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Abstract
Transformer-based language models have achieved huge success in various natural language

processing tasks, but their efficiency remains a critical challenge. The core limitations stem

from the computationally intensive dot-product attention mechanism, which scales quadratically

with input length, and the increasing memory footprint associated with large model sizes and

extensive vocabularies. These issues hinder their deployment on resource-constrained devices

and limit their ability to process long contexts.

This thesis explores novel methods to enhance the efficiency of Transformer-based models,

focusing on architectural modifications during the pre-training stage. It is presented as a

collection of three peer-reviewed publications, each addressing a specific component of the

Transformer architecture. The first work introduces a parameter-efficient embedding layer that

uses a hashing function to support an unlimited vocabulary with a fixed-size embedding matrix.

This approach effectively breaks the rigid, one-to-one mapping between tokens and embeddings,

significantly reducing memory consumption. The second work tackles the parameter redundancy

within the multi-head attention mechanism. It proposes a more efficient alternative that uses

a single shared projection matrix and multiple head embeddings, substantially reducing the

number of attention-related parameters while preserving model performance. The final work

systematically analyses the key design principles of the dot-product attention mechanism. The

findings provide insights into what makes attention so effective and offer a foundation for

developing more streamlined and efficient attention mechanisms in the future.

This thesis demonstrates that fine-grained architectural modifications during pre-training can

yield substantial improvements in model efficiency. The proposed methods are orthogonal to

existing post-training compression techniques, providing a complementary approach to creating

more scalable and deployable language models. The findings collectively contribute to a deeper

understanding of the core components of Transformer models and pave the way for designing

next-generation language models that are both powerful and efficient.
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Chapter 1

Introduction

Transformer-based language models (Singh, 2025; Liu et al., 2024a; Yang et al., 2024a; Vaswani

et al., 2017) have obtained great success on various down-stream tasks in recent years. The

classic core components in them include: (1) the embedding layers, (2) stacked transformer

layers, where each one does token mixing and channel mixing sequentially leveraging a feed-

forward module stacked above an attention module; (3) task specific classifier.

When actively applied, efficiency becomes a crucial demand for models. The success of

Transformer-based language models stems from their dot-product attention mechanism. How-

ever, this mechanism is computationally inefficient because it requires the model to calculate

pairwise similarities between every token in a sequence to determine their relative importance.

This inefficient process limits the model’s ability to handle long inputs. Furthermore, while the

trend of scaling model parameters has improved their capabilities, it also significantly increases

inference latency and memory consumption. This makes it difficult to deploy these large models

on devices with limited resources, such as smartphones or other edge devices.

Besides hardware-specific optimisations such as IO-aware flash attention and paged attention,

researchers have developed different methods to optimise the efficiency of large language models

across various stages of their life cycle:

• In pretraining, three main lines of work exist: model distillation, low-bit pretraining, and

efficient architectures. Model distillation (Gu et al., 2024; Hsieh et al., 2023) leverages

a larger, more complex model to transfer its knowledge to a smaller, more efficient

one by aligning their outputs. Low-bit pretraining (Nielsen et al., 2025; Ouyang et al.,

2025) reduces the bit-width used for computation, adopting low-precision values for

training to decrease the memory footprint and accelerate the process. Most research on

efficient architectures focuses on developing new token mixers with lower computational

complexity to replace the standard dot-product attention module (Yang et al., 2025b; He

1
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Figure 1.1: Illustration of the architecture of Transformer-based language models

et al., 2025; Lin et al., 2025; Siems et al., 2025; Peng et al., 2025; Yang et al., 2024b;

Dao and Gu, 2024; Yang et al., 2024b; Qin et al., 2024; Peng et al., 2024; Gu and Dao,

2023; Poli et al., 2023; Peng et al., 2023; Orvieto et al., 2023; Gu et al., 2022; Lee-

Thorp et al., 2022; Wang et al., 2020). The aim is to reduce training time and inference

latency, especially with long contexts. Some work also focuses on alleviating parameter

redundancy in specific components, such as the embedding layer and the attention module.

• Post-training (the stage after pretraining) optimisation methods for efficient Transformer-

based language models fall into two categories: general compression technologies and

architecture-dependent approaches.

– General compression techniques include pruning, quantisation, and layer-skip, and

can be applied to various neural network architectures:

* Pruning (Dettmers et al., 2024; Sun et al., 2024; Frantar and Alistarh, 2023)

reduces the size of a trained network by identifying and removing redundant

parameters;

* Quantisation (Dettmers et al., 2024; Frantar et al., 2023; Xiao et al., 2023;

Dettmers et al., 2022) improves memory efficiency and speeds up computation

by converting high-precision floating-point values into lower-precision integers;

* Layer-skip (Gromov et al., 2025; Varshney et al., 2024; Bae et al., 2023;

Schuster et al., 2021) optimises the forward pass by either allowing tokens to

exit the network early or by identifying and removing redundant layers.
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– Architecture-Dependent approaches are tailored to specific network architectures and

often focus on addressing latency issues, particularly those related to the quadratic

time complexity of standard dot-product computation:

* Cross-architecture fine-tuning (Mercat et al., 2024; Bick et al., 2024; Choi,

2024; Mao, 2022; Kasai et al., 2021) involves transferring parameters from

a large, pre-trained language model to a more efficient target model (like a

recurrent-style linear attention). The new model is then fine-tuned over fewer

steps.

* KV eviction (Chen et al., 2024; Liu et al., 2024b; Devoto et al., 2024; Zhang

et al., 2023; Liu et al., 2023) reduces attention computation during inference by

removing redundant cached key-value pairs;

* Speculative decoding (Gritta et al., 2025; Zimmer et al., 2025; Miao et al.,

2024; He et al., 2024; Cai et al., 2024; Li et al., 2024b; Ankner et al., 2024;

Mamou et al., 2024) maximises the parallelism of auto-regressive language

model inference to decrease latency. It uses a smaller, efficient model to draft

multiple tokens, which are then verified in parallel by a larger, more powerful

model.

This thesis focuses on efficient architectures for the pre-training stage. These approaches are

orthogonal to general compression methods, which can be applied afterwards. Pre-training

language models from scratch offers greater flexibility to modify fine-grained components

within the model. This also allows us to isolate the effects of the architecture itself from the

catastrophic forgetting of knowledge stored in existing pre-trained language models.

1.1 Research Aims and Objectives

The central aim of this thesis is to explore the reducibility of the classic components in prevalent

Transformer-based foundation language models. It is expanded along the following dimensions

for selecting the target components to investigate:

Compressibility of inelastic components Transformer-based pre-trained language models

generally map each token to its corresponding embedding, which results in a rigid, one-to-one

mapping. This approach creates inelastic embedding matrices whose size grows linearly with

the pre-defined vocabulary size. A key focus is on making the embedding layer in encoder-only

Transformer models more compressible by breaking this one-to-one mapping. The goal is to

free future models from relying on large vocabularies and over-segmented tokenisation, allowing

them to support an unlimited vocabulary of all possible tokens in a corpus.
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Parameter redundancy between multiple subspaces Transformer-based language models

use multiple “attention heads”, which are sets of linear projections, to process the same query,

key, and value pairs. Each head operates on a different subspace to create a richer, more

accurate representation of the input data. The goal of this research is to show that there is

substantially large parameter redundancy when generating these multiple subspaces for the

attention heads. By addressing this redundancy, we can reduce the model’s memory footprint,

decrease computational time, and shrink the size of the key-value cache in transformer-based

pre-trained language models.

Design principles for the most frequently iterated components The token mixer, as known as

the attention mechanism, is one of the most frequently refined components in Transformer-based

language models. While previous research has used ideas from graph neural networks and

recurrent neural networks to reduce the computational complexity of standard dot-product

attention, there has been limited exploration of its core design principles. By deconstructing

and examining these principles, we can gain a deeper understanding of what makes attention so

effective for language modeling. This knowledge could then lead to new ways of simplifying

language models while maintaining their performance.

1.2 Thesis Overview: Publications and Contributions

This thesis presents a collection of three first-author, peer-reviewed publications that focus

on improving the efficiency of Transformer-based language models. Each chapter explores a

distinct component of the original Transformer architecture—the embedding layer, the multi-

head attention mechanism, and the dot-product attention form—to identify and optimise areas

for greater efficiency.

Chapter 2, based on the paper “HashFormers: Towards Vocabulary-independent Pre-trained

Transformers” (EMNLP 2022) (Xue and Aletras, 2022), tackles the memory footprint of the

embedding layer. It introduces HASHFORMERS, a novel family of parameter-efficient, encoder-

only Transformer models. By using a hashing function, HASHFORMERS can support an

unlimited vocabulary with a significantly smaller fixed-sized embedding matrix, making the

model more memory efficient.

Drawn from the publication “Pit One Against Many: Leveraging Attention-head Embeddings

for Parameter-efficient Multi-head Attention” (EMNLP 2023 Findings) (Xue and Aletras,

2023), Chapter 3 addresses the parameter inefficiency of the multi-head attention mechanism.

It introduces a more parameter-efficient alternative that replaces the traditional head-wise

projection matrices with a single shared projection matrix and multiple head embeddings

(MHE). This approach drastically reduces the number of parameters needed for attention while
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maintaining performance.

Chapter 4 based on the paper “Deconstructing Attention: Investigating Design Principles for

Effective Language Modeling” (Under Review at ACL Rolling Review, July 2025 cycle),

investigates the standard dot-product attention mechanism. It systematically deconstructs this

component to identify and analyse the fundamental design principles that contribute to effective

language modeling. The insights gained from this analysis could pave the way for future, more

efficient attention mechanisms.

Finally, Chapter 5 synthesises the key findings from these three empirical studies and outlines

promising directions for future research. The overall goal is to continue exploring and developing

efficient methods for designing and optimising Transformer-based foundation language models.





Chapter 2

Publication I

HashFormers:
Towards Vocabulary-independent

Pre-trained Transformers

The main contribution of this chapter is the peer-reviewed publication titled HashFormers:

Towards Vocabulary-independent Pre-trained Transformers (Xue and Aletras, 2022), presented

at the Empirical Methods in Natural Language Processing main conference in December 2022.

This work was largely inspired by movies (Arrival, 2016; Persian Lessons, 2020) and the words

form an influential Chinese philosopher Zhuangzi (庄子) who lived around the 4th century BCE,

which is also mentioned in Chapter 6, Vector Semantics and Embeddings in Jurafsky and Martin

(2025).12

1筌者所以在鱼，得鱼而忘筌。言者所以在意，得意而忘言。——《庄子》
2Nets are for fish; Once you get the fish, you can forget the net. Words are for meaning; Once you get the

meaning, you can forget the words. –Zhuangzi

7
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Logograms from the alien language in the movie Arrival (2016). Image Source:

https://x.com/1jcmaxwell/status/1166366420910968835
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Abstract

Transformer-based pre-trained language models are vocabulary-dependent, mapping by default

each token to its corresponding embedding. This one-to-one mapping results into embedding

matrices that occupy a lot of memory (i.e. millions of parameters) and grow linearly with

the size of the vocabulary. Previous work on on-device transformers dynamically generate

token embeddings on-the-fly without embedding matrices using locality-sensitive hashing over

morphological information. These embeddings are subsequently fed into transformer layers

for text classification. However, these methods are not pre-trained. Inspired by this line

of work, we propose HASHFORMERS, a new family of vocabulary-independent pre-trained

transformers that support an unlimited vocabulary (i.e. all possible tokens in a corpus) given

a substantially smaller fixed-sized embedding matrix. We achieve this by first introducing

computationally cheap hashing functions that bucket together individual tokens to embeddings.

We also propose three variants that do not require an embedding matrix at all, further reducing

the memory requirements. We empirically demonstrate that HASHFORMERS are more memory

efficient compared to standard pre-trained transformers while achieving comparable predictive

performance when fine-tuned on multiple text classification tasks. For example, our most

efficient HASHFORMER variant has a negligible performance degradation (0.4% on GLUE)

using only 99.1K parameters for representing the embeddings compared to 12.3–38M parameters

of state-of-the-art models.3

2.1 Introduction

The majority of transformer-based (Vaswani et al., 2017) pre-trained language models (PLMs;

Devlin et al. 2019; Liu et al. 2019; Dai et al. 2019; Yang et al. 2019) are vocabulary-dependent,

with each single token mapped to its corresponding vector in an embedding matrix. This one-to-

one mapping makes it impractical to support out-of-vocabulary tokens such as misspellings or

rare words (Pruthi et al., 2019; Sun et al., 2020a). Moreover, it linearly increases the memory

requirements with the vocabulary size for the token embedding matrix (Chung et al., 2021).

For example, given a token embedding size of 768, BERT-BASE with a vocabulary of 30.5K

tokens needs 23.4M out of 110M total parameters, while ROBERTA-BASE with 50K tokens

needs 38M out of 125M total parameters. Hence, disentangling the design of PLMs from the

vocabulary size and tokenisation approaches would inherently improve memory efficiency and

pre-training, especially for researchers with access to limited computing resources (Strubell

et al., 2019a; Schwartz et al., 2020).

Previous efforts for making transformer-based models vocabulary-independent include dy-

3Code is available here: https://github.com/HUIYINXUE/hashformer and the pre-trained HashFormer mod-
els are available here: https://huggingface.co/klein9692.

https://github.com/HUIYINXUE/hashformer
https://huggingface.co/klein9692
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namically generating token embeddings on-the-fly without embedding matrices using hash

embeddings (Svenstrup et al., 2017; Ravi, 2019) over morphological information Sankar et al.

(2021a). However, these embeddings are subsequently fed into transformer layers trained from

scratch for on-device text classification without any pre-training. Without introducing any

morphological information, Clark et al. (2022a) operated on Unicode characters and utilised a

low-collision multi-hashing strategy to support ~1.1M Unicode codepoints as well as all possible

permutations of four arbitrary Unicode codepoints, thus, can skip tokenisation explicitly while

limiting the parameters of its embedding layer to 12.3M. Different to using hash embeddings,

Xue et al. (2022) proposed models that take as input byte sequences representing characters

without explicit tokenisation or a predefined vocabulary to pre-train transformers in multilingual

settings.

In this paper, we propose HASHFORMERS a new family of vocabulary-independent PLMs. Our

models support an unlimited vocabulary (i.e. all possible tokens in a given pre-training corpus)

with a considerably smaller fixed-sized embedding matrix. We achieve this by employing

simple yet computationally efficient hashing functions that bucket together individual tokens

to embeddings inspired by the hash embedding methods of Svenstrup et al. (2017) and Sankar

et al. (2021a). Our contributions are as follows:

1. To the best of our knowledge, this is the first attempt towards reducing the memory

requirements of PLMs using various hash embeddings with different hash strategies,

aiming to substantially reduce the embedding matrix compared to the vocabulary size;

2. Three HASHFORMER variants further reduce the memory footprint by entirely removing

the need of an embedding matrix;

3. We empirically demonstrate that our HASHFORMERS are consistently more memory

efficient compared to vocabulary-dependent PLMs while achieving comparable predictive

performance when fine-tuned on a battery of standard text classification tasks.

2.2 Related Work

2.2.1 Tokenisation and Vocabulary-independent Transformers

Typically, PLMs are pre-trained on text that has been tokenised using subword tokenisation

techniques such as WordPiece (Wu et al., 2016), Byte-Pair-Encoding (BPE; Sennrich et al. 2016)

and SentencePiece (Kudo and Richardson, 2018).

Attempts to remove the dependency of PLMs on a separate tokenisation component include

models that directly operate on sequences of characters (Tay et al., 2022b; El Boukkouri et al.,

2020). However, these approaches do not remove the requirement of an embedding matrix.
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Recently, Xue et al. (2022) proposed PLMs that take as input byte sequences representing

characters without explicit tokenisation or a predefined vocabulary in multilingual settings.

PLMs in Clark et al. (2022a) operating on Unicode characters or ngrams also achieved a similar

goal. These methods improve memory efficiency but still rely on a complex process to encode

the relatively long ngram sequences of extremely long byte/Unicode sequences, affecting their

computational efficiency.

In a different direction, Sankar et al. (2021b) proposed PROFORMER, an on-device vocabulary-

independent transformer-based model. It generates token hash embeddings (Svenstrup et al.,

2017; Shi et al., 2009; Ganchev and Dredze, 2008) on-the-fly by applying locality-sensitive

hashing over morphological features. Subsequently, hash embeddings are fed to transformer

layers for text classification. However, PROFORMER is trained from scratch using task-specific

data without any pre-training.

2.2.2 Compressing PLM Embeddings

A different line of work has focused on compressing the embedding matrix in transformer

models (Ganesh et al., 2021). Prakash et al. (2020) proposed to use compositional code

embeddings (Shu and Nakayama, 2018) to reduce the size of the embeddings in PLMs for

semantic parsing. Zhao et al. (2021) developed a distillation method to align teacher and student

token embeddings using a mixed-vocabulary training (i.e. the student and teacher models have

different vocabularies) for learning smaller BERT models. However, these approaches still

rely on a predefined vocabulary. Clark et al. (2022a) adopted a low-collision multi-hashing

strategy to support ~1.1M Unicode codepoints and a larger space of character four-grams with a

relatively small embedding matrix containing 12.3M parameters.

2.3 HashFormers

In this section, we present HASHFORMERS, a family of vocabulary-independent hashing-based

pre-trained transformers.

2.3.1 Many-to-One Mapping from Tokens to an Embedding

Given a token t, HASHFORMERS use a hash function H to map t into a value v. Using hashing

allows our model to map many tokens into a single embedding and support an infinite vocabulary.

We obtain the embedding index by squashing its hash value v into i = [1, ..., N ] where e = Ei

is the corresponding embedding from a matrix E ∈ RN×d where N is the number of the

embeddings and d is their dimensionality. We assume that |V | ≫ N where |V | is the size of the

vocabulary. Subsequently, e is passed through a series of transformer layers for pre-training.
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This is our first variant, HASHFORMER-Emb that relies on a look-up embedding matrix (see

Figure 2.1). Our method is simple, vocabulary-free and independent of tokenisation choices.

Figure 2.1: HASHFORMER-Emb.

2.3.2 Message-Digest Hashing (HashFormers-MD)

Our first approach to hash tokens is by using a Message-Digest (MD5) hash function (Rivest

and Dusse, 1992) to map each token to its 128-bits output, v = H(t). The mapping can be

reproduced given the same secret key. MD5 is a ‘random’ hashing approach, returning mostly

different hashes for tokens with morphological or semantic similarities. For example:

MD5(‘play’) = d077f244def8a70e5ea758bd8352fcd8

MD5(‘plays’) = 4a258d930b7d3409982d727ddbb4ba88

It is simple and does not require any pre-processing to obtain the bit encoding for each token.

To map the hash output v into its corresponding embedding, we transform its binary value into

decimal and then compute the index i to E as i = v %N .

2.3.3 Locality-Sensitive Hashing (HASHFORMERS-LSH)

Locality-sensitive hashing (LSH) hashes similar tokens into the same indices with high proba-

bility (Rajaraman and Ullman, 2011). HASHFORMER-LSH uses LSH hashing to assign tokens

with similar morphology (e.g. ‘play’, ‘plays’, ‘played’) to the same hash encoding. This requires

an additional feature extraction step for token representation.

Token to Morphological Feature Vector: We want to represent each token with a vector x

as a bag of morphological (i.e. character n-grams) features. For each token, we first extract
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character n-grams (n ∈ 1, 2, 3, 4) to get a feature vector whose dimension is equal to the

vocabulary size.4 Each element in the feature vector is weighted by the frequency of the

character n-grams of the token.

Morphological Vector to Hash Index: Once we obtain the morphological feature vector of

each token, we first define N random hyperplanes, each represented by a random unit vector

ri ∈ Rdx , where dx is the dimensionality of the morphological feature vector. Following a

similar approach to Kitaev et al. (2020), we compute the hash value v as the index of the

nearest random hyperplane vector to the token’s feature vector, x obtained by computing

v = H(x) = argmax(xR),R = [r1...rN ] where [αβ] denotes the concatenation of two

vectors. This approach results into bucketing together tokens with similar morphological vectors.

Similar to HASHFORMER-MD-Emb, we compute the embedding index as i = v.

To prevent storing a large projection matrix (Rdx×N ) for accommodating each unit vector, we

design an on-the-fly computational approach leveraging the Circulant matrix. We only store a

vector η ∈ Rdx that is randomly initialized from the standard normal distribution, guaranteeing

that each column r in the matrix R is a permutation of η with a unique offset value (e.g.

r1 = [η2, ..., ηN , η1]). Each offset value only relies on the index of the hyperplane. This setting

ensures that each hyperplane has the same L2-norm.

2.3.4 Compressing the Embedding Space

We also propose three embedding compression approaches that allow an even smaller number

of parameters to represent token embeddings and support unlimited tokens (i.e. very large |V |)
without forcing a large number of tokens to share the same embedding. For this purpose, we

first use a hash function H to map each token t into a T -bit value b, b ∈ [0, 2T ). Then, we pass

b through a transformation procedure to generate the corresponding embedding (to facilitate

computation, we cast b into a T -bit vector τ ). We aim to ensure that tokens with different values

b will be assigned to a different embedding by keeping the number of parameters relatively

small. Figure 2.2 shows an overview of this method.

Pooling Approach (Pool) Inspired by Svenstrup et al. (2017) and Prakash et al. (2020), we

first create a universal learnable codebook, which is a matrix denoted as B ∈ R2k×d. Then, we

split the hash bit vector τ in k successive bits without overlap to obtain ⌈Tk ⌉ binary values. We

then cast these binary values into an integer value representing a codeword. Hence, each token

is represented by a vector c ∈ Rd with elements cj ∈ [0, 2k). For example, given k = 4 and

a 12-bits vector [1,0,1,0,0,1,0,0,0,0,0,1], 4-bit parts are treated as separate binary codewords

[1010,0100,0001] then transformed into their decimal format codebook [10,4,1]. We construct
4We keep the top-50K most frequent n-grams in the pre-training corpus.



14 Chapter 2. Publication I

Figure 2.2: Compressing the embedding space.

the embedding e ∈ Rd for each token by looking up the decimal codebook and extracting ⌈Tk ⌉
vectors corresponding to its ⌈Tk ⌉ codewords. We then apply a weighted average pooling on them

using a softmax function:

Ŵj =
expWj∑⌈T
k
⌉

l=1 expWl

, j = 1, .., ⌈Tk ⌉ (2.1a)

e =

⌈T
k
⌉∑

j=1

[Bc ⊙ Ŵ]j (2.1b)

where W ∈ R⌈T
k
⌉×d is a learnable weight matrix as well as the codebook B. The total number

of parameters required for this pooling transformation is (⌈Tk ⌉ + 2k) × d. This can be much

smaller than the N × d parameters required for standard PLMs that use a one-to-one mapping

between tokens and embeddings, whereN = |V | ≫ (⌈Tk ⌉+2k). Figure 2.3 shows the overview

of the Pool process.

Additive Approach (Add) Different to the Pool method that uses a universal codebook,

we create T different codebooks {B1,B2, ...,BT }, each containing two learnable embedding

vectors corresponding to codewords 0 and 1 respectively. We get a T -bits vector τ ∈ {0, 1}T

for each token, where each element in the vector τ is treated as a codeword. We look up each

codeword in its corresponding codebook to obtain T vectors and add up them to compute the

token embedding e:

e =

T∑
j=1

Bj
τj

/
γ (2.2)

where Bj ∈ R2×d, j = 1, .., T , γ is the scaling factor.5 Hence, the total number of parameters

the additive transformation approach requires is 2× T × d. Similar to the Pool approach, the

5Instead of averaging (γ = T ), we set γ =
√
T which we found to perform better in early experimentation.
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Figure 2.3: HASHFORMER-Pool.

number of parameters required is smaller than the vocabulary size: 2× T × d≪ N = |V |.

Figure 2.4: HASHFORMER-Add.

Projection Approach (Proj) Finally, we propose a new simpler approach compared to Pool

and Add. We create T learnable random initialised vectors as T pseudo-axes to trace the

orientation of each T -bits vector τ corresponding to the token t. Given a token bit vector τ ,

the jth element in the embedding e is computed as the Pearson’s correlation coefficient (PCC)

between centered τ and the learnable vector wj corresponding to j.

ej =
⟨τ − τ̄ ,wj − w̄j⟩

∥τ − τ̄∥ � ∥wj − w̄j∥
, j = 1, ..., d

e = (e1, ..., ed)

(2.3)

τ̄ is the mean value of elements in τ , while w̄j is the mean value of elements in wj, for

centering. wj ∈ Rd, j = 1, .., T , hence, the total number of parameters the projection transfor-
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mation approach requires is only T × d ≪ N = |V |. Figure 2.5 depicts an overview of our

HASHFORMER-Proj model.

2.3.5 Hashing for Compressed Embeddings

Similar to the embedding-based HASHFORMERS-Emb, our embedding compression-based

models also consider the same two hash approaches (MD and LSH) for generating the T -bit

vector of each token.

MD5: We directly map the tokens to its 128-bits output b with a universal secret key.

LSH: We repeat the same morphological feature extraction step to obtain a feature vector x

corresponding to each token t. However, rather than using 2T random hyperplanes that require

storing vectors of size R2T , we simply use T random hyperplanes similar to Ravi (2019);

Sankar et al. (2021b). Each bit in b represents which side of the corresponding hyperplane

r ∈ Rd the feature vector x is located: bj = sgn(sgn(x · ri) + 1), j = 1, ..., T . This allows an

on-the-fly computation without storing any vector (Ravi, 2019).

Figure 2.5: HASHFORMER-Proj.

2.3.6 Pre-training Objective

Since our models support an arbitrary number of unique tokens, it is intractable to use a standard

Masked Language Modeling (Devlin et al., 2019) pre-training objective. We opted using

SHUFFLE + RANDOM (S+R), a computationally efficient three-way classification objective

introduced by Yamaguchi et al. (2021) for predicting whether tokens in the input have been

shuffled, replaced with random tokens or remain intact.
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2.4 Experimental Setup

2.4.1 Baseline Models

We compare HASHFORMERS against the following baselines: (i) a BERT-base model (Devlin

et al., 2019) with BPE tokenisation and an MLM objective (BERT-MLM); (ii) another BERT-

base model with BPE tokenisation and a Shuffle+Random objective (BERT-S+R); (iii) CANINE-

C6 (Clark et al., 2022a) a vocabulary-free pre-trained PLM on Unicode character sequences;

(iv) PROFORMER7 (Sankar et al., 2021b) a vocabulary-free LSH projection based transformer

model with two encoder layers that is not pre-trained but only trained from scratch on the task

at hand.

2.4.2 Implementation Details

Model Architecture Following the architecture of BERT-base, we use 12 transformer layers,

an embedding size of 768 and a maximum sequence length of 512.8 For HASHFORMERS-LSH,

we set T = 128 to make it comparable to HASHFORMERS-MD, as MD5 produces a 128-bit

hash value. For HASHFORMER-MD-Pool and HASHFORMER-LSH-Pool, we choose k = 10

to keep the number of total parameters for the embeddings relatively small. We also experiment

with two sizes of the embedding matrix of HASHFORMERS-Emb for MD and LSH hashing.

The first uses an embedding matrix of 50K, the same number of embedding parameters as

BERT-base, while the second uses 1K which is closer to the size of the smaller Pool, Add and

Proj models.

Hyperparameters Hyperparameter selection details are in section 2.7.

Pre-training We pre-train all HASHFORMERS, BERT-MLM and BERT-S+R on the English

Wikipedia and BookCorpus (Zhu et al., 2015) from HuggingFace (Lhoest et al., 2021) for up

to 500k steps with a batch size of 128. For our HASHFORMER models, we use white space

tokenisation resulting into a vocabulary of 11,890,081 unique tokens. For BERT-MLM and

BERT-S+R, we use a 50,000 BPE vocabulary Liu et al. (2019).

Hardware For pre-training, we use eight NVIDIA Tesla V100 GPUs. For fine-tuning on

downstream tasks, we use one NVIDIA Tesla V100 GPU.

6We use the off-the-shelf CANINE-C from https://huggingface.co/google/canine-c.
7ProFormer is not open-source, hence we have re-implemented it following the description of the model in the

paper.
8We note that the transformer encoder could easily be replaced with any other encoder.

https://huggingface.co/google/canine-c
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2.4.3 Predictive Performance Evaluation

We evaluate all models on GLUE (Wang et al., 2018) benchmark. We report matched accuracy

for MNLI, Matthews correlation for CoLA, Spearman correlation for STS, F1 score for QQP

and accuracy for all other tasks.

Model Token MNLI↑ QNLI↑ QQP↑ RTE↑ SST↑ MRPC↑ CoLA↑ STS↑ Avg.↑

BERT-MLM subword 81.9 88.9 86.7 60.4 92.0 85.7 54.5 86.0 79.5(0.4)

BERT-S+R subword 79.9 88.7 86.7 64.6 88.6 85.6 55.6 86.8 79.6(0.3)

CANINE-C Unicode 77.7 87.6 82.8 62.0 85.7 81.4 2.3 83.9 70.4(1.3)

ProFormer word 45.2 59.1 71.4 53.9 82.1 71.2 9.7 22.1 51.8(0.5)

HashFormers-MD (Ours)

Emb (50K) word 79.6 88.4 86.9 66.4 88.0 86.8 57.3 86.1 79.9(0.3)

Emb (1K) word 67.9 80.5 81.0 55.8 72.9 78.4 19.0 79.0 66.8(0.9)

Pool word 75.6 84.9 84.9 59.7 86.7 82.7 45.7 82.0 75.3(0.2)

Add word 76.2 86.3 85.2 60.2 86.6 81.9 47.4 82.2 75.7(0.5)

Proj word 76.0 85.8 84.8 60.9 87.3 83.0 45.9 82.1 75.7(0.3)

HashFormers-LSH (Ours)

Emb (50K) word 76.1 86.5 85.5 65.5 83.6 84.2 42.7 83.7 76.0(0.3)

Emb (1K) word 65.6 80.1 80.0 56.4 71.3 78.1 5.2 76.9 64.2(0.8)

Pool word 78.0 87.7 86.4 65.6 88.1 84.2 55.3 85.6 78.9(0.3)

Add word 78.6 88.2 86.0 63.1 88.0 84.0 57.7 85.9 78.9(0.2)

Proj word 79.2 88.7 86.5 63.4 88.9 84.6 56.2 85.5 79.1(0.3)

Table 2.1: Results on GLUE dev sets with standard deviations over three runs in parentheses.

Bold values denote best performing method in each task. ↑ and ↓ denote that higher and lower

values are preferred, respectively.

2.4.4 Efficiency Evaluation

Furthermore, we use the following metrics to measure and compare the memory and computa-

tional efficiency of HASHFORMERS and the baselines.

Memory Efficiency Metrics We define the three memory efficiency metrics together with a

performance retention metric to use it as a point of reference:

• Performance Retention Ratio: We compute the ratio between the predictive performance

of our target model compared to a baseline model performance. A higher PRR indicates

better performance.

PRR =
scoreModel

scoreBaseline
(2.4)

• Parameters Compression Ratio (All): We compute use the ratio between the total
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number of parameters of our target model and that of the baseline to measure the memory

efficiency of the target model compared to the baseline. A higher PCRAll score indicates

better memory efficiency for the entire model.

PCRAll = 1− #Model Params
#Baseline Params

(2.5)

• Parameters Compression Ratio (Emb): We also use the ratio between the number

of parameters required by a target model for representing embeddings and that of the

baseline. A higher PCREmb score indicates better memory efficiency for the embedding

representation.

PCREmb = 1− #Model Emb Params
#Baseline Emb Params

(2.6)

• Proportion of Embedding Parameters: We also use the proportion of parameters of

embeddings out of the total parameters of each model to show the memory footprint of

the embedding space on each model.

PoEP =
#Emb Params
#Total Params

(2.7)

Ideally, we expect a smaller PoEP, indicating that the embedding parameters occupy as

little memory as possible out of the total number of parameters of a model.

For the number of parameters calculations, please see section 2.8.

Computational Efficiency Metrics We also measure the computational efficiency for pre-

training (PT) and inference (Infer). Each pre-training step is defined as a forward pass and a

backward pass. The inference is defined by a single forward pass.

• Time per Sample (Time) This measures the average time of a sample completing a PT or

Infer step. It is measured in milliseconds (ms)/sample. Lower PT and Infer time indicate

a more computationally efficient model.

• Speed-up Rate We finally measure the model’s computation speed-up rate against a

baseline. It is defined as:

Speed-upRate = 1

/
TimeModel

TimeBaseline
(2.8)

2.5 Results

2.5.1 Predictive Performance Comparison

Table 2.1 presents results on GLUE for our HASHFORMERS models and all baselines. We first

observe that both the performance of our HASHFORMERS-Emb models (MD and LSH) are
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comparable to the two BERT variants (MLM and S+R) and CANINE-C on average GLUE

score (79.9 and 76.0 vs. 79.5, 79.6 and 70.4 respectively). Surprisingly, the more sophisti-

cated HASHFORMER-LSH-Emb that takes morphological similarity of tokens into account

does not outperform HASHFORMER-MD-Emb that uses a random hashing. We believe that

HASHFORMER-MD generally outperforms HASHFORMER-LSH mainly due to its ability to

map morphologically similar tokens to different vectors. This way it can distinguish tenses etc.

On the other hand, HASHFORMER-LSH confuses words with high morphological similarity

(e.g. play, played) because it assigns them to the same embedding.

However, LSH contributes to the performance improvement of smaller HASHFORMERS with

compressed embedding spaces compared to their MD variants, i.e. Add (78.9 vs. 75.3), Add

(78.9 vs. 75.7) and Proj (79.1 vs. 75.7). The best performing compressed HASHFORMER-LSH-

Proj model obtains 79.1 average GLUE score, which is only 0.4 lower than the BERT baselines.

Reducing the number of embedding vectors in Emb (1K) models is detrimental to performance

and leads to drastic drops between 11.8% and 13.1%. This indicates that the model size plays a

more important role than the choice of tokenisation approach (i.e. white space or BPE) or the

vocabulary size (i.e. 12M vs. 50K). At the same time, compared to Emb, the Pool, Add and Proj

approaches do not suffer from predictive accuracy degradation, i.e. 0.4-4.2%.

All our HASHFORMERS show clear advantages compared to the LSH based PROFORMER,

which is not pre-trained across the majority of tasks (i.e. MNLI, QNLI, QQP, MRPC, CoLA

and STS). Although PROFORMER shows that for a relatively simpler sentiment analysis task

(SST), pre-training might not be necessary.

2.5.2 Memory Efficiency Comparison

Table 2.2 shows the results on memory efficiency and performance retention (%) on GLUE using

BERT-MLM as a baseline. Notably, Pool, Add and Proj models provide large compression to

the total number of embeddings parameters compared to Emb as well as CANINE-C and BERT

variants. This is approximately a 30% PCRAll and 97-99% PCREmb compared to BERT. These

models also achieve very high performance retention (from 94.7% to 99.5%) which highlights

their efficiency. In one case, HASHFORMER-LSH-Add outperforms the BERT-MLM baseline

on CoLA with a retention ratio of 105.9% using only 197.4K parameters for token embeddings.

Proj variants, the smallest of HASHFORMERS achieve the highest performance retention (95.2%

with MD, 99.5% with LSH) compared to Pool (94.7% with MD, 99.2% with LSH) and Add

(95.2% with MD, 99.2% with LSH). Overall, they only have a negligible drop in performance

retention (0.5%) while they are extremely more memory efficient. Proj uses a substantially

smaller number of embedding parameters (99.1K) compared to CANINE-C and BERT variants

(i.e., 12.3M and 38.6M respectively). In general, Pool, Add and Proj models lead to a 30%
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Emb. MNLI↑ QNLI↑ QQP↑ RTE↑ SST↑ MRPC↑ CoLA↑ STS↑ GLUE Avg.↑
#Total

Params↓
#Emb

Params↓
PCR↑
(All)

PCR↑
(Emb)

PoEP↓

CANINE-C 94.9 98.5 95.5 102.6 93.2 95.0 4.2 97.6 88.6 121.0M 12.3M 2.9 68.1 10.2

ProFormer 55.2 66.5 82.4 89.2 89.2 83.1 17.8 25.7 65.2 15.1M 322.6K 87.9 99.2 2.1

HashFormers-MD (Ours)

Emb (50K) 97.2 99.4 100.2 109.9 95.7 101.3 105.1 100.1 100.5 124.6M 38.6M 0.0 0.0 31.0

Emb (1K) 82.9 90.6 93.4 92.4 79.2 91.5 34.9 91.9 84.0 86.8M 797.2K 30.3 97.9 1.0

Pool 92.3 95.5 97.9 98.8 94.2 96.5 83.9 95.3 94.7 86.8M 797.2K 30.3 97.9 1.0

Add 93.0 97.1 98.3 99.7 94.1 95.6 87.0 95.6 95.2 86.2M 197.4K 30.8 99.5 0.2

Proj 92.8 96.5 97.8 100.8 94.9 96.8 84.2 95.5 95.2 86.1M 99.1K 30.9 99.7 0.1

HashFormers-LSH (Ours)

Emb (50K) 92.9 97.3 98.6 108.4 90.9 98.2 78.3 97.3 95.6 124.6M 38.6M 0.0 0.0 31.0

Emb (1K) 80.1 90.1 92.3 93.4 77.5 91.1 9.5 89.4 80.8 86.8M 797.2K 30.3 97.9 1.0

Pool 95.2 98.7 99.7 108.6 95.8 98.2 101.5 99.5 99.2 86.8M 797.2K 30.3 97.9 1.0

Add 96.0 99.2 99.2 104.5 95.7 98.0 105.9 99.9 99.2 86.2M 197.4K 30.8 99.5 0.2

Proj 96.7 99.8 99.8 105.0 96.6 98.7 103.1 99.4 99.5 86.1M 99.1K 30.9 99.7 0.1

Table 2.2: Memory efficiency metrics and performance retention (%) on GLUE for HASH-

FORMER models, CANINE-C and ProFormer using BERT-MLM as a baseline. ↑ and ↓ denote

that higher and lower values are preferred, respectively.

Model

PT

Time

(ms/samp)↓

PT

Speed-up

Rate↑

Infer

Time

(ms/samp)↓

Infer

Speed-up

Rate↑

BERT

-MLM 24.9 1.0 4.6 1.0

-S+R 11.6 2.1x 4.6 1.0x

CANINE-C - - 6.9 0.6x

HASHFORMERS (Ours)

-Emb 11.6 2.1x 2.0~4.6 1.0x~2.4x

-Pool 12.0 2.1x 2.0~4.6 1.0x~2.3x

-Add 11.7 2.1x 2.0~4.6 1.0x~2.4x

-Proj 10.6 2.4x 1.8~4.6 1.0x~2.6x

Table 2.3: Results on pre-training speed and inference speed under different embedding com-

pression strategies. We use BERT-MLM as the baseline model. The sequence length is fixed

to 512 for pre-training. For inference, sequence length is equal to the length of the longest

sequence in the batch. ↑ and ↓ denote that higher and lower values are preferred, respectively.

reduction in the total number of parameters (around 30.0M) compared to the baseline model and

make their embedding footprint minimal, i.e. 0.1-1% PoEP. On the other hand, CANINE-C has

a larger embedding footprint (10.2% PoEP) but with similar or smaller performance retention

compared to HASHFORMERS.

HASHFORMERS-Emb have an embedding matrix of equal size (i.e. 50K embeddings) as BERT.

However, BERT only supports a vocabulary of 50K tokens, while HASHFORMERS-Emb
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supports an unlimited vocabulary, e.g. 12M unique tokens in our pre-training corpora. Using

a smaller embedding matrix (i.e. 1K), the performance retention drops 20%~26%. Despite

the fact that HASHFORMERS-Emb (1K) has a similar number of embedding parameters as the

embedding compression approaches (i.e. Pool, Add, Proj), it falls far behind those models, i.e.

between 8.5% and 14.3% for both MD and LSH variants. This demonstrates the effectiveness

of our proposed embedding compression approaches.

Although the more lightweight ProFormer with only two transformer layers consists of 15.1M

parameters in total (approximately 87.9% PCRAll), its performance9 fall far behind our worst

HASHFORMER-MD-Pool with a difference of 29.5% PRR on GLUE Avg. score. Nevertheless,

ProFormer requires more bits for hashing the tokens, resulting in more parameters for represent-

ing token embeddings (322.6K) compared to HASHFORMERS-Add and HASHFORMERS-Proj

(197.4K and 99.1K). Such memory efficiency gains substantially sacrifice model’s predictive

performance.

2.5.3 Computational Efficiency Comparison

Table 2.3 shows the pre-training (PT) and inference (Infer) time per sample for HASHFORMERS,

CANINE-C, BERT-S+R using BERT-MLM as a baseline for reference. We note that HASH-

FORMERS have comparable pre-training time (PT) to the fastest BERT model (BERT-S+R).

This highlights that the complexity of the pre-training objective is more important than the size

of the embedding matrix for improving computational efficiency for pre-training.

During inference, we observe that the speed-up obtained by HASHFORMERS is up to 2.6x com-

pared to both BERT models. However, this is due to the tokenisation approach. HASHFORMERS

operate on the word level, so the sequence length of the input data is smaller, leading to inference

speed-ups. Finally, we observe that CANINE-C has a slower inference time compared to both

BERT models and HASHFORMERS. This might be due to its relatively more complex approach

for processing the long Unicode character input sequence.

2.6 Conclusions

We have proposed HASHFORMERS, a family of vocabulary-independent hashing-based pre-

trained transformers. We have empirically demonstrated that our models are computationally

cheaper and more memory efficient compared to standard pre-trained transformers, requiring

only a fraction of their parameters to represent token embeddings. HASHFORMER-LSH-Proj

variant needs 99.1K parameters for representing the embeddings compared to millions of

parameters required by state-of-the-art models with only a negligible performance degradation.
9The predictive performance of ProFormer does not improve, even if we train it for four times more epochs (20

epochs). We report the results when trained for a maximum of five epochs.
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For future work, we plan to explore multilingual pre-training with HASHFORMERS and explore

their ability in encoding linguistic properties Alajrami and Aletras (2022).

Limitations

We experiment only using English data to make comparisons with previous work easier. For

languages without explicit white spaces (e.g. Chinese and Japanese), our methods can be applied

with different tokenisation techniques, e.g. using a fixed-length window of characters.
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2.7 Appendix A: Hyperparameters

The hyperparameters used in pre-training are listed in Table 2.4.

Hyperparameter Pretraining

Maximum train epochs 10 epochs

Batch size (per GPU) 16 instances

Adam ϵ 1e-8

Adam β1 0.9

Adam β2 0.9999

Sequence length 512

Peak learning rate 1e-4 for MLM, 5e-5 for others

Learning rate schedule linear

Warmup steps 10000

Weight decay 0.01

Attention Dropout 0.1

Dropout 0.1

Table 2.4: Details of hyperparameters used in pre-training.

The hyperparameters used in fine-tuning are listed in Table 2.5.

Hyperparameter Fine-tuning

Maximum train epochs 5 epochs

Batch size (per GPU) 32 instances

Adam ϵ 1e-6

Adam β1 0.9

Adam β2 0.999

Peak learning rate 3e-5

Learning rate schedule cosine with hard restarts

Warmup steps first 6% steps

Weight decay 0

Attention Dropout 0.1

Dropout 0.1

Evaluation steps 2455 for MNLI, 655 for QNLI,

2275 for QQP, 48 for RTE,

421 for SST, 69 for MRPC,

162 for CoLA and 108 for STS

Table 2.5: Details of hyperparameters used in fine-tuning.

2.8 Appendix B: Model Parameter Counts

We count the total number of parameters of each model on a binary classification task. This is

computed by counting all learnable variables used for the task (including those in the classifica-

tion head) without freezing any weights. For all BERT variants and our HASHFORMERS, we
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adopt the same setting of BERT-Base by setting Dimhidden = 768, Dimintermediate = 3072 with

12 hidden layers and 12 attention heads. For CANINE-C, we use the default base-sized model

whose Dimhidden = 768, Dimintermediate = 3072 and has 12 hidden layers and attention heads.

We only count the number of parameters which are used for retrieving or generating the

embeddings of any tokens (excluding those special tokens e.g. <PAD>) and we also exclude

those for position embeddings. Specifically, #[Model] Emb Params are computed as the follow:

• BERT variants:

#BERT = |V | × d (2.9)

• CANINE-C:

#CANINE-C = #Hash Buckets × d (2.10)

CANINE-C employs 16,000 hash buckets (Clark et al., 2022a).

• PROFORMER:

#ProFormer = #LSH Digest Size × d (2.11)

PROFORMER hashes each token into a 420-bit vector (Sankar et al., 2021b).

• HASHFORMERS-Emb:

#HashFormers-Emb = N × d (2.12)

• HASHFORMERS-Pool:

#HashFormers-Pool = (⌈T
k
+ 2k⌉)× d (2.13)

• HASHFORMERS-Add:

#HashFormers-Add = 2× T × d (2.14)

• HASHFORMERS-Proj:

#HashFormers-Proj = T × d (2.15)

2.9 Appendix C: Activation Memory Analysis

By retaining vanilla BERT embeddings, HASHFORMERS-Emb avoid any increase in activation

memory consumption. Other HASHFORMERS variants achieve similar efficiencies by bypassing

the storage of additional activation memory for embedding layers. Specifically, HASHFORMERS-

Add leverages the EmbeddingBag technique—computing the reduction of a “bag” of embeddings

directly without storing intermediate results (Naumov et al., 2019; Paszke et al., 2019). This
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efficiency can be extended to HASHFORMERS-Pool by optimising the kernel to support channel-

wise weighted summation reduction. Similarly, HASHFORMERS-Proj can minimise activation

memory through the use of multi-channel convolution or customised fused kernels.

While storing token indices typically incurs negligible memory costs (Korthikanti et al., 2023),

HASHFORMERS-Add and HASHFORMERS-Pool increase this footprint by a factor of 13, while

HASHFORMERS-proj increases it 128-fold. However, this is mitigated in practice as these

variants do not require long-integer storage. Further optimisation depends on modern hardware

support (e.g., GPUs), a requirement shared by extreme low-bit quantisation methods in language

model training and inference (Ma et al., 2025, 2024). Additionally, we observe that activation

memory in the encoder layers could be reduced by 0% to 50% by leveraging English whitespace

tokenisation, which can merge 1–3 subwords to shorten the overall input sequence length.

2.10 Appendix D: Potential on Multilingualism and Non-English

Languages

The encoder-only multilingual model XLM-R (Conneau et al., 2020) uses a shared vocabulary

across languages; however, its limited parameter budget for the embedding layer often results

in sampling bias during vocabulary construction. XLM-V (Liang et al., 2023) addresses this

“vocabulary bottleneck” and the resulting out-of-vocabulary (OOV) issues by significantly

scaling the vocabulary size from 250K to 1M tokens.

We hypothesise that HASHFORMERS-LSH can strike an effective balance between vocabulary

size and predictive performance. Because of distinct morphological differences between lan-

guages, tokens are unlikely to be assigned similar hash embeddings, thereby reducing collisions.

Furthermore, our analysis in subsection 2.4.4 and section 2.9 suggests that HASHFORMERS,

when paired with full-word tokenisation, can enhance inference efficiency. By mitigating the

over-segmentation common in multilingual models with constrained vocabularies, this approach

effectively reduces sequence lengths for non-English inputs.

For languages that do not use whitespace boundaries, such as Chinese and Japanese, HashForm-

ers can be integrated with language-specific tokenisers like Jieba10 or MeCab11.

2.11 Appendix E: HASHFORMERS with BPE Tokenisation

Table 2.6 presents results on GLUE for our HASHFOMERS with BPE tokenisation. In general,

we observe that using BPE tokenisation, the performance of HASHFOMERS slightly drops.

10https://github.com/fxsjy/jieba
11https://taku910.github.io/mecab/
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Model Token MNLI↑ QNLI↑ QQP↑ RTE↑ SST↑ MRPC↑ CoLA↑ STS↑ Avg.↑

HashFormers-MD

Emb (50K) subword 78.6 87.7 86.0 65.6 88.5 85.1 51.2 85.0 78.5(0.4)

Emb (50K) word 79.6 88.4 86.9 66.4 88 86.8 57.3 86.1 79.9(0.3)

Proj subword 74.6 84.8 83.7 58.7 85.5 80.7 44.6 80.1 74.1(0.5)

Proj word 76.0 85.8 84.8 60.9 87.3 83.0 45.9 82.1 75.7(0.3)

HashFormers-LSH

Emb (50K) subword 62.6 80.2 80.8 59.3 71.3 80.2 18.3 75.5 66.0(0.2)

Emb (50K) word 76.1 86.5 85.5 65.5 83.6 84.2 42.7 83.7 76.0(0.3)

Proj subword 78.2 87.5 86.3 64.3 88.6 85.5 51.2 85.1 78.3(0.1)

Proj word 79.2 88.7 86.5 63.4 88.9 84.6 56.2 85.5 79.1(0.3)

Table 2.6: Results on GLUE dev sets with standard deviations over three runs in parentheses

using BPE tokenisation. ↑ and ↓ denote that higher and lower values are preferred, respectively.





Chapter 3

Publication II

Pit One Against Many:
Leveraging Attention-head

Embeddings for Parameter-efficient
Multi-head Attention

The main contribution of this chapter is the peer-reviewed publication titled Pit One Against

Many: Leveraging Attention-head Embeddings for Parameter-efficient Multi-head Attention (Xue

and Aletras, 2023), presented at the Findings of the Association for Computational Linguistics:

EMNLP 2023 in December 2023.

This work draws inspiration from the film Ant-Man and the Wasp: Quantumania (2023),

specifically its creative portrayal of the quantum principle of superposition as a “probability

storm”. In this storm, every potential choice Ant-Man could make is visualised as a different

version of himself, creating an entire army. The principle of superposition posits that an object

can exist in multiple states at the same time. It’s only when a specific choice is “measured”, or

actualised, that these possibilities collapse into a single, definitive state. “What if we treated

token embeddings at different positions and the hidden states from various attention heads as if

they were quantum superpositions?”, Huiyin was soul searching...12

1他山之石，可以攻玉。——《诗经》
2A stone taken from another mountain may serve as a tool to polish the local jade. –The Book of Songs

29
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A poster of the movie: Ant-Man and the Wasp: Quantumania (2023). Image Source:

https://www.egames.news/entretenimiento/Marvel-Explicacion-del-final-de-Ant-Man-and-the-

Wasp-Quantumania-20230218-0012.html
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Abstract

Scaling pre-trained language models has resulted in large performance gains in various natural

language processing tasks but comes with a large cost in memory requirements. Inspired by

the position embeddings in transformers, we aim to simplify and reduce the memory footprint

of the multi-head attention (MHA) mechanism. We propose an alternative module that uses

only a single shared projection matrix and multiple head embeddings (MHE), i.e. one per head.

We empirically demonstrate that our MHE attention is substantially more memory efficient

compared to alternative attention mechanisms while achieving high predictive performance

retention ratio to vanilla MHA on several downstream tasks. MHE attention only requires a

negligible fraction of additional parameters (3nd, where n is the number of attention heads and

d the size of the head embeddings) compared to a single-head attention, while MHA requires

(3n2 − 3n)d2 − 3nd additional parameters.3

3Code: https://github.com/HUIYINXUE/simpleMHE

https://github.com/HUIYINXUE/simpleMHE
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Figure 3.1: Number of parameters for an attention sublayer and different number of attention

heads using multi-head attention MHA and our multi-head embedding attention MHE. We fix

the dimension of attention to 64, only counting the parameters for projecting queries, keys, and

values.

3.1 Introduction

Scaling pre-trained language models (PLMs) aims to enhance performance by increasing their

size and capacity, leading to models with an unprecedented number of parameters (Kaplan et al.,

2020; Chowdhery et al., 2022; Hoffmann et al., 2022). Just by increasing the size of PLMs

and the pre-training data has yielded state-of-the-art performance on various natural language

processing (NLP) tasks (Devlin et al., 2019; Liu et al., 2019; Clark et al., 2020; Raffel et al.,

2020; Brown et al., 2020; Clark et al., 2022a; Ouyang et al., 2022; Touvron et al., 2023).

However, the pursuit of developing larger PLMs comes with large computational requirements.

This has direct environmental implications such as large carbon emissions (Lacoste et al., 2019;

Strubell et al., 2019b; Weidinger et al., 2022), conflicting with the principles of Green artificial

intelligence development (Schwartz et al., 2020). Moreover, scaling can hinder researchers

with limited access to computing resources to participate in advancing the field (Schwartz

et al., 2020). This results in inequalities, where only a privileged few can actively contribute,

potentially impeding diversity and inclusivity (Weidinger et al., 2022).

The backbone of transformers (Vaswani et al., 2017) is the multi-head attention (MHA) module

that extends the standard single-head attention (SHA) proposed by Cho et al. (2014). MHA

applies an attention mechanism (i.e. head) multiple times for the same set of queries, keys

and values by using a different set of parameters (i.e. projection matrices) for each of them.
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This results in MHA modules with a large memory footprint that increases with the number of

layers and attention heads per layer in PLMs (Devlin et al., 2019; Brown et al., 2020; Ouyang

et al., 2022; Touvron et al., 2023). Figure 3.1 shows how the number of parameters of a single

attention sublayer increases with its number of attention heads.

Previous work has attempted to address this issue by proposing to share projection matrices

or eliminating them entirely to improve the parameter efficiency of MHA. Lan et al. (2020a)

proposed sharing projection parameters for keys, queries and values across layers, while Kitaev

et al. (2020) introduced a method for sharing the projection matrix between keys and values

within each transformer layer. Additionally, similar approaches use a multi-query attention

approach that uses a pair of global projection matrices for keys and values in each layer (Shazeer,

2019; Chowdhery et al., 2022; Ainslie et al., 2023b). Furthermore, Yan et al. (2021) eliminate

the projection matrices entirely and directly treat the input hidden states as both keys and values.

In a different direction, Lee-Thorp et al. (2022) propose models that replace the attention blocks

with token-mixture blocks (i.e. using linear or Fourier transformations) that contain fewer or no

parameters compared to MHA.

Inspired by the position embeddings in transformers (Vaswani et al., 2017; Devlin et al., 2019),

we aim to simplify and reduce the memory footprint of the MHA mechanism. We achieve this

using only a single projection matrix for each of the keys, queries and values respectively shared

across all attention heads, and one embedding per head (MHE).

Our contributions are as follows:

• We propose MHE, a novel attention module that uses shared projection matrices across

heads that are modified by corresponding embedding heads. Our method generates

multiple attention heads requiring only a small fraction of additional parameters compared

to single-head attention.

• We empirically demonstrate that our MHE attention is substantially more parameter

efficient compared to alternative attention mechanisms while achieving high predictive

performance retention ratio (i.e. 92.9~98.7%) to MHA on several downstream tasks.

MHE is (3n2 − 3n)d2 − 3nd smaller than MHA for a single attention sublayer with n

attention heads and a hidden dimension of d per head.

3.2 Related Work

3.2.1 Model Compression

To make PLMs memory efficient, previous work has focused on the following post-hoc model

compression approaches (Ganesh et al., 2021; Tay et al., 2022a).
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Quantisation Hubara et al. (2017) proposed representing weights using fewer bits to reduce

memory requirements. Zadeh et al. (2020) introduced a method for identifying the outliers in

weights and excluded them during quantisation. Another direction involves additional training

steps to adjust the quantised weights, i.e., quantisation-aware training (Zafrir et al., 2019; Boo

and Sung, 2020; Stock et al., 2020; Shen et al., 2020; Tambe et al., 2021; Tao et al., 2022). Bai

et al. (2022) developed a more efficient post-training quantisation approach that minimises the

reconstruction error incurred by quantisation.

Pruning These compression approaches remove entirely parts of the network such as weights

close to zero (Gordon et al., 2020; Mao et al., 2020; Chen et al., 2020) and weights that move

towards zero during fine-tuning (Sanh et al., 2020; Tambe et al., 2021). Different to operating

on individual weights, previous work attempted to remove structured blocks of weights or even

architectural components such as attention heads and encoder layers (Fan et al., 2019; Prasanna

et al., 2020; Khetan and Karnin, 2020; Li et al., 2020a; Lin et al., 2020; Tay et al., 2021).

Knowledge Distillation This set of techniques typically train a light-weight student model to

mimic the outputs of a larger teacher PLM (Sun et al., 2019; Li et al., 2020b; Jiao et al., 2020;

Sun et al., 2020b; Li et al., 2021; Tahaei et al., 2022). In a similar direction, smaller PLMs have

been recently fine-tuned on text generated by larger PLMs (Chiang et al., 2023; Taori et al.,

2023).

Weight Matrix Decomposition Previous work also proposed replacing large weight matrices

by the product of two smaller ones for reducing model size and runtime memory. Weight matrix

decomposition has been applied to linear layers (Mao et al., 2020; Ben Noach and Goldberg,

2020), the embedding matrix (Lan et al., 2020b; Tambe et al., 2021; Wang et al., 2022), and

attention blocks (Hu et al., 2022; Wang et al., 2022).

Embedding Matrix Compression Finally, various attempts have been introduced for com-

pressing the embedding matrix during pre-training and fine-tuning (Xue et al., 2022; Clark et al.,

2022b; Xue and Aletras, 2022).

3.2.2 Improving Attention Efficiency

Previous work on making attention more efficient includes efforts towards (1) speeding-up

pairwise computations between token representations; and (2) parameter efficiency.

Computational Efficiency While improving computational efficiency of attention is out of the

scope of our paper, we provide a brief overview of previous work since it is complementary to

parameter efficiency. One approach to speed up attention computation is by reducing the number
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of similarity computations between representations in different positions using predefined local

windows, fixed or dynamic strides (Child et al., 2019; Zaheer et al., 2020; Beltagy et al., 2020;

Kitaev et al., 2020). Other methods leverage the approximation of SoftMax to change the order

of matrix multiplications, resulting in lower computational complexity (Katharopoulos et al.,

2020; Choromanski et al., 2021; Schlag et al., 2021; Qin et al., 2022). Related approaches along

this direction proposed kernel functions that require additional parameters (Choromanski et al.,

2021; Wang et al., 2020). Finally, Dao et al. (2022) proposed improvements in GPU memory

access to optimise and accelerate the MHA computation.

Memory Efficiency Lan et al. (2020a) introduced a method for sharing the projection parame-

ters for queries, keys and values across transformer layers. Furthermore, Kitaev et al. (2020)

proposed sharing the projection matrix between keys and values within each layer. Additionally,

other methods use a multi-query attention approach that shares projection weights for keys and

values across different heads (Shazeer, 2019; Chowdhery et al., 2022; Ainslie et al., 2023b),

while Yan et al. (2021) directly treat the input hidden states as both keys and values. In a

different direction, Lee-Thorp et al. (2022) proposed replacing the attention blocks with faster

token-mixture blocks consisting of a few parameters or no parameters at all. This includes

methods such as linear or Fourier transformations in the token-mixture block. However, these

approaches tend to yield lower predictive performance compared to MHA.

3.3 Multiple Head Embeddings Attention

Inspired by the absolute position embeddings (Vaswani et al., 2017; Devlin et al., 2019) for

distinguishing the representation of the same token in different contexts, we propose Multiple

Head Embeddings (MHE) attention. MHE uses a shared ‘seed’ projection matrix that is

subsequently combined with distinct head embeddings to generate multiple attention heads.

3.3.1 Multi-head Attention (MHA)

We first begin by formally defining MHA. MHA consists of different projection matrices

(WQ
i ,W

K
i ,W

V
i ∈ Rdm×dh , i = 1, ..., n, where dm is the dimension of the input representation

and dh is the dimension of n attention heads) for queries (Q), keys (K) and values (V ) per head,

3× n in total. It is computed as follows:

Qi,Ki,Vi = XWQ,K,V
i (3.1)

Hi = Att(Qi,Ki,Vi) (3.2)

= SoftMax
(
QiK

⊤
i√

dh

)
Vi (3.3)
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Note that we use scale-dot attention, but our method can be used with any other attention

mechanism.

3.3.2 Seed Projection Matrix

Unlike MHA that uses different projection matrices per head, MHE attention employs only a

single projection matrix for each of the queries, keys and values, WQ,WK ,WV ∈ Rdm×dh .

These matrices are shared across all attention heads.

We obtain query, key and values projections of the input sequence X as follows:

Q,K,V = XWQ,K,V (3.4)

3.3.3 Attention Head Embeddings

Using a seed projection matrix for Q,K,V is equivalent to a single-head attention (SHA)

module. Therefore, we need a mechanism to transform the seed projection matrices to obtain

different attention heads. For this purpose, we represent each attention head i by specific head

embeddings eQi , e
K
i , e

V
i ∈ Rdh , i = 1, ..., n for queries, key and values. These embeddings

have a substantially smaller memory footprint compared to using different projection matrices

per head. The contextualized representation Hi of the entire input sequence X for head i is

computed as follows:

Q̃i, K̃i, Ṽi = ψ(Q;K;V, eQ,K,V
i ) (3.5)

Hi = Att(Q̃i, K̃i, Ṽi) (3.6)

where ψ(·) is a function that modifies the query, key and value matrices with a corresponding

head embedding ei.

3.3.4 Modifying Queries, Keys and Values with Head Embeddings

We propose two MHE variants, one adds and the other multiplies the head embeddings with the

seed projection matrices.

MHE-ADD: Motivated by the absolute position embedding (Devlin et al., 2019), we use the

addition operation in Equation 3.5, represented as ψ(A,b) := A+1b⊺, where A ∈ {Q,K,V}
and b ∈ {eQ, eK , eV } respectively.

MHE-MUL: Likewise, motivated by the rotary position embedding (Su et al., 2021), MHE-

MUL employs multiplication as the integrating operation in Equation 3.5 as ψ(A,b) :=

A⊙ 1(b+ 1)⊺, where ⊙ represents the Hadamard product.4

4We add 1 to avoid elements in queries, keys and values become too small during initialisation.
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XQ,K,V

×n

W
Q,K,V
i

×n

Qi,Ki,Vi

⊗proj

(a) MHA

XQ,K,V

WQ,K,V

×n

e
Q,K,V
i

Head
embeddings

×n

Q̃i, K̃i, Ṽi

⊗proj

integration
oper. ψ(·)⋆⃝

(b) MHE

Figure 3.2: Multi-head attention (left) requires 3× n projection matrices for queries, keys and

values (WQ,K,V ) where n is the number of attention heads. Multi-head embedding attention

(right) uses only three projection matrices and 3× n head embeddings.

Figure 3.2 shows an overview of the MHE mechanism compared to MHA.

3.4 Experimental Setup

3.4.1 Attention Mechanisms

We compare our MHE attention with the following attention mechanisms:5

• Multi-head Attention (MHA): This is the original multi-head attention mechanism (Vaswani

et al., 2017; Devlin et al., 2019).

• Single-head Attention (SHA): Similar to MHA but using only one attention head.

• EL-ATT: Introduced by Yan et al. (2021), this attention variant completely eliminates the

projection matrices for all keys and values.

• MQA: Introduced by Shazeer (2019), this approach uses shared projection matrices for

keys and values across all attention heads. Note that different projection matrices are used

for queries across heads.

• SKV: Introduced by Kitaev et al. (2020), this attention variant enforces keys and values

to share the same projection matrix within each attention module.

5We have also experimented with Linear and Fourier token-mixture models (Lee-Thorp et al., 2022) yielding
substantially lower performance. For full results of these methods, see section 3.8.
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3.4.2 Data

We experiment with a diverse range of tasks including: (1) two standard natural language

understanding benchmarks in English, GLUE (Wang et al., 2018) and SUPERGLUE (Wang

et al., 2019); (2) two question and answering benchmarks in English, SQUAD V1.1 (Rajpurkar

et al., 2016) and SQUAD V2.0 (Rajpurkar et al., 2018); (3) WMT-14 English-to-German

machine translation (Bojar et al., 2014); and (4) two language modelling datasets in English

WIKITEXT-103 (Merity et al., 2017) and PENN TREEBANK (Marcus et al., 1993).

3.4.3 Models

We test all different attention variants on two architectures: (1) encoder-only transformer (Devlin

et al., 2019) and (2) encoder-decoder transformer (Vaswani et al., 2017).

Encoder-only For GLUE, SUPERGLUE, SQUAD V1.1 and SQUAD V2.0, we use a BERT-

base architecture. This consists of 12 transformer layers, embedding size of 768, hidden states

dimension of 768, 12 attention heads and a maximum sequence length of 512.

Decoder-only We also test a decoder-only model using the GPT2-base architecture on

WIKITEXT-103, PENN TREEBANK and GLUE. GPT2-base consists of 12 transformer layers,

embedding size of 768, hidden states dimension of 768, 12 attention heads and a maximum

sequence length of 512.

Encoder-decoder For WMT-14, we train an encoder-decoder transformer from scratch. It

consists of 12 layers (6 for the encoder and decoder respectively), an embedding size of 512,

hidden states dimension of 512 and 8 attention-heads and a maximum sequence length of 100.

We set the number of attention heads to 1 for all SHA models. Experimenting with larger

models and different number of attention heads is out of the scope of our paper and left for

future work due to limited access to computing resources.

3.4.4 Implementation Details

Pre-training We pre-train all models on the English Wikipedia and BookCorpus (Zhu et al.,

2015) from HuggingFace (Lhoest et al., 2021) for up to 1M steps with a batch size of 128. We

choose masked language modelling as the pre-training objective. For all models, we use a 30K

WordPiece vocabulary (Devlin et al., 2019).

Fine-tuning and Training For GLUE, SUPERGLUE, SQUAD V1.1 and SQUAD V2.0, we

fine-tune all pre-trained models up to 20 epochs with early stopping fixing the batch size to 32.

For each task, we use five different seeds and report the average.
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GLUE SUPERGLUE SQUAD v1.1 SQUAD V2.0

Attention #params↓ Acc↑ PRR↑ PEoP↑ Acc↑ PRR↑ PEoP↑ Acc↑ PRR↑ PEoP↑ Acc↑ PRR↑ PEoP↑

SHA 8.85M 79.2 96.7 - 67.1 95.1 - 82.5 93.1 - 67.6 87.8 -

MHA 28.32M 81.9 100.0 0.02 70.5 100.0 0.02 88.6 100.0 0.03 77.0 100.0 0.06

EL-ATT 14.16M 80.3 98.0 0.02 69.5 98.5 0.06 86.5 97.6 0.08 72.2 93.8 0.11

MQA 15.34M 81.3 99.2 0.04 69.3 98.2 0.04 86.7 97.9 0.07 74.8 97.1 0.15

SKV 21.23M 81.4 99.4 0.02 69.9 99.1 0.03 88.1 99.4 0.05 75.9 98.6 0.09

MHE-ADD 8.88M 80.4 98.2 4.92 69.1 97.9 9.44 83.7 94.5 4.65 71.8 93.2 19.88

MHE-MUL 8.88M 80.6 98.3 5.53 69.6 98.7 12.07 85.9 97.0 13.19 72.3 93.9 22.25

Table 3.1: Results of the encoder-only architecture on GLUE, SUPERGLUE, SQUAD V1.1

and SQUAD V2.0 dev sets with performance retention ratio (PRR) and performance elasticity

of parameters (PEoP) over five runs. Bold values denote best performing method in each

benchmark. ↑ and ↓ denote that higher and lower values are preferred, respectively.

GLUE WIKITEXT-103 PENN TREEBANK

Attention #params↓ Acc↑ PRR↑ PEoP↑ PPL↑ PRR↑ PEoP↑ PPL↑ PRR↑ PEoP↑

SHA 8.85M 75.3 97.2 - 62.0 55.8 - 68.1 46.3 -

MHA 28.32M 77.5 100.0 0.01 43.0 100.0 0.14 44.3 100.0 0.16

EL-ATT 14.16M 76.6 98.9 0.03 57.1 67.2 0.13 56.1 73.4 0.29

MQA 15.34M 76.9 99.2 0.03 49.7 84.4 0.27 49.3 88.7 0.38

SKV 21.23M 77.1 99.5 0.02 46.2 92.6 0.18 45.5 97.3 0.24

MHE-ADD 8.88M 75.8 97.8 2.18 54.0 74.4 41.29 55.3 75.2 60.15

MHE-MUL 8.88M 76.7 99.0 5.92 53.8 74.9 42.32 50.7 85.6 81.76

Table 3.2: Results of decoder-only architecture on GLUE dev sets and WIKITEXT-103, PENN

TREEBANK test sets with performance retention ratio (PRR) and performance elasticity of pa-

rameters (PEoP) over five runs. Bold values denote best performing method in each benchmark.

↑ and ↓ denote that higher and lower values are preferred, respectively.

We train the encoder-decoder model from scratch on the training set of WMT-14 English-

to-German machine translation dataset up to 100K steps with a batch size of 256. WMT-14

contains 4.5M sentence pairs and evaluate on its test set. We train the tokeniser using byte-

pair-encoding (Sennrich et al., 2016) with 37K merging steps on the training set. We enable

both source language and target language to share the vocabulary. We use one random seed and

report the average on the last five epochs. We optimise all models using AdamW (Loshchilov

and Hutter, 2019).

Hyperparameters Hyperparameter selection details are in section 3.9.
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Hardware For pre-training, we use four NVIDIA Tesla A100 GPUs and one for fine-tuning

on downstream tasks.

3.4.5 Predictive Performance Evaluation

For GLUE, SUPERGLUE, SQUAD V1.1 and SQUAD V2.0, we use the official metric of each

task (see section 3.8 for details on metrics for each task). We report F1 score for SQUAD V1.1

and SQUAD V2.0. We use BLEU to report performance in WMT-14 English-to-German ma-

chine translation task. We use perplexity (PPL) to report generative performance on WIKITEXT-

103 and PENN TREEBANK by fixing the stride length to 256.

3.4.6 Memory Efficiency Evaluation

Furthermore, we use the following metrics to measure and compare the memory efficiency of

MHE and the baselines.

• Performance Retention Ratio: We compute the ratio between the predictive performance

of each attention mechanism compared to MHA upper-bound baseline performance (the

higher the better).

For direct indicator (e.g. accuracy etc.):

PRR =
scoremodel

scoreMHA

For inverse indicator (e.g. perplexity etc.):

PRR = 1− scoremodel − scoreMHA

scoreMHA

• Performance Elasticity of Parameters: Inspired by the concept of elasticity in eco-

nomics (Bittermann, 1934), which measures the responsiveness of an economic variable

(e.g. investment demand) to a change in another (e.g. interest rate), we extend it to mea-

sure the parameter utilisation rate of a target model compared to the SHA lower-bound.

The performance elasticity of parameters (PEoP) indicates how effectively parameters

contribute to predictive performance, compared to SHA. It is computed as the ratio

between the gradient of predictive performance score and the gradient of parameter counts

at the point of SHA lower-bound, detailed in the following:

For direct indicator (e.g. accuracy etc.):

PEoP =
(scoremodel/scoreSHA)− 1

(paramsmodel/paramsSHA)− 1

For inverse indicator (e.g. perplexity etc.):

PEoP = − (scoremodel/scoreSHA)− 1

(paramsmodel/paramsSHA)− 1
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PEoP quantifies the extent to which a model’s performance can be boosted with 1%

additional parameters compared to a baseline model (the higher the better).6

3.5 Results

3.5.1 Predictive Performance Comparison

Table 3.1 presents results on GLUE, SUPERGLUE, SQUAD V1.1 and SQUAD V2.0 for our

MHE variants and all baselines. We first observe that both the performance of our MHE-ADD

and MHE-MUL are comparable to the vanilla MHA on two text classification benchmarks

(80.4, 80.6 vs. 81.9 on average GLUE and 69.1, 69.6 vs. 70.5 on average SUPERGLUE) with

high performance retention ratios (PRR) between 97.9% and 98.7%. On question answering

tasks SQUAD V1.1 and SQUAD V2.0, both MHE variants are also competitive, with PRRs

higher than 93%.

Similar results are observed on the WMT-14 English-to-German machine translation task for

the encoder-decoder transformer. According to Table 3.3, MHE-ADD and MHE-MUL achieve

BLEU scores of 23.0 and 23.6, respectively. The performance of MHE-MUL is negligibly lower

than that of MHA (24.8) while being substantially smaller.

Consistent results for the decoder-only transformer are shown in Table 3.2. The PRRs for

MHE-ADD and MHE-MUL on GLUE are still high (i.e. 97.8% and 99.0%). While using the

intrinsic metrics for evaluation, MHE-MUL leads to the perplexities of 53.8 and 50.7 compared

to 43.0 and 44.3 for MHA on WIKITEXT-103 and PENN TREEBANK respectively, indicating a

stable PRR higher than 74.9%.

In all tasks, MHE consistently outperforms SHA by a large margin with only 0.03M extra

parameters, i.e. 0.6~17.4. For example, 69.6 vs. 67.1 in SUPERGLUE, 72.3 vs. 67.6 in SQUAD

V2.0, 23.6 vs. 22.5 in WMT-14 and 62.0 vs. 53.8 in WIKITEXT-103 for the MHE-MUL

variant. We also note that MQA and SKV attention mechanisms generally perform better

than MHE, however they are 1.7 and 2.4 times larger than MHE, i.e. 15.34M and 21.23M vs.

8.88M parameters. It is worth noting that MHE-MUL outperforms EL-ATT on three out of five

benchmarks, despite having nearly half the parameters in the attention module.

3.5.2 Memory Efficiency Comparison

Our results so far indicate that performance increases with the number of attention mechanism

parameters, which is expected. Next, we inspect how efficiently different attention mechanisms

utilise their parameters. 7 Tables 3.1 and 3.3 show how parameter efficient our two MHE

6We subtract 1 in both nominator and denominator, following the original definition of elasticity.
7For a detailed report on the memory usage of different attention mechanisms, see Appendix 3.10.
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attention variants and all baselines are, measured in PEoP. Note that PEoP scores for SHA

cannot be computed as it is used as the point for reference model. We also report PRR using

MHA as a baseline for completeness, however this metric does not take the model size into

account.

We first observe in Table 3.1 that both our MHE-ADD and MHE-MUL achieve the highest

PEoP scores on the two natural language understanding benchmarks (4.92, 5.53 on GLUE, and

9.44, 12.07 on SUPERGLUE) and two question answering tasks (4.65, 13.19on SQUAD V1.1,

and 19.88, 22.25 on SQUAD V2.0). In contrast, vanilla MHA results in the lowest PEoP score

among all models as expected, ranging from 0.02 to 0.06. It indicates the memory inefficiency

of MHA.

The PEoPs of more light-weight EL-ATT and SKV are similar to that of MHA (0.02) on average

GLUE, barely 4 ‰of that of MHE, indicating they are far more memory-inefficient compared to

MHE.

Similar findings are observed in WMT-14 for the encoder-decoder models depicted in Table 3.3.

MHE-ADD and MHE-MUL achieve PEoP scores of 20.0 and 27.9, respectively. In contrast, the

PEoP scores of MHA, EL-ATT MQA and SKV are close to zero (barely 0.1). This means that

investing more parameters into their attention modules would not bring proportional benefits in

predictive performance. Even for the SKV which is half the size of MHA and achieves high

PRR, when the number of parameters increase by 1%, the BLEU score increases a negligible

0.1%, while evolving from SHA. However, with the same number of parameters, our most

memory-inefficient MHE-MUL is able to improve the BLEU score by 11.0%. Such rate of

return is 110 times larger than that of SKV. Leveraging the head embeddings by adding only a

negligible number of parameters efficiently improves the predictive performance.

We further observe that MHE-ADD and MHE-MUL are architecture-agnostic, obtaining similar

memory efficiency for the decoder-only model in Table 3.2. Both our MHE-ADD and MHE-

MUL achieve the highest PEoP scores on the two language modelling benchmarks (41.29, 42.32

on WIKITEXT-103 and 60.15 and 81.76 on PENN TREEBANK) and GLUE (2.18 and 5.92). At

the same time, MHA fail to perform well on GLUE and PENN TREEBANK with a PEoP of

0.01 and 0.16 respectively. MHE-ADD and MHE-MUL also consistently outperform other

efficient-attention variants (i.e. EL-ATT, MQA and SKV) by 72~340 times on PEoP across the

three benchmarks.

In all tasks, MHE consistently outperforms MHA by orders of magnitude in parameter efficiency.

We also note that EL-ATT, MQA and SKV only lead to PEoP scores with the same magnitude

as MHA. This highlights the more superior parameter utilisation of MHE attention variants,

achieving state-of-the-art memory-efficiency.
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Attention #params↓ BLEU↑ PRR↑ PEoP↑

SHA 6.49M 22.5 90.8 -

MHA 18.87M 24.8 100.0 0.1

EL-ATT 9.44M 23.9 96.6 0.1

MQA 10.62M 24.2 97.6 0.1

SKV 14.16M 24.7 99.5 0.1

MHE-ADD 6.52M 23.0 92.9 5.5

MHE-MUL 6.52M 23.6 95.0 11.0

Table 3.3: BLEU scores on WMT-14 English to German machine translation task with per-

formance retention ratio (PRR) and performance elasticity of parameters (PEoP). Bold values

denote best performing method in each benchmark. ↑ and ↓ denote that higher and lower values

are preferred, respectively.

3.5.3 Theoretical Memory Complexity

Table 3.4 presents the theoretical memory complexity and the total number of parameters of our

two MHE and baseline attention mechanisms in a single transformer sublayer. First, we see that

the theoretical memory complexity of MHA and other efficient parameters (EL-ATT, MQA

and SKV) are quadratic with the number of attention heads, while our MHE are the only two

variants having the complexity linear with the attention heads similar to SHA.

Taking a closer look at the rightmost column in Table 3.4, we observe that the number of extra

parameters of all attention variants compared to SHA have a quadratic relationship to both the

number n and the dimension of attention heads d, except our two MHE variants. MHE only

requires a relatively small fraction of additional parameters compared to SHA.

3.5.4 Scaling the Number of Attention Parameters

Delving deeper to the effect of scaling to memory footprint, we show in Figure 3.3 the total

number of parameters needed for a single attention module (e.g. in an encoder layer). We

fix the dimension of attention heads to 64 commonly used by BERT (Devlin et al., 2019),

RoBERTa (Liu et al., 2019), GPT-2 (Radford et al., 2019), BART (Lewis et al., 2020) and

T5 (Raffel et al., 2020). In general, we note that the number of parameters in MHA could reach

more than 200M if employing 128 attention heads. At the same time, SKV, MQA and EL-ATT

would require 2/3, 1/3 and 1/3 of that number respectively. In contrast, MHE only accounts for

1% of the MHA parameters.

Moreover, we also present in Figure 3.4 the total number of parameters required across attention
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Attention Complexity↓ #Params↓ #Params (+)↓

SHA O(n) 3d2n 0

MHA O(n2) 3d2n2 (3n2 − 3n)d2

EL-ATT O(n2) d2n2 (n2 − 3n)d2

MQA O(n2) d2n2 + 2d2n (n2 − n)d2

SKV O(n2) 2d2n2 (2n2 − 3n)d2

MHE (ours)

-ADD O(n) 3d2n+ 3dn 3nd

-MUL O(n) 3d2n+ 3dn 3nd

Table 3.4: Memory complexity regarding the number of parameters in each attention sublayer,

while fixing the dimension of attention heads to d. n denotes the number of attention heads. To

simplify, the dimension of hidden states dm is set to nd. The last projection for pooling attention

heads is excluded. ↑ and ↓ denote that higher and lower values are preferred, respectively.

variants when stacking 12, 24 and 48 layers along with 32 and 64 attention heads respectively.

We also fix the dimension of attention heads to 64. We can observe, when the number of

attention head reaches 64, MHA with 24 layers already occupies more than 1B parameters,

while EL-ATT and MQA reach 0.8B parameters with 48 layers. SKV takes 24 layers to reach

0.8B parameters. However, the total number of parameters in MHE attention does not exceed

0.1B even when scaling to 48 layers with 64 attention heads. It is also clear that scaling the

attention module to 48 layers, 32 attention heads and 12 layers needs a comparable number of

parameters for MHA, EL-ATT, MQA or SKV. This indicates, that LLM developers have to

make a choice whether doubling the number of attention heads or cutting down the number of

layers to a quarter when working under a tight memory budget. However, MHE does not suffer

by such issues.

Further, we project these estimates to the popular GPT-3 model (Brown et al., 2020). It is a

decoder-only model with 96 decoder layers, 96 attention heads per layer, and a head dimension

of 128. The vanilla multi-head attention module requires a massive 43.48B parameters. How-

ever, using MHE attention, this number can be significantly reduced to 0.46B parameters, i.e.

approximately a reduction by 98.9%.8 Comparing this to other parameter-efficient attention

variants such as EL-ATT (14.50B parameters), MQA attention (14.80B parameters), and SKV

attention (28.99B parameters), it becomes evident that our MHE offers better memory efficiency.

This makes it a compelling alternative for memory-constrained scenarios. See Appendix 3.11

8It would have been great to report results by pre-training our own MHE GPT-3 model, however this is prohibitive
with the modest compute we have available.



3.6. Discussion 45

Figure 3.3: Number of parameters per attention sublayer, while scaling the number of attention

heads in different attention variants. We fix the dimension of attention to 64.

for a detailed study on the robustness of MHE to model size changes (i.e. scaling).

3.6 Discussion

MHA enables the model to attend to information from different representation subspaces at

different positions (Vaswani et al., 2017). It uses distinct projection matrices for each attention

head and integrates the information from these different representation subspaces. However,

Vaswani et al. (2017) did not explore different methods for performing space transformations

per head.

Previous work has pointed out that over-parameterized models might have a low intrinsic

dimension. Therefore, transforming the projection matrices to smaller low-rank ones usually

does not severely harm model predictive performance (Li et al., 2018; Aghajanyan et al., 2020).

Meanwhile, the classic MHA approach also does not impose any constraints on the orthogonality

of these subspaces during pre-training and fine-tuning. The column vectors in those projection

matrices could be highly collinear, i.e. the projection matrices could be rank-deficient. As

a result, its inner-working mechanism could be simply understood as introducing levels of

variation to the encoded representation of the same token at the same position across different

heads.

Our MHE approach is possible to achieve memory efficiency (similar to SHA) together with

high PRR compared to MHA by mimicking the position embeddings for representing different
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Figure 3.4: Total number of parameters in attention sublayers, while scaling the number of

attention layers to 12, 24 and 48 with 32 attention heads and 64 attention heads respectively. We

fix the dimension of attention to 64.

attention heads.

On one hand, the addition operation in MHE-ADD is used for transforming the keys, queries

and values. This can be seen as a small distortion of the subspace obtained through projection,

followed by rotation. For an input representation, the difference between the projected and

injected (i.e. through head embedding addition) queries, keys and values is a constant vector

across any pair of heads. On the other hand, the MHE-MUL approach employs a multiplication

operation, which more aggressively distorts and reshapes the keys, queries and values subspaces.

Head embeddings in MHE-MUL play a role as the scaling factors, respectively stretching each

dimension of the input representation. Thus, the difference between the keys, queries, and

values generated by different heads for the same input representation, is a vector parallel to the

projected input. This vector is dependent on the specific input, unlike the constant vector in

MHE-ADD.

Interestingly, our experimental results consistently show that the multiplication operation outper-

forms addition in the majority of benchmarks. This corroborates findings of a previous empirical

study by Su et al. (2021) that compared rotary position embeddings (somehow analogous to

MHE-MUL) with absolute position embeddings (analogous to MHE-ADD).



3.7. Conclusions 47

3.7 Conclusions

We have proposed MHE attention that employs a single shared projection matrix along with

multiple head embeddings, to simplify and reduce the memory footprint of the MHA. Our

experimental results have demonstrated that MHE attention exhibits superior memory efficiency

compared to other memory-efficient attention variants, while achieving high predictive perfor-

mance ratio to MHA on various downstream tasks. Compared to a single-head attention, MHA

requires (3n2 − 3n)d2 parameters for n attention heads and head dimensionality d, while MHE

barely requires a negligible 3nd. For future research, we plan to investigate scaling up MHE

models and explore its linguistic capabilities (Vulić et al., 2020; Koto et al., 2021).

Limitations

We experiment only using ‘base’ size models without experimenting with larger architectures,

due to limited access to computational resources. Similarly, we did not experiment with decoder

only architectures (Brown et al., 2020) which we leave for future work. We have not combined

our MHE method with computationally efficient attention methods with linear complexity, such

as Linformer (Wang et al., 2020). We expect that it would speed up computation of MHE, but it

is out of the scope of our paper.
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ATTENTION MNLI↑ QNLI↑ QQP↑ RTE↑ SST↑ MRPC↑ CoLA↑ STS↑ GLUE Avg.↑

SHA 80.5(0.3) 87.5(0.2) 86.7(0.1) 63.6(0.9) 90.7(0.3) 85.1(0.7) 53.8(1.1) 85.8(0.4) 79.2(0.1)

MHA 83.4(0.1) 89.8(0.3) 87.8(0.1) 67.6(1.5) 92.0(0.3) 86.8(0.4) 59.6(1.3) 88.5(0.3) 81.9(0.3)

EL-ATT 81.7(0.1) 88.4(0.2) 87.3(0.2) 67.6(1.0) 91.7(0.6) 85.9(0.7) 52.4(1.7) 87.7(0.2) 80.3(0.3)

MQA 82.6(0.1) 88.8(0.2) 87.3(0.1) 66.5(0.9) 91.4(0.5) 87.3(0.2) 58.4(1.3) 87.9(0.2) 81.3(0.2)

SKV 82.6(0.1) 89.4(0.3) 87.7(0.1) 68.2(1.7) 91.6(0.3) 87.4(0.6) 56.2(1.2) 88.6(0.2) 81.4(0.2)

FNET 76.3(0.1) 83.8(0.1) 84.8(0.1) 63.2(2.0) 88.4(0.7) 78.0(0.4) 43.2(2.5) 83.7(0.3) 75.2(0.6)

LINEAR 75.4(0.1) 81.4(0.1) 85.5(0.2) 54.7(2.3) 90.4(0.4) 72.2(0.6) 50.3(1.0) 70.9(0.5) 72.6(1.1)

MHE-ADD 81.5(0.2) 87.8(0.2) 87.2(0.1) 66.9(2.0) 90.5(0.4) 87.2(0.3) 54.7(0.9) 87.7(0.1) 80.4(0.2)

MHE-MUL 81.9(0.1) 87.9(0.1) 87.4(0.1) 67.1(1.5) 91.1(0.5) 85.4(0.5) 56.6(1.7) 87.3(0.2) 80.6(0.2)

MHA(M) 84.4(0.2) 91.1(0.4) 84.0(0.6) 70.5(1.0) 92.0(0.2) 87.2(0.8) 62.5(1.0) 88.8(0.2) 82.6(0.4)

MHE-MUL (M) 82.7(0.2) 89.2(0.4) 87.2(0.2) 67.9(0.4) 90.7(0.3) 86.3(1.0) 59.8(1.8) 88.0(0.2) 81.5(0.3)

Table 3.5: Results for encoder-only models on GLUE dev sets with standard deviations over five

runs in parentheses. Bold values denote best performing method in each task. ↑ and ↓ denote

that higher and lower values are preferred, respectively.

3.8 Appendix A: Reported Metrics for Each Task

We evaluate all models on GLUE (Wang et al., 2018), SUPERGLUE (Wang et al., 2019), SQUAD

V1.1 (Rajpurkar et al., 2016) and SQUAD V2.0 (Rajpurkar et al., 2018). We report matched

accuracy for MNLI, Matthews correlation for CoLA, Spearman correlation for STS, F1 score

for QQP, CB, MultiRC and SQUAD and accuracy for all other tasks. Table 3.5 and Table 3.6

present results on GLUE and SUPERGLUE respectively for our MHE-FORMERS models and

all baselines with the encoder-only architecture. Table 3.7 and 3.8 present results of the scores

and performance elasticity of parameters (PEoP) across all models over each task in GLUE

and SUPERGLUE. Table 3.10 presents results on GLUE for our MHE-FORMERS models and

all baselines with the decoder-only architecture. Table 3.10 presents results of the scores and

performance elasticity of parameters (PEoP) across all models over each task in GLUE.

3.9 Appendix B: Hyperparameters

The hyperparameters used in pre-training are listed in Table 3.11. The hyperparameters used in

fine-tuning are listed in Table 3.12.

3.10 Appendix C: Memory Usage

To further illustrate the memory-efficiency of our MHE models compared to the baselines,

we take the BERT-base architecture (12 attention heads, each with a dimension of 64) as an

example, and measure the memory usage per attention block as in Section 2.1.1 from Smith
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ATTENTION BoolQ↑ CB↑ RTE↑ WiC↑ MultiRC↑ COPA↑ WSC↑ SUPERGLUE Avg.↑

SHA 72.3(0.7) 88.7(2.5) 62.5(1.0) 63.6(0.5) 59.7(15.7) 59.2(2.8) 63.8(1.5) 67.1(2.4)

MHA 76.6(0.6) 89.4(1.8) 67.9(1.3) 65.4(0.8) 69.0(1.2) 64.0(3.1) 61.5(3.3) 70.5(0.5)

EL-ATT 73.5(1.0) 85.7(4.8) 69.5(1.4) 63.8(0.8) 67.9(0.3) 62.2(1.8) 63.8(0.5) 69.5(1.0)

MQA 74.6(0.6) 86.7(1.6) 65.4(0.8) 64.0(1.2) 68.8(0.5) 62.2(2.0) 63.3(2.7) 69.3(0.7)

SKV 75.2(0.3) 84.5(3.7) 67.5(0.9) 65.2(1.1) 68.7(0.2) 64.0(1.0) 64.4(1.2) 69.9(0.4)

FNET 68.4(0.5) 51.8(4.3) 60.7(0.9) 63.8(1.1) 62.3(0.6) 58.2(3.7) 60.0(1.6) 60.7(0.6)

LINEAR 70.4(0.2) 50.6(2.1) 55.2(1.8) 62.9(0.7) 57.8(0.5) 60.0(2.8) 61.0(1.1) 59.7(0.9)

MHE-ADD 73.3(0.2) 88.8(1.7) 67.5(1.5) 64.2(0.5) 67.1(0.2) 60.2(2.8) 62.5(1.4) 69.1(0.5)

MHE-MUL 74.9(0.6) 89.4(1.0) 67.8(1.3) 64.7(0.6) 68.0(0.3) 61.6(1.5) 61.2(2.9) 69.6(0.3)

MHA(M) 78.1(0.3) 88.1(6.8) 70.3(1.3) 67.8(0.8) 72.9(0.6) 68.2(4.1) 64.6(2.9) 72.9(0.6)

MHE-MUL (M) 75.2(0.5) 84.6(2.4) 68.6(1.8) 66.3(0.9) 69.8(0.4) 61.6(3.8) 64.6(0.8) 70.1(1.1)

Table 3.6: Results for encoder-only models on SUPERGLUE dev sets with standard deviations

over five runs in parentheses. Bold values denote best performing method in each task. ↑ and ↓
denote that higher and lower values are preferred, respectively.

ATTEN GLUE

-TION MNLI↑ QNLI↑ QQP↑ RTE↑ SST↑ MRPC↑ CoLA↑ STS↑

SHA 80.5 - 87.5 - 86.7 - 63.6 - 90.7 - 85.1 - 53.8 - 85.8 -

MHA 83.4 (0.02) 89.8 (0.01) 87.8 (0.01) 67.6 (0.03) 92.0 (0.01) 86.8 (0.01) 59.6 (0.05) 88.5 (0.01)

EL-ATT 81.7 (0.02) 88.4 (0.02) 87.3 (0.01) 67.6 (0.10) 91.7 (0.02) 85.9 (0.02) 52.4 (-0.04) 87.7 (0.04)

MQA 82.6 (0.04) 88.8 (0.02) 87.3 (0.01) 66.5 (0.06) 91.4 (0.01) 87.3 (0.04) 58.4 (0.12) 87.9 (0.03)

SKV 82.6 (0.02) 89.4 (0.02) 87.7 (0.01) 68.2 (0.05) 91.6 (0.01) 87.4 (0.02) 56.2 (0.03) 88.6 (0.02)

FNET 76.3 (-) 83.8 (-) 84.8 (-) 63.2 (-) 88.4 (-) 78.0 (-) 43.2 (-) 83.7 (-)

LINEAR 75.4 (-) 81.4 (-) 85.5 (-) 54.7 (-) 90.4 (-) 72.2 (-) 50.3 (-) 70.9 (-)

MHE-ADD 81.5 (3.88) 87.8 (1.34) 87.2 (1.86) 66.9 (16.35) 90.5 (-0.81) 87.2 (7.93) 54.7 (5.22) 87.7 (7.05)

MHE-MUL 81.9 (5.41) 87.9 (1.51) 87.4 (2.54) 67.1 (17.80) 91.1 (1.29) 85.4 (1.29) 56.6 (16.29) 87.3 (5.60)

Table 3.7: Detailed average scores and performance elasticity of parameters (in parentheses)

on GLUE for MHE models and the baselines with encoder-only architecture using MLM as

pre-training objectives. Underlined values denote the best performing method and bold values

denote the method with best PEoP in each task. ↑ and ↓ denote that higher and lower values are

preferred, respectively.

et al. (2022) and report the memory usage saving ratio (%) during the attention calculation in

Table 3.13:

The calculation is based on inputs with batch size of 32, hidden dimension of 768, sequence

length of 512 and fp16 mixture precision training using the following formula:

• Memory(weights)=#params*(2+4) bytes;



50 Chapter 3. Publication II

ATTEN SuperGlue

-TION BoolQ↑ CB↑ RTE↑ WIC↑ MultiRC↑ COPA↑ WSC↑

SHA 72.3 - 88.7 - 62.5 - 63.6 - 59.7 - 59.2 - 63.8 -

MHA 76.6 (0.03) 89.4 (0.00) 67.9 (0.04) 65.4 (0.01) 69.0 (0.07) 64.0 (0.04) 61.5 (-0.02)

EL-ATT 73.5 (0.03) 85.7 (-0.06) 69.5 (0.19) 63.8 (0.00) 67.9 (0.23) 62.2 (0.08) 63.8 (0.00)

MQA 74.6 (0.04) 86.7 (-0.03) 65.4 (0.06) 64.0 (0.01) 68.8 (0.21) 62.2 (0.07) 63.3 (-0.01)

SKV 75.2 (0.03) 84.5 (-0.03) 67.5 (0.06) 65.2 (0.02) 68.7 (0.11) 64.0 (0.06) 64.4 (0.01)

FNET 68.4 (-) 51.8 (-) 60.7 (-) 63.8 (-) 62.3 (-) 58.2 (-) 60.0 (-)

LINEAR 70.4 (-) 50.6 (-) 55.2 (-) 62.9 (-) 57.8 (-) 60.0 (-) 61.0 (-)

MHE-ADD 73.3 (4.58) 88.8 (0.54) 67.5 (25.50) 64.2 (3.00) 67.1 (39.90) 60.2 (5.41) 62.5 (-6.75)

MHE-MUL 74.9 (11.78) 89.4 (2.52) 67.8 (26.97) 64.7 (5.36) 68.0 (44.63) 61.6 (12.97) 61.2(-13.49)

Table 3.8: Detailed average scores and performance elasticity of parameters (in parentheses) on

SUPERGLUE for MHE models and the baselines with encoder-only architecture using MLM as

pre-training objectives. Underlined values denote the best performing method and bold values

denote the method with best PEoP in each task. ↑ and ↓ denote that higher and lower values are

preferred, respectively.

ATTENTION MNLI↑ QNLI↑ QQP↑ RTE↑ SST↑ MRPC↑ CoLA↑ STS↑ GLUE Avg.↑

SHA 78.7(0.1) 86.0(0.2) 85.0(0.1) 66.5(0.9) 89.8(0.2) 76.8(0.4) 38.0(1.3) 81.5(0.4) 75.3(0.3)

MHA 80.6(0.1) 87.9(0.2) 86.3(0.1) 66.9(1.1) 90.2(0.3) 79.0(0.7) 42.9(1.3) 86.0(0.2) 77.5(0.2)

EL-ATT 79.5(0.2) 86.8(0.3) 85.7(0.1) 65.7(1.4) 90.0(0.4) 79.2(1.4) 41.5(2.2) 84.3(0.2) 76.6(0.4)

MQA 80.0(0.1) 86.3(0.1) 85.9(0.1) 66.2(0.7) 90.3(0.3) 80.7(0.6) 41.3(0.8) 84.3(0.4) 76.9(0.2)

SKV 80.3(0.1) 87.5(0.3) 85.9(0.1) 66.1(1.1) 90.6(0.5) 79.6(0.5) 41.9(1.8) 84.9(0.2) 77.1(0.4)

MHE-ADD 78.7(0.1) 85.6(0.2) 85.4(0.1) 66.4(2.5) 89.6(0.4) 78.7(0.6) 38.4(1.2) 83.5(0.3) 75.8(0.3)

MHE-MUL 79.0(0.2) 85.5(0.1) 85.6(0.1) 70.2(2.5) 90.9(0.2) 78.9(0.8) 39.4(1.3) 84.0(0.3) 76.7(0.2)

Table 3.9: Results for decoder-only models on GLUE dev sets with standard deviations over five

runs in parentheses. Bold values denote best performing method in each task. ↑ and ↓ denote

that higher and lower values are preferred, respectively.

• Memory(gradients)=#params*(2+4) bytes;

• Memory(Adam states)=#params*(4+4) bytes;

• Memory(activations)= batch-size*sequence-length*hidden-dimension*2 bytes.

From Table 3.13, we observe the memory usage saving ratio of our proposed MHE is 2.75

times better than SKV, 1.50 times better than MQA and 1.37 times better than EL-ATT, which

indicates a SotA memory saving capabilities compared to all other parameter-efficient attention

variants.
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ATTEN GLUE

-TION MNLI↑ QNLI↑ QQP↑ RTE↑ SST↑ MRPC↑ CoLA↑ STS↑

SHA 78.7 - 86.0 - 85.0 - 66.5 - 89.8 - 76.8 - 38.0 - 81.5 -

MHA 80.6 (0.01) 87.9 (0.01) 86.3 (0.01) 66.9 (0.00) 90.2 (0.00) 79.0 (0.01) 42.9 (0.06) 86.0 (0.03)

EL-ATT 79.5 (0.02) 86.8 (0.02) 85.7 (0.01) 65.7 (-0.02) 90.0 (0.01) 79.2 (0.05) 41.5 (0.16) 84.3 (0.06)

MQA 80.0 (0.02) 86.3 (0.01) 85.9 (0.01) 66.2 (-0.01) 90.3 (0.01) 80.7 (0.07) 41.3 (0.12) 84.3 (0.05)

SKV 80.3 (0.01) 87.5 (0.01) 85.9 (0.01) 66.1 (-0.00) 90.6 (0.01) 79.6 (0.03) 41.9 (0.07) 84.9 (0.03)

MHE-ADD 78.7 (-0.02) 85.6 (-1.50) 85.4 (1.60) 66.4 (-0.69) 89.6 (-0.57) 78.7 (7.96) 38.4 (3.71) 83.5 (7.98)

MHE-MUL 79.0 (0.98) 85.5 (-1.88) 85.6 (2.05) 70.2 (17.72) 90.9 (4.01) 78.9 (8.58) 39.4 (12.32) 84.0 (9.97)

Table 3.10: Detailed average scores and performance elasticity of parameters (in parentheses)

on GLUE for MHE models and the baselines with decoder-only architecture using MLM as

pre-training objectives. Underlined values denote the best performing method and bold values

denote the method with best PEoP in each task. ↑ and ↓ denote that higher and lower values are

preferred, respectively.

Hyperparameter Pretraining

Maximum train steps 1000000 steps

Batch size (per GPU) 32 instances

Adam ϵ 1e-8

Adam β1 0.9

Adam β2 0.9999

Sequence length 512

Peak learning rate 1e-4 for MLM

Learning rate schedule linear

Warmup steps 10000

Weight decay 0.01

Attention Dropout 0.1

Dropout 0.1

Table 3.11: Details of hyperparameters used in pre-training.

3.11 Appendix D: Robustness to Scaling

We also conduct experiments to observe the effectiveness and the robustness of our best MHE-

MUL while scaling the model size.

Table 3.14 presents average accuracy on two text classification benchmarks (GLUE and SU-

PERGLUE), perplexities on two language modelling benchmarks (WIKITEXT-103 and PENN

TREEBANK) with their corresponding performance retention ratio (PRR) for MHA and MHE-

MUL in both encoder-only and decoder-only architecture across different model sizes.9 For

9BASE: 12 encoder/decoder layers, each containing 12 attention heads; LARGE/MEDIUM: 24 encoder/decoder
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Hyperparameter Fine-tuning

Maximum train epochs 20 epochs for GLUE, SUPERGLUE and SQUAD

Batch size (per GPU) 32 instances

Adam ϵ 1e-6

Adam β1 0.9

Adam β2 0.999

Peak learning rate
3e-5 for GLUE and SQUAD;

5e-5 for SUPERGLUE

Learning rate schedule cosine with hard restarts

Warmup steps

first 6% steps for GLUE and SUPERGLUE;

3327 for SQUAD V1.1;

4950 for SQUAD V2.0

Weight decay 0

Attention Dropout 0.1

Dropout 0.1

Evaluation steps 2455 for MNLI, 655 for QNLI,

2275 for QQP, 48 for RTE,

421 for SST, 69 for MRPC,

162 for CoLA and 108 for STS,

177 for BoolQ, 5 for CB,

47 for RTE, 102 for WiC,

512 for MultiRC, 8 for COPA,

11 for WSC,

548 for SQUAD V1.1,

815 for SQUAD V2.0

Table 3.12: Details of hyperparameters used in fine-tuning.

ATTENTION weights↓ gradients↓ Adam states↓ activations↓ Total↓ Memory Saving Ratios (%)↑

SHA 4423680 4423680 5898240 25165824 39911424 44.84

MHA 14155776 14155776 18874368 25165824 72351744 0.00

EL-ATT 7077888 7077888 9437184 25165824 48758784 32.61

MQA 7667712 7667712 10223616 25165824 50724864 29.89

SKV 10616832 10616832 14155776 25165824 60555264 16.30

MHE-ADD 4437504 4437504 5916672 25165824 39957504 44.77

MHE-MUL 4437504 4437504 5916672 25165824 39957504 44.77

Table 3.13: Memory usage (in bytes) and memory saving ratios (compared to MHA) per

attention block for our MHE and other baselines. MHA denotes BERT-base here. ↑ and ↓
denote that higher and lower values are preferred, respectively.

layers, each containing 16 attention heads.
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#Params(M)↓ GLUE↑ SUPERGLUE↑ WIKITEXT-103↓ PENN TREEBANK↓

MHA
MHE

-MUL
MHA

MHE

-MUL
PRR↑ MHA

MHE

-MUL
PRR↑ MHA

MHE

-MUL
PRR↑ MHA

MHE

-MUL
PRR↑

Encoder BASE 28.32 8.88 81.9 80.6 98.4 70.5 69.6 98.7 - - - - - -

-only LARGE 100.66 29.96 81.5 82.6 98.7 72.9 70.1 96.2 - - - - - -

Decoder BASE 28.32 8.88 77.5 76.7 99.0 - - - 43.0 53.8 74.9 44.3 50.7 85.6

-only MEDIUM 100.66 29.96 79.4 77.7 97.9 - - - 35.5 37.2 95.2 37.5 41.6 88.5

Table 3.14: Results of evaluation metrics on two text classification benchmarks (GLUE, SUPER-

GLUE) and two language modelling benchmarks (WIKITEXT-103 and PENN TREEBANK) with

performance retention ratio (PRR) for MHA and MHE-MUL across different model sizes. ↑
and ↓ denote that higher and lower values are preferred, respectively.

the encoder-only models, we observe that the PRR of MHE-MUL remains stable on GLUE

(from 98.4% to 98.7%) and SUPERGLUE (from 98.7% to 96.2%) while scaling the number of

parameters in the attention blocks to 3.5 times larger. For the decoder-only models, the PRR on

GLUE for MHE-MUL stabilises at 97.9% (i.e. 1.1% lower) after scaling. Surprisingly, the PRR

of MHE-MUL increases on WIKITEXT-103 (from 74.9% to 95.2%) and PENN TREEBANK

(from 85.6% to 88.5%) while scaling to MEDIUM size.

Similar results are observed for the encoder-decoder architecture on WMT14 machine transla-

tion task. According to Table 3.15, we first observe the PRR of MHE-MUL remains stable (i.e.

between 91.5% and 96.0%) across all different sizes, where the number of parameters in the

corresponding MHA ranges from 19.87M to 75.50M. Meanwhile, we also observe that making

the model deeper by stacking more encoder and decoder layers results in a steady increment on

PRR for MHE-MUL (e.g. 93.6%, 95.0% and 96.0% respectively, for 8 layers, 12 layers and 16

layers in total). Moreover, for the same number of parameters in the attention, wider attention

heads consistently leads to a better PRR for MHE-MUL, i.e. 91.5%, 95.0% and 95.3% for the

dimensionality of 32, 64 and 128 of attention heads respectively.

These results indicate MHE consistently achieves good performance retention ratios and is

robust to model size change.



54 Chapter 3. Publication II

N dm h dh pdrop #Steps #Params(M)↓ BLEU↑ PRR↑

MHA MHE-MUL MHA MHE-MUL

BASE 12 512 8 64 0.1 100K 18.87 6.52 24.8 23.6 95.0

12 512 16 32 0.1 100K 18.87 5.63 25.1 22.9 91.5

12 512 4 128 0.1 100K 18.87 8.29 24.7 23.6 95.3

4L 8 512 8 64 0.1 100K 12.58 4.34 23.9 22.4 93.6

8L 16 512 8 64 0.1 100K 25.17 8.69 25.3 24.3 96.0

12H 12 768 12 64 0.15 100K 42.47 13.31 25.7 24.2 94.2

BIG 12 1024 16 64 0.3 300K 75.50 22.47 26.5 24.8 93.6

Table 3.15: Results of BLEU scores on WMT-14 English to German machine translation task

with performance retention ratio (PRR) for MHA and MHE-MUL across different model sizes.

↑ and ↓ denote that higher and lower values are preferred, respectively.



Chapter 4

Publication III:

Deconstructing Attention:
Investigating Design Principles for

Effective Language Modeling

The primary contribution in this chapter is the under-review paper, Deconstructing Attention:

Investigating Design Principles for Effective Language Modeling. The project began with a

question about the viability of using a single vector for state tracking and a shared softmax

partition function to create a simple linear attention model. Initial experiments on this include

straightforward linear attention, exploring augmented approaches such as selective space, more

complex gating mechanisms, and even expanding to multiple latent vectors. However, none

of these methods outperformed the standard dot-product attention. Other attempts are made

to simplify the attention mechanism, including pre-caching attention scores or even adding

augmented methods like weighting edges through predicted magnitude. However, variants along

this line still not perform well on down-stream tasks. Encouraged by the motto of The University

of Sheffield12.
1Felix, qui potuit rerum cognoscere causas. –Virgil (70 – 19 BC)
2Thro’ known Effects can trace the secret Cause. –The works of Virgil, 1697

55
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The coat of arms of the University of Sheffield above the gate of Sir Frederick Mappin Building,

photographed by Huiyin on August 23, 2025.
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Abstract

The success of Transformer language models is widely credited to their dot-product attention

mechanism, which interweaves a set of key design principles: mixing information across

positions (enabling multi-token interactions), sequence-dependent activations (where attention

weights adapt to each input), a specific mathematical form (dot-product similarities plus softmax

weighting), and coupling of queries and keys to evolving hidden states (grounding attention

in the current layer). However, the necessity of each of these principles remains largely

untested. In this work, we systematically deconstruct attention by designing controlled variants

that selectively relax these principles, applied both uniformly across all layers and in hybrid

architectures where only some layers retain standard attention. Our empirical analysis reveals

that mechanisms for mixing tokens are indispensable, as their absence collapses models to

near-random behavior, while the exact mathematical form and sequence dependency can be

substantially relaxed, especially when preserved in just a subset of layers. Surprisingly, even

variants that fail in isolation can achieve robust performance when interleaved with standard

attention, highlighting a cooperative effect. These findings deepen our understanding of what

truly underpins attention’s effectiveness and open new avenues for simplifying language models

without sacrificing performance.3

3Code is available at https://anonymous.4open.science/r/DeconAttn-FB16.

https://anonymous.4open.science/r/DeconAttn-FB16
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4.1 Introduction

The remarkable success of Transformer-based language models (Singh, 2025; Liu et al., 2024a;

Yang et al., 2024a, LMs) is widely attributed to the dot-product attention mechanism (i.e.

standard attention), which enables these models to weight the significance of each token in a

sequence by computing pairwise similarities of their contextual representations (Vaswani et al.,

2017). However, this powerful mechanism comes at a substantial computational cost with respect

to the input sequence length (L). This has led to a diverse landscape of proposed mechanisms,

including processing longer context (Tay et al., 2022a), token-mixing via pooling and multi-layer

perceptron MLP-Mixer (Tolstikhin et al., 2021), non-parametric transformations (Yu et al., 2022;

Lee-Thorp et al., 2022), optimized kernel functions (Aksenov et al., 2024; Arora et al., 2024;

Qin et al., 2022; Peng et al., 2021; Kasai et al., 2021; Choromanski et al., 2021; Katharopoulos

et al., 2020), and linear recurrent neural network (RNN) architectures (Siems et al., 2025; Peng

et al., 2025; Dao and Gu, 2024; Yang et al., 2024b; Qin et al., 2024; Peng et al., 2024; Poli et al.,

2023; Peng et al., 2023; Orvieto et al., 2023).

Despite this rich body of work, most of these approaches implicitly preserve several underly-

ing design principles inherited from standard attention. Broadly, these principles include: (1)

incorporating mechanisms for mixing information across tokens (Token Mixing), enabling

multi-token interactions, (2) emulating the original mathematical form of standard attention

(Mathematical Form), i.e. dot-product similarities followed by softmax weighting, (3) enforc-

ing strict sequence-dependency in activation maps (Sequence-Dependency), where attention

weights depend on the specific input sequence, and (4) deriving queries and keys from the current

layer’s hidden states (Current QK), as opposed to other input types such as uncontextualized

representations. However, the importance of each of these principles remains largely untested.

Are all of these truly essential, or could relaxing some of them suffice if applied selectively?

Motivated by this foundational question and guided by Occam’s Razor (Baker, 2022), we take

a diagnostic approach: we systematically relax these principles through controlled attention

variants, evaluated in two settings: (1) uniform replacement across all layers, and (2) hybrid

configurations that interleave standard and simplified modules. Through extensive empirical

analysis across multiple model sizes, attention variants, and layer configurations, while carefully

matching parameter counts of variants, we uncover a set of insights that refine our understanding

of key attention principles.

Under uniform replacement, mechanisms enabling token mixing prove indispensable: removing

them, e.g. in MLP variants, leads to near-random accuracy on challenging natural language

understanding (NLU) tasks, though such models still capture superficial statistical patterns,

as reflected in improved perplexity over trivial baselines. Retaining the dot-product structure
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and sequence-dependent weighting contributes to stability, but these elements are not strictly

necessary in every layer, provided token interactions remain strong.

Notably, in hybrid configurations that interleave simpler attention mechanisms with standard

layers, we uncover a striking pattern: attention variants that fail in isolation can nonetheless

contribute meaningfully when paired with standard attention, achieving robust performance that

often matches or exceeds fully standard models. This suggests standard layers may stabilise

activations, mitigate distributional drift, and foster cooperative dynamics across the network, as

reflected in both predictive outcomes and structural diagnostics such as attention entropy, head

diversity, and sink behaviors.

While hybrid attention schemes have been explored in prior work, such as taking advantages of

state space models (Glorioso et al., 2024) or augmenting feed-forward modules via mixture-of-

experts routing (Lenz et al., 2025), these are typically driven by performance or efficiency goals.

By contrast, our hybrid designs serve as deliberate probes to isolate and examine the causal

roles of specific attention properties. Taken together, our findings challenge the assumption

that attention mechanisms must adhere rigidly to their original formulation. By identifying

which components are essential and which can be simplified, we outline a path toward new LM

architectures that can be structurally leaner and adaptable.

4.2 Related Work

Prior research attributes the success of Transformer models to their efficient token mixing

mechanisms. Consequently, numerous studies explore replacing the standard dot-product

attention with simpler architectural components that enable parallel training. For instance, Yu

et al. (2022) demonstrate the effectiveness of pooling, MLPs, and convolution as alternatives

within vision Transformers. Similarly, Lee-Thorp et al. (2022) highlight the efficiency of token

mixers based on Fourier transformation and random projection in the BERT model (Devlin

et al., 2019). However, these investigations focus on encoder-only Transformer architectures

and may not readily adapt to causal language modeling. While Tolstikhin et al. (2021) introduce

a learnable linear layer for token mixing by employing position-wise projection vectors, similar

to Linformer (Wang et al., 2020), this approach encounters scalability challenges with long

sequences due to its parameter count growing linearly with L. Concurrent research largely

retains the standard dot-product attention mechanism as a foundational principle. Efforts

to reduce the computational cost of this mechanism primarily follow two strategies: weight

sharing (Rajabzadeh et al., 2024; Ainslie et al., 2023a; Xue and Aletras, 2023; Yan et al., 2021;

Kitaev et al., 2020; Shazeer, 2019; Xiao et al., 2019) or input length shrinkage (Nawrot et al.,

2023; Clark et al., 2022b; Xue and Aletras, 2022).
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Recent work revisits linear RNNs to handle inputs of varying length (Gu and Dao, 2023; Poli

et al., 2023; Peng et al., 2023; Orvieto et al., 2023; Gu et al., 2022). Follow-up research further

improves performance by designing more sophisticated gating mechanisms and update rules (He

et al., 2025; Lin et al., 2025; Siems et al., 2025; Peng et al., 2025; Dao and Gu, 2024; Yang et al.,

2024b; Qin et al., 2024; Peng et al., 2024), with the goal of mimicking human memory, drawing

inspiration from the work of Schlag et al. (2021) on fast weight programmers. Notably, such

replacements can also be selectively applied to a subset of attention layers or heads (Lenz et al.,

2025; Ren et al., 2025; Team et al., 2024; Glorioso et al., 2024; Peng and Cao, 2024; Dong

et al., 2024; Tay et al., 2019). Additionally, this work operates on the contextual representations

encoded by deep networks to generate activation maps dynamically.

Another line of research approximates the dot-product computation to achieve linear complexity.

These methods rely on various kernel functions that emulate the exponential function using

its Taylor expansion (Aksenov et al., 2024; Arora et al., 2024; Qin et al., 2022; Peng et al.,

2021; Kasai et al., 2021; Choromanski et al., 2021; Katharopoulos et al., 2020). This allows for

prioritisation of the key-value dot product through feature mapping. However, this line of work

does not examine the necessity of the other key principles of attention mechanism identified in

§4.1.

4.3 Attention Variants

To operationalise our investigation of the four key design principles identified in §4.1, we design

targeted variations of attention that selectively relax each property. This allows us to probe their

necessity in a controlled, principled framework.

4.3.1 Standard Dot-product Attention

We take standard scaled dot-product attention (Vaswani et al., 2017) as our baseline, where

queries (Q), keys (K), and values (V) are computed from the layer hidden states H ∈ RL×dm :

O = Att(Q,K,V) = AV (4.1)

A = Softmax
(
QK⊤/

√
dh

)
(4.2)

Q,K,V = HWQ,K,V (4.3)

This follows all principles: mixing information across positions via A, using a similarity-

softmax form, adapting to each input sequence, and tying Q, K to the current hidden state

H.
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4.3.2 Relaxing Token Mixing

MLP. To directly examine the necessity of cross-token interactions, we replace attention with

a gated MLP layer, consisting of three fully-connected (FC) layers (FCDn,FCGt,FCUp) for

down-projection, gating and down-projection respectively. This effectively eliminates token

mixing and each token is processed independently, only attending to itself.

O = GatedMLP(H) (4.4)

= FCDn(SiLU(FCGt(H)) · FCUp(H)) (4.5)

We use a SiLU activation (Elfwing et al., 2018) and match the parameter count of standard

attention. This variant serves as a minimal baseline to assess how much attention’s effectiveness

depends on cross-token interaction, beyond what feed-forward paths alone can provide without

using any Q, K and V.

4.3.3 Relaxing the Mathematical Form

We assess whether attention must strictly follow the canonical dot-product plus softmax formu-

lation. To this end, we evaluate two variants that either approximate or break this form.

Approximate. Following Arora et al. (2024), we preserve the mathematical intention of

similarity-based weighting, while relaxing the exact form of softmax via a second-order Taylor

expansion, yielding a linear-time recurrent form (section 4.16):

A ≈ Taylor
(
QK⊤/

√
dh

)
(4.6)

Q, K and V are computed using Eq. 4.3.

Non-approximate. To contrast this, we introduce a new variant that discards explicit pairwise

similarity altogether. Instead of computing an attention matrix via QK⊤, it uses element-wise

self-gating, multiplying Q and K derived from the same hidden state, and normalises the result

across time steps with softmax:

A = Softmax
(
(Q⊙K)1⊤/

√
dh

)
(4.7)

Q = SiLU
(
HWQ

)
; K,V = HWK,V (4.8)

This variant follows an entirely different mathematical form to standard attention. We expect

that this should make it harder for adjacent context tokens to receive large attention scores, as

the denominator in the softmax computation monotonically increases (see recurrent form in

section 4.16). Notably, the SiLU activation is applied element-wise and does not introduce
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additional complexity. We apply SiLU activation on Q projection to add non-linearity. This

does not require additional parameters and allows parallelism during training.

4.3.4 Relaxing Sequence Dependency

To test whether attention weights must be dynamically adapted to each input sequence (i.e.

sequence-dependent), we construct two variants where Q and K are fixed across all inputs,

inspired by MLP-Mixer (Tolstikhin et al., 2021), but making the parameter count in attention

blocks independent of the maximum sequence length. Relaxing sequence dependency allows

attention scores for all inputs to be pre-computed and cached during inference.

Random-fixed (RndEmbQK). We initialise a set of random embeddings ϵ ∼ N (0, σ2I) that

remain constant across inputs. These are passed through the Transformer stack up to layer l:

X = TransformerBlock(l)(ϵ), ϵ ∼ N (0, σI) (4.9)

Q,K = XWQ,K ; V = HWV (4.10)

Since Q and K do not depend on the input, attention maps are fixed and do not adapt to context.

Text-fixed (FixedSeqQK). Instead of random embeddings, we use a randomly selected fixed

sequence of natural language tokens ts (first 2048 tokens from FineWeb-10BT (Lozhkov et al.,

2024)). These are embedded and passed through the Transformer to generate X:

X = TransformerBlock(l)(Emb(ts)) (4.11)

Q,K = XWQ,K ; V = HWV (4.12)

This setup also produces fixed attention maps, but grounded in natural text instead of completely

randomly initialised embeddings. Compared to RndEmbQK, it may encode weak structural

priors, such as grammatical patterns or token co-occurrences. These variants allow us to test

whether dynamic, input-conditioned attention maps are necessary, or whether fixed maps, paired

with learned value paths, are sufficient.

4.3.5 Relaxing the Derivation of Q and K

StaticEmbQK. Finally, to test whether tying Q,K to current layer hidden states (H or X

above) is essential, we compute them directly from static input embeddings e corresponding to

the input sequence t:

Q,K = eWQ,K ; V = HWV ; e = Emb(t) (4.13)
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This means that while attention maps are not fixed, they are computed without contextualisation

from the evolving hidden representations. It further allows attention scores from different layers

to be computed in parallel.

4.4 Experimental Setup

4.4.1 Data

We use seven zero-shot NLU tasks in English: ARC-E (Clark et al., 2018), BOOLQ (Clark

et al., 2019), COPA (Roemmele et al., 2011), PIQA (Bisk et al., 2020), SCIQ (Welbl et al.,

2017), RTE (Wang et al., 2019) and HELLASWAG (Zellers et al., 2019). We also experiment

with two LM tasks: WIKITEXT (Merity et al., 2017) and LAMBADA OPENAI (Radford et al.,

2019).

4.4.2 Implementation Details

Base model. Our models are built upon Qwen2.5 (Yang et al., 2024a). However, we replace

its standard attention mechanism with the alternative attention modules detailed in § 4.3. To

ensure a strict parameter count match across all attention variants, we use multi-head attention

(Vaswani et al., 2017), deviating from Qwen2.5’s default grouped-query attention (Ainslie et al.,

2023a). For tokenisation, we use the 50K English-centric BPE (Sennrich et al., 2016) vocabulary

of Pythia (Biderman et al., 2023), offering small memory footprint, and fast training.

Model configurations. We pretrain models with approximately 500M parameters, using

two configurations: (1) Uniform with simple attention mechanisms across all Transformer

layers; (2) Hybrid that integrates simple attention mechanisms in odd-numbered layers and

standard attention in even-numbered layers. To assess the contribution of the modified attention

variants within the hybrid configuration, we introduce a configuration where we remove the odd-

numbered layers from pre-trained hybrid models (skip) and evaluate the resulting performance

without additional training.

We further test these three configurations by training models of 70 million and 160 million

parameters (see section 4.8). We finally explore various alternative hybrid configurations such

as changing the simple attention replacement ratio, the details of which are presented in § 4.6.

Specific model size details are provided in section 4.19. Meanwhile, we strictly constrain all

models with different attention variants to have the same number of parameters to eliminate any

effects from differences in size.

Pre-training. All models are pre-trained on the SlimPajama dataset (Soboleva et al., 2023)

for up to 15 billion tokens, following Chinchilla scaling laws (Hoffmann et al., 2022). We use a
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mini-batch size of 500K tokens, aligning with the training budget outlined in Titans (Behrouz

et al., 2024). To optimise pre-training efficiency, we use a sequence length of 2048 tokens.4

4.4.3 Predictive Performance Evaluation

We use the LM-evaluation-harness toolkit v0.4.8 (Gao et al., 2024) for evaluation. We report

accuracy for all NLU tasks and perplexity (PPL) for LM tasks. For LAMBADA OPENAI, we

report both.

4.4.4 Attention Pattern Indicators

Looking at the performance itself may not offer a comprehensive picture of the behaviour of

the different attention mechanisms we test. To obtain a more granular understanding of their

internal workings, we investigate their attention patterns. We compute eight indicators from the

attention matrices Aj ∈ RL×L for each head j = 1, . . . , nh in a given layer. We specifically

focus on attention sinks, i.e. over-attending to the initial token in a sequence, and local patterns

within attention matrices, i.e. prioritising nearby tokens, following prior work (Xiao et al., 2024;

Han et al., 2024).5

Entropy (H). Measures the randomness of attention scores. Higher ENTROPY indicates more

uniform attention distribution across tokens, similar to mean-pooling: H = −
∑

a∈A a · log(a).

Concentration (Conc). Measures the concentration of attention. A higher Frobenius norm

∥A∥F indicates attention is focused on a limited number of tokens: Conc = ∥A∥F =√∑
a∈A a

2.

Head diversity (HeadDiv). Quantifies the variability of attention patterns across different

heads. Calculated as the average position-wise standard deviation across heads, higher HEAD-

DIV suggests better use of the multi-head mechanism.

HeadDiv =
2

L(1 + L)

∑
std({A1, . . . ,Anh

})

4Details on hyperparameter selection is provided in section 4.17. For both pre-training and evaluation, we use a
single AMD Instinct MI300X accelerator.

5ENTROPY (H), CONC, and HEADDIV are min-max normalized. SINK and LOCFOCN use absolute values
(LOCFOCN is scaled by two for visibility). High ENTROPY and low CONC suggest mean-pooling like behaviour.
High CONC and low ENTROPY indicate focus on a few tokens. Further examination of SINK and LOCFOCN clarifies
if this focus is on the first token or local tokens. Low ENTROPY and high CONC with low scores elsewhere (except
HEADDIV) may point to sparse attention on mid-sequence tokens.
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ARC-E BoolQ COPA PiQA SciQ RTE HellaSwag Avg. Wiki LAMBADA

acc↑ acc↑ acc↑ acc↑ acc↑ acc↑ acc↑ acc↑ ppl↓ ppl↓ acc↑

Rnd. Guess 25.00.0 50.00.0 50.00.0 50.00.0 25.00.0 50.00.0 25.00.0 39.9 3E+5 3E+6 0.00.0

Majority 25.70.0 62.20.0 56.00.0 50.50.0 25.00.0 52.70.0 25.00.0 39.9 - - -

Standard 41.51.0 56.60.9 63.04.9 60.91.1 60.21.5 53.13.0 28.30.4 51.9 38.1 134.1 22.90.5
U

N
IF

O
R

M

MLP 28.50.9 37.80.8 54.05.0 54.81.2 25.91.4 52.73.0 26.10.4 40.0 993.5 1E+5 0.00.0

Approx. 40.71.0 51.50.9 64.04.8 59.91.1 55.01.6 52.33.0 28.10.4 50.2 47.9 238.6 18.50.5

Non-apx. 26.80.9 37.80.8 60.04.9 53.21.2 19.31.2 52.33.0 26.00.4 39.3 9E+4 2E+6 0.00.0

RndEmbQK 39.51.0 55.30.9 57.05.0 59.81.1 46.41.6 50.93.0 27.20.4 48.0 84.8 6402.4 1.30.2

FixedSeqQK 39.41.0 59.00.9 61.04.9 59.41.1 51.21.6 52.73.0 27.50.4 50.0 79.1 19578.1 1.40.2

StaticEmbQK 39.61.0 52.90.9 63.04.9 59.41.1 49.21.6 54.23.0 27.20.4 49.4 79.9 2287.4 3.30.2

H
Y

B
R

ID

MLP 37.51.0 49.80.9 60.04.9 60.21.1 54.31.6 52.73.0 26.10.4 48.7 45.8 228.7 20.80.6

Approx. 39.91.0 51.50.9 67.04.7 60.41.1 60.51.5 53.43.0 28.40.4 51.6 39.4 140.0 23.70.6

Non-apx. 42.31.0 56.80.9 63.04.9 61.71.1 63.01.5 54.93.0 28.50.5 52.9 39.4 133.1 23.80.6

RndEmbQK 40.11.0 48.30.9 61.04.9 61.21.1 60.01.5 50.93.0 27.20.4 49.8 39.3 157.5 22.00.6

FixedSeqQK 40.51.0 58.50.9 64.04.8 61.91.1 62.01.5 52.73.0 28.40.4 52.6 38.5 354.7 20.30.6

StaticEmbQK 39.21.0 54.70.9 64.04.8 60.91.1 58.41.6 57.43.0 28.20.4 51.8 38.7 140.7 23.80.6

H
Y

B
R

ID
SK

IP

MLP 24.40.9 41.80.9 54.05.0 52.81.2 19.01.2 46.91.7 25.60.4 37.8 2E+5 5E+6 0.00.0

Approx. 26.60.9 46.10.9 59.04.9 52.81.2 20.11.3 48.03.0 26.00.4 39.8 2E+6 1E+7 0.00.0

Non-apx. 26.60.9 39.20.9 52.05.0 51.41.2 20.41.3 46.93.0 25.80.4 37.5 5E+5 9E+6 0.00.0

RndEmbQK 27.40.9 37.80.8 58.05.0 53.31.2 21.11.3 52.73.0 26.10.4 39.5 2E+4 3E+6 0.00.0

FixedSeqQK 27.20.9 39.40.9 59.04.9 52.31.2 22.11.3 48.43.0 25.90.4 39.2 2E+5 5E+6 0.00.0

StaticEmbQK 25.50.9 43.00.9 57.05.0 53.11.2 22.01.3 51.63.0 25.90.4 39.7 7E+4 5E+6 0.00.0

Table 4.1: Performance of uniform, hybrid, skip and standard models (500M). Purple (MLP),

blue (Approx., Non-apx.), green (RndEmbQK, FixedSeqQK) and yellow (StaticEmbQK) denote

variants that relax Token Mixing, Mathematical Form, Sequence-Dependency and Current

QK, respectively. ↑ and ↓ denote that higher and lower values are preferred, respectively.

Attention sink (Sink). Detects focus on the first token. It is the average attention score

assigned by all queries to the initial token. Higher Sink means a stronger attention sink:

Sink =
∑

A:,1/L.

Local Focus (LocFocN). Measures the attention focus on nearby tokens. It is the average

attention score for tokens at a fixed relative distanceN (hereN ∈ {0, 1, 2, 3}). Higher LocFocN

suggests stronger contribution from local context.

LocFocN =
∑

AL−N,L−N/ (L−N)
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4.5 Results

Table 4.1 shows the performance of all model variants (§4.3), employing uniform, hybrid, and

skip configurations across NLU and LM tasks. Results illuminate the role each design principle

plays in effective language modeling.

Token mixing is crucial. The uniform MLP model, which lacks any cross-token interaction,

performs near chance on most NLU tasks, highlighting that token mixing is essential for

reasoning and understanding. Despite this, it achieves a much lower perplexity on WikiText

(993.5 vs. 300K for RndEmbQK ), indicating that even without explicit mixing, MLP can

memorise or exploit local token statistics, likely unigram or bigram patterns. Introducing

token mixing in a hybrid setup substantially improves NLU performance (e.g. 9.2 average

accuracy points over uniform MLP), showing that mixing in part of the network can compensate

to a degree. Still, the hybrid MLP variant has the highest WikiText perplexity among all

hybrids, indicating that token mixing across all layers is important for fully modeling long-range

dependencies.

Standard mathematical form is important in uniform. When applied uniformly, variants

that retain the core structure of attention (e.g. Approximate, RndEmbQK, FixedSeqQK and

StaticEmbQK ) restore over 92% of the average NLU accuracy of attention. In contrast, Non-

approximate, which discards this structure, performs close to random guess (39.3 vs. 39.9 on

NLU Avg. accuracy). Approximate achieves the strongest results among uniform variants (8.8

higher PPL on WikiText), suggesting that preserving or closely approximating its mathematical

form appears critical for maintaining predictive performance.

Sequence-dependency enhances the generalisation ability. To assess the role of sequence-

dependent attention, we compare variants that retain similar architectures but differ in whether

attention scores vary across inputs. StaticEmbQK, which preserves Sequence-Dependency,

consistently outperforms RndEmbQK and FixedSeqQK, which use fixed attention patterns,

particularly on LAMBADA OPENAI by around 2% higher accuracy. This pattern holds across both

uniform and hybrid settings. Additionally, hybrid models that preserve sequence-dependency,

such as Approximate, StaticEmbQK, and Non-approximate, tend to perform better on global-

context benchmarks. These results suggest that input-specific attention contributes to better

generalisation, even when other attention properties are simplified.

Current QK is not as essential as expected. StaticEmbQK relaxes Current QK. Though it

does not match the PPL of standard across language modeling tasks, it results in PPL of 79.9

twice as high as 38.1 of standard under uniform configuration on WIKITEXT. It also greatly
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outperforms MLP, reducing PPL tenfold (from 993.5 on WIKITEXT), while its predictive

performance is comparable to standard. Moreover, under hybrid configuration, it achieves

predictive performance comparable to standard baseline across all tasks. It indicates Current

QK is not as essential for strong predictive performance as initially believed.

Layer collaboration matters. All hybrid models where simple attention variants are used in

odd layers and standard attention in even layers achieve predictive performance comparable to

Standard attention on both NLU and language modeling tasks. Surprisingly, Non-approximate

attention, the worst performer in the uniform configuration, demonstrates strong performance

in this hybrid setup, slightly surpassing Standard on average NLU accuracy (+1.8%) and

LAMBADA OPENAI accuracy (+0.9%), while reducing PPL by 1.0. The hybrid configuration

also alleviates the relatively higher uncertainty observed with RndEmbQK and FixedSeqQK,

halving their WIKITEXT PPL by incorporating standard layers that aid in grounding attention to

individual inputs. These findings suggest that layers exhibiting poor performance in isolation

can be effective when combined with stronger layers (i.e. standard attention).

Considering the residual connections, which facilitate information flow along a shortcut pathway

bypassing the simple attention alternatives, we further conduct an ablation study to constrain

information flow solely through these residual connections. This involves skipping the non-

Standard layers when pre-training hybrid models (denoted as SKIP in Table 4.1). The results

provide further support to the assumption of layer collaboration. All variants in w/ SKIP perform

even slightly worse than random guessing (i.e. average accuracy lower than 39.9 on NLU)

and further result in PPL explosion in language modeling compared to hybrid by a margin.

This indicates that the non-Standard layers, despite their simplicity or poor performance in

uniform configurations, contribute positively to the overall predictive performance in hybrid

architectures.

4.6 Analysis and Discussion

Attention variants. Non-approximate attention that relaxes standard attention’s Mathematical

Form appears to be the most challenging to train in a uniform configuration. Radar plots in

Figure 4.1 show very low ENTROPY alongside high CONC and HEADDIV, indicating that most

heads place almost all probability mass on a narrow set of mid-sequence tokens. This behaviour

might stem from its monotonically increasing denominators (seeEq. 4.18). This could make

it progressively harder for later tokens in the sequence to attract attention, thereby hindering

effective training in uniform configurations. StaticEmbQK relaxing Current QK coupling,

generally presents active token mixing from Layer 7, however, its mid-layers exhibit high

similarity. Its reliance on static embeddings for attention computation limits its adaptability to
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Figure 4.1: Layer-wise attention indicators for Approx., Non-approx., RndEmbQK, FixedSeqQK

and StaticEmbQK in uniform (top) and hybrid (bottom) configurations, and Standard (H:

ENTROPY, C: CONC, HD: HEADDIV, LF : LOCFOCN , S: SINK).

individual layers, further constraining predictive performance. Approximate and FixedSeqQK,

showing attention patterns most similar to Standard across all layers. However, the performance

of FixedSeqQK generally lags behind Approximate. This is due to FixedSeqQK ’s derivation

of Q and K matrices from a fixed, pre-defined text sequence, which remains constant for all

inputs. Consequently, the model might become prone to simulating this specific text sequence,

thereby compromising its generalisation ability. RndEmbQK attention faces a similar issue to

FixedSeqQK, but suffers additional marginal performance drops, perhaps due to its inability to

encode syntactic information.

Configurations. To illustrate the impact of different configurations, Figure 4.1 shows the

attention patterns of RndEmbQK and Non-approximate variants as representative methods for
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studying the behaviour of different attention variants in uniform and hybrid configurations (see

Figure 4.8 for all layers).

With uniform RndEmbQK (and uniform Standard ), the top-most layers (e.g. layer 22) ex-

hibit high concentration (low ENTROPY and high CONC). This indicates a probability mass

predominated by few selective tokens. In the hybrid design, those same layers become less

selective (higher ENTROPY, lower CONC), leading to a decreased SINK score, suggesting that

the hybrid mix alleviates first-token ‘sink’ effects. In the Non-approximate hybrid model, odd

layers keep the Non-approximate heads while even layers revert to Standard. A clear division of

labour emerges: even (Standard ) layers mirror the baseline, balancing token mixing and focus,

while odd (Non-approximate) layers specialise, either acting as attention sinks (high SINK, low

ENTROPY) or as mean-poolers (high ENTROPY, low CONC). This complementary interplay

compensates for the lower expressiveness of Non-approximate heads observed in the uniform

setting, explaining why the hybrid configuration trains successfully while the uniform one does

not.

Why hybrid works. We investigate the magnitude of raw activations (logits before softmax)

within each RndEmbQK and Non-approximate layer in the hybrid configuration (Figure 4.2).

Our analysis reveals that activations generally exhibit lower magnitudes compared to the uniform

configuration for both attention variants. Notably, the uniform Non-approximate model shows

activation outliers exceeding 103 in the final Transformer layers (e.g. Layer 21). In contrast, the

hybrid configuration maintains activations below 101. This suggests that the Standard layers in

the hybrid architecture might serve as a normalisation mechanism. This normalisation could

mitigate over-concentration and the formation of highly sparse attention matrices, which can

arise from large magnitude outliers during the numerically stable softmax operation. This

normalising effect appears sufficiently strong to rescue models that are otherwise challenging to

train and prone to gradient vanishing (e.g. Non-approximate in the uniform configuration).

Theoretical analysis. Li et al. (2024a) connects Transformer LMs to spin glass models. They

suggest standard attention matrices align with the Gibbs-Boltzmann distribution (Gibbs, 1902),

implying an implicit energy minimisation process with tokens as spins. Input-independent Q

and K or form deviations disrupt this. This perspective provides a theoretical basis for the

performance variations observed in our uniform replacement experiments. While Zhang et al.

(2022) suggests full-rank attention offers maximal flexibility, causal attention can be low-rank

due to stable softmax allowing zeros in diagonals with activation outliers. This supports our

normalisation analysis in hybrid configurations, with Neyshabur et al. (2017)’s observation on

unbalanced network training difficulty.
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Figure 4.2: Distribution of pre-softmax activations for RndEmbQK (left) and Non-approximate

(right) across two different configurations. See Figure 4.6 for all layers.

Model size. We also evaluate all attention variants across models of 70M, 160M, and 500M

parameters. Our main observations remain consistent across these different model sizes. See

section 4.8 for detailed results.

Hybrid configuration ablation. To investigate the impact of replacing subsets of layers

with simpler attention mechanisms, we consider nine different configurations. These focus on

different segments of a 24-layer architecture of the 500M model: (1) even or 50% configuration,

where even-numbered layers retain standard attention while odd-numbered layers are replaced;

(2) odd configuration, with the reverse arrangement; (3) top configuration, where the upper

layers (13-24) employ the simpler attention mechanism; (4) middle configuration, targeting the

middle layers (7-18); (5) bottom configuration, focusing on the initial layers (1-6); (6) 25%,

replacing layers except Layer 4,8,12,16,20,24 with simpler attention; (7) first, replacing all

layers with simpler attention except the first layer; (8) last, replacing all layers with simpler

attention except the last layer; (9) bilateral, replacing all layers with simpler attention except

Layer 1 and 24. See Table 4.11 in section 4.23 for details.

Figure 4.3 presents the predictive performance using these nine settings. For both RndEmbQK

and Non-approximate mechanisms, the difference in performance across these hybrid configura-

tions is marginal (e.g. all with a PPL around 40.0 on WIKITEXT). However, this observation

does not generalise to extreme settings, such as employing Standard attention in only the first or

the last layer. For RndEmbQK attention, the predictive performance remains comparable to

Standard if only the last layer (or layers at both ends) uses Standard. Nevertheless, its accuracy

on LAMBADA OPENAI drops to zero in such extreme cases. For Non-approximate attention,
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Figure 4.3: Performance of RndEmbQK and Non-approximate across nine hybrid configurations.

The vertical dotted lines represent the Standard baseline.

using Standard attention mechanism only in the last layer greatly harms performance, leading to

PPL exceeding 400 on WIKITEXT. This indicates that the normalisation strength provided by a

single Standard layer is limited. Therefore, in extreme hybrid settings where we can afford only

one or two Standard layers, we should choose a substitute that still respects the main design

principles presented in the uniform setting (i.e. a stronger lightweight attention). Conversely,

if the compute budget allows using even a small fraction of Standard transformer layers (e.g.

25%), we can safely replace the remainder with a much simpler mechanism and still maintain

competitive accuracy.

4.7 Conclusion

We systematically relax core design principles in a controlled setting, offering the first principled

framework for assessing which aspects of attention are truly foundational and which can be

safely simplified in language modeling. Our findings reveal that adhering to standard attention

design principles varies between uniform and hybrid architectures. Token mixing and following

the mathematical form are crucial for attention alternatives when applied uniformly, but not

necessary for hybrid. Strategically integrating a few standard attention layers within LMs can

greatly improve, even overcome, the limitations of less powerful attention mechanisms. This is

likely due to the inherent normalisation of standard attention, fostering training stability.
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Limitations

We performed experiments using a maximum model size of 500M parameters and a pretraining

budget of 15B tokens, using a monolingual tokeniser and vocabulary, similar to Allal et al.

(2025); Poli et al. (2023). While experimenting with larger models and different model families

presents interesting avenues for future work, we believe that the current scope sufficiently

supports our conclusions regarding the relative effectiveness of different attention designs.
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Figure 4.4: Predictive performance of 70M parameters (small dots), 160M parameters (medium

dots), and 500M parameters (large dots) models with different attention mechanisms and

configurations on WIKITEXT, ARC-E, and SCIQ.

4.8 Appendix A: Experiments with Different Model Sizes

To assess the impact of model size, we evaluate all attention mechanisms across models with

approximately 70M, 160M, and 500M parameters. Figure 4.4 illustrates the predictive perfor-

mance of these models on the WIKITEXT, ARC-E, and SCIQ datasets. Our results indicate

that the predictive performance of LMs with a hybrid configuration consistently improves with

increasing model size. For instance, the accuracy of the Non-approximate method on ARC-E

improves from 34.3 to 42.3 when increasing the model size from 70M to 500M. Furthermore, all

attention mechanisms incorporating token mixing achieve predictive performance comparable

to a same-sized model employing standard attention (indicated by the vertical dotted lines in

Figure 4.4). For RndEmbQK, such performance gap on WIKITEXT PPL is even within 1.2

across all sizes. This trend suggests that our observations may generalise to larger models.

To further investigate the immediate generalizability of our findings, we further pretrain a

larger model (Yang et al., 2025a, Qwen3-1.7b-Base) from scratch on 45 billion tokens with

Standard and our proposed RndEmbQK and Non-approximate variants in both uniform and

hybrid configurations. Table 4.2 presents their performance on NLU and LM tasks. We find

both RndEmbQK and Non-apx. under hybrid configuration, achieve performance comparable

to Standard across all downstream tasks, which is consistent to our observation on models with

modest scales. However, different to the model with 500M parameters, Non-approximate under

uniform configuration successfully converges. This is because Qwen3 incorporates RSMNorm

above the queries and key in its attention module. This normalisation helps to alleviate the
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ARC-E BoolQ COPA PiQA SciQ RTE HellaSwag Avg. Wiki LAMBADA

acc↑ acc↑ acc↑ acc↑ acc↑ acc↑ acc↑ acc↑ ppl↓ ppl↓ acc↑

Rnd. Guess 25.00.0 50.00.0 50.00.0 50.00.0 25.00.0 50.00.0 25.00.0 39.9 3E+5 3E+6 0.00.0

Majority 25.70.0 62.20.0 56.00.0 50.50.0 25.00.0 52.70.0 25.00.0 39.9 - - -

Standard 44.61.0 56.40.9 64.04.8 64.01.1 67.31.5 52.73.0 30.50.5 54.2 27.6 60.0 28.90.6

U
N

I. Non-apx. 41.01.0 61.90.9 58.05.0 59.51.2 56.91.6 52.43.0 27.80.5 51.1 67.3 619.6 8.10.4

RndEmbQK 44.41.0 50.20.9 60.04.9 62.41.1 56.31.6 54.93.0 28.60.5 51.0 54.9 1872.8 3.80.3

H
Y

B
. Non-apx. 45.01.0 58.10.9 65.04.8 63.41.1 66.21.5 53.13.0 30.20.5 54.4 29.9 77.4 26.80.6

RndEmbQK 45.41.0 57.00.9 67.04.7 64.51.1 65.51.5 55.23.0 30.40.5 55.0 28.0 61.6 29.80.6

Table 4.2: Performance of uniform, hybrid and standard models (1.7B). Blue (Non-

apx.) and green (RndEmbQK) denote variants that relax Mathematical Form, and

Sequence-Dependency, respectively. ↑ and ↓ denote that higher and lower values are pre-

ferred, respectively.

potential for pre-softmax attention activations to explode, but it is less effective than using several

standard layers, as it restricts the length of query and key vectors, narrowing the adaptable range

for raw pre-softmax activations.

4.9 Appendix B: Grouped-query Attention Ablation

To confirm the generality of our main investigations, we also trained 500M parameter versions

of the Standard, Non-approximate, and RndEmbQK models using the grouped-query attention

configuration. These models are trained on the same 15 billion tokens, with precisely matched

parameter counts. We observe that the results on downstream tasks remain consistent across

both the multi-head attention and grouped-query attention configurations. Their performance on

both NLU and LM tasks is detailed in Table 4.3.

4.10 Appendix C: Robustness to Context Length

Table 4.4 illustrates the perplexity scores of the UNIFORM, HYBRID and standard models on

WIKITEXT dataset. These models were evaluated across various contextual lengths (128, 256,

512, 1024, and 2048 tokens), all while being trained on a maximum sequence length of 2048

tokens. The results clearly show that models incorporating token mixing achieve lower perplexity

scores with longer contexts. This indicates their ability to capture more contextual information

for predicting the next token. Furthermore, under the hybrid configuration, the perplexity

scores for the RndEmbQK, FixedSeqQK, StaticEmbQK, Approximate and Non-approximate

attention mechanisms consistently match those of the standard model on WIKITEXT, regardless

of contextual length.
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ARC-E BoolQ COPA PiQA SciQ RTE HellaSwag Avg. Wiki LAMBADA

acc↑ acc↑ acc↑ acc↑ acc↑ acc↑ acc↑ acc↑ ppl↓ ppl↓ acc↑

Rnd. Guess 25.00.0 50.00.0 50.00.0 50.00.0 25.00.0 50.00.0 25.00.0 39.9 3E+5 3E+6 0.00.0

Majority 25.70.0 62.20.0 56.00.0 50.50.0 25.00.0 52.70.0 25.00.0 39.9 - - -

Standard 39.41.0 49.60.9 60.05.0 62.21.1 59.31.6 51.63.0 28.10.5 50.0 38.6 154.0 22.90.6
U

N
I. Non-apx. 26.80.9 37.80.8 52.05.0 52.01.2 20.31.3 52.73.0 25.90.4 38.2 5466.8 2E+6 0.00.0

RndEmbQK 37.91.0 53.20.9 56.05.0 58.31.2 46.71.6 52.73.0 27.20.4 47.4 84.6 6462.7 12.40.2

H
Y

B
. Non-apx. 40.71.0 44.60.9 67.05.0 61.31.1 61.51.5 52.43.0 28.30.5 50.8 38.1 133.1 23.40.6

RndEmbQK 40.11.0 45.80.9 63.04.9 61.31.1 61.81.5 52.73.0 28.30.5 50.4 39.3 138.6 23.60.6

Table 4.3: Performance of uniform, hybrid and standard models (500m) using grouped-query

attention. Blue (Non-apx.) and green (RndEmbQK) denote variants that relax Mathematical

Form, and Sequence-Dependency, respectively. ↑ and ↓ denote that higher and lower values

are preferred, respectively.

PPL↓ length 128 256 512 1024 2048

Standard 69.9 56.2 47.8 42.0 38.1

U
N

IF
O

R
M

MLP 993.5 993.5 993.5 993.5 993.5

Approx. 81.7 66.4 57.2 51.2 47.9

Non-apx. 10023.7 9476.8 9173.5 9064.8 9025.9

RndEmbQK 107.1 95.7 89.6 86.3 84.8

FixedSeqQK 100.5 89.6 83.6 80.6 79.1

StaticEmbQK 104.8 92.2 85.5 81.7 79.9

H
Y

B
R

ID

MLP 81.3 66.4 57.0 50.3 45.8

Approx. 71.8 57.8 49.3 43.4 39.4

Non-apx. 69.0 56.0 48.0 42.5 39.4

RndEmbQK 72.4 58.1 49.4 43.4 39.3

FixedSeqQK 69.0 56.0 48.0 42.3 38.5

StaticEmbQK 70.1 56.6 48.4 42.6 38.7

Table 4.4: Perplexities of uniform, hybrid and standard models (500M) on WIKITEXT across

different context lengths. ↑ and ↓ denote that higher and lower values are preferred, respectively.

4.11 Appendix D: Characteristics of Different Simpler Attentions

Unlike previous work that primarily focused on reducing computational time complexity to sub-

quadratic with respect to contextual sequence length, we define “simpler attention” more broadly.

This encompasses mechanisms that reduce time complexity concerning any factor: inference

batch size, sequence length, or hidden dimension. Below, we systematically summarise the

characteristics of the different simpler attention mechanisms we investigated.
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RndEmbQK and FixedSeqQK. These mechanisms create global static attention graphs

during inference. This approach reduces the computational time complexity and cache size

within attention while enabling batched decoding (see section 4.12 and 4.15).

StaticEmbQK. Inspired by cross-layer attention sharing (Rajabzadeh et al., 2024; Xiao et al.,

2019), this mechanism primarily captures semantic similarities between input tokens without

contextualization. It establishes an upper bound for broadcasting attention matrices from initial

layers to all subsequent layers by aligning its parameter count with standard attention. While

StaticEmbQK attention does not explicitly reduce computational time complexity, it allows for

system optimisation by computing attention scores asynchronously. This enables scores to be

prefetched before sequentially retrieving output hidden states from each layer.

Approximate and Non-approximate. These attention mechanisms result in time complexities

linear to sequence length. Their recurrent forms are detailed in section 4.16. Non-approximate

can further reduce the activation memory, cache size, and floating-point operations per iter-

ation (FLOPs/it) required for large LMs during the decode stage, offering advantages over

Approximate. The details for these reductions are provided in Appendices 4.14, 4.15, and 4.13,

respectively.

4.12 Appendix E: Time Complexities in Attention Computation

Table 4.5 details the computational time complexity for a single forward pass, explicitly exclud-

ing any caching mechanisms. For RndEmbQK and FixedSeqQK attention, which employ global

attention scores, the floating-operations could be further reduced to through pre-computation

and subsequent caching of these scores (see section 4.13). This optimisation would free up

computational resources, enabling further software-level enhancements such as coordinating

CPUs and GPUs to pre-fetch the pre-calculated attention scores. While StaticEmbQK does

not inherently offer a lower computational time complexity, it provides an upper bound for

pre-computing attention scores on static embeddings by aligning the number of parameters. If at-

tention scores on static embeddings are pre-computed, the computational time complexity would

be reduced by O
(
(l − 1) · (BL2d+BLd2)

)
in total, where l represents the total number of

Transformer layers. Furthermore, an attention mechanism that supports pre-computation offers

the potential to proactively evict values, which could lead to further reductions in computation,

particularly if the attention matrices exhibit sparsity.
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Attention Complexity O(.)↓

Standard BL2d + BLd2

MLP BLd2

Approx. BLd2

Non-apx. BLd2

RndEmbQK BL2d + BLd2

FixedSeqQK BL2d + BLd2

StaticEmbQK BL2d + BLd2

Table 4.5: Details of time complexities for each attention across all attention variants, where h

denotes the number of attention heads, B denotes the batch size, L denotes the input sequence

length, d denotes the hidden dimension. We assume d = h × dh, where h is the number of

attention heads and dh is the dimension of each attention head. We also ignore those low-order

terms for element-wise activations and scaling factors with a O(BLd) complexity. ↑ and ↓
denote that higher and lower values are preferred, respectively.

4.13 Appendix F: Floating-point Operations per Token

Table 4.6 details the floating-point operations per iteration (FLOP/it) for inference with the

cache enabled. We focus solely on General Matrix Multiplications (GEMMs) (Narayanan et al.,

2021, GEMMs), as they are the dominant contributors to the total floating-point operations.

Non-approximate achieves a low FLOP/it, equivalent to that of the simplest MLP model,

because it leverages vectors instead of the matrices employed by the Approximate method for

state tracking. This structural difference significantly reduces the number of GEMMs required.

Furthermore, if RndEmbQK and FixedSeqQK are allowed to use pre-computed global attention

scores, their FLOP/it can be further reduced. During the prefill stage, the operations drop to

2L2d+ 2BLd2 and 2BLd+ 2d2 during prefill and decode stage respectively.

4.14 Appendix G: Activation Memory Required for Attention Com-

putation

We detail the activation memory required for half-precision training in Table 4.7. Unlike the full

recomputation method mentioned in Smith et al. (2022), our approach incorporates sequence

parallelism following Korthikanti et al. (2023). We find that RndEmbQk and FixedSqeQK are

effective at reducing activation memory, particularly when using a substantially large batch

size. Furthermore, both Approximate and Non-approximate enhance memory efficiency for
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Attention Prefill↓ Decode↓

Standard 4BL2d + 6BLd2 6Bd2 + 4BLd

MLP 6BLd2 6Bd2

Approx. 14BLd2 10Bd2

Non-apx. 6BLd2 6Bd2

RndEmbQK 2L2d + 2BL2d + 6BLd2 2Ld + 2BLd + 6Bd2

FixedSeqQK 2L2d + 2BL2d + 6BLd2 2Ld + 2BLd + 6Bd2

StaticEmbQK 4BL2d + 6BLd2 6Bd2 + 4BLd

Table 4.6: Details of floating-point operations per iteration for each attention across all attention

variants, where h denotes the number of attention heads, B denotes the batch size, L denotes

the input sequence length, d denotes the hidden dimension. We assume d = h× dh, where h is

the number of attention heads and dh is the dimension of each attention head. ↑ and ↓ denote

that higher and lower values are preferred, respectively.

Attention Activation memory↓

Standard (8BLd + 2BL2h)/t

MLP 8BLd/t

Approx. 11BLd/t + 3Bd2/ht

Non-apx. (8BLd + 4BLh)/t

RndEmbQK (4BLd + 8Ld + 2L2h)/t

FixedSeqQK (4BLd + 8Ld + 2L2h/)t

StaticEmbQK (8BLd + 2BL2h)/t

Table 4.7: Details of activation memory for each attention across all attention variants, where h

denotes the number of attention heads, B denotes the batch size, L denotes the input sequence

length, d denotes the hidden dimension, t denotes the tensor parallel size. We assume d = h×dh,

where h is the number of attention heads and dh is the dimension of each attention head. We

ignore the attention dropout here. ↑ and ↓ denote that higher and lower values are preferred,

respectively.

long-context processing. Non-approximate offers a superior reduction in activation memory

compared to Approximate, especially for large LMs characterised by a relatively large hidden

state dimension.



4.15. Appendix H: Cache Size Required for Inference 79

Attention Cache Size for Inference↓

Standard 4BLd

MLP 0

Approx. 6Bd + 4Bd2/h

Non-apx. 2Bd + 4Bh

RndEmbQK 2(B + 1)Ld

FixedSeqQK 2(B + 1)Ld

StaticEmbQK 4BLd

Table 4.8: Details of cache size (in bytes) per layer across all attention variants required during

inference, where h denotes the number of attention heads, B denotes the batch size, L denotes

the context length, d denotes the hidden dimension. We assume d = h × dh, where h is the

number of attention heads and dh is the dimension of each attention head. ↑ and ↓ denote that

higher and lower values are preferred, respectively.

4.15 Appendix H: Cache Size Required for Inference

Table 4.8 presents the cache size required for half-precision inference. Both the Approximate

and Non-approximate variants allow the cache size to be independent of the context sequence

length. Meanwhile, RndEmbQk and FixedSeqQK can reduce the cache size by nearly half by

sharing the same set of keys within the same batch, provided the batch size is sufficiently large. It

is also important to note that RndEmbQK and FixedSeqQk enable a cache size further optimised

to (2L + δ)δ. This can be achieved by using a dynamic cache and prefetching the attention

scores for the next δ steps into a buffer, given that the attention matrices are independent of the

inputs.

4.16 Appendix I: Recurrent Form of Linear Attentions

The recurrent form of the Approximate attention computation, derived from Eq. 4.6, is presented

in Eq. 4.17. Similarly, Eq. 4.18 shows the recurrent form of the Non-approximate attention

computation, originating from Eq. 4.7. As detailed in Table 4.5, the Approximate attention

mechanism necessitates the computation of recursions for both first-order and second-order

terms in the Taylor expansion, resulting in a higher time complexity compared to the Non-

approximate approach. A key characteristic of Oi in Eq. 4.18 is that its denominator strictly

increases with the index i. Notably, as i grows along the sequence, the attention score for the ith

token, given by eqik
⊤
i vi∑i−1

j=1 e
qjk

⊤
j +eqik

⊤
i

, becomes progressively more challenging to increase.
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Hyperparameters in Pretraining

Maximum train steps 120000

Batch size (in total) 256 instances

Adam epsilon 1e-8

Adam β1 0.9

Adam β2 0.9999

Sequence length 2048

Peak learning rate 4e-4 (3e-4 for Qwen3-1.7B)

Learning rate schedule CosineLRScheduler

Number of cycles in scheduler 0.5

Warmup steps 2000 (1B tokens)

Weight decay 0.1

Max gradient norm clip value 1.0

Table 4.9: Details of hyperparameters used in pre-training.

oi = o0i + o1i + o2i (4.14)

o0i =

∑i−1
j=1 vj + vi

i
(4.15)

o1i =
qi

(∑i−1
j=1 k

⊤
j vj + k⊤i vi

)
qi

(∑i−1
j=1 k

⊤
j + k⊤i

) (4.16)

o2i =

q2i√
2

(∑i−1
j=1(

k2j√
2
)⊤vj + (

k2i√
2
)⊤vi

)
q2i√
2

(∑i−1
j=1(

k2j√
2
)⊤ + (

k2i√
2
)⊤

) (4.17)

oi =

∑i−1
j=1 e

qjk
⊤
j vj + eqik

⊤
i vi∑i−1

j=1 e
qjk⊤j + eqik

⊤
i

(4.18)

4.17 Appendix J: Hyperparameters

The hyperparameters used in pre-training are listed in Table 4.9.

4.18 Appendix K: Training Loss across all Attention Mechanisms

Figure 4.5 presents the loss curves across all model variants and sizes, while training for 15B

tokens.

4.19 Appendix L: Model Configurations for Different Sizes

Table 4.10 presents the detailed configurations of models across various sizes (70M, 160M and

500M and 1.7B).
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(a) Training loss across models with 70M parameters

(b) Training loss across models with 160M parame-

ters

(c) Training loss across models with 500M parame-

ters

Figure 4.5: Training loss across all model variants with three different sizes.
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Model Size 70M 160M 500M 1.7B

Hidden Size 512 768 896 2048

Intermediate Size 2048 3072 4864 6144

Num of Hidden Layers 6 12 24 28

Max Window Layers 6 12 24 28

Num of Attention Heads 8 12 14 16

Num of Key Value Heads 8 12 14 16

Table 4.10: Details of model configurations for different sizes.

Figure 4.6: Distribution of raw logits in the pre-softmax activations for RndEmbQK (left) and

Non-approximate (right) attention mechanisms in both uniform and hybrid configurations.

4.20 Appendix M: Distribution of Raw Logits

Figure 4.6 (the full version of Figure 4.2) exhibits the magnitude of pre-softmax activations

within each 24-layer (500M) RndEmbQK and Non-approximate layer in the hybrid configura-

tion.

4.21 Appendix N: Attention Characteristics from All Layers across

Attention Variants

Figure 4.7, the full version of the left subfigure in Figure 4.1), exhibits attention character-

stics from all 24 layers across Standard attention and five attention variants - RndEmbQK,

FixedSeqQK, StaticEmbQK, Approximate and Non-approximate.

4.22 Appendix O: Attention Characteristics from All Layers across

Configurations

Figure 4.8, the full version of the right subfigure in Figure 4.1, exhibits attention characteristics

from all 24 layers across Standard and two representative attention variants - Approximate and

Non-approximate in both uniform and hybrid configurations.
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Figure 4.7: Visualization of attention matrix characteristics across different layers for Approxi-

mate, Non-approximate, RndEmbQK, FixedSeqQK and StaticEmbQK, and their hybrid variants,

compared to Standard (H: ENTROPY, C: CONC, HD: HEADDIV, LF : LOCFOCN , S: SINK).

4.23 Appendix P: Model Configurations for Ablation Study

Table 4.11 details nine distinct hybrid architectures, as discussed in § 4.6, for 24-layer model

variants with approximately 500 million parameters.
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Figure 4.8: Visualization of attention matrix characteristics across different layers for Non-

approximate and RndEmbQK, and their hybrid variants, compared to Standard (H: ENTROPY,

C: CONC, HD: HEADDIV, LF : LOCFOCN , S: SINK).

Config Standard Layer IDs

even (50%) {2,4,6,8,10,12,14,16,18,20,22,24}

odd {1,3,5,7,9,11,13,15,17,19,21,23}

top {1,2,3,4,5,6,7,8,9,10,11,12}

middle {1,2,3,4,5,6,19,20,21,22,23,24}

bottom {13,14,15,16,17,18,19,20,21,22,23,24}

25% {4,8,12,16,20,24}

first {1}

last {24}

bilteral {1,24}

Table 4.11: Details of model configurations for ablation study.
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Conclusion

This thesis explored efficient methods for Transformer-based language models by optimising

their classic components to test the reducibility of each. Through three empirical studies, each

targeting a specific component, we developed novel approaches that will guide the design and

optimisation of future language model architectures.

In Chapter 2, we introduced HASHFORMERS, a new family of pre-trained transformers that are

vocabulary-independent. This allows them to handle an unlimited vocabulary (i.e. all possible

tokens in a corpus) using a much smaller, fixed-size embedding matrix. In addition to proposing

computationally cheap hashing functions that group individual tokens into embeddings, we

developed three variants that eliminate the need for an embedding matrix entirely, which further

reduces memory requirements. Our empirical results showed that HASHFORMERS are more

memory-efficient than standard pre-trained transformers, all while maintaining comparable

predictive performance when fine-tuned on various text classification tasks. Our findings later

inspired work by Deiseroth et al. (2024) on creating subword tokeniser-free generative language

models.

Chapter 3 shifted to explore a method for reducing parameter redundancy across multiple

subspaces for generating multiple attention heads. Inspired by the superposition principle in

Quantum Mechanics, we analogised both the token representations at different positions and the

hidden states from different attention heads as quantum superpositions. This analogy led us to

hypothesise that the multi-head attention (MHA) mechanism in a transformer-based language

model could be improved by using a more parameter-efficient method. Instead of head-wise

projections, we proposed a novel approach that replaces them with a set of combinations

between a single “seed state” and different head-wise states, allowing for a more efficient MHA

mechanism. Our proposed method is substantially more memory-efficient than other MHA

alternatives while maintaining high predictive performance on various downstream tasks. It
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requires only a negligible number of additional parameters compared to the standard MHA.

For context, IA3 (Liu et al., 2022), an earlier work, also used head-wise embeddings, but for

incremental parameter-efficient fine-tuning. Similarly, GQA (Ainslie et al., 2023a), a concurrent

and highly cited work with a similar goal, grouped several different query heads to share a single

key-value pair, but this approach requires a larger parameter count.

Finally, Chapter 4 delves into the form of the token mixer within the attention mechanism of

transformer-based language models. We deconstructed the standard dot-product attention, ab-

stracting four key design principles: mixing information across positions, sequence-dependency,

a specific mathematical form, and the coupling of queries and keys to evolving hidden states.

To test the necessity of each principle, we systematically relaxed them, applying these changes

both uniformly across all layers and in hybrid architectures. Our empirical results show that

mechanisms for mixing tokens are indispensable; their absence causes models to perform near-

randomly. However, the exact mathematical form and sequence dependency can be significantly

relaxed, particularly when a subset of layers retains the standard attention mechanism. Inter-

estingly, we also found that variants which fail on their own can achieve robust performance

when interleaved with standard attention, highlighting a cooperative effect. We anticipate that

our findings will deepen the understanding of what truly underpins attention’s effectiveness and

pave the way for simplifying language models without sacrificing performance in the future.

From these three studies, several overarching insights emerge:

• Embedding layers in encoder-only language models can be greatly compressed with

only minor performance degradation on downstream tasks. Projection-based embedding

compression using techniques like multihashing is generally more effective than simply

sharing entire embedding vectors across different tokens. The model’s capabilities could

be further enhanced by incorporating better feature extraction for the hashing process.

Decoupling the pre-training objective from a vocabulary-dependent token ID prediction

is a crucial step that enables this training approach.

• The commonalities among different model components allow developers to apply lessons

learned from one design to optimise others, taking our multiple head embeddings (Xue

and Aletras, 2023) as an example. This work also indicates that using different linear

projections to generate multiple subspaces is an inefficient approach. This suggests

that there is an opportunity for optimisation by leveraging element-wise operations and

parameter sharing instead.

• A “deconstructionist” approach offers new guidance for model design by blurring the

traditional boundaries between model types (e.g., attention-based, graph-based, or recur-

rent). By abstracting deeper, more fundamental attributes from a component’s surface
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form and systematically investigating them through controlled experiments, we can better

understand its core design principles and guide future optimisations.

This thesis introduces several promising areas for future research:

• New pre-training objectives for decoder-only models. Pre-training for decoder-only

models, which typically involves next-token prediction, is not compatible with non-

bijective hashing functions. This is because these functions prevent the model’s outputs

from being accurately mapped back to their original tokens. Therefore, a new pre-training

objective should be designed to accommodate hash-indexed or encrypted tokens, allowing

for more efficient language modeling.

• Re-evaluating the need for tokenisation. The hashing process used in HASHFORMERS

can be viewed as an unlearned form of multi-bit quantisation, with the learnable projection

in the embedding layer acting as de-quantisation. If unlearned hashing is replaced with a

shallow neural network for feature extraction, tokenisation might become a redundant

step. This suggests that tokenisation could be more efficiently integrated directly into the

neural network architecture.

• Leveraging design principles across network components. Our research demonstrates

the value of applying design principles from one network component to another, as seen in

our use of absolute position embeddings to optimise the multi-head attention mechanism.

There is significant potential to further explore this approach. Recent advancements in

attention mechanisms, layer normalisation, and feed-forward layers offer valuable insights

that might be transferred to optimise other parts of the network architecture.

• Exploring Hybrid Attention Architectures. Our findings suggest that a hybrid approach

combining different attention variants can maintain predictive performance. Keeping a

few standard attention layers within the model is crucial for this. Given that input lengths

vary, a promising future direction is to design efficient language models that integrate

attention variants optimised for specific characteristics, such as context length, batch size,

hidden dimensions, and cross-device coordination.

• Building More Efficient Multilingual Language Models. Our findings highlight promis-

ing optimisation strategies for multilingual training and inference. To address the over-

segmentation issues common in models with constrained embedding memory, adopting

a coarser-grained tokeniser (such as a full-word tokeniser) can improve both memory

efficiency and inference speed by reducing sequence lengths for low-resource languages.

Alternatively, efficiency can be improved through hybrid architectures. By integrat-

ing memory-efficient linear attention mechanisms, models can more effectively process

(i.e. encode and decode) the long sequences generated by fine-grained (e.g., byte-level)
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tokenisers.
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