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Abstract 

 

This thesis contributes to the research area of Computer-Vision-based human motion 

analysis, investigates techniques associated in this area, and proposes a human 

motion analysis system which parses images or videos (image sequences) to estimate 

human poses. A human motion analysis system that combines a novel colour-to-

greyscale converter, an optimised Histogram of Orientated Gradients (HOG) human 

body detector, and an improved Generalised Distance Transform and Orientation 

Maps (GDT&OM) pose estimator, is built to execute key-frame extraction. 

The novel colour-to-greyscale conversion method that converts RGB images to 

chroma-edge-enhanced greyscale images by employing density-based colour 

clustering and spring-system-based multidimensional scaling, is proved to be 

superior compared with other methods such as Color2Grey and Ren’s method. The 

weakness of the novel method is that it is still parameter dependent and does not 

perform well for some images. 

We make improvement on Histogram of Orientated Gradients by employing a 

modified training scheme and using pre-processed data, and the performance is 

improved by achieving similar true detection rate but much lower false detection 

rate, compared with the original HOG scheme.  

We discuss the GDT&OM method and develop the original GDT&OM human 

detector to a human pose estimator using results of human detection. Meanwhile we 

also investigate a pose estimation method based on locations and orientations of 

human body parts under the assumption of body parts can be accurately located. 

Then we integrate all methods to build a key-frame extraction system which is more 
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intelligent than conventional approaches as it is designed to select frames 

representing content of videos. We finally apply our methods to build a video 

logging system, which automatically records actions of gymnastic videos according 

to the actions displayed. Both systems perform well for a small set of motion 

categories. However they are object-dependent systems that need users to manually 

select target objects, and the performance is limited by the human body detector and 

pose estimator. 
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  Chapter 1

Introduction 

 

1.1 Background 

Human motion analysis in Computer Vision studies and develops methods and 

applications in which images are processed to produce information based on the 

apparent human motion in the images and videos. Although the concept of human 

motion analysis in Computer Vision is presented by Aggarwal et al. in 1999 [1], 

associated research began in 1970s [2] [3]. This interest is motivated by a wide 

spectrum of applications, such as athletic performance analysis, surveillance, human 

machine interfaces, content-based image/video storage and retrieval, and video 

conferencing. 

In recent years, research on human motion analysis has attracted more and more 

attention and develops fast. A famous conference, IEEE International Conference on 

Automatic Face and Gesture Recognition (FG), was human motion analysis as an 

important component and its range of topics tracks the development of the field. In 

FG96 (the 2nd, in Killington, Vermont, USA), papers on body tracking, gesture 

recognition and behaviour analysis are proposed. At that time, the body tracking 

method presented had strict limitations: target person and lighting should be static, 

and only one person in the scene [4]. Meanwhile human behaviour and gesture 

recognition was based only on locations and movement of hands [5] [6]. These 

methods are relatively simple and impractical. In FG04 (the 6th, in Seoul, Korea) 
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techniques were significantly proved. More complicated models and advanced 

devices were used for pose and gesture recognition [7] [8] [9]. The latest conference 

was held in 2011 (the 9th in Santa Barbara, USA), in which a new and more 

challenging topic was interested: human communicative behaviour analysis [10] 

[11]. The 10th, FG2013 in Shanghai, China, will include regular topics such as 

gesture, motion analysis as well as a novel one – psychological and behavioural 

analysis. According to the development of FG, it can be summarised that research on 

human motion has developed through the following stages: 

1) Conventional analysis on a single body part and simple behaviours: since at 

that time the processing speed of computers was not sufficient, researchers 

used simple models and features under ideal assumptions. Therefore complex 

behaviours could not be studied. 

2) Complex body models and behaviours: with developed techniques, using 

more complicated models to study advanced body motion became feasible. 

3) Higher level of human behaviour (group interaction) and interdisciplinary 

research (psychology): now computers are required to understand not only 

content a person performs, but the thoughts reflected by his behaviours, and 

interaction between people as well. Methods from different areas are 

combined. For example, to understand the content of a group meeting, 

motion and face analysis, sound and voice analysis, as well as psychology 

methods can be integrated together as a system. 

Techniques for human motion analysis developed quickly due to many successful 

analysis methods and rapid development of computer hardware. Developments in 

statistics, image processing and machine learning have led to advanced methods that 

can achieve higher accuracy and faster processing speed. Meanwhile developments 

in computer hardware makes complicated computation affordable, so fast or even 

real-time process for human motion analysis can be achieved. Generally speaking, 

human motion analysis systems, such as Microsoft Kinect, now are leaving 

laboratories and becoming practical in daily life.  
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Fundamentally, human motion analysis systems can be classified into two categories 

based on types of data used: 2D approaches and 3D approaches. 2D approaches 

process images without depth information of objects, while 3D approaches have 

depth information available and use it. Generally speaking, 2D data requires less 

storage space but raises processing difficulty. Considering that most images and 

videos in daily life are 2D, it is an important issue to develop 2D approaches. Hence, 

this thesis focuses on investigating human motion analysis methods and systems 

using 2D image and videos.   

 

1.2 Overview of Human Motion Analysis 

Human motion is a concept that includes several components of object information 

in images and videos: low level components such as locations and movement of 

entire human bodies and body parts, and high level components such as human 

actions, which are reflected by low level components. Fundamentally, human motion 

analysis consists of a set of topics: human detection, human tracking, human pose 

estimation and human action recognition. Although in practice different systems 

employ different processing strategies, usually it is a consecutive procedure of these 

four topics: human bodies need to be detected first, then tracking and body structure 

analysis can be executed, and finally actions recognised.  

Human detection in Computer Vision indicates a category of methods that estimate 

locations of human bodies in images or video frames. Objects to be located can be 

full or part of (usually upper half) human bodies. The most common way to do this is 

to use a window to scan of each image and find regions similar to a trained model. 

Methods of human detection can be divided into two categories:  Signal-processing-

based methods, which classify objects by matching specific spatial information, and 

machine-learning-based methods, which statistically learn models and classify 

objects. Human tracking methods are applied to estimate movement of human bodies 

in frame sequences. Movement of human bodies can be achieved by analysing 
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differences between frames, or finding out connections between located human 

bodies in consecutive frames. Considering that in frame sequences there are possibly 

multiple persons and stationary bodies, using body locations can achieve more 

accurate results, at the expense of more complex computation. 

Human pose estimation classifies human bodies to pose categories. Generally, it can 

be considered as a problem of multi-class classification that categorises samples to 

several signal-processing-based or machine-learning-based models.   

Human action recognition classifies input images or videos by human actions 

represented in them. For videos, the relationship of human body information (i.e. 

locations, shapes, movement etc.) in different frames is analysed to determine action 

categories. This type of methods can analyse complex actions. For images standing 

alone, human poses are usually used to estimate actions. Research on human motion 

analysis is based on a lot of prior art. The associated research areas of human motion 

analysis mainly include image processing and machine learning. Image processing 

methods convert input image data to appropriate features, signals or information. For 

example, gradient and edge information is important in human motion analysis, and 

these are extracted and analysed by image processing methods. Machine learning 

methods are used to build models according to training data, and classify or estimate 

testing data by applying these models. Algorithms such as Support Vector Machine 

(SVM) [12], boosting [13] and Random Forest [14] are common and popular 

methods applied in this area.  

 

1.3 Discussion on 2D and 3D 

It is emphasised that we use 2D images and videos as input, since 2D approaches are 

essentially different from 3D ones. Research on 3D approaches is also a major topic 

in motion analysis. There are a number of examples of 3D motion analysis. 

An important issue of 3D motion analysis is the way of obtaining 3D data. Usually 
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3D data is captured by some specific devices. The paper [7] suggests a method that 

uses multiple cameras to take images of a person wearing a multiple-coloured suit, to 

reconstruct the 3D view of the person and estimate his posture. A research group in 

Carnegie Mellon University builds a 3D captured human motion dataset (CMU 

multi-Modal Activity Database, CMU-MMAC) [15] that uses a motion capture 

device set, which includes 12 infrared cameras, wired and wireless internal 

measurement units, and wearable devices such as BodyMedia and eWatches. This 

dataset contains videos of human bodies which perform a number of actions along 

with their 3D representation of each body parts.  

A recent successful example is Microsoft Kinect for Xbox360 game consoles, which 

provides reliable real-time performance being built in an affordable, light-weighted 

hardware device. Kinect uses a 3D sensor consisting of an infra-red laser projector 

along with a CMOS sensor to capture depth images according to intensity of 

reflected infra-red laser. Images usually indicate depth of human bodies, since this 

device is designed to capture motions of people playing games. The key technique in 

the Kinect system is joint position regression [16]. After getting the depth of the 

human bodies, the system attempts to obtain their structure information. It 

decomposes the bodies to more than ten joints by a voting mechanism. A regression 

forest which consists of a set of decision trees [17], takes the responsibility of the 

voting.  

The three approaches above exemplify the difference between 2D and 3D 

approaches is the way of capturing data. Kinect uses a pair of infrared devices: a 

projector and a sensor, to obtain depth images. Alternative methods such as using 

multiple fixed cameras and capturing suits, are also hardware constrained. In other 

words, using a single RGB camera, which is the most common situation in daily life, 

cannot produce 3D data. Meanwhile, Kinect’s infra-red projectors have distance and 

environment constrains, e.g. surveillance, group sports games, etc. Hence taking 

depth pictures is inconvenient in some applications. In addition, there is a huge 

amount of 2D data which has already produced and need to be processed. Therefore, 

although the technology implemented on Kinect is very successful, the application is 

constrained. However, although 3D technologies are developing fast, 2D images and 
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videos are still in the dominant position at present. That is the reason why human 

motion analysis methods for regular 2D images and videos are so important and 

irreplaceable. Of course, 2D and 3D approaches are tightly associated, since many 

theories and algorithms can be applied by both 2D and 3D methods.  

 

1.4 Terms and Definitions of the Thesis 

In this thesis, we discuss concepts of motion analysis and pattern recognition, so a 

number of terms need to be defined and explained to avoid confusion. The following 

keywords are used in the thesis: 

Action and Motion: We define the term “action” as basic, simple behaviours of 

humans, such as walking, running, jumping, etc., so action recognition has the same 

meaning of basic behaviour understanding. For complex behaviours we do not use 

the word “action”. Generally, the term “motion” means the movement of an object. 

However in this thesis, human motion stands for not only the concept of movement 

of human bodies, but human actions or behaviours. Therefore human motion 

analysis studies both movements and actions in images and videos. 

Detector and classifier: in the thesis, a detector locates target objects, and a classifier 

classifies objects into two or more categories. In our work, human detectors are 

essentially object classifiers that categorise image regions into human and non-

human categories. The terms detect/classify and detection/classification can be 

distinguished in the same way as above.  

Stationary image and frame sequence: in the thesis, a stationary image means an 

image that stands alone and does not have any relative information from other 

images. A frame sequence is a pipeline of images that are extracted from a video, and 

each frame can be treated as an independent image. So here the terms “frame 

sequence” and “video” have the same meaning.  
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Shade and shadow: shade and shadow are two important concepts in human motion 

analysis. Shade is defined as dark regions on objects due to lighting condition, while 

shadow is dark regions having obvious contours caused by objects sheltering light. 

Both shade and shadow usually make motion analysis more difficult by changing 

gradient information, e.g. weakening edges between objects and adding luminance 

edges.  

 

1.5 Motivations and Presuppositions of the Thesis 

The motivations of the thesis are to advance the area of human motion analysis, to 

investigate methods that improve performance of human detection and human pose 

estimation, to design a system that consists of a pipeline of motion analysis methods, 

and to present and discuss experimental results of the system. 

The presuppositions which are assumed in our work throughout the thesis are as 

follows:  

1) Images and videos are captured by conventional 2D RGB or greyscale 

cameras. 

2) The resolution of data images must be larger than the minimum detection 

window, e.g. 64×128 for HOG detectors. If a human body is much smaller 

than the minimum window size, it will be missed in the detection phase. 

There is no maximum resolution for data images, although high resolution 

images will require long processing time. 

3) Both image and video data used is uncompressed. Compressed data need to 

be decompressed to be applied to the system. Hence compressed images are 

converted to raw data and compressed videos are converted to frame 

sequences. Lossless compression has no impact on the system. However, 

lossy compression affects gradient and edge information of images, and 

causes difference in results. 

4) We have not considered the noise issue at present. The system requires 
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relatively low-noise data. The performance of the system in noisy situations 

is to be tested in the further plan, and improvement for noisy data will be 

made. 

5) Images and videos used are all digital samples with a quantisation of 2
8
, 

which means each pixel has a value range of [0, 255]. 

6) Video cameras are fixed, which means that frame differences caused by 

movement of cameras can be ignored. 

7) We focus on processing videos containing one entire human body. Although 

multiple bodies can be processed in our system, we only discuss the one-

body situation in the thesis. Meanwhile, a part of a body is treated as a non-

object. 

8) Action types in an action set which are used to categorise human bodies are 

significantly different between each other, to avoid interference.   

This thesis makes four main contributions:  

1) A novel colour-to-greyscale conversion method using density-based colour 

clustering and spring systems is proposed. 

2) The HOG human detection method [18] is improved by applying pre-

processed data and new training strategy. 

3) The GDT&OM template matching method [19] is improved and modified for 

pose estimation. 

4) A content-based key-frame extraction [20] [21] system is proposed. 

5) A video logging system [22] that automatically recording human actions is 

presented. 

 

1.6 Overview of the System Proposed in the Thesis 

This thesis presents a 2D human motion analysis system which is used to detect 

human bodies and estimate human poses in still images, as shown in Figure 1.1.  
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The system can be applied to frame sequences when each frame is processed 

separately. Besides, we have proposed a pre-processing method to emphasis colour 

edges for colour images and enhance the detection performance. Figure 1.1a 

indicates the structure of the system for a single image in our work. If the input is a 

video, we design to process and estimate the pose in each frame separately, and then 

post-process the estimated results to achieve a final result, which is shown in Figure 

1.1b. 

 
(a) 

 
(b) 

Figure 1.1 System flowchart 

 (a) Flowchart of the system in the thesis, (b) Diagram for processing frame 

sequences, A represents the procedure in (a). 

Pre-processing 

Human detection 

Pose estimation 

Input 

Human pose 

A A 

 

A 

 

A 

 frames

Post-processing 
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1.7 Structure of the Thesis 

The structure of this thesis follows the structure of our human motion analysis 

system, as shown in Figure 1.2. 

Chapter 2 carries out a literature review on the work associated to the area of human 

motion analysis. It explains the definitions and concepts in this area, and divides the 

area into four topics: human detection, human tracking, human pose estimation and 

human action recognition, investigates and compares representative theories and 

methods proposed by other researchers in each topic, and finally introduces two 

practical human motion analysis systems.  

Chapter 3 presents a novel colour-to-greyscale conversion method which is designed 

to produce greyscale images from RGB images with enhanced colour edges. The 

procedure and the experimental results of this novel method are illustrated in this 

chapter. We also make both quantitative and qualitative comparisons between our 

method and other methods. 

 
Figure 1.2 Structure of the main body of the thesis 

Prior work 
(Chapter 2) 

Human detection 
(Chapter 4) 

Key-frame extraction and 
video logging 
(Chapter 6) 

Pre-processing 
(Chapter 3) 

Pose estimation 
(Chapter 5) 

Conclusions and  
further work 
(Chapter 7) 
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Chapter 4 illustrates an improved HOG human detector. The basic theory of HOG, 

the improved training scheme, the usage of pre-processed data and the experimental 

results are presented in this chapter. Another method which integrates Haar-like 

features and AdaBoost classifiers [13] [23] is also introduced as a comparison.  

Chapter 5 mainly introduces a template-based human detection method named 

GDT&OM, and how we modify and apply it to estimate human poses. This chapter 

also introduces a pose classification method based on locations of body parts. 

Chapter 6 describes the integration an implementation details of the entire human 

motion analysis system, and illustrates two practical applications of the system – 

key-frame extraction and video logging. We apply the system to a set of short videos 

to extract key-frames. A conventional method of key-frame extraction which uses 

PME (Perceived Motion Energy) [20] is implemented as a comparison. Then, finally 

another system that creates logs which record human actions for a set of extended 

footages is investigated, which is the final goal of the research. A set of gymnastics 

videos is used in the experiment. The system recognises and distinguishes significant 

actions in these videos and makes the log by recording these actions along the 

timeline. 

Chapter 7 makes conclusions for the thesis and investigates the superiority and 

weakness of the system proposed. Then the further work which is expected to 

improve the performance of the system is also described.    
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  Chapter 2

Prior Work  

in Human Motion Analysis 

 

Human motion analysis is a branch of motion analysis, which is a large and 

important area in computer vision and image processing. It concentrates on 

recognising or describing the motions of human bodies in images or videos. The 

earliest research in this area can be traced back to the 1970s [2] [3]  [24]. Johansson 

described a method called moving light displays (MLD) in 1975 [2] to analyse the 

movement of the joints in human bodies. In this paper the author introduced a 

method that simply represented a human body by stick figures which were lines 

linked by joints, whose motion were tracked and estimated in order to recognize the 

action of the human body. This was one of the earliest papers on human motion 

analysis. Nowadays, with the development of technologies of algorithms and 

hardware, human motion analysis is starting to step out of the laboratories and come 

into people’s daily life. 

As mentioned in Chapter 1, human motion analysis in computer vision generally has 

four topics: human detection, human tracking, human action recognition (or human 

activity recognition) and body structure analysis. The survey [1] only stated 3 of 

these, without including human detection. However in most research projects, 

detection is the basic step for other processes. Papers introducing whole motion 

analysis systems usually put the detection phase as the starting phase [25] [26]. 

Other papers which do not discussing human motion detection also take the 
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detection result as their input. So in this chapter human detection is treated as an 

important part of human motion analysis and introduced in detail. Some other 

surveys [27] [28] do not include body structure analysis, which nowadays is popular 

and applied in many practical applications. This chapter will introduce that as well. 

Human detection detects the whole or part of human bodies in the input images. 

Human tracking considers whether in frame sequences the detected human bodies 

are for the same person or for different persons. In other words it estimates the 

motion trace of people in the input frame sequences. Human motion recognition 

focuses on recognising the behaviour of the detected person. Body structure analysis 

considers the locations, movement and relationships of human body parts. Each topic 

in human motion analysis can also be divided to several subtopics. Figure 2.1 shows 

the whole structure of this area. 

Generally speaking, two types of data are used in human motion analysis:  stationary 

images and frame sequences (or called videos). Stationary images do not have 

information in the time domain, so tracking methods cannot be applied to these 

images. And of course there are no time-domain-based approaches to action 

recognition for these images either. Tracking methods are usually applied to frame 

sequences, and relationship between frames can be analysed and used to do action 

recognition. 

In the research, we found that most state of art, human detection methods do not 

achieve very good performance, in other words, they do not achieve very high 

detection rate against a very low error rate. So we did some research and 

experimentation in the area of pre-processing, in order to improve the detection 

performance. Therefore in this chapter, the related work for pre-processing will also 

be introduced. 
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Figure 2.1 Overview of human motion analysis 
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2.1 Human detection 

Human Detection is a kind of image region classification. Essentially it classifies the 

areas containing human bodies and those without human bodies. According to the 

requirements of the system, the detection target can be either full bodies or part of 

bodies. For example, a surveillance picture may have multiple kinds of objects, such 

as pedestrians, buildings, vehicles, animals, blank background, etc. The goal of the 

human detector is finding the pedestrians’ bodies and rejecting other objects. Without 

accurately distinguishing the human bodies from other objects, the further phases 

such as tracking and recognition cannot be correctly executed, because the detection 

phase provides the input to the further phases.  

Although human detection is a branch of object classification, three factors make it 

more complicated compared with some other kinds of object classification: body 

styles, clothing conditions and poses. The appearances of the target objects (human 

bodies) vary hugely due to these three factors. It is easy to imagine how much 

difference there is between a fat, little, sitting boy wearing a jacket and a tall, thin, 

dancing lady wearing a dress.  

There are three categories of approach to detect human bodies: moving human body 

approaches, signal-processing-based approaches and machine-learning-based 

approaches. There are also multiple types of detection targets, such as full bodies, 

part of bodies, human riding bicycles, or even human groups. 

2.1.1 Human detection method for moving human bodies 

This kind of method can only be applied to frame sequences, as stationary images 

only have static objects. The differences between frames, which are caused by 

motion, are used as information about moving objects.  

Moving object blobs are typical features which represents the motion regions. Lipton 

et al. [29] used the dispersion and regions of the blobs as input to classify the moving 

objects into human bodies, vehicles and clutter, and optimised the result by temporal 

consistency constraints. Collin et al. [30] used spatial-time-mixed information, such 
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as blob dispersion, blob area, apparent aspect ratio of the blob bounding box, and 

camera zoom, to classify the blobs in each frame to find possible target regions by a 

viewpoint-specific three-layer neural network classifier. Then they kept the results in 

histograms which reflected the probabilities of which class the objects belonged to, 

and selected the most likely class label as the output. In that paper, they classified the 

objects into humans, vehicles, human groups and clutter.  

Kuno et al. [31] used the silhouettes of the input images to build a human detection 

system. They extracted regions of brightness variation, selected regions caused by 

moving objects, merged regions in to silhouette patterns according to distances. Then 

they treated the silhouettes as combinations of some body segmentations so that the 

silhouette pattern features can be therefore extracted. Finally they classified the 

silhouettes by making judgments of silhouette patterns by using shape parameters 

such as the mean and the standard deviation of silhouette projection histogram and 

the aspect ratio of the circumscribing rectangle of moving regions.  

Other work such as Cutler and Davis [32] considered the similarity of periodic 

human motion, and presented an approach that detects periodic human motion by 

estimating similarity with motion prototypes. This technique implements detection, 

tracking and recognition when executing time-frequency analysis on the periodic 

motion. A similar approach presented by Lipton [33] uses optical flow. Under the 

assumption that non-rigid moving objects such as human bodies more frequently 

generate residual flow than rigid objects do, the algorithm can distinguish human 

motion apart from other moving objects such as vehicles. These approaches are 

based on the assumption that human motion can be considered as periodic, and build 

motion models to match the target. 

The weakness of this type of approach is obvious. It can only detect moving objects, 

so these approaches cannot be applied to still images. Even for videos, if the target is 

static, or a part of the target is static, these approaches do not work. Hence, the 

applications of these approaches are limited.  In Section 5.2, we use blobs and 

silhouettes produced by frame difference to estimate motion regions and cancel 

complicated backgrounds.  We combine blobs and silhouettes with edge images so 
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that moving edges will be extracted, and then a template matching is applied to 

locate targets.  

2.1.2 Signal-processing-based human detection 

Signal-processing-based human detection is defined as a kind of method that 

matches signal information at specific locations. Usually these methods use template 

matching techniques in order to find regions that are similar to the pre-defined 

templates in the input images. The most common templates are the contours of 

human bodies, such as the examples in Figure 2.2. The edges are treated as specific 

locations on which information of pixels such as intensity and orientations are used 

for matching. The simplest way to match the templates is extracting the edges of the 

input images and comparing the edges with the contours. However, since sharps and 

poses of human bodies vary hugely, simple pixel-to-pixel matching will cause 

significant errors. A number of advanced techniques designed to increase matching 

accuracies have been proposed. 

   

Figure 2.2: An example of contour templates 

Some advanced techniques, such as matching by Hausdorff distances [34] [35], have 

also been applied in this area. The paper [35] which was presented by Yu and Leung, 

described a curve segment Hausdorff distance (CHD). This method extends the 

conventional point-to-point Hausdorff distance to a curve-to-curve distance, which 

improves the matching accuracy and the computational efficiency. However, at 

present, the edge-to-edge matching is not a widely applied solution for direction. 

Instead, researchers are often considering matching images and templates after 

transforms, which are image processing methods that keep and enhance positive 

information, such as edges between different objects and orientations, and 

meanwhile remove or weaken negative information, such as shade and overlaps.  
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Lin et al. [36] described a hierarchical part-template matching method, which 

segments the whole human contour to three parts: the upper body L1, the middle 

body L2 and the lower body L3. Each part has a number of different shapes 

representing different body poses, as the diagram shown in Figure 2.3. According to 

Figure 2.3, in L1 6 upper body parts are examined, in L2 each upper body candidate 

in L1 connects to 9 middle body parts, and in L3 each middle body candidate in L2 

also connects to 9 lower body parts. Meanwhile according to the nature of human 

body shapes and poses, different higher level templates connect to different lower 

body template sets. There are 486 combinations that compose the contour templates 

of L1, L2 and L3 into an entire human outline under a hierarchical combining rule. In 

the matching phase, the edges of the images match the templates hierarchically from 

L1 to L3, and optimise the result by maximising the joint likelihood. The combination 

with calibration and background subtraction is also discussed in the paper. 

 

Figure 2.3: Hierarchical part-template matching (from the paper [36]) 

Gavrila described a probabilistic approach to hierarchical template matching [37]. 

This method constructs a hierarchical tree clustering similar exemplars (templates) 

and uses distance transforms (DTs) [38] to measure the similarity between images 

and exemplars. Then it executes matching hierarchically from root (the node on the 

top) of the tree to the leaves (the nodes on the bottom). This paper contributes to 

building a Bayesian model to estimate the posteriori probability of the object class. 
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Figure 2.4 indicates the procedure of this method. In Figure 2.4, an input contour is 

classified to the leaf node marked by a rectangle in solid black (optimal path). The 

symbol OO means both the parent and the current nodes are on the optimal path, ON 

means the parent node is on the optimal path but the current is not, and NN means 

neither the parent nor the current node is on the optimal path. Multiple training 

samples are used to pass the procedure above and their distance measurements and 

path information on each node are collected. Then a Bayesian model [39] is applied 

to estimate the probability on each node to boost the processing speed. 

 

Figure 2.4: Gavrila’s method (partial view), from the paper [37] 

Thanh et al. [19] presented a weighted template matching method that employed a 

generalized distance transform and an orientation map (GDT&OM). From the image 

to be processed, this approach builds a GDT image which indicates the distance to 

the nearest edge of each pixel, and calculates the orientations both on the image and 

the templates. The information of the GDT image and the OM are both applied to 

measure the similarity between the detection windows and the templates. With these 

advanced features, the accuracy of the detection is significantly improved. This 

method is implemented and developed in the research. The reason why we employ 

this method is that it gives a good matching accuracy due to the employment of 

orientation maps. With this advantage relatively high accuracy of posture estimation 

will be obtained via this template matching method. The detail of the implementation 

will be discussed in further detail in Chapter 5.  
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Seemann et al. presented an advanced 4D Implicit Shape Model (4D-ISM) learning 

from articulations and viewpoints [40] [41]. In the recognition phase the algorithm 

employs an ISM voting space for each codebook entry. The spatial occurrence 

distribution and the associated shape will be stored. The highlight of this approach is 

that articulation clusters (which is similar to template sets) will be generated 

automatically in the training phase.  

To make a conclusion for the template-based approaches, the following advantages 

and disadvantages are achieved. 

Advantages: 1) They do not need a big set of image data to train the system. 2) The 

amount of computation is relatively small.  

Disadvantages: It is very difficult to find appropriate templates. The templates are 

usually made manually, or extracted from a few existing images, which are not 

robust ways. If we want to detect humans with different poses, clothes or body 

styles, more templates will be needed. When the number of templates increases, the 

interference between templates grows quickly. So at present, template matching 

approaches are applied to limited range of poses, clothes and body styles. 

2.1.3 Machine-learning-based human detection 

We define machine-learning-based human detection as a kind of method classifies 

unknown object samples by experience of known samples. These methods 

statistically summarises information from all training images and employ methods of 

machine learning and pattern recognition. Unlike signal-processing-based methods, 

these methods do not concern signals at specific locations, but treat information in 

the detection widow as an entirety, build statistical models which use the features 

extracted from the training data, and employ the models to make classifiers 

(detectors). Features are computer vision methods designed to represent important 

information of images. For example, Harris corners are used to indicate interest 

points of images; Haar-like features and histogram of orientated gradients are 

descriptors that reflect gradient and edge information; Principal components 

represent statistical features of the whole image. The classification methods can be 
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boosting/AdaBoost classifier, Bayes classifier, support vector machine (SVM), 

neural network, nearest neighbourhood etc.  

The concept of Haar-like features is developed from Haar wavelets theory. It extracts 

specific locations in the detection windows and represents them by adjacent 

rectangular regions. Differences which are used as features in classification, are 

calculated between each pair of adjacent rectangular regions by comparing their 

pixel intensities. This difference is then used to categorize subsections of an image. 

Boosting/AdaBoost classifiers are a kind of mechanism that combines weak 

classifiers into a strong classifier. These classifiers are often constructed by cascade 

in the presented methods [13] [23]. The basic idea is: each weak classifier has the 

duty of classifying a part of the features and passing the classification result to the 

higher level. This mechanism can significantly accelerate the efficiency of the 

classification. So boosting/AdaBoost is often applied to build real-time systems. The 

paper [13] published by Viola and Jones joins together a base line of Haar-like 

features with AdaBoost approach (We call this category of methods Haar-AdaBoost 

for short in this thesis). Many researchers developed their approaches based on this. 

A typical Haar-like feature and boosting approach is described by Kruppa and 

Schiele [42] based on Lienhart’s face detector [43] [44] and this is a standard 

approach in OpenCV. The paper [42] described the Haar-like feature and boosting 

approach for face detection. The detector introduced could also be applied to bodies 

with a different set of configuration and training data. Kruppa and Schiele provided 

the configuration files for the human detector to detect upper, lower and full bodies.  

Histogram of Orientated Gradients (HOG) is a popular topic in the area of human 

detection in recent years. It collects and stores the histograms of the gradients and 

orientations as the features. The original approach of HOG, presented by Dalal and 

Triggs [18] combined HOG with SVM, which was a slow classifier. Recently more 

and more researchers combine HOG with an AdaBoost classifier [45], which makes 

the computation much more efficient. In paper [45] the HOGs of small image 

regions are extracted to build weak classifiers with SVMs, and the strong classifier, 

which executes categorisation for large regions, is composed by the weak classifiers. 
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 The system proposed by the thesis applies the HOG method as the human detector. 

In Chapter 4, research, experiments and discussions on raising the performance of 

the HOG approach will be introduced. Meanwhile a comparison between HOG and 

Haar-like feature/AdaBoost will be presented in Chapter 4.  

A more recent concept in the area of human detection is employing random forests. 

A random forest is a training and classification mechanism that is becoming popular 

recently in the areas of machine learning and pattern recognition [14]. A random 

forest consists of a number of random trees. Each tree is constructed by the values of 

a random vector sampled independently. All trees in the forest must have the same 

distribution model. The classifier uses a voting mechanism to make decisions. Gall et 

al. [26] introduced a novel approach employing Hough forests. Hough forests are 

random forests consisting of random trees and were adapted to perform a generalized 

Hough transform in an efficient way. This algorithm was based on the codebook 

detector and mapped the image features to a Hough space. It learnt the models by 

mapping from the extracted features named “cuboids” to their corresponding votes. 

The term “cuboid” stands for a local image patch (two dimensional) or a video 

spatial-temporal neighbourhood (three dimensional) in a generalised scene 

depending on the task. A Hough forest is applied to learn the model of mapping from 

the appearance of cuboids to their corresponding probabilistic Hough votes which 

are leaf nodes. In other words, a leaf node is trained to store the probability of a 

patch belonging to an object class and the decisions of these nodes are summarised 

to produce the final classification result. The construction of the random trees 

followed the standard way of a random forest framework [14]. The Hough forests 

did not only apply to detection, but also tracking and recognition. 

Comparing with signal-processing based approaches, machine-learning-based 

approaches usually need more training data and more computational resource. 

However, more training data means more data variations are involved. For example, 

various human body shapes and poses can be concerned by using this kind of 

method. Machine-learning-based approaches essentially combine great amount of 

information to build reliable, robust detectors.  
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2.2 Human tracking 

For videos, tracking is an indispensable especially when there are multiple targets 

detected. As for further processing, we need to connect the detected information for 

the same person who acts in different frames. Tracking is also designed to identify 

and track human body parts in videos. Tracking is an issue that is related to the 

features of position, speed, shape, texture and colour of an object. Generally there 

are four types of tracking methods: 

2.2.1 Model-based tracking 

Human bodies can be represented in three ways: stick figures, 2D contours and 3D 

volumes. Each way supports some method for tracking. Stick figure approaches 

approximate human bodies as the bones and joints, and analyse the relationship of 

the bones and joints to track the motion. Neglecting the texture, 2D contour 

approaches analyse the projection of human bodies on the image. 3D volume models 

represent human bodies as spheres, cylinders and centrums, which can describe 

much more detail of the bodies, and of course, are much more complicated.   

An approach based on stick figures, or 2D skeletons, was proposed by Karaulova et 

al. in paper [46]. The idea is to use Hierarchical Principal Component Analysis 

(HPCA) to describe the movement (called kinematics in the paper) and Hidden 

Markov Models (HMMs) to describe the action (called dynamics in the paper). The 

hierarchy has a top level storing the whole body information and lower levels storing 

information of the body parts. 2D and 3D data can both be used as training data 

being treated as stickmen and decomposed into parts. 

Jin et al. recently proposed a paper that tracked human using colour-histogram and 

HOG [47]. As HOG is an edge based feature, contour information was used in this 

approach. The colour information was collected by histograms along with HOG 

features. As the distribution of human tracking is non-linear and non-Gaussian, the 

authors employed Particle Filters [48] to build the tracking system. They collect the 

particles, which are the differently-weighted samples of the distribution, near the 
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centre of the object, calculated the differences between every two neighbour states 

(the centres of the human), updated the weights and particles, and finally estimated 

the new centre of the objects. The highlight of this method is a combination of colour 

and edge information, which differ from other methods that only use greyscale 

information. 

For 3D cases, the most common model is also a skeleton model, which contains 3D 

position and rotation information for human body parts and joints. Tong and Bian 

presented an SLDM approach [49]. SLDM stands for shared latent dynamical model 

and is developed from Gaussian processes models. This model executes mappings 

from a shared latent space to both state space and observation space as well as a 

dynamical mapping in latent space. This paper starts from the 3D human skeleton 

model which has 49 degrees of reconstruction freedom, runs an SLDM to estimate 

the dynamics, compute observations, and reconstructed the motion trace.  

Zhang et al. also presented a skeleton body model for both 2D and 3D upper body tracking 

[50].  The model decomposes a 2D human upper body into 6 parts, each of which is 

represented by a reference point and a set of state variables. The model also provides the 

relationship between the body parts so that size and location of each part are constrained by 

others. Then the model can be also extended to a 3D version. The upper body model is 

applied to a dynamic Bayesian network [51] to achieve tracking.  However samples of upper 

bodies with hidden parts, e.g. arms hidden behind torsos, which is considered as a major 

difficulty in human tracking, are not presented in this paper. 

2.2.2 Region-based tracking 

Region-based tracking usually builds Gaussian models for human bodies and 

background, tracks the small regions, such as heads, arms, legs, and then combines 

them together to achieve the target. The problem is the influence of shadows when 

processing the moving objects. One solution is based on the colour information. The 

edges of different regions can be found by colour difference. The other problem 

which is more difficult to solve, is that there are overlaps between people. Some 

advanced detecting algorithms based on multiple cameras are able to do this, but it is 

out of this topic.  
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The paper proposed by McKenna et al. [52] describes a method that combines colour 

and gradient information in motion segmentation, which aims to solve the shadow 

problem. Regions, people and groups are considered as three levels in tracking. A 

human body consists of a number of regions, which can be merged and split with 

bounding boxes. And a human group is composed by one or more human bodies. So 

a tracking process starts from detecting and tracking moving regions, and composes 

upper levels step by step by using region information. 

2.2.3 Feature-based tracking  

Feature-based tracking includes feature extraction and feature matching.  It treats the 

objects to be tracked as sets of features instead of whole shapes. So that even if part 

of the target object disappears, the algorithm can still track the rest. However the 

type of the features is limited. It is too difficult and expensive to track multiple 

complicated features. That is to say, low-level features as points and grids are easier 

to extract and track, but lines or blobs, which are relatively high-level features, are 

more difficult to extract and track. There is a trade-off between complexity and 

efficiency [28].  

According to Polana and Nelson, they extracted a person with a rectangular rim, and 

selected the centroid as the feature point [53]. In their paper, when two persons are 

shading each other, they will be distinguished by the speed of the centroid. Except 

for the centroid, other features such as colour, texture can also be involved in 

feature-based tracking. 

Jang and Choi presented a method using points and lines with Kalman Filtering [54]. 

They extracted high-level features such as shapes, textures, colours and edges. 

Kalman filter estimates motion parameters which help the system to track movement 

of non-rigid objects by feature energy minimisation. 

In conclusion, comparing these four types of tracking methods have their own 

characteristics. Model-based tracking is traditional and the most straightforward 

approach. But shading and unusual poses cause problems for selecting models. 

Region-based tracking is more flexible than model-based tracking and widely 
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applied. However it more depends on moving regions and the overlapping problem 

is very difficult to work out through methods using a single camera. Feature-based 

tracking takes part of the object as tracking target, which means that even part of a 

tracked object is hidden, some features of the object remain visible. But in practice 

high precision tracking needs high-level features, while high-level feature matching 

raises difficulty and expense [28].  

Tung and Matsuyama presented a practical approach that tracks human motion by 

local features [55].  The paper proposes a system that consists of two models: 

detection and tracking, and switches between the two models. The detection model is 

used to locate important human body parts such as faces/heads and hands, and the 

tracking model is used to keep updating the locations of the body parts based on an 

adaptive colour-based particle filter with an optical flow estimator. Detection results 

are used as references to correct tracking estimations.  

Since the system proposed in the thesis is initially designed to analyse human 

motions in stationary images, tracking methods are not applied. However, in the 

applications, videos are also used and the system performs detection in each frame. 

When the system process videos with multiple people, a tracking method is required 

to identify different people through frames. This part of work will be carried out in 

the future.  

 

2.3 Human structure analysis 

Human structure analysis works to find locations, orientations and sizes of the 

human body parts. It has a tight relationship with posture estimation as given the 

information of the body parts, it will be not difficult to identify the poses. Actually 

there are several papers discussing the methods that estimate the poses from the body 

parts information [25] [56] [57]. The discussion of this research is put in Section 

2.6.1.  
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To represent the parts of human bodies, there are mainly three ways: the skeleton 

models, the contour models with marks on every part and the volumetric models. 

The skeleton or stickman models are the most common representation and nowadays 

most approaches for 2D images and videos are based on it. The advantage of the 

stickman models is that they are constructed by joints which allow the body parts to 

move and rotate. This is flexible and compatible for the nature of human motion. The 

contour models are usually fixed outlines of human bodies. So they can only 

estimate approximate information for the body parts. Especially when the number of 

the body parts is large, using contours models is not an appropriate solution. While 

the volumetric models are more concerned with the size and depth of the body parts, 

which is more compatible for 3D analysis. An example of 3D structure analysis will 

be introduced in section 2.7. In this section we only discuss 2D cases.  

  
 

(a) (b) (c) 

Figure 2.5 Human structure models, from the paper [1] 

(a) a 2D stickman model, (b) a contour model, (c) a 3D volume model. 

A successful approach of body structure analysis called iterative parsing is proposed 

Ramanan [56] [58]. This technique has been implemented in many other researchers’ 

work [25] [57] as it achieves relatively high accuracy of body part segmentation. 

Figure 2.6 indicates the procedure in Ramanan’s paper. At the beginning, as the 

colour picture in the very left, Figure 2.6(a), iterative parsing begins with estimating 

the localisations of the body parts by matching with a deformable pose model based 

on edges. The matching results are usually poor at this stage. This is the initial parse 

of the procedure, which only gives a rough estimation of the parts. Then the initial 

parse is applied to build a foreground/background colour histogram model for all 

body parts which are regions on the image at this stage, as Figure 2.6(b) showed. In 

Figure 2.6(c), the region model is applied to the input image as masks so that the 



CHAPTER 2  PRIOR WORK 

  28 

 

matching region will be reduced. Figure 2.6(c) (d) (e) illuminate that the deformable 

model is used to parse the image and reduce the matching region iteratively, so that 

the program can achieve accurate locations and orientations finally. Figure 2.6(d) is 

the deformable model and Figure 2.6(e) is the final result in which different colours 

stand for different body parts. Normally setting the number of iterations to 3 meets 

most demands of accuracy according to Ramanan’s experiments.  

 

(a) (b) (c) (d) (e) 

Figure 2.6 Procedure of Ramanan’s iterative parsing method 

 (a)the result of the initial parse, (b)foreground/background model of different 

body parts,(c)masks on the input image,(d)the deformable model,(e)results of 

parsing by the deformable model in 3 iterations. (From the paper [58]). 

There are some problems with iterative parsing. First of all, it cannot achieve good 

performance for small scale figures and some common poses. Secondly, as the sizes 

of the parts in the deformable model are fixed, overlapping between body parts will 

occur in the output result. Thirdly, the algorithm does not know how to deal with the 

invisible body parts in some images, and this is the major problem that we do not 

apply this in our work. Besides template matching, we also introduce an approach 

that uses locations of body parts to build classification models. However the 

performance of the classifier strongly depends on the accuracy of part location, and 

Ramanan’s method is still not accurate enough, which will be discussed in detail in 

Chapter 5. But in all, iterative parsing is an impressive approach in the research topic 

of body structure analysis, and has the potential of improvement. 
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2.4 Human action recognition 

Human action recognition is highly valuable in practical applications. The methods 

vary according to the data types. For frame sequences, the information in the time-

domain is the key. The approaches are usually state-space based. For still images, 

action recognition can be considered as pose estimation. 

2.4.1 Pose estimation 

Pose estimation in still images is usually related to human detection. Pose estimation 

can be considered as a multi-kernel classification problem, and human detection can 

be considered as a single-kernel classification problem. Therefore the methods used 

for human detection, either signal-processing-based or machine-learning-based, can 

be applied to pose estimation. In another point of view, it also has a tight connection 

with human structure analysis. If the structure of a body, which means the positions 

of the parts of the body, has been found, it is very easy to identify the pose. 

Wang et al. [59]located the parts of the bodies by comparing images to be classified 

with standard images. In the paper, a deformable template matching algorithm which 

extracts a set of sample points from the edge and found the assignment between the 

sample points, is employed. After a spectral clustering mechanism, still images will 

be classified into different action clusters. 

Ikizler [57] presented another estimation method. They used Ramanan’s method [56] 

to extract the body structures and Histogram of Oriented Rectangles (HORs) to 

representing the pose. They used the extracted rectangular regions which are 

histogrammed over 15°orientations to build HORs. They designed spatial circular 

grids and circular HORs for still images, see Figure 2.7. They applied Linear 

Discriminant Analysis to reduce the feature dimensions and trained one-vs-all SVM 

classifiers for each action class. They built the SVM classifiers by using RBF 

(Radial basis function) kernels [60].  
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Figure 2.7 Represent poses by CHORs, from the paper [57]  

Pose estimation is used in another type of application – motion capture. 

Tangkuampien and Suter represented [61] a marker-less motion capture system that 

employs multiple cameras and ground-truth poses. The learning mechanism, which 

is called Kernel Subspace Mapping (KSM), uses two Kernel PCAs (KPCA) [62] to 

learn pose and image manifolds separately, and then connect the two manifolds by 

using Local Linear Embedding [63]. The significance of the system is that it 

accurately coordinates human motion and reduces the dimensional redundancy by 

KSM. 

Poppe [64] proposed a method that extracted features of orientation histograms of human 

silhouette gradients (HOSG). The method is similar to HOG but only uses outlines of human 

silhouettes instead of all gradients. Then a common spatial patterns (CSP) is applied which 

differs from conventional classifiers by focusing on differences between classes rather than 

on modelling classes individually. This method will be a comparison with our system in 

Chapter 5.       

In conclusion, the two approaches mentioned above both extracted the body 

structures first, represented the structures by some kind of features, and finally 

classify the extracted body to a predefined class. This part of prior work illustrates 

that simple human actions can be recognised by estimating poses, which is also 

performed by the system of this thesis. 

2.4.2 State-space based approaches 

State-space-based approaches define every static pose as a state, and treat the motion 

as a course of those states. Then if the system can find the relationship between the 

states by a kind of probability model, the action will be recognized. For a frame-

sequence, state-space based action recognition has two steps: 1) identify the state of 
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the human body for every frame. 2) classify the state sequence to an action class. For 

the first step, the pose estimation mentioned in the previous section can also be used 

to identity states. However, the accuracy of the pose estimation is a big problem to 

carry out. Therefore researchers usually employ simpler ways, for example, locating 

the positions of the hands, measuring the distance between two feet etc., to represent 

the states. For the second step, some statistical models are applied. 

The most popular model is HMMs [65] (Hidden Markov Models). Hidden Markov 

Model is a statistical method assuming the system to be a Markov process with 

unobserved states, but its output dependent on the states is visible. Each state has a 

probability distribution over the possible output tokens. Therefore the sequence of 

tokens generated by an HMM gives some information about the sequence of states. 

The word “hidden” indicates the state sequence through which the model passes, not 

the parameters of the model. The usage of HMMs in motion recognition includes 

two phases: training and matching. Training is the process that defines the 

parameters of an HMM and optimizes the states, in order to generate the patterns that 

are used to match the features of defined motions. Figure 2.8 indicates the structure 

of HMMs. In Figure 2.8, Xi (i=1,2,3) are hidden states, and there are converting 

probabilities between them, denoted as aij (i=1,2,3; j=1,2,3). The symbols yn 

(n=1,2,3,4) represent observations, and the relationship between Xi and yn can be 

concluded as a set of probabilities bin. That is to say, in every time t, the varying 

hidden state will give an observation according to the distribution of bin. Given 3 of 

these 4 sets of variables, the remaining can be estimated set according to the HMM 

theory. 

A recent work using HMM is Li’s paper [66] which discusses an improved HMM. 

Firstly the method represents each action by several action graphs (each graph is the 

silhouette of a human body and can be treated as an action state). Unlike 

conventional HMM, the states are shared by all action types, so a pool of action 

states is built, so the action graphs can be trained effectively and efficiently 

according to the author. Finally the paper proposes a silhouette matching algorism 

combining both shape and motion features to identify motion states.      
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Figure 2.8: A Hidden Markov Model, from the website [67] 

The paper proposed by Yamato et al. [68] illuminates a tennis-motion recognition 

method which employs a compact observation codebook formed by clustered grid-

based silhouette mesh features, uses Baum-Welch algorithm to train HMMs and 

estimate the probabilities by Viterbi algorithm [65]. Feng and Perona mapped key 

poses to states in a static HMM [69]. They simplified the observation model by 

reducing the flexibility to achieve more efficient training. There is a lot of further 

research on HMMs, such as Coupled Hidden Markov Models (CHMMs) [70] and 

Variable Length Markov Models (VLMMs) [71], applied for action recognition. The 

CHMMs coupled two or more HMMs which might or might not have relationships. 

The two state sequences both influence the output. In that paper the author states that 

this multiple-process model is faster and more robust than single-process models in 

vision processing. VLMMs is a kind of random processes with variable memory 

length, in contrast to the conventional n-th order HMMs. It was more flexible when 

processing the action recognition cases. 

Another type of methods, called Bayesian Networks (BNs) [72], is a kind of 

probabilistic graphical models the same as Markov Models. As Figure 2.9 shows, 

each node (X2,X4,X5) in the graph represents a random variable, while the arrows 
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between the nodes represent probabilistic dependencies among the corresponding 

random variables. The tables indicate those probabilistic relationships. These 

conditional dependencies in the graph are often estimated by using known statistical 

and computational methods. These probabilities can be trained by machine-learning. 

The training process is a set of iterative schemes that look for a maximum likelihood 

for the parameters which are treated as localized message passing operations. 

 

Figure 2.9: The nodes of a Bayesian Network, from the paper [39] 

Remagnino et al. [73] developed a model for the classification and annotation of 

multi-agent actions, using BNs on two levels. The lower level is a set of BNs called 

behaviour agents. They contain input nodes associated with characteristics such as 

speed, acceleration and heading, which are the input information to hidden nodes. 

The upper level which is also BNs consist of behaviour agents and nodes 

corresponding to motion direction. Each behaviour agent connects to the upper level, 

a situation agent, via a behaviour node. A situation agent collets information from its 

nodes and determines the motion type in an interaction node. When the Euclidean 

separation between two behaviour agents fell below a specified threshold, the 
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situation agents, would be activated.  

The state-based approaches are elegant methods. However, many factors constrain 

these techniques in practice. First of all, it is constrained by the nature of human 

action. As known to all, human action is diversified and complicated. Multiple 

persons act in multiple styles for the same action. And there are thousands of action 

types. To solve the problems above need robust, efficient methods and huge data sets. 

Therefore building a practical recognition system is an enormous, formidable and 

expensive project. Secondly, it is constrained by the accuracy of state identification. 

Just as mentioned above, pose estimation and body structure analysis are the main 

methods to identify the motion states. However, the accuracy of the approaches in 

these two topics still needs improvement at present. Accurate state identification 

cannot be guaranteed in the state of the art. Hence most state-based approaches work 

under the assumption that the states have been given or use relatively simple state 

sets. Because of the two reasons above, state-based approaches now can only process 

some simple motion cases and limited number of motion classes. There is still a long 

way to go in practice. 

Since at present the system is designed to analyse simple human actions which can 

be identified by human poses, state-based methods are not used. For complex human 

behaviours that consist of several actions, state-based method can be applied as a 

high level recognition mechanism, which will be carried out in the further work. 

2.4.3 Mixed representation approaches 

The mixed representation approaches form another big category of the recognition 

methods. The idea of this category is combining and representing the motion 

information in both the spatial domain and the time domain. Thus state estimation 

can be bypassed compared with the state-based approaches. According to the way of 

extracting representation features, this type can be divided into global and local 

approaches. 
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(a) 

 

(b) 

Figure 2.10 Examples of mixed features 

(a)space-time blobs, (b)space-time cuboids features. (From the paper [27]) 

Gorelick et al. described an action recognition method in the paper [74] based on 

space-time (or called spatial-temporal in some papers) shape (Figure 2.10(a)) 

generated from a human action. It is a global representation method which composes 

information in the spatial and time domain to global features. A space-time shape, 

which includes all of the human poses in the motion period, was a visual 

concatenation of 2D silhouettes. 

The local features such as space-time saliency and space-time orientations, as well as 

the global features of the shapes are extracted. These features are used to do action 

classification and clustering. Local approaches extract space-time information in 

some particular positions. Laptev et al. defined local motion events in the paper [75] 

to represent the position and the shape of associated space-time neighbourhoods. 

These features are extracted by an extended Harris corner detector that is able to 

detect corners in the spatial-temporal space. They compared the performance of a 

nearest neighbourhood classifier and an SVM. They also compared the local and 

global space-time events in the experiment. The paper [76] represented by Jhuang et 

al. describes a biological inspired system based on a hierarchical feed-forward 

architecture. The system extracts three types local space-time features: gradient-

based, optical-flow-based and orientation-based. Then a neurobiological model is 
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applied to match with the spatial-temporal templates hierarchically with three stages. 

Finally the system applies a linear multi-class SVM classifier to achieve 

classification. Another rescnt  approach using local features proposed by Oshin et al. 

[77] that uses Ferns [78] to train and classify local spatial-temporal features (interest 

points). Fern is an improvement of the Naive Bayesian classification framework [79], 

a simple probabilistic classifier based on applying Bayes’ theorem with strong 

independence assumptions. The Fern classification is simple, efficient and robust. 

These features are extracted by both Leptev’s method and Dollar’s method [80]. 

The three papers above argue that a human motion can be described as a set of local 

space-time features which exploit the appearances of human body parts and their 

movements (Figure 2.10(b)), present methods that measure the similarity between 

the 3D local features to train a set of motion models. Laptev’s paper also introduces 

a mechanism for local velocity adaption and evaluates the influence by camera 

motions, which is an important contribution by the researchers.  

Mined hierarchical compound features are a type of novel idea presented by Gilbert 

[81]. Their methods extract an over-complete set of simple 2D corners in both space 

and time. A hierarchical process is employed to encode the neighbourhood of these 

corners along with the searching area increasing. Meanwhile they used data mining 

to learn the most distinctive and descriptive features at each stage of the hierarchy. 

The features would become more and more significant, strong, or in the authors’ 

words, “complex, discriminative and sparse” as the hierarchical levels go up because 

frequently appearing features would be enhanced. According to these learned 

features, a label of the actions can be assigned by the maximum response for each 

frame and finally a decision of action class for the sequence can be decided. This 

approach was claimed to be very fast and able to achieve real-time processing. 

As mentioned above, the paper [26] described a solution not only for human 

detection, but tracking and action recognition as well. This approach used space-time 

feature cuboids which were a kind of mixed representation. To execute the tracking 

stage, the process was very similar to detection, just assembling the detections into 

tracks by using the confidence as observation for a particle filter. There was some 
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additional information such as colour and texture added to achieve better 

performance. The training process for recognition was using sets of motion 

sequences (tracks) for different motion classes to build Hough forest models. In the 

classification phase, the same voting mechanism as the detection phase is applied. 

The recognition precision was encouraging. The precision for all of the testing 

datasets was over 90% and better than most other approaches being compared.  

Mixed representation approaches are a group of relatively new methods for action 

recognition. The benefit of using these methods is that the system can avoid 

classifying the motion states and sometimes even detection and tracking. They 

unified the problems on space and time domains into the same problem, which can 

make the process concise and faster. However, as there are differences of characters 

between the space-domain and the time-domain, finding a set of appropriate features 

to represent the characters of the space-domain and the time-domain, as well as their 

relationships, is extremely important and somehow tough. We argue that this kind of 

approach possibly represents the future direction in human motion analysis.  

Additionally, the system presented by the thesis is a global-based approach, so a 

human detection method is employed. However a local-based method is a variation 

for human motion analysis and does not need to do global detection. Instead human 

bodies and motions are represented as a combination of local features, and action 

recognition can be treated as local feature matching. Hence local methods stand for a 

different way of describing motion videos, which provides another direction of 

developing our system. Besides, for a human motion video, some local features are 

not significantly influenced by changing the viewpoint, therefore using local features 

is a way that solves the problem of moving cameras, which is a key limitation of the 

system presented in this thesis. Hence the research on local features will be an 

important issue in the future.   
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2.5 Colour-to-greyscale mapping 

This section is not directly related to human motion analysis. However in the thesis, 

colour to greyscale mapping is the pre-processing for human detection. Considering 

that most detection approaches at present essentially relate to the gradients or edges 

of the images, and the data used are usually colour image or videos. Most 

implementations of detections only take the luminance of a colour image as the 

input, which wastes the colour information. For example, considering two neighbour 

regions with far different colours but very close luminance values in an image, the 

edge between the two regions is very strong in the colour image but is very weak in 

its luminance image. The waste of the colour information has a negative effect on the 

detection. In order to deal with this edge problem, colour to greyscale mapping 

algorithms, which map every pixel in the colour image to a greyscale value and 

enhance the edges between regions of different colours, are applied. Figure 2.11 

shows an example of this process. It is noticeable that in the luminance image, the 

sun and the reflection on the river have disappeared. However in the colour-to-

greyscale mapped image, there is a clear view of the sun and the reflection. 

   

(a) (b) (c) 

Figure 2.11 An colour-to-greyscale example 

(a) the original colour image, (b) the luminance image, (c)the greyscale image 

generated by Color2gray 

At present most colour mapping methods can be can be divided into two major 

categories: global methods and local methods. The global methods do not consider 

the spatial information in the image. They only focus on how to map the values from 

a 3D RGB space to a 1D space. So the given colour will always be mapped to the 
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same greyscale value. The mapping of colour to luminance is an example of global 

method. Local methods, in contrast to the global ones, map the colour of a pixel to 

greyscale values depending upon the spatial surround of the pixel.  

Some global methods such as Grundland’s method [82], Rasche’s method [83] [84] 

and Alsam’s method [85] employ advanced colour-to-greyscale mapping functions. 

The method of Grundland et al. converts the values from the RGB space to the YIQ 

space, in which the Y component represents the luminance. Then the dimensionality 

is reduced from the 3D YIQ space to the 2D YC space. Finally 2D values are 

converted to the 1D greyscale values. Rasche et al. worked out the mapping problem 

by minimising an objective function which contained the information of the colours 

in the picture. Alsam et al. adjusted the conventional luminance mapping function to 

an image dependent function which defines different weights for each colour 

channel. 

There are more local based methods that achieve encouraging performance, such as 

Socolinsky’s method [86], Bala’s method [87], Color2gray method [88] and Drew’s 

method [89]. Among these methods, Color2gray is a particularly successful example 

and usually considered as a comparison target. This method worked in the L*a*b 

space. For each pair of neighbour pixels, it computes the difference by combining 

their chrominance and luminance differences. Then it executes a squares 

optimisation to assign a greyscale image in which each pair of neighbouring pixel 

has a difference approaching their corresponding target difference scalar, which is 

decided by the chrominance and luminance differences of this pair in the source 

image. However, Color2gray has a critical weakness that it was highly 

computationally expensive as it is order N
2
 for an N-pixel image, because to achieve 

a good optimisation, each pixel should treat all other pixels in the image as its 

neighbour, according to [88], and when the value of a pixel is updated, the distances 

between all other pixels need to be computed. In other words, it will take an 

extremely long time when processing a large image by this method. What’s more, to 

yield the most visually pleasing solutions, manual adjustment of many parameters is 

required.  
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Colour-to-greyscale conversion at present is well developed. Generally there are 

quite a few approaches that can meet the requirement in practice. The goal in this 

topic now is to develop methods that are more robust to deal with problems of some 

extreme pictures and less computationally expensive. In Chapter 6 a novel global 

approach that reaches a similar result to Color2Gray but with less resource 

consuming is introduced. 

 

2.6 Human motion analysis systems 

There are a number of completed systems that operate for human motion analysis. 

Here “completed” means that the systems are able to take images or videos from 

cameras as input, and output the motion analysis result such as action recognition or 

body structure analysis. The approach of Hough forests discussed above is a good 

example. Besides, here Ferrari’s pose estimation and people retrieval system is 

introduced as a typical and complete example. 

Ferrari et al. presented a system that combines detector, pose estimator and shot 

retrieval [25] [90]. The system is designed to find the frames which were similar to a 

proposed pose in a large number of movie shots. To achieve that, the system detects 

the upper bodies of people in the input images, extracts the structures of the bodies 

by identifying six body parts. Retrieval is executed according to the estimated pose. 

The whole operation starts with an HOG detector developed by Dalal and Triggs 

[18], employing an SVM as the classifier. Then a foreground highlighting algorithm, 

which is based on the prior knowledge of human body structure and the Grabcut 

algorithm [91], is applied to tell apart the foreground (the human bodies) from the 

background in the images. To estimate the poses Ramanan’s iterative parsing 

algorithm [56] is employed to segment the detected bodies into heads, torsos, upper 

and lower arms, and store the location, orientation and size of each part. Three pose 

descriptors are introduced by the paper: 1) part positions; 2) part orientations, 

relative locations, and relative orientations; and 3) part soft-segmentations. These 
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descriptors work to extract the features from the information of detected body parts. 

For the final retrieval, the system has two operating modes, query mode and 

classifier mode.  

Comparing with the HOG based pose retrieval, the Ferrari’s system performed better 

in most situations. However, the accuracy (called precision in the paper, the rate of 

correctly locating body’s position and identifying poses) is objectively low – no 

solutions could achieve the accuracy over 50%. But at least, this system gave a 

completed solution from original images to analysis result and proved some 

meaningful suggestions on how to link methods for each phase together. 

 

2.7 Prior work and the research of the thesis 

In this chapter the big picture of human motion analysis area has been reviewed. The 

chapter introduced each topic in this research area, including the definition, the topic 

tasks, the basic concepts, the relationship to others, the recent contributions and the 

problems to be solved. What’s more the topic of colour-to-greyscale, which is an 

additional part of the research of the thesis, is introduced as well. This chapter also 

gives an example of applications of human motion analysis. 

The technical level in the state of art is the yardstick that evaluates our own work, 

and the advantages and disadvantages of existing methods can be summarised and 

compared so that the target of the proposed system in the thesis can be determined. 

Some existing techniques can be used, integrated and developed to build the system. 

Normally a novel method is based on several existing theories or methods along with 

integration and optimisation. Moreover, multiple approaches in the state of art give 

us different views of treating and solving problems.  

Human motion analysis is a large, complicated research area. To build an accurate, 

reliable, robust and efficient system of human motion analysis is a difficult task. 
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There are still a number of problems to be worked out. The following points can be 

learnt from prior work: 

1) Colour information are usually not used, which need to be improved because 

colour is an important way of identify objects in vision. Therefore the thesis 

discusses how colour information can be used to enhance edge representation 

and proposes a colour-to-greyscale method as a pre-processing procedure in 

Chapter 3. 

2) There are a number of object detection methods that can be employed to 

locate human bodies. HOG at present is considered as the best approach for 

body detection. In Chapter4 we implement and improved the HOG method 

and compare it with the Haar-AdaBoost  approach. 

3) Building a general system to analyse all types of human motions is very 

difficult. At present most approaches are designed to solve a certain range of 

motion problems. The system represented by the thesis is designed to analyse 

motion of a full human body with a fixed camera.  

4) A video can be treated in different points of view. To recognise the human 

action in a video, in the static view, its key-frame can be used for recognition; 

in the time state view, the linkage of poses can be used for recognition; while 

in the global view, shape variance can be integrated into an entire feature for 

recognition. Chapter 6 illustrates two applications of the system. The first 

one, key-frame extraction, is designed to extract the most representative 

frame of a video clip. The second one, video logging, is designed to 

recognise important actions in a video clip to build a state chain. 

5) Local features of motion images and videos have the advantage of solving the 

problem of moving camera, and can be a topic in the further work. 
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  Chapter 3

Pre-processing  

 

As mentioned in Chapter 3, an HOG detector [18] collects histograms of gradients 

extracted from the training and testing images and uses them as the features. Haar-

like [13] features are also shaped-like and responsive to, local edges. Hence 

extracting gradients differently will influence detection results. Considering that the 

images we are using are RGB colour images, while the original HOG approach only 

employs the gradients of the channel which has the largest difference, this 

mechanism loses gradient information in other unused channels. We assume that 

high-valued gradients which reflect strong edges of the images will increase the 

accuracy of human detection. Under this assumption, we have developed a series of 

methods to enhance the gradients by using the difference information of the three 

channels. 

In digital images, edges are caused by different materials and shades/shadows. In 

human detection, we usually need to keep the information from material edges and 

ignore the shade/shadow edges. There is an argument that edges between different 

objects which consist of different materials are usually indicated by different colours. 

This may not always be correct in certain scenarios. Of course, sometimes different 

materials have the same colour, which makes the edges very weak. It is a natural 

problem in human vision, and is out of consideration of this thesis. On the other 

hand, due to the lighting conditions of the pictures, shades and shadows will also 

lead to edges. Considering the lighting condition is not predictable, the edges caused 

by shades and shadows will confuse human body detectors. This is to say, human 
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body detectors cannot distinguish the edges caused by shade/shadow from those 

caused by different materials, which in the assumption of the thesis will cause 

incorrect detections. 

In colour theory, colour differences between materials indicate different values in 

hue space. Differences between highlighted areas and shade/shadow areas on the 

same material mean the same hue value but different luminance values in hue space. 

In the case of human detection, clothes and human skin often appear in several 

regions which have the same colour type but different luminance values. In order to 

weaken the shade/shadow edges and to enhance the edges between clothes/skin and 

backgrounds, pixels which have close hue values are grouped and assigned with the 

same colour value, which can solve the problem described in previous paragraph. 

This chapter proposed a novel colour-to-greyscale conversion method that is based 

on the density distribution in the RGB space, and can be applied not only in the 

proposed system, but also other image processing methods using one-channel input. 

 

3.1 The weakness of previous methods 

Current colour-to-greyscale converting methods can be categorised into global and 

local methods. Global methods of prior art usually convert the RGB values to 

greyscale values in fixed converting functions, without considering the structures 

and colour distributions of the input images. In such methods the mapping 

performance may be poor sometimes, especially in complex images.  

Local methods are developed to execute conversion via analysing the structure and 

colour distribution of every image in its own right. The advantage of local methods 

is local differences, especially those on edges, will be discovered and edges will be 

enhanced significantly. However, these methods often cause low-frequency 

distortion, as shown in Figure 3.1.  
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(a) (b) (c) (d) 

Figure 3.1 The problem of colour bars 

(a) Original, (b) Luminance, (c) Spatial enhancement of luminance at chrominance 

edges, (d) The mechanism in this thesis. 

Figure 3.1(b) indicates that chroma edges will be lost in a conventional colour-to-

luminance conversion. Figure 3.1(c) is the result of Bala and Eshchbach’s method 

[87] for colour bars, which brings colour boundaries back but causes a distortion 

problem. The low-frequency areas which are in the same colour in the original 

picture, have luminance variation in the output image. The reason is that the 

algorithm is more sensitive on the high-frequency areas, which leads to variations 

near the edges. 

Our method is global and makes analysis on the colour density distribution for every 

input image. It maps RGB values to greyscale values according to the density 

distributions of input images in RGB spaces. We execute the mapping process as 

follows: firstly, we group the colours of an image into a number of clusters in a RGB 

space. Secondly, we map the 3 dimensional centroids of the clusters to a one 

dimensional greyscale space. Finally, we calculate the greyscale value of each pixel 

by measuring its distances to each centroid in the RGB space.  

 

3.2 Colour clustering 

We choose the RGB space as the image processing space. There are a number of 

colour models for digital images, for example, three component models such as 

RGB, HSV and Lab [92], and four component models such as CMYK [93] [94]. 

RGB is the most commonly used colour model. Compared with Lab and HSV, which 

use the brightness (or sometimes called lightness) as a component, the three 
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dimensions of the RGB model are all colour components and the same weight can be 

used for each dimension to measure distances between different colours. Compared 

with CMYK, it is easier to process and display data based on the RGB model. We 

use sRGB [95] which is a standard RGB colour space used on monitors, printers and 

the Internet. 

Mapping RGB values to greyscale values via a colour clustering process is a novel 

idea in the proposed method. For an input image, we build a 3D histogram, in which 

the value of each point in the 3D space stands for the number of pixels which have 

the RGB values corresponding to the points’ coordinates. For example, if there are 3 

pixels having the colour value (128,128,128), the point in the 3D histogram will be 

evaluated assigned to 3. Therefore the histogram reflects the density distribution of 

the colours of the input image, as the example shown in Figure 3.2. We aimed to 

develop a mechanism that merges the non-zero points around the high density 

regions to colour clusters. 

Figure 3.2 gives a typical example of how the pixels distribute in an RGB colour 

space. The high density region located along the diagonal corresponds to the grey 

pixels of the original image, and is denoted as R1. The other high density region 

aside corresponds to the red pixels, and is denoted as R2. The goal of the thesis is to 

merge the points near R1 and those near R2 into two different clusters. In practice, 

two clusters are not enough for the further process. So for in this particular case, we 

group the points into 5 clusters: dark grey, light grey, dark red, light red, and the 

others between the high density regions. The selection of the number of clusters is 

partly dependent on the image. We choose 5 clusters here due to the simple example 

in Figure 3.2. However, the final colour-to-greyscale result is not sensitive to the 

choice of the cluster number, which will be discussed in Section 3.3. We have 

implemented five different methods to group the points to clusters.  

1. The first method is based on complete-linkage [96], a classical method that 

clusters points according to the distances between them, so the points will be 

grouped to a number of 3D regions.  

2. The second method employs a widely applied algorithm -- k-means clustering 
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and one of its improvements, k-means++.  

3. The second method uses complete-linkage as a preliminary stage to group points 

to small clusters, and then merges the small clusters to large ones by employing 

spatial-density estimation. 

4. The third method is based on getting separate clusters by smoothing and 

thresholding the whole RGB space, which can be completed by the following 

steps: 

1) Smooth the histogram with a 3D Gaussian filter to get a 3D colour density 

image;  

2) Segment the whole smoothed 3D histogram to a number of connected 

regions by employ a threshold. 

3) Select the n largest regions as the clusters and grow these by (3D) 

morphological opening until the clusters fill the entire 3D space and all 

colours are assigned to one of the clusters. 

5. The fourth method has the same procedure as the method 2 except the second 

step. It employs a watershed algorithm to segment the histogram. 

After grouping all the points to a number of clusters, we repaint the image in which 

each pixel is assigned by the average colour of its corresponding cluster. The average 

colour of a cluster corresponds to the centroid of the colour cluster in the RGB space. 

The result is shown in Figure 3.2(d), in which there are only 5 colours left. 
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(a) (b) 

 

 

(c) (d) 

Figure 3.2 Clustering and remapping colours for an image 

(a) Original image, (b) 3D histogram of colors in original, shown as a scatter 

diagram, (c) Classification of points in the scatter diagram following density-based 

colour clustering, (d) Original image recolored according to clusters found by the 

algorithm. 

3.2.1 The method based on complete-linkage  

This approach uses a classic clustering method called complete-linkage [96]. For a 

3D space with N non-zero points (a non-zero point means this point corresponds to 

one or more pixels in the image), this method merges the points to clusters in the 

following steps:  

1) Compute all of the distances between the non-zero points and make a 

distance table;  

2) Merge the pair of points which have the smallest distance to a single point. 

For example point p1 and p2 is the closest pair in the table. Merge them and 

denote the new point as p12;  
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3) Considering a point pi different from p1 and p2, denote the distances to p1 and 

p2 as d1,i and d2,i, and set d12,i=max(d1,i , d2,i) as the distance between pi and 

p12.Apply this to all of the points and updating the distance table;  

4) Carry out Step 2 and 3 iteratively until only one point left. 

After the complete-linkage process, a dendrogram that shows the grouping 

relationship of all the non-zero points is built up. Now the algorithm is designed to 

select a level of the dendrogram to divide the points into a number of clusters. The 

result of the clustering process is shown in Figure 3.3, in which 5 clusters are 

indicated.  

 

 

 

(a) (b) (c) 

Figure 3.3 Colour clustering using complete-linkage 

Figure 3.3 illustrates that the side region that corresponds to the red pixels is divided 

to four clusters, which leads to red regions in different luminance in the output 

image. What makes things worse, there are some points corresponding to grey pixels 

that are grouped in to red clusters, which cause some grey pixels appearing in red in 

the output image.  

3.2.2 The method based on k-means clustering 

K-means clustering [97] is a method that is commonly employed to cluster points in 

multiple dimensional spaces and measures clusters by distances and density. K-

means clustering can be described as a course that minimises the within-cluster sum 

of squares: 
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(3.1) 

where xi are observations (data points), k is the number of sets S={S1, S2, S3, … , Sk}, 

µi is the mean of points in Si. The standard k-means algorithm is an iterative process 

between two steps [98]: 

1) Assignment step: Assign each observation to the cluster whose mean is 

closest to it 

 ( ) ( ) ( ): 1      t t t

i p p i p iS x x m x m j k  , 

where t represents each iteration, mi (i=1, 2, 3, … , k) are the sets, and each xp 

is assigned to exactly one S
(t)

.  

2) Update step: Compute the new means to be the centroids of the observations 

in the new clusters.  
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The algorithm keeps running until the assignments stop altering. Then the final 

assignments are used as the final clustering result.   

In the conventional k-means algorithm, he starting points of each cluster (set) are 

randomly selected. Here we use an improved method named “k-means++” that 

optimally selects starting clusters [99]: 

1) Select one centre uniformly and randomly from among the observations. 

2) For each observation x, compute the distance between x and the nearest 

centre that was chosen in Step 1 (denoted as D(x)). 

3) Select one new observation randomly as a new centre, using a weighted 

probability distribution where a point x is chosen with probability 

proportional to D(x)
2
. 

4) Repeat Steps 2 and 3 until k centres have been chosen. 

5) Execute the standard k-means clustering method with the chosen starting 

centres. 
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We use MATLAB’s built-in function to implement the standard k-means algorithm 

and also apply a machine learning and data mining tool named WEKA to implement 

the k-means++ algorithm. The Euclidean distance is used to measure distances 

between points. 

 

 

 

(b) (c) 

 

 

(a) (d) (e) 

Figure 3.4 Colour clustering using k-means and k-means++ clustering 

Figure 3.4 illustrates that both k-means and k-means++ methods achieve clusters by 

measuring distances rather than by estimating density. For instance, the points 

representing red pixels are segmented into 4 clusters by k-means and 3 clusters by k-

means++, although these points form a region with continuous density. However, the 

aim of this section is to cluster points representing the same colour type to one set, so 

the method is required to do clustering according to density information. Hence we 

have developed several methods instead of using existing algorithms. 

3.2.3 The method employing spatial-density estimation 

According to Figure 3.3, it is shown that complete-linkage can successfully group 

the points into small regions. But in the consideration of the entire space, it does not 

consider the distribution density of the points. An alternative way is to divide the 
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points to a relatively large number of small clusters first, and then to use a method 

called spatial-density estimation (SDE), which is a new method developed by us, to 

merge the points to a smaller number of large clusters. We still employ the complete-

linkage method to build a dendrogram, and then group the points according to it. 

When there are a relatively small number of clusters left,  such as 50 clusters, we 

pass the grouping result to SDE. To explain SDE more clearly, we present a simple 

case with 2 small clusters in a 2D view as shown in Figure 3.5. 

 

Figure 3.5 A 2D view of SDE 

In Figure 3.5, there are two groups of points: the blue group and the orange group. 

The colour depth of each group means density of points, while deeper colour 

represents higher density. C1 and C2 are the centroids of Group 1 and Group 2. C4 is 

the one-third point of C1C2 and C5 is the two-thirds point of C1C2. C3, C6 and C7 are 

the middle points of C4C5, C1C4 and C5C2 respectively. P1, P2, P3 and P4 are the 

planes perpendicular to C1C2 at C1, C2, C5 and C2 respectively. Z1 is the space 

between P1 and P2. Z2 is the space between P2 and P3. Z3 is the space between P3 and 

P4. To judge whether these two groups are in a same cluster or not, we attempt to 

estimate the densities of the non-zero points in Z1, Z2 and Z3 and compare them. We 

execute as follows: 

C1 

C6 

C4 

C3 

C7 

C2 

C5 

P1 

P1 

P2 

P3 

Z1 

Z2 

Z3 
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1) Count the number of non-zero points in Z1, Z2 and Z3, and denote them as n1, 

n2 and n3; 

2) Calculate the average distances of the non-zero points in Z1, Z2 and Z3 from 

C6, C3 and C7 respectively and denote them as d1, d2 and d3; 

3) Compute the “densities” by  

 
i

i p

i

n
dens

d


 
(3.2) 

where i=1, 2, 3, p is a positive power parameter. The reason why we use the 

average distance instead of space size is because it is very difficult to 

estimate the size of the space where the non-zero points distribute. 

4) Compare dens1, dens2 and dens3 with a weighting function to make the 

decision. 

  2 1 3~ ,dens f dens dens
 

(3.3) 

where ~ means comparing. A simple example is: when the relationship 

between dens2, dens1 and dens3 satisfies  
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(3.4) 

then  the two clusters will be merged together. 

We execute SDE for every two tiny groups so that all of the tiny groups will be 

merged into several large clusters. It can be noticed that the rule of comparing 

densities is the key issue to decide the number of clusters at last. 

To estimate whether a point is between two planes or not, we use the equation which 

represents planes: 

 0Ax By Cz D     (3.5) 

In the case in this thesis, the four planes mentioned above are all parallel, which 
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means any two of them (denoted as Pi, Pj) can be represented as: 

 
0

0

i

j

Ax By Cz D

Ax By Cz D

   


   
 (3.6) 

Considering a point p0 with the coordinates (x0, y0, z0), let  
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(3.7) 

If p0 is at the position between Pi and Pj, ti and tj will have contrary signs. In other 

words, ti *tj < 0. An example of SDE clustering method is shown in Figure 3.6. 

 

 

 

 

(a) (b) (c) 

Figure 3.6 An SDE result 

According to Figure 3.6(b), SDE generates three clusters in the side region fewer 

than the method without SDE, which is what we want. Meanwhile, there is less 

interference between red and grey clusters, which leads to clear colour edges in the 

output. 

3.2.4 The method based on smoothing and thresholding  

in 3D histogram scatter 

The weakness of the two complete-linkage-based methods above, is that we have to 

build an N by N distance table for an N-pixel image to compare all of the distances 

every time when we merge the closest pair of points, and update the distance table. 

For a large image, this algorithm is much too expensive in computation and memory, 
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and sometimes the result cannot be achieved due to the limitation of memory. 

Therefore, we have developed other methods. 

Different from the approach introduced in Section 3.1, this section introduces a 

method that uses smoothed 3D histogram scatters in RGB spaces. After making the 

3D histogram scatter for a colour image, this approach has the following steps to 

group the points:  

1) Smooth the scatter with a box filter to get non-zero regions;  

2) Threshold the smoothed scatter to get a new scatter with several high-value 

connected regions;  

3) Select the n largest connected regions as the cluster prototypes;  

4) Group all the non-zero points to these prototypes;  

In step (1), a Gaussian filter is applied. In practice, we use an N by N by N cube 

( N=3,5,7,9… ) as a box filter. After smoothing, the non-zero points will be linked to 

form non-zero regions. Most times at this stage, the connected regions are large 

while the number of them is small. 

In the thresholding step, denoting a point in the scatter as pi,j,k and the threshold as t, 

we process the scatter by: 
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So the regions that have high densities will be left while the regions with low 

densities will be cleared to 0. As a result, there will be a larger number of smaller 

connected regions appearing in the scatter. Meanwhile, the largest connected regions 

in the scatter indicate the main colour clusters. The selection of the threshold is so 

important that it has a great influence on the clustering result. Considering that 

different sizes of images can cause different densities in the scatter, the selection of 

the threshold is usually designed to be adaptive according to image sizes. As the 

number of pixels in images increases, the values in corresponding histograms will 

increase. For images with the same content but different resolutions, there is a 
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proportional relationship between the values in the histogram and the number of 

pixels. So we set a linear relationship between thresholds and image sizes.  

 *threshold k n a   (3.9) 

where k is the coefficient, n is the number of pixels and a is the offset. 

In practice, there is a problem that as all of the non-zero points are set to one, we are 

not able to distinguish different connected regions as clusters. In order to represent 

every region by labelling them with different numbers, the painter’s algorithm [100] 

is used here, which processes as follows: 

1) Set the cluster number to 1, scan the scatter point by point; 

2) If the value of the current pixel equals to 1, cluster number increases 1; 

3) If the value of the current pixel equals to 1, set it to the scatter number, and 

the number of points in the current cluster increases 1; 

4) Check the neighbour (upper, under, left, right, front, back) points of the 

current point, and return to Step 3; 

5) Finish when the last point reached. 

Now the number of the clusters and the number of points in every cluster has been 

obtained. If N clusters are required, the top N largest regions will be selected. Then it 

is necessary to classify all of the points corresponding to the colour image pixels into 

their nearest clusters. In order to work this out quickly, we implement an algorithm 

called “region expanding”. The region expanding algorithm keeps expanding each 

selected cluster (connected region) at the same time in the 3D space until the 

connected regions reach the boundary and contact each other, so that the 3D space 

will be split into several sub-regions corresponding to the selected clusters and each 

point in the space can be classified to one of the cluster. The process is as follows: 

1) Define a finishing marker f, set f to 1 at the beginning, and then scan the 

scatter point by point from the (0,0,0) point; 

2) If the value of the current point equals to 0, set f to 0; 

3) Check the neighbour (upper, under, left, right, front, back) points of the 
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current point, if any of them does not equals to 0, set the current point 

equalling to that neighbour; 

4) When the last point is reached, if f equals to 0, return to Step 1 and repeat the 

process, else finish the process. 

All of the non-zero points will be included in the selected clusters when the region 

expanding algorithm finishes. The work left is just simply representing the pixels 

corresponding to the points of each cluster with the cluster’s average colour. The 

result of whole process in 2.2 is shown in Figure 3.7. 

 

 

 

(a) (b) (c) 

Figure 3.7 The process of colour clustering using smoothing and filtering 

 

3.2.5 The method based on smoothing and watershed algorithm  

in 3D histogram scatter 

This method just uses the watershed algorithm [101] instead of the simple 

thresholding mechanism to find the connected regions. To explain the difference 

between these two methods, a comparison is made in Figure 3.8. 
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The thresholding mechanism 

 

The watershed algorithm 

Figure 3.8 Comparison of the thresholding mechanism and the watershed 

algorithm 

Figure 3.8(a) indicates the thresholding mechanism with three different thresholds, 

which are represented by the horizontal dotted lines. The regions over the threshold 

will be considered as separate clusters. The problem of this method can be easily 

noticed. When we select a high-value threshold, such as the orange dashed line, 

region c which has many points but a low peak value, will be ignored. And in the 

further steps the points in region c will possibly be grouped to region b (cluster b). 

However we design to cluster region c as a separate region/cluster, so we have to 

decrease the value of the threshold. When the threshold goes down to a low value 

(the red dash-dotted line), region c becomes a separated cluster. However region a 

and b are grouped into the same cluster, which is also not what we what. This kind of 

paradox happens quite often when applying the thresholding mechanism. In addition, 

the threshold varies for different images. That is to say, we also need to develop a 

reliable method to find an appropriate threshold for every image even if there is no 

such paradox described above. 

In contrast, the watershed algorithm can solve the problem mentioned above well. 

The vertical red dash-dotted lines in Figure 3.8(b) represent the watershed locations, 

b 

c 

a 

b 

c 

a 



CHAPTER 3  PRE-PROCESSING 

  59 

 

which are the boundaries between clusters. It is noticeable that the points in region a, 

b and c are all grouped separately Meanwhile, the watershed algorithm does not 

require the selection of thresholds, which is an important but difficult issue in the 

thresholding process. 

Now consider a 3D histogram scatter. To achieve the boundaries as Figure 3.8(b) in 

the case of this thesis, we invert the smooth 3D scatter first. So that the peaks will 

become troughs and the troughs will become peaks. After we process the inverted 

scatter via the watershed algorithm [101], watersheds will be found. These 

watersheds are the boundaries of the high density regions after the processed scatter 

has been inverted back. We employed the watershed algorithm illuminated by Meyer, 

which is the most common method. According to the paper [101], the watershed line 

of function f is defined as: 

 Wsh( ) supp( ) (CB( ))

c

i

i

f f m
 

   
 

 (3.10) 

The theory of watershed algorithm is based on the knowledge of topography. CB(mi) 

is defined as the catchment basin, and supp(f) is the support. In practice, we 

implement the procedure as follows: 

1) A set of markers, pixels where the flooding shall start, are chosen. Each is 

given a different label. 

2) The neighbouring pixels of each marked area are inserted into a priority 

queue with a priority level corresponding to the grey level of the pixel. 

3) The pixel with the highest priority level is extracted from the priority queue. 

If the neighbours of the extracted pixel that have already been labelled all 

have the same label, then the pixel is labelled with their label. All non-

marked neighbours that are not yet in the priority queue are put into the 

priority queue. 

4) Redo step 3 until the priority queue is empty. 

After we get the connected regions by using watershed algorithm, we cluster all the 

points corresponding to the pixels via the region expanding mechanism described in 
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Section 3.2.2. Figure 3.9 is the result produced by the method based on watershed 

algorithm. 

 

 

 

(a) (b) (c) 

Figure 3.9 The result of using the watershed algorithm. 

It can be noticed that the side region is only divided to two clusters, and there is 

almost no interference between red and grey clusters. Comparing with Figure 3.7, 

more regions are clustered to light red instead of dark red. It is difficult to say which 

is “correct” or “better”. However, since the method using watershed algorithm has 

the superiority of threshold-free, it is employed in the final approach. 

3.2.6 The result comparison of three clustering methods 

The advantages and disadvantages of these three clustering methods have already 

been described above. Now a comparison of the clustering results for a number of 

images can be made. As the complete-linkage-based method is limited by computer’s 

memory, we use small-sized input images. The results are shown in Figure 3.10. 
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Figure 3.10 Re-mapped by means of colour clusters 

In Figure 3.10, sample images can be divided into two types. Samples such as 
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Picture 0, 1, 2, 5, 6, 9 have two types of colours but have significant luminance 

variation. Others have more colour types. Picture 4 which has small purple dots in a 

blue region, and Picture 7 which has five different types of colours, are difficult to 

classify all of the colours correctly. Figure 3.10 indicates that watershed algorithm 

classifies colours better than the other two. For Picture 7, watershed algorithm finds 

the green colour but the other two cannot. For Picture 10, watershed also classifies 

green and red better than the others. However, there is an incorrect classification for 

Picture 3, in which a red region on the car is classified to green by watershed 

algorithm. The SDE-based method performs not fairly for some images. However 

this method needs to build a complete-linkage dendrogram, which cases a big 

computational cost for a large image. To design a practical approach, we choose the 

watershed algorithm. 

 

3.3 Multidimensional scaling of cluster prototypes 

After achieving the clusters of the points in the RGB space, we then calculate the 

centroid of each cluster by: 

 
1

1
C

n

i

i

p
n 

   (3.11) 

where C stands for the location of the centroid of a cluster, pi is the coordinates of 

one of the points in the cluster, and n denotes the number of the points in the cluster. 

We define a cluster prototype which combines the centroid location and the number 

of the pixels (note it is not the numbers of the points because a point may be mapped 

by several pixels). 

These prototypes are then represented as vertices in a graph with the edges 

representing the 3D distances between cluster prototypes weighted by the numbers 

of points in each cluster. The graph may be visualized as a 3D graph that represents 

the cluster centroids perfectly: irrespective of the numbers of points in each cluster, 
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the graph’s minimum energy state is that of the original geometric distribution of 

points. We now use multidimensional scaling to determine the lowest energy 2D or 

1D graph that represents the cluster distribution. Lowest-energy here corresponds to 

minimization of Kruskal’s stress [102] [103], which is defined as 

     2( )ij ij ij

i j n

X w d X 
 

   (3.12) 

In the formula above wij≥0 indicates a weight between a pair of nodes i and j, and in 

the case of this section the weight of a pair of nodes is the product of the point 

numbers of the two clusters. dij(X) is the Euclidean Distance between these two 

nodes. δij is the ideal distance between the nodes in the m-dimensional data space, 

and here is the distance between two centroids in the RGB space. The entire 

multidimensional algorithm, has the following steps [103]: 

1) For a spring system with N nodes, compute the distances (or the inversed 

similarities) between each two nodes, thus N(N-1) distances totally. Order 

these distances from the largest to the smallest. 

2) Use a δij to satisfy Equation (3.12) and to minimize the stress.  

3) Move the nodes according to δij and build a new system configuration. So 

that distances and stress are updated, and δij is re-determined. 

4) Go back to step (2) and repeat the process until reach a minimum stress and 

the system will stay at a dynamic stable state. 

In practice we treat every connection between two nodes as a “spring” which has 

“forces” to the nodes. The “forces” come from the stresses between every two nodes. 

The nodes are moved by the “forces” and the entire system will be finally led to a 

dynamic stable state due to the energy minimising law. A 2D spring graph is useful 

for visualising the effects of cluster size and placement, but the 1D version yields a 

mapping of the prototypes to 1D which is then applied to convert to grayscale. In the 

case of the thesis we use the locations of the centroids as the positions of the nodes, 

and the numbers of the points in the clusters as the weights. The distance of a pair of 

clusters is defined as the Euclidean Distance between their centroids in the RGB 

space. The weight of their distance is the product of the weights of the two clusters. 
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So the system can compute the average stress of a set of prototypes. 

We build up a 1D spring graph (the visualisation of a spring system) with the nodes 

initialised at random positions, as the solution of multidimensional scaling and 

average stress/energy minimising [103]. A typical 1D spring graph is shown in 

Figure 3.11. In Figure 3.11, a node is displayed by three numbers which are the 

coordinates of the centroid of a cluster prototype. For example, the node (27,59,30) 

corresponds to the cluster prototype of which the point (27,59,30) is the centroid. 

The vertical line stands for the greyscale from 0 in the top to 255 in the bottom, and 

the position of each node indicates its mapping value to the greyscale. When the 

spring system reaches a stable statue, which means the energy of the system is 

minimum, the positions of the nodes will be relatively static. Then the greyscale 

mapping will be determined according to the positions of the nodes. 

 

Figure 3.11 An example of spring graphs 

Here it is appropriate to discuss the reason why the final colour-to-greyscale result is 

not sensitive to the selection of cluster number n. According to Figure 3.11, a spring 



CHAPTER 3  PRE-PROCESSING 

  65 

 

system can drive the nodes whose centroids are near each other in the RGB space to 

close positions in the greyscale space. When the number of clusters is more than the 

number of colour types, the points of the same colour type will probably be clustered 

into two or more sets which have near centroids. However, the spring system will 

map their corresponding nodes to near positions. Since the procedure of mapping 

each pixel to greyscale is an inverse distance weighting function (see Section 3.4), 

the influence on the final result is small. Of course users can manually select the 

number of clusters for each image to achieve a best result for different situations and 

applications. However selecting an appropriate number of clusters can satisfy most 

images. The number can neither be too small, otherwise points with significant 

colours will be merged; nor be too large, otherwise the final result will be similar to 

the luminance image. Hence we use the number of clusters N=10 for all experiments. 

However, the spring graph method achieves only local minimisation. As we initialise 

the 1D spring graph with random node positions, sometimes a spring graph will 

reach a stable statue that only achieves a local minima instead of the global one. To 

work out this problem and get the global minima, we employ an iterative hill-

climbing process to determine the minimum-energy configuration. We start this 

process by randomly initialise n spring graph instances, with one of them being the 

foreground instance and others being background instances. All of the instances are 

running in parallel and independently. When one of the background instances 

achieves a stress smaller than that of the foreground instance, we replace the 

foreground instance by the background one. Meanwhile a new background instance 

is started. An existing background instance will be killed and a new one will be 

started if the existing one cannot improve the stress after a duration t.  This process is 

repeated and the entire process terminates when k instances in a row do not improve 

on the currently found minimum energy. In practice we set n=2 and t=2000 (t is an 

iteration number in the program). 

We have run the algorithm on many different images for a number of times, 

assessing the ability of the multiple-start mechanism to find a global optimum. 

Figure 3.12 below shows the frequency of finding the minimum energy associated 

with a particular 3D-to-1D conversion given k for a typical image (Lenna, the blue 
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line), a moderately difficult image (Hiker, the red line) and for the most difficult 

image (Sunrise, the green line).  

 

Figure 3.12 Proportion of runs finding minimum energy solution 

The diagram shows that with k = 100, the probability of finding the minimum is at 

least 80%. This means that if we run the program 10 times for the most difficult 

image (Sunrise), it will be a probability of 0.9999999 (1-0.2
10

) to achieve a 

minimum stress. 

 

3.4 Mapping of all colours to greyscale 

Having got the optimum distribution of the prototypes by energy minimisation, the 

algorithm can now map the colour values to greyscale. For each pixel, we measure 

the Euclidean Distance to every prototype in the RGB space, and then use Shepard’s 

method [104] to computer its greyscale value. Shepard’s method, which is an inverse 

distance weighting algorithm, converts colour values to greyscale as: 
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is an inverse distance weighting function. The function d(x,xi)
p 

is the distance 

between the pixel and the prototype we have computed, and p is the power parameter 

which is a positive real number. 

In practice, the method described above will bring a serious problem. In some cases, 

false edges will appear due to some pixels which should have high values but have 

been set very low values after the mapping process.  We argue that the problem is 

pixels that are outside the hull of nodes so their values are being extrapolated rather 

than interpolated. Adding nodes (0,0,0) and (255,255,255) insures that all values 

interpolated. So we have got N+2 cluster prototypes in practice. 
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Figure 3.13 Flowchart of the entire procedure 

 

3.5 Comparison against other methods 

3.5.1 Qualitative performance 

We have tested the proposed method by applying it to a number of images. The final 

Select the optimum mapping by using hill-climbing 

Map the pixels to the corresponding points 
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get a continuous non-zero region 
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high density connected regions 

Select the N largest connected 
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system to map the 
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system to map the 
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…

Use Shepard’s inverse 
distance weighting method 

to get the greyscale values 
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system is based on watershed method, and we call it Density-based colour to 

greyscale method. The whole colour-to-greyscale process is indicated by Figure 

3.13. 

A simplified approach called Colour-quantisation colour to greyscale method is also 

implemented for comparison. This method executes multidimensional mapping in 

the same way as Density-based method, but it just clusters the points in an RGB 

space to a number of fixed prototypes instead of watershed-based clustering. For 

example, it divides an RGB space, which is a cube with the scale from 0 to 255 in 

each dimension, to 5x5x5 regions, and each region is considered as a prototype. The 

centre of each region is defined as the location of the corresponding prototype. The 

numbers of non-zero points inside the regions are the point numbers of the 

prototypes. 

We use luminance images and Color2gray [88] result as comparisons. We also add 

the result produced by Colour-quantisation (Colour-quant), i.e. the method just 

described. We extract the Canny edge of the result images to get a clear view. The 

proposed method that is superior to Color2gray int that it can process large sized 

images. So for the proposed method, we get greyscale images in large sizes at first, 

then scale it to the same size as the images used in Color2gray, and finally extract the 

edges. The comparison is shown in Figure 3.14. In Figure 3.14, the pictures “Lenna”, 

“Baboon” and are classic testing images, while “Sunrise” is a typical image that can 

reflect the performance of a method: simply taking the luminance for colour-to-

greyscale conversion will case losses of chroma edges in this picture. The picture 

“Cells” contains lots of edges, “Hiker” has a very complicated background and 

“Walkers” has close colours on the door, the wall and the lady’s hair.  

Here is the parameter configuration for each method: 

Luminance: no parameters needed. 

Color2gray: this method is parameter-dependent. We set its parameters θ=45°, 

a=10.0, μ=full neighbour (see the definition of its parameters in [88]). 
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Colour-quant: we set the division of RGB cubes to 5x5x5 regions. 

1) Density-based: we set the number of selected colour clusters n=10, the 

number of hill-climbing candidates (background instances) hc=1, and in the 

phase of inverse distance weighting, we set the power parameter p=2. 

2) According to the result shown in Figure 3.14, a summary can be made as 

follows: 

3) For the image “Baboon”, the density-based method achieves the result with 

clear edges between hairs in different colours. Other methods obviously did 

worse than Density-based method. 

4) Our method produces qualitative results on a par with the state of the art 

without human intervention. In particular, we see on the “Sunrise” image, 

that the equal-luminance sun/sky difference is preserved at least as well as 

Color2gray, and significantly better than the other two. Arguably the 

rendering of the colour blindness test is closer to that of normal colour vision 

than any of the alternatives.  

5) Because of the single choice of the number of clusters N, images with fewer 

objects are over segmented by our method. This is evident in the “Hiker” 

image where the green grass has been divided into two clusters resulting in a 

busy edge image. On the other hand we note that the outlines of the hiker’s 

body are best defined in the density-based edge image, so this would be 

suitable as input to a subject stage of person detection and pose estimation.  

6) The picture “Walkers” illustrates a case where doing without spatial 

information harms the density-based method: the woman’s hair is rendered 

close in grey value to the door behind her and so the edge is attenuated.  
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Figure 3.14 Comparison between our method and others 
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Figure 3.14 (cont.)  
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3.5.2 Quantitative performance 

We compare our method with Ren’s method [105], which combines edges of 

luminance image (G-image) and a transformed image (R-image) which has enhanced 

colour information. In the beginning, the method computes differences between 

colour channels and produces a D-image: 

 1 2 3( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )D i j r i j g i j r i j b i j g i j b i j         (3.15) 

Where r, g, b represent the three channels of an input image, and (i, j) is the location 

(coordinate) of a pixel. ω1, ω2 and ω3 represent the weights for the differences, 

which are set to an equal value in Ren’s experiment. An R-image is a smoothed 

colour image created by combining the corresponding G-image and D-image: 

 
( , ) ( , )

( , )
d g

d g

G i j D i j
R i j k

 

 





 (3.16) 

where k is a coefficient that scales intensity values in R-images within[0, 255], and 

ωg, ωd are the weights defined as: 
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d

g
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Range G G

 

 

  

  
 (3.17) 

where the function Range( ) returns the intensity range of an image, and σ( ) obtains 

standard deviations. 

After obtaining transform images, Ren employed a Canny operator implemented by 

OpenCV to extract edges. There are two threshold parameters required: Th which has 

a larger value and is used to find initial segments of strong edges, and Tl which is 

smaller and is used for edge linking. Ren proposed a mechanism to automatically 

determine Th and Tl: 
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where µ and σ are the mean and standard deviation respectively of an input greyscale 

image. Ren extracted edges from the G-image and R-image, and output their 

combination as the result: 

 f G RE E E   (3.19) 

To analyse the performance of his algorithm, Ren used a set of ground truth images 

which were obtained from the testing images by the following process:  

1) An RGB test image was converted to the YCbCr space. 

2) Edge images were determined from both the RGB and YCbCr spaces. To 

extract edges for a 3-channel image, Ren applied Canny operators on each 

channel separately with thresholds determined automatically, and then output 

the OR combination of the three edge images as the final result. 

3) The RGB edges and YCbCr edges were OR-ed together to achieve a union 

image of edges. 

4) Finally the edge image obtained in Stage 3 was modified manually to remove 

noise generated in the processes above. 

To evaluate the performance of edge detection, Ren compared the output edge 

images with their corresponding ground truth pixel by pixel and accumulated the 

numbers of true and false edge pixels. Finally the pair of totals of true and false edge 

pixels was used to evaluate performance.  

Ren’s ground truth images are no longer available (Ren [106]), so we have replicated 

them following the above procedure. We then follow the same procedure for 

performance evaluation. We partly disagree with the subjective decisions made in 

step 4) in Ren’s paper, (e.g. missing edges of the reflecting regions in ‘pepper’), but 

we have tried to reproduce their images faithfully to allow fair comparison. The 
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ground truth images are shown in Figure 3.14. 

In the colour-to-greyscale phase for our method, we set the cluster number to 10, and 

execute the spring process 10 times to achieve a global minima for each image.  

We have also implemented a simple but commonly used colour edge extracting 

method: on each pixel, the channel having the maximum gradient is used to extract 

edges. Color2gray is also inspected in this section. The final results are unions 

combined by the edges produced by the two methods above and luminance edges. 

The high and low thresholds for the Canny operator are automatically generated by 

Ren’s method (Equation 3.18).     

To evaluate the comparison results, we use Dice’s coefficient [107] which is a 

similarity measure over sets X and Y:   

 

YX

YX
s






2
 

(3.20) 

where s stands for the similarity.  

In the experiment we find that our method achieves smaller numbers of both true and 

false edge pixels than those by Ren’s method: slightly fewer true edge pixels against 

significant fewer false ones, see Table 3.1. 
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Figure 3.15 The comparison between our method and Ren’s method 

A: source images. B: ground truth images. C: Ren’s edge images. D: our edge 

images with automatic thresholds. E: “thinned” edges. F: edges using the 

maximum gradients on each pixel. G: Color2gray edge images. 

 
lenna pepper house 

 true false s true false s true false s 

Ren’s 8141 2847 0.7650 7971 6852 0.6217 3895 2224 0.7198 

Ours 8027 3000 0.7529 7906 5723 0.6468 3879 1532 0.7658 

Color2gray 7680 2289 0.7579 7022 5905 0.5915 3530 1346 0.7357 

Table 3.1 The comparison of results 

First of all we reject the method that produces Figure 3.15F, since that there are 

heavy noise and disconnected edges appearing in the three images of Figure 3.15F.  

Figure 3.15C shows that that Ren’s method produces edge images with more noise 

than ours. Meanwhile, Ren’s method misses some significant edges, such as the 

edges in the right corner of ‘lenna’ and the edges of the reflection regions in 

‘pepper’. Our method does better on these regions. Color2gray produces “clean” 

edge images for “lenna” and “house” at the cost of losing some edges, but performs 

the worst for “pepper” – making lots of noise and significantly losing some edges. 
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Considering the similarities with the ground truth images, according to Table 3.1, our 

method achieves the highest value for “pepper” and “house”. Here is a fact that our 

method can achieve similar numbers of true edge pixels with significant fewer false 

edge pixels for all of these three images but Ren’s method does find slightly more 

‘true’ edges than us. We argue this is due to thick edges in the ground truth images. 

The ‘ground truth’ are produced by extracting edges in both RGB and YCbCr spaces, 

combining all edges with an OR operator. For a significant edge in an input image, 

corresponding edges in different channels are not always at exactly the same 

location, which leads to a thick edge in the union output. So we produce a new set of 

ground truth images whose edges are thinned from the ground truth images used 

above, see Figure 3.15E. The thinning is done by removing pixels from thick edges 

to leave the best single-pixel wide edges. This is a subjective judgement as was the 

original ground-truth creation process, but we argue that one-pixel-thick edges are a 

more appropriate representation of ground truth than the thick edges in Ren’s paper. 

Against these baseline images the performance is indicated by Table 3.2: 

 
lenna pepper house 

 true false s true false s true false s 

Ren’s 7579 3409 0.7597 6984 7839 0.5997 3696 2407 0.7227 

Ours 7760 3267 0.7763 7855 5744 0.7109 3854 1557 0.8083 

Color2gray 7415 2554 0.7832 6676 6251 0.6240 3429 1447 0.7619 

Table 3.2 Evaluation results by using the thinned ground truth 

In Table 3.2, we see that the true detections fall comparing with Table 3.1. However 

the decrease is less for our method. These results show that Ren’s method obtains 

thicker edges but fewer edge details. Meanwhile, Ren’s method produces much more 

noise as shown by its large false detection number.  Color2gray achieves the highest 

similarity with the ground truth for “lenna” this time, but worse than our method for 

both “pepper” and “house”. Meanwhile, Color2gray extracts the fewest true edges 

pixels among the three methods.   
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3.6 Conclusions 

In this chapter we have introduced a colour edge extraction method that uses density-

based clustering and colour-to-greyscale conversion. This new global method avoids 

the problem of low-frequency regions and generates greyscale images that accurately 

conserve the edge/region structure of the colour originals. Compared with 

Color2gray, it performs comparably to prior art without operator intervention in a 

relatively low computational expense. Compared with Ren’s method, it produces 

more edge details with lower noise. 

Our method ignores some edges between two regions which have similar colours but 

differ by luminance. However in some situations luminance edges are required, as 

the case of the last image in Figure 3.14. Although we do not intend to introduce 

spatial filtering for the reasons discussed in Section 1, spatial activity can be 

designed drive the selection of parameter values, in particular n the number of 

clusters.  

Although this method is initially designed for improve the performance of the 

gradient-based human detection method, it also provides a solution of minimising 

loss of colour edge information when converting RGB images to greyscale. For any 

image processing method which depends on edges and requires one-channel input, if 

the used data is RGB images, then our conversion method can be applied to avoid 

losing colour edges. 
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  Chapter 4

Human Detection 

 

Human detection is the beginning phase of human motion analysis. A complete 

system of human motion analysis needs an accurate human detector to locate human 

bodies as the input of the following processing phases [25] [90]. Histogram of 

orientated gradients (HOG for short) for human detection, which was firstly 

proposed by Dalal [18] [108], is a popular method in the area of human detection in 

computer vision. Dalal designed an HOG training and detection scheme that 

achieves a relatively high true detection rate, compared with using other methods, 

such as Viola and Jones’ method that employs Haar-like features and adaBoost 

classifier, which will be introduced in Section 4.3. Due to the good performance of 

HOG, we applied an HOG detector in the proposed system of the thesis. However, 

the original HOG scheme is not able to reduce its false detection rate to a practical 

level (see Section 4.1.4). Consequently, we made some modifications on the original 

scheme, including using extra training images and employing our colour-to-

greyscale conversion method, to achieve a lower false detection rate and meanwhile 

to keep the true detection rate. 

Section 4.1 introduces the theory and the original processing scheme of HOG. 

Section 4.2 illustrates how we add extra training data and shows the experimental 

results compared with the original one. Section 4.3 introduces procedures of 

employing our colour-to-greyscale conversion as pre-processing. Section 4.4 

compares the improved HOG approach with the approach using Haar-like features 

and AdaBoost. 
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4.1 Histogram of Orientated Gradients 

Like other machine-learning-based detection methods, in the training phase, the 

HOG method builds detectors by collecting image features and employing a 

classifier to learn statistical models. In the detection phase, it classifies testing 

windows into human or non-human according to trained models. Histograms of 

orientated gradients (HOGs) are extracted from input images as features and a linear 

support vector machine (SVM) [12] is selected as the classifier. The entire HOG 

training and detection structure is shown in Figure 4.1: 

 

Figure 4.1The flowchart of HOG training and detection 

According to Figure 4.1, both training and testing procedures begin with extracting 

and encoding HOG features (or descriptors), which will be introduced in 4.1.1. The 

mechanism of training models will be introduced in 4.1.2. The post-processing phase 

is a process called multi-scale object localisation, which will be introduced in 4.1.3. 

4.1.1 Extracting HOG features 

HOG features are based on edge intensities and orientations of images. A typical 

HOG extraction procedure is indicated by Figure 4.2: 
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Figure 4.2 The procedure of HOG extraction, form the paper [18] 

For an input image, in the beginning, we scan it by a multi-scale rectangular mask 

and extract every scanned window from the image. Then for each window we scale 

it to a fixed size which is 64 by 128 in Dalal’s approach and define them as detection 

windows. Considering that gradients vary due to local contrast and luminance 

variation, each window is processed by a gamma normalisation which executes 

square root in each colour channel (Dalal stated it was the best normalisation method 

in his experiment) at a low FPPW (false positive per window, restricting to greyscale 

reduce performance by 1% at 10
-4

 FPPW). At the stage of computing gradients, 

Dalal argues in his PhD thesis that using the 1-D centred mask [-1,0,1] works best 

for human detection. Meanwhile orientations of gradients are spaced within 

0°~180°and evenly distributed into β bins which are used to form histograms.  
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There are a number of HOG types, such as Rectangular HOG (R-HOG), Circular 

HOG(C-HOG) and single centre Circular HOG, as shown in Figure 4.3. Considering 

the nature of human detection (using a 64×128 rectangular window), R-HOG is 

employed in the approach. 

 

Figure 4.3 Three variants of HOG descriptors, from the paper [108] 

There are two concepts called “cell” and “block” in the process of producing HOGs. 

A cell is a η×η image region and a block consists of ς×ς cells. For example, Figure 

4.3(a) shows a block with η=3 and ς=3. For each cell, a 1-D histogram which has β 

bins corresponding to orientation bins is formed by accumulating gradient 

orientations. The gradient energy of each pixel in the cell is used to vote into its 

corresponding bin of the orientation histogram. Dalal also states that using a 

Gaussian spatial window over a cell before accumulating voted orientations can 

improve detection performance. 

So there are ς×ς orientation histograms in each block. In order to solve the problem 

of gradient variation inside a block, Dalal performs four schemes of independent 

normalisations in each block. We use the scheme “L2-Hys” which is [109]: 

 

2 2

2/ | v | ε

0.2, if 0.2

v v

v v

  


 

 (4.1) 

where v is the original descriptor, ||v||k is its k-time normalised one, and ε is a small 

constant to avoid division by zero. Meanwhile, there is a clipping mechanism 

limiting v under 0.2 during renormalisation. Finally we collect the normalised block 

descriptors which are defined as a HOG descriptor and put them to a vector.  
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4.1.2 HOG training phase 

Building a human detector essentially is training a binary classifier that distinguishes 

positive (human) and negative (non-human) detection windows. Here a linear SVM 

is employed as the training and detection algorithm, which learns models by using 

HOG features from both positive and negative windows. Dalal also tried a Gaussian 

SVM which improved performance very little at the expense of much more 

computation time. So we also use the linear SVM as a comparison. The training 

dataset used includes positive images each of which contains a single detection 

window, and negative images each of which is large and contains many detection 

windows. The training phase contains 3 stages:  

1) Dump HOG descriptor data for both positive and negative training images 

separately, and then train a preliminary detector by using the dumped data. 

For each negative image randomly extract a small number of detection 

windows (e.g. 10) as training samples. 

2) Apply the preliminary detector to scan the negative images carefully to find 

false detections (called “hard” samples). Add these hard samples into the 

negative data. 

3) Retrain the detector with the positive data and the updated negative data. 

Figure 4.4 indicates the scheme of HOG training. Since there is huge number of 

negative samples if we extract all of the detection windows from the negative 

images, randomly extracting 10 samples from each negative image makes the 

training process much faster. To ensure the performance of the detector, hard samples 

are produced. Hard samples essentially are detection windows close to positive 

samples, and can help to reduce false detections after being added to negative 

samples. An example of the HOG training script is detached in Appendix and reflects 

the training procedure above. 
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Figure 4.4 The flowchart of HOG training 

 

4.1.3 Post-processing by multi-scale object localisation 

Most detection methods usually face a problem after detectors scan an image and 

acquire detections: sometimes there are several detection windows overlapping and 

effectively representing the same object. Hence a fusion method that distinguishes 

different groups of detected windows and merges overlapping windows is required. 

Considering that an image region which has strong positive features (in the case of 

this section, it means a region looks like a human body strongly), usually obtains 

many detection windows (more than 5 for example), the fusion method is also 

designed to reject false detected regions which only have very few detection 

windows (1 or 2 for example). 

Dalal’s HOG approach determines a final detection from a group of overlapping 

detections according to their SVM scores, the number of detections and window 

scale ratios. A group that has a high peak SVM score, large number of detections and 

similar window scale ratios will be determined as a true positive. Conversely, the 

method will perform a rejection. Based on the theory proposed by D. Comaniciu et al 
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[110], this method, which is named non-maximum suppression, takes the following 

steps for a group of overlapping detections: 

1) Represent each detection window (considered as a point) in 3-D position and 

scale space. The space consists of (x,y) coordinates in horizontal and logged 

scale values in vertical.  

2) Estimate the uncertainty matrix for each point. 

3) Merge the points to a mode by iteratively computing the mean shift vector for 

each point. 

4) Finally obtain the bounding box from the mode that contains the final 

location and scale rate.  

Figure 4.5 indicates the result of the merging method. It shows that for the man on 

the right, the case is simple and the result is good. For the woman on the left, the 

case is much more complicated due to a large number of multi-scale overlapping 

detections. The merging algorithm measures these overlapping windows by their 

sizes, locations and density to achieve a final result. A part of the woman’s head is 

left out of the final detection window due to the large number of the preliminary 

detection windows which leave a part of the head out. The outcome is still not too 

bad, considering that those very small and very large detection windows are rejected. 

In addition, for the bicycle near the lower-left corner, only one detection window is 

located in this region and rejected by the fusion method.   

 

 

 

Figure 4.5 Merging HOG detections by multi-scale object localisation 

Left: the detection result before merging windows; Right: the final detections 
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4.1.4 Experimental results 

We use the same INRIA dataset as Dalal did. This dataset has 1208 positive training 

samples, each of which contains a single human body (can be a man, woman or 

child) walking or riding bicycles. We mirror these positive samples by their vertical 

middle line so that we get 2416 positive samples. The dataset also has 1218 negative 

training images. For each image we extract 10 detection windows randomly so that 

12180 negative samples are extracted for the first training stage. There are also 288 

positive testing images which contains 566 human bodies totally. Instead of testing 

sub-images that are cropped from the data images and scaled to 64×128, as Dalal 

did, we apply the trained detector to the 288 positive testing images to achieve more 

practical results.   

We set the HOG parameters η=8, ς=2, β=9, and perform the L2-Hys scheme for 

block normalisation. We scale the detection window by 1.05 from the initial size 

(64×128) and set the scanning stride to 8 pixels in both height and width directions. 

A threshold t is needed for multi-scale object localisation, and we raise t from 0.00 to 

0.10 with a step length of 0.02. The result is indicated in Table 4.1 and Figure 4.6. In 

Figure 4.6(a), the vertical axis represents the rates of true detection numbers to the 

total number of human bodies, which is: 

       
   

       


number of positivedetections
truedetectionrate

number of humanbodies
 

In order to represent numbers of false detection comparably to true detections, we 

define the false detection rate as the rate of false detection numbers to the total 

number of human bodies on the horizontal axis, which is: 

       
   

       

number of falsedetections
falsedetectionrate

number of humanbodies
  
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(a) 

 

(b) 

Figure 4.6 Results of the original HOG detector 

(a) true detection rates against false detection rates, (b) the chart of false positive 

rates 

When t=0.00 the true detection rate reaches over 90% but there are also 428 false 

detections, which means every true detection goes with 0.84 false detection. It is 

noticeable that as the threshold rises up, the false positive rate falls down 

significantly, from 10
-5

 level to 10
-6

 level according to Figure 4.6(b), and the true 

detection rate drop down at the same time. Therefore there is a trade-off between the 

true detection rate and the false positive rate. However the negative rate is still too 

10% 20% 30% 40% 50% 60% 70% 80%

65%

70%

75%

80%

85%

90%

95%

false detection rate 

tr
u

e
 d

e
te

ct
io

n
 r

at
e 

0.00E+00

5.00E-06

1.00E-05

1.50E-05

2.00E-05

2.50E-05

3.00E-05

3.50E-05

0 0.02 0.04 0.06 0.08 0.1

fa
ls

e
 p

o
si

ti
ve

 r
at

e
 

t 



CHAPTER 4  HUMAN DETECTION 

  89 

 

high even we use the highest threshold with the positive rate falling down to a low 

percentage. When t=0.10, the positive rate falls down to 72% while there are still 117 

false detections, which means that more than one false detection occur when we get 

four true detections.   

t Positive Negative 

0 511 428 

0.02 483 309 

0.04 465 233 

0.06 447 164 

0.08 425 138 

0.10 409 117 

Table 4.1 Detection results of the original HOG approach 

 

4.2 Modifications on HOG training 

4.2.1 Extra training data 

The performance of the original HOG approach does not satisfy practical 

applications, since the false detection rate is relatively high. By studying the 

detection results, we notice that many false detections occur at human bodies parts 

and boundaries of foregrounds (human bodies) and backgrounds, see Figure 4.7. We 

suppose that this phenomenon is caused by the defect of the training mechanism 

which only uses pure positive and negative samples and does not treat body parts 

and foreground/background boundaries as negative samples. Hence we add some 

extra negative images which are extracted from human body images into the training 

dataset. 
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Figure 4.7 Examples of the original HOG detections with overlapping detection 

windows on body parts 

 We produce extra negative images by cropping windows from human images, each 

of which is either a single-person or a human-group picture. We have tried three 

different schemes of cropping body parts, termed “2x1ol”, “2x2” and “2x2ol”. For a 

human image, “2x1ol” means we use a cropping window with ½ of the image height 

and the full image width. The term “ol” means there is an overlapping window in the 

middle of the image, so 3 sub-images will be produced. Similarly, “2x2” means 

cropping sub-images in ½ height and width without overlapping widows, and 4 sub-

images will be produced. “2x2ol” crops sub-images in the same size of “2x2” and 

has overlapping windows along both height and width. Therefore 9 sub-images will 

be produced. Figure 4.8 shows how the cropping method works.  
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2x1ol 2x2 2x2ol 

Figure 4.8 Three mechanisms of cropping negative images from human images 

 

4.2.2 Experiments and results 

We selected 260 human images and cropped them by the three methods above. 

Finally we get 780 sub-images by “2x1ol”, 1036 ones by “2x2” and 2331 ones by 

“2x2ol” (we discard some sub-images whose sizes are smaller than 64×128). After 

obtaining the extra negative images, we add to the initial dataset and train detectors 

as what we did in Section 4.1. The detection results compared with the original HOG 

training are illustrated in Table 4.2 and Figure 4.9. To make a fair comparison, we 

also add 780 negative images representing backgrounds and other objects for the 
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original HOG training. So in Table 4.2 and Figure 4.9, the “original+” detector is 

trained by 1998 negative images (not body parts images). 

Table 4.1 and 4.2 indicate that the “original+” detector performs similarly to the 

“original” one, which means that adding negative images representing backgrounds 

or other objects cannot improve detection performance. However, according to Table 

4.2 and Figure 4.9(a) a significant reduction of false detection numbers occurs when  

extra negative training images are used, and meanwhile the true detection rate only 

decreases slightly. So the conclusion can be made that using extra negative images 

which are body parts can improve the performance but using extra background 

negative data cannot. It  can also be noticed that “2x1ol” performs the best, which 

pulls the false detection rate down by more than 25% but only loses 7 true detections 

when t=0. Along with t rising, it keeps a true detection rate close to the original HOG 

detector and a low false detection rate as well. “2x2” and “2x2ol” perform similarly, 

both better than the original one and worse than “2x1ol”. Meanwhile the chart of 

false positive rates shows the same information: false positive rate goes down all 

time as t rises, and “2x1ol” has the lowest false positive rate. 

 
Original+ 2x1ol 2x2 2x2ol 

t pos neg pos neg pos neg pos neg 

0 506 435 504 271 502 348 503 337 

0.02 484 300 476 171 481 235 478 220 

0.04 459 225 448 114 457 162 456 140 

0.06 444 169 423 82 435 120 421 114 

0.08 429 129 406 59 408 105 413 88 

0.1 409 120 396 46 397 91 393 73 

Table 4.2 Results of the HOG detector using extra training data 
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(a) 

 

(b) 

Figure 4.9 Results of the HOG detector using extra training data 

(a) true detection rates against false detection rates, (b) false positive rates. 

 

4.3 A Comparison: Haar-like features and AdaBoost 

The approach using Haar-like features and AdaBoost classifiers (we call it the Haar-
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method which was firstly presented by Viola and Jones [13], was initially designed 

to achieve accurate, efficient human face detection, and then it has been widely 

extended to other types of object detection in computer vision. We implemented this 

approach for our human body detection based on Day’s work [23].  

4.3.1 Haar-like features 

Haar-like features, presented by Viola and Jones, are differences between sums of 

rectangular image regions. In Figure 4.10, twelve types of features are indicated. In 

each feature type, the sum of its white region is subtracted by the sum of its black 

region. The diagonal features are less commonly used than the horizontal/vertical 

ones. 

 

Figure 4.10 Types of Haar-like features 

4.3.2 AdaBoost classifier 

AdaBoost is a machine learning algorithm that builds a strong composite classifier 

by combining several weak elemental classifiers [13]. Each weak classifier processes 

quickly to roughly classify input objects and the entire classifier combines results 

generated by all of the weak classifiers to achieve a fast and accurate classification. 

The structure of a typical AdaBoost classifier can be illustrated by the following 

equation: 

    
1

sign( )
T

t t

t

H x h x


   (4.2) 

where x is the input, H(x) is the classifier result (or final hypothesis), T is the number 
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of weak classifiers, ht represents the a week classifier weighted by its coefficient αt. 

For each weak elemental classification ht(x), the only requirement is simply to reach 

an error ϵt<0.5. The error rate of an elemental classifier determines the value of its 

coefficient Viola and Jones state that the coefficient αt is given by the following 

equation [23]: 

 
11

ln( )
2

t
t

t




  (4.3) 

4.3.3 Cascade detector 

Cascading is a method to apply AdaBoost classifiers sequentially by Viola and Jones. 

The cascade detector essentially is a degenerate decision tree which has a number of 

decision nodes each of which consists of a number of elemental classifiers to reject a 

proportion of non-objects and. Figure 4.11 illustrates the structure of the cascade 

detector [23]. 

 

Figure 4.11 The structure of the cascade detector 

In order to train the detector more efficiently, a mechanism called bootstrapping is 

involved: when the algorithm has finished training a node, it substitutes the examples 

which would be rejected by the partial detector by other examples which would be 

accepted.  

4.3.4  Experiments and results 

Day extended Viola and Jones’ face detection method by optimising the schemes of 

Testing 

windows 
Node Node Node Node Objects 

Non-objects 
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the cascade, investigating the selection of elemental classifiers, and proposed new 

post-processing methods [111]. We build detectors by employing Day’s program 

designed for face detection and the INRIA dataset with the extra training data used in 

HOG. However there are some factors that let us modify the dataset: 

1) Viola and Jones’ method as well as other methods developed from it, are 

designed for human face detection and use a 24×24 detection window which 

is enough for faces. However human body images are usually more 

complicated and a larger size of detection windows is required for more 

information. Unfortunately the size of 64×128 is much too large for this 

method (the program crashed in the experiment). So we scale the size of 

detection windows to 32×64, a quarter of the HOG window size. 

2) Cascade training requires negative samples four or five times of positive 

samples. We add 6628 negative images to the training dataset because 

obviously the negative images in INRIA dataset are not sufficient.   

Considering the difference between the face window and body window, we execute 

experiments by varying the number of Haar-like features: 10k, 12k, 20k and 30k, 

which are much less than Viola and Jones’ because using more features costs too 

much memory and may cause crash due to the large samples used here. In the 

experiment 30k is the maximum number of features. The configuration of the 

process is listed in Appendix II. Day’s system implements merging methods which 

make merging decisions according to overlapping percentages, centre distances and 

size ratios [111]. We configure the merging scheme as: 

B{single: overlap>0.6, sizeRatio<2}C{mean} 

where B represents the merging strategy, and C represents the combination method. 

The description above means that we use single linkage, and for two windows, when 

their size ratio is smaller than 2, and overlapping percentage is larger than 60% of 

the small window, the two windows are combined in to one which takes the mean of 

the two windows as its location and size information.  

The results are illustrated by Table 4.3. 
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Number of features 10k 12k 20k 30k 

True detections 274 285 301 277 

False detections 73 70 89 64 

True detection rate 48.41% 50.35% 53.18% 48.94% 

False detection rate 12.90% 12.37% 15.72% 11.31% 

Table 4.3 Results of using Haar-like features and AdaBoost 

According to Table 4.3 varying the number of features does not cause much 

influence on final results. Compared with the results of HOG detectors, obviously its 

true detection rates is much lower. It is partly because it uses a detection window in a 

small size during the training phase, which leads to losses of information. Another 

reason is that unlike face samples, body samples usually include background due to 

shapes of human bodies. The diversity of background causes much difficulty in 

detection. 

Compared with the detection the Haar-AdaBoost, HOG uses a larger detection 

window, requires less negative training images, and achieves much better 

performance. The detection results reflect that in the state of art, HOG is more 

suitable for human detection. 

 

4.4 Using Pre-processed images 

When computing the gradient value of a pixel in a colour image, the original HOG 

approach computes gradients separately in all of the three channels, and selects the 

one having the maximum magnitude to represent the gradient of this pixel. As we 

argued in Chapter 3, this mechanism sometimes loses colour edge information. For 

example, considering two pixels with RGB values (0,0,0) and (255,255,255), their 

colour distance should be 255 3 . However the distance calculated by the 

mechanism above is only 255, which is as same as the distance between (0,0,0) and 

(255,0,0). To avoid this problem, we pre-process the data images by our density-
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based colour-to-greyscale conversion introduced in Chapter 3. 

There are two schemes of applying our colour-to-greyscale conversion. 

1) Use the converted images as input for both training and testing images and 

execute the original HOG procedure. 

2) Train two detectors by initial colour images and converted greyscale images 

respectively. At the first stage detect human bodies on colour images and 

crop the detection windows. At the second stage scale the cropped windows 

to 64×128 and convert them to greyscale by our method. At the final stage 

use the greyscale detector to reject the false detections. 

 

4.4.1 HOG detection using greyscale images for both training and testing 

We apply our density-based colour-to-greyscale conversion to the training and 

testing images differently. We set the cluster number for the positive training images 

and for the extra negative images (denoted as c1) smaller than that for other images 

(denoted as c2), as the positive training images and the extra negative images are 

only a local region in the source images and usually have small number of colour 

clusters, while the negative training images and the testing images are relatively 

large and have more colour clusters. In the experiment, we set (c1, c2)=(10,15) and 

(15,25) respectively.  The configuration of the other parameters is as same as the 

configuration in section 4.1.  

Figure 4.12 indicates the detection results compared with those of using colour 

detectors. Here only the “2x1ol” set are used as extra training data. In the chart, 

“greyscale” means using greyscale images that converted by our colour-to-greyscale 

method as the training and testing data, “2x1ol” means using the extra training 

images, and (10,15) or (15,25) means the values of the parameter set (c1, c2). 
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(a) 

 

(b) 

Figure 4.12 Results of the HOG detector using greyscale images 

(a) true detection rates against false detection rates, (b) false positive rates. The 

labels with the word “greyscale” mean that we use the greyscale images 

converted by our colour-to-greyscale method as the experimental data. 

According to Figure 4.12(a), it is clear that using greyscale images can reduce both 
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positive and false detections significantly. Adding extra negative training images 

keeps true detection rates in the same level and meanwhile reduces the false 

detection rate by about 30% maximally. But when t=0.10, the false detection rates 

are around 10% with adding “2x1ol” images and around 20% without using them. 

Hence when t becomes large, using greyscale images does not make much influence 

on the false detection rate. In addition, the results are close when we alter the 

parameters of cluster numbers from (10,15) to (15,25). Generally speaking, 

according to the chart in which the curve for “2x1ol” is still at the top position, we 

conclude that simply applying the greyscale images to an HOG detector does not 

improve the detection performance. However, in the chart of false positive rates 

(Figure 4.12(b)), using greyscale images can achieve lower false positive rates than 

using colour images when t is small. This is to say, compared with colour images, 

greyscale images lead to a stronger rejection for false detections when there are a big 

number of false detections. 

4.4.2 HOG detection using greyscale images to refine colour detections 

The reason why it is difficult to achieve a good performance by using greyscale 

images is partly that the positive training images are local regions while the testing 

images are global, which leads to a local-based colour-to-greyscale conversion on 

positive training images but a global-based colour-to-greyscale conversion on 

negative training and testing images. However doing colour-to-greyscale conversion 

for every scanned window is an impossible mission because it is much too 

computationally expensive owning to long conversion time and a huge quantity of 

scanned windows. An alternate scheme (called “iteratively detecting”) to use 

greyscale conversion is a three-stage procedure:  
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Figure 4.13 Flowchart of the “iteratively detecting” scheme 

1) Detect human bodies on colour images by the original HOG detector and 

crop the detection windows. To get true detections as many as possible, we 

do not add the extra training images. 

2) Scale the cropped windows to 64×128 and convert them to greyscale by our 

method.  

3) Use a detector trained by greyscale images (including the extra training 

images) to test the greyscale windows generated in Stage 2, in order to reject 

false detections. 

We still use t which grows from 0.00 to 0.10 with a step length of 0.02, as the 

threshold in the first stage. In the third stage, no threshold is needed since there is 
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only one detection window on each input image. Figure 4.14 indicates the results 

produced by this scheme. Also we used two sets of cluster numbers in the colour-to-

greyscale conversion. The variation of the results generated by using the same set of 

images is caused by the varying threshold t in the first stage.  

According to Figure 4.14(a), either configuring (c1, c2)=(10,15) or (15,25), the new 

scheme can achieve a low false detection rate at the cost of missing a number of true 

detections when t=0.00 and 0.02, which is represented by the higher parts of the 

purple-triangular-node curve and the brown-circular-node curve that perform equally 

to the “2x1ol” curve (the red curve with rhombic nodes) in the chart. However, when 

t becomes larger, the false detection rates regress to the “2x1ol” curve and the true 

detection rates are still below that curve. In Figure 4.14(b), there is a significant 

improvement of false positive rates produced by the “iteratively detecting” scheme. 

When t=0.00, 0.02 and 0.04, the curves corresponding to the “iteratively detecting” 

scheme are below the red curve corresponding to “2x1ol” and even though t rises 

high, the curves of “iteratively detecting” still perform equally to the “2x1ol” curve. 

So a conclusion can be made that this “iteratively detecting” scheme improves the 

detection performance slightly especially on false positive rate when using a small 

threshold in its first stage, but the original HOG scheme still has the highest true 

detection rate.  
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(a) 

 

(b) 

Figure 4.14 Results of the HOG detector using greyscale images and “iteratively 

detecting” scheme 

(a) true detection rates against false detection rates, (b) false positive rates. 
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Now we should have a discussion about whether the colour-to-greyscale conversion 

improves the performance of the HOG detector. It can be argued that although the 

our conversion method cannot achieve a high detection rate of max-channel 

mechanism used by the original HOG, it reduces false detection rate significantly at 

the cost of not so much true detection rate. In Figure 4.14(a), our conversion method 

with the iterative detecting scheme reduces false detection rate by about 25% at the 

cost of about 5% true detection rate when t=0.00, so it can be considered as a 

successful scheme. 

 

4.5 Conclusions 

In this chapter we introduce an advanced human detection method based on 

histogram of orientated gradients, and compare it with another conventional method 

using Haar-like features and AdaBoost. The original HOG approach achieves a good 

true detection rate for human detection, much better than the Haar-like features and 

AdaBoost approach. However, the original HOG is not practical due to its high false 

positive rates. We improve this method by adding extra training data and pre-

processing the images by colour-to-greyscale conversion. Finally the false positive 

rate is significantly reduced at the expense of losing some true detections. Therefore 

the trade-off between false positive rates and true detection rates should be 

considered. In practice, we need to select detection methods according to 

requirements of applications, and consider factors such as true detection rate, false 

positive rate, and processing speed as well. 
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   Chapter 5

Pose Estimation 

 

We have improved an advanced template matching method based on generalized 

distance transform (GDT) and orientation maps (OM) [19]which is initially 

designed to use contour templates to detect human bodies. As mentioned in Chapter 

2, template based (signal-processing-based) detection methods usually face a 

problem of forming reliable template sets that distinguish human bodies from other 

objects and backgrounds efficiently. However, the templates used are usually 

manually made and subjective opinions influent detection results. For example, 

selecting different outline templates to represent human bodies leads to different 

matching results. Therefore the performance of a detector depends on the opinion of 

the person who selecting and making templates.. Meanwhile, making a set of 

reliable, robust templates is very difficult because the appearances of human bodies 

vary wildly due to poses, body shapes and clothes.  

In the proposed system, we use this template matching method to estimate human 

poses. After we capture human bodies from an image by human detection method 

(HOG), we apply a set of pose templates to the detected windows to find a best 

match by employing GDT&OM. Since human bodies have already been detected, 

interference from backgrounds and other objects will be cancelled efficiently. 

Meanwhile, we only need to build a range of contour templates representing certain 

human poses, which is much easier than to build a huge number of templates 

indicating all kinds of human body appearances. 
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GDT is applied to give larger weights on the strong edge pixels, which highlights 

the edges in image and leads the matching process to focus on the edges. OM 

increases accuracies of matching results by adding gradient information for all 

pixels in a test image and pixels on the outline of a template. In the matching phase, 

we calculate the average differences between the matching areas and the templates 

based on the orientation map of a test image, work along with the weights of the 

pixels of its GDT image, and finally obtain a best match. 

For an input image, the procedure of a GDT&OM has the following steps: 

1) Produce the Canny edge of the image. 

2) Apply the Generalized Distance Transform by using the edge image 

produced in step (1). 

3) Compute the Orientation Map. 

4) Do weighted matching between the templates and the union of the GDT 

image and Orientation Map.  

 

Figure 5.1 The diagram of GDT&OM 

In Section 5.4, another pose estimation method that is based on human body part 

locating and uses machine learning methods to classify objects, is introduced.  
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5.1 Theory 

5.1.1 Generalized Distance Transform 

Generalized Distance Transform is an algorithm that computes distances of each 

pixel to the nearest edge. We generate a binary edge image by a Canny operator and 

perform GDT according to the Canny edges. The formula of GDT can be 

represented as follows according to Felzenszwalb and Huttenlocher [38]: 

 ( ) min{ ( , ) ( )}
q

D p d p q q





   (5.1) 

Where ( , )d p q  is the Euclidean distance between point p and q: 

   2 2, ( ) ( )x x y yd p q p q p q      

  is defined as a regular grid and Ψ(q) represents a function on the grid. Here ( )q  

is defined as: 
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where e is the binary edge pixels. 
x

I
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x





 and y
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



 , are gradients in horizontal 

and vertical directions at point q in image I. Here Ψ(q) is different from the 

conventional distance transform (DT), which assigns Ψ(q)=0 when q e . Equation 

5.1 means that for a pixel p, find the nearest pixel q on edges, and assign the 

distance value as the Euclidean distance between p and q plus a small value based 

on its gradient. Figure 5.2c is a GDT image, in which white regions represent high 

distance values and black regions represent low distance values. 
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(a) (b) (c) 

Figure 5.2 Images of producing a GDT image 

(a) the input image, (b) the Canny edge image, (c) the GDT image 

 

5.1.2 Orientation Maps 

According to Thanh’s paper [19], the orientation value of a pixel is related to the 

position of its nearest edge pixel. That is to say, the orientation of edge pixels will 

impact the non-edge pixels nearby. Considering a single pixel p in image I, 

assuming that q* is the nearest edge pixel to p (which means that orientation maps 

are discontinuous), the orientation value at pixel p is defined as 

 * *( ) arctan( / )x yO p I I   (5.3) 

Where *xI  and *yI  are the gradients at q*.  

5.1.3 Template Matching 

Considering a template T and a test image I, we define o(t) as the orientation at 

point t in T. the dissimilarity between the image I and the template T at point t, is 

denoted as dT,I(t), which is defined as 

 2 2

, ( ) ( ) sin ( ( ) ( ))T Id t D t O t o t     (5.4) 

Let wT(t) be the weight of point t, Thanh obtained it by using a set of positive and 

negative training images:  
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 (5.5) 

Where S(T) is the positive images and ( )S T  is the negative images corresponding 

to T. And  

 ( ) ,

( )

1
( ) ( )

( )
X T T x

x X T

D t d t
X T 

   (5.6) 

According to Equation 5.6, 
( )( )S T t

D  and DS(T)(t) represent the average distances from 

a point t to the closest image points of all negative images ( )S T  and all positive 

images S(T) respectively. Finally, the matching score between the template T and 

the image I is 

 ,( , ) ( ) ( )T T I

t T

D T I w t d t


  (5.7) 

5.1.4 Templates 

Templates are human body contours extracted from images that display typical 

human poses. Figure 5.3 indicates a few templates for dancing skipping, walking. 

Considering that human bodies can be seen in various orientations and because of 

symmetrical possibilities for articulation of movement, usually we make a pair of 

templates one of which is the mirror image of the other. A type of pose needs at least 

two pairs of templates: a pair of the front/back view and a pair of the side view.  
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Figure 5.3 Examples of templates 

To compute orientations of a template, a 3×3 operator is used. We list all possible 

3×3 windows which are combinations of binary pixels (pixels only having values of 

0 or 1). Then we assign an orientation value for each combination. For an edge pixel 

p on the templates, we consider the 3×3 box, whose centre pixel is p, and decide the 

orientation of p according to the pixel values around. Examples are displayed in 

Figure 5.4. For efficient processing, we employ a lookup table mechanism, which is:  

1) Label each pixel in the 3×3 box and denote the labels as n (n=0,1,2,3…, see 

Figure 5.4d).  

2) Assign each pixel with 2
n
 (n is its corresponding label, see Figure 5.4e).  

3) Build a lookup table whose inputs are sums of 2
n
 and outputs are 

corresponding orientations.  

4) Considering a pixel t in a binary template T in which 1 stands for edge pixels 

and 0 for non-edge ones, let the coordinate of t be (p,q). Denote the 3×3 box 

as B. The LUT input (LI) for t is: 

  
3 3

0 0

LUT input 1 , 1 ( )
i j

T p i q j B i j
 

       (5.8) 

Hence each combination of edge/non-edge pixels has a unique LI value which 

corresponds to an orientation value. The orientation can be achieved according to the 

LUT quickly. For example, for Figure 5.4c, LI = 84. In the LUT, π/4 (45°) is 

assigned as the output for LI = 84.   



CHAPTER 5  POSE ESTIMATION 

  111 

 

   

   

   
 

    

   

   
 

    

   

   
 

a  b  c 
 

0 1 2 

3 4 5 

6 7 8 

 

 

1 2 4 

8 16 32 

64 128 256 

d  e 

Figure 5.4 Orientations of templates pixels 

(a) 90°; (b) 0°; (c) 45°;(d) labels of the operator; (e) assignment of the operator 

 

5.2 Detection Experiments for Frame Sequences 

Practically the accuracy of GDT&OM detection is poor, especially for images with 

complicated backgrounds. We implement two schemes of pre-processing before 

applying GDT&OM. One is background cancellation for frame sequences, the other 

is modification for templates. 

5.2.1 Background Cancellation 

 For frame sequences with static backgrounds and moving objects, to minimise the 

interference of background, we propose to employ a background cancellation 

mechanism in the work to improve the performance. When processing each frame, 

we extract its foreground (moving objects) by computing the difference between 

two continuous frames (the current frame and the previous frame). The flowchart of 

the whole procedure is shown in Figure 5.5. 
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Figure 5.5 The flowchart of template matching 

Figure 5.5 differs from Figure 5.1 by subtracting the current frame by its previous 

one, and multiplying the subtracted frame by the edges of current frame. Hence the 

only edges of moving objects are left and edges of static content (mainly the 

background) can be cancelled. 

When we process a frame, called image I, the Canny algorithm [112] is applied to 

generate the edge image of I, denoted as image E. Meanwhile, we subtract I from its 

previous frame, to get a frame difference image, denoted as image D. Generally, a 

high pass filter is applied to the frame difference image D, so that the problem of 

luminance difference between frames can be avoided. We obtain an image that 

indicates the differences caused by movement between the two images. Since we 

are using videos captured by static cameras, it can be considered that the difference 

between two frames is caused by moving objects. Then the edge image E and the 

frame difference image D are used to produce a foreground image F by the function 

as Equation 5.9 
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 
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 (5.9) 

Here we treat the images as binary. In other words, the edge pixels are treated as 

BLACK while the non-edge pixels are treated as WHITE. In practice, for frame 

difference images, the values of pixels have a range between 0 and 255. We define 

that the pixels whose values over 127 are WHITE and others are BLACK. This 

operation is similar to quantifying the frame difference image into two levels and 

multiplying it with the edge image. So we call it a MUL operation. 

After the foreground image F is generated, we apply GDT&OM template matching 

algorithm to F. Since edges of the background have been cancelled, its GDT image 

mainly contains distance information on pixels to edges of moving objects. The 

orientations of the templates are pre-computed as well. Figure 5.6 shows all of the 

results of the entire process. 

    

(a) (b) © (d) 

 

  

 

 (e) (f)  

Figure 5.6 GDT&OM result of each step 

(a) the current frame; (b) the edge image of a, produced by Canny edge detection; 

(c) the subtracted image between current and previous frames; (d) the foreground 

edge image, produced by b and c with a MUL operation; (e) the final matching 

result, the matched area is boxed by a white rectangle; (f) matching result using 

the edge image without background cancellation.  
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The background of this image sequence is complicated, especially the part behind 

the walking person. As Figure 5.6f indicates, it is difficult to match the person if the 

background cancelation is not applied. After the background cancelation process 

above, there is only the contour of the moving object left, and the location of the 

person is matched correctly. 

5.2.2 Template Modification 

Since we applied background cancellation before the template matching, the static 

edges in the sequences are all erased, including part of the foreground. For example, 

in Figure 5.5d, the person’s left foot that contacts the floor is also cancelled in the 

foreground edge image, because it does not move between current and previous 

frames. Considering the motion of human, normally some parts of the body will keep 

still in a short period, and these parts will be cancelled in the background 

cancellation. Hence, these body parts in the templates also need to be cancelled to 

reduce the matching differences. Figure 5.7 indicates some examples of the modified 

templates. 

    

0 1 2 3 

    

4 5 6 7 

Figure 5.7 Modified templates 

Our template matching method is considered as an approach that can detect human 

bodies and recognize their poses in the same time. A human motion, for example 

walking, will be decomposed into n states. Note that motions such as walking and 

running are repetitive, so here ‘n states’ means a number of different poses in a 

single iteration. Such as the set of templates shown in Figure 5.7, walking is 
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decomposed into 4 states (another 4 as reflections). If we matching the images by 

using the sets of templates like that, not only the position of human bodies can be 

found, but the motion state in every frame can be pointed out as well. This template 

set is used in the detection of Figure 5.6, in which the pose of the person is matched 

correctly to Template 2. When multi sets of motion styles of templates are employed 

in the process, the state information can be used in state based motion recognition 

approaches, such as HMM or Bayesian networks. 

As same as other detection methods, we move a window on a test image, extract the 

content in each window, scale it to the same size as the template, and compute its 

matching score. We make a set of templates for each motion category, and pool all 

of the templates together. For an extracted window, since the test images only have a 

single person, we match it with every template and collect the match that has the 

smallest score. If test samples have multiple human bodies, thresholds are required to 

select a number of good matches, and then a merging method, such as described in 

Chapter 4, is required to determine final detections. 

In the experiments, two datasets are mainly used as testing samples. One is the KTH 

dataset which includes 6 motion categories, 25 people in each motion category and 4 

different camera footage clips for every person. There are 600 frame sequences in 

total. We split the data into two groups: the first group includes walking, jogging and 

running in which most body parts are moving; the second group includes boxing, 

hand waving and hand clapping in which most body parts are stationary. The other 

dataset is the Weizmann dataset, including 10 motion categories and 9 people. We 

also divide them into two groups: walking, running, jacking, jumping, pjumping 

(jumping at a same place), skipping and galloping for group one, and bending, one-

hand waving and two-hand waving for group 2. These categories are: jumping in a 

same place, one-hand and two-hand waving, bending. Finally 56 sequences are used 

(some persons have two videos for a motion).  

To make a judgment that a matching is correct or not, we follow the rule: if the 

whole human body is in the result rectangle and the body matches the template that 

represents the same pose, as displayed under the detection window in Figure 5.6e, 
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we determine it is a correct match. Otherwise, an incorrect match is issued. In 

practice a human pose may be between poses represented by two serial templates. In 

that case we will count a correct match when the frame matches either of the two 

templates. 

As mentioned above, a comparison result between modified and non-modified 

templates is shown as below: 

Dataset 
Accuracy of Using 

Modified Templates 

Accuracy of Using  Non-

modified Templates 

KTH group 1 83.78% 78.12% 

KTH group 2 5.47% 80.91% 

Weizmann group 1 85.11% 83.52% 

Weizmann group 2 9.64% 79.72% 

Table 5.1 Matching results of using modified and non-modified templates 

The reason why the accuracies for KTH group 2 and Weizmann group 2 is so low 

when using modified templates is that the actions of these two groups require most 

part of human bodies to be stationary. Therefore the modified templates lose too 

much information of human outlines. It can be seen that for motions that full bodies 

have displacement, the matching accuracies are raised by using modified templates. 

This is because the templates are more close to the contour of the moving bodies. 

However, this human detection and pose estimation is constrained, as the problems 

of signal-processing based detection methods discussed at the beginning of this 

chapter. Besides, there are a number of weaknesses: 

1) This scheme requires the input to be a frame sequence taken by a static 

camera so that the background can be cancelled. Otherwise the accuracy will 

be poor.  

2) Human bodies can only be detected when most part of them are moving. 

3) It is difficult to detect multiple persons with overlapping regions, because the 

situations of overlapping regions are unpredictable for building templates. 
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Therefore, we do not use GDT&OM to detect human bodies, but to estimate human 

poses after a relatively efficient and reliable detection. 

 

5.3 Template Matching for Pose Estimation 

In the proposed system, we detect human bodies by applying an HOG detector which 

is depending on neither frame sequences nor moving objects. Meanwhile, the HOG 

detector can solve the overlapping problem well because we train it by images under 

overlapping situation. In this section we will introduce applying the template 

matching method to pose estimation, assuming that human bodies have already been 

correctly extracted.  

Given a window which contains a detected human body, we scale it to the same size 

of the templates, and perform a GDT&OM template matching on it. Then we select 

the match with the smallest score as the best match. So the pose that the template of 

the best match represents is determined as the estimation result. A part of the 

templates are shown in Figure 5.8. Since the background cancelation mechanism is 

not applied, we use complete templates without erasing part of their structures. The 

templates of jacking are not paired due to their symmetrical structures.  
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Figure 5.8 Template set for GDT&OM template matching:  

(a) and (b) running; (c) and (d) jumping; (e) and (f) walking; (g) and (h) skipping; (i) 

jacking; (j) and (k) galloping sideways; (l) jumping at a same place; (m) and (n) 

one-hand waving; (o) two-hand waving; (p) and (q) bending. 

We use 18000 frames from KTH dataset and 5016 frames from Weizmann dataset as 

test images. The human bodies in these frames can be correctly detected by the 

improved HOG detector. For each frame sequence, after performing template 

matching, we select the top n best matched frames, i.e. the frames have minimum 

matching scores, and execute a simple voting algorithm that count the numbers of 

frames according to their matched action type. The type that has the maximum 

number of corresponding frames will be determined as the action type of the frame 

sequence. If two or more action types have the same number of corresponding 

frames, the system is designed to compare the sums of the matching scores of the 

corresponding frames. The action type has the minimum sum will be selected as the 

final result. Table 5.2 indicates the result action classification.   

n 1 3 5 7 

KTH 81.50% 83.67% 91.00% 89.83% 

Weizmann 78.89% 85.56% 94.44% 91.11% 

Table 5.2 The result of action recognition with different n 
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Table 5.2 indicates that when n=5, the system reaches the best classification 

accuracy, for both of the two datasets. 

Table 5.3 displays the recognition results for each action category respectively. Since 

human bodies are well located, the accuracies of pose estimation are relatively good. 

The jumping category in Weizmann gets the lowest accuracy as the jumping frames 

are influenced by templates of other categories strongly. We also see that using more 

motion categories will pull down the total estimation accuracy. The reason is that 

there are interferences between templates of different categories. For frames of 

jumping which have relatively simple edges, the interference from other motion 

categories are much more significant. On the other side jacking frames are 

recognised best because jacking is the most different from other motions and has the 

least interferences. That is a reason why we argue that selecting templates is very 

difficult, because it is difficult to predict interferences when we add a set of 

templates. In addition, using a huge number of templates reduces processing speed as 

well. So we conclude that in practice, it is better to approximately predict which 

motion categories will be used and select templates for those categories. If an 

exception occurs, just simply decline it as it is not concerned in the application.   

KTH  Weizmann 

Action type 
True 

classifications 
 Action type 

True 

classifications 

Walking 94  Walking 9 

Jogging 86  Running 9 

Running 89  Jumping 6 

Boxing 95  Skipping 8 

Waving 92  Jacking 8 

Clapping 90  Galloping 9 

   Pjumping 9 

   One-waving 9 

   Two-waving 9 

   Bending 9 

Table 5.3 True numbers of classifications for each action type (n=5) 
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We compare the result with two resent work on action recognition: Poppe’s method 

[27] which uses the Weizmann dataset, as well as Jhuang’s method [76], which uses 

both the KTH and Weizmann datasets. In Table 5.4 the three methods are compared. 

Table 5.4 shows that compared with other method, the method proposed in the thesis 

can achieve a same level of accuracy.  

 KTH Weizmann 

Poppe / 95.56% 

Jhuang 91.67% 98.78% 

Ours 91.00% 94.44% 

Table 5.4 A comparison with other methods 

 

5.4 Estimating Poses by Locations of Body Parts 

Another idea of estimating human poses is using location information of human 

body parts. In the point of view that poses are essentially distinguished by 

differences of body parts locations and orientations, we argue that if the locations of 

all body parts of a person are given, the pose of the person can be recognised. The 

recognition procedure is designed to have 3 stages: 1) detecting human bodies, 2) 

locating human body parts, and 3) classifying the pose.  

For Stage 1, human detectors such as HOG can be employed as we do in Chapter 4. 

For Stage 2, the candidate is Ramanan’s iterative parsing method [58]. However, this 

method does not work very successfully. The biggest factor limiting its performance 

is that hidden body parts cannot be accurately located. As known to all, 2D images 

sometimes do not display all parts of a human body and it is not possible to get the 

information about hidden parts from images themselves. The problem is that body 

parts estimators do not know which part is hidden in the images and false estimation 

will be made. However for Stage 3, accurate body locations are needed. That is the 

reason why this type of approach is not so popular at present. 

We have made contributions to Stage 3, under the assumption that all body parts are 



CHAPTER 5  POSE ESTIMATION 

  121 

 

accurately located. We use several machine learning methods to learn models from 

training data, which are a set body parts locations extracted from training samples, 

and classify test data which are also body parts locations extracted from test samples.  

5.4.1 Preparing experimental data 

We locate human body parts manually to ensure reliable experimental data. We use a 

stickman model to mark 11 key points of each human body. These key points are: 

head, chest, hip, two elbows, two wrists, two knees and two ankles, as Figure 5.9 

indicates.  

 

Figure 5.9 An example of marking body part locations  

Then the head location is used as the datum point, and the relative locations of other 

key points can be calculated. Except the head, these body parts are connections or 

terminals of a body, so these relative locations can represent locations and 

orientations of all body parts. We put each set of relative locations into a vector in 

the same order, so each vector has 20 members (a relative location is a two 

dimensional value (x,y) ),  and is called a location sample. 

We use the Weizmann dataset in the experiment. The six action categories are the 

same as the experiment in Section 5.3: running, walking, jumping, skipping .jacking 

and galloping. 2038 images are selected as training data and 560 images are used as 

test data.  

5.4.2 Model training and testing 

We employ the “Spider” as the experiment tool. Spider [113] is a Matlab-based 
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machine learning tool box that implements and integrates many popular machine 

learning methods. The experiment in this section is a multi-class case (in contrast of 

two-class classification, multi-class classification means the number of object classes 

is more than two), therefore we employ three machine learning methods: k-nearest-

neighbourhood (k-NN) [114], one-vs-rest [115], multi-class SVM [115]. 

The method of estimating distance between two samples is a key factor of SVM. We 

use linear, Gaussian and RBF kernels [60] for one-vs-rest and multi-class SVM 

which are SVM based methods. Meanwhile both Gaussian and RBF kernels have a 

parameter σ. We let σ=1, 2, which are the most common values. For k-NN, we test 

the parameter k=1, 3, 5, 10. The result is shown in Table 5.3. 

k-nearest-neighbourhood 

k 1 3 5 10 

class-loss 0.0018 0.0009 0.0098 0.0473 

(a) 

One-vs-rest 

Kernel linear Gaussian RBF 

Parameter σ  1 2 1 2 

class-loss 0.3946 0.7366 0.5134 0.0768 0.0263 

(b) 

Multi-class SVM 

Kernel linear Gaussian RBF 

Parameter σ  1 2 1 2 

class-loss 0.2687 0.7634 0.7741 0.0554 0.0054 

(c) 

Table 5.5 The result of body-part based pose estimation 

The term class-loss which used in Spider in Table 5.3 is the false rate of 

classification. K-NN performs well especially when k is small. It means that test 

samples usually find the nearest neighbourhoods which are in the same categories in 



CHAPTER 5  POSE ESTIMATION 

  123 

 

the training set. But when concerning more neighbourhoods, influence from other 

categories becomes larger and causes more false decisions.  

For one-vs-rest and multi-class SVM, it is proved that the linear kernel is not good 

and the Gaussian kernel is totally unsuitable. However the RBF kernel appears to be 

appropriate for these two methods. 

 

5.5 Conclusions and Discussion 

GDT&OM template matching, pre-processed by background cancellation, combines 

human body detection and pose/state estimation in a single step, which can simplify 

the state-based motion recognition.  

Background cancellation is used on the sequences with static background. This 

mechanism cancels the negative impact brought by the complicated backgrounds. 

Only the edges of moving objects, considered as foreground, are left. After GDT, 

these edges will be strongly emphasised. Working with the background cancellation 

mechanism, templates need to be modified. The still parts of bodies are erased in 

order to achieve smaller matching differences. Processed by the methods above, the 

performance of the matching program achieved a relative improvement for the 

videos of full-body-moving people, which is proved by the experiment. 

However, this method is constrained. First, this method can only apply to frame 

sequences. Second, it is hugely depends on the selection of the templates. Meanwhile, 

along with the increasing number of templates, the interferences between templates 

grow quickly. More mismatched result will come out when we employ more 

templates, and the processing speed will be slow down as well. Therefore, some 

other mechanisms, such as histograms of oriented gradients (HOG), are used to pre-

process for detection. In addition, the modified templates do not work for the videos 

showing persons whose bodies are partly stationary. 
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When we use GDT&OM for pose estimation after a reliable human detector, it can 

achieve a good performance for either static images or frame sequences in the 

experiment. However, the problems of multiple motion categories and interferences 

between templates still exist. Hence a prediction of using template set is the key.  

In conclusion, although GDT&OM can only be applied to a limited range of human 

detection and pose estimation, it is relatively simple and fast. The applications of 

GDT&OM will be introduced in Chapter 6. 

We have also implemented a body-part-based pose estimator. Assuming that all body 

parts can be accurately located, it is possible to do highly accurate pose classification 

by using multi-class machine learning methods. This research direction has a large 

potential and now the key factor is to solve the problem of hidden parts localisation. 

Therefore developing a reliable body part estimator will be a topic in the further 

work. It is complicated and difficult to solve the problem of locating hidden parts of 

human bodies, and there are two issues to work out. First, since hidden body parts 

are unpredictable, we have to use a full body model to locate body parts. Therefore a 

method that determines which parts are hidden is required. Second, we have to train 

an observed-hidden model to estimate locations of hidden parts according to 

observed parts, and use a fault-tolerant classifier to determine action categories. 

Essentially, training an observed-hidden model equals to training a pose estimation 

model using observed body parts, so poses can be estimated by only using locations 

of observed body parts.  
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   Chapter 6

Practical Applications  

 

As mentioned before, human motion analysis systems can be widely applied to a lot 

of areas in computer vision and image processing. In this chapter a key-frame 

extraction method and a video logging system employing the proposed detection 

and estimation methods are introduced. 

6.1 Key-frame Extraction System 

Key-frame extraction, a topic developing computer vision methods that select one 

or a small number of frames to represent a long frame sequence, is usually used in 

movie producing, video summarisation and storyboard making. For example, DVDs 

or online videos usually represent the content of a long video by displaying a few 

pictures. That is what a key-frame extractor is designed to do. Generally, one key-

frame is selected for each shot. Conventional methods of automatic key-frame 

extraction analyse motion factors between frames, such as moving velocities or 

accelerations of image regions (not objects), and select key-frames based on these 

factors. These methods are considered as non-object-based because they do not 

concern objects or contents represented by videos. Thus sometimes these methods 

will extract key-frames which have strong motion factor features but are not 

representative for contents, in other words, are not understandable for people. 

Considering that key-frame extraction in practical applications is primarily used to 

help users to understand video contents, object-based methods are required. Our 
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method, however, aims to select a frame which has a human pose being able to 

represent the human action best. Meanwhile, the action type of a frame sequence 

can also be determined because every selected key-frame reflects a class of action. 

In addition, this method can also be extended to other object classes. So our method 

can be defined as an object-based method.  

Of course, “key-frame” is a concept that has a lot of subjective factors. In other 

words, determining whether a key-frame is a success or failure strongly depends on 

individual opinions. In this chapter, we also introduce a conventional key-frame 

extraction method as a comparison. We compare the results between this method 

and our method according to the rule that for a frame sequence the key-frame which 

can represent the content of a frame better is the winner. 

Our system which is designed to process videos representing human actions, 

contains four procedures for extracting the key-frame from an input frame sequence: 

1) Each frame is processed by HOG human detector to detect human bodies. 

2) Detected human bodies (in fact these are image regions containing human 

bodies) are scaled to the same size as the prepared templates. 

3) Each human body is matched with the template set by GDT&OM and the 

best match is found (smallest matching score). 

4) All frames’ best matching scores are compared and the smallest is chosen. 

The corresponding frame is selected as the key-frame.  

In the experiments, we use the Weizmann dataset [74] as the test dataset. This 

dataset contains videos of full human bodies without overlapping, which is suitable 

for our detection and matching methods. Each video in the dataset represents a 

single shot and a single person performing a single action type. Besides, it contains 

not only some typical common action types, such as walking and running, but some 

abnormal action types such as jacking and skipping as well.  
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Figure 6.1 The diagram of the key-frame extraction system 

A: HOG human detection; B: Scaling the detected windows to the same size of the 

templates; C: GDT&OM template matching to find the best match; D: select the 

frame with the smallest matching score as the key-frame. 

 

6.1.1 HOG human detection 

We used an HOG human detector to locate human bodies in frames. There are some 

benefits of using an HOG detector: 

1) Detection performance is relatively high – high true detection rate against 

low false rate. 

2) Scaling and merging problems can be solved. 

3) Since we used a large number of training images, the detector’s compatibility 

for multiple action classes is high, which means that human bodies in 

abnormal or even weird poses can be detected. 
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However the use of the HOG detector is still conditional. We use vertical human 

bodies as training images. Therefore sitting or lying bodies cannot be detected. 

Besides, bodies smaller than the size of training images cannot be detected either. 

Training data consists of training images of the INRIA dataset and part of human 

body windows from the Weizmann dataset, because this dataset includes some 

abnormal poses. Finally we have 2812 training images. The test data includes 9 

persons and 6 action classes, totally 3278 frames. Because the test images are simple 

(simple backgrounds, single person, no overlapping), we set the merging threshold t 

to 0.00, in order to achieve a maximum true positive detection number. Table 6.1 

shows the result. 

 Jacking Jumping Running Skipping Walking 
Gallopin

g 

Number 

of frames 
729 458 405 494 711 481 

Detected 

bodies 
691 419 397 413 694 468 

Detectio

n rate 
94.79% 91.48% 98.02% 83.60% 97.61% 97.30% 

 

 Pjumping 
One-

waving 

Two-

waving 
Bending  Total 

Number 

of frames 
454 438 445 401  5016 

Detected 

bodies 
431 408 423 337  3082 

Detectio

n rate 
93.50% 93.15% 95.06% 84.04%  93.12% 

Table 6.1 The HOG result for the Weizmann dataset 

According to Table 6.1, most action classes can be well detected. The detection for 

skipping and bending images is the worst detection because skipping is an abnormal 

pose which has only a small number of training images. In addition, there are only 

13 false positive detections in all in the final result, which is not indicated in Table 

6.1. Compared with the detection results presented in Chapter 4, the performance is 

significantly better for the Weizmann dataset, due to its simple backgrounds and no 
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overlapping, and such detection rate can satisfy the further processing steps. Figure 

6.2 shows examples of true and false detections. 

Figure 6.2 indicates a few detecting results. False detections which happen rarely, 

classify the background region with texture similar to a human body as a person. It 

should be pointed out that the second true detection and the first false detection have 

similar bodies. It indicates that even very small variation (such as shape, luminance) 

between two image region may cause different detection results. 

   

True detections 

  

 

False detections 

Figure 6.2 Examples of true and false detections 

 

6.1.2 GDT&OM template matching 

Since there is no clear definition of what a key-frame of a sequence should be, 

selecting a frame that understandable for a human can also be considered as a choice. 

That is to say, people can understand what happens represented by a sequence only 

by seeing its key-frame. For applications such as movie producing and storyboard 

making, template matching can be a good approach. Our method is mainly applied 

for the sequences that contain moving human bodies. 

We use the Weizmann dataset as the test dataset, which includes ten action classes. 

We select six of them which are running, walking, jumping, skipping, jacking and 
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side moving, because these six classes are stronger action types. We select a set of 

templates from all poses of the six action classes. Each action class has a pair of 

templates to represent two different moving directions, except jacking, whose 

templates are all symmetrical. The selected templates are considered to be 

significantly different from each other so that each of them can represent its action 

class uniquely. In the experiment, we built the template set as Figure 6.3: 

      

a b c d e f 

      

g h i j k l 

   
  

 

m n o p q  

Figure 6.3 Template set for key frame selection 

(a) and (b) running; (c) and (d) jumping; (e) and (f) walking; (g) and (h) skipping; (i) 

jacking; (j) and (k) galloping sideways; (l) jumping at a same place; (m) and (n) 

one-hand waving; (o) two-hand waving; (p) and (q) bending. 

The detected image regions are scaled to the same size of the templates. In practice 

the detection windows have some margins between human bodies and window 

boundaries, but the templates don’t, so the detection window will be slightly larger 

than the templates. We execute a quick scan inside the detection window by the 

templates. The reason why we do such procedure is that sometimes the body of a 

detection result is not just at the centre position of the window due to different body 

poses and the merging process. If we used the same sized templates, the edges of the 
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templates and the bodies in the windows would have a small dislocation, which leads 

to inaccurate matching results. If we employ smaller templates, scan inside the 

detection window, and finally select the best match, the result will be much more 

accurate. False detections have little influence on matching results, because these 

detections are far different from human body shapes and will get poor matching 

scores. Since the set of templates are only a part of all poses, it is pointless to discuss 

matching accuracy. What we want to see is that how well selected key frames 

represent their corresponding videos. The final result will be illustrated in Section 

6.4. 

6.1.3 Perceived motion energy 

Before we present the final result, we introduce a comparison method. We use a 

method based on perceived motion energy model (PME) proposed by Liu, Zhang 

and Qi [20] as the comparison method. This method implements a conventional idea 

that the system selects frames in which the objects have largest moving speed and 

smallest acceleration, in other words, the largest motion energy, as the key-frame. 

They calculated the PME of a frame by accumulating the motion vectors between 

two serial frames, and used a triangle model to determine the maximum PMEs.  

According to the paper [20], PME is defined as “a combined metric of motion 

intensity and motion characteristics with emphasis on dominant motion”. In other 

words, in a video all motion is projected onto the dominant motion and the sum is 

computed as the measurement of motion energy. Since the PME method is based on 

MPEG video compression, each backward frame (B frame) in a MPEG video is 

segmented into a number of macro blocks with a certain size (e.g. 8×8 or 16×16). 

Each macro block is used to compute motion vectors and then to form motion vector 

fields. The magnitude of a macro block reflects the motion intensity of the block and 

the accumulation of the magnitudes can reflects the global motion intensity of the 

entire frame.  

Denote Mag(t) as the average magnitude of motion vectors in a frame, and it can be 

calculated by: 
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where N is the number of micro blocks in the frame, MixFEni,j(t) represents mixture 

energy values of forward motion vectors and MixBEni,j(t) indicates those of 

backward motion vectors. (i,j) is the position of a macro block in the frame. 

MixFEni,j(t) and MixBEni,j(t) are generated from vector magnitudes Magi,j, by 

passing a set of filters to remove noisy and atypical vectors. First, we use a spatial 

window with the size of Ws (Ws by Ws macro blocks) to filter the magnitudes by 

removing small values: 
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where Max4th(Magk) represents the fourth largest value of magnitudes in the 

window. Then a temporal filter is applied as: 
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The equation above illustrate a filter that uses a temporal window with the size of Wt 

(Wt by Wt macro blocks) to smooth the magnitudes into mixture energies. M 

indicates the number of magnitudes in the window and β (0 ≤ β ≤ 0.5) is the 

trimming parameter. All magnitudes in the window are sorted, and Magi,j(m) 

represents the mth largest one. 

After mixture energies of the F frame and B frame of a frame are achieved, then 

PME can be computed by: 

  PME Mag( ) ( )t t t   (6.4) 

where α(t) indicates the proportion of dominate motion direction. Liu et al. evenly 

quantised angles within (0, 2π] into n bins, and counted the number of angles in each 

bin, denoted as AH(t,k), and kϵ[1,n]. The bin with maximum value of AH(t,k) is 
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selected as the dominant direction. So α(t) can be computed by: 
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Since the videos used are uncompressed, for a frame, we set its previous frame as the 

backward frame and its next frame as the forward frame (F frame). We implemented 

the method by setting the macro block size to 8×8, the filter window sizes Wt=4, 

Ws=4 and the number of angle bins n=18. 

In Liu’s work, they represented PMEs in diagrams and perform a triangle 

mechanism to estimate peak PMEs. Then corresponding frames of these peak PMEs 

are selected as key frames, as Figure 6.4 indicates. However, we aim to select a key 

frame for each shot, so we just select the frame with the largest PME of a frame 

sequence. 

 

Figure 6.4 Triangle mechanism, from the paper [20] 

 

6.1.4 Experimental results 

When processing a frame sequence, after we achieve the best matches for each frame, 

we select the frame with smallest matching score, in other words, the most similar to 

its matching template, as the key-frame. Meanwhile, the action class of the frame 

sequence can be determined as what the best matching template represents. Here is a 

comparison result between PME and our method in Figure 6.5. Only two class 
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actions – walking and running, which have significant differences between the 

results for the PME method and our method – are presented. For other motion 

categories, the differences of the results between the two methods are very small, so 

the results are not listed below. 

Sequences PME 
Our 

method 
 Sequences PME 

Our 

method 

Daria 

walk 
  

 
Daria  

run 
  

Denis 

walk 
  

 
Denis 

 run 
  

Eli 

walk 
  

 
Eli 

run 
  

Ido 

walk 
  

 
Ido 

run 
  

Ira 

walk 
  

 
Ira 

run 
  

Lena 

walk1 
  

 
Lena 

run1 
  

Lena 

walk2 
  

 
Lena 

run2 
  

Lyova 

walk 
  

 
Lyova 

run 
  

Moshe 

walk 
  

 
Moshe 

run 
  

Shahar 

walk 
  

 
Shahar 

run 
  

Figure 6.5 Comparison of key-frames extracted by PME and template matching 



CHAPTER 6  PRACTICAL APPLICATIONS 

  135 

 

As argued above, deciding whether a key-frame is good or bad is subjective. 

According to Figure 6.5, most key-frames of the two methods are satisfying. 

However, under the rule that “a key-frame should represent the content of the frame 

sequence”, we argue that our method performs better for a few of these frame 

sequences. 

For walking sequences, the key-frames extracted by the PME method appear to have 

different poses. While those extracted by our method can be considered as in the 

same pose. Some key-frames from template matching are easier to be recognised as 

walking, such as the sequences named ‘Ido walk’ ‘Lena walk1’ and ‘Lena walk2’. 

For running sequences, the results between the two methods are closer. But there are 

still a few key-frames extracted by our method can be considered as better ones, such 

as ‘Moshe run’ and ‘Shahar run’. 

 Jacking Jumping Running Skipping Walking Galloping 

PME 6 8 8 8 7 7 

Ours 9 7 10 8 10 7 

Total 9 9 10 10 10 9 

       

 Pjumping 
One-

waving 

Two-

waving 
Bending  Total 

PME 9 9 9 7  78 

Ours 9 9 9 9  87 

Total 9 9 9 9  92 

Table 6.2 Comparison of “good” key-frames achieved 

Table 6.2 lists how many “good” key-frames achieved by both PME and our method. 

PME is more like a random selection in the view of frame content, and only 

performs better than our method for jumping images. Generally speaking, according 

to the table, our method achieves more understandable key-frames than PME. 
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Classified as: running Classified as: running Classified as: pjumping 

Truth: skipping Truth: jumping Truth: side moving 

A B C 

Figure 6.6 Some “bad” key-frames 

Figure 6.6 presents three “bad” key-frames produced by our method. We realise that 

“bad” key-frames are caused by incorrect classifications. That is to say, if the result 

is a mismatch, which means the key-frame matches an incorrect template, a bad 

select will usually occur. Considering Figure 6.6 A and B, the two poses appear very 

similar to the template of running. This is a major problem of template matching. It 

is unavoidable that when the number of classes increases, some templates will match 

poses of other action types well, and frames incorrectly matched will be selected as 

key-frames which cannot represent the contents of frame sequences. Meanwhile as 

we integrate more and more templates of different actions, the interference between 

templates is becoming stronger and stronger. That is to say, it is becoming easier to 

get a mismatched result as the number of templates increases. A bad template 

selection will lead to a bad extraction result. 

A solution for the mismatching problem of template matching is to select a few top-

matching frames, and get the key-frame through a kind of voting mechanism. For 

example, if the first matching is running, but the second and third are walking, a 

voting mechanism with weights for the top three matching frames can allow an 

accurate decision to be. Figure 6.6C illustrates an absolutely incorrect match, in 

which obviously the matching of one of the legs is lost but this frame is still selected 

as the best match. This error result reflects another factor that has significant 

influence on our method. It appears that the template matches a part of the human 

body well and then the system determines the frame as a good match. This problem 

is caused by using edges in templates to judge matching performance. However it is 
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impossible to judge matching performance according to edges of test images, 

because extra edges from backgrounds or other textures will cause more harm on 

matching results. We call it a “judgement paradox”. Using templates similar to 

images like Figure 6.6C can relieve this problem. However, only a limited number of 

templates can be used due to the characteristic of this key-frame extraction system. 

 

6.2 Video Logging 

The key-frame extraction system above identifies and represents one type of 

significant action per shot. The system can also be applied to longer footages that 

contains multiple action types to do video logging [96]. A video logging system finds 

several remarkable poses, and records them to represent the content of the video. If 

the motion of the person consists of routine action types the log can be a precise 

summary of the video. Gymnastic videos meet the requirement above, and this kind 

of footage usually has fixed camera angles and focuses on the performance of one 

person.  

Motion analysis methods for sports in prior art usually segment objects by their 

motion information. The paper [116] presented by Luo et al. illustrates a method that 

detects differences in a video between two continuous frames to extract moving 

objects, abstracts the video into a number of clusters, and uses a Bayesian Network 

to analysis the motion pattern. Li et al. presented a method [117] [118] that for each 

clip extracts human bodies by estimating motion energy between two frames, selects 

frames that have motion energy larger than a threshold as key-frames, and finally 

uses an HMM to recognise athletes’ actions. However, sports behaviours do not 

consist only of dynamic motions but static poses as well. Meanwhile the intensity of 

the motion energy of a frame cannot always represent its significance, as we have 

stated for the key-frame extraction method. Therefore extracting human bodies by 

motion features will cause losses of important information, such as static poses in 

some sports. Our method is object-based and focuses on detecting frames 
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representing important content, so both dynamic and static actions can be detected. 

Here we do experiments on videos of rings and balance beam. These two types of 

gymnastics represent different features of this sport. In gymnastics, an element is 

defined as an action or a skill that is used to evaluate performance, and a routine is a 

series of skills in addition to graceful dance performed by a gymnast in a range of 

time (usually about one minute). Routines of rings are only performed by male 

gymnasts, and most elements of rings such as handstand and iron cross are required 

to be held for a few seconds. In contrast balance beam is only for female gymnasts, 

and most elements are dynamic, such as leap and somersault. Hence different 

mechanisms are employed to make video logs. These important elements in both 

rings and balance beam videos are called “probed elements” in this thesis. Figure 6.7 

displays examples of frames in videos of rings and balance beam.  

Rings Balance beam 

  

  

  

Figure 6.7 Examples of gymnastic images 

 

 

6.2.1 HOG human detection 
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The procedure of human detection is as the same as that in key-frame extraction. To 

build a suitable detector for gymnasts, we employ training images extracted from 

videos of gymnastic competitions. Considering that gymnastic poses do not have a 

fixed ratio between width and height (for example, a body performing handstand has 

a height much larger than its width, performing leap may have its height smaller than 

the width, and performing iron cross has a similar height and width), we use a 

window size of 96×96 (using a much larger window size than that costs much more 

memory and slows down the processing speed).   

For rings, we have prepared 4102 positive training images, each of which represents 

a gymnast performing a pose of rings, and large 1166 negative images that represent 

background, non-human objects, body parts and other people. For balance beam, we 

have 2788 positive training images which contain gymnasts on the balance beam, 

and use the same negative set as rings. The test sets for both rings and balance beam 

contains 8 clips, each of which displays a complete routine of a gymnast. We design 

to use videos from 2008 Beijing Olympic as the training data, and those from 2012 

London Olympic as the test data. Therefore all positive training images are extracted 

from videos of 2008, as are most negative training images. In the training phase, the 

only different parameter from the original HOG is we random extract 20 windows 

instead of 10 from each negative image, to ensure that sufficient negative 

information is included.  

Then in the test phase, a problem occurs when the data of rings is applied: bodies in 

the poses of hanging and handstand are totally missed, even though we have 

included hanging and handstand poses in the training data. To solve this problem, we 

execute the following mechanism: pick the training images of hanging and 

handstand out and use them to train a separate detector (detector A), and the rest are 

used to train another detector (detector B). Then we apply both the two detectors to 

test data. In that case, the hanging and handstand bodies can be found correctly by 

detector A and other bodies can be located by detector B. Then we output the union 

of detector A and B’s results. In contrast, the detector for balance beam works well. 

Figure 6.8 indicates the detection results.  
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Figure 6.8 shows the variation and relationship of FPR and TPR, both of which are 

influenced by the merging threshold t, which varies from 0.00 to 0.10. FPR and TPR 

decrease when t rises. For rings, t makes significant influent on both TPR and FPR. 

While for balance beam, t causes huge influent on FPR but little on TPR.  

When we check the output of HOG detection, we find that most missed detections 

are bodies in abnormal poses. In the further process, the templates used represent 

regular poses, so the frames of abnormal poses are not useful and can be ignored. 

Hence we set t to 0.10 in order to reject as many false detections as possible. 

 

Figure 6.8 Detection results 

6.2.2 Template matching 

We build template sets for rings and balance beam separately. For rings, 8 templates 

are used. Each template stands for a pose that is important for marking and requires 

gymnasts to keep for a short while in routines. While for balance beam, 10 pairs of 

templates are made. Each pair of templates represents a remarkable pose in two 

directions. Figure 6.9 shows all the templates used in the experiment. The numbers 

under the pictures are the labels of the templates, and will be used later in Section 

6.2.3. 
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(b) Balance beam 

Figure 6.9 Templates used for logging gymnastic videos 

The matching procedure is as the same as key-frame extraction. Detected regions are 

scale to the size of HOG training images (96×96), converted to GDT and OM data, 

scanned by each template and finally obtain the best match. Matching labels and 

scores are exported for further processes. Like key-frame extraction, the matching 

accuracy does not make sense here, because templates used cannot represent all 

types of poses. Post-processing is required to summarise the matching results into 

video logs. 

6.2.3 Producing video logs  
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As mentioned above, template matching cannot recognise all types of poses, and the 

goal of this section is to extract those important poses. Since the features of rings and 

balance beam are different, the post-processing mechanisms are also different for the 

two types of sport.  

For rings, a routine is treated as a combination of several static elements which last 

for a certain period (usually more than two seconds) and are linked by swings. We 

focus on recognising and categorising these static elements which are more 

important for marking and treat the rest of the routine as swings. For balance beam, a 

routine consists of several dynamic elements, which is completed very quickly (less 

than one second), and relatively static poses such as standing on the beam, which 

occupy most of time. However, those dynamic elements are more important for 

marking, so the mechanism is designed to recognise and categorise these elements. 

Having got the matching labels and scores of a rings video, we produce its log by a 

voting mechanism as the following steps: 

1) Nine categories of poses are formed. Eight of them correspond to the eight 

templates and are denoted by the templates’ labels. The remaining one is an 

“unknown” category that is for frames in which no human bodies are 

detected or no templates matched, denoted by -1. 

2) A threshold is used to filter the matching results that have large scores (the 

smaller the score, the higher the similarity to a template). Here we use the 

threshold t=0.55. Thus any matching results with scores higher than t will be 

categorised to category -1 (“unknown”). 

3) We put all the labels of the frames in to an array, in the time order. Then the 

following mechanism is employed to smooth the array: 

a) The input array is denoted as I, and the output array is O. A 1D 

smoothing window with the width of w is defined. Here in this case 

w=roundodd(1.5*r). The symbol r is the sampling rate (number of 

frames sampled per second). The function roundodd() returns the 

nearest odd integer of a float number. Define u=(w-1)/2; 

b) Considering a member in array I, denoted as Ii, we count the number 
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of each pose category from Ii-u to Ii+u, and record them as c1, c2, c3… 

If cj (j=1,2,3…) is larger than a proportion of w (50% here), Oi equals 

to the corresponding category label of cj, else, Oi is set to -1. 

c) Then check each member of O. If Oi=-1 while Oi-1 or Oi+1≠-1, and Ii= 

Oi-1 or Oi+1, then Oi is assigned to the same value of Oi-1 or Oi+1. 

This step avoids losses in step b. 

4) O is the final log of the video. 

In step 3 above, a) and b) guarantee that the current frame lies in the middle of the 

smoothing window whose length is odd, and c) recovers the frames between probed 

element categories and the “unknown” category. 

Figure 6.10 visualises an example of an initial matching result and its final log. The 

category label of each frame is plotted along the time domain. There are some 

frames categorised to “unknown”, which means the bodies in these frame is not 

detected, or classified incorrectly. For rings videos, “unknown” frames usually 

means some swing poses that do not match any of the templates of probed elements. 

So the moments of “unknown” frames can be treated as swing moments. 

The final log clearly shows what the gymnast is doing in every moment during the 

performance. According to Figure 6.10, in the initial matching result there are a 

number of false matches which are caused by errors in template matching, or by 

lacking of similar templates. By using the post-processing mechanism, these false 

matches are solved and merged to the nearest pose categories which represent probed 

elements or “unknown”. However, there are still a few errors: the log shows that 

there is a pose “0” around the time spot of 30 seconds, and that is an error due to 

some false matches which are near each other and select the same category; 

meanwhile the pose “-1” at the time spot of 8 seconds should be pose “0”.   
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The initial matching result 

 

The final log 

Figure 6.10 A visualised rings video log 

Logging balance beam has the same procedure as logging rings. However since we 

aim to capture dynamic elements, the width of the smoothing window w= 

roundodd(0.3*r). In order to reject more false matches, the threshold for matching 

scores is set to 0.5. Figure 6.11 visualises an example of balance beam video log. 

According to Figure 6.11 it can be seen that most frames are categorised to pose 0 

(standing on the beam), which fit the feature of balance beam, and this pose will not 

be treated as an probed element. However since the ratio of false matches is high, 

while the smoothing window is small, more errors occur in logging balance beam. In 

the example above, two dynamic elements are missed and another one is incorrectly 

categorised. 
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The initial matching result 

 

The final log 

Figure 6.11 A visualised balance beam video log 

We applied the logging system to all 16 test videos. To evaluate the performance of 

the system, we count the total number of probed elements of both rings and balance 

beam, as well as the true and false categorised elements, to make a comparison, as 

shown in Table 6.3. Since those “unknown” actions are not probed elements, the 

numbers of total probed elements do not contain the number of the “unknown” 

category, and the true classified elements do not contain the “unknown” either. The 

false classified actions include three types of incorrect classification: a probed 

element being classified to another probed element, a probed element being 

classified to the “unknown” category, and an “unknown” action being classified to a 

probed element. 
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 Total probed True False 

Rings 89 80 17 

Balance beam 93 66 39 

Table 6.3 Performance of the video logging system 

Table 6.4 indicates incorrect detections of both rings and balance beam. The vertical 

labels stand for ground-truth probed elements, and the horizontal labels represent the 

classified probed elements. For example, in the table for rings, an action of element 3 

is classified to element 7, so the value is 1 at the cell whose vertical label is “3” and 

horizontal label is “7” (the cell with bold border). According to Table 6.4, most false 

classification results are caused by categorising probed elements to “unknown” or 

“unknown” to probed elements. That is because “unknown” actions include various 

poses which are difficult to predict and some of them may similar to probed 

elements. Meanwhile the interference between probed elements is not very strong, 

according to the table.   

The result shows that the logging system performs much better on rings videos. The 

reason is: to deal with the false matches, we have to employ the smoothing 

mechanism. If the elements last for a relatively long period, they will be easily 

recognised. However if the time of an element is too short, it can hardly be identified 

from false pose matches. Since no pose estimators can recognise all types of poses 

because of variations of human body shapes and behaviours, as well as exceptions 

(such as errors or faults in gymnastics), false pose classification results cannot be 

avoided. As false results appear occasionally and last briefly, it is difficult to identify 

them from short-term probed actions. Thus there is a paradox between false pose 

categorisation results and short-term probed actions: on one hand, false results need 

to be filtered, while on the other hand, short-term term actions which have similar 

characteristics, are required to be kept and emphasised.   
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Rinags  

labels 0 1 2 3 4 5 6 7 -1   

0 0 0 0 0 0 0 0 0 1   

1 0 0 0 0 0 0 0 0 1   

2 0 0 0 0 0 0 0 0 0   

3 0 0 0 0 0 0 0 1 2   

4 0 0 0 0 0 0 0 0 1   

5 0 0 0 0 0 0 0 0 0   

6 0 0 0 0 0 0 0 0 1   

7 0 0 0 0 0 0 0 0 2   

-1 1 0 2 2 0 0 1 3 0   

 

Balance beam 

labels 1 2 3 4 5 6 7 8 9 -1 

1 0 0 0 0 0 0 2 0 0 2 

2 0 0 0 0 0 0 0 0 0 3 

3 0 1 0 0 0 0 0 0 0 2 

4 0 0 0 0 0 0 0 0 1 1 

5 0 0 0 0 0 0 0 0 0 2 

6 0 0 0 0 0 0 1 0 0 3 

7 0 0 0 0 0 0 0 0 0 1 

8 0 0 1 0 0 0 1 0 0 2 

9 0 0 0 0 0 1 0 1 0 2 

-1 1 2 0 1 3 1 1 1 2 0 

Table 6.4 Incorrect classification results 

Here we should state that accurately determining when an action starts and ends is 

very difficult, because there are some frames representing the link-up poses between 

two actions and these poses can be classified to either of the two actions. That is to 

say, the system can only approximately record athletes’ actions along timelines. 

Meanwhile, this system cannot evaluate the quality of an athlete’s performance. 

Therefore it can be only used as an assistant for referees and commentators to 

summarise and replay athletes’ performance. Evaluating and marking still depend on 

human’s judgement. 
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6.3 Conclusions 

In this chapter, we have introduced a practical application using our action analysis 

method: object and content based key-frame extraction, which differs from 

conventional methods in aiming to extract key-frames understandable for users. The 

entire procedure can be concluded to two phases: HOG human body detection and 

GDT&OM template matching. 

The HOG detection method performs well for simple data, such as the Weizmann 

dataset. However, for more complicated data, such as the INRIA dataset used in 

Chapter 4, it still requires improvement. Besides, each HOG detector can only be 

applied for one type of object, such as full body human, upper body human, animals, 

vehicles etc. This means that in practice users need to build a number of HOG 

detectors and switch them according to what object types are in input videos. 

Therefore users must have prior knowledge of what an input video represents. In 

addition, users need to take care of exceptional cases, such as abnormal poses of 

humans, to avoid losing detections. 

The GDT&OM template matching method leads to understandable key-frames when 

good matches have been performed. However, interference and judgement problems 

constrain the system to have only a small number of action classes. Meanwhile, since 

human styles and poses vary hugely, building appropriate templates is a difficult job. 

We are planning to employ the pose classification method based on body parts/joints 

locations introduced in Chapter 5 instead of the contour template matching method, 

but locating body parts on 2D images is still a big challenge at present. 

Another problem is processing videos with multiple bodies: when multiple bodies 

perform different actions in a video, how to determine the domain action or the key- 

frame? We argue that the system can take the largest body as the main body and 

determine the key-frame according to it. 

Compared with a conventional method called PME, the entire key-frame extracting 

system achieves better experimental result. We argue that extracting key-frames 
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representative for content of videos is more meaningful and useful in practice. 

However, such systems are more complicated and expensive, due to the difficult 

issues of detection and matching. The further work is to improve performance of 

human detectors in complex situations, and to develop more reliable pose estimators. 

The video logging system provides a solution of automatically recording content of 

videos, and can extract most probed elements for gymnastic videos. However the 

system is also constrained by the camera angle and the number of people. If the 

viewpoint of the camera is changed in the footage, a lot more templates are needed. 

However it will increase false rate of matching. Hence for rings, balance beam or 

bars which are using a fixed camera in gymnastics, our method will work. However 

for floor videos whose camera angle often changes, the solution is difficult. If we 

apply this system to a video with multiple people, when multiple human bodies are 

detected, it is also difficult to determine the main content that the video represents. 

But this issue is more about a higher level of video understanding and artificial 

intelligence. For the work in this section, solving the paradox between false pose 

classification results and short-term probed actions is the key in the future. 

Meanwhile, as the same as key-frame extraction, body-part based pose estimation 

can be used to solve the problem of the varied viewpoint. 
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  Chapter 7

Conclusions and Further Work 

 

7.1 Conclusions 

In this thesis, the research area of Computer-Vision-based human motion analysis 

has been introduced, techniques associated to this area have been investigated, and a 

human motion analysis system which parses images or videos (image sequences) to 

achieve human poses has been proposed. We have built a human motion analysis 

system that integrates a novel colour-to-greyscale converter, an optimised HOG 

human body detector, and an improved GDT&OM pose estimator. Each stage of the 

system has been tested separately and a key-frame extractor which is an application 

of the system is also illustrated. 

This thesis proposed a novel colour-to-greyscale conversion method that converts 

RGB images to chrominance-edge-enhanced greyscale images. In the experiments, 

the novel method achieves good performance for most images within the testing 

data. When compared with Color2Grey [88] qualitatively, the novel method achieves 

similar results for complicated images, but is far less computational expensive. 

When compared with Ren’s method [105] quantitatively, the novel method produces 

less noise and obtains even more “true” edges when “thin” ground truth images are 

used. The weakness of the novel method is that it is still parameter dependent (the 

number of clusters) and has a problem of losing edges between two objects which 

are similar in chrominance. (i.e. the “walker” image in Figure 5.13). 
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Histogram of Orientated Gradients has also been investigated and improved. A new 

training scheme significantly improves the FPR of human detection at the cost of 

only a very small proportion of losses of true positive detections. Using pre-

processed data produced by the novel colour-to-greyscale convertor, can also 

improve the FPR. We compare the improved HOG detector with a Haar/AdaBoost 

cascade detector (a classifier that classifies input windows to human or nonhuman, 

so it can be treated as a detector), and the HOG detector achieves higher TPR and 

lower FPR than the Haar/AdaBoost cascade detector. 

A pose estimator based on GDT&OM template matching has been developed. We 

improved the original GDT&OM human detector by using background cancellation, 

and modified it to a pose estimator by employing an HOG detector and pose 

templates. This method can successfully estimate (classify) human poses when use a 

small set of pose categories. Besides a pose estimator method using locations of 

body parts is also proposed. This method can achieve high pose estimation 

(classification) accuracy by applying a k-nearest neighbourhood or a multiple-class 

SVM classifier, under the assumption that body parts are correctly located. 

Finally an integrated system applied to key-frame extraction is proposed. This key-

frame extractor is more intelligent than conventional approaches as it is designed to 

select frames representing content of videos. However it is an object-dependent 

system that needs users to manually select a target object, and the performance is 

limited by the human body detector and pose estimator. Then the system is extended 

to log gymnastic videos. Rings and balance beam videos are tested. We build human 

detectors by using separate positive training data and shared negative training data 

for rings and balance beam, and two sets of templates are made separately as well. 

We employ a voting mechanism to smooth the pose estimation result. The final 

results indicates that the system performs better on rings than balance beam, as rings 

videos contain static elements while balance beam videos focus on dynamic 

elements.  
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7.2 Further Work 

The methods and system proposed in this thesis are still not practical, for each part of 

the system has weakness and requires improvement. Overall, we are aiming to 

improve the system to be more reliable and efficient. There are several points to be 

improved on the system: 

1) The accuracy and efficiency of the human detector. 

2) The robustness of the system, especially the pose estimator. 

3) The extension of the system to high-level behaviour description. 

The further work can be carried out by three stages: 

7.2.1 Stage one: improvement in HOG human detection 

The novel colour-to-greyscale converter proposed in Chapter 3 is relatively 

successful. However, when we apply the converted greyscale images to the HOG 

method, the improvement is not very significant. The reason is probably that when 

colour edges are enhanced, luminous edges are weakened at the same time. The next 

step is to do experiments by combining both colour edges and luminous edges. In 

practice for an image, the gradients of its colour and converted greyscale will be both 

computed and combined to a gradient union.  

At present images used in the experiments are mostly representing standing or 

walking people Experiments on applying more human bodies poses, such as sitting, 

lying and other abnormal poses is in the plan. In addition, the conventional SVM for 

classifying a relatively large detection window in high resolution images, e.g. a 

64×128 window in an image of 1600×1200, is too computationally expensive for 

real-time systems. Even when the image size is scaled to 400×300, it is still difficult 

to achieve real-time processing. For real-world applications, a more efficient 

classifier is required. We plan to implement classifiers such as AdaBoost-cascading 

and random forests to improve the detection efficiency. 

 



CHAPTER 7                                           CONCLUSIONS AND FURTHER WORK 

  154 

 

7.2.2 Stage two: improvement in the robustness 

The template matching method used is not a robust way to estimate poses, since it is 

constrained by the templates and the viewpoint of the camera. The HOG detection 

method performs with high accuracy and robustly according to Chapter 6, so the 

pose estimation method can still be based on the output of the human detection stage. 

To build a robust pose estimator, the following two ideas can be applied:   

Classifying poses by using locations of body parts is proved to be in high accuracy. 

We consider that it has a larger potential than template matching. The problem at 

present is that existing methods of locating body parts are not ideal, especially when 

there are overlaps between people or some parts of a body are hidden. An estimation 

mechanism is required to estimate the body parts which do not appear. Meanwhile a 

fault-tolerant mechanism is needed so that false estimation of hidden body parts can 

be handled, and the system is still able to classify a human body to a correct pose 

category. 

Alternatively the system will apply a local feature method instead of global outline 

matching. Many local methods do not need detection as the pre-stage. However we 

argue that detecting human bodies before pose estimation can solve the multi-person 

problem: when an interest point is detected, if there a more than one person in the 

picture, it is difficult to determine which person the point belongs to. Besides, human 

detection can help to reject false interest points. Of course tracking is also required to 

identify different persons. Alternatively a spatial-temporal model combines global 

human shapes and motions can be designed, such as the global spatial-temporal 

method introduced by the paper [74], so for videos the system can capture human 

locations and motions within a single detection procedure. Using local features is 

able to deal with the problem caused by different viewpoint of the camera, because 

some interest points will still be detectable even if the viewpoint changes. Thus these 

detectable interest points can also be used to estimate the relative positions between 

the viewpoints. 

There is another issue that the system proposed by the thesis is under a low noise 
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assumption. In the real world there are various types of noise to be considered. For 

example, indoor sport pictures and videos usually have flashes which change 

illumination condition significantly, or in outdoor sport pictures and videos have 

noise from weather. Therefore the pre-processing phase also needs to measure and 

cancel noise. A normalisation and noise cancellation step will be added to the 

system.    

7.2.3 Stage three: development in high-level behaviour recognition 

Then for the entire system of key-frame extraction, its performance and efficiency 

will be enhanced by the improvement of each stage. Besides, the thesis has stated 

above that for multiple types of objects, the target object needs to be manually 

selected. A general plan is to make the extractor more intelligent – the system can 

automatically decide the key object in a video among a number of object candidates. 

In the preliminary scheme, multiple detectors can be trained for multiple types of 

interest objects, and use state estimators respectively for each type. The system will 

combine the factors of objects’ sizes, locations and similarities to detection models to 

determine a main object, or the weight of each interest object, and compute a score 

to evaluate the importance of each frame. Finally the key-frame is the one with the 

highest importance.  

Finally for video logging the system needs to be extended to more applications, as 

now it can only process limited videos each of which has a fixed camera viewpoint 

and a single person. An advanced system like this requires not only a better human 

detector and a pose estimator, but also a mechanism that analyses group interaction 

after behaviours are recognised. Such a system can be applied to more complicated 

group sports such as football and basketball, as well as surveillance videos and 

movies. The ideas to solving problems on multiple persons and multiple viewpoints 

have been mentioned in Stage 2. There is another issue that the system needs to 

recognise high-level behaviours which are more important than basic actions for 

practical applications. Considering that complicated behaviours usually consist of 

several basic actions, a state-based method such as Hidden Markov Model, Bayesian 

Networks or Neural Networks can be employed. Therefore the system will be 
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designed to detect human bodies first, then estimate poses as motion states by a 

robust method, and finally classified by a state-based model. Besides, an even higher 

level of behaviours—interactions between persons, will be an important topic 

afterwards.   

In conclusion, human motion analysis is an interesting research area with large a 

market potential. There are various advanced methods in theory but not many 

practical approaches in the real world. Developing a reliable, robust and efficient 

system to recognise human actions and understand human behaviours still needs a 

lot of further effort.   
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Appendix I 

 

Shell script for HOG training 

#!/bin/sh 

WIDTH=96; export WIDTH 

HEIGHT=96; export HEIGHT 

 

HardOption=" --poscases 754 --negcases 7140 " 

 

BinDIR=/home/zw514/work/OLTbinares/bin 

DumpRHOG=$BinDIR/dump_rhog 

ClassifyRHOG=$BinDIR/classify_rhog 

dump4mc=$BinDIR/dump4svmlearn 

svm_learn=$BinDIR/svm_learn 

 

Option=" -W $WIDTH,$HEIGHT \ 

    -C 8,8 -N 2,2 -B 9 -G 8,8 -S 0 --wtscale 2 --maxvalue 0.2 --epsilon 1 \ 

    --fullcirc 0 -v 3 --proc rgb_sqrt --norm l2hys " 

 

ExtraOption2=" -t 0.1 -m 0 " 

ExtraOption1=" -p 1,0 --no_nonmax 0 -z 8,16,1.3 --cachesize 128 \ 

    --scaleratio 1.05 --winstride 6 --margin 4,4 --avsize 0,96 " 

ExtraOption=$ExtraOption1$ExtraOption2 

OutDir=HOG 

 

OutFile=$OutDir/record 

CMDLINE=$OutDir/record 

 

 

CMD="mkdir -p $OutDir" 

$CMD  

 

# get features on positive images 

CMD="$DumpRHOG $Option -s 1  train/pos.lst $OutDir/train_pos.RHOG " 

echo $CMD >> $CMDLINE 

$CMD >> $OutFile 
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# get features on negative images 

CMD="$DumpRHOG $Option -s 20 train/neg.lst $OutDir/train_neg.RHOG " 

echo $CMD >> $CMDLINE 

$CMD >> $OutFile 

 

# dump to svmdense format 

CMD=" $dump4mc -p $OutDir/train_pos.RHOG -n $OutDir/train_neg.RHOG \ 

    $OutDir/train_BiSVMLight.blt -v 4 " 

echo $CMD >> $CMDLINE 

$CMD >> $OutFile 

 

# learn 

CMD="$svm_learn -j 3 -B 1 -z c -v 1 -t 0 $OutDir/train_BiSVMLight.blt \ 

    $OutDir/model_4BiSVMLight.alt " 

echo $CMD >> $CMDLINE 

$CMD >> $OutFile 

 

echo First iteration complete 

 

# create hard examples 

HardDir=$OutDir/hard 

CMD="mkdir -p $HardDir" 

echo $CMD >> $CMDLINE 

$CMD >> $OutFile 

 

CMD="$ClassifyRHOG train/neg.lst $HardDir/list.txt \ 

    $OutDir/model_4BiSVMLight.alt -d $HardDir/hard_neg.txt -c $HardDir/hist.txt \ 

    -m 0 -t 0 --no_nonmax 1 --avsize 0 --margin 0 --scaleratio 1.2 -l N $Option " 

 

echo $CMD >> $CMDLINE 

$CMD >> $OutFile 

 

echo Hard examples created 

 

## now second iteration 

# dump hard examples 

CMD="$DumpRHOG $Option -s 0 $HardDir/hard_neg.txt \ 

    $OutDir/train_hard_neg.RHOG $HardOption \ 

    --dumphard 1 --hardscore 0 --memorylimit 1700 " 

echo $CMD >> $CMDLINE 

$CMD >> $OutFile 

     

# dump postive, negative and hard examples 

CMD="$dump4mc -p $OutDir/train_pos.RHOG \ 

    -n $OutDir/train_neg.RHOG -n $OutDir/train_hard_neg.RHOG \ 

    $OutDir/train_BiSVMLight.blt -v 4 " 

echo $CMD >> $CMDLINE 

$CMD >> $OutFile 
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# learn, second iteration 

echo Doing second learning 

CMD="$svm_learn -j 3 -B 1 -z c -v 1 -t 0 \ 

    $OutDir/train_BiSVMLight.blt \ 

    $OutDir/model_4BiSVMLight.alt " 

echo $CMD >> $CMDLINE 

$CMD >> $OutFile 

 

echo Second iteration complete 

 

 

Shell script for HOG testing 

#!/bin/sh 

if [ $# -lt 3 ] 

then 

    echo "<usage>: runonimage.sh <image name/image directory/list file> " 

    echo "          <out text file> <out image file/out image dir>" 

else 

    InFile=$1 

    OutFile=$2 

    ImageFile=$3 

 

WIDTH=96; export WIDTH 

HEIGHT=96; export HEIGHT 

 

BinDIR=/home/zw514/work/OLTbinares/bin 

Classifier=$BinDIR/classify_rhog 

 

Option=" -W $WIDTH,$HEIGHT \ 

    -C 8,8 -N 2,2 -B 9 -G 8,8 -S 0 --wtscale 2 --maxvalue 0.2 --epsilon 1 \ 

    --fullcirc 0 -v 3 --proc rgb_sqrt --norm l2hys " 

 

    ######## 

for t in 0.10 #0.02 0.04 0.06 0.08 0.10  

do 

echo t = $t 

Margin=4 

ExtraOption2=" -t $t -m 0 " 

ExtraOption1=" -p 1,0 --no_nonmax 0 -z 8,16,1.3 \ 

    --cachesize 128 --scaleratio 1.05 --winstride 8 \ 

    --margin $Margin,$Margin --avsize 0,96 " 

ExtraOption=$ExtraOption1$ExtraOption2 
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echo Running hog on image list 

ResultDir=$OutFile"_t"$t".txt" 

ImageDir=$ImageFile"_t"$t 

echo $ImageDir 

CMD="mkdir $ImageDir" 

$CMD 

CMD="$Classifier $Option  $ExtraOption \ 

    $InFile $ResultDir HOG/model_4BiSVMLight_1.alt -i $ImageDir " 

 

$CMD  

CMD="cp $ResultDir results/$ResultDir" 

$CMD 

done 

fi 
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Appendix II 

 

Cascade configuration 

Window Width 32 

Window Height 64 

Detector Minimum Detection Rate 0.88 

Detector Maximum False Positive Rate 0.000001 

Elemental Classifier Learner AdaBoost 

Elemental Classifier Type Perceptron 

Scan Step 1 

Scan Scale 0.8 

Node Maximum False Positive Rate 0.55 

Performance Trade OffFactor 0.1 

Calibrate To Validation Data 0 

Validation Scan Step 4 

Validation Scan Scale 0.8 

Max Nodes 35 

Max Classifiers Per Node 300 

Use Rect Diff Features 1 

Bootstrap Scan Step 12 

Bootstrap Scan Scale 0.65 

Classifiers Per Node 

3 10 25 25 50 50 50 80 80 130 130 

200 200 300 300 300 300 300 300 

300 300 300 300 300 300 300 300 

300 300 300 300 300 300 300 300 

300 300 300 
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