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Abstract

This thesis addresses problems in dissimilarity (proximity) learning, particularly focusing

on identifying the sources and rectifying the non-Euclidean dissimilarity in pattern recog-

nition. We aim to develop a framework for analyzing the non-Euclidean dissimilarity by

combining the methods from differential geometry and manifold learning theory. The

algorithms are applied to objects represented by the dissimilarity measures.

In Chapter 3 we describe how to reveal the origins of the non-Euclidean behaviors

of the dissimilarity matrix for the purpose of rectifying the dissimilarities. We com-

mence by developing a new measure which gauges the extent to which individual data

give rises to departures from metricity in a set of dissimilarity data. This allows us to as-

sess whether the non-Euclidean artifacts in a dataset can be attributed to individual objects

or are distributed uniformly. The second novel contribution of Chapter 3 is to provide sim-

ple empirical tests that can be used to determine the sources of the negative dissimilarity

eigenvalues. We consider three sources of the negative dissimilarity eigenvalues, namely

a) that the data resides on a manifold, b) that the objects may be extended and c) that there

is Gaussian noise. We experiment with the algorithms on a set of public dissimilarities

used in various applications available from the EU SIMBAD project.

In Chapter 4, we propose a framework for rectifying the dissimilarities using Ricci

flow on the manifolds so that the non-Euclidean artifacts are eliminated, as the second

main contribution of this thesis. We consider the objects of interest to be represented by

points on a manifold consisting of local patches with constant curvatures, and the given

dissimilarities to be the geodesic distances on the manifold between these points. In dif-

ferential geometry, Ricci flow changes the metric of a Riemannian manifold according to

the curvature of the manifold. We seek to flatten the curved manifold so that a corrected

set of Euclidean distances are obtained. We achieve this by deforming the manifold using



Ricci flow. In the first technique, we consider each edge as a local patch and apply Ricci

flow independently to flatten each patch. In this way, the local structure of the manifold

is ignored, as Ricci flow is applied independently on each edge. To overcome this prob-

lem, we propose a second technique, where add a curvature regularization process before

evolving the manifold. Specifically we use the heat kernel to smooth out the curvatures

on the edges. The results show both improved numerical stability and lower classification

error in the embedded space.

To reduce the reliance on the piecewise embedding and its effects on individual edges,

we extend the previous two techniques and develop a third means of correcting non-

Euclidean dissimilarity data as the first contribution of Chapter 5. This is done by using

a tangent space reprojection to inflate the local hyperspherical patches and align the local

patches with the shortest edge-connected path. These three Ricci-flow-based techniques

proposed through this thesis are investigated as a means of correcting the dissimilarities

so that the the non-Euclidean artefacts are eliminated. We experiment on two datasets

represented by dissimilarities, namely the CoilYork and the Chickenpieces datasets.

In the framework for correcting the non-Euclidean dissimilarities using the Ricci flow

process, estimating the curvatures of the embedded manifold is an important component

prior deforming the manifold. The second contribution of Chapter 5 is the investigation

of the effects of the piecewise embedding methods (the kernel embedding and the Isomap

embedding) on the curvatures computation and the introduction of a new way of com-

puting the curvatures from a set of dissimilarities. We consider each local patch on a

hypersphere, and deduce the enclosed volume of the points in terms of the curvature. We

estimate the curvature by fitting the volume. We illustrate the utility of this method for

estimating curvatures on the artificial dataset (2-sphere dataset).
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Chapter 1

Introduction

1.1 The Problems

Every day we performs many patten recognition tasks, like recognising a face, identify-

ing a friend’s voice and reading characters on a newspaper. Pattern recognition is used

to put raw objects to categories by looking for similar (or dissimilar) characteristics (pat-

terns) [26, 5]. The two main data types of representation used in pattern recognition are

vectorial data and pairwise dissimilarity (similarity) data. Vectorial data is feature based

and has geometric meaning in which an object is viewed as a point in a Euclidean space

[79, 26, 5]. Traditional machine learning methods are feature-based. Within the last fifty

years, many powerful traditional pattern recognition techniques have been developed such

as neural networks and support network machines. However, the vectorial representation

limits the applicability of these feature-based methods. In many pattern recognition ap-

plications, it is difficult or impossible to extract efficient features [4], when objects have

high dimensionality or structural properties or categorical features. Shapes, graphs, bags

of words and survey results from psychology judgement are examples of such data. In

these cases, it is often possible to define a dissimilarity measure (proximity) of objects

for classification, in the same way that people are often able to tell the difference for two

1



objects without being able to specify meaningful features. Moreover, these relational data

are usually abstracted by graphs because graphs provide a powerful and natural way for

capturing the relationship between objects that are not characterised by ordinal measure-

ments or feature vectors [96, 102]. This reduces the notion of the dissimilarity of objects

to the distances of graphs. This leads to the shift from feature-based classification to the

dissimilarity (similarity)-based classification for solving pattern recognition problems.

The dissimilarity data describes the properties of objects in terms of their differences.

It is relation based and thus more general than vectorial representation. However unlike

the vectorial data, it is less developed, and limited numbers of practical classifiers have

been developed for the dissimilarity data like the nearest neighbor classifier and indefinite

kernel methods [47, 87]. From the dissimilarity data, we only know the distance mea-

sures of certain properties, and from these distance measures we are able to to build an

isometric embedding of vectors so that the distance between vectors is the same as the

given pairwise dissimilarity [43, 83]. However in many applications, the distance mea-

sures violate the restrictive conditions Euclidean space, and these distance measures are

commonly used in computer vision and pattern recognition for their good performance

which are derived from robust matching [8, 25, 93, 84]. Thus the dissimilarity data can

not be transformed into a vector space by embedding without distortion. Such distances

are non-Euclidean. The missing geometric meaning hinders the use of numerous powerful

machine learning techniques such as Support Vector Machines and Neural Networks.

Although many researchers are aware of the importance of the dissimilarity-based ap-

proaches [114, 44, 60, 81, 40, 27, 31, 9, 80, 108, 41, 72, 83, 12], there is no systematic

study of purely dissimilarity-based pattern analysis and recognition methods. The SIM-

BAD project named ”Beyond Features: Similarity-Based Pattern Analysis and Recogni-

tion” aims to analyse new concepts and propose approaches to deal with the challeng-

ing problems specific to dissimilarity-based representation, and present a comprehensive

study of dissimilarity-based approaches for non-metric dissimilarities from the theoretical

2



and applicative perspective. Specifically, the SIMBAD project focuses on deriving suit-

able dissimilarities from non-vectorial data and learning and classification for non-metric

dissimilarities. Considering the learning and classification for non-metric dissimilarities,

there are two different approaches: a)The first approach aims to find a vectorial represen-

tation from the dissimilarity data by performing some rectifications on the data . b) The

second approach aims to develop new algorithms tailored for dissimilarity data without

direct corrections. As part of the SIMBAD project, this thesis undertakes the research

of dissimilarity-based recognition under the first approach and the goal in the technical

annex is defined as:

“The basic assumption underlying the work within this workpackage is that similarity

data is given, possibly in the form of a weighted graph, and we aim at developing algo-

rithms for transforming them into instance-specific vectorial representations (embedding)

that are suitable for traditional geometric learning algorithms.” [82]

To learn the non-Euclidean dissimilarity data, the distance is usually transformed into

a vectorial form by embedding, before the statistical learning techniques are applied on

the data represented as feature vectors. The common embedding techniques for non-

Euclidean pairwise data introduce various assumptions about the information and repre-

sentation. One main assumption is that the Euclidean violations are an artifact of noise

and do not carry valuable information about the dataset. Several authors have shown that

the Euclidean violations can be beneficial to the classification results [85, 86, 72, 71].

Thus it is advisable to analyse the causes of the non-Euclidean violations before using

embedding techniques to rectify the pairwise data. We will also explore how to perform

suitable Euclidean corrections of non-Euclidean data so that the new Euclidean distances

contains useful information hidden in the initial non-Euclidean violations. It is strongly

linked to the differential geometry and manifold learning. This is achieved by considering

non-Euclidean data to be represented as points on a curved manifold, modeling a mani-

fold consisting of a set of local patches with individual constant sectional curvatures and
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evolving the local patches using Ricci flow to remove the curvature from the manifold.

1.2 Our Goals

The ultimate goal of this thesis is to use negative spectrum of the associated Gram matrix

from a dissimilarity data for detecting possible sources of the non-Euclidean dissimilar-

ity data in pattern recognition, and to use ideas from differential geometry and manifold

learning to develop new embedding methods that can be used to analyse object and learn

object class categories. Moreover, we explore different routes of embedding to preserve

useful information for classification results which are usually ignored by the current em-

bedding methods in the literature. To this end, we focus on:

• Identification of causes for non-Euclidean data: We find three measures to identify

the possible causes of non-Euclidean violations. This is achieved by modeling the

non-Euclidean pairwise data from the three cases: a simple manifold, extended

objects and Gaussian noise. Then three measures are derived from observing the

non-metricity and the shape of the spectrum of the negative eigenvalues of the Gram

matrix.

• Piecewise Ricci flow embedding and regularised Ricci flow embedding: Here we

consider each pair of points as an individual local patch with constant curvature, and

the corresponding pairwise distance as the geodesic distances of the two points. We

use two distance-preserving Euclidean embeddings of points (Isomap and the kernel

embedding) and use the relationship between the geodesic distance on the manifold

and the Euclidean distance in the embedded space to compute the curvature. We

gradually move the curvatures of the local patches towards zero by performing the

Ricci flow process. Finally we obtain a more Euclidean dissimilarity. In addition

to the above method, we also explore the heat kernel diffusion to regularize the
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curvature and and obtain corrected data which preserve the local structure and give

better classification performance.

• Tangent space reprojection: We explore whether tangent space representation and

manifold embedding (the spherical embedding) can be combined with the Ricci

flow to remove the dependence on the piecewise Euclidean embedding methods

and their effects on individual edges. Here we consider a second order of k-NN

graph as a local patch, consisting of the first and second neighbours of the reference

object. The idea is to estimate the curvature by using the spherical embedding and

gradually flatten the local patches with Ricci flow.

1.3 Thesis Layout

Having described the overall goals of the thesis, we proceed to give a brief introduction

to the structure of the thesis. Chapter 2 reviews the literature of dissimilarity learning,

looking particularly at the informativeness of non-Euclidean dissimilarities and the ap-

proaches to rectify non-Euclidean violations.

In Chapter 3, we present how three measures from the non-metricity and the negative

eigenvalue spectrum can be used for characterising sources of non-Euclidean dissimilar-

ity and to perform source detection to find suitable embedding methods for correcting

the non-Euclidean violations. We will introduce a new measure to gauge the contribution

of an individual data point to non-Euclidean violations. In addition to this, we will ex-

plore three measures extracted from the modeled sources and apply them on real world

dissimilarity databases to investigate the sources of non-Euclidean artefacts.

In Chapter 4, piecewise Ricci flow embedding and regularised piecewise Ricci flow

embedding are explored and applied on two public dissimilarity datasets. We use the

embedding methods to map the non-Euclidean dissimilarity to Euclidean space. Once

embedded in the Eucldiean space, we explore whether our embedded methods preserve
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the useful information contained in the original non-Euclidean violations by comparing

our classification results with those obtained using original non-Euclidean dissimilarities

and some alternative non-Euclidean distance rectification methods.

In Chapter 5, to further extend the two techniques in the previous Chapter, we combine

the tangent space representation, the Ricci flow and the spherical embedding to develop a

third method for rectifying non-Euclidean dissimilarity. To complement the framework of

Ricci flow, we also explore the curvature of the embedded manifold of dissimilarities, an

intrinsic geometric property of the embedded manifold and also an important component

in our Ricci flow embedding framework. We commence this by applying the curvature

estimation used in the piecewise Ricci flow on a 2D sphere dataset. It is observed that the

Euclidean distances produced from the kernel embedding and Isomap embedding are not

exactly the same as the initial configuration of Euclidean distance. This leads to distorted

group structure of data from incorrect curvature estimation. Hence, we explore a method

for computing curvature of the embedded manifold from dissimilarities, to remove the

dependence on embedding techniques for the curvature estimation. We achieve this by

curve fitting the volume of the manifold and the curvature of the manifold with the least-

square method

Finally chapter 6 summarises the contribution of the thesis and identifies the limi-

tations of the methods and areas for further work. The main findings of this thesis are

that:

• The three measures for analysing and identifying the sources of negative dissimi-

larity eigenvalues are useful features for artificial dissimilarity data. They suggest

possible sources for real dissimilarity data but not give complete conclusion in real

dissimilarity data without ground truth.

• Our second contribution in this thesis is the introduction of a general framework

for the computation of Ricci flow that can find Riemannian metrics (geodesic dis-

tances) by target curvatures. The aim of correcting non-Euclidean dissimilarities is
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to find Euclidean metrics from non-Euclidean dissimilarities. We introduce three

techniques under this framework.

• Piecewise Ricci flow embedding can transform the non-Euclidean dissimilarity into

Euclidean space but with some loss of discriminating power.

• In addition to eliminating the non-Euclidean artefacts of dissimilarity data, the reg-

ularised piecewise manifold embedding improves the classification performance by

preserving the local structure in the data and the nearest neighbour relations remain

constant or are improved.

• The tangent space reprojection can rectify the non-Euclidean dissimilarities to some

extent because the edge-based approximation is not accurate for the distances be-

tween points on different patches and leads to more curved manifold after some

iterations.

• The Euclidean embedding methods, the Isomap and kernel embedding, do not pre-

serve exactly the local non-Euclidean distances. Thus the curvature estimation

based on those is not accurate. We explore how to estimate the curvature from

the volume but this method works well only on data with uniform distribution and

high density. Given only a set of dissimilarity data, curvature estimation is very

difficult.
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Chapter 2

Literature Review

2.1 Introduction

A typical strategy for classifying dissimilarity-based data is to consider the given sim-

ilarities as inner products in a Hilbert space or consider dissimilarities as distances in

a Euclidean space [12]. The former leads to the use of kernel methods by altering the

similarities and the latter leads to the use of embedding techniques for embedding dis-

similarity data into vector space. We give a brief review of kernel methods, embedding

procedures and pairwise clustering, which are the three major research activities involved

in dissimilarity-based recognition.

Since our aim in this thesis is to develop embedding methods for correcting non-

Euclidean artefacts by combining manifold learning and differential geometry, we focus

on embedding methods. In this chapter, we start with the properties of dissimilarities,

the distance measures and their applications in computer vision and pattern recognition in

Section 2.3. We review the kernel methods in Section 2.4. This is followed in Section 2.5

by a survey of the state-of-art in embedding methods for two different objectives: a) The

first category of embedding methods aims to find a low dimensionality for visualization;

b) The second category aims to correct the non-Euclidean effects of the dissimilarity data.
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Finally we review the pairwise clustering in Section 2.6.

Note: Many dissimilarity and similarity functions can be easily converted and substi-

tuted, hence we use the two terms interchangeably in this thesis.

2.2 Dissimilarity Representation

For dis(-similarity) data, an object is defined by its relationship to all other objects. The

relationship is represented as the dissimilarity or similarity between each pair of objects.

It can be viewed as a function defined on pair of objects. Each object is described by a

vector of some continuous non-negative symmetric measure between the object and the

rest.

dij ∈ R+

for all i = 1, 2, · · · , j = 1, 2, · · ·

sij ∈ R+

for all i = 1, 2, · · · , j = 1, 2, · · · where dij is a dissimilarity function, sij is a similarity

function. Generally there is no requirements for a dissimilarity or a similarity. Consider-

ing the semantics of distances, a dissimilarity is usually assumed to be positive dij ≥ 0

and dii = 0. In the context of embedding which produces a representation in terms of

distances, a similarity matrix can be interpreted as inner product matric (covariance ma-

trix) in vector space, which is required to be positive positive semi-definite, otherwise a

pseudo-covariance matrix.

A dissimilarity (distance) is metric [90] when it satisfy following four properties:

1. non-negative, i.e. dij ≥ 0 if object i is different from object j.

2. identity and uniqueness, i.e. dij = 0 if and only if the object i and j are identical.

3. symmetry, i.e. dij = dji, the distance from i to j is the same as the distance from j
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to i.

4. triangle inequality, i.e. dij ≤ dik+djk for every k, the distance from i to j is always

less to the sum of the distance from i to k and the distance from j to k.

As an inner product in vector space, a similarity must satisfy the following properties

[90]:

1. non-negative, i.e. sij ≥ 0 if object i is different from object j and sii = 0 only if

object i is the origin.

2. symmetry, i.e. sij = sji, the similarity between i and j is the same as the similarity

from j to i.

The thesis focus on the dissimilarity or similarity matrices. Similarity and dissimi-

larity can be transformed into each other via some function such as D = 1 − S, dij =

−log(sij), dij = 1
sij

. We assume our pairwise data is given as dissimilarities.

Most dissimilarities satisfy the first two properties. The last two constraints are often

violated. Take social science as an example, we can see the fact that personA likes person

B does not mean person B likes person A, which is obvious not symmetric. Another fact

is thatA isB’s friend,B isC’s friend does not meanA isC’s friend. Given a dissimilarity

measure describing the friendship, we assume the lower the dissimilarity, the closer the

friendship, hence dissimilarity measure describing the above friendship does not meet the

triangle inequality.

Dissimilarity is obtained from direct comparison between different objects. There are

many ways to compare two objects, hence there are many different distance measures.

We introduce two standard dissimilarity data representations: matrix and graph.
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FIGURE 2.1: The matrix representation of pairwise dissimilarities on the left side and the
corresponding graph representation on the right side.

In order to illustrate the two representation of pairwise dissimilarities, we consider

a toy dataset given by 4 × 4 dissimilarities between four objects A through D in Figure

2.1. The left column gives a matrix representation of the pairwise data. The matrix

structure stores a set of dissimilarities that are available for all pair of objects. It is square,

and maybe symmetric. Each element d(i, j) is the measured difference between object

i and j, i.e. a distance measure. In general, the distance value is non-negative number.

This value is zero in the case of the dissimilarity between an object and itself, hence

the diagonal elements are usually zero. This value is small or close to zero when the

pairwise objects are highly similar or close to each other and increase as the pairwise

objects differ. This representation is natural and straightforward as the matrix reveals all

the pairwise relations.

The right column of Figure 2.1 gives a weighted graph representation of the pair-

wise data. A weighted graph contains a set of vertices and a set of weighted edges be-

tween them. In a weighted graph, each edge has an associated numerical value, called

edge weight. Usually, edge weights are non-negative. For pairwise data, the data objects

are given by vertices and their corresponding dissimilarities are given by the weights of

edges. In the case of symmetric distances, the graph is undirected. If all pairwise dissim-

ilarities are known, the graph is fully connected. In our example, the vertices represent
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the objects A to D, the weighted edges represent the dissimilarities. Please note that the

vertices in our example can be embedded in three-dimensional Euclidean space but not

two-dimensional space without loss. Generally the vertices in graph representation do not

correspond to points embedded in a two dimensional space.

Given the matrix representation of a pairwise dataset, its related graph structure can

be obtained and vice versa.

In this thesis we discuss dissimilarity data given as a n × n dissimilarity matrix

D(R,R), where R is the set of n objects. Each element is a dissimilarity, measuring

the difference between two objects. Usually dissimilarity is a function of observed ob-

jects based on some measurements. The dissimilarity measure is small for similar objects.

Since many traditional geometric learning techniques work in metric or Euclidean space,

it is necessary to review the definition of metric dissimilarity matrix and Euclidean dis-

similarity matrix.

A distance matrix is said to be metric if its element dij satisfies the metric properties.

When a dissimilarity matrix is obtained by transform from a similarity matrix via some

decreasing function such as D = 1−S, Being positive can be violated. Similar improper

transformation can lead to the violation of identity and uniqueness so that there exist zero

elements on the off-diagonal of the dissimilarity matrix or non-zero elements on the di-

agonal of the dissimilarity matrix. The violations can also be intrinsic from psychology.

Symmetry can be violated via some asymmetic distance function and an asymmetric dis-

similarity matrix are usually made symmetric by averaging. Triangle inequality is often

violated.

In addition to the metric properties of a dissimilarity, being Euclidean is another im-

portant properties in embedding methods and machine learning. A dissimilarity matrix is

said to be Euclidean if there exists vectors in n-dimensional Euclidean space xi, xj ∈ Rn

such that distance is faithfully preserved. That is, the pairwise input distance is equiva-

lent to the Euclidean norm of pairwise vectors dij = ‖xi − xj‖2, where ‖ ‖2 denotes the
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Euclidean norm [71, 42].

A Euclidean space provides a connection between the traditional inner product and

Euclidean distances, as it is both metric and inner product space. Hence it is possible to

embed isometrically any Euclidean distance matrix into a finite Euclidean space. Most of

the traditional machine learning techniques assumes objects exist in a Euclidean space.

Each object is a vector of coordinates relative to the features. This is vectorial data,

which is represented by a matrix X ∈ Rp×N where p is the dimension of features,N is

the number of sample in the dataset the ith column represents object xi. The problem is

how to transform the general pairwise data to vectorial data so that more data analysis

tools can apply on the given data. We start with exploring the relation between vectors

in Euclidean space and Euclidean dissimilarity matrix. Based on the definitions of the

Euclidean distance and the inner product, given n vectors x1, x2, · · · , xn in Euclidean

space,

d2(xi,xj) = 〈xi − xj, xi − xj〉

= 〈xi, xi〉+ 〈xj, xj〉 − 2〈xi, xj〉

= d2(xi, 0) + d2(xj, 0)− 2〈xi, xj〉 (2.1)

hence the inner product 〈xi, xj〉 is

〈xi, xj〉 = −1

2
[d2(xi, xj)− d2(xi, 0)− d2(xj, 0)] (2.2)

Let us move the origin 0 to the mean vector, the new vector yi = xi − x̄, ȳ = 0,

d2(yi,0) = d2(yi − ȳ), where x̄ the mean of the configuration, the inner product in

Equation 2.2 is:

〈yi, yj〉 = −1

2
[d2(yi, yj)−

1

n

n∑
k=1

d2(yi − yk)−
1

n

n∑
k=1

d2(yj − yk) +
1

n

n∑
k=1

∑
p=1

d2(yk, yp)](2.3)
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The matrix whose elements are the above inner products are called centralized Gram ma-

trix gij = 〈yi, yj〉, G = Y Y T . Let D2 be the element-wise squared Euclidean distances,

the Gram matrix can also be expressed as G = −1
2
JD2J where J = I − 1

N
11T . Thus

given Euclidean dissimilarity matrix D, the vectorial representation Y can be determined

by the eigendecomposition of the Gram matrix:

Y = Λ1/2Φ

where G = ΦΛΦT = Y Y T ,Λ is a diagonal matrix whose diagonal consists of nonneg-

ative eigenvalues and φ is an orthogonal matrix of the corresponding eigenvectors. The

Gram matrix is very important in this factorization. It is because the Gram matrix of a

Euclidean distance matrix is positive semidefinite (that is, its factorized eigenvalues are

non-negative), the vector configuration Y can be obtained such that the distances between

vectors are exactly equal to the original distances in the distance matrix d(yi, yj) = dij

[42].

Please note any distance can be interpreted as a dissimilarity. A dissimilarity ma-

trix is metric if it satisfied certain conditions described earlier. A dissimilarity matrix is

Euclidean if it can be embedded into a Euclidean space without distance distortion. A

non-Euclidean dissimilarity is not necessarily non-metric. A metric dissimilarity is not

necessarily non-Euclidean. A non-Euclidean dissimilarity is non-metric.

2.3 Distance Measures

Dissimilarity plays an important role in pattern recognition, due to its ability to capture the

relational and structural information in objects. Research in data in terms of dissimilarity

in pattern recognition is critical for two reasons. Firstly, it can be used as a complement

to the vectorial feature-based recognition. Secondly, it can be a natural bridge between

structural and statistical pattern recognition [87]. More and more dissimilarity data are
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generated from various applications, in the meantime distance measures from structured

data like graph and tree are very popular in pattern recognition. Euclidean distance is

the most commonly used distance due to is simplicity, but Jacobs et al [60, 25] show

dissimilarity measure is often non-metric when derived from graph matching for shapes

and image objects.

One of the earliest graph distances is edit distance introduced by Sanfeliu and Fu [96].

The edit distance is defined as the minimum over all the costs of sequences of edit oper-

ations that will make the two graphs isomorphic with each other, given a set of basic edit

operations on nodes and edges of a structure and the costs of corresponding edit opera-

tions. It provides a very effective way of measuring the similarity of relational structures.

However, computing edit distance is NP-hard [113]. Hence various methods are proposed

to approximate the edit distance and most of the approximated distance measure are non-

metric. The other important approach on distance measure is based on the maximum

common subgraph introduced by Bunke and Shearer and the resulting distance is non-

metric[7]. It shows that the graph edit distance computation is equivalent to the maximum

common subgraph problem. Many distance measures are its variants. Wallis [119] de-

fines a distance measure based on the size of the minimum common supergraph. Hidovic

and Pelillo [53] develops Bunke and Shear’s distance measure on attributed graphs from

the original undistributed graphs. Torsello et al [113] finds four metric but non-Euclidean

tree distances based on the maximum common subtree.

Another important class of distance measures is distance between point sets. The

well-known example is the general Hausdorff distance (HD) introduced by Huttenlocher,

Klanderman and Rucklidge [68] to deal with outliers and occlusions [68]. It measures the

degree of mismatch between two sets. As a result, it allows a portion of one image to be

compared with another and saves the computing-costly process of finding correspondence

between objects and is consequently, robust to noise. It has become a standard measure for

comparing shapes and images [57, 106, 95, 62], although it is metric but non-Euclidean.
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Dubuisson and Jain propose a modified Hausdorff distance (MHD) and show that the

modified Hausdorff distance has more discriminatory power than the general Hausdorff,

although the modified Hausdorff is non-metric [25].

2.4 Kernel Methods

Kernel methods, such as Gaussian processes [77], support vector machines (SVM) [10]

and kernel PCA [78] have attracted much interest due to their computational efficiency

and generalization performance for various application problems. These methods implic-

itly map data to a usually much higher dimensional, feature space where the inherent

structure of the data is better captured. The common idea is to interpret the similarities

between data points as the inner product in a Hilbert space (or some feature space) and

apply any classification algorithm that only depends on inner-products.

Standard kernel methods treat the data points in a Euclidean space and choose proper

kernel functions which are positive semidefinite (psd) [100]. In contrast, another class of

kernel methods fit a probability distribution to data points after predicting the likelihood

under different models. These kernel methods are called generative kernels, because these

methods integrate the generative models into kernels. Existing generative kernels include

the Fisher kernel [59], the Jensen-Shannor divergence kernel [20] and probability product

kernels [61].

The need to handle non-psd (indefinite) similarities led to the development of indef-

inite kernels. One approach is to modify the original algorithm but still use non-psd

similarities as kernels. Lin and Lin [74] alter the sequential minimal optimization (SMO)

[89] and show that the solution converges to the original algorithm, although the solution

is a stationary point instead of a global minimum. Haasdonk extends the traditional SVM

to handle indefinite kernels and shows that his solution is equivalent to minimising the

distance between the reduced convex hull in a pseudo-Euclidean space [46, 48]. Pekaska
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et al. extend a generalized nearest mean classifier, Fisher linear discriminant classifier,

and SVM in both a pesudo-Euclidan space and a similarity space [84, 87]. Another ap-

proach to deal with indefinite kernels is to regularize the kernels to be psd with either

spectrum clip, spectrum flip , or spectrum shift [125, 12, 93, 72, 134].

2.5 Embedding Methods

2.5.1 Multidimensional Scaling Methods

Any method that produces a vectorial representation of the data which is represented as a

set of dissimilarities is called embedding. The embedding procedures aim to preserve the

dissimilarity either locally or globally. Rather than a single procedure, Multidimensional

scaling (MDS) [6] is a family of most popular embedding methods which construct a

configuration of points in a metric space from information about interpoint distances. In

general, there are two types of MDS: metric and non-metric. Metric MDS makes the

assumption that the input data is numeric data, while the non-metric MDS [1] requires

simply that the data be in the form of ranks. Faloutsos and Lin [36] introduce the fast

MDS using a heuristic technique by generating a new dimension recursively at each step.

See [111, 112, 19, 6, 35, 107] for different kinds of MDS.

As all nonlinear distance-preserving embedding methods can be considered as the

extension from the classical MDS, the classical MDS is of particular importance. The

classical MDS finds the low-dimensional representation by minimizing a cost function

called stress which has a form:

StressMDS =
N∑

i,j=1

(sij − 〈yi,yj〉)2 (2.4)

where sij is the similarity (inner product) between ith and jth objects, yi is the vector

for ith object, yj is the vector for jth object determined by MDS. It aims to preserve the
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pairwise inner product by minimizing the differences of inner product from the input data

and the vectorial data. Since the Euclidean distance can be defined by the pairwise inner

product (Gram matrix) from basic vector computation, the classical MDS preserves the

interpoint distance if the input dissimilarity data is Euclidean.

Another embedding method which is closely related to MDS is Principal Component

Analysis (PCA) [55, 66], which takes the coordinates as input data and produces vec-

torial representation in low dimensional space that preserves the variance of data points

as measured in the high dimensional space. Moreover, PCA is equivalent to MDS when

the input dissimilarity in MDS is Euclidean. Both MDS and PCA are spectral methods,

since the core operation of these methods is based on eigenvalue decomposition of either

the covariance matrix (PCA) or the Gram matrix (MDS). MDS and PCA are efficient

techniques that can detect the linear subspace of the input data. However, these methods

fail to detect the nonlinear low-dimensional subspace such as the curved manifold as they

attempt to preserve global structure [110, 11].

2.5.2 Manifold Embedding

More recent approaches try to reduce dimensionality that minimizes the distortion by in-

ferring a low dimensional manifold where data resides. MDS and PCA are suitable when

the low-dimensional manifold is embedded linearly in the ambient space. Recently, a

number of spectral embedding methods motivated by graph theory have been developed

to deal with general non-linear manifolds. They usually approximate the geodesic dis-

tance on the manifold by using graph edge distance. A well-known embedding method

of this type is Isomap [110] which is closely related to the classical MDS. The only dif-

ference between these two methods is the input distances. Isomap uses graph distances

instead of input-space distances as in classical MDS. It uses a neighborhood ball to build a

graph where the graph distance is the shortest edge-connected distance between nodes. In

this case, the short distances are preserved and the large distances are found by hops along
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short distances. The use of graph distance changes the linear classical MDS to a nonlinear

algorithm which has been demonstrated to locate curved manifolds for a number of data

sets.

Related algorithms include locally linear embedding [94], Laplacian eigenmap [3],

Hessian LLE [24], local tangent space alignment (LTSA) [135], maximum variance un-

folding (MVU)[120], and the diffusion map [70]. LLE is also a variant of PCA and

preserves local structure by using linear coefficients to represent a data point by its neigh-

bor points with coefficients and then attempting to preserve coefficients from the higher-

dimensional data space to the low dimensional manifold. LLE consists of two steps:

finding coordinates for data points on each local patch and then deriving the global co-

ordinates with the alignment of local patches by solving an elegant eigenproblem. LTSA

is a modifications of LLE and the only difference of these two methods is local geom-

etry. LTSA uses the local tangent plane as the local patch to be aligned rather than the

neighbourhood ball directly from the input data points. Laplacian eigenmaps also attempt

to preserve certain local geometric structure of the data by building an adjacency weight

matrix from the data points and projecting the data onto the largest eigenvector of the

resulting Laplacian matrix. Hessian LLE finds a low-dimensional configuration of points

by using the estimated Hessian over a neighborhood as the Laplacian matrix. The diffu-

sion map is a variant of the Laplacian eigenmaps and constructs the Laplacian matrix by

using a kernel function. MVU constructs a neighborhood graph as the local geometry and

“unfolds” the local geometry by using the semifdefinite programming instead of learning

the output vectors directly as the LTSA. The use of semidefinite prgramming makes LTSA

preserve local distances and maximize the pairwise distances between any two points that

are not connected in the local neighborhood graph. As stated in [99], all these methods

share a similar structure of establishing a neighborhood graph on the data points and using

eigendecomposition to produce vectorial representation in a low-dimensional space from

the input data in terms of dissimilarity matrix. These methods are known as manifold
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learning.

A systematic comparison and identification of the advantages and shortcomings of

these methods is given in [99, 115]. By associating each of these techniques as an in-

stance of kernel methods, a kernel interpretation is given by Ham et al [49]. Although

they are all variants of the classical methods of PCA and MDS and share a common aim

to capture local structure of the data, they are based on rather different geometric intuition

and intermediate computations. For example, geometrically, LLE and Laplacian eigen-

maps attempt to preserve certain local relationship of the input data, while MVU trys to

preserve the local distances but maximize the total variance of data points. Computation-

ally, Isomap and MVU build a Gram matrix and derive the low-dimensional configuration

with its largest eigenvectors, while LLE, Laplacian eigenmaps and Hessian LLE build a

Laplacian matrix and use its smallest eigenvectors. Moreover, for some data, the intrinsic

dimension can be estimated by a noticeable gap between a few largest eigenvalues and

the rest of the spectra for methods using the Gram matrix, while detecting the intrinsic

dimensionality needs an additional step for the methods using the Laplacian matrix [16].

The target embedding space in manifold learning is Euclidean vector space. This is

plausible if the manifold on which the input data points reside is developable, i.e. can be

flattened onto a plane without distance distortion. In the case of undevelopable manifolds,

the non-Euclidean distances are intrinsically unable to be represented with Euclidean dis-

tances. This limitation motivates an alternative embedding which uses a non-Euclidean,

but metric embedding space [75, 18, 103, 56, 92, 123]. The geodesic distances on a curved

Riemannian manifold is a natural representation for non-Euclidean dissimilarities, as they

are metric but non-Euclidean. The earliest form of such embedding is due to Lindman and

Caelli [75]. They restrict their work to manifolds with constant curvature and have inves-

tigated the elliptic and hyperbolic embedding on psychological data. They have defined

the Euclidean distances in the ambient space in terms of the pairwise geodesic distances

on a manifold with constant curvature and the curvature of the manifold. Cox and Cox

20



[18] extend MDS to find a configuration of data points on a spherical space by optimizing

the stress on geodesic distances. Shavitt and Tankel have studied hyperbolic embeddings

in the context of interpreting internet connectivity [103]. Hubert et al explored unidimen-

sional scaling constrained to circles [56]. Robles-Kelly and Hancock embed the graph

which represents the dissimilarity data in a manifold and deform the graph so that the

data points conform either to elliptic or hyperbolic geometry [92]. Recently Wilson et

al projected data points in terms of non-Euclidean dissimilarity onto a constant curvature

manifold (a hypersphere) by solving an optimization problem for finding the smallest

eigenvalues of the associated Gram matrix from the input data points [123].

Above all, all these nonlinear techniques of manifold learning preserves proximity re-

lations better than the linear ones at increased computational cost. Proximity relations in-

clude local structure and global structure of input data. The ideal embedding maps nearby

input datapoints to nearby output datapoints, and faraway input datapoints to faraway out-

put datapoints. In addition to this, most of these methods do not explicitly consider the

intrinsic structure of the manifold on which the object possibly resides. One extension

of manifold learning is to embed a graph on a manifold. The graph can be characterized

by geometric invariants and be deformed by applying geometric methods like altering

the curvature of the manifold. Various robust invariants including sectional curvature on

edges, Gaussian curvature on faces have been explored in the graph embedding commu-

nity for characterizing graphs and their effectiveness of these geometric invariants are

demonstrated by good clustering results for a number of image data sets [92, 33, 127].

Robles-Kelly and Hancock have explored the link between the edge curvature and the

embedding coordinates of nodes and estimate the curvature of edges using the difference

between geodesic and Euclidean distances. As an extension of the edge curvature, the

Gaussian curvature associated with triangular faces of the graph is computed by applying

the Gauss-Bonnet theorem [34, 33].
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2.5.3 Imposing Geometricity

The emphasis of the above embedding methods is on finding a low-dimensional repre-

sentation. As many traditional learning methods are designed in a Euclidean space, it

is important to check whether a given distance measure has a Euclidean behavior. For

Euclidean distance, an exact distance-preserving configuration in Euclidean space can be

found by embedding. The problem with dissimilarity representations and their embed-

dings is that the distance measures cannot be used to construct a Euclidean vector space if

the underlying Gram matrix contains negative eigenvalues. If this is the case, then the data

can not be embedded into a real-valued Euclidean space without distance distortion, and

must instead be embedded into a complex pseudo-Euclidean space called Krein space [40]

or a postulated Euclidean space called dissimilarity space [84] for preserving distances.

This section starts with these two general dissimilarity representation spaces, and moves

onto embedding approaches as a means for correcting non-Euclidean behaviors.

When the Gram matrix (inner product) has negative eigenvalues then those dimen-

sions of the embedding associated with negative eigenvalues are represented by imagi-

nary numbers, and those associated with positive eigenvalues by real numbers. In other

words, the data are embedded into a pseudo Euclidean space. Introduced by Goldfarb,

a pseudo-Euclidean spaces [47, 87] is an indefinite inner product space which is flexible

enough to allow embedding for any symmetric distance matrix. The pseudo-Euclidean

space R(p,q) is composed of two Euclidean spaces, for which the inner product operation

is positive definite on the first subspace Rp of dimension p and negative definite on the

second one Rq of dimension q. The pseudo-Euclidean space is a Euclidean space when

q = 0. The squared distances in pseudo-Euclidean space are interpreted as the difference

of squared Euclidean distances from the “positive” subspace and the “negative” subspace

d2
R(p,q)(x, y) = d2(xp, yp)−d2(xq, yq), which can be negative. The pseudo-Euclidean space

is completely isometric to the original distances as the distances between the embedded

vectors are equal to the original ones. However, the pseudo-Euclidean space is nonmetric
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and points in the space can have negative distances to each other [123]. As a result, the

traditional geometric learning techniques which are based on Euclidean space are not able

to be used directly on data embedded in this space.

Pekalska and Duin introduce the concept of dissimilarity space, where features are

dissimilarities to a representation set of objects (prototypes) [86]. In the dissimilarity

space, a set of r prototypes R = {x1, x2, · · · , xr} covering all classes is selected from N

objects, and the data is represented as a n × r distance matrix D(T,R). Each object is

described by a vector of some distance measure between the object and all the objects in

the representation set. The dissimilarities to the selected prototypes work like features,

thus any traditional classifier operating on feature-based data can be used. However this

representation may lose information encoded in the original pairwise dissimilarity data.

Unlike vectorial data, learning from the dissimilarity data usually uses either the k-

nearest neighbor classifiers (KNN) or kernel methods [87, 84]. KNN classifier puts a

new object to the category of the nearest representation objects [17]. It is one of the few

data analysis tools which requires only distance information and can be directly used for

general dissimilarity data, either metric, Euclidean, non-metric or non-Euclidean. KNN

generalizes well for dissimilarity data. However, in addition to being sensitive to noise

examples, KNN needs high storage and high computational cost for new objects.

Another typical approach is to correct the distance matrix D so that the corresponding

Gram matrix becomes psd. This correction procedure is equivalent to the kernel reg-

ularization methods for obtaining definite kernels from indefinite kernel when treating

similarities (Gram matrix) as kernels in the kernel methods. The kernel embedding (or

the positive part of the pseudo Euclidean space (PPES))[30] only considers the positive

eigenvalues of the Gram matrix by ignoring the negative eigenvalues. Distances are over-

estimated compared to the original distances. Since the distances are positive, the larger

the magnitude of the negative eigenvalues, the larger the resulting distances differ from the

original ones. The resulting configuration is in the positive p dimension subspace. The
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embedding is reasonable on the basis that the sum of the positive eigenvalues is larger

than the sum in magnitude of the negative ones or the negative eigenvalues result from the

noise and can be disregarded. Hence some important information is possibly lost when

the negative eigenvalues are relatively large. This correction technique is equivalent to

spectrum clipping in the kernel methods.

The kernel embedding neglects the Euclidean violation (the negative eigenvalues of

the Gram matrix), thus the information coded in the negative part of the pseudo Euclidean

space is lost. In order to recover the information coded in the Euclidean violation, the As-

sociated Euclidean space embedding (AES) [85, 29] includes the negative eigenvalues by

using the magnitudes of the eigenvalues. The configuration of data points uses the positive

eigenvalues and the absolute value of the negative eigenvalues. In this way, features hid-

den in the negative eigenvalues are preserved. In a pseudo Euclidean space, the distance

is interpreted as the difference between squared Euclidean distances from the positive and

negative subspace. Here the distance is regarded as the sum of squared Euclidean dis-

tances from the positive and negative subspace. However, the Euclidean distances from

the configuration are usually highly distorted and highly over-estimated compared to the

original distances. It might be reasonable to use this method if the distance measure

is negative or the “negative” subspace contributes much more than the positive ones to

distances and contains very useful information for classification. Otherwise, the config-

uration will obtain very bad results for locally sensitive classifiers as the local ranking

order in the original dissimilarity is destroyed. If all eigenvalues are positive, the associ-

ated Euclidean space embedding obtains the same configuration as the kernel embedding.

This correction technique is equivalent to spectrum flipping in the kernel methods

The constant shift embedding [72, 71] makes the Gram matrix psd by adding a suitable

constant c ≥ −2λmin to the off-diagonal elements of the squared dissimilarity matrix,

where λmin is the minimal eigenvalue of the gram matrix. It is equivalent to adding |λmin|

to the non-zero eigenvalues. Since the square root is monotonically increasing, the object
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with smaller distance in the original dissimilarity matrix is still smaller in the resulting

dissimilarity matrix. Compared kernel embedding and AES, the constant shift embedding

does not change the order of similarities between any two different objects. Laub et

al. [72] have studied the constant shift embedding for pairwise clustering on non-metric

dissimilarity data and show that this method preserves the group structure of data. The

constant shift embedding is distortion-free in terms of the data partition. Compared with

the original distances, the corrected distances are over-estimated. The distortion is large

for non-Euclidean dissimilarity data of which the negative eigenvalue has a big mangitude.

This correction technique is equivalent to the spectrum shift in the kernel methods.

Duin et al. [29] identify many causes of non-Euclidean dissimilarity and conclude the

non-Euclidean dissimilarity is either caused by measurement error, or the distance mea-

sures from the demand in applications are intrinsically non-Euclidean when any pairwise

comparison is in different feature space. It demonstrates the non-Euclideanness of the dis-

similarity data is informative by comparing classification errors of the linear SVM for the

original non-Euclidean dissimilarity data and the resulting Euclidean data from the kernel

embedding. However, the effects of the causes of non-Euclideanness on the correcting

procedures are not explored. Pekalska et al. [30, 85] demonstrate that the discriminat-

ing power of the corrected measure is not as good as the original non-Euclidean distance

measures by testing the above correcting approaches on five dissimilarity data sets with

four classifiers. These research results put the necessity of imposing geometricity into

doubt and emphasizes that the discriminating power of original dissimilarity measures

are more important than the Euclidean property [29, 30, 85]. Hence, how to correct the

dissimilarity such that the new dissimilarity in Euclidean space is not less discriminative

than the non-Euclidean dissimilarity is a problem.
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2.6 Pairwise Clustering

Given datapoints and a pairwise measure of distance between datapoints, pairwise clus-

tering usually represent datasets with distances defined by a weighted undirected graph

whose vertices correspond to datapoints and weights of edges between nearby points cor-

respond to distance. A dissimilarity matrix whose elements correspond to distances be-

tween datapoints is usually built to represent such dataset. Pairwise clustering is to divide

given datapoints in terms of a dissimilarity matrix to disjoint groups (clusters) such that

similar datapoints are grouped together and dissimilar datapoints are in different groups.

It is used to find the hidden structure of a dataset. A huge variety of different algorithms

for clustering has been motivated by combinatorial search techniques, kernel techniques

and spectral graph theory. Combinatorial search techniques-based clustering algorithms

model the clustering problem as an optimization problem that optimize some criterion

function by organizing the data points into certain groups. Herault and Horaud’s figure-

ground discrimination model [52], Hofmann and Buhmann’s deterministic annealing al-

gorithms [54] and Fisherer and Buhamann’s path based approach [38] share this idea.

Since the general dissimilarities can be nonmetric or non-Euclidean, a loss-free em-

bedding into a vector space is not possible. Most of the clustering algorithms are based on

the Euclidean distances, hence unable to deal with non-Euclidean dissimilarity. The well-

known k-means clustering which uses k prototype vectors is one of these techniques.

Kernel-based clustering methods are developed to solve this limitation by transforming

nonlinearly separable structure in the data into a higher-dimensional feature space where

it is possible to sperate the data linearly. Well-known manifestations of this idea in-

clude kernel k-means [101, 13], NMF [130], kernel SOM [58] and kernel neural gas [91].

Kernel-based methods have many advantages [129]. For instance, it is more easily pos-

sible to obtain a linearly separable hyperplane in the high-dimensional or even infinite

feature space. They are robust to noise and outliers. However, the computational com-

plexity is high for large datasets.
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Recently, spectral clustering methods have been very popular [2, 104, 116, 23, 22,

117, 118, 131]. They are based on spectral graph theory [15] and transform the clustering

problem to a graph cut problem where a proper objective function has to be optimized.

The idea is to build a weighted graph from the data in terms of a dissimilarity matrix and

cut the graph with the leading vector from singular value decomposition of the Laplacian

matrix of the weighted graph. Shi and Malik show the Fiedler eigenvector from the Lapla-

cian matrix provides an approximate solution to minimize a normalized cut cost function

[76, 104]. A comparison of some spectral methods is provided in [37, 116].

2.7 Summary

We may draw several conclusions based on the review of the related literature. Firstly,

popular distances measures in computer vision and pattern recognition are mostly non-

metric or non-Euclidean. The non-Euclidean behaviors of dissimilarity hinders the ap-

plicability of standard machine learning techniques and the optimization cost is high

for indefinite kernel methods. Hence, more correction methods for eliminating the non-

Euclidean artefacts are required so that many powerful traditional learning methods can

be used to better analyse dissimilarity data. Moreover, informational content of non-

Euclideanness is lost during the recently developed correction procedures, since the re-

sulting Euclidean dissimilarity has less discriminative power than the original non-Euclidean

data which is demonstrated by obtaining worse classification results from the resulting

Euclidean data. In this thesis, we will not only propose new correcting procedures, but

also try to preserve the underlying informational content in the ”negative” subspace.

Secondly, most Euclidean correcting procedures are plausible if the informational con-

tent of non-Euclideanness is limited or caused by accident. This trivial informational

content is represented either as a small magnitude of smallest negative eigenvalues or no

worse classification results after correction. Although numerous causes of non-Euclidean
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data are proposed, it lacks the mathematical formalization of these causes. These causes

have not been thoroughly investigated or applied for the purpose of choosing proper cor-

recting procedures. In this thesis, we will model the origination of non-Euclidean data

and investigate the feasibility of extracting useful information from negative dissimilarity

eigenvalues to identify the origination. Then based on the identified cause, we choose

suitable correcting procedures. We will demonstrate a simple empirical test for identify-

ing causes of non-Euclidean data.

Fourthly, Isomap and kernel embedding are two classical distance-preserving embed-

dings. The sectional curvature of a manifold with constant curvature has been defined

in terms of geodesic distances on the manifold and Euclidean distances in the ambient

space. By considering the objects of interest to be represented by points on a manifold

with constant curvature in an ambient Euclidean space, and the given dissimilarities to be

the geodesic distances on the manifold between these points, the Euclidean distances in

the ambient space deduced from the Isomap and the kernel embedding can be used for

the purpose of estimating curvatures of each edge in the curved manifold. On the other

hand, the spherical embedding used in the manifold learning can be used for the purpose

of estimating curvatures of local patches on a hypersphere.

Above all, the work in this thesis addresses the open problems in the research liter-

ature and aim to investigate the causes of non-Euclidean dissimilarity data and present

effective embedding methods for transforming non-Euclidean dissimilarities into a set of

Euclidean distances. In the subsequent chapters, we will compare our proposed methods

with the state of art by using 1-nearest neighbour (1NN) classifier which is commonly

used for non-Euclidean dissimilarity data and discuss in details our contribution to the

dissmilarity-based learning.
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Chapter 3

Determining the Causes of Negative

Dissimilarity Eigenvalues

3.1 Introduction

Pairwise dissimilarity representations offer a powerful alternative to vectorial or feature-

based characterisations of objects. Specifically, they provide a natural way of capturing

the relationships between objects that are not characterised by ordinal measurements or

feature vectors [87]. Given a symmetric pairwise dissimilarity matrix D, its similarity

(Gram) matrix is defined as −1
2
D2 and the centered Gram matrix

G = −1

2
JD2J

where J = I − 1
N

11T is the centering matrix and 1 is the all-ones vector of length N .

With the eigendecomposition of the Gram matrix G = ΦΛΦT , a symmetric dissimilarity

matrix is Euclidean if all eigenvalues of the corresponding Gram matrix are non-negative.

One way to translate such data into a vector representation is to represent the similarity

data using a kernel matrix, and to embed the data into a vector space using kernel principal
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component analysis. That is, the the eigendecomposition of the Gram matrixG = ΦΛΦT ,

where Λ is Gram matrix’s eigenvalues and Φ is the corresponding eigenvectors. In this

way a vector representation is obtained by projecting the dissimilarity data into a vector

space of fixed dimension.

However, one of the problems with dissimilarity representations and their embeddings

is that the distance measures can not be used to construct a Euclidean vector space if

the underlying Gram matrix contains any negative eigenvalue. If this is the case, then

the data can not be embedded into a real-valued Euclidean space, and must instead be

embedded into a complex valued or pseudo-Euclidean space [40]. Though projecting

non-Euclidean dissimilarity into a pseudo-Euclidean space reproduces exactly the original

distances without distortion, the pseudo-Euclidean embedding space is non-metric and

thus the distances between some pairs of points in the space is negative [123]. As a result,

the traditional geometric learning techniques can not be applied to this embedding data.

In order to analyse non-Euclidean dissimilarity data by means of traditional geometric

machine learning or pattern recognition techniques based on vector space, we must first

attempt to rectify the data for eliminating the non-Euclidean artefacts. Prior to these

analysis, it is advisable to assess the degree and extent to which non-Euclidean artefacts

affect the data-set. One measure that has proved useful in this respect is the negative

eigenfraction [86] which is the total mass of negative eigenvalues as a fraction of the total

mass of unsigned eigenvalues. However, in this chapter, we introduce a finer measure

that assesses the contribution of each object to the mass of negative eigenvalues. In this

way it is possible to determine whether the non-Euclidean artefacts are attributable to

the outlying dissimilarities of a few objects or are uniformly distributed throughout the

dataset.

One way of translating similarities into vector representation is based on the positive

definite subspace of the distance embedding and manifold embedding (e.g. the spherical

embedding in [123]. Each of these approaches is based on assumptions concerning the
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sources of the negative eigenvalues. The positive definite subspace embedding assumes

that metric violations are an artefact produced by noise and that the “distances” in the

negative sub-space do not carry any significant discriminative information. The manifold

embedding assumes that the Euclidean violations are geodesic and that the data lies on

a manifold. Recent studies [2,4] have showed that the negative eigenspace can provide

with valuable information. Moreover, Euclidean correction can lead to poor classification

performance.

Thus, before using any of the above approaches to attempt to rectify non-Euclidean

data, the underlying causes should be analysed. The aim in this chapter is to study the

occurrence of negative eigenvalues and investigate whether we can extract useful mea-

sures from the non-Euclidean dissimilarity matrix as a means of detecting the sources of

negative eigenvalues. Models are developed to explain these spectra.

The outline of this chapter is as follows. We first model the distribution of non-

Euclidean pairwise data in the following three situations: a) the objects lie on the surface

of a sphere (a simple manifold) and that the pairwise similarities are geodesic distances

across the manifold, b) extended objects where a non-metric dataset based on the dis-

tances between the surfaces of randomly positioned balls having different radii ( Delfts

balls data) and c) a noisy dataset with Gaussian noise added to the distance between points

in Euclidean space. Then we explore whether the spectrum of the the negative eigenvalues

of the Gram matrices can be used for the purpose of characterising these three sources.

We examine the shape of the negative spectrum of non-Euclidean dissimilarity matrices

under these three sources and find out that all the negative spectra follow an exponential

decay but exhibit the tails differently, which is indicated by the slope and intercept of an

exponential fitting. Moreover the dissimilarity value over the sphere is metric. Thus the

three sources can be characterized by the non-metricity, the slope and incept extracted

from an exponential fit. Our idea is to use these three measures as features for detecting

the sources of negative eigenvalues.

31



For our experiments, we use the above models to analyze a set of public domain

dissimilarity data provide by the EU SIMBAD project consortium. Our analysis provides

insight into the non-Euclidean behaviour of dissimilarity datasets and can be used to select

appropriate embedding methods suitable for the non-Euclidean data in hand.

3.2 Characterizing Non-metric or Non-Euclidean Data

In this thesis we are concerned with embedding data represented in terms of pairwise

dissimilarities or distances in the area of pattern recognition, and in particular in the case

in which the data is non-Euclidean. Our overall aim is to explore how non-Euclidean

dissimilarity data can be used to analyse object and learn object categories. Given a set

of N objects and a dissimilarity measure that compares pairs of objects, a symmetric

N × N dissimilarity matrix D in which the elements are the pairwise dissimilarities. If

the distance measure is asymmetric, the dissimilarity matrix is usually transformed into a

symmetric one by averaging dij =
dij+dji

2
. In shape analysis, the variants of weighted edit

distances and the Hausdorff distances are used as dissimilarity measures. These measures

are derived from graph matching process and rarely metric or Euclidean, though more

intuitive and effective than their Euclidean counterparts [85].

Our starting point is to study the non-Euclidean aspects of the dissimilarity matrix.

Given a symmetric pairwise dissimilarity matrixD, its similarity (Gram) matrix is defined

as −1
2
D2 and the centered Gram matrix

G = −1

2
JD2J

where J = I− 1
N

11T is the centering matrix and 1 is the all-ones vector of lengthN . With

the eigendecomposition of the Gram matrixG = ΦΛΦT , a symmetric dissimilarity matrix

is Euclidean if all eigenvalues of the corresponding Gram matrix are non-negative [42].

One way to gauge the degree to which a pairwise distance matrix exhibits non-Euclidean
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artefacts is to analyze the properties of its centered Gram matrix. The degree to which the

distance matrix departs from being Euclidean can be measured by using the relative mass

of the negative eigenvalues [86]:

NEF =
∑
λi<0

|λi|/
N∑
i=1

|λi|

. This measure is called the negative eigefraction (NEF). Its value is zero when the dis-

tances are Euclidean and increases as the distance becomes increasingly non-Euclidean.

Another measure of the non-Euclidean behavior is the ratio of the absolute values of

the smallest negative eigenvalues (the largest negative eigenvalues in magnitude) to the

largest positive eigenvalues. This is called negative eigenratio (NER) and it is zero when

the distances are Euclidean [86]:

NER =
maxλi<0|λi|
maxλi>0λi

.

A distance measure is considered to be non-metric if it is either non-symmetric, neg-

ative or violates the triangle inequality. The non-metricity of the data is usually defined

by counting the number of metric violations. A distance measure is rarely negative and

an asymmetric measure can be made symmetric directly by averaging, so we will assume

that the distances are all positive and symmetric. As dissimilarity matrix usually does

not satisfies the triangle inequality. There are two measures for the triangle inequality

violation. One is computed as the fraction of three-point sets which violate the triangle

inequality. This is called Triangle Ratio (TR). The other is computed as the constant

value that makes the dissimilarity matrix satisfy the triangle inequality by adding it to the

off-diagonal elements of D [86]. This is called Triangle Constant (TC) here.

TC = maxi,j,k|dij + dik − djk|
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If the Triangle constant is zero, the pairwise dissimilarity is considered to be metric but

not necessarily Euclidean.

However, these four test measures do not reveal the origins of non-Euclidean or non-

metric artifacts in the data. We develop a new measure which gauges the extent to which

individual data gives rise to departures from being Euclidean. This allows us to assess

whether the non-Euclidean artifacts in a dataset can be attributed to individual objects or

are distributed uniformly. If the non-Euclidean artefacts are contributed solely by the set

of distances to a few “outlier” objects, it is possible to restore the data to a Euclidean state

by editing (i.e. removing) these objects from the dataset. Based on this idea we introduce

the notion of measuring the contribution of each object to the negative eigenfraction of

a dissimilarity matrix. That is, the fraction given by the sum of the negative distances

originating from an individual object to all the remaining objects, divided by the total.

The matrix of kernel embedding co-ordinates is given by

Y = Λ1/2Φ = (y1, ..., yN), where Λ = diag(λ1, ..., λN) is the diagonal matrix with

the ordered eigenvalues of centered Gram matrix as elements and Φ = (φ1|...|φN) is

the eigenvector matrix with the ordered eigenvectors φ1, ..., φN as columns. When the

centered Gram matrix has negative eigenvalues then those dimensions of the embedding

associated with negative eigenvalues are represented by imaginary numbers, and those as-

sociated with positive eigenvalues by real numbers. In other words, the data are embedded

into a pseudoEuclidean space [40].

Under the embedding,the coordinate vector of point j is

yj = (
√
λ1Φ1j, ...,

√
λiΦij,

√
λNΦNj)

T . The contribution to the squared distance between

two points k and e is

d2ke =
∑
i

(yk(i)− ye(i))
2 =

∑
i

λi(φik − φie)2 =
∑
λi<0

λi(φik − φie)2+
∑
λi>0

λi(φik − φie)2

(3.1)

The sum of the squared distance consists of the negative squared distance associated with
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the negative eigenvalues, and the positive squared distance associated with the positive

eigenvalues. Hence the sum of the negative squared distances from point k to all the

remaining points is

d2k− =
∑
e 6=k

∑
λi<0

λi(φik − φie)2, (3.2)

and the sum of positive squared distances from point k to all the remaining points is:

d2k+ =
∑
e 6=k

∑
λi>0

λi(φik − φie)2 (3.3)

We define the fraction of negative squared distances from point k as

NEC =
|d2k−|

|d2k−|+ |d2k+|
(3.4)

We call it negative eigenvector contribution (NEC) here. Its value is zero for all objects

(data points) when the distances are Euclidean and bigger for outlier objects. Thus the

measure can be useful to identify whether the non-Euclidean behavior is caused by a few

outlier objects.

3.3 The Informativeness of Negative Eigenvalues

As a non-metric or a non-Euclidean dissimilarity can not be embedded into a Euclidean

space without distortion, any procedures for enforcing Euclideanness will distort the data.

Most correction procedures involve neglecting the contribution of negative eigenvalues

like the kernel embedding (positive space embedding) and the associated Euclidean em-

bedding. The question arises of whether negative eigenvalues are informative and whether

the removal of negative eigenvalues leads to information loss. It is commonly assumed

that the negative eigenvalues are associated to noise and cutting the negative eigenvalues

would improve or not change the results, if the magnitude of the negative eigenvalues is
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small. Laub et al. [71, 72] categorized negative eigenvalues into two cases based on its

shape once they are sorted. The first is flat negative spectrum if the negative eigenvalues

falls slowly and appear linearly downward trailing trend compared to all the eigenvalues.

The second is the non-trivial spectra if there are strongly decreasing negative eigenvalues

in the end. Duin et al. [30] showed that the removal of negative eigenvalues deterio-

rates classification performance on some datasets . Laub et al [72, 71] further demon-

strated that negative eigenvalues contain relevant features for classification tasks on some

datasets. However, they focus on the non-trivial spectra of pairwise data and consider the

dissimilarity data with flat negative eigenvalues is commonly associated with noise and

the negative eigenvalues can be cut off in the correction procedure.

Dataset size NEF NER TC Original D Positive Dp

(%) (%) (%) (%)
CatCortex 65 20.83 27.21 1.97 12.31± 4.07 6.15 ± 2.98
Chickenpieces-5 446 21.64 1.73 0 34.53± 2.25 46.19± 2.36
Chickenpieces-10 446 25.72 2.34 3.86 16.14± 1.74 34.5 ± 2.25
Chickenpieces-15 446 28.61 2.80 4.26 7.40 ± 1.24 24.0± 2.02
Chickenpieces-20 446 30.75 3.42 4.22 6.28 ± 1.15 17.04 ± 1.78
Chickenpieces-25 446 31.99 3.71 4.10 4.26 ± 0.96 14.13 ± 1.65
Chickenpieces-30 446 33.07 4.30 4.01 4.48 ± 0.98 13.00 ± 1.59
Chickenpieces-35 446 33.94 4.59 3.98 6.28 ± 1.15 15.02 ± 1.69
Chickenpieces-40 446 34.46 5.28 4.10 8.74 ± 1.34 15.25 ± 1.70
CoilDelftDiff 288 12.77 5.10 2.54 47.22± 2.94 47.57 ± 2.94
CoilDelftSame 288 2.73 18.08 0 64.58 ± 2.82 60.76 ± 2.88
CoilYork 288 25.76 4.61 4.63 23.26 ± 2.49 33.68 ± 2.78
FlowCyto-3 612 27.08 18.62 4.86 36.11± 1.94 41.01 ± 1.99
Newsgroups 600 20.15 4.90 2.07 24.83± 1.76 28.15 ± 1.84
ProDom 2604 4.31 1.09 3.18 0.23 ± 0.01 0.19 ± 0.01
Protein 213 0.07 0.24 0 1.88 ± 0.93 1.88 ± 0.93
WoodyPlants 791 22.94 5.64 4.17 9.99± 1.07 10.49 ± 1.09
Zongker 2000 41.94 35.35 4.54 43.95± 1.11 16.70 ± 0.83

TABLE 3.1: Classification errors of the 1NN for the original dissimilarity and positive
subspace dissimilarity using leave-one-out cross validation. Better classification results

are in bold.
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For most dissimilarity datasets, it is hard to interpret the meaning of the negative

eigenvalues. For classification tasks, it is natural to think that the negative eigenval-

ues contain relevant information for classification if the classification results with non-

Euclidean data are better than those with corrected data. Duin et al present classification

results on dissimilarity space representation with linear SVM and some density classifiers

[28, 29] and show that the negative eigenvalues can be informative. Since all dissimilar-

ity matrices, Euclidean or non-Euclidean, can be computed directly on nearest neighbour

classifier without any preprocessing steps like dimensionality reduction or prototypes se-

lection, we restrict our experiments to 1 Nearest Neighbour (1NN) classifier to make the

comparisons with Euclidean corrections without preprocessing steps. Here we compute

the 1NN based on the original and positive space dissimilarities on a set of public domain

dissimilarity matrices used in various applications from the SIMBAD project [29].

3.3.1 Dataset Description

The Catcortex dataset contains dissimilarities based on the connection strengths between

65 cortical areas of the cat brain from four regions. Chickenpieces contains a set of dis-

similarity matrices whose elements are weighted edit distance between two contours of

chicken pieces images represented by strings. CoilDelftDiff, CoilDelftSame and CoilY-

ork are three dissimilarity datasets extracted from feature points detected in the COIL

image database computed using different graph edit distances. The CoilYork data is ob-

tained from a set of dissimilarity measurements between four objects from the COIL

database. There are 72 equally space views for each object. A sample view of each object

is illustrated in Figure 5.4. A graph for each image is constructed by extracting feature

points from the object images and then performing Delaunay triangulation from the fea-

ture points [126]. The distance between a pair of images is the graph distance which is

computed by the graph matching algorithm of Gold and Ranguranjan [39]. FlowCyto

contains four histogram dissimilarities for samples of breast cancer tissue. Newsgroups
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contains dissimilarities for messages in four classes of newsgroups. Protein contains

the dissimilarities of protein sequences based on an evolutionary measure of distance.

ProDom contains dissimilarities between a protein sequences from the protein domain

families Corpet computed by structural alignments. Woodyplants50 contains the shape

dissimilarities between leaves of woody plants. Zongker contains the dissimilarities be-

tween handwritten digits based on deformable templates.

Chickenpieces-cost45 contains 8 dissimilarity matrices from a weighed edit distance.

Chicken pieces [86, 30] data contains 446 binary image in five classes illustrated in Fig-

ure 3.1 : breast (96 examples), back (76 examples), thigh and back (61 examples), wing

(117 examples) and drumstick (96 examples). It generates different distance matrix with

straight line segment of a fixed length L and the angles between the neighbouring seg-

ments and editing cost C. Our experimental results are computed from the data with

cost = 45 and L = {5, 10, 15, 20, 25, 30, 40}. The originally asymmetric dissimilarities

are made symmetric by averaging [86, 30]. The Chickenpieces data is a useful set for the

study of non-Euclidean dissimilarities, because there is a set of parameters which can be

varied to change the level of non-Euclidean artefacts. Duin et al [86, 30] showed that the

dissimilarity becomes increasingly non-Euclidean as both the negative eigenfraction and

the negative ratio grow with increasing L.

To characterize the dissimilarity matrix, the size of the matrix, the metric measure TC

and Euclidean measures (NEF, NER) are computed and shown in Table 3.1. The last two

columns are the classification errors using leave-one-out crossvalidation of the 1NN for

the original dissimilarity matrix (D) and the Euclidean matrix (Dp) obtained by remov-

ing the negative eigenvalues . Similar to the results in [29], in almost all dissimilarity

datasets, we see the original, uncorrected, non-Euclidean dissimilarities similarly per-

form or better. For datasets like chickenpieces and the Coilyork, the corrected Euclidean

dissimilarities obviously deteriorates the classification performance. This means the neg-

ative eigenvalues in such datasets are informative for classification using 1NN classifier.
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FIGURE 3.1: Chickenpieces image

FIGURE 3.2: CoilYork objects image
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Correction procedures that ignore the negative eigenvalues cause information loss. While

for some datasets such as Newsgroups and Zongker, the resulting dissimilarities obtained

by truncating negative eigenvalues give better classification performance. For such data,

the negative eigenvalues might be noisy. Note the information loss is measured by the

classifier performance before and after correction and is subject to the used classifier.

In addition to this, we have also explored the shape of the negative eigenvalues of

the informative datasets and found out that the informative, non-Euclidean dissimilarities

have a flat negative spectrum as we can see in Figure 3.3 and 3.4. In the literature [71],

a flat negative spectrum where the negative eigenvalues appear linear downward trailing

trend, is usually considered as noise and ignoring the negative eigenvalues is used for cor-

rection. As a result, the negative eigenvalues from the Chickenpieces and the CoilYork

data might be caused by noise. But Table 3.1 shows the removal of negative eigenvalues

cause information loss for classification. This indicates that ignoring the negative eigen-

values should not be generally used as a proper procedure for correcting and denoising

non-Euclidean dissimilarity data even if the negative spectrum is flat. In addition to this,

in order to prove that ignoring negative eigenvalues is not a proper way for denoising

Gaussian noise if the the negative eigenvalues is caused by Gaussian noise, we experi-

mentally add Gaussian noise to a set of Euclidean distances and investigate the effects of

the removing negative eigenvalues on distances.

EXAMPLE Let D be a Euclidean dissimilarity matrix of four objects A through D

D =


0 1.5 3.0 1.0

1.5 0 3.0 2.0

3.0 3.0 0 3.0

1.0 2.0 3.0 0

 (3.5)
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we generate a non-Euclidean matrix D1 by adding gaussian noise to D

D1 =


0 0.9555 3.0163 1.5503

0.9555 0 3.2763 2.7721

3.0163 3.2763 0 3.0430

1.5503 2.7721 3.0430 0

 (3.6)

with negative eigenfraction NEF = 0.032

Now we apply kernel embedding which removes the negative eigenvalues to obtain a

Euclidean matrix D2

D2 =


0 1.1462 3.0385 1.6482

1.1426 0 3.2865 2.7729

3.0385 3.2865 0 3.0490

1.6482 2.7729 3.0490 0

 (3.7)

Compared to the original Euclidean dissimilarity matrix D, the new Euclidean dis-

similarity matrix in which negative eigenvalues are removed is distorted and the original

ranking pattern is destroyed, especially in the case of the distances from object A to object

B and object C which object C is the closer to C than to B in the original dissimilarity

matrix. This illustrates that the non-Euclidean dissimilarity caused by noise can not be

reversed back to the original Euclidean distances by simply removing the negative eigen-

values, as negative eigenvalues are not correspondingly exactly to the noise. Note this is a

particular example to show that removing the negative eigenvalues is not a proper way to

denoise non-Euclidean dissimilarities even if the non-Euclidean dissimilarities are caused

by noise. The next section gives statistical results on the spectrum of non-Euclidean

dissimilarities with additions of noise. Further more, the negative eigenvalues are infor-

mative if the classification results become worse by removing them. This also leads to the

question of what are the sources of the negative values, as different correction procedures
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are based on the assumption of the causes of the negative eigenvalues.

3.4 The Causes of Non-Euclidean Data

We begin by identifying three reasons for non-Euclidean behaviour [29]. Several models

are developed to explain these spectra and simple measures are presented to distinguish

the three sources of negative eigenvalues displayed in Figure 3.5.

Manifold If the data points reside on a curved manifold, then the distances between them

are intrinsically non-Euclidean (but still metric). This is one possible source of non-

Euclidean distances. Here we model such data as points on the surface of a sphere, a

simple surface where distances are easy to compute. It is simple to simulate patches

with various degrees of curvature that depart from Euclidean behavior by changing

the curvature of the patch. The dissimilarity measurements on the sphere are metric

but non-Euclidean.

Extended objects If objects are not point-like but rather are extended in space, then the

distances between them are measured between the closest points on their surface.

As a result the distances will be non-Euclidean and possibly non-metric. Delft’s

balls data [29, 28] is a typical example. Randomly positioned balls are generated

with varying radius. The pairwise dissimilarities are the surface distances between

the balls. As a result only the pairwise distances between balls with zero radius are

Euclidean. It is also simple to modify the degree of non-Euclidean behaviour by

adjusting the radii of the balls.

Gaussian noise The final source is Gaussian noise added to the original Euclidean dis-

similarities. This will generate data that is both non-Euclidean and non-metric.
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FIGURE 3.3: The spectrum of the negative eigenvalues of Chickenpieces datasets.

43



FIGURE 3.4: The spectrum of the negative eigenvalues of Chickenpieces-35,
Chickenpieces-40, CoilYork.

FIGURE 3.5: Three sources of negative eigenvalues: (1) Points on manifold (sphere); (2)
Extended objects; (3) Gaussian noise.
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3.5 Investigation

To model distances sampled from a manifold, we commence with 100 points uniformly

distributed on the surface of a 3D sphere with unit radius. The spherical coordinates of

an object are x = (r sin θ cosφ, r sin θ sinφ,r cos θ)T where r is the radius of the sphere,

θ is the elevation angle([0, π]) and φ([0, 2π]) is azimuth angle. The pairwise geodesic

distances are computed as the lengths of great circle arcs between pairs of objects. We can

change the range of the elevation angle to control the extent to which the patches deviate

from a Euclidean surface, i.e. the degree of non-Euclideanness in the dissimilarity matrix.

In total 100 initial configurations of points are used.

To model the extended objects, we pick 100 randomly positioned points in a 7D hyper-

cube with length 100, and we take each point as the center of a ball with radius r(r ≥ 0).

The balls do not overlap. The pairwise distance is the Euclidean distance between the cen-

ters of two balls minus the radii of the two balls. We regard the balls with radius greater

than 0 as non-Euclidean balls. We vary the fraction of non-Euclidean balls, and take the

fraction to be 0.1, 0,3, 0.5, 0.7 or 0.9 in our experiments. The radii of the non-Euclidean

balls are 2, 3 or 4. We also generate 100 balls with uniformly distributed radii ranging

from 0 to 4.

To model Gaussian noise, we commence with 100 randomly positioned points in a 3D

Euclidean space and calculate the Euclidean dissimilarity matrix. Then we add Gaussian

noise with zero mean and several standard deviation values to the off-diagonal elements

of the dissimilarity matrix to generate a non-Euclidean dissimilarity matrix. The value of

the standard deviation of Gaussian noise is 0.1, 0.3, 0.5, 0.7 and 0.9.

To ensure the results are comparable over the dissimilarity data in various ranges

and scales, all of the dissimilarity metrics are scaled such that the average dissimilarity

is unity. We calculate the negative eigenvalues of each dissimilarity matrix and fit the

average negative spectrum by an exponential curve to obtain the slope b, the intercept a

and the average triangle constant C. The whole process is repeated for a sample sizes of
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500 and 1000 points.

3.5.1 Negative Spectrum

We analyse the three simple modes, which simulate the occurrence of non-Euclidean

pairwise data. We commence by examining the negative spectrum of the Gram matrix

under the three models. Figure 3.6 shows that the non-Euclidean dissimilarities from the

sphere and balls data-sets have spectrum which contain a strong negative component, with

a concentration towards the low end of the spectrum. The non-Euclidean dissimilarities

from Gaussian noise have a more slowly decreasing negative spectrum. Each of these

negative spectrum appear to follow an exponential decay. Thus the slope and the intercept

from an exponential fit should be able to discriminate at least the Guassian noise model

from the remaining two models. An exponential curve of the form y = aebx is fitted to

the data, with b the slope and a the intercept. These two parameters are used as measures

to characterize the negative spectrum.

Figure 3.7 shows the slope b as a function of the metric constant value C from the

non-Euclidean dissimilarities with a sample size of 100, 500 and 1000 respectively on the

sphere, the ”balls” data and Gaussian noise. As the negative spectrum of the Gram matrix

from the Euclidean points with Gaussian noise appears to be in a flat and linear in shape,

so the value of slope b is very small with a value around −0.04. For the dissimilarities

from the extended objects, the negative spectrum has a very sharp decreasing negative

tail (just few significant negative eigenvalue), so the value for the slope b has a larger

magnitude. Comparing the points on sphere and the ball data, there are several negative

eigenvalues in the tail and the decrease is less sharp. This may explain why the slope

of the non-Euclidean dissimilarities on the sphere is intermediate between that of the

Gaussian noise and the non-Euclidean balls data. Another interesting finding is that the

number of objects is not correlated with the slope, especially for points on the sphere and

Gaussian noise. In terms of the parameters, the three sources of negative eigenvalues are
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FIGURE 3.6: (A)(B)(C) show the negative eigenvalues of the resulting Gram matrix of
100 points on the sphere, from extended objects and Gaussian noise as a function to the

index of ordered negative eigenvalues.
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FIGURE 3.7: The artificial non-Euclidean dissimilarity data caused by the manifold the
data resides on, the extended objects and Gaussian noise respectively with a sample size

of 100, 500 and 1000.

well separated from each other.

In this section we present the analysis of three possible sources of the non-Euclidean

behavior: manifold, extended objects and Gaussian noise. As each of the negative spec-

trum appear to follow an exponential decay, an exponential curve of the form y = aebx

is fitted to the negative spectrum. The triangle constant C is computed and added so as

to increase the amount of data that satisfies triangle equality.In terms of the parameters

the three sources of negative eigenvalues from the artificial dataset are well separated

from each other. As a result, we can identify the three modeled sources of non-Euclidean

behavior by using a, b and C, the three measures.

3.5.2 Investigation on Public Dissimilarity Datasets

We now use the three models to analyze a set of public dissimilarities used in various

applications. The top figure in Figure 3.8 shows the intercept, the slope b and the Trian-
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(A) 3D view

(B) 2D view (C) 2D view

FIGURE 3.8: (A) shows the three measures for public dissimilarity data, (B) shows the
intercept a as a function of the Triangle Constant TC, (C) shows the slope b as a function

of the Triangle Constant TC for visualisation.
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gle Constant (TC) for the samples of 100 objects, and a set of public dissimilarity data.

The bottom plots show the top plot’s 2D view for visualisation. The plots indicate that

the non-Euclidean behaviour of Catcortex, Chicken pieces, CoilDelftDiff and FlowCyto-

3,Woodyplants50, Zongker are likely to arise from Gaussian noise. On the other hand,

the non-Euclidean behaviour of the Newgroups, ProDom and CoilDelftSame datasets is

likely to arise the non-Euclidean distances of a few outlying objects. CoilYork, the cause

may be a combination of data residing on a manifold and the Gaussian noise. For the

Protein dataset it may be a combination of data on the manifold and extended objects.

Figure 3.9 shows the objects’ negative eigenvector contribution in dissimilarities from

100-ball data with various fraction of non-Euclidean balls. It shows that non-Euclidean

balls have high contribution. As the fraction of non-Euclidean balls increases, the con-

tribution measure of Euclidean balls increases as well. It shows that objects’ negative

eigenvector is useful to identify the outlier objects which cause non-Euclidean behavior.

We plot each object’s negative eigenvector contribution for the Protein dataset in Figure

3.10. This shows that the negative eigenvalues are caused by the non-Euclidean distances

between just a few objects. The protein data is almost Euclidean with a very small nega-

tive eigenfraction value of 0.001. We have explored the effect of applying a leave one out

nearest neighbor classifier to the dataset. When we edit out the effect of the outlier objects

distances by adding a constant to the squared distances to the remaining objects, we obtain

only a slightly smaller error rate of 0.47% compared to 1.9% for the original distances.

For the other datasets, each object contributes almost equally to the non-Euclideanness of

dissimilarities. There is no significant difference among each object’s negative eigenvec-

tor contribution.
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FIGURE 3.9: (A)(B)(C)(D) show the individual object’s contribution to the negative dis-
tances, measured by the negative eigenvector contribution (NEC), in the balls data with

various fractions of non-Euclidean balls.

51



FIGURE 3.10: Ordered negative eigenvector contribution (NEC) for objects in the Protein
dataset.

3.6 Summary

Negative eigenvalues might be informative for classification. This can be determined by

checking the performance before and after removing the negative eigenvalues. We exper-

imentally demonstrate that the flat spectrum can be informative though it can caused by

Gaussian noise illustrated in the CoilYork dataset and the Chickenpieces dataset, thus we

can not use simple procedures to ignor them. We have studied the occurrence of negative

eigenvalues by modeling dissimilarity data from three sources. These three sources are

manifold, extended objects and Gaussian noise. We investigated the shape of the negative

eigenvalues and found out that all the shapes under the three sources follow an exponential

decay but with different tails. We found out the negative eigenvalues caused by Gaussian

noise appear flat, which is coherent with the idea that the flat spectrum are considered

to be noise in the literature. The difference in the shape of negative eigenvalues can be

characterized by the intercept and slope of an exponential function. Further more, the tri-
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angle constant is zero for metric dissimilarity resulted from manifold. Hence we extract

three useful measures: a) the slope b) the intercept of an exponential curve c)the triangle

costant as a means of detecting the sources of negative eigenvalues. By using the three

measures, the three sources of negative eigenvalues are well separated from each other

for artificial data. We presented experimental results to identify the origin of the negative

eigenvalues on various dissimilarity datasets. The proposed three measures can be used

as the preprocessing step in transforming the non-Euclidean dissimilarity into Euclidean

space.
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Chapter 4

Ricci Flow Embedding

4.1 Introduction

In the previous chapter we have shown that we can identify those three sources of the

negative dissimilarity eigenvalues. In this chapter we will further explore the objects

which lie on a manifold and introduce a way to rectify the non-Euclidean distances (make

them more Euclidean) originated from a curved manifold. To make the non-Euclidean

distances more Euclidean, we utilise the idea of Ricci flow on a constant curvature Rie-

mannian manifold for the embedded data. We present the first application of Ricci flow

in dissimilarity based learning. We provide implementation details for Ricci flow on the

constant curvature manifold of either elliptic or hyperbolic background geometry. Our

Ricci flow-based method can convert non-Euclidean dissimilarity problems into the man-

ifold evolution process and offers a general framework for the non-Euclidean dissimilarity

rectification. Instead of approximating the original dissimilarities by Euclidean distances,

our approach is based on correcting the non-Euclidean dissimilarity matrix of objects to

a set of Euclidean dissimilarities and try to preserve the underlying group structure of

the data. In other words, we are seeking a mapping from the objects of a dissimilarity

(or similarity) matrix to point-set in a vector space with more or similar discriminating
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power. In this chapter, we will introduce two Ricci flow based methods for correcting the

non-Euclidean distances.

Our idea is based on considering the objects of interest to be represented by points on

a manifold with local constant curvature, and the given dissimilarities to be the geodesic

distances on the manifold between these points. In other words, we can regard a small

portion of the space as a manifold of constant curvature (hypersphere). Manifolds can

be considered to be embedded in some higher-dimensional Euclidean space, which is the

ambient space. For example, manifold learning assumes the data is sampled from a low-

dimensional manifold embedded in a high-dimensional ambient space. For the purpose

of clarity, in this thesis, Euclidean distances refer to the distances in the ambient space,

and geodesic distances refer to the distances on the manifold.

For an arbitrary set of non-Euclidean dissimilarities, the manifold will be curved. In

contrast, a Euclidean surface will be flat. And the geodesic on the manifold and Euclidean

distances in the ambient space are identical. Thus our idea is that we can obtain a set of

Euclidean distances by transforming a curved manifold to a manifold with zero curvature.

This process of evolving a manifold is called manifold flattening. To apply this technique,

we require two tools: One tool is used to compute the initial curvature of local patches,

and the other is used to update the curvature.

In the field of differential geometry, Ricci flow provides a way to evolve the manifold.

Given the initial curvature of a manifold, Ricci flow is used to reduce its sectional cur-

vature. The evolved manifold is less curved than the initial one. The process is repeated

until the manifold has zero curvature. That is, the manifold becomes flat. The geodesic

distance on the flat manifold is Euclidean. We model the manifold where the objects of

interest lie as consisting of a set of local patches with individual constant curvatures. Then

we use Ricci flow to obtain the rectified Euclidean distances. We call this technique Ricci

flow embedding. This is a framework that allows data specified in terms of non-Euclidean

distances rather than feature vectors to be transformed in a vector space. This helps us to
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apply machine learning techniques directly to the data. Hence given a method to accu-

rately compute the sectional curvatures of local patches, we can flatten the manifold by

using Ricci flow to correct a set of non-Euclidean distances. We use two ways to esti-

mate the curvature of local patches and develop two corresponding Ricci flow embedding

methods.

In our first method, we consider each edge to be a local patch (i.e a piecewise mani-

fold), of which the weights are the given pairwise distances, and use the Ricci flow process

to locate a Euclidean distance matrix. We call this process piecewise manifold embedding.

Each local patch is regarded as a simple manifold with a constant curvature. Proposed by

Lindman and Caelli [75], the sectional curvature of a manifold with constant curvature is

determined by the Euclidean distance in the ambient space and geodesic distance on the

manifold. To compute the curvature, we require a method to locate the Euclidean distance

given the geodesic distance while preserving the geodesic distance as much as possible.

Kernel embedding and Isomap embedding are two of these methods. Once the curvature

is approximated, we use the Ricci flow process to flatten the local patches. The updated

geodesic distances on the flat manifold is the Euclidean distance we aim for.

However, the method can prove unstable due to local fluctuations in edge curvatures.

To overcome this problem, we develop a way to stabilise the first method by using a graph

regularisation technique. The edge curvature is regularized using heat kernel regularisa-

tion and the Ricci flow process is used to locate a Euclidean distance matrix. In our second

method, in addition to considering individual edge as a local patch, we also consider the

neighborhood structure of the data by adding a curvature regularisation step. We con-

sider each edge as a local patch, regularise the curvature over neighbourhoods and update

the regularised curvature on the edge using Ricci flow to locate a set of new Euclidean

distances. We call this process regularised Ricci flow embedding.

For our experiments we use the publically available SIMBAD project datasets, namely

the CoilYork and Chickenpieces databases. We show how the manifold learning methods
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and differential geometry tool can be combined to correct non-Euclidean dissimilarity

into a set of Euclidean dissimilarity.

4.2 Riemannian Space with Constant Curvature

Our aim is to rectify a set of non-Euclidean distances to make them more Euclidean.

We consider the objects of interest to be represented by points on a manifold which is

embedded into some Euclidean space, and the given dissimilarities to be the geodesic

distances on the manifold between these points. For an arbitrary set of non-Euclidean

similarities the manifold will be curved. In contrast, a Euclidean space will be flat and

the geodesic and Euclidean distances will be identical. Our task is then to remove the

curvature from the manifold to create a corrected set of Euclidean distances. We achieve

this by evolving the manifold using Ricci flow. In this section we introduce specific

theoretic backgrounds and motivations behind the above general idea. Please refer to

[73, 67, 75, 123] for an overview of general Riemannian manifolds, the elliptical space

and hyperbolic space.

We use Riemannian manifolds to represent the structure of a set of objects. A Rieman-

nian manifold is a manifold designed by metric tensor g = (gij). The metric tensor is the

first fundamental form of a manifold. It is positive definite and defines an inner product as

a distance measure for the tangent spaces of the manifold in terms of coordinate system

x1, x2, · · · , xn, where n is the dimensionality of the manifold.

ds2 =
∑
ij

gijdxidxj (4.1)

A manifold is viewed as a subspace of a larger ambient space (Euclidean or pseudo-

Euclidean). Extrinsically, a two-dimensional spherical surface is a subset of a three-

dimensional space. The intrinsic view only considers how the points in the surface stand
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in relation with each other, but not in relation to any external space. The geodesic dis-

tances are intrinsic, defined as the shortest length (distance) of curves connecting two

points on the manifold. As finding the geodesic distances between two points on the

manifold involves the complex task of solving a set of coupled second-order differential

equations [123, 73, 67] which is not easy, we use manifolds on which it is simpler to find

the geodesics. Riemannian manifolds with constant sectional curvature are such spaces.

As an important parameter of a constant curvature Riemannian space, sectional curvature

is a geometric description of the curvature of Riemannian manifold. It is the curvature

of two-dimensional sections of the manifold. It is the Gaussian curvature of the locally

defined surface which has the two-dimensional plane as a tangent plane at the point of

interest. The Gaussian curvature is the product of the maximum and minimum curvatures

of all geodesics passing through the point [75]. The curvature of a curve at a given point is
1
r

for elliptic space and 1
r
i for hyperbolic space where r is the radius of the circle that best

fits the curve at that point. Gaussian curvature is defined in two dimensional manifold,

and the sectional curvature is the analogue of Gaussian curvature for high dimensional

manifold [124]. To understand the sectional curvature in terms of Gaussian curvature,

considering all curves passing the point of interest p that are tangent to a two dimensional

plane ω in the tangent space TpM , a two-dimensional surface which belongs to the man-

ifold is consisting of these geodesic curves. The sectional curvature defined on the two

dimensional plane ω is the Gaussian curvature of the two dimensional surface at the point

of interest. Thus the sectional curvature is constant everywhere for a Riemannian space.

The constant curvature is positive in elliptic space, negative in hyperbolic space and zero

in Euclidean space.

For any dimension n, there are exactly three types of Riemannian manifold with con-

stant sectional curvature. Elliptic spherical space is an n dimensional hypersphere mani-

fold with positive sectional curvatureK = 1/r2 everywhere, embedded in an n+1 dimen-

sional Euclidean space. Euclidean space is an n dimensional space with sectional curva-
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ture K = 0. Hyperbolic space is manifold with negative sectional curvature K = −1/r2.

Since curved manifolds have non-Euclidean geometry and can produce non-Euclidean

dissimilarity, elliptic space and hyperbolic space are two choices for embedding the non-

Euclidean dissimilarities.

Elliptical Space The simplest model of elliptical space is a two dimensional surface

of a sphere of radius r embedded in a three dimensional Euclidean space with coordinate

system x1, x2, x3. The distances from all the points on the sphere to its centre equal to the

radius. A zero centered sphere is defined by

< x,x >= x21 + x22 + x23 = r2. (4.2)

The points on the surface with spherical parameterisation are given by:

x = (r sin θ1 sinφ, r cos θ sinφ, r cosφ)T (4.3)

The infinitsimal distance element on the sphere is

ds2 = dx21 + dx22 + dx23

= r2 sin2 θdφ2 + r2dθ2 (4.4)

where θ is the angle measured from the z axis, φ is the angle from the x axis in the xy

plane. So the metric tensor is

g = r2

 sin2 θ 0

0 1

 (4.5)

Extending a two dimensional sphere to an (n) dimensional sphere in an n+ 1 dimen-
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sional space, the hypersphere surface can be defined by the constraints:

n+1∑
i

x2i = r2 = 1/K (4.6)

the points on the hypersphere are

x = (x1, x2, · · · , xn+1)

= (r cos θ1 cos θ2 · · · cos θn, r sin θ1 cos θ2 · · · cos θn, · · · , r sin θn)T (4.7)

where xk = r sin θk−1
∏n+1

j=k cos θj, sin θ0 = cos θn+1 = 1. Similar to the two dimensional

sphere, the metric tensor element on a hypersphere is the product of squared radius and a

function determined by the the angular coordinates, which is derived by local derivatives

on the n angular coordinates θ1, θ2, · · · , θn

gij =

 F1(θ1, θ2, · · · , θn)/K i = j,

0 i 6= j.
(4.8)

Hyperbolic Space For a hyperbolic space to be Riemannian and to retain its metric prop-

erties on distances, there is exactly one negative dimension. For example, the two dimen-

sional hyperbolic space in three dimensions is

< x,x >= x21 + x22 − x23 = −r2. (4.9)

The points on the surface with spherical parameterizations are given by:

x = (r sin θ1 sinhφ, r cos θ sinhφ, r coshφ)T (4.10)
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The infinitsimal distance element on the sphere is

ds2 = dx21 + dx22 − dx23

= r2 sinh2 θdφ2 + r2dθ2 (4.11)

So the metric tensor is

g = r2

 sinh2 θ 0

0 1

 (4.12)

Extending a two dimensional sphere to an (n) dimensional sphere in n+1 dimensional

space, the surface can be defined by the constrains:

n∑
i

x2i − x2n+1 = −r2 = 1/K (4.13)

Similar to the sphere, retaining the spherical parameterisation by changing the last dimen-

sion (or angular coordinates) from sin to sinh as sin(iθ) = i sinh(θ). The points on the

hyperbolic space are

x = (x1, x2, · · · , xn+1)

= (r cos θ1 cos θ2 · · · cosh θn, r sin θ1 cos θ2 · · · cosh θn, · · · , r sinh θn)T (4.14)

where xk = r sin θk−1 cosh θn
∏n+1

j=k cos θj, x(n + 1) = sinh θn, sin θ0 = cos θn+1 = 1.

Similar to the two dimensional sphere, the metric tensor element on a hypersphere is the

product of squared radius and a function determined by the the angular coordinates, which

is derived by local derivates on the n angular coordinates θ1, θ2, · · · , θn

gij =

 F2(θ1, θ2, · · · , θn)/K i = j,

0 i 6= j.
(4.15)

Since our objective is to transform non-Euclidean dissimilarities into Euclidean space and
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the points of non-Euclidean dissimilarities can be modelled on curved constant curvature

manifold, our task becomes to transform a curved manifolds to a flat Euclidean manifold.

The next section summarises how we achieve this by means of Ricci flow process.

4.3 Ricci Flow in Constant Curvature Riemannian Space

In geometric analysis, Ricci flow is an intrinsic curvature flow method [63], as it is not

related to an extrinsic ambient space. Introduced by Richard Hamilton for topological

classification of three-dimensional smooth manifolds, Ricci flow evolves a manifold so

that the process to change the metric tensor is controlled by the Ricci curvature [14].

Essentially, this is an analogue of a diffusion process for a manifold. The geometric

evolution equation is:
dgij
dt

= −2Kij, (4.16)

where gij is the metric tensor of the manifold and Kij is the sectional curvature.

Ricci flow is a famous form of intrinsic curvature flow in differential geometry. Hamil-

ton [50] introduced the Ricci flow for Riemannian manifolds of any dimension in his

seminal work, which deforms a given Riemmannian metric according to its curvature.

Perelman has applied it to prove the 3-dimensional Poincaré conjecture [88]. Hamilton

has proved the uniformization theorem for surfaces of positive genus by using the 2-

dimensional Ricci flow [51]. Chow and Luo have studied the intrinsic relations between

the circle packing metric and surface Ricci flow and established the theoretic foundation

for discrete Ricci flow by proving the existence and convergence of the discrete Ricci

flow [51]. This leads to a wide application of surface Ricci flow in surface parameteri-

zations, shape analysis and geometric graphics [65, 45, 64, 132, 133, 97, 98]. All these

works share the feature of representing surfaces as piecewise linear triangle meshes and

using the Ricci flow to deform edge distances by discrete curvature. They discretise the

Riemannian metric and the Gaussian curvature as the edge lengths and the angle deficits.
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However, they are based on different geometric intuition. For example, both Jin et al.

[65] and Gu et al. [45] extend the work from Luo and Chow on the combinatorial struc-

tures of triangular meshes by improving the gradient descent Ricci flow algorithm with

Newton’s method, the former focussing on hyperbolic space while the later works on Eu-

clidean space. Zeng has investigated the Ricci flow on both Euclidean and hyperbolic

background geometry in the context of characterizing 3D shapes [132, 133]. The Eu-

clidean Ricci flow [65, 133] finds a flat metric that gives zero Gaussian curvature for all

the interior vertices on a manifold of triangular meshes. In other words, it flattens the

surface onto a plane. Figure 4.1 illustrates the simple example of Ricci flow process on

a curved line. The curved line L1 is flattered to L2, the flattered curve L2 has smaller

curvature after Ricci flow process.

Generally the Ricci flow tends to expand the manifold if the manifold has negative

curvature, and contract the manifold if it has positive curvature. The concepts of expand-

ing and contracting means that Ricci flow increases or decreases the distances between

points along the direction of sectional curvatures. Moreover, the stronger the curvature is,

the faster is the expanding or contracting of the distances [109].

Prior discrete Ricci flow works are mostly based on surface Ricci flow defined in the

two dimensional space, though Ricci flow can be defined for Riemannian manifolds of any

dimensionality. Without assumptions on curvature, the behaviour of the metric evolving

by Ricci flow is not straightforward. In our framework, the input manifold is a manifold

with constant sectional curvature within a high dimensional space. Then we change the

distances(metric) on the manifold as the curvature evolves. In elliptic space, we replace

the metric tensor in 4.16 with 4.8. For simplicity, we assume only the sectional curvature

changes with time. In this case, the metric tensor discretise as the sectional curvature. As

a result, the Ricci flow in terms of the sectional curvature K is simplified by removing the

function F1 :
d(1/K)

dt
= −2 (4.17)
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FIGURE 4.1: Ricci flow change the curvature: flatten a curve, the curvature K → 0.

This equation shows that sectional curvature increases with time, since we have to de-

crease the curvature in order to evolve the curved manifold to the Euclidean space, we

reverse the time by changing the sign of the time parameter. The Ricci flow for elliptic

space is defined as:
d(1/K)

dt
= 2 (4.18)

Similarly, the Ricci flow for hyperbolic space is defined as:

d(1/K)

dt
= −2 (4.19)

We model the embedding manifold as consisting of a set of local patches with indi-

vidual constant Ricci curvatures. These patches can be either elliptic (of positive sec-

tional curvature) or hyperbolic (of negative sectional curvature). It is straightforward to

re-express the Ricci flow in terms of the sectional curvature K:

dK

dt
=

 −2K2 elliptic hypersphere,

2K2 hyperbolic space.
(4.20)

Under this evolution, the curvature moves towards zero for both types of patches, flat-

tening the manifold. The solution of the differential equation is straightforward. Starting

from the initial conditions K = K0 at time t = 0, then at time t we have
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Kt =

 K0

1+2K0t
elliptic hypersphere,

K0

1−2K0t
hyperbolic space.

(4.21)

In this section, we review the basics of Ricci flow and constant curvature Riemannian

geometry and develop a technique for evolving the curved manifold with constant cur-

vature to Euclidean space. In fact, Ricci flow in constant curvature manifold provides us

with a way to update the section curvature. The novel contribution here, hence, is to apply

Ricci flow for correcting the non-Euclidean dissimilarities. Thus we can model the non-

Euclidean dissimilarities using curved manifold with local constant sectional curvature

and flatten the local manifolds via Ricci flow. In order to locate a set of Euclidean dis-

tances in the Euclidean space evolved from the curved manifolds, we need to know how

the distances change during the manifold evolution. We also need a way to compute the

sectional curvatures of the local patches where the data is located. The following section

presents two algorithms and describes corresponding techniques to estimate the sectional

curvatures and update the distances during the manifold evolutions.

4.4 Piecewise Ricci Flow Embedding

Our aim is to transform a non-Euclidean dissimilarity measure into a Euclidean one using

the Ricci flow described in the previous section. We commence by representing the dis-

similarity data using a weighted graph G = (V,E,D), where the node set V represents

the set of objects and the edges E are weighted with the pairwise dissimilarities D. We

embed the graph onto a manifold which is embedded in some Euclidean space, so that

the geodesic distance dg(u, v), (u, v) ∈ E between the positions of the nodes (points) u

and v is equal to the dissimilarity on the edges. Let yu be the embedding co-ordinates of

the node (point) u ∈ V in the Euclidean space and Y = (y1|...|y|V |) be the matrix with

the embedding co-ordinates as columns. Under this embedding the Euclidean distance is
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dE(u, v) =
√

(yu − yv)T (yu − yv).

The embedding manifold is assumed to contain a set of local patches with individ-

ual constant sectional curvatures. Here we model each edge as a local patch, flatten the

manifolds via the Ricci flow and evolve the distances by fixing the embedded Euclidean

distances to get a set of Euclidean distances. We call this process piecewise manifold em-

bedding. To apply this technique, we require a method to assign a sectional curvature to

the edges. The sectional curvature of a local patch is the sectional curvature of the curve

(edge) connecting two points. The patches can be elliptic with positive sectional curva-

ture or hyperbolic with negative sectional curvature. We commence by showing how the

Euclidean distances in some ambient space are estimated from the kernel embedding and

the Isomap embedding, and then how the geodesic distances given by the non-Euclidean

dissimilarities and the estimated Euclidean distances can be used to associate a sectional

curvature with the edges [32, 75]. Next, we turn our attention to updating the geodesic

distances by evolving the sectional curvatures and fixing the estimated Euclidean dis-

tances. Finally we summarise the steps in the algorithm for correcting non-Euclidean

dissimilarities.

There are many ways to find a vector representation from a set of dissimilarities on

manifold in the literature. The Euclidean distances are the inner product of vectors. In this

thesis, we use the Euclidean distances deduced from the kernel embedding and Isomap

embedding, as both the kernel embedding and Isomap embedding aims to preserve the

embedded distances. During the piecewise Ricci flow embedding, we update the geodesic

distances by fixing the Euclidean distances, and using the curvature to recompute the

geodesic distances, and finally the geodesic distances are equal to the Euclidean distances

in Euclidean space. Our objective is to obtain a set of Euclidean distances which preserve

the original grouping structure. Thus we want the deduced Euclidean distances as close

as possible to the geodesic distances, not just the ranking order. Both the embedding

processes are performed on the initial non-Euclidean distance matrix and the Euclidean
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distances are calculated from the embedding vectors.

4.4.1 Euclidean distance from Kernel Embedding

The embedding procedure is straightforward. We project objects in positive space of

the pesudo-Euclidean space and get the coordinates y and the corresponding Euclidean

distances. The kernel embedding is equivalent to the classical MDS which finds an em-

bedding that preserves the distances between points [110] when the given distances are

Euclidean. Here is the procedure:

1. Given the initial distance matrixD, compute the centered Gram matrixG = −1
2
JD2J ,

where J = I − 1
N

11T , D2
0 is the elementwise squared distance matrix, so that the

embedded coordinates have zero mean.

2. Take the P (P < N) positive eigenvalues of the Gram matrix to form the P by P di-

agonal matrix ΛP and project objects on the eigenvectors with positive eigenvalues

using Young-Householder decomposition for preserving distance, where ΦP is P

by N matrix with each column is the positive eigenvectors. Y is the P ×N matrix

with the vectors of co-ordinates as columns,

G = ΦΛΦT

Y = ΛP
1/2ΦP = (y1|y2|y3| . . . |yN)

The Euclidean distance between objects yu and yv is:

dE(u, v) = 2
√

(yu − yv)T (yu − yv) = 2

√√√√ N∑
i=1

λi(φi(u)− φi(v))2

The above equation shows that the embedded Euclidean distance decreases if some pos-

itive eigenvalue part is taken away, and increases if some negative eigenvalues part is
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taken away. In this case, the geodesic distance is smaller than the Euclidean distance, the

curvature is negative, and the space is assumed to be hyperbolic space.

4.4.2 Euclidean Distance from Isomap Embedding

Isomap [110] is used to find a low dimensional representation with low distortion on

geodesic distance on a manifold. The idea behind Isomap is to apply the MDS on the

shortest distance matrix computed from the input distance data rather than directly on the

input distances. The method was originally devised for dimensionality reduction like PCA

and MDS. Here we use it for preserveing distances. For non-Euclidean dissimilarities, we

first construct a nearest neighour graph from the input data, then compute the shortest

distance (geodesic distance) by adding up connected edges on the shortest path between

point and apply the MDS on the shortest distance matrix. Here is the procedure:

1. Construct the k nearest neighbour graph over the available dissimilarity data. Node

u and v are connected by an edge if u is among k nearest dissimilarity neighbors of

v or v is among k nearest dissimilarity neighbours of u.

2. Estimate the geodesic distances by computing the shortest path distances for all

pairs in the neighbour graph by using the Dijkstra’s algorithm, and get the matrix

of geodesic distance DG.

3. Apply the kernel embedding on the matrix of neighbour graph distance DG and get

the Euclidean matrix.

4.4.3 Sectional Curvature Computation

In the previous section we obtained the Euclidean distance in the ambient space deduced

from the two embedding methods. In this section we show that both the Euclidean dis-

tances in the ambient Euclidean space and the geodesic distances between the objects of
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FIGURE 4.2: Illustration of the relationship between the geodesic distance, the Euclidean
distance and the sectional curvature.

interest on the manifold can be used to make a numeric estimation of the sectional curva-

ture associated with each edge. Since the radius of curvature is determined by the degree

to which the geodesic bends away from the Euclidean chord and the sectional curvature

is constant everywhere, the sectional curvature can be estimated easily by squaring the

radius of curvature if the geodesic distances on the manifold and the Euclidean distances

in the Euclidean space are known. For a curved manifold, the geodesic distance between

two points is the length of the shortest curve connecting the two points. Take the elliptic

space for example, the geodesic distance between two points is the length of arc of the

great circle which joins the two points on the hypersphere illustrated in Figure 4.2. Let the

radius of the hypersphere (also called radius of the curvature) be r and θu,v be the angle

subtended by two points at the center of the hypersphere, then the distance between them

is:

dG(u, v) = 2rθu,v (4.22)

And the Euclidean distance is given by:

dE(u, v) = 2r sin θ = 2r sin
dG(u, v)

2r
(4.23)
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This is exactly equivalent to the equation for constant curvature Riemannian scaling

in elliptic space by Lindman and Caelli [75]. Lindman and Caelli give the relationship

between the two distances on elliptic, hyperbolic and Euclidean constant curvature mani-

folds as

dE =


2

K
1
2

sin(K
1
2

2
dG) Elliptic,

2

|K|
1
2

sinh( |K|
1
2

2
dG) Hyperbolic,

dG Euclidean.

(4.24)

The Euclidean distances are usually approximated by means of the Maclaurin series

[92, 33, 127]. The sectional curvature in elliptic space is:

K(u, v) =
1

r2(u, v)
=


24(dG(u,v)−dE(u,v))

d3G(u,v)
Elliptic,

−24(dG(u,v)−dE(u,v))

d3G(u,v)
Hyperbolic.

(4.25)

However, the above curvature approximations only hold for small curvatures. In the data

under study here, we find that the curvatures for some edges are too large for these ap-

proximations to hold. We therefore use it as the initialisation value and estimate curvature

from Equation 4.24 using Newton’s method.

We use the Newton method to find the sectional curvature in terms of the Euclidean

distances and geodesic distances. For elliptic space, the Newton iteration is:

Km+1 = Km −
2(dE − 2K

− 1
2

m sin(1
2
K

1
2
mdG))

2K
− 3

2
m sin(1

2
K

1
2
mdG)− dGK−1m cos(1

2
K

1
2
mdG)

(4.26)

For hyperbolic space, the Newton iteration is:

Km+1 = Km −
2(dE − 2|Km|−

1
2 sinh(1

2
|Km|

1
2dG))

2|Km|−
3
2 sinh(1

2
|Km|

1
2dG)− dG|Km|−1 cosh(1

2
|Km|

1
2dG)

(4.27)
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4.4.4 Updating Distances Based on Ricci flow

This is our final step during the Ricci flow piecewise embedding. We can compute new

geodesic distances between points lying on a new manifold, which has the updated cur-

vature. We keep the Euclidean distance between the points fixed, while updating the

curvature. Based on Equation 4.24, the new geodesic distance under the new sectional

curvature can be represented in terms of the Euclidean distances in the ambient space and

the new sectional curvatures. The update equation for the geodesic distance is:

dGi+1
=


2

K
1
2
i+1

sin−1

(
K

1
2
i+1

2
dEi

)
elliptic hypersphere

2

|Ki+1|
1
2

sinh−1
(
|Ki+1|

1
2

2
dEi

)
hyperbolic space

(4.28)

These above equations can be applied to each element of the dissimilarity matrix in turn.

4.4.5 The Algorithm

We can transform the curved manifold by updating the sectional curvatures with small

time steps and compute the new geodesic distances on the less curved manifold with the

Euclidean distances fixed both before and after deforming the manifold. After this pro-

cess, the geodesic distances come closer to Euclidean distances as the sectional curvatures

move to zero. After a number of iterations, the geodesic distances get equal to the Eu-

clidean distances and the space where the objects reside on are smoothed to be Euclidean

space from original non-Euclidean space. Figure 4.3 shows the algorithmic steps.

The idea underpinning the algorithm is to embed objects represented by the non-

Euclidean dissimilarity on a curved manifold and apply the Ricci flow process to trans-

form the manifold to a flat Euclidean space and update the geodesic distances on the

manifold during manifold evolution. The novel contribution here is to apply Ricci flow

on non-Euclidean dissimilarities and develop a way to update the geodesic distances dur-
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FIGURE 4.3: Illustration of the piecewise Ricci flow embedding.
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ing the manifold evolution. Thus this rectifies a given set of non-Euclidean dissimilarity

data so as to make them more Euclidean.

Given a set of N objects and a dissimilarity measure d, a dissimilarity representation

is an N × N matrix DG, with the elements dG(u, v) representing the pairwise geodesic

distance between objects u and v. The following implementation steps shows how to

rectify the distance matrix from being non-Euclidean to Euclidean.

Begin with a N ×N pairwise distance matrix DG, the iteration number i = 1,

1. Embed the objects in a Euclidean space using either Isomap or the kernel embed-

ding to obtain Euclidean distances dEi
.

2. From geodesic distance dGi
and Euclidean distance dEi

, find the constant curvature

space with curvatureKi for a pair of objects using Newtons method iteratively until

the change is smaller than 1e− 5 based on Equation 4.26 or Equation 4.27

3. Obtain new geodesic distance dGi+1
from previous geodesic distance and curvatures

with fixed Euclidean distance based on Equation 4.28.

4. Get the new distance matrix DGi+1
composed of new geodesic distances between

objects, and repeat from step 1 until DGi+1
is Euclidean, that is, there is no negative

eigenvalues from its centered Gram matrix.

This method uses Ricci flow on a constant curvature Riemannian manifold to evolve the

distance measures. This is implemented by updating the curvatures on the edges of the

graph representing the data. Since we consider each edge as individual patch with constant

curvature, our current approach updates curvature independently on each edge and ignores

the relation among connected edges in the neighbourhood. This method can prove experi-

mentally unstable due to local fluctuations in edge curvatures. To overcome this problem,

the next section shows how to stabilise this method by regularising the curvature of the

embedded graph.
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4.5 Regularised Ricci Flow Embedding

As posed above, the piecewise Ricci flow embedding updates the sectional curvature sep-

arately for each individual edge. This places no constraint on the smoothness of the

manifold, and this fact can lead to numerical instability in the embedding. Graph regular-

ization provides a way to smooth data samples over a graph and overcome the numerical

stability problems. One such regularization process is a graph diffusion. This section

shows how the sectional curvature is smoothed out by the diffusion kernel for stabilising

the method.

4.5.1 The Laplacian on Graph

Before we introduce the diffusion kernel in the next section, we first review the basic con-

cepts about graphs and the Laplacian on a graph that are necessary to define our curvature

regularisation process. Firstly, suppose that an undirected unweighted graph is denoted

by G = (V,E) where V is the set of nodes and E ⊆ V × V is the set of edges. The

elements of the adjacency matrix A for the graph are:

A(u, v) =

 1 if (u, v) ∈ E

0 otherwise
(4.29)

From the adjacency matrix we construct the diagonal degree matrix D, whose elements

are defined as the degree of the nodes :

D(u, v) =

 deg(u) =
∑

v∈V A(u, v) if u = v

0 otherwise
(4.30)

From the degree matrix and the adjacency matrix, we construct the Laplacian matrix

L = D − A, which is the degree matrix minus the adjacency matrix. Thus the elements
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of the Laplacian matrix are defined as:

L(u, v) =


deg(u) if u = v

−1 if u and v are aadjacent

0 otherwise

(4.31)

The elements of the normalized Laplacian L̂ = D−
1
2LD−

1
2 are defined as

L̂(u, v) =


1 if u = v and deg(v) 6= 0

− 1√
deg(u)deg(v)

if u and v are aadjacent

0 otherwise

(4.32)

The spectral decomposition of the normalised Lapalcain matrix is L̂ = ΦΛΦT , where

Λ = diag(λ1, λ2, · · · , λ|V |) is the diagonal matrix with the ordered eigenvalues (λ1 <

λ2 < · · · < λ|V |) as elements and Φ = (φ1|φ2| · · · |φ|V |) is the matrix with the ordered

eigenvectors as columns. Recently spectral graph theory has been applied to graph clus-

tering, as the the spectral graph methods use only part of the information from the spec-

trum (eigenvalues of the spectral decomposition) of the Laplacian matrix and avoid the

nodes correspondence problems [15]. Since L̂ is symmetric and positive semi-definite,

the eigenvalues of the normalized Laplacian are all non-negative. The number of zero

eigenvalues is the number of isolated components in the graph. Hence for a connected

graph, there is only one eigenvalue equal to zero. von Luxburg et al. [118] show that the

normalised Laplacian leads to more robust semi definite Laplacian. Hence, we use the

normalised Laplacian matrix for calculating the heat kernel.
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4.5.2 Curvature Regularisation Using Heat Kernel

We are interested in the heat kernel which is the fundamental solution of the heat equation.

The heat equation associated with the Laplacian is defined as

∂H(t)

∂t
= −L̂H(t) (4.33)

where Ht is the heat kernel and t is time. It is a diffusion process and is analogous to

the flow of heat, which flows from high to low concentrations, and over time creates a

smooth distribution of heat. In a similar way, a diffusion of a function on the graph will

create a smoother function. The diffusion is equivalent to a random walk on the edges of

the graph [69], and is represented by the diffusion (or heat) kernel:

H(t) = exp(−L̂t) (4.34)

where exp(−L̂t) is the exponential of the matrix, −L̂t. To compute the heat kernel,

we use the eigen-decomposition of the Laplacian L̂. Based on [15] we can proceed to

compute the heat kernel on a graph by exponentiating the Laplacian eigenspectrum:

H(t) =

|V |∑
i=1

exp(−λit)φiφTi = Φ exp(−Λt)ΦT (4.35)

Xiao et al [128] shows that the heat kernel depends on the local connectivity structure of

the graph when t tend to zero, Ht ' I − L̂t where I is the identity matrix; the heat kernel

is controlled by the global structure of the graph when t is large,Ht ' I−exp(−λ2t)φ2φ
T
2

where λ2 is the smallest non-zero eigenvalue and φ2 is the associated eigenvector.

The exponential of a matrix M is defined by the power series:

expM =
∞∑
k=0

1

k!
Mk (4.36)
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If a matrix is diagonal, then its exponential can be obtained by just exponentiating every

entry on the main diagonal. Hence we only need to exponentiate the eigenvalues of the

normalised Laplacian matrix for computing the heat kernel. The evolution of a function

under this kernel is simply

f(t) = H(t)f(0) (4.37)

The evolution is ‘mass-preserving’ in the sense that the sum of the values of the func-

tion over vertices is preserved. We can use this process for smoothing curvatures before

the application of the Ricci flow, to remove extreme values.

However, our curvatures are defined on pairs of objects and heat kernel diffusion only

works on vertices. Therefore we need to build a graph which has vertices corresponding to

object-pairs and edges describing a neighbourhood structure of these pairs. We construct

this graph as follows. Firstly, we build the nearest-neighbours graph of the objects G =

{V,E}. Each vertex u represents an object; and an undirected edge Euv exists if u is

in the k nearest neighbours of object v or if v is in the k nearest neighbours of u. We

then construct its dual graph GD = {VD, ED}; each edge of the original graph becomes

a vertex Vuv and an edges exist between two vertices if they share a common vertex from

the original graph. In the dual graph, each vertex represents a pair of objects and the edges

reflect the neighbourhood structure of the pairs. We can then define the curvature between

object pairs as a function over the vertices of this dual graph and apply the diffusion

kernel.

We therefore add an additional step in which we smooth the sectional curvatures over

the dual of the nearest neighbour graph prior to performing the Ricci flow for updating the

sectional curvatures. All of the remaining steps of the algorithm remain as the piecewise

Ricci flow embedding in Section 4.4.5.
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4.5.3 The Algorithm

The following steps shows how to smooth sectional curvatures over the nearest neighbour

edges.

Start from the initial sectional curvatures K from step 2 of the piecewise Ricci flow

embedding in Section 4.4.5,

1. Construct the k nearest neighbour graph over the available dissimilarity data. Node

u and v are connected by an edge if u is among k nearest dissimilarity neighbors of

v or v is among k nearest dissimilarity neighbors of u.

2. Construct the dual graph of the nearest neighbour graph. Each edge in the nearest

neighbour graph is a vertex of the dual graph. If two edges in the nearest neighbour

graph share a one common vertex, then the corresponding two vertices in the dual

graph are connected by an edge.

3. Obtain the updated and regularised curvature K. Suppose that L̂ is the normalised

Laplacian of the dual nearest neighbour graph, then the heat-kernel of the dual graph

is exp[−L̂t]. If VD is the node-set of the dual graph, then we construct a vector K

of Gaussian curvatures K = (K1, ...., K|VD|)
T . The vector of regularised Gaussian

curvatures after heat kernel smoothing is Kreg = exp[−L̂t]K. Since our objective is

to preserve the local structure of the dual graph, in the experiment we choose small

value for t from a set of values 10.0, 1.0, 0.1, 0.01. We experimentally found that

the smoothing does not have much effect when we use value of t which is greater

than 1.0, so we use 0.1.

In summary, the above approach starts from a nearest neighbour graph over the the

dissimilarity matrix, and then constructs the dual graph where a node corresponds to an

edge in the original graph. The heat kernel on the dual graph smooths the curvatures on

the original nearest neighbour graph.
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4.6 Experiments on Ricci Flow Embedding

In the previous section, we introduce the implementation details for the Ricci flow on

constant curvature of either elliptic and hyperbolic background geometry for correcting

non-Euclidean dissimilarities. We demonstrate the applicability of this intrinsic curva-

ture flow method though dissimilarity based learning problems, especially non-Euclidean

dissimilarities. In this section, we applied our two Ricci flow embedding techniques to

two different datasets: Chickenpieces and CoilYork. These datasets give rise to non-

metric or non-Euclidean dissimilarities. They are chosen from a variety of datasets we

have analysed in Chapter 3. Considering the Chickenpieces dataset, the 1NN classifica-

tion errors of the eight dissimilarity data are lower than those of the eight corresponding

positive subspace dissimilarity illustrated in Table 3.1 in Chapter 3. The table shows the

negative eigenvalues of the dissimilarities are informative for classification. Considering

the CoilYork dataset, the negative eigenfraction (NEF) is 0.2576, the classification error

rate of the original dissimilarity is 0.2326, which is lower than 0.3368, the classification

error of the positive subspace dissimilarity. This shows the negative eigenvalues of the

dissimilarity is informative for classification. Since the negative eigenvalues from these

two datasets are informative for classification, these datasets can be used to demonstrate

whether the embedding techniques preserve the grouping structure of data contained in

the negative eigenvalues. These are the Chickenpieces data and the CoilYork data.

The objective in this thesis is to rectify the non-Euclidean dissimilarity data into a set

of Euclidean distances. The results of these experiments for the two Ricci flow embed-

ding techniques fall into two main categories and will be discussed in turn. The first is the

negative eigenfraction of the dissimilarity data during the Ricci flow process. Then nega-

tive eigenfraction is zero when the distances are Euclidean and increases as the distance

becomes increasingly non-Euclidean. In fact, rectifying non-Euclidean dissimilarity data

into a set of Euclidean distances is equivalent to decrease the negative eigenfraction so

that it moves toward zero finally. The second is the 1NN classification error rate of the

79



corrected dissimilarity, relative to the original non-Euclidean dissimilarity and to other

Euclidean embedding. We use the average of leave-one-out-cross-validation error rates

by applying the 1NN classifier to measure the classification accuracy on the data. The

1NN classifier is chosen to give a comparison because it is one of very few classifiers

which can perform directly on generally any dissimilarity without any preprocessing step.

Firstly, for analytic purposes we show results during the embedding iterations. Secondly,

for comparative purpose, we also show results against three Euclidean embeddings: the

positive subspace which is the kernel embedding discarding negative eigenvalues, the

associative Euclidean embedding which is the kernel embedding where negative eigen-

values are taken their absolute values, the Isomap embedding which is kernel embedding

on geodesic distances of neighbourhood graph. Please note that we use the optimal pa-

rameter of the size of neighbouhood k and the dimensionality d, at which the curve of the

residual variance stops to decrease significantly. The residual variance is used to evaluate

the fits of Isomap, which is defined as one minus the linear correlation coefficient taken

over all entries of resulting dissimilarity and original dissimilarity [110]. For CoilYork

data, k = 8, d = 10. For the chickenpieces data, k = 20, d = 20.

4.6.1 Experiments on Piecewise Ricci Flow Embedding

The sectional curvatures for the edge with initial biggest curvature, the edge with median

value of curvature and the edge with minimum curvature on the Chickenpieces data with

L = 5, as the manifold evolves using the Ricci flow with kernel embedding, are shown in

Figure 4.4. Each of the curvatures moves towards zero, indicating that the evolution pro-

cess transforms the hyperbolic space (negative sectional curvature) to a Euclidean space

(zero sectional curvature).

Figure 4.5 shows the curvatures as a function of distances obtained using the ker-

nel embedding and the Isomap embedding for the randomly chosen 500 edges from the

chickenpieces L = 15 over a single iteration. It demonstrates how the piecewise Ricci
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(A) Maximum curvature
(B) Middle curvature

(C) Minimum curvature

FIGURE 4.4: (A)(B)(C) show the individual edge’s sectional curvatures during the piece-
wise Ricci flow with kernel embedding. All the sectional curvatures move to zero.
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(A) Initial curvature (B) Initial curvature

(C) Curvature after Ricci fow (D) Curvature after Ricci flow

FIGURE 4.5: (A)(B) show the initial curvatures of 500 randomly selected edges from
kernel embedding and Isomap embedding. (C)(D)show the edge curvatures after the
piecewise Ricci flow with kernel embedding and the piecewise Ricci flow with Isomap

embedding.
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(A) Kernel embedding (B) Isomap embedding

FIGURE 4.6: (A)(B) show the distances of 500 randomly selected edges before and after
a single iteration of Ricci flow embedding with kernel embedding and Ricci flow with

Isomap embedding.

flow process affects distances commencing from the two embedding methods. Figure 4.6

shows the original distances and updated distances obtained using Ricci flow with kernel

embedding and Ricci flow with Isomap embedding for the randomly chosen 500 edges

from the chickenpieces L = 15 over a single iteration. Both the resulting distances appear

almost linear to the distance before embedding, it shows these two embedding methods

preserve distances, especially the global distances because of the effects of kernel embed-

ding. The change of the local distances demonstrates the difference of these embedding

methods. Figure 4.6(A) demonstrates that the local distances expand faster than the global

distances under kernel embedding, while Figure 4.6(B) shows under Isomap embedding

the local distances are preserved better than that under kernel embedding.

Specifically, we choose two pairwise distances. The distance with a larger value is

represented the distance of the distant points, and the smaller distance for the local points.

Please note these two distances represent only part of the dissimilarity data. The two

distances are selected to find out how the distant point and local points evolve during the

iteration. Two pairwise distance with value 7.44 and 52.94 are used here. Firstly, the

initial curvatures of the patches consisting of an edge is compared. Under the kernel em-
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bedding, the curvature of the distant points is −11.26 × 10−4, which has much smaller

magnitude than that of the local points, whose curvature is −0.43. Figure 4.5 shows that

the kernel embedding preserves the global distances. This shows that the larger are the

distances, the smaller is the magnitude of the curvatures. From our Ricci flow curvature

updating process, the larger the magnitude of the original curvatures, the larger the cur-

vature reduction in the updated process. That is, the distant edges are less curved than the

local edge. Moreover, during the Ricci flow process, the stronger the magnitude of the

negative curvature is, the faster the expanding of the distances. As a result, the local edges

increases more rapidly than those distant edges. For example, the local edge is expanded

from 7.44 to 9.34, while the distant edge is slightly expanded from 52.94 to 52.95. In

terms of distances, the locations with some smaller distances expand more rapidly than

those with larger distances demonstrated in Figure 4.6, which is caused by the combined

effects of Ricci flow and the kernel embedding. This effect can be observed from Figure

4.5 (A) and 4.5 (C). As a result, the local pattern of distances will be destroyed after a few

iterations of the Ricci flow with kernel embedding.

In the case of Isomap embedding, the curvature of the distant points is−0.0061, which

has much smaller magnitude than that of the local points, whose edge is −0.39. After the

Ricci flow process, the local edge is increased from 7.44 to 8.28, while the distant edge is

slightly increased from 52.94 to 53.11. Although the expansion is smaller those obtained

with the Ricci flow with kernel embedding, the Ricci flow with Isomap embedding ex-

hibits similar patterns to the Ricci flow with kernel embedding. The Isomap embedding

is equivalent to the kernel embedding on geodesic distances of neighbourhood graph. In

some sense, the Isomap embedding preserves global patterns of distances as the kernel

embedding. Hence, the locations associated with initial negative eigenvalues are evolved

as if they are affected by the Ricci flow with kernel embedding.

As some positive curvatures are obtained with Isomap embedding, we also need to in-

vestigate how the piecewise Ricci flow affects distances of edges with positive curvatures.
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Here we also choose two pairwise distances. One is 12.81 for slightly closer points, and

the other is 17.28 for more distant points. The initial curvature for closer points is 0.039

which is larger than 0.0052, the curvature for distant points. That is, the locations associ-

ated with distant points are less curved than that of the local edge. During the Ricci flow

process, the stronger the positive curvature, the faster the contraction of the distances. As

a result, the initial closer point get more closer and the local edges with positive curva-

tures contract more rapidly that of distant points. In other words, the locations associated

with smaller distances contract more rapidly than those locations associated with bigger

distances. For example, he distance between the distant points is reduced from 17.28 to

17.27, while the distance between the local points is reduced from 12.81 to 12.24. This ef-

fect can be observed from Figure 4.5 (B) and 4.5 (D). Overall, the Ricci flow with Isomap

embedding preserves the ranking of most local distances with positive curvatures. Com-

pared to the Ricci flow with kernel embedding, the evolution of distances under the Ricci

flow with Isomap embedding is more complex, since it has both ecliptic and hyperbolic

geometry. And it preserves some of the local patterns and global patterns of distances. In

other words, the Ricci flow with Isomap embedding preserves some of the local distances

while disrupting some from the effects of the kernel embedding.

Figure 4.5 indicates that the embedding methods affects the magnitude of the curva-

tures. The magnitude of the curvatures affects how the distance is updated during Ricci

flow. The sign of the curvature (hyperoblic geometry or elliptic geomtry) determines the

direction for transforming distances, expanding for hyperbolic geometry and contracting

for elliptic geometry.
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Dataset NEF0 NEF1 NEF2 Error0 Error1 Error2
(%) (%) (%) (%) (%) %)

Chickenpieces-5 21.6 4.61 3.4 34.53 51.59 44.25
Chickenpieces-10 25.7 6.28 2.54 16.14 48.17 35.42
Chickenpieces-15 28.6 4.44 3.66 7.40 44.81 21.44
Chickenpieces-20 30.7 2.91 1.57 6.28 41.30 22.73
Chickenpieces-25 31.99 4.95 0.56 4.26 36.95 18.80
Chickenpieces-30 33.07 3.77 0.25 4.48 35.56 15.35
Chickenpieces-35 33.94 5.50 1.86 6.28 36.32 16.37
Chickenpieces-40 34.46 4.50 0.38 8.74 32.29 20.18
CoilYork 25.76 4.61 4.63 23.26 46.15 25.31

TABLE 4.1: Negative eigenvalues and classification errors of the original
dissimilarity(NEF0, Error0), of the final dissimilarity of the piecewise (unregularized)
Ricci flow with kernel (NEF1, Error1) embedding, and the piecewise (unregularized)

Ricci flow with Isomap embedding NEF2, Error2).

Next we turn our attention to the choice of embedding on negative eigenfractions of

rectified distances and results of classification. From Figure 4.7 to Figure 4.15, we show

the negative eigenfraction and the 1NN error rates obtained with the piecewise Ricci flow

on the two embedding schemes for the CoilYork data and the Chickenpieces data as the

manifold evolves. In Table 4.1, we compare the 1NN error rate of the final dissimilarities

obtain with the piecewise Ricci flow on the two embedding schemes. Error0 refers to the

error rate of the original non-Euclidean dissimilarity data, Error1 refers to the error rate

of final Euclidean dissimilarity obtained by the Ricci flow with kernel embedding, and

Error2 refers to the error rate of final Euclidean dissimilarity obtained by the Ricci flow

with Isomap embedding. The first point to note is that for both the kernel embedding and

the Isomap embedding, the negative eigenfraction decrease as the curvatures are updated,

indicating that the dissimilarity measure becomes increasingly Euclidean. Another point

to note is that the choice of embedding scheme strongly affects the rate of decrease of

the negative eigenfraction, with Isomap embedding giving a faster rate of decrease with

iteration number than the kernel embedding. However, for both embedding schemes,

worse classification results are given than the original non-Euclidean dissimilarities. We
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obtain better classification results with Isomap embedding scheme than those with the

kernel embedding. We believe that this is because the positive curvature decreases more

rapidly for shorter distances in the Isomap embedding. As a result, the Isomap embedding

preserves some of local pattern of distances compared to the kernel embedding during the

Ricci flow process.

Finally, some classification experiments were performed to explore whether the evo-

lution preserves the class structure in data. We compared these results with those obtained

using some alternative Euclidean correction procedures. The methods explored were a)

projecting onto the positive subspace b) projecting onto the associated Euclidean space

c) using the Isomap embedding d) using the original distances. Our classification perfor-

mance results on the chickenpieces data are shown in Figure 4.16. Each of the embedding

methods distorts the data to some extent. The Isomap embedding gives the smallest degra-

dation. The Ricci flow with Isomap embedding gives comparable results to the positive

space embedding. By comparison, the results from the Ricci flow with kernel embedding

is worse than those from the kernel embedding (positive subspaces). We believe that this

is because the curvature increases much more rapidly for shorter distances in the kernel

embedding. The Ricci flow with kernel embedding destroys local pattern of data. During

the Ricci flow with kernel embedding, the Ricci flow is performed on local patches of

hyperbolic geometry. On the other hand, during the process of applying the Ricci flow

with Isomap embedding to dissimilarity data, Ricci flow is performed on a more com-

plex geometry composed of both local hyperbolic geometry and local elliptic geometry.

The Ricci flow performed on the local hyperpbolic space destroys the local structure of

data as the Ricci flow with kernel embedding. This also explains why the results from

the Ricci flow with Isomap embedding are worse than those from the purely Isomap em-

bedding. Since the curvature increases much more rapidly for shorter distances in the

kernel embedding, the change in distance induced by Ricci flow is rapid and potentially

unstable. We demonstrate that our correction procedure is able to rectify non-Euclidean
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(A) Negative eigenfraction (B) Error rate

(C) Negative eigenfraction (D) Error rate

FIGURE 4.7: (A)(B) show the negative eigenfraction and 1NN error rate during the iter-
ation of the piecewise Ricci flow with kernel embedding for the CoilYork dataset. (C)(D)
are the negative eigenfraction and 1NN error rate during the iteration of the piecewise

Ricci flow with Isomap embedding for the CoilYork dataset.

dissimilarity, but with some loss of discriminating power.

4.6.2 Experiments on Regularised Ricci Flow Embedding

Figure 4.17 and 4.18 show the curvature as a function of distances obtained using reg-

ularised Ricci flow with kernel embedding and Isomap embedding. During the regular-

isation step, the curvatures are smoothed over nearest neighbour edges. The result is

to reduce local curvature fluctuations, and this may reduce some locally large curvature
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(A) Negative eigenfraction (B) Error rate

(C) Negative eigenfraction (D) Error rate

FIGURE 4.8: (A)(B) show the negative eigenfraction and 1NN error rate during the iter-
ation of the piecewise Ricci flow with kernel embedding for the Chickenpieces-5 dataset;
(C)(D) are the negative eigenfraction and 1NN error rate during the iteration of the piece-

wise Ricci flow with Isomap embedding for the Chickenpieces-5 dataset.
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(A) Negative eigenfraction (B) Error rate

(C) Negative eigenfraction (D) Error rate

FIGURE 4.9: (A)(B) show the negative eigenfraction and 1NN error rate during the itera-
tion of the piecewise Ricci flow with kernel embedding for the Chickenpieces-10 dataset;
(C)(D) show the negative eigenfraction and 1NN error rate during the iteration of the

piecewise Ricci flow with Isomap embedding for the Chickenpieces-10 dataset.
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(A) Negative eigenfraction (B) Error rate

(C) Negative eigenfraction (D) Error rate

FIGURE 4.10: (A)(B) show the negative eigenfraction and 1NN error rate during the
iteration of the piecewise Ricci flow with kernel embedding for the Chickenpieces-15
dataset; (C)(D) show the negative eigenfraction and 1NN error rate during the iteration of

the piecewise Ricci flow with Isomap embedding for the Chickenpieces-15 dataset.
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(A) Negative eigenfraction (B) Error rate

(C) Negative eigenfraction (D) Error rate

FIGURE 4.11: (A)(B) show the negative eigenfraction and 1NN error rate during the
iteration of the piecewise Ricci flow with kernel embedding for the Chickenpieces-20
dataset. (C)(D) show the negative eigenfraction and 1NN error rate during the iteration of

the piecewise Ricci flow with Isomap embedding for the Chickenpieces-20 dataset.
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(A) Negative eigenfraction (B) Error rate

(C) Negative eigenfraction (D) Error rate

FIGURE 4.12: (A)(B) show the negative eigenfraction and 1NN error rate during the
iteration of the piecewise Ricci flow with kernel embedding for the Chickenpieces-25
dataset. (C)(D) show the negative eigenfraction and 1NN error rate during the iteration of

the piecewise Ricci flow with Isomap embedding for the Chickenpieces-25 dataset.
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(A) Negative eigenfraction (B) Error rate

(C) Negative eigenfraction (D) Error rate

FIGURE 4.13: (A)(B) show the negative eigenfraction and 1NN error rate during the
iteration of the piecewise Ricci flow with kernel embedding for the Chickenpieces-30
dataset. (C)(D) show the negative eigenfraction and 1NN error rate during the iteration of

the piecewise Ricci flow with Isomap embedding for the Chickenpieces-30 dataset.
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(A) Negative eigenfraction (B) Error rate

(C) Negative eigenfraction (D) Error rate

FIGURE 4.14: (A)(B) show the negative eigenfraction and 1NN error rate during the
iteration of the piecewise Ricci flow with kernel embedding for the Chickenpieces-35
dataset. (C)(D) show the negative eigenfraction and 1NN error rate during the iteration of

the piecewise Ricci flow with Isomap embedding for the Chickenpieces-35 dataset.
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(A) Negative eigenfraction (B) Error rate

(C) Negative eigenfraction (D) Error rate

FIGURE 4.15: (A)(B) show the negative eigenfraction and 1NN error rate during the
iteration of the piecewise Ricci flow with kernel embedding for the Chickenpieces-40
dataset. (C)(D) are the negative eigenfraction and 1NN error rate during the iteration of

the piecewise Ricci flow with Isomap embedding for the Chickenpieces-40 dataset.
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FIGURE 4.16: Error rate from 1NN for Chickenpieces dataset cos=45.

values. Figure 4.17 (B) and Figure 4.18 (B) show that when regularisation is used, the

curvatures are smoothed over local distance scales compare to the initial curvature in Fig-

ure 4.17 (A) and Figure 4.18 (A). Hence the local distance structure is preserved under the

embedding, and this is demonstrated in Figure 4.17 (D) and Figure 4.18 (D). As a result,

the regularisation step preserves local distances and stabilises the local structure.

Next, we turn our attention to the effect of regularization and the choice of embed-

ding on results of classification. From Figure 4.20 to Figure 4.28, we compare the neg-

ative eigenfraction and the 1NN error rates obtained with regularised and unregularised

versions of Ricci flow on the two embedding schemes. The error rates of the final dis-

similarities obtain with the regularised and unregularised Ricci flow are summarised in

Table 4.2. Error0, Error1, RError1, Error2, RError2 individually refer to the error rate of

original non-Euclidean dissimilarity, of the final dissimilarity obtained from the unreg-

ularised Ricci flow with kernel embedding, of the final dissimilarity obtained from the
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regularised Ricci flow with kernel embedding, of the final dissimilarity obtained from the

unregularised Ricci flow with Isomap embedding, of the final dissimilarity obtained from

the regularised Ricci flow with Isomap embedding respectively.

Dataset Error0 Error1 RError1 Error2 RError2
(%) (%) (%) (%) (%)

Chickenpieces-5 34.53 51.59 21.82 44.25 38.22
Chickenpieces-10 16.14 48.17 8.67 35.42 17.68
Chickenpieces-15 7.40 44.81 5.84 21.44 5.19
Chickenpieces-20 6.28 41.30 4.63 22.73 6.44
Chickenpieces-25 4.26 36.95 4.01 18.80 5.40
Chickenpieces-30 4.48 35.56 6.05 15.35 5.38
Chickenpieces-35 6.28 36.32 6.05 16.37 4.71
Chickenpieces-40 8.74 32.29 9.19 20.18 8.07
CoilYork 23.26 46.15 24.13 36.57 25.86

TABLE 4.2: 1NN Classification errors of the original dissimilarity (Error0) , of the final
dissimilarity of the unregularised Ricci flow with kernel embedding (Error1) and the
regularized Ricci flow with kernel embedding (RError1), the Ricci flow with Isomap
embedding(Error2) and the unregularised Ricci flow with Isomap embedding(RError2).

Dataset Pos Error0 Error1 RError1 Error2 RError2
(%) (%) (%) (%) (%) (%)

CoilYork (3NN) 34.38 29.17 44.44 28.12 35.76 27.78
CoilYork (5NN) 35.42 27.08 45.49 33.68 32.64 25.69
CoilYork (libSVM) 37.16 45.14 39.93 30.91 26.39

TABLE 4.3: CoilYork Classification errors of the positive subspace dissimilarity (Pos),
the original dissimilarity (Error0) , the final dissimilarity of the unregularised Ricci flow
with kernel embedding (Error1) and the regularised Ricci flow with kernel embedding
(RError1), the Ricci flow with Isomap embedding(Error2) and the unregularised Ricci

flow with Isomap embedding(RError2).

The first point to note is that for both the kernel embedding and Isomap embedding

methods, we obtain better classification results when heat kernel regularisation is used. In

the unregularised versions of Ricci flow, the application of the Ricci flow scheme caused

the classification error to increase with respect to iteration number. The regularised ver-
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sion of the Ricci flow on both embedding preserves the grouping structure of data, as

the classification error almost stay the same. Overall, the results from the regularised

kernel embedding is slightly better than those from the regularisd Isomap embedding. Fi-

nally, the choice of embedding scheme strongly affects the rate of decrease of the negative

eigenfraction, with Isomap giving a faster rate of decrease with iteration number than the

kernel embedding. However, for the kernel embedding, the use of regularisation has little

effect on the rate of decrease. For the Isomap embedding, the rate of decrease is similar

to each other when the Ricci flow process starts. And in the middle of process, the rate of

decrease for the regularised Ricci flow with Isomap embedding is smaller than that of the

unregularised version of Ricci flow with Isomap. Hence the negative eigenfraction for the

unregularised version converges earlier and converges to a slight higher value than that of

the regularised one illustrated in the (C) subplots from Figure 4.20 to Figure 4.28.

Since our objective is to correct the non-Euclidean artefacts and also to preserve the

original distance as much as possible, Figure 4.19 plots the comparison of original non-

Euclidean distances and resulting Euclidean distances after 500 iterations of Ricci flow

with kernel embedding (A), Ricci flow with Isomap embedding (B), Ricci flow with regu-

larised kernel embedding (C), Ricci flow with regularised Isomap embedding (D). (A) and

(C) shows that the Ricci flow embedding preserves global distances and expand local dis-

tances. The expansion is the effects of kernel embedding and Ricci flow process. Since

Ricci flow with Isomap embedding is a combination of Isomap embedding and kernel

embedding, some distances are expanded and some are contracted. The global distances

under Isomap embedding are expanded more than those under kernel embedding, because

the global distances are approximated from edge-connected path which is large than the

original distances over iterations. The regularised version under both schemes slow down

the expansion by smoothing out extreme values of curvatures illustrated by lowest point

in (C) and (D).

Finally we have compared our results with the known manifold embedding technique
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Isomap, those obtained with positive subspaces and those with original distances. Figure

4.29 shows the 1NN error rate as function of the shape parameter L (the segment length).

The best results are obtained with the regularized Ricci flow on kernel embedding. We

have shown in Figure 4.16 that the unregularised version of Ricci flow embedding on both

embedding scheme gives worse results than the purely Isomap embedding, so the regular-

ized Ricci flow embedding performs better than the unregularised version and the results

of the unregularised version are not repeated here. All of the remaining methods give

worse results than applying the classifier to the original distance data. Our regularised

Ricci flow embedding is a potentially good way to transform the non-Euclidean dissim-

ilarity measure to be Euclidean, as the discriminating power of the evolved Euclidean

distance is near to the original non-Euclidean distances.

The above results are evaluated by the 1NN classifier only. Compared to KNN classi-

fier, the decision is determined by the closest neighbour, the locality of estimation is lim-

ited and the decision regions less smoother. We test the results on CoilYork by 3NN clas-

sifier and 5NN classifier using leave one out cross-validation in Table 4.3. The regularised

Ricci flow under Isomap embedding obtain the similarities which get closet classification

results to the original non-Euclidean dissimilarities, better than the dissimilarities from

positive subspace and other Ricci flow embedding emthods. It demonstrates that Ricci

flow with Isomap embedding preserve the local structure of CoilYork data. KNN uses

local information only. Our objective is to correct non-Euclidean dissimilarities so that

the resulting dissimilarities can be analysed by sophisticated geometric machine learning

techniques. Finally We use linear SVM (Support Vector Machine) classifier with default

parameter C = 1 under two folder cross-validation to compare the positive subspace em-

bedding and the four Ricci flow embedding. The classification errors are displayed in

Table 4.3. Since original distances are non-Euclidean and SVM is based on vectors, so

we leave Error0 blank and compare the distances from positive subspace of original dis-

tances and the resulting Euclidean distances from our four embedding methods. It shows
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Ricci flow with Isomap embedding and the regularised version under Isomap embedding

performs the better than the positive subspace. Overall, the experiments on CoilYork data

shows that Ricci flow under Isomap embedding performs better than Ricci flow under

kernel embedding.

(A) Initial curvature (B) Curvature after Ricci flow

(C) Initial regularized curvature (D) Curvature after regularized Ricci flow

FIGURE 4.17: (A)(B)(C)(D) plots initial curvatures from the kernel embedding, the cur-
vatures after Ricci flow with kernel embedding, initial regularised edge curvatures from
heat diffusion and the kernel embedding, the regularised curvatures after Ricci flow with

kernel embedding
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(A) Initial curvature (B) Curvature after Ricci flow

(C) Initial regularized curvature (D) Curvature after regularized Ricci flow

FIGURE 4.18: (A)(B)(C)(D) plots initial curvatures from Isomap embedding, the cur-
vatures after Ricci flow with Isomap embedding, the initial regularised edge curvatures
from heat diffusion and Isomap embedding, the regularised curvatures after Ricci flow

with Isomap embedding
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(A) Kernel embedding (B) Isomap embedding

(C) Regularised kernel embedding (D) Regularised Isomap embedding

FIGURE 4.19: (A)(B)(C)(D) plots 500 random pairs of distances before and after 500
iterations of Ricci flow with kernel embedding, Ricci flow with Isomap embedding, Reg-
ularised Ricci flow embedding with kernel embedding and Regularised Ricci flow em-

beddign with Isomap embedding

103



(A) Negative eigenfraction (B) Error rate

(C) Negative eigenfraction (D) Error rate

FIGURE 4.20: (A)(B) show the negative eigenfraction and 1NN error rate during the
iteration of the regularised Ricci flow embedding with kernel embedding for the CoilYork
dataset. (C)(D) show the negative eigenfraction and 1NN error rate during the iteration of
the regularised Ricci flow embedding with Isomap embedding for the CoilYork dataset.
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(A) Negative eigenfraction (B) Error rate

(C) Negative eigenfraction (D) Error rate

FIGURE 4.21: (A)(B) plots the negative eigenfraction and 1NN error rate during
the iteration of the regularised Ricci flow embedding with kernel embedding for the
Chickenpieces-5 dataset. (C)(D) plots the negative eigenfraction and 1NN error rate dur-
ing the iteration of the regularised Ricci flow embedding with Isomap embedding for

Chickenpieces-5.
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(A) Negative eigenfraction (B) Error rate

(C) Negative eigenfraction (D) Error rate

FIGURE 4.22: (A)(B) plots the negative eigenfraction and 1NN error rate during
the iteration of the regularised Ricci flow embedding with kernel embedding for the
Chickenpieces-10 dataset. (C)(D) plots the negative eigenfraction and 1NN error rate
during the iteration of the regularised Ricci flow embedding with Isomap embedding for

the Chickenpieces-10 dataset.
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(A) Negative eigenfraction (B) Error rate

(C) Negative eigenfraction (D) Error rate

FIGURE 4.23: (A)(B) plots the negative eigenfraction and 1NN error rate during
the iteration of the regularised Ricci flow embedding with kernel embedding for the
Chickenpieces-15 dataset. (C)(D) plots the negative eigenfraction and 1NN error rate
during the iteration of the regularised Ricci flow embedding with Isomap embedding for

the Chickenpieces-15 dataset.
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(A) Negative eigenfraction (B) Error rate

(C) Negative eigenfraction (D) Error rate

FIGURE 4.24: (A)(B) plots the negative eigenfraction and 1NN error rate during
the iteration of the regularised Ricci flow embedding with kernel embedding for the
Chickenpieces-20 dataset. (C)(D) plots the negative eigenfraction and 1NN error rate
during the iteration of the regularised Ricci flow embedding with Isomap embedding for

the Chickenpieces-20 dataset.
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(A) Negative eigenfraction (B) Error rate

(C) Negative eigenfraction (D) Error rate

FIGURE 4.25: (A)(B) plots the negative eigenfraction and 1NN error rate during
the iteration of the regularised Ricci flow embedding with kernel embedding for the
Chickenpieces-25 dataset. (C)(D) plots the negative eigenfraction and 1NN error rate
during the iteration of the regularised Ricci flow embedding with Isomap embedding for

the Chickenpieces-25 dataset.
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(A) Negative eigenfraction (B) Error rate

(C) Negative eigenfraction (D) Error rate

FIGURE 4.26: (A)(B) plots the negative eigenfraction and 1NN error rate during
the iteration of the regularised Ricci flow embedding with kernel embedding for the
Chickenpieces-30 dataset. (C)(D) plots the negative eigenfraction and 1NN error rate
during the iteration of the regularised Ricci flow embedding with Isomap embedding for

the Chickenpieces-30 dataset.
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(A) Negative eigenfraction (B) Error rate

(C) Negative eigenfraction (D) Error rate

FIGURE 4.27: (A)(B) plots the negative eigenfraction and 1NN error rate during
the iteration of the regularised Ricci flow embedding with kernel embedding for the
Chickenpieces-35 dataset. (C)(D) plots the negative eigenfraction and 1NN error rate
during the iteration of the regularised Ricci flow embedding with Isomap embedding for

the Chickenpieces-35 dataset.
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(A) Negative eigenfraction (B) Error rate

(C) Negative eigenfraction (D) Error rate

FIGURE 4.28: (A)(B) plots the negative eigenfraction and 1NN error rate during
the iteration of the regularised Ricci flow embedding with kernel embedding for the
Chickenpieces-40 dataset. (C)(D) plots the negative eigenfraction and 1NN error rate
during the iteration of the regularised Ricci flow embedding with Isomap embedding for

the Chickenpieces-40 dataset.
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FIGURE 4.29: Error rate from 1NN for chicken pieces dataset cost =45

4.7 Summary

In this chapter, we presented two methods to rectify a set of non-Euclidean dissimilarities

to make it more Euclidean. Our approach is to embed the objects represented by dissim-

ilarities into curved manifold and correcting the non-Euclidean artifacts by evolving the

curved manifold to Euclidean space with zero sectional curvature. We model the manifold

consisting of individual edges with constant sectional curvature. We use the Ricci flow

process and develop a way to evolve the manifold by reducing the sectional curvature.

In the piecewise Ricci flow embedding, we model each edge as a patch with constant

curvature and the sectional curvature is estimated in terms of the geodesic distances and

Euclidean distances. The Euclidean distance is ccomputed from the kernel embedding

and the Isomap embedding. The geodesic distance is updated by evolving the sectional
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curvature and fixing the Euclidean distances. This allows the geodesic distance move

towards the Euclidean distance.

In the regularized Ricci flow embedding, we use heat kernel process as a regularization

process to smooth out the extreme curvatures caused by the kernel embedding and the

Isomap embedding. We build a dual graph which allows the regularization process smooth

sectional curvatures on edges.

We experimentally applied our piecewise Ricci flow method to the Chickenpieces data

and the CoilYork data, we demonstrate that the distance measures can be transformed into

a Euclidean space, but with some loss of discriminating power. Using the Isomap embed-

ding schemes gives good performance, but the performance is worse when the kernel

embedding is used. The loss of information is caused by the effect of the Ricci evolution

process as it is applied independently on each edge and ignores the local structure of the

manifold.

Hence, one way to improve this is to maintain local structure during the Ricci flow

smoothing process. Thus we have developed the regularized Ricci flow embedding. When

heat kernel regularization is used, the local ranking of distance measures (or the grouping

of the data) is preserved, and better performance is achieved from 1NN classifier. The

regularised Ricci flow has two advantages. First, it delivers data in a form so that various

geometric classification methods can be applied directly to the data. Secondly, it preserves

informative content hidden in the negative eigenvalues of non-Euclidean dissimilarity for

classification, which is usually ignored by other Euclidean embeddings. These advantages

are demonstrated by obtaining similar or even lower error rates from corrected data than

those of the original data with 1NN classifier. The Ricci flow evolution minimise the

curvatures, when the curvatures reach zero, then the geodesic and Euclidean distances are

equal and the negative eigenfraction is zero.

Overall, our experiments show that both the piecewise Ricci flow embedding and

the regularized Ricci flow embedding are able to rectify non-Euclidean dissimilarities
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into a set of Euclidean dissimilarities. Moreover, the regularised Ricci flow with both

embedding schemes preserve the local structure of data for grouping, while the resulting

dissimilarities from the piecewise Ricci flow embedding loss some discriminative power

for classification.
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Chapter 5

Extended Work on Ricci Flow

Embedding

5.1 Introduction

In previous chapters, we have proposed two methods based on Ricci flow to rectify the

non-Euclidean distances: the piecewise Ricci flow embedding and the regularised Ricci

flow embedding. In the piecewise Ricci flow embedding, we experimentally find that the

structure of data is distorted, due to the piecewise nature of the manifold. Although this

problem can, to some extent, be remedied by regularizing the edge curvature, the issue

of preserving structure persists. Moreover, we find out that the embedding methods af-

fect the magnitude of curvature. To overcome these problems, we turn to a tangent space

representation of data using the exponential map and log map. Firstly, we can reduce the

reliance on the piecewise embedding and its effect on individual edges by using the tan-

gent space representation. Secondly, the tangent space representation provides a means

of preserving the distances between the points on the manifold and the origin of the map.

This allows us to flatten the manifold to some extent while preserving the local struc-

ture of the data. We developed a tangent space based embedding method which use the
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spherical embedding to compute the initial curvatures of local patches. We demonstrate

its applicability for correcting non-Euclidean dissimilarity on a set of distances from the

Chickenpieces dataset.

When we investigate the local fluctuations in edge curvature at the piecewise manifold

embedding, it is found that the kernel embedding and Isomap embedding do not restore

the exact original Euclidean distances between close points on the embedded space. This

leads to incorrect curvature estimation for the manifold, where the objects reside on. The

computed curvature is affected by the embedding methods we used for computing the

Euclidean distance (such as kernel embedding and Isomap embedding we used in previous

chapter) in the ambient space for each pair of objects lying on the manifold. Curvature

estimation is a key component in our Ricci flow framework. In order to remove the effects

of the Euclidean embedding and complement our Ricci flow embedding framework, we

explored a new way to compute the curvature of manifold, where the objects reside, from

only pairwise distances, without a priori specifying the structure or the dimensionality of

the manifold. We demonstrate its effectiveness for estimating curvatures on six sets of

dissimilarity matrices, whose elements are geodesic distances between points which lie

on a two dimensional sphere.

5.2 Tangent Space Reprojection

In the case of piecewise manifold, we update the sectional curvature independently for

individual edge and ignore the connected relation among edges. To capture the local

structure, we use heat kernel to regularize the curvature in the previous Chapter. In this

section we aim to reduce the reliance on the piecewise embedding and its effect on in-

dividual edges. Similar to previous approaches, we commence by representing the dis-

similarity data using a weighted graph and embed the graph onto a manifold which is

embedded in some Euclidean space. The embedding manifold is assumed to contain a set
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FIGURE 5.1: Illustration of the tangent space reprojection.

of local patches with constant sectional curvatures. We share the same idea of correcting

non-Euclidean dissimilarities by flattening the manifold where the data points are lying

as the two techniques in previous chapter. Rather than assuming an individual edge as a

local patch, here we consider a 2-degree nearest neighbour graph as a local patch. We use

the spherical embedding to obtain the sectional curvature of the local patch. Similarly, we

evolve the hyperspherical patches under Ricci flow. With the tangent space representation,

we first map the local patch centered from a data point (the reference point) to the tangent

space passing through the reference point, and then map the local patch back to a slightly

flattened (or inflated) hypersphere. Finally we stitch local patches to get a smoothed out

global embedding manifold. This is the idea of our third Ricci flow embedding technique,

the tangent space reprojection, which is illustrated in Figure 5.1
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5.2.1 Spherical Embedding

Spherical embedding [122] provides a means by which to embed objects represented in

terms of dissimilarity data onto constant curvature manifolds. This approach maps the

non-Euclidean dissimilarity on to a hypersphere whose radius of curvature is determined

by the dissimilarity data. It embeds the dissimilarity between objects onto a metric space.

This approach finds out the radius of the curvature by an optimization problem on the

smallest eigenvalues of a similarity matrix. On a hypersphere, the geodesic distance be-

tween two points is the length of the arc of the great circle on the hypersphere that con-

nects the two points. Suppose that the tangent vector to the manifold undergoes a change

in direction of θij as we move along a connecting arc between the two points, then the

distance between the two points is defined as

dij = rθijwhere r is the radius (5.1)

We consider the coordinates of object on a hypersphere with radius r in the ambient

Euclidean space as xi, i = 1, 2, · · · , n and the coordinate origin at the center of the

hypersphere. Thus a point can be represented by a position vector xi with length r, the

angle between xi and xj is θij . Then the inner product is defined as

〈xi, xj〉 = r2 cos θij = r2 cos
dij
r

(5.2)

The above defined the elements of inner product matrixZ = XXT whereX = (x1|x2| · · · |xn).

Because the embedding (ambient) space has dimension n− 1, X is n points with dimen-

sion n− 1 and Z is an inner product of points (vectors) in the Euclidean space, Z should

be positive semi-definite with rank n − 1. It means Z should have a single zero eigen-

value λ0 which is the smallest eigenvalue. In this way, the radius of the curvature can be

found by minimising the magnitude fo the smallest eigenvalue λ0 of the inner product ma-
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trix Z(r). The following equation presents the optimisation function over r, because the

smallest eigenvalue is determined by r and Z. This is how the curvature of the embedding

hypersphere is related to the eigenvalues of the inner product matrix.

r∗ = arg min
r
|λ0[Z(r)]| (5.3)

After locating the optimal radius, the embedding coordinates are obtained through the

eigendecomposition of the inner product matrix,

X = Λ
1
2 Φ (5.4)

where Λ is the diagonal matrix with the ordered eigenvalues of the inner product matrix

Z and Φ is the matrix with the ordered eigenvectors as columns.

We choose the spherical embedding for three reasons. Firstly, spherical embedding

estimates the sectional curvature of the local patch since the radius is found out during

the embedding process. Secondly, due to the geometric properties of the hypersphere,

there are explicit functions fit the exponential map and log map, which is very important

for flattening local patches. Thirdly, the spherical embedding maps objects in terms of

dissimilarity data in a metric space and preserves the local structure of the data [122].

Please note the spherical embedding is appropriate for embedded manifold with pos-

itive curvatures. For manifold with negative eigenvalues, there is counterpart hyperbolic

embedding. Because hyperbolic space has only one negative dimension and the em-

bedding space has dimension n − 1, the inner product of points (vectors) should have

one negative eigenvalue and a zero eigenvalue (the second smallest eigenvalue), with the

rest positive. Similar to spherical embedding, the curvature of hyperbolic embedding is

searched by minimising the magnitude of the second smallest eigenvalues of the inner

product.
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5.2.2 Tangent Space, The Exponential and Log Map

Flattening a local patch on a hypersphere can be achieved by inflating the hypersphere

with the means of Ricci flow. In addition to this, we need to locate the points on the

inflated sphere and preserve the local distances for correcting a set of non-Euclidean dis-

similarities to a set of Euclidean dissimilarities. To achieve this, we require an important

tool of Riemannian geometry, which is the exponential map and the log map [122]. On

a Riemannian manifold, the exponential map, denoted by Expp[. ], maps points on the

tangent plane TpM , which passes through the reference point on the manifold, to points

on the manifold along the geodesic to the reference point. The map has an origin (or

reference point) which defines the point at which we can construct the tangent plane and

the tangent vector of the manifold. Figure 5.2 shows an example of exponential map on

a sphere. Let TpM be the tangent space passing through m on the manifold, Xp be the

position vector with origin at m on the tangent plane, the Euclidean distance from point

Xp to m on TpM is given by dE(Xp,m) = ||Xp|| = 〈Xp, Xp〉
1
2 . Here the point m is the

origin of the map and is mapped onto the origin of the tangent space. The exponential

of Xp along the geodesic in the direction of Xp is the point Yp lying on the manifold so

that geodesic distance between Yp and m equals to ||Xp||. The inverse of the exponential

map is the Log map, denoted by Logp[. ], which maps points from the manifold to points

in the tangent space passing the reference point, i.e. mapping Yp to Xp. An important

property of these map is their ability to preserve distances from the reference point. That

is, the distance between the origin of the map and a point on the manifold is the same as

the Euclidean distance between the mapped point on tangent space [122]. Thus we have

Yp = Expm(Xp) (5.5)

Xp = Logm(Yp) (5.6)

dG(Yp,m) = dE(Xp,m) (5.7)
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FIGURE 5.2: The exponential map and log map

The distance dG is the geodesic distance on the manifold and dE is the Euclidean distance

on the tangent space. Note that Expm[. ] in 5.5 and Logm[.] in 5.6 are a formal notation

and do not represent the normal log and exp functions.

On the spherical manifold, we have

dG(yp,m) = rθ (5.8)

dE(xp,m) = |xp| (5.9)

〈xp, ym〉 = 0 (5.10)

where yp is the coordinate vector for point p on the manifold, xp is the coordinate vector

for point p in the tangent space, m is the reference point or origin of the map, r is the

radius of the sphere, ym and yp be the position vector on the spherical manifold whose

length equals to the radius of the sphere (the origin is the center of the hypersphere). i.e.,

|ym| = |yp| = r. And θ = cos−1 〈ym,yp〉
r2

is the angle between these vectors. Hence by

solving the above equations, the coordinate xp on the tangent plane mapped from a point

yp on the spherical manifold using the exponential map is: [122]

xp =
θ

sin θ
(yp − ym cos θ) (5.11)
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the coordinate yp on the spherical manifold mapped from a point xp on the tangent plane

using the log map is:

yp = ym cos θ +
sin θ

θ
xp. (5.12)

This set of transformations is illustrated in Figure 5.2. In the following section, we make

use of the above relations to update new coordinates on the inflated sphere and on compute

the new distances on the evolved local patch.

5.2.3 Updating distances

Our aim is to flatten the global manifold by gradually smoothing out the local patches.

This is achieved by representing sub-graphs of objects on the local hyperspheres, mapping

the points to the tangent space through the log-map function, reducing the curvatures (i.e.,

increasing the radii) of the individual hyperspherical patches, and then mapping the data

back onto the inflated hyperspheres through the exponential-map function. The decrease

in the sectional curvatures of the hyperspheres is determined by the Ricci flow [14] and

follows the equation 4.21 in section 4.3 in previous chapter.

Once, the inflation and reprojection onto the hypersphere are complete, we compute

the new coordinate vector of a point on the inflated hypersphere based on the old coordi-

nate vector on the original hypersphere by using Equation 5.12:

ypi+1
= (1 + 2Kit)

1
2 (ymi

cos θi+1 +
sin θi+1

sin θi
(ypi − ymi

cos θi)). (5.13)

where the angle on the original sphere is θn = Kn cos−1〈ym, yp〉.

As the geodesic distances to the origin are preserved, we can update the angles on the

inflated sphere

θi+1 =
K

1
2
i+1

K
1
2
i

θi (5.14)

where Ki is the original curvatures, Ki+1 is the curvature of the inflated spheres, θi is the
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initial angle on the original sphere.

In the next step, we compute new geodesic distances for the points on the inflated hy-

persphere. Reprojection under the log map preserves the geodesic distances to the origin

of the tangent space. However, the geodesic distances between points are modified by the

inflation and reprojection. The updated geodesic distances on the inflated hypersphere can

be computed using the new co-ordinates on the inflated hypersphere. The update equation

for the geodesic distance between point m and p on the inflated hypersphere is

dGmp = ri+1θi+1 =
cos−1(〈ymi+1

, ypi+1
〉Ki+1)

K
1
2
i+1

. (5.15)

This is how the geodesic distance between pairs of objects internal to the patch are updated

using Ricci flow and tangent plane to evolve the patch locally on a spherical manifold. The

geodesic distance between pairs of objects external to the patch and objects internal to the

patch are approximated by adding the geodesic distances over the edge-connected path

between the objects.

5.2.4 The Algorithm

Given a set Y = {y1, · · · , yN} of N objects and a dissimilarity measure d, a dissim-

ilarity representation is an N × N matrix DG with the elements dG(u, v) representing

the pairwise geodesic distance between objects yu and yv. Figure 5.1 demonstrates the

algorithmic steps. The following algorithmic steps can be used to perform Euclidean

rectification of the distance matrix, and suppress its non-Euclidean artefacts:

1. Construct a local patch for a second order KNN graph, consisting of the first and

second neighbours of the reference object.

2. Perform hyperspherical embedding to obtain the initial curvature and the coordi-

nates of the objects in the local patch.
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3. Update the curvature with a small time step derived from Equation 4.21 in Section

4.3.

4. Obtain the new coordinates on the inflated hypersphere using Equation 5.13.

5. Obtain the new geodesic distance matrix dGi+1
for the local patch using Equation

5.15. The distances between pairs of objects external to the patch are approximated

using the old dissimilarity matrix. The geodesic distance between pairs of objects

external to the patch and objects internal to the patch are approximated by adding

the geodesic distances over the of edge-connected path between the objects.

6. Obtain the updated global distance matrix D(1)
G containing rectified geodesic dis-

tances between objects, and repeat from step 1 until DG stabilises, i.e. there are no

further decreases in the negative eigenfraction. Ideally, the centralized Gram matrix

should have no negative eigenvalues.

We have shown how to evolve a patchwise hyperspherical manifold so as to rectify such

artefacts in a dataset. The method uses a tangent-space reprojection method to inflate the

local hyperspherical patches, while aiming to maintain the consistency of the pattern of

geodesic distances.

5.3 Curvature Estimation from Distances with Least Square

Fitting

Previously, we showed three ways for correcting non-Euclidean dissimilarities using the

Ricci flow. During the Ricci flow process, the numeric estimation of sectional curvatures

is a key component. In the piecewise Ricci flow algorithm, we estimate the curvatures in

terms of the Euclidean distances and the geodesic distances. The Euclidean distance is

estimated from the distance preserving embedding: the kernel embedding and the Isomap
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embedding. Experimental results in Chapter 4.6 show that the curvature estimation is

affected by the embedding and the curvature could be extreme. This curvature estimation

is improved to some extent by the heat kernel process during the regularised Ricci flow

algorithm. In the tangent space reprojection, the curvature is estimated from the spherical

embedding. To remove the effects of the embedding methods on sectional curvature,

in this section we shows a way to compute the local sectional curvature from distances

only. We model the local manifold with constant curvatures as a portion of hypersphere

and find the sectional curvature in terms of the volume and the dimensionality of the

space in a simplified form. We first estimate the dimensionality of the space by using the

least squares method and then use the kernel density estimation to calculate the accurate

volume for computing the sectional curvatures.

We consider objects of interest are on a curved manifold and the elements from the in-

put non-Euclidean dissimilarities are the geodesic distances. The curved manifold thought

to consist of local patches with constant sectional curvature. Our aim in this section is to

estimate the curvature in the local neighbourhood from the distances. We model the lo-

cal patch as part of a hypersphere and simplify the relationship of the volume and the

local patch by using a local Taylor expansion. We find out that the volume of the local

patch is determined by the dimensionality, the curvature and the enclosing radius of the

local patch. As the given inputs are only pairwise distances between objects, we do not

know the dimensionality of the manifold (patch), on which the objects lie. In order to

estimate the dimensionality, we make two assumptions. Firstly we assume that the points

in the neighbourhood are close enough, and the enclosing radius of the local patch is

small; thus we are able to simplify the computation of the volume by using its first order

expansion (of the volume). Secondly, we assume that the points in the neighbourhood

are equally spaced, so we can infer the dimensionality with the number of points in the

neighbourhood. After we find out the dimensionality, we can calculate the volume by

using the kernel density estimation and compute the curvature by least-squares in terms
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of the volume and the dimensionality.

5.3.1 Kernel density estimation

To estimate the volume of the local patch, we need to estimate the probability density of

the data. Although we have the distances, the data distribution is not given. Kernel density

estimation is a non-paramtric density method and is frequently employed because it does

not need to assume the form of the data distribution [21]. Let x1, x2, · · · , xn be sample

point in the d-dimensional space from an unknown density, then its kernel estimate on the

density is

f(x;σ) =
1

nσd

n∑
i=1

K(
x− xi
σ

) (5.16)

where K() is the kernel function, σ is the smooth parameter, also called the bandwith.

There are a various choices among kernel functions such as Gaussian, triangular and

rectangular kernel. A kernel function computes the contribution of an individual sample

to the overall density. Here we choose the smoothing Gaussian function as the kernel

K(
x− xi
σ

) =
1

(σ
√

2π)d
exp

[
−|x− xi|2

2σ2

]
(5.17)

Since the distances are given, then the density for point can be computed as: xm is

pm =

∑n
i=1 exp(−D2(m, i)/2σ2)

n(
√

2π)d
(5.18)

There exists extensive studies on how to optimally choose the kernel width, such as

parametric methods and heuristic estimates [105]. For this work, we simply fix σ to

be the squared nearest-neighbour distance by multiplying the maximum squared dis-

tances with a very small constant. We randomly choose a small constant 0.07 here, so

σm = 0.07 ∗ maxD(m, :). We prefer the Gaussian kernel for two reasons. Firstly, the

Gaussian kernel only requires one coefficient, the scale variable σ, to determine the ker-
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nel function. Second, using distances is straightforward, since our data is represented by

pairwise distances (not in vector form).

5.3.2 Enclosed Volume as a Function of Curvature

Locally, the manifold is of constant curvature K. We start with the simple two dimensional

surface of a sphere, the volume element is

dS2V = r2 sin θdθ1dθ2 = K−1 sin θdθ1dθ2 (5.19)

Without considering the ambient space, the objects of interest are considered to lie on

a small portion of a sphere abstracted by the local neighbourhood graph on the sphere

surface. The shape of the local sphere in three-dimensional Euclidean space (the sphere

with a polar angle θ2 fixed) is like an icecream cone. Let the surface radius (the top of a

cone) R = rθ2 = θ1√
K

, then the polar angle will be θ1 = R
√
K. Thus the volume of the

local patch with the surface radius R can be computed as:

VS2 = K−1
∫ R

√
K

θ1=0

∫ 2π

θ2=0

dS2V (5.20)

= 2πK−1
∫ R

√
K

θ1=0

sinxdx (5.21)

Now if we extend this to high dimensionality, the volume element of a d-sphere is

dSdV = K−d/2 sind−1 θ1 sind−2 θ2θ2 · · · sin θd−1dθ1dθ2 · · · dθd (5.22)
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and therefore the volume of a local patch of radius R is

Vd = K−d/2
∫ R

√
K

θ1=0

∫ π

θ2=0

· · ·
∫ 2π

θd=0

dS2V (5.23)

= 2πK−d/2

{
d−2∏
k=1

∫ π

0

sink xdx

}∫ R
√
K

θd=0

sinxdx (5.24)

By integration, ∫ π

0

sink xdx =


(k−1)(k−3)···1
k(k−2)···2) π k is even

(k−1)(k−3)···2
k(k−2)···3) π k is odd

(5.25)

so replace the product of the above equation with the usual Gamma function, we can find

that

Vd =
2πd/2K−d/2

Γ(d/2)

∫ R
√
K

θd=0

sinxdx (5.26)

The approximation to the volume in the local neighbourhood of a point can be simplified

by using a local Taylor expansion of sinx,

Vd =
2πd/2K−d/2

Γ(d/2)

∫ R
√
K

θd=0

sind−1 xdx (5.27)

=
2πd/2K−d/2

Γ(d/2)

{
Kd/2Rd

d
− (d− 1)Kd/2+1

6(d+ 2)
Rd+2

}
(5.28)

=
2πd/2

dΓ(d/2)
Rd

{
1− d(d− 1)K

6(d+ 2)
R2

}
(5.29)

The equation shows that the volume of the local neighbourhood encolsed by a particular

radius is determined by the dimensionality of the space d and the local sectional cur-

vature K. To find out the curvature, we must know the volume and the dimensionality

of the manifold. In order to accurately calculate the volume, we must account for the

non-uniform spacing, unless the points are equality distributed. Although the distances

between points are given, we can not infer the volume surrouding a point unless the di-

mensionlarity of the space is given. Therefore the volume can not be used directly to
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FIGURE 5.3: Illustraion of the volume estimation.

calculate the curvature without the dimensionlity.

In order to estimate the dimensionality, we need a second assumption, that the points

are uniformly distributed with density p close to the point of interest illustrated in Figure

5.3. If the points are equality distributed, the number of points we expect is equal to the

density times the volume. If the density is high (the points in the neighbourhood are close

enough to the point of interest, the enclosing radius is small), we can use the first order

expansion of the volume only

N = pV = ρ
2πd/2

dΓ(d/2)
Rd (5.30)

and taking logs:

logN = log

[
2ρπd/2

dΓ(d/2)

]
+ d logR (5.31)

so the dimensionality of the space d is the gradient of the logR/ logN graph, but we must
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use only the closest points to the point of interest so that the two assumptions hold. Using

least-squres, we can fit this function to find coefficients d. Please note Equation 5.30 is

independent of curvature and is used to estimate the dimensionality of manifold. With

this first estimation of space dimensionality, the volume of manifold can be estimated.

Once the dimensionality is calculated, we can calculate the local density of points ρm

using a kernel density estimation. The goal of density estimation is to approximate the

probability density function of a random variable. From this we can compute the volume

V =
∑

m
1
ρm

. Finally taking logs of V on both size of equation Equation 5.29, we find

log V = log

[
2ρπd/2

dΓ(d/2)

]
+ d logR− d(d− 1)K

6(d+ 2)
R2 (5.32)

Using the least squares curve fitting, we can determine the first coefficient α = d which

is the gradient of logR/ log V that best fits the data. This is the second estimation of

space dimensionality. Compare to the first estimation based on Equation 5.31, the second

estimation is likely to be better than the first because of the greater amount of data. The

first estimation is used for calculating the volume from kernel density which is more

accurate than using the number of equally-spaced points locally in Equation 5.30. From

the second estimatation of the space dimensionality, we can determine the curvature K

from the second coefficient β = −d(d−1)K
6(d+2)

.

5.4 Experiments

In previous section, we present implementation details for tangent space reprojection,

which is extended Ricci flow on constant curvature of elliptic background geometry for

correcting non-Euclidean dissimilarity. We have applied the tangent space reprojection

on the Chickenpieces dataset to demonstrate its applicability.

We also explore the geometric properties of the non-Euclidean dissimilarity data by
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FIGURE 5.4: Sphere data.

estimating the sectional curvature of the manifold, on which the objects in terms of dis-

similarity reside. As the distances of objects on sphere are metric but non-Euclidean,

and the sphere is one of few geometries of which the sectional curvature is known and

easy to simulate, we use geodesic distances of objects sampled on 2D sphere to test our

curvature estimation technique. We thoroughly tested our algorithms on the dissimilarity

data, whose elements are geodesic distances among points lying on a 2D sphere surface

with two different distribution, namely random distribution and uniform distribution, for

estimating the curvature of the manifold from distances only.

Sphere data The coordinate of a point on a sphere with radius R is

x = (r sinφ sin θ, r cosφ sin θ, r cos θ)T . We generate the spherical coordinates for a set

of n point which are uniformly distributed over 2D sphere by generating n uniformly

distributed values respectively for p ∈ (0, 1) and q ∈ (0, 1), let φ = 2πp, θ = cos−1(2q −

1) [121]. For generating the spherical coordinates for a set of n point which are randomly

(non-uniformly) distributed over 2D sphere, we generate random values for θ and φ from

the uniform distribution on the intervals φ ∈ [0, 2π], θ ∈ [0, π]. Then the geodesic distance

of pairwise points d(u, v) = r cos−1〈xu, xv〉 is regarded as the weight of edge between u
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and v. In the experiments, We use six sets of dissimilarity matrices, whose elements are

the pairwise geodesic distances among 500 points sampled on a unit sphere which centers

at the origin illustrated at Figure 5.4.

5.4.1 Experiments on Tangent Space Reprojection

In tangent reprojection, we model the manifold consisting of local patches on hyper-

sphere and aim to smooth out the manifold by flattening local patches. We have one set

of distances on local patches, representing distances between objects internal to the local

patches and the original distance matrix, which represent geodesic distance between ob-

jects on the manifold. We apply the tangent reprojection on a set of distances from the

Chickenpieces data (L = 5, cost = 45). Figure 5.5 displayes the experimental results.

It shows the negative eigenfraction of all distances, the 1NN error rate and the negative

eigenfraction of distances from the local patches as the the distance matrix is evolved

under the tangent reprojection. Figure 5.5 (C) shows that the negative eigenfraction for

distances between points on each local patch is decreased in each iteration, indicating

the evolution has flattened the local patches. The negative eigenfraction for the whole

distance matrix drops from 22% to 15% and then increases again illustrated in Figure

5.5 (A)(B), indicating that the evolution has succeed in flattening the manifold, but then

deteriorates. The deterioration is caused by the path-based approximation of geodesic

distances between internal and external objects on the local patches. Each local patch is

nearly Euclidean after the tangent space Ricci projection, we use the geodesic distances

for the shortest path to connect the local patches, which makes the global patch more

curved. These distances have been inflated more rapidly than the local distances on the

hyperspherical surface. This exaggerates the overall curvature. With more points, the

intrinsic geodesic distances between patches can be better approximated by the graph dis-

tances and becoming more accurate. The accuracy depends on the geometric structure of

the manifold and the density of points. We expect a global manifold can be flattened by
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locally flattening curved patches and connecting flattened patches given enough points.

5.4.2 Investigation on The Curvature Computation from Kernel Em-

bedding and Isomap Embedding

Since the previous experiments in Chapter 4 show that the embedding methods affect the

magnitude of curvatures, we first investigate the effects of the kernel embedding and the

Isomap embedding for estimating curvature in the piecewise Ricci flow embedding. In the

next step, we present the experimental results of the least square fitting method introduced

in this Chapter.

We apply the curvature estimation techniques from the kernel embedding and Isomap

embedding, which are used in the piecewise Ricci flow embedding on a sphere dataset.

The sphere datasets is a 500× 500 dissimilarity matrix, whose elements are the pairwise

distances among 500 points which are uniformly distributed on a half sphere. Figure 5.6

plots all pairs of distances between 500 points. For the kernel embedding, the distance

matrix has negative eigenvalues. The kernel embedding removes the eigenvectors corre-

sponding to the negative eigenvalues, thus the embedded Euclidean distances is always

larger than the geodesic distances, and the sphere geodesic distances are larger than the

original Euclidean distances, this is why the embedded Euclidean distances are larger than

the original Euclidean distances which is illustrated in Figure 5.6 (A). This makes the cur-

vatures used in the piecewise Ricci flow embedding based on equation 4.24 in previous

Chapter are always negative, however the curvatures on the unit sphere should be positive.

Another fact is that the kernel embedding preserves the distances of the distant points,

thus the curvatures of distant points have smaller magnitude than that of local points, that

is, the distant edges are less curved than the local edges. During the Ricci flow process,

the stronger the curvature, the faster the distance is extending (for negative curvature

and contracting for positive curvature). Thus, after some iterations of the Ricci flow, the

corrected distance of the local points exceed that of the distant points, which destroy the
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(A) Negative eigenfraction (B) 1NN error rate

(C) Local negative eigenfraction

FIGURE 5.5: (A)(B)(C) show the negative eigenfraction of all distances, the 1NN error
rate and the negative eigenfraction of local patches during the iteration of the tangent

space reprojection for the Chickenpieces-5.

135



(A) Euclidean distances (B) Euclidean distances

(C) Curvature (D) Curvature

FIGURE 5.6: (A) (B) show the embedded Euclidean distances with the kernel embed-
ding and the Isomap embedding as a function of the Euclidean distances based on the
initial configuration; (C) (D) show the curvatures using the kernel embedding and the
Isomap embedding respectively as a function of ordered pairwise distances between pairs

of points which are uniformly distributed on half of a unit sphere.
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local structure of the original distances.

For the Isomap embedding, the hopped distance obtained from the neighborhood

graph of the dissimilarity data preserve the geodesic distances of local points. But after

performing MDS (i.e. kernel embedding) on the hopped distance, the distances between

pairs of close points will be stretched (increased), since the kernel embedding preserves

the distances of the distant points. In the end, most of the embedded Euclidean distances

would be still larger than the geodesic distances. This makes the shape of the curvatures

distribution computed by the Isomap embedding similar to that obtained by the kernel

embedding illustrated in Figure 5.6 (C)(D). Hence part of the curvature estimated from

the Isomap embedding are negative as well. During the Ricci flow evolution process, the

same reason here destroys the local structure as the kernel embedding. Figure 5.6 indi-

cates that the curvature estimation does not give the accurate curvature of the manifold.

This is because the Euclidean distances between local points given by the two embedding

schemes are not exactly the embedded Euclidean distances (in 2-sphere manifold, the em-

bedded Euclidean distances are the distances in a 3D Euclidean space) illustrated in 5.6

(A)(B).

5.4.3 Experiments on Curvature Estimation with Least Square Fit-

ting

We have applied our curvature estimation technique based on the least square fitting

method to six sets of dissimilarities. These dissimilarities are constructed such that their

elements are pairwise geodesic distances between points, which are lying on a unit 2D

sphere, on half of a unit sphere and on a quarter of a unit sphere respectively, with two

different distributions, namely uniform distribution and random distribution on the sphere.

The actual curvature on the sphere is 1. Figure 5.7 shows the estimated radius using the

least square curve fitting of volume method from these sphere data. This method gives ra-

dius as 0.9865 for distances between objects uniformly distributed on a unit sphere, 1.007
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for distances between objects uniformly distributed on half of a unit sphere, and 188.281

for distances between objects uniformly distributed on a quarter of a unit sphere. This

shows good approximation for points uniformly distributed on the whole sphere and half

sphere, but for points on the sphere portion less than half sphere, the estimated radius is

very inaccurate. It might be because the local patch is small and nearly flat, so a much big-

ger radius like 188.281 fits it. For the distances from the randomly distributed points on

the sphere, the approximation of radius is far from the true radius, which is not accurate.

This is because the density in small neighbourhoods is not uniformly distributed, which

makes an accurate numeric estimation of the space dimensionality impossible. In our as-

sumption, we do not require globally uniformly distributed but require locally uniformly

distributed for estimating the dimensionality of manifold. The inaccurate estimation of

dimensionality leads to inaccurate density estimation. The dissimilarities are distances

of datapoints randomly sampled from a sphere, thus the second requirement for locally

uniformly distributed datapoints is not satisfied. If we add Gaussian noise, the estimated

dimensionality is expected to be further distorted by the addition of noise. The calculation

for the manifold volume depends on the density. Thus the curvature estimated by fitting

the volume and the diameter using the least square fitting is not working properly for

randomly distributed points on the sphere. If the underlying dimensionality of the man-

ifold is known, the volume would be estimated more accurate and then the least square

fitting method would work. But it is still a challenging problem to find true dimension-

ality of manifold from only pairwise dissimilarities. There exists methods like Isomap

which attempts to predict the dimensionality of manifold. It would be interesting if we

combine some techniques for estimating the space dimensionality with our least square

fitting method for estimating curvatures of manifolds in future work.
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FIGURE 5.7: Left column shows the fitting curves of sphere patch from uniform sam-
pling, right column shows the fitting curves of sphere patch from random sampling.
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5.5 Summary

In this chapter, we extend the Ricci flow embedding framework and develop a new method,

the tangent space reprojection, to rectify a set of non-Euclidean dissimilarities to make it

more Euclidean. We showed in previous chapter that the non-Euclidean artefacts can be

rectified by evolving the curved manifold, on which the objects represented by dissimi-

larities reside. We assume that the manifold is made of individual patches with constant

sectional curvature. Following the same idea, the tangent space projection further develop

the Ricci flow embedding framework by extending the construction of a local patch from

an edge in previous techniques to a 2-degree neighbourhood graph. The experimental

results show that the distances can be corrected to some extent, indicating that the tan-

gent reprojection is not able to correct non-Euclidean dissimilarity into a set of Euclidean

dissimilarity like the piecewise Ricci flow embedding and the regularised Ricci flow em-

bedding. This is caused by the path-based approximation of geodesic distances between

internal and external objects on the local patches.

To remove the effects of the embedding methods on sectional curvature, in this section

we show a way to compute the local sectional section using the least square fitting from

dissimilarties only. We apply our curvature estimation technique to the sphere data. The

experiments shows good approximation for the curvature of the manifold when dissimi-

larities are distances between pairs of points, that are uniformly distributed on the whole

sphere surface and half of sphere surface, but is not accurate for the manifold where

points covers on a quarter of sphere surface. It might be because the local patch is small

and nearly flat, hence it is hard to find a good fit for the volume and the curvatures. It is

impossible to estimate the curvature of a manifold where points are randomly distributed,

because the data points are not necessarily locally uniformly distributed which is against

the second assumptions in our least square fitting method for computing curvature from

distances only..

140



Chapter 6

Conclusions

Dissimilarity is a fundamental way to represent relations between objects. Sometimes it

is the only available representation in pattern recognition when meaningful features are

difficult to extract. This thesis studies several aspects of non-metric or non-Euclidean dis-

similarity data, which violates the metric or Euclidean requirements. Our interest focuses

on the origins of non-metric dissimilarities and subsequent data correction for metric but

non-Euclidean dissimilarity data.

The dissimilarity data in pattern recognition applications is rarely metric or Euclidean.

Only a few special classifiers are available to analyse non-Euclidean data, while lots

of powerful traditional learning classifiers are available for vectorial data. How should

we deal with non-metric or non-Euclidean data? Are the metric violations informative?

Should we correct (embed) them into Euclidean distances so that they are suitable for the

traditional geometric classifiers? Can we find corrections without distortion?

This thesis may answer the first question. To deal with the non-metric dissimilarity

data, we analyse the sources of the metric violations and then perform corresponding data

analysis. For non-metric data which arises from Gaussian noise, there is no direct so-

lution to denoise the data. If its negative eigenvalues are informative for classification,

Ricci flow embedding can be applied on it and the resulting Euclidean dissimilarity data
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might preserve relevant information. For non-metric data which arises from a few outlier

objects, we can remove these noisy objects to restore the Euclideanness of the dissimi-

larity matrix. For metric but non-Euclidean data which resides on a curved manifold, we

can use Ricci flow embedding to rectify them into Euclidean space. Our interest mainly

focuses on the Ricci flow embedding. The overall hypothesis presented in this thesis

was that for the non-Euclidean dissimilarity embedded on a curved manifold with con-

stant curvature, Ricci flow embedding would correct them into Euclidean distances by

flattenning the manifold. To test this hypothesis, a series of experiments were executed

on two sets of dissimilarity data from two public datasets in pattern recognition applica-

tions. These experiments were designed primarily to correct the non-Euclidean distances,

but also to explore and improve our techniques so that the rectified distances preserve

the group structure of non-Euclidean data. The results of these experiments are summa-

rized in the following section, and indicate that the piecewise Ricci flow embedding and

the regularised Ricci flow embedding transform non-Euclidean distance into Euclidean

distance successfully. The tangent space projection corrects non-Euclidean distances to

some extent because of the edge-based estimation for distances between different patches.

The work also demonstrates that piecewise Ricci flow embedding distorts local structure

of data because the Euclidean embedding effects on individual edges. This problem is ad-

dressed to some extent by the regularised Ricci flow embedding. The experiments shows

the regularised Ricci flow embedding preserves local structure of data but is still affected

by the curvature estimation from the Euclidean embedding. We explore the tangent space

representation and curvature estimation to improve the Ricci flow embedding so that the

relevant information hidden in the metric violations are not lost during the correction

process.

The second and fourth questions has been answered in the literature review. The non-

Euclidean violations are informative if the classification results deteriorates by remov-

ing the non-Euclidean artefacts. For such data, the correcting procedures which ignore
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the non-Euclidean characteristics works counter-performance. The Ricci flow embed-

ding tries to preserve the useful information in the Euclidean violations by evolving the

geodesic distances in small step for each iteration. Although it is impossible to embed

non-Euclidean dissimilarity data into vector space without distortion, it is possible to find

a set of vectors such that the local structure of data is preserved by the regularised Ricci

flow embedding. Although individual edge is still affected by the Euclidean embedding

methods (the kernel embedding and the Isomap embedding), the regularised Ricci flow

embedding can locate a set of Euclidean distances, which gives similar or better classifi-

cation performance than the original non-Euclidean distances for the two datasets in our

experiments.

The third question is still an open discussion. Our guideline is that if the correcting

procedure removes useful information for classification, it is better to use the original

non-Euclidean data and design special classifier for the non-Euclidean data instead of

correcting them. If the correcting procedure preserves such information, it is optimal to

correct the data so that many traditional learning tools are available for analysing them.

6.1 Contributions

This thesis includes the novel ideas on the sources detection and the Ricci flow embedding

framework and their related application in real word problems. It has made the following

contributions to the dissimilarity based recognition:

• For analysing the underlying causes of the metric violations, a simple empirical test

is introduced by characterising the shape of the spectrum of the negative eigenval-

ues of the corresponding Gram matrix and the additive constant required to render

it metric. We use this method to investigate the possible sources of non-metric be-

haviours on various non-metric or non-Euclidean dissimilarity data. Besides this,

a new measure was introduced that assesses the contribution of each object to the
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mass of negative eigenvalues. We proved experimentally that this measure is effec-

tive in identifying outlying objects (Chapter 3).

• For rectifying the non-Euclidean dissimilarity matrix, a framework based on the

Ricci flow embedding is introduced. We map the dissimilarity matrix to the curved

manifold whose metric is the pairwise distances. Non-Euclidean dissimilarity can

be rectified by flattening the curved manifold. This is achieved by evolving the

metric based on the Ricci flow. We start with piecewise manifold and explore two

Euclidean embedding methods for approximating the curvature of the manifold.

We proved experimentally that this piecewise embedding can correct non-Euclidean

dissimilarity into Euclidean distances effectively (Chapter 4)

• For preserving the local structure of data, a regularised Ricci flow embedding method

was introduced. The experiments show it can stabilise the curvature in local neigh-

bourhood and find a set of Euclidean distances with good classification results,

similar to the classification results of the original non-Euclidean data. This indi-

cates regularised Ricci flow not only rectify non-Euclidean distances into Euclidean

space effectively, but also retains the local group structure lost in other alternative

Euclidean correction techniques (Chapter 4).

• We combine the Ricci flow with the tangent representation to introduce a new cor-

recting procedures. The curvature is estimated from spherical embedding. The

experimental results show the technique can remove the non-Euclidean effects to

some extent and preserve the local structure of data (Chapter 5).

• Curvature estimation is a key component in our Ricci flow framework. We observe

that the computed curvature is affected by the Euclidean methods we used for com-

puting the Euclidean distance on each edge and these two Euclidean methods do

not give accurate Euclidean distances based on the experimental results on artifi-

cial dataset. We explored a way to compute the curvature of a manifold the objects
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reside on without knowing the dimensionality, given only pairwise distances. The

method using the volume as a function of radius was promising. But this works

only well with uniformly distributed and dense points (Chapter 5).

6.1.1 Detecting the Sources of Negative Eigenvalues

The first contribution of this thesis is to model the three sources of negative eigenvalues

and extract effective measures to distinguish the three sources on modeled dissimilarity

data. All the non-Euclidean dissimilarities are transformed into Euclidean space through

some embedding techniques before analyzing them using traditional geometric learning

tools. The positive subspace embedding assumes that metric violation are an artifact of

noise and the distance in the negative subspace do not carry any signification discrimina-

tive information. Some researchers [85, 86, 72, 71] have showed that negative eigenspace

can contain valuable information for classification. Euclidean correction can lead to poor

classification results by ignoring the negative space. Thus before using the correction ap-

proaches, it is necessary to analyse the underlying causes of negative dissimilarity eigen-

values and choose the suitable correction methods.

We think of three case where non-Euclidean dissimilarity arises which allow us to

model. Firstly, if the data points reside on a curved manifold, the distance between

them are intrinsically non-Euclidean. We model such data as points on the surface of

a sphere, a simple surface where distances are easy to compute. Secondly, if the objects

are not point-like but rather are extended in space, then the distance between them are

measured between the closest points on their surface, thus non-Euclidean and possibly

non-metric. Finally, if the Gaussian noise is added to the original Euclidean dissimilari-

ties, the noisy Euclidean dissimilarity is non-Euclidean and non-metric. The Gram matrix

of non-Euclidean dissimilarity data is indefinite, while the Gram matrix of Euclidean dis-

similarity data has non-negative eigenvalues. It means there is negative eigenvalues. It is

the existence of negative eigenvalues that make it impossible to do distortion-free embed-
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ding in Euclidean space. It is natural to analyse the negative spectrum of the Gram matrix.

We commence by examining the shape of the negative spectrum of the Gram matrix of

non-Euclidean dissimilarity from the three sources. And we find out that the negative

spectrum under the three models follows an exponential decay. The spectrum of the non-

Euclidean dissimilarities from the sphere and balls datasets exhibits a strongly falling neg-

ative tails, while the non-Euclidean dissimilarities from Gaussian noise is characterised

by a more slowly decreasing negative spectrum. The slope and intercept extracted from an

exponential fit should be able to discriminate at least the Gaussian noise model from the

remaining two models. Moreover, the dissimilarity measure over the sphere are metric.

Thus the dissimilarities under the three models can be characterized by the non-metricity,

the slope and the intercept of an exponential fit. These three measures representing the

non-metrcity, the slop and the intercept can be used as features for detecting the sources

of the non-Euclidean behaviors. We use the three measures to investigate the origins of

the negative eigenvalues of various real dissimilarity datasets. The experiments show that

the simple test give suggestive origins of the non-Euclidean artefacts.

Finally in Chapter 3, we analyse the sources of non-Euclidean artefacts from the per-

spective of individual objects. We consider the case that the non-Euclidean artifacts are

created soly by the set of distances to a few outlying objects. Then it is possible to restore

the data to a Euclidean state by editing these objects from the dataset. Before restoring the

data into a Euclidean state, we need a way to identify the outlying objects. Motivated by

this, the notion of measuring the contribution of each object to the negative eigenfraction

of a dissimilarity matrix is introduced. That is, the fraction given by the ratio of the sum of

the negative distances from an individual object to each of the remaining objects, divided

by the total negative and positive distances from this reference object. We demonstrated

experimentally the new measure can identify the outlying objects on both artificial and

real dataset.

The work described in Chapter 3 has two advantages. We modeled the three sources
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of non-Euclidean artifacts and extracted three measures for discriminating the possible

sources, which is useful for choosing suitable correction techniques. Secondly, the nov-

elty measure introduced to assess each object’s contribution to the negative eigenvalues

can provide further analysis of non-Euclidean artefacts, especially for those dissimilarities

caused by a few outlying objects.

6.1.2 Ricci flow embedding

In Chapter 4 we followed the detection results of the possible sources of non-Euclidean

artefacts, and developed a framework to deal with the non-Euclidean dissimilarity data

when the non-Euclidean artefacts arise from manifold. This is the major contribution of

the thesis. The framework of the Ricci flow embedding aims to solve two questions. The

first question is how to rectify the non-Euclidean data so as to minimize the non-Euclidean

artefacts and to prepare dissimilarity data ready for traditional geometry based learning

classifiers. The second question is how to make the new Euclidean distances are not less

discriminating than the non-Euclidean dissimilarity, that is, to preserve the group structure

of data. The main idea of the Ricci flow embedding is to consider the data to be embedded

as points on a curved manifold and evolve the manifold using the concept of Ricci flow

so that the manifold is gradually flattened. Ricci flow provide a way to update(or evolve)

the curvature on the manifold.

As mentioned earlier, a key issue in evolving distances across points in different local

patches(neighbourhood manifold) is to estimate the curvature of the manifold. Based

on exactly how we construct manifold and how we use these different ways to compute

curvature gives rise our three algorithms.

Piecewise Ricci flow embedding

We consider each pair of objects reside on an individual manifold and the given dissim-

ilarities to be the geodesic distances on the manifold between these points. We use a
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Euclidean embedding of the points and use the difference between the geodesic distance

on the manifold and the Euclidean distance in the embedded space to compute the cur-

vature. We use two Euclidean embedding methods to find the Euclidean distance in the

embedded space. The Isomap method is the first method to find a low-distortion embed-

ding to map the objects to a low dimensional Euclidean vector space. The second method

is the kernel embedding, considering only the positive part of the Gram matrix of the

dissimilarity matrix. Once the curvature on the edge is known, the curvature is updated

iteratively using the Ricci flow so that the curvature moves towards zero. After each iter-

ation, the manifold is less curved than before. With the new curvature and the Euclidean

distance obtained from Euclidean embedding methods, the new geodesic distance on the

updated manifold is found in terms of the Euclidean distance and the curvature. Once the

local patches (manifolds) are flattened, a set of final Euclidean distances is found. We use

the resulted Euclidean distances to compare the classification results with those obtained

using some alterative Euclidean correction techniques by performing 1NN classification

using leave one out crossvalidation . Experiments on the CoilYork and the chickenpieces

dataset show that curvatures are decreasing in each iteration and the piecewise Ricci flow

embedding successfully correct the non-Euclidean distances to a set of Euclidean dis-

tances with some loss of discriminating power. The loss of information maybe caused by

the effect of the piecewise Ricci evolution process as it is applied independently on each

edge. It is also experimentally demonstrated that the better performance was obtained by

using Ricci flow embedding with the Isomap embedding, where the degradation compared

the original non-Euclidean dissimilarity is smaller that that with the kernel embedding.

Regularized Ricci flow embedding

The piecewise embedding manifold solve the question of how to correct the non-Euclidean

dissimilarity to minimis the non-Euclidean artefacts. Though the discriminating power

of the Ricci flow embedding with the Isomap embedding is better than some alterna-
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tive Euclidean correction procedures, few of the informative non-Euclidean artefacts are

transformed to the Euclidean form, which is indicated by worse classification results than

those from the original non-Euclidean dissimilarity data. One way to improve the piece-

wise Ricci flow embedding is to maintain local structure during the Ricci flow smoothing

process. This can be achieved by regularizing the curvatures on the local neighbour-

hood. We use the heat kernel graph regularization to smooth the curvatures on the edges.

The heat kernel graph regularization process is similar to the flow of heat and creates a

smooth distribution of heat after the heat flows from high to low concentration. Simi-

larly this process can be used for smoothing curvatures before updating curvature with

the Ricci flow. The heat kernel is to smooth function defined on each point of a graph. We

need to transform the curvatures defined on edges to the curvatures defined on vertices

which are corresponding to the edges. This is achieved by building a dual graph which

has vertices corresponding to edges of object-pairs and edges describing a neighbourhood

structure of these pairs. Once the regularized curvatures are known, we evolve the cur-

vatures using Ricci flow iteratively so that the manifolds become flat. Experiments show

the heat kernel regularization process removes some large curvature values and creates

smoother distribution of the curvatures. Compared with the piecewise Ricci flow embed-

ding, the regularized Ricci flow embedding gives better classification results for both the

Isomap and the kernel embedding and has little effect on the rate of curvatures decreasing.

Compared with alternative Euclidiean correction procedures, the regularized Ricci flow

embedding with kernel embedding is the best, given close or even better classification

results than the original non-Euclidean data.

Tangent space projection

In the piecewise manifold Ricci flow embedding and the regularized Ricci flow embed-

ding, the Euclidean embedding methods of the Isomap and the kernel embedding during

the Ricci flow smooth process disrupts the group structure of data. Regularisation process

149



is one way to maintain the local structure. Another way is to remove the dependence on

the Euclidean embedding methods and use the concept of tangent space representation to

capture local structures and the concept of spherical embedding to estimate curvatures.

We proposed a tangent space based embedding method. We consider a second order of

k-NN graph as a manifold (local patch). Then spherical embedding is performed on in-

dividual local patch for obtaining the curvature of the local patch and the object (point)

position vector in the local patch. Ricci flow is used to reduce the curvature of local patch.

The points in the original patch are mapped to its tangent plane by using the log map

and then the points on the tangent plane are mapped back to the new local patch which is

slightly inflated with reduced curvature by using the exponential map. Our aim is to flatten

the global manifold by gradually smoothing out the local patches. The mapping process

with tangent plane preserves the distances from reference point to the other points on the

manifold. The tangent plane mapping during the Ricci flow process updates the geodesic

distances among points on the same local patch. The question of how to estimate the dis-

tances for pairs of objects, one is on the local patch and the other object is external to the

local patch arises. The two objects are in different local patches with different sectional

curvatures, that is, locally they are in different coordinate systems, the global coordinate

system is not known except the geodesic distances on different patches are given. Thus

we use the shortest edge-connected path to approximate the geodesic distances between

them. the local patches. For the first method, After a local patch is smoothed out during

each iteration, the whole set of distance matrix is updated in this way so that the new

geodesic distances for local patch is obtained by the Ricci flow evolution, the distances

between pairs of objects external to the patch are approximated using the old dissimilarity

matrix before evolving the local patch, the geodesic distances between pairs of objects

external to the patch and the objects internal to the patch are approximated by adding the

geodesic distances over the edge-connected path between the objects. This is the tangent

space projection. method, the geodesic distances between pairs of objects external to the
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patch and the objects internal to the patch are not considered until all the local patches

have been updated, we update the local patch one by one. This is called on-line tangent

space projection.

The experiments on chicken pieces dataset shows the tangent space projection is able

to minimize the non-Euclidean artefacts to some extent, but then deteriorates. This is

caused by the path-based approximation of geodesic distance between internal and exter-

nal objects on the local patches. The distances have been inflated more rapidly than the

local distances on the patch. shows the the online tangent projection is also able to correct

the non-Euclidean artefacts to some extent, but then deteriorates. This is caused by the

incorrect estimation of curvatures. After a few iterations, the overlapping edges deviates

from the rest of local patch. In this case, it can not apply the spherical embedding to

estimate the curvatures correctly.

Curvature estimation

In the Ricci flow embedding framework, estimating the intrinsic curvature of the mani-

fold the set of points reside on is a very important component. In the above work, we use

either the Euclidean embedding like the Isomap and kernel embedding or the manifold

embedding like spherical embedding to estimate the curvature. More or less, the embed-

ding procedures during the Ricci flow either destroys the local structure or not applicable

after a few iterations, one direction of improving our current methods is to estimate the

curvature correctly without these embedding procedures. A way to estimate the curva-

ture of manifold is to use the enclosed volume of the manifold as a function of radius by

modeling the embedded manifold consisting of local patches on the hyperspheres. We

deduced the volume of hypersphere as a function of radius. We can find the curvature

by fitting the volume. The experiments shows good approximation of curvature of man-

ifold where points uniformly distributed on the whole sphere and half sphere, but is not

accurate for the manifold where points covers less than half sphere. It might be because
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the local patch is small and nearly flat, hence hard to find a good fit. It is impossible

to estimate the curvature of the manifold where points are randomly distributed, because

the densities are hard to estimate which results in incorrect estimation of dimension and

curvature. Also real dataset is hardly uniformly distributed. It is a difficult question to es-

timate the intrinsic dimension and curvature of manifold from a set of geodesic distances,

without knowing the structure and distribution of data.

6.2 Limitations and criticisms

There are a number of shortcoming in this thesis which can be amended with further

work and further explored. In Chapter 3, we have modeled the three cases with various

sample size which are 100, 500, 1000. However, some extensions of the current work still

exists. The non-Euclidean violations tends to be more strong with big dataset. It would

be interesting to explore the relation of the three measure in terms of the sample size. the

objects are randomly generated in the three cases, it assumes normal distribution. The

real datasets may not follow normal distribution. It would be interesting to start with the

Euclidean distance from real dataset and modify them to make it non-Euclidean. Can we

detect the sources based on the distribution of the non-Euclidean artefacts?

In Chapter 4, there are clearly a number of ways in which the work reported can

be extended. For the piecewise Ricci flow embedding, we choose the Isomap and the

kernel embedding to compute the Euclidean distances, as these are two classical distance-

preserving method. We can explore the use of other distance-preserving methods like

maximum variance unfolding (MVU) and Hessian locally linear embedding (HLLE). In

the kernel embedding piecewise manifold, it is because the edges with short distances

expand faster than those with big distances so that the group structure is disturbed. A

possible way to overcome this problem is to propagate distances from local to global.

We would explore this direction by building a minimum-spanning tree to locate local
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distances and update the local distances using Ricci flow and using the connected path

in the minimum-spanning tree to locate the global distances. For the regularized Ricci

flow embedding, we used heat kernel graph regularization to alleviate the problem of

edge-curvature fluctuation, it would be interesting to explore other graph regularization

methods like the p-Laplacian operator regularization.

The tangent space projection is not able to reduce the eigenfraction to zero , that is,

it is able to make non-Euclidean distances less non-Euclidean but not Euclidean. The

experiments demonstrates the deterioration in the middle is caused by the edge-based

approximation of geodesic distances between internal and external objects on the local

patches. Without the actual structure nor the dimension of the local patches (manifold), to

compute the distance between points on different patches is a big challenge and is worth

to explore in the future work. How to estimate curvature of manifolds without relying on

piecewise Euclidean embedding and spherical embedding? We try to resolve this problem

in the last section. Here we use nearest neighbour graph to build local manifolds, the

neighbour graph might not match exactly manifolds, it would be interesting to use some

manifold detection approaches like clustering methods for locating manifolds. Another

possible future work is to develop a non-linear global alignment for locally curved patches

during the Ricci flow process, various work has mapped local patches to vector space and

using the linear alignment of embedded point vectors to create a global coordinates like

LLE.

Finally in the last section of Chapter 4, we explore a way to compute the curvature of

manifolds the data point resides on. The experiments demonstrate the method give close

estimation for uniformly-distributed dense points on the sphere. But a real dissimilarity

data rarely corresponds to dense points uniformly distributed on sphere. For a real dissim-

ilarity data, we do not know the structure and density of the points on manifold, we need

to infer the structure and dimension of manifold from the pairwise geodesic distances, is

it possible? Given only geodesic distances between pairs of points randomly distributed
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on the manifold, without knowing the dimension and density, it is a challenge to estimate

the curvature with high accuracy.

For the experimental evaluations in all chapters, the various datasets from the SIM-

BAD project in real pattern recognition applications are used. For detecting the sources of

non-Euclidean artifacts, we can not evaluate our results on real datasets because no ground

truth is available for real datasets. Using 2-sphere to model manifold is limited and ig-

nores high dimension and complicated cases. Our Ricci flow embedding framework aims

for objects on manifold and it is expected better classification performance through Ricci

flow embedding for such data. The Ricci flow is meaningful for non-Euclidean dissimilar-

ity data where the negative eigenvalues are informative for classification. Only CoilYork

and Chickepieces datasets are such data. The source detection suggests the negative dis-

similarity eigenvalues are from noise but can not be removed as they are informative for

classification. This seems contradictory, though the results from Ricci flow embedding is

better than ignoring the negative spectrum. The results for real datasets are inclusive. This

might be caused by the limitation of simple model used for the manifold case of detecting

sources and the real dataset resides on a manifold with more complicated structure.

For the Ricci flow embedding framework, the final rectified distances are constructed

by using both training and testing set and no dimension (or feature) reduction is applied.

In order to compare with the original non-Eulcidiean distances, all experiments are per-

formed on the original data and only 1NN(Nearest Neighbour) classifier is used. The re-

sults are presented as leave one out crossvalidation 1NN classification errors. It would be

interesting to transform the corrected Euclidean distances into vector form, and apply fea-

ture selection and advanced feature-based machine learning classifiers like SVM(support

vector machine) and NM(nearest mean) to evaluate our methods. Although there is no

distortion-free embedding for non-Euclidean dissimilarity and our aim is to preserve the

group structure of data implied in the non-Euclidean artifacts, it would be good to mea-

sure the distortion in terms of distance-preserving. However, our embedding methods are
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iterative and hard to analyze the distortion in mathematical terms.

All things considered, we give answers for some questions of non-Euclidean dissim-

ilarity data and also find interesting new questions for future work along the way. This

thesis address the two major questions:

1. What is the sourers of non-Euclidean dissimilarity data?

2. How to correct the non-Euclidean dissimilarity data if the data resides on mani-

folds?

3. How to estimate the intrinsic curvature of simple manifolds (sphere) given the data

is dense and uniformly distributed on sphere?

The hard questions for future work is as follows:

1. How to estimate the intrinsic curvature and dimension of manifolds with high ac-

curacy without knowing the structure of the manifold, from the dissimilarity data?

2. How to estimate the geodesic distances between two points on different manifolds?

3. How to project samples outside the training set into the resulted Euclidean space?
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List of Notations

D A dissimilarity Matrix
S A similarity Matrix
I The identity matrix, iij = 1 if i = j, 0 else
G The Gram Matrix
K Sectional curvature
Φ The Column Matrix consisting of eigenvectors
Λ The diagonal Matrix consisting of eigenvalues
Y The matrix containing vectors yi
N Usually the number of samples in a dataset
φ eigenvector of Gram matrix G
λi eigenvalues of Gram matrix G
t time

H(t) Heat kernel
n Usually the dimensionality of space
dij The dissimilarity between object i and object j
sij The similarity between object i and object j
dG Geodesic distance
dE Euclidean distance
xi A vector indexed by i
yi A vector indexed by i
1 The vector (1, 1, · · · , 1)t

0 The vector (0, 0, · · · , 0)t

〈 〉 An inner product
‖ ‖2 An Euclidean norm
psd positive semidefinite

SVM Support Vector Machine
KNN k-Nearest Neighbour
1NN 1-Nearest Neighbour
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