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Abstract

Open cell metal foams show great potential as a heat exchangers, due to

their permeability to fluids and the high conductivity of the metallic net-

work. In this study, aluminium foams were produced using the replication

technique with NaCl, flour and water used to create the preform. The

samples produced included both uniform pore sizes and examples where

different pore sizes were created in different parts of the sample as well as

these, samples made commercially by a similar technique (Corevo foams)

and by an investment casting process (Duocel foams) were examined. A

bespoke rig was designed, built and used to measure the thermal and fluid

flow performance of all foams being investigated under forced convection

conditions. Results for heat transfer coefficient and pressure drop across

the sample with the comparison between each type of sample are presented.

It was found that all the foams tested can have favourable heat transfer

behaviour under certain conditions asymmetric behaviour can be obtained

when non-uniform pore sizes are present; a factor that could be exploited

in heat exchanger design.
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Chapter 1

Introduction

The low density of porous metals and the functional properties (e.g. thermal conduc-

tion, permeability to fluid flow, etc.) unachievable in other materials has made them

attractive for many industrial and scientific applications. Frequently due to the need to

cool systems such as power electronics and the desire to recapture waste energy, heat

exchangers are increasingly important in engineering. The permeability to fluid of an

open cell foam, coupled with the high conductivity of a metal immediately suggests

applications in heat exchange.

Several processes to obtain metal foams have been developed and frequently are classi-

fied according to the physical state of the metal when they are fabricated. In this work

aluminium open-cell foams with single and graded pore sizes were obtained through a

version of the replication technique developed in the laboratory.

The single and multi-pore graded samples obtained in-house were thermally, hydrauli-

cally and physically characterized and compared with Duocel samples supplied by the

ERG Aerospace Corporation and Corevo samples provided by Constellium. To charac-

terize the thermal and fluid behaviour a new and unique experimental apparatus was

created.

The heat transfer coefficients have been determined for single pore size samples and

1



2 CHAPTER 1. INTRODUCTION

are compared with the literature. Novel thermal and fluid flow properties for graded

pores aluminium foams were obtained.

This work reports the properties found and suggests, based on the results obtained

the best suitable aluminium foam among the samples studied to be used as a heat

exchanger for several applications and the thermal and hydraulic advantage of having

two different pore sizes in the same sample.



Chapter 2

The Nature and Processing of

Metal Foams

Metallic foams are solid structures with a certain volume fraction of pores filled by gas,

where these pores could be what is described as open-cell or closed-cell, Figs. 2.1(a)

and 2.1(b). These materials can present a very attractive combination of physical and

mechanical properties. These metal foams can be manufactured from a wide range of

pure metals or alloys, with typical densities between 75 to 95 % and pore sizes around

5 mm to microns; these two characteristics, density and pore size, can be manipulated

with the manufacturing processes that currently exist, increasing the potential for metal

foams in state of the art technology and in everyday human life. For example the high

temperature resistance of some porous metals makes them interesting candidates for

use as either a thermal barrier or as heat exchangers where having good control over

the size and connectivity of the pores is of central importance.

The processes for manufacturing metal foams may be classified according to the state

of matter in which the metal is processed, which can be solid, liquid, gaseous or ion-

ized (i.e. in solution or in a compound). Some of these methods take advantage of

electrical or sintering characteristics of metals, whereas others are similar to techniques

3



4 CHAPTER 2. THE NATURE AND PROCESSING OF METAL FOAMS

(a) 5 mm open-cell (b) 2.5 mm closed-cell

Figure 2.1: Aluminium metal foams. (a) Aluminium foam obtained by the replica-
tion technique with 5 mm open-cell pores and (b) 2.5 mm closed-cell aluminium foam
obtained by the FORMGRIP process [1].

used for polymer liquids or foaming aqueous solutions. Melt route processes often use

aluminium, such metals as titanium may be processed as powders in the solid state

and nickel is frequently deposited from a gas or solution. The porosity, pore size, pore

surface, interpore wall and strut size depend on the production process from which the

metal foam is obtained. The production methods are frequently classified in four broad

classes [2–4]:

2.1 From metal ions in solution.

2.2 From gaseous metallic compounds.

2.3 From solid-state metal

2.4 From liquid metal.

Table 3.1 reports productions methods, applications and references for metal foams,

principally those made from aluminium. These methods will be explained in the fol-

lowing sections.

2.1 Foams from metal ions in solution

Very porous metallic foams with high specific surface area can be obtained by electro-

deposition, requiring a foamed structure (typically polyurethane) to deposit the metal
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Figure 2.2: Zinc foam obtained from the plating of metal ions in solution onto a template
[5].

onto. As electrodepositing requires the flow of electrons, the polyurethane foam requires

some initial electrical conductivity before electrodeposition can start. The quality of

the final foam is highly influenced by the treatment used to make the polyurethane

precursor conductive; this is often surface metallization [3, 5], although alternative

processes include electroless plating, vacuum evaporation, arc ion plating and coating

with a slurry of a conductive material, due to low cost and easy formation of continuous

and uniform coating on the substrate surface [3]. After deposition, the polyurethane

foam (the parent structure) is removed chemically or thermally. Cellular structures

with pore sizes of 6 to 70 PPI (PPI= pores per linear inch) and pore densities over 90%

[3, 5] can be obtained. Fig. 2.2 shows a Scanning Electron Microscope (SEM) image of

zinc foam with an average pore size of 0.3-0.4 mm obtained from the planting of metal

ions in solution onto a template [5].

The foams produced by this method have very open structures, and frequently hollow

struts [3]. The open structure with little metal means that the resistance to fluid

flow will be low, but this same low quantity of metal means that the transport of heat

through a foam of this type will be limited, and these foams are not commonly explored

for heat exchange.
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2.2 Foams from gaseous metallic compounds

The vapour deposition process (as for the electro-deposition technique 2.1), requires a

porous structure to deposit the metal on. This structure is once again normally an open

cell polyurethane (PU) foam [6, 7]. In the process the open cell template is fed through

a plating device, in which metal carbonyl gas is supplied and heated up in the presence

of a catalyst. This compound thermally decomposes and the metal is deposited onto

the polymer foam substrate and the ’as-plated metal foam’ is formed [6, 7]. To remove

the polymer, and also densify the ligaments, the as-plated metal foam is sintered (or

annealed) in a reducing atmosphere. After sintering a cellular structure is obtained

with hollow ligaments. These Chemical Vapour Deposition (CVD), based techniques,

in common with electroplating discussed before, are the main processes used in the

industry to produce metal foams with the lowest relative density (2-5 %) [2, 8]. Fig.

2.3 shows a SEM picture of nickel foam from INCO with 110 PPI [9], the production

process at INCO is based on CVD of nickel tetracarbonyl (Ni(CO)4 ) onto an open-cell

polyurethane substrate [10].

The open structure obtained with this process permits them to be used as a heat

exchanger medium, however as was explained in Section 2.1, these foams also have

hollow struts [8], and the low quantity of metal reduces the amount of heat that can

be extracted compared to using a solid structure. The main use of the metal foams ob-

tained under this process is as a battery electrodes, especially for Nickel-Metal Hydride

(NiMH) batteries, and potential uses include as an electrocatalyst in molten carbonate

fuel cells [8].
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Figure 2.3: Scanning Electron Microscope image of a nickel foam structure obtained
by the CVD onto a template process [9].

2.3 Foams from solid-state metal

This method produces metallic foams with macro or microporosity from metal, usually

in powdered form; the powder remains in the solid state during the entire process

and requires a sintering step before the final metallic foam is obtained. Another way to

obtain an open structure by the solid state method is to join particles that contain pore

spaces. These hollow spherical particles could be obtained in several ways: either by

coating polymer spheres (e.g. Styrofoam), or fertilizer (carbamide in a spherical shape

[11]) which acts as a lost core [12], or by combined chemical and electrical deposition

of metal onto polymer spheres which are removed in a subsequent step [3].

Another variation of this is coating the polymer spheres by a binder/metal powder

suspension (to make a green sphere). After coating, the sphere is heated to produce a

cohesive metal shell around the outside, and remove the polymer. The spheres produced

by this method range from 0.5 to 10 mm diameter [3, 13, 14]. To manufacture a metallic

structure with these hollow spheres, they can be joined by brazing or diffusion bonding

[13], thermoplastic polymer/adhesive is also used, for example when spheres of porous

aluminium obtained by the Advanced Pore Morphology process (APM) are joined [15].

fully closed cellular structures can be obtained when the interstices between the spheres



8 CHAPTER 2. THE NATURE AND PROCESSING OF METAL FOAMS

Figure 2.4: Stainless steel sample obtained from hollow-spheres. The left hand side
shows X-ray computer tomography images of the cross section [13].

are filled with metallic powder, followed by heat treatment [16]. With the objective to

improve the mechanical properties of the cellular structure, large contact areas between

the spheres are needed, to achieve this, slight pressure is applied to the green spheres.

Fig. 2.4 shows the typical structure obtained.

Another method to obtain hollow spheres consists of gas atomisation of powders; some

of the particles produced will have gas trapped inside the liquid droplets. These can be

separated from the solid ones, that are also produced when the gas is atomized. The

following step in the process is to consolidate the material, done by; sintering, transient

liquid phase sintering with the help of a powder additive, or Hot Isostatic Pressing

(HIP) [3, 13]. The last of these gives the best consolidation and hence the best results

for specific stiffness [13]. Metal foams with cell sizes between 500 and 1000 µm and

relative densities of 3 - 12 % have been fabricated [3, 13]. Figs. 2.5(a) and 2.5(b) show

the hollow sphere structure obtained from 625 alloy (Nickel-Chromium).

Hollow spheres can also be formed from slurry made up of a decomposable precursor,

together with organic binder and solvents. This slurry is sprayed through the outer

orifice of a coaxial nozzle [17], and single bubbles are formed by hydrodynamic interac-

tion with the gas passing through the inner orifice. During flight in a tall drop tower,

the spheres are hardened by heating to drive off the solvents and volatilize the binder.
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(a) Surface (b) Cross section

Figure 2.5: Hollow-sphere structure made from Gas Atomized Hollow Powders (a)
structure surface (b) structure cross section [13].

Figure 2.6: Hollow spheres of FeCr bonded together to form a porous material [13].

The process was developed by Georgia Tech producing hollow spheres with diameters

in the range of 1 to 6 mm, with wall thickness typically around 100 µm. To obtain a

cellular structure the spheres obtained are placed in a mould and are bonded with the

help of metal powder slurry [3, 13]. Fig. 2.6 shows the cellular structure obtained.

In solid-state metal process, space holders can be used that do not rely or hollow

particles to control the amount and size of porosity. These space holders can be ceramic

particles, salts, hollow polymer spheres or certain metals. They are mixed with the

metal powder and can be removed at a later stage to leave behind open pores. This

process has many similarities with the casting-based methods discussed later, but in

this case the empty space is filled with a solid metal (in the form of metal powder)



10 CHAPTER 2. THE NATURE AND PROCESSING OF METAL FOAMS

instead of molten metal. The metal powder is blended with the space-holder material

and compacted (this step of the process could be at room or elevated temperature if the

space-holder is heat resistant). After compaction and possible sintering step for further

consolidation metal foam with interconnected pores results when the space holder is

removed; this could be done by, heat treatment or using an aqueous solvent depending

on the space holder, obtaining in the metal foam a replica of the shape and size of the

space holder [3, 13, 18–22].

Hollow sphere metal foams possess low (or even no) interconnected porosity, and there-

fore high flow resistance is expected, and it would not be recommended to use them as

a heat exchangers. When the spheres are bonded with adhesive (as in [15]), these metal

foams would show very low thermal conductivities, due to the affect of the adhesive

matrix between the metallic shells of the spheres, and therefore could be used as a

thermal insulator [23].

2.4 Foams from liquid metal

There is a great flexibility in foams made from liquid metals, and so this review will

concentrate on this type of processing. It is possible to obtain cellular structures from

the liquid metal by either direct or indirect methods. The direct method consists of

creating gas bubbles in the liquid and the indirect method of casting a melting metal

over a solid leachable space holder that is removed after the metal is cooled down and

solidified, leaving the pore spaces.

2.4.1 Direct foaming of liquid metal

In practice, direct foaming of liquid metals is a family of processes that includes either

injecting gas into the liquid metal from an external source or causing gas formation

in-situ in the liquid by adding and mixing gas-releasing blowing agents in the metal to

be foamed.
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In either route bubbles are therefore present in the molten metal. Due to the gas bubbles

tendency to ”escape” (reaching the molten metal surface quickly) because of the high

buoyancy forces in the high-density liquid, the addition of an agent that increases the

viscosity of the molten metal is employed. This viscosity-increasing agent is frequently

a fine ceramic powder (such as SiC) or alloying elements (such as Ca) that react to

form stabilising solid particles in the molten metal [3, 24].

The Melt Gas Injection (MGI) method developed simultaneously by Alcan and Norsk

Hydro [25] in the late 1990s, is a continuous gas injection method where the starting

material, a metal composite, is molten in conventional foundry equipment. This metal

composite consists of an aluminium alloy, such as the casting alloy AlSi10Mg (A359),

with reinforcing particles, (actually to increase melt viscosity) frequently SiC or Al2O3,

with volume fraction ranges from 10 % to 20 %. Some suggestions have been made to

optimize the process [26], identifying 16 % of SiC as the optimal amount.

The composite is transferred to a vessel where the gas (air, argon, nitrogen) is injected

into it using specially designed rotating impellers or vibrating nozzles. The objective of

the impeller is to create fine bubbles in the molten metal and distribute them uniformly;

the size of the bubbles can be controlled by adjusting the gas flow rate, the propeller

design and its speed of revolution. The function of the reinforcing particles is to retain

the gas bubbles in the liquid, retarding their coalescence and reduce the rising of bubbles

by increasing the viscosity of the melt [27–29]. Fig. 2.7 shows a sketch of the process.

The foam obtained is pulled off the liquid surface by means of a conveyor belt and it is

allowed to cool down until it solidifies. Foams made in this process present gradients in

density and pore elongation as a consequence of the gravitationally-induced drainage

and the shearing forces of the conveyor belt, having as a result diagonally distorted

cells in the final foam [3, 25]. The aluminium foams produced by MGI have a porosity

in the range from 0.8 to 0.9 corresponding to densities between 0.069 and 0.54 g/cm3

and with a pore size from 25 to 3 mm or less [2, 3, 13]. This process technology also

allows the casting of nonrectangular, 2D profiles as well as 3D shapes [3, 13, 25].
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Figure 2.7: The Melt Gas Injection (MGI) process to produce closed cell aluminium
foams [3].

Despite being low cost and relatively easy to produce, these foams are too closed to

be a useful heat exchanger and the irregular pores mean that properties can be unpre-

dictable.

2.4.2 In-situ gas generation

In this process the foaming gas results from the thermal decomposition of solid com-

ponents. One version was patented by the Shinko Wire Company Ltd [30], Japan and

produces a foam sold as Alporas. This starts by adding Ca or Mg to an aluminium melt

at 680 ◦C to stabilize the bubbles as a thickening agent. After this addition, the melt is

stirred for 6 minutes, during which the viscosity increases continuously because of the

generation of oxides (e.g. CaO, MgO, Al2O3, CaAl2O3) owing to the oxygen affinity

of these elements [30, 31]. After the melt has reached the viscosity desired, titanium

hydride (TiH2) is added, which serves as a blowing agent by releasing hydrogen gas

in the hot viscous liquid as it is instable at these temperatures. The quantity of gas

generated by the decomposition of TiH2 depends on the temperature, the higher the

temperature, the more and faster the gaseous hydrogen is released [32]. The process is

shown schematically in Fig. 2.8.

The foam obtained by the Alporas process is a foam with closed-cell pores. The density

of the product is in the range of 0.18 to 0.24 g/cm3 with a mean cell size of 4.5 mm
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Figure 2.8: Manufacturing process of Alporas aluminium foam by in-situ gas generation
[30].

[33]. Figures 2.9(a) and 2.9(b) show typical cell structures of two different cell sizes;

the foam shown in Fig. 2.9(b), is a grade of Alporas optimised for sound absorbency.

(a) Small cell type (b) Conventional cell Alporas
size

Figure 2.9: Typical Alporas cell structure (a) small cell structure and (b) conventional
cell structure for sound absorbency [34].

The FORMGRIP (Foaming of Reinforced Metals by Gas Release in Precursors) process

combines some of the advantages of the Direct Foaming of Liquid Metal and In-situ Gas

Generation processes into one processing technique [1, 13]. The foaming agent (TiH2)

undergoes a pre-treatment that consists of a two-step thermal oxidation sequence (24h

at 400 ◦C + 1h at 500 ◦C to build up a titanium dioxide diffusion barrier layer at

the powder surface to reduce the kinetics of gas evolution. In this pre-treatment the

titanium hydride is mixed with AL12Si powder in a weight ratio 1:4. This metal powder

helps the foaming agent to disperse in the liquid metal. The powder mixture is mixed

with a molten composite of Al-9Si/SiC using conventional mechanical stirring at 1200

rpm for approximately one minute. Then, the mixed melt is cast in a graphite mould



14 CHAPTER 2. THE NATURE AND PROCESSING OF METAL FOAMS

Figure 2.10: Diagram of the FORMGRIP process for the production of nearly net-shape
metallic foam components [1].

(30 mm×30 mm×45 mm blocks were used in laboratory trials). These precursor blocks

are almost fully dense, and can be stored if required. When needed, they are cut to

size and placed in another mould, which is heated above the solidus temperature of the

metal, and the temperature required to cause hydrogen evolution. Finally a cellular

structure is obtained with the progressive evolution of hydrogen. Fig. 2.10 shows the

FORMGRIP process schematically.

The metal foam obtained by the FORMGRIP process has closed pores; the porosity

level and cell size are controlled by three main factors: a) the amount and kinetics of

hydrogen evolution, b) composite melt viscosity, and c) critical cell wall thickness for

rupture [1]. The porosity level presented in this process is from 0.6 to 0.9 and the cell

size range is from 1 to 2.5 mm [1].

A similar method has been developed by the same researchers. The FOAMCARP

process uses an alternative foaming agent (CaCO3) that is easier and cheaper to handle

[35, 36]. In this process calcium carbonate (CaCO3) is added the same metal matrix

composite (as for FORMGRIP) when it is molten. The addition is done when the

metal melt is in the range 635 to 645 ◦C. The foaming agent is introduced in to the

melt with Al-12Si powder in a ratio 1:2 (foaming agent/Al-12Si powder) and the melt

is stirred for 40-90 s at approximately 1200 rpm. This process also produces a low

porosity precursor block [35], with the amount of incorporated carbonate ∼ 3.5 wt.%
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of the composite mass.

Foam baking may then be carried out in a stainless steel mould, placed in a conventional

air furnace with a temperature of 650 ◦C to 750 ◦C held at this temperature for 15 min.

This lead to the thermal decomposition of the foaming agent and the evolution of gas

(CO2) in the melt [35]. Foams with finer cells (< 1 mm diameter) can be obtained where

the baking temperature and calcium carbonate powder size determine size, structure

and porosity level [35].

Metal foams obtained through in-situ gas generation methods in general, could be

applied as a thermal insulation and sound absorbers, due to their closed cells, and

therefore this type of metal foam is not suitable for use as heat exchanger because

it is impossible for a fluid to flow through it to cause the heat extraction. The cell

morphology obtained is almost impermeable to fluid, and for this reason this metal

foam is preferred for use as a sound absorber.

2.4.3 Powder-compact foaming technique

The first step to produce metal foams by means of this technique is mixing particles of

a foaming agent (such as TiH2, as used in other processes) with metal powders, alloy

powders or metal powder blends. Recently Sn powders have also been added [37] to

reduce the foaming temperature. The correct selection of particle size, size distribu-

tion and purity is vital for the final properties and characteristics of the metal foam

produced. Special care is required in getting a good mixture, because the distribu-

tion of alloying elements and the foaming agent must be uniform to ensure uniform

pore-size distribution and the high quality of the fabricated foam. The blend is then

compacted to ensure the blowing agent is embedded in the metal matrix without any

notable residual open porosity which could permit gas escape [2, 13]. The combination

of cold isostatic pressing (CIP) and ram extrusion has given good results and a precur-

sor material with nearly 100 % theoretical density. The advantage in using CIPing is
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to prevent the contamination of powder and powder de-mixing [13]. Special care has

to be taken when the precursor is compacted; as shown by Kennedy [38], appreciable

expansion only occurs for precursors with densities greater than 94 %. The precursor

material (the compacted mixture) is chopped into billets suitable size.

Alternatively, the mixture can be extruded without prior consolidation, by being placed

inside aluminium cartridges (in the case of aluminium or aluminium alloy foaming),

before extrusion. The billets are preheated and extruded as rods or any profile. The

extruded material then is chopped into small pieces and placed inside a sealed mould,

which is heated above the solidus temperature of the metal powder. At this temperature

gas evolves from the decomposition of the foaming agent and the compacted material

(precursor material) is expanded, producing foam which may be allowed to expand

until it fills the mould [2, 3, 13, 39]. When the precursor is placed inside a mould, the

final foam obtained has the form of the mould, Fig. 2.11 shows a schematic diagram

of the powder-compact foaming process [2]. Sandwich panels can be obtained, when

sheets of aluminium or steel are rolled with a foamable precursor material, as after

the heat treatment only the foamable precursor will expand. Studies have found the

parameters required to obtain the optimum quality of foaming precursor through such

as rolling-bonding process when Al-Si alloy powder is used as the main constituent of

the precursor [40].

The morphology and expansion of the foam depends on the temperature of foaming

and the size of the precursor, and is a function of the heat treatment time. It has

been found that the magnitude of expansion, rates of foaming and collapse are closely

related to the level oxide content in the aluminium powder [41]. The foam presents

a uniform morphology before the point of maximum expansion; after this point, the

foam collapses [13]. The above behaviour can be observed in Fig. 2.12, which shows

the expansion behaviour of aluminium/TiH2 when it is foamed at 750 ◦C.

Picture A in Fig. 2.12, shows the macrograph of the precursor before the heat treat-

ment (at time zero), with 9 mm height and 32 mm diameter. Macrograph B shows
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Figure 2.11: Schematic diagram of the powder-compact foaming process (the Fraun-
hofer and the Alulight process)[2].
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Figure 2.12: Expansion behaviour of aluminium/TiH2 at 750 ◦C when a foam is pro-
duced by the powder-compact foaming technique [3].

the porosity developed after about 7 minutes of heat treatment and that the sample

expansion starts to take place. Micrograph C shows the structure at 10 minutes of heat

treatment, the maximum expansion of the sample with the internal porosity remains

closed. Micrograph D shows the sample after 60 minutes of heat treatment, where

the sample has collapsed. In this process it has been calculated that only 25% of the

released hydrogen is effective in forming gas-filled pores [42], therefore efforts have been

made to understand and retard the gas realeased by TiH2 before the melting point of

pure aluminium [43], for example heat treating TiH2 powder of diameter 33 µm for

15 minutes at temperatures between 400 ◦C to 550 ◦C. The best result obtained was

at 500 ◦C where the gas evolution was delayed until after the eutectic melting point in

Al-Si alloy powder, and benefits in improving expansion were obtained.

Foams obtained using this process have closed pores and therefore have good properties

for thermal isolation, mechanical and acoustic damping, due to the lack of connection of

the pores [2, 13]. As with other foams of similar closed cell structure, they are however

not suitable for heat transfer.
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Figure 2.13: Hermetic chamber for gasar syntheses [3].

2.4.4 Gas-metal eutectic solidification (”gasars”)

The eutectic system presented by some liquid metals with hydrogen gas can be taken

advantage of to produce metal foams. For this to happen, a system where the liquid

metal breaks down to a solid and a gas phase is required. The apparatus used to

fabricate metal foam by such a method has the capacity to melt the metal in a crucible

and solidify it in a casting mould under controllable gas pressure [2, 3, 44]. The bottom

of the mould has a water-cooled copper chill and the walls of the mould are isolated

and refractory; these characteristics mean that the heat is transferred predominantly

axially via the bottom, allowing control of solidification speed of the eutectic growth.

Depending on the heat removal direction, radial or uniaxial pore orientations can be

created. Fig. 2.13 presents a sketch of the apparatus using to produce ”gasars” or

”Lotus type” pore structure [39].

The characteristic of this process is the simultaneous formation of gas-bubbles and metal

crystals from the liquid. The size and nature of the gas-eutectic structure obtained is

largely determined by the gas pressure; solidification velocity and pouring temperature

have less of an effect on the metal foams produced under this process. The pressure is

the most important technological parameter and it allows different kinds of structure

to be obtained. Fig. 2.14 shows a magnesium gasar obtained sectioned normal to the

direction of the pores [44].
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Figure 2.14: Magnesium gasar obtained sectioned normal to the solidification direction
[44].

The metal foams obtained by the gasar process can have 0.10 to 0.65 porosity. The pores

are elongated having always similar orientation with cylindrical, spherical or ellipsoidal

shape. The heat sink condition determines the pore orientation, and the pore diameter

is in the range from 10 to 1000 µm, and the length from 100 to 300 µm [3, 44].

Gasar metal foams have been tested as solid-liquid heat exchangers [44], however the

pores obtained are highly orientated and the generation of turbulent flow (which causes

mixing in the liquid) could thus be lower than in open cell metal foams with random

pores. It is known that turbulent fluid flow is preferred to facilitate heat extraction

from a solid surface by a fluid [2].

2.4.5 Casting methods

Unlike the previous methods, which produce pores that are mostly closed, (and there-

fore will be poor for applications where fluids need to pass through the foam), more

open structures can be produced by casting techniques.
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Figure 2.15: Schematic diagram of investment casting metal foam production [3].

Investment casting with polymer foams.

Just as for deposited methods, some techniques use a polymer foam template. The

investment casting process starts with the selection of the cell size and density of the

open-cell polymer foam. This is then coated with a slurry with high heat resistance;

this material must have higher melting point than the metal or metal alloy that will

be poured into it to fabricate the foam (it is therefore usually a ceramic powder).

The composite (ceramic and polymer) is placed under heat treatment such that the

polymer is decomposed or evaporated and the ceramic is hardened (250 to 300 ◦C).

Into this ”negative image” of the foam the metal or alloy is poured, then allowed to cool

down until solidification takes place. The application of moderate pressure is necessary

during the melt infiltration to ensure the complete filling of the mould. After the metal

is solidified, the mould is removed by mechanical procedures; as an example water is

sprayed to remove the plaster from the composite, leaving the metal equivalent of the

open-cell polymer foam selected at the beginning of the process Fig. 2.15 [2, 3, 45].

Foams made by a process of this type are marketed commercially as Duocel foams by

the ERG Materials and Aerospace Corporation. They are low density with large open

cells and are therefore highly permeable. They are generally potentially suitable as

heat exchangers, and have been experimentally investigated for a number of situations

[46–51]. The results of these investigations are discussed in more detail in a later

section.

Non-uniform pore structures are naturally found in nature e.g. bones and wood, being
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more efficient than dense structures in some applications. For example a sandwich

beam with a porous core having spatially-varying relative densities has been shown to

lead to mass efficiency in load-bearing components [52]. Aluminium open-pore foams

with controlled, continuous density gradient have been created using the investment

casting method similar to the Duocel process. Brothers et al [53], obtained a cellular

structure with a controlled different density in the same sample when the precursor

was elastically compressed into the final specimen dimension (e.g. a uniform cylinder

if the precursor has the shape of a wedge or pyramid). The samples obtained were

analyzed and longitudinal and radial density profiles were obtained showing relative

density variations from 2 to 5 % where the precursor was deformed preferentially during

reshaping.

Casting around space holder materials.

Metal foams with porosities normally lower than 0.8 and with open cellular struc-

tures are obtained by this method, which consists of pouring a molten metal around

removable particles or hollow spheres. In the case when hollow spheres are used as

space holder, they are not always removable; for example, steel spheres have been used

with aluminium to obtain metal foams with closed pores (aluminium-steel compos-

ite material) [54, 55]. The more common version uses material in a granular form as

a space holder, which are commonly removed during the processing. These granules

should be heat-resistant, are in some cases soluble (or removable in other ways) and

must be stable when they are in contact with the molten metal; one example of this

type is sodium chloride which is commonly used to produce aluminium foams under

this method [56, 57]. It is water soluble, its melting point is higher than aluminium

(NaCl melting point 801 ◦C, aluminium melting point 660 ◦C) and it does not have

any interaction when in intimate contact with liquid aluminium [58].

To obtain a complete filling of the interstices, preheating the granules or the metal

spheres, and the application of slight external pressure or vacuum in the mould where



2.4. FOAMS FROM LIQUID METAL 23

the granules are placed is often recommended. This counteracts the surface tension of

most metals and increases its flow into the space holder particles [3, 24].

After the metallic melt is infiltrated, the space holder can be easily removed due to the

interconnected cellular structure formed. The space holder can be dissolved either by

thermal pyrolysis, using an acid or plain water (which is used depends on the space

holder used in the production of the metallic foam).

Monolithic NaCl (salt table) has been used as a space holder to fabricate open-pore

aluminium foams [59]. Mortensen et al [60], concluded that varying the external pres-

sure when NaCl particles are being infiltrated by molten aluminium the relative density

of the foam could be varied between 15 % and 25 %. Goodall et al [61] fabricated the

NaCl preform using either sintering or cold isostatic pressing (CIP) and showed that

the relative density of the foam could be different depending which process was used

to fabricate the preform and that foams obtained with sintered preforms present lower

mechanical properties compared with those preforms obtained with CIP for the same

relative density.

Ni-Ti based shape-memory alloy open-pore foams have been obtained in a very similar

process using SrF2 salt preform as a space holder; a potential use of this alloy in

porous form is in biomedical implants with complex shapes. The NiTi-based molten

alloy (melted under high vacuum) is infiltrated into the SrF2 preform using Ar gas,

the final composite obtained is then treated in an ultrasonic bath in a solution of 20

pct HNC3 in distilled water for 2 hours to remove the SrF2 salt. After the salt was

dissolved a open foam with 0.60 porosity was obtained [62]. Although successful with

a range of metals, there is a limitation with the use of single granules of material as

a space holder. Above a certain size granules may be difficult to obtain in the correct

shape and may not be easy to process into a preform. To overcome this, some workers

have developed more advanced ways of creating a preform.

Space holders fabricated with the mixture of NaCl, flour and water (being NaCl the
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major component) have been developed to fabricate aluminium foams through the same

basic processes as the replication technique, for example Goodall et al [58] fabricated

samples using 99.98 % Al and Al-12 Si with 5 mm pore size. Jinnapat et al [21]

developed a process to obtain salt beds with a diameter between 1.4 to 2.0 mm by

mixing the elements mentioned. In this case an Al-1 wt.% Mg-0.5wt.% Si-0.2 wt.% Cu

alloy powder was poured on the top of the salt bed and vibrated until it had completely

percolated into the gaps between the salt particles. Then the aluminium powder and

the salt spheres were processed according with the process presented in Section 2.3 and

samples with a relative density of 21 % were obtained.

In both works the dissolution of the space holder was done with plain water (In the

case of Jinnapat et al [21] the water temperature was held at a constant 60 ◦C). The

dissolution of these salt spheres or beads obtained through these processes was faster

than for monolithic salt as in both cases they were permeable to the fluid, leading to

a combination of dissolution and particle break up, and despite the extra additions

to produce the preforms they did not have any noticeable interaction with the molten

aluminium.

The material obtained when the space holder is dissolved (or removed by other means)

is a metal foam with solid struts (unlike when metal is deposited on a template) that

can have different geometries, triangular or circular depending on the density and

production process. These profiles could enhance the turbulence when a fluid (gas or

liquid) is flowing through it, with the potential to increase the heat transfer. The wide

range of structures, includes variations in density, permeability, specific area, etc., of

the final metal foam obtained under this process makes it potentially the best method

to produce a foam well adapted for the use as a heat exchanger. In this investigation

foams produced by investment casting and by casting around a space holder will be

examined as these are the methods that have been found to produce foams with the

greatest potential for heat exchange. To understand why this is, and to explore the

capabilities or metal foams further, application areas (with a particular focus on thermal
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behaviour) will now be examined.



Chapter 3

Applications of Metal Foams

The combination of physical and mechanical properties presented by metal foams have

led to the suggested use of these materials and in recent years in industrial sectors in-

cluding: aeronautics, electronics, automotive and construction, and in biological areas,

at least on a research level [2, 3, 63]. The way that metal foams will act to show an ad-

vantage depends on the morphology, metallurgy, processing and economic aspects [3].

This section of the review concentrates on applications that have been commercialised

or where proof of concept studies have been reported. The metal foam morphology is

the most important parameter to be considered in selecting for a particular use; for

example, the degree of openness of the metal foam pores is an important character-

istic that will determine the suitability of the metal foam for some applications, heat

transfer included. Fig. 3.1 presents the types of porosity versus some of the various

application fields suggested for foams [3]. Table 3.1 reports suggested application areas

for different production methods, and references for the use of metal foams (principally

those made of aluminium).

In this review we will first consider applications of closed cell foams, and progress to

more open forms.

New uses and applications of metal foams are continually being proposed, even though

26
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Figure 3.1: Applications of cellular metals grouped according to the degree of ”open-
ness” needed, and whether the application is more functional or structural [3].

some foams have high prices and the variation of the size and morphology of the pores

in the foam are not controlled systematically in most of the fabrication processes [2, 3].

The automotive, military, railway and aerospace industries are probably the principal

markets where these materials have been exploited the most to date, or have greatest

potential for the future. The attractive lightweight, capacity to absorb and transfer

energy and the higher mechanical resistance compared to ceramic and polymer foams,

made them attractive to use [64–66]. Metal foam can be produced with open or closed

pores and with several sizes and densities of pores. The choice of the best foam for a

particular application depends principally on these characteristics.

3.1 Structural applications

The properties displayed by metal foams such as low density and high energy absorp-

tion, make them attractive in lightweight construction and these characteristics are

relevant for the transport industry (automotive, aerospace and railway), where the low

weight and the potential of high energy-absorption is significant.

There are many areas in a car body structure where metal foams can be used in a
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Figure 3.2: Prototypes of crash absorbers based on extruded aluminium hollow sections
filled with Cymat aluminium foam [74].

structural role, particularly areas where multifunctional applications can be exploited,

like car frame parts or the boundaries of the floor of the passenger compartment [13, 67].

Currently, relatively high performance cars such as the Ferrari Modena Spider F430

and F360, are manufactured with foam parts, which improve the stiffness of the profiles

without increasing the car weight significantly; these metal foam parts are produced

by Alulight International [68].

These impact resistance aspects of these applications are based on the capacity of the

metal foam to absorb large quantity of mechanical energy by plastic collapse when

deformed. Thin-walled tubes may be filled with aluminium foam by press-fitting (e.g.

the square tube in Fig. 3.2), or by placing a solid precursor into the cavity to be

filled and then re-heating to cause the precursor to expand (powder-compact foaming

technique), e. g. the circular tube in Fig. 3.2. Higher energy absorption than the

sum of the energy absorptions of the cylindrical tube alone and foam alone is obtained

when the sample is tested is under uniaxial compression [69, 70]; the same behaviour

is found when square tubes are tested [71]. In work performed by Hall et al [72], it was

found that the advantage persists in the transversal direction. This property is very

attractive as a passive safety system in vehicles, and reductions in fatalities and injuries

could be achieved as a result of the implementation of tubes filled by aluminium foams

instead of aluminium or steel tubes with thin walls [73].
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Figure 3.3: Metal foam fitted crashbox manufactured by Metcomb [75].

Using a foam filled crashbox can reduce the repair cost when it is placed between the

impact beam and the front rail of the car, because it can reduce or absorb the energy

of collision and then simply be replaced. This crashbox absorbs more energy than a

empty section of similar mass, due to the collapse capacity of the metal foam when

it is under uniaxial compression [70, 74]. Fig. 3.3 shows crashbox manufactured by

Metcomb Nanostructures [75], the same concept is used when the metal foam is placed

inside the bumper.

Subframes, control arms, cross-members etc. are some examples of highly loaded struc-

tural components where cast metal foam is expected to be applied as a solution to

problems associated with mechanical vibrations and/or as a passive safety system [76–

78]. A composite part was produced by Leitlmeier et al as a prototype of a BMW

engine mounting bracket [78], where a METCOMB foam was embedded in dense metal

by low pressure die casting of aluminium around it. The foam section of the part did

not present perceptible infiltration during the casting. Fig. 3.4(a) shows the process

to embed METCOMB foam and Fig. 3.4(b) the final BMW component produced.

Aluminium foam sandwich (AFS) Fig. 3.5 is a sandwich structure with two thin outer

layers of a dense, stiff material separated by a central core of foamed metal [79] which

can be used to replace conventional stamped steel parts in a car having a significant

weight reduction, these sandwich foams developed by Fraunhofer-IFAM in Bremen and

Karmann GmbH, a German car builder, are very stiff at a relatively low weight and are

competitive with technologies such as waffle structures or honeycombs, due to it being
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(a) Process scheme (b) Parts obtained

Figure 3.4: Aluminium foam as a core for casting.(a) Schematic diagram of the method
of embedding foam cores by low pressure die casting.(b) Prototype of a BMW engine
mounting bracket [78]

Figure 3.5: Aluminium foam sandwich (AFS) produced by Karman, Osnabruck (Ger-
many) [80].

possible to manufacture complex shapes by deforming the foamable precursor prior to

foaming, something that cannot be done with the competing technology [67].

In order to comply with European legislation, AFS was used to reduce the weight of a

small lorry to less than 3.5 tonnes. The application of AFS was in the working platform

where the telescopic arm support, Fig. 3.6, had to be increased from 20 to 25 m length,

while maintaining the weight of the vehicle below 3.5 tonnes. This could be realized

using AFS, because using only aluminium sections would not be able to support the

weight of the platform [67, 80]. The implementation of this new material was not
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Figure 3.6: Base of a lifting arm for a truck made from AFS sandwich panels. [67].

straightforward, due to the need to redesign the complete construction of the platform

[80], but it allowed the lifting height of the system to be increased, while keeping the

weight below the required level. This demonstrates the way that metal foams can be

used to achieve some design goals within legislative requirements. Architectural panels

and solar thermal energy (supporting the reflecting foils) are other actual applications

of AFS where the high stiffness-to-weight ratio is exploited [81].

3.2 Sound absorbers

By acting as a barrier to air movements, and by diverting and absorbing the energy

from these movements, metal foams can act as sound absorbers.

Using metal foams as sound absorbers has evident advantages over other candidate

materials such as glass wool and polymer foams, due to their strength and rigidness,

low moisture absorption and fire resistance. The sound absorption coefficient, a, is the

ratio of the unreflected sound intensity at the surface to the incident sound intensity;

this coefficient is the ability of the material to absorb sound and to be an effective

sound absorber, the coefficient must exceed 0.9; this means that 90% of the sound en-

ergy is absorbed in the material. Data reported by Lu et al suggest a sound absorption

coefficient between 80% and 95% could be achieved in selected frequency ranges in se-
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Figure 3.7: Schematic diagram showing how Alporas metal foam could be used as a
sound absorbing material [83].

lected aluminium alloy foams [82]. This property makes them attractive candidates for

a wide-range of applications in noise and vibration control of automobiles, machinery,

aircraft and buildings, particularly where a high temperature environment is present

or where the mechanical property advantage can be used.

The manufacture of Alporas metal foams by the Shinko Wire Co., Ltd. has led the

development of sound absorbing material with the objective to be installed along the

side of a road or highway to reduce the traffic noise [2]. The following advantages have

been suggested by the producers; resistance to temperatures as high as the melting point

of the aluminium (660 ◦C), no toxic gas emission, no need for the use of supporting

elements like glass wool due to it being a rigid material, easy to install, does not absorb

moisture and is easy to clean. Fig. 3.7 shows a sketch of the Alporas metal foam

functioning as a sound absorbing material; this system comprises the foam, an air layer

that reduces the sound pressure behind the barrier and increases the effectiveness of the

soundproofing material and the sound insulation panel (which could be an iron plate

or other high density material) [34, 83].

3.3 Vibration suppression

As well as absorbing sound in the air, metal foams can act to dissipate and damp

vibrations. Structures of ships, aircraft, automobiles and mass transit bodies may
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produce excessive vibration because they are subject to a wide range of dynamic loads.

As well as affecting comfort, this can lead to damage of the structure. To avoid this, a

high damping capacity, expressed by the damping ratio (ξ ) is desired (damping ratio

can be described in terms of loss factor (η ), which is equivalent to twice the critical

damping ratio [84]). Metal foams present higher loss factors (η ) and damping ratio

compared to solid structures fabricated with the same amount of the same material. It

has been observed that the damping ratio is highest in foams with lowest densities [85,

86]. Aluminium Foam Sandwich (AFS) panels are being increasingly used in a number

of applications to reduce vibrations that can damage the integrity of the structure, such

as in turbine shrouds, fan blades, energy absorbers for blast shock waves and cylinders

for jet engine intakes, among others [84, 87].

3.4 Filters

Metal foams with good corrosion resistance are being considered for use as filters to trap

soot particles in passenger car exhaustment produced by diesel engines. The EURO

IV regulations have imposed strict particulate emission limitations for passenger cars

in Europe [88]. To reach these objectives is necessary to have a cellular material with

good corrosion resistance at temperatures up to 600 to 800 ◦C with good permeability

to not affect the engine performance, as the efficiency of the engine is highly affected by

the pressure drop in the exhaust [88]. In practice, this means that foams must have a

very open structure. A process to manufacture high temperature resistant Fe-Ni-Cr-Al

foams has been presented by Walter et al [89], where a powder metallurgical process

allows a nickel foam to be converted into an alloy foam with high temperature corrosion

resistance. The filters are produced by coiling the foam strip [89], and these are used

to extract solid particles dispersed in the gas.
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Figure 3.8: Heat exchanger in the lens of a Scanning Electron Microscope [91]. No
scale is provided in this reference, however if the pore size is around 5 mm (typical for
this foam type), then the part would be roughly 15 cm diameter.

3.5 Heat Exchangers

With the need to cool systems such as power electronics, and the desire to recapture

waste energy, heat exchangers are increasingly important in engineering. The use of

metal foams as a heat exchangers offers potential reduction in cost and weight, good

fluid mixing due to turbulent flow caused by the random foam structure and potentially

an increase in performance owing to the elimination of thermal interfaces between the

source of heat dissipation and the heat sink if the foam can be integrated with the

component. Normally the need is to cool down the device, or in some cases maintain its

temperature in a narrow range, to have optimal conditions for performance, e.g. electro-

optic systems where global or local thermal displacements may give rise to alignment-

related optic losses [90]. The ERG Materials and Aerospace Corporation produces an

aluminium foam (Duocel, believed to be produced by the investment casting process)

that is incorporated to the lens of a Scanning Electron Microscope to stabilize its

temperature, Fig. 3.8 [91]. More generally, cooling is required; any system integrated

with high performance power devices into the megawatt level of power, or those where

critical components have to be kept cool would be a suitable application of metal foam

as heat exchangers.

In the aircraft industry, gas turbine engines are demanding more cooling capacity from

the engine system than the conventional delivery system can offer [92]. Experiments
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Figure 3.9: Heat exchanger in the CO2 scrubber used in the Space Shuttle [91].

at laboratory scale and in a full-scale test rig have found that the heat transfer is

increased by a factor of two with tubular open cell stainless steel foams when they

are compared with a plain bank of staggered tubes. However this increment in the

heat transfer is almost neutralized by the increment of the pressure drop in the actual

system. This highlights an important issue with heat exchange in that good thermal

performance is required but this must be coupled with a low cost in energy to maintain

the cooling fluid flow through the heat exchanger. Foams have not been implemented

in the above application, but the author of this study, Sabatino et al, suggest that

changing the configuration of the turbine fuel tubes to cross-flow instead of counter-

flow could reduce the number of tubes by 40 % and this combined with the use of metal

foams as a heat exchanger, means the engine could be cooled with more efficiency and

the weight and volume of the actual heat exchanger could be reduced considerably [92].

The Space Shuttle and the International Space Station use an aluminium open cell

metal foam as a heat exchanger in the CO2 scrubber, where it also acts as a chemical

support matrix, Fig. 3.9. The efficiency and the response rate of the system is increased

by the high thermal conductivity presented by the aluminium foam. The whole system

occupies less than 0.32 m3 on board the Orbiter and weighs less than 150 kg. The

contribution to the weight made by the foam is negligible, but its efficiency helps to

save weight elsewhere in the system [93].

These examples for metal foam applications as heat exchangers are quite specific, mostly
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for low volume (albeit high value) products. An area where metal foams could be used

in much larger amounts would be the cooling of power electronics.

The flexibility presented by metal foams in terms of compatibility with the encapsula-

tion materials of various semiconductor devices, such as ceramic, metallic or composite

materials, as well as the capacity to be tailored (i.e. controllable pore size, density,

properties being affected by processing and post treatments like annealing or compres-

sion), has made them one of the most viable options to dissipate the heat generated by

current and future semiconductors and electronic devices [94, 95]. When a metal foam

(20 PPI aluminium foam) was attached to a power module it was found to be able to

dissipate the energy generated at more than twice the rated power of a state-of-the-

art heatsink [95]. As a result, this research suggests that the use of metal foams as

heatsinks in military and commercial power modules may offer significant advantages

with respect to cost versus performance, volume and weight.

Most thermal applications are for open cell foams, closed metal foams can be used as

heat insulating materials, owing to their temperature and fire resistance and as they

do not generate harmful gases in the presence of flames [2, 96].

The testing of metal foams for applications involving heat transfer is relatively infre-

quent. However there are a number of indications, coming from studies of the funda-

mental heat transfer processes, that this may be one of the applications where metal

foams offer the greatest promise. To see why this is we will now look at these investi-

gations in more detail.
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Chapter 4

Thermal and Fluid Flow

Properties

The permeability to fluid of an open cell foam, coupled with the high conductivity of a

metal immediately suggests applications in heat exchange. According to Ashby et al [2]

if we compare metal foams with their non-metallic counterparts we will have at least an

order of magnitude of thermal conductivity greater, due to the inherently high thermal

conductivity of metal. Further to this, the capacity of metal foams to withstand high

gas pressure, irradiation and extreme temperatures have aroused a great interest in the

study of how heat transfer takes place in these materials for applications in extreme

environments.

The heat transfer capabilities of a metal foam is determined by both the metal or alloy

from which it is made, and the structural characteristics (in other words the size of

the pores in the metal foam, their amount and distribution) of the foam. The effect

of these characteristics is important in understanding the complex interplay between

service conditions, pore architecture/pore size, thermal conduction, convective heat

flow and fluid permeation characteristics [102].

Metal foams have a wide range of potential applications, as detailed in Chapter 3. Of

39
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these, in recent years interest in these materials has increased in particular in applica-

tions as heat exchangers, due to the capacity to exchange heat between a fluid and the

open cell foam, and hence between a fluid and a solid the foam is in contact with.

Electronic system applications are one of the most challenging areas in heat trans-

fer science. One example is the need to continually increase thermal dissipation, as

consequence of the continuing demand of high speed and miniaturization of electronic

components [103]. Air cooling, sometimes using dense metal fins to increase surface

area, is one of the current technological solutions for cooling in these applications, giv-

ing a heat transfer of about 4.2W/cm2 , while in the near future the power dissipation

required in those systems is expected to be around 30W/cm2 [65]. The characterization

of fluid flow and heat transfer behaviour of metal foams is required so they can be used

in these applications [2, 65, 104, 105].

To achieve the requirements of heat dissipation, the metal foam has to be immersed

within a flowing fluid (gas or liquid). Air-cooling is still preferred for simplicity (it

does not have to be a closed loop system) and because this cooling system does not

risk damage from a leak, which would be a problem if the cooling was a liquid. Forced

convection in porous media have been studied in the last 60 years, but only during the

last 20 it has been studied in metal foams [104].

4.1 Foam conductivity

The thermal conductivity of a cellular material is depends on the conduction through

the solid phase, conduction through the gas phase, convection of the gas and radiation.

Like any composite of two distinct phases, the conductivity of a porous material will

depend on the bulk properties of the two phases involved, and the structure they form.

The quantity ”k” represents either the electrical or thermal conductivity tensor, which

are mathematically equivalent properties and can be estimated in a similar way to other

properties, such as effective dielectric constant, effective elastic modulus, etc. Upper
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Figure 4.1: Diagram of the structure for the rule of mixtures estimate of thermal
conductivity (upper bound).

and lower bounds are established by the rule of mixtures, which gives expressions to

describe the maximum and minimum limits of the conductivity of a composite with

two phases and are expressed as follows:

Considering a material with two distinct phases, stacked as is shown in Fig. 4.1 (heat

flow in Y direction, Hy ); since the phases are in parallel, heat flows along each in

function of their volume fraction and the thermal conductivity is given by the upper

bound of the rule of mixtures as follows:

ku = ∆αkα + ∆βkβ (4.1)

where ku is thermal conductivity (upper bound) of α and β phases, ∆α is the volume

fraction of the α phase layer and ∆β is the total volume of β (∆β = 1−∆α ).

For the X direction (heat flow in X direction, Hx , Fig. 4.2), the phases are perpen-

dicular to the direction of the heat flow, and heat must pass through both layers in

series. Here the thermal conductivity is given by the following equation:
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Figure 4.2: Diagram of the structure for the rule of mixtures estimate of thermal
conductivity (lower bound).

1

kl
=

∆α

kα
+

∆β

kβ
(4.2)

where σl is the thermal conductivity (lower bound).

This is a very approximate measure for a physically unlikely structure. When the

material is considered as periodically distributed inclusions of material 1 in a continuous

matrix of material 2, and it is assumed that material 1 occupies a volume fraction of ∆β

and has a thermal conductivity of kβ and that material 2 has a thermal conductivity of

kα , where kα > kβ , the relative thermal conductivity of this material can be bounded

using the Hashin-Shtrickman lower kl and upper bounds ku for thermal conductivity

for a two phase composite as follows [106, 107]:

kl = kβ +
∆α

1
kα−kβ +

∆β

3kβ

(4.3)

ku = kα +
∆β

1
kβ−kα + ∆α

3kα

(4.4)

The bounds take into consideration only the volume fractions of the different con-

stituents (∆α,∆β). This ratio is the key macroscopic parameter that determines the
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electrical/thermal characteristics of a heterogeneous material.

Using more detailed equations that capture more of the complex behaviour in these

materials, the ratio of thermal and electrical conductivity has been calculated by some

authors as the governing equations for electrical and thermal conduction in the material

in the porous structure. Goodall et al [108], reports the equations produced by several

models that are based on different structural concepts, and which have had applicability

to multiple sets of experimental results (Table 4.1).

Table 4.1: Equations specified by various models for relative conductivity of foams as
a function of the volume fraction porosity ∆. The parameter k refers to the thermal
conductivity, with the subscript f for the foam and 0 for the solid, nonporous metal.
Parameter ∆f is the volume fraction solid phase of the foam [108].

Model Equation Equation No.

Hashin-Strinkman upper bound
kf
k0

= 2(1−∆)
3−(1−∆) (4.5)

Lemlich
kf
k0

= (1−∆)
3 (4.6)

Ashby et al
kf
k0

= 1
3

[
(1−∆f ) + 2(1−∆f )1.5

]
(4.7)

Ashby structure (1−∆f ) = 3
(
kf
k0

)
− 2

(
kf
k0

)1.5
(4.8)

DEM (sphere)
kf
k0

= (1−∆)1.5 (4.9)

DEM (ellipsoids)
kf
k0

= (1−∆)n, n > 1.5 (4.10)

The application of the models as was mentioned, depends on the structure; for example,

the model of Lemlich is applicable in open cell foams with low relative density, such as

Duocel samples, in this model the material in the nodes is not taken into consideration.

The Ashby et al model takes into account the effect of the material in the node of

the structure for open foams with low relative density, however, for cellular structures

with high relative density, over 47 %, the conductivity that is predicted exceeds the

upper bound specified by the Hashin-Shtrikman model. For foams with high relative
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Figure 4.3: Comparison between the models of Table 4.1 and measurements developed
by Goodall et al [108].

density, Ashby proposed the ”cubic unit cell” that is reported in Table 4.1 as the Ashby

structure [108].

The differential effective medium (DEM) scheme proposed two models, one for a non-

conducting spherical phase (exponent n = 1.5) and one for nonequiaxed nonconducting

phase (exponent n > 1.5). According to Goodall et al [108], these two models have

provided good agreement with data for the conductivity in two-phase materials com-

bining a nonconducting discrete inclusion phase embedded in a conductive matrix (a

broad definition that includes metal foams).

Goodall et al [108] fabricated aluminium foams by replication technique with angular

and spherical shape using as a preform NaCl particles that were isostatically pressed or

sintered. The foams were fabricated with pure Al and Al-5Mg alloy, and with cell sizes

of either 75 or 400 µm. Electrical conductivity was measured at ambient temperature

in the samples fabricated using the four point technique. The results obtained were

compared with the models reported in Table 4.1 and are shown in Fig. 4.3 where it

is possible to observe that samples with angular and spherical pores obtained by the

author have a good agreement with DEM for spherical and ellipsoidal pores.

In this thesis the Lemlich model was used in Chapter 10 to calculate the effective ther-



4.1. FOAM CONDUCTIVITY 45

mal conductivity (keff ) of Duocel foams and DEM model (for spheres) for the foams

fabricated by replication technique, following the correlations found in this previous

work.

Dharmasena et al [109], develop an analysis to characterize the electrical conductivity

in Duocel aluminium foams with range of relative densities from 4 % to 12 % using

the four-probe method to measure the resistivity of the foam and were compared with

a model developed. In the method used for the author an inline four-point probe is

placed on the surface of a thick sample Fig. 4.4. A direct current is passed through

the specimen between the outer probes (P1 and P4), and the resulting potential differ-

ence is measured between the inner probes (P2 and P3). This is used to calculate the

electrical conductivity σ (units, Ω−1 ·m−1 ), which is the reciprocal of the measured

resistivity. The experimental measures were compared with a model developed based

on tetrakaidecahedral unit-cell representation of the foam structured. The comparison

showed that the electrical conductivity increases linearly with relative density in ex-

perimental and model results, and those values obtained with the model overestimate

the electrical conductivity. With the objective to have a closer agreement with experi-

mental and model results, the author modified the model; i.e. varied the effect of the

cross section and reduced of quantity of active ligaments, obtaining a better fit with

the experimental results. Despite adjustments the model shows a good representation

to obtain the electrical conductivity of the metal foam.

Solorzano et al [110] used the transient Plane Source Technique (TPS) method to mea-

sure experimentally the thermal conductivity of metal foam samples of ALSi7 foams

with porosities between 0.5 and 0.8 produced by the power metallurgy process. The

TPS sensors used in this method consist of a sensor element in the shape of a double

spiral. This TPS sensor acts both as a heat source for increasing the temperature of

the sample and a resistance thermometer for recording the time dependence of the

temperature increase. In the most of the cases the sensor element is made of nickel,

which is encapsulated and is placed between two samples of similar characteristics.
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Figure 4.4: Four-point probe method for measuring the electrical conductivity of metal
foams [109].

During a pre-set time, 200 resistance measurements are taken and from these the rela-

tion between temperature and time is established. As this is a contact method, special

care has to be taken to minimize thermal contact resistance between the sensor and

the samples that will be measured. Good contact between sample and measurement

sensors is required in many thermal property tests, due to the large thermal resistances

that can be introduced by even a slightly sub-optimal contact.

Measurements were carried out in the three cardinal directions of the sample (X,Y

andZ), where the sensor was in direct contact with the outer skin of the foam (identified

in this study as −Y,+Y,−Z and +Z directions) and where the outer skin was not

present (faces −X and +X ). The internal structure and density of the samples were

obtained using a helical medical scanner. The results obtained show that there is

a influence on the thermal conductivity when measurements are made on faces with

outer skin, having higher values of thermal conductivity than when the measure was

done on faces without it (for instance, measure developed in sample identified with

number 7 presents 36.5 W/mK thermal conductivity in face with outer skin, and 33.9

W/mK in one face without outer skin). The results obtained as well that the thermal

conductivity increase when the porosity decreases.

Analytical and experimental studies has been carried out to understand the difference

in the heat transfer mechanisms (convection, radiation and conduction) between cel-

lular polymers and metal using analytical models and experimental data to predict

the conductivity of these two cellular materials under diverse structural parameters
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Figure 4.5: Theoretical thermal conductivity as a function of the relative density for
low density and cell size 880 µm [111].

(relative density, cell size and cell geometry) [111].

Closed cell materials based on insulating solids such as polymers, theoretically present

a dependence of the conductivity on the amount of material present; however, for

densities below 5 % the conductivity was found to increase with further reductions in

density. This behaviour was unexpected for the authors of Ref [111] Fig. 4.5, who

explain this behaviour due to the strong influence of radiation at very low densities,

where the lower amount of solid material means that cell walls are thinner and are

therefore more permeable to thermal radiation. This effect is possible in polymeric

foams, but would not occur in a metal.

For cellular materials with high thermal conductivity of the base metal the effect of

density is dominant. However, the tortuosity of the structure also has a high influence

in the conductivity of the porous material, this is shown in the work presented in Fig.

4.6. Several different structures were analysed; idealised hexagonal and, real structures

with different density (the parameter d in Fig. 4.6, is the thickness of the cell wall

in the metal foam), the results were obtained by simulation for Voroni tessellations

(Voroni tessellations is the partitioning of a plane with n points into convex polygons

such that each polygon contains exactly one generating point and every point in a given

polygon is closer to its generating point than to any other) and real structures. Fig.

4.6 shows that the real structure gives rise to a lower thermal conductivity and this is
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Figure 4.6: Results obtained by simulation for varonoi tessellations and real structures
[111].

explained in terms of the tortuous shapes that pores present in the real material.

This aspect of foam behaviour was examined further by Conquard et al [112] develop

an analytical model based on finite element methods to estimate the influence of each

of the geometrical parameters characterizing the porous structure of the foam (such

as solid fraction, shape of the cells, strut cross section and size of the cross section

along the length of the strut), on the magnitude of the conductive heat transfer in

metallic/ceramic open-cell foams. The agreement of the model was checked with the

results from the literature. The numerical study showed that the morphology of the

strut forming the open cellular structure is the structural parameter with the greatest

effect on the effective conductivity. The magnitude of the conductivity is affected also

by the distribution of the solid along the strut length and the concentration of solid

matter at the intersection of the struts, which reduces the heat conduction through the

foam (which is understandable, as metal at the node does not transport heat through

the structure). Conquard et al found that the cell diameter and cell shape do not have

any influence in the effective conductivity. In case of the cross sectional shape of the

strut, the influence on the effective conductivity is slight and is negligible other than for

very low solid fractions and no influence of cell diameter in the effective conductivity
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was found.

The above was also found in the work of Bhattacharya et al [113] where analytical

and experimental characterization of more than 20 aluminium samples with different

densities and pore sizes were developed to determine the effective thermal conductivity

ke (among other thermophysical properties) of foams over a wide range of structures.

The experiments were performed with air and water as fluid media and shown that as

would be expected the effective thermal conductivity strongly depends on the porosity

[113]. As both of these studies used low density foams it is reasonable that conduction

along struts dominates, and cell size / shape has a small effect. It has also been shown by

Goodall et al [108], that although foams of different structures follow different models,

none requires a term for the cell size.

4.2 Foam permeability

In order to produce the best material for a heat exchanger, the aim must be to max-

imise the heat transfer coefficient (see later) and minimise the pressure drop for fluid

flow through the structure. It is therefore critical to have an understanding of the

permeability (K) of metal foams. Darcy was the first to perform recorded experiments

of flow thorough a porous medium; he discovered that the area-average fluid veloc-

ity (u) through a column of porous material is proportional to the pressure gradient

and inversely proportional to the viscosity (µ) of the fluid seeping through the porous

material and may be represented as follows:

u =
K

µ

(
−dP
dx

)
(4.11)

where dP is the difference of pressure and dx the length of the column of porous

materials.

Since then experimental measurements have been performed on several occasions for
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Figure 4.7: Schematic of the 1-finned metal foam heat sink tested, along with other
numbers of fins, by Bhattachayra et al in forced convection heat transfer experiments
[65].

metal foams. These materials have been studied due to either the higher mechanical

resistance than a similar polymer foam or because of their potential engineering appli-

cations as mentioned in Chapter 3. The pressure drop across the heat exchanger is an

important issue when metal foams are used as heat exchangers under forced convec-

tion in many practical applications; therefore it is important that it is characterized.

Bhattacharya et al [65], used an experimental set up shown schematically in, Fig. 4.17

to characterize the behaviour of aluminium foams with 20 and 5 PPI incorporated in

longitudinal or pin shaped fins having a porosity of 0.9 with a different number of fins

used for each sample Fig. 4.7. Bhattacharya et al found, for their finned samples, that

the pressure drop increases when the pore size decreases. Fig. 4.8 shows the differences

of pressure across samples of 20 and 5 PPI with four fins as a function of flow velocity.

It is possible to observe that the pressure drop increases when the pore size is reduced.

However, for a given pressure drop a higher heat transfer coefficient can be obtained

with 5 PPI than 20 PPI, meaning there is still a potential benefit to use this smaller

pore size.

Using water as coolant to determine the hydraulic behaviour of Duocel aluminium

foams, in data calculated on a Darcian flow velocity basis, Boomsma and Poulikakos

[47] found that in foams that were increased in density, starting with 0.95 and 0.92

porosity, the density affected the permeability. This was achieved by compressing the

sample, i.e. as Duocel is available in a limited range of (low) densities Boomsma
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Figure 4.8: Pressure drop characteristics for the samples with four fins [65].

and Poulikakos crushed the foams to increase density before testing, both densities

presents the same sensitivity in permeability with the compression, when the aluminium

sample is compressed the permeability was reduced. The effect of compression to higher

densities (to a highest density of 92 %) was similar for both samples tested.

Peak et al [114], constructed a experimental rig to measure the permeability to air

flow of aluminium foams with 90 × 190 × 9.1 mm in width, length and thickness,

0.89 to 0.96 porosities and 0.65 to 2.50 mm cell sizes, is shown in Fig. 4.9. The flow

air was supplied by a compressor and regulated by using a rotameter. Before the air

entered the test section a flow straightener was used to obtain a well-controlled and

calm uniform stream. The pressure drop was monitored by using a micromanometer

and an inclined manometer was used as a backup device.

The measurements of pressure drop for three different cell sizes (d= 0.65-2.50 mm) in

the x − direction (left to right in Fig. 4.9), are displayed in Fig. 4.10. Peak et al

interpreted these results by noting that as the cell size d of a metal foam decreases, the

surface-area-to-volume ratio increases and this means additional flow resistance. An

empirical quadratic curve fit to the data of Fig. 4.10 allow the permeability (K) of

these samples to be found and led to the conclusion that the permeability increases as

the cell size d increases for a fixed porosity, and when the porosity increases it results
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Figure 4.9: Experimental apparatus for the measurement of permeability of aluminium
foams [114].

Figure 4.10: Cell size on pressure drop at different air velocities for samples with 0.92
porosity [114].

in a higher value of K in samples with a fixed pore size.

Mancin et al [115] constructed an open circuit apparatus to measure both the heat

transfer coefficient and the pressure drop of aluminium open cell foams of the Duocel

type with 5, 10, 20 and 40 PPI and different densities at different air flow velocities.

The results obtained were compared with data obtained from a proposed model devel-

oped from the open literature. The experimental pressure drop values obtained with a

pressure transducer placed in the test section are presented in Fig. 4.11. The foam with
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Figure 4.11: Experimental pressure gradient plotted against air mass flow rate for the
different foams tested in ref. [115].

the smallest pore size, 40 PPI, and 7.0 % density presents the highest pressure drop

among the samples tested. From this experimental data, was found to decrease cell

diameter the permeability decreases. The experimental pressure data were compared

against different models that were select by the author from the open literature where

models proposed by Bhattacharya et al [113] and Du Plessis et al [116] presented the

best estimation of the pressure gradients. With the objective to obtain a better agree-

ment between experimental and analytical data a new simple model was developed by

the author. The model obtained predicts the experimental data with a 3.5 % standard

deviation. The values of permeability K , inertia coefficient f and form coefficient C

used to validate the model suggested by the author, were obtained from the database

from several independent research groups. The comparison between the experimental

data (experimental data from the open literature) and the calculated by the new model

proposed has a acceptable agreement with a 18.6 % standard deviation.

As well as simple forced convection, where the fluid is passed through the heat exchanger

in one direction, some workers have considered the use of oscillating flow, where the

fluid velocity is varied, often sinusoidally. This may enhance heat transfer, and be

a more appropriate solution for certain heat exchange situations. Leong et al. [94],

studied the effect of oscillating flow over Duocel-type aluminium foam heat sinks with

10, 20 and 40 PPI pore size and 0.9 porosity. Experimental apparatus was constructed

in which air was used as the working fluid, and the oscillating flow was provided by
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Figure 4.12: Variation of the difference of pressure of oscillating flow in aluminium foam
with 10, 20 and 40 PPI pore size at Reω = 425-436, where Reω is kinetic Reynolds
number defined in Eq. 4.12 [94].

reciprocating piston in a cylinder, which was driven by an electrical motor through a

crankshaft. The sample was 50 mm by 50 mm by 10 mm and a pressure transducer

was placed in the test section to measure the pressure drop across the samples and

understand their fluid flow behaviour.

Samples with similar porosity (0.9- 0.91), were tested under the same parameters. Fig.

4.12 shows the sinusoidal profile presented by the pressure drop, due to the reciprocating

motion of the driving piston under a kinetic Reynolds number; Reω= 425 ∼ 436. This

was obtained through the following equation:

Reω =
2πfD2

e

vf
(4.12)

where De= 5H /3 is the hydraulic diameter of channel, vf is the kinematic viscosity of

the fluid and H is the height of the channel. It can be seen in Fig. 4.12 that once again

the pressure drop in general increases when the pore size decreases in the aluminium

foam.

Despois et al [117], constructed an apparatus to develop a fluid permeability tests

to aluminium open foams produced using the replication technique using water and
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glycerine as a fluid and developed an analytical model to predict the fluid flow behaviour

of this porous system. The aluminium foams characterized had an average cell size of

15 and 400 µm , and a relative density from 12% to 32%. The model developed by

Despois et al is a simple equation to obtain the Darcian permeability (K), as a function

of foam density and pore diameter based on the assumption that the ”bottlenecks”

formed where cells interconnect are the dominant source of resistance to flow in a

porous medium. Taking into account that many cellular materials that contain nearly

spherical pores connected with one another through more or less circular windows, each

delineated by solid struts that narrow to a thin edge along the perimeter of the window

allow Eq. 4.13. Metal or ceramic foams produced by casting into a mold shaped by

using polymeric foams as a removal pattern are represented well under this description.

K =
∆r2

π

[
∆−∆0

3(1−∆0)

]3/2

(4.13)

where ∆0 is the initial packing density of the spherical particles and for a random dense

packing of monosized spheres having a value equal to 0.64, r is the radius of the sphere

and ∆ is the is the pore volume fraction in a foam. The results obtained experimentally

agree well with Equation 4.13 and show that K decreases rapidly when ∆ approaches

values near to 0.64 meaning that the ”bottlenecks” are almost closed. The predictions

of the model developed by Despois were found to be satisfactory when is compared

with data published in the literature (See Fig. 4.13), and has good agreement with the

Du Plessis’s model [117] for foam densities lower than 0.2 (i.e. 20 % of relative density).

It can be noted that virtually all of the experimental studies of the fluid flow behaviour

of foams have been carried out on Duocel-type investment cast material. This is partly

because these foams are commercially available, and partly because researchers suspect

they may offer a viable solution as heat exchangers. However, they are not perfect for

study of the behaviour of foams in general; as noted above, in some work the foams

have had to be crushed to access an interesing density range. There is therefore value
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Figure 4.13: Evolution of the permeability K normalized by the pore size squared d2

as a funation of the foam density [117].

in exploring the behaviour of foams made by other routes.

Fourie et al [118] develop a theoretical model which enhance the previous modelling

procedure of Du Plessis et al [116]. The analytical model was developed as a function

of two measurable geometrical parameters (cell size and porosity) and introduces a

characteristic dimension referred to as the representative hydraulic diameter which

accounts for the hydrodynamic effects of the triangular cross-sectional shape of on

individual strand in the metallic foam (it can be noted that characteristic lengths and

distances occur frequently in mathematical treatments of heat and mass transport)

comparison of the pressure difference predicted using the equations obtained was made

with previous experimental results for aluminium foams with 10, 20 and 30 PPI and

porosities from 0.91 to 0.93. The agreement obtained for each of the three metallic

foams was within 5 %.

An analysis to estimate the fluid flow properties of metal foams with two models (called

the ′fat′ and ′slim′ models) was established by Ahmed et al [119]. The difference

between the ′slim′ and ′fat′ models was the volume of matter accumulated at the
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strut connection (the nodes). The results obtained with these two models have better

agreement with the literature with low air flow rates and when the foam porosity is

high, as the strut-based model of foam is a better at low densities.

In non-metallic foams, numerical models have been used to investigate the permeabil-

ity where the results obtained can be applied to metal foams. Xu et al [120] use a

three-dimensional model to predict the permeability of a SiC foams produced by the

replication process by representing the foam by a periodically repeats cell with the

form of a tetrakaidecahedron. The pore size was from 1 to 3 mm diameter. The re-

sults obtained show that the permeability is strongly affected by the porosity and the

pore diameter and that the permeability increases quickly with the cell size at a con-

stant porosity and that the permeability is more affected by lower porosities at a fixed

pore size. The model was compared with experimental results with good agreement,

principally at lower flow rates.

4.3 Key elements of heat transfer

Before examining thermal transport in metal foams some aspects of general heat trans-

fer will be introduced. Whenever there exists a temperature difference in a medium or

between media, heat transport will occur. When this involves the passage of heat from

one object or phase to another, it is termed heat transfer. This transition of thermal

energy (heat) always occurs from the hotter object to the cooler to eventually reach

thermal equilibrium and is therefore also dependant on the transport of heat within

the object. Heat transport can occur by one of three mechanisms, depending on the

medium it has to travel through: conduction, convection and radiation.

Conduction.

Thermal energy is transported by conduction when the energy transfers from a high

temperature region to a low temperature region, when they are in direct contact with
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each other. In this situation the flux of heat is proportional to the temperature gradients

between them as follow

q

A
∼ ∂T

∂x
(4.14)

When the proportionality constant is inserted, this becomes

q = −kA∂T
∂x

(4.15)

where q is the heat transfer rate (kJ per unit time), ∂T/∂x is the temperature gradient

in the direction of the heat flow (K/m), A is the surface area (m2) and k is the thermal

conductivity defining the material’s ability to conduct heat (W/mK), the minus sign

is inserted so that the second principle of thermodynamics is satisfied.

Convection.

The process of heat transport across the boundary between a solid and a fluid is usually

a combination of conduction and a process called convection. The convection process

is a heat transfer process that involves the movement of a fluid transporting heat and

may be ’free convection’ or ’forced convection’. Free convection is when hot body is

exposed to a cooler environment without any external source of fluid motion. Fluid

motion is nevertheless and is entirely generated as a result of density gradients which

in turn results from the temperature gradients in the fluid. In forced convection fluid

motion is induced externally, often by a pump, fan, or compressor. It would normally

be expected that heat transfer is higher under forced convection, as the fluid normally

moves more rapidly and so transports heat at a higher rate, but an external power

source is required.

The rate of heat transfer from the heated body can be calculated from
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q̇ = −kl

(
dT

dx

)
w

(4.16)

where kl is the thermal conductivity of the fluid, (dT/dx )w is the temperature gradient

in the wall and q̇=q/A (the heat flux). As the temperature in the boundary layer by

the wall is not easily evaluated, the heat transfer rate is commonly written as

q̇ = hc(Tw − TL) (4.17)

where Tw is the wall temperature, TL is the temperature of the fluid a large distance

from the wall and hc is the heat transfer coefficient. This last parameter, the heat

transfer coefficient hc , is effectively a measure of how well thermal energy is transferred

from the solid to the fluid.

Radiation.

Thermal radiation or electromagnetic radiation is generated by the thermal motion of

charged particles in matter and leads to the transport of heat in the presence of a tem-

perature difference. An ideal thermal radiator will emit energy at a rate proportional

to the fourth power of the absolute temperature of the body, and directly proportional

to its surface area, and is defined as follows,

qemitted = σAT 4 (4.18)

where σ is the proportionality constant called the Stefan-Boltzman constant. Other

types of bodies, such as polished metal plates, do not radiate as much energy as the

blackbody (the ideal thermal radiator); the total radiation emitted (qemitted) by these

bodies still follows the T 4
1 proportionality. To take account of the ”gray” nature of

such surface the emissivity factor (ε) is introduced in Equation 4.18, which relates the
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radiation from the ”gray” surface to that of an ideal black surface. When considering

the net transport of heat between two bodies at different temperatures, emissivity and

the fact that some electromagnetic radiation will be lost to the surroundings as light

only travels in straight lines, two new factors are introduced in Equation 4.18

q = FεFGσA(T 4
1 − T 4

2 ) (4.19)

where Fε is an emissivity function, and FG is a geometric ”view factor” function.

Nusselt number.

The Nusselt number is a dimensionless number used where the heat transfer coefficient

has been obtained experimentally. It gives the ratio of convective and conductive

contributions to heat transfer; the larger the number, the more effective the contribution

of convection to heat transfer. For a constant heat flux the local Nusselt number is

given by

Nu =
hcL

keff
(4.20)

where L is a linear dimension (m) and keff is the effective thermal conductivity

(W/mK).

Prandtl number.

The Prandtl number (Pr) is the ratio of the kinematic viscosity to the thermal diffu-

sivity, measuring the relative efficiency of a fluid for the transport of momentum (high

viscosity / low diffusivity) and energy (low viscosity / high diffusivity), and is expressed

as follows
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Pr =
v

α
=
cpµ

k
(4.21)

where v is the momentum diffusivity (m2/s), α is the thermal diffusivity (m2/s), cp

is the specific heat capacity (J/kgK) and µ the absolute or dynamic viscosity (m2/s).

The Prandtl number depends on fluid properties and is a number that relates to the

fluid being used in a heat exchanger, and not the heat exchanger itself. Nevertheless,

knowledge of this number allows conversion between the expected behaviour with one

fluid and another (e.g. air to water).

Reynolds number.

The Reynolds number (Re) measures the ratio of internal forces to viscous forces in

the flow and is represented as follow

Re =
uL

µ
(4.22)

where u is the mean velocity of a solid object (which could be the wall of a pipe)

relative to the fluid (m/s). Considering the fluid in a tube with a diameter d in (m),

when the flow is smooth and the viscous forces are dominant the flow is considered to

be laminar. This occurs when the Reynolds number is below a certain value:

Red < 2300 (4.23)

turbulent fluid occurs when the fluid is dominated by inertial forces that produce an

unstable and chaotic fluid profile. Depending on the pipe roughness and smoothness

of the flow the range accepted for transition from laminar to turbulent flow is 2000 <

Red < 4000.
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Figure 4.14: Experimental set up constructed by Phanikumar to characterize the
buoyancy-induced fluid flow in highly porous aluminium foams [121].

4.4 Heat transfer in foams

4.4.1 Buoyancy-Induced flow conditions

Numerical and experimental methods have been deployed to characterize the heat trans-

fer in a porous metal under buoyancy-induced flow. Phanikumar et al [121] used an

analytical and experimental approach to characterize the buoyancy-induced flows in

metal foams heated from below at a maximum temperature of 75oC . The aluminium

foam analysed were samples with pore sizes from 5 to 40 PPI and porosities from 0.89

to 0.97. The test were developed on natural convection conditions with the sample in

a horizontal configuration. The sample was placed in a large plexiglas housing of 0.45

m in height and width and 0.30 m deep. Fig. 4.14.

The experimental results obtained show that for a given Rayleigh number the heat

transfer rate decreases as the pore density increases from 5 to 20 PPI. The Rayleigh

number is a dimensionless parameter that is a measure of the instability of a layer

of fluid due to differences of temperature and density between the top and bottom.

Phanikumar et al concluded that this behaviour is due to the resistance to the flow de-

creasing with an increment in pore size resulting in enhanced mixing and heat transfer

and for a pore density the heat transfer increase when the porosity decrease Fig. 4.15.

The Local Thermal Equilibrium model (LTE) developed by the workers was in rea-

sonable agreement with the experimental data obtained, having a maximum difference
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Figure 4.15: Experimental results obtained with aluminium foams [121].

between them of less than 15 %. Phanikumar et al suggested that the enhancements in

heat transfer result from the use of metal foams are up to a factor of 4 when air is used

as a fluid and 16 when water is used. In either case, this would be a desirable increase

in the performance of a heat exchanger using these materials, and is particularly im-

pressive considering the narrow range of foam densities examined; the probability that

the optimum foam structure has been found is low.

Samples of a highly temperature-resistant alloy steel (FeCrAlY) with 5 and 10 % relative

density and pore size of 30, 60 and 90 PPI were examined to see the heat transfer

behaviour under natural convection, the measures were carried out under vacuum and

ambient conditions by Zhao et al [122, 123]. The differences between effective thermal

conductivity obtained from the temperature measurements in ambient pressure and

in vacuum conditions show that the effect of natural convection (which is of course

removed under vacuum) on heat transfer is very significant, contributing about 50 %

of the overall thermal conductivity measured at atmospheric pressure. For example a

sample with 60 PPI and 10 % relative density, presents a thermal conductivity around

0.2 W/ m K under vacuum conditions, while in ambient pressure presents 0.6 W/m K.

The results were obtained for a fixed Rayleigh number (Ra= 48,000), indicating that

for a natural convection under ambient pressure in these foams there is no significant
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Figure 4.16: Experimental apparatus developed by Hetsroni et al. (1) housing, (2)
aluminium contacts, (3) metal foam specimen, (4) voltmeter, (5) IR camera, (6) holder,
(7) amperemeter, and (8) power supply [124].

value of Darcy number. This implies that there is no fluid motion and that the heat is

transferred by pure conduction, at least the sample for which this was obtained (with a

60 PPI and 10 % relative density sample). The numerical predictions of this behaviour

agree generally well with a maximum deviation of 28 % is reported by the author [123].

Hetsroni et al [124] performed the characterization of natural convection in a metal

foam strip with internal heat generation using aluminium foam samples with 20 and

40 PPI and with 0.90 and 0.85 of porosity respectively. The samples were tested in an

apparatus shown in Fig. 4.16. The internal heat generation was simulated by supplying

DC current up to 50 A to the foam sample. The thermal field of the outer side of the

porous strip was measured by an IR camera.

The results showed that the metal pore structure with 20 PPI enhanced the heat

transfer, compared with the ones obtained for the sample with 40 PPI. Hetsroni et al

suggested that it is not only the specific surface area that determines the effective heat

transfer but that due to the higher permeability of the foam with large pores, there is a

higher flow of the air through the porous medium, in response to the convective forces

acting on the air, and that this also contributes to the higher heat transfer. From the
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thermal maps obtained through the IR camera, Hetsroni reports that the solid skeleton

and the air are not in thermal equilibrium, having a maximum difference between their

temperatures of up to 18 %.

4.4.2 Forced convection

As was seen in Hetsroni et al’s work on natural convection in foams, the rate of fluid

flow is very important to the heat transfer obtained. The faster the fluid flows the more

energy it will take away and the larger the heat transfer coefficient will be. Therefore,

forced convection (where an external source powers the fluid flow) is often used in heat

exchange. Calmidi et al. [104] used the experimental set up shown in Fig. 4.17 to

characterize aluminium (alloy T-6201, processed by the investment casting method)

foams with porosities from 0.89 to 0.97 (see Table 4.2 for more details) under forced

convection. The samples were heated by patch heaters, the power input was set between

15-35 W. The cooling air was obtained by connecting the plexiglass tube (where the

sample is placed) to a fan/motor assembly downstream of the test sample, the speed

of the motor was adjusted to the desired flow velocity which was measured by the

pressure drop across an orifice plate. The direction of the air was from left to right in

the diagram, and the test took from 5 to 10 min depending on the flow velocity. The

heat transfer coefficient was obtained using equation 4.17 and the Nusselt number with

equation 4.20.

Table 4.2: Characteristics of metal foam samples used by Calmidi et al [104].

No. Porosity (fraction) Pore Size (PPI)

1 0.97 5
2 0.91 5
3 0.94 10
4 0.95 20
5 0.90 20
6 0.92 40
7 0.91 40

The data collected in this study were compared with results obtained from simulations
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Figure 4.17: Experimental set up used by Calmidi et al. [104], for forced convection
heat transfer experiments.

using a numerical code where the experimental conditions were reproduced and the

results matched in a reasonable manner. Figures 4.18(a) and 4.18(b) show the very

good fit obtained by the authors when these simulations are plotted as a function of

the Reynolds number, based on the permeability (ReK ).

(a) Process scheme (b) Parts obtained

Figure 4.18: Nusselt number as a function of ReK for (a) 5 PPI and (b) 20 PPI samples
(Table 4.2) [104].

Aluminium foams were incorporated into existing heat sink designs to characterize

the behaviour when they are under forced convection. Bhattachayra et al. [65] used

aluminium foams with a porosity of 0.9 and pore size of 20 PPI and 5 PPI incorporated

in normal longitudinal or pin-shaped fins, with a different number of fins used in each

case, in order to investigate the heat transfer of metal foam with finned metal in the
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system developed by Calmidi et al. [104]. Fig. 4.7 shows schematically a finned metal

plate between two blocks of metal foam. The fin, the foam and the thermal adhesive

applied in order to reduce the contact resistance between the metal foam and fins can

all be seen. The temperature of the air before and after the metal foam was measured,

as well as the temperature in the metal foam and the flow rate.

The results obtained in metal foams with 20 PPI in this experiment show that the heat

transfer coefficient increases at a given flow rate when dense metal fins are incorporated

in the metal foams. Bhattacharya et al explain this enhancement in the heat transfer

with reference of the fact that replacing a strip of metal foam with solid aluminium

results in a increment of heat transfer by conduction (about 32 times higher thermal

conductivity of the solid aluminium with respect to metal foam) and that a large surface

area of heated metal (both foam and fins) is in direct contact with the foam. However,

this increment is not linear as would be expected if the effect was simply replacing a less

efficient foam with more efficient dense metal. In the last case when the metal foams

have 6 fins, the heat transfer coefficient decreases; this is shown in Fig. 4.19(a). The

author attributed this behaviour to the interaction of the thermal boundary layers (non-

free flowing fluid) formed on the adjacent finned surfaces. The heat transfer coefficients

obtained in metal foams with 5 PPI, Fig. 4.19(b) are similar to those obtained from

20 PPI; i.e. the heat transfer increases when fins are incorporated to the aluminium

foam. For a particular air velocity the heat transfer coefficient is higher in 20 PPI than

5 PPI samples with the same number of fins due to the higher surface area available

for heat transfer. An alternative way of picturing this would be to say that there is the

presence of larger number of fibers (i.e. the struts).

Hsieh et al [103] constructed experimental apparatus to characterise the effects of the

air velocity, porosity (ε) and pore size on the heat transfer of aluminium foams, Fig.

4.20. As in the experimental apparatus constructed by Calmidi et al [104], the sample

is cooled by air at different velocities and the sample is heated on the lower side through

resistance heating controlled by a power supply. The sizes of the samples tested was 60
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(a) 20 PPI

(b) 5 PPI

Figure 4.19: Heat transfer coefficient as a function of air velocity for (a) 20 PPI and
(b) 5 PPI metal foams with finned heat sinks [65].

mm diameter and 65 mm height, and the inlet air velocity was measured by a hot-wire

anemometer. The author measured the temperatures of the solid and gas phase to

understand the phenomenon of thermal equilibrium between these two phases. Some

of the properties of the aluminium foam used in this study are presented in Table 4.3.

The results obtained show that the Nusselt number (Nu) is influenced by the Reynolds

number (ReDp, based on the spherical diameter of the pores), as well as the porosity (ε).

If the Rynolds number and the pore density increase (maintaining the same pore size),

the Nusselt number increases. This can be observed in Fig. 4.21(a) where aluminium

samples with 20 PPI and different densities are compared. Fig. 4.21(b) shows the

influence of the pore size on the Nusselt number.
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Figure 4.20: Experimental apparatus developed by Hsieh et al for the measurement of
heat transfer [103].

Table 4.3: Characteristics of metal foam samples used by Hsieh et al [103].

No. Pore Size (PPI) Porosity (fraction)

1 10 0.92
2 20 0.87
3 20 0.91
4 20 0.94
5 20 0.96
6 40 0.94

As was mentioned earlier, the author instrumented the apparatus to be able to measure

the temperature of the solid phase and the gas phase, finding that the differences in

temperature between these two phases decrease with increases in porosity. Fig. 4.22

shows how the thermal equilibrium is influenced by the Reynolds number (ReDp), and

for the distance away from the heat source. The distance away from the heat source

is represented as the dimensionless number z/H, where z is the total height for the

sample and H is the height at which the temperature is evaluated.

Mancin et al also constructed experimental apparatus to characterize the heat transfer

and the permeability of aluminium [115, 125] and copper foams [126]. The test rig was

an open circuit tunnel with rectangular cross section in which the metal foam samples

(the majority 100 mm long, 100 mm wide and 40 mm high), were tested to understand
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(a) Different Densities(ε) (b) Different pore size (PPI)

Figure 4.21: Effect of the Reynolds number on Nu for metal foams with (a) different
pore densities and (b) different pore size [103].

Figure 4.22: The contour of dimensionless temperature difference of 10 PPI and 0.92
porosity sample, plotted in Reynolds Number-dimensionless height coordinates [103].

the behaviour of the sample. The device was heated from the lower face, and was

instrumented with 12 thermocouples, of which 6 were installed in the top plate and 6

in the bottom of the test section.

Where aluminium foams were tested, these were again foams produced by the invest-

ment casting method and had pore size of 5-40 PPI and porosity that varied between

0.89 and 0.97. The experimental results were compared with a model developed from
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the literature. Mancin et al found that the heat transfer coefficient (hc ) obtained

through equations 4.16 and 4.17 does not depend on the heat flux imposed (HF ), and

that it increases with increasing air mass flow rate, Fig. 4.23(a). In tests with the

same heat flux imposed, they found that, for a constant pore size, an increase in the

global heat flux is obtained when the porosity is decreased, Fig. 4.23(b). The foam

with highest heat transfer coefficient found in this work among the samples tested was

the foam with 10 PPI of pore size and density of 9.7 %. This sample presents higher

global heat transfer than foams with higher heat transfer area per unit volume, such

as samples with 40 PPI and 7.0 density, and 20 PPI with 6.8 density. When samples

with 10 PPI pore size were compared, the author reports that the sample with 9.7

% presents the thickest fibers. The above and the apparent highest surface area effi-

ciency can explain why 10 PPI sample with 9.7 % density presents highest heat transfer

among the samples. The comparison of the experimental heat transfer coefficient with

that calculated, made by Mancin et al was deemed satisfactory as it presents a 8.0%

standard deviation.

(a) Different heat flux imposed (HF ) (b) 10 PPI samples with different densities
where HF: heat flux imposed.

Figure 4.23: Global heat transfer coefficient (hc ) against air mass flow rate in samples
with 10 PPI when (a) the heat flux imposed is varied and (b) with same heat flux but
with different densities [125].

The tests discussed above have all been performed on straight channels. The effect

of channels that are not straight on the heat transfer and pressure drop has been

investigated principally to understand the behaviour in pin-fin arrays (pin-fin array
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consist of a base and an array of embedded pins with the length, thickness, density and

materials that can be customized to fit the required application) used to cool systems

[127, 128]. Sheng et al [129] studied the heat transfer and pressure drop in porous

channels with 90◦ turned flow (see Fig. 4.24) using aluminium foams with porosity

of 0.93, the results were compared with those from straight porous channels. The

dimensions of the aluminium foam samples were fixed; the pore size, Reynolds number

of the flow and the ratio of the entry width to the porous sink height were the variable

parameters. The results obtained show that the friction factor (the friction factor,

frequently symbolized as f , is a dimensionless factor that depends primarily on the

velocity, density and viscosity of the fluid, and pipe diameter. It is also a function of:

size shape and spacing of the wall roughness) of the straight channel was generally lower

than the channel in which the flow turned 90◦ as would be expected, given the change

of fluid direction induced. The average Nusselt number when the Reynolds number is

lower than 1000 in the configuration in which the flow turned through 90◦ , slightly

exceeded that in the straight flow configuration. This larger Nuesselt number could be

as a result of the extra turbulence generated when the cooling air flows through the

foam in the 90 configuration, although this is not discussed by the author. However,

over the range of the Reynolds values examined the average Nusselt number of both

configurations of the cooling channel (straight and 90◦ ) was almost the same.

Most of the investigations reported for heat transfer characterization cover experiments

in rectangular channels; there are few reports of research investigating heat transfer in

circular cross section channels even though such forms are easier to analyse for their

rotational symmetry; this could because the majority of heat exchange applications

will require a flat interface configuration. Zhao et al [130, 131] develops an analytical

solution for a tube heat exchanger filled with metal foam and compare this with ex-

perimental results. Copper and FeCrAlY metal foams are characterized, and have a

very good agreement with the analytical model. This predicts that the Nusselt number

increases with increasing relative density and with reducing pore size. A double tube
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Figure 4.24: Flow channel with 90◦ turned flow [129].

heat exchanger filled with metal foam was also analysed and was compared with a

conventional heat exchanger with an inner grooved tube and fins (figures 4.25(a) and

4.25(b)). The heat transfer performance of the exchanger with the metal foam was

found to be superior to the finned tube counterparts, being three times higher than the

performance of the longitudinally finned tube and even better than the best non-foam

heat exchanger tested, a spiral finned tube [131].

(a) The heat exchanger with in-
ner grooved tube and fins.

(b) Metal-foam filled heat exchanger.

Figure 4.25: Tube heat exchanger diagram (a) with inner grooved tube and fins, and
(b) with inner and outer annular section filled with metal foams [131].
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Figure 4.26: A helically finned (top) and metal foam covered tube [132].

The good performance of heat exchangers with spiralling fins has been noted and com-

pared to metal foams in other work (both of these will act to increase heat transfer by

improving the turbulent mixing within the fluid). Joen et al [132] studied a new design

of heat exchanger where the thermal-hydraulic performance of a tube covered with

metal foam is compared with a helically finned tube, Fig. 4.26. The work reports that

increasing the foam thickness gives an increase the heat transfer coefficient and at the

same time an increase in the pressure drop. When the foam height increases the surface

area of the foam increases, then the heat extraction is beneficed and the permeability

of the foam decreases. Brazing the metal foam to the tube enhanced the heat transfer

(reducing the thermal resistance between the foam and the tube) while using epoxy

glue had devastating effects on the heat transfer performance (with a reduction in heat

transfer of about 70 %). Brazing the metal foam to the tube, using higher thickness of

the foam and thin struts are found to give benefits at higher air velocities (higher than

4 m/s) compared with the spiral finned tubes; the heat transfer obtained is higher with

a lower pressure drop when are compared at the same air velocity.

4.4.3 Oscillatory flow

In some applications, a simple, unidirectional cooling fluid flow would not be suitable.

As noted by Leong et al [133] uni-directional flow through a porous channel gives rela-
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tively high temperature differences along the surface that is being cooled. Heat transfer

will be higher near where the cooling fluid enters because of the greater temperature

difference driving heat transfer. The operating speed of a modern high-speed micro-

processor is influenced by the surface temperature of the components (which should be

as low as possible) but also by the temperature uniformity; it is therefore important to

maintain the uniformity over the surface.

As mentioned in Section 4.2, Leong et al. [94], studied the effect of oscillating flow

over aluminium foam heat sink with 10, 20 and 40 PPI pore size and 0.90 porosity.

Experimental apparatus was constructed in which air was used as the working fluid,

and the oscillating flow was provided by reciprocating piston in a cylinder, which was

driven by an electrical motor through a crankshaft. The sample was 50 mm by 50

mm by 10 mm and was attached to a copper plate using thermal grease to reduce the

thermal resistance. A constant power heat source was connected to the bottom of the

sample through the copper plate. Eight thermocouples were fixed into eight narrow

slots in the copper plate to record the temperature in different locations.

In oscillating flow, defining the heat transfer behaviour is more complex than with

steady state. Leong et al characterized the heat transfer performance obtained with

the samples tested by use of the cycle-average local Nusselt number, which is defined

based on the cycle-average surface temperature with the following equation:

Nu =
hxDe

kf
(4.24)

with kf being the thermal conductivity of the fluid, De the hydraulic diameter and hx

the local heat transfer coefficient, respectively, where hx was calculated as follows:

hx =
Q

Aheated (Tw − Ti)
(4.25)

where Tw and Ti are the cycle-average local surface and the bulk air inlet, Q and
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Figure 4.27: Cycle average temperature distribution on the surface test section for a
10 PPI pore size sample [94].

Aheated are the power input. Leong et al show that for the same heat input, 20 W,

when the Reynolds number increases the temperature distribution decreases for all pore

sizes. The largest temperature is found in the centre of the test section, presenting a

convex shape when the wall temperatures are plotted against the hydraulic diameter.

For all pore sizes (10 , 20 and 40 PPI) Fig. 4.27 shows the temperature distribution

on the surface of the test section versus the hydraulic diameter at different kinetic

Reynolds numbers for a sample with 10 PPI pore size.

For the Nusselt number calculated from equation 4.24, Fig. 4.28 is obtained where

in this case the distribution is concave when the Nusselt number is plotted versus the

hydraulic diameter.

4.4.4 Theorical approaches

There are many approaches to modelling and simulating flow through pores struc-

tures [113, 119, 120, 134–142]. Among these there are some more accessible analytical

approaches to compute the thermal and fluid flow behaviour. One such model was

developed by Lu [134] to be used to analyze and guide the design of the optimum foam

structure that would maximize heat transfer per unit pumping power in a system. A
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Figure 4.28: Cycle average Nusselt number distribution on the surface test section for
a 10 PPI pore size sample [94].

simple cubic geometry of cells sandwiched between two plates was proposed, Fig. 4.29,

where it is assumed that T1 ≥ T2 , (T1 temperature of upper plate and T2 temperature

of bottom plate), and where a cooling fluid with temperature T0 (<T2 ) and pressure

po is forced into the foam. Lu [134] chose this geometry for simplicity, but it neverthe-

less has the capacity to capture the effect of different variables like foam density, cell

size and fluid velocity. Such simplifications in foam structure have been successfully

employed for other properties, the most well known being the mechanical description

of foams derived by Gibson and Ashby.

The model was developed in three steps; the heat transfer from a single cylinder of type

denoted Z (oriented parallel to the flow) with length b is explored as these are the only

ones that contribute to heat extraction as they are oriented across the temperature

gradient. If the cylinder’s temperature is higher than T2 , heat is lost not only by

convection to the fluid but also by conduction to the environment, when T2 is higher

than the cylinder temperature the heat is extracted from both the lower plate and the

upper plate. Using this approach the Z cylinders are analyzed unconnected to the

square array in the (x , y )-plane.

In the experimental part of this study, a high flow velocity was used and the porous
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Figure 4.29: Notations and cubic unit cell of an open-cell foam under forced convection
[134].

media is restricted, so therefore the assumptions of thermodynamic equilibrium and

Darcian flow are invalid. Despite this oversimplification of the geometry and heat

transfer overall the prediction of this model shows good agreement with the experi-

ments. The simplicity of the model allows it to be used to give guideline predictions

for the heat transfer performance for wide range of open-cell foams.

A model recently proposed by Ghosh [135], is also based on an analytical approach

with a simple cubic geometry. This was disintegrated into a group of independent y -

direction struts from which the author obtains the governing equation Fig. 4.30. (in

the model developed by Lu [134] the foam was modelled as inter-connected cylinders).

With this simple model Ghosh [135] developed a deep analysis which takes into account

the finned-foam surface area efficiency and the interstitial heat transfer coefficient which

gives good agreement with experiments for heat transfer, pore densities, Nusselt number

and temperature variations with flow velocity. These experimental data were obtained

by Giani [143] with metal foam samples provided by Porvair made of Fecralloy (Fe-

10Cr-5Al-2Y) with three different pore sizes 10, 20 and 40 PPI.

As an example of this excellent agreement obtained by Ghosh to the experimental

data obtained by Giani [143], Fig. 4.31 shows the heat flux versus the pore size where
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Figure 4.30: Differential element for deriving governing foam equation [135].

Figure 4.31: Comparison of experimental and predicted variation in heat flux passing
through a foam sample with respect to pore size [135].

the data predicted using the Tubes Correlation are in very good agreement with the

experimental data.

An analytical model with a more realistic representation of the actual aluminium foam

structure was developed by Bai et al [136], based sphere-centered open-cell tetrakaidec-

ahedron, and compared with experimental data from test of flow behaviour using air

as the coolant gas. The model also gives a good agreement with the data from Leong

et al. [94].

4.5 Summary of trends in heat transfer and permeability

For a better understanding of the trends in heat transfer and permeability a summary

of the general effect of common variables (pore size, density, porosity, Nusselt and

Reynolds number) is shown in Fig. 4.32, where it is possible to observe how the heat



80 CHAPTER 4. THERMAL AND FLUID FLOW PROPERTIES

Figure 4.32: Schematic diagrams of the trends in permeability and the heat transfer in
metal foam with common variables.

transfer and permeability increase or decrease depending on the variable evaluated in

the metal foam.



Chapter 5

Experimental Procedure

Foam samples in this work were processed following the fabrication process which will

be described below. Both the foams processed in-house and aluminium foams commer-

cially available were thermally and physically characterized employing the procedures

and techniques that will be described in this chapter.

5.1 Replication technique

For the work presented here, a single foam production method was selected. Because

of equipment availability and the versatility of method, the replication technique was

chosen. This method involves casting in the liquid state over a removable space-holder

phase, in particulate form, and a gas pressure being applied to cause infiltration. The

space holder particles are interconnected and therefore the foam obtained is an open

pore foam.

The replication technique has three principal steps:

1.- Fabrication of the open pore pattern from a space holder material. This is called

the preform.

2.- Infiltration of the liquid metal into the preform.

81
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3.- Removal of the preform from the solidified metal to produce a metal foam.

5.1.1 Fabrication of the open pore pattern (preform)

The material used for the open pore pattern or preform can be of several different types

(examples of which include pure salt (NaCl), alumina, polystyrene, and some resins,

such as phenolic resin [2, 3, 58, 144, 145]). To use these materials in the replication

technique imposes certain requirements, and this may make it difficult to find the ideal

material that could be used in an industrial process. The principal requirements are:

to maximise control over the foam topology, increase the ease of dissolution of the

preform (which can take a long time, even in some cases days) and avoid reaction with

the metal to be infiltrated [3, 58, 59]. One material that has been suggested to allow

the preform to achieve this is a mixture of salt, flour and water [2, 58], suitable for use

when aluminium is used to produce metal foams. This mixture produces a paste which

can be used to make a preform that is easy to manufacture and dissolve [21, 58], and

therefore has great potential to be used in industry.

The principal properties required for the material used to produce the preform are:

it has to be chemically stable in contact with the molten metal, it has to be easy to

remove once the metal is cooled and it should also be easy to handle and inexpensive

if possible [59].

Following the method in [58], the materials selected to produce the preform were;

commercial salt (table salt or cooking NaCl), plain white flour (domestic grade supplied

by Tesco or Morrisons supermarkets) and water (H2O). These materials were mixed

together with salt usually being the major component. Salt can resist processing at

temperatures up to around 740 ◦C (its melting point is 801 ◦C [146]) and does not have

any reaction with the aluminium.

The flexibility presented by the paste obtained by mixing the constituents (NaCl, Flour

and water), is an important advantage of this process. The paste can be manipulated to
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obtain virtually any form, such as cylinders, cubes, pyramids and spheres around 2 to 10

mm in diameter (the range within which the paste can be shaped and is heat treatable

without unwanted expansion) without any problem. The paste can be shaped by hand,

or by any usual shaping operations used in the pharmaceutical or food industry, where

one particular shape is required.

The preform produced with the desire shape is placed under heat treatment with the

objective to eliminate the water and to remove the flour by pyrolization, the remaining

carbon being removing by reaction with the atmospheric oxygen [58].

5.1.2 Infiltration of the liquid metal into the preform

After the preform is fabricated with the characteristics required, the preform is ready

to be infiltrated. As some metals do not wet the preform material, like aluminium with

NaCl, it is necessary to apply pressure (most easily done by using an inert gas in a closed

system) to fill the open spaces in the preform. However, this pressure applied should

not be too high, or the preform material, which is itself porous, could be penetrated

by the molten metal. Before the molten metal it is infiltrated is also recommended to

pre-heat the bulk of preform to avoid premature solidification of the melt [2, 3]. Once

the molten metal is infiltrated, the composite (metal-preform) is left to cool down until

solidification takes place.

5.1.3 Removal of the preform

The preform could be leached out from the composite with a suitable solvent or it could

be removed by pyrolysis, depending on the nature of the preform material. For example

water can be used for leaching when the preform is salt [21, 58] or thermal pyrolysis is

applied when polymer spheres are used has space holders [3]. The composite (metal-

preform) can be machining before the space holder is removed, this can helps to retain

the foam shape, especially if the metal used to produce the foam it does not present
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grater resistance when it is cut.

5.2 Machining (Electro Discharge Machining)

The thermal contact resistance between the metal foam sample and the copper cylinder

was one of the principal concerns when the heat transfer characterization was carried

out (Subsection 7.1.2), and this can be reduced significantly if the sample has the most

accurate dimensions. To be able to obtain this, the aluminium foams were machined

using the non-traditional machining process Electro Discharging Machining or EDM.

On this method electrical energy generates an electrical spark and material removal

mainly occurs due to thermal energy of this spark. EDM is mainly used when difficult

or very precise geometries are required.

The EDM machining process is based on a potential difference applied between the tool

and workpiece. Both the work material and the tool must be conductors of electricity.

As the dielectric medium, kerosene or de-ionized water is used. Generally the tool is

connected to the negative terminal of the generator and the workpiece is connected

to positive terminal. A gap is maintained between the tool and the workpiece. The

electric field established depends on the gap between the workpiece and the tool. When

this gap is reduced the intensity of the electric field in the volume between the tool

and the workpiece becomes greater than the strength of the dielectric and it breaks

allowing that the movement of electrons and ions can be visually seen as a spark.

Thus the electrical energy is dissipated as the thermal energy of the spark. Then this

thermal energy (which can raise the local temperature higher than 10000 ◦C) removes

the material from the workpiece by instant vaporization and melting. The small scale

of these sparks allows the position of the cut to be determined precisely, and the non-

loading nature of the process means that when it is applied to metal foams the structure

remains undisturbed.
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5.3 Heat transfer measurements

To investigate the heat transfer in metal foam samples an experimental technique is

needed which can be applied to such foam samples produced and described later. To do

this analysis a device is required to measure fluid flow and temperature changes when

the metal foam is cooled by a fluid flowing through it. This device was developed in this

work, and the development process is described in Chapter 7. Here a brief account of the

final device is given. To monitor the performance of the foam at transferring heat the

properties that need to be measured are: the temperature of the foam, the pressure drop

across the foam, the flow rate and temperature of fluid before and after flow through

the foam. The concept used to characterise the heat transfer and the permeability

performance of the aluminium foams is as follows: heating a thick-walled cylinder of

copper in which the foam is placed, while cooling the foam by forced convection by

flowing a fluid through it. The difference in temperature between the copper block and

the incoming air gives the driving temperature difference for the heat to be transferred.

How effective the foam is at doing this can be assessed by measuring the temperature

difference in the cooling air before and after the specimen. A general view of the

experimental apparatus is shown in Figure 5.1. The apparatus consists of two steel

chambers, one of which is connected to the cooling fluid (in this case air), between which

is the copper cylinder. The steel chambers are the locations where the measurement of

air temperature before and after the sample, and the pressure drop are performed.

The copper cylinder has the role of the heat store, supplying thermal energy at a steady

rate to the foam and smoothing out variations from the heater. It is one of the most

important aspects of this work (as it forms the test section); therefore a range of issues

were considered in its the design. The most important are:

1.- The thermal isolation of the copper cylinder.

2.- Thermal instrumentation.
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Figure 5.1: General view of the experimental apparatus constructed to characterize the
heat transfer behaviour of metal foams.

3.- The thermal resistance between the metal foam and the copper cylinder.

These factors will be discussed in more detail where the rig is described later.

5.3.1 Data acquisition system

To fully characterise the heat transfer of a metal foam sample, in addition to the mea-

surement of the temperature of the copper cylinder, the temperature of the cooling fluid

was measured. To do this, a 1 mm diameter thermocouple was inserted inside each of

the two steel chambers, before and after the sample, using such a small diameter en-

sured that the thermocouple had low thermal inertia, and responded rapidly to changes

in gas temperature. The steel chamber has 13 cm diameter and 15 cm length, and the

thermocouple was inserted to the midpoint of the cylinder. The temperatures from the

copper cylinder and the cooling gas were collected by a data acquisition system sup-

plied by National Instruments. The hardware consists of a chassis (model cDAQ-9172

with 8-slot). Four slots of this chassis were used to measure the temperature with 2
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modules (model NI-9211). Each module has the capacity to log 4 thermocouples. To

store the temperatures from the copper cylinder as well as the two steel cylinders a

program was developed using LabView software. This program has the capacity to

store readings from each thermocouple at a rate of 1 to 10 Hz and display a graph of

temperatures with time. The heating system consisted of a Watlow band heater with

36 mm internal diameter and 28 mm width, attached to a 240 Volts and 250 Watts

supply. The band heater is fastened on the copper cylinder by two screws and the

temperature is controlled by a Watlow EZ Zone PM PID controller.

To measure the pressure drop of the flow, a hole was made on the opposite side from

the thermocouple entry in each of the steel chambers. A pressure transducer was

connected to both of these holes to measure the difference of the pressure as a result

of the pressure drop when the cooling fluid is flowing through the metal foam. The

differences of pressure between 0.01 to 50 mbar a Testo 510 devise was used to obtain

the measurement and for differences of pressure higher than 50 mbar, a Digitron 2027

was utilized, both devices were supplied by RS Components.

5.4 Test procedure

The steps followed in every test are as follows:

• After application of a thin layer of Electrolube thermal adhesive over the internal

cylinder surface of the copper cylinder, Fig. 5.2(a), the sample was mounted, Fig.

5.2(b).

• The copper cylinder with the foam inside was placed on the rig (between the two

steel chambers, 5.1).

• Once the copper cylinder was mounted, the thermocouples were inserted into it.

The master thermocouple was inserted in the position T3 (Fig. 7.4, centre of the
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copper cylinder) in all tests in order to have better control and less fluctuation of

the temperature during the test.

• Once all the thermocouples were in position the power to the band heater was

turned on, and allowed to reach the temperature desired.

• After a stabilization period, i.e. when the 5 thermocouples inserted in the copper

cylinder displayed the same temperature (that was desired for the test) for 5

minutes with a tolerance of ±1 ◦C, the injection of the cooling air was started.

• The test continued until the temperature of the thermocouples inserted in the

copper cylinder and air after cooling the sample (outlet air temperature) reached

a stable point, which was taken to be when the temperature of all thermocouples

changed less than 1 ◦C in one minute. The data from the thermocouples were

logged by the data acquisition system, Subsection 5.3.1, in real-time.

(a) Side view (b) Front view

Figure 5.2: Sample mounted in the copper cylinder.(a) Copper cylinder after applied
thermal adhesive. (b) Sample of Duocel foam mounted in the copper cylinder.

5.5 Heat transfer coefficient calculation

When the stable point has been reached, the Heat Transfer Coefficient (hc) can be

calculated. To calculate the Heat Transfer Coefficient for the foam samples the key

data collected are:
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- The gas flow rate v (m3/s)

- The temperature of the incoming air before passing through the foam, Tin ( ◦C )

- The temperature of the outgoing air after passing through the foam, Tout ( ◦C )

- The mean temperature of the copper cylinder in the last 3 minutes of the test once

stabilization has been reached, TCu ( ◦C )

First of all the calculation of the air heat flow for each air flow rate has to be done

using the following formula:

q

Acyl
= q̇ = ṁCp(T out − T in) (5.1)

where q is the heat flow rate (W ), Acyl is the contact area between the sample and

the heated cylinder (area of the cylindrical hole in the heated copper block), q̇ is the

heat flux supplied to air (J/m2 s), ṁ is the air mass flow rate (g/s), Cp is the specific

heat of the air at constant pressure (1.005 kJ/kg ◦K ) [147] and the last term is the air

difference between outlet and inlet air temperature ( ◦C ).

To find the Heat Transfer Coefficient hc, for each of the samples tested, Newton’s law

of cooling was used as follows:

hc =
q̇

TCu − T in
(5.2)

5.6 Structural characterization

The structural characteristics of the metal foams are very important as they have a

strong effect on the properties of the foam, which affects the applications that may

be suitable. The most important are arguably the pore size and morphology of the

porosity, and these characteristics are measured through its characterization. The

determination of the pore size and relative density of the foams was done with the
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procedures described below.

5.6.1 Density measurement

The foam density for Duocel, Corevo and replication technique samples were calculated

by weighing and measuring the sample, then the weight was divided by the calculated

weight assuming that the sample was 100 % dense.

Assuming that one sample with 19 mm diameter and 32 mm length is completely solid

aluminium, the weight was calculated from the density as follows:

ρ =
m

V
(5.3)

where ρ is the sample density (g/cm3), m is the sample mass (g) and V sample volume

(m3), the mass obtained assuming that the sample is a solid material is 25.7 g. The

mass of each one of the samples was divided by this number, to obtain the relative

density of each.

5.6.2 Pore size characterization

For some samples, a pore size was reported by the manufacturer; in the case of Duocel

the pore size is reported in PPI (Pores Per Inch) as follows:

PPI =
25.4mm

NP
(5.4)

where NP= Number of pores counted along one inch in the sample. Corevo reported the

diameter of a preform sample as pore size, and samples produced in the laboratory by

the replication technique, the pore size is the diameter of the preform spheres fabricated.

In all the cases, the true pore size could be slightly different, and so this was measured

experimentally.
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5.7 Scanning Electron Microscopy (SEM/EDS)

Samples produced in-house under the replication technique were fabricated using silica

crucibles so it was necessary to examine the chemical composition of the foam to deter-

mine if silicon was picked up by the aluminium foam. To determine qualitatively the

chemical composition of the metal foam obtained under replication technique, Scanning

Electron Microscopy was used.

Scanning Electron Microscope (SEM) uses a focused beam of high energy electrons to

generate a variety of signals at the surface of the samples that is been analyzed. The

signals generated for these interactions can be detected and then information can be

revealed about the sample including external morphology, chemical composition and

crystalline orientation and structure of the material of the sample.

5.7.1 Energy-Dispersive X-Ray Spectroscopy (EDS)

The interaction of the electron beam with the sample produces a variety of emissions,

one of them is the x-Rays. This emission is detected using an energy dispersive (EDS)

detector which separates the characteristic x-rays of the different elements into an

energy spectrum. Special software is used to analyse the energy spectrum in order to

determine the abundance of the specific element.



Chapter 6

Development of Foam

Fabrication Method

Aluminium open-cell foams with single and graded pore sizes were fabricated and their

thermal and fluid flow behaviour were characterized. Because of the flexibility of the

method, the replication technique was selected for the production of the metal foams

fabricated in-house.

6.1 Fabrication of the open pore pattern (preform)

Figure 6.1 shows schematically the method used for the fabrication of the open pore

preform.

6.1.1 Mix composition

As described in Subsection 5.1.1, the materials selected to produce the preform were;

commercial salt (table salt or cooking NaCl), plain white flour (domestic grade supplied

by Tesco or Morrisons supermarkets) and water (H2O). These materials were mixed

together, with salt usually being the major component, following the method in [58].
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Figure 6.1: Schematic diagram of the first stage of the replication technique as used in
this work for the production of preforms, allowing processing of metal foam structures.
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Figure 6.2: Ternary-style diagram obtained during process development of the mixture
of NaCl, H2O and flour. The diagram shows three zones; the green zone where the
paste is liquid and the shape required cannot be retained; the blue zone, in which
the paste is dry and cannot be shaped, and the white zone; in this area the paste is
easily shaped and the shape is consistent and can hold throughout the process. The
composition used in this work is indicated.

To optimise the paste it was necessary to vary the amount of NaCl, flour and water

in different proportions to get the consistency required of the mixture. The required

properties for the preform were to have a consistency such that the desired shape could

be easily obtained and that this shape could hold throughout the replication process

(manufacture, heat treatment to set the preform shape and metal casting) and also

easy removal by dissolution in water after cooling and machining the metal foam.

A ternary-style diagram of the mix of these three components was obtained, Figure 6.2,

which helps as a guide in the manufacture of the preform. The composition used in

this work to produce the preforms used in the manufacture of all the replicated metal

foams was: 60 % salt, 25 % flour and 15 % H2O (with all values given being in wt %).
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6.1.2 Manufacture of the preform

In this project the initial shape desired for the pores in the foam was a sphere with

5 mm diameter. The initial spheres fabricated were made by hand, but to produce

the quantity necessary to fabricate 3 foam samples (atypical number used for repeats,

approx. 200 spheres), takes between 2 to 3 hours, and the spheres show large variations

in size (found to be ±2 mm, where the diameter desired was 5 mm). To obtain a higher

reproducibility of the size and shape in the smallest fabrication time possible, a process

with two different moulding steps was developed.

Once mixed, the paste is put in a first mould, consisting of 2 halves machined from

aluminium block. In this step cylinders with a diameter of 5 mm are formed (for an

end aim of producing 5 mm diameter spheres). Producing this initial shape facilitates

the next step in the production of the spheres by getting close to the desired final

shape; yet, unlike spheres, cylinders can be formed from a quantity of paste by manual

pressure on the mould. This mould, called mould 1, is shown in Figure 6.3(a). Once

the cylinders have been produced with mould 1, they are chopped in small pieces of

approximately 1 cm length, then placed between the two halves of mould 2 which has

spheres machined in it, this can be observed in Fig. 6.3(b).

(a) Mould 1, paste cylinders (b) Chopped cylinders over one half of the
Mould 2

Figure 6.3: The first stage in the manufacture of the 5mm paste spheres. (a) Mould 1
with the paste in cylindrical form after the first step and (b) Small pieces (1 cm length
approximately) of cylinder formed in mould 1 placed over the lower half of mould 2.
The scale in both images is in cm.
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After squeezing the cylinders by hand with a pressure estimated to be between 31 to

33 kPa in this mould, spheres are ejected. Figure 6.4(a) presents the paste after being

squeezed showing the paste in spherical form. After the paste is squeezed to a spherical

shape, the remaining paste (the excess paste that remains between the two halves of the

mould when the paste is squeezed) between the spheres is removed. The final spheres

obtained after the excess has been eliminated are shown the Fig. 6.4(b). Two sphere

sizes of 5 and 3 mm were fabricated following the steps described above.

(a) Mould 2 after squeezing (b) Mould 2 with the spheres obtained

Figure 6.4: Mould 2, the final step to produce spheres for the preform. (a) Paste in
sphere after being squeezed and (b) spheres obtained after the excess paste is eliminated.
The scale in both images is in cm.

Figures 6.5(a) and 6.5(b) present the sphere size histogram obtained for the spheres

fabricated with the process developed. It is possible to observe that the mean size

is 3.22 mm for a nominal 3 mm diameter sphere and 5.20 mm for a 5 mm sphere

respectively. The third preform used for the fabrication of aluminium foams by the

replication technique was 1 mm size; this preform was obtained using dense salt grains

sorted for size by sieving normal table salt.

6.1.3 Heat treatment of the preform

The spheres produced using the process explained in the previous section are now ready

to be heat treated. The heat treatment has the objective to eliminate the water and

to remove the flour by pyrolization, the remaining carbon being removing by reaction
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(a) Sphere sizehistogram for 3 mm spheres

(b) Sphere size histogram for 5 mm spheres

Figure 6.5: Sphere size histogram obtained from paste spheres fabricated with the
process developed. (a) Histogram obtained for a nominal 3mm and (b) 5mm sphere
diameter respectively.

with the atmospheric oxygen [58].

After the heat treatment, a NaCl sphere with fine internal porosity is obtained. As

the formulation and precise grade of flour used in this investigation is different to

previous work, such as [58], a specific heat treatment was developed. The outcome is

in Figure 6.6. The heat treatment starts from room temperature to 80 ◦C with a 60

minute dwell to promote evaporation of water. The second temperature ramp is up

to 100 ◦C to complete water evaporation. The time the spheres are exposed to this

temperature is 60 minutes. These two first ramps in the heat treatment are essential to

eliminate water from the open pore pattern. If omitted, conversion of water to steam

at higher temperature would break up the spheres; this was observed to take place in
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Figure 6.6: Heat treatment for the spheres to eliminate water and flour from the paste.

early experiments. The following two ramps are to eliminate the flour. The third ramp

is up to 200 ◦C and is followed by a dwell of 60 minutes. The objective is to pyrolize

the flour present (i.e. convert it to carbon by decomposing the organic compounds).

In the last ramp the temperature is elevated to 500 ◦C where the dwell is 60 minutes.

At this temperature the remaining flour in the preform, principally in the centre of the

sphere, is pyrolized and the majority of the remaining carbon is oxidized forming CO2

which is removed. The preform is left inside the furnace to cool from 500 ◦C to room

temperature to be sure no thermal shock is experienced.

It is important to emphasize that the heat ramp rate is the most important parameter

that has to be controlled in the first two stages of heat treatment, because if the velocity

is greater than 5 ◦C/min the spheres may explode or expand significantly, due to the

rapid evolution of water vapour.

It is further important to emphasise that, in contrast to the earlier work of [58], the

paste spheres were not compacted together before heat treatment. Instead the process

was performed on individual spheres. This provided a stock of spheres that could be
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poured loose into a crucible, as described in Subsection 6.2. This gives greater ease of

processing and reproducibility in the spheres themselves, as there is no change to their

form from the compaction process. It does however require more careful processing

to achieve different densities, as this must be controlled during the infiltration step,

rather than by compacting the preform. This is similar to that used on a salt preform

processed using flour, in a alternative process [21].

6.1.4 Dissolution in water of the preform

The easy dissolution of the preform is the second important characteristic that it is

required to have. The dissolution behaviour of the preform was investigated experi-

mentally as, even though dissolution was found to be good in other work that used

this type of preform [21, 58] it was important to confirm that the slight changes of

composition cause no major change in behaviour. This was done as follows; a sphere

obtained after the heat treatment was placed into a beaker filled with tap water. The

time was recorded from the moment the sphere was put in the water until the sphere

was finally dissolved or had collapsed into small grains.

The results obtained show that the 5 mm diameter NaCl spheres dissolve in less than 15

seconds and in the instant that the sphere was immersed in the water the sphere began

to collapse. This process is shown in Figures 6.7(a), 6.7(b) and 6.7(c). These results

confirm what was previously found in [58] and indicate that the properties sought for

the preform material have been satisfied.
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(a) Salt sphere, scale in
cm

(b) Time zero immersed in
water

(c) After 15 sec immersed
in water

Figure 6.7: Dissolution in water of an NaCl sphere produced in this work.(a) Sphere
obtained on the basis of the composition and heat treatment developed, (b) Sphere
immersed in water already beginning to collapse at time zero and (c) Sphere totally
collapsed in water after 15 sec.

6.2 Infiltration of the preform with aluminium

After the heat treatment the NaCl spheres are placed inside a quartz crucible. The

crucible has the following dimensions; 3 cm diameter and 20 cm length and is formed

with a rounded base containing a hole of approximately 2 mm diameter. The quantity

of preform spheres placed inside the crucible is enough to fill a depth of between 5

and 6 cm. On top of the spheres 35 g of aluminium grade 99.7 % ingot material

supplied by William Rowland Ltd. was placed for each casting process . Even though

the aluminium needed in the sample is less than 10 g, the excess aluminium used in

the fabrication of the aluminium foam assured the full filling of the internal spaces

of the preform when the preform is being infiltrated. Once the aluminium is added,

the crucible is connected to an argon gas supply by sealing around the top of the

crucible, and is positioned inside an induction coil. The aluminium is then melted by

electromagnetic induction.

As the preform is NaCl, an ionic solid, it is not wetted by the liquid aluminium [59],

and pressure must be applied to the molten metal to cause infiltration. The pressure is

applied through an inert gas, in this case argon, used to drive the molten aluminium into

the preform. The crucible has a hole made in the base to permit the free flow through

of the inert gas and the exit of any gas contained within the preform spaces. Figure
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Figure 6.8: Diagram of the infiltration of the preform with aluminium.

6.8 shows a schematic diagram of the crucible, with the inert gas supply connected,

positioned inside of the coil.

Once the liquid metal has infiltrated in the preform, the power of the coil is cut and

the crucible cools to room temperature, producing a composite of aluminium and salt.

An a example of this is shown in Figure 6.9.
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Figure 6.9: NaCl/Al composite obtained after preform has been infiltrated with alu-
minium.

6.3 Removal of the preform

The composite of NaCl/Al obtained can be machined before the space holder is removed

(this helps to retain the foam shape). Cylindrical and cuboid geometries can be ma-

chined from it without major difficulty and the tolerances obtained can be very good.

The aluminium is easily machined compared with, for example, steel, and the pres-

ence of NaCl does not offer significantly greater resistance, although it does mean that

machines need to be carefully cleaned after cutting the composite to avoid corrosion.

In this work conventional machining by sawing was used to remove excess aluminium

and give a rough shape. Final machining to precisely the required size was performed

after leaching the salt using Electro Discharge Machining (EDM).

Once the composite had been roughly machined it was placed under flowing tap water

to remove the preform. The removal process takes less than 1 minute and finally the

metal foam is obtained. Figures 6.10(a) and 6.10(b) show examples of metal foams

with cuboid and cylindrical shapes produced in this work.
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(a) Cuboid (b) Cylinder

Figure 6.10: Aluminium foams obtained in different shapes after machining, the scale
is in cm. (a) Cuboid shape and (b) Cylindrical shape.

6.4 Density measurement

As explained later, as well as the laboratory made samples, commercial foam sam-

ples produced by similar (Corevo) and different (Duocel) techniques were obtained for

testing. The foam density for Duocel, Corevo and replication technique samples were

calculated following the method described in Section 5.6.1. The results obtained for

the in-house samples (Replicated) and the commercially available foams (Corevo and

Duocel) are reported in Table 6.1.
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Table 6.1: Density of Duocel, Corevo and replicated metal foam samples used for
thermal and hydraulic experiments.

Sample Manufacturer Mass (g) Nominal Relative Real Relative
Density (%) Density (%)

5 PPI-5.2 Duocel 1.313 5.2 5.09
5 PPI-7.9 Duocel 2.026 7.9 7.85
5 PPI-11.5 Duocel 2.702 11.5 10.48
10 PPI-4.9 Duocel 1.302 4.9 5.05
10 PPI-7.9 Duocel 2.063 7.9 8.00
10 PPI-9.9 Duocel 2.665 9.9 10.33
20 PPI-4.1 Duocel 1.228 4.1 4.70
20 PPI-8 Duocel 2.007 8 7.78

20 PPI-10.5 Duocel 2.546 10.5 9.87
40 PPI-8.6 Duocel 2.067 8.6 8.01

F65 Corevo 4.368 - 16.94
F64 Corevo 6.382 - 24.75
F56 Corevo 7.213 - 27.97
F55 Corevo 4.106 - 15.92
F51 Corevo 6.596 - 25.57
F36 Corevo 11.435 - 44.34

5 mm Replicated 8.240 - 31.95
3 mm Replicated 9.576 - 37.13
1 mm Replicated 9.005 - 34.92

1-3 mm Replicated 9.485 - 36.78
1-5 mm Replicated 8.069 - 31.29
3-5 mm Replicated 8.151 - 31.60

1-3 mm smt Replicated 8.878 - 34.42
1-5 mm smt Replicated 8.405 - 32.59
3-5 mm smt Replicated 8.828 - 34.23

6.5 Chemical analysis of fabricated samples (SEM/EDX)

The aluminium foams processed by the replication technique were fabricated using a

silica crucible as described in Subsection 6.2. This could lead to pick up of silicon by the

aluminium foam. Silicon in aluminium in significant amounts could decrease its thermal

conductivity by 20 to 30% [148] with an obvious affect on the properties measured here.

The solid solubility of silicon in aluminium at the eutectic temperature, 577 ◦C, is 1.65

% wt [148] therefore, Scanning Electron Microscopy (SEM) with Energy-Dispersive X-

Ray Spectroscopy (EDS) detector [149], was used to analyze and determine the silicon
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content in aluminium foams processed by the replication technique [150]. Using the

”spot” mode a sample was analyzed at 1, 6 and 15 µm from the surface that had

been in intimate contact with the silicon crucible when samples were fabricated. Figs.

6.11(a) and 6.11(b) for 1 µm, 6.12(a) and 6.12(b) for 6 µm, as well as 6.13(a) and

6.13(b) for 15 µm, show the position in the sample where the analysis was performed

and the spectrum obtained for each one of the spots respectively is also shown.

(a) Spot 1 location (b) Spectrum obtained

Figure 6.11: EDS Spot 1: (a) position and (b) spectrum obtained at 1 µm.

(a) Spot 2 location (b) Spectrum obtained

Figure 6.12: EDS Spot 2: (a) position and (b) spectrum obtained at 6 µm.

The analysis shows that there is no detectable presence of silicon in the samples, this can

be observed in the EDS spectrum of x-ray counts vs energy (keV) where the presence

of aluminium is displayed through the peaks at characteristic energy with no presence

of silicon in any of the analysis points. These low levels are likely to result from rapid

solidification once the foam is formed, and the short processing time. Considering that

the outer surface was in any case removed by machining, the effect of any dissolved

silicon on the behaviour measured can be considered negligible.
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(a) Spot 3 location (b) Spectrum obtained

Figure 6.13: EDS Spot 3: (a) position and (b) spectrum obtained at 15 µm.

6.6 Structural characterization

Table 6.6 reports the pore size measured on each of the samples characterized. On

each sample, the pore size was measured 10 times in different locations with a digital

micrometer (Mitutoyo) taking care to record the largest diameter possible, and the

mean value of there measurements is reported.

The true pore size obtained (with the exception of samples 10 PPI-9.9, 20 PPI-4.1

and 40 PPI-8.6) is lower than that reported by the manufacturer. These differences

between the pore size reported by the manufacturer and that measured could be due to

the experimental difficulty in measuring the pore size directly on the sample; however

the differences are less than 0.5 mm for 5 mm pore size, and 0.3 mm for pores smaller

than 5 mm. The measured values will be used in the calculation of the thermal and

fluid flow properties of the samples.
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Table 6.2: Pore size of Duocel, Corevo and laboratory-made aluminium foams, reported by
the manufacturer and measured.

Sample Manufacturer Nominal Pore Diameter Mean pore Difference
(mm) size measured, (mm)

5 PPI-5.2 Duocel 5.08 a 4.78 0.29
5 PPI-7.9 Duocel 5.08 a 4.65 0.42
5 PPI-11.5 Duocel 5.08 a 4.71 0.37
10 PPI-4.9 Duocel 2.54 a 2.43 0.11
10 PPI-7.9 Duocel 2.54 a 2.61 0.04
10 PPI-9.9 Duocel 2.54 a 2.49 -0.07
20 PPI-4.1 Duocel 1.27 a 1.47 -0.02
20 PPI-8 Duocel 1.27 a 1.24 0.22

20 PPI-10.5 Duocel 1.27 a 1.46 0.19
40 PPI-8.6 Duocel 0.63 a 0.65 -0.04

F65 Corevo 5 4.66 0.33
F64 Corevo 5 4.31 0.68
F56 Corevo 5 4.72 0.27
F55 Corevo 5 4.77 0.22
F51 Corevo 2 1.96 0.03
F36 Corevo 2 1.98 0.01

5 mm Replicated 5 4.92 0.08
3 mm Replicated 3 2.87 0.13
1 mm Replicated 1 0.91 0.09

a Pore Diameter= 25.4/PPI
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Test Method Development

As yet, no standard equipment exists for the measurement of heat transfer through

porous materials. As discussed in the literature review, most research in this area has

been carried out using bespoke test rigs. For this reason it was decided to create a test

rig specifically for this work that would allow the heat transfer behaviour of the foams

produced in-house as well as examples of commercially available aluminium foams to

be investigated. As this equipment is new and unique, the design will be discussed in

detail, along with the various test and checks that were performed to ensure reliability.

7.1 Final rig design

Before discussing the adaptations, the final design used for the experiments will be

deffromscribed. Fig. 7.5 shows the schematic diagram of the experimental apparatus

used to measure the temperatures and the differences of pressure in order to characterize

the thermal and hydraulic behaviour of the aluminium foams at different flow rates.

Key features of the design are: the steel chambers, the copper cylinder (test section),

the ceramic discs and the plastic O-rings, they will be explained with detail in the

following subsections.
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7.1.1 Steel chambers

The cooling air after coming out from the gas cylinder first goes into a stainless steel

chamber, placed before the copper cylinder. This steel chamber has the function of

reducing turbulence and stabilizing the air flow before it cools down the aluminium

foam, which is heated in the copper cylinder by the band heater and it also facilitates

the measurements of temperature and pressure change. The second steel chamber is

placed after the copper cylinder; it receives the air after the aluminium foam has been

cooled and once again causes air turbulence to be reduced and the air temperature

and pressure to be accurately recorded. A pressure transducer is connected between

these two steel chambers to measure the pressure drop across the sample. The volume

of each chamber is 1583 cm3, which compares to a test volume in the rig of 11 cm3,

less than 1% of the chamber volume. This large difference in volume guarantees that

the air is stabilized before and after the test section (the copper cylinder) for reliable

measurement.

7.1.2 Copper cylinder (test section)

The copper cylinder is the place where the test actually occurs; here the samples of

aluminium foam were placed to be characterized. The copper cylinder has 32 mm

length and 40 mm external diameter having a chamfer of two millimetres where and

electrical resistance band heater is placed. The copper cylinder has a central cavity

of 32 mm length and 19 mm of diameter; this is where aluminium foam samples were

placed. Figures 7.1(a) and 7.1(b) show schematic diagrams of the cylinder.

As was mentioned in Section 5.3, the copper cylinder has the role of the heat store,

supplying thermal energy at a steady rate to the foam and smoothing out variations

from the heater. The following issues were considered in its design:

1.- The thermal isolation of the copper cylinder.
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(a) Side view (b) Front view

Figure 7.1: Copper cylinder dimensions.(a) Side view and (b) front view of the rig
copper cylinder (test area).

2.- Thermal instrumentation.

3.- The thermal resistance between the metal foam and the copper cylinder.

These aspects will now be explained in detail.

The thermal isolation of the copper cylinder.

The copper cylinder was designed to heat the metal foam and conserve the heat energy

transferred by a band heater to only pass this heat energy though the metal foam. The

band heater is held in place by a chamfer of two millimetres on the cylinder 7.1(b),

fastened in place by two screws 7.2. The cylinder ends are embedded in two MACOR

discs. This material is a machinable glass ceramic with low thermal conductivity (1.46

W/m ◦C at 25◦C [151]) which is positioned between the cylinder and the two steel

chambers 7.3. To prevent any thermal loss through the gap where the band heater is

fastened on the copper cylinder, a piece of alumina blanket insulation is put over this

section.
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Figure 7.2: Band heater fastened around the copper cylinder, held in place by two
screws.

Figure 7.3: MACOR ceramic discs between the copper cylinder and steel chambers.
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Thermal instrumentation.

In order to obtain the thermal behaviour of aluminium foam it is necessary to record

its temperature. To do this in the copper cylinder five holes were drilled (0.6 mm

diameter). Five thermocouples of 0.5 mm diameter were inserted in these holes, four

to measure the temperature of the metal foam and one to feed back to the temperature

control of the band heater (master thermocouple). The hole depth was 7 mm, this is one

millimetre less than the total thickness of the copper cylinder wall. This one millimetre

left is between the end of the thermocouple and the interface between the copper and

the metal foam (Fig. 7.4), and therefore the thermocouple will gauge the temperature

of the interface where the foam is attached, simulating the possible application of a

foam being used to cool a hot surface. This method of taking readings allows different

samples to be compared more precisely; if the thermocouples were to be placed inside

the foam, then it would not be possible to place them in the same locations in different

samples and expect to obtain consistent results, as sometimes these locations would

coincide with a strut, and sometimes with a pore. This does mean that some accuracy

may be sacrificed due to the 1 mm gap between the interface and the measurement

point, however, the high thermal conductivity of copper means that any difference

should be small, and the consistent use of the same position means that all samples

should be comparable.

The thermal resistance between the metal foam and the copper cylinder.

Wherever two materials are placed in contact, there will be a thermal resistance [152].

This arises from imperfect contact between the two surfaces. To have accurate and

reproducible tests, the objective is to reduce the thermal resistance between the copper

cylinder and the metal foam, and also to ensure that it is always of the same value.

There are two main factors to take into account; a) the foam must be cut so that it fits

the interior of the copper cylinder precisely and b) the thermal contact between the
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Figure 7.4: Thermocouples inserted into the copper cylinder having 1 mm gap between
the metal foam and the thermocouple.

metal foam and the copper cylinder must as good as possible. The metal foam samples

were cut into their final shape with 19 mm diameter and 32 mm length. In order to

have the most accurate dimensions, the metal foams were cut by a Mitsubishi 110 SA

Wire Electrical Discharge Machining (EDM) devise using 0.25mm diameter solid brass

wire as the electrode material, de-ionized water was used as the dielectric fluid with

co-axial flushing. This machine has a stated tolerance of less than 0.01 millimetre [153].

To reduce the contact resistance between the metal foam and the copper cylinder, a

thin layer of Electrolube thermal adhesive with 2.9 W/m-K thermal conductivity [154]

was applied between the contact surface of the metal foam and the copper cylinder.

For each sample, the paste was applied over the entire surface of internal hole through

the copper cylinder. The quantity of thermal adhesive applied was kept to 1 g. The

quantity of 1 g of thermal adhesive was standardized using a spatula with a mark that

limited the quantity of thermal adhesive that was applied in every test. The decision

to use thermal adhesive between the copper cylinder and the sample was made based

on the discussion in Subsection 7.7.4.
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7.1.3 Ceramic discs

As mentioned in Subsection 7.1.2, the thermal isolation of the copper cylinder (the test

section), is one of the most important issues addressed in the design of the experimental

apparatus, to ensure that the thermal energy transferred by the band heater only passes

through the metal foam that is being tested. Therefore, each of the test section ends

is embedded inside a ceramic Macor disc (with a thermal conductivity of 1.46 W/m

◦C at 25◦C [151]), to minimise the heat conduction (lost thermal energy) between the

copper cylinder and the steel chambers. The ceramic disc has external dimensions of

14 mm length and 46 mm diameter. It has two grooves, in the front and back face,

where a plastic O-ring is placed to obtain a hermetic contact between it and the copper

cylinder and with the steel chamber. The ceramic disc has a chamfer in the front and

in the back face to allow the copper cylinder and the front face of the steel chamber to

be embedded on it, the geometry and dimensions are shown in Fig. 7.5.

7.1.4 Plastic O-rings

The experimental apparatus has four peroxide cured O-rings of Ethylene Propylene

Diene Monomer (EPDM) to give a hermetic contact between the copper cylinder and

the ceramic disc, and the ceramic disc with the steel chamber, preventing losses of gas

from the system. The geometry and dimensions are shown in Fig. 7.5.
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7.2 Verification of the temperature homogeneity

Temperature homogeneity in the copper cylinder is assumed in the analysis, and so

must be verified in the experiments. To understand the temperature distribution in

the copper cylinder when heat is applied by the band heater, two types of test were

performed, one where 4 thermocouples were inserted in the front face of the copper

cylinder with two different depths (this was carried out with the objective to know

the homogeneity of the temperature around the circumference of the cylinder) and the

other where 6 thermocouples were inserted in along the length of the copper cylinder

to two different depths (this test was carried out to know the longitudinal homogeneity

of the temperature in the copper cylinder).

7.2.1 Front face results

Four thermocouples were inserted in the front face of the copper cylinder. 0.6 mm

diameter holes were machined in the block and 0.5 mm thermocouples were used. The

thermocouple depths were 3 and 15 mm (see figures 7.6(a) and 7.6(b) respectively)

from the front face of the copper cylinder, with 90 degrees between them and the hole

to inset by 1 mm from the interface with the sample, with the objective to simulate

the same separation between sample and the thermocouple in all the tests that will be

carried out, Fig 7.6(c). Once inserted, the band heater was turned on and left until the

temperature desired was reached; test temperatures were 323, 353, 373, 423, and 473 K.

After five minutes of stabilization period at the desired temperature, data acquisition

was started and the temperature of all thermocouples was logged. After two minutes

of data recording the test finished and the band heater was turned off.

The results obtained at 3 mm depth show that for test temperatures below 373 K

the average difference between the thermocouple readings is less than 0.56 K, which

represents 0.15% error (the greatest difference was presented by thermocouple No. 4).

For higher temperatures the difference is larger, but the percentage error is still low
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(a) 3 mm lateral view (b) 15 mm lateral view

(c) Front view

Figure 7.6: Thermocouple position to measure temperature homogeneity around the
circumference of the copper cylinder. (a) Lateral view, 3 mm thermocouple depth
position, (b) 15 mm thermocouple depth position and (c) Front view distribution (90 ◦ ).

enough to not significantly affect the results (at 373 K thermocouple No. 4 shows a

difference of 0.83 K, representing 0.22 % error). The results are shown in Fig. 7.7

where T1 is Thermocouple 1, T2 is Thermocouple 2, and so on. As would be expected,

the results for thermocouples placed deeper in the copper block (15 mm, Fig 7.8) show

better homogeneity, with the maximum temperature difference for any test temperature

being 0.47 K, which represents 0.12 % error in the test at 373 K. This difference is

within the expected accuracy of the thermocouples and indicates that the temperature

distribution around the cylinder is uniform. Near the edge, where there may be more

thermal losses, the variation increases with higher temperature but still remains within

a ± 1 K bound.
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Figure 7.7: Circumferential temperature homogeneity test result. The difference of each
thermocouple measurement from the mean of all thermocouples, for readings taken 3
mm from the edge of the copper block. At this depth the differences in temperature
tend to increase when the temperature increases.

Figure 7.8: Circumferential temperature homogeneity test results. The difference of
each thermocouple measurement from the mean of all thermocouples, for readings taken
15 mm from the edge of the copper block. At this depth the differences in temperature
remain roughly constant with temperature increase.
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7.2.2 Lateral results

The tests were performed at 3 mm from the surface of the cylinder, to determine if

close to the surface the temperature has the same behaviour as near the position of the

metal foam (in the actual test, measurements were carried out at a depth of 7 mm), Fig.

7.4. The tests were performed at the same temperatures using an identical procedure

to the test discussed above around the circumference of the copper cylinder. For these

tests 6 thermocouples with 0.5 mm diameter were inserted into machined holes with a

diameter of 0.6 mm, with a gap of 5.6 mm between them. This separation was selected

to space the thermocouples evenly along the length of the cylinder, Fig. 7.4 (where

T1 is thermocouple No 1, T2 is thermocouple 2, and so on). The results obtained at 3

mm depth show excellent temperature homogeneity along the length with the largest

temperature differences being only 0.46 K (representing only 0.09 % error at 473 K),

for thermocouple No 1 (nearest the edge), Fig. 7.9. As expected, the temperature

homogeneity is even better than this already good level at 7 mm depth, where the

greatest temperature difference was 0.19 K at 473 K representing only 0.04 % error

(this highest difference of temperature was presented for thermocouple No. 6, also at

the edge) Fig. 7.10. As these variations are all well within the thermocouple accuracy,

this demonstrates that there are no significant variations along the axis of the cylinder.
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Figure 7.9: Longitudinal temperature homogeneity test results. The difference from
the mean of the temperatures presented by the 6 thermocouples at 3 mm depth.

Figure 7.10: Longitudinal temperature homogeneity test results. The difference from
the mean of the temperatures presented by the 6 thermocouples at 7 mm depth.



7.3. BLANK TEST 121

7.3 Blank test

The copper cylinder with no sample inside was mounted in the rig between the two

steel chambers (Fig. 5.1), and the thermocouples were inserted. The power to the band

heater was turned on, and after 5 minutes of stabilization period at 150 ◦C, the flow

of compressed air at 25 l/min (0.5 g/s) was started. The power of the band heater

was left on and after 15 minutes of test the power was turned off. Fig. 7.11 shows

the thermal history of the gas passing through the copper cylinder without a sample.

The graph plots three lines; the first of these, identified as TCu, starting at 150 ◦C,

represents the temperature of the copper cylinder during the test. This temperature

is almost constant with time, with only small fluctuations seen (which are likely to

be due to the band heater being switched on and off to maintain a constant block

temperature). The other two lines are Tout, the outlet air temperature (dotted line)

and Tin, the inlet temperature of the cooling air, (dashed line). A slight increment of,

on average, 1.2 ◦C is seen between the air at the inlet and the outlet, and taking the

measurements a heat transfer coefficient of 2.74 W/m2K can be calculated. This value

obtained is considered insignificant because it represents less than 3.33%, compared

with the heat transfer coefficient obtained for a particular foam, a Duocel aluminium

foam with 5 PPI and 0.94 of porosity (ε), which was the lowest heat transfer obtained

in this research work indicating that to this level of accuracy the zero reading of the

equipment is correct.
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Figure 7.11: Temperature behaviour of the cooling air and copper cylinder when the
rig is tested without a sample.

7.4 Dummy sample tests

The results obtained in section 7.3, show that the energy transfer from the copper

cylinder to the air is low in the absence of a sample placed in it. Therefore, tests were

performed with different samples that might show an effect. The first material tested

was AISI 430 stainless steel wire, (this material is frequently used to fabricate wire

kitchen cleaners). The wire has a relatively low thermal conductivity of 26.1 W/m K

and was wrapped to have a pore density of 0.96. This material with relatively low

thermal conductivity and low density demonstrates the sensitivity of the rig to record

low values of heat extraction. Following the steps described in section 5.4, the material

was tested in the rig with the same parameters that were used in the blank test (start

temperature of 150 ◦C and an air flow of 25 l/min, (0.5 g/s)).

Fig. 7.12 shows three lines displaying the thermal behaviour of the cooling air before

and after cooling the sample and the copper cylinder as was shown in Fig. 7.11.

In this test TCu starts at 150 ◦C, at the time that the cooling air is injected (time
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Figure 7.12: Temperature behaviour of the cooling air and copper cylinder when a
bundle of AISI 430 steel wire is tested in the rig.

zero), immediately the temperature begins to fall until the stable point is reached; this

was determined as being when the temperature of the copper cylinder (TCu) and the

temperature of the outlet air, Tout, change less than 1 ◦C in one minute. This stable

point was reached when the copper cylinder was cooled down to 121.9 ◦C and the outlet

air temperature, Tout, increased to 48.2 ◦C. Once the stable point was reached the test

was stopped; in this test this happened after 15 minutes of the test.

Fig. 7.12 also shows the behaviour of the temperature of the outlet air, Tout. It

is possible to observe, opposite to the behaviour of the copper cylinder temperature,

the temperature of the outlet air starts to increase at the time that the cooling air is

injected, reaching a maximum temperature of 49.83 ◦C at 40 seconds after test initiation

(red dot in Fig. 7.12). After reaching this maximum temperature, it begins to decrease

until the stable point explained above is reached. The inlet air temperature, Tin, does

not present any change during the test. As explained in Section 5.5, this temperature

is used for the calculation of the coefficient of heat transfer. Using the formulas from

Section 5.5 we obtain a heat transfer coefficient of hc = 105 W/m2K for this first
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material tested in the rig. This is significantly higher than the blank test indicating

that the rig is sensitive to the effect of this sample. If would be anticipated that the

aluminium foams to be examined will have a larger affect than this steel wire.

7.5 Testing Aluminium Foam

This section presents the characteristic thermal behaviour of a foam, showing the ex-

ample of a Duocel aluminium metal foam with 10 PPI and 4.9 % density, identified

as 10 PPI-4.9. Fig. 7.13 shows the characteristic performance when a metal foam is

tested in the rig. The line identified as TCu, temperature of the copper cylinder, starts

at 150 ◦C and begins to fall at the moment that the cooling air is applied; however, in

this test it is possible to observe that the temperature is reduced faster than with the

steel wire.

The stable point reached for the temperature of the copper cylinder, TCu, after 15

minutes of testing was 103 ◦C. The temperature increment of the cooling air outlet,

Tout, at 31 seconds of testing reaches its highest temperature at 67.37 ◦C, then starts

to fall until the stable point at 54.9 ◦C is reached at around 15 minutes of testing.

The inlet cooling air temperature,Tin, does not change during the test, maintaining its

value between 25− 26 ◦C.

With the values of TCu, Tout and Tin obtained and using equations 5.1 and 5.2 from

Section 5.5 we obtain a heat transfer coefficient of hc = 456 W/m2K for this aluminium

foam sample.

The heat transfer coefficient obtained from the aluminium foam tested in this first

attempt was 4.3 times higher than that obtained with the steel wire (105 W/m2K)

under the same test parameters. This higher hc from the aluminium foam was expected

due to the increased thermal conductivity of the aluminium over the 430 AISI stainless

steel (aluminium thermal conductivity; 237 W/mK and for the 430 AISI stainless steel;

26.1 W/ mK). Also the density and the pore size of the foam sample are slightly
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Figure 7.13: Temperature behaviour of the cooling air and copper cylinder when 10
PPI-4.9 Duocel aluminium foam is tested on the rig. The red dot identifies the highest
temperature reached by Tout.

larger. The above results shows that the rig is able to characterize and distinguish the

heat transfer coefficient of several materials and confirms that physical and thermal

properties will be reflected in the heat transfer coefficient obtained.

7.6 Long Duration test on Aluminium Foam

As described in Section 7.5, the test is stopped when the temperature of the thermo-

couple inserted in the copper cylinder and the air after cooling the sample Tout reaches

a stable point, which is taken to be when the temperature of thermocouples changes

less than 1 ◦C in one minute. This stable point was reached after 15 minutes of testing,

however an extended test was performed with the objective to know if the thermal

behaviour of the sample changes significantly over longer test times. Fig. 7.14 shows

the thermal behaviour of the sample when the cooling air is injected for 120 minutes.

Fig. 7.14 shows TCu, Tin and Tout, (the temperature of the cooper cylinder, inlet and
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Figure 7.14: Temperature behaviour of the cooling air and copper cylinder when 10
PPI-4.9 Duocel aluminium foam is tested for 120 minutes.

outlet cooling air respectively) and also shows a dotted line at 15 minutes test. This line

shows where the stable point was reached following the criterion introduced previously.

However the temperature of the copper cylinder, inlet and outlet cooling air continue

decreasing. To examine the effect of these differences on the heat transfer coefficient,

it was calculated at 15 and 120 minutes.

The heat transfer coefficient obtained at 15 minutes was 178 W/m2K and at 120 minutes

the value was calculated as 181 W/m2K, showing a difference between them of only

1.7%. One important issue that has to be taken in to account is that this sample 10

PPI-4.9 has low density and with these characteristics the heat extraction is slower

than if it is compared with samples with higher densities so other samples would be

expected to have lower densities. With the objective to test all the samples under the

same parameters and to have test of a reasonable duration, the test time established

based on this behaviour was 15 minutes.
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7.7 Contact between foam and copper cylinder

To achieve reliable results, it is important that the thermal contact between the heated

cylinder and the foam sample is good and reproducible. As is described in the Subsec-

tion 7.1.2, there are two factors to take into account to reduce the thermal resistance

between the aluminium foam and the copper cylinder. They are; a) the foam must

be cut so that it fits the interior of the copper cylinder precisely and b) the thermal

contact at the interface between the metal foam and the copper cylinder must be as

good as possible. To evaluate the last mentioned point and obtain the best and most

reproducible contact possible between the copper cylinder and the metal foam (and

therefore get the best accuracy in the test) a series of experiments were performed.

Tests were done using Duocel aluminium foam with 50 PPI, 7.1 % nominal density

(6.8% real density). Table 7.1 reports the parameters and the three different ways of

contact of the aluminium foam and the copper cylinder evaluated. Details of the three

different tests are described in 7.7.1, 7.7.2 and 7.7.3.

Table 7.1: Test parameters used to evaluate the contact between the copper cylinder
and the aluminium foam.

Test Flow rate g/s Temperature ◦C

0.3 150
0.4 150
0.5 150

Clamped Sample 0.6 150
0.7 150
0.8 150

0.3 150
0.4 150
0.5 150

Brazed Sample 0.6 150
0.7 150
0.8 150

0.3 150
0.4 150
0.5 150

Thermal Paste 0.6 150
0.7 150
0.8 150
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7.7.1 Clamped sample

A copper cylinder with the dimensions described in Figs. 7.1(a) and 7.1(b) was cut

longitudinally as shown in Fig. 7.15(a). Then the sample was inserted in the copper

cylinder, ensuring that both sides of the interface were clean. Next by placing the band

heater around the cylinder the sample was clamped, Fig. 7.15(b). This ”clamp” was

made when the gap in the copper cylinder was closed by tightening the band heater

until intimate contact between the two surfaces of the cut was obtained. Then the

sample was tested and the heat transfer coefficients, hc, at each flow rate were obtained

following the equations of section 5.5.

(a) Cut cylinder (b) Cut cylinder with sample

Figure 7.15: Copper cylinder used to clamp the sample.(a) Copper cylinder cut longi-
tudinally (b) cut copper cylinder with the sample and the band heater in position.

7.7.2 Brazed Sample

A mix of 70% aluminium powder (-325 mesh, 99.5%) and 30% copper (-325 mesh, 10%

max +325 mesh, 99%) provided by Alfa Aesar, with a suspension of 40% PMMA (Poly

Methyl Methacrylate) and 60 % water (H2O) was made to forma a braze join between

the metal foam and the copper cylinder. The aluminium and copper would form a

eutectic and act as a brazing alloy while the PMMA acts as a carrier and gets removed

by thermal decomposition during the heat treatment. Once the paste was prepared, it

was evenly applied over the surface of the internal hole in the copper cylinder, then the
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Figure 7.16: Copper cylinder with brazing paste and the sample in position before heat
treatment.

aluminium foam was mounted, Fig. 7.16. The copper cylinder was placed under heat

treatment in a Centrum Furnace with the conditions described in Table 7.2. Once the

aluminium foam was brazed to the copper cylinder, it was mounted in the rig with the

band heater and the test was carried out.

Table 7.2: Heat treatment parameters.

Parameter Quantity Units

Temperature 530 ◦C
Atmosphere 300 torr

Time 120 min
Heating rate 10 ◦C/min

7.7.3 Thermal paste sample

A thermal paste test sample was prepared following the same standard procedure as

described in 5.4.

7.7.4 Test comparison

Experimental heat transfer coefficients obtained from the different contact tests with

varying air mass flow rate are plotted in Fig. 7.17. The clamped sample presents the

lowest heat transfer coefficients, meaning that clamping the sample with the copper

cylinder presents the highest thermal resistance among the tests developed. This indi-
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Figure 7.17: Heat transfer coefficients obtained to evaluate the contact between the 50
PPI with 7.1 % density Duocel aluminium foam and the copper cylinder.

cates that the mechanical contact achieved is not very good. This could be because the

surface conformity between the foam and the cylinder is not good, or because clamping

in this way does not compress the interface evenly. The highest heat transfer coefficients

were obtained with the brazed sample, and results from the lowest thermal resistance

between the sample and the copper cylinder obtained with the metallurgical contact

between the foam and cylinder.

The thermal paste sample presented on average heat transfer coefficients 7% lower

than those obtained by the brazed sample. This is understandable as, even though

both methods give a similar physical contact, the braze material is metal, and has a

higher thermal conductivity than the paste. Even though the lowest thermal resistance

was presented by the brazed sample, the thermal paste method was used in the test

carried out in this work, due to the quicker nature of the test, and the advantage of

being able to test samples in a single copper cylinder (as the brazed samples cannot be

easily removed after testing). It must be remembered that the results are likely to be

lower (by around 7 %) than for the brazed joint. As all the samples are tested in the



7.8. ERROR ANALYSIS 131

same manner, then the comparison between them should be valid.

7.8 Error analysis

Table 7.3 reports uncertainties of the different devices as well as the thermal resistance

introduced by the thermal paste used between the metal foam and the copper cylinder.

Based on superposition of errors, equation 7.1 the total error in the measurement of

the heat transfer can be calculated [155]:

∆hc
hc

=

√(
∆x

x

)2

+

(
∆y

y

)2

+ .......+

(
∆z

z

)2

(7.1)

where x, y......z are the chain errors in the rig. The total error calculated was found to

be 9.1% when the differences of pressure measurements are done with Testo transducer

and 8.6% when Digitron device is used.

Table 7.3: Uncertainties in the rig.

Device Uncertainty

Flow meter ±5.0 %
Thermocouple ±0.05 %

Thermal resistance Cu and Metal foam 7.0 %
Pressure transducer Digitron ± 0.15 %

Pressure transducer Testo ± 0.03 mbar

The measured uncertainties were plotted only when the comparison of the heat transfer

coefficient obtained between the different metal foams analyzed on the rig was very

close, in order to conclude if the difference presented was for the characteristics in the

sample or by the uncertainty on the rig. For pressure drop the uncertainty was plotted

only in Duocel foams due to in Corevo and Replicated samples the size of the symbol

in the graph always was bigger than the error bar.
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Heat Transfer of Single Pore Size

Foams

The experimental results obtained are presented as heat transfer (hc) and pressure

drop coefficient (∆P ) for different pore sizes and porosities (ε) for Duocel samples

(supplied by The ERG Aerospace Corporation, Oakland, CA), samples of replication

processed Corevo foam provided by Constellium, and for aluminium foams produced

in the laboratory by the version of the replication process developed in this work.

The shape and dimensions of all samples tested were the same: cylinders with 19 mm

diameter and 32 mm length. The samples were tested following the steps described in

Section 5.4 with 15 minutes of compressed air injection (cooling flow) at different flow

rates. As described in Section 7.6, the 15 minutes of testing are enough to obtain the

thermal behaviour of the samples at steady state. The heat transfer coefficients were

calculated using the parameters and equations of Section 5.5.

Air-cooling is still the preferred option to dissipate the thermal energy generated for

electronic devices [65]. An optimal heat exchanger is a material with the highest

heat transfer coefficient and the lowest pressure drop possible [2]. The general test-

ing methodology is to explore the heat transfer coefficient at a range of gas speeds for

132
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the variables under test. This is done as flow rate is one of the most likely variables

for real heat exchangers. Flow rate is defined by the air mass flow rate (g/s). The

typical test range is 0.3 g/s to 0.8 g/s, which, at the pressure used equates to 15 to

45 litres/ minute. As well as the heat transfer coefficient, the pressure drop across the

sample is important. When a fluid (gas or liquid) passes through a pipe with a rigid

structure which contains interconnected channels it suffers a restriction. This restric-

tion (a resistance to flow) reduces the initial flow pressure. This difference between the

initial pressure (the original pressure of the flow) and the final pressure (the pressure

of the flow after it has passed through the rigid structure) is known as the pressure

drop (∆P ). The characterization of fluid flow was obtained when the samples were

tested for their thermal behaviour, via the pressure transducer connected between the

two steel chambers (Section 5.3). The results obtained for pressure drop are presented

as ∆P (mbar) versus air mass flow rate (g/s).

8.1 Heat transfer coefficient of Duocel foams

The Duocel aluminium foams tested were believed to be produced using the Investment

casting method (Duocel process) [2, 3, 13]. Aluminium foams with 0.5 to 5 mm pore

size and volume fraction metal as low as 5 % can be obtained through this process

[2, 3, 13]. Duocel samples reported in Table 8.1 were characterised and tested to obtain

their thermal and fluid flow behaviour. As an initial test, a Duocel sample with 10 PPI

and 9.9 vol % solid (as described in Table 8.1) was tested at 100, 150 and 200 ◦C with

the conditions given in Table 8.2, to investigate the effect of the initial temperature

and flow rate. The heat transfer coefficients for the different temperatures and flow

rates were obtained using Equation 5.2.

Fig. 8.1 plots the error bars graph of heat transfer coefficient calculated for different

temperatures and flow rates and shows no evidence that the heat transfer coefficient

does not depend on the initial temperature of the heated block (in agreement with
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Table 8.1: Characteristics of Duocel metal foam samples used for thermal and hydraulic
experiments.

Sample Pore size (mm) Nominal Measured Porosity (ε)
Density (%) Density (%)

5 PPI-5.2 5 5.2 5.09 0.94
5 PPI-7.9 5 7.9 7.85 0.95
5 PPI-11.5 5 11.5 10.48 0.89
10 PPI-4.9 2.5 4.9 5.05 0.94
10 PPI-7.9 2.5 7.9 8.00 0.92
10 PPI-9.9 2.5 9.9 10.33 0.89
20 PPI-4.1 1.2 4.1 4.70 0.95
20 PPI-8 1.2 8 7.78 0.92

20 PPI-10.5 1.2 10.5 9.87 0.90
40 PPI-8.6 0.6 8.6 8.01 0.91
50 PPI-8 0.5 8 7.65 0.92

Figure 8.1: Heat transfer coefficient obtained at 100, 150 and 200 ◦C in the 10 PPI-9.9
Duocel sample.

other studies [65, 125]), and that it increases when the flow rate increases. The lowest

air mass flow rate, 0.2 g/s, presented the lowest heat transfer coefficient for the three

different temperatures tested. The largest heat transfer coefficient at this flow rate

was 176 W/m2K obtained at 200 ◦C and the lowest 168 W/m2K obtained at 150 ◦C,

having as a result a difference between them of only 4.2 %. This difference is within
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Table 8.2: Test parameters applied to 10 PPI-9.9 Duocel sample.

Sample Flow rate g/s Temperature ◦C

0.3 100
0.4 100
0.5 100
0.6 100
0.7 100
0.8 100

0.3 150
0.4 150
0.5 150

10 PPI- 9.9 0.6 150
0.7 150
0.8 150

0.3 200
0.4 200
0.5 200
0.6 200
0.7 200
0.8 200

the measurement uncertainties of the rig, discussed in Section 7.8, and therefore is not

considered significant. The highest heat transfer coefficient was obtained at 0.8 g/s

air mass flow rate, the highest air mass flow rate used in the test for all temperatures

tested. At this rate, the largest heat transfer coefficient obtained was 307 W/m2K at

200 ◦C while the smallest was 297 W/m2K at 150 ◦C, representing a 3.3 % change.

The same behaviour was presented by the sample with 5 PPI pore size and 7.9 vol %

solid, and the sample with 20 PPI pore size and 8 vol % solid. As the behaviour was

found to be quite insensitive to the temperature, an intermediate value of 150 ◦C was

used to compare the different samples examined in this work.

8.1.1 Influence of density on the heat transfer in Duocel foams

Samples identified as 10 PPI-4.9, 10 PPI-7.9 and 10 PPI 9.9 were used to characterize

the influence of density on the heat transfer in Duocel foams. Tests were performed

at 150 ◦C with 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 g/s air mass flow rate (flow rates are

reported in Table 8.2). Fig. 8.2(a) shows that the sample with highest density (the

lowest porosity) presents the highest heat transfer for these three samples. Sample 10
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PPI-9.9 presented, for all the flow rates tested, the highest heat transfer coefficient,

while sample 10 PPI-4.7 presented the lowest heat transfer coefficient in the six flow

rates tested. Sample 10 PPI-9.9 shows 1.3 and 1.08 times the heat transfer coefficient

of 10 PPI-7.9 and 10 PPI-4.7 respectively. Fig 8.2(b) shows how the heat transfer

coefficient increases when the density increases at 0.8 (g/s) air mass flow rate; over

this range the increase is roughly linear, and the highest heat transfer coefficient was

obtained by the sample with the highest density. In all of these figures the density used

is that measured in the work, rather than the nominal value provided by the supplier.

(a) Heat transfer and flow rate

(b) The variation in heat transfer with density at 0.8 g/s

Figure 8.2: Heat transfer coefficient obtained at 150 ◦C in Duocel samples. (a) Heat
transfer coefficient obtained at 150 ◦C for 10 PPI-4.9, 10 PPI-7.9 and 10 PPI-9.9 Duocel
samples, and (b) heat transfer coefficient at 0.8 g/s with respect of the density.
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Figs. 8.3(a) shows the heat transfer coefficient obtained in 5 PPI-5.2, 5 PPI-7.9 and 5

PPI-11.5 samples, and 8.3(b) shows the heat transfer coefficient obtained in 20 PPI-4.1

20 PPI-8 and 20 PPI-10.5 samples. These samples present similar behaviour in the

variation in the heat transfer coefficient with flow rate and density as 10 PPI samples;

the heat transfer coefficient increases when the air mass flow rate increases and the

density increases. Fig. 8.3(a) shows that the influence of the volume fraction solid

at 5 PPI pore size is similar to 10 PPI; as the density is increased the heat transfer

increases.

The highest heat transfer coefficient presented by the three pore sizes tested (5, 10 and

20 PPI) was given by samples with 20 PPI (the smallest pore size) for all air mass

flow rates. Samples with 20 PPI show that the heat transfer coefficient increases 30

% between 20 PPI-4.1 to 20 PPI-8 samples and from 20 PPI-8 to 20 PPI-10.5 sample

increase about 16 %, i.e. the increase of heat transfer coefficient is roughly linear with

density increase, with the increment in heat transfer coefficient per vol % solid being

about 7 W/m2K in these samples. 20 PPI samples have notable behaviour for the first

two air mass flow rates used in the test, compared with 10 PPI and 5 PPI samples. Fig.

8.3(b) shows that the initial slopes of the line describing the heat transfer behaviour of

all three 20 PPI metal foams tested is steeper than those shown by the samples with 5

and 10 PPI. Once higher flow rates are achieved, the slope is less, closer to that seen

in other pore size foams. This could be due to the more complex flow paths in small

pore size material, which means that when the flow rates are low the air is not caused

to flow through the foam as effectively as at higher flow rates, thus reducing the heat

transfer coefficient at these low speeds.

The influence of the density on the thermal behaviour of a porous material can be

explained with keff , the effective thermal conductivity of a fluid filled porous media,

which depends on the porosity of the solid ε and the conductivities of the solid and

the fluid phases λs and λf [156] a simple rule of mixtures approach gives:
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keff = ελf + (1− ε)λs (8.1)

On this basis, it is easy to observe that the effective thermal conductivity is increased

if the porosity is decreased. Shih et al [51, 103] report that the pore density affects

the cooling performance of aluminium foams in the way predicted. Bhattacharya et

al [113] analysed aluminium foams and showed a strong dependence of the effective

thermal conductivity on the density and Zhao et al [122] came to the same conclusion

with steel foams.

If the foam density is increased, we therefore expected the conduction to go up. This

will mean that thermal energy is distributed through the foam faster, and the local

heat transfer is thereby increased.

8.1.2 Influence of pore size on heat transfer in Duocel foams

Duocel samples with different pore sizes but similar densities were tested under the

same range of flow rates. Fig. 8.4 shows the heat transfer coefficient against the air

mass flow rate for the following Duocel samples: 5 PPI-7.9, 10 PPI-7.9, 20 PPI-8,

40 PPI-8.6 and 50 PPI -8, the characteristics of these samples are reported in Table

8.1. The heat transfer is found to be influenced by the pore size; when the pore size

decreases, the heat transfer increases. This can be observed in Fig. 8.4, where the heat

transfer coefficients obtained for different samples with similar densities but different

pore sizes are shown. This shows that the 50 PPI-8 sample with the smallest pore size,

0.5 mm diameter, presents the highest heat transfer coefficient over all the flow rates

among the five samples in the trial, while 5 PPI-7.9 sample with the biggest pore size,

5 mm diameter, presented the smallest heat transfer coefficient of those tested.

For example, the 50 PPI-8 sample presents 3.4 times the heat transfer of the 5 PPI-

7.9 sample, at a flow rate of 0.3 g/s (this sample had hc 123 W/m2K while the 50

PPI-8 sample gave 427 W/m2K). Moreover, the heat transfer at the smallest flow rate
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presented by the 50 PPI-8 sample is larger than the heat transfer presented by the 5

PPI-7.9 at even the highest air mass flow rate. However it should be noted that this

higher heat transfer behaviour is reached with a high difference of pressure as shown

in Fig. 8.8 in Section 8.2.2.

The heat transfer is influenced by the pore size through its relationship to the ligament

thickness, the ligament thickness being related to the heat transfer [157]. The specific

surface area of a foam increases when the pore size decreases at a constant density,

and this enhances the surface area available for heat transfer, and therefore increases

the coefficient [50, 105]. At a constant density, when the pore size in a metal foam is

decreased the thickness of the ligaments (the struts in foams of this type) will increase,

as observed by Hutter et al [157]. The ligament diameter affects two heat transfer

mechanisms. Firstly, the heat conduction through the foam is reduced with thin struts,

and secondly, thicker ligaments induce more turbulent fluid flow, having as a result an

increase in the heat transfer [122, 158]. Bhattacharya et al [105] characterized the heat

transfer in aluminium foams with different pore sizes but with similar density and also

found that at lower pore sizes the heat transfer increased and that corresponded to

thicker ligaments.

Duocel foams are commercially available, and have been used for investigation of heat

transfer by other workers. Heat transfer coefficients obtained here for 5 PPI, 10 PPI

and 20 PPI samples were compared with data from the literature. The 10 PPI samples

were compared with Mancin et al [125]; Fig. 8.5 shows the heat transfer coefficients

from that study and here against air mass flow rate.

Metal foam heat transfer characterization work by Mancin et al was performed at higher

air mass flow rates than those used in this work, and there is also a slight difference in

the densities, due to processing variations. However, the results obtained here show a

clear tendency to follow Mancin’s results. It must also be remembered that there could

be a transition in behaviour between the two flow rates, perhaps explaining the slightly

different shape of the trends produced.
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Samples with 5 and 20 PPI were compared with results obtained by Bhattacharya et al

[65]. Fig. 8.6(a) shows the comparison with 20 PPI and 8.6(b) 5 PPI samples. 20 PPI

samples show good agreement among the results; the trend is similar and the values are

only slightly different. However for 5 PPI the difference between the two sets is around

30%, these heat transfer coefficients obtained being the highest in all the air mass flow

rates. This could be due to the difference in density between the literature data and

samples tested here. On the other hand, there is a similar density difference with the

20 PPI samples, where agreement is better. This could therefore be an indication of

the pore size/sample size effect. In a 5 PPI sample, there will be an average of only 3.8

cells across the diameter, which may be too few. In a mechanical test, 6 to 7 pores are

recommended [159, 160].

The results obtained with Duocel samples show generally good agreement with similar

characteristics to samples reported in the literature, and therefore there is confidence in

using the method to examine heat transfer coefficients in Corevo and laboratory made

metal foams, both fabricated by versions of the replication technique.
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(a) 5 PPI samples

(b) 20 PPI samples

Figure 8.3: Heat transfer coefficient obtained at 150 ◦C in Duocel samples. (a) 5 PPI-
5.2, 5 PPI-7.9 and 5 PPI-11.5 samples, and (b) 20 PPI-4.1, 20 PPI- 8 and 20 PPI-10.5
samples.
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Figure 8.4: Heat transfer coefficient obtained at 150 ◦C in samples with 5, 10, 20, 40
and 50 PPI with similar density (between 7.9 - 8.6).

Figure 8.5: Comparison of heat transfer coefficients obtained in 10 PPI samples with
data from Mancin et al [125].
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(a) 20 PPI samples

(b) 5 PPI samples

Figure 8.6: Comparison of heat transfer coefficients obtained in (a) 20 PPI- 8 and (b)
5 PPI-12 Duocel samples with data from Bhattacharya et al [65].
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8.2 Duocel foams pressure drop

The fluid flow characterization of Duocel samples was obtained when they were tested

for their thermal behaviour, via the pressure transducer connected between the two

steel chambers, Section 5.3. The results obtained are presented as ∆P (mbar) versus

air mass flow rate (g/s). Characteristics of the foams are reported in Table 8.1, and

test parameters (temperature and air mass flow rate) are the same used to characterise

the heat transfer behaviour.

8.2.1 Influence of density on pressure drop in Duocel samples

Fig. 8.7(a) plots the experimental pressure gradients obtained for 5 PPI-5.2, 5 PPI-

7.9 and 5 PPI-11.5 samples. Pressure drop (∆P ) increases with air mass flow rate

and when the density of the sample increases. At the lowest two rates the pressure

gradients are only slightly different among the three samples. When the air mass flow

rate increases the differences of pressure diverge. They are similar for samples 5 PPI-

11.5 and 5 PPI-7.9, the difference between them being 10 % with 5 PPI-11.5 having

the highest pressure gradient. 5 PPI-5.2 sample presents the lowest pressure gradient

in all the air mass flow rates tested and when it is compared with the sample with the

highest density (the 5 PPI-11.5 sample), the differences of pressure drop are found to

be 30 % lower than those presented by the 5 PPI-11.5 sample.

Results for samples 10 PPI-4.9, 10 PPI-7.9 and 10 PPI-10.5 are plotted in Fig. 8.7(b).

The pressure differences among the samples at low air mass flow rates are again similar.

The pressure gradient increases when the air mass flow rate increases, the sample with

highest density, 10 PPI-10.5, presents the highest differences of pressure about 17 %

higher than 5 PPI-4.9 sample and 8 % higher than 10 PPI-7.9 sample.

Similar behaviour was once again presented by 20 PPI-4.1, 20 PPI-8 and 20 PPI-10.5

samples and can be observed in Fig. 8.7(c). 20 PPI samples show the same influence
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with respect the air mass flow rate, i.e.; the pressure difference increases when the air

mass flow rate increases. 20 PPI-10.5 and 20 PPI-8 samples have practically the same

behaviour, while if the 20 PPI-10.5 sample is compared with the 20 PPI-4.9 sample,

the pressure gradient is 20 % higher for the sample with the highest density.

The increase in the pressure drop in samples with the same pore size but with different

densities can be explained by the additional drag forces which are more evident when

the air mass flow rate increases. This could be caused by changes to the strut shapes

(e.g. triangular to circular) or the increase in the cross sectional area of the strut with

density [113, 115, 118]. The general effect of structure on fluid flow is discussed later.

8.2.2 Influence of the pore size on the pressure drop in Duocel foams

To understand the influence of pore size on the pressure gradient, 5 PPI-7.9, 10 PPI-7.9,

20 PPI-8, 40 PPI-8.6 and 50 PPI-8 samples were tested, the characteristics of these

samples are reported in Table 8.1. As far as possible with foams of this type, they are

selected to have the same density. Fig. 8.8 shows the influence of the pore size in the

fluid flow behaviour when samples with similar densities but different pore sizes are

tested under the same conditions.

The pressure differences increase when the air mass flow rate increases and when the

pore size decreases. The highest pressure drop was presented by the 50 PPI- 8 sample;

the sample with the smallest pore size (about 0.5 mm diameter). This sample shows

more than 50 % higher pressure gradient compared to all the other samples, for instance,

if it is compared with the sample with the largest pore size, 5 PPI-7.9 sample, it has

an 85 % larger pressure difference across it.

The pressure gradients presented by 5 PPI-7.9 and 10 PPI-7.9 samples were below 0.9

mbar with less than 10 % difference between them. 40 PPI-8.6 and 20 PPI-8 samples

present pressure differences in the range between 0.188 to 1.6 mbars. These samples

(20 and 40 PPI) showed a greater effect on the pressure differences if they are compared
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with the 5 PPI-7.9 sample. The pressure gradient presented by these samples is 65 %

higher than the pressure drop presented by 5 PPI-7.9.

According to Hutter et al [157], the pore size defines the size of the smallest open

channels in the porous media, and holding the density constant and decreasing the

pore size results in a higher pressure drop. This is also explained as the reduction

of the pore size increases the specific surface area and therefore the permeability is

reduced through wall friction effects [47, 161]. Some authors, such as Xu et al [120],

report a strong dependence of the permeability on pore size at a constant density, and

found that the variation in the permeability is almost linear with respect to the pore

size.

The pressure drop for samples with 5 and 20 PPI was compared with results obtained

by Bhattacharya et al [65], as was done with the heat transfer coefficient (hc) results.

The results obtained show reasonable agreement with the two samples compared with

Bhattacharya et al [65]. The 20 PPI sample (Fig. 8.9(a)) shows a similar trend however

for some flow rates, a lower pressure drop is presented by the sample tested here (by

about 20 % where the difference is largest). This difference in pressure drop is similar

to the difference in density between the two samples, with the 20 PPI sample tested

here having a lower density, which is likely to explain the difference. The 5 PPI samples

(Fig. 8.9(b)), show a similar trend, and have better agreement with the data of [65].

In the case of 5 PPI samples, the sample characterized here has 20 % higher density

with respect to the sample in the work of Bhattacharya et al.

As concluded in the section examining heat transfer characterization, the results ob-

tained for pressure drop with Duocel samples show good agreement with those from

the literature and gives confidence that the method can be used to examine the pres-

sure drop in Corevo samples and samples fabricated by the replication technique in the

laboratory.
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(a) 5 PPI

(b) 10 PPI

(c) 20 PPI

Figure 8.7: Difference of pressure against air mass flow rate for Duocel samples. (a) 5
PPI samples with 11.5, 7.9 and 5.2, (b) 10 PPI samples with 10.5, 7.9 and 4.9, and (c)
20 PPI samples with 10.5, 8 and 4.1 density respectively.
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Figure 8.8: Pressure drop in 50 PPI-8, 40 PPI-8.6, 20 PPI-8, 10 PPI-7.9 and 5 PPI-7.9
Duocel samples.

(a) 20 PPI samples (b) 5 PPI samples

Figure 8.9: Comparison of pressure drop obtained in (a) 20 PPI- 8 and (b) 5 PPI-12
Duocel samples with data from Bhattacharya et al [65].
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8.3 Corevo foams heat transfer coefficient

Samples produced by Constellium (commercially named Corevo foams) with the char-

acteristics reported in Table 8.3 were tested under the parameters and procedure es-

tablished in section 8.1. Constellium produces metal foams using the replication tech-

nique, with approximately cylindrical pores between 2 and 5 mm in diameter and height

(height is always the same as the diameter within experimental error) and with differ-

ent densities. The open pore pattern was fabricated through a similar process to the

method developed in this work which was described in Subsection 6.1.2.

Table 8.3: Characteristics of Corevo metal foam samples used for thermal and fluid
flow experiments.

Sample Nominal Measured Nominal (%) Porosity (ε)
pore size (mm) pore size (mm)

F55 5 4.77 15.9 0.84
F65 5 4.66 16.9 0.83
F64 5 4.31 24.7 0.75
F56 5 4.72 27.9 0.72
F51 2 1.96 25.5 0.74
F36 2 1.98 44.3 0.55

8.3.1 Influence of density on the heat transfer in Corevo foams

Samples with 5 mm and 2 mm pore size were tested to understand the influence of

the densities in samples with a porosity lower than 0.85. As reported in Table 8.3,

the density of the samples is not lower than 15 vol % solid, so as explained earlier, an

increase in both the heat transfer coefficient and the pressure drop over those measured

for Duocel foams is expected. Fig. 8.10 shows the heat transfer coefficient obtained

when Corevo samples of 5 mm with a range of densities were tested under the same

test parameters.

As in Duocel foams, samples present an increase in the heat transfer coefficient when

the air mass flow rate and the density increase. Sample F56 with 27.97 % density
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Figure 8.10: Heat transfer coefficient obtained at 150 ◦C in samples with 5 mm pore
size and different densities.

(the highest density of Corevo samples with 5 mm) presents the highest heat transfer

coefficient in all the air mass flow rates of the test. At 0.3 g/s flow rate the F56

sample presents a heat transfer coefficient of 174 W/m2 K which is 7 W/m2 K (or 4

%) higher than the F64 sample with 24.75 % density (the second highest density). The

differences increase at higher flow rates. At a flow rate of 0.8 g/s, sample F56 presents

a heat transfer coefficient of 888 W/m2 K which is 30% higher than that shown by the

F64 sample. The F55 sample with 15.92 % density presents the lowest heat transfer

coefficient in all the tests; this sample, which also has the lowest density among the

Corevo samples tested, has a heat transfer coefficient about 50 % than that of F56.

The lower heat transfer coefficient obtained with samples with higher porosity is due

to the reduction in solid material, in this case aluminium, which has a higher thermal

conductivity than the fluid and transports heat into the air. This general conclusion

has been reached by several different investigations [51, 103, 113, 157].

The F51 and F36 samples with 2 mm pore sizes and different densities were tested and

the results obtained are presented in Fig. 8.11. F51, the sample with the lowest density

among these two samples, presents a slightly higher heat transfer coefficient at the first
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three air mass flow rates of the test. At 0.3 g/s the difference between them is 30%,

this difference reduces whit higher air mass flow rates and at 0.6 g/s and above, the

F36 sample presents a higher heat transfer coefficient.

There is a substantial difference between samples F36 and F51, which rises to around

30 % at the highest flow rates tested. These test results were repeated and found to be

reliable. It can be seen that the relation between hc and air mass flow rate is not linear

in sample F51, and at 0.6 g/s, and beyond there seems to be a lower dependence of

the heat transfer coefficient on the air mass flow rate. If we compare the general shape

of the line that describes the heat transfer behaviour of the 50 PPI-8 Duocel sample

(Fig. 8.4), against the line of F51 (Fig. 8.11) it is possible to observe that the shape

of the two lines is similar; both F51 and the Duocel samples show a smaller increase in

transfer coefficient at high gas flow rates. Real pore sizes reported in Table 8.3 shows

that F51 and F36 samples have almost the same pore size (1.96 and 1.98 mm). This

small difference in pore diameter plus more importantly the high difference in density

(F51 is almost 50 % lower in density than the F36 sample), could explain why the F51

sample does not have the linear or slightly upward curve behaviour with increasing

air mass flow rate observed in all high density samples tested in this work; Corevo,

and the replicated, multiple pore size and segmented samples. It is possible that in

this particular sample, with the lowest density of the smallest pore size material, the

limiting factor in the overall heat transfer process is no longer the transfer from foam

to air (which the small pore size will cause the foam to do very well; the specific surface

area will increase when the pore size is reduced, and this will result in an increase in

heat transfer [157]). If this process is very efficient, at high air flow rates, the limiting

stage may become the transport of heat through the foam, which will be made more

difficult by the low conductivities of low density foams. Thus when the air flow rate is

increased above a certain value the heat transfer can no longer increase as the transport

through the foam is unaffected by the air flow.
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Figure 8.11: Heat transfer coefficient obtained at 150 ◦C in samples with 2 mm pore
size and different densities.

8.4 Corevo foams pressure drop

The fluid flow behaviour was investigated for Corevo samples, showing much larger

pressure difference than those presented by Duocel samples (if we compare the 50 PPI-

8 Duocel sample with the F56 sample, both of which present the highest pressure

difference in the group of samples they represent, we see a difference of 38 times). This

is likely to be due to the much higher density of Corevo foams following standard trends

observed in foams generaly [117].

8.4.1 Influence of density on the pressure drop in Corevo foams

Corevo samples reported in Table 8.3, were tested to explore the influence of density

and flow rate on the pressure drop. Fig. 8.12 shows the experimental pressure gradient

obtained for 5 mm pore size samples. The pressure difference is seen to be influenced

by the air mass flow rate and the sample density. The pressure gradients across the

samples F55 and F65 were slightly different, with sample F56 having a 13 % higher
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Figure 8.12: Difference of pressure in Corevo samples with 5 mm pore size and different
densities.

pressure drop than sample F65. The highest pressure drop in all samples with 5 mm

pore size is found in sample F56, which is 80 % higher than the F55 sample. In these

higher density foams there is a different picture to describe the structure. Rather than

being an array of struts connected at nodes, thay can be pictured as individual pores

connected by open windows. Corevo sample density reported in Table 8.3 is similar to

the material tested in the work of Despois et al [117] having densities over 20 %. These

workers identified the interpore windows as the critical features for fluid flow as these

get smaller (which happens as density goes up), the passage of fluid is made harder.

The permeability exhibits a gradual decrease with density until it approaches 36 %,

when the average interpore window shrinks to zero and closes off with a transition

to isolated pores in the sample. The results obtained with Corevo samples show the

behaviour predicted by Despois, where the sample with the highest density, (sample

F57 with 27 % metal) reports the highest pressure drop.

The F51 and F36 samples with 2 mm pore size were tested and the behaviour is plotted

in Fig. 8.13. The data were plotted an different Y axes scales due to the large pressure

differences presented by sample F36. The F36 sample has 44.3 vol % solid, which is
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Figure 8.13: Pressure drop obtained in Corevo samples with 2 mm pore sizes and
different densities.

almost twice that of F51 (25.5 %) although the pore sizes (reported in Table 8.3) show

that both samples, F51 and F36 have the same real pore size. As reported on Table

8.3, F36 sample is over 36 % dense. At this density some pores are likely to be closed,

or at least have lower connectivity than the ideal, so that the resistance to air flow

through the sample is much higher.

8.5 Heat transfer of laboratory made replicated foams

Samples with single pore size obtained by the version of the replication technique

developed were tested to obtain their heat transfer behaviour. Table 8.4 reports the

characteristics of these single pore size replicated foams.

Table 8.4: Characteristics of Replicated metal foam samples used for thermal and fluid
flow experiments.

Sample Pore size (mm) Density (%) Porosity (ε)

1 mm 1 34.92 0.6507
3 mm 3 37.13 0.6282
5 mm 5 31.95 0.6804
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Figure 8.14: Heat transfer coefficient obtained at 150 ◦C in samples with 1, 3 and 5
mm obtained by the replication technique.

Samples with spherical pore shape of 1, 3 and 5 mm pore diameter obtained by repli-

cation technique were tested on the rig. Fig. 8.14, shows the heat transfer coefficients

against the different air mass flow rates. The heat transfer coefficient obtained from

these samples presented values over 1200 W/m2K, however this high heat transfer

coefficient coincides with the high pressure differences shown in Fig. 8.15.

The sample with 1 mm pore size presents the highest heat transfer coefficient in all

the air mass flow rates of the trial. Samples with 3 and 5 mm pore sizes show almost

the same values of heat transfer coefficient, although it appears that the 5 mm pore

samples presents the highest surface area efficiency as it has a lower density than the

3 mm pore sample [125, 157]. The sample with 1 mm pore size has 34.92 % density,

which is somewhat lower than the density presented by the 3 mm sample (37.13 %),

suggesting that the heat transfer coefficient is governed more by the pore size rather

than the density in this type of sample. For the 5 mm pore size sample, the density

was 31.95 %; in this case the sample with 1 mm pore size presented higher density and,

obviously, lower pore size, characteristics that benefit the heat transfer coefficient but

increase the pressure drop [47, 50, 130]. The heat transfer coefficient obtained for 1
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Figure 8.15: Gradient pressure obtained in replication technique samples with 1, 3 and
5 mm pore sizes, densities are reported in Table 8.4.

mm pore size is 38 % higher than that found for samples with 3 and 5 mm pores.

8.6 Pressure drop of laboratory made replicated foams

Replicated samples present a pressure gradient higher than the maximum pressure

gradient presented by the Corevo samples. As was reported in Table 8.4, the densities

of these samples are higher than 30 %, at these densities, permeability decreases rapidly

[117]. Fig. 8.15 plots the differences of pressure obtained in samples made by the

replication technique against air mass flow rate.

Pressure gradient increases when the air mass flow rate increases and when the pore

size decreases. The sample with 1 mm pore size has, for all the air mass flow rates, the

largest pressure drop, even though it does not have the highest density (34.92 %, slightly

lower than 37.13 % presented by the 3 mm pore size sample). This means that the

metal foams fabricated by the replication technique have high dependence of pressure

drop on pore size particularly at small pore size. This behaviour was also found by Xu

el al [120] where the permeability decreases faster with pore size at smaller pore size
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in numerical simulations over a range of porosity from 1 to 3 mm. The sample with

5 mm pores shows the lowest pressure drop, this sample has the largest pore size and

the lowest density among the single pore size replicated samples, and it has a better

performance than the 3 mm sample, as it shows similar heat transfer but lower pressure

drop in all the air mass flow rates. The sample with 1 mm pore size presents 50 %

higher pressure drop than 3 mm pore size and 80 % more than 5 mm pore size sample.

8.7 Heat transfer coefficient as a function of the pore

size

So far the results have been presented for each type of foam separately, considering

the heat transfer coefficient (hc), as a function of the air mass flow rate. However, to

visualize and understand better the thermal behaviour of the samples with single pore

size, the effect of pore size on the heat transfer coefficient (hc), will be addressed for

all of Duocel, Corevo and replicated samples.

8.7.1 Duocel samples

Figs. 8.16(a), Fig. 8.16(b) and Fig. 8.16(c) show the heat transfer with respect the

pore size for Duocel samples with 5, 8 and 10 vol % solid respectively at different air

mass flow rates. Figures show that the heat transfer coefficient decreases when the pore

size increases, and that the influence of the pore size is greatest at low density.

Fig. 8.16(a) shows that the heat transfer coefficient decreases by 28 W/m2K (about 8

%) when the pore size increases from 0.63 to 1.27 mm (from 40 to 20 PPI) at 0.8 g/s.

Further increases in pore size lead to a greater reduction in heat transfer coefficient,

for example doubling the pore size to 2.54 mm gives around a 30 % decrease. Similar

behaviour is observed in the rest of the flow rates.

There is one particular behaviour when the samples with 5 vol % solid were tested
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at 0.4 g/s air mass flow rate, where there is an increase of 13% in the heat transfer

between the two smallest pore size samples. At this particular air mass flow rate the

1.27 mm pore size (20 PPI) sample has the highest heat transfer properties even though

it is not the smallest pore size or the highest density. Mancin et al [125] also found

that the sample with the highest heat transfer coefficient was not the sample with

the smallest pore size and highest density (the characteristics that improve the heat

transfer behaviour). This particular sample (10 PPI and 9.7 density) presented this

higher heat transfer coefficient over all the flow rates tested with about 20 % larger

heat extraction over 40 PPI and 7.0 % density sample which, due to the pore size and

the small difference in density, was expected from the results of Mancin et al to show

the highest heat transfer coefficient [125].

Samples with 8 vol % solid present 25 % lower heat transfer in the smallest pore size,

versus the largest Fig. 8.16(b). The sample with 2.54 mm pore size (20 PPI) presents

approximately a 10 % increase in heat transfer coefficient at this density in all the air

mass flow rates tested. Fig. 8.16(c) shows the behaviour when samples with 10 vol

% solid are tested, it can be observed that the heat transfer coefficient in all the air

mass flow rates decreases by 30 % and 20 % when the pore size goes from 0.63 to 1.27

mm diameter and 1.27 to 2.54 mm diameter respectively. When the pore size increases

from 2.54 to 5.08 mm (from 10 to 5 PPI), the decrease in heat transfer is the only 8 %.

The above analysis shows that the heat transfer coefficient is highly dependent on the

density, this can be observed if we compare the reduction in the heat transfer coefficient

when it is analyzed at the highest air mass flow rate, 0.8 g/s, for the three different

densities (5, 8 and 10 vol % solid), see Fig. 8.17. In samples with 5 vol % solid at the

highest air mass flow rate, when the pore size increases from 0.63 to 1.27 mm (40 to

20 PPI), the heat transfer coefficient reduces by 8 %. Making the same comparison in

samples with 8 and 10 % vol solid, the differences between the heat transfer coefficient

with the same change in the pore size at the same air mass flow rate (0.8 g/s), the

differences are 27 and 38 %. When the pore size increases at a fixed density, the
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specific surface area decreases due to the reduction in number density of the ligament

[103, 113, 130], and this will reduce the real area available for heat transfer.

8.7.2 Corevo samples

Corevo foams analyzed have 5 mm and 2 mm nominal pore size. With the objective to

characterize and understand better the thermal and hydraulic fluid flow, the pore size

was measured manually and the mean value of 20 measurements is reported in Table

8.3. The values obtained show a difference between the pore sizes in different samples

of the same type of less than 1 mm. Fig. 8.18 shows the heat transfer coefficient with

respect to pore size at different air mass flow rates.

The Corevo foam samples analysed had 5 mm nominal pore size, with different densities

as reported in Table 8.3. The comparison with Corevo foams with 2 mm pore size is

not presented as these samples have very different behaviour which is discussed below.

Fig. 8.18 shows that there is a decrease in heat transfer when the pore size increases

and the density decreases for the samples with the smallest two pore sizes, behaviour

that is in agreement with several prior investigations [50, 105, 122, 157, 158]. However,

the sample with 4.72 mm pore size, the second largest pore size, presents the largest

heat transfer coefficient, being outside the trend of a general decrease in this parameter

with increasing pore size shown by the other samples. This particular sample (F56)

has the largest density in the Corevo samples analysed (27.9 vol % solid) and seems

to have the highest surface area efficiency (the surface area efficiency is influenced by

temperature gradients in the surface being cooled, and is a function of the geometry of

the pores, at least in lower density Duocel foams [125, 130]). This sample has about

40 % higher heat transfer coefficient compared with sample F55 with 4.72 mm pore

size, (F56 has 4.66 mm pore size and 16.9 vol % solid). When the samples with the

two smallest pore sizes are compared, the heat transfer coefficient decreases by 24 %

with, as would be expected, the sample with the smallest pore size having the best
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performance.

8.7.3 Replicated samples

The analysis performed on Duocel and Corevo samples was done in the samples pro-

cessed on the laboratory using the replication technique. Fig. 8.19 shows the heat

transfer with respect to the pore size at different air mass flow rates of samples with

1, 3 and 5 mm pore sizes and different densities as reported in Table 8.4. The repli-

cated samples present similar behaviour to the Duocel and Corevo samples; i.e. the

heat transfer coefficient decreases when the pore size increases. When the pore size

increases from 1 mm to 3 mm the heat transfer coefficient decreases by 40 %, and when

the pore size increases from 3 to 1 mm, the heat transfer coefficient decreases, for air

mass flow rates of 0.5 and 0.6 g/s, by 15 and 0.5 % respectively. For the other air mass

flow rates (0.4, 0.7 and 0.8 g/s) the heat transfer coefficient increases less than 4 %. In

the case of 0.3 g/s, the heat transfer increases by 25 %.
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(a) 5 vol % solid

(b) 8 vol % solid

(c) 10 vol % solid

Figure 8.16: The variation in the heat transfer coefficient with the pore size in Duocel
samples. (a) 5 vol % solid (b) 8 vol % solid, and (c) 10 vol % solid.
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Figure 8.17: The variation in heat transfer coefficient for three different densities in
samples with 5, 10, 20 and 40 PPI at 0.8 g/s.

Figure 8.18: The variation in heat transfer coefficient with pore size of Corevo metal
foams with nominal 5 mm pore size at different air mass flow rates. As noted in the
text the anomalous behaviour of the sample with 4.72 mm pore size is likely to be due
to the higher density of this sample.
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Figure 8.19: Heat transfer coefficient respect to pore size for replicated technique sam-
ples with 1, 3 and 5 mm pore size at different air mass flow rates.



164 CHAPTER 8. HEAT TRANSFER OF SINGLE PORE SIZE FOAMS

8.8 Comparison between single all pore size samples

The heat transfer and pressure drop pf Duocel samples with 5, 10, 20 and 40 PPI with

10 vol % solid, Corevo samples with nominal 5 mm pore size and replicated samples

with 1, 2 and 5 mm pore size were plotted together. Fig. 8.20 shows the heat transfer

with respect to the pore size of the three types of metal foams at 0.8 g/s air mass flow

rate. The same relative behaviour was seen at other flow rates and so has not beeb

plotted.

Fig. 8.20 shows that Duocel samples present the lowest heat transfer coefficient, the

heat transfer coefficient of the replicated samples being around 7 times higher than

Duocel, and also around 2 times higher than Corevo samples, when compared to samples

with 5 mm pore size. However, the pressure gradient across replicated samples is around

130 times higher than Duocel and 30 times higher than Corevo samples when the same

comparison is made, as can be seen in Fig. 8.21. The large density differences between

the samples represent a high difference in heat transfer coefficient and pressure drop in

in addition to pore size. The increase in the specific surface area and ligament diameter

resulting from higher density reduces the permeability [50, 105, 122, 125, 130, 157, 158].

Corevo samples have a higher heat transfer coefficient as described in Subsection 8.7.2.

However, this increase in hc is accompanied by increase in the pressure drop, as shown

in Fig. 8.21.
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Figure 8.20: Heat transfer coefficient with respect to pore size for Duocel, Corevo and
Replicated samples at 0.8 g/s air mass flow rate.

Figure 8.21: Pressure drop obtained in Duocel, Corevo and Replicated samples at 0.8
g/s air mass flow rate. Note that to display all the data on one graph, a split scale has
to be used.



Chapter 9

Heat Transfer of Multiple Pore

Size Foams

As a variation in pore size and density can have such a large effect on the heat transfer

coefficient and pressure drop, it was hypothesised that a sample with variable pore size

might be capable of being optimized even further. That is to say that the best structure

in the first part of the heat exchanger may not be the same as the best structure

towards the end. Multiple pore size samples fabricated by the replication technique

were tested to obtain the thermal and fluid flow behaviour. Integrated samples (samples

where the preform is controlled to have multiple pore sizes, with different sizes being

present in different regions) were processed and have the following characteristics and

identification: 1 and 5 mm pore size, identified as 1-5 mm, 1 and 3 mm identified as

1-3 mm, and sample with 3 and 5 mm, identified as 3-5 mm, Fig. 9.1(a) shows a 1-5

mm integrated sample. It should be noted that these samples were not partitioned

equally, the smallest pore size in the sample had 10.66 mm length in every sample, i.e.

1 -5 mm sample had 10 mm length of 1 mm pore size (1/3 of the length of the sample)

and 21.32 mm length of 5 mm pore size (2/3 of the length sample). This decision was

made such that the quantity of small pore size material (which is more challenging to

166
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infiltrate) did not pose processing difficulties.

The manufacture of these foams was done following the procedure described in Section

5.1, were the smallest pore size part of the preform was always placed in the bottom

of the crucible, with the largest pore size part of the preform placed on top, and above

this the pieces of aluminium to be melted and infiltrated. Therefore, the last part

infiltrated with the molten aluminium was always the side were the smallest pore size

part of the preform was placed, and it was found to be difficult to obtain more than

15 mm length of fully infiltrated sample. In order to have the same condition in every

sample to be characterized, was decided that the smallest pore size always would have

10.66 mm length (1/3 of the total length sample).

To try and better understand the thermal and fluid flow behaviour found with the

integrated samples, the same overall pore structure was created by combining slices

obtained from samples fabricated with a single pore sizes i.e.; samples with 1, 3 and

5 mm pore sizes only, with cylindrical shape, originally 19 mm diameter and 32 mm

length, which were segmented in 10.66 mm length slices (10.66 mm is 1/3 of the length

of the sample). Then samples were made up to have the same overall structure as

shown in Fig. 9.1(b). These samples were identified as 1-5 mm smt, 1-3 mm smt and

3-5 mm smt respectively.

(a) Integrated sample (b) Segmented sample

Figure 9.1: Multiple pore size samples processed by the replication technique. (a)
Sample with 21.33 mm of the length being 5 mm pore size and 10.66 mm of the length
having 1 mm pore size (the total sample length is 32 mm) (b) Sample with the equivalent
structure created by stacking slices obtained from samples fabricated with a single pore
size.
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These multiple pore size samples (integrated and segmented) were tested in two ways;

at first the sample was placed with the smallest pore size where the cooling gas enters,

then as a second trial the sample was switched so the largest pore size received the

cooling gas first. The position of the samples in these two types of trials is described

in Sections 9.2 and 9.4 in more detail.

9.1 Fabrication and characterization of integrated

samples

Integrated samples were processed by the replication technique. To fabricate these

samples, taking the example of the sample with 1 and 5 mm pore sizes, NaCl grains of

1 mm size were obtained by sieving commercial salt (table salt or cooking NaCl). The 1

mm grains obtained were placed in a crucible and over them spheres of 5 mm diameter

salt paste, fabricated by the process developed here (described in Subsection 6.1.2)

were placed. Then the sample was fabricated following the steps described in Section

6.2 to infiltrate the aluminium. After dissolution of the NaCl the foam obtained was

machined by EDM to a cylindrical shape with 19 mm diameter and 32 mm length with

the following proportions: 10.66 mm length of the smallest pore size (1/3 of sample

total length) and 21.33 mm (2/3 of sample length) of the large pore size material. One

example of this type of aluminium foam is shown in Fig. 9.1(a). In samples with 3

mm pore size, the spheres were produced following the same paste-based process used

for the 5 mm spheres. Table 9.1 reports the structural characteristics of the integrated

and segmented multiple pore size samples.
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Table 9.1: Characteristics of Replicated metal foam samples with multiple pore size
used for thermal and fluid flow experiments.

Sample Pore(s) size (s) (mm) Density (%) Porosity (ε) Integrated
/Segmented

1-3 mm (1/3) 1 and (2/3) 3 36.78 0.63 integrated
1-5 mm (1/3) 1 and (2/3) 5 31.29 0.68 integrated
3-5 mm (1/3) 3 and (2/3) 5 31.60 0.68 integrated

1-3 mm smt (1/3) 1 and (2/3) 3 34.42 0.65 segmented
1-5 mm smt (1/3) 1 and (2/3) 5 32.59 0.67 segmented
3-5 mm smt (1/3) 3 and (2/3) 5 34.23 0.65 segmented

9.2 Testing integrated samples

To characterize the thermal and hydraulic behaviour of these samples, two tests had

to be performed on each; the first trial consisted of putting the smallest pore size on

the side where the cooling gas enters the sample, this is shown in Fig. 9.2(a). The

identification of the samples in this position is of the form 1-3 mm, 1-5 mm and 3-5

mm signifying the two pore sizes involved. After testing of the full range of air mass

flow rates at 150 ◦C, the sample was inverted for the second trial Fig. 9.2(b). In this

case on the largest pores are on the side where the cooling gas enters, and the samples

in this position are identified as 3-1 mm, 5-1 mm and 5-3 mm respectively (i.e. the first

number represents the pore size that is first receiving the gas).

9.2.1 Heat transfer coefficient of integrated samples

Fig. 9.3(a) shows the heat transfer behaviour of the three samples when they are placed

with the smallest pore sizes on the side where the cooling gas enters. Heat transfer

coefficients obtained for these samples are higher than for Corevo but are lower than the

replication technique samples with only one pore size. The 1-5 mm sample presents the

lowest heat transfer in all the air mass flow rates, the 1-3 mm sample shows on average

the highest heat transfer coefficient among the samples, although at the first two lowest

air mass flow rates it has about 10 % lower heat transfer coefficient than the sample
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3-5 mm. The behaviour presented by the integrated multiple pore size samples at this

position when they are tested in the rig (smallest pore size section first) is similar to

samples with single pore size, i.e. samples with smaller pore sizes and higher density

present larger heat transfer coefficients and also larger pressure drop values, as is shown

in Fig. 9.5(a). This behaviour is in agreement with the literature on foams with single

pore sizes [47, 50, 105, 117, 120, 122, 157, 158, 161].

Fig. 9.3(b), shows the thermal behaviour when the samples are placed with the largest

pore size on the side where the cooling gas enters. In this position the sample that

presents highest heat transfer coefficient was the sample with 1 and 5 mm pores (posi-

tion 5 -1 mm). This sample has about 20 % higher heat transfer coefficient than the

sample with 1 and 3 mm pore size, although in the highest air mass flow rate of the trial

(0.8 g/s), the difference between them is much narrower, only 4 %. When the sample

with 5-1 mm is compared with the sample 5-3 mm in the lowest two flow rates of the

trial, 0.3 and 0.4 g/s, the differences in the heat transfer coefficient between them is

lower than 10 %. After these two lowest air mass flow rates, the difference in the heat

transfer coefficient start to increase gradually, and in the highest air mass flow rate,

sample 5-1 mm, displays 20 % higher heat transfer coefficient than the sample with 5-3

mm.

If we compare Figs. 9.3(a) and 9.3(b) is possible to observe that the heat transfer

presented by the three samples is larger when they are tested with the largest pore size

placed first to receive the cooling gas. For a better comparison, Figs. 9.4(a), 9.4(b)

and 9.4(c) display the heat transfer coefficients versus air mass flow rate for each of the

samples when they are tested in the two trials; when the small pore size is placed first

and when the largest pore size is placed first to receive the cooling gas.

Fig. 9.4(a), shows the heat transfer coefficient obtained with the sample with 1 and 3

mm pore size when it is placed in the two positions. The increase in the heat transfer

coefficient presented by the sample when the largest pore size is placed to receive first

the cooling air (position 3-1 mm) is 25% higher on average in all the air mass flow rates
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of the test. The increase in the heat transfer coefficient was constant at all the air mass

flow rates, with exception at 0.7 g/s where the increment was only 6%, this value was

no checked (the test was not repeated) so this difference could be a wrong measure.

The sample with 1 and 5 mm pore sizes presented an increase of about 50% in the heat

transfer coefficient in all the air mass flow rates; this can be observed in Fig. 9.4(b).

The increase was found when the sample was tested with the largest pore size on the

side where the cooling air enters (position 5-1 mm), in the same way as the sample

with 1 and 3 mm. The sample with 3 and 5 mm pore size also presented an increase in

the heat transfer coefficient when placed with the biggest pore size first to receive the

cooling gas. The increase in this sample was 30% on average in all the air mass flow

rates of the test, Fig. 9.4(c).

To explain this behaviour, the flow of gas through the individual elements of the samples

needs to be considered. It is well known that the smaller the pore size of a foam, the

lower its permeability will be [47, 117, 120, 157, 161]. This means that a higher pressure

drop will be required to flow gas through smaller pore sizes for a given flow rate, see

Fig. 9.5(b). This means that the flow rate of the gas in front of any small pore size

section may be reduced compared to that in a large pore size foam (i.e. there may be

a ”bow wave” effect as the gas decelerates). If the small pore size section comes after

the large pore size section, the dwell time of the fluid within the large pore size foam is

thereby increased over what it would otherwise be, allowing greater exchange of heat

to take place.

9.2.2 Integrated samples pressure drop

The experimental pressure drop results obtained are presented in the same manner as

the thermal behaviour in these type of samples. The fluid flow behaviour is first plotted

when the sample is placed with the smallest pore size on the side where the cooling

gas enters and then when the sample was inverted, so the largest pore sizes is now the
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side that receives first the cooling gas. Figs. 9.5(a) and 9.5(b) show the differences of

pressure obtained when the samples are tested in both positions.

Fig. 9.5(a) and 9.5(b) show that in the sample with 1 and 5 mm pore sizes there is

a slight increase in the pressure differences when the smallest pore size is placed first.

Figs. 9.6(a), 9.6(b) and 9.6(c) shows the pressure drop for each sample when they are

tested in both test positions.

The sample with 1 and 5 mm pore sizes presents a pressure drop increase of 18% and

the sample with 1 and 3 mm pore size shows an increase of 8% when they are tested

with the smallest pore size on the side where the cooling gas enters. The sample with

3 and 5 mm pore size presents practically the same results (within the error in the

equipment), with the increase being only 3.5 %. Within the limits of the accuracy

of the rig, the asymmetric pressure drop behaviour can only be said to be seen in an

integrated sample with a large pore size difference. This behaviour must result from

the way the gas is forced to pass from small to large pore sizes as it is not observed in

segmented samples (see next section). It is possible that microstructural features act

like non-return valves, bending to permit gas flow easily in one direction, but impeding

it when the sense of flow is reversed. However, microstructural investigations have

failed to find features of this type. What is perhaps more likely is that the entrance of

smaller pores into the larger ones can lead to the formation of tapered channels through

which the gas must pass. As has been noted in other heat exchanger designs [162], this

can lead to asymmetric pressure drop behaviour, with higher resistance when the gas

is flowing along a narrowing channel direction.

9.2.3 Pressure drop ”bow wave” effect in integrated samples

Figure 9.7 shows the integrated foam structure where the small pore meets the larger

one. The sample with 5 and 1 mm pore size was sectioned in middle in order to observe

the structure when the small pore size meets the larger ones.
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When the figure is magnified, it is possible to observe how the small pores (1 mm) meet

the larger one (5 mm). This magnified structure is represented in a diagram in Fig.

9.8, where is as well represented the metal foam and the graph showing the pressure

drop behaviour when the air enters on the side where the larger pore size is placed.

The diagram shows how the fluid behaves when a sample with these characteristics is

tested on the rig. What is observed in the diagram and in the picture of the integrated

sample is that, when the big pore meets the smaller pore, the increased number of the

pore-pore windows increases the surface area in contact with the foam and increases

the turbulence, as reported in several works [46, 113, 115, 136, 157, 163], small pore size

increase the turbulence and therefore there is a restriction of the fluid to flow through

the sample resulting in a larger difference of pressure in this section of the sample (small

pore section).

Figure 9.9 shows the bow wave effect when the air enters in the side where smallest

pore size is placed. In this case, the flow suffers higher restriction (when it is compared

when the larger pore size is placed on the side where the air enters) when the fluid

goes through the foam section with the smallest pore size, then when the fluid passes

from the smallest to the largest pore size a new restriction takes place, now the area to

fluid is reduced having as a result that when the sample is tested in this position the

pressure gradient is larger, i. e.;

∆PA < ∆PB (9.1)
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(a) Smallest pore size first.

(b) Largest pore size first.

Figure 9.2: Position of the multiple pore size samples in the rig (a) Sample placed with
the smallest pore size in the side where the cooling gas enters and (b) sample switched
so the largest pore size of the sample is placed where the cooling air enters.
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(a) Smallest pore first

(b) Largest pore first

Figure 9.3: Heat transfer coefficient obtained at 150 ◦C in integrated samples obtained
by the replication technique. (a) Heat transfer coefficients obtained for the three sam-
ples (1-3, 1-5 and 3-5 mm) when the smallest pore size is placed on the side where the
cooling gas enters and (b) when samples are inverted.
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(a) Sample with 1 and 3 mm pore size

(b) Sample with 1 and 5 mm pore size

(c) Sample with 3 and 5 mm pore size

Figure 9.4: Heat transfer coefficient obtained by integrated samples with different pore
sizes in the same sample when it is tested in the two trial positions. (a) Sample with
1 and 3 mm pore size, (b) 1 and 5 mm pore size, and (c) 3 and 5 mm pore size.
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(a) Smallest pore size first

(b) Largest pore sizes first

Figure 9.5: Pressure drop obtained in integrated samples with two pore sizes in the
same aluminium foam. (a) Samples tested with the smallest pore size on the side where
the cooling gas enters and (b) when the sample was inverted.
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(a) Sample with 1 and 3 mm pore size

(b) Sample with 1 and 5 mm pore size

(c) Sample with 3 and 5 mm pore size

Figure 9.6: Gradient pressure obtained integrated samples with different pore sizes in
the same sample when they are tested in the two trial positions. (a) Sample with 1
and 3 mm pore size, (b) 1 and 5 mm pore size, and (c) 3 and 5 mm pore size.
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Figure 9.7: Structure obtained in the border when the small pore meets the larger one
in an integrated sample.

Figure 9.8: Metal foam diagram and graph showing the bow wave effect when a inte-
grated sampled is tested with the largest pore size in the side where the air enters.
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Figure 9.9: Metal foam diagram and graph showing the bow wave effect when a inte-
grated sampled is tested with the smallest pore size in the side where the air enters.
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9.3 Fabrication of segmented samples

The behaviour presented by the integrated samples with different pore sizes shows that

there is an increased in heat transfer coefficient, and in the case of sample with 5 and 1

mm pore size (sample 1-5 mm) lower pressure drop, when the sample is placed with the

largest pore size on the side where the cooling gas enters. To understand better this

behaviour the same overall pore structure as in the integrated samples were created

by slices obtained from samples fabricated with single pore sizes as follows; samples

with 1, 3 and 5 mm pore sizes, with cylindrical shape, 19 mm diameter and 32 mm

length, were segmented in 10.66 mm long width slices (10.66 mm is 1/3 of the length

sample), so then samples were made up to the same overall structure as shown in

Fig. 9.1(b), Table 9.1 reports the characteristics of these samples. These samples were

identified as 1-5 mm smt, 1-3 mm smt and 3-5 mm smt respectively. Note that slices

were placed together in the rig, without any form of bound or conductive paste being

placed between them. It was considered that, as the heat flow would be expected to

be lateral only, this would not impact the results.

9.4 Testing segmented samples

The procedure of the trial was kept the same as for the integrated samples; the sample

first was placed with the smallest pore size on the side where the cooling air enters,

then the test was carried out over the range of air mass flow rates. Then samples were

inverted to have the largest pore size within the sample first to receive the cooling gas.

Fig. 9.10(a) and 9.10(b) show sketches that describe the position of the sample in the

trial.
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9.4.1 Heat transfer coefficient of segmented samples

Fig. 9.11(a) and 9.11(b) show the heat transfer behaviour of the segmented samples

tested under the same parameters as the integral samples. Fig. 9.11(a) shows that

the sample which presents the highest heat transfer coefficient is again the sample

with 1 and 3 mm pore size. It presents 40 % more heat transfer coefficient when it is

compared with the 1-5 mm smt sample, and 42 % when it is compared with the 3-5

mm smt sample. These two samples, 1-5 mm stm and 1-3 mm stm present practically

the same behaviour in the trial. The segmented samples tested in this position seem

to have the same behaviour as the single pore size samples, where the largest heat

transfer coefficient is given by the smallest pore size and largest density, the 1-3 mm

smt sample having the largest density and with the smallest pore size combination

among the samples. When the 1-3 mm smt sample is compared with 1-5 mm smt, in

spite of having almost the same density with a difference of only 5.3 %, the 1-3 mm

smt sample presents higher heat transfer coefficient meaning that in segmented samples

there is also a big influence of the pore size that constitutes the sample on the heat

transfer and pressure drop, see Fig. 9.13(a).

Fig. 9.11(b) shows the thermal behaviour when the samples are switched (largest pore

size close to the entrance of the cooling air). Sample 3-1 mm smt presents the highest

heat transfer coefficient of the three samples tested. At the lowest two air mass flow

rates of the trial (0.3 and 0.4 g/s), its hc is 12 % higher than sample 5-1 mm smt, and

17 % higher than sample 5-3 mm smt. At 0.5 g/s, the three samples; 3-1 mm smt, 5-1

mm smt and 5-3 mm smt, present almost the same heat transfer coefficient 612, 611,

and 633 W/m2K respectively, having differences between them of less than 5 %. In the

following flow rates of the trial the increase of the heat transfer coefficient of sample

3-1 mm is an average 15 % in average with respect to samples 5-1 and 3-5 mm smt.

Segmented samples, similar to the integrated samples, present an increase in heat trans-

fer coefficient when they are tested with the largest pore size placed on the side where
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the cooling gas enters. Figs. 9.12(a), 9.12(b) and 9.12(c) show the heat transfer coeffi-

cient of the samples when they are tested in the second position.

The sample with 1 and 5 mm pore size slices presents the largest improvement in the

heat transfer coefficient when it is tested with the largest pore size on the side where

the air enters Fig. 9.12(a), this increment is 34 % in average over the whole trial, while

the sample with 3 and 5 mm pore size slices presents an increase of 30 % over the whole

trial, Fig. 9.12(b). The sample with 1 and 3 mm pore size slices presents almost the

same behaviour and it seems that the position in which the sample is tested does not

have any influence in the heat transfer coefficient, Fig. 9.12(c).

9.4.2 Pressure drop across segmented samples

The trials were carried out under the same conditions as for the thermal behaviour.

Figs. 9.13(a) and 9.13(b) show the experimental pressure drop obtained for the seg-

mented (smt) samples tested with the largest pore size placed on the side where the

cooling air enters, and when the position of the sample was switched.

Figs. 9.13(a) and 9.13(b) show that as for other foam samples the pressure gradient

increases when the air mass flow rate increases. The 1-3 mm smt sample presents the

highest pressure gradient while the lowest is shown by the 3-5 mm smt sample. The

gradient pressure of segmented samples does not present a significant change when their

position is switched. The difference in pressure drop is 8 % between the 1-5 mm smt

sample and the 1-3 smt sample. The 3-5 mm smt sample presents only 5 % difference.

This can be observed in Fig. 9.14(a), 9.14(b) and 9.14(c).

1-5 mm smt and 1-3 mm smt samples show a 50 % reduction when their fluid flow

behaviour is compared with those obtained for the integrated samples with the same

pore sizes. The reduction in pressure drop in the 1-5 mm smt sample is accompanied by

a lower heat transfer coefficient however, for the 1-3 mm smt sample the heat transfer

coefficient remains similar when the sample is tested the two positions. The behaviour



184 CHAPTER 9. HEAT TRANSFER OF MULTIPLE PORE SIZE FOAMS

of the sample 1-3 mm smt shows that the influence of the pore size is stronger than the

density, as the 1-3 smt sample has 6.4 % lower density than the integrated sample and

even though the segmented sample has lower density, it presents almost the same heat

transfer. The sample with 3-5 mm pore size presented an increase of 70 % in pressure

drop but the heat transfer decreases by 20 % with respect to the integrated sample.

The 3-5 segmented sample has a density 7.6 % higher than integrated sample with the

same pore size, again showing that integrated and segmented samples with multiple

pore size are affected more strongly by the pore sizes present in pressure drop but not

in heat transfer than single pore size.

9.4.3 Pressure drop ”bow wave” effect in segmented samples

Figure 9.15 shows a segmented sample with 1 and 5 mm pore size. In the figure is

possible to observe the structure when the slide with 1 mm pore meets the slide with

5 mm pore size. The magnified figure shows that there is a gap between the two slides

and that the structure is different to the structure obtained when it is compared with

a integrated sample, i. e. the 5 mm pore now is the window on which the fluid can

flow through having more area to flow and therefore less restriction and lower pressure

drop if it is compared with the integrated one.

Fig. 9.16 shows the diagram of the sample and the magnified view, as well as the

representation of the pressure drop of the fluid when it is flowing through the sample

when the biggest pore size is placed on the side where the air enters. It can be observed

in the magnified diagram that the air flows through the pores and gap as well so

therefore, the restriction to flow is lower than on integrated samples. The diagram

shows that the pore now is the window to fluid so the area to fluid is bigger than in a

integrated sample because in this case this window is around 5 mm while on integrated

sample is around 2 mm.

Figure 9.17 shows sample and zoom in diagram structure as well as the representation
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of the pressure drop when the fluid is flowing through a segmented sample that is placed

with the smaller pore size where the air enters. In this sample the restriction to fluid

starts when the fluid goes through the small pore section and when the fluid leaves this

section and goes to the section with the bigger pore size, there is no restriction in the

border where the small and bigger pore size meets due to the big window to fluid and

also for the gar between the slides. This can be observed in Fig. 9.17, therefore the

pressure gradient are similar when the segmented samples is tested in the two positions,

i. e.;

∆PA ≈ ∆PB (9.2)
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(a) Smallest pore size first.

(b) Largest pore size first.

Figure 9.10: Position of the multiple pore size samples in the rig (a) Sliced sample
placed with the smallest pore size in the side where the cooling gas enters and (b)
sliced sample inverted so the largest pore size of the sample is placed where the cooling
air enters.
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(a) Smallest pore first

(b) Largest pore first

Figure 9.11: Heat transfer coefficient obtained at 150 ◦C with samples that were made
up with slices to obtain the same overall structure as the integrated samples. (a)
segmented samples placed in position where the smallest pore size was the first to
receive the cooling gas and (b) samples switched so the largest pore is the first to
receive the cooling gas.
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(a) Sample with 1 and 3 mm pore size slices

(b) Sample with 1 and 5 mm pore size slices

(c) Sample with 3 and 5 mm pore size slices

Figure 9.12: Heat transfer coefficient obtained at 150 ◦C with samples that were made
up with slices to obtain the same overall structure as the integrated samples. (a) Sample
with 1 and 3 mm pore size slices, (b) 1 and 5 mm pore size slices and (c) 3 and 5 mm
pore size slices.
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(a) Smallest pore size first

(b) Largest pore size first

Figure 9.13: Pressure drop obtained with samples that were made up with slices to
obtain the same overall structure as the integrated samples. (a) Segmented samples
placed with the smallest pore size on the side where the cooling gas enters and (b)
when the samples are inverted.
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(a) Sample with 1 and 3 pore size slices

(b) Sample with 1 and 5 pore size slices

(c) Sample with 3 and 5 pore size slices

Figure 9.14: Pressure drop obtained by samples that were made up with slices to obtain
the same overall structure as the integrated samples. (a) Sample with 1-5, (b) sample
with 1-3 and (c) sample with 3-5 mm pore size.
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Figure 9.15: Structure obtained in the border when the small pore meets the larger
one in a segmented sample.

Figure 9.16: Metal foam diagram and graph showing the bow wave effect when a
segmented sampled is tested with the largest pore size in the side where the air enters.
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Figure 9.17: Metal foam diagram and graph showing the bow wave effect when a
segmented sampled is tested with the smallest pore size in the side where the air enters.



Chapter 10

Heat Exchangers Analysis and

Comparisons

10.1 Nusselt number

To compare the rates of heat transfer by conduction and convection in the metal foam

samples the Nusselt number was calculated and plotted as a function of the Reynolds

number. The Nusselt number (Nu), Eq. 4.20, is defined by the ratio of the heat transfer

coefficient (hc) and the conductive heat transfer coefficient (between the fluid and solid)

and was calculated from experimental data where the effective thermal conductivity,

keff , was obtained using equations found to be effective for the relative conductivity

(electrical in the previous study, but this should apply equally well to thermal prop-

erties) of the foam as a function of the pore volume fraction (∆). The equation 4.6

specified by the Lemlich model is known to give a good fit for Duocel samples [108],

therefore:

keff = kAl
(1−∆)

3
+ kair∆ (10.1)

193
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where kAl = k0 from equation 4.6 and is the thermal conductivity of aluminium (237

W/mK), and kair thermal conductivity of the air (0.0262 W/mK). For replicated

samples (Corevo and in-house fabricated) equation 4.9 for spheres has the better fit

[108] so, the effective thermal conductivity for these samples is obtained as follows:

keff = kAl(1−∆)1.5 + kair∆ (10.2)

Nusselt number was plotted as a function of the Reynolds number and it (Reynolds

number) was calculated according to Equation 4.22 as a function of the permeability

as follows

Re =
ρ
√
K

µ
vf (10.3)

where ρ is the air density at the mean temperature (kg ·m−3), µ is the air dynamic

viscosity (kg ·m−1s−1), vf is the frontal velocity (ms−1) and K is the permeability

in (m2) which is estimated using the method of Despois et al [117] with the following

equation for samples with a pore volume fraction (∆) larger than 0.64:

K =
∆r2

π

[
∆−∆0

3 (1−∆0)

]3/2

(10.4)

where ∆0 is the initial packing density of the spherical particles (∆0 = 0.64) and

r is the average pore radius in the foam. For samples with a pore volume fraction

lower than 0.64 the permeability was obtained with the following equation at low fluid

velocities:

vf = −K
µ

dP

dx
(10.5)

where dP is the difference of pressure (mbar) and dx is the sample length (0.032m).
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Figure 10.1: Pressure gradient (−dp/dx), measured on foams of 10 PPI with different
densities as a function of the fluid velocity.

A plot of the measured flow rate versus pressure drop in 10 PPI samples with different

densities is shown in Fig. 10.1. This plot is linear, showing that flow is indeed in the

regime of validity of Darcy’s law (flow entirely governed by viscous friction within the

fluid [117]).

Figure 10.2 shows the Nusselt number as a function of the Reynolds number for Duocel

samples with similar pore density but with different pore size. It can be seen that

the Nusselt number increases as the Reynolds number increases and the pore size is

decreased, meaning that the heat transfer in samples with lower pore size and high flow

rate is governed by convection (interpreted as being the mixing of the fluid caused by

the foam) rather than conduction. This shows that the foams are most effective when

pore size is small and density is high, as found in earlier sections. Samples with the

largest pore size show the highest Reynolds numbers and give lower restriction of the

cooling air flow, resulting in lower heat extraction.

The Nusselt number for Duocel samples with 10 PPI pore size and different densities

were evaluated. Fig 10.3 shows that the Nusselt number increases when the porosity

increases. Values of Nusselt number presented by Duocel samples are over one, meaning
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Figure 10.2: Nusselt number as a function of Reynolds number in Duocel samples with
different pore size and similar density.

that under flow conditions characterised by these Reynolds numbers the heat transfer

is predominantly by convection. Aluminium foam samples with 10, 20 and 40 PPI

with different densities were evaluated by Hsieh et al [103], and the Nusselt number

as a function of the Reynolds number shows similar behaviour as found with Duocel

samples in this work.

Nusselt number as a function of Reynolds number for 5 mm pore size Corevo samples

with different relative densities, shows that the Nusselt number increases when the

Reynolds number and the density increase, Fig. 10.4. The Nusselt number obtained

is however less than one, meaning that less fluid motion and mixing is taking place

and the heat transfer is principally by conduction at the Reynolds numbers evaluated

in this work. This is likely to be due to the higher density of these foams; the pore

interconnections are fewer and smaller than Duocel, and this will limit mixing. The

larger amount of metal will also promote the transport of heat into the liquid through

foam conduction.

It was observed that Corevo samples with the highest pore density presented higher
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Figure 10.3: Nusselt number as a function of Reynolds number in Duocel samples with
different density and 5 PPI pore size.

Figure 10.4: Nusselt number as a function of Reynolds number in Corevo samples with
different density and 10 mm pore size.
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Figure 10.5: Nusselt number as a function of Reynolds number in in one pore size
replicated samples.

Reynolds numbers that those with the highest relative density. F55 sample has the

highest pore density and presents the largest measured pore size (see Table 8.3), there-

fore the permeability is higher. The above could explain this sample having the highest

Reynolds number compared to other Corevo samples, however sample F65 presents

smaller pore size than F56, which should increase the Reynolds number of this sample;

it is possible that features within the foam structure are responsible for this difference.

Figure 10.5 shows the Nusselt number obtained with the experimental data for in-house

fabricated replicated samples with a single pore size. The Nusselt number increases

when the pore size decreases, the 5 mm pore size sample presents the largest porosity

among the replicated samples (see Table 8.4) however, the highest Nusselt number

was found for the 1 mm pore size sample, meaning that the Nusselt number is more

influenced by the pore size than the relative density. Samples with 3 and 5 mm pore

size showed a heat transfer governed by conduction while the sample with 1 mm pore

size has behaviour dominated by convection under the Reynolds numbers evaluated.
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Figure 10.6: Nusselt number comparison as a function of Reynolds number between
Duocel, Corevo and replicated samples with 5 mm pore size.

5 PPI - 7.9 Duocel (ε = 0.92), F55 - 5 mm Corevo (ε = 0.84) and replicated samples

with 5 mm pore size (ε = 0.68) were compared in Fig. 10.6. The F55 Corevo sample

was selected because presents the highest porosity of this sample type and is closest to

the Duocel type of foams to aid comparison. The lowest permeability was presented by

the replicated sample (represented by the lowest Reynolds number seen among these

three samples) as would be expected given the much lower porosity; it appears that

this structure does not allow free flow of the air and this reduces the heat extraction.

The Corevo sample presents higher permeability compared to the replicated sample,

but nevertheless the heat transfer is still governed by conduction. The Duocel sample

presents the highest permeability of all the samples and the heat transfer for the last

three Reynolds numbers is dominated by convection. The pore size and the relative

density presented by the Duocel sample seems to be favourable for convective heat

transfer to allow the flow of the cooling air and permitting the mixing of air promoting

heat transfer.
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10.2 Comparison of experimental data with modelling

The heat transfer coefficients obtained (hc) from the experimental data were compared

against values obtained through the model developed by Mancin et al [125]. This

Model is based in an analytical model suggested by Ghosh [135]. Using Microsoft

Excel, equations suggested by Mancin et al [125] were calculated using experimental

data for the porosity (ε), relative density, mean pore diameter, the fiber thickness and

the area per unit volume. The model used (equations and nomenclature) to calculate

the heat transfer coefficient is displayed in the Appendix.

The fiber thickness was calculated following part of the procedure suggested by Richard-

son et al [164] as follows; a picture of each of the samples was taken and then magnified

by a factor of 10. The fiber thickness (taken as being the strut thickness) was measured

in the image using a micrometer (Mitutoyo) and 35 measurements were performed on

each of the samples then, the mean value of the 35 measurements of each sample was

calculated. The fiber thickness values are reported in Table 10.1.

Table 10.1: Geometrical properties of samples compared with Mancin [125] model.

Sample Fiber thickness Area per unit volume
(mm) (m2/m3)

5 PPI- 7.9 0.58 314
10 PPI- 7.9 0.57 748
20 PPI- 8 0.44 1220

40 PPI- 8.6 0.40 1811
F55 0.71 745
F65 0.83 737
F64 1.03 666
F56 0.91 639
F51 0.52 657
F36 0.66 488

1 mm (Replicated) 0.83 2883
3 mm (Replicated) 0.92 977
5 mm (Replicated) 1.94 603

For Duocel samples the area per unit volume was obtained from data available on the
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ERG Duocel webpage [91]. For Corevo and laboratory made replicated samples the

area per unit volume was calculated using the relative density and the pore size of the

samples assuming the pores were perfect spheres and neglecting interpore windows.

The values are reported in Table 10.1.

The heat transfer coefficient was estimated using this model for Duocel, Corevo and

replicated single pore size samples. Fig 10.7(a), shows the comparison between the

calculated and experimental values obtained for Duocel samples with different pore size

but similar densities, 1 and 5 mm replicated samples; and F51 - 2 mm and F56 - 5 mm

Corevo samples. In the figure it is possible to observe that the heat transfer coefficient

values calculated with the model are generally underestimated. The values obtained

for Corevo and replicated samples were more than 35 % lower than the experimental

results, with the exception of the 1 mm pore size replicated sample whose values had

a good agreement, less than 20 % difference between the calculated and experimental

heat transfer coefficient. The fact that better agreement is found with smaller pore sizes

for the replicated samples may reflect the fact that in this materials the pores have the

angular shape of salt grains, whereas for larger pore sizes and for Corevo foams the

pore shape is spherical and cylindrical respectively, this will affect the calculation of the

area per unit volume (m2 /m3 ). With Duocel samples, the comparison of the majority

of the data is satisfactory having a good fit between both values; the maximum error

was presented by the 20 PPI - 8 sample where the experimental data differs by about

20 % from the prediction, the Fig. 10.7(b) shows only Duocel samples with a maximum

scale of 800 W/m2K for a better appreciation of the agreement between the calculated

and experimental values.
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(a) Duocel, Corevo and replicated samples

(b) Duocel samples

Figure 10.7: Comparison between experimental and calculated heat transfer coefficient
(hc). (a) Duocel, Corevo and replication technique samples, and (b) Duocel samples
only.
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10.3 Performance comparison and suggestions

Thermal and fluid flow behaviour for the Duocel, Corevo, replicated (both single pore

size and graded) samples have been reported in detail in chapters 8 and 9. Figures

10.8(a) and 10.8(b) show the heat transfer coefficient and pressure drop for Duocel,

Corevo and replicated with both single and graded pore-size samples. Even though in

figures 10.8(a) and 10.8(b) samples with different pore size and density are plotted, it

is possible to observe that Duocel presents the lowest heat transfer coefficients and the

multiple pore size replicated samples the highest. This large difference between the

heat transfer coefficient obtained among the samples cannot be attributed solely to the

different thermal conductivity of the alloy from which the sample are made; replicated

foams made in-house were fabricated with pure aluminium grade 99.7 % Al(∼237

W/mK ). Duocel samples are made with 6160 alloy (218 W/mK ) and Corevo samples

were fabricated with AS7G06 alloy (160 W/mK ). The difference between the base

metal thermal conductivity is about 9 % between Duocel and replicated, and 30 %

between replicated and Corevo; while the difference in the heat transfer obtained with

the replicated and Duocel samples is over 70% if a comparison between 5 PPI-7.9

Duocel, F55 - 5 mm Corevo and 5 mm replicated is made.

However, the pressure drop obtained with replicated samples (in both the cases of single

and multiple pore sizes) are over 300 times larger than those presented by Duocel,

meaning that the better performance between the foam samples evaluated is presented

by Duocel, which has a better heat transfer-pressure drop ratio, i.e. in the 40 PPI -

8.6 Duocel sample (the sample which presents the largest pressure drop among Duocel

samples) the ratio is 333 W/m2 K mbar, while in the 3 mm pore size replicated sample

which has the lowest pressure drop of its type is only 6.25 W/ m2 K mbar.

A grid heat exchanger was also evaluated in the rig. This material was an aluminium

alloy heat exchanger with a dimension of 1.2 cm width, 2.5 cm length and 0.025 cm

thickness for each grill, Fig. 10.9(a). As seen in the Figure, each grill had a series
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of cuts, with the metal deformed to make slots. The test was performed with 7 grills

having density of 5.3 %, and a different copper cylinder was used with a hole of the

same geometry as the heat exchanger, Fig. 10.9(b). The results obtained are shown

in Figs 10.8(a) and 10.8(b) and show a heat transfer-pressure drop ratio of 400 W/m2

mbar, having the best performance among the materials evaluated in this work at least

for when maximum heat transfer for a minimum pressure drop is required. In the

same figures, 10.8(a) and 10.8(b), the data obtained from the blank test is presented

and shows that there is neither a measurable and significant pressure drop nor heat

extraction so clearly the metal foams do have some benefit. The fact that the heat

transfer coefficients are higher in these materials (albeit with higher pressure drop)

means that there are some applications where they may be able to be used effectively.

Chapters 8 and 9 show that there is an increment of the heat transfer and pressure

drop when the foam density increases and pore size decreases in all the samples evalu-

ated. When the relative density increases (with a constant pore size), the pore density

decreases and therefore, there is more metal contained within the foam increasing the

effective thermal conductivity (keff ). The results obtained in Section 10.1 show that

when the density increases the Nusselt number is near or lower than 1 meaning that

the heat extraction occurs principally by conduction (Fig.10.3). At the same time the

permeability decreases due to the thickness of the strut increasing and the size of the

windows between the pores is reduced, generating bottlenecks where the resistance of

the fluid to flow is encountered.

When the porosity increases with a constant relative density, the thickness of the struts

decreases and according to Bhattacharya et al [113] the cross section of the struts

changes from circular to triangular. This new triangular shape and the thickness in-

duce more turbulent flow and also increase the surface area per unit volume, thereby

increasing the heat transfer by convection in the aluminium foam. When the pore size

decreases while the relative density is fixed, the fluid flow is more restricted when it

is flowing through the metal foam and the permeability decreases [115]. Table 10.2
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reports the pictures and diagrams of the strut geometry presented in the metal foams

characterized in this work, as well as the effect on the heat transfer.

The range of fluid velocities encountered in real applications varies depending on the

type of heat exchanger. For example, flow rates in electronic circuit board applications

are typically from 0 to 2.5 m/s, air cooled condensers from 3 to 15 m/s, airborne

from 4 to 60 m/s and air cooled heat exchangers from 0.18 to 4.5 m/s, among others

[2, 13, 165–167]. Table 10.3 reports the applications and parameters when a metal

foam is used as a heat exchanger. The evaluation of the metal foams in this work was

carried out in the range from 0.88 to 2.35 m/s which is on the range of electronic circuit

boards, where the use of cooling devices is recommended due to the large amounts of

heat generated. From the results shown here, it can be stated that if the electronic

device has a restriction on the pressure drop on the basis of the noise that is generated,

as would be the case in personal computers, then the best option would be to use

Duocel metal foams.

In electronic devices where such a restriction does not apply, for example in industrial

environments or large scale computing servers the replicated and Corevo types of foam

would be recommended. For graded replicated samples positioned such that the largest

pore size is first to receive the cooling air, the results show that the metal foam has

higher heat extraction with lower difference of pressure, suggesting that this behaviour

could be fruitfully explored in the future heat exchanger design.
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(a) Heat transfer coefficent

(b) Pressure drop

Figure 10.8: Comparison between Duocel (5 PPI- 7.9, 10 PPI - 7.9, 20 PPI - 8, 20 PPI
- 8.6 and 40 PPI - 8.6), Corevo (F65 - 5 mm, F64 - 5 mm, F56 - 5 mm, F55 5 mm,
F51 2 mm and F36 - 2mm), replicated single pore size (1, 3, and 5 mm) and replicated
multiple pore sizes (3-1 mm, 5-1 mm and 5-3 mm) samples at different flow rates for
(a) heat transfer coefficient (hc) and (b) pressure drop (∆P ).
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(a) Heat exchanger (b) Heat exchanger into the copper
cylinder

Figure 10.9: Heat exchanger tested on the rig, the scale is in cm. (a) One grid heat
exchanger and (b) 7 grills of the heat exchanger into the copper cylinder (test section).
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Chapter 11

Conclusions and Further Work

11.1 Conclusions

In this work the replication process with paste was further developed and a bespoke test

rig was designed, constructed and evaluated for the purpose of measuring the thermal

and fluid flow behaviour of different aluminium foams. From the results obtained some

conclusions can be drawn.

11.1.1 Replication technique for foam manufacture

• Aluminium foams can be produced by the replication process with a preform fab-

ricated with a mix of salt (NaCl), water (H2 O) and flour, with salt being the major

component.

• A ternary diagram was produced as a guide in the manufacture of the preform.

• The composition with the best performance used in the manufacture of the preform

of all samples made in this work was: 60 % salt, 25 % flour and 15 % H2 O by weight.

• To eliminate the water and flour from the preform a heat treatment is needed were the

water is vaporized at 100 ◦C during 60 minutes and the flour is removed by pyrolization
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at 500 ◦C during 60 minutes. The dissolution in water of the salt sphere obtained after

the heat treatment took less than 15 sec.

• Pressure must be applied with an inert gas to the molten aluminium to infiltrate it

into the preform. This pressure should not be higher than 2 bar to avoid infiltration of

the aluminium into the preform.

• According with the results obtained from the Energy Dispersive X-Ray Spectroscopy

from the Scanning Electron Microscope there is no presence of silicon in the aluminium

of the foams that were fabricated by the replication technique and therefore no pick up

from the quartz crucible in the method used.

11.1.2 Test method development

• A test rig was designed consisting of a copper test section in which the sample was

placed, with steel chambers placed before and after. This test rig was assessed for

homogeneity and to confirm reliability of the measurements.

• Measurements on the lateral and front faces at different depths on the copper cylinder

show differences in all cases lower than 1 K, representing an error lower than 0.5 %.

• A trial with a dummy sample with low thermal conductivity (26.1 W/m K) shows

that the rig has a high sensitivity even for low performing samples.

• The thermal resistance between the metal foam and the copper cylinder is strongly

dominated by the join material used between them. A brazed joint is the best perform-

ing however, thermal paste is almost as effective and this was used due to the quicker

nature of the test and the advantage to be able to test samples in a single copper

cylinder.
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11.1.3 Heat transfer and pressure drop

• The test on 10 PPI - 9.9 Duocel sample at three different initial temperatures shows

that the heat transfer coefficient does not depend on the initial heat temperature and

that it increases when the air mass flow rate increases.

• The heat transfer coefficient calculated in Duocel samples with fixed pore size and

different relative density shows that the heat transfer increases when the porosity de-

creases.

• Duocel samples with similar porosity show an increase in the heat transfer coefficient

when the pore size decreases. Among Duocel samples tested, the sample with 50 PPI

presents the largest heat transfer coefficient in all air flow rates.

• In Duocel samples with the same pore size but different relative density the pressure

drop (∆P) increases when the pore density and the flow rate increase.

• The 50 PPI - 8 sample has the highest heat transfer coefficient and pressure drop

among Duocel samples being an example of the trade off seen between these two prop-

erties.

• 5 and 2 mm pore size Corevo samples show that the heat transfer and the pressure

drop increase when the relative density increases at a fixed pore size. F56 - 5 mm and

F36 -2 mm samples with the largest relative density showed the highest heat transfer

and pressure drop between samples with the same pore size.

• F56 - 5 mm sample presented the largest pressure drop and heat transfer coefficient

among Corevo samples. If a comparison is made between this sample and the Duocel

sample 50 PPI - 8, then the Corevo sample showed 1.2 times larger heat transfer

coefficient but with 4.5 times larger pressure drop.

• Replicated samples made in the laboratory showed the same behaviour as Duocel

and Corevo samples, the heat transfer and pressure drop increase when the density

increases and the pore size decreases.
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• Heat transfer coefficient and pressure drop depend strongly on the pore size and

relative density suggesting that mixing of the air is found when the pore size decrease

and the porosity decrease. This best air mix also generates a flow resistance when the

air is flowing through the aluminium foam.

• The largest flow resistance (larger pressure drop) is obtained when the pore size is

reduced and the relative density is increased.

• Nusselt number calculation shows that the heat transfer in Duocel samples is governed

by convection while in Corevo and laboratory made replicated samples with a single

pore size is principally by conduction, and that the Nusselt number increases when the

flow rate increase.

• Integrated graded samples show asymmetric thermal and fluid flow behaviour, pre-

senting larger heat transfer coefficient and slightly lower pressure drop when the largest

pore size is placed on the side where the cooling air enters.

• Segmented samples show asymmetric thermal behaviour, however the pressure drop

does not change.

• Duocel experimental and calculated heat transfer coefficient have good agreement.

However, Corevo and replicated samples did not show this good fit, suggesting that

the model has to be modified to obtain a better fit in the heat transfer coefficient with

metal foams obtained by replication technique (of which both Corevo and the in-house

made foams are examples).

• The asymmetric behaviour is attributed to the increased resistance to fluid flow of

the smaller pore size foam, slowing the fluid and allowing greater heat exchange to take

place in the large pore size.

• Differences in the pressure drop between integrated and segmented samples are pos-

sibly due to asymmetry in flow through the structures formed in integrated samples.

• Duocel samples presented the best heat transfer - pressure drop ratio being a suitable
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choice for electronic devices with noise restriction. Where there is not this limitation,

Corevo and Replicated material can be used.

11.2 Further work

Improvements in the preform manufacturing process could be investigated in order to

reduce the time required to obtain the final preform of pyrolised salt only. this would

be an important development for industrial processing. Larger containers and molds or

manufacturing using food machines could be used to produce a larger quantity of dough

and give the desired shape in an easier way, and also allow production of larger samples

which could be cast in larger rig. The time for the heat treatment could be reduced

particularly in the final step, at 500 ◦C, when the greatest thickness of the preform is

less than 5 mm. This could reduce the time and increase the preform resistance.

The flexibility presented by the paste obtained by mixing the constituents (NaCl, flour

and water) is an important advantage in the manufacture of the preform which can be

therefore used to fabricate any shape desired for example: squares, triangles, cylinders

etc. with sizes lower than 10 mm and higher than 2 mm. Once the preform with the

size and shape desired is obtained, aluminium foam can be fabricated with different

pore sizes and shapes in a single sample to further characterize its thermal and fluid

flow behaviour as well as other properties of interest, such as mechanical properties.

The results obtained in graded and segmented samples suggest that this behaviour can

be used to improve the performance in heat exchangers, trying to obtain higher heat

transfer coefficients with minimal pressure drop. Integrated samples with the lowest

pore size being the largest proportion in the samples are to be for further investigations.

If this was to be done segmented samples should also be fabricated to compare the

thermal and fluid flow characteristics with integrated ones.

Tube heat exchangers could be fabricated by the replication technique using the type

of preform studied in this work and casting the molten aluminium directly into and



11.2. FURTHER WORK 215

around outside, producing the foam and tube in an integrated form in a single operation.

These components could then be characterized for the thermal, mechanical and fluid

flow properties to be compared with the ones obtained with tube heat exchangers that

have been fabricated by inserting an aluminium foam core in the centre of a tube. It

would be that the lower thermal resistance in an integrated sample would give better

properties.
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mann, S. Saberi, and L. Timberg. A New Class of High Temperature and Corro-

sion Resistant Nickel-Based Open-Cell Foams. Advanced Engineering Materials,

10(9):803–811, September 2008.

[90] B. Ozmat, B. Leyda, and B. Benson. Thermal Applications of Open-Cell Metal

Foams. Materials and Manufacturing Processes, 19(5):839–862, October 2004.

[91] http: www.ergaerospace.com.

[92] D. Sabatino, S. Lane, W. Road, R David, and N. Street. High Temperature

Heat Exchanger Development Office of Naval Research Under Contract Number

: N00014-03-C-0444. 2005.

[93] S. Satyapal, T. Filburn, J. Trela, and J. Strange. Performance and Properties

of a Solid Amine Sorbent for Carbon Dioxide Removal in Space Life Support

Applications. Energy & Fuels, 15(2):250–255, March 2001.

[94] K Leong and L Jin. Effect of oscillatory frequency on heat transfer in metal foam

heat sinks of various pore densities. International Journal of Heat and Mass

Transfer, 49(3-4):671–681, February 2006.

[95] B. Ozmat. Reticulated Metal Foams Build Better Heatsinks. Power Electronics

Technology, pages 24–29, 2007.

[96] L. Persheng, Y. Bing, H. Anmin, and L. Karming. Development in applications

of porous metals. Trans. Nonferrous Met. Soc. China, 11(5):629–638, 2001.

[97] H Wadley. Fabrication and structural performance of periodic cellular metal

sandwich structures. Composites Science and Technology, 63(16):2331–2343, De-

cember 2003.

[98] M. Eisenmann. M. Eisenmann, in ASM Handbook Vol. 7, Metal Powder Tech-

nologies and Applications, ASM International, Materials Park (USA), p. 1031,

volume 7. 1998.



226 BIBLIOGRAPHY

[99] M. Kleiner, M. Geiger, and A. Klaus. Manufacturing of Lightweight Components

by Metal Forming. CIRP Annals - Manufacturing Technology, 52(2):521–542,

January 2003.

[100] Z. Esen and S. Bor. Processing of titanium foams using magnesium spacer par-

ticles. Scripta Materialia, 56(5):341–344, March 2007.

[101] Q. Tian and X Guo. Electro-deposition for foamed zinc material from zinc sulfate

solution. 6th Pacific Rim International Conference on Advanced Materials and

Processing, 561-565(3):1669–1672, 2007.

[102] T W Clyne, I O Golosnoy, J C Tan, and a E Markaki. Porous materials for ther-

mal management under extreme conditions. Philosophical transactions. Series

A, Mathematical, physical, and engineering sciences, 364(1838):125–46, January

2006.

[103] W Hsieh, J Wu, W Shih, and W Chiu. Experimental investigation of heat-transfer

characteristics of aluminum-foam heat sinks. International Journal of Heat and

Mass Transfer, 47(23):5149–5157, November 2004.

[104] R L Mahajan. Forced Convection in High Porosity Metal Foams. Journal of Heat

Transfer, 122:557–565, 2000.

[105] A. Bhattacharya and R. L. Mahajan. Metal Foam and Finned Metal Foam Heat

Sinks for Electronics Cooling in Buoyancy-Induced Convection. Journal of Elec-

tronic Packaging, 128(3):259, 2006.

[106] Z. Hashin and S. Shtrikman. A Variational Approach to the Theory of the Effec-

tive Magnetic Permeability of Multiphase Materials. Journal of Applied Physics,

33(10):3125, 1962.

[107] P.G. Collishaw and J.R.G Evans. An assessment of expressions for the apparent

thermal conductivity of cellular materials. Journal Of Materials Science, 29:486–

498, 1994.



BIBLIOGRAPHY 227

[108] R. Goodall, L. Weber, and A. Mortensen. The electrical conductivity of micro-

cellular metals. Journal of Applied Physics, 100(4):044912, 2006.

[109] K.P. Dharmasena and H. N. G. Wadley. Electrical conductivity of open-cell metal

foams. Materials Research, 17(3):625–631, 2002.

[110] E Solorzano, J Reglero, M Rodriguezperez, D Lehmhus, M Wichmann, and J De-

saja. An experimental study on the thermal conductivity of aluminium foams by

using the transient plane source method. International Journal of Heat and Mass

Transfer, 51(25-26):6259–6267, December 2008.

[111] E. Solorzano, M. Rodriguez-perez, L. Jaime, and J. De Saja. Influence of Solid

Phase Conductivity and Cellular Structure on the Heat Transfer Mechanisms of

Cellular Materials : Diverse Case Studies **. Advenced Engineering Materials,

11(10):818–824, 2009.

[112] R. Coquard, M. Loretz, and D. Baillis. Conductive Heat Transfer in Metal-

lic/Ceramic Open-Cell Foams. Advanced Engineering Materials, 10(4):323–337,

April 2008.

[113] A Bhattacharya. Thermophysical properties of high porosity metal foams. Inter-

national Journal of Heat and Mass Transfer, 45(5):1017–1031, February 2002.

[114] J W Paek, B H Kang, S Y Kim, and J M Hyun. Effective Thermal Conduc-

tivity and Permeability of Aluminum Foam Materials. International Journal of

Thermophysics, 21(2):453–464, 2000.

[115] S. Mancin, C. Zilio, A. Cavallini, and L. Rossetto. Pressure drop during air flow

in aluminum foams. International Journal of Heat and Mass Transfer, 53(15-

16):3121–3130, July 2010.

[116] P. Du Plessis, A. Montillet, and J. Legrand. Pressure drop prediction for

flow through high porosity metallic foams. Chemical Engineering Science,

49(21):3545–3553, 1994.



228 BIBLIOGRAPHY

[117] J Despois and A Mortensen. Permeability of open-pore microcellular materials.

Acta Materialia, 53(5):1381–1388, March 2005.

[118] J G. Fourie and J P. Du Plessis. Pressure drop modelling in cellular metallic

foams. Chemical Engineering Science, 57(14):2781–2789, July 2002.

[119] J. Ahmed, C. Pham-huu, and D. Edouard. A predictive model based on tortuosity

for pressure drop estimation in slim and fat foams. Chemical Engineering

Science, 66(20):4771–4779, 2011.

[120] W. Xu, H. Zhang, Z. Yang, and J. Zhang. Numerical investigation on the flow

characteristics and permeability of three-dimensional reticulated foam materials.

Chemical Engineering Journal, 140(1-3):562–569, July 2008.

[121] M.S. Phanikumar and R.L. Mahajan. Non-Darcy natural convection in high

porosity metal foams. International Journal of Heat and Mass Transfer,

45(18):3781–3793, August 2002.

[122] C.Y. Zhao, T.J. Lu, H.P. Hodson, and J.D. Jackson. The temperature depen-

dence of effective thermal conductivity of open-celled steel alloy foams. Materials

Science and Engineering: A, 367(1-2):123–131, February 2004.

[123] C.Y. Zhao, T.J. Lu, and H.P. Hodson. Natural convection in metal foams with

open cells. International Journal of Heat and Mass Transfer, 48(12):2452–2463,

June 2005.

[124] G. Hetsroni, M. Gurevich, and R. Rozenblit. Natural convection in metal foam

strips with internal heat generation. Experimental Thermal and Fluid Science,

32(8):1740–1747, September 2008.

[125] S. Mancin, C. Zilio, A. Cavallini, and L. Rossetto. Heat transfer during air flow

in aluminum foams. International Journal of Heat and Mass Transfer, 53(21-

22):4976–4984, October 2010.



BIBLIOGRAPHY 229

[126] S. Mancin, C. Zilio, A. Diani, and L. Rossetto. Experimental air heat transfer and

pressure drop through copper foams. Experimental Thermal and Fluid Science,

36:224–232, January 2012.

[127] M.K. Chyu, Y. Hsing, V. Natarajan, J.S. Chiou, Effects of perpen- dicular flow

entry on convective heat/mass transfer from pin-fin arrays. Heat Transfer Trans-

actions of the ASME, 121:668–664, 1999.

[128] J. Hwang and C. Lui. Detailed heat transfer characteristic comparison in straight

and 90-deg turned trapezoidal ducts with pin-fin arrays. International Journal

of Heat and Mass Transfer, 42:4005–4016, 1999.

[129] S. Tzeng and T. Jeng. Convective heat transfer in porous channels with 90-deg

turned flow. International Journal of Heat and Mass Transfer, 49(7-8):1452–1461,

April 2006.

[130] W Lu, C Zhao, and S Tassou. Thermal analysis on metal-foam filled heat ex-

changers. Part I: Metal-foam filled pipes. International Journal of Heat and Mass

Transfer, 49(15-16):2751–2761, July 2006.

[131] C Zhao, W Lu, and S Tassou. Thermal analysis on metal-foam filled heat ex-

changers. Part II: Tube heat exchangers. International Journal of Heat and Mass

Transfer, 49(15-16):2762–2770, July 2006.

[132] C. TJoen, P. De Jaeger, H. Huisseune, S. Van Herzeele, N. Vorst, and M. De

Paepe. Thermo-hydraulic study of a single row heat exchanger consisting of metal

foam covered round tubes. International Journal of Heat and Mass Transfer,

53(15-16):3262–3274, July 2010.

[133] L. W. Jin K. C. Leong. Heat transfer of oscillating and steady flows in a chan-

nel filled with porous media. International Journal of Heat and Mass Transfer,

31(03):63–72, 2004.



230 BIBLIOGRAPHY

[134] T. Lu, H. Stone, and M. Ashby. Heat transfer in open-cell metal foams. Acta

Materialia, 46(10):3619–3635, June 1998.

[135] I Ghosh. Heat transfer correlation for high-porosity open-cell foam. International

Journal of Heat and Mass Transfer, 52(5-6):1488–1494, February 2009.

[136] M. Bai and J. Chung. Analytical and numerical prediction of heat transfer and

pressure drop in open-cell metal foams. International Journal of Thermal Sci-

ences, 50(6):869–880, June 2011.

[137] K. Vafai and C.L. Tien. Boundary and inertia efects on flow and heat transfer

in porous media. International Journal of Heat and Mass Transfer, 24:195–203,

1981.

[138] R. Wirtz. A Semi-Empirical Model for Porous Media Heat Exchanger Design.

Proceedings, American society of Mechanical Engineering National Heat Transfer

, Conference, Baltimore, MD, pages 1–8.

[139] P. Jiang and Z. Ren. Numerical investigation of forced convection heat transfer

in porous media using a thermal non-equilibrium model. International Journal

of Heat and Fluid Flow, 22(1):102–110, February 2001.

[140] A.V. Kuznetsov. Investigation of the effect of transverse thermal dispersion on

forced convection in porous media. Acta Mechanica, 43:35–43, 2000.

[141] S. Annapragada, J. Murthy, and S. Garimella. Permeability and Thermal Trans-

port in Compressed Open-Celled Foams. Numerical Heat Transfer, Part B: Fun-

damentals, 54(1):1–22, June 2008.

[142] M. Wang and N. Pan. Modeling and prediction of the effective thermal conduc-

tivity of random open-cell porous foams. International Journal of Heat and Mass

Transfer, 51(5-6):1325–1331, March 2008.



BIBLIOGRAPHY 231

[143] L. Giani, G. Groppi, and E. Tronconi. Mass-Transfer Characterization of Metallic

Foams as Supports for Structured Catalysts. Industrial & Engineering Chemistry

Research, 44(14):4993–5002, July 2005.

[144] L. Ma, Z. Song, and D. He. Cellular structure controllable aluminium foams

produced by high pressure infiltration process. Scripta Materialia, 41(7):785–

789, August 1999.

[145] Q. Fabrizio, A. Boschetto, L. Rovatti, and L. Santo. Replication casting of open-

cell AlSi7Mg0.3 foams. Materials Letters, 65(17-18):2558–2561, September 2011.

[146] URL: //www.saltinstitute.org.

[147] Rogers and Mayhew. Applications to Particular Fluids. In Longman, editor, En-

gineering Thermodynamics Work and Heat Transfer, chapter 9, page 165. Bath,

second edition, 1967.

[148] L. F. Mondolfo. Aluminum-Silicon system. In Alliminum Alloys: Structure and

properties, chapter 2, pages 368–376. Butterworth & Co, first edition, 1979.

[149] B. Gabriel. Energy-Dispersive Spectroscopy. In Carnes Publication Services,

editor, Sem: A User’s Manual for Materials Science, chapter 3, pages 53–74.

1985.

[150] K. Heinrich. Qualitative Analysis. In Litton Educational, editor, Electron Beam

X-Ray Microanalysis, chapter 7, pages 187–200. Van Nostrand Reinhold, 1 edi-

tion, 1981.

[151] URL: //www.macor.info.

[152] J.P. Holman. Stady-State Conduction-One Dimension. In Heat Transfer, chap-

ter 2, pages 25–55. McGrawHill, London, ninth edition, 2002.

[153] C. Steven and P. Sommer. Understanding Electrical Discharge Machining. In

The complete EDM Handbook, pages 19–26. 2005.



232 BIBLIOGRAPHY

[154] URL: www.electrolube.com.

[155] J. R. Taylor. Propagation of Uncertainties. In Ann McGuire, editor, An Intro-

duction to Error Analysis, chapter 3, pages 45–79. Second edition, 1997.

[156] K Boomsma. On the effective thermal conductivity of a three-dimensionally

structured fluid-saturated metal foam. International Journal of Heat and Mass

Transfer, 44(4):827–836, February 2001.
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Appendix

The experimental heat transfer calculations were compared against a simplified scheme

developed by Mancin et al [125] for overall foam-finned surface efficiency and the heat

transfer coefficient calculations. The heat transfer coefficient can be calculated with

the following equations:

hcCALC = α · a ·H ·
(

1 + Ω · a ·H
1 + a ·H

)
(11.1)

with

Ω =
tanh (m · L)

m · L
(11.2)

and

m =

(
4α

λf t

)0.5

(11.3)

For all the foams except the 5 PPI one:

α =
λair
df
· 0.02 ·Re0.9Pr0.33

air (11.4)

and for the 5 PPI foam:
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α =
λair
df
· 0.058 ·Re0.75Pr0.33

air (11.5)

Where

Re =
df ·G
µair · ε

(11.6)

and is referred to the fiber thickness t while L, equivalent fin length, was calculated as,

L = 6.6 ·H · PPI0.99 · (0.0254− t · PPI) (11.7)

where df is the strut diameter that has been taken equal to fiber thickness t in the

calculation.

Nomenclature

a heat transfer area per unit volume (m−1)

df strut diameter (m)

G air mass velocity = ṁair /S (kgm−2s−1)

H specimen height (m)

hcCALC heat transfer coefficient defined by Eq. 11.1

l fiber length (m)

PPI number of pores per linear inches (pores in−1)

Prair air Prandtl number (−)

Re Reynolds number (−)

S cross-section of the empty channel (m2)
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t fiber thickness (m)

α interstitial heat transfer coefficient defined by equations 11.4 and 11.5 (Wm−2K−1)

ε porosity (−)

µair air dynamic viscosity (Pa s)

λair thermal conductivity of the air (Wm−1K−1)

λf thermal conductivity of the meta (Wm−1K−1)

Ω foam efficiency (−)
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