collision, particle-particle or particle-wall) occurs [70]. This method does not 

consider contact mechanics and the only needed properties are the coefficient of 

restitution for particle-particle and particle-wall impact and the mass and size of 

spheres. This method is useful where the typical duration of a collision is much 

shorter than the mean time between successive collision of a particle [69] and 

particles are only contact not more than one other particle, for example very dilute or 

granular gases. The principal assumption for using this method is at any time instant 

in the system one collision occurs of infinitesimal duration. By this method the 

simulation speed can significantly be increased. However only in cases where the 

assumption of isolated instantaneous collision can be justified can this method be 

applied.  

 

2.3.2 Discrete Element Method  

The Discrete Element Method (DEM) which attempts to replicate the motion and 

interaction of individual particles [71,72] has increasingly been used to analyse 

particle damper behaviour. 

The calculations performed in the DEM alternate between the application of 

Newton’s second law to the particles and a force-displacement law at the contacts. 

Contact conditions used in DEM studies can vary in complexity. For calculation 

speed and simplicity, linear spring and dashpot representations and simple Coulomb 

friction elements have usually been used to describe the normal and tangential 

contacts between metal particles [8-10]. There is some evidence to show that 

appropriate linearization of the elastic contact forces does not significantly affect the 

calculated power dissipation [10]. 

 For small metal spheres, DEM has been used to simulate damper performance under 

different vibration excitations. 

In the steady-state vibration, two-dimensional DEM performed to simulate power 

dissipated in a granular medium consisting of beads up to 1mm in diameter and are 

compared with experiment. It was reported that the DEM simulation was able to 
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qualitatively reproduce major features found in the experimental data. However, 

quantitative agreements between experimental and DEM values were only possible 

within a small range of accelerations – high accelerations, and suggested that it is 

required further investigation [73]. The influence of mass ratio, particle size and 

cavity dimensions were investigated in horizontal excitation by DEM [74]. Other 

researchers also studied on particle dampers performance using three-dimensional 

DEM under steady-state vibrations [9,10, 75]. 

In transient vibration also simulations were performed on dissipation mechanisms of 

non-obstructive particle damping (NOPD) by using DEM and showed that how 

energy dissipated during inelastic collision due to momentum exchanged of particles 

and friction between them. NOPD is a vibration damping technique where placement 

of numerous loose particles inside any cavity built-in or attached to a vibrating 

structure at specific locations, based on finite element analysis to find energy 

dissipation through momentum transfer and friction [43]. The particles will damp the 

vibration for specific mode(s). The results showed great adaptability of NOPD to a 

wide frequency band. Also, they showed that for very small particle size, most of 

energy was dissipated by friction however for greater size (0.2 mm and same 

packing ratio) the impact energy dissipation is more than friction. They explained 

that the reason for the above phenomenon is that with the particle size increasing, the 

number of particles and, therefore, the number of contacts between particles and host 

structure and between particles has to decrease. This would cause lesser friction 

energy dissipation. Meanwhile, with the size increasing, according to the momentum 

principle, the impact force will increase [76]. Also by using three-dimensional DEM, 

simulations provided information of particle motions within the container during 

different regions and help explain their associated damping characteristics during 

transient vibration under different excitation amplitude [77]. 

Many researchers have used DEM for granular medium for other purposes. Two-

dimensional DEM was used to simulate in a quasi-static granular flow in order to 

find pressure on walls of a silo during filling and discharge [78]. The flow pattern 

during filling and discharge in a silo with a hopper was predicted by DEM and 

velocity at different levels and pressure distribution on the walls was evaluated. 

Observations showed the importance of particle interlocking to predict a flow pattern 

and that was similar to real observations. Two types of particles, single-sphere and 
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paired-sphere (formed by clustering two spheres with aspect ratio1.5) were used. 

One of the results showed that paired-sphere produced flow pattern closer to the ones 

observed in the experiments [79-81]. The behaviour of particle interaction level is 

increasingly popular [82,83]. Determination of parameters of grains which are 

required for simulation in DEM was performed [84]. The volume of grains 

approximated to a regular geometrical shape and mechanical properties of grains 

measured by designing different apparatus and explained the uncertainty due to 

irregular particle shapes. 

Studying and investigation of the damage to particles and segregation phenomenon 

in granular medium are other applications that researchers used simulation by three-

dimensional DEM [85-89]. 

 

 

2.4   Vibration of granular materials comprising high-loss 

polymer particles 

Viscoelastic polymers are widely used as amplitude-independent damping elements 

in engineering structures [90]. Figure 2.5 shows the behaviour of a general 

viscoelastic material whose properties change with frequency and temperature. At 

high temperature, the internal energy of the molecules allows them to move more 

freely, making the material softer. Softening also occurs at low frequency, because 

larger scale molecular deformation can occur. Conversely, at low temperature the 

internal energy and hence the mobility of molecules is low, resulting in high values 

of modulus. At high frequency, the modulus is also high because there is not 

sufficient time for large scale deformations to occur. In the transition zone, the loss 

factor is high because the modulus changes quickly and the material is unable to 

respond at the same rate as the excitation and a significant phase lag occurs. 

Therefore this transition zone is the best operating region for high damping 

viscoelastic material. 

Commonly used treatments such as free and constrained layer damping for 

continuous or distributed mass structures are designed to operate in the transition 

region for optimum effectiveness [91]. However, dampers based on single or 

multiple surface layers perform less well on hollow tube and box sections because 
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effectiveness requires the damping layer to have significant stiffness in comparison 

to the substrate which is difficult to achieve [12]. Instead for such structures, high 

levels of damping can be achieved using high loss, flexible granular fillers [92].  

 

 

Figure 2.5: Variation in complex modulus of a typical viscoelastic material 

Significant damping of structural vibration can be obtained by using viscoelastic 

spheres especially in hollow structures. One of the main advantages of the polymeric 

particles (fillers) is very low weight added to the host structure. Test results for box 

section beams filled with viscoelastic spheres have also been presented by Pamley et 

al. [11] and Oyadiji [93] and have shown to match theoretical predictions [12]. 

Oyadiji measured experimentally inertance frequency response functions of the 

beam in horizontal and vertical directions under free boundary conditions. This 

measurement was performed both with the cavity empty and with the cavity filled 

with different sizes of viscoelastic spheres. When the cavity was empty, the modal 

loss factors of the hollow steel beam were found to be between 0.2% and 1%. 

However when it was filled with the viscoelastic spheres the modal loss factor 

increased to a range of 2% to 31% . 

For low amplitude vibrations (when the particles are in contact permanently), the 

most effective fillers tend to be made from low modulus materials with high loss 

factor [6]. Rongong [12] performed an experimental test on polymeric particle 
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dampers filled in a long glass tube (glass material because of small background 

damping). It was shown that at very low amplitude, the damping is high. However 

when the amplitude exceeds 1g, the decompaction of particles occur (causing the 

particles to lose contact with one another temporarily) and the damping drops 

significantly. At these higher amplitudes, interface friction becomes an important 

loss mechanism allowing the use of harder materials with low internal loss such as 

metals. 

Walton [94] derived an analytical method to find the effective elastic modulus and 

effective Poisson ratio of a random packing for identical elastic spheres when they 

are in contact permanently (analogous to low amplitude vibration). The results are 

applicable for initial boundary conditions which cause compressive forces between 

any spheres in contact, this could include hydrostatic compression. The results are 

for two types of spheres, rough or perfectly smooth. 

Viscoelastic granular fillers can also be used to absorb airborne noise. It was shown 

that the use of low-density granular materials can reduce structure borne vibrations.  

Granular materials utilise the effect of low sound speed in these structures without 

the problems of heavy added weight. [95]. 

 

 

2.4.1   Damping using low-density and low-wave speed medium 

Experiments indicate that low-density materials can provide high damping of 

structural vibration if the wave speed in the material is sufficiently low.  

Cremer and Heckel [96] discussed the transmission of waves in granular materials. 

They showed that using sand as a granular material and filled within an structure, it 

can be modelled as a continuum material and damping can be changed by adjusting 

dimensions so that standing waves happens in the granular medium at the resonant 

frequencies of the structure. Richard [97] performed experiments on sand-filled 

structures and studied the influence of different directions and amplitude of 

excitation. He also showed that maximum damping can be obtained at frequencies 

where resonances occur in granular particles. An aluminium beam coupled with low 

density foam layer under impact showed that the loss factor as high as 5% can be 



    Literature Review 

 

26 
 

obtained [98]. Another experiment performed with hollow beam filled with powder 

(average diameter 65 micron) showed high damping performance [7]. 

At low vibration amplitudes, a granular viscoelastic medium behaves as a highly 

flexible solid through which stress waves travel at low speeds. A filler of this kind 

can reduce resonant vibrations in the host structure dramatically over frequency 

ranges in which standing waves are generated within the damping medium [1,98]. 

Exploiting the flexible solid analogy, House [6, 99] used viscoelastic spheres in this 

way to damp vibrations in freely suspended steel beams. He explained that damping 

effect of viscoelastic layers is affected by motion of the layer in its thickness 

direction and can be improved by increasing the layer thickness or increasing the 

density of layers (reducing the wave velocity in viscoelatic material). This can also 

be achieved by reducing the effective modulus of the viscoelastic layer (making the 

layers as foam). 

 

 

 

2.5  Summary 

The key findings in the literature survey shows that granular medium has different 

patterns and different phases such as solid, fluidization and gas phases during 

vibrations which depend on the amplitude and direction of vibrations. Packing 

density is also one of the parameters that controls the performance of the medium. 

Granular particles can have effects on the damping of structural vibrations. DEM is 

one of the powerful numerical approaches that are used for modelling the granular 

medium. Viscoelastic particles as low weight added to the host structure and as a 

high level of damping in hollow structures have been proposed and used by a few 

researchers although with different methods and ways than this thesis [6,12,93]. At 

low amplitude vibrations, it is shown that viscoelastic particles behave as highly 

flexible solid which can cause high level of damping in the structures. 

This thesis studies the amplitude-dependent energy dissipation of a granular system 

composed of moderately large polymeric spheres that display significant 

viscoelasticity. Its purpose is to understand the performance of granular dampers 

whose properties lie between those of classical particle dampers and high-loss 
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granular fillers. The prediction of power dissipated is studied when the granular 

medium is at low amplitude excitation (steady-state horizontal excitation) where the 

particles are randomly dropped in a container. As the vibration amplitude increases, 

particles in granular systems temporarily lose contact or slide relative to each other 

and the flexible solid analogy no longer holds. In these conditions, it has been 

demonstrated that experimentally, damping levels decrease significantly. To date 

however, there has been no methodical study that explains the important parameters 

controlling such behaviour. The approach taken involves experimental and numerical 

studies and relates observed behaviour to existing understanding. The three-

dimensional DEM model has been created to predict the behaviour of such medium. 
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3 Viscoelasticity and Damping  

 

 

 
3.1 Introduction 

In this chapter different viscoelastic models are discussed. Two particular methods 

for measuring the damping (power dissipated and hysteresis loop methods) which 

are used in next chapters are explained. As viscoelastic properties of the material of 

spherical particles are needed in the next chapters, therefore the procedure for master 

curve extraction is discussed. In order to measure the viscoelastic properties of 

particles and extraction the master cure, a sample from particle’s materials is made 

and insert in Dynamic Mechanical Thermal Analysis (DMTA) equipment, the 

procedures are discussed thereafter.  By using the master cure one can obtain the 

viscoelastic properties (Young’s modulus and loss factor) at any temperature and any 

frequency. The Prony series which are fitted to material properties of the viscoelastic 

sphere are derived. Those Prony series are used for Finite Element modelling of 

spheres in Chapter 5. 
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3.2 Viscoelastic properties of materials 

A material is termed viscoelastic if it can simultaneously store and (through viscous 

forces) dissipate mechanical energy. Most common damping materials displaying 

viscoelastic behaviour are polymers such as plastics and rubbers, however significant 

viscoelasticity can also be detected in ceramics such as glass at high temperatures. 

Deformation of a viscoelastic material causes the dissipation of vibrational energy as 

heat. 

A polymeric material consists of a carbon atomic structure which is connected 

together firmly as long molecular chains. The damping arises from relaxation and 

recovery of these chains after deformation and is related to frequency and 

temperature.  

By attention to the selected temperature and frequency zones the proper viscoelastic 

material for specific application can be manufactured. 

 

3.2.1 Constitutive equation – Boltzmann equation 

A constitutive equation expresses the behaviour of a material and specifies the 

properties of the material in a manner which is independent of the geometry of the 

body and depends only on its material nature. 

In general, the response of a viscoelastic material to loading at any time is not only 

affected by the current conditions, but also by any previous load or deformation 

history. Boltzmann’s principle of superposition in integral form can be used to define 

the relationship between the stress )(tσ at the current time t  and each individual 

strain )(τε applied at a historic time τ [100]. 

 

                                         
τ

τ
τετσ d

d

d
tGt

t

rel∫ ∞−
−= )(

)()(                                    (3-1) 

The weighting function ),( τ−tGrel is the value of the relaxation modulus )(tGrel at 

the elapsed time )( τ−t for each applied strain. The Fourier transform can be applied 
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to the convolution integral (Equation 3.1) to obtain frequency domain behaviour. For 

steady-state harmonic oscillations the strain rate is defined as, 

                                             
)(

)( τωε
τ
τε

j
d

d =                                                       (3-2) 

 

where ω is the cyclic frequency and 1−=j . The Fourier transform of Equation 3-

1, for the infinite time, is given as, 
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Using the convolution theorem for Fourier transform, 
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where )(ω∗G is the complex modulus. The complex modulus is represented as, 

                                            )1( ηjGG real +=∗
                                                      (3-5) 

                                             real

imag

G

G
=η                                                                    (3-6) 

where )(ωrealG  is the real part of complex modulus and is also called the storage 

modulus and )(ωη  is the loss factor.  

The inverse transform can be used to find the relaxation modulus from the complex 

modulus,
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3.2.2 Viscoelastic models    

Perfectly elastic materials do not dissipate energy during deformation so that if a 

load applied and then remove, all the energy is recoverable. Constitutive equation for 

the elastic case, is expressed as, 

                                                       )()( sGs εσ =                                                    (3-8) 

                                                       
stes =)(ε , ωjs =                                            (3-9) 

For the viscous case (cyclic stress is proportional to the rate of strain), is expressed 

as, 

                                                       dt

sd
s

)(
)(

ευσ =                                               (3-10) 

 

where υ  is the dynamic viscosity. 

In a viscoelastic material, viscous and elastic behaviour are combined. Therefore this 

kind of materials has both behaviours. The simplest combinations are shown in 

Figure 3.1. As it can be seen the mechanical models to predict response under 

different loading conditions, are Maxwell model (spring and dashpot in series), and 

Kelvin/Voigt model (spring and dashpot in parallel). 

 

  

                                            

  

                                       

Figure  3.1:  Mechanical models for viscoelastic materials, Kelvin/Voigt model 

(left), Maxwell model (right). 

The constitutive equations for materials based on these models are, 

υ

G
G υ
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for the Kelvin/Voigt model and for the Maxwell model, 
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where 
G

υτ = , is a time constant. 

The behaviour of real viscoelastic materials is often modelled by combinations of 

Voigt and Maxwell models [100]. One of the famous combinations is shown in 

Figure 3.2, and is known as generalised Maxwell model. The constitutive equation 

is, 
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where 
n

n
n G

υτ = is the relaxation time constant, nG is the relaxation modulus for the 

nth element. eG is called as equilibrium or long-term modulus, after the viscoelastic 

material model having been subjected to a constant strain for a very long time, the 

response settles down to a constant stress. nG and eG are shown in Figure 3.2. 

 

 

 

 

 

                         Figure 3.2:   The Generalised Maxwell model 

In frequency domain, the constitutive equation is given as, 

eG
2G1G 3G NG

1υ 2υ 3υ Nυ
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And in time domain, the relaxation modulus is, 
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The constitutive equation is also known as a Prony series. The fitting of a Prony 

series model to experimental data is discussed later in this chapter. 

3.3 Master curve derivation 

Polymeric materials demonstrate viscoelastic behaviour (This can be seen in Figure 

2.5). This section describes the measurement and model developed for the polymer 

used as a particle. 

In order to present the complex modulus of a material (loss factor and Young’s 

modulus) in a simple way, these data are presented in the form of Master Curve. For 

viscoelastic material a master curve can be generated from a limited number of test 

results that allow estimation of properties at many different combinations of 

temperature and frequency.  

The following subsections explain the steps that are needed to obtain the master 

curve. For viscoelastic materials, an equivalent change in material properties can be 

achieved by altering the temperature or the frequency, this named as temperature-

frequency superposition principle. Material properties can be transformed between 

the temperature and frequency domain. Measurements taken over the available 

frequency range at a number of different temperatures can be shifted according to the 

temperature-frequency superposition principle, to give frequency dependent values 

at all range at any reference temperature. The work carried out in this thesis involved 

of high loss synthetic rubber. The procedure of master curve extraction for this 

polymeric material is discussed in the following sub-sections. A specific chemical 
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description of the material was not available and the term “blue” is used to refer it in 

this thesis. 

 

3.3.1   Method of reduced variables 

The method of reduced variables is based on the temperature-frequency 

superposition principle [101]. In this method the effect of a change in temperature on 

viscoelastic properties is to multiply the frequency scale by a shift factor constant for 

a given temperature.  

 

In reduced modulus stage, because of changing of modulus  of a viscoelastic material 

with temperature so to generate a master curve at a reference temperature 0T from a 

bunch of curves of  E  at  different temperatures .T  It should be reduced the values 

of E  at temperature T, to the value 0E at 0T , by means of equation, 

 

                                                      0

0

T

TE
E =                                                         (3-16) 

 

This is due to dependency of stored energy upon temperature as would be predicted 

by the theory of rubber elasticity. 

 

The loss factor has no reduced form because it is a ratio of reduced modulus. This 

step shows a vertical shift of the data at the reference temperature. 

 

A temperature shift curve is constructed for each set of reduced modulus and loss 

factor. Each data curve is then shifted horizontally (parallel to the frequency axis for 

higher or lower frequency), to produce a single curve for modulus and a single curve 

for loss factor. The approach which has been used for shifting the data along the 

frequency axis is named WLF (William-Landel-Ferry) equation. William-Landel-

Ferry have shown empirically that the shift factor for polymers is given by [91], 
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where 
f

f r
T =α  is temperature shift function.rf is reduced frequency at temperature

0T , f is frequency at temperatureT . 

1C and 2C are constant values, provided the reference temperature 0T  is taken to be an 

adjustable parameter.  

 

As an example [102], Figure 3.3 illustrates the assembly of the master curve for the 

Young’s modulus based on frequency-temperature superposition principle. Data 

obtained in a range of temperatures, T1 to T6 are shifted along the log-frequency axis 

to form a master curve over an extended frequency range at a reference temperature 

T4. The shift along the log frequency axis required to superimpose data measured at 

temperature T on the master curve is also shown. 
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Figure 3.3: Production of the master curve for Young’s modulus based on 

frequency-temperature superposition principle. a) Data collected at temperatures T1 

to T6 in the frequency range of 100-1000 Hz are superimposed on the T4 curve by 

applying horizontal shifts to each isothermal curve. b) The value of each shift 

required to construct the master curve. c) The relation of shift factor and 

temperature. [102] 

 

In this work for blue rubber a reference temperature of -30°C is adjusted to be 

around the glass transition temperature (the highest value of loss factor) and by 

translating the experimental curve along the log frequency axis and temperature 

difference, the constant values are chosen when both curves merge smoothly. 

C1=8.99, C2=97.30. Figure 3.4, shows the variation of shift factor with temperature 
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Figure 3.4: Temperature shift function versus temperature for the material of blue 

spherical particles  

3.3.2    Data collection  

This section demonstrates how the temperature frequency superimpose method was 

used to obtain a master curve for the polymer used in this work.  

A sample of viscoelatic material was prepared. This sample was assembled in the 

test rig (Metravib Viscoanalyser – Figure 3.5), the test temperature were monitored.  

Principle parameter *K (complex stiffness) directly is obtained. Complex stiffness is 

obtained from magnitude and phase difference of measured force and displacement 

from specimen. 

The material was characterised using Dynamic Mechanical Thermal Analysis 

(DMTA) equipment to generate the master curves that define properties at different 

temperatures and frequencies. As it can be seen in Figure 3.5 and 3.6, in order to 

measure the material properties, a sample from sphere particle was prepared 

(prismatic shape) and inserted in the chamber of DMTA machine. Specimen was 

glued from upper and lower face to the fixture and thermocouple is used to monitor 

the temperature. The chamber should be closed and after that the temperature 

changes, for this material measurement were made at temperature in a range ±70°C. 

Test was carried out at a number of frequencies between 1 and 60 Hz. In order to 
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justify of DMTA test data over the range of frequencies mentioned, loss factor was 

plotted against Young’s modulus. In Appendix G it is shown that there is a close 

correspondence between the two. 

 

Figure 3.5:   Viscoanalyser machine (DMTA) to measuring material properties 

 

 

 

 

 

 

 

 

 

Figure 3.6: Sketch of the test rig and specimen inside it 

Input sinusoidal excitation is subjected by a hydraulic actuator to the specimen. 

Force and displacement signals were used to estimate the complex stiffness of the 

specimen. From this the complex Young’s modulus is obtained by using the shape 

factor of the geometric of specimen. 

prismatic specimen 

thermocouple 

chamber 

Force input 

accelerometer LVDT 

force transducer 

rigid frame 
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)21( 2SA

kL
E

+
=  

where A, L are area of contact and length of specimen respectively. S is shape factor 

which is the area of one face in contact divided by the area of surrounded. 

The collected test data are shown in Appendix A. As an example a few original 

unshifted data for loss factor and Young’s modulus are given in Figure 3.7. 

 

 

Figure 3.7:  Samples of original data collected at different temperatures at DMTA 

As mentioned in the previous section, each set of test data was then shifted to form a 

single curve for Young’s modulus and a single curve for loss factor Figure 3.8. 
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Figure 3.8: Master curve showing Young’s modulus and loss factor, at reference 

temperature -30°C. 

 

3.3.2   Master Curves ( International plot) 

A Reduced Temperature Nomogram sometimes referred as International plot or 

master curves. Master curves display the dynamic properties (Young’s modulus and 

loss factor) can be read off in a same time at any combination of temperature and 

frequency. This method of representation has a significant advantage that all the data 

can be extracted quickly. Figure 3.9, shows the viscoelastic master curve for particle 

dampers which used in experiments. The uneven spaced diagonal lines represent 

constant temperature. These lines are given by the logarithmic form as, 

                                    Tr ff αlogloglog +=                                                (3-18) 
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The reduced frequency axis rf  is the lower logarithmic horizontal axis. If for any 

value of frequency (e.g. 200Hz) and specific temperature (e.g. 10ºC) the viscoelastic 

properties are needed, one can draw a horizontal line from that frequency to intersect 

the specific temperature and then from that intersection, a vertical line which 

intersects the respective master carves shows the values of loss factor (0.7) and 

Young’s modulus (7MPa). These values can read off from left vertical logarithmic 

axes of nomogram. 

 

 

              Figure 3.9:  master curves for viscoelastic spherical particles 

Provided that the changing of Tα respect to temperature is known, the interval 

between each temperature can be calculated. 
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3.4 Prony series calculations 

In order to simulate viscoelastic materials in time-domain Finite Element analyses, 

viscoelasticity is implemented through the use of Prony series. Prony series 

representation of viscoelastic models offers a straightforward fitting approach to 

experimental data. As mentioned earlier the viscoelastic properties can be 

implemented by Equations 3-14 and 3-15 in frequency and time domain respectively, 

these sum of exponentials are known as Prony series. Method for fitting data using 

the Prony series is explained in this section. 

The real and imaginary part of the Equation 3-14 can be rewritten as, 
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where ng  and nτ , n =1,2,…, N, are Prony series constant parameters that can be 

named as a Prony pairs. The loss factor can also be obtained by the ratio of 

imaginary to real part.  

The shear relaxation modulus can be written in dimensionless form, 

                                                    
0
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G
g n

ωω =                                                  (3-20) 

where G0 is the instantaneous or initial shear modulus. G0 is given by replacing t=0 

in the Equation 3-15 as, 
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By Using Equation 3-20 and 3-21, equilibrium modulus or long term modulus is 

given as, 
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This equation also implies that the summation of the input relative modulus, ng  

must be less than or equal to 1. 

In order to fit Prony series parameters to the complex modulus an optimisation 

routine is used. The range of frequency in the master curve is divided by even 

spacing. The minimum and maximum values of modulus are specified from master 

curve, therefore the values for g andτ could be estimated for each space/transitions. 

These constants then are used in the Equation 3.19 to calculate new values of 

modulus and loss factor. By applying mean squared error between the complex 

modulus defined by the Prony series parameters and defined values from master 

curve, is calculated. This is repeated to minimise the error. If one approximated the 

master-curves by e.g. three Prony terms the fitting is not accurate (see – Figure 3.10) 

by increasing the number of Prony series, better fitting can be obtained.  

In this thesis, Prony series parameters (Prony pairs) are approximated for twenty 

terms. This provides good fitting of viscoelastic properties curves (see – Figure 

3.11). The Prony parameters/pairs for twenty pairs are shown in the Table 3-1.  
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Figure 3.10:  Three Prony terms fitted to viscoelastic properties (complex modulus 

and loss factor), the poor fitting can be seen. Viscoelastic properties derived from 

experiment (solid curves) and from Prony series ("•"). 

 

Figure 3.11:  Twenty Prony terms fitted to viscoelastic properties (complex modulus 

and loss factor). Viscoelastic properties derived from experiment (solid curves) and 

from Prony series ("•"). 
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Table 3.1:  Twenty Prony terms (n=20) considered to fit to material properties at 

20°C   in the Figure 3.8. 

 

n 
ig (–) iτ (s) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

0.10030×10
-3 

0.39967×10
-4 

0.73353×10
-4

 

0.76854×10
-4

 

0.21459×10
-3

 

0.30055×10
-3

 

0.65413×10
-3

 

0.12727×10
-2

 

0.25167×10
-2

 

0.55635×10
-2

 

0.010475 

0.023394 

0.036909 

0.068200 

0.091604 

0.11987 

0.15757 

0.13724 

0.16450 

0.17875 

 

0.89615 

0.25396 

0.071969 

0.020395 

0.57797×10
-2

 

0.16379×10
-2

 

0.46416×10
-3

 

0.13154×10
-3

 

0.37276×10
-4

 

0.10564×10
-4

 

0.29936×10
-5

 

0.84834×10
-6

 

0.24041×10
-6

 

0.68129×10
-7

 

0.19307×10
-7

 

0.54714×10
-8

 

0.15505×10
-8

 

0.43940×10
-9

 

0.12452×10
-9

 

0.35287×10
-10

 

 

 
 
 

3.5 Damping calculation methods and energy dissipated 

There are different methods to estimate damping in a vibrated system. In this work 

two methods have been used; one involves calculating the dissipation to the whole 

structure containing the granular medium while the other is based on measurement of 

the hysteresis loop for each individual particle. In this section those methods are 

explained. 
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3.5.1 Power dissipated Method 

In this method, the damping of particles are measured in terms of power dissipated 

(rate of energy dissipation) in the system. In classical methods the damping is 

commonly measured by analysing the frequency response of the structure around its 

resonance frequencies and therefore the damping measurements are limited to the 

natural frequencies of the system. 

Power dissipation measurements can be made at any frequency and amplitude and 

can be applied to any structure. This method was first used for particle dampers by 

Yang [40] and has subsequently been taken up by others [10]. 

The work done in a cycle to excite a mass is given as, 
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                                                    (3-23) 

                                                  T

W
P cycle

av =                                                          (3-24) 

   

where )(tF , )(tx& and T are the force, velocity and time period of one cycle. avP is the 

average power transmitted. The average power dissipated is given, 
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nα and nβ are the phase of the force and velocity. Experimentally this is achieved by 

measuring the force applied to the system and the resulting acceleration. The 

measured force and acceleration are used in frequency domain and then from the 

Fourier transform of acceleration data, the velocity is calculated. The phase 

difference between the velocity and force data, are calculated and the summation of 



Viscoelastisity and Damping 

 

48 

 

all data are represented by the Equation 3-24. This method is based on the phase 

difference and is used later in Chapters 4 and 7 and used by other researchers [10, 

40]. 

 

3.5.2 Hysteresis Loop Method 

Energy dissipation is usually calculated under conditions of cyclic vibration. The 

force-displacement relationship is depending of the type of damping. In all cases 

force-displacement plot shows an area referred to as the hysteresis loop which is 

proportional to the energy lost per cycle. Figure 3.12 shows typical hysteresis loop 

for a viscously damped system. 

 

 

 

 

 

 

 

Figure 3.12:  Typical hysteresis loops 

The energy dissipated per cycle due to a damping force in a viscous model, is given 

as, 

                                                        ∫= dxFW d                                            
(3-26) 

The damping force is, 

                                                          xcFd &=                                                       (3-27) 
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where c, is the damping constant. With the harmonic sinusoidal displacement, 

                                                  ).cos(

).sin(

φωω
φω
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&                                           
  (3-28) 

 

By replacing the above equations the final equation for energy dissipated is given by, 

                                                    
2... XcW ωπ=                                                    (3-29) 

 

By substituting the equation for velocity in the Equation 3-27 and elliptic shape from 

relation between force and displacement is appeared, which the equation is, 
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In this case, the spring force which is kx  not taking account because it does not 

dissipate energy and it is only the elastic portion. By adding the force kx of the 

spring the hysteresis loop is rotated from horizontal shape to the new position 

(Figure 3.12) it is obvious that the loop area which is energy dissipated by viscous 

does not change. 

An alternative definition of loss factor is the ratio of energy dissipated per radian to 

the peak strain energy ,U  

                                                  max2 U

W

π
η =                                                         (3-31) 

                                                   

2
max 2

1
kXU =

                                                   
 (3-32) 

To allow comparisons to be made, it is sometimes convenient to use an equivalent 

viscous damping eqc  which is by any system to that dissipated by a viscous damper. 

                                                    teq WXc =2ωπ                                                  (3-33) 
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                                                          f

P
Wt =                                                     (3-34) 

 

where tW  is the total energy dissipated valuated from other types of damping force,  

f  is excitation frequency which is defined as, πω 2/=f  and P is the power 

dissipated. By combination of Equations 3-32 and 3-33 equivalent damping can be 

given as, 

                                                         
22 )(2 Xf

P
Ceq π

=                                        (3-35) 

 

3.6 Chapter Summary 

In this chapter, different models for viscoelastic materials were introduced. Also two 

methods for damping measurement which used in the net chapters were discussed. 

The viscoelastic properties of the material of blue spherical particles are extracted by 

using master curve. The procedure to derive master curve was explained by details. 

For this purpose an experiment with viscoanalyser machine was performed to obtain 

the properties. This master curve/nomogram expands the limited number of test 

results in a graph at any given combination of temperature and frequency. In order to 

fit the master curves by the viscoelastic model (generalised Maxwell equation), the 

parameters which named Prony parameters are calculated. These Prony series are 

used to define the material properties of the blue spherical particles in the FE 

analysis in the Chapter 5. 
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4 Granular Material in Low 

Amplitude Vibration 

 

 

 
4.1 Introduction 

In order to predict energy dissipated in a granular medium, one approach which 

many researchers have used is modelling each particle in the granular medium 

individually. In this method properties of particles in contact conditions at each 

contact point (such as radial and shear stiffness), and impact conditions between 

particles should be considered as a part of a time-marching analysis.  Although this 

method gives considerable insight into the dynamics of granular materials, it is not 

always desirable; for example, large hollow structures might be filled with hundreds 

of thousands of particles leading to a high computational cost. 

When the granular medium is subjected to low amplitude vibration (the particles do 

not collide and move with each other and they are in contact permanently), the 

medium is said to be in the solid phase/region. It is possible to approximate the 

granular medium as a solid and predict energy dissipation accordingly. In this work 

theoretical/numerical method is explained and is approximated for many complex 

structures. This suitability for making predictions is demonstrated by comparison 

with experimental results. 
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The study was conducted for an open topped rectangular box with rigid walls and 

cavity area 190×120 mm that was filled to a nominal depth of 35 mm. The granular 

medium consisted of 15.1 mm diameter spheres made from a blue synthetic 

elastomer with assumed 0.45 in Poisson’s ratio. The density of polymeric spheres 

which used in this study is 1170 kg/m3. The effectiveness of this system in 

dissipating vibration energy was studied for dynamic forcing applied horizontally. 

 

 

4.2 Model for low amplitude vibration of granular 

medium 

It has been shown that the damping of structural resonances can be increased 

significantly if standing waves are induced in an attached medium with high energy 

dissipation capacity [1]. The approach taken involves representing the granular 

medium as an equivalent solid using Finite Element analysis. 

4.2.1 Effective material properties on equivalent homogenous solid 

A granular medium subjected to a confining pressure and vibrating at low amplitude, 

such that particles remain in contact, can be approximated as a homogeneous solid, 

with equivalent spherical properties and effective bulk modulus. 

For uniform and identical spheres with random packing and rough contacts, Walton 

[94] derived expressions for bulk modulus and effective Poisson’s ratio. Assuming 

the spheres are made from homogeneous and isotropic viscoelastic material. In a 

hydrostatic pressure environment the effective (equivalent) bulk modulus is given 

by, 
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where,   
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E    = the dynamic Young’s modulus of the polymer 

φ     = packing fraction of spheres 

n     = the number of contact points 

p    = the hydrostatic confining pressure 

effν  = the effective Poisson’s ratio 

For rough spheres (i.e. coefficient of friction =1) the effective Poisson’s ratio is 

given by [94], 

 

                                  )35(2 ν
νν
−

=eff                                                        (4-2) 

where ν is the Poisson’s ratio for the sphere.  

The effective Young’s modulus and effective density of equivalent homogeneous 

medium are, 

 

 

                                              KEeff )21(3 ν−=                                                     (4-3) 

                                                  ρφρ =eff                                                               (4-4) 

The longitudinal wave speed can be obtained as,  

 

                                                 
eff

eff
eff

E
C

ρ
=                                                           (4-5) 

 

As an example from wave speed equation, and using same polymer as used in 

experiment, a wave velocity about 11 m/s is obtained for an effective density of 702 

kg/m3 at 100 Hz, therefore the wavelength should be 110 mm. 
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4.2.2   Sphere Packing 

The packing arrangement affects the packing fraction of spheres φ  and also the 

number of contact points (geometric coordination number) for each sphere n. In 

geometry, a sphere packing is an arrangement of non-overlapping spheres within a 

containing space. A typical sphere packing problem is to find an arrangement in 

which the spheres fill as large a proportion of the space as possible. The proportion 

of space filled by the spheres is called the density of the arrangement. 

A lattice arrangement (commonly called a regular arrangement) is one in which the 

centres of the spheres form a very symmetric pattern. For one sphere per lattice 

point, in a cubic lattice with cube side length a, the sphere radius would be a/2 and 

the atomic packing factor turns out to be about 0.524. In geometry the face-centred 

cubic (FCC) structure (also called cubic close packed) has a packing factor of 0.74. 

This can be, the highest average density – that is the greatest fraction of space 

occupied by spheres. 

Arrangements in which the spheres do not form a lattice (often referred to as 

irregular) Experiments have shown that the most compact way to pack spheres 

randomly gives a maximum density of about 0.64 [32].  

For the work presented here the spherical particles are randomly dropped into the 

box and shaken, they form an amorphous arrangement with a packing fraction of 

0.64 (random packing) and coordination number of 6 [32]. 

4.2.3 Confining pressure 

In a cavity filled with particles, even under static conditions, the pressure (and hence 

the deflection) varies with depth because of gravity loading. One way to estimate the 

relationship between pressure p and depth h in a granular fill subject to gravitational 

acceleration g is to use Janssen’s model [14]. The German engineer Janssen was one 

of the first researchers who found the maximum pressure with depth in a grain silo.  

He derived an experimental equation which assumed that the walls sustain part of the 

weight in a granular medium. For granular materials (particles) in a container, 

according to Janssen’s model the normal pressure p  is,  
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where effρ  is the effective density, S the shape factor is the ratio of the container 

perimeter to its area. In a vertical cylinder with radiusr  this is given as [12], 

 

                                                     
r
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2=                                                                 (4-7) 

And in a horizontal box section beam of length b and widthw , 

                                                    
bw

wb
S

)(2 +=                                                       (4-8) 

rK is the redirection factor (vertical stresses are re-directed horizontally) and often 

assumed using 0.7 based on experimental work [14].                                                                                                     

The pressure value from Janssen’s model has been shown to be less than would be 

with the hydrostatic assumption (pressure caused by gravity g in a fluid) and it 

reaches to a saturation pressure and more depth does not affect by pressure 

increasing [12]. The pressure p  caused by gravity g in a fluid at depth h  which is 

given by, 

                                                        ghp effρ=                                                       (4-9) 

Figure 4.1 shows the effect of depth on pressure calculated using the Equation 4-9 

and Janssen models. The calculations are based on box section cavity with 

dimensions that used in this work. 
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Figure 4.1:  Effect of depth and redirection factor on pressure for a cavity with same 

cross-section of the one used. 

 

4.3 Standing waves 

For this work, standing waves are considered for calculating the energy dissipation 

from the system. The reason for this is that standing waves produce the highest 

displacement on the viscoelastic material and therefore this is where the maximum 

energy dissipation occurs. This is also considered in other research work [47,96]. 

Standing wave information (i.e. natural frequency, mode shape and effective mass 

for horizontal motion) was obtained for the internal cavity (granular medium) using a 

standard elastic eigenvalue extraction routine assuming an effective Young’s 

modulus based on properties at 100 Hz. 

 

4.3.1 Modal analysis of homogenous material 

ANSYS v12.1 (workbench) was used as finite elements software. Solid elements 

(Solid 186 - quadratic brick 20 nodes) were used to model the fill medium and the 

material was assumed to be fixed rigidly at all five contacting walls. 
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To match conditions in experiments (See section 4-4) the average height of particles 

in the container was set as 35mm. Being viscoelastic, the Young’s modulus of the 

polymeric particles change with exciting frequency. It is a factor not accommodated 

in standard FE routines. In this work, frequency dependence was approximated 

instead by scaling natural frequency according to, 

                                               
Hz

actual
Hznn E

E

100
100,ωω =                                           (4-10) 

Where the final value of nω was attained by iteration. The relative change in 

frequency for the material considered is shown in Figure 4.2. 

 

 

Figure 4.2: Ratio of natural frequencies over natural frequency at 100Hz, versus 

excitation frequencies. 

As part of the approximation, mode shape and effective mass were assumed not to 

change with material Young’s modulus. Typical modes having high effective mass 

and their properties are shown in Figure 4.3. The full set of properties of these mode 

shapes are provided in Appendix B. 
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Figure 4.3:  Typical mode shapes with significant horizontal contribution (Mode 1  

and Mode 71 from left to right respectively).Young’s modulus 88.26 kPa, at 100Hz 

 

 

4.3.2 Base excitation 

In this work, a rigid container was filled with spherical particles and subjected to 

sinusoidal vibration in the horizontal direction. This is equivalent to applying base 

excitation to the contents of the container. The use of an equivalent solid 

approximation and modal analysis allowed representation of the granular system as 

many decoupled SDOF units. In SDOF units effim and effik are the effective mass and 

stiffness of each mode ( ,...2,1=i  ) as shown in Figure 4.4. 

The dampers of each mode can be approximated as, 

 

                                          effieffiieff mkc ζ2=                                                   (4-11) 

                                                   ζη 2=                                                               (4-12) 

where effic  and ζ  are  damping constant and damping ratio respectively, η  is the 

loss factor of the viscoelastic material at that particular frequency. As the granular 

system subjected to base motion, each mode moves by a different amount, expressed 

as a relative displacement, where yxz ii −=  as,  

 

Mode 1:  67Hz, 0.302kg Mode 71:  165.1Hz, 0.032kg 
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where  ω and nω are the excitation and natural frequency respectively. 

 

                                     

                     Figure 4.4:   Base excitation for decoupled system       

 

The total power dissipated is obtained from the real part of the total complex power 

[10, 40] from all SDOF units and is calculated using [103],  

                               Total power dissipated = 22

1
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1
ii
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zc ℜ∑
=

ω                             (4-14) 

where i = 1,..., N, N is number of modes. The summation of all power dissipated in 

each individual SDOF system provides the total power dissipated in the system.  

4.3.3   Analysis method 

In this subsection the process of how the FE model is populated with data is 

explained. For the FE model, effective Young’s modulus, effective density and 

effective Poisson’s ratio are needed. These values are calculated by following steps: 

• Effective Poisson’s ratio from the Equation 4-2. 

• φ  and n, are constant values and defined from section 4.2.2 (sphere packing). 
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• Effective density from the Equation 4-4. 

• The average confining pressure of filling particles is calculated by the 

Equation 4-6 or Equation 4-9 (with the hydrostatic assumption). 

• Young’s modulus (E) of particle material is derived from master curve 

(Chapter 3). It is obvious that this value should be updated each time by 

changing the excitation frequency. 

• Bulk modulus from the Equation 4-1. 

• Effective Young’s modulus from the Equation 4-3. 

 

4.4  Experimental validation 

In this section, the test rig for damping measurement of granular medium in 

horizontal vibration and low amplitude is explained and experimental results will 

compared by theory approach and also simulation. 

4.4.1  Granular medium test rig for horizontal vibration 

For the physical experiments the container was constructed using blocks of Perspex 

30 mm in thickness. This provided high rigidity and good visibility as shown in 

Figure 4.5. The container was suspended using nylon line and light metal springs to 

simulate free boundary conditions. Excitation was provided via an electrodynamic 

exciter attached to base. It is assumed the container is completely rigid. The 

experiment was repeated for the case with the container empty in order to find the 

phase error due to the boundary conditions and electronics. This error, although 

relatively small (5% at 350 Hz), was subtracted from measurement to provide true 

contribution of the granular medium.  
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Figure 4.5:  Experimental set-up showing container and particles, the transparent 

container suspended by nylon line and electrodynamic exciter attached horizontally 

to the base. 

 
 
Initial tests showed that flexible modes of the container were above 500 Hz while the 

rigid body modes were below 5 Hz. The container was then filled with 260 randomly 

placed particles and testing carried out at various frequencies and amplitudes. The 

force and acceleration are measured and as explained in Chapter 3, the power 

dissipated is calculated. 

The raw data at 350 Hz for acceleration and force are shown in Figure 4.6. Also the 

power dissipated calculated versus frequency excitation (for all measured data) are 

shown in Figure 4.7. It should be noted that at some frequencies the experiment were 

repeated in order to investigate the effect of amplitude dependency of medium. 

Figure 4.6: Typical measured values for force and acceleration at 350 Hz. 
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Figure 4.7:  Power dissipation measured at three different excitation levels, in a 

range of excitation frequencies. 

4.4.2 Validation of theory approach by experiment  

In this section, a comparison is made between the damping predicted by 

theory/numerical method and experiments at very low amplitudes. As a large 

frequency range was of interest, results are compared for displacement amplitudes of 

10-7, 10-6 and 10-5 metres depending on the frequency. These values were selected to 

ensure maximum accelerations remained less than3.0=Γ . (
g

X 2ω=Γ ) 

In Figure 4.8, the equivalent damping is calculated as, 

                                               2)(2 Xf

P
C total

eq π
=                                                    (4-15) 

where X, f are amplitude and frequency of excitation in Hz. As it can be seen, the 

results show that prediction method performs well in the frequency range 80 to 400 

Hz. At higher frequencies increased damping in the experiment is thought to arise 

from the presence of container wall resonances. Below 80 Hz, the wave approach 

does not match the experiment as it only considers standing waves – the lowest of 

which is near this figure. 
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As an investigation into how much the prediction changes if the material properties 

were assumed not to change with frequency, was conducted by assuming constant 

properties at 100 Hz. The results show that as the material properties do not change 

by frequency, therefore the equivalent damping shows smaller values than the other 

curve with real properties (See – Figure 4.8).  

 

Figure 4.8: Comparison of equivalent damping for three different displacements 

amplitude levels. 

The effects of amplitude on the effective damping excitation is summarised in Table 

4.1. In each case, although the amplitude of excitation is increased by factor of 10, 

the equivalent damping does not change dramatically and the ratio is around 1. This 

shows (as was expected) that the damping of the granular system at low amplitude is 

amplitude independent [12]. 
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Table 4.1: Experimental results of damping ratio at different frequencies and 

excitation amplitudes. 

Excitation frequency 

Hz 

Lower displacement 

X low, m 

Higher displacement 

X high, m 

Damping ratio 

Ceq (high)/Ceq (low) 

120 10-6 10-5 0.88 

300 10-7 10-6 1.03 

350 10-7 10-6 0.91 

400 10-7 10-6 1.01 

. 

4.5 Chapter summary 

This chapter has considered the damping from polymeric granular materials under 

low amplitude excitation. In this case it has been shown that the medium can be 

approximated as solid homogenous material attached to the host structure. Energy is 

dissipated by the generation of internal standing waves within the granular medium. 

A theoretical/numerical approach, in which the equivalent elastic properties of the 

medium were estimated using equations developed by Walton were then used in 

conjunction with a finite element analysis. Comparison of the method with 

experiment shows fairly good agreement. Little effect of amplitude at 3.0<Γ

excitation has been observed which is in agreement with other research [12]. The 

method could therefore be easily applied for more complex structures. 
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5 Properties of Individual Spherical 

Particles 

 

 

 
5.1 Introduction 

The properties of individual particles have a considerable influence on the behaviour 

of a granular system.  These include dynamic properties which, for viscoelastic 

particles depend on excitation frequency and temperature and contact properties at 

the interface which are also affected by the geometrical shape. This work involves a 

numerical study using Finite Element (FE) method to investigate the contact stiffness 

of each particle and a comparison of those with existing theories and experiment. In 

addition to FE method, in order to obtain the dynamic properties of individual 

spheres a test rig was designed and used to measure the properties (stiffness and 

energy dissipated) at different frequencies. The performance of test rig was validated 

using two specific cylindrical specimens. The results of this work are used in 

simulation of the granular medium using the Discrete Element Method in Chapter 6. 
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5.2 Hertz contact theory 

Contact mechanics is the study of the deformation of solids that touch each other at 

one or more points. The original work in the contact behaviour of spheres dates back 

to work published in 1880 by Heinrich Hertz [104]. 

Hertz developed a theory to calculate the contact area and pressure between the two 

surfaces and predict the resulting compression and stress induced in the objects. This 

theory relates the circular contact area between two spheres to the elastic 

deformation properties of the materials. For curved surfaces in contact the Hertzian 

model through its equations allows calculation of contact area, maximum and 

average compressive stress and maximum deflection. 

There are some assumptions in Hertzian theory that should be noted. 

• The strains are small and within the elastic limit, 

• The area of contact is much smaller than the radius of the body. 

• The surfaces are continuous and initial contact is a point or a line. 

• The surfaces are frictionless. 

The first two assumption these assumptions imply that a<< R where a is the contact 

radius and R is the effective radius of curvature of the two solids. 

A non-conforming contact is that under zero loads, they only touch at a point (or 

possibly along a line). In the non-conforming case, the contact area is small 

compared to the sizes of the objects and the stresses are highly concentrated in this 

area. Such a contact is called concentrated. In Figure 5-1 two spheres in normal 

contact are shown which the radius of contact area is recognised. 
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Figure 5.1: Two spheres (i, j) in normal contact where a is radius of the contact area 

and α  is displacement of each sphere after loading, dashed lines show positions 

before loading. 

 

The contact surface between the spheres is circular with radiusa and according to 

Hertz equation [104,105] the pressure at a point such as A in the contact area, at a 

distance r from centre o is given as, (see Figure 5.2) 

 

                                                2)(1)(
a

r
prp m −=                           (5-1) 

 

where mp  is the maximum normal pressure accruing at r = 0, by integrating p  

over whole contact area and rearranging formp , (this is related to normal force 

contact)   
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 Figure 5.2: The circular contact area in left side and normal pressure distribution 

with maximum value mp in the right hand side. 

 

The normal force contact (zF ) as a function of normal displacement approach (δ ) 

was defined by Hertz’s equation according to, 
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where  *E and *R are effective Young’s modulus and radius and δ  is the approach 
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The maximum contact pressure can be also calculated from Equation 5-2 as a 

function of normal displacement and radius of spherical particle by replacing 

Equations 5-4, 5-7. This could be used as an initial point when yield and plasticity of 

material is noticed. 

For defining the radial stiffness of each sphere where two identical spheres are in 

contact, one can differentiate from Equation (5-4), zF
 
respect to 2/δ , the radial 

stiffness for each sphere is given by, 

 

                                                aEkn
*4=                                                          (5-8) 

For calculation efficiency, it is sometimes desirable to obtain a linear spring to 

represent the nonlinear force-deflection behaviour. Practical experimentation has 

shown that force deflection curves often deviate from Hertz theory because of 

roughness and contamination of the surface layer. For metal particles, some authors 

have used an equivalent linear spring that stores the same amount of energy as a 

Hertzian one up to the yield force of the contact [10,106]. For flexible polymers, this 

approach is unsuitable as material failure occurs at much larger strains than those 

experienced. The approach taken here in this work is to use the average stiffnessnk  

up to a defined deflection0δ . The stiffness from Hertz theory is obtained by taking 

the gradient of the force-deflection curve to get, 
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where 0nk is the stiffness at the maximum deflection. This approach allows a linear 

stiffness value to be estimated from the stiffness measured during an experiment.  
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5.2.1 FE  analysis for normal stiffness of spherical particle 

The most common element shapes used in three dimensional are tetrahedral and 

hexahedral. If the geometry of model is complex and changing, the tetrahedral are 

better suited although it needs more elements to fill the volume in comparison with 

hexahedral with same edge length. Element types could be low or high order. For 

low- order elements, nodes are sited on vertices and the interpolation functions 

between those are linear. For high-order elements there are additional nodes between 

vertices and interpolations for three nodes on each length are quadratic. These high-

order elements usually have better results than the others. 

In this work, the element used was a higher order 3-D, 10-node tetrahedral shape 

(Solid 187 in ANSYS) [107]. This element has quadratic displacement behaviour 

and is well suited to modelling irregular meshes. It consists of ten nodes having three 

degrees of freedom at each node. A sketch of this element is shown in Figure 5.3. 

 

 

 

                                         

Figure 5.3:  Tetrahedral solid element with ten nodes 

The material was represented in FE using a hyperelastic model. As unfilled polymers 

are generally linear to large strain, the Neo-Hookean option was used – this has a 

potential applicable strain range of 0-30%. In the Neo-Hookean model, the form of 

strain energy is given by, 
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where 

U = strain energy per unit reference volume 

−
I  = first deviatoric strain invariant 

7 
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G = initial shear modulus of the material 

id = material incompressibility parameter 

J = determinant of the elastic deformation gradient 

The material incompressibility is defined by, 
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where, 
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 (5-12) 

 

 

If the initial Young’s modulus and Poisson’s ratio of the material is known, one can 

obtain the initial shear modulus using: 

 

                                                          
)1(2 ν+

= E
G                                                (5-13) 

 

A comparison between FE and Hertz’s equation was conducted for a sphere with 15 

mm diameter and Poisson’s ratio of 0.4 located between two steel plates for 

compressing up to 1.4mm. Recalling Equation 5-6, this equation relates to two 

spheres in contact. However in this comparison, R2 is infinite and therefore this term 

is equal to zero and can be remove making Equation 5-6 valid for plate/sphere 

contact. In the FE model symmetrical boundaries were chosen and the two middle 

nodes in contact between plates and sphere were constructed to move only vertically 

to prevent sliding. The element size in the contact zone was reduced to 0.08R (R is 

the radius of particle). The convergence of the FE model was checked by increasing 

the number of nodes from 10455 to 35350 – in this case the normal force changed 

from 10.00 to 10.26N. Considering the complexities of this FE model (e.g. contact 

and geometric nonlinearities), this difference in normal force is insignificant. 

Figure 5.4, shows the model in ANSYS v.12.1 – workbench.  
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Figure 5.4:  Half model of sphere compressed to 1.4 mm, showing increased mesh 

density around contact points. 

 

5.2.2   Comparison with Hertz theory 

The force-compression result from the FE model in Figure 5.4 is shown in Figure 

5.5. Note that the result is for one contact side, i.e. half of the total compression, in 

order to compare convergence with Hertz contact theory. It can be seen that at low 

pressure, when the contact area is still small, the two curves match fairly well 

however at higher force levels the curves diverge. The reason for this is that at higher 

force levels, the contact area increases and therefore does not meet the Hertz theory 

assumption of small contact area. 
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Figure 5.5:  Comparison of ratio of reaction force over Young’s modulus in FE 

analysis with Hertz theory approach.   

 

5.3 Mindlin-Deresiewicz shear contact theory 

For particle dampers not only do the particles have compressive loads but they also 

have shear loads from adjacent particles. With Hertz theory only the compressive 

loads are considered. Therefore the introduction of shear contact theory is necessary. 

Theory concerning the shear displacement of spheres relative to the contact area was 

developed by Mindlin [108] and was used by others [109, 110]. The shear force for a 

sphere is given by, 
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where ,,,, µνaG  are shear modulus, area of contact, Poisson’s ratio and friction 

coefficient respectively. 
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xF  and zF are the forces applied in horizontal and vertical directions respectively and 

x  represents tangential displacement. Shear stiffness sk  is calculated by 

differentiating Equation (5-14), respect tox , it is given by, 
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At zero shear force, the initial shear stiffness 0sk  is given by 
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By replacing shear modulus from Equation 5-13, the ratio between initial shear 

stiffness and normal stiffness (Equation 5-8)  is become, 
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5.3.1 FE  analysis for shear stiffness of spherical particle 

Much like Hertz’s equation, Mindlin’s equation is limited to small displacements for 

linear materials. To validate that Mindlin’s equation holds for the material and 

displacements used in this work, a comparison is made using an FE model. 

Since the FE model considers contact nonlinearities, the computational time is large. 

This can however be reduced by using symmetric boundary conditions in which two 

quarter spheres are in contact as shown in Figure 5.6. The symmetric boundary 

conditions are applied along the flat surfaces normal to the z- axis. It is obvious that 

another line of symmetry exists; however, since a load is applied in the tangential 

direction, the symmetric portion will possess an equal but opposite force making the 

system to be in equilibrium. The properties used for the spheres are the same as those 

listed in section 5.2 while the coefficient of friction between the spheres is assumed 

to be 1 (discussed further in Chapter 7). 

The lower sphere is constrained in all degrees of freedom (DOF) at its mid-plane that 

is parallel to the x-z plane. The simulation is split into three loadsteps to provide the 
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full compression displacement before applying the tangential displacement. For, the 

first loadstep, a linearly ramped displacement from 0mm to 0.1mm is applied to the 

x-z mid-plane of the upper sphere in the negative y-axis. This displacement is held 

for loadsteps 2 and 3. Loadstep 2 is a rest step that is used to provide time between 

the ending point of loadstep 1 and the beginning of additional loading in loadstep 3. 

In loadstep 3 a linearly ramped tangential displacement from 0 mm to 0.01mm is 

applied to the x-z mid-plane of the upper sphere in the x-axis. Since the simulation is 

nonlinear, each loadstep is split into multiple substeps of 50, 5 and 60 for loadsteps 

1, 2 and 3, respectively. The loadstep history is shown in Figure 5.7. 

When two spheres come into contact, this is initialised as a point. The stresses/strains 

therefore quickly dissipate throughout the sphere. The contact area is highly sensitive 

to be able to accurately capture the behaviour. A mesh refinement is used in this area 

with an element size equal to 0.03R while the remaining mesh is 0.25R, where R is 

the radius of the sphere. A similar method has been used by Quoc [111] which 

indicated a good correlation between analytical and numerical methods. 

                                  

Figure 5.6:   View of semi polymeric hemisphere in contact 
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Figure 5.7:  Displacement applied to the quarter of spheres versus different steps, 

solid line represents normal compression while dashed line represents shear 

displacement which was applied during last step (step 2 to 3). 

 

The normal pressure zone in contact area can be seen in Figure 5.8. This shows 

symmetric pressure distribution. The pressure increases in the first step (under 

compression) and then keeps constant during shear motion. 
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Figure 5.8:   Normal pressures versus time steps (top view of lower sphere in Figure 

5.6) 

5.3.2  FE  model comparison with Mindlin theory 

The force-compression result of FE model in Figure 5.6 has been shown in Figures 

5.9 and 5.10. In Figure 5.9 the comparison with Hertz with very small compression 

is presented for the compression stage (step 1). Both theoretical and numerical 

methods are in good agreement. In Figure 5.10 the comparison between Mindlin 

theory and FE is shown. 

MPa 

x 

z 
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Figure 5.9: Vertical forces versus compression for two spheres in contact as shown 

in Figure 5.6, comparison between hertz theory and F.E model 

Figure 5.10 represents the third step when the shear displacement is applied. As it 

can be seen, the theory is matched reasonably well at low amplitude indicating that 

Equation 5-15 holds. Since the shear stiffness is dependent on the mesh, two 

different mesh densities have been used to show the sensitivity. Although the FE 

result with 32029 elements varies from Mindlin’s theory, it does however represent 

the same trend. When the elements are reduced to 9188, bilinearity occurs where the 

initial stiffness is higher than Mindlin theory, while the secant stiffness is the same 

as the FE results with 32029 elements. This indicates an insignificant discretisation. 

The difference between FE and Mindlin’s theory is expected since Mindlin’s theory 

does not account for all of the complexities such as changes in the contact area. 

However, these are considered be in good agreement still. 
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Figure 5.10: Lateral force applied spheres versus horizontally displacement, 

comparison between theory approach and FE. 

5.4   Drop test of spherical particle 

A study of the impact response of viscoelastic particles was carried out to 

investigates the ability of the Prony series model to replicate real behaviour. This 

simulation was performed as another validation of viscoelastic particle at very short 

times interval. Using the Prony series fitted to the real properties of viscoelastic 

material in Chapter 3, is applied and the transient response behaviour is compared 

with drop experiment. The parameters for Prony series at 15°C is shown is Appendix 

C. 

5.4.1  Experiment using high speed camera 

A high speed video camera was used to capture progress as particles were dropped 

onto a rigid heavy table. The camera was set to record at 1000 fps in a 512×128 pixel 

area. Two halogen flood-lights were used to provide enough light to capture the 

image. The velocities before and after impact were calculated by tracking the 

positions at the extreme diameter of the sphere by counting the pixels and by 

knowing the camera sampling rate. The pixel size was calibrated by knowing the 

diameter of the sphere and the number of pixel along the diameter. These results are 

given in the next section where they are compared with results from the FE analysis. 
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5.4.2  FE  analysis and  comparison with experiment  

The FE model used for transient analysis is shown in Figure 5.11. In order to prevent 

any deviation of the sphere during impact, from the normal direction (perpendicular 

to the upper face of plate), the displacements of the two nodes at the top and bottom 

of the sphere were constrained to move only in the normal direction. The lower face 

of the steel plate was fixed rigidly.  

 

Figure  5.11:  Spherical particle in impact with steel plate 

 

Figure 5.12 shows the material behaviour of the particles, the relaxation of the 

Young’s modulus versus time. 
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Figure  5.12:    Changing in Young’s modulus vs. time at 20°C 

 

All velocities are taken from the selected node which was positioned at the extreme 

diameter, of the sphere, that lies in the plane parallel to the impact surface. The 
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velocity around the time of impact for two different initial velocities is shown in 

Figure 5.13.  

 

Figure 5.13:  Velocity tracking at different initial conditions at 20ºC, positive 

velocity values represent velocity toward the plate and negative values represent 

velocity away from the plate. 

The sensitivity of the model was also investigated by decreasing the step size and 

evaluating the velocity after impact. These results are shown in Table 5.1 for an 

initial velocity of 2424mm/s. Achieving perfect convergence was found to be very 

difficult and time consuming. In the Table 5.2, the rebound velocity for two different 

temperatures and different initial conditions are compared.  

 

Table  5.1:  Comparison of velocity after impact for different step sizes from an 

initial velocity of  2424 mm/s. 

 

 

Step size  Velocity after impact mm/s 
200 
1000 
2000 

1000 
935 
922 
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Table  5.2:  Comparison between experiment (with high speed camera, HS) and FE 

in different temperature, and different initial velocities. 

Initial velocity 
(mm/s) 

Velocity after impact  (mm/s) 
 Experiment  (HS)  FE  (15ºC) FE  (20ºC) 

1818 655 707 761 
2036 668 790 848 
2160 800 837 897 
2251 825 871 932 
2424 855 936 999 
 

The viscoelastic property of the particle shows the changing in Young’s modulus in 

time domain, Figure 5.12. It can be seen that whenever the time step is too large, 

because of the steep gradient of the graph in the beginning, this part is missed. As the 

steep gradient is associated with the zone of maximum damping in the material, the 

simulation shows less damping in comparison with experiment therefore the rebound 

velocity is fairly higher than experiment, as it can be seen in Table 5.2.  

The deformation history at the contact with the smallest initial velocity, used 1818 

mm/s, is shown in Figure 5.14.  It can be seen that the peak deformation in this 

particular case is 0.4 mm. At this deformation, Figure 5.5 indicates that the FE 

model is stiffer than the Hertzian model and might be another reason for the higher 

value of rebound velocity obtained form FE. 

 

Figure  5.14:  Deformation  history during impact for initial velocity at 1818mm/s. 
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For reference, it was considered useful to compare the deformation seen in this text 

with those typically experienced in a practical granular damper – experiments of the 

kind reported in Chapter 7 and an equivalent simulation carried out. From that 

simulation the typical velocity of particle is shown in Figure 5.15. As it can be seen 

the highest velocity of the particle is around 200 mm/s which is lower than for the 

impact test and the largest deformation is attained 0.06 mm (Figure 5.16). This 

suggests that the modelling approach used is valid for the conditions studied later. 

 

Figure 5.15: Typical velocity history of a spherical particle within granular medium 

 

Figure 5.16:  Deformation history during impact for initial velocity at 200 mm/s. 
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5.5 Dynamic properties of individual polymeric spheres 

Experiments were carried out in order to obtain the dynamic properties of the 

polymeric spheres used in this work. These are explained here. 

5.5.1 Test rig for measuring stiffness and energy dissipated of individual 

particles 

The polymeric particles used in this work are shown in Figure 5.17. 

 

Figure 5.17:  Polymeric spherical particles used in experiment 

A test rig was constructed to measure the dynamic stiffness and loss factor of the 

particles over an approximate frequency range of 2–500 Hz with varying amounts of 

static preload. A schematic drawing and photograph are provided in Figure 5.18. 

Three particles were tested simultaneously, compressed to preset amounts between 

the upper and lower plates. The lower plate was recessed slightly (three depressions 

each 3 mm depth and 12.5 mm radius) to locate particles equally in radial and 

circumferential positions. Detailed drawings of the upper and lower plates are 

produced in Appendix D. The static deflection of the particles was adjusted by 

altering the compression of the helical bias spring using the threaded bolt. The bias 

spring was made of stainless steel, with mass 2.7 g, stiffness 19.77 N/mm, and 

longitudinal resonance much greater than the frequencies of excitation. Sinusoidal 

excitation was provided to the upper plate by an electrodynamic exciter via a 2 mm 
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diameter stinger rod. The dynamic force applied by the shaker was measured using a 

piezoelectric force transducer while the displacement and acceleration of the upper 

plate were measured using, respectively, a laser displacement probe and an 

accelerometer. Initial calibration tests that were carried out included the use of a 

miniature load cell in line with the bias spring. This helped establish the spring 

stiffness. Additionally, comparisons were made between the accelerometer and laser 

signals to ensure that they were recording results accurately [112]. 

 

Figure 5.18: Test rig for measuring complex dynamic stiffness of viscoelastic 

particles. 

The signal flow diagram for the experiment is shown in Figure 5.19. Data acquisition 

was carried out using a four channel digital oscilloscope (Picoscope) linked to a 

laptop PC. A sampling rate of 5 kHz was used. 

From the measured time histories, the stiffness and loss factor were obtained in the 

following way. The force F applied to the particles was calculated using, 

                               
xmxkFF pbsft &&−−=

                                       (5-18) 

where bsk is the stiffness of the bias spring, ftF  is the reading from force transducer 

and pm
 

is the combined moving mass (including the plate, stinger rod and 
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accelerometer) which was found to be 70±2 grams. The quoted variability originated 

from the uncertain effects of the accelerometer wire. Variables x and x&& are 

displacement and acceleration of the mass while the force ftF  is the measurement 

from force transducer.  For sinusoidal excitation, the force-displacement curve for a 

damped system forms a hysteresis loop. The dynamic stiffness and loss factor were 

estimated from the loop. 

 

 

 

 

 

 

 

 

 

 

Figure 5.19:  Experimental for properties of spherical particles, signal flow diagram 

In this work, average properties over the loop were required for use in the DEM 

model. The dynamic stiffness was therefore obtained by fitting a straight line 

through the hysteresis loop, the stiffness being the gradient of this line. The loss 

factor as explained by detail in Chapter 3, is defined as the ratio of average energy 

dissipated from the system per radian to the maximum dynamic strain energy in the 

cycle mU . 

In order to validate the performance of the test rig, the elastic modulus and loss 

factor for two different viscoelastic materials (Dow Corning DC3120 and 

Sorbothane 60) were obtained using a Metravib Viscoanalyser VA2000 test 

Picoscope Unit 

Power amplifier and frequency 

controller 

Electrodynamic   

exciter 

Laser probe 

Laser measuring unit 

Lap top 

(software installed for Picoscope) 

Force 
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machine, the data are presented in Appendix E. The dynamic stiffness and loss factor 

for cylindrical specimens of each material was predicted using,  

                                         )21( 2S
L

EA
k +=

                                                  (5-19)
 

S is the shape factor (area of one face in contact divided by the area of surrounded) 

for the specimen [113]. AE, and L are Young’s modulus, area and length of 

specimen, respectively. 

Specimens were also manufactured (Figure 5.20) and tested on the test rig. Results 

are presented in Table 5.3. 

 

Figure  5.20:   Test specimens (surface damage caused during removal from test rig) 
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Table  5.3:   Test rig validation results (all measurements at 20°C and 10 Hz) 

Material Specimen 
dimensions, mm 

Material 
properties 

from 
Viscoanalyser 

Loss factor, 
η 

Dynamic stiffness kn 
N/mm 

 length inner 
dia. 

outer 
dia. 

Young’s 
modulus, 

MPa 

loss 
factor  

measured 
in test rig 

predicted 
using 

Equation 
5.19 

measured 
in test rig 

DC 3120 22.3 7.0 14.2 3.6 ± 
0.18 

0.07
5±0.
007 

0.102±0.008 25 ± 2 24 ± 1.9 

(4% error) 

Sorbothane 
60 

9.0 3.0 21.0 0.73± 
0.04 

0.43
8±0.
004 

0.479 ± 0.05 43.1 ± 1 46.8 ± 0.8 

 

It can be seen that there is good agreement between the results. Careful observation 

on the measurements, suggests that there is an average overestimation of around 

0.034 in the test rig results. This is assumed to arise from friction in the test rig and 

this value was subtracted from every subsequent measurement. The hysteresis loops 

for the two materials are presented in Figure 5.21. 

 

5.5.2 Measurement of particle properties   

Using the validated rig, tests were then carried out on spherical particles. These 

particles were 15.1 mm diameter spheres make from blue elastomer tested in Chapter 

3. For testing carried out at 44 Hz, the force traces showing the three components in 

Equation 5-18, are presented in Figure 5.22. The contribution of the inertia of the 

moving mass is evident. The resulting hysteresis loop and the linear fit applied are 

presented in Figure 5.23. These indicate an average value of approximately 29 N/mm 

for the dynamic stiffness for three particles (in parallel).  
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Figure 5.21:   Hysteresis loops from test rig for DC3120 and Sorbothane 60 

cylindrical specimens at 10 Hz 

This gives an approximate normal stiffness of 9.7 N/mm for each sphere at this 

compression level. Using Equation 5-9, the average sphere stiffness was therefore 

estimated to be 6.5 N/mm. 

Properties of the spheres were measured at different frequency and pre-compression 

levels. Results are summarised in Table 5.4. Note that variability in the loss factor 

measurements between individual cycles is around 5%. A range in stiffness values is 
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quoted to give an indication of the level of uncertainty from cycle to cycle variability 

and underlying nonlinearity due to the shape of the particles. 

The effect of changing static pre-compression on the stiffness of particles is 

presented in Figure 5-24. It can be seen that the stiffness increases considerably with 

pre-compression while the change in loss factor is relatively small. This is 

reasonable as viscoelastic materials are expected to be linear with strain and the 

stiffness is affected by the change in geometry. The effect of changing excitation 

frequency can be seen in Figure 5-25. 

 

Figure 5.22:  Time history of force terms (Equation 5-18) for 3 spheres under 0.64 

mm pre-compression  

Note that at higher frequencies, the displacement amplitude was reduced to keep the 

power output of the shaker at a nominally similar level. The results (Table 5-4) show 

that the stiffness varies only slightly over the frequency range considered while the 

increase in damping is more significant.  
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Figure 5.23:  Hysteresis loop for three viscoelastic particles at 44Hz and 0.64 mm 

pre-compression 

 

Figure  5.24:  Measured hysteresis loops at 44 Hz with two different levels of 

 static pre-compression  
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Figure  5.25:  Measured  hysteresis loops at five different frequencies  with static 
pre-compression 0.64mm 

 

Table  5.4:  Measured dynamic stiffness for blue spheres under different conditions. 

Pre-

compression 

(mm) 

 

Frequency 

( Hz ) 

 

Loss factor 

 

Stiffness ( N/m) 

 Min Average Max 

0.64 24 0.21 23.4 29.2 30.6 

0.64 44 0.36 24.1 29.0 30.8 

0.64 90 0.45 28.7 33.9 34.2 

0.64 110 0.55 29.4 33.1 33.2 

0.64 130 0.53 28.4 34.4 40.3 

1.39 44 0.43 38.9 39.5 44.9 

 

5.6 Chapter summary 

In this chapter, It was shown that the FE model of the spherical particle with 

hyperelastic property was in good agreement with Hertz contact theory also shear 

stiffness and relation with normal stiffness, the FE model shows fairly well with 

Mindlin theory. 
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A study of the impact response of viscoelastic particles was carried out to test the 

ability of the Prony series in conjunction with the FE model to replicate real 

behaviour. The velocities before and after impact were tracked and recorded. Also 

the drop test was performed and the velocities just before and after contact were 

measured using a high speed camera. The comparison between velocities in model 

and experiment shows a fairly good agreement, although the FE model has less 

damping than experiment. This discrepancy arises from the steep gradient of the 

Young’s modulus relaxation curve, as the time step misses.  

The properties (dynamic stiffness and loss factor) of each individual sphere particle 

were measured via a calibrated designed test rig. These measured values are used in 

DEM simulations in next chapter.                                                                        
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6 The discrete element method for 

modelling the vibration of a granular 

medium 

 
6.1 Introduction 

The discrete element method (DEM) also called a distinct element method was 

introduced by Cundall [66] for the analysis of rock mechanics problems. DEM is a 

numerical method for computing the motion of a large number of particles of 

micrometre-scale size and above. Today, DEM is widely accepted as an effective 

method of addressing engineering problems in granular and discontinuous materials, 

especially in granular flows, powder mechanics, and rock mechanics. 

The discrete element method can be computationally intensive, which limits either 

the length of a simulation or the number of particles. The dynamic behaviour is 

represented numerically by a time stepping algorithm in which it is assumed that the 

velocities and accelerations are constant within each time step. The method is the 

same as a finite-difference algorithm. 

The calculations performed in the DEM alternate between the application of 

Newton’s second law to the particles and a force-displacement law at the contacts. 

Newton’s second law is used to determine the motion of each particle arising from 

the contact and gravity, and the force-displacement law at the contact defines the 

forces cause by the relative motion at each contact. 
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Particle flow code (PFC) is commercial software which is based on DEM [114]. PFC 

in three-dimensional mode has been used in this work to simulate the granular 

medium. 

Use of two force-displacement law and law of motion along with time step 

determination is explained in this chapter. The contact model and the approach used 

to define each parameter such as stiffness and damping are also discussed. The 

procedure used for polymeric particles is also explained. At the end, to better 

understand of the behaviour of granular medium over a wide range of amplitude of 

excitation, a parametric study is performed. 

 

6.2 DEM calculation procedure  

The DEM software employed uses a time stepping algorithm involving the equations 

of motion for particles and the contact force arising from interaction between 

particles and walls. These contacts between are formed and broken automatically. 

The force-displacement law is then used in each contact to update the contact forces 

based on the relative motion between the two interacting bodies. The law of motion 

is applied to each particle to update its velocity and position arising from the contact 

force and any other body forces (e.g. from gravity). Container positions that define 

the walls are updated for input velocities to the walls. 

 

 

6.2.1 Contact force 

 

The contact force (force-displacement) law arises in the contact area between 

particles and between particles and walls. The contact force is projected to two 

components; one in the normal direction along in vector (unit normal vector to the 

contact plane) and the other component is in the tangential direction which lies on 

the contact plane. 
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The contact force is therefore expressed by two components, 

                                                         sn FFF +=                                                    (6-1) 

 

where nF  and sF are normal and shear component vectors of the contact force. 

The normal contact force vector is given by, 

                                                            ionn ndkF =                                                  (6-2) 

 

where nk  is the normal stiffness at the contact and do is the overlap of two entities 

(particle-particle or particle-wall). For nonlinear contact the Hertz equation is 

considered and the modulus and Poisson ratio should be defined. 

The contact velocity ,v  of the two entities a and b, is the relative velocity of each 

entity to the other, at the contact point.  

 

                                                  acbc xxv )()( && −=
                                               

 (6-3) 

                    ( ) ( )
akckjijkibkckjijki xxexxxexv )()( ,, −+−−+= ωω &&                      (6-4) 

which consists of translational and rotational velocity. The subscript c stand for 

contact point, ω is angular velocity of the particle and ijke  is permutation symbol is 

defined as, 

           








===
−
+

=
ikkjji

kji

kji

e ijk

or ,or ,,if,0

)3,1,2(or)1,2,3(),2,3,1(is),,(,if,1

)1,3,2(or)2,1,3(),3,2,1is(),,(,if,1

             

             (6-5) 

                                                 sn vvv +=                                                              (6-6)  
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where nv and sv  are normal and shear component vectors of the contact velocity 

respectively. 

During each time step t∆  the increment of shear displacement component is 

calculated using the shear velocity component as, 

                                                         tvd ss ∆=∆                                                     (6-7) 

 

This is used to calculate the shear force increment vector as, 

                                                        sss dkF ∆=∆                                                    (6-8) 

 

where ks is the shear stiffness at the contact. 

6.2.2 Application of Newton’s second law 

The motion of each particle in a granular medium is calculated from the summation 

of forces and moment vectors applied to it. The motion of particle is described as 

translational and rotational motion. The equation of motion for translational vector 

can be expressed as, 

                                                     )( iii gxmF −= &&                                                   (6-9) 

 

where gmFi ,, are the resultant force, mass of particle and gravity respectively. x&&  is 

acceleration of centre of mass. 

The equation of rotational motion for a spherical particle is given by, 

                                                        ii IM ω&=                                                     (6-10) 

where ω&,, IM  are the resultant moments, moment of inertia and angular 

acceleration respectively. The moment of inertia for a spherical particle with radius 

R  is given as, 
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2

3

2
mRI =                                                         (6-11) 

The equations of motion are integrated using centred finite difference method in time 

step t∆ . The accelerations at time t  is calculated based on velocities at mid -         

intervals. The accelerations are, 

                               
))2/()2/((

1
)( ttxttx

t
tx iii ∆−−∆+

∆
= &&&&                                 (6-12) 

                              
))2/()2/((

1
)( tttt

t
t iii ∆−−∆+

∆
= ωωω&                                (6-13) 

By substituting Equations (6-12), (6-13) in equations of motions (6-9), (6-10) and 

calculating velocities at time 2/tt ∆+ one can obtain, 
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m

tF
ttxttx i

i
ii ∆++∆−=∆+ )
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()2/()2/( &&                            (6-14) 

                             
t

I

tM
tttt i

ii ∆+∆−=∆+ )
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()2/()2/( ωω
                              

 (6-15) 

These velocities are used to update the position of the particle centre by, 

                                   tttxtxttx iii ∆∆++=∆+ ).2/()()( &                                    (6-16) 

In PFC3D when analysing a system with many particles a critical time step is 

determined automatically. This value is chosen at each iteration step. The critical 

time step is proportional to the highest natural frequency in the system, so to perform 

a global eigenvalue analysis of the system is expensive. Therefore a simplified 

approach is taken to estimate the critical time step. A simple analysis of a decoupled 

multi degree of freedom system of linear springs and masses lead to a critical time 

step which is defined by, 

                                              






=
rotational
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km
t

/

/

min

min
                                         (6-17) 
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where minminandIm  are the smallest mass and moment of inertia in the system 

respectively while naltranslatiok  and rotationalk  are highest effective stiffness in 

translational and rotational directions from every degree of freedom. The final 

critical time step is taken to be the minimum of all critical time steps computed for 

all degrees of all bodies.  

The actual time step is taken as a multiplication of this estimated value by a safety 

factor. In this work the safety factor, is set to by default as 0.8. 

 

6.2.3 Contact model  

Contact conditions are defined in the normal and shear directions as shown in Figure. 

6.1. The symbols m , k and c  stand for mass, stiffness and damping, respectively, 

and the subscripts n  and s  refer to normal and shear directions. The following 

subsections explain the simplifications employed and the resulting nature of each 

element used in this study. In general particle-wall interactions have a similar form 

although the effective mass is replaced by particle mass and the stiffness, friction and 

viscous damping elements have different values that describe particle-wall contact. 

 

6.2.3.1  Viscoelasticity  

The particles considered in this work are made of polymers that exhibit 

viscoelasticity. Representation of realistic viscoelastic behaviour in the time domain 

analyses is always challenging as simple models such as the standard linear 

viscoelastic model do not match the properties of real materials particularly well 

while more complex multi-element models such as the Generalised Maxwell 

(represented as a Prony series) significantly increase the calculation cost. 

The approach taken here is to use the Kelvin-Voigt model that comprises a spring 

and dashpot in parallel. The advantage of this approach is that the model is standard 

for most commercial DEM software – see Figure 6.1 for normal and shear contact 

models between particles. However, use of just one spring and dashpot is a 



 

considerable simplification and some consideration needs to be given as to its 

suitability for granular viscoelastics.

In a viscoelastic material, 

dependent. Use of a Kelvin

dashpot whose properties do not depend on frequency. The model is therefore 

completely accurate at only one frequency. Clearly the selection of this frequency is 

an important part of obtaining the most representative model. One approach is to 

assume that inter-particle interactions are dominated by the impulse response of the 

bodies momentarily in contact. In this case, properties are those at the natural 

frequency of the touching particles. An alternative approach, when considering 

mono-frequency, harmonic excitation is to use the excitation frequency. In either 

case, it is important to note that for the Kelvin

factor is given by, 

                                                            

where ck,,η  and ω

respectively. Hence it can be seen that the equivalent loss factor increases with 

frequency. Figure 6.2 shows typical shapes of the modulus and loss factor cur

obtained using multi
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considerable simplification and some consideration needs to be given as to its 

suitability for granular viscoelastics. 

Figure 6.1:  Contacts elements in DEM 

In a viscoelastic material, the Young’s modulus E and the loss factor 

dependent. Use of a Kelvin-Voigt model requires the selection of a spring and a 

dashpot whose properties do not depend on frequency. The model is therefore 

completely accurate at only one frequency. Clearly the selection of this frequency is 

rtant part of obtaining the most representative model. One approach is to 

particle interactions are dominated by the impulse response of the 

bodies momentarily in contact. In this case, properties are those at the natural 

touching particles. An alternative approach, when considering 

frequency, harmonic excitation is to use the excitation frequency. In either 

case, it is important to note that for the Kelvin-Voigt model, the equivalent loss 

                                                    
k

cωη =                                                      

ω are loss factor, stiffness, damping constant and frequency 

vely. Hence it can be seen that the equivalent loss factor increases with 

frequency. Figure 6.2 shows typical shapes of the modulus and loss factor cur

obtained using multi-element Prony series and the Kelvin-Voigt model. It is 
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considerable simplification and some consideration needs to be given as to its 

 

and the loss factor η are frequency 

Voigt model requires the selection of a spring and a 

dashpot whose properties do not depend on frequency. The model is therefore 

completely accurate at only one frequency. Clearly the selection of this frequency is 

rtant part of obtaining the most representative model. One approach is to 

particle interactions are dominated by the impulse response of the 

bodies momentarily in contact. In this case, properties are those at the natural 

touching particles. An alternative approach, when considering 

frequency, harmonic excitation is to use the excitation frequency. In either 

Voigt model, the equivalent loss 

                                                     (6-18) 

are loss factor, stiffness, damping constant and frequency 

vely. Hence it can be seen that the equivalent loss factor increases with 

frequency. Figure 6.2 shows typical shapes of the modulus and loss factor curves 

Voigt model. It is 
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interesting to note that while the Kelvin-Voigt model is only exact at one frequency, 

it provides a reasonable estimate to the curve at lower frequencies i.e. if the effective 

temperature is some way above the glass transition. 

 

 

 

 

   Figure 6.2: Comparison Kelvin-Voigt model (dash line) with Prony series (solid 

line) 

As it was shown in Chapter 5, the maximum deformation of particles in the 

operating zone (experiment) is very small therefore normal and shear behaviour were 

assumed linear, this also could lead to reduced computational costs in PFC3D. The 

zone in which the viscoelastic material operates can also affect the Poisson’s ratio 

[115] and the coefficient of friction [116]. Rather than attempt complicated 

experimental activities to measure these properties, they are assumed constant in this 

work. Poisson’s ratio equal 0.45 and coefficient of friction equal to 1 are assumed.  

6.2.3.2  Stiffness normal and tangential to the contact surface 

The contact stiffness is defined by normal stiffness )( nk  and shear stiffness (sk ). For 

a linear system the stiffness of the two contacting particles or particle and wall act in 

series, the contact normal stiffness is given by, 

          bnan
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where notations ba,  indicate each entity. Similar equation for the contact shear 

stiffness is given by, 
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6.2.3.3    Viscous damping  

In the contact model employed, the normal and shear dashpots are parallel to the 

associated springs. Damping force is added to contact force, both shear and normal 

components create force which is given by, 

                                                      iii vcF =                                                           (6-21) 

ic is damping constant which for normal case is nc and for shear case is sc and iv is 

the relative velocity at contact and as explained for damping constant, it depends on 

which direction it is, it could be nv or sv . 

In PFC3D, the damping constant is not defined directly and instead of that the 

damping ratio is used. It is given as, 

                                                     effi

i
i

mk

c

2
=ζ                                                  (6-22) 

 

where ik is the contact stiffness ( )shear,;normal, sni = and m is effective mass. For 

particle-wall contact it is taken as particle mass and in the case of particle-particle 

interaction it is defined as, 

                                                  21

21.
mm

mm
meff +

=                                                     (6-23) 

 

where 1m and 2m  are mass of particle 1 and 2 respectively. 

The damping for a viscoelastic material is usually characterised in terms of loss 

factor. The coefficient c of an equivalent viscous damper at a given frequency ω is, 

                                                       ω
η.n

n

k
c =                                                         (6-24) 
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If instead, it is assumed that the behaviour is dominated by the contact resonance, 

this becomes, 

                                                  neffn kmc η=                                                      (6-25) 

 

Note that stiffness and damper terms are in general, assumed to be different in 

normal and shear directions. In the shear direction, there is no consensus on the 

correct expression for damping. Some have ignored this term completely [38], others 

have assumed that the viscous damping coefficient in the tangential direction is the 

same as the one in the normal direction [108]. For viscoelastic particles, the energy 

dissipated is directly proportional to the loss factor multiplied by the stiffness. Thus 

the shear damping coefficient can be written as, 

                                                        n

s
ns k

k
cc =                                                     (6-26) 

As already mentioned in PFC3D, damper coefficients are input as a fraction of 

critical damping. Hence, 

                                                          2
ηζ =n                                                         (6-27) 

And hence the shear damping ratio is given by, 

                                                       n

s
ns k

kζζ =                                                    (6-28) 

 

The viscous force is applied after sliding check; also if the contact is sliding so that 

the shear contact-model force has reached the Coulomb limit, then the viscous shear 

force is reduced to zero. 

 



Numerical Modelling approach for Granular Medium 

 

105 

 

 

6.2.3.4     Friction force   

Friction is estimated using the Coulomb equation which is a relation between normal 

and shear force, such that two bodies in contact may slip on each other. In the model, 

slipping is always active. The slip is explained by the friction coefficient at the 

contact which is taken as minimum friction coefficient of the two particles or particle 

and wall. 

The contact is checked for sliding conditions by checking the maximum allowable 

shear contact force which is given by, 

                                                         ins FF ,max .µ=                                                (6-29) 

where µ  is friction coefficient. If the applied shear force is greater than maximum 

shear force calculated by above mentioned equation, then slip is allowed to occur 

during next cycle. So the condition for slipping is given by, 

                                                           max, sis FF >                                                (6-30) 

 And the magnitude of isF ,  is substituted by maxsF . 

So as it mentioned in the models used, Coulomb friction is assumed to govern the 

slip between particles (and between particles and walls). In the work reported here, 

the coefficient of friction µ was considered to be uniform for all contacts. 

 

6.3 PFC simulation for container with polymeric particle 

dampers 

In order to make the appropriate model in PFC3d, first of all the appropriate 

properties of materials are required. In this work a box filled with the blue 

elastomeric spheres was considered. Stiffness and damping of particles can be 

obtained by theoretical and experimental methods described in Chapter 5.  
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Another required parameter was the density of particles. The weight and also the 

diameter of ten particles were measured and the average taken. For each particle the 

diameter was 15.1±0.01 mm and mass 2.11±0.01 grams indicates a density of 1170 

kg/m3. The density and diameter of each particle were input to the code. 

The next step was to generate the container and define the stiffness of all walls. The 

internal dimensions of the container were 180×120×40 mm and it had walls 30mm 

thickness. The container material was assumed to be Perspex – a material that is 

much stiffer than polymeric particles. For the container, the normal and shear 

stiffness were assumed to be 100 MN/m and 70 MN/m respectively. 

After defining the appropriate material and physical properties of each individual 

particle in PFC3D code, then the specific numbers of particles were generated. This 

involved two main steps. 

First, a specific number of were randomly generated and located within the specified 

volume. In this work, 200 particles were used for vertical vibrations and 260 for 

horizontal vibrations studies. For relatively high-density packing, random settling of 

locations can create a medium that does not fit within the generated volume. To 

solve this problem two steps were taken. First, the radius of particles was 

temporarily reduced to a set amount – a suitable value of 66% were found by trial 

and error – then an automatic procedure attempted to fit these particles into the 

available space without overlapping. In total 2×106 attempts were used in this work – 

see Figure 6.3. 

After generating and fitting particles into the model, they were allowed to fall under 

gravity and settle over a period of 60,000 time steps. This was to encourage the 

medium to its equilibrium state – see Figure 6.4. It was considered that the model 

was in equilibrium when the maximum or average unbalanced force was small 

compared to the maximum or average contact force. Typical average unbalance 

forces were found to be 5.36×10-9 N while the maximum unbalanced force was 

1.28×10-7 N (see Appendix F) – the small values show that steady state conditions 

were effectively reached. Assuming only forces applied due to the mass of particles, 

the mean contact force was found to be 2.78×10-2 N, many times larger than the 

unbalanced forces (see – Figure 6.5). Note that during this step, the radius of the 



 

particle was also increased back to the original value

1/0.66. The output data file 

 

Figure  6.3:  Random generation of 

with smaller size. 

 

Figure 
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particle was also increased back to the original value by multiplying the factor of 

output data file can be seen in the Appendix F. 

 

Random generation of particles, In the first step generating partic

 

Figure 6.4:  Container  and particles in equilibrium
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by multiplying the factor of 

 

, In the first step generating particles 

 

and particles in equilibrium 
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Figure 6.5: Average contact force versus time steps, after particles reach equilibrium 

in the end of step two. 

 

The next step was to apply boundary conditions. Here, the boundary condition was a 

translational sinusoidal velocity applied to all the walls. In general 50,000 time steps, 

approximated equivalent to 0.5 s, of shaking were recorded. 

For the purposes of model validation, simulations were carried out at acceleration 

amplitude of around 1.6 g and frequencies 30, 50, 90 and 130 Hz. (the comparisons 

with experiments are shown in the next chapter). Here, plots showing energy 

dissipation over time for 200 particles in vertical vibration and are shown in Figures 

6.6 to 6.10. The power dissipation is the gradient of the energy dissipation curve. In 

each case the total dissipation is shown by fitting a polynomial line through the total 

energy dissipated graph, these values for power dissipated are compared with 

experiment in the next chapter. Also in each case the energy dissipated which is 

made up from friction (at contacts) and viscous (material loss) terms can be seen. 

The intercept value for polynomial line is thought to be transition time for the 

vibrating damper to break up the clumps of particles which by increasing excitation 

frequency it decreases. 
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Figure  6.6:  Energy dissipation at 30 Hz, 200 particles in vertical excitation. 

 

 

 

Figure 6.7:  Energy dissipation at 50 Hz, 200 particles in vertical excitation. 
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Figure 6.8:  Energy dissipation at 90 Hz, 200 particles in vertical excitation. 

 

 

 

Figure 6.9:  Energy dissipation at 110 Hz, 200 particles in vertical excitation. 
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Figure 6.10: Energy dissipation at 130 Hz, 200 particles in vertical excitation. 

As an another validation of the DEM model, the comparisons between the 

experiment represented in Chapter 4, for low amplitude vibration, and simulations by 

PFC3D are shown in Figure 6.11. The results show good agreement, although at 500 

Hz frequency they are far from each other which it is thought because of the first 

natural frequency of container. (Initial tests showed that flexible modes of the 

container were above 500 Hz while the rigid body modes were below 5 Hz). 

 

Figure 6.11: Comparison between experiment (which were performed in chapter 4- 

horizontal vibration) and DEM modelling 
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In Figures 6.12 and 6.13 and also in Table 6.1, the power dissipated from horizontal 

vibration for 260 particles at different amplitudes are shown. As it can be seen in 

Figure 6.13, when the vibration level is very low most of energy dissipated is due to 

viscous effect. 

 

Figure 6-12:  Energy dissipated at 100Hz, amplitude 10 -5 m, 260 particles in 

horizontal vibration. 

 

Figure 6.13: Energy dissipated at 100Hz, amplitude 10 -6 m, 260 particles in 

horizontal vibration. 
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Table 6.1: shows the total energy dissipated and fraction of the energy dissipated by 

friction for the PFC model in Figure 6.11. 

 

Frequency 

excitation (Hz) 

Amplitude 

(m) 

Total power dissipated 

(W) 

Fraction of energy dissipated 

by friction 

80 10-5 1.8×10-3 0.44 

120 10-5 4.9×10-3 0.24 

120 10-6 3.4×10-5 ≈0 

150 10-6 7.5×10-5 ≈0 

200 10-6 8.3×10-5 ≈0 

300 10-6 3.8×10-4 ≈0 

300 10-7 3×10-6 ≈0 

350 10-6 5×10-4 ≈0 

400 10-6 7.7×10-4 ≈0 

400 10-7 8×10-6 ≈0 

500 10-7 1.5×10-7 ≈0 
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6.3.1   Parametric study 

The sensitivity of damping to horizontal excitation amplitude was studied using 

DEM – see Figure 6.14. The trend of behaviour of granular medium at different 

zones (a, b, c, d) also can be seen in the work by Saluena et.al [13].                   

It can be seen that in the very low amplitude (solid) region (zone a) where the 

particles are in contact permanently performance is close to that predicted using the 

low amplitude theory. The equivalent damping at this zone is almost independent to 

vibration amplitudes (solid region) and is higher than the convection and gas regions 

(zones c and d) where the particles collides and moving to each other. Because of 

permanent contact between particles, in this zone (zone a) the energy dissipation by 

friction is almost zero. However for very low damping ratio (0.025) it can be seen 

that a small rise in energy loss occurs with amplitude. More investigation in this 

zone shows that little friction dissipation is present (see – Figure 6.15).  

 

Figure 6.14:   Equivalent damping versus excitation amplitude, at 100Hz excitation 

d 

c 

b 

a 
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Figure 6.15:  Energy dissipated at 100Hz, 0.01g amplitude, damping ratio 0.025 

(zone a) 

In zone b, in Figure 6.16, a clearer increase in damping can be seen between 0.03g 

and 0.05g.This increasin might be because of spinning of particles which can be 

physically seen in the container during the experiment, so that the friction increases 

and the total damping increases. This raising of friction can be seen in Figure 6.16. 

 

Figure 6.16:   In the transition region from 0.03g (solid region) to 0.05g (transition 

region) exciting amplitude, the energy dissipation by friction increases considerably. 
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At higher amplitudes in the zone c which is called convection, the particles slide and 

roll more freely over each other. In this case there is a trade off between damping 

due to friction and viscous effects as resulting in the similar damping levels 

irrespective of the material loss factor [13].  

Increasing the amplitude to extremely high levels (zone d), the particles separate 

from each other (gas region). It can be seen the particles with lower damping reach 

the gas region earlier because are less sticky that the other type and more collisions 

can happen so although the damping for each individual particle is less but the total 

damping increases [13]. 

 

 

6.4 Chapter summary 

In this chapter the application of Discrete Element method to energy dissipation from 

a granular medium was described. The procedure used and the detailed steps 

employed were explained. 

The model was run at several different frequencies under vertical vibration in order 

to generate data for comparison with experiment in the next chapter.  

Horizontal vibration of the granular medium (identical to those experiments in the 

Chapter 4) was also studied. Different displacement amplitudes and a wide range of 

frequencies were applied to the model and power dissipated from total energy 

dissipated trace was extracted by linear interpolation (gradient of energy trace). The 

results were compared with experiments performed in Chapter 4, and are in good 

agreement. 

A parametric study was also performed in this chapter to observe the different 

behaviours of granular medium with a wide range of amplitude excitations. It was 

shown that there are different zones in the vibrated granular medium depends on the 

amplitude of vibrations. At low amplitude most of the cases the energy dissipated 

due to friction is nearly zero, although by increasing the amplitude, the total damping 
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is increased, this might be because of spinning of particle which can be physically 

seen in the container that causes friction phenomenon. By further increasing in 

amplitude the particles start sliding and rolling on each other which named 

convection zone and there is a trade off between two different types of particles (low 

and high damping ratio). At very high amplitude where the particles separate totally 

from each other, the total damping of particles with smaller damping ratio, is higher 

than the other type that could be because of more number of impact between them in 

compared with particles with high loss factor. This phenomenon was also observed 

in previous literature [13]. 

The models which made in this chapter showed good agreement with experiments 

performed in Chapters 4 and 7. 
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7 Spherical Particle Dampers as 

Granular Materials at Higher 

Amplitude Vibration 

 

 

7.1 Introduction 

Damping strategies that use granular materials to attenuate structural vibrations 

generally rely on one of the two very different mechanisms for dissipating energy. 

For low vibration amplitudes, where particles always remain in contact and do not 

slip relative to one another, success depends on the ability to maximise energy 

dissipation within individual particles. If however, excitation is such that separation 

and slip between particles does occur (inelastic collision and friction), optimisation 

of the energy loss at the contact points becomes important and even particles with 

low internal loss, for example steel ball bearings, can give excellent vibration 

suppression. In practice, it is often desirable to have good damping performance over 

a wide range of amplitudes. While amplitude dependence has been widely studied 

for traditional particle dampers involving low-loss hard particles, very little 

information is currently available for systems based on larger particles made from 

materials with significant internal energy dissipation capacity.  
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7.2 Simulation of damper effectiveness 

Measured properties of individual particles were used with DEM simulations to 

predict the performance of a polymeric particle damper subjected to a range of 

different amplitudes and frequencies. The model was validated under a number of 

different conditions by making comparisons with experimental results. The damper 

used in this study involved a rigid box with internal dimensions 180×120×40 mm 

containing 200 spherical particles, each 15.1 mm in diameter, made from an 

elastomer whose characteristics was described in Chapter 3. Values of key 

parameters used in the simulations are presented in Table 7.1. Measurement of the 

normal stiffness and loss factor of the spheres was described in Chapter 5. As it was 

noted in the previous chapter that the polymer was operating between the rubber and 

transition zones the Poisson’s ratio was assumed to be 0.45 and a value of 1.0 was 

assumed for the coefficient of friction for all contacts. 

The details of how to generate the model in PFC was provided in Chapter 6. The 

final stage in this process was to apply sinusoidal velocity to the walls as a boundary 

condition. In this work the time length for shaking was 0.6 s which was equivalent to 

60,000 steps. 
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Table 7.1:  Properties of the baseline granular medium used for power dissipation 

studies. 

 Item Unit Value 

General Number of particles each 200 

 Particle diameter mm 15.1 

Particle mass gram 2.11 

All coefficients of friction n/a 1.0 

Particle-particle 

contacts 

Normal stiffness )( nk  N/m 6,500 

 Shear stiffness )( sk  N/m 4,613 

Normal damping ratio 

)( n  

n/a 0.200 

Shear damping ratio )( s  n/a 0.168 

Particle-Wall 

contacts 

Normal stiffness )( nk  N/m 13,000 

 Shear stiffness )( sk  N/m 9,226 

Normal damping ratio 

)( n  

n/a 0.200 

Shear damping ratio( )( s  n/a 0.168 

 

A typical plot showing energy dissipation over time is presented in Figure 7.1. The 

power dissipation is the gradient of the energy dissipation curve. In this case the total 

dissipation is 0.14 W. It can be seen it that is made up from friction (at contacts) and 

viscous (material loss) terms. For the purposes of model validation, simulations were 

carried out at acceleration amplitude of 1.6 g and frequencies 10, 50, 90 and 130 Hz. 
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Figure 7.1:   Energy dissipation at 50Hz, 1.7g amplitude 

 

7.3 Experimental validation of model 

For the physical experiments, the container was constructed using blocks of Perspex 

that were 30 mm in thickness to provide high rigidity but also visibility. Figure 7.2, 

shows the signal flow diagram for the experiment. Data acquisition and test control 

were carried out using a two-channel Siglab unit connected to a PC. 

The container was suspended using nylon line and light metal springs to simulate 

free boundary conditions and an electrodynamic exciter attached to base – see Figure 

7.3. Initial tests showed that flexible modes of the container were above 500 Hz 

while the rigid body modes were below 5 Hz.  

200 particles were placed randomly in the container and the power dissipation 

measured at various amplitudes and frequencies. Power dissipation was measured 

using the Fourier-based power flow method that Yang [40] and Wong [10] used in 

their work. This method explained in detail in Chapter 3. 
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Figure 7.2:   Experimental for power dissipation of granular medium, signal flow 

diagram. 

 

It was assumed that the excitation was perfectly sinusoidal and the container was 

completely rigid. The experiment was repeated for the case with the container empty 

in order to find the phase error due to the boundary conditions and electronics. This 

error, although relatively small (being 1% at 50 Hz), was subtracted from subsequent 

measurements of the full system to provide true contribution of the granular medium. 

Power dissipation levels obtained from experiment and simulation for different 

frequencies and equal acceleration amplitude (1.6g) are given in Figure 7.4. 

Simulation results were produced in two ways: stiffness and damping were assumed 

fixed according to the values defined in Table 7.1 or they were allowed to vary with 

frequency according to the measurements described in Chapter 6. Although the 

simulations somewhat overestimate the dissipated energy, both approaches provide 

reasonable correlation with the measured results and hence it can be concluded that 

the simplifications made in the model are acceptable in the amplitude and frequency 

ranges considered.  
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Figure 7.3:   Test rig for power dissipation measurement of a granular medium.  

 

Figure 7.4: Comparison of power dissipation from experiment and simulation at 

acceleration amplitude 1.6 g. Fixed refers to the properties specified in Table 7.1 and 

variable, refers to the properties changing with frequency according to the master 

curve. 
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7.4 Observations of granular medium behaviour   

Performance of granular medium subjected to pure sinusoidal vibration is studied 

using validated DEM model to various parameters. This was considered important 

not only to give understanding of the behaviour of the granular system but also to 

provide confidence in the model as parameters such as the friction coefficient were 

estimated. 

It can be seen in Figure 7.5 that at a constant vibration frequency (50 Hz) the power 

dissipation is increased by increasing the amplitude of vibration. This would be 

expected from most dampers. However, the nonlinearity of the dissipation 

mechanism can be seen by considering instead the damping coefficient of an 

equivalent grounded viscous damper – this is plotted against amplitude in Figure 7.6. 

Here it can be observed that the damper coefficient is optimised at around 1.6 g 

excitation level. This nonlinear behaviour is consistent with experimental 

observation of metallic particle dampers in the literature [10]. 

 

Figure 7.5:   Effect of acceleration amplitude on power dissipation at 50 Hz 

(simulated). 
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Figure 7.6:   Effect of acceleration amplitude on equivalent viscous damping at 50 

Hz (simulated). 

The effect of excitation frequency on the power dissipation from the granular 

medium is presented in Figure 7.7. The drop in dissipation as the frequency rises is 

because acceleration amplitude is kept constant – resulting in lower deflections at 

higher frequencies. For comparison, results for an equivalent linear damper with 

performance matching that of the granular medium at 30 Hz are also given. It can be 

seen that the granular medium provides significantly better performance at higher 

frequencies than the linear system – behaviour also noted previously for metal 

particles [63]. 

 

Figure 7.7:  Effects of frequency on power dissipation for the granular medium and 

a linear damper at 1.7g acceleration amplitude (simulated). 
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Energy dissipation in the viscoelastic particle damper model can occur through 

interface friction and internal (viscous) loss. Figure 7.8 shows that power dissipation 

is not significantly affected by the friction coefficient. While this result appears 

somewhat counter-intuitive, as friction is a significant energy dissipation 

mechanism, this phenomenon has been noted previously for traditional particle 

dampers [10]. 

At very low amplitudes, it has been shown that system damping is directly 

proportional to the material damping of the spheres as shown in Chapter 4. 

 

Figure 7.8:   Effect of friction of coefficient on power dissipation at 50 Hz and 1.6g 

acceleration amplitude (simulated). 

 

As this was thought to be unlikely at higher amplitudes simulations were carried out 

for different values of particle damping ratio. Results at 50 Hz and 1.6 g are 

presented in Figure 7.9. This plot also includes the fraction of dissipation that is 

attributed to viscous loss – the remainder is from friction. It can be seen that the 

overall power dissipation does not change significantly. When the loss in the 

particles is low, there is a significant amount of friction damping and as the internal 

damping in the sphere increases, the friction contribution drops. These results 

explain why it was possible to obtain good predictions of energy dissipation 

performance (presented in the previous section) without knowing accurately the 

actual friction coefficient between the particles and between particles and walls. 

Sensitivity of performance to contact stiffness at different frequencies is shown in 

Figure 7.10. It can be seen that small changes in stiffness (e.g., factor of two) do not 

dramatically affect the overall behaviour. Note that the reduction in power 
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dissipation with frequency is because the acceleration amplitude is held constant at 

1.6 g – under these conditions the velocity and displacement reduce at higher 

frequencies. 

 

Figure 7.9:   Effect of damping ratio on power dissipation at 50 Hz and 1.6 g 

acceleration amplitude (simulated). 

 

Figure 7.10:   Effect of particle stiffness on power dissipation at different 

frequencies (simulated). 

In Figure 7.10, it can be seen that for very soft particles, energy dissipation is 

concentrated in the lower frequencies. If the particles are much harder (typical of 

polymer spheres in the glassy zone), overall power dissipation is somewhat lower. 

As the material loss factor was the same for each stiffness level considered, it can be 

seen that large variations in contact stiffness are important. 
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A comparison between vertical and horizontal direction has been shown in Figure 

7.11 and Figure 7.12. Energy dissipation changes with direction of shaking, as it can 

be seen in vertical vibration more energy is dissipated. The vertical model has been 

already verified by experiment. In this comparison all other parameters are identical 

for both conditions and the excitation amplitude is 0.01g, so both cases are in the 

solid region and dissipation by friction is negligible.  

 

Figure 7.11:  Energy dissipated in two different conditions in solid region, dash-line 

is in horizontal vibration and solid line for vertical vibration. Amplitude of exciting 

is 0.01g (simulated). 

When the excitation amplitude is increased to 2g, particles tend to slide on each 

other. Energy dissipated is presented in Figure 7.12. While the total dissipation is 

considerably higher for vertical vibrations (around 3 times) the amount of friction 

induced loss is nearly the same for both directions. 
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Figure 7.12:  Energy dissipated by friction in horizontal vibration in comparison 

with vertical vibration. The exciting amplitude is 2g (simulated).  

 

Chapter summary  

In this chapter, the power dissipated in granular medium comprising spherical 

polymeric particles that was subjected to higher amplitude excitation vibration 

(sinusoidal waveform) in the direction of gravity (vertical vibration), is considered. 

Spherical viscoelastic particles are partially filled in a box with rectangular cross 

section whose walls are made of thick blocks of Perspex. Numerical and 

experimental studies were made of the power dissipation from the medium. 

Simulations of the medium were obtained using a three-dimensional Discrete 

Element Method (DEM) code. The measurements (stiffness and loss factor) of 

individual particles in chapter 5 were used as input parameters for using in the 

simulation studies. The power dissipation of the granular medium obtained from 

simulation was compared with that from a physical experiment and found to be in 

good agreement (Figure 7.4). The sensitivity of power dissipation to amplitude, 

frequency of excitation and friction coefficient was investigated. Also at the end of 

the Chapter, a numerical comparison between power dissipated of the medium under 

vertical and horizontal excitation is performed.  
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8 Sensitivity Analysis on Granular 

Medium 

 

 

 

8.1 Introduction 

Sensitivity Analysis (SA) is “the study of how the uncertainty in the output of a 

model (numerical or otherwise) can be apportioned to different sources of 

uncertainty in the model input” [117]. 

In this chapter, in order to gain better understanding of sensitivity of energy 

dissipated to the friction coefficient and damping ratio, an SDOF system was used, 

then after that, the sensitivity of the power dissipated in a granular medium on 

convection phase, with different independent variables, is investigated. The input 

parameters are stiffness, damping and friction coefficient of each individual particle. 

The method used here is based on Saltelli’s approach [117]. Other method was used 

in chapter 7, which all other input parameters were kept constant and only one 

parameter changed several times to observe how does it affects  to the energy output 

of the system. The purpose of this chapter is to make a comparison between the two 

methods to evaluate whether one is better than the other. 
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8.2 Sensitivity analysis on simulated  SDOF model 

In order to gain better understanding of the behaviour and effect of friction and 

damping on granular medium a simple sliding (SDOF) model was developed – see 

Figure 8.1.  

 

 

 

 

Figure 8.1: Simple sliding model 

The force developed in this model when subjected to sinusoidal displacement was 

simulated in Matlab code. The displacement is shown in Figure 8.2. As it can be 

seen the displacement is given so that in the first period has smaller amplitude  and 

gradually  reaches to steady state, and has zero slope in the beginning, this is because 

to prevent high velocity at the start point and therefore preventing from sliding. In 

this calculation it was assumed that the normal force to this sliding model is constant 

and friction coefficient changes from 0 to 1.4 and loss factor ranging from 0 to 1.2. 

By running the code, the energy dissipated is calculated from the hysteresis loop for 

variable input. Although the displacement is sinusoidal, because of the friction 

element the force-history is not a completely sinusoidal response. Typical force 

varying with time is shown in Figure 8.3. 

k

c

tXx sin

N
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Figure 8.2:  A typical input displacement history of sliding SDOF model. 

 

Figure 8.3:  A typical force history response of sliding SDOF model. 

For different values of loss factor (which is proportional to damping ratio) and 

friction coefficient, the force-displacement values are plotted which represent the 

hysteresis loop. The Matlab code runs many of times and gets the energy per cycle 

(the area of each loop shows the energy dissipated from simple model). 
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Figure 8.4, is a typical hysteresis loop (friction coefficient has a high value, 1.4 and 

loss factor is up to 0.6) which calculated when the friction coefficient is very high so 

that friction does not happen and most energy dissipated is because of viscous 

damping. These phenomena can also be seen in upper part of contour plot Figure 8.7. 

 

Figure 8.4:  A typical hysteresis loop of sliding SDOF model, viscous damping 

makes a main contribution to energy dissipated (high friction coefficient). 

At low friction coefficient, due to sliding, most damping is caused by friction force 

and the viscous damping is very small. The typical hysteresis loop can be seen in 

Figure 8.5 (friction coefficient is up to 0.2). It is a typical hysteresis loop from the 

lowest part of contour plot Figure 8.7. 
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Figure 8.5:  A typical hysteresis loop of sliding SDOF model, friction makes a main 

contribution to energy dissipated (at low friction coefficient). 

Another typical hysteresis loop, where both friction and high loss factor are 

significant, is presented in Figure 8.6. In the case the hysteresis loops are a 

combination of both damping (viscous and friction). These cases are happened in the 

curve shapes of contour plot Figure 8.7. 

 

Figure 8.6:  A typical hysteresis loop of sliding SDOF model, both friction and 

damping contribute to energy dissipated. 
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The total result of energy dissipation is shown in contour plot, Figure 8.7. 

Figure 8.7:  Variation of energy dissipated from loss factor and friction 

As it can be seen in Figure 8.7, at very low values of friction coefficient the model 

shows more sensitivity to energy dissipation while at high friction coefficient it 

shows less sensitive because the particles are stickier due to friction. Also it can be 

seen that at lower friction coefficient the energy dissipated is less sensitive to loss 

factor. These phenomenons are also seen for granular medium. 

8.3 Test Model and Sensitivity Analysis Procedure 

 In the previous section a simplified model was used to demonstrate the sensitivity 

for both the loss factor and the friction coefficient. In this section, this is now 

expanded to an MDOF system that is more representative of the actual system. 

By assuming the model under study as, 

                                                         




r

i

ii ZY
1

                                                  (8-1) 

where the input factors are iZ
 
and i

 
are weights as fixed coefficients, r stands for 

number of input variables and Y values are output parameters. The individual Z 

variables are characterized as independent and distributed normally with mean zero.  
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8.3.1 Scatter plots and Linear Regression 

A typical scatter plot which obtained based from a Monte Carlo experiment has been 

shown in Figure 8.8. This example shows the scatter plots of Y versus input 

parameters Z1, Z2, Z3, and Z4 which distributed normally with mean zero.  As it can 

be seen in Figure 8.8 parameter Z4 both converges to a line and has a higher 

concentration of the data points (scatter points) than Z3 and so on. Therefore the 

output Y is more sensitive to Z4 than it is to Z3 .The influence of input factor Z4 on 

the output is more than the others. In this case the order of sensitivity is 

Z4>Z3>Z2>Z1. 

Monte Carlo methods are based on sampling from the distribution of input. The 

inputs are independent and can be arranged in a Monte Carlo matrix, 

 

 

 

                         M= 

 

 

These values have been substituted (for each row) to the model main Equation 8-1. 

The output values which are calculated from the model equation can be produced as 

a vector, Y. 

Z1
(1) 

Z2
(1)

 ... Zr
(1)

 

Z1
(2)

 Z2
(2)

 ... Zr
(2)

 

... ... ... ... 

Z1
(N-1)

 Z2
(N-1)

 ... Zr
(N-1)

 

Z1
(N)

 Z2
(N)

 ... Zr
(N)

 

(8-2) 
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Figure 8.8:  Scatter plots of Y versus Z1,…, Z4 [120]. 
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                                      (8-3) 

where each of the values for this vector e.g. Y
(N)

, is calculated by Equation 8-1 and 

input values Z1
(N)

,Z2
(N)

,…, Zr
(N)

. As a conclusion, by knowing the r number of input 

factors and N set values of input, one can obtain N values for the output. N is also the 

number of times that the model should be used for calculations which is the size of 

Monte Carlo experiments. The results show r number of scatter plots. Scatter plots 

are a useful way which enables the user to analyse the sensitivity of each input 

parameters to the output in a glance and summarise them. 
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This could be obtained by using a simple linear regression on the data of the input 

values of matrix and output vector values. 

8.4 Sensitivity Analysis on the Granular Medium Model 

The procedure which explained in previous section is applied for the granular 

material medium. For simulation, the model based on DEM which was used in 

Chapter 6 is conducted. 

As a first step, an input file should be produced by randomness method within the 

specific defined range and evenly distributed. The input parameters are stiffness, 

friction coefficient and damping ratio (Table 8.1). In order to investigate the 

sensitivity of the power dissipated at different conditions a wide range of input 

parameters was considered. An amplitude excitation, 6g at 100Hz was used 

throughout.  

Table 8.1: Input variable parameters to granular particles 

Stiffness (N/m) Damping ratio Friction coefficient 

Lowest 

value 

Highest 

value 

Lowest 

value 

Highest 

value 

Lowest 

value 

Highest 

value 

6×10
2 

6×10
5 

0.025 025 0.1 1 

 

 

8.4.1 LOOPFC Method 

After generating the input data file, the method ‘LOOPFC’ is used. In this method a 

batch file is created which is containing a series of commands to be executed by the 

PFC3D code so that this script file is set up to automatically read the input data file, 

line by line. The process in the batch file is generating all walls with their properties, 

and then the input ASCII file which contains all information is read. The codes for 

calculating energy dissipated by friction and viscous were used. Figures 8.9 to 8.11 

show the scatter plots for each of the stiffness and damping and friction coefficient 

versus power dissipated for high amplitude vibrations with 600 set values therefore 

the code runs for 600 times iteration.   
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In Figures 8.9 and 8.10 it can be seen that power dissipation is less sensitive to 

changing stiffness and damping ratio. In Figure 8.11, it can be seen that in very low 

friction coefficient there is a higher sensitivity to the output power dissipated, this is 

similar to what expected in chapter 7, Figure 7.8. Also in Figure 8.11, for an 

arbitrary stiffness and damping ratio equal to 229303 N/m and 0.08 respectively, the 

sensitivity to friction coefficient is shown (solid lines). 

 

Figure 8.9: Scatter plot of damping ratio versus power dissipated. 

 

Figure 8.10:  Scatter plot of stiffness versus power dissipated. 
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Figure 8.11:   Scatter plot of friction coefficient versus power dissipated.  

In order to compare the results with SDOF sliding model, the results were re-plotted 

for lower stiffness as used in SDOF model. Figures 8.12 and 8.13 show the 

sensitivity of power dissipated to friction coefficient and damping ratio. As it can be 

seen in Figure 8.12, the power dissipated is sensitive to friction coefficient at lower 

values and less sensitive at higher friction coefficients. This can be seen in Figure 8.7 

at lower loss factor, however at higher loss factor there is a discrepancy and thought 

that it is because of constant normal force which assumed for sliding SDOF model.  

Figure 8.13 shows that the power dissipated is less sensitive to damping ratio and 

this also can be seen in Figure 8.6 so that the loss factor is less sensitive by moving 

from left to right. 
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Figure 8.12: Scatter plot of friction coefficient versus power dissipated 

 

Figure 8.13:  Scatter plot of damping versus power dissipated. 

 

8.5  Chapter summary 

In this chapter the sensitivity of granular medium to the stiffness, damping and 

friction coefficient variables were studied to help better understand the earlier 

chapters. As it was shown the power dissipated of the system is more sensitive to the 

very low friction coefficient and also in a very low damping ratio, however they are 
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less sensitive to higher value of those. A simple sliding model of SDOF sliding 

system was modelled and the behaviour of friction and damping were also studied. 

The comparison between two approaches is consistent and returns similar results at 

some cases. Discrepancies which are because of simplifications at SDOF model were 

also mentioned. 
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9 Conclusions and Future Work 

 

 
 

9.1 Conclusions 

 

This thesis has considered the energy dissipated in a granular medium composed of 

spherical polymeric particles whose properties change significantly over the 

frequency range considered. The work involved theoretical, numerical and 

experiment approaches. The excitation of granular medium in this work is both in 

vertical (same direction as gravity) and horizontal directions and as a sinusoidal 

vibration. Material and physical properties of individual viscoelastic particles were 

obtained by utilising visco-analyser test machine and also a designed test rig. A 

numerical model based on Discrete Element Method (DEM) in three dimensional 

was developed to simulate the behaviour of polymeric granular medium. As 

viscoelastic fillers are more effective for low-amplitude vibrations (where the 

particles are permanently in contact like as solid medium and do not slip relative to 

one another), the investigation on energy dissipation of granular medium in both low 

and higher amplitude vibrations were performed and in each case the corresponding 

theory approach was utilised. The sensitivity of parameters on power dissipation in 

granular medium was performed. 
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9.1.1 Main conclusions 

 

• A numerical model that uses Discrete Element Method (DEM) was developed 

for prediction of energy dissipation in a viscoelastic granular medium. One 

simplification in the model was approximating viscoelastic behaviour using the 

Kelvin-Voigt model (spring and viscous damper in parallel) in order to provide 

acceptable calculation times. It provides a reasonable estimate to the curve at 

lower frequencies i.e. if the effective temperature is some way above the glass 

transition. Another simplification used was linear stiffness for small 

deformations. Despite the simplifications the model was found to be in good 

agreement with experiments (under vertical and horizontal vibrations with 

different number of particles) in a range of frequencies and amplitudes 

excitations (see Figures 6.3, 6.4, 6.11, 7.4). 

 

• When the granular medium is subjected to low amplitude vibration, where 

particles do not collide and move relative to each other but are in permanent 

contact. In this case the medium behaves as a solid. Significant levels of energy 

can be dissipated by the generation of internal standing waves within the 

granular medium (see Figures 4.8, 6.14 zone a). As behaviour can be predicted 

using finite element analysis, it is easily applied for many complex structures. 

The Effectiveness of predictor method was demonstrated by comparison with 

experimental results (see Figures 4.8, 6.11). 

 
• It was shown that changing the amplitude of vibration within the low amplitude 

vibrations zone does not change the damping as viscoelastic materials are 

generally amplitude-independent (see Table 4.1). 

 
• Investigation using high-loss polymers used as granular dampers at higher 

amplitudes (the particles move relative to one another). In these higher 

amplitudes it is apparent that there are two main distinct phases: convection and 

gas (see Figure 6.14 zones c and d). These are not present during lower 

amplitudes. Granular dampers designed for low amplitude vibrations therefore 

may be used in high vibration environments too. 
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• At higher amplitudes and within convection zone (the particles start sliding and 

rolling on each other) while contact friction is a significant energy dissipation 

mechanism, overall power dissipation levels were found to be relatively 

insensitive to the friction coefficient (see Figure 7.8). It was found that at 

excitation above 1g and in convection zone, power dissipation is relatively 

insensitive to the damping of individual particles as increased loss through 

viscous/viscoelastic effects are balanced by reduced loss through friction (see 

Figure 6.14 zone c). This is different from the better-known low-amplitude case 

where system damping is directly proportional to the loss factor of the particles. 

• A transition phase between completely solid and convection is appeared which 

has highest damping and is thought that this is because of friction due to 

spinning (see Figure 6.14 zone b).  

 
• At extremely high amplitude vibrations particles spend more time out of contact 

with each other (the particles separated from each – gas region). It can be seen 

the particles with lower damping reach the gas region earlier because they are 

less sticky and more collisions can happen so although the damping for each 

individual particle it less but the total damping increases (see Figure 6.14, zone 

d). 

 
• The power dissipation of the system is more sensitive to the very low friction 

coefficient (see Figure 8.11) and also in a very low damping ratio however they 

are less sensitive to higher values of them (see Figures 7.9, 8.11). 

 
• Comparison between vertical and horizontal direction of vibrations for granular 

medium show that more total energy is dissipated in vertical vibrations. The 

actual amount of friction induced is nearly the same for both directions (see 

Figures 7.11, 7.12). 

 

Granular particles have been shown to be a useful damping method. Therefore better 

understanding of how they can be utilised in practical applications is extremely 

important. Such as, the amplitude of vibrations in which they will be used, and the 
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parameters which affects the energy dissipation in the system, at that specific 

amplitude, should be considered. From the findings of this thesis, the 

phenomenological behaviours observed and presented can help pave the way for the 

effective use of viscoelastic particle damper damping technologies. 

 

 

9.2 Recommended Future Work 

The current research has helped to improve the understating of the performance of 

spherical viscoelastic particles. In this granular medium, the energy dissipation under 

various amplitudes and frequencies of excitations are studied. However, according to 

the author’s opinion, the current research has the following limitations on the basis 

of which future work strategy can be defined. 

• In the current work, the particle dampers are spherical in shape. For practical 

purposes it may be preferable to make shapes such as rods or irregular shapes by 

chopping or grinding bulk materials – making these shapes are easier to be 

produced. The effect of using these alternative shapes should be investigated. It 

is expected that such particles may display different characteristics but still 

follow the same fundamental behaviour outlined in this thesis. In order to model 

this medium in PFC3D a “clump” strategy should be used. A clump is a 

collection of spherical particles that behaves as a single rigid body. 

• In the current work, relatively shallow granular medium at low amplitude 

vibrations considered, for deep particle dampers, the pressure within the 

granular medium has been shown to be less than would be with the hydrostatic 

assumption and reaches a saturation pressure; therefore the behaviour of energy 

dissipation for this deep medium can be investigated. It is expected that by 

further increasing in thickness of granular bed while the wave speed does not 

increase, therefore damping can be improved. In fact by increasing the thickness 

of granular medium as a result, thicknesswise resonance can then occur at lower 

frequencies. 

• In the current research, the host structure was highly rigid to avoid interface with 

the flexural mode shapes of container. The behaviour of a flexible container 

should be investigated because in practical applications this could easily happen. 
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This is relatively simple to conduct experimentally. However, DEM simulation 

would be more complex. It seems that this would require the coupling of the 

DEM solver with the FE model of the container.  

• The response of granular medium to non-sinusoidal excitation can be studied. 

This could be different with mono sinusoidal excitation as the material of 

viscoelastic granular medium is affected differently by a wide range of 

frequencies. Very little work on multi-frequency excitation is currently 

available. 

• In order to change packing fraction and number of contact points between 

particles, mixed spherical particles with different sizes can be used. Although 

this could lead to the segregation phenomenon in the granular medium, it is 

however because of changing the diameter of particles, stiffness of particles on 

contact points between each other and the container could be different and the 

energy dissipation can be affected from this phenomenon.  

• Granular particles can be used in a granular medium with different materials 

(different loss factors, stiffness and friction coefficients) which may be more 

suitable for different applications. Combinations of materials, as a mixture could 

be also used to investigate the effectiveness and improve the energy dissipation 

of the whole system at a wider range of amplitude excitations. 
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Appendix-A 

Collected test data from viscoanalyser test machine for blue elastomer. 

(measurements at ±70°C) 

-METRAVIB  

\blue ball mast 16 9 2011.fva Version 

Measurement date; 16/09/2011 

Solicitation type: Tension-compression; 

Dim. (mm): H = 13.64 E = 3.34 L = 3.92; 5; 

T; °C 

Dyn str.;sans 

Freq;Hz 

E';Pa 

Tan delta;sans 

Measurement n¦; 1 

;-69.9;0.0008;1;2.44643e+009;0.265665  

;-69.9;0.0008;1.50597;2.66698e+009;0.230579  

;-69.9;0.0008;2.26793;2.84726e+009;0.205311  

;-69.9;0.0008;3.41543;2.999e+009;0.186412  

;-69.9;0.0008;5.14352;3.1562e+009;0.169379  

;-69.9;0.0008;7.74597;3.2711e+009;0.160001  

;-69.9;0.0008;11.6652;3.40182e+009;0.146325  

;-69.9;0.0008;17.5673;3.52896e+009;0.135851  

;-69.9;0.0008;26.4558;3.63472e+009;0.125075  

;-69.9;0.0008;39.8415;3.71546e+009;0.115688  

;-69.9;0.0008;60;3.69395e+009;0.114944  

;-64.9;0.0008;1;1.40375e+009;0.486136  

;-64.9;0.0008;1.50597;1.60918e+009;0.437725  

;-64.9;0.0008;2.26793;1.77965e+009;0.399823  

;-64.9;0.0008;3.41543;1.96379e+009;0.363617  

;-64.9;0.0008;5.14352;2.13432e+009;0.332259  

;-64.9;0.0008;7.74597;2.31994e+009;0.300683  

;-64.9;0.0008;11.6652;2.53583e+009;0.266224  

;-64.9;0.0008;17.5673;2.69916e+009;0.24489  

;-64.9;0.0008;26.4558;2.85825e+009;0.221465  

;-64.9;0.0008;39.8415;2.95966e+009;0.207167  

;-64.9;0.0008;60;3.01827e+009;0.194268  

;-59.9;0.0008;1;6.06679e+008;0.736142  

;-59.9;0.0008;1.50597;7.27309e+008;0.691049  

;-59.9;0.0008;2.26793;8.73025e+008;0.642162  

;-59.9;0.0008;3.41543;1.02581e+009;0.59519  

;-59.9;0.0008;5.14352;1.20084e+009;0.546503  

;-59.9;0.0008;7.74597;1.38212e+009;0.50312  

;-59.9;0.0008;11.6652;1.5629e+009;0.460799  

;-59.9;0.0008;17.5673;1.78862e+009;0.413301  

;-59.9;0.0008;26.4558;1.91078e+009;0.391011  

;-59.9;0.0008;39.8415;2.1245e+009;0.346922  

;-59.9;0.0008;60;2.21431e+009;0.329197  

;-54.9;0.0008;1;2.73047e+008;0.911365  

;-54.9;0.0008;1.50597;3.24644e+008;0.869827  

;-54.9;0.0008;2.26793;3.90724e+008;0.829184  
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;-54.9;0.0008;3.41543;4.72912e+008;0.788237  

;-54.9;0.0008;5.14352;5.81576e+008;0.742874  

;-54.9;0.0008;7.74597;7.03753e+008;0.699722  

;-54.9;0.0008;11.6652;8.15949e+008;0.66545  

;-54.9;0.0008;17.5673;9.81745e+008;0.617972  

;-54.9;0.0008;26.4558;1.11205e+009;0.58386  

;-54.9;0.0008;39.8415;1.29693e+009;0.537825  

;-54.9;0.0008;60;1.38824e+009;0.528594  

;-49.9;0.0008;1;1.19387e+008;1.0526  

;-49.9;0.0008;1.50597;1.47433e+008;1.01821  

;-49.9;0.0008;2.26793;1.845e+008;0.977518  

;-49.9;0.0008;3.41543;2.29028e+008;0.933145  

;-49.9;0.0008;5.14352;2.86235e+008;0.88655  

;-49.9;0.0008;7.74597;3.48387e+008;0.847517  

;-49.9;0.0008;11.6652;4.29094e+008;0.806707  

;-49.9;0.0008;17.5673;5.20658e+008;0.769469  

;-49.9;0.0008;26.4558;5.99198e+008;0.745629  

;-49.9;0.0008;39.8415;7.04084e+008;0.725115  

;-49.9;0.0008;60;7.46738e+008;0.782487 

;-44.9;0.0008;1;5.87394e+007;1.11211 

;-44.9;0.0008;1.50597;7.29092e+007;1.09486 

;-44.9;0.0008;2.26793;9.03784e+007;1.07669 

;-44.9;0.0008;3.41543;1.13102e+008;1.05148 

;-44.9;0.0008;5.14352;1.43315e+008;1.0142 

;-44.9;0.0008;7.74597;1.81104e+008;0.975753 

;-44.9;0.0008;11.6652;2.23976e+008;0.934203 

;-44.9;0.0008;17.5673;2.7152e+008;0.901375 

;-44.9;0.0008;26.4558;3.30401e+008;0.872766 

;-44.9;0.0008;39.8415;3.7758e+008;0.888129 

;-44.9;0.0008;60;3.95581e+008;1.09595 

;-39.9;0.0008;1;3.15377e+007;1.08302 

;-39.9;0.0008;1.50597;3.84753e+007;1.09048 

;-39.9;0.0008;2.26793;4.70134e+007;1.09663 

;-39.9;0.0008;3.41543;5.87215e+007;1.09645 

;-39.9;0.0008;5.14352;7.25111e+007;1.09708 

;-39.9;0.0008;7.74597;9.23256e+007;1.07417 

;-39.9;0.0008;11.6652;1.15268e+008;1.05374 

;-39.9;0.0008;17.5673;1.41725e+008;1.02699 

;-39.9;0.0008;26.4558;1.71501e+008;1.02358 

;-39.9;0.0008;39.8415;2.01537e+008;1.09884 

;-39.9;0.0008;60;2.33128e+008;1.37728 

;-34.9;0.0008;1;1.84718e+007;0.997828 

;-34.9;0.0008;1.50597;2.21549e+007;1.04217 

;-34.9;0.0008;2.26793;2.63076e+007;1.06105 

;-34.9;0.0008;3.41543;3.20615e+007;1.08934 

;-34.9;0.0008;5.14352;4.03557e+007;1.10027 

;-34.9;0.0008;7.74597;5.00899e+007;1.11265 

;-34.9;0.0008;11.6652;6.09124e+007;1.11479 

;-34.9;0.0008;17.5673;7.53348e+007;1.1136 

;-34.9;0.0008;26.4558;8.70853e+007;1.16912 

;-34.9;0.0008;39.8415;9.8473e+007;1.44701 

;-34.9;0.0008;60;1.49695e+008;1.34696 

;-29.9;0.0008;1;1.1341e+007;0.877997 

;-29.9;0.0008;1.50597;1.32578e+007;0.943222 
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;-29.9;0.0008;2.26793;1.55561e+007;0.989725 

;-29.9;0.0008;3.41543;1.86135e+007;1.03356 

;-29.9;0.0008;5.14352;2.27251e+007;1.07513 

;-29.9;0.0008;7.74597;2.80084e+007;1.09685 

;-29.9;0.0008;11.6652;3.38276e+007;1.12298 

;-29.9;0.0008;17.5673;4.08555e+007;1.13212 

;-29.9;0.0008;26.4558;4.62893e+007;1.26645 

;-29.9;0.0008;39.8415;5.57249e+007;1.62415 

;-29.9;0.0008;60;8.54059e+007;1.31886 

;-26.9;0.0008;1;8.50986e+006;0.832947 

;-26.9;0.0008;1.50597;9.83433e+006;0.884363 

;-26.9;0.0008;2.26793;1.16703e+007;0.923923 

;-26.9;0.0008;3.41543;1.36715e+007;0.979269 

;-26.9;0.0008;5.14352;1.65908e+007;1.03777 

;-26.9;0.0008;7.74597;2.0001e+007;1.07676 

;-26.9;0.0008;11.6652;2.40823e+007;1.1073 

;-26.9;0.0008;17.5673;2.91367e+007;1.12428 

;-26.9;0.0008;26.4558;3.14576e+007;1.31592 

;-26.9;0.0008;39.8415;4.16944e+007;1.55523 

;-26.9;0.0008;60;6.10701e+007;1.32221 

;-23.9;0.0008;1;6.79115e+006;0.729382 

;-23.9;0.0008;1.50597;7.67625e+006;0.789417 

;-23.9;0.0008;2.26793;8.95782e+006;0.855765 

;-23.9;0.0008;3.41543;1.04522e+007;0.913116 

;-23.9;0.0008;5.14352;1.24037e+007;0.980625 

;-23.9;0.0008;7.74597;1.47447e+007;1.0332 

;-23.9;0.0008;11.6652;1.76723e+007;1.08434 

;-23.9;0.0008;17.5673;2.16301e+007;1.10302 

;-23.9;0.0008;26.4558;2.28214e+007;1.32972 

;-23.9;0.0008;39.8415;3.16778e+007;1.46338 

;-23.9;0.0008;60;4.21121e+007;1.31995  

;-20.9;0.0008;1;5.68933e+006;0.608988 

;-20.9;0.0008;1.50597;6.18501e+006;0.691287 

;-20.9;0.0008;2.26793;7.07827e+006;0.754482 

;-20.9;0.0008;3.41543;8.01554e+006;0.830752 

;-20.9;0.0008;5.14352;9.51105e+006;0.912708 

;-20.9;0.0008;7.74597;1.10287e+007;0.97033 

;-20.9;0.0008;11.6652;1.32623e+007;1.03127 

;-20.9;0.0008;17.5673;1.60355e+007;1.06742 

;-20.9;0.0008;26.4558;1.6194e+007;1.34109 

;-20.9;0.0008;39.8415;2.35373e+007;1.36902 

;-20.9;0.0008;60;3.02082e+007;1.30425 

;-17.9;0.0008;1;4.72483e+006;0.530874 

;-17.9;0.0008;1.50597;5.18304e+006;0.585285 

;-17.9;0.0008;2.26793;5.8356e+006;0.66306 

;-17.9;0.0008;3.41543;6.51319e+006;0.729575 

;-17.9;0.0008;5.14352;7.591e+006;0.805177 

;-17.9;0.0008;7.74597;8.67473e+006;0.881963 

;-17.9;0.0008;11.6652;1.0212e+007;0.958289 

;-17.9;0.0008;17.5673;1.21726e+007;1.0038 

;-17.9;0.0008;26.4558;1.17727e+007;1.33188 

;-17.9;0.0008;39.8415;1.78489e+007;1.27042 

;-17.9;0.0008;60;2.21598e+007;1.26538 

;-14.9;0.0008;1;4.26915e+006;0.424301 
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;-14.9;0.0008;1.50597;4.5928e+006;0.50102 

;-14.9;0.0008;2.26793;5.04507e+006;0.564347 

;-14.9;0.0008;3.41543;5.59097e+006;0.633238 

;-14.9;0.0008;5.14352;6.26197e+006;0.701761 

;-14.9;0.0008;7.74597;7.16906e+006;0.792271 

;-14.9;0.0008;11.6652;8.17805e+006;0.861884 

;-14.9;0.0008;17.5673;9.50814e+006;0.9206 

;-14.9;0.0008;26.4558;9.15798e+006;1.28788 

;-14.9;0.0008;39.8415;1.39433e+007;1.17238 

;-14.9;0.0008;60;1.67894e+007;1.19811 

;-11.9;0.0008;1;3.89749e+006;0.386476 

;-11.9;0.0008;1.50597;4.1197e+006;0.427865 

;-11.9;0.0008;2.26793;4.43438e+006;0.479843 

;-11.9;0.0008;3.41543;4.87687e+006;0.555522 

;-11.9;0.0008;5.14352;5.39529e+006;0.62115 

;-11.9;0.0008;7.74597;6.06934e+006;0.69118 

;-11.9;0.0008;11.6652;6.94542e+006;0.777293 

;-11.9;0.0008;17.5673;7.93517e+006;0.840142 

;-11.9;0.0008;26.4558;7.25948e+006;1.24718 

;-11.9;0.0008;39.8415;1.11446e+007;1.06882 

;-11.9;0.0008;60;1.30875e+007;1.11364 

;-8.9;0.0008;1;3.65231e+006;0.304654 

;-8.9;0.0008;1.50597;3.79586e+006;0.356337 

;-8.9;0.0008;2.26793;4.06632e+006;0.408613 

;-8.9;0.0008;3.41543;4.36586e+006;0.470014 

;-8.9;0.0008;5.14352;4.84669e+006;0.547128 

;-8.9;0.0008;7.74597;5.34673e+006;0.615336 

;-8.9;0.0008;11.6652;5.98505e+006;0.69072 

;-8.9;0.0008;17.5673;6.77448e+006;0.751286 

;-8.9;0.0008;26.4558;6.26256e+006;1.1572 

;-8.9;0.0008;39.8415;9.16477e+006;0.968058 

;-8.9;0.0008;60;1.06758e+007;1.02925 

;-5.9;0.0008;1;3.3647e+006;0.259482 

;-5.9;0.0008;1.50597;3.54514e+006;0.309983 

;-5.9;0.0008;2.26793;3.76869e+006;0.350661 

;-5.9;0.0008;3.41543;4.06163e+006;0.410206 

;-5.9;0.0008;5.14352;4.32456e+006;0.467725 

;-5.9;0.0008;7.74597;4.76014e+006;0.540841 

;-5.9;0.0008;11.6652;5.29206e+006;0.608432 

;-5.9;0.0008;17.5673;5.84407e+006;0.672368 

;-5.9;0.0008;26.4558;5.41821e+006;1.08258 

;-5.9;0.0008;39.8415;7.88401e+006;0.883508 

;-5.9;0.0008;60;9.00261e+006;0.954293  

;-2.9;0.0008;1;3.23877e+006;0.241191 

;-2.9;0.0008;1.50597;3.37458e+006;0.265928 

;-2.9;0.0008;2.26793;3.51185e+006;0.301796 

;-2.9;0.0008;3.41543;3.76998e+006;0.355434 

;-2.9;0.0008;5.14352;4.00255e+006;0.407509 

;-2.9;0.0008;7.74597;4.36365e+006;0.475708 

;-2.9;0.0008;11.6652;4.77967e+006;0.535161 

;-2.9;0.0008;17.5673;5.27828e+006;0.598639 

;-2.9;0.0008;26.4558;4.79236e+006;1.00254 

;-2.9;0.0008;39.8415;6.78097e+006;0.792165 

;-2.9;0.0008;60;7.79383e+006;0.879095 
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;0;0.0008;1;3.07312e+006;0.203682 

;0;0.0008;1.50597;3.2054e+006;0.237399 

;0;0.0008;2.26793;3.35253e+006;0.269794 

;0;0.0008;3.41543;3.54018e+006;0.306861 

;0;0.0008;5.14352;3.73025e+006;0.358735 

;0;0.0008;7.74597;4.05317e+006;0.414757 

;0;0.0008;11.6652;4.3013e+006;0.468072 

;0;0.0008;17.5673;4.68543e+006;0.527646 

;0;0.0008;26.4558;4.40123e+006;0.941181 

;0;0.0008;39.8415;6.04254e+006;0.716945 

;0;0.0008;60;6.73702e+006;0.785848  

;3;0.0008;1;2.98621e+006;0.185453 

;3;0.0008;1.50597;3.11729e+006;0.215315 

;3;0.0008;2.26793;3.20839e+006;0.235093 

;3;0.0008;3.41543;3.36137e+006;0.270967 

;3;0.0008;5.14352;3.50702e+006;0.309712 

;3;0.0008;7.74597;3.7981e+006;0.35792 

;3;0.0008;11.6652;4.02228e+006;0.419572 

;3;0.0008;17.5673;4.32387e+006;0.470634 

;3;0.0008;26.4558;4.02413e+006;0.872527 

;3;0.0008;39.8415;5.37683e+006;0.644064 

;3;0.0008;60;6.0488e+006;0.715888  

;6;0.0008;1;2.92734e+006;0.18362 

;6;0.0008;1.50597;2.97828e+006;0.19032 

;6;0.0008;2.26793;3.10044e+006;0.214123 

;6;0.0008;3.41543;3.24772e+006;0.240831 

;6;0.0008;5.14352;3.41773e+006;0.276742 

;6;0.0008;7.74597;3.52508e+006;0.314876 

;6;0.0008;11.6652;3.77987e+006;0.36315 

;6;0.0008;17.5673;4.01917e+006;0.41332 

;6;0.0008;26.4558;3.83486e+006;0.791169 

;6;0.0008;39.8415;4.87373e+006;0.571309 

;6;0.0008;60;5.47007e+006;0.649953  

;9;0.0008;1;2.84466e+006;0.160034 

;9;0.0008;1.50597;2.90827e+006;0.176978 

;9;0.0008;2.26793;3.00564e+006;0.19298 

;9;0.0008;3.41543;3.1854e+006;0.213544 

;9;0.0008;5.14352;3.28342e+006;0.246939 

;9;0.0008;7.74597;3.38382e+006;0.274449 

;9;0.0008;11.6652;3.62349e+006;0.323611 

;9;0.0008;17.5673;3.79648e+006;0.367956 

;9;0.0008;26.4558;3.64988e+006;0.731147 

;9;0.0008;39.8415;4.53449e+006;0.514826 

;9;0.0008;60;4.89636e+006;0.587181 

;12;0.0008;1;2.75685e+006;0.155068 

;12;0.0008;1.50597;2.84296e+006;0.163757 

;12;0.0008;2.26793;2.95172e+006;0.176156 

;12;0.0008;3.41543;3.07775e+006;0.191637 

;12;0.0008;5.14352;3.12347e+006;0.221255 

;12;0.0008;7.74597;3.33366e+006;0.252868 

;12;0.0008;11.6652;3.45276e+006;0.28699 

;12;0.0008;17.5673;3.6203e+006;0.32558 

;12;0.0008;26.4558;3.53921e+006;0.659807 

;12;0.0008;39.8415;4.23279e+006;0.459592 
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;12;0.0008;60;4.61801e+006;0.525084  

;15;0.0008;1;2.74451e+006;0.144904 

;15;0.0008;1.50597;2.78414e+006;0.162127 

;15;0.0008;2.26793;2.86818e+006;0.169589 

;15;0.0008;3.41543;2.99363e+006;0.178096 

;15;0.0008;5.14352;3.06787e+006;0.198601 

;15;0.0008;7.74597;3.17607e+006;0.230849 

;15;0.0008;11.6652;3.35501e+006;0.256263 

;15;0.0008;17.5673;3.48543e+006;0.290219 

;15;0.0008;26.4558;3.39942e+006;0.622077 

;15;0.0008;39.8415;3.99992e+006;0.412211 

;15;0.0008;60;4.35385e+006;0.475641 

;18;0.0008;1;2.71417e+006;0.137911 

;18;0.0008;1.50597;2.7493e+006;0.143832 

;18;0.0008;2.26793;2.81522e+006;0.156365 

;18;0.0008;3.41543;2.90298e+006;0.168309 

;18;0.0008;5.14352;3.03266e+006;0.182604 

;18;0.0008;7.74597;3.12105e+006;0.200611 

;18;0.0008;11.6652;3.21925e+006;0.231362 

;18;0.0008;17.5673;3.39455e+006;0.263476 

;18;0.0008;26.4558;3.30946e+006;0.582094 

;18;0.0008;39.8415;3.85696e+006;0.366768 

;18;0.0008;60;4.03073e+006;0.433242 

;21;0.0008;1;2.52652e+006;0.140891 

;21;0.0008;1.50597;2.63192e+006;0.133763 

;21;0.0008;2.26793;2.733e+006;0.148455 

;21;0.0008;3.41543;2.80771e+006;0.155385 

;21;0.0008;5.14352;2.9035e+006;0.170651 

;21;0.0008;7.74597;2.97661e+006;0.188567 

;21;0.0008;11.6652;3.05072e+006;0.213275 

;21;0.0008;17.5673;3.2351e+006;0.23804 

;21;0.0008;26.4558;3.18614e+006;0.55824 

;21;0.0008;39.8415;3.63523e+006;0.336049 

;21;0.0008;60;3.77742e+006;0.394889 

;24;0.0008;1;2.53708e+006;0.141422 

;24;0.0008;1.50597;2.64344e+006;0.133058 

;24;0.0008;2.26793;2.69842e+006;0.14377 

;24;0.0008;3.41543;2.75773e+006;0.149353 

;24;0.0008;5.14352;2.86633e+006;0.160287 

;24;0.0008;7.74597;2.93272e+006;0.173461 

;24;0.0008;11.6652;3.05536e+006;0.194115 

;24;0.0008;17.5673;3.13732e+006;0.217481 

;24;0.0008;26.4558;3.15818e+006;0.53569 

;24;0.0008;39.8415;3.52213e+006;0.305557 

;24;0.0008;60;3.65821e+006;0.357557 

;27;0.0008;1;2.52735e+006;0.134121 

;27;0.0008;1.50597;2.58627e+006;0.128316 

;27;0.0008;2.26793;2.67887e+006;0.135929 

;27;0.0008;3.41543;2.73839e+006;0.142166 

;27;0.0008;5.14352;2.83108e+006;0.153474 

;27;0.0008;7.74597;2.89663e+006;0.158194 

;27;0.0008;11.6652;2.96387e+006;0.181748 

;27;0.0008;17.5673;3.11709e+006;0.197836 

;27;0.0008;26.4558;3.06024e+006;0.505526 
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;27;0.0008;39.8415;3.4408e+006;0.272397 

;27;0.0008;60;3.51703e+006;0.322594 

;30;0.0008;1;2.47393e+006;0.129554 

;30;0.0008;1.50597;2.57977e+006;0.123908 

;30;0.0008;2.26793;2.63585e+006;0.135715 

;30;0.0008;3.41543;2.73753e+006;0.136171 

;30;0.0008;5.14352;2.79622e+006;0.144789 

;30;0.0008;7.74597;2.85494e+006;0.155185 

;30;0.0008;11.6652;2.97655e+006;0.167969 

;30;0.0008;17.5673;3.05117e+006;0.181551 

;30;0.0008;26.4558;3.06937e+006;0.47678 

;30;0.0008;39.8415;3.37193e+006;0.246628 

;30;0.0008;60;3.44716e+006;0.29175  

;33;0.0008;1;2.4876e+006;0.125113 

;33;0.0008;1.50597;2.60068e+006;0.126989 

;33;0.0008;2.26793;2.61885e+006;0.125502 

;33;0.0008;3.41543;2.7317e+006;0.132572 

;33;0.0008;5.14352;2.75677e+006;0.138911 

;33;0.0008;7.74597;2.86597e+006;0.143872 

;33;0.0008;11.6652;2.91616e+006;0.155931 

;33;0.0008;17.5673;2.96795e+006;0.168576 

;33;0.0008;26.4558;2.9129e+006;0.452275 

;33;0.0008;39.8415;3.30868e+006;0.226339 

;33;0.0008;60;3.356e+006;0.264642  

;40;0.0008;1;2.37373e+006;0.124278 

;40;0.0008;1.50597;2.40569e+006;0.130359 

;40;0.0008;2.26793;2.50431e+006;0.125062 

;40;0.0008;3.41543;2.58644e+006;0.122531 

;40;0.0008;5.14352;2.70972e+006;0.13137 

;40;0.0008;7.74597;2.75499e+006;0.140992 

;40;0.0008;11.6652;2.78196e+006;0.142638 

;40;0.0008;17.5673;2.9263e+006;0.147415 

;40;0.0008;26.4558;2.87103e+006;0.418627 

;40;0.0008;39.8415;3.14336e+006;0.192114 

;40;0.0008;60;3.18074e+006;0.220106 

;45;0.0008;1;2.36965e+006;0.110084 

;45;0.0008;1.50597;2.43288e+006;0.128461 

;45;0.0008;2.26793;2.49365e+006;0.122791 

;45;0.0008;3.41543;2.56429e+006;0.121615 

;45;0.0008;5.14352;2.61763e+006;0.127835 

;45;0.0008;7.74597;2.73496e+006;0.129125 

;45;0.0008;11.6652;2.76312e+006;0.131394 

;45;0.0008;17.5673;2.83077e+006;0.135401 

;45;0.0008;26.4558;2.89941e+006;0.399877 

;45;0.0008;39.8415;3.10685e+006;0.175142 

;45;0.0008;60;3.13182e+006;0.193202 

;50;0.0008;1;2.35423e+006;0.111177 

;50;0.0008;1.50597;2.3331e+006;0.109377 

;50;0.0008;2.26793;2.41673e+006;0.108034 

;50;0.0008;3.41543;2.50675e+006;0.115717 

;50;0.0008;5.14352;2.56869e+006;0.120261 

;50;0.0008;7.74597;2.66883e+006;0.122438 

;50;0.0008;11.6652;2.68064e+006;0.130474 

;50;0.0008;17.5673;2.72025e+006;0.134105 
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;50;0.0008;26.4558;2.72538e+006;0.39915 

;50;0.0008;39.8415;3.02443e+006;0.161466 

;50;0.0008;60;2.99318e+006;0.172941 

;55;0.0008;1;2.3209e+006;0.0955062 

;55;0.0008;1.50597;2.29311e+006;0.113515 

;55;0.0008;2.26793;2.34012e+006;0.122267 

;55;0.0008;3.41543;2.39203e+006;0.116723 

;55;0.0008;5.14352;2.49011e+006;0.112016 

;55;0.0008;7.74597;2.52259e+006;0.124094 

;55;0.0008;11.6652;2.64268e+006;0.123335 

;55;0.0008;17.5673;2.65244e+006;0.123799 

;55;0.0008;26.4558;2.85375e+006;0.353614 

;55;0.0008;39.8415;2.96623e+006;0.152058 

;55;0.0008;60;2.85656e+006;0.161654 

;60;0.0008;1;2.14955e+006;0.0968308 

;60;0.0008;1.50597;2.26946e+006;0.10467 

;60;0.0008;2.26793;2.30227e+006;0.121965 

;60;0.0008;3.41543;2.42109e+006;0.114501 

;60;0.0008;5.14352;2.39905e+006;0.125124 

;60;0.0008;7.74597;2.51792e+006;0.11996 

;60;0.0008;11.6652;2.53419e+006;0.124598 

;60;0.0008;17.5673;2.65044e+006;0.1236 

;60;0.0008;26.4558;2.6923e+006;0.385177 

;60;0.0008;39.8415;2.85715e+006;0.144813 

;60;0.0008;60;2.84221e+006;0.153063  

;65;0.0008;1;2.21457e+006;0.0877976 

;65;0.0008;1.50597;2.20698e+006;0.0983884 

;65;0.0008;2.26793;2.29629e+006;0.0940718 

;65;0.0008;3.41543;2.39751e+006;0.10848 

;65;0.0008;5.14352;2.40376e+006;0.1188 

;65;0.0008;7.74597;2.54231e+006;0.111586 

;65;0.0008;11.6652;2.55422e+006;0.121792 

;65;0.0008;17.5673;2.56205e+006;0.12277 

;65;0.0008;26.4558;2.53309e+006;0.392058 

;65;0.0008;39.8415;2.8686e+006;0.14141 

;65;0.0008;60;2.75138e+006;0.145907 

;70;0.0008;1;2.24252e+006;0.0831961 

;70;0.0008;1.50597;2.21821e+006;0.107659 

;70;0.0008;2.26793;2.21736e+006;0.100886 

;70;0.0008;3.41543;2.29806e+006;0.1042 

;70;0.0008;5.14352;2.34919e+006;0.107964 

;70;0.0008;7.74597;2.44361e+006;0.112224 

;70;0.0008;11.6652;2.46079e+006;0.117407 

;70;0.0008;17.5673;2.49472e+006;0.122848 

;70;0.0008;26.4558;2.46234e+006;0.380232 

;70;0.0008;39.8415;2.76519e+006;0.140112 

;70;0.0008;60;2.67953e+006;0.141457  
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Appendix-B 

Natural frequencies and effective masses of solid viscoelastic material (used in 

Chapter 4). 

MODE FREQUENCY 
EFFECTIVE 

MASS 
 

MODE FREQUENCY EFFECTIVE  MASS 

       1 67.03 3.02E-01 

 

41 134.84 1.49E-28 

2 70.91 5.82E-28 

 

42 136.11 1.94E-27 

3 77.54 2.33E-28 

 

43 137.38 4.11E-26 

4 78.15 2.63E-27 

 

44 137.82 1.41E-04 

5 82.73 4.21E-24 

 

45 138.21 6.12E-26 

6 83.10 1.55E-02 

 

46 139.80 1.18E-29 

7 85.87 2.89E-26 

 

47 140.40 3.51E-06 

8 87.60 1.10E-28 

 

48 140.78 1.70E-29 

9 89.81 8.71E-30 

 

49 145.43 1.94E-27 

10 90.25 3.06E-26 

 

50 145.60 7.44E-29 

11 93.51 2.44E-26 

 

51 146.80 1.61E-29 

12 94.63 2.64E-03 

 

52 147.17 2.80E-05 

13 95.65 7.34E-30 

 

53 148.12 8.03E-04 

14 100.35 1.45E-26 

 

54 148.74 5.62E-05 

15 101.50 6.01E-25 

 

55 148.74 2.38E-27 

16 101.79 2.46E-02 

 

56 149.24 2.88E-26 

17 102.64 3.52E-31 

 

57 150.94 5.60E-31 

18 105.11 3.95E-26 

 

58 152.06 4.90E-25 

19 106.09 2.19E-24 

 

59 153.14 4.84E-24 

20 106.66 8.92E-03 

 

60 154.77 4.11E-26 

21 108.33 1.15E-02 

 

61 154.99 2.63E-23 

22 108.90 5.61E-27 

 

62 156.92 1.34E-02 

23 110.44 2.66E-27 

 

63 156.96 8.26E-26 

24 113.87 2.68E-26 

 

64 157.06 1.40E-23 

25 115.27 7.59E-30 

 

65 159.55 3.00E-25 

26 115.72 1.99E-02 

 

66 159.66 1.50E-04 

27 117.39 6.99E-30 

 

67 161.02 1.08E-30 

28 117.57 1.64E-31 

 

68 162.57 2.42E-23 

29 118.38 4.48E-05 

 

69 164.19 1.13E-23 

30 120.09 4.51E-03 

 

70 165.18 1.37E-02 

31 122.60 1.35E-29 

 

71 165.43 3.16E-02 

32 122.80 3.81E-24 

 

72 166.09 2.55E-05 

33 123.50 3.18E-03 

 

73 166.44 9.34E-29 

34 126.05 1.16E-27 

 

74 167.62 1.76E-27 

35 127.48 1.09E-26 

 

75 168.27 8.74E-27 

36 128.35 1.28E-25 

 

76 168.65 2.02E-30 

37 130.64 1.25E-29 

 

77 168.73 1.84E-28 

38 131.21 1.16E-25 

 

78 169.19 1.32E-25 

39 132.97 2.25E-27 

 

79 169.47 4.86E-29 

40 133.79 4.52E-30 

 

80 170.44 2.59E-07 
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MODE FREQUENCY 
EFFECTIVE 

  MASS 
 

MODE FREQUENCY EFFECTIVE  MASS 

81 171.81 6.59E-29 

 

121 194.72 1.54E-04 

82 172.06 4.74E-25 

 

122 194.89 8.57E-24 

83 172.90 5.65E-25 

 

123 195.64 1.08E-23 

84 173.36 8.88E-26 

 

124 196.09 1.05E-03 

85 173.71 1.18E-30 

 

125 196.90 3.54E-23 

86 174.52 1.36E-28 

 

126 197.99 8.52E-26 

87 174.68 8.15E-27 

 

127 198.06 8.97E-29 

88 175.33 2.61E-03 

 

128 198.50 3.97E-27 

89 175.59 1.16E-24 

 

129 198.73 1.17E-04 

90 176.78 3.92E-05 

 

130 199.31 1.15E-04 

91 177.41 3.57E-30 

 

131 199.75 1.68E-25 

92 178.11 5.20E-04 

 

132 200.04 3.94E-29 

93 179.03 8.37E-25 

 

133 200.59 1.02E-04 

94 180.41 1.77E-04 

 

134 201.39 2.02E-26 

95 180.42 9.85E-20 

 

135 201.83 8.21E-29 

96 181.04 2.11E-26 

 

136 201.85 1.97E-26 

97 181.14 1.09E-26 

 

137 203.05 1.26E-28 

98 182.93 1.95E-28 

 

138 203.62 2.61E-25 

99 183.06 8.20E-25 

 

139 203.88 7.09E-25 

100 183.37 1.99E-22 

 

140 204.47 1.99E-28 

101 183.44 3.38E-03 

 

141 204.96 2.47E-05 

102 184.87 3.15E-25 

 

142 205.25 1.34E-29 

103 185.14 9.89E-25 

 

143 205.58 5.02E-26 

104 185.91 7.27E-04 

 

144 206.08 5.61E-25 

105 186.46 2.55E-29 

 

145 206.20 2.68E-28 

106 186.63 1.57E-24 

 

146 206.84 4.67E-03 

107 187.01 5.19E-29 

 

147 207.83 5.58E-27 

108 187.31 4.22E-26 

 

148 207.84 1.57E-25 

109 187.86 1.90E-27 

 

149 207.98 6.39E-05 

110 189.40 1.88E-29 

 

150 210.25 9.97E-27 

111 189.89 6.55E-25 

 

151 210.28 4.36E-25 

112 189.90 6.59E-26 

 

152 210.85 4.03E-24 

113 190.31 1.92E-03 

 

153 211.68 1.27E-04 

114 191.47 2.42E-30 

 

154 211.91 2.89E-23 

115 191.94 2.49E-04 

 

155 212.22 7.12E-23 

116 193.15 4.26E-32 

 

156 212.69 3.54E-21 

117 193.30 2.47E-26 

 

157 213.03 5.33E-22 

118 193.60 1.41E-24 

 

158 213.11 6.92E-05 

119 194.47 3.39E-30 

 

159 213.14 2.76E-21 

  120 194.57 1.53E-03 

 

160 213.30 8.47E-22 
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MODE FREQUENCY 
EFFECTIVE  
MASS 

 
MODE FREQUENCY EFFECTIVE  MASS 

161 213.34 3.58E-05 
 

202 231.36 1.30E-05 

162 213.40 4.25E-21 
 

203 231.54 3.81E-22 

163 213.92 3.58E-21 
 

204 232.06 1.86E-04 

164 214.64 1.17E-03 
 

205 232.12 8.35E-22 

165 215.69 1.08E-20 
 

206 232.30 5.34E-23 

166 217.85 1.99E-19 
 

207 232.54 2.88E-21 

167 217.97 1.96E-20 
 

208 232.58 4.83E-22 

168 218.32 1.53E-18 
 

209 232.63 6.85E-04 

169 218.77 4.10E-18 
 

210 232.85 2.71E-22 

170 219.56 8.90E-19 
 

211 233.33 1.67E-22 

171 219.89 1.24E-18 
 

212 233.59 2.61E-23 

172 220.57 6.03E-04 
 

213 233.85 8.66E-22 

173 220.75 3.85E-18 
 

214 234.12 1.85E-06 

174 222.01 5.65E-04 
 

215 234.57 1.50E-21 

175 223.16 5.44E-20 
 

216 234.62 1.97E-21 

176 223.47 7.97E-04 
 

217 235.46 8.65E-06 

177 223.77 3.69E-18 
 

218 235.94 2.09E-22 

178 223.85 2.71E-18 
 

219 236.39 1.44E-22 

179 223.98 3.12E-04 
 

220 236.52 5.78E-22 

180 224.39 1.55E-18 
 

221 237.08 2.79E-21 

181 224.83 6.16E-03 
 

222 237.41 3.56E-22 

182 225.24 3.92E-19 
 

223 237.59 2.93E-22 

183 225.51 1.26E-20 
 

224 237.76 1.55E-21 

184 225.55 1.54E-04 
 

225 237.82 4.41E-06 

185 225.84 5.39E-20 
 

226 238.15 4.14E-22 

186 225.98 4.32E-18 
 

227 238.39 1.26E-22 

187 226.37 1.88E-17 
 

228 239.04 1.85E-04 

188 226.50 1.55E-04 
 

229 239.23 3.03E-22 

189 227.25 1.48E-20 
 

230 239.26 1.29E-23 

190 227.83 4.82E-19 
 

231 239.52 9.12E-22 

191 227.86 5.43E-19 
 

232 239.95 1.18E-07 

192 228.59 1.76E-19 
 

233 240.08 5.88E-22 

193 228.80 2.27E-19 
 

234 240.14 4.71E-22 

194 229.38 1.15E-19 
 

235 240.89 3.13E-21 

195 229.40 3.73E-04 
 

236 241.84 1.57E-24 

196 229.46 1.00E-04 
 

237 241.86 4.31E-20 

197 229.67 1.94E-20 
 

238 241.87 1.21E-03 

198 229.88 2.79E-22 
 

239 242.30 4.10E-22 

199 230.11 1.53E-21 
 

240 243.22 4.61E-22 

200 230.11 2.93E-20 
 

    241    243.34                   4.98E-21 

201     230.81 2.05E-21 
 

  242          243.37               1.87E-21 
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MODE FREQUENCY 
EFFECTIVE 
MASS 

 
MODE FREQUENCY EFFECTIVE MASS 

243 243.65 1.04E-23 

 

286 255.12 5.01E-22 

244 243.68 5.78E-06 

 

287 255.77 2.24E-21 

245 244.20 7.17E-22 

 

288 256.41 7.25E-06 

246 245.29 2.15E-21 

 

289 256.66 1.47E-05 

247 245.44 4.18E-05 

 

290 256.70 1.23E-21 

248 245.54 2.52E-22 

 

291 257.72 1.15E-22 

249 245.80 2.63E-21 

 

292 257.79 1.36E-21 

250 246.32 3.98E-22 

 

293 257.95 2.14E-05 

251 246.33 1.27E-21 

 

294 258.18 1.59E-21 

252 246.55 8.73E-04 

 

295 258.24 4.84E-21 

253 246.97 9.45E-23 

 

296 259.03 2.24E-05 

254 247.14 5.00E-06 

 

297 259.09 2.22E-21 

255 247.61 2.73E-21 

 

298 259.24 7.42E-21 

256 247.79 4.46E-22 

 

299 259.59 1.50E-04 

257 248.06 1.45E-03 

 

300 260.06 1.05E-04 

258 248.15 4.63E-21 

 

301 260.30 2.81E-22 

259 248.36 7.96E-08 

 

302 261.08 5.73E-22 

260 248.46 1.37E-21 

 

303 261.12 5.35E-21 

261 248.65 9.49E-22 

 

304 261.41 7.90E-21 

262 249.03 1.28E-23 

 

305 261.58 9.79E-05 

263 249.06 4.33E-22 

 

306 261.66 9.85E-21 

264 249.77 1.11E-21 

 

307 262.11 3.48E-22 

265 250.02 8.02E-06 

 

308 262.39 2.43E-04 

266 250.20 9.77E-21 

 

309 262.58 1.98E-21 

267 250.64 1.10E-19 

 

310 262.72 2.47E-21 

268 250.65 5.66E-04 

 

311 263.36 6.69E-04 

269 251.12 3.01E-08 

 

312 263.36 4.33E-20 

270 251.18 3.82E-23 

 

313 263.61 9.60E-21 

271 251.21 1.03E-21 

 

314 264.11 2.18E-19 

272 251.49 3.50E-06 

 

315 264.12 7.60E-04 

273 251.61 2.33E-22 

 

316 264.22 2.43E-22 

274 252.78 7.45E-07 

 

317 264.38 2.60E-21 

275 252.80 2.82E-21 

 

318 265.33 1.06E-04 

276 253.31 4.61E-26 

 

319 265.38 1.22E-21 

277 253.44 4.65E-21 

 

320 265.71 1.47E-21 

278 253.63 7.06E-22 

 

321 266.07          2.03E-04 

279 253.79 4.03E-22 

 

322 266.24          2.21E-21 

280 253.82 1.49E-21 

 

323 266.65          1.47E-20 

281 253.90 1.20E-22 

 

324 266.78          3.21E-21 

282 254.02 3.44E-23 

 

325 267.09          1.29E-21 

         283 254.32 8.33E-22 

 

326 267.15          8.89E-21 

         284 254.52 9.29E-22 

 

327 267.74          3.25E-22 

285 255.09 6.79E-21 

 

328 268.22          2.95E-20 
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MODE FREQUENCY 
EFFECTIVE 
MASS 

 
MODE FREQUENCY EFFECTIVE MASS 

329 268.26 4.35E-04 

 

371 278.43 2.48E-20 

330 268.66 5.72E-21 

 

372 278.75 1.85E-21 

331 268.74 6.68E-23 

 

373 279.08 1.75E-03 

332 268.90 3.40E-21 

 

374 279.24 2.42E-21 

333 269.28 1.44E-20 

 

375 279.67 3.36E-20 

334 269.53 1.94E-21 

 

376 279.95 1.17E-04 

335 270.08 1.41E-20 

 

377 280.09 3.99E-20 

336 270.24 6.57E-04 

 

378 280.21 4.19E-20 

337 270.27 2.61E-20 

 

379 280.41 2.19E-21 

338 270.50 5.90E-21 

 

380 280.45 6.18E-23 

339 270.55 5.22E-03 

 

381 280.89 2.79E-21 

340 270.71 4.53E-03 

 

382 280.91 4.23E-20 

341 271.16 5.21E-20 

 

383 281.10 3.36E-04 

342 271.41 1.36E-21 

 

384 281.76 5.61E-05 

343 271.83 5.51E-21 

 

385 281.91 9.58E-20 

344 272.18 3.78E-23 

 

386 282.12 5.28E-21 

345 272.40 2.10E-22 

 

387 282.18 2.03E-18 

346 272.69 1.80E-20 

 

388 282.19 7.10E-21 

347 272.74 1.25E-20 

 

389 282.44 1.63E-03 

348 273.08 1.84E-20 

 

390 282.45 4.49E-19 

349 273.10 1.44E-21 

 

391 282.83 6.44E-20 

350 273.32 1.13E-22 

 

392 282.92 2.54E-04 

351 273.54 2.43E-20 

 

393 283.04 3.89E-21 

352 274.30 1.31E-20 

 

394 283.63 1.05E-19 

353 274.50 2.57E-05 

 

395 283.75 2.33E-19 

354 274.54 3.71E-21 

 

396 284.20 3.85E-20 

355 274.74 5.55E-04 

 

397 284.26 5.46E-19 

356 275.10 5.99E-21 

 

398 284.54 3.43E-06 

357 275.36 3.87E-23 

 

399 284.72 6.62E-20 

358 275.71 1.91E-19 

 

400 284.78 8.62E-19 

359 275.72 2.92E-04 

 
401 285.02 2.06E-22 

360 275.96 4.25E-20 

 
402 285.26 1.01E-04 

361 276.21 2.63E-22 

 
403 285.33 3.00E-19 

362 276.42 1.66E-20 

 
404 285.39 3.30E-03 

363 276.65 1.18E-21 

 
405 285.50 3.18E-18 

364 276.83 1.98E-20 

 
406 285.65 7.36E-05 

365 276.84 3.06E-04 

 
407 285.89 3.22E-20 

366 277.11 2.95E-20 

 
408 286.22 1.32E-18 

367 277.51 2.25E-04 

 
409 286.42 7.65E-06 

368 277.77 3.00E-20 

 
410 286.56 9.35E-19 

369 277.80 5.31E-20 

 
411 286.65 2.44E-20 

370 278.11 2.64E-09 

 
412 286.90 4.35E-19 



Appendices 
 

174 
 

MODE FREQUENCY 
EFFECTIVE  

MASS 
 

MODE FREQUENCY EFFECTIVE  MASS 

413 286.92 3.96E-18 
 

459 297.37 2.12E-22 

414 287.13 2.65E-05 
 

460 297.44 1.16E-04 

415 288.23 5.30E-21 
 

461 297.49 6.14E-25 

416 288.28 8.83E-19 
 

462 297.72 5.33E-25 

417 288.87 1.80E-20 
 

463 297.87 1.37E-24 

418 288.92 5.93E-04 
 

464 298.35 2.16E-07 

419 289.13 1.00E-03 
 

465 298.39 7.15E-24 

420 289.20 5.91E-19 
 

466 298.58 2.78E-26 

421 289.33 2.86E-18 
 

467 298.73 3.44E-23 

422 289.64 5.90E-22 
 

468 298.91 4.03E-23 

423 289.72 3.95E-04 
 

469 299.17 1.17E-24 

424 289.94 1.98E-19 
 

470 299.26 8.86E-24 

425 289.95 1.04E-20 
 

471 299.86 5.11E-05 

426 290.27 4.20E-19 
 

472 300.00 3.25E-05 

427 290.46 1.83E-20 
 

473 300.19 1.45E-23 

428 291.01 6.46E-06 
 

474 300.34 4.22E-24 

429 291.07 1.01E-18 
 

475 300.59 1.15E-26 

430 291.72 7.16E-06 
 

476 300.77 6.49E-23 

431 291.92 5.71E-06 
 

477 300.95 2.67E-04 

432 292.01 7.51E-20 
 

478 301.43 5.93E-24 

433 292.41 6.81E-19 
 

479 301.64 1.52E-06 

434 292.47 1.56E-18 
 

480 301.98 1.72E-23 

435 292.69 8.05E-21 
 

481 302.06 9.80E-27 

436 292.89 3.09E-22 
 

482 302.18 3.35E-25 

437 293.22 3.69E-20 
 

483 302.26 1.12E-24 

438 293.39 4.75E-05 
 

484 302.47 6.27E-25 

439 293.51 2.02E-21 
 

485 302.77 8.30E-24 

440 293.58 6.11E-22 
 

486 302.97 4.89E-24 

441 293.90 3.59E-05 
 

487 302.98 3.06E-24 

442 294.19 5.16E-22 
 

488 303.07 1.40E-23 

443 294.37 1.69E-06 
 

489 303.23 2.33E-24 

444 294.58 2.26E-23 
 

490 303.38 6.27E-06 

445 295.38 7.70E-25 
 

491 304.10 1.13E-23 

446 295.53 1.63E-23 
 

492 304.11 2.21E-24 

447 295.60    6.39E-23 
 

493 304.20 3.49E-24 

448 295.65    1.06E-04 
 

494 304.42 8.06E-06 

449 295.73    3.71E-23 
 

495 304.49 2.58E-24 

450 295.81    4.07E-22 
 

496 305.36 6.32E-23 

451 296.17    7.47E-23 
 

497 305.49 7.48E-05 

452 296.48    7.75E-24 
 

498 305.54 1.86E-23 

453 296.53    4.50E-23 
 

499 305.66 3.41E-25 

454 296.76    5.41E-05 
 

500 305.93 2.41E-23 

455 296.89    2.33E-23 
    456 297.07    2.17E-22 
    457 297.11    1.63E-24 
    458 297.20    1.20E-23 
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Appendix-C 

Prony series with twenty terms and 15°C temperature for viscoelastic spherical 

particle used in Chapter 5/Section 5.4.2. 

 

n Prony magnitude parameter 

g  
Prony time 

  
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

.10714039e-3 

 .20354534e-4 

 .77327841e-4 

 .10494517e-3 

 .18584611e-3 

 .27636839e-3 

 .61570041e-3 

 .11130345e-2 

 .23850055e-2 

 .47878474e-2 

 .10451431e-1 

 .19564354e-1 

 .39677276e-1 

 .59388326e-1 

 .96383875e-1 

    .12255661 

    .14716764 

    .15622526 

    .14081563 

    .19767986 

.89615050 

.25395800 

.71968567e-1 

.20395005e-1 

.57796929e-2 

.16378937e-2 

.46415888e-3 

.13153691e-3 

.37275937e-4 

.10563541e-4 

.29935773e-5 

.84834290e-6 

.24040992e-6 

.68129207e-7 

.19306977e-7 

.54713593e-8 

.15505158e-8 

.43939706e-9 

.12451971e-9 

.35287350e-10 
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Appendix-D 

Drawing of lower and upper plates, used for designed test rig to measure particle 

properties. (Chapter 5/Section 5.5) 
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Appendix-E 

Material properties for Sorbothane 60 and DC3120. (Chapter 5/Section 5.5) 
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Appendix-F 

Equilibrium situation (settling by gravity) for DEM model. 
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Appendix-G 

Loss factor versus Young’s modulus, data from DMTA machine for 1-60 Hz 

frequency. (Chapter 3/Section 3.3.2) 
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