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Abstract

Complex systems are collections of independent agents interacting to as to produce

emergent, often unexpected, behaviour. Computer based simulation is one of the

main ways of studying complex systems and a naı̈ve approach to such simulation is

fraught with difficulty due to the scope for deadlock in various patterns of interac-

tion between the agents which are of necessity sharing aspects of the computational

platform.

Agent behaviour, though, can be entirely looked at from the point of view of the

environments within which the agents interact. Structuring a simulation purely in

this manner leads to a simulation that has essentially no tendency to deadlock and

still behaves in the manner required.

A number of experiments are conducted to demonstrate the feasibility of this

approach. These start with a simple flocking system and continue through an inves-

tigation of the ways in which multiple environments can best be combined. Finally,

a larger scale experiment investigating the evolution of variety in a rich environ-

ment shows that interesting results can be obtained of a simulation constructed in

this manner.
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Chapter 1

Complex Systems

This thesis discusses a particular approach to simulation of complex systems, one

that is oriented around the environments within which the complex system’s agents

exist rather than the communication amongst the agents.

A simple definition of “complex system” is hard to find. Nonetheless, we are

surrounded by complex systems: biological structures rely on such systems for

their behaviour; the built environment influences the behaviour of a collection of

humans and complex engineered systems, such as the electrical power generation

and distribution system, often behave in a manner unexpected by their designers

[Wike, YP09] as a consequence of their underlying complexity and the context in

which they perform.

Complex systems of the sort described here, and in the rest of this thesis, are in

essence a large collection of independent agents with no overall control mechanism.

Each agent interacts with other agents, within a multi-faceted environment. Each

agent follows a relatively simple process that is described purely in the context of

the agent itself. A cell that is part of the human immune system interacts purely

within its immediate biochemical context with no overall controlling context; a hu-

man in a modern city moves around and interacts with the other entities in the city

without a separate controlling mechanism. In a modern power delivery system,

power generation facilities—be they fossil fueled, wind turbines or photo-voltaic

arrays—interact with the main electricity grid, ignorant of the fact that that grid is

itself a product of many power generation facilities.

In all these cases the overall emergent properties of the collection of agents—be

1



2 CHAPTER 1. COMPLEX SYSTEMS

it immunity from disease, a stock market crash or the maintenance of 230V/50Hz

domestic power—are those that characterise the success or failure of the system.

These gross properties arise from the interactions between all the agents in a system

yet may be difficult to predict from a detailed knowledge of the system structure.

This applies even if all interactions are the consequence of an engineering process

rather than being the results of the twists and turns of natural selection.

Design or analysis of such a complex system can be difficult which leads di-

rectly to the notion of explicit simulation of such systems. This thesis is in essence

concerned with software-based explicit simulation of complex systems where those

simulations follow the approach described here as environment orientation.

A complex system is characterised by a potentially huge number of interacting

agents, each of which takes decisions and performs actions independently. Each

agent may well observe other agents and respond to them but this is done so inde-

pendently, without any overall control. An immune system may contain many mil-

lions of active cells and even engineered systems, such as a power generation sys-

tem, could contain millions of photo-voltaic generators, load-shedding units, power

transmission lines and wind power generators.

The actions that take place inside a complex system are, though, restrained by

the physics of the real world; a flocking bird cannot occupy the same location in

space as another even if it decides it wants to. A software simulation of a complex

system would ideally have the same vast number of agents making analogous deci-

sions to those in the real world and limited by the same real world physics. That is,

it would execute in a hugely parallel computational context within an environment

that replicated the physics of the real world.

However, any realistic simulation must execute on real-world computer hard-

ware and such a complete simulation is not currently feasible. Computer hardware

is continually improving in performance but does not approach that necessary to

provide a separate computational core for each agent in a complex systems simula-

tion. In any currently foreseeable computer system, the hardware supports a limited

number of parallel execution threads which is in itself a significantly smaller number

than the number of independent agents in a complex system. Even if the approach

to implementation of the complex system provides an apparently unbounded num-

ber of execution threads, such as when using a multi-threaded or process-oriented



1.1. COMPLEX SYSTEMS CONSTITUENTS 3

programming language, the real-world effects of resource contention between those

processes and threads looms large. Any attempt in this sort of computational frame-

work to implement complex system agents in a naı̈ve, apparently realistic, manner

quickly leads to gross effects such as deadlock and livelock that are not seen in

the real world. As a consequence programming of such systems must necessarily

involve sophisticated strategies, such as using the patterns defined in [Sam10].

1.1 Complex systems constituents

Complex systems are routinely studied, and modeled, for a number of reasons and

[Eps08] identifies a number of them including prediction of their behaviour, demon-

strating trade offs and revealing the apparently simple to be complex. In this thesis,

though, I take it as read that the study of complex systems is useful and limit myself

to the computer based simulation of complex systems as being one of the vehicles

that supports their study. In particular I concentrate on the underlying software

architecture of such a simulation.

Real complex systems contain a huge number of agents; bird flocks may contain

millions of agents [Ogb61], the human nervous system alone contains in excess of

1011 agents [ACG+09].

The agents in a complex systems simulation are, though, only part of the story.

The other part is the environment within which those simulated components exist.

That is, that part of the simulation that is analogous to, for example, the biochemical

environment occupied by an immune system cell or the city occupied by people.

It is easy to ignore this environment, seduced by the attraction of the obviously

interesting agents. But, some consideration shows that this is rather inadequate. It

is the environment, or at least its physics, that prevents two flocking birds occupying

the same space. The environment, or again its physics, governs the rate of decay

of an ant-laid pheromone trail; the levels of concentration of biochemicals in the

environment around immune system cells strongly influences their behaviour.

It is these environments that are the principal focus of the rest of this thesis.

In particular, it proposes an approach to simulation here called “environment ori-

entation”. This approach makes the environments the central feature of complex

systems simulation rather than the interaction between the simulation agents. Such
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environments both mediate inter-agent communication and represent the physics of

the real world that implements that communication. They form the central simula-

tion paradigm not just the backdrop to the world of interacting agents.

Such an approach makes no claims as to any innate correctness with respect to

the complex systems themselves. It is rather essentially an engineering approach to

the difficulties of building a simulation using a small number, in comparison to the

number of complex system agents, of computing cores.

1.2 Software engineering of simulations

Simulation of such systems poses huge computational challenges. Those challenges

are essentially those of engineering a simulation that will be able to provide useful

results in a sufficiently timely manner. Writing a complex systems simulation of

a system with a few tens or hundreds of homogeneous agents is likely to be quite

simple. Doing the same thing for millions or billions of potentially heterogeneous

agents will likely not submit to the same implementation strategy; in particular

because the “natural” way to write such a simulation by concentrating on the com-

munication between the agents—which in itself immediately makes the problem

of size O(N2)—almost inevitably leads to an implementation that focuses hugely

on avoiding deadlock as all those agents struggle to execute on a relatively small

number of processor cores. In the complex system itself each agent has its own

identity and functions independently of all other agents. Such an approach cannot

be adopted for a simulation as no computing system can hope, at any foreseeable

level of technology, to provide a completely independent computing platform for

each individual agent. Rather, those agents must share computational resources and

the approach to how that sharing is done is essentially one of how the simulation is

engineered.

This issue of the engineering of a useful simulation of a potentially large com-

plex system including all its agents and the environments within which they interact

is the central topic of the rest of this thesis.
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1.3 Thesis structure

The rest of this thesis details the arguments for the notion of environment orien-

tation as a simulation framework for complex systems and discusses the means of

implementing it. In particular, the thesis investigates a single hypothesis, that the
environment oriented approach is an appropriate software paradigm for the
simulation of complex systems.

This investigation ultimately takes the form of a number of experiments, build-

ing complex systems simulations of several forms, in order to test this hypothesis.

The structure of the thesis follows the path of the research whose origins were

rather different from the eventual result.

Chapter 2 examines some aspects of the development of the built environment,

as described in particular in [Ale04]. This work, and the publications on which it

was based, was the starting point for the rest of the research presented here. The

chapter, in particular, examines a computer simulation of some aspects of the pro-

cesses described in [Ale04]. This simulation led directly to the notions used in the

rest of this thesis.

Having developed the notion of the relevance of environment, chapter 3 dis-

cusses the role of environments in complex systems and simulations of complex

systems leading to the concept of using the environment as the primary structur-

ing mechanism for complex systems simulations; the concept referred to here as

environment orientation.

If a complex systems simulation is to be structured around the environment then

there must be a software architecture to support such a simulation. Building on

a review of the possible software architectures for implementing an environment

oriented complex systems simulation chapter 4 discusses the software architectures

appropriate to an environment oriented complex systems simulation.

Once the concept of environment orientation had been developed an implemen-

tation was necessary for performing experiments; that is, for implementing a num-

ber of complex systems simulations. Chapter 5 describes the design of such an

experimental platform, following on from the potential architectures discussed in

chapter 4.

Initial experiments with the platform are described in chapter 6. This chapter
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provides initial validation of the platform, through experimental implementations

of simple complex systems including the classic “flocking boids”. This chapter

represents the initial validation of the experimental hypothesis by demonstrating

that it can be used:

1. to implement a well-known example of complex systems behaviour as an

environment oriented simulation,

2. to implement a similar simulation, albeit one that includes the notion of mul-

tiple fields in an environment — something that may be explicitly represented

in an environment oriented simulation — and

3. to implement a simulation which includes an external environment represent-

ing the landscape within which the agents are moving.

Combining the effects of multiple fields in an environment, in essence multiple

environments, is difficult, specifically because the fields are potentially orthogonal

to one another. Chapter 7 describes one approach, based on the use of fuzzy logic,

to the combination of the effects from multiple environments in a environmentally

oriented simulation.

Chapter 8 takes the various notions developed in the earlier parts of the thesis

and applies them to a larger simulation; in this case the simulation of open-ended

evolution in an environment which provides the energy flux used by the agents in

that simulation. This demonstrates the applicability of environment orientation to

implement and experiment on a non-trivial complex system.

Finally, chapter 9 summarises the core issues and discusses some possible ex-

tensions, specifically ones to support larger scale simulations, to the work described

in the earlier parts of this thesis.

1.4 Thesis contributions

This thesis contributes to the study of complex systems by simulation:

• the notion of environment orientation as a generalisation of inter-agent com-

munication,
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• a demonstration of the feasibility of implementating environment orientation

using existing enterprise computing techniques and

• an environment oriented model of open-ended evolution in an energy-rich

environment.

1.5 CoSMoS project

The work described here has been undertaken in the context of the CoSMoS project

which was established to investigate general issues in the modeling and simulation

of complex systems. The work has been informed by the rest of the project and in

particular by the case studies carried out on particular complex system simulations,

such as [FTA+09] and [RATK09].

The work described here is also being included as one of the implementation

patterns in the CoSMoS handbook [SAA+13].





Chapter 2

The built environment

Complex systems appear all around us and one example is the buildings and streets

that we construct. Architects design individual buildings, planners lay out urban

environments and the end result over centuries of such activity—in particular in

cities—is the built environment that surrounds us. We are all familiar with these en-

vironments and their history: cities sometimes still have walls that have long since

ceased to be of use, streets are known to follow ancient ditches or now subterranean

rivers. The physical shape and consequences of this environment strongly influence

the complex system that manifests itself as the human use of the city: small busi-

nesses thrive underneath railway arches, newspapers are still represented as being

published in Fleet Street even though the river itself has long since disappeared from

view. Animal life also thrives in, and because of, this environment: rats inhabit the

sewer systems and rock doves—adapted to living on coastal cliffs—now infest the

steep sides of city centre buildings.

These city environments grow and develop. Typically their origin is at a place

that is important for commerce, such as the furthest upstream part of a river that is

navigable. Once established there they develop in a manner strongly influenced by

the physical environment, for example that of rivers and hills, and the use the city

is put to by humans, such as a physical place where a market or fair is established.

This growth process has been studied by architects and planners. For example,

and of particular interest here, Alexander’s Generative Patterns [Ale04] are a vi-

sion of the way that successful architectural forms can be seen as the product of the

generative application of a small number of properties that are seen in those forms.

9
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Figure 2.1: Part of the Nolli map [TS05] of 18th century Rome.

Alexander describes the built environment as a consequence of a long running de-

velopmental process. His patterns describe the way that an architectural whole, be

it a house or a city, evolves as a consequence of its environment and use. For ex-

ample, [Ale04] shows a diagram of 18th century Rome, shown here as figure 2.1,

and discusses how that particular configuration emerged from the human use and

development of the city.

This chapter describes these Generative Patterns and presents the results of

some experiments into using the patterns to generate shapes reminiscent of archi-

tectural structures. Although these experiments remain to be completed the results,

such as they are, provided the impetus for much of the work in the rest of this thesis.

2.1 The Nature of Order

The four volumes of The Nature of Order [Ale04] explore the notion of wholeness

in relation to architectural structures. Wholeness is Alexander’s enigmatic term for

the “quality without a name” that he identified earlier in [Ale79]. Alexander sees

“wholeness” as meaning that in some difficult to define manner, some architectural
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structure is perceived as being a single structure with a single overall purpose; this

applies even if the structure is an entire housing development or a city. In The

Nature of Order, he identifies 15 generative properties as the root characteristics of

those architectural structures that form, for him, a satisfactory whole.

It would be reasonable to claim that this notion of “wholeness” is purely subjec-

tive and just Alexander’s feelings about the world, albeit written down. However,

he goes to some lengths to demonstrate that this perception of coherence is univer-

sal, and he presents some evidence to support this claim, notably the “bead game”

[Ale04, vol.1, pp449–452].

Based on this experimental work, Alexander describes structures in terms of

centres, each of which he describes as “a zone of coherence in space”. A centre is

a region that is in some way coherent in the way it represents the space and its use.

By “coherence” Alexander means that a centre is distinct from those around it and

within it, but that in some way it contributes to the coherence of those other centres.

Alexander refers to these as “centres” because they are “centres of influence, centres

of action, centres of other centres” [Ale04, vol.1, p108]. One particular reason for

using the word “centre”, although he is not using the normal notion of a single point,

is that he is trying to describe things that may have no specific boundary. A pond, for

example, might include the pipes bringing in water, the rocks on its edge [Ale04,

vol.1, p84]. A centre is something noticeable about a structure; something that

draws attention from neighbouring structures. Further examples might be [App97]

a row of tiles on a ceiling or floor, a hallway, a pond in the countryside, and—in the

context of software development—what are now known as “patterns” [GHJV95].

It is no coincidence that the patterns described in [GHJV95], probably the most

influential published work on software design to appear in the last 25 years, are

described there in a manner specifically referenced to Alexander’s Pattern Language

[AIS77].

The generative properties are used to describe a structure as a system of centres,

and to show the ways that that structure can be further elaborated and extended, or

generated, as a region is architecturally developed. Alexander sees this as a genera-

tive, developmental process, where the system of centres is progressively developed

using the same set of generative processes with each application of these processes

being dependent on the current structure. That is, an existing set of centres is the
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environment within which further centres develop and are elaborated. For exam-

ple, Alexander [Ale04, vol.2, pp252–255] describes how the structure of St Mark’s

Square in Venice can be described as the current end product of an evolutionary

process. At each step of this process, Alexander identifies latent centres and shows

how, in his view, new building supported and strengthened these centres. That is,

the latent centres are reified by subsequent development into real centres.

Inherent within Alexander’s descriptions and in other communications [Ale08a]

is that he regards his properties in two ways. On the one hand, they are a way of

analysing an existing structure in order to determine its coherence. Secondly, he

sees them as generative in that they direct the development of a structure over time

whether that be in something like the St Mark’s Square example or in [Ale08b]

where he uses the properties to direct the design of a single window, applying the

properties as generative transformations to a structure so that it develops in the

context of its environment.

2.1.1 Generative Properties

The 15 properties are described in [Ale04, vol.1] as:

Levels of Scale “how a centre is made stronger (more coherent) by the smaller

strong centres within it and the larger strong centres that surround it.”

Positive Space “the way that a given centre must draw its strength, in part, from

the strength of other centres immediately adjacent to it in space.”

Roughness “the way that the field effect of a given centre draws its strength, nec-

essarily, from irregularities in the sizes, shapes and arrangements of other

nearby centres”

Alternating Repetition “the way in which centres are strengthened when they re-

peat, by the insertion of other centres between the repeating ones”

Thick Boundary “the way in which the field-like effect of a centre is strengthened

by the creation of a ring-like centre, made of smaller centres which surround

and intensify the first. [It] also unites the centre with the centres beyond it,

thus strengthening it further”
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Good shape “the way that the strength of a given centre depends on its actual

shape and the way this effect requires that even the shape, its boundary, and

the space around it are made up of strong centres.”

Local Symmetry “the way that the intensity of a given centre is increased by the

extent to which other smaller centres that it contains are themselves arranged

in locally symmetrical groups”

Contrast “the way that a centre is strengthened by the sharpness of the distinction

between its character and the character of surrounding centres”

Gradient “the way in which a centre is strengthened by a global series of different-

sized centres which then point to the new centre and intensify its field effect”

Deep Interlock and Ambiguity “the way in which the intensity of a given centre

can be increased when it is attached to nearby strong centres, through a third

set of strong centres that ambiguously belong to both”

Echoes “the way that the strength of a given centre depends on similarities of an-

gle and orientation and systems of centres forming characteristic angles thus

forming larger centres, among the centres it contains”

Simplicity and Inner Calm “the way the strength of a centre depends on its sim-

plicity - on the process of reducing the number of different centres which exist

in it, while increasing the strength of these centres to make them weigh more”

The Void “the way that the intensity of every centre depends on the existence of a

still place - an empty centre - somewhere in its field”

Not Separateness “the way the life and strength of a centre depends on the extent

to which that centre is merged smoothly - sometimes even indistinguishably -

with the centres that form its surroundings”

Strong Centre “defines the way that a strong centre requires a special field-like

effect, created by other centres, as the primary source of its strength”

These 15 separate properties address the same thing: the manner in which cen-

tres interact to increase the overall coherence of the space. That is, they describe
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how the component centres in a structure interact with the centres that are in the

surrounding environment in order to provide the overall “coherence” property. As

has been described, the properties are seen in two ways: as a way of describing the

relationship between a centre and its environment and describing how the structure

should be developed to enhance the overall coherence.

My intention for originally examining these properties was to investigate their

application, if any, to the evolutionary development of software architectures, par-

ticularly that of complex systems simulations. As such, I start by examining two

of the properties in more detail, in order that some experimental evaluation of these

properties might be performed: Positive Space and Levels of Scale.

2.1.2 Positive Space

“Negative space” is a term used to describe the space around a artistic representa-

tion; that is, the ground around the figure. Typically, an artist “relies on the space

that surrounds the subject to provide shape and meaning” [Bar09]. Betty Edwards

gives a vibrant illustration of the role of negative space in art [Edw99]:

...imagine Bugs Bunny speeding along and running through a door.

What you’ll see in the cartoon is a door with a bunny-shaped hole in

it. What’s left of the door is the negative space, that is the space around

the object, in this case Bugs Bunny.

In contrast, “Positive Space” is conventionally used to describe “space that is

occupied by a filled shape or a positive form” [Won93]. The positive space is the

figure at the centre of attention; it is the part of the figure that the eye sees. In

this sense positive space is in contrast with the negative space that surrounds the

positive; it is the “figure” not the “ground”.

For Alexander, Positive Space is that space which, although the space between

other parts of a structure, itself contributes towards the “wholeness”. That is, if the

structure represents a coherent whole, then the space between the built artefacts is

itself (also) positive in that it contributes to the overall coherence rather than just

being the (negative) space between those artefacts. So the figure and the ground are

both positive, in a coherent whole. In the context of the development of the built
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Figure 2.2: M. C. Escher: Day and Night.

environment this space could be, for example, the areas between the buildings that

were the main concentration of individual developments. So, a market square or

piazza could be the space between buildings that is itself positive.

An extreme example of the potential equivalence of figure and ground is the

Escher wood-cut “Day and Night” [Esc38] shown here as figure 2.2; the space

between flying geese is yet more geese, albeit heading in the opposite direction.

That is, the “space” has its own positive structure. The same relationship appears in

non-spatial examples, too. For example, Tsur shows how the same concepts occur

in areas such as music and poetry [Tsu00].

2.1.3 Levels of Scale

Centres, the structural components of the architectural space, are made more “co-

herent” by the presence of both larger and smaller centres in the overall structure. A

particular architectural space is overall more coherent if the various structures, and

indeed the non-structures that are the Positive Space display a degree of gradation

in their sizes. For example, a large structure placed next to a collection of smaller

structures might represent an overall structure that was more “whole”.
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If the changes in scale are too extreme the centres would not be seen as increas-

ing each other’s coherence. Alexander shows how coherent structures often contain

a number of levels of scale in the ratio of about 3:1 [Ale04, vol.1]. The same ratio

appears elsewhere; Salingaros shows levels of scale in the centres of a carpet design

which appear in the ratio 3:1 over eight levels of scale [Sal95].

2.2 BlobWorld: Exploring two properties

This all leads to a simple hypothesis that is amenable to experiment: it should be

possible to construct diagrams that are subjectively coherent by the repeated appli-

cation of simple rules that are an implementation of the notions of Positive Space

and Levels of Scale. Although, it must in advance be admitted that the end notion

of coherence is subjective, so any experiment must necessarily involve a subjective

scoring process.

To this end, the Blobworld software was written. The intent of this was to ex-

plore the effects of algorithms whose intention is to generate spatial arrangements

that might, or might not, exhibit Positive Space and Levels of Scale. Blobworld is

very simple, it just places blobs—simple round or square shapes—at various sizes

and positions in accordance with one or more placement and sizing algorithms. Fig-

ure 2.3 shows a view of the basic user interface presented by Blobworld containing

one specific Blobworld diagram.

Blobworld places blobs in the environment, that is into the diagram, following

the rules described by several algorithms whose various parameters are controlled

by the user interface shown. The intent of these algorithms, whose definition was

assisted by Chris Alexander, is that a set of simple generative rules would yield

overall patterns that exhibited, as a contribution to a structure’s overall wholeness,

aspects of Positive Space and Levels of Scale. That is, any such Positive Space, for

example, will appear as a consequence of the particular algorithm being invoked in

the particular environment that has been generated within the space controlled by

Blobworld.
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Figure 2.3: Overview of blobworld user interface.

2.2.1 Blobworld implementation

Blobworld is implemented using the Java programming language and using the Jet-

Brains IntelliJ IDEA programming environment. The user interface is constructed

using the user interface designer aspect of that tool which is implemented using the

Swing [ELW02] user interface classes as well as the various adapter classes that

interface between native Swing and the IDEA classes.

Like all Swing interfaces the user interface itself uses a single thread of exe-

cution with the programmer being required to manage things so that this thread

does not become blocked which would lead to a non-responsive user interface. The

Blobworld code is fairly simple and as such it all executes within the Swing thread

itself. That is, whenever a button is pressed or some other control is used its effect

is directly passed to the underlying blob code and the diagram implied by the user’s

change is directly drawn. Of necessity with this design, the blob are placed on the

diagram serially. The algorithms in subsequent sections are specified in this context.

The core design of Blobworld is shown in the UML [FS03] class diagram in-
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Figure 2.4: UML class diagram showing overview of blobworld implementation.

cluded as figure 2.4. The core of the design is the Diagram class which represents

a collection of Blob objects. These objects are drawn on a Graphics object (a stan-

dard Java 2D class) for display on the screen. Diagrams are also saved as Diagram-

Memento objects (an implementation of the Memento pattern [GHJV95]) for later

recall and redisplay.

The diagram class implements two operations for drawing different sort of dia-

grams, corresponding to two different layout algorithms which will be discussed in

the sections 2.2.2 and 2.2.3. Each algorithm uses one of the concrete subclasses of

the abstract Blob class for the actual blobs in the diagrams.

The sizes of blobs are calculated in two different manners, in ways that will

be discussed in sections 2.2.4 and 2.2.5. Two implementations of a SizeCalculator

class are provided to allow for these two algorithms.

2.2.2 Contingent Placement Algorithm

The first algorithm, contingent placement, attempts to produce emergent Positive

Space by making the placement of blobs a reflection of the positions of other

blobs in the environment; that is, so that blobs become other blobs’ Positive Space.

This algorithm was developed to explore a specific hypothesis, suggested by Chris

Alexander, which is that the level of Positive Space in a diagram would increase
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when the positioning of the blobs was controlled by the positions of other blobs,

some of which were in fact invisible. That is, the space was not just negative but,

positively, contained blobs.

The intent of this notion is that the spaces in the diagram are themselves actually

structures constructed using the same rules that apply to other structures; it’s just

that they aren’t visible in the end result.

The algorithm works by placing blobs sequentially onto the display. Initially

a position is chosen for a blob which can be one of: the centre of the space, the

position of the last plotted blob or a random position within the space. However,

blobs are only allowed to be plotted in places that satisfy a rule about allowable

overlap. This rule says either that a blob cannot overlap another in any way, or that

it is allowed to overlap by a specific amount, be it positive or negative. (A negative

overlap implies a minimum gap between blobs.)

If a blob can be plotted in the position chosen, that is if it satisfies the overlap

rule, then the software draws the blob and starts on the next one. If, as is likely,

the blob cannot be accommodated in the initial location then a random direction is

chosen within the 2D space that is the drawing surface. The blob is moved in that

direction until a location is found where it is allowable, according to the overlap

rules, to plot the blob.

The size of the blobs is determined by parameters that describe a size distribu-

tion. This process will be described later in this chapter.

This, though, is just an algorithm that packs blobs in a more or less efficient

manner. The aspect of the algorithm that is hypothesised to produce the effects of

positive space is that a blob may actually be invisible, although its position still

affects the position of other blobs. That is, an invisible blob is still part of the

environment of new blobs and as such affects the placement of those new blobs;

there really is something in the space, something positive.

As the placement of blobs is dependent on the position of pre-existing blobs I

refer to this as the contingent placement algorithm. Pseudo code for the algorithm

is given in figure 2.5, in which:

blobShape is “round” or “square”.

sizePDF is the probability distribution function (pdf) used to generate blob sizes
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1: blob[0] := new Blob(blobShape)
2: blob[0].setSize(sizePDF)
3: blob[0].setVis(boolean according to visProb)
4: blob[0].setPosition(origin)
5: blob[0].draw()
6: for i = 1..blobCount-1 do
7: blob[i] := new Blob(blobShape)
8: blob[i].setSize(sizePDF)
9: blob[i].setVis(boolean according to visProb)

10: blob[i].setPosition{blobs[0].getPosition()
| blobs[i-1].getPosition()
| blobs[random(0..i-1)].getPosition()}

11: blob[i].setDirection(rand in 0 . . . 360◦)
12: while not blob[i].isOverlapAcceptable(

allowedOverlap) do
13: blob[i].movePositionAlongDirection()
14: end while
15: blob[i].draw()
16: end for

Figure 2.5: Pseudo-code for the contingent placement algorithm.

(see later).

visProb is the probability of a blob being visible.

blobCount is the total number of blobs (both visible and invisible).

allowedOverlap determines how much a blob is allowed to overlap other blobs:

when positive, blobs may overlap by an amount determined by this parame-

ter; when zero blobs just touch; when negative, blobs have a small amount,

determined by this parameter, of clear space around them.

origin takes one of three arguments: the centre of the initial blob, or the most

recently placed blob, or a random blob, to start off the current blob.

Experimentation with the algorithm shows that each run creates a unique pat-

tern of blobs which is highly dependent on the various parameters. Examples of

generated patterns are shown in figure 2.6.
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All of the diagrams shown here, and many other produced using the software,

were scored by Chris Alexander1 for the presence of positive space. (Inspection of

the user interface shown in Figure 2.3 shows the interface used for adding subjective

scores to specific diagrams.)

Informally, the results of this scoring were such that, with appropriate param-

eter choices it is capable of generating patterns that display a significant degree of

Positive Space. It is, though, a subjective view although nonetheless an appealing

one; many viewers of the diagrams report the same effect.

In most cases where vis = 1, (that is, where all blobs are always visible) the

generated patterns show no significant degree of Positive Space (for example, fig-

ure 2.6a where the space is nothing more than a lack of blobs; it is ordinary “negative

space”).

The algorithm is more successful, as hypothesised, at generating Positive Space

when some blobs are invisible (for example, figure 2.6b). The invisible blobs gen-

erate additional space, which enables the appearance of Positive Space; they are

still in each new blob’s environment though and affect the placement of the new

blobs. Figure 2.6b shows the effect of the Positive Space : in the leftmost of these

pictures, the observer gets a powerful impression of the space itself constraining,

for example, the curve of blobs at the lower right corner. In many of the diagrams

generated in this manner, the Positive Space does not exactly align with the invisible

blobs. That is, although the invisible blobs are in some way enabling the emergence

of Positive Space, they are not themselves exactly that space (figure 2.6c where the

“invisible” blobs are made visible).

This successful generation of positive space is not dependent on using round

blobs. The same effects are generated with square blobs (figure 2.7). Again, with-

out the invisible blobs there is little sign of Positive Space (figure 2.7a), but when

invisible blobs are introduced they create Positive Space (figure 2.7b).

With the square blobs, a further effect is visible. Here there is a negative allowe-
dOverlap, to separate the blobs from each other along their straight boundaries.

1At this point I should comment that the original intention was for the results of Blobworld dia-
grams to be subjected to a comprehensive subjective scoring process by Chris Alexander. However,
it was not possible to perform this and hence the scientific conclusions of this experimentation are
scant. However, the software is described here because the results, and indeed the implementation,
formed the impetus for much of what follows.
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(a)

(b)

(c)

Figure 2.6: Results of the contingent placement algorithm with blobCount = 20,
sizePDF = gaussian, blobShape = round, allowedOverlap = 0 : (a) vis = 1 ; (b) vis
= 0.5 ; (c) as b, but with the position of the “invisible” blobs shown.
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(a)

(b)

(c)

Figure 2.7: Results of the contingent placement algorithm with blobCount = 28,
sizePDF = gaussian, blobShape = square, allowedOverlap < 0 : (a) vis = 1 ; (b)
vis = 0.5 ; (c) as b, but with the “invisible” blobs shown.
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1: for i = 0..blobCount-1 do
2: blob[i] := new Blob(blobShape)
3: blob[i].setGrowthRate(growthPDF)
4: blob[i].setSize(1)
5: blob[i].setVis(boolean according to visProb)
6: blob[i].setPosition(positionPDF)
7: blob[i].unfreeze()
8: end for
9: while exists an unfrozen blob do

10: for i = 0..blobCount-1 do
11: if blob[i] is unfrozen then
12: blob[i].setSize(

blobs[i].getSize * blobs[i].getGrowthRate)
13: blob[i].draw()
14: end if
15: if blob[i].overlapsOtherBlob(allowedOverlap) then
16: blob[i].freeze()
17: end if
18: end for
19: end while

Figure 2.8: Pseudo-code for the independent placement algorithm.

Although the blobs are all perfectly aligned squares, an optical illusion makes some

edges look slightly tilted or slightly bowed; this adds a degree of Roughness (an-

other of Alexander’s generative properties) to the picture.

2.2.3 Independent Placement Algorithm

In order to test whether Positive Space is manifested in any diagram that merely

contains “invisible” blobs a second algorithm is also implemented by BlobWorld.

This independent placement algorithm positions blobs not as a consequence of the

positions of other blobs but as an initial step of the algorithm. Pseudo code for this

algorithm is shown in figure 2.8. In essence, the contingent placement algorithm

positions blobs of a pre-determined size in a field of other blobs as the diagram

evolves from a single blob. In contrast, the independent placement places blobs

entirely independently of each other but then manipulates the size of all of the blobs

until the diagram, as a whole, achieves the stated requirements for blob overlap.
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Figure 2.9: Typical results of the independent placement algorithm with blobCount
= 34, growthPDF = gaussian, blobShape = round, allowedOverlap = 0 ; vis = 1.

The independent placement algorithm is described by the pseudo-code in fig-

ure 2.8 in which:

growthPDF is the pdf used to generate the growth rate of each blob (see later).

positionPDF is the pdf used to generate the initial position of each blob. (Here it

is a uniform distribution across the drawing space.)

Examples of the independent placement algorithm are shown in figure 2.9. One

of the effects of the algorithm is that pairs of same-sized blobs occur often: if two

nearby blobs have similar growth rates, they both grow until they come into contact

and become frozen. Although the diagrams generated with this algorithm do contain

space which is a direct consequence of the blob growth being limited by contacting

other blobs, it is not Positive Space. That is, space that is there does not contribute

to the overall coherence of the pattern; essentially, it is merely a collection of blobs

of different sizes.

Positive Space appears in the results of the contingent placement algorithm only

when the invisible blobs are allowed. However, invisible blobs do not result in

Positive Space in the independent placement algorithm (figure 2.10). It is clear that

the space does not have the same coherent influence as that seen in the results of the

contingent placement algorithm.
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(a)

(b)

Figure 2.10: Typical results of the independent placement algorithm with blob-
Count = 34, growthPDF = gaussian, blobShape = round, allowedOverlap = 0
; vis = 0.5 (a) invisible blobs not shown; (b) as a, but with the “invisible” blobs
shown.
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The essential difference between the two algorithms is that the contingent place-

ment algorithm places blobs in positions determined, to some extent, by the blobs

that already exist. That is, it is essentially generative in nature with the sizes and

positions of the blobs being strongly influenced by the environment within which

the blobs “grow up”.

In contrast, the independent placement algorithm pre-determines the placement

of the blobs. It naturally results in space within the pattern: the blobs cannot enlarge

to fill the entire space given their fixed starting positions. But it does not generate

Positive Space.

2.2.4 Levels of Scale Algorithm

BlobWorld was also used to explore some aspects of the Levels of Scale property. As

seen in the pseudo code for the placement algorithms shown in figures 2.5 and 2.8

the blob sizes are chosen according to a probability distribution function. In those

algorithms a gaussian (normal) distribution is used with a user defined mean and

standard deviation which are entered using the software’s user interface. Although,

of course, when using the independent placement algorithm this in itself overrides

many aspects of the chosen sizes.

This approach generates a range of sizes as seen in figures 2.6 and 2.7 which

does result in some Roughness but does not exhibit the 3:1 Levels of Scale property.

In order to investigate Levels of Scale in some more detail Blobworld encodes

bi-modal and tri-modal distributions for size into the software. In these cases the

mean (size) and occurrence likelihood (number) of blobs in the different modes

have a fixed ratio of 3:1. Some sample distributions are shown in figure 2.11 which

was generated using sizes generated by the same code used inside BlobWorld itself.

These size distributions were used to generate the diagrams shown as figure 2.12.

This shows blob figures generated using the bimodal size distribution. The sizes

follow the 3:1 distribution, but because that size has no effect on blob placement—

other than influencing whether a blob will fit or not—there is little evidence of any

coherence in the size distributions spatially.

However, on occasion, some degree of Levels of Scale is visible in BlobWorld

patterns. For example in figure 2.13 where, coincidentally, the large blobs appear
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a)

b)

c)

Figure 2.11: pdfs for investigating Levels of Scale. The x-axis is the blob size; the
y-axis is the probability of that size: (a) single mode, gaussian distribution; (b) bi-
modal, generating (approximately) three blobs of size 1 for every blob of size 3;
(c) tri-modal generating (approximately) nine blobs of size 1 and three of size 3 for
every blob of size 9.

Figure 2.12: Attempts to generate Levels of Scale: contingent placement algorithm,
bi-modal size distribution with a small standard deviation, vis = 0.5.
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Figure 2.13: Attempts to generate Levels of Scale occasionally work: contingent
placement algorithm, bi-modal size distribution, vis = 0.5.

to be constraining the small ones. This suggests that a small modification to the

algorithm might well be capable of generating a suitable degree of Levels of Scale.

Following further experiment, and discussion with Chris Alexander, I hypoth-

esised that in order to achieve the Levels of Scale property the various blob sizes

would need to be arranged in such a way that changes in size are also, to some ex-

tent, reflected in their positions. Such an arrangement seldom appears in the context

of either the contingent placement or the independent placement BlobWorld algo-

rithms. In these cases either the blob sizes are pre-determined—in the case of the

contingent placement algorithm—or they are a direct consequence of the position

of only the nearest other blob—in the case of the independent placement algorithm.

These, and other similar, observations led to the generative size algorithm.

2.2.5 Generative size algorithm

Experience with the independent placement and contingent placement algorithms

shows that when blobs are positioned generatively then a diagram that demonstrates

Alexander’s Positive Space property appears. That is, when the diagram evolves

from a small core in accordance with its developing environment then the result

approximates a beneficial property that is observed in the end result of human-

developed architecture.

However, the initial contingent placement algorithm is generative only with re-

spect to the position of the blobs; their size is determined independently according

to the distributions discussed above.

Hence, I developed—following discussions with Chris Alexander—a further al-
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1: blob[0] := new Blob(blobShape)
2: blob[0].setSize(sizePDF)
3: blob[0].setVis(boolean according to visProb)
4: blob[0].setPosition(origin)
5: blob[0].draw()
6: for i = 1..blobCount-1 do
7: blob[i] := new Blob(blobShape)
8: blob[i].setSize(sizePDF)
9: blob[i].setVis(boolean according to visProb)

10: blob[i].setPosition{blob[0].getPosition()
| blob[i-1].getPosition()
| blob[random(0..i-1)]. getPosition()}

11: blob[i].setDirection(rand in 0 . . . 360◦)
12: while not blob[i].isOverlapAcceptable(

allowedOverlap) do
13: blob[i].movePositionAlongDirection()
14: blob[i].reduceSize(sizeRatio)
15: end while
16: blob[i].draw()
17: end for

Figure 2.14: Pseudo-code for the generative size algorithm.
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gorithm which produces blob sizes that are also generative; that is they respect the

process of development of the diagram and also of the environment within which

the blobs are positioned. The algorithm produced is, in essence, a modification of

the contingent placement algorithm. The modified algorithm generates the size of

the blobs as a consequence of process of moving the blob until a suitable location

is found for it. As the algorithm moves the blob along the randomly chosen vector

looking for a site to place the blob then it also reduces the size of the blob in a fixed

ratio for each “generation” of the process of moving the tentative blob site. Hence,

blobs that have to be positioned a long way from their original location are reduced

in size over several “generations”. The pseudo-code for the generative size algo-

rithm appears in figure 2.14. As compared with the earlier contingent placement

algorithm, this algorithm has a further parameter:

sizeRatio is the ratio in size between different “generations” of blob.

Examples of a simple application of this algorithm is shown in figure 2.15.

Here the blobs are always placed starting from the centre as the origin. As the

algorithm searches for a position for the blob it progressively reduces the size of

the blob in accordance with the size ratio; here set to 2 for clarity in the diagram.

Subsequent “generations” of blob therefore reduce in size progressively, leading to

the characteristic patterns seen in these examples.

Some further results, ones more representative of the intent of the algorithms, of

executing this generative size algorithm are shown in figure 2.16. These diagrams

are initially strongly reminiscent of the diagrams Alexander shows as representa-

tive of the layout of cities and structures which are the result of long-term human

development [Ale04] as seen in figure 2.1: the blobs are positioned and sized in a

generative manner that is a consequence of the positioning and sizing of pre-existing

blobs as the diagram evolves. As can be seen from the diagrams in the figure the

blobs are now showing evidence of the Levels of Scale property in that the blobs

appear in a wide range of sizes but there are frequent clumps of similarly sized

blobs.



32 CHAPTER 2. THE BUILT ENVIRONMENT

Figure 2.15: Example applications of the generative size algorithm with blobCount
= 181, sizePDF = generative, blobShape = round, allowedOverlap = 0, vis = 1.0,
sizeRatio = 2.0, origin = centre.

Figure 2.16: Typical results of the generative size algorithm with blobCount =
106, sizePDF = gaussian, blobShape = square, allowedOverlap = -3, vis = 0.5,
sizeRatio = 1.4.
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2.3 Blobs and environments

Blobworld shows how complicated results can be achieved from simple algorithms

when applied across a large number of separate agents. Here the agents are simple

blobs on a diagram. However, the arrangements of these blobs show patterns that

reflect some of Alexander’s properties (in this case Positive Space and Levels of

Scale) in a subjectively pleasing manner. Alexander does insist though that this

property is objective [Ale04, vol.1, pp316–317] [Ale04, vol.1, pp449–452].

At the core of the algorithms simple decisions are taken repeatedly about the size

and position of blobs. The results reflect both the algorithms and the various param-

eters chosen but they are also a consequence of the environment that surrounds the

blobs; specifically the positions and sizes of pre-existing blobs.

The algorithms that yield the best results are those that are more dependent on

the blobs’ environment. For example, the generative size algorithm yields blob

sizes that are more reflective of the Levels of Scale property specifically because it

responds to the diagram environment of each new blob.

Conversely attempts at generating Levels of Scale by merely setting the blob

sizes according to bi- or tri-modal distributions were unsuccessful; apparently be-

cause although the blob sizes did follow the distributions they did not do so in a

manner reflective of the process of generating a diagram within an environment.

The contingent placement algorithm is capable of generating diagrams that ex-

hibit the Positive Space property. That the alternative independent placement algo-

rithm does not have this capability indicates that the effects observed are more than

mere chance.

It is likely that this capability of the contingent placement algorithm is due to

the combination of two aspects. Firstly, the invisible blobs generate spaces that do

indeed have a positive aspect, in that they contain blobs; the space is more than

mere empty space, there is actually something there: (invisible!) blobs.

Secondly, the algorithm is to some degree generative, in that blobs are placed in

positions that are strongly conditioned by the position of existing blobs; that is, by

the environment that each blob is fitted into. The pattern does in fact grow, within

its environment, towards its final configuration.

The independent placement algorithm also naturally generates space. However,
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those spaces do not jostle directly against the blobs; the blobs jostle against each

other. That is, the space is not positive, it is merely empty (negative) space.

Attempts at generating the Levels of Scale property are also successful. The

initial, somewhat explicit, attempt does not succeed in generating this property.

However, the less explicit generative size algorithm shows that when blob size is

made a direct consequence of the underlying generative process (that is when the

size is a consequence of the evolution of the diagram) then the Levels of Scale

property appears naturally in the resulting diagrams.

All of the scoring of the Blobworld diagrams is necessarily subjective, although

as has been described, the original intention was to formalise that using, initially,

Chris Alexander as the test subject. Although it was not possible to carry out this

intention, there remains a strong subjective appeal in some of the diagrams, many

of which are included here.

The next step for Blobworld would be the completion of a range of subjective

scoring tests, with the objective of establishing a sound relationship between the

apparent appeal of some of the diagrams with the algorithmic approaches used to

construct those diagrams. However, that step is beyond the scope of this thesis

which concentrates on the environment as part of the implementation of complex

systems simulations.

This issue of environment is the key issue in the various blob sizing and posi-

tioning algorithms, Subjectively, when it is the prime mechanism for arranging and

sizing the blobs then some of Alexander’s properties appear. It is environments in

simulations in general, then, that are the topic of the rest of this thesis.



Chapter 3

Complex systems environments

The work on Alexander’s patterns established an initial interest in the notion of a

collection of agents in a shared environment which, as I have discussed, became the

background for the rest of the work described in this thesis. In this chapter I explore

in more detail this background and discuss how it coalesces into the motivation for

the rest of this document.

Complex systems, as I have discussed, consist of a number of agents interacting

within some environment. Many complex systems consist of a very large number

of agents, for example the number of cells that interact to provide the functions

of the human adaptive immune system is vast. These agents interact in such a

manner that interesting, or indeed useful, behaviour emerges from the specifics of

that interaction.

Complex system behaviour can been seen to result from the interaction between

the system’s agents. For example, in the common example of bird flocking [Rey87]

each bird (the agents in this particular system) observe where other birds are and

their velocity and use that information to modify their own velocity. From this

simple behaviour emerges the fascinatingly complex moves made by a flock as a

whole (figure 3.1).

Complex systems are common in nature, where such distributed systems dom-

inate. Computing systems, of all forms, are necessarily different in form. It is

usually not possible to construct computational systems, such as complex systems

simulations, with anything like the same number of agents as appear in complex

systems. Although, there are some counter examples amongst which the Internet it-

35
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Figure 3.1: Red-billed quelea flocking at a waterhole.

self is the most obvious, being constructed using a large, and ever growing, number

of individual agents. Even in this case, though, the communications between these

agents are necessarily limited. Each individual agent can only communicate with

a very small number of other agents; a typical desktop PC will only communicate

with the local router even though those communications are specifically targeted at

other agents elsewhere in the Internet.

In order to study complex systems we need to adopt an explicit simulation ap-

proach due to the difficulty, or infeasibility, of analytical solutions. By “explicit”

here I mean some simulation approach that includes direct computational analogues

of the agents in the complex system itself. Each such analogue would have to simu-

late the individual behaviour of the complex system agents themselves. The essence

of the complex system is that the complexity arises from the agent interaction and

consequently the computational analogues of those agents would also need to com-

municate with each other in order to simulate the overall behaviour of the complex

system. The user of the simulation would need the implementation of the interac-



3.1. SIMULATION BACKGROUND 37

tion between the agents to be understandable, and demonstrably able to operate in

the same manner as the communication done between the complex system agents

themselves.

Buried in this apparently simple design decision—for that is what it is in essence—

is a problem. The complex system itself, is populated with agents which are gen-

uinely independent of each other, subject only to the physics of the real world. That

is, a real world bird can choose to fly in whatever direction it likes, regardless of

what other birds in the vicinity are doing, as long as it does not try to violate real

world physics, for example by trying to occupy the same space as another bird.

Apart from such concerns each bird is completely independent of all others.

That is the background to this work. The motivation for what follows, though. is

that this complete separation does not apply to the simulated agents in, for example,

a flocking simulation. These agents are not completely independent because they

will frequently be simulated by exactly the same computational elements as are used

for the simulation of other birds. That they must share processors and threads, for

example, means they are subtly inter-dependent.

3.1 Simulation background

Many implementation approaches have been proposed for providing a suitable sim-

ulation framework. The most common of these is the use of some sort of agent-

based modeling approach [RG11] which focuses on the agents rather than the envi-

ronment.

The most obvious way of implementing such a model is the use of object-

oriented programming [Mey00]. The use of object orientation ([AGH05], [HWG06])

is now almost universal in industrial programming but, as a technique, it has its ori-

gins directly in the construction of explicit simulations [Hol94].

An alternative would be to use a process oriented approach such as that typified

by the use of occam-π [WB04].

A naı̈ve implementation of a complex system simulation would represent each

agent as, say, an object in an object oriented programming language such as Smalltalk

[GR83] or a process in a process oriented language such as occam-π [WB04]. In-

teraction between the simulated agents could then most obviously be achieved by
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sending messages (in Smalltalk) or communicating using channels (in occam-π).

However, such a simple approach leads directly to significant difficulties. Some

of these, such as the sender and receiver of a message requiring access to the same

metadata, have well-known solutions. (In this case the various interface description

languages, for example Java IDL [LBS98] and CORBA [OHE97]) were developed

for just this rôle.)

The issue that causes most implementation problems is that directly caused by

processor resource contention: deadlocking. Deadlocks occur as a direct result of

activities proceeding in parallel (in the simulated parallelism available on a single

processor core). Whenever a number of resources are shared between activities

proceeding in pseudo-parallel then there is the possibility of contention for those

resources. In the case where shared resources are the agents in a complex systems

simulation then, as all agents are potentially interested in all other agents the poten-

tial for contention is significant.

As soon as we get this sort of contention for shared resources then deadlocks

are likely, in the same—albeit simplistic—manner that they appear in the classic

Dining Philosophers problem [Dij71] [Hoa85].

Deadlocking is a major concern in distributed systems in general and has been

much studied since things like the Dining Philosophers problem were described.

Current items of distributed enterprise software, such as Microsoft’s SQL Server

relational database management systion [Mic07], include deadlock detection and

implement a brutal approach to resolving a deadlock where one of the deadlocked

processes is summarily killed which at least allows the rest of the implementation

to proceed.

The motivation for much of the work in this thesis came from personal experi-

ence in implementing simple simulations using a process-oriented approach; specif-

ically using JCSP [Wel02] which is an implementation of Hoare’s Communicating

Sequential Processes [Hoa85] for the Java programming language. This experience

was frustrating as these early simulations were naı̈ve, with no attention paid to the

potential for deadlocking and, consequently, the simplest simulation led easily to

deadlocks which needed very careful analysis of the system to resolve. That anal-

ysis was not into the world of the complex system, but into the simulation itself.

That is, rather than concentrating harder on the complex system I was studying I
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was forced to delve deeper into the computational aspects of the simulation itself.

Deadlocks occur because two, or more, processes each require the same re-

source in order to proceed. In a simple implementation each process just waits, in

a similar manner to one of the Dining Phiosophers waiting for a fork with which to

eat their meal, until the resource is available. If all the processes that are dependent

on the resource are also waiting in the same manner then the system deadlocks.

Such situations arise naturally in the context of complex systems simulations.

For example a simulation might have just two agents with each implemented using a

single thread using blocking interactions with other agents (the simplest “procedure

call” implementation). If one agent poses a question of another agent where the

answer to that question is dependent on querying other agents then deadlocks are

likely. This is because if agent A asks agent B a question for which agent B might

need to ask agent A for something then the simulation cannot proceed as agent A’s

thread of control will be blocked waiting for a reply to the original question and

cannot reply to the query from agent B. It is a characteristic of a simple approach to

complex systems implementation that the agents are essentially acting as both the

competing processes (the philosophers in the problem) and the resources that are

being competed for (the forks).

This is a particularly simple situation although it is, crucially, multi-threaded. A

single-threaded implementation, typical of simple simulations with a small number

of agents, would not suffer any issues of deadlock because in no situation could one

process seize a resource and make it unavailable to another process.

Any realistic large scale simulation could involve chains of interactions with a

large number of agents and must be multi-threaded in order to access the computing

power requried. Predicting the likely patterns of interaction in such a situation is

very difficult; hence the brutal solusions adopted by existing enterprise software as

has been discussed.

Even once such deadlocks are located—by this study of the simulation—they

must be resolved by the introduction of some computational technique, such as

the “client server” pattern for concurrent systems [MW97, ASB+08a] and barrier

synchronisation [BWS05a], which impose a processing pattern onto communica-

tions between the various components of the simulation. These patterns seek to

prevent the appearance of deadlocks and, indeed, they can be successful in doing
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that. Similarly, all object oriented programming libraries include copious numbers

of classes for implementations to use to serialise interactions and share physical

threads. These are computational devices, though, a consequence of the predomi-

nantly serial world of computation and frequently with no simple analogue in the

highly parallel world of independent agents in complicated environments. These

devices, typically expressed as patterns and class libraries must be used explicitly

by the programmer, leading away from the complex system that is being simulation.

For example [OW04] examines in excruciating detail the interaction of apparently

parallel threads and the locking constraints that arise in a specific programming

language.

The effect of the use of these patterns and classes is to impose additional pro-

tocols onto the interaction of the simulation’s agents. For example, in the case of

the client server pattern, processes are designated as either clients or servers. The

former agents all operate by requesting a service from a server and waiting for a

response. All servers just sit waiting for a request which they honour and then wait

again. Servers can also be clients of other servers. Such a system is deadlock free if

the graph of client/server relationships is acyclic. Such a structure is reminiscent of

“client-server” enterprise systems [Wika, Ber92] or, more generally, multi-tier ar-

chitectures [Wikd, Fow02]. In such systems the clients and the servers are layers in

an architecture where the servers provide a pre-defined set of services to the clients.

Each client is able to operate in a manner largely independent of others because

the implementation of the system constrains the overall patterns of behaviour, for

example by transactional access to an underlying repository [Wikh, GR93], in such

a manner as to guarantee various overall system properties.

In a complex systems simulation, though, such a simple configuration is not

feasible for most situations because all of the agents may be both clients and servers,

at different moments, meaning that such an acyclic graph does not naturally appear.

Using barrier synchronisation gives a way out as it provides a way for all agents

to synchronise with each other; essentially the agents can agree that at some point

in time they will behave in a particular manner and at other points in a different

manner.

These approaches are essentially engineered approaches to a technical problem,

a technical problem that is common in enterprise systems. They are a special case of
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layering in systems architecture, something that is now expected in all architectures

as in [FT02] and [Fow02]. Although such patterns are of clear use in such systems

they do not appear to exist in real world complex systems. That is, it does not appear

to be the case that all of the birds in a flock are synchronising their behaviour, in

the manner that is implied by a barrier based solution; the birds that flock above a

city-centre park are not working to some standard global pattern lest they deadlock

and fall out of the sky. Rather, each bird is observing other birds and then doing

what it wants, when it wants, and in whatever order it wants in the sure and certain

knowledge that its world really is deadlock free.

One of objectives of an explicit complex systems simulation must be to reflect

the complex system itself, without an excess of computational artefacts that could

be argued to invalidate any results of the simulations. That is, using things like

barrier synchronisation seems to essentially miss the point about building a complex

systems simulation. Just because it does the same sort of thing as the complex

system itself does not necessarily mean that it is doing it the same way.

3.2 Real world agents and their environment

In the previous section I discussed the background to the work described in this

thesis. Here I will look at the concepts that became the motivation for building the

simulations and experiments described later in this thesis.

I will now examine the specific issues that were the motivation for the approach,

and subsequent experimentation, followed in the rest of the work.

3.2.1 Action at a distance versus mediating fields

Eschewing the notions of things like barrier synchronisation, how do agents in a

complex system actually interact? In the complex system itself it is convenient, for

discussion, to describe things like flocking birds as directly interacting with each

other as is shown in figure 3.2. But, some thought shows that this is a simplification,

albeit a useful one, of what is really going on.

Some thought about the physics of the real world situation shows that the agents,

such as the birds in figure 3.2 are not really directly interacting with each other at all.



42 CHAPTER 3. COMPLEX SYSTEMS ENVIRONMENTS

Figure 3.2: Diagrammatic representation of a collection of birds interacting while
flocking with each other. Some interaction arrows have been removed for clarity.

Rather, a bird flying along reflects ambient light into the space around it; as it sings

it pressurises and rarefies the air about it. Another bird, assuming that it is awake,

is sensitive to light and air pressure and it processes the light and air pressure that it

receives in order to form a mental model [JL86] of the first bird. That is, these two

birds are not directly communicating with each other. Each is interacting with the

physical environment only as is shown diagrammatically in figure 3.3. The first bird

is placing information into that environment and the second is inspecting the various

changes in its environment, some of which may well be a consequence of various

physical laws and the effects of the first bird. Other changes in its environment will

merely be a consequence of the outside world, such as the level of ambient sunlight

and the wind speed and direction. If, and only if, the second bird is interested in

the behaviour of other birds will it react to indications in its environment of the first

bird’s behaviour.

This approach, an alternative model of interaction between the birds, depends

on the environment as the repository for information about the agents, which are

embedded in the wider environment, which can be observed by other agents. One

bird can always come along and look in the environment and see what another bird

is placing in the environment. It cannot, though, observe anything that is not in the

environment. A different bird might seldom update the environment, if it is just

sitting quietly on some perch.
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Figure 3.3: Diagrammatic representation of a collection of birds interacting exclu-
sively with their environment.

The real world is such an environment; one where fields interact, photons pass

each other and the rest of physics is implemented with ease. In this view the agents

are embodied in the environment [Ste07], and it provides services to those agents.

Each agent just does what it wants without regard to direct interactions with other

agents. That is, even in the real world, the agents in a complex system are interacting

in a manner reminiscent of a client server architecture. The environment provides

services to the agents, in a manner analogous to a server. The agents are clients of

those services.

The naı̈ve model of a complex system, with agents directly interacting with each

other, is essentially “action at a distance”. One agent must know directly what other

agents exist that are interested in it and must directly interact with those agents. As

this is happening those distant agents are also potentially interacting in the reverse

direction.

The subject of this thesis is that of taking the opposite view, one where the

direct interaction between agents is not simulated but all interaction is expressed as

communication through the mediating fields that exist in their environment. In this

approach there is no direct interaction at all; the lives of individual agents just affect

each other by existing within the same set of fields; within the same physics.

As a different example of this consider an adaptive immune system. Here the

agents are the various molecules and cells that form the active components. The
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molecules are not directly signaling to each other about the feasibility of particular

interactions. Rather, the simulation would express the concentrations within the en-

vironment of the various molecules. These concentrations which would affect the

probability of interactions occurring as a consequence of the stochastic processes

mediated by the environment. At any stage in a simulation of such a complex sys-

tem, the computational objects simulating the agents would inspect their environ-

ment, yielding such information as the concentrations of the surrounding biochem-

istry, and make some decision as to what behaviour to exhibit at that moment.

3.2.2 State

When simulating some complex system in this manner it is all very well saying

“agents place information into the environment” but some further thought is needed

about what is placed in the environment.

In something like a collection of birds flocking in the real world each bird has

a large and complex internal state: it knows whether it is flying or not, how hungry

it is, whether it needs to drink or defecate. But, from the point of view of flocking,

other birds are interested primarily in the distances between the birds and what the

perceived relative velocities of the other birds are.

That is, each agent has an “internal state” that represents everything it needs to

know to behave in its innate manner. Further, each agent exposes an “external state”

to the environment, which is available to other agents in the same environment. This

external state could be simply a subset of the agent’s internal state. For example, in

the case of the bird it could just be that part of the internal state that represents the

position and velocity of the bird. However, there are cases where the agent could

deliberately mislead other agents with its external state. For example, when one

insect species mimics another it is deliberately creating an external state to mislead

observers about its internal state (figure 3.4).

Complex system agents are essentially egocentric, even solipsistic. Emergent

behaviour appears as a consequence of each agent just doing what it wants to do

in its own environment. A flocking bird does not know precisely where it is, just

merely where other birds are relative to it. In a complex system simulation, some-

thing does need to know where the agents are, because those positions are the over-
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Figure 3.4: Chrysotoxum verralli, a hoverfly species that mimics the appearance of
a wasp; its internal state is that of a hoverfly, externally it is a wasp.

all context of execution of the complex system. This context is the environment

which must itself know where each agent is and, therefore, will also know what

other agents are in the vicinity of each agent. That is, the environment knows things

about the agents that are not actually part of the agent’s internal state. For exam-

ple, a bird just thinks that it is flying in the direction of an interesting looking food

source, but the environment knows that it is actually flying north-by-northwest.

In retrospect, the notion of considering the environment is something that I,

and my colleagues at the time, considered some years ago when looking at the

use of object-oriented design and programming. At the time, in the early 1980s

we were some of the earliest adopters of the notions of object oriented design and

programming, having got access to an implementation of Smalltalk-80 [GR83] and

the, at the time, advanced hardware needed to run it [Kra83].

As discussed, much of the object-oriented literature of the time addressed sim-

ulation as the notion of using objects to directly model components of a simulated

world was a clear benefit of the approach. We fell to discussing how an object-

oriented simulation of a snooker game would work. It was clear that we would have

a class for Ball, instances of which would support messages to send ball instances
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Table

snookering 
ball

target

cue ball

Figure 3.5: The cue ball, in a game of snooker, is “snookered” in that it cannot “see”
all of the target ball.

on their way and to tell them that another ball had hit them in a particular direction.

However, how would we implement the notion of the cue ball being able to “see”

the target ball; that is, how would the cue ball know that it was “snookered” (fig-

ure 3.5)? As this information represented something about the combination of the

cue ball, the target ball and all the other balls in the simulation it did not seem as

though that information should be in any of those objects as it was not uniquely the

concern of any single particular object. Sharing the information between various

ball instances would reduce the cohesion [Mye78] of the overall design.

Our conclusion, after discussion, was that it was the table that knew whether

two balls could “see” each other. That is, the environment that supports the balls,

the table, is the thing that understands the relationships between the objects in this

particular world. And, as a corollary, the table must then become a “first class”

member of the simulation. This insight generalises to other environments such as

the air around the balls, other interactions and ultimately other simulation contexts.

An agent can generate some external state just by virtue of the physics of its

environment. Photons just bounce off a bird into the environment. Other birds
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1: while true do
2: Read external state of other agents from environment
3: Update internal state to match perceptions of environment
4: Write external state of this agent to the environment
5: end while

Figure 3.6: Pseudo-code for an agent operating within an environment.

detect some of those photons and are then able to see the original bird and are

also able to infer position and velocity information. This “involuntary” external

state is contrasted with other states placed into the environment by an agent in a

“voluntary” manner. Voluntary state could be, in the example of birds, a song that

is sung in response to hearing the song of another bird of the same species (which it

hears through the mediating environment), sung maybe for territorial enforcement

or for the purpose of finding a mate.

3.2.3 Accessing the environment

In a simulation constructed in this manner, each agent interacts with the environ-

ment to access information about the other agents’ (external) states. In implement-

ing this simulation we face a natural consequence of computation which is that the

behaviour of an agent is expressed in an essentially serial manner. That is, the nat-

ural implementation is some form of loop such as is shown in the pseudo code in

figure 3.6 where each agent first “asks” the environment for information about other

relevant agents’ state (the agents it can see, or hear, for example) and then this state

information is used by the agent to update its internal state appropriately.

That is, the agent queries its environment, yielding a set of values in some topol-

ogy [GM02], which not only represents the set of all possible values but also de-

scribes how the values might change.

For example, in a bird flocking example, one of the items in a query result could

represent a bird that is close to the querying agent. As such, the environment can

accurately describe the (relative) position of the nearby bird and its velocity in terms

of a three-dimensional Cartesian space. Furthermore, the topology of the particular

space used might show that the nearby bird could move freely in the two horizontal

dimensions but it was constrained to move only upwards in the vertical dimension
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because it is, at the moment, standing on the ground. That is, the reply to a query

about the position of the bird gives a precise position in a space, but that space is

further described by its extent and its shape.

If the bird being described is distant from the querying agent then the position

of the bird may not be accurately defined. For example, it might be clear in what

direction the bird lies but its distance from the querier could be only poorly known

when beyond a particular range. Similarly, the velocity of the bird might be only

poorly known, if at all, as the velocity of a distant agent which appears merely as

a distant speck might be very hard to determine. In this case the reply is again a

position in a space, but, that space is poorly described in some dimensions. It is still

a three dimensional space but the resolution, in this case in the range to the distant

agent, does not support an accurate definition of the position of the agent; it could

just be “nearby” or “far away”.

Here the simulated environment is acting as the implementation of sophisticated

functions performed in the real world by both the agent itself and the environment.

The agent itself detects the photons impinging on its retinas from a distant bird and

attempts to calculate size, distance and velocity of the bird from those photons and,

probably, experience in these sorts of situations. The real world, that is the envi-

ronment, affects many aspects of the passage of those photons; it understands the

albedo of the distant bird and can calculate how photons from the Sun are reflected

by the bird, and how effectively those photons are transferred to the observing bird.

Concentrating on the environments provides a way, in a simulations, to separate

concerns between the agents and their environment. In a particular simulation, the

choice of what computation is performed by the environment, and what by agents,

is a modeling decision. Certain functions may be embodied in the environment

itself, and those calculations performed by the environment. For example, in the

context of the simulation of the complex system of ant-trail formation and decay

ants leave behind them a trail formed with by a pheromone which may be followed,

and reinforced, by other ants. In this way a trail of ants will follow the same route

to a food source. When the food source is exhausted and ants cease following the

same trail then the pheromone level decays with the effect that the trail does not

confuse other ants. In a simulation of this system where the environments are first

class residents the responsibility for simulating the decay of the pheromone may be
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allocated to either the environment itself or to a special agent whose external state

is the level of pheromone along the trail. This agent, of course, does not exist in

the real world where the pheromone decay is performed by physics. But, that is not

necessarily the right solution for a software simulation as is common in software

design, and in particular in object oriented design.

3.2.4 Multiple environments

The notion of the results of the query being embedded in a topology brings with

it the concept that interaction between agents may simultaneously follow a num-

ber of different patterns. The example given above is a purely spatial one, the

notion of space clearly being of significance in complex systems implementations

[ASB+08a]. However, the exact same query/response model could be used for any

interaction between agents in a complex system. One extension of the simple spa-

tial model is to note that a human agent is physically “near” to a collection of other

human agents but may nonetheless communicate simply with other human agents

whose telephone numbers are in the first agent’s address book. That is, there are

two sorts of “nearness” here: one is physical nearness, the other is “communica-

ble” nearness. For some aspects of complex systems behaviour only the first sort of

nearness would be relevant, for others both sets of “near” agents might be impor-

tant. (This example is inspired by Milner’s bigraphical model designed to model

both a spatial and a connectivity configuration simultaneously [Mil09].)

This is analogous to agents being simultaneously embedded in multiple environ-

ments, each of which has its own particular properties. For example, birds reflect

photons allowing them to be detected visually. They also can sing, compressing

and rarefying the air in their environment so that other birds can detect them even

if they are not easily visible. Birds use song to communicate for many different

reasons. They may produce alarm calls to warn of the presence of predators, or to

reinforce a territorial claim or to find a mate. However, the sonic characteristics of

the real world are rather different from the visual ones. Sound is to a large extent

an omnidirectional medium but it is capable of being transmitted over significant

distances; certainly a receiving bird could hear song without being able to visually

detect the singer.
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The approach discussed here allows these two environments to exist simulta-

neously. That is, an agent may place external state in each environment although

the meaning of that state might be different in each environment. An agent that

receives multiple states for another agent, from multiple environments, must fuse

the information provided in those states so as to form a coherent picture of the other

agent.

3.3 Environment orientation

Given the simulation background described in section 3.1 and the motivation for

further work described in section 3.2 the subject of the rest of this thesis is the

adoption of the approach described here, now formalised as “environment orienta-

tion”, as the fundamental mechanism for constructing complex systems simulations.

Adopting this approach eschews all representations of direct interactions between

agents. Rather, all agent behaviour is seen as mediated through the environments

within which all the agents are embedded.

Although the notion of the role of the environment as the key part of a simulation

is based on observations of the physical world, the particular agents and behaviours

that exist in a simulation is a modeling decision. Each simulation should be con-

structed with the explicit knowledge of which aspects are to be embodied in the

environment.

3.3.1 Definition

The elements of environment orientation are those that have been described in this

chapter. A specific definition of the concepts Specifically:

1. Regardless of its particular role, each agent has an internal state, representing

what the agent knows of itself.

2. Each agent publicises some aspects of its state, its “external state” to the en-

vironments within which it is embedded.

3. Simulation of an agent is performed without reference to other agents. The
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simulation just reacts to the contents of the agent’s environment. The agent

may decide when to publicise its external state.

4. Agent behaviour is provided for by allowing the agent to retrieve, from its

environment, information about the external state of the agents with which it

is interacting.

5. The environment itself is a first class computation component and must be

aware of the agents with which each other agent can interact.

3.3.2 Research hypothesis

The rest of this thesis investigates a single hypothesis, that the environment ori-
ented approach is an appropriate software paradigm for simulation of complex
systems. This investigation takes the form of a number of experiments, building

complex systems simulations of several forms, in order to test this hypothesis.

The structure of the rest of this thesis is, then, as follows:

Chapter 4 contains a review of the possible software architectures for implement-

ing an environment oriented complex systems simulation.

Chapter 5 presents the design and implementation details of a platform upon which

the experiments in the rest of the thesis are constructed.

Chapter 6 presents the initial validation of the experimental hypothesis by demon-

strating that it can be used:

1. to implement a well-known example of complex systems behaviour as

an environment oriented simulation,

2. to implement a similar simulation, albeit one that admits to a number of

environments within which the agents are embedded and

3. to implement a simulation which includes an external environment rep-

resenting the landscape within which the agents are moving.

Chapter 7 examines the issues related to multiple environments more and shows

experimental results where multiple environments are combined by the use of

fuzzy logic.
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Chapter 8 provides a more substantial evaluation by implementing, in an envi-

ronment oriented manner a simulation of complex organisms evolving in a

complex environment.



Chapter 4

Software architectures

In order to use the environment orientation approach to complex systems simulation

then it must be readily implementable in some form. That is, an abstract architecture

must be specified that supports this sort of systems implementation. Driven by

the list of features in section 3.3, what are essentially architectural requirements,

this chapter examines the software engineering background to architectures of this

type, and the possible implementation strategies. The results of the discussion in

this chapter are used, in turn, as the requirements for the experimentation platform

described in chapter 5.

As I have described it, the model is essentially a client server one in that the

agents function as clients of the environment server. The environment server must

provide services for at least:

1. retaining the external state of the simulation’s agents,

2. facilitating the updating of that information in a manner reflective of real

world physics and

3. presenting the state information to agents in a manner assimilable by the

agents.

As has been described, complex systems can be regarded as inherently “client

server” in that the agents function essentially as clients of the environment. Some

sort of client server approach is therefore appealing for complex systems simula-

tions. As I have discussed, this sort of approach can be inherently deadlock free as

53
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there is a single locus of concurrency where it is straightforward to serialise updates

using the standard techniques of transactional control [GR93]. Such an approach

essentially forms the basis of most high performance commercial computing: appli-

cations that demand very high performance in the context of a world that is rapidly

changing; something that seems quite similar to that of a complex system.

Just saying “client server”, though hides a world of complexity. As I have al-

ready discussed, the “server” (that is the environment) in a complex systems simu-

lation must provide a number of services to a client (that is an agent of the simula-

tion). I will discuss these services in more detail and the manner in which they can,

in general, be provided.

4.1 Environment service requirements

The services discussed in section 3.3 are, then, requirements for an abstract archi-

tecture that can be implemented by the techniques to be discussed later. In this

section I will examine each of these requirements and discuss the extant techniques

for their implementation in section 4.2.

4.1.1 State retention

The first server service is that of state retention. That is, an agent (the client) must

be able to supply some state to the environment (the server) which will be retained

and supplied to agents at a later time.

The form that agent state takes initially seems simple in that it is just some

opaque information provided by an agent and entrusted to the environment for

safe-keeping. However, the environment must retain more information that just

an opaque BLOB1 representing the external state information for each agent.

Much of this this state information will only need to be interpreted by the agents

themselves, which will therefore be capable of understanding the information; I

am here making the reasonable assumption that the agents share the metadata that

describes the contents of the external state. However, the environment server itself

1A Binary Large Object, merely a collection of binary data that is not interpreted other than by
the originator.
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also needs to understand some of the agents’ information, in particular any that

relates to the aspects of physics that it is required to implement. For example, if a

simulation requires that the information that is delivered to an agent is sensitive to

spatial position then the environment must know the position of each agent. That is,

the implementation of the environment is also required to have access to the state

metadata. As a concept this is reasonable as it essentially means that all parts of

a simulation agree as to the representation of things like “position” and “velocity”.

Furthermore, it is possible that that information is not known to the agent as I have

already discussed in section 3.2.2. That is, it must be possible for the environment

to elaborate the information provided by an agent.

The environment must therefore store a large collection of agent external state

objects2, elaborated by additional information added by the environment itself in

some sort of store, many implementations of which are feasible; some of which

will be discussed later in this document.

4.1.2 State update

External state objects supplied by an agent would be expected to be updated by an

agent. For example, the velocity of a flocking bird would be updated by the bird

agent itself.

However, some information provided by an agent is not of this form. For exam-

ple, in a simulation of ant-trails, as discussed in section 3.2.3 the ant agents would

emit information describing the depositing of a level of a pheromone as they move

through the environment[DG89]. The levels of pheromone in ant trails decays with

time so that trails that are not reinforced disappear but those that are used frequently,

for example because they lead to that apple core you left on the floor, are augmented

by frequent use.

The information that describes these pheromones would not be expected to be

updated by the original agent. It would be possible for the computational agent to

do that, but it would not be representative of the real world behaviour and hence

not a suitable approach to take if simulation fidelity is a target. Rather, some other

2I use the language of object orientation in this thesis, and in particular the terminology of
Smalltalk [GR83] and the Unified Modeling Language [FS03] with no further explanation when
discussing the abstract and concrete implementation of environment orientation.
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simulation artefact must implement that aspect of real-world physics that causes the

level of the pheromone to drop.

There are two obvious choices for this artefact. Firstly, it could be argued that

pheromone decay is a function of the environment, and in particular the physics

of the environment, and as such it should be provided innately by the simulated

environment itself. Alternatively, the decay of pheromones could be seen to be the

effect of other agents, ones that explicitly represent physics; in this case the physics

of biochemical compounds and their concentrations.

A concern here is the complexity of the physics and the purely software engi-

neering concerns of whether embedding that complexity into the environment itself

represents a coherent software module. For example, if simulating a complex sys-

tem representing beaver dam building then a beaver-built structure, the dam, must

be checked to see if it will support the weight of the beaver as it continues to extend

the structure. A dam that would initially support the beaver might subsequently,

after further extension, cease to do that. The physics behind a calculation of this

would likely not fit well within the environment itself but could easily be seen to be

an additional agent; a reification of the physics of weight-supporting structures.

Whichever approach is taken, the simulated environment must provide for such

state update. However, from a purely engineering perspective I would expect that

the latter approach would be the one to take. This would be for two reasons: firstly,

it would be sensible from the point of view of data independence if the environment

provided no domain specific services so as to enhance its scope of applicability.

Secondly, the environment must already provide the facility to deposit and update

state information, so why not use that for such purposes? This implies that the set of

agents in a complex system simulation could include some which implement those

aspects of real world physics that it is required the environment embody.

This is analogous to a common concept in object-oriented design. There has

been much discussion about the best way to determine what specific classes should

be designed in order to satisfy the requirements of a particular system. A partic-

ularly naı̈ve approach is to find the real world classes, for example some authors

recommend using the nouns that appear in a requirements document, and making

those the classes. In general, this turns out to be a rather poor approach [Mey00]

as many good object oriented designs include classes that would never appear in
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while (true)
{
Neighbourhood n = env.query(queryText,

<parameters drawn from internal state>)
internalState.update(n)
env.update(generateExternalState(internalState))

}

Figure 4.1: Pseudo-code for agents using a query oriented approach.

such a document and which are consequence of the chosen design rather than the

requirements. For example, this applies to the Command and Factory classes that

are implicit in some of the patterns in [GHJV95].

Similarly, many of the agents in a complex systems simulation will be present

purely to represent the computational analogues of real world agents. This does not

preclude others that represent artefacts of the chosen design of the simulation.

4.1.3 State access

Finally, the environment must provide the agents with facilities to allow access to

the external state of other agents.

There are two general strategies here, relating to a possible inversion of control.

One approach would be for an agent that wishes to see the external state of a set

of other agents, to make a query of the underlying environment orientation server.

The query would provide the server with all the information it needed, along with

its knowledge of the agents, to select the information required and provide it to

the agents. This strategy, referred to here as query oriented, is summarised by the

pseudo code in figure 4.1.

A complementary approach would be for agents to inform the server of the sort

of information they were interested in, and to have that information delivered as and

when it was available. In the meantime the agent would carry on with its normal

behaviour. This strategy, referred to here as subscription oriented, is summarised

by the pseudo code in figure 4.2.

These two approaches have different characteristics. The query oriented is

appropriate for systems, perhaps like bird flocking simulation, where an individ-

ual agent can always be sure that its environment will change rapidly and appar-
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...
env.registerInterest(topic, callback)
...

void callback(Neighbourhood n)
{
internalState.update(n)
env.update(generateExternalState(internalState))

}

Figure 4.2: Pseudo-code for agents using a subscription oriented approach.

ently continuously. The subscription oriented approach would be useful for sys-

tems where some information was available only occasionally and unpredictably,

or where it was needed to “interrupt” an agent from its normal activities. That is,

in situations where the particular environment was not changing apparently contin-

uously.

In this abstract architecture, the server is the entire locus of inter-agent con-

currency. That is, the agents execute without consideration for each other, simply

relying on the server to provide pertinent information. This is the approach used in

the world’s largest commercial systems.

One observation of both of these approaches, query oriented and subscription

oriented is that they are both providing communication orthogonality as described

in [Gel85]. That is, a receiver of a message (in this case an agent getting details

of another agent’s external state) does not care which particular agent provided that

state as long as it satisfies the criteria for being provided. Furthermore, the sender

of a message (again, the state placed in the repository) does not care which agent

sees that information as it is freely available in the environment.

4.2 Implementation background

Given what are essentially requirements for the abstract architecture that appear in

section 4.1 in this section I will discuss the existing background material that relates

to the possible implementation strategies for these requirements.
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4.2.1 Implementation issues

Firstly, I discuss the major implementation issues that would be expected to influ-

ence the specific implementation choices to be made.

Transactions and locking

The regularity of the interactions between agents and their environment permits a

wide variety of implementations; for example, massively-concurrent simulations

can be constructed using the client-server pattern for process-oriented implementa-

tions [MW97, WJW93] as I have discussed.

Within the CoSMoS project some practical use has been made of the envi-

ronment orientation approach to simplify some aspects of simulations [ASB+08b,

APS+08]. In order to see a little more deeply into the structure of a simulation con-

structed this way there are a number of other issues we need to consider, which I

will discuss in the following sections.

Environment orientation can be considered as a transactional approach to com-

plex systems simulation. Each agent in a simulation is responsible for maintaining

the information published about itself. It does this by performing a sequence of up-

date transactions against the environment, which is a shared repository of external

states: during each cycle, an agent will obtain, whether by querying or getting a

subscription update, from the environment the external states of the other agents it

is interested in and, in turn, update the environment with its new external state.

The transactional approach to software design is very common, almost ubiq-

uitous, in commercial computing. The abstract architecture shown as figure 4.3

summarises this approach. Typically a very large number of computational nodes

will act as clients to a smaller number of application servers which will, in turn,

act as clients to a central (albeit perhaps distributed) resource manager, typically

implemented using a database management system. In such a system all interac-

tions are atomic and are mediated by a transaction coordinator which controls the

transactional behaviour of the various computational nodes. Most importantly, the

possibility of contention is avoided by making all transactions capable of being

“rolled back”: undone so that the state of the system is as if the transaction had

never happened. So, for example, if two users attempt to book a place for a large
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resource 
manager

application server

client client client client

application server

client...

...

Figure 4.3: Typical abstract architecture of modern commercial software system.

cargo shipment on the same aircraft then only one such transaction will be commit-

ted, the other will be rolled back leaving the user, typically, to find another aircraft

capable of carrying their cargo. Implementation of transactional management is

done by various locking mechanisms, typically a low level pessimistic database

lock and higher level optimistic locks [BHG87, Wikb] in order to allow for high

user performance.

In the context of environment orientation a refinement is possible. As the exter-

nal state stored for each agent is only written to by that agent, there is no possibility

of contention when updating the environment. That is, as long as agents reading the

contents of a particular agent’s external state are prevented from viewing inconsis-

tent state information while an update is in progress—that is, updates to the environ-

ment are atomic and invisible until committed—then no further locking mechanism

is necessary. Several approaches exist to ensure this sort of consistency, the sim-

plest is to ensure that individual updates are atomic using a low-level pessimistic

lock and ensure that read-committed isolation3, at least, is in place.

In addition, these atomic updates of external state by individual agents mean

that it is never necessary to roll back a transaction. That is perhaps unsurprising, as

3One of the standard mechanisms for defining isolation between transactions [Ree00, Wikc], in
this case ensuring that a transaction can only see data that has been committed by another transaction.
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the rationale for adopting environment orientation is that the simulation operates as

the real world does and it seems as though the real world never rolls back.

With such an overall design, there are many possible implementations of the

state repository used in the complex systems simulation which will be discussed

later in this chapter. Another possibility is software transactional memory [ST95],

an approach to concurrent programming which makes database-like transactional

operations available on shared memory. While the guarantees of full atomicity for

multi-step operations that software transactional memory provides are not required

for environment-oriented simulation, the approaches to lock-free atomic memory

updates to shared memory on modern multicore systems are directly applicable to

fine-grained simulation, without the considerable overhead of rollback.

Embodiment

In an environment-oriented complex systems simulation, the environment is respon-

sible for managing the state database and providing those facilities that are embod-

ied [Ste07] by the environment. Typically, the environment embodies aspects of

real-world physics. For example, [HS09] describes how these embodied services

may result in information being presented to agents, the clients of the environment,

using various topological representations of the information.

As already discussed in section 4.1.2 the choice of properties to embody within

the environment, though, is not always clear. The environment server could imple-

ment some properties directly or they could be implemented by specialised agents

which are not directly associated with agents in the complex system itself.

There are trade-offs to be made here in terms of simplicity and generality, and

in terms of efficiency. If all physical properties are implemented using specialised

agents, the external state database is effectively just a tuple store (albeit one that

will be accessed by, perhaps, many simulated agents executing across a distributed

system); this simplifies its implementation and makes it directly applicable to all

types of environment. However, these agents increase system load, and may require

different patterns of interaction with the environment, complicating the communica-

tion patterns of the simulation—for example, you may need to ensure that all envi-

ronmental properties have been updated before agents can observe the environment.
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while (true)
{
barrier.wait();
Neighbourhood n = env.query(queryText,

<parameters drawn from internal state>)
internalState.update(n)
env.update(generateExternalState(internalState))

}

Figure 4.4: Pseudo-code for agents using a query oriented approach and synchro-
nising at each step.

On the other hand, if properties are implemented by the environment itself, this does

not complicate the patterns of interaction between agents and the environment—but

it requires the environment to be aware of the details of these properties, reducing

its generality. It may prove convenient to strike a balance between the two in a

practical simulation framework; implement a few common physical properties in

the environment itself, but make it possible to extend the simulation with additional

properties by writing specialised agents.

Time and fairness

If a simulation’s progression were mediated by synchronisation on a global barrier,

for example as shown in the modified pseudo code in figure 4.4 then that synchroni-

sation of the communications would give the simulation as a whole a shared sense

of granular time: no agent could proceed to the next time step until it has commu-

nicated with all its neighbours. This is indeed the approach used in many CoSMoS

simulations [BWS05b]. When agents do not directly communicate with each other

and do not need to synchronise, as when using environment orientation, this shared

sense of time is lost: agents can perform transactions whenever they like, which

makes it possible for agents to execute at different virtual rates.

This is, of course, what happens to real-world complex systems agents as is

discussed in [HS09]. However, in the real world, no agent can “run ahead” of

the others; agents execute in a perfectly fair parallel manner, with the rate of their

behaviour only limited by the inherent physical properties of the world.

In a simulation, freewheeling—allowing one agent to rush ahead of others—is
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not acceptable: a sense of time must be introduced in order to ensure that agents’

access to the shared computational resources is scheduled fairly, with no agent able

to starve another of execution time.

One approach to implementing this would use the “virtual time” technique used

in event-based simulation [Jef85], in which a dimension-less virtual time is repre-

sented simply as a monotonically-increasing tag tracked by simulation components.

A likely implementation would be to tag external states with the virtual time of the

agent that generated them. The environment server would then have to be aware

of the virtual time of an agent querying the server and to only provide states that

“matched” the virtual time of the querying agent.

The definition of “matching” is not provided here and I have not investigated it

in detail although I return to it in chapter 9. It is, however, appealing to consider

that it could encompass both an exact match—where an agent at virtual time t = n

could only receive states at virtual time t = n − 1—and a “sloppy” match—where

an agent could receive states at a range of times n− k <= t <= n + k. In the lat-

ter case an agent perceives states from times slightly before and after its own time

thereby allowing for some agents to be more alert, and some to be a bit slow on

the update; rather as happens in the real world. The phase-regulating “clock” prim-

itives provided by the X10 programming language [CGS+05] may provide some

implementation support for this approach.

However, it should be recognised the problem with all these approaches is that

they offer an inherently discretised representation of time; regardless of how it is

implemented all of the mechanisms conceive an agent as something proceeding in a

number of discrete steps, even if those steps are very fine-grained. Nonetheless, the

notion of being able to effectively run a simulation without excessive concurrency

control and allowing “sloppy” synchronisation is appealing.

Reproducibility

Complex systems simulations are generally seen as providing the ability to per-

form completely reproducible experiments—providing a clear advantage over ex-

perimentation on the complex systems themselves, where reproducibility is gener-

ally not feasible, and allowing published results to be directly reproduced by other
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researchers. However, a core consequence of the use of environment orientation is

that it inherently introduces non-determinism into simulations, in particular if the

notion of virtual time as discussed in section 4.2.1 is adopted.

I believe, though, that a degree of nondeterminism will be acceptable in many

circumstances. Simulation can be considered as a scientific instrument [APS+10a]

that we use to understand the behaviour of a system, and like all instruments it has

a degree of uncertainty in its results that can be established by calibration. The

scientific method is very good at dealing with real-world experiments with nonde-

terministic behaviour; the same techniques—error bounds, sensitivity analysis, and

other statistical techniques—can be applied to interpret the results of nondetermin-

istic simulations.

It is rare that the results of a single run of a complex system simulation are

directly useful, just as the result of a single real-world experiment is rarely con-

sidered sufficient. Normally a simulation would be run many times with the same

parameters, and the results aggregated to give a better understanding of the typical

behaviour of the system; this will have the effect of “averaging out” the effects of

nondeterminism on the individual results. In addition, permitting a greater degree of

nondeterminism will generally speed up the simulation, making it practical to run it

more times—and, unlike in the real world, we can ensure that the initial conditions

for a set of experiments are always exactly the same.

Most importantly, the real world is not absolutely reproducible. A collection of

starlings over Milan does not flock in exactly the same manner from one day to the

next. This is inherent in the complexity of the these sorts of systems. And, as the

objective of environment orientation is to make the simulations operate in a manner

directly attributable to the real world system it is not surprising that the simulations

are not completely reproducible.

All the same, when debugging a simulation implementation, being able to re-

produce a single run exactly is sometimes useful. This could be supported by

giving the programmer a degree of control that allows them to trade determin-

ism against performance—for example, by reducing the degree of concurrency

and enabling additional explicit synchronisations when greater determinism is re-

quired. Furthermore, techniques exist for debugging nondeterministic concurrent

systems [PZX+09] where software is instrumented so that a rough trace of its ex-
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ecution path is retained. Subsequent debugging runs can then be automatically

steered down the same execution path, with the trace being iteratively refined with

feedback from the programmer until the desired behaviour is reproduced. This ap-

proach could be applied to a nondeterministic simulation.

Robustness

The real world—the most complex of all complex systems—is inherently extremely

robust. Systems composed of a huge number of independent agents from which use-

ful behaviour emerges will usually continue to function in a wide range of different

circumstances: agents are born and die, information is delayed, lost or corrupted,

and interactions are complex and unpredictable. While undesirable behaviours ex-

ist, such as the auto-immune diseases that appear in organisms equipped with com-

plex immune systems, they are rare; complex systems usually return themselves to

some kind of stable state.

Engineered systems fare poorly by comparison, usually demonstrating extreme

sensitivity to both initial and changing conditions. Systems built by humans tend to

be fragile, with a wide variety of spectacular failure modes [Ris]. This applies even

to existing simulations of complex systems, which often display high sensitivity

to parameter values and to implementation details such as the scheduling order of

concurrent processes.

An ideal complex systems simulation would be as robust as the complex sys-

tem itself. In the transactional approach implied by the use of environment ori-

entation, each agent’s behaviour is largely independent of the other agents in the

simulation, and is not affected by the heavy hand of precise time steps and explicit

global synchronisation. This decoupling should tend to increase the robustness of

the simulations. The flexibility of environment orientation, because of the lack of

explicit synchronisation, should allow simulation robustness to be explicitly tested,

for example by testing the behaviour of the simulation in the presence of artificially-

induced “faults” such as blocked access to parts of the simulation, changes to the

order in which state updates are recorded, and forcible introduction or termination

of agents.
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state repository

environment server

agent agent...agent agent

Figure 4.5: Overview of environment orientation implementation.

4.2.2 Implementation techniques

In previous sections I have described what amounts to a transactional approach to

complex systems simulation, where the repository at the base of the implementa-

tion represents the environment within which the various complex systems agents

are interacting. The most likely implementation of this notion is as a multi-tier ar-

chitecture, again representing the commonest commercial software architecture as

has been discussed. Applying those ideas to an environment oriented simulation

leads to a layered abstract architecture as is shown in figure 4.5. The layers here

are:

• at the bottom, the repository for agent external states,

• the environment server which understands the environmental aspects of the

agents such as their spatial position and

• the agents themselves.

That is, though, just a conceptual diagram with little information about the way

such a thing could actually be implemented. In the following sections I will discuss



4.2. IMPLEMENTATION BACKGROUND 67

the requirements for the components of the architecture and the implementation

choices that present themselves from the huge collection of implementation tech-

niques that are available.

Repository

One thing that cannot be seen on a diagram such as figure 4.5 is the thread and distri-

bution structure of the implementation. The original motivation for environment ori-

entation came from the difficulty in avoiding deadlocks, arising from inter-thread,

or process, resource contention, in implementations. In the context of environment

orientation the only locus of contention between threads is in the repository. As

long as the repository provides for atomicity and durability [Gra81] of updates then

the system is guaranteed to be deadlock free, meaning that the agents can operate

in one or any number of threads with no effect on the system behaviour.

Hence, the repository must provide at least:

1. long term storage (that is, for the period of the simulation runs) of agents’

external states,

2. storage of a form that allows the environment server to inspect, elaborate and

update specific parts of those states and

3. atomicity of updates, for the reasons described.

A number of implementation techniques could provide for these requirements.

One possibility is that of tuplespaces where a repository for tuples, of any form,

is provided along with some simple mechanisms for access and coordination; it

would be straightforward to encode an agent’s external state into a tuple. Tu-

plespaces arise from the Linda programming language which was first proposed

in the mid 1980s [Gel85] as a new way of handling concurrency and coordination.

In Linda all communication and coordination is provided by a “tuple space” which

is populated, and examined, by a potentially large collection of concurrently execut-

ing agents. Linda provides primitives allowing the connected agents both to query

the tuplespace for tuples that match some expression and to block waiting for an

appropriate tuple to appear. Specifically Linda’s primitives operate atomically and

include:
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out() which adds a tuple to the tuplespace,

in() which takes parameters describing a set of tuples in which the caller is inter-

ested and which blocks until some such tuples are available at which point

they are returned and

read() which operates as in() except that the returned tuples are removed from the

tuplespace.

As such, the basic Linda model supports the required functionality through the

out() and in() primitives. Such implementations would be of the query oriented

variety, although other Linda-like systems support more access mechanisms.

The Linda concepts have been implemented in a number of modern program-

ming languages. For example, JavaSpaces [FHA99] provides Linda-like facilities

in the Java programming language as part of the Jini infrastructure. Rinda [Sek09]

provides tuplespaces for Ruby. TSpaces [LCX+01] is a simple implementation of

the Linda ideas within Java from IBM.

The use of a relational database management system (RDBMS) is a further pos-

sible implementation mechanism. Relational databases are essentially large con-

tainers for tuples. Each table in the RDBMS is a set of tuples with the same lay-

out. Furthermore RDBMSs provide a highly expressive declarative query language

(SQL [ISO99a, ISO99b]). As such they provide an attractive mechanism for the

query oriented approach to the abstract architecture.

It is less clear how an RDBMS could be used for the subscription oriented ar-

chitectural pattern. RDBMSs do support mechanisms that are capable of use in

this manner (typically, triggers). However, they are clumsy in use and probably not

suitable for the very flexible scenarios of complex systems simulations.

The generality of RDBMSs often, though, imposes a particularly exacting set of

constraints on users due to the need for precise schema definition and management.

The various NoSQL databases (such as Cassandra [Fou]) could well offer the right

solution for large scale simulations. However, I have not examined these techniques.

A rather more straightforward implementation, and that adopted for the valida-

tion of environment orientation that will be described in later chapters, is to use con-

ventional object-oriented collections. In this case each external state is represented
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as an opaque object (the structure being defined by the agents) which would be

directly stored in such a collection. Such collections can be made to operate atom-

ically. For example, an implementation of a repository that used a Java HashMap

would merely have to declare its accessing methods as synchronized to achieve the

desired level of atomicity.

The requirement for the environment server to augment the states with addi-

tional information can be supported using the Decorator pattern [GHJV95] as will

be described later.

Publish/Subscribe systems

The publish/subscribe pattern [BJ87, Wikf] is frequently supported by enterprise

middleware, in particular by message oriented middleware such as the Java Mes-

sage Service [RMHC09] which provides publish/subscribe facilities for users of the

Java 2 Enterprise Edition. The publish/subscribe pattern provides for a server to

distribute information on a number of topics to a number of connected clients. The

pattern is often used, for example, in financial trading systems where some clients

might require to be informed of changes in the prices of particular instruments when

they occur. This is a very similar situation to that described here as subscription ori-

ented. A topic here could be, for example in the context of a bird flocking system,

“the state of agents in the vicinity”. Whenever one of those agents does indeed

move the agent that registered the topic could be informed of a set of new tuples of

information.

Publish/subscribe systems are used commercially in situations where there is a

very high data rate, such as the instrument/price situation described above. As such

they are also suitable for distributing information in a complex system simulation.

Process oriented programming languages

Process oriented programming is at the heart of much complex systems simulation

and is a core part of the CoSMoS project. The environment oriented architecture

could be implemented using a process oriented language such as occam-π [WB04].

This is the language used for the models of space described in [ASB+08a]. Us-

ing occam-π to implement simulations with the environment oriented architecture
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would ideally require the definition of a set of standard libraries that would hide

many of the internal details, and allow the programmer to operate at a higher level

of abstraction, purely in terms of things like tuples and queries.

Threading and locking

An implementation of environment orientation would likely execute on a compu-

tational platform consisting of more than one processor core, whether that be as a

consequence of the use of multi-core processors or by execution on a distributed

platform. Or, more likely, both.

As such execution would be required to take place simultaneously in a number

of threads4. As the locus of locking in an environment orientation implementation

is entirely in the state repository there should be no particular dependence on the

threading structure, as long as locks do not persist in the repository and the compu-

tational performance is fully used.

The most likely structure is to create a fixed number of threads, of an amount

reflective of the physical characteristics of the computational environment, and to

locate each agent within a particular thread. As an agent is the prime mover of

simulation behaviour that will mean that each agent and the interactions it has with

the environment server and, indirectly, the state repository execute within a single

thread.

This does mean that each thread will have to schedule the activities of the agents

it supports, but that can easily be done either serially by simple code or by some OS

provided facilities.

4.3 Environment Orientation

The notion of using environment orientation to build simulations of complex sys-

tems brings with it some requirements for the software architecture that implements

the concepts. This architecture can be constructed using many different techniques

already used and documented in the software engineering literature and often widely

4I am avoiding any processor or operating system specific interpretation of “thread”. The word
merely implies a body of sequential code that operates at the same actual time as another such body.
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used in practice. These techniques are, to a large extent, those of sharing collections

of objects around a networks of processes using transactional control to guarantee

characteristics such as atomicity and durability.

As such, there are some appropriate implementation routes. In the next chapter

I distill the various approaches and the concepts discussed in chapter 3 into specific

requirements for an implementation. I describe a specific implementation of those

requirements, using the architectural components discussed in this chapter. This

platform is used for the experiments described in chapters 6, 7 and 8.





Chapter 5

Validation platform

Having described the rationale and general approach to implementing a complex

systems simulation entirely based on environment orientation it is necessary to

actually build some simulations. In order to do this I constructed a flexible im-

plementation platform that allowed me to run a variety of different experimental

simulations. In this chapter I describe the implementation of the experimentation

platform. Subsequent chapters address the results of experiments performed using

this platform.

5.1 Requirements

The platform should satisfy the following requirements. These requirements arise

from a number of distinct sources, specifically:

1. the required services discussed in chapter 3,

2. the possible implementations discussed in chapter 4,

3. the concepts of sound software engineering, in particular the ability to be able

to extend the platform for a number of experimental scenarios and

4. the notion that a number of repetitive experiments would have to be executed

and subsequently analysed.

From these considerations arise a number of discrete requirements:

73
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Agent and types The platform should support the (pseudo) parallel existence of a

number of agents, each of which is of a specific type although not all agents

should be required to be of the same type. Any specific agent should be able

to have its own internal state, invisible to rest of the platform.

External states Agents executing in the platform should be able to define their

own external state much of which may have a detailed structure opaque to

any other part of the platform other than the defining agent.

Environments Each agent should be able to exist in one or more environments,

where an environment is something that accepts an agent’s external states

for storage and processing. Environments should be able, in order to repre-

sent some aspects of the environment’s physics, to determine basic aspects

of agents’ external state. For example, in a flocking simulation position and

velocity should be so accessible. Similarly, environments should be able to

extend specific external states with additional information known to the envi-

ronment but not known to the state’s originating agent. For example, an agent

might not know its absolute position in space but the environment should

know this and should be able to retain that information along with the agent-

provided state. Information from an environment should be provided to the

interacting agents by providing them with a summary of the relevant parts of

the environment: each agent’s neighbourhood. This emphasises the role of

the agent as a simple query/react/update unit and limits the scope for building

“magic sensors” into the agent which could encode functionality beyond the

capabilities of the complex systems agent. For example, if an agent could in-

teract with the entire environment it might be able to “see” much further than

would properly be allowed.

Repository Whether implemented as a separate component or not, the environ-

ments should store the external states in a manner that is thread-safe and ex-

tensible to very large sets of external state objects.

Instrumentation Ideally, to support experimentation it should be possible to ex-

tend any platform instance with additional facilities allowing bulk inspection
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of a simulation’s state. For example, this should support the ability to visu-

alise the position of all agents even if the agents themselves are not aware of

the overall state of the simulation.

Simulation context In order to support repeatable experimentation, it is desirable

that a simulation should support the notion of being able to be controlled.

This would allow a simulation to be initialised according to some defined

parameters and to be started and stopped as required by a user.

User interface It is desirable that the platform should support a user interface al-

lowing a user to control a simulation, providing the various initialisation pa-

rameters and observing the subsequent simulation execution.

5.2 Design and implementation

In this section I present the overall logical design of the platform that satisfies the

requirements details in section 5.1. The design is represented as a straightforward

object-oriented design using the UML to represent the specification model [CD94]

for that design.

As is described in chapter 4, there are a range of possible implementation choices.

I deliberately chose something simple and relatively easy to implement because my

intention was to investigate the essential idea, not to search for maximum possi-

ble performance. Hence, I chose to implement the platform using Java [AGH05]

as the implementation language. Java includes a rich set of primitive implementa-

tion classes which ease the implementation. In particular, the threading classes and

primitives [OW04] ease the use of parallelism which is a necessary characteristic of

the required platform.

5.2.1 Overall structure

Following the requirements described in section 5.1 the overall view of the design

is shown here as figure 5.1.

The classes in this diagram are as follows:
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Environment

extendNeighbourhood( Neighbourhood, Agent )

Repository

contents : Map<Agent,ExternalState>

Neighbourhood

add( ExternalState )

ExternalState

AgentThread

run()

Simulation

start()
stop()

Thread

run()

Agent

step()
agents

*
1

0..1
1

0..1

contents
*

1..*

agents

*

1

environments

1..*

1

threads*

1

environments

1..*

agents
*

1

state1

states
1

1

Figure 5.1: UML class diagram showing overview of environment orientation ex-
perimentation platform. Although not strictly correct UML this diagram, and other
similar ones in this thesis, uses curved lines for associations to emphasise their dis-
tinction from generalisation and to avoid confusion with the straight edges of class
boxes.
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Simulation represents the overall simulation and provides operations for initialisa-

tion and control of a simulation.

AgentThread a Java thread class (that is, a specialisation of Thread). Each instance

of a Simulation coordinates a number of AgentThread classes. The specific

agents that are coordinated by particular agentThreads is determined by the

simulation itself. The intent here is to be able to change the relationship

between the number of agents being serialised by each thread.

Agent which is the core of a complex systems simulation, each instance represent-

ing a single agent in the complex system. The platform is intended to support

a query oriented approach with each cycle of query/update being performed

by the Agent’s implementation of the step() operation.

Environment which represents a single environment within which Agent instances

indirectly interact. The platform permits, as has been discussed, a number of

Environment instances each representing a different means of agent interac-

tion.

ExternalState representing the external state of a specific Agent instance.

Repository which is the central state repository containing the external state in-

stances for each environment.

Neighbourhood which represents the neighbourhood of an individual agent when

it performs a simulation step. It is this class that implements the notion of

limiting the scope of access of each agent, reducing the scope for inclusion of

“magic sensors”.

The classes shown here are just the overall structure. Many other details will

be described in the following paragraphs. The basic operation of the platform is

described by the sequence diagram in figure 5.2. This shows that when a Simu-

lation object is created it then creates, using various user-defined parameters such

as one defining the number of agents in the simulation, the agents, threads and en-

vironments required by the simulation. Subsequently, the simulation is run which
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 : AgentThread

 : Environment

 : Simulation

 : Agent

create1: 

run()6: 

step()8: 

create threads2: 

create agents3: 

allocate agents to threads5: 

create environments4: 

run()7: 

Figure 5.2: UML sequence diagram showing initialisation of a simulation using
the environment orientation experimentation platform. This diagram is not strictly
correct UML as it shows instances of abstract classes. Nonetheless, it does should
the pattern of interaction that is intended to occur.

invokes the run() operation of each of the threads. Each thread then runs continu-

ously invoking the step() operation on each of its agents until eventually the user

stops the simulation.

The experimental platform uses the query oriented approach to simulation so

each agent has an implementation of the step() operation. This method performs

one cycle of query oriented behaviour: the agent queries its environment, based on

that and its own state, makes a decision how to update its internal state and then its

external state is updated in the environment.

Agents exist in a number of Environments and the contents of these Environ-

ments is used, at each simulation step, to construct a Neighbourhood which deter-

mines the Agent’s subsequent actions. Each Neighbourhood contains a collection of

ExternalState objects which an Agent’s Environments deem relevant for the Agent
0
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1: Neighbourhood n = new Neighbourhood(this, proximity);
2: for Environment e in environments do
3: e.extendNeighbourhood(n, this)
4: end for
5: this.updateInternalState(n)
6: for Environment e in environments do
7: e.updateState(this)
8: end for

Figure 5.3: Pseudo-code for the method that implements an Agent’s step() opera-
tion.

and is constructed with the parameters that are necessary for determining the set of

agents that are in the neighbourhood of the subject agent. For example, an Environ-

ment that represents simple three dimensional Cartesian space would just return the

external states for other Agents that were in range of the requesting agent.

Pseudo code for the body of the method that implements an Agent’s step() oper-

ation is shown in figure 5.3. As can be seen, the core parts of the behaviour are del-

egated to the environment, as would be expected of an environment oriented imple-

mentation. Specifically, the environment is tasked with updating an agent’s neigh-

bourhood; that is, the environment makes the decisions about which other agents

are in the neighbourhood of an agent. When a neighbourhood is constructed, infor-

mation is provided to determine which other agents are in the neighbourhood, in the

example shown the proximity—within which it is necessary to be to be deemed to

be “in the neighbourhood”—is provided.

State decoration

Rather than an agent just supplying its updated external state to environment, at the

end of the step, the agent asks the environment to update its information about the

agent. This means that the environment can determine what actually needs to be

done with respect to any additional information that needs to be retained in addition

to that available from the agent itself. For example, in a flocking simulation the

environment needs to retain the absolute position of each agent with respect to its

coordinate system. However, the agent itself does not need to know the absolute

position (section 3.2.2). The environment therefore needs some means of enhanc-
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PositionedState

+getPosition() : Point

ExternalState

BasicState

Point

decoratedState

1

0..1

position
1

0..1

Figure 5.4: UML class diagram showing overview of state decoration.

ing an agent’s external state with its absolute position, which will be needed when

agents invoke the extendNeighhourhood() operation.

This requirement is implemented using the Decorator pattern [GHJV95], the

essential structure of which is shown in the UML class diagram in figure 5.4.

This shows that in the platform the ExternalState class is abstract with a default

implementation provided by the concrete subclass BasicState. In addition a number

of decorators are provided; one of these, PositionedState, is shown on the diagram.

This is a further concrete class, which also implements the contract implied by Ex-

ternalState but adds an additional property, in this case one for the absolute position

of an agent described by an instance of the Point class.

This would be used, inside the implementation of the updateState() operation

in the manner outlined in the pseudo-code shown in figure 5.5. The environment

calls back to the agent to retrieve its external state and then decorates that state,

by constructing a new instance of the class PositionedState that encapsulates the

agent’s provided state, with the existing position of the agent translated by whatever

movement the agent had just performed.

This gives an outline of how the decoration of external states works for the

simple example of retaining the absolute position of agents. In reality, the experi-

mentation platform provides for a collection of possible decorations including the

position of agents and their speed and their altitude in a hilly landscape. The Deco-

rator pattern allows decorated states to be subsequently further decorated meaning
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1: ExternalState state = agent.getState()
2: Point position = this.findState(agent).getPosition()
3: position.translate(state.movement());
4: ExternalState decoratedState = new PositionedState(state, position);
5: this.saveState(agent, decoratedState);

Figure 5.5: Pseudo-code for an environment’s updateState() implementation.

that an arbitrary collection of decorations can be added.

For example, in the case where a simulation takes place in a hilly landscape

then as well as there being a (plan) position for an agent there is also an altitude

provided by an implementation of the Landscape interface. The environment uses

this implementation to determine the altitude of an agent from its position when its

state is updated. This altitude can then be saved away inside a specially decorated

state.

A further positioning aspect of states is that an offset state decoration is pro-

vided. This is used by environments when populating a state’s neighbourhoods. In

this case the states placed in the neighbourhood must contain the offset from the

position of the agent whose neighbourhood is being populated. That is, the environ-

ment calculates the offset of each agent in a neighbourhood with the position of the

requesting agent and makes the offset determinable by the agent. In this manner the

agent may completely ignore its absolute position as the agents in its environment

are all expressed in a manner relative to its position and, if necessary, velocity.

State repository

The experimental platform stores the external states of agents, possibly decorated in

the manner described, in instances of classes that implement the Java Map interface.

In essence this means that given an agent (or in practice the identifier of an agent

which for simplicity are sequentially allocated integers) the state for that agent can

be located.

The maps used are embedded within a class which implements the contract

described as a Repository and acts as a facade [GHJV95] to the map. Repository

is a simple interface allowing clients, such as an environment, to add, remove and

update states stored in the repository, and hence in the embedded map.
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I implemented two different realisations of Repository, a simple straightforward

one (ObjectsRepository) and a more complex one (PartitionedRepository) that re-

flects the fact that many simulations take place in a landscape that may be parti-

tioned in a two-dimensional manner. A partitioned repository is actually a two-

dimensional collection of simple repositories along with some code that calculates

which simple repository will contain a particular state based on the position of the

agent for that state.

As discussed in section 4.2.1 implementations of the Repository interface are

the only place in the platform where decisions are made concerning synchronisation

between different threads. The specific decisions made are very simple, limiting a

single thread to being active in a repository at any time. As all threads operate

completely independently of each other, apart from a shared dependence on the

repository, this means that simulations are entirely free of deadlocks.

Current versions of the experimental platform provide facilities to access the

state repository by position. For example, the environment can ask for either all the

agent states in a repository or those that are physically proximate to a given position.

Other implementations could provide further facilities, perhaps based on a query

language or Linda-like tuple matching. I have not investigated such approaches, as

I wanted to restrict myself to elaborating and testing the basic environment orienta-

tion concept and its implementation.

5.2.2 Instrumentation

The preceeding discussion addresses the construction of the platform to support

an environment oriented complex systems simulation. However, in addition to the

simulation itself, the platform needs to support some sort of instrumentation. There

are two obvious requirements for instrumentation: some form of visualisation is

necessary and it is likely that a specific simulation would have specific metrics (for

example, the size of a flock in a bird flocking simulation) which must be calculated.

These requirements are essentially for different views of the contents of the

repository. For visualisation, some code needs to access all the states in the repository—

including the decorations that show absolute positions—and use that to populate

some screen display. Metrics calculation is essentially the same thing; some code
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Figure 5.6: Overview of experimental platform with instrumentation.

needs to access all the states in the repository in order to calculate the value of the

metric.

That is, both of these two requirements are satisfied by two further clients of the

environment, in the manner summarised in figure 5.6.

Similarly, these new clients fit into a similar design structure, as shown in fig-

ure 5.7. In this case I chose to implement the instrumentation agents directly as Java

threads as there is no requirement for multiplicity as exists for the Agent objects.

Again, there is no issue with concurrency because the control of this still resides

within the environments themselves and their state repositories. That is, the same

structure is used for the instrumentation as is used for the agents themselves; all of

these activities are accessing the same shared environments.

5.2.3 User interface

The preceding discussion applies purely to the internals of the platform. In addition

to the structures I have described the platform provides a user interface that allows

control of the many parameters appropriate to any particular simulation including,

for example, the number of agents in a simulation, the behaviour of the agents and
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Figure 5.7: Overview of platform with instrumentation classes.

the landscape within which they are operating.

One such user interface is a GUI constructed using the Java Swing classes and

a sample view of the interface is shown in figure 5.8. This particular figure shows

a simulation of bird flocking. The dots in the display to the left each represent an

instance of a BirdAgent class, a subclass of the Agent class discussed earlier. An

intuitive observation of these agents is that they are indeed clustering into flocks.

The controls such as the sliders at the top right of this interface define the various

simulation parameters. The graphical display to the left and the statistical informa-

tion at bottom right (for example showing the number of updates per second) is

displayed using the instrumentation facilities described earlier in this chapter.

In addition to the graphical user interface I built a command line interface, which

interacts with exactly the same simulation classes, in order to allow simulations to

be run without user interaction.
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Figure 5.8: Graphical user interface for platform.

5.3 Satisfaction of requirements

Having outlined the design of the validation platform here I return to the require-

ments outlined in section 5.1 and describe in outline how the platform satisfies each

requirement.

Agents and types The Agent class described is a contract [Mey00] for further

types of agents that can be implemented by subclassing. As part of the con-

tract implementations of Agents must integrate into the structure defined for

agents and threads, ensuring that new agents will execute in a simulation.

External states Similarly, the ExternalState class describes give a contract for defin-

ing specific classes of state for the use of specific classes of agent. This con-

tract allows new external states to exist within the simulation framework.

Environments The platform defines the contract for an implementation of an Envi-

ronment to satisfy in order to fit into a simulation. The used of the Decorator

pattern allows classes that satisfy the requirements of the ExternalClass con-
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tract to be retained in an environment and contribute to the manner in which

that environment’s contents are delivered to agents.

Repository The Repository platform class provides a contract which can be sat-

isfied by many implementations each of which is the locus of concern with

respect to the concurrency that exists in the simulation.

Instrumentation, User Interface These requirements are both satisfied by the con-

cept of instrumentation and visualisation classes.

Simulation context The Simulation class again provides a contract for controlling

the context of a simulation. Specific implementations may implement this

contract in order to provide facilities such as initialising, starting and stopping

a particular simulation.



Chapter 6

Experimental validation

In this chapter I provide experimental results aimed at some basic hypotheses relat-

ing to environment orientation:

1. A simulation constructed in an environment oriented manner within a sin-

gle environment functions in that emergent properties expected from earlier

simulations also appear in the environment oriented simulation with no direct

communication between the agents.

2. Simulations can be extended without reworking the simulation’s conceptual

model to work with multiple environments. The expected emergent properties

still appear.

3. Simulations can be extended to include representations of the physical world

without major modifications.

These experiments are performed by extending the simulation platform described

in chapter 5. In each case I describe the extensions made to the platform to provide

the new facilities.

6.1 Flocking in a single environment

The complex system chosen for the initial experimental evaluation was an imple-

mentation of Reynold’s boids [Rey87] algorithm.

87



88 CHAPTER 6. EXPERIMENTAL VALIDATION

Reynolds’ algorithm describes how an agent representing a bird can behave ac-

cording to a simple set of rules so as to reveal flocking behaviour within a collection

of such agents. In outline, these rules are:

• Each bird should move towards the centre of mass of the other birds it can see

in its vicinity.

• Each bird should attempt to make its velocity the same as the overall velocity

of the birds it can see in its vicinity.

• Any bird should ensure that it flies away from another that is near to it so as

to not collide with that bird.

The essence of these rules is that at all times the simulation generates a move-

ment vector for bird, formed from the vector sum of the movements due to each

rule. This vector is applied to the position of each agent at each simulation step.

6.1.1 Experimental hypothesis

For this first experiment the experimental hypothesis is that the known emergent
property, flocking, would arise from a simulation performed in an environment
oriented manner. In order to investigate this it is necessary to define what is meant

by a flock. For this experiment this was defined as follows. In order to be “flocked”:

a. an agent must retain over 20 simulations steps a minimum of 10 agents in its

vicinity and

b. at least 80% of the set of neighbourhood agents must be the same agents across

all those steps.

6.1.2 Platform extension

In order to perform this simulation, the platform was specialised to experiment with

flocking by writing several concrete subclasses of existing platform classes, satis-

fying the various contracts discussed in section 5.3; the end result is summarised in

the class diagram in figure 6.1. The new concrete subclasses included:
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Figure 6.1: UML class diagram showing overview of flocking variant of experi-
mentation platform.

FlockingAgent A subclass of Agent which adds the notion of a velocity to the basic

Agent. That is, each agent knows its velocity and at each step it updates the

velocity by some amount according to the other agents in its neighbourhood

FlockingNeighbourhood A subclass of Neighbourhood that adds the notion of be-

ing able to calculate vectors that correspond to the results of the three flocking

rules as described above. The agent sums these vectors so as to update its ve-

locity.

The FlockingAgent method that implements the step() operation is summarised

in the pseudo code shown in figure 6.2. As can be seen, this delegates to the Flock-

ingNeighbourhood the responsibility for calculating the results of the flocking rules.

The velocity vector in the agent’s internal state is updated, at each step, with the per-

turbation that arises from the agent’s neighbourhood.

In order to determine if the notion of an agent being “flocked” was being achieved,

as described in section 6.1.1 an instrumentation class, as discussed in section 5.2.2,
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1: Vector perturbation;
2: FlockingNeighbourhood n = new FlockingNeighbourhood(this, proximity);
3: for Environment e in environments do
4: e.extendNeighbourhood(n, this)
5: end for
6: perturbation = n.centreOfMassRule()
7: + n.matchVelocityRule()
8: + n.repelRule();
9: velocity = velocity + perturbation;

10: for Environment e in environments do
11: e.updateState(this)
12: end for

Figure 6.2: Pseudo-code for the flocking agent’s updateInternalState.

was added to the platform that produced information describing how many of the

simulation’s agents were flocked.

6.1.3 Simulation results

The simulation of the flocking complex system has a potentially large number of

parameters, as can be seen on the controls on the user interface shown in figure 5.8.

As a test of the platform, I ran a number of tests of flocking, varying a single one of

these parameters. This is the parameter for neighbourhood proximity, determining

whether other agents are “in the neighbourhood” of a specific agent as is shown in

figure 6.3.

I used the instrumentation class described in section 6.1.2 to determine the pro-

portion of the agents in a simulation that were “in a flock” after a large number of

simulation steps (two million in this example). I then ran a number, 20 for each

value of the proximity, of simulations to check how successful the agents were at

ending up in a flock.

The chart shown in figure 6.4 summarises the results of these simulations where

the only parameter being varied is that for neighbourhood proximity. In each simu-

lation a set of 300 agents were introduced into the central 500 unit radius circle of

an infinitely-sized flat world. The chart shows boxplots showing the proportion of

the agents that were in a flock at the end of each simulation run. In this simulation,
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Simulation space

B

r

Figure 6.3: In a flocking simulation the circle shown is the radius of proximity, r,
of the bird B. There are two other birds within this neighbourhood.

the agents were allocated, at simulation start-up time, to one of a fixed number of

Agent threads. The number of threads was chosen to fit the machine architecture

in use. However, experimentation shows, as expected, that this parameter has little

effect on the result of simulations.

As can be seen, the agents are indeed forming into flocks, supporting an intuitive

reading of figure 5.8. Changing the proximity parameter improves, as would be ex-

pected, the ability of the flocks to incorporate more of the agents into the emergent,

flocking, property. At small proximities, that is where an agent’s neighbourhood

would be expected to include only a few states due to other members of the simu-

lation, flocking does not occur. That is, the agents just wander off in the simulation

world and do not find any other agents with which to flock.

6.1.4 Discussion

This flocking example validates the core hypothesis; that the environment oriented

simulation displays the same emergent property as was expected from other simula-
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Figure 6.4: Box plot showing the result of flocking with a single environment that
builds a neighbourhood based simply on the proximity of agents from the querying
agent. Each box shows the lower quartile, median and upper quartile of the percent-
age of agents that ended in a flock over a set of 20 simulation runs for each value
of proximity, the values of this variable being shown in the horizontal axis. Each
simulation ran for 2 million simulation steps and started with an initial population
of 300 agents, randomly distributed in a 500-unit radius circle around the origin.
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tions of the same complex system. That is, the agents do indeed form into flocks in

the manner expected of the Boids algorithm, although in this case entirely without

direct communication between the agents. That is, in the simulation I have shown,

the agents essentially know nothing of each other, other than the notion that other

agents might exist. All they do is interact with the environment.

Further, in this spatial simulation the simulation agents have no knowledge of

their position, operating in a purely solipsistic manner, restricting their interactions

with the environment alone. In contrast, the environment is a real participant in

the simulation, not merely a repository. It understands the actual positions of the

agents and is able to efficiently populate the agents’ neighbourhoods with the states

of local agents.

6.2 Flocking in multiple environments

As has been discussed in section 3.2.4 complex systems may well include a collec-

tion of heterogeneous agents moving within a world where their inter relationships

may be expressed as appearing in multiple environments.

The flocking model discussed so far is simple in that it has but a single environ-

ment. However, in the context of flocking birds it is conceivable that the flocking

behaviour of birds depends on both visual perception of other birds and also audi-

tory perception.

In this case these two environments, visual and auditory, have different spatial

characteristics. In the visual environment one agent can accurately perceive the

three dimensional position of another assuming that the distance between the two

agents is sufficiently small. The auditory environment allows an agent to know

about the existence of other agents (for example of the same species) in the system

but is less precise at describing exactly where the agents are; one can tell that a

blackbird is part of the dawn chorus by its distinctive song without actually perceiv-

ing exactly where it is.

The experiment described in this section extends the prior single-environment

experiment to one supporting multiple environments. Any agent in the simulation

discussed here is simultaneously in two environments. In addition to an environ-

ment of the form used in the prior experiment, that is one in which an agent can
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only perceive other agents in its immediate neighbourhood, it also shares a second

environment with a relatively small number of other agents. Agents in this second

environment can perceive each other regardless of proximity.

The conceit1 here is that the former environment represents vision whereas the

latter represents auditory information with the set of agents sharing the environment

representing a separate “species”.

In this experiment In this initial experiment the “seeing” agent perceives the

exact position of all of the agents in the species environment, even though they are

potentially distant. In a further experiment, described in chapter 7, the ability to

describe positions less accurately is investigated.

6.2.1 Experimental hypotheses

There are two main experimental hypotheses under evaluation here:

1. Complex systems emergent properties can appear in an environment oriented

simulation that uses a number of environments.

2. As a consequence of an individual agent being able to “see” more of the set

of agents sharing the environments it should be the case that the flocking

should be more successful. That is that a larger proportion of the agents in a

simulation should end up flocked.

Further, this experiment should show that the simulation platform is easily ex-

tensible to a simulation which uses multiple environments.

6.2.2 Platform extension

The simulation platform described here and summarised in figure 5.1 explicitly sup-

ports the notion of multiple environments. That is, as can be seen from the UML

diagram, each agent is placing its external state in one or more environments and

using a neighbourhood derived from all those environments to determine its future

interactions.
1Although multi-species flocks are well known [KT04] the notion of separate species used here

is not intended to be realistic with respect to bird behaviour. Rather, it is used as a convenience for
exposition.
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Figure 6.5: Overview of the platform configured for flocking in multiple envi-
ronments. Each agent exists in a single proximity environment and, optionally, a
species environment.

Here, the single environment flocking simulation is extended to support a simple

version of the multiple environment concept. Again, further classes are added to the

implementation implementing the contracts discussed in section 5.3.

Specifically, as in figure 6.5 there are two new implementations of the Envi-

ronment contract. The Simulation class used this time knows about the possibility

of the multiple environments and is responsible for setting up, and executing, each

simulation with each agent in two environments, a single ProximityEnvironment

and a single SpeciesEnvironment.

6.2.3 Simulation results

The boxplots in figure 6.6 summarise the results of performing simulations of flock-

ing using the simple notion of multiple environments as described. These data are

presented in the same general form as those in figure 6.4 of which they are an ex-

tension as the earlier results are essentially for a simulation where the number of
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agents in the species environment is one. These plots therefore repeat the earlier

plot in a matching form.

As before it is clear that many of the agents in the simulation are, indeed flocking

with each other. The data are, though, more confused likely as a consequence of the

more complex experimental situation.

6.2.4 Discussion

As discussed in section 6.1.3, in a single environment there is a simple rule, that

the further an agent can see the more likely it is to end in a flock. That is, the

larger the proximity attribute of the ProximityEnvironment the more agents will

end up in a flock. There is, though, a considerable degree of uncertainty due to

the random initialisation of the space. In particular the distribution of the results

at small proximities is large. This effect appears because if an agent moves away

from others at the beginning of the simulation then it might well move to a position

where it never again interacts with the other agents; it just moves away across the

world never seeing all the other agents. But, when the proximity is larger, that is

when the agents can “see” further, they are more likely to end up in a flock.

When other environments are added the data are, at first, rather more confusing.

What is clear is that the agents are continuing to flock; further, the number of agents

in the species environments is having an effect on the success of the flocking.

Looking harder at the data, it can be seen that at higher proximities, in partic-

ular above proximity = 35, then adding more agents to the species environment

improves the amount of flocking. In essence this is not surprising as the multiple

environments may well allow an agent to “see” further than it could previously.

However, with a small value for proximity, in particular at proximity = 25 and

proximity = 30 there is much more variation in the data. Although the median

value for the flocking percentage increases as the number of agents in the species

environment increases the shape of the distribution is much flatter.

Although not easy to see in the box plots, observation of the simulation graph-

ical display showed that this was an effect of the random allocation of agents to

the species environment. For example, if it happens to be the case that agents on

opposite sides of the non-cyclic “world” are in the same species environment then it
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Figure 6.6: Box plots showing the results of flocking in multiple environments. The
plot at top-left is for an agent in a single proximity environment, and essentially
the only agent in its species environment. The top-right plot is the same with 2
agents in the species environment, 3 at bottom-left and 4 at bottom-right. Each box
shows the percentage of agents that flocked over 2 million simulation steps with 20
simulations being run for each box. Each run started with 300 agents, randomly
distributed in a 500-unit radius circle around the origin. Each horizontal axis shows
the value of proximity in the ProximityEnvironment.
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is slightly more likely that they will move towards each other as the members of the

species environments can see across the entire world. As such agents move towards

each other, they are more likely to approach other agents in the proximity environ-

ment and so aggregate a collection of agents that the instrumentation deems to be a

flock. But, if the agents of the same species are not so advantageously positioned

then even though they try to move together they never manage to attract any other

agents. Even if four agents of the same species end up next to each other the rules

for being a flock, as listed in section 6.1.3, do not allow that to be described as a

flock.

Notwithstanding this variation at low proximity values the experimental hy-

potheses are upheld. Specifically, agents simulated by a multi-environment envi-

ronment oriented simulation do continue to flock and, subject to some observa-

tions relating to the initial configuration, the multiple environments do increase the

amount of flocking observed.

In support of the central notion of environment orientation these experiments in

flocking in multiple environments include rather more complex (indirect) interac-

tion between the agents. Even so, there is no possibility of deadlock as the only

shared resource on which multiple threads could deadlock is the underlying reposi-

tory and all contending access to that repository is localised to two specific methods

of that class which are serialised by being marked using the Java synchronized
attribute. So, if one thread blocks when accessing the repository it is inevitable that

at some point it will become unblocked: the currently blocking thread must leave

the synchronized region at some point as it is proceeding atomically.

Finally, as also mentioned in section 6.2.1 the modifications required to the

platform to support multiple environments are straightforward.

However, the environments discussed in this experiment are essentially internal.

That is, they are mostly a consequence of the (simulated) perceptual capabilities of

the agents. Many complex systems include a significant external environment, for

example the geography and commercial world that is the backdrop to the situations

discussed in chapter 2. A simulation with a more complicated external environment

is therefore investigated next.
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6.3 Hill climbing

In the flocking experiments described so far, the environment is just mediating agent

state and presenting it to requesting agents. That is, as discussed, it is to a large

extent an artefact of the agents themselves. In the experiment described in this sec-

tion the agents’ neighbourhoods are extended by an environment that describes the

landscape in which the agents move. This landscape provides information about

the height of an agent, each of which is required to sit on the surface of the land-

scape. That is, every agent has an altitude which is the height of the landscape at

the position where the agent finds itself.

In this experiment the simulation code is attempting to get agents to climb to

the highest point in that environment. However, the agents cannot observe the land-

scape directly, only through the external state of neighbouring agents. In this envi-

ronment each agent is trying to climb to the highest point that it can see by observing

the altitudes of neighbouring agents.

Given the information available, agents in the hill-climbing simulation move to-

wards the highest part of the landscape of which they are aware; this being limited to

the altitudes of each of the agents in a querying agent’s neighbourhood. Additional

rules prevent agents being positioned directly on top of each other, in a manner

analogous to the repulsion rule in the flocking simulations already discussed.

6.3.1 Experimental hypotheses

In this experiment I investigate the hypothesis that an environment oriented simula-

tions can be readily extended to include external concepts, representing the physical

world outside the agents. Here, as discussed, this concept is a simple “landscape”.

6.3.2 Platform extension

The implementation of the hill climbing simulation is very similar to that for the

flocking simulation. A UML diagram giving an overview of the entire platform

for this context is shown in figure 6.7. It is specialised by using a different imple-

mentation of the Environment class, LandscapedEnvironment. This uses an imple-

mentation of another abstract class, Landscape, in order to find the altitude of the
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Figure 6.7: Overview of the platform configured for hill climbing in multiple en-
vironments. Each agent exists in a single proximity landscaped environment and a
species environment.

particular bit of landscape at the agent’s position. In a similar manner to the abso-

lute position of an agent, its altitude is recorded by decorating the agent’s external

state with its altitude.

As would be expected, the agents (in this case instances of ClimbingAgent)

implement a different process when they are run by their controlling thread. Pseudo

code for the climbing agents’ step implementation is shown in figure 6.8.

In this case the climbing neighbourhood is used which can determine which of

a set of states represents the one with the greatest altitude and provides the agent

with the movement needed to move towards that position.

Again, the implementation is enriched with a specialised monitoring class. An

implementation of this class collects information as to how many agents have found

themselves at an altitude about 90% of the greatest height in a particular landscape.

Using this it is possible, again, to instrument the running simulation and hence to
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1: Vector movement;
2: int targetAltitude = environment.getAltitude(this)
3: ClimbingNeighbourhood n = new ClimbingNeighbourhood(this, proximity,

targetAltitude)
4: for Environment e in environments do
5: e.extendNeighbourhood(n, this)
6: end for
7: movement = n.movement()
8: for Environment e in environments do
9: e.updateState(this)

10: end for

Figure 6.8: Pseudo-code for the climbing agent’s updateInternalState().

produce some graphical information.

An example of the user interface for the climbing variant of this simulation is

shown in figure 6.9.

In this particular case the simulation is being done with a landscape that imple-

ments the classic “sombrero” function [Wikg] (figure 6.10). For simplicity I did not

implement a visualisation of the landscape but some aspects of it can be inferred

from the positions of the agents in the graphical display. In this particular case, as

shown in the display metrics, 7% of the agents have reached a height greater than

90% of the maximum height which in this case is the height of the central peak. As

can be seen, the agents are clustered on the central peak and along the ridges of the

surrounding “hills”.

6.3.3 Simulation results

In the same manner as in the earlier discussions of flocking the box plots shown as

figure 6.11 summarise the results of a large number of hill climbing simulations.

As can be seen the agents are relatively unsuccessful at finding the central peak in

the situation where each agent is in its own species environment in addition to the

proximity environment. (That is, where there is essentially only a single proximity

environment.) However, even in this situation, the agents are more successful at

finding the central peak as the value of proximity increases. Of course, this is

hardly surprising as with a larger value of proximiity each agent is more likely to
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Figure 6.9: Graphical user interface for hill climbing simulation using the platform.

Figure 6.10: A sombrero function, a 3D analogue of the sinc(x) = sin(x)/x func-
tion.
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“see” another agent which is further up the landscape. All the same, even at the

largest value there is not a great deal of success. The reason for this is that an agent

tends to find a local maximum which actually turns out to be the top of one of the

surrounding “foothills” of the landscape (as in figure 6.10). This effect can also be

seen in the view of the user interface shown in figure 6.9 where clusters of agents

can be seen around the central peak.

As the number of agents in the species environments increases then the agents

become more successful at finding the central peak. The reason being that if two

distant agents are “connected together” by being in the same species environment

then, as they move towards each other if one or other of them finds the central peak,

or the start of it, then it will tend to stay there and drag the other one (along with

all the agents in its nearby neighbourhood) towards it. The apparently much larger

success at proximity = 150 is a consequence firstly of the non-linear horizontal

axis in the figures and the increased chance of success due to 150 being a large

proportion of the distance between the central peak and the surrounding hills.

6.3.4 Hill-climbing discussion

The hypothesis that environment oriented simulations can be extended to include

aspects of the physical world surrounding the agents is supported. In this case

the LandscapedEnvironment is adding into the simulation information about the

world in which the simulation is occurring, in this case the particular instance of

Landscape that is being used. Even though the implementation is still using the

basic notion of environment orientation, and the implementation of that embodied in

the simulation platform, the simulation works effectively. In particular management

of concurrency has become no more complex as each agent is still merely using its

environments in a transactional manner.

6.4 Discussion

In this chapter I have discussed some simple simulations built using the environment

orientation experimentation platform. The initial item of note is that they do, indeed,

work with minimal attention paid to deadlock. That is, the behaviour of a complex
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Figure 6.11: Box plots showing the results of hill climbing in multiple environ-
ments. The plot at top-left is for an agent in a single proximity environment, and
essentially the only agent in its species environment. The other plots are for 2, 3,
4, 5 and 6 agents in the species environment. Each box shows the percentage of
agents that had reached a height of >= 90% of the height of the central peak with
20 simulation runs for the data in each box. Each horizontal axis shows the value
of proximity in the ProximityEnvironment.
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system agent can be expressed, and simulated, merely by discussing the relationship

of that agent to its environment.

The environment, though, it not merely some passive container. Even in the

examples already discussed, it is providing a number of discrete services:

State retention The environment is retaining the external states of agents for later

supply to other agents.

State decoration The environment, in my implementation at least, is responsible

for imposing an overall “environment-centric” view on individual agents’

states. For example, the environment is calculating and retaining (by the use

of the Decorator pattern) the actual positions of each agent even though the

agent itself is operating in a solipsistic manner at the centre of its own uni-

verse.

Landscape information The environment provides other information to agents,

not merely the states of other agents. This information represents aspects

of the environment itself that are needed by the agents. In the hill climbing

example this includes the height of a particular piece of the landscape. In this

particular case the height, at a particular point, is constant. However, there is

no reason to suppose that that would always be the case and I describe a more

complex example of this in chapter 8.

However, the examples discussed so far take a particularly simplistic approach

to fusing the information received from multiple environments. It is reasonable for

complex systems agents to perceive other agents in a number of different environ-

ments, such as the visual and auditory environments discussed in section 6.2. In the

examples presented so far these environments are combined in perhaps the simplest

possible manner in that the external states for accessible agents in all environments

are added verbatim to the querying agent’s neighbourhood. That is, in this exam-

ple the querying agent can perceive as much information about a physically distant

agent in a species environment as it can about an adjacent agent in the proximity en-

vironment. This is not what I discussed earlier in section 4.3 and, more importantly,

this is not representative of what would happen in the complex system itself.
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In the complex system, the effects of distance would be, at least, to degrade the

resolution at which distant agents’ states could be observed. In a visual environment

a nearby agent would be perceived precisely in three dimensions from the point

of view of the querying agent. Furthermore, its motion in that space would also

be perceptible. That is a flocking bird would be able to tell where another bird

was and what its current velocity was; indeed this is necessary for the flocking

algorithms mentioned here and taken originally from [Rey87]. However, if an agent

were perceived in an auditory environment then the detecting agent would be able

to determine roughly in which direction another agent lay but it is likely that its

range and velocity would be less easy to determine. That is, the visual environment

provides three dimensions of position information and three of velocity information

but the auditory environment provides just a single dimension of direction.

In the next chapter I examine one approach to merging information from differ-

ent environments when each such environment contributes such varying informa-

tion.



Chapter 7

Synthesis of multiple environments

As I discuss in section 3.2.4 the notion of multiple environments in a complex sys-

tems simulation is obvious. In some simulations an agent might respond indepen-

dently to the information derived from two different environments. That is, specific

parts of the behaviour of the agent would be derived from observations in sepa-

rate environments with no consequential requirement to merge observations from

multiple environments.

Here, though, I am concerned with a situation where the behaviour of an agent

is derived from observations in multiple environments. That is, there is a require-

ment to combine states from multiple environments in such a manner as to allow a

querying agent to make a single decision as to its immediate behaviour.

As such, an environment oriented simulation must provide the capability for

combining observations drawn from multiple environments where those environ-

ments provide information that is potentially embedded in a different space and

provided at a different resolution. That is, the neighbourhood must be able to com-

bine observations like “there is an agent in direction 45◦ at a range of 100 units”

with others like “there is a nearish agent that it quite likely in front although it could

be over to the right but it is unlikely to be behind”. This combination of observa-

tions is properly the responsibility of the neighbourhood, which is a construction

of the environment, rather than the agent itself as the intention of the environment

oriented approach is to provide an agent with a view of all of the surrounding en-

vironments with which the agent is able to interact in a simple manner. Further,

making this combination the responsibility of environment enforces the role of the

107
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agent as a relatively simplistic one. The ability to build in “magic sensors” which

could do processing properly beyond the scope of the complex system’s agents as

the agents do not have access to the extensive information required.

Both of these observations are potentially relevant to the querying agent but

must be combined somehow to generate the information needed for the next action

of the agent. That action, of course, must be specific; the agent must be able to make

a decision as to how precisely to modify its behaviour. Such combination cannot be

made in the manner I have outlined previously where I use simple vector addition.

However, this approach does not naturally extend to contexts where the be-

haviour of an agent is derived from observations in different environments, ones

that represent different vector fields. Summing vectors from these different fields

would not necessarily make sense, in the same manner that summing velocity and

temperature would not yield a meaningful value. In this chapter I discuss this is-

sue and show experimental support for the hypothesis that an environment oriented

simulation can be produced where an agent observes information in multiple envi-

ronments and where that simulation can be produced in a manner that is consistent

with the simulation architecture already developed.

7.1 Control systems

The concept of determining behaviour in the context of observations in multiple

fields is not one unique to complex systems. It is commonplace in control systems,

something I studied as an undergraduate [Rav68]. In general, a control system must

make multiple observations, frequently including the system output itself, and apply

some control to the system so as to constrain the system output within acceptable

limits. That is, usually such systems are Feedback Control Systems [PH95]. Such

engineered systems are everywhere: in aircraft, automobiles and all manner of in-

dustrial and domestic machinery.

One particular approach to the construction of control systems is particularly

appropriate to the issue here. This the is use of “fuzzy control” [Cos92]. This

approach is specifically intended for situations where observations, frequently ones

that are not completely specific, are made of multiple inputs and combined into

an overall control strategy. As such, this approach adapts to the complex systems
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1.0

Membership
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Figure 7.1: Simple summary of a crisp separation as appears in the law. In this case
all people are deemed to be a member of the set “adult” when they reach the age of
18.

simulation under discussion.

7.1.1 Fuzzy logic

Fuzzy control is based on the use of fuzzy logic [YRP94]. Fuzzy logic is based on

the notion that observations, rather than being a member of a “crisp” set based on

absolute rules, may belong partially in one or more “fuzzy” sets.

One example often cited in fuzzy logic texts is that of determining, based on a

person’s age, whether they are an adult or a child. Such a question has a specific

answer in the context of the law, for example with relation to criminal responsibility

or being able to purchase and consume alcoholic drinks. Such a “crisp” definition

for the concept of “adulthood” is shown in figure 7.1; according to this separation a

person is deemed to be adult when they reach the age of 18, regardless of any other

consideration. In fact, transition from being a child to being an adult happens at

a specific point in time, at midnight on their birthday. That is, from a legal point

of view, the observation of a person’s age is a “crisp” observation: it either says

“child” or “adult”, admitting no concept of indeterminacy.

But, this specific separation is something that does not match our perceptions

of different people’s growing maturity. As such, fuzzy logic is based on the notion

that in the real world, and the argument used is often strongly based on real world

observations, everything is to some extent a “matter of degree” [Kos94]. That is, the
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1.0

Membership
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Figure 7.2: Simple summary of a fuzzy concept relating to whether someone is
perceived to be young, middle-aged or old.

notion of “adulthood” is not as crisp as the law declares. A fuzzy separation of age

into three separate fuzzy sets is shown in figure 7.2 which shows the membership

of three fuzzy sets corresponding to youth, middle age and old age.

In this diagram people are deemed to be youthful, middle-aged or old, each of

which is a fuzzy set. The separation between these sets is not specific, according to

this diagram a 55 year old can be equally perceived as being middle-aged or old, but

would never be taken for young. A 55 year old, is somehow half a member of the

set “middle aged” and half a member of the set “old aged”. Similarly, a 56 year old

would perhaps be 0.4 a member of the first set and 0.6 of a member of the second.

This approach is relevant to the notion of combining observations in multiple en-

vironments because it allows the combination of exact membership of a set (some-

one of age 5 is definitely young) with less precise membership (someone of age

35 can be regarded as “half young”). That is, the membership of a collection of

observations of these fuzzy sets corresponds to a combination of some things that

are known precisely with some things known with less certainty. This is analogous

to the notions that arise from multiple environments, as discussed in section 6.4.

There is some dispute about fuzzy logic, with many authors remarking that the

fuzziness can be simulated by crisp systems. More so, there is almost a religious as-

pect to some objections. Quoted in [Kos94, p3] and attributed to Professor William

Kahan of the University of California, Berkeley is:

Fuzzy theory is wrong, wrong and pernicious. What we need is more

logical thinking, not less. The danger of fuzzy logic is that it will en-

courage the sort of imprecise thinking that has brought us so much trou-
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ble. Fuzzy logic is the cocaine of science.

Notwithstanding that, fuzzy logic seems to me to be useful, merely because

it specifically allows an indeterminacy of observation, something that matches the

notions discussed here of observations within environments, especially when those

observations are not, and could not be, precise.

Fuzzy logic itself, though, is is not imprecise, the values for the membership

of the fuzzy sets is precise, it is just not zero or one. The notion of someone be-

ing “might be old” simultaneously with “probably middle aged” fits our real world

perceptions where we don’t use such specific and sharp boundaries.

In support of the use of fuzzy logic, it is in fact frequently found in control

systems; industrial fuzzy logic control systems are commonplace and available as

packaged products. Even household items such as washing machines are marketed

as using fuzzy logic control.

Such a control system must take various control inputs and assess them for mem-

berships of fuzzy sets (in a similar manner to a 55 year old being half a member of

the set “middle aged” and half a member of the set “old aged”) representing the

control inputs and produce the appropriate values for the control outputs.

For example, if such system were indeed controlling a domestic washing ma-

chine1 then there might be sensors detecting the level of dirt in the washing water,

and the size of load in the machine. These sensors will deliver precise observations—

perhaps 5,000 ppm of dirt in the water and a load of 3.4kg—but from these observa-

tions will be calculated the membership of various fuzzy sets such as “very dirty”,

“slightly dirty”, “full load” and “medium load”.

That is, there is a precise value for “washing machine load”, in this case 3.4kg.

However, the control calculation is expressed fuzzily, perhaps in this case the load

can be regarded as 0.4 “half load” and 0.6 “full load”. The control calculation is

done this way because that rapidly yields a suitable result and also because the

control logic can typically be expressed as something like IF-THEN rules. For

example, we might have:

IF the water is very dirty and there is a full load

THEN set the agitation level to high

1This example is adapted from that in [Kos94, p39 pp180–182].
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In this case the control system is applying a control input—changing the agi-

tation level—as a result of multiple, fuzzy, observations of a range of parameters.

The benefit of using fuzzy logic is that some other control rule might refer to the

load as being medium. That rule could simultaneously apply as the observation of

the load is not a crisp one, but a fuzzy one.

A further example, from [YRP94] in the context of controlling a car’s braking

system, is:

IF the distance between two cars is short and the speed of the car is high

THEN brake hard for speed reduction

Again, in this case, there is a precise value for the distance between the two cars,

perhaps it’s 8.6m. The control system, though, is only told that distance as a mem-

bership of some fuzzy sets such as “short”, “medium” and “distant”. The control

system is applying a control input, in this case braking, based on multiple observa-

tions in multiple parameters. As before the fact that the underlying observations are

fuzzy means that the control logic can be succinctly expressed as multiple rules.

Applying this notion in the context of observations in multiple environment is

appealing because, again, there are precise values for things like agent position and

velocity. However, an observing agent likely is not able to perceive variables with

that precision and, it needs to be able to express its behaviour, in a manner analogous

to the control logic expressed, in a simple manner.

7.1.2 Fuzzy flocking

In the case of something like simulated bird flocking the observing agent can be

seen as another control system, taking in control inputs representing observations

of other birds and generating an acceleration vector to add to its current velocity.

In order to test the notion of combining environments using fuzzy logic I mod-

ified the implementation of the bird-flocking experiment discussed in chapter 6. In

this new implementation each agent is described by two variables2: distance and

direction. Each of these is assessed for membership of one or more fuzzy sets, the

process known as “fuzzification” in the literature.

2Often called “linguistic variables” in fuzzy logic texts.
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Figure 7.3: The distance to an agent is “fuzzified” into membership of three fuzzy
sets: near, local and far.

In the case of distance the simulation allows for fuzzy sets near, local and dis-

tant as is summarised in figure 7.3. Agents that are nearer to a querying agent than

the proximity value are definitely near, if nearer than proximity ∗ 2 they are defi-

nitely local and if further away than proximity ∗ 4 then they are definitely distant.

At other distances there is a linear relationship defining the membership of the fuzzy

sets as is shown diagrammatically in figure 7.3.

It is, though, a requirement for the issue of combining environments in the case

of simulated bird flocking that in some cases the distance to the remote agent is

just unknown. For example, in the case of the species environment the conceit is

that these agents communicate by sound in this environment and that therefore very

little is known of distance. In the case of these agents, then they are ascribed an

equal membership of each of the fuzzy sets. That is, the likelihood of an unknown

agent being “near”, or “local” or “far” is always 1/3.

A similar approach is taken for the observations of direction. In this case, ob-

servations of direction to remote agents are described in terms of the likelihood of

an agent being a member of the fuzzy sets north, south, east and west in the manner

described in general in figure 7.4.

7.1.3 Fuzzy flocking implementation

In order to support the notion of fuzzification of observations in the experimental

platform it was modified as shown in the UML diagram in figure 7.5.
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Figure 7.4: Diagrammatic representation of the fuzzification of directions into
membership of the fuzzy sets north, south, east and west. The direction shown
by the grey line at approximately 35◦, for example, has membership of north at
about 0.7 and of east at about 0.3.
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Environment

extendNeighbourhood( Neighbourhood, Agent )
northness( ExternalState ) : double
eastness( ExternalState ) : double
southness( ExternalState ) : double
westness( ExternalState ) : double
nearness( ExternalState ) : double
localness( ExternalState ) : double
farness( ExternalState ) : double

Repository

contents : Map<Agent,ExternalState>

FuzzyNeighbourhood
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Figure 7.5: Overview of implementation of fuzzy neighbourhoods and support from
the environments.
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Figure 7.6: Each fuzzy neighbourhood has 12 instances of the FuzzyCell class,
shown diagrammatically here with the pair of fuzzy sets each represents.

As before this adds new facilities to provide support for the fuzzy behaviour.

The new neighbourhood class FuzzyNeighbourhood functions as the earlier Flock-

ingNeighbourhood but the membership of the neighbourhood is described using the

classes Fit and FuzzyCell. The additional complexity here is due to the fact that a

single observation can appear multiple times in the neighbourhood.

In order to allow for the various fuzzy sets, each fuzzy neighbourhood has 12

instances of the FuzzyCell class, conceptually structured as shown in figure 7.6,

and representing those states that have a non-zero membership of a particular pair

of fuzzy sets.

For example, an observation of an agent in a species environment could gener-

ate, if it represented an agent at about 45◦, an item in each of the cells representing

the pairs north-near, north-local, north-far, east-near, east-local and east-far. In

another case, for example a nearby agent in a proximity environment which was def-

initely south of the querier would only be represented as an entry in the south-near

cell.

These instances of FuzzyCell are analogous to the possible configurations of
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the underlying IF-THEN rules in a control system’s control logic. That is, the right-

most segment in figure 7.6 corresponds to a rule like:

IF the observed agent is to the east and is far away

THEN move carefully towards the east

Each entry in a FuzzyCell object is provided by an instance of the Fit class

which contains the actual value of the membership of the sets in question.

In order to construct this representation it is necessary to calculate the values for

the fuzzy set membership, which will appear as attributes of the Fit objects. Some

object must therefore have the responsibility of saying that a particular external

state object represents an agent whose membership of the sets near, north and east

is 1.0, 0.5 and 0.5 respectively. This object must be the environment. As before it is

the environment that knows where things actually are and presents to the agents, via

their neighbourhoods, a summary of the world. Hence, the platform implementation

of the Environment class implements operations to define how “north”, and so on,

a particular external state is, these operations are included in figure 7.5.

An example of how this is implemented is shown in the UML sequence diagram

in figure 7.7. The environment is asked to extend a supplied neighbourhood and it

duly adds the appropriate states to that object. As the neighbourhood is fuzzy it calls

back to the environment requesting values for the set memberships and for the non-

zero ones it constructs the appropriate Fit object and adds that to the appropriate

FuzzyCell. These call-backs are to the operations like northness and nearness.

That is the methods implementing these operations are responsible for fuzzifying

a crisp observation into membership of the fuzzy concepts in use, in this case the

“north” and “near” fuzzy sets.

The FuzzyNeighbourhood class provides fuzzy method implementations of the

normal rules for bird flocking. Rather than using IF-THEN rules the structured

space provided by the various FuzzyCell objects means that the calculation of, for

example, the vector to fly to perform the centre of mass rule is done by vector-

summing a number of unit vectors, one for each FuzzyCell, in proportion to the

weight of the Fit objects within that cell. In this way all of the Fits, one for every

possible membership of the fuzzy sets representing the control inputs, contribute

towards the eventual result. The resulting vector is then treated in exactly the same
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 : FuzzyNeighbourhood

 : Environment  : FuzzyCell : Agent

 : Fit

northness(ExternalState=)4: 

nearness(ExternalState=)5: 

6: 

add(Fit=)7: 

add(ExternalState=)3: 

1: 

extendNeighbourhood(Neighbourhood=, Agent=)2: 

Figure 7.7: A simple example of constructing a FuzzyNeighbourhood.

manner as applied in the crisp multi-environment flocking described in section 6.2.

7.2 Experimenting with fuzzy flocking

The structure already presented in this chapter shows how fuzzy sets can be used for

combining observations in multiple environments and also shows how these ideas

were implemented in the experimental platform. This whole structure rests on the

hypothesis that flocking will still be achieved in multiple environments even when

the information available about the contents of the species environment is rather less

informative than in the experiments described in section 6.2. That is, the contents

of the species environment are now only contributing imprecise information about

direction and nothing about distance. Furthermore, the chunking of the world into

just 12 possible locations, albeit with fuzzy membership providing a bit more infor-

mation, would be expected to strongly affect the efficacy of the overall flocking.

Nonetheless, I hypothesise that flocking will continue to appear in this structure.

Furthermore, the addition of contributions from the species environments should

improve flocking, for the reasons already discussed, although the contribution from
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the species environments should appear in some way different, as rather less infor-

mation is now being provided by them.

7.3 Results

A similar series of experiments was conducted using the fuzzy flocking platform.

Box plots summarising these results are shown in figure 7.8 which are presented in

the same manner as those in figure 6.6.

The immediate observation from these results is that, indeed, the birds are con-

tinuing to flock and the number of agents in the species environment is having a

marked effect on the results. There are many subtleties to notice though. One is

that with only a single agent in the species environment, which is analogous to only

using a single proximity environment then although there is some flocking going

on, especially with larger values for proximity, then it is not as successful as in

the crisp flocking. This was borne out by watching the display while conducting

some of these experiments where the flocked birds were falling out of contact with

each other after a while. I believe that this is because the fuzzy approach taken is

actually rather coarse. In particular there are only 4 possible directions. On some

occasions these directions could be seen on the screen as the agents forming into

square patterns. I hypothesize, but have not been able to confirm, that making the

fuzzy sets a little less coarse (for example, north, north-east, east, south-east, etc.)

would have a beneficial effect.

With more than one agent in the species environments a dramatic change ap-

pears; even two agents is much more successful than one with smaller improve-

ments for larger numbers of agents. Again, I suspect that this is due to the effects

of distant agents, even when working through the fuzzy process, causing agents to

be dragged into closer proximity until the proximity environments have an effect.

Nonetheless, the agents are flocking even in the face of adversity. It is clear

that the fuzzy process does provide a mechanism for fusing observations in mul-

tiple environments. However, the code for performing the fuzzy flocking is rather

more complicated than for the crisp flocking as has been seen in this chapter. In

particular, the requirement for fuzzification of crisp observations creates significant

complication and, indeed, processing time.
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Figure 7.8: Box plots showing the results of flocking in multiple environments when
using fuzzy matching. The plot at top-left is for an agent in a single proximity envi-
ronment, and essentially the only agent in its species environment. The other plots
are for 2, 3, 4 and 5 agents in the species environment. Each box shows the per-
centage of agents that flocked after 2 million simulation steps with 20 simulations
being run at for each box. Each run started with 300 agents, randomly distributed
in a 500-unit radius circle around the origin. Each horizontal axis shows the value
of proximity in the ProximityEnvironment.
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7.4 Discussion

As has been discussed, the fuzzy process described has provided a mechanism for

fusing together the combinations of multiple environments, although at the cost of a

more complex implementation. Nonetheless, the implementation is still completely

consistent with the original architecture; agents still construct their neighbourhoods

and use a simple output from that neighbourhood to control their behaviour.

That is, the hypothesis that the basic simulation architecture is extensible to one

where an agent observes information in multiple environments and where that simu-

lation can be produced in a manner that is consistent with the simulation architecture

already developed is supported.

Furthermore, the basic flocking emergent property persists in this situation and,

still, no deadlocks did or could appear even though the only attention such issue

remains the use of the synchronized keyword on a couple of methods in the

Repository class. If the environment oriented approach had not been used and a

similar multi-threaded implementation constructed then it would doubtless have

suffered from resource contention leading to deadlocks due to the inevitable cycles

of interaction amongst the agents. The alternative would have been to use some

programming artefact like barrier synchronisation which has no clear analogue in

the complex system itself.

In this fuzzy implementation the environment has again been tasked with more

responsibility. It is now responsible for the fuzzification process; determining what

the value is for an observation’s membership of a fuzzy set.





Chapter 8

Evolution within an environment

I have described the concept of environment orientation in chapter 3 and inves-

tigated the hypotheses that such an approach does actually demonstrate emergent

behaviour (chapter 6) and that it is extensible to environments comprising multiple

vector fields (chapter 7). In this chapter I apply the concept of environment ori-

entation to a more complex simulation. I take an existing simulation and extend

it by the introduction of a non-trivial external environment. I use this simulation

to investigate evolution within this environment. This is the sort of investigation

that is generally required for the study of complex systems, thus demonstrating the

applicability of the approach to scientific study of complex systems.

The motivation for this chapter is thus two-fold: firstly to apply environment-

orientation within a more complicated application and, secondly, to use that appli-

cation to investigate the effects of the environment (specifically the environmental

energy flux) on an evolutionary model. This latter investigation is targeted at exper-

imentally testing specific hypotheses about the application.

Specifically, I discuss simulation of a complex system that represents open-

ended evolution and in particular evolution within systems that are open to a sim-

ulated energy flux, open to changes in the simulated environment, and open to the

representation of evolutionary mechanisms. I focus on the energy flux that per-

vades the natural world, mostly deriving from the Sun, as a key component of the

environment in these situations.

Representing the energy flux permits a simulation of many aspects of real world

systems, such as the availability of food supplies. Further, it allows the investigation

123
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Figure 8.1: A simple example sticky-feet creature with three feet, the dots, con-
nected by three springs, the straight lines. One of the feet is the heart, surrounded
with a red circle at the bottom right, and another the mouth, in the grey circle at the
top centre.

of different means of making a living within an environment, be they predatory or

sessile.

That is, in this chapter the role of the environment has been further enhanced,

as well as it being the location, in a simulation, of the agents’ external states it now

represents a more fundamental part of the domain that is being simulated; it allows

the simulated agents to continue to exist.

8.1 Sticky feet

In order to investigate these issues I chose to extend Turk’s Sticky Feet [Tur10]

model. This gives a simple mechanism for implementing mobility and experiment-

ing with open-ended evolution.

A Sticky Feet simulation is a collection of simulated creatures moving in a 2D

domain. Each such creature is a graph of springs connecting together feet. Motion

is achieved as a consequence of simple harmonic oscillation of the springs, which

pushes the feet around within the simulation space. The coefficient of friction ex-

perienced by the feet is modulated—at times slippy, at times sticky—which results

overall in motion through the space if the modulation is properly controlled. A

typical simple creature is shown in figure 8.1.

Each creature has a heart and a mouth, each of which is a distinguished type of

foot. The heart represents the creature’s “essence” and is the component that is tar-

geted by others wishing to consume creatures. Such consumption occurs when one

creature’s mouth is coincident with the heart of another whether that be accidental



8.1. STICKY FEET 125

or because the prey was actively targeted. This causes the consumed creature to be

removed from the simulation. The likelihood of a creature happening upon another

is facilitated to some extent by the springs being equipped with sensors, which may

modulate the oscillation of the spring when in the presence of another creature’s

heart. This allows a creature to turn towards another, with the chance that it might

then be able to consume the target. In Turk’s original implementation when a crea-

ture is consumed the eater produces a single offspring, which may be a mutation

of the parent. Mutations that include additional feet, springs and sensors allow the

creatures to evolve in a manner that eventually produces offspring that are better

adapted to hunting for and eating other creatures.

8.1.1 Evolution in Sticky Feet

A Sticky Feet world is one in which creatures evolve to improve their performance

at consuming other creatures, and therefore being able to pass on their genome. As

such, it provides some aspect of a model of open ended evolution. I use this term

here in the sense of an evolutionary system where components continue to evolve

new forms continuously, rather than halting when some “optimal” or stable position

is reached [Tay99].

Sticky Feet [Tur10] works in this manner, as there is no explicit fitness function

and all creature behaviour is expressed in a single large environment rather than

relying on artificial two-creature tournaments. As such it is representative of many

aspects of real-world evolution.

There is, though, no mechanism for sticky feet creatures to pass on their genomes

other than by consuming other creatures. The model of reproduction used in Turk’s

Sticky Feet is particularly simple in that a creature generates a single progeny when-

ever it consumes another creature. That is, the simulation is closed to the devel-

opment of non-predatory behaviour because the only reproduction that happens is

directly a consequence of predation. This is useful from the point of view of main-

taining a constant sized simulation, but is not representative of real world evolution

where population sizes can change dramatically.
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8.2 The Sticky Feet Domain

Creatures in natural environments must be able to extract some sort of living from

that environment, supported either by consuming other creatures, or by turning

some flux in the world, for example sunlight or the chemical nutrients consumed

by extremophiles, into food.

This argument is essentially that famously made by Malthus in 1798 [MMG08],

which led Darwin towards the principle of natural selection [Dar59]. Although

Malthus discussed the availability of food I have generalised this to the availability

of energy. Although most real world environments are continually bathed in an en-

ergy flux it is a limited resource. The flux may be used, and stored, by components

of the environment, but if it is ignored it disappears and is no longer of use.

Natural systems are open: they are in receipt of many sorts of resource flux

such as sunlight. I am modeling all of these as “energy”. There are many complex

systems that can be simulated in such a world and as such some notions of the set of

possible worlds that can be modeled is useful. In order to describe the set of possible

simulations in the context of an environment bathed in an energy flux I have chosen

to construct a meta-model, implicitly describing many possible simulations of this

same general form.

As a part of the CoSMoS project I use the CoSMoS approach [APS+10b] when

approaching simulations. This approach is essentially to recognise that a simulation

is inevitably a simulation of a particular aspect of some domain. As such, it is nec-

essary to specifically describe—to model—the aspects of the domain that are being

simulated, this model being described as a domain model. The actual simulation

is described using the platform model, which executes on the simulation platform,

producing results that can be analysed with respect to the results model [ASH+11].

In the situation where the simulation is being used as a means of exploring the

real world this is extended by means of the results so obtained being compared

with the domain model allowing comparisons to be made between the model of the

domain and the simulation of that model.

Crucially, we must be careful to describe our simulations as simulation of a

model of a domain, and not of the real world domain itself with all its subtleties

and foibles; inevitably in the construction of the domain model many aspects of
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world

organism

energy

Figure 8.2: Domain metamodel. There are three components, represented as UML
packages, with their inter-dependencies.

the spectacularly complicated real world will have been declared to be “outside the

domain”.

In this chapter I am essentially describing a class of models, ones that permit

a particular sort of open ended evolution of sticky feet like creatures in a world, a

domain, which is bathed in an energy flux. That is, I must define a domain meta-

model to which domain models must conform. The domain metamodel, describes

all possible domain models that are to be explored without limiting the particular

domain. The approach I have taken to the domain metamodel is shown in figure 8.2

and shows the dependencies of the three main three parts, as UML packages, in the

model. These three components relate to metamodels constraining three aspects of

the domain metamodel:

energy which describes the rules that apply to energy models,

world which describes the general structure of the world within which evolution is

to occur and

organism which describes the abstract structure of evolving organisms; at least as
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energy

Store

quantity() : int
entropy() : int
degrade()
release( target : Demand ) : Bool
acquire( source : Store )
assimilate( Flux )

Demand

requirement() : int
entropy() : int
supply( source : Store ) : Bool

Flux

+level() : int
+entropy() : int
+pattern() : Pattern

sources
*

*

*

consumers*

Figure 8.3: Energy metamodel.

far as this metamodel goes, there are clearly many, many, more details to be

defined for a biological organism.

I address each of these aspects of the metamodel in the following sections. I

describe each part of the metamodel as a conceptual model [FS03, CD94], without

reference to a subsequent implementation.

8.2.1 Energy metamodel

The energy metamodel is elaborated in figure 8.3.

Energy is modeled as a scalar quantity in arbitrary units. However, as well as

the amount of energy it is necessary to describe the entropy of the energy. This

might be thought of as the temperature of the energy which allows the description

of essential aspects of the energy economy.

For example, in the natural world a continuous low flux of low entropy energy is

available in the form of sunlight. Plants sequester this energy in a form that allows



8.2. THE STICKY FEET DOMAIN 129

other organisms, such as animals to consume them and acquire the stored energy.

Those animals subsequently excrete waste products which still represent energy,

albeit in a higher entropy form, but which may still be metabolized by organisms

such as dung beetles. The concept of entropy described here is a part of the energy

metamodel. However it is not used in the simulations that will be described later

in this chapter. It is, though, an important concept to retain in the metamodel even

if subsequent models do not instantiate it in order to use the concept in any future

work.

The description of the energy metamodel is done using three separate concepts:

Flux The most basic part of the energy model is that which represents a flow of

energy from outside the modelled system. This flux represents energy with a

defined entropy and with a particular temporal pattern; for example at a high

level during daytime but a much lower level during night time.

Store One action of all members of a simulated world is to store energy. An organ-

ism might maintain its existence by consuming other stores, in the manner of

herbivores eating plants, or by assimilating the flux itself as the plant itself

does.

Demand Many components of a simulated world make energy demands. Such

components could be the physical structure of an organism, which requires

energy to build and maintain, or an activity that an organism undertakes, such

as hunting for other organisms to consume.

8.2.2 World metamodel

The world metamodel is elaborated in figure 8.4. As can be seen the concepts in the

world meta-model are elaborated in the context of the energy meta-model already

described. In essence this is emphasising the pre-eminence of energy in all of the

domains that are described by this meta-model.

A world represented as a collection of Regions, each of which is the recipient of

a particular Flux. Regions are connected together by routes each of which allows

organisms to move from one region to another, albeit at a certain energy cost. Lo-

cated within regions are, optionally, the products of various organisms. These are
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world
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World
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Figure 8.4: World metamodel.
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energy stores left in the environment by organisms which might well form some of

the energy supply for other organisms.

8.2.3 Organism metamodel

The organism metamodel is elaborated in figure 8.5. It has two components: the

phenotype and the genotype, which are interdependent.

Genotype

The Genotype metamodel requires that an organism model (that is, something con-

forming to the organism metamodel) includes a specific genome, an instance of the

Genome concept. This is the repository of the information needed to grow a new

organism and should describe, for example, the specific behaviours that a particu-

lar organism can express. The genome of a phenotype is the result of a replication

process that also creates a new Phenotype.

The whole point of this metamodel is to describe aspects of evolution within

an environment bathed in an energy flux. For some even vaguely realistic form of

evolution to exist there must be a definition of an organism’s genome along with a

mechanism for producing an offspring’s genome, which must necessarily—in or-

der for evolution to exist—be based on its parents’ genomes but not necessarily

identical.

The organism’s genome is the result of a replication process which is an ex-

pressed behaviour of the parent[s] of a new organism and it is this behaviour that

performs any mutation and variation. Subsequently, the new organism’s morpho-

genesis behaviour acts so as as to grow the organism’s phenotype, as a consequence

of its genome.

Phenotype

The Phenotype metamodel expresses that an organism’s phenotype, its structure,

consists of a number of body parts and a number of behaviours.

Body parts are those components of the phenotype that store energy: this is

expressed in the metamodel by the body parts realising the Store component of the
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Figure 8.5: Organism Metamodel.
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energy model. The body parts are also the target of the organism’s behaviours.

For example, a bird’s wings might be the target of its “flying” behaviour. Each

behaviour affects at least one part of an organism’s body, and all parts must be a

target of at least one behaviour. That is, the entire phenotype must be manipulated

by the overall behaviour of the organism.

Behaviours are the component of an organism’s phenotype that consume energy;

they realise the Demand component of the energy model. The metamodel requires

that all energy consumption of an organism is a consequence of the set of behaviours

that that organism expresses. So, for example, a purely sessile organism must still

include a behaviour that it continually expresses, which demands the energy needed

to maintain its metabolism.

All behaviours, then, consume energy and that energy must be supplied by the

energy stores represented by the set of body parts of which the organism is consti-

tuted. If an expressed behaviour requires more energy than is available from the

organism’s stores then then the organism dies.

Some of an organism’s behaviours produce waste products, included as the

Product component of the metamodel. Such waste products are in themselves fur-

ther energy stores, although they are not part of the organism’s phenotype. The

entropy of the energy content of such waste products would usually be higher than

that of the original energy source, but that does not preclude some organisms being

able to scrape out an existence using such low grade sources of energy. If dung

beetles, and similar organisms, did not exist there would be far too much dung in

the world. A further waste product is the phenotype of a dead creature. Again this

represents a low-grade source of energy, providing carrion-eating as a possible way

of making a living in a world that conforms to this metamodel.

The model requires that all organisms possess a particular behaviour, the Mor-

phogenesis behaviour that was the genesis of the organism’s phenotype. Each or-

ganism must have its own genome. It may be that a number of individual organisms

share the same genome but for a particular organism this is of no concern; it has

its own genome and that is sufficient. The morphogenesis behaviour is responsible

for building a new organism following the “instructions” implied by the organism’s

genome. The morphogenesis behaviour itself requires energy and consequently a

new organism cannot come into existence without the energy to actually construct



134 CHAPTER 8. EVOLUTION WITHIN AN ENVIRONMENT

its phenotype.

The morphogenesis behaviour is required for an organism to construct its phe-

notype following its genome. Similarly, organisms must express a Replication be-

haviour which is responsible for creating the genome of an offspring organism. That

is, it is this behaviour that must express the mutation, or similar functionality, that

actually creates an offspring organism’s genome as in some way different from that

of its parents with the possibility that the new organism will compete in a different

manner in the simulated world.

8.2.4 Discussion

The metamodel expresses essential requirements for evolution in an energetic con-

text. It is not, of course, the only such metamodel as many others could exist, but

this particular metamodel shaped the domain within which I experimented. It does

not, though, define the specific models that might be implementable; that is, many

models can conform to this metamodel. That is, a number of models could be pro-

duced, each of which conformed to this metamodel in the sense that the model’s

components were instances or realisations of components in the metamodel. Each

such model would describe the domain model for a particular set of simulations in

a particular domain that conformed to a particular metamodel.

Some other artificial life simulations incorporate a very basic notion of a con-

strained resource. Tierra [Ray92] uses CPU time-slices as an analogue of energy,

with the size of the time slice being a tunable function of the entity’s size. However,

there is no analogue of an energy store that would enable entities to ‘time-shift’ their

use of the resource, or hand on a surplus to their progeny; Tierra is a ‘use it or lose

it’ model. (Ray [Ray92] mentions a possible extension allowing capture of CPU

slices.) Stringmol [HCS+10] is an artificial chemistry with an explicit, but very

simple, energy model: a fixed number of energy units are added to the container

at each timestep, and molecules need to use an amount to execute each instruction.

However, the energy is a global resource (energy is not stored in individual entities,

but in the system and accessible to all).

The rich energy metamodel described here provides a number of features that

simulated organisms should be able to exploit to enable a range of different ways of
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making a living.

8.3 Energetic sticky feet

A wide range of simulation models are feasible that conform to the metamodel

described here. I specifically chose to implement what is essentially a version of

Turk’s Sticky Feet [Tur10]. An outline of the model of this simulation (that is,

something that has the role of a CoSMoS domain model) is shown in figure 8.6. This

model conforms to the energy metamodel already discussed. This is an ‘energetic’

variant of Turk’s Sticky Feet [Tur10]. It discusses the same sort of concepts that

Turk uses, albeit in the context of energy, world and organism as prescribed by the

metamodel.

I constructed the energetic sticky feet model, and the related simulation itself,

with the intention of performing a range of experiments. The energetic sticky feet

model is a simple model that conforms to the metamodel. It does not, though,

include all of the concepts in the metamodel. In particular, I have not implemented

the notions of entropy associated with energy, leaving that for future work. The

regions in the world (“Zones” in the model), as well as suffering the energy flux

required by the metamodel, also have a particular coefficient of friction, mu, which

determines how much the creatures’ feet stick to the floor in a particular part of the

world.

My hypothesis, that these experiments should be capable of refuting, is that the

presence of the energy model will influence the evolution of the simulated creatures

in such a manner that a more diverse world will result than the sort of world that

appears in the absence of an energy model. The rationale for this hypothesis is that

even with the simplifications noted there are a number of possible ways for sticky

feet creatures to make a living in the world bathed in energy. One of these is that

which Turk’s original implementation investigated, that where the creatures evolved

to be better hunters of other creatures. In this implementation successful hunters

were rewarded with the opportunity to breed, replacing a consumed creature with

one that was (possibly) a mutation of the successful hunter. In my implementation

successful hunters are rewarded by acquiring the energy of the consumed creatures

which may then be used for survival and breeding, both of which are behaviours
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that consume energy. In general successful sticky feet hunters are relatively small

creatures.
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Regardless of the size of the creature it must manouevre a mouth onto the heart

of the hunted creature and this takes much more energy for a larger creature, simply

because dragging around the potentially heavy feet of a larger creatures takes more

energy.

A second way of making a living is to evolve a phenotype that is large and hence

soaks up a large amount of energy from the world as it is exposed to more of the

world’s energy flux. If this mode of life is used it makes little sense to waste energy

scuttling around and a successful creature could adopt a purely sessile way of life.

I tested the hypothesis by running energetic sticky feet simulations for a range of

flux levels, measuring a key characteristic of the evolved creatures as the simulation

progressed. In order to provide some sort of experimental control I also developed

a variant of the simulation which did not use the energy model. Rather, this works

in the same manner as the original implementation with a single reproduction being

possible whenever a creature consumed another. That is, in this version of the

simulation a constant population size is maintained in the same manner as in Turk’s

original implementation.

8.3.1 Energetic sticky feet implementation

Here I describe the important aspects of the energetic sticky feet implementation.

The implementation follows the general guidelines established by the metamodel

but is necessarily specific in several ways. Further, it follows the general pattern

of the experimental platform described in chapter 5 although the actual code was

largely re-implemented due to the rather different characteristics of the evolutionary

context.

Body parts

The creatures in the model follow the metamodel in that each creature has a number

of parts and a number of behaviours. The specific body parts are feet and segments.

Following Turk [Tur10]: a foot is a point mass with a particular, and modulatable,

coefficient of friction.

The equations that govern the forces that the springs exert on the feet are those

of a damped spring. In order to provide control of the sticky feet creature the rest
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length of the spring is modulated with respect to the phase of the creature. That

is, each segment changes its rest length sinusoidally with the phase of the creature.

Each spring has a strength, which affects how hard it “pushes” on the feet—and

how much it will compress when pushed on by other parts of the creature—and its

motion is damped by the effects of a damping coefficient.

The feet themselves appear in three varieties. The basic ones are augmented

with special variants, representing a heart, and a mouth. The heart represents the

“essence” of a creature. When one creature’s mouth gets close to the heart of an-

other creature then the former may ‘eat’ the latter (assuming that the former creature

is expressing the ‘eating’ behaviour).

Each foot has a coefficient of friction which determines how it slips in the cur-

rent world, this takes into account the specific coefficient of friction of the region of

the world.

The movement of the creatures in the world depends on the creature’s feet slip-

ping in the world in a manner that is modulated by the coefficient of friction of

the feet. In order to coordinate this, each creature has at any point in time a phase,

varying between 0 and 2π, describing where it is with respect to the overall phase of

the simulation. The coefficient of friction of each foot is varied by a Phaser object

that is attached to each foot. This object modulates the coefficient of friction of the

foot in a manner that varies in synchronisation with the creature phase, although

with a predefined lead or lag. So, for example, one foot might have its coefficient

of friction varied in phase with the creature phase, another’s might vary π/2 radians

behind the creature’s phase.

Because the different feet of a creature vary their coefficient of friction differ-

ently it is possible for a creature to move around the world; at one point the feet at

the “front” of the creature might slide across the floor with little resistance, later in

the cycle of movement the front feet might stick to the floor and the “rear” feet are

easily dragged across the surface closer to the front feet.

As a consequence, the creatures appear to “walk” across the simulated world.

Each segment may optionally have an attached sensor as shown in figure 8.7,

which senses the position of other creatures. A sensor may sense either the heart or

the mouth of another creature and, when it does because it comes in range of that

part, may perturb the oscillation of its attached segment by systematically modify-
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Figure 8.7: Sticky feet creature with sensors. The sensors are the red dots, attached
to the indicated segments.

ing the rest length of that segment. In this manner the sensors may allow a creature

to turn towards prey, or away from a predator.

Behaviours

The overall behaviour of each creature is represented by attaching a collection of

individual behaviours to the creature. Each of these acts in a manner reminiscent

of the Command pattern [GHJV95], and applies itself if it determines that the time

is appropriate. Every behaviour demands energy, which must be provided by the

owner of the behaviour. If the owner cannot supply the energy then the creature

dies: it has exhausted its energy supplies.

The energetic sticky feet implementation does not implement the waste product

component of the metamodel. Consequently, when a creature dies, it just disappears

from the simulation, taking with it any residual energy.

The behaviours available to a sticky creature are as follows:

Sitting The ‘null’ behaviour that all creatures must express. This behaviour forces

a creature to continually consume energy. The amount of energy consumed

is a function of the complexity of the creature’s phenotype; a larger, more

complex, creature requires more energy just to sit in one place compared to a

small, simple, creature.
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Walking The behaviour that expresses the mode of walking explored by Turk

[Tur10], by oscillation of the creature’s segments. The size of the energy

requirement is proportional to the friction against which work is done by the

springs.

Eating The behaviour that allows a creature to look to see if any other creature’s

heart is in the vicinity of one of its mouths. If so, the former creature may ‘eat’

the latter. This adds to the eating creature’s energy stores all of the energy of

the eaten creature. The eaten creature is removed from the simulation.

Reproducing The behaviour that allows a creature to create offspring, with a genome

that is a mutation of the single parent’s genome. At each simulation step there

is a probability, encoded in the genome, that a creature may express this be-

haviour. Energy costs are allocated to all the components of the phenotype,

and a check is made that the parent has sufficient energy to construct the child

organism. If so, and the child organism is deemed to be viable, then it is cre-

ated and the energy store of the parent is shared equally between the parent

and the child.

The new creature has just the one parent. That is, there is no opportunity for

mixing the genomes of two parents as can occur in the biological world.

Morphogenesis The behaviour that is followed to construct the phenotype of a new

organism from the genome generated by, optionally, mutating the genome of

the organism’s parent. This differs from the Reproducing behaviour in that

it is responsible for building the phenotype of the organism from its genome

whereas the reproducing behaviour creates the new organism’s genome.

Assimilating The behaviour that allows an organism to gather energy directly from

the flux in the current world. The amount of energy available is determined by

the flux applied to the region of the world that the creature is inhabiting, and

by the physical size of the creature. A larger creature, in the same manner as

a large tree, can extract more energy from the flux, but needs correspondingly

more energy to construct and maintain the larger phenotype.
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Gene

id : int

mutatedCopy( id ) : Gene
populate( target : Creature )

SensorGene

mutatedCopy( id ) : Gene
populate( target : Creature )

CreatureGene

mutatedCopy( id ) : Gene
populate( target : Creature )

FootGene

mutatedCopy( id ) : Gene
populate( target : Creature )

SegmentGene

mutatedCopy( id ) : Gene
populate( target : Creature )

BehaviourGene

mutatedCopy( id ) : Gene
populate( target : Creature )

Genotype

genes

*

1

Figure 8.8: Energetic sticky feet genome structure.

Mutation and morphogenesis

In order to achieve the goal of evolving suitable behaviour for the available energy

flux it is necessary to implement an approach to generating an offspring’s genome

as, possibly, some sort of mutation of the parents’ genomes. Here I describe the

approach taken in my implementation.

The implementation of the creatures’ genomes follows the diagram in figure 8.8.

Each genome is, a sequence of genes each of which has a simple relationship

with a part of the phenotype, either a physical part of the creature or a component

of its behaviour.

Unlike Turk [Tur10] the model code does not express the notion of a ‘species’

in any way. Rather, each organism just has its own genome; even though it is likely

that many other creatures have the exact same genome no use of this is made in any

part of the simulation code.

Following Turk’s lead I implemented two general forms of mutation. One of

these is the modification of the various parameters that apply to each component.

For example this allows the position of the creature’s feet, the stiffness of the springs

in the segments, and the probability that a creature will attempt to express the re-

producing behaviour at any particular point in time to be varied.

The second form of mutation represents structural modifications of the pheno-

type. Specifically, these modifications may be performed:

• adding feet or segments,
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• removing feet or segments,

• adding a sensor to a segment and

• modifying a segment so as to connect to a different foot.

A possible result of one or more of these mutations is that the eventual creature

does not form a viable phenotype. For example, it is possible to generate a genome

that implies a phenotype where the feet and segments are not connected as a sin-

gle structure, or where a creature does not have a heart. I chose to declare these

mutations non-viable, and to terminate the current cycle of reproduction when they

occur.

Even if a mutation represents a viable creature, it is possible that the resulting

creature cannot be incorporated into the current simulation world. Although in

general the simulation allows creatures to crawl over the top of each other, unless

one creature’s mouth happens upon another’s heart when the latter is consumed, I

chose to disallow creatures to overlap upon initial creation so as to prevent the world

becoming overcrowded. This, again, follows Turk’s original implementation and,

in the same manner as Turk my simulation attempts to find a place where the new

creature will fit when it is created. In a manner different from Turk, who creates new

creatures at a random location in the simulation space, my simulation attempts to

place the new creature at a location that is in the region of its parent. This change is

because the meta-model of the World allows the simulation space to include regions

of different energy flux and regions with restricted connectivity. In such a situation

creating progeny in a different region would not allow an adapted population to

emerge in an isolated region. If no suitable location can be found then the current

cycle of reproduction is, again, terminated.

This means, of course, that the simulation is essentially two dimensional in

nature.

Viable creatures are created at a point in the simulation space that is local to their

parent and also within the same Region as the parent. The simulations whose results

are described below do not include worlds with multiple regions so this restriction

does not, as yet, have any effect.



144 CHAPTER 8. EVOLUTION WITHIN AN ENVIRONMENT

8.4 Implementation

The energetic sticky feet implementation follows closely the model shown in fig-

ure 8.6. The implementation is written in pure Java and uses the same environment

oriented approach to represent the interaction of many creatures in a multi-threaded

implementation. The implementation follows the same route as that discussed in

chapter 6. In particular:

• Each sticky-feet creature exists within environments with which it exclusively

communicates.

• One environment is analogous to the ProximityEnvironment seen earlier and

provides the creature with information that its sensors and its mouths are able

to interpret.

• A further environment represents the energy flux in the region in which the

creature finds itself.

• The creatures behave by placing states in the environment and, as before, are

provided with a Neighbourhood of information about their locality.

In this case the world is two dimensional with cyclic boundary conditions. As

might be expected, though, the creatures know nothing of the shape of the world,

that is represented in the environments. Each creature exists at a particular position

in the world which is the position of its heart. The other parts of the creature are

positioned relatively with respect to the origin, the heart, of the creature.

I produced two versions of the simulation. One has a graphical user interface

and a view of this is shown in figure 8.9. The other implementation has a command

line interface and runs without user interaction; this version being constructed so

that a number of experiments could be run without the overhead of a user interface.

Both versions have a built-in logging mechanism, following the structure discussed

in section 5.2.2. This mechanism creates a (very large) log file describing various

characteristics of the creatures and their lives within the simulation. This log file

includes information about birth and death of creatures, where the creatures move to

in each simulation step, the area of the creatures and their stored energy levels. The

statistical data that is shown later in this chapter is derived by post-processing this
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Figure 8.9: User interface of graphical version of energetic sticky feet implementa-
tion.

log file so as to get summary information about particular characteristics of each

creature in a simulation.

Of particular importance here is the area of the creatures as it is this attribute that

determines how much energy a creature receives from the available energy flux.

The area is calculated by examining the positions of the creature’s feet. Firstly,

the feet that have only a single connected segment are ignored as they represent

“whiskers” which just project from the creature. This process is repeated so that

chains of single feet are removed. The remaining feet positions are used as the

vertices of an irregular polygon whose area is then calculated (following [Res]).

This process is outlined in figure 8.10. A creature that was two feet connected by a

single segment (a frequently occurring shape) would have area = 0 and would not

receive any energy from the world’s flux. Although, of course, it might be able to

survive by consuming other creatures. In situations where creatures overlap, and in

particular where the energy absorbing polygons overlap, the flux is shared between

those creatures.

Each run of the simulation takes a large number of parameters, some of which

are directed by controls on the graphical user interface in figure 8.9. These param-
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A

C
B

Figure 8.10: A sticky feet creature whose area is calculated. The algorithm used cal-
culates just the area of the triangle ABC; feet with only a single connected segment
are elided.

eters, a complete list of which appears in section 8.6, include:

• the level of the energy flux in the world,

• the number of creatures with which the simulation is seeded,

• the various energy levels that characterise the construction energy for the parts

of the creatures’ bodies and

• the mutation rate.

8.4.1 Creature seeding

I chose to initialise the simulation with a defined number of creatures, each of which

carries a randomly (Gaussian) distributed amount of energy and which shares a

common genome with all other initial creatures. The number of initial creatures is

important because each creature is an energy store that is available for consump-

tion (assuming that the creature hasn’t wasted all its energy by scuttling around the

world) by other creatures. That is, with a single initial creature a very high level

of energy flux would be needed to ensure that that creature stayed alive, and repro-

duced sufficiently, in order to generate a longer-lived population of other creatures.

This very high flux would essentially make life too easy in the simulation and the
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Figure 8.11: Initial seed creatures. The sensors are shown here as disconnected
white dots.

population would, and indeed does in experiments, grow until the world is crammed

with creatures and little new reproduction is possible.

A number of the initial creatures, then, are essentially there to act as food for

other creatures. Unlike Turk’s implementation, though, where many initial creatures

are frozen in position to act as tethered targets for hunting, all the initial creatures

are identical and move around the world in exactly the same general manner as all

other creatures. In Turk’s implementation the tethered creatures are provided in

order to allow mutation and evolution to commence (in his case reproduction only

occurs when another creature is consumed).

The specific creatures that are seeded all have a copy of the same genome, which

is that of the triangular creatures seen on the display in figure 8.9. A detailed view

of some of the initial creatures can be seen in figure 8.11.

8.4.2 Evolved creatures

As a simulation proceeds the creatures evolve in form and size. A typical collection

of creatures after a period of evolution is shown in figure 8.12. These particular

creatures appear very frequently in simulations, so much so that I gave them names.
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Figure 8.12: Some example evolved creatures; the filled circle is the heart, the open
circles are mouths. The size of the blob drawn for the feet is derived from the mass
of the foot. From left to right these are: a) the initial ‘seed’ creature; b) the ‘manta
ray’, only a few mutations away from the seed; this creature has two mouths; c) the
‘killer’, large and fast; d) the ‘multimouth’, with lots of mouths that stab outwards;
e) the ‘spiky’, with lots of mouths but little area.

There are a large number of parameters to the sticky feet simulations.

Initial experiments with the implementation show that careful setting of these

parameters is necessary in order to allow the creatures to survive. In particular, it is

very easy to set the parameters so that there is insufficient energy in the world for a

population of creatures to survive; even though they can mutate to take advantage

of their world they run out of time in which to do so. This is in some ways perhaps a

consequence of the approach of seeding the world with a collection of fully formed

creatures with significant energy demands.

8.5 Experimentation

In order to compare the simulations with something more representative of Turk’s

implementation [Tur10], that is an “energy-less” implementation, I needed a way

of ‘turning off’ the energy model. That is, I needed to be able to run simulations

in a manner that is not constrained by the availability of energy. In Turk’s imple-

mentation the simulation has a fixed size population. This is a consequence of each

creature reproducing once only when it consumes another. In this manner, the crea-

tures can evolve without over-running the simulation world into complete chaos.

In a similar manner, I coded the energetic simulation to include an “uncon-

strained energy” option where the creatures function exactly as they do in the en-

ergetic world except that the demand of all behaviours is set to zero, so no energy
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is ever consumed, and the reproducing behaviour is only available, and indeed is

forced, in the situation where the eating behaviour has been invoked. This has the

effect of creating a fixed-population simulation1 of a form similar to Turk’s.

The differences between the implementation of the ‘energetic’ and ‘unconstrained’

variants of the simulation are minor. Hence, I can be sure that measured differences

in the results of the simulations are a consequence of the inclusion, or exclusion, of

the energy model.

In order to track the development of creatures as they evolve I use a notion of

mutation distance in the experiments. As discussed I have no specific notion of

‘species’ in the implementation. Rather, each creature has its own genome, which

has a mutation distance from the original genome of the seed creatures. All of

these creatures have a copy of the same genome, which has mutation distance = 0.

Whenever a creature reproduces it may also mutate the genome which is passed on

to the child creature. The likelihood of allowing such a mutation is one of the simu-

lation’s parameters. After this mutation, following the process described earlier, the

implementation compares the resulting genome with the initial genome. If they are

different (they might not be because of the random nature of choosing whether to

adopt specific mutations) and the genome represents a viable creature, then that new

genome’s mutation distance is incremented. If the mutation process does not yield a

different genome then the child creature carries a copy of the parent’s genome with

the same mutation distance. It would be possible for a mutated genome to yield

exactly the same genome as one that had previously existed, essentially reversing

a set of mutations. The implementation makes no attempt at tracking such things,

whose probability of appearance is very small.

In this manner every creature has a mutation distance, and this is part of the

experimental results. There is not a simple relationship between time and mutation

distance; it is possible, although unlikely, for example, for a creature with mutation

distance 150 to co-exist in a simulation with another of mutation distance 0. The

latter creature could have survived from the outset—the creatures do not die of

old age—or it could be the end result of a series of reproductions that involved no

mutations.

1Albeit on occasion a new creature cannot be ‘fitted in’ to the existing simulation, in which case
reproduction is delayed until space is available.
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8.5.1 Hypotheses

The direction of my experimentation was towards investigating two hypotheses.

Firstly, the creatures evolving in the context of an energy model should do so in

a manner that is measurably different from that which applies in a ‘unconstrained

energy’ world. That is, the energy model, which is a richer model for the complex

system, should be having some effect.

Secondly, the presence of the energy model creates a wider range of ways of the

sticky feet creatures “making a living”. For example, a creature could survive by

eating other creatures, or it could survive by growing large enough to acquire suffi-

cient energy from the regional flux. Such a mode of life could be further enhanced

by abandoning movement as that could be seen as wasting precious energy. Hence,

I hypothesise that when evolving in the presence of an energy model the sticky feet

creatures will appear in a wider range of sizes during their evolution than happens

in an ‘unconstrained energy’ world.

Similar hypotheses could be expressed about other physical aspects of the crea-

tures such as their speed of movement. In the discussion that follows, though, I just

look at the size of the creatures.

8.6 Simulation parameters

It is in the nature of complex systems simulations that there are a large number

of parameters, which frequently have a profound effect on the results of the sim-

ulations. The main parameters affecting the results of the simulations performed

here were as follows. In many cases following initial experimentation the values

of these parameters were fixed for subsequent experiments and, in particular, the

experiments that led to the results to be described in section 8.7.

Energetic a boolean parameter determining whether the simulation used the energy

model or was the control no-energy version.

NumCreatures the number of creatures with which the simulation was seeded. All

initial creatures matched the simple triangular creatures seen in figure 8.9.

After initial experimentation this parameter was always set to 200.
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Flux the level of the energy flux in the world. This was in many ways the key

variable parameter.

MouthEnergy the amount of energy needed to construct a mouth part of a creature.

After experimentation this was set to 6000 units, quite a large number because

there is an advantage to a creature having many mouths.

HeartEnergy the amount of energy needed to construct the creature’s heart. Set to

3000 units in all experiments described here.

FootEnergy the amount of energy needed to construct a foot that is not a mouth or

heart. Set to 2000 units.

SegmentEnergy this parameter allows the energy needed to construct a segment

to be calculated. The actual energy needed for a segment is calculated as

FootEnergy ∗ length2
segment, the rationale being that the area of the creature

will be proportional to the square of the lengths of the segments. Hence, if

there are two creatures of similar shape but with one having longer segments,

then that creature will consume more energy in construction.

SensorEnergy the energy needed to construct a sensor, set to 2000 in all simula-

tions.

BehaviourEnergy the energy needed to construct a behaviour, set to 2000 in all

simulations.

WorldSize the length of one rotation around the world, which has periodic bound-

ary conditions.

FrictionEnergy a parameter that is proportional to the energy needed to overcome

the friction of the feet sliding across the world; a critical parameter as small

changes have a large effect on the amount of energy consumed by just moving

around. After experimentation this was set to 0.13.

MutationRate the probability that a reproduction behaviour will attempt to mutate

the parent organism’s genome. Set to 0.10 in all experiments.

NormalMu the “normal” value for the coefficient of friction in the world.
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ViscousDamping the viscous damping parameter kd.

MouthRange the distance a mouth has to be from a heart in order to be allowed to

eat the latter creature.

SensorModulation the amount that a sensor modulates the length of its attached

segment.

FootMutationProbability if a reproduction behaviour is mutating the genome,

this is the probability that a foot will be mutated.

BehaviourMutationProbability if a reproduction behaviour is mutating the genome,

this is the probability that a behaviour will be mutated.

SegmentMutationProbability if a reproduction behaviour is mutating the genome,

this is the probability that a segment will be mutated.

PhaserMutationProbability if a reproduction behaviour is mutating the genome,

this is the probability that a phaser will be mutated.

FootMutationProbability if a reproduction behaviour is mutating the genome,

this is the probability that a foot will be mutated.

FluxTakeup the parameter that allows the flux takeup of a particular area of crea-

ture to be calculated.

8.7 Results

8.7.1 Initial observations

The results summarised here are collected from a number of simulation runs where

the runs were logged in the manner already described. Each such simulation is

potentially very lengthy. In some circumstances, as will be seen typically when the

energy flux is too low to sustain existence, all the creatures in the simulation die

out relatively quickly. In other cases the simulation carries on effectively for ever.

Creatures are born and die, both by running out of energy and by being consumed,

but the simulation can still persist.
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In total, I ran 500 separate simulations, varying the energy level. In addition I

ran 50 simulations of the “no energy” variant, which essentially provide the exper-

imental control. In all cases the experiments were terminated after 200 mutation

steps; my experience was that after this point, assuming that the creatures hadn’t

died out, that the simulation had settled down into a typical mode of existence and

no significant change occurred subsequently.

In the process of running these simulations, I captured over 100Gb of logging

data.

Each simulation, of course, encompasses the lives of a potentially large number

of creatures. Over all simulations the experimental results describe the lives of just

over 1 million creatures.

Even early on in the experimental process it was clear that the energy flux had

a significant effect on the simulations. At low energy levels the creatures rapidly

died out. Only 44,000 creatures ever existed in simulations at an energy flux of 30

units, the figure at a flux of 80 units is 350,000 in comparison. At high energy levels

there were also relatively few creatures in the simulations. At 150 units only 3,500

creatures ever existed. In this case the reason is because they could just live for

ever; they tended to rapidly evolve sessile behaviour at which point they just sat in

one place and tried to reproduce as much as possible.

8.7.2 Diversity measure

The hypothesis I was looking to demonstrate relates to the diversity of the popula-

tion. There are a number of ways of measuring this and I chose a relatively simple

one, nonetheless one that from experience is closely related to the success of the

energetic sticky-feet organisms. The measure was the area of the creatures, as cal-

culated to determine the flux takeup of the creatures and which was logged in the

simulation files. I processed the simulation file to extract a simple summary of the

entire life of each creature. As part of this summary I calculated the mean area

(over time) of the creature. The rationale for using the mean is that the area of each

creature varies in a cyclic pattern as it moves around the world. Furthermore, the

area at its birth is often different from that which predominates over its life as each

creature often “unfolds” to some extent after its birth as the strength of the springs
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in the segments overrides that of the initial positions of the feet.

These mean areas were then used for subsequent calculations. In particular

I calculated the way that the mean areas changed for creatures as their mutation

distance from the initial creatures increased at various different energy levels.

8.7.3 Results

A single summary of all this data is shown in figure 8.13. This figure shows a plot of

the inter-quartile range of the sizes, that is the areas, of the population of creatures

as it changes with the genome mutation distance. This figure includes data for three

different configurations: the unconstrained ‘control’ situation, one with a single

energy flux of 80 (arbitrary) energy units, and one with an energy flux of 100 units.

Data for this plot are taken from a total of over 80 separate simulation runs and

summarise the simulated lives of over 500,000 energetic sticky feet creatures.

I have chosen these particular energy levels based on experience running the

simulations. Below an energy flux of 80 units it is invariably the case that the pop-

ulation of creatures dies out. For example, in all the experimental data no creature

has existed in a simulation with a flux of 70 with a higher mutation distance than

94. At a flux of 50, I have seen nothing beyond mutation distance 73. That is, at

this low energy flux then eventually the creatures die out. That they live as long as

they do is because there are effectively two energy sources in the short term: the

world’s energy flux and the energy stores that are represented by the seed creatures.

Once the seed creature energy has been used up, the remaining creatures cannot sur-

vive with the world’s energy flux; if there is not enough of this, then the population

disappears.

Looking to the figure, and concentrating at first on the no energy model, it can

be seen that the creatures in these simulations initially explore a range of sizes from

roughly 200 to 1000 units. However, as the simulations progress and the creatures

continue to evolve, the range of sizes reduces until eventually there is little diversity

in the population with all the creatures sitting around a size of 200 units.

In contrast, both the plots using energy show a much larger range of sizes

throughout their history. At the end of the simulations, the range of sizes (from

first quartile to third quartile) of the creatures in the flux = 100 simulations is
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around 1300 units. For the flux = 80 population the size of the IQR at a mutation

distance of 200 rises to around 1900 units.
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So, from this summary of that data it is clear that there is indeed a distinct differ-

ence in the “with energy” and the “no energy” simulations. Secondly, that difference

is indeed manifested in a greater diversity in the population. At the flux = 80 level,

the inter-quartile range of the creature sizes at the start of the simulation is from 750

to 760 units. This population is entirely the initial seed creatures; the only reason for

any variation at all is the way the sizes of the creatures changes as they move around.

At mutation distance 200, the equivalent range is 282–2165 units, a roughly 7-fold

size range; the first quartile is actually smaller than the initial population whereas

the third quartile is about 3 times the size of of the initial creatures.

8.7.4 A sweet spot

Experience with the experiments, along with observation of the results shown here,

leads to a further hypothesis. This is driven by the observation, seen in figure 8.13,

that at energy = 100 there is a lower population diversity than at energy = 80. As

I know that at lower energy levels the populations of sticky feet creatures usually

die out I hypothesise that there is a critical energy flux density, in a set of sim-

ulations with otherwise consistent parameters, that generates creature populations

of the widest diversity. This hypothesis essentially states that at low energy levels

there is insufficient energy for populations to survive and hence they die out before

generating significant diversity; at higher energy levels it becomes easier and easier

to make a living, all the way up to the unconstrained world.

In order to summarise this I chose a single statistic to represent diversity of

simulations with a particular energy flux, and looked to see if it varies in the hy-

pothesised manner. The statistic I used is the distribution of the interquartile range

of the creatures sizes across all energy levels. Figure 8.14 is therefore a box plot

of the interquartile range (IQR) of sizes of creatures over all mutation distances.

Each box therefore summarises the distribution seen in the interquartile range of

the sizes of the population at a particular energy level. In figure 8.14, the median

represents the median IQR of sizes over mutation distance at a particular energy

flux (the median size of the bars in figure 8.13): the larger the median, the larger the

range of sizes, hence the greater the diversity. In figure 8.14, the IQR represents the

variation in the IQR of sizes over mutation distance at a particular energy flux (the
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Figure 8.14: Box plot of inter-quartile ranges of creature sizes at various energy
levels. Each box shows the distribution of inter-quartile ranges of creature size at a
particular energy level. Energy 0 is the unconstrained case.
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range of sizes of the bars in figure 8.13): the larger the IQR in figure 8.14, the larger

the range of range of sizes, hence the greater the range of diversity. Observation

of figure 8.14 does indeed show the hypothesised characteristic of a critical energy

flux with maximum diversity which appears to be at 80 units.

8.8 Discussion

The role of this chapter, as I discussed at its start, is essentially two fold. Firstly

to extend environment orientation to a non-trivial simulation context and, secondly,

to experimentally investigate specific hypotheses in that context. I discuss these

separately.

8.8.1 Open-ended evolution

The hypotheses that I have discussed are supported by the experimental results I

have included. Specifically, the results seen when running the ‘energetic’ simula-

tions show a more diverse range of creatures being produced than in similar “un-

constrained energy” situations. Furthermore, there is a critical energy level that

supports the widest diversity. At lower energies we see less diverse populations that

soon die out as life is too hard in a cold world; at higher energies, and the uncon-

strained case, we see less diverse populations that nonetheless persist because life

has become easy.

The critical energy level is the point between a low energy world where eating

other creatures is a necessity of life, but nevertheless there is not enough influx

of energy to survive, and a high energy world where there is little evolutionary

pressure, and sessile behaviour is common.

At the start of this chapter I described the notion of open-ended evolution and

how the simulations described here were experimenting with this notion in the con-

text of an environment that itself had a strong effect on the simulation as well as

being the mechanism for inter-agent action. However, visual inspection of the sim-

ulations make it painfully clear that although the simulations generate creatures

with a wide range of sizes and structures they are still recognisably the same sort of

thing: variations on a theme of feet and springs (figure 8.12). That is, it is not really
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doing that which was discussed in section 8.1.1: continually generating new forms.

The end result is interesting but does not compare with biological evolution and the

vast range of forms and structures that we see there.

Nor could it do so.

These simulations could never generate such a range of structures because the

creatures’ representation, morphogenesis and mutation operators are fixed, even

though the various probabilities of their application and effect may change. That is,

although I have a general notion of the sorts of energy and its place in the world,

and this is encoded in the metamodel, there is not a similar notion of a range of

organisms. Therefore, the evolution being explored here is not fully open-ended.

Although there is indeed no fitness function, the creatures just exist and compete

to survive in a world, they can never generate any genuinely different creatures. In

order to do that a more abstract description of evolution would be required.

Nonetheless, the metamodel summarises the essential components of an energy-

rich world which is a basic feature of real world evolution, and also of artificial

life. With the guidance of the metamodel, whose elucidation was a key aspect

to seeing the way into the structure of the simulations themselves, environment

oriented simulations can indeed generate something that approximates some aspects

of life, albeit artificially.

Creatures in this world exist in an environment which is their way of interacting

with the world and other creatures as in other environment oriented simulations.

Furthermore, that environment itself provides important aspects for the creatures’

continuing existence: the energy to survive. Application of this metamodel in even

a simple manner yields more complex, more interesting, results than is the case in

an unconstrained world.

8.8.2 Environment oriented simulation

As before, the simulation in this chapter is constructed in an environment oriented

manner. The specific implementation here, though is rather more complex due to

way it is built up from a separate models of parts of the simulation domain; specifi-

cally the energy, world and organism meta-models. The relationships between these

meta-models are explicit and implemented in the model built of the simulation im-
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plementation.

The meta-model/model implementation relationship is, here, elaborated by hand.

Even so, constructing the explicit meta-models is useful, and was the first part of

this chapter’s work to be completed, as it defines the sort of world that is being sim-

ulated. Here, that definition is useful because the original motivation was, indeed, to

scope the sorts of issues that would be relevant in the simulation of an “energy-rich”

world.

The ultimate implementation follows the model so constructed, using much of

the simulation platform described in chapter 5 and extended in chapters 6 and 7.

The underlying implementation, though, remains the same and the consequences

are the same. In this case a large number of creatures evolve within a complicated

environment, interacting with each other, without any need to address the issues of

deadlock other than to to serialise updates to the underlying repository. As before,

this interaction is not done directly. Rather, each creature interacts purely with the

environments within which it exists. In those environments, in the same manner as

I discussed originally in section 3.2 as the motivation for this work, the sticky feet

creatures find information about the other creatures that share the environment and

also the energy that feeds their continued existence. Again, because the interactions

are all simply between the creatures and their environments deadlocks do not occur

as long as transactions are serialised at the one point where this is the possibility of

contention, at the underlying repository itself.

In essence, the architecture used and discussed in the rest of this thesis is a

simple and elegant one allowing simulations of complex systems with a very large

number of agents in a complicated world to be effectively completed. The experi-

ments in this chapter, and previous ones, demonstrate that that is the case.





Chapter 9

Summary and conclusions

In this final chapter I revisit the contents of earlier chapters and discuss the avenues

for future work.

9.1 Origins

The genesis of the work in this thesis was the work on “BlobWorld” described

in chapter 2. Alexander’s work discussed here is not specifically framed in the

context of complex systems but it is clear from his published work, in particular

[Ale04], that his notions of development of the built environment are very much

those of independent agents coordinating, and competing, within physical, social

and commercial environments.

The BlobWorld software is intended to support investigation into algorithms that

produce structures that display some of Alexander’s properties. The original inten-

tion here was to perform a large scale experiment looking to see if experimental

subjects shared a subjective interpretation of various patterns that matched Alexan-

der’s concepts and which he explored in his various architectural projects. This did

not turn out to be possible for various personal reasons. Nonetheless it is still an

interesting concept; whenever I return to the diagrams in chapter 2 I am struck by

the coherence of some of them.

Even without the experience of carrying out this experimentation the BlobWorld

software, in particular for an interactive user, vividly creates a notion of independent
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entities juxtaposed, competing and collaborating, in a space. These concepts, and

discussions with co-workers, led directly to the concept of environment orientation

discussed in chapter 3.

In addition to the BlobWorld experiment discussed above it would be intriguing

to return to the design of the software itself and to re-address it from an explic-

itly environment oriented point of view. It would be quite feasible to do this with

the environment orientation experimental platform first described in chapter 5. The

most appealing such implementation would lose the purely serialised approach of

the original design and replace it with a concurrent one where the blobs exist within

the fields due to other blobs, and other parts of the environment such as the phys-

ical geography. In such an implementation the blobs would try to optimise their

individual positions; the interesting aspect is whether the overall view of all those

positions would amount to a structure that displayed the concepts Alexander dis-

cusses and labels, rather enigmatically, as “wholeness”. That does, though, lead

back to the necessity of a subjective view.

9.2 Environment Orientation

Environment Orientation as has been discussed, is an approach to the construction

of computer based complex systems simulations based on the argument that agents

in a complex system are not directly communicating with each other but through the

medium of some environment and specifically the fields within that environment be

they electromagnetic, aural, chemical or something else. In such a simulation the

agents are regarded as placing information into the environment as a description of

themselves for other agents to observe, and observing other agents by inspecting

what the environment itself regards as their neighbourhood.

Agents in complex systems can always be regarded as interacting entirely with

their environments even though that is just way of describing inter-agent communi-

cation. Similarly a complex systems simulation can be approached by constructing

the sort of simulation described in this thesis.

Furthermore, the notion of an agent existing simultaneously in multiple envi-

ronments, and consequently multiple fields with quite separate characteristics, is

realistic. Implementing this aspect is harder, specifically because the fields are po-
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tentially orthogonal, but submits to the sort of approach used in control systems

implementations, as discussed in chapter 7. Again, not surprising because the ob-

servations used in a control system are frequently made of variable values from

different fields.

9.3 Concurrency

Building an explicitly environment oriented simulation is immediately appealing

because it offers the hope of being able to build such simulations with only slight

consideration paid to concurrency control. Approaching such a simulation from the

point of view of the agents, and the communication between the agents, inevitably

leads to concurrency management being the major issue in the implementation. As

the number of agents in such a simulation grows the management of that concur-

rency becomes a huge problem.

This would not be the case if a simulation could run single-threaded. However,

any large scale simulation will have to use a multi-threaded implementation to have

any chance of provding the amount of computational power required for a simula-

tion that would ideally support a very large number of agents. However, the number

of threads (or indeed processes) will not approach the number of agents in a realis-

tic simulation. Even things like the massive SpiNNaker project [PFT+07], which is

aiming to simulate complex neural networks, is aiming to support many thousands

or even millions of agents (in this case neurons) with a single processor core.

The requirement for concurrency is ultimately because a large number of sep-

arate agents are sharing the same computational platform and this will continue to

be the case for the foreseeable future.

As soon as an implementation is multi-threaded there is the possibility of dead-

lock as those threads must necessarily interact with each other, especially in the

simulation of a complex system which is inherently about collaboration between

the many agents in the system. The difficulties in using concurrent programming

are well known and a large collection of mechanisms have been developed [Han77,

Sam10] with which to manage them. Environment orientation is essentially another

such technique, albeit one that is based on the observations of agent interaction in

complex systems where it can be argued, as discussed in chapter 3, that any indi-
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vidual agent is only interacting with its environment rather than directly with other

agents. Environment orientation uses one of the standard techniques for control

of concurrency to serialise interactions with the environment itself thereby guaran-

teeing freedom from deadlock. Usefully, the particular such technique used in the

simulation platform is that supported directly by the programming language in use.

Building environment oriented complex systems simulations is feasible, as I

have shown in this thesis; such simulations continue to expose the expected emer-

gent properties and their implementation is simplified by computational techniques

developed in commercial computing in contexts that are in many ways similar to

complex systems. For example, financial instrument trading systems include large

numbers of agents spread around the globe who are interacting with the system,

placing orders and interrogating the system to determine the current state of the

market which is in itself influenced by those same orders. The sorts of computa-

tional structures developed for these systems bear some similarities to those I have

proposed here although, of course, the number of agents in a complex systems sim-

ulation potentially outstrips anything found in this sort of context.

However, the example environment oriented simulations discussed in this the-

sis, and in particular the subject of the experiments described in chapters 6, 7 and 8

share a common over-simplification in that they have all worked with a single pro-

cessor, albeit one with between 2 and 8 cores depending on the particular machine

in use at the time. In such a situation it was reasonable to delegate the concurrency

control that is necessary, specifically that around updates of the state repository, to a

simple mechanism such as the Java synchronized keyword. A large scale environ-

ment oriented simulation would necessarily include many processor cores in many

separate processors. Only some of those processors would be sharing memory and

able to communicate quickly via that memory.

In such a context the underlying state repository would have to be implemented

in some way that it is shared between the various processor address spaces. In com-

mercial situations this is commonly resolved by the use of an underlying database

management system; even though computations are carried out in the application

level processors their results are persisted to the underlying database for access by

any other part of the system. This is the basic approach of modern stateless com-

puting and the common patterns such as REST [FT02].
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9.4 Performance

The inevitable concern, though, is performance which rears its ugly head in such

a context: certainly in commercial computing and inevitably in a complex systems

simulation. There are, though, some immediately apparent approaches to attack-

ing this issue. I describe these here, although at this point I am discussing what

might be, rather than what I have actually done in the context of complex systems

simulations.

9.4.1 Repository caching

Commercial systems address the performance requirements of such a distributed

system in several ways, some of which seem at first sight to be relevant to com-

plex systems simulations. One approach is to observe that any particular piece of

information, characterised in the complex systems simulation context as an agent’s

external state, is read much more often that it is written. In the context of a query

oriented bird flocking simulation a bird agent will update its state at each simula-

tion step but that information will potentially be read by many other agents before

it is next updated. All of the agents in the neighbourhood of the original will be

interested in this state and the environment server would have to inspect the state.

As such, this information is ripe for local caching, in a manner illustrated diagram-

matically in figure 9.1.

In this situation when one agent requires to see the states for agents in its locality

(which of course may not simply be a spatial locality) it retrieves these via the envi-

ronment. If the environment server, which must be implemented in each processor,

can find the required states in the local cache then they can be processed rapidly;

typically a local cache would be an in-memory implementation. If some states are

not found in the cache then they must be retrieved from the central repository, per-

sisting them in the local cache on the way past; if they’re needed once there is a

high probability that they’re going to be needed again. This process is illustrated by

the sequence diagram in figure 9.2.

This apparently simple process is, inevitably, complicated by issues such as

those discussed here:



168 CHAPTER 9. SUMMARY AND CONCLUSIONS

processor 1 processor 2 processor 3

cache cache cache

repository

Figure 9.1: Per-processor state caches in a multi-processor environment oriented
simulation

State repository

Neighbourhood

Environment State cacheAgent

retrieve states3: 

decorate states with environment information7: 

updated neighbourhood8: 

[retrieve missing states]4: 

<<optional>>

persist all states5: 

states6: 

1: 

update neighbourhood2: 

Figure 9.2: Sequence diagram outlining process of persisting information in a local
cache.
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State retrieval

Which particular states in a repository are those which are part of the querying

agent’s neighbourhood may not be easy to determine, without inspecting each one

individually. In many commercial systems it is easy to retrieve items because an

identifier of some form is specified. However, for a complex systems simulation

this is not likely to be possible. The best way of approaching this issue is probably

to adopt something that is analogous to the use of topics in subscription oriented

systems; that of pre-marking states with something that will be of help in deciding

what to retrieve. For example, in a system using spatial neighbourhoods the space

could be partitioned in regular chunks and the chunk which contained a state could

be decorated into the state. This approach, of partitioning the repository with respect

to space, is followed in the implementation used for the experiments described in

chapters 6, 7 and 8. In this the partition used is based on two dimensional space but

other such partitions are equally possible.

Cache eviction

Once a state is in a cache then there would have to be a mechanism for removing it,

if for no other reason than the original producing agent updating the state. In such

a situation the normal approach is to broadcast something like a “cache eviction”

message (often using support for such broadcasts such as multicast IP). Such a

message, which would be received by all caches, would remove from the cache the

identified state. (In this case, because the message is coming from the agent that

“owns” the state and can uniquely identify it there is no difficulty in finding the

specific state.)

Locality of reference

The structure as discussed here would only work with some sort of element of lo-

cality. In particular, if all the agents that typically needed to use each other’s states

resided in the same processor then that would reduce the likelihood of traversing

to the repository all the time. An ideal distributed complex system implementation

would migrate the agents between the processors to optimise this locality of refer-

ence. This is a problem similar to one that is being actively studied at the moment
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[RSB09], that of processes in a multi-core system migrating between threads so that

they can co-exist on the same thread, and more importantly core, if they are likely

to interact. As such, it seems likely that migrating1 agents that need to see each

other’s states can be performed.

9.4.2 Synchronisation

As soon as the agents are distributed across more than one processor (and, in reality,

when they execute on separate cores of the same processor) the issues discussed in

section 4.2.1 become important. That is, it becomes more important to ensure that

some parts of the simulation, likely supporting a specific set of agents, is not allowed

to “run ahead” of other parts of the simulation. Once the agents are allocated to

different cores this becomes more problematic.

An appealing solution here is to adopt the virtual time approach discussed in

section 4.2.1. This would be implemented by ensuring that all agents in the system

have their own notion of virtual time. On every occasion when they chose to update

their environments with some new state the environment would supply the current

system-wide virtual time. The environments would decorate the states with the

initial virtual time of the supplying agent, using the state decoration mechanism

used in the experimental platform and discussed in chapter 5.

With the approach the environments, when building an agent’s neighbourhood,

would only use states that had a time appropriate to the agent.

The use of the virtual time technique might also be considered as related to

the issue of cache eviction as discussed earlier. For example, as discussed in sec-

tion 4.2.1 in a complex systems simulation then a small amount of “stale” data in

not just acceptable, it is representative of the real world. As such, processing cache

eviction messages in the context of what current virtual time of the agent that indi-

rectly generated the eviction message, and the virtual time of the states becoming

liable for eviction may well provide an opportunity of improvement of performance

and, in particular, scalability.

1The agents themselves would not move, because all processors would have available the code
for all agent. Rather, the responsibility of executing the nth agent would move, in a similar manner
as is common in stateless computer system architectures.
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9.5 Conclusions and future work

This thesis, as discussed, demonstrates that environment oriented simulations of

complex systems are feasible and certain technical issues, such as the combina-

tion of orthogonal environments can be solved. Furthermore, the software architec-

ture needed for such simulation is actually relatively straightforward, building as it

does on well-established notions of transactional software design that are still being

evolved [ST95]. As such the simulator can concentrate on the complex system itself

as is seen in the discussion of meta-models in chapter 8.

Inevitably, though, there are limitations to what has been described here, some

of which are the basis for the discussions earlier in this chapter. These limitations

are essentially those common to highly distributed implementations and include per-

formance, scalability and synchronisation; although these are by no means indepen-

dent. The experiments described here have all used numbers of agents which have

at most been several thousand, something that has worked effectively on single-

processor multicore hardware and where these issues are easier to solve.

There are, though, engineering approaches—such as those discussed in sec-

tion 9.4—that offer a way of addressing these limitations to the point where a real

complex systems, with potentially a great many more agents, could be simulated.

The most important thing to do in the future with these ideas would be to build such

a much larger simulation using the techniques discussed in this chapter and using

larger-scale multi-processor hardware.
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gaard Laursen, Sarah Maurer, Daniel Merkle, Pierre-Alain Monnard,

Kasper Støy, and Steen Rasmussen, editors, ALife XII, pages 496–503.

MIT Press, 2010.

[WB04] Peter H. Welch and Fred R. M. Barnes. Communicating mobile pro-

cesses. In Ali E. Abdallah, Cliff B. Jones, and Jeff W. Sanders, editors,

25 Years Communicating Sequential Processes, volume 3525 of LNCS,

pages 175–210. Springer, 2004.

[Wel02] P. H. Welch. Process Oriented Design for Java: Concurrency for All. In

P. M. A.Sloot, C. J. K.Tan, J. J. Dongarra, and A. G. Hoekstra, editors,



BIBLIOGRAPHY 183

Computational Science - ICCS 2002, volume 2330 of Lecture Notes in

Computer Science, pages 687–687. Springer-Verlag, April 2002.

[Wika] Wikipedia. Client server model. http://en.wikipedia.org/wiki/Client-

server, accessed on 6 April 2013.

[Wikb] Wikipedia. Concurrency control.

http://en.wikipedia.org/wiki/Concurrency control, accessed on 6

April 2013.

[Wikc] Wikipedia. Isolation (database systems).

http://en.wikipedia.org/wiki/Isolation (database systems)), accessed

on 6 April 2013.

[Wikd] Wikipedia. Multitier architecture.

http://en.wikipedia.org/wiki/Multitier architecture, accessed on 6

April 2013.

[Wike] Wikipedia. Northeast blackout of 2003.

http://en.wikipedia.org/wiki/Northeast Blackout of 2003, accessed on

6 April 2013.

[Wikf] Wikipedia. Publish-subscribe pattern.

http://en.wikipedia.org/wiki/Publish subscribe, accessed on 6 April

2013.

[Wikg] Wikipedia. Sombrero function. http://en.wikipedia.org/wiki/Sombrero

function, accessed on 6 April 2013.

[Wikh] Wikipedia. Transaction processing.

http://en.wikipedia.org/wiki/Transaction processing, accessed on

6 April 2013.

[WJW93] P. H. Welch, G. R. R. Justo, and C. J. Willcock. Higher-Level

Paradigms for Deadlock-Free High-Performance Systems. In Trans-

puter Applications and Systems ’93, pages 981–1004. IOS Press, 1993.



184 BIBLIOGRAPHY

[Won93] Wucius Wong. Principles of Form and Design. John Wiley and Sons,

1993.

[YP09] W. Yu and M. G. Pollitt. Does liberalisation cause more electricity

blackouts? evidence from a global study of newspaper reports. Cam-

bridge Working Papers in Economics 0911, Faculty of Economics,

University of Cambridge, March 2009.

[YRP94] Jun Yan, Michael Ryan, and James Power. Using Fuzzy Logic. Prentice

Hall International, 1994.


