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Abstract 
 

Burkholderia pseudomallei is a Gram negative bacterial pathogen and the causative agent 

of melioidosis, which is the third most frequent cause of death from infectious disease in 

Northeastern Thailand and also highly endemic in Southeast Asia and Northern Australia. 

Problems of melioidosis management include misdiagnosis and the increasing resistance 

of the bacteria to the current anti-infective treatment, resulting in high mortality and 

having a global impact as a potential bioweapon. Little is known about the ambiguous 

pathogenesis and virulence mechanisms of B. pseudomallei infection. One way to gain 

understanding is through the investigation of the structure/function relationships of 

potential target proteins, as a starting point for a rational drug discovery programme. 

Structural studies on the target proteins of B. pseudomallei can shed light on their 

biological functions at the molecular level. 

 

This thesis presents the structural studies on immunogenic proteins of B. pseudomallei as 

part of a targeted structural genomics programme on B. pseudomallei. Seven target genes 

were selected from lists of putative essential genes and also identified B. pseudomallei 

proteins that elicit an immuno cross reactivity to the sera of infected humans, which may 

be involved in virulence and/or pathogenicity of B. pseudomallei. Of those, BPSL0606, 

an uncharacterised protein, was cloned, over-expressed, purified, and crystallised. The 

first crystal structure of BPSL0606 was determined and revealed that it is structurally 

similar to the GCN5-related N-acetyltransferase (GNAT) superfamily. Dimer formation 

in the crystal packing agreed with gel filtration analysis and the interface of BPSL0606 

was similar to many GNAT members. Structure-based alignment of BPSL0606 against 

known structures of GNATs showed that BPSL0606 has conserved residues that are 

involved in the binding of acetyl coenzyme A in members of GNATs, suggesting that 

BPSL0606 may bind the acetyl coenzyme A. Although co-crystallization of BPSL0606 

and acetyl coenzyme A and ligand observation by nuclear magnetic resonance suggested 

that BPSL0606 did not bind to the acetyl coenzyme A. Analysis of the aminoglycoside 

binding site indicated that BPSL0606 could possibly bind to this substrate. The 

BPSL0606 structure with acetyl coenzyme A and kanamycin was modelled, proposing a 

possible clue related to the antibiotic resistance. The findings in this PhD thesis provide 

the molecular and structural information of B. pseudomallei proteins, which could 

contribute to further investigations.   
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Chapter 1: Introduction 
 

 

Despite the prevalence of antibiotics and immunisation regimes, infectious 

diseases retain their ability to kill and thus understanding their pathogenicity has 

important implications for human health. Melioidosis is one such infectious 

disease and is endemic in Southeast Asia and northern Australia (Currie et al, 

2008). The mortality of melioidosis is about 50% and 19% in northeast Thailand 

and northern Australia, respectively (Peacock, 2006). In northeast Thailand, 

melioidosis is currently the third most common cause of death from infectious 

diseases after HIV/AIDS and tuberculosis (Limmathurotsakul et al, 2010). The 

causative agent of melioidosis is a Gram-negative bacterial pathogen, 

Burkholderia pseudomallei (White, 2003).   

 

 

In addition, an anthrax attack in the United States in 2001, caused by 

contamination by bacterial spores of Bacillus anthracis, has raised public 

awareness of health security, and in particular the threat of bioterrorism (Pfeiffer, 

2009). Due to the high mortality of B. pseudomallei infections and its persistence 

in soil and ground water, the bacteria has the potential to be used as a bioweapon. 

Harmful and serious disease causing microorganisms have been categorised by 

the Centers for Disease Control and Prevention (CDC) and B. pseudomallei is 

listed as a category B bioterrorism agent (Rotz et al, 2002). Indeed, the closely 

related bacteria, B. mallei, which causes the disease glanders, primarily found in 

horses and also affecting other animals and humans, was successfully used as a 

biological weapon during World War I by infecting livestock for export to Allied 

forces (Hawley & Eitzen, 2001). 
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1.1. Microbiological aspect of B. pseudomallei 

B. pseudomallei is a non spore forming, bacillus-like, motile, aerobic bacterium. It 

is also a soil-dwelling saprophyte and frequently found in drenched rice paddy 

fields in endemic regions of melioidosis (White, 2003). Unlike other Burkholderia 

species, it is oxidase positive and capable of arabinose assimilation (Cheng & 

Currie, 2005).  Ashdown’s selective agar (Ashdown, 1979) is typically used in 

order to isolate and grow B. pseudomallei from clinical specimens (Cheng et al, 

2006). Various types of colony morphology of B. pseudomallei have been 

observed and the association of morphotype and phenotype changes was 

demonstrated by Chantratita et al (2007a). Seven unique colony morphotypes 

have been identified according to its surface texture of the colony center, outer 

edge of colony, surface roughness in outer half of colony, colony diameter and 

colony color (Figure 1.1). 

 

 

 
Figure 1.1 Photographs showing the variation of colony morphotypes of B. 

pseudomallei grown on Ashdown’s selective media. Approximately 75% of 

clinical samples from melioidodsis patients are found as type I colonies, which 

has a rough texture at the center and is irregular in the outer edge, with a pale 

purple colour. This figure is adapted from Stone (2007). 
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B. pseudomallei has the ability to survive in different harsh environmental 

conditions including low moisture content soil, acidic environments, the presence 

of detergents (Cheng & Currie, 2005) and even a lack of nutrients (Wuthiekanun 

et al, 1995). It can also survive in distilled water for at least 16 years (Pumpuang 

et al, 2011). A study of B. pseudomallei survival in water showed that a putative 

membrane protein, BPSL0721, which was up regulated, may be involved in the 

adaptation for surviving in an aqueous environment. However, this gene is not 

essential for survival as the BPSL0721 deficient mutant was still able to survive in 

water (Moore et al, 2008). The effect of chemical and physical environments on 

B. pseudomallei survival and persistence has been reviewed by Inglis & 

Sagripanti (2006). B. pseudomallei can survive in various conditions of  high 

water content, pH changes, osmotic pressure and chemical stress, but is less 

tolerant to ultra-violet light exposure. Another factor that influences disease 

outbreaks is the weather conditions, with many cases of melioidosis occurring in 

the rainy season (Wiersinga et al, 2006). As B. pseudomallei is susceptible to 

ultraviolet light (Sagripanti et al, 2009), this may explain the relatively low 

incidence of melioidosis during the dry season when natural sunlight levels are 

very high. 

 

 

1.2. Geographical distribution of melioidosis 

The traditionally recognised endemic areas of melioidosis are approximately the 

tropical latitudes between 20°N and 20°S (Cheng & Currie, 2005). The hyper-

endemic region includes northeast Thailand, northern Australia, Singapore and 

parts of Malaysia (Figure 1.2). Recently, the endemic zone has been extended to 

cover Papua New Guinea, the Indian subcontinent, southern China, Hong Kong 

and Taiwan. In addition, sporadic cases have been reported from both the 

Americas and Africa (Currie et al, 2008). International travel makes B. 

pseudomallei infection and melioidosis an increasing global concern. 
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Figure 1.2 The worldwide distribution map of B. pseudomallei and melioidosis. 

Major zones of endemic disease are colored in red, whereas yellow areas 

represent the spread of melioidosis. This figure is taken from Currie et al (2008).  

 

 

1.3. Clinical presentation 

Melioidosis can be acquired by percutaneous inoculation, inhalation or ingestion, 

with inoculation thought to be the major route for disease infection (Wiersinga et 

al, 2006). The latency period can last from a few days to up to 62 years and 

clinical features may vary from an asymptomatic state, to acute or chronic lung 

infection, or to overwhelming septicemia (Woods et al, 1999). Apart from the 

lung, which is the most commonly affected organ, skin infections, bone and join 

infections, liver and spleen abscesses, genio-urinary infection and brain abscess 

can be found as clinical symptoms of melioidosis (Figure 1.3). A variation in the 

clinical pattern of melioidosis in Australia, Thailand, Singapore and Malaysia has 

been observed (Cheng & Currie, 2005). Misdiagnosis of this disease frequently 

occurs due to its polymorphic symptoms, which are similar to other lung 

infections, and B. pseudomallei is recognised as “the great mimicker” (Stone, 

2007). 
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Figure 1.3 An illustration of clinical presentations of melioidosis: Melioidosis 

sepsis is associated with the bacterial dissemination to principle organs such as 

the lungs, liver and spleen, as well as the central nervous system (CNS). This 

figure is taken from Wiersinga et al (2006). 

 

 

If the primary infection is survived, a major cause of morbidity and mortality is 

recurring melioidosis. The re-occurrence is about 6% in the first year and 13% 

throughout 10 years of medical follow-up (Peacock, 2006). Interestingly, 25% of 

recurrent cases were re-infection by different strains, which could imply differing 

levels of response to antibiotics within the strains (Maharjan et al, 2005). A study 

of clinical risk factors showed that 12-16 weeks of antibiotic treatment in 

melioidosis patients decreased risk of relapse, compared to those who were 

treated for 8 weeks or less (Limmathurotsakul et al, 2006). Different proteins 

expressed from B. pseudomallei isolated during primary and relapsing melioidosis 

have been identified using proteomic analyses (Velapatino et al, 2012). Up-

regulation of B. pseudomallei proteins, including the HSP20/alpha crystalline 

family protein (BPSS2288) and flagellin (BPSL3319) in the relapsing isolate, 

compared to the initial isolate has been observed. These proteins could be 

determinants of melioidosis relapse and may be involved in melioidosis latency 

and virulence.   
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In addition, immunosuppressive people are at risk to the disease, especially those 

suffering from diabetes mellitus (Suputtamongkol et al, 1999). Between 37% and 

60% of melioidosis patients are also diabetic. Exposure to soil or water by rice 

farmers in Thailand, and Aborigines in Australia, is also associated with 

contracting melioidosis. Other clinical risk factors for developing melioidosis 

such as excess alcohol consumption, chronic lung disease and renal disease have 

also been reported (Cheng & Currie, 2005), as well as heart disease, malignancy 

and age ≥ 50 years (Currie et al, 2010). 

 

 

1.4. B. pseudomallei genome 

To date, the completely sequenced genomes of four strains of B. pseudomallei are 

available in published databases, while another 19 have been drafted (Holden, 

2009). The genome of B. pseudomallei strain K96243 (Figure 1.4) consists of two 

chromosomes of 4.07 megabase pairs and 3.17 megabase pairs (Holden et al, 

2004). Many core genes involved in essential cellular functions, for example cell 

growth and metabolism, are found in the large chromosome whereas accessory 

genes associated with adaptation and survival in various environmental niches are 

found in the smaller chromosome.  

 

 
Figure 1.4 Schematic diagrams of two chromosomes in the B. pseudomallei strain 

K96243 genome:  3,460 coding sequences are encoded by chromosome 1 whereas 

2,395 coding sequences are encoded by chromosome 2. This figure is taken from 

Holden et al (2004).   
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Interestingly, only 86% of the genome of B. pseudomallei strain K96243 (4619 

genes) have been found in all strains, with 14% of the genome varying across 

different strains (Sim et al, 2008). This plasticity of the B. pseudomallei genome 

has been studied and genomic islands related to horizontal gene transfer have 

been identified as one of the crucial source of genomic diversity within B. 

pseudomallei (Tuanyok et al, 2008). In addition, the genomic variation of 

different B. pseudomallei isolates and gene loss in genomic islands of B. 

pseudomallei genomes have been observed (Lye et al, 2010). However, from a 

comparative study between the clinical and environmental isolates of B. 

pseudomallei, there is no evidence to confirm the association of genomic islands 

with the mechanism of virulence (Bartpho et al, 2010).  

 

Since the completely sequenced first genome of B. pseudomallei strain K96243 

was published (Holden et al, 2004), there has been a considerable emphasis on 

molecular based research to make insights into the pathogenicity and virulence 

mechanisms of B. pseudomallei. However, the ambiguous system of B. 

pseudomallei infection is still a key challenging research question.  

 

 

1.5. Pathogenesis and virulence 

1.5.1. Pathogenesis 

A key element of the pathogenesis of B. pseudomallei is its ability to invade, 

survive and replicate within both phagocytic and non-phagocytic cells of the host 

(Allwood et al, 2011). Adhesion to the external surface of host cells is considered 

the first step in the pathogenesis of B. pseudomallei prior to an intracellular 

invasion. The initial attachment of B. pseudomallei to host cells is mediated by a 

bacterial capsule (Galyov et al, 2010). Subsequently, an intracellular invasion of 

B. pseudomallei occurs either in macrophages or epithelial cell lines. It is likely 

that the type III secretion system (T3SS) plays an important role in the bacterial 

invasion as well as escaping from endocytic vesicles (Stevens & Galyov, 2004). 

Once inside the host cell cytoplasm, the ability to survive intracellularly is a key 

for developing the infection while avoiding host immune surveillance. Strategies 

of evasion of the host immune response by B. pseudomallei include escaping from 

the endosome to the cytosol, inducing macrophage cell death and cell-to-cell 



! 8!

spreading through actin polymerization (Gan, 2005). B. pseudomallei can form 

actin based membrane protrusions by continuous nucleation of actin at one pole of 

the bacterial cell, allowing intracellular motility (Figure 1.5).  The bacterial 

movement to adjacent cells leads to cell fusion and the formation of multinuclear 

giant cells (MNGC), which indicates the progression of infection (Adler et al, 

2009).  

 

 

 
Figure 1.5 A schematic diagram of the B. pseudomallei intracellular lifestyle: An 

initial attachment to host cells involves the bacterial capsular polysaccharide, pili 

and adhesins. Molecular syringes like T3SS facilitate bacterial invasion. B. 

pseudomallei possesses intracellular survival mechanisms against host immune 

responses. Actin based mobility of the pathogen allows cell-to-cell spread and 

MNGC formation. This figure is adapted from Allwood et al (2011). 

 

 

 

1.5.2. Virulence determinants 

Some putative virulence factors of B. pseudomallei have been identified on the 

basis of existing evidence from a known virulent role in other pathogens. Quorum 

sensing, a communication system that depends on cell density in Gram-negative 

bacteria using N-acyl-homoserine lactones (AHLs) for coordinating gene 
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expression, is one such potential putative virulence factor. It plays a role in 

regulating a multidrug efflux pump responsible for antibiotic resistance in B. 

pseudomallei (Popat et al, 2008). Another recognised virulence determinant is the 

type III secretion system (T3SS). Proteins encoded from some T3SS gene clusters 

in B. pseudomallei are similar to those produced from Salmonella typhimurium 

and Shigella flexneri that are involved in pathogenesis (Troisfontaines & Cornelis, 

2005). In addition, B. pseudomallei can produce an extracellular capsular 

polysaccharide that is related to virulence as well as lipopolysaccharide, flagella, 

pili and other secreted proteins including haemolysin lipases and proteases 

(Wiersinga et al, 2006). Recently, the type VI secretion system (T6SS) has been 

considered important in the intracellular lifestyle in B. pseudomallei (Galyov et al, 

2010). 

 

 

1.5.2.1. Capsular polysaccharide 

A homopolymer of -3)-2-O-acetyl-6-deoxy-β-D-manno-heptopyranose(1- 

forming an extracellular capsular polysaccharide in B. pseudomallei has been 

identified as a possible virulence determinant (Reckseidler et al, 2001). The 

capsular polysaccharide may block the access of complement receptor-1 on 

phagocytes to C3b deposited on the bacterial surface, resulting in host immune 

response failure and thus B. pseudomallei survival in serum (Reckseidler-Zenteno 

et al, 2005). Capsule mutants of B. pseudomallei, prepared by the deletion of wcb, 

a capsular polysaccharide encoded gene operon, have revealed an attenuation in 

mice (Warawa et al, 2009).  

 

 

1.5.2.2. Lipopolysaccharide 

A comparative study of the lipopolysaccharide profiles of B. pseudomallei 

(pathogenic) and B. thailandensis (non-pathogenic) suggests that 

lipopolysaccharide may not be involved in virulence in B. pseudomallei 

(Wiersinga et al, 2006). However, a knockout of one of the genes encoding 

lipopolysaccharide in B. pseudomallei exhibits an attenuation in hamsters, and 

serum killing (DeShazer et al, 1998).  
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1.5.2.3. Quorum sensing 

An intrinsic bacterial resistance to antibiotics is associated with efflux pumps such 

as AMrAB-OprA, BpeAB-OprB and BpEF-OprC, which secrete the signaling 

molecules, N-acyl-homoserine lactones (AHLs). In B. pseudomallei, there are up 

to six different types of AHLs, the composition of which may vary slightly from 

strain to strain (Chan et al, 2007). The presence of AHLs in B. pseudomallei 

cultures has been reported with an involvement of the LuxI protein and LuxR 

transcriptional regulators in AHL biosynthesis (Wiersinga et al, 2006). LuxIR 

quorum sensing homologue mutants of B. pseudomallei show a decreasing 

virulence in hamsters and mice, compared to the wild type strain (Ulrich et al, 

2004). 
 

 

1.5.2.4. Type III secretion system (T3SS) 

The T3SS is a bacterial machinery that allows direct communication between 

bacteria and host cells and injects effector proteins into the host cytosol across the 

cellular membrane in the presence of translocator proteins. The T3SS of B. 

pseudomallei belongs to the Inv-Mxi-Spa family, which is known as a key 

virulence determinant in S. enterica and S. flexneri (Troisfontaines & Cornelis, 

2005). In B. pseudomallei, T3SS is encoded by the Burkholderia secretion 

apparatus (bsa) gene cluster. Compared to the wild type strain, the deficient T3SS 

mutants exhibit a reduction of replication in J774.2 macrophage cells, a lack of 

ability to escape from endocytic vacuoles and an absence of membrane protrusion 

and actin tail formation (Stevens et al, 2002).  
 

 

1.5.2.5. Type VI secretion system (T6SS) 

In the B. pseudomallei genome, fourteen T6SS orthologs have been found and 

they are similar to those present in B. mallei (Shrivastava & Mande, 2008). Six 

gene clusters of T6SS are encoded in the B. pseudomallei K96243 genome. They 

have been assigned as T6SS-1 (BPSS1496 to BPSS1511), T6SS-2 (BPSS0515 to 

BPSS0533), T6SS-3 (BPSS2090 to BPSS2109), T6SS-4 (BPSS0166 to 

BPSS0185), T6SS-5 (BPSS0091 to BPSS0117), and T6SS-6 (BPSL3096 to 

BPSL3111) according to the T6SS of B. mallei described by Schell et al (2007). 
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The T6SS-1 cluster genes were inducible following B. pseudomallei invasion of 

macrophages, but they were not involved in bacterial survival and growth inside 

macrophages (Shalom et al, 2007). A deficiency of multinucleated giant cell 

(MNGC) formation was observed in B. pseudomallei T6SS-1 mutants. In 

addition, Δhcp1 mutants decreased B. pseudomallei intracellular growth and 

cytotoxicity in RAW 264.7 macrophages (Burtnick et al, 2011). Furthermore, in a 

Syrian hamster model of virulence, the T6SS-1 was shown to be a crucial 

determinant of virulence, based on the LD50 against the relevant mutants of B. 

pseudomallei, whereas the other five T6SS gene clusters did not. These results 

suggest that the T6SS-1 is involved in virulence and plays a significant role in the 

intracellular lifestyle of B. pseudomallei. 

 

1.5.2.6. Flagella 

B. pseudomallei is motile and flagellated. The difference between the flagellin 

gene fliC in B. pseudomallei and B. thailandensis, a closely relative non-

pathogenic strain may be related to virulence. A B. pseudomallei flic knockout 

mutant exhibits less invasive abilities into a mouse macrophage cell line, RAW 

264.7, and a human lung epithelial cell line, A549, compared to the wild type 

strain, but higher than that of B. thailandensis (Chuaygud et al, 2008). These 

results suggest that the flagella in B. pseudomallei facilitate bacterial invasion in 

both phagocyte and non-phagocyte cells. Based on the LD50, the flagella defective 

mutant, which was non-motile and aflagellate, was less virulent during intranasal 

infection of BALB/c mice comparing to the wild type B. pseudomallei (Chua et 

al, 2003), which suggests that flagella are a virulence determinant of B. 

pseudomallei infection in this mouse model. 

 

1.5.2.7. Pili 

Type IV pili associated with adherence in B. pseudomallei has been suggested to 

play a role in virulence. A deletion mutant of the gene encoding the putative pilus 

structural protein (PilA) has exhibited a reduction of adherence to human 

epithelial cells, resulting in a delay of death in nematodes. Infection by this 

mutated strain was also attenuated in BALB/c mice following intranasal infection 

in comparison with the wild type B. pseudomallei (Essex-Lopresti et al, 2005). 
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1.6. Host-pathogen interaction 

1.6.1. Pathogen recognition 

When a pathogen strikes, the host’s innate immune system is a surveillance 

system which recognises microorganisms via a limited set of germline-encoded 

pattern-recognition receptors (PRRs) (Akira et al, 2006). PRRs have an ability to 

recognise microbial components, called pathogen-associated molecular patterns 

(PAMPs), which are essential for their survival and are difficult to alter. Different 

PRRs interact with specific PAMPs, regardless of the pathogen life-cycle stage. A 

family of commonly known PRRs is the toll-like receptors (TLRs) which are type 

I integral membrane glycoproteins. Extracellular domains of TLRs contain 

varying numbers of leucine-rich-repeat (LRR) motifs. The cytoplasmic domain of 

TLRs is known as the Toll-IL-1R domain, which is homologous to the 

cytoplasmic region of the interleukin 1 receptor (IL-1R) (Cook et al, 2004). TLRs 

are classified into several subfamilies based on their primary sequences. Each of 

these subfamilies recognises related PAMPs. In B. pseudomallei infection, 

PAMPs that are present on the bacterial surface interact with the corresponding 

TLRs of the host cell, for example, CD14-TLR4, peptidoglycans-TLR2, flagellin-

TLR5 and bacterial DNA or CpG-TLR9 (Wiersinga et al, 2006).  

       

1.6.2. Bacterial intracellular survival 

The initial host defense against B. pseudomallei includes natural antibiotic 

peptides, the complement system and phagocyte cells. Antimicrobial peptides 

called defensins are naturally produced to kill bacteria attacking host cells. It is 

unfortunate that B. pseudomallei is resistant to the natural immunity (Jones et al, 

1996). In addition, B. pseudomallei can produce an extracellular polysaccharide 

capsule that prevents complement attack. This polysaccharide capsule reduces the 

deposition of complement factor C3b, resulting in anti-phagocytosis (Reckseidler-

Zenteno et al, 2005).   

 

Macrophages are well-known phagocyte cells, whose functions are to ingest and 

destroy bacteria. Responses of macrophages to B. pseudomallei are different from 

other bacteria. An inducible nitric oxide synthase (iNOS), which directs the 

clearance of bacterial pathogens, is suppressed when the macrophages are infected 

with B. pseudomallei. This can explain why this bacteria can survive and multiply 
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inside host macrophage cells. In addition, IFN-γ, that has an important role in the 

host immune system, is produced at a lower level in the host’s resistance to B. 

pseudomallei infection, compared to other bacterial infections, resulting in 

increased bacterial loads in melioidosis patients (Panomket, 2011). 

 

 

1.7. Melioidosis management 

The difficulties of melioidosis management include a limitation in diagnostic 

approaches and the increasing resistance of the bacteria to the current anti-

infective treatments.  

 

1.7.1. Diagnosis 

Although a number of techniques have been developed for the rapid detection of 

B. pseudomallei in patient fluids, bacterial culture using selective media (e.g. 

Ashdown’s agar and B. pseudomallei selective agar, BPSA) are still the gold 

standard for melioidosis case confirmation (Peacock, 2006). Although this 

traditional diagnostic method is a time-consuming process, it has the advantage of 

identifying high risk of death patients in terms of a quantitative culture 

(Wuthiekanun et al, 2010). Alternatives to this culture-based method, include 

serological diagnosis using antibody and antigen detection. An indirect 

haemagglutination assay (IHA) is commonly performed, although it has a poor 

sensitivity and specificity. This particular diagnostic method is problematic in 

Thailand, where there is a high rate of background seropositive population (Cheng 

& Currie, 2005). As an improvement to the serological tests for melioidosis 

diagnosis, it has been reported that a crude B. pseudomallei antigen enzyme-

linked immunosorbent assay (ELISA) had an advantage over IHA observations 

(Chantratita et al, 2007b; Limmathurotsakul et al, 2011). 

 

During 20 years of observation of melioidosis in Northern Australia, the mortality 

of melioidosis has decreased from 30% at the beginning to 9% in the last five 

years, which is attributed to earlier diagnosis and enhancements in intensive care 

management (Currie et al, 2010).  
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1.7.2. Antibiotic resistance 

Burkholderia species are known to be one of the most antibiotic resistant bacteria. 

Predominantly, drug resistance mechanisms of bacteria involve enzymatic 

inactivation of antibiotics, drug target alteration and limited drug permeability 

into the bacterial cell (Poole, 2002). The latter plays a key role in antibiotic 

resistance mode of action in Burkholderia.  

 

 

There are three mechanisms of action that limit antibiotic penetration into 

bacterial cells. Firstly, lipopolysaccharide (LPS), a unique component of Gram-

negative bacterial cell walls, restricts the binding of cationic antibiotics, including 

aminoglycosides and polymyxins. Also, it renders the bacteria resistant to cationic 

peptides of the human innate immune system. Secondly, low cell membrane porin 

protein content may affect the permeability of water-soluble antibiotics into the 

bacterial cell due to an abnormal function. Thirdly, transport proteins, namely 

efflux pumps, are involved in antibiotic resistance. Antibiotics can be removed 

from the bacterial cell by the specific efflux pumps before being delivered to their 

cellular targets (LiPuma, 2007). In addition, biofilm formation may cause the 

bacteria to resist an antimicrobial agent. Possible resistant mechanisms in the 

biofilm include reduced drug diffusion through the biofilm, drug inactivation 

within the biofilm, the presence of less susceptible stationary-phase organisms, 

and the up-regulation of biofilm associated antibiotic resistance genes (LiPuma, 

2007).  

 

 

Commercially available antibiotics can be categorised into several classes, 

depending on their modes of action. β-lactams, including penicillins, carbapenem 

and cephalosporins are related to an inhibition of bacterial cell wall synthesis.  

Aminoglycosides, macrolides, tetracyclines and chloramphenicol are involved in 

the binding of the ribosome subunit, resulting in the inhibition of protein 

synthesis. Fluoroquinolones disrupt DNA replication as a result of DNA gyrase 

inhibition (Kohanski et al, 2010). On the whole, B. pseudomallei is intrinsically 

resistant to many antibiotics. A susceptibility of B. pseudomallei to 35 

antimicrobial agents in terms of the minimum inhibitory concentration (MIC), 
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determined by agar dilution in Mueller–Hinton medium, has been studied by 

Thibault et al (2004). The results indicate that B. pseudomallei is extremely 

resistant to penicillins (amoxicillin, ticarcillin), aminoglycosides (gentamicin, 

tobramycin, netilmicin, amikacin), macrolides (erythromycin), cephalosporins 

(cefoxitin), fluoroquinone (norfloxacin), fosfomycin, and clindamycin. The 

mechanism of resistance to aminoglycosides and macrolides can be explained by 

the presence of a multidrug efflux system in B. pseudomallei (Van Bambeke et al, 

2000).  The BpeAB-OprB pump in B. pseudomallei was accountable for the 

efflux of the aminoglycosides gentamicin and streptomycin, the macrolide 

erythromycin and the dye acriflavine (Chan et al, 2004). 

 

 

In addition, further antibiotics that B. pseudomallei is moderately resistant to 

include fluoroquinones (nalidixic acid, pefloxacin, ciprofloxacin, gatifloxacin and 

levofloxacin), co-trimoxazole and rifampicin. These antimicrobial agents are 

involved in the disruption of DNA replication and RNA synthesis. On the other 

hand, carbapenems like imipenem, the third generation of cepharosporins 

(ceftazidime and cefotaxime), other β-lactams (piperacillin and 

piperacillin/tazobactam and co-amoxiclav) tetracyclines (minoxycycline and 

doxycycline), and chloramphenicol, are efficient for killing this pathogen.   

 

 

Recently, resistance to ceftazidime during antimicrobial therapy, which is 

currently used as the first line treatment for melioidosis, has been reported 

(Chantratita et al, 2010). These observations mean that finding new therapeutic 

drugs for developing melioidosis treatments are an urgent need. 
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1.8. Identification of potential therapeutic target proteins 

In attempts to identify proteins involved in infection and virulence mechanisms of 

B. pseudomallei, that may be targeted by novel therapies, many studies have been 

carried out using different techniques. 312 putative essential genes of B. 

pseudomallei have been identified by a computational bioinformatics approach 

(Chong et al, 2006). B. pseudomallei protein sequences were compared with 

known essential genes encoding proteins from other bacterial pathogens, and also 

against human protein sequences to identify targets that did not have human 

homologues. The subset of genes thus identified have been annotated as vital 

genes for B. pseudomallei survival, and possible potential candidates for 

antimicrobial drug target development. In addition, the relative levels of protein 

expression in B. pseudomallei and the non-pathogenic B. thailandensis have been 

observed by proteomic analysis (Wongtrakoongate et al, 2007). Several proteins 

in B. pseudomallei that are up regulated compared to B. thailandensis have thus 

also been identified as potential markers of pathogenicity and virulence. They 

may play a key role in virulence as they were highly expressed in the virulent 

species but missing in the avirulent species.  

 

Su et al (2008) have identified a set of B. pseudomallei target proteins that raise 

the human immune response in infected patients. The genomic expression library 

of a clinical strain of B. pseudomallei D286 was constructed and immunologically 

screened with pooled melioidosis infected human sera. 109 expressed 

polypeptides reacted with melioidosis positive sera and the coding sequence of 

sero-positive clones were analysed for sequence identification. These identified 

proteins are involved in cell envelope biogenesis, cell mobility and secretion, 

transcription, metabolism, transportation and also include many uncharacterised 

proteins. Many of these proteins (30%) are found in the cytoplasm. With an 

assumption that the cytoplasmic localised proteins are exposed after destruction of 

bacterial cells by the host immune defense, the results suggest that these identified 

immunogenic proteins may be induced and up-regulated during human infection. 

These immunogens could be further investigated for anti-infective targets, and a 

number of them have been investigated in this thesis.  
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1.9. Structural genomics 

A fundamental of structural genomics of proteins with unknown function is to 

start from the gene sequence, produce protein and determine its three-dimensional 

structure, which could provide useful biological information of the protein 

(Thornton et al, 2000). Structural genomics requires techniques such as protein 

crystallography and nuclear magnetic resonance (NMR) to determine the structure 

of biologically interesting molecules from model organisms and those with 

medical importance, aiming to derive function from the structures (Brenner, 

2001). From the determined structure, the organization of the protein chain in 

three dimensions is revealed and the residues which are buried in the core or 

involved solvent exposure on the protein surface can be identified as well as the 

overall shape and electrostatic properties of the protein. The protein structure can 

also reveal the quaternary structure in the crystal conditions or in solution at high 

concentration, which may indicate its biological multimeric state. In addition, 

biochemical and functional information can be extracted from the structure of 

protein-ligand complexes, that provide a crucial clue to their catalytic 

mechanisms. The similarity of the protein folds and structural motifs of an 

uncharacterised protein compared to the structural information of characterised 

proteins in the available databases may be used to infer its biochemical and 

biological functions.  

 

 

In one such study, the structure determination of BPSL1549, an uncharacterised 

protein from B. pseudomallei has led to the discovery that it is a novel toxin 

(Cruz-Migoni et al, 2011). According to proteomic profiles, BPSL1549 has been 

identified as a putative virulence factor since the protein is expressed in B. 

pseudomallei but absent in B. thailandensis, a non-pathogenic strain 

(Wongtrakoongate et al, 2007). At the protein sequence level, BPSL1549 has no 

sequence similarity to any protein excluding other Burkholderia species. The 

crystal structure of BPSL1549 has been determined and analysed (Cruz-Migoni, 

2011). By comparison to available structures deposited in the protein data bank, 

the fold recognition revealed that BPSL1549 is structurally similar to the catalytic 

domain of the cytotoxic necrotizing factor 1 (CNF1-C) from Escherichia coli 

(Figure 1.6a). And, indeed, the three crucial catalytic residues of CNF1-C are 
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present in BPSL1549 and are virtually the only conserved residues between these 

two proteins (Figure 1.6b). CNF1-C is an enzyme that catalyses the deamidation 

of a specific glutamine residue into a glutamic acid in the Rho protein family, 

which regulates the GTPase involved in actin cytoskeleton assembly. This 

comparative structure information suggested that BPSL1549 could also have a 

toxic role similar to CNF1-C. Further investigations have shown that BPSL1549 

specifically deamidates glutamine-339 of the eukaryotic transcription factor 

eIF4A, rendering it inactive and thus inhibiting protein translation, ultimately 

resulting in cell death (Cruz-Migoni et al, 2011). These results support the 

proposal that BPSL1549 could play important roles in pathogenesis and virulence 

in B. pseudomallei. This study shows that structural analysis of a protein of 

unknown function can lead to important insights into its biological function and 

can shed light on pathogenicity and virulence mechanisms.   

 

 

Structural genomics also has an impact on drug discovery. The availability of the 

three-dimensional structure of drug targets facilitates pharmaceutical 

development, especially for structure-based drug design (Dry et al, 2000). 

Structure data allow an identification of active sites or ligand binding sites and the 

optimization of lead compounds to reveal the selectivity and specificity 

preferences of druggable molecules at atomic resolution. DrugBank targets by 

structural genomics centers have been listed in Weigelt et al (2008). Together 

with a bioinformatics approach, structural information extracted from the 

determined protein-ligand complex structure can be inferred and contributes to the 

development of drug candidates (Congreve et al, 2005). 
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a)  

b)  

Figure 1.6 From structure to function: a) Superposition of BPSL1549 (blue) and 

CNF1-C (red) structures shows their structural similarity. b) Catalytic residues of 

CNF1-C are identical to equivalent residues in BPSL1549, leading to the 

biological function discovery of BPSL1549. This figure was taken from Cruz-

Migoni et al (2011).   
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1.10. Aims of the study and thesis outline 

This thesis describes the instigation of structural studies on several potential target 

proteins of B. pseudomallei for drug discovery and use of structural genomics, 

with an attempt to gain more understanding of the molecular mechanisms 

underlying the disease. The proteins that form the subject of this thesis are 

BPSL3022 (cell division protein FtsQ), BPSS0945 (subfamily M23 unassigned 

peptidase), BPSS0238 (putative penicillin binding protein) and the proteins of 

unknown function BPSS1416, BPSS0603, BPSS0683 and BPSL0606. The 

rationale behind this target selection is given in the introduction to Chapter 4. 

 

The aims of this study are as followings.  

• to create a list of potential target proteins of B. pseudomallei 

• to clone the genes encoding these proteins 

• to produce the proteins in Escherichia coli  

• to purify the soluble proteins 

• to crystallise the protein 

• to determine the three dimensional structure of the proteins  

• to analyse the structures obtained.  

 

 

In this thesis, a brief description of protein crystallography theory involved in this 

study is summarised in Chapter 2. The materials and methods used through out 

this work are detailed in Chapter 3. Target selection, gene amplification and 

cloning, protein over expression and protein purification are described in Chapter 

4. The crystallisation and structure determination of BPSL0606 is discussed in 

Chapter 5. Structure analysis of BPSL0606 is detailed in Chapter 6. Functional 

analysis of BPSL0606 is discussed in Chapter 7. Finally, conclusions and future 

works are included in Chapter 8.  

 

 

 

 

 



! 21!

Chapter 2: Protein Crystallography 
!
X-ray crystallography is a powerful technique for determining the three-

dimensional structure of proteins and biological macromolecules. 88% of the 

entire biomolecular structures publicly deposited in the protein data bank (PDB) 

December 2012 release have been determined by X-ray crystallography. Although 

protein crystallography has advantages in terms of providing accurate models of 

protein structure at atomic resolution, with no limitation in the size of protein 

samples, it is dependent on obtaining protein crystals as a starting point. 

Crystallographic theory is covered in a number of textbooks (Blow, 2002; 

Rhodes, 2006; Rupp, 2010). This chapter will briefly introduce the processes in 

the experiments described in this thesis including crystallisation of the protein 

sample, crystal manipulation, X-ray data collection and processing, structure 

determination, structure refinement and validation of the structure. 

 

2.1.  Protein crystallisation 

If a purified and homogeneous protein of interest can be produced, crystals of the 

protein can be obtained as the protein solution moves toward a metastable 

supersaturated state. The crystallisation trials are subjected to multi-dimensional 

conditions to induce the nucleation. According to the thermodynamics of 

crystallisation, molecular collisions in the supersaturated protein solution drive 

phase separation and the nucleation event occurs when the physicochemical 

reaction reaches the critical free energy and overcomes the kinetic barrier in 

which crystals form, and the system proceeds to binary phase equilibrium (Figure 

2.1a). This process involves protein solubility, which is affected by several 

parameters including pH, ionic strength, temperature and concentration of salts, 

organic precipitants and additives. An initial optimization of these variables for an 

individual protein to be crystallised is accomplished by combinatorial screening. 

Commercially available screens facilitate the coverage of crystallisation space 

conditions. In addition, programmed robots are commonly set up for automated 

crystallisation, where the experiments are miniaturised to nano-scale volumes 

reducing the protein requirements. 
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a)  

b)  

Figure 2.1 Crystallisation diagrams: a) A free energy diagram for crystallisation 

showing that nucleation requires free energy from the physicochemical reaction to 

overcome the kinetic barrier in order to form crystals. The figure is taken from 

McCoy (2010) and b) A schematic illustration of a phase diagram of protein 

crystallisation using the vapour diffusion method. As a result of water vapour 

diffusion in the closed system, protein and precipitant concentrations increase 

toward the supersaturation condition, allowing nucleation and thus crystal 

formation. The protein concentration drops as the crystals sequester the protein. 

The figure is adapted from Chayen & Saridakis (2008). 
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2.1.1. Vapour diffusion techniques 

Vapour diffusion is a conventional method for protein crystallisation. It involves 

mixing a small amount of the protein solution with the precipitant solution, 

usually in a 1:1 ratio. The technique provides a closed system allowing the protein 

mixture drop to equilibrate against a larger volume of reservoir solution that may 

contain buffer, salt and/or precipitant. The vapour diffusion of water and volatile 

compounds in the closed system occurs slowly. Water vapour from the protein 

mixture drop diffuses into the reservoir solution, resulting in a proportional 

increment of both the protein and precipitant concentrations in the drop. This 

process leads into a supersaturated state and enables crystallisation. If successful 

crystallisation is achieved, the protein concentration in the drop decreases as the 

crystals sequester the protein (Figure 2.1b).      

  

 

2.1.1.1.  Sitting drop vapour diffusion 

A drop of protein solution mixed with crystallisation solution from the reservoir is 

placed on a microbridge over the reservoir, which is sealed with a greased rim and 

a cover slide (Figure 2.2a). This technique can be adapted to an automated 

crystallisation set up, with a robotic dispenser, allowing for miniaturization and 

using very small quantities of protein, approximately 200 nanolitres. Thus, sitting 

drop vapour diffusion is commonly used for the initial screening in 96-well plates. 

 

 

2.1.1.2.  Hanging drop vapour diffusion 

Unlike the sitting drop technique, the protein mixture drop is placed on a 

siliconised cover slide that is inverted to face the reservoir, and again grease is 

used to seal the well (Figure 2.2b). This technique requires manual set up, and is 

often used for an optimization of crystal growth conditions. Drops of up to 10 

microlitres can be easily used, and thus large crystals, which are easier to 

manipulate can sometimes be grown.  
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Figure 2.2 Illustrations showing the vapour diffusion experiments: a) Sitting drop 

technique- crystals are growing in the drop on the microbridge.  b) Hanging drop 

technique- crystals are growing in the drop facing the reservoir. 

 

2.1.2. Protein crystals 

2.1.2.1.  Crystal assembly 

Protein crystals are assemblies of translatingly repeating identical units, called 

unit cells. These unit cells are parallelepipeds defined by lengths a, b, c and inter-

axial angles α, β, γ. The unit cell is characterised by its space group, which 

defines the internal symmetry. There are 230 space groups, but as proteins are 

chiral, symmetry operators such as mirror planes cannot be used and there are 

thus only 65 possible space groups. The space group is defined by the lattice type 

and crystal system. There are five different lattice types, describing the position of 

the lattice points on the unit cell, where a lattice point is a point that is in exactly 

the same environment in all unit cells in the crystal. The primitive lattice (P) is a 

simplest type containing one lattice point at each vertex of the unit cell. An 

additional lattice point at the center of the unit cell generates the internal lattice 

(I). A centered lattice (C) has an additional point on one face and the face-

centered lattice (F) has lattice points at the center of each face.  

 

2.1.2.2.  Crystal system 

There are 7 crystal systems which are based on different rotational symmetries. 

Only 2-fold, 3-fold, 4-fold and 6-fold axes are allowed and each of these systems 

has different unit cell shape and dimensions. The simplest crystal system is 

triclinic with the unit cell a ≠ b ≠ c and α ≠ β ≠ γ. The cell in which α = γ = 90° 

and β > 90° is called monoclinic, whereas the orthorhombic system has α = β = γ 

= 90°. For unit cells with all three angles equal to 90°, if a = b = c, the system is 

b) a) 

Cover slip 
Grease 
Crystals 

Protein and precipitant drop 
Microbridge 

Precipitant reservoir 
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cubic and when a = b ≠ c, it is tetragonal. In addition, if the unit cell has a = b = c 

and α = β = γ ≠ 90°, it is rhombohedral, whereas the hexagonal unit cell has a = b 

= c and α = β = 90° γ = 120°. Together with centrosymmetry operators, these 

crystal systems create 14 Bravais lattices as shown in Figure 2.3.  The 

combination of the lattice type, the crystal system and the presence of any screw 

axes (a combination of rotation and translation) gives the space group of the 

crystal. 

 

 
Figure 2.3 The 14 Bravais lattices: P = primitive, C = one face centered, I = body 

centered, F = face centered. This figure is taken from http://www.xtal.iqfr.csic.es/ 

Cristalografia/index-en.html. 
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2.1.2.3.  Mounting crystals  

In order to harvest crystals from crystallisation trays, the protein crystals need 

careful manipulation. Because the crystal is in equilibrium with the surrounding 

mother liquor in the drop, it should be handled with the remaining mother liquor. 

Under a light microscope, the fragile crystal is gently fished out by a standard 

fiber loop with an appropriate size to the crystal and then transferred into a 

suitable cryobuffer, which is made from the solutions present in the mother liquor 

plus a cryoprotectant. The crystal is held in the loop by surface tension of the 

cryobuffer and ready to either plunged into liquid nitrogen or mounted onto the 

diffractometer. In this step, rapid transfer is preferred to avoid dehydration. 

 

 

2.2. X-ray diffraction 

X-ray diffraction data measurement from macromolecular crystals has lead to the 

determination of atomic structures. When a molecule is struck by an X-ray beam, 

the X-rays interact with the electrons in the molecule and diffraction occurs. 

However, this diffraction is very weak. A crystal of the molecule can be used to 

amplify the diffraction signal. The crystal contains many molecules in the same 

orientation and the diffracted rays from all the molecules have a cumulative 

effect, enabling the signal to be observed. The crystal diffracts the X-ray beam in 

many directions, resulting in a diffraction pattern. The electron density map 

derived from the diffraction pattern can be depicted by mathematical means of a 

three-dimensional periodic function.      

 

 

2.2.1. Principles: Bragg’s law 

W.L. Bragg proposed an interpretation of X-ray diffraction as reflection on 

individual lattice planes hkl. In a crystal, a set of parallel planes, having Miller 

indices hkl, acts as a mirror resulting in a reflection. Each set of planes is an 

independent diffractor producing a single reflection. As Bragg’s law defines 

(Figure 2.4), the condition to obtain the scattered X-ray in phase from parallel 

planes is  
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2dhkl sin θ = nλ     

 

where  dhkl is a lattice space between two parallel planes 

 θ is an angle of diffraction 

 λ is a wavelength of an incident X-ray 

and n is an integer  

 
Figure 2.4 Bragg’s law: A representation of the reflection of incident X-rays with 

an angle θ from a set of parallel planes (separated by a distance d) in the crystal to 

achieve the scattered X-ray in phase. The figure is taken from McCoy (2010). 

 

Each spot in the diffraction pattern collected during the diffraction experiment 

represents a reflection related to the set of parallel planes with indices (hkl). h, k 

and l are defined as the numbers that the plane divides the unit cell edges (a, b and 

c), respectively.  

 

 

2.2.2. Fourier Transform 

A Fourier transform describes the relationship between molecules in the crystal 

and its diffraction pattern. A reflection can be depicted by a structure factor 

equation representing a diffracted X-ray. For a unit cell with n atoms, the structure 

factor for the reflection Fhkl can be expressed as a Fourier sum of all the atomic 

diffracting contributions: 
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!!"# != ! f!
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fj is the scattering factor of atom j, dependent on the atomic number, and hence 

electrons, of the atom and is treated as a simple sphere of electron density. xj, yj 

and zj represent the coordinates of atom j in real space, and h, k and l are the 

lattice indices of a specific reflection in reciprocal space. The contribution of 

individual atom j to Fhkl depends on both the atomic element, which determines 

the amplitude of the contribution (fj), and the atomic position in the unit cell (xj, 

yj, zj), which designates the phase of the contribution. 

 

Alternatively, Fhkl can be expressed in terms of the volume element of electron 

density in the unit cell, ρ(x,y,z).  

 

 !!"# = ! ρ(x, y, z)! e!"!(!"!!"!!")!dV 

 

Each volume element contributes to Fhkl derived from the integral over the unit 

cell volume, V denoted for all values of x, y and z. This equation shows that Fhkl 

is the Fourier transform of ρ(x,y,z) on the set of hkl planes. Therefore, all of the 

structure factor Fhkls constitute the transform of ρ(x,y,z) on all sets of parallel 

planes for the whole unit cell. 

 

Due to the reversible nature of the Fourier transform, the electron density can also 

be described as the transformation of the structure factors as follows: 

 

ρ(x, y, z) != !1V ! !!"#
!

!e!!"!(!"!!"!!")
!!

%

 

The calculation of electron density at a position (x,y,z) in the unit cell is 

performed by the summation over all the hkl planes. The structure factor Fhkl is a 

periodic wave function with amplitude, frequency and phase. It can also be 

represented by a complex vector and decomposed into its amplitude, |Fhkl| and 

phase, αhkl. The electron density equation can then be expressed as follows:%
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!

!e!!e!!"!(!"!!"!!")
!!

 

 

The amplitude of a wave scattered from a particular plane hkl, |Fhkl| is directly 

quantifiable by the measurement of reflection intensities, Ihkl, as |Fhkl| is 

proportional to the square root of Ihkl. However, the phase αhkl can not be 

measured during the experiment. To achieve the phase information, phasing 

methods will be explained later in this chapter.     

 

 

2.3. Data collection 

To measure the intensities of all the diffracting rays, a number of images are 

recorded in which the crystal is rotated through a small angle, perpendicular to the 

X-ray beam. This method is called the rotation method of data collection (Dauter, 

1999) and allows all the data to be measured without individual reflections 

overlapping with one another.  

 

The radiation of the X-ray that has wavelength λ can be represented by the Ewald 

sphere with radius 1/ λ centered on the X-ray beam. When reciprocal lattice points 

with indices (hkl), representing the crystal, lies at the surface of the Ewald sphere, 

the interference of X-ray scattered for that particular reflection satisfies Bragg’s 

Law in three dimensions. The diffracted beam is directed along the line joining 

the sphere with the reciprocal lattice point at the surface (Figure 2.5a). To obtain 

different reflections from other reciprocal lattice points, the reciprocal lattice 

points need to be moved to the surface of the Ewald sphere. The crystal has 

therefore to be rotated about a single axis to bring a number of successive 

reflections into the diffracting position. When the crystal is rotated and the 

reciprocal plane intersects with the sphere, an ellipse of the diffraction is created 

by the projection on the detector. The orientation of the plane at the beginning and 

the ending of the rotation forms two intersecting ellipses with all reflections 

recorded between them as a lune (Figure 2.5b). There will be a family of 

concentric lunes displayed on the detector as reflections are arrayed in sets of 

parallel planes. Diffraction spots are arranged along lines with in each lune, 

indicating the regularity of the reciprocal lattice. Their pattern is distorted to a 
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different extent as a result of the mapping of the curved Ewald sphere on the flat 

detector surface. 

   

a)   

 

b)  

 

Figure 2.5 a) The Ewald construction: 1/d = (1/ λ)sinθ is fulfilled when the 

reciprocal lattice point is on the surface of the Ewald sphere. b) A lune is formed 

from reflections from the same plane in the reciprocal lattice, corresponding to the 

start and end positions when the crystal is rotated. This figure was taken from 

Dauter (1999). 
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2.3.1. Data collection strategies 

In order to carry out an X-ray diffraction experiment, it is necessary to clarify the 

objectives for each individual crystal. These purposes include sample 

characterization, structure determination, resolution extension, and ligand 

identification. Different experimental objectives require different criteria to 

achieve a good data set. Preliminary X-ray experiments are crucial to analyse the 

unit cell parameters, diffraction strength and resolution range, as well as to 

determine space group, however, the complete data collection is not necessarily 

required at this stage. Different strategies can be used to measure the X-ray 

diffraction intensities for structure determination, depending on the structure 

solution method, whether molecular replacement or experimental phasing. 

Completeness of the data set is prioritised for molecular replacement since the 

reflection amplitudes at low-resolution ranges are used to calculate Patterson 

functions. On the other hand, anomalous diffraction phasing requires an accuracy 

of intensity measurement as well as the data completeness in order to measure the 

small anomalous signals. A high-resolution data set may be required when atomic 

structure refinement is performed. In addition, when searching for bound ligands, 

a modest resolution data set (2.5 Å or better) is sufficient to identify binding 

without ambiguity.  

 

To obtain the desired data sets, some strategic parameters of data collection are 

taken into account. A selection of a rotation range and rotation start point is a key 

to data completeness as the minimum rotation range is required to cover the whole 

asymmetric unit of reciprocal space which is limited by the resolution sphere and 

the Laue symmetry group. The orientation of the crystal to the X-ray beam 

determines where the rotation start point is. Equally, It is important to adjust the 

rotation per image of the crystal to avoid excessive reflection overlap. Δφ is 

generally set to a small increment between 0.1° and 1.5°. The distance between 

crystal and detector sets the limit of the resolution at the edge of the detector, 

whilst allowing individual reflections to be separated. Another factor that could 

affect the data quality is an X-ray exposure time. Long exposure times may lead 

to overloaded reflections at low resolution as well as radiation damage. For 

anomalous diffraction experiments, appropriate wavelength(s) used in the 
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experiment should be selected from the absorption edge of anomalous scatterers, 

based on the fluorescence spectra. 

 

At present, the strategy generation for data collection is fully automated. 

However, experimenters need to be able to judge the diffraction quality and 

decide the practical strategy for meaningful data to be collected.   

 

 

2.3.2. Radiation damage 

During X-ray exposure, more than 90% of the X-ray beam does not interact with 

the sample at all. A small amount of the X-rays physically interacts with the 

crystal, defined as diffraction and absorption. Only approximately 8% of these 

interacting photons are diffracted by the crystal, whereas the other 92% are 

predominantly absorbed and contribute to the damage of the crystal sample 

(Garman, 2010). The latter phenomenon involves an energy loss due to either the 

photoelectric effect or Compton scattering. The photoelectric effect is the total 

absorption of photons, resulting in an ejection of an inner shell electron of an 

interacting atom. A primary photoelectron can induce up to 500 ionization 

incidents which relate to the formation of radical species in the crystal. The 

excited atom can then release a characteristic X-ray or an Auger electron as it 

returns to its ground state. Compton scattering represents an inelastic scattering of 

the photon whose energy is partially transferred to an atomic electron, resulting in 

lower energy that has higher wavelength. The effect of the ionization of an atom 

owing to either photoelectric absorption or Compton scattering includes a 

disruption of crystalline order and specific structural damage. A loss of reflection 

intensities at high resolution, an expansion of unit cell, an increase in values of the 

measured internal consistency of data (Rmerge) and an increase in scaling B-factors 

values can be observed as a consequence of this global damage. To monitor the 

global damage during X-ray exposure, the ratio of the summed mean intensity and 

the mean intensity of the first data set (ID/I1) is employed as well as the pairwise R 

factor between identical and symmetry-related reflections occurring on different 

images (Rd plot). On the other hand, the specific structural damage is difficult to 

monitor during the experiment since refined structures are required. Specific 

structural damage that has been observed in protein structures includes disulfide 
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bridges broken, the decarboxylation of glutamate and aspartate residues, loss of 

hydroxyl group of tyrosine residues, C-S bond cleavage in methionine residues 

plus other covalent bond breakage. Radiation damage often leads to incomplete 

data collection and failure of structure determination, and must therefore be 

considered carefully in the design of the experiment. 

 

 

2.3.3. Tools for data collection 

A diffractometer is an instrument designed for collecting X-ray diffraction data. 

The integral elements of a diffractometer are detailed below: 

   

2.3.3.1.  X-ray sources and optics 

The two most common ways of producing X-rays for protein crystallography are 

either by electron bombardment at a target anode or by synchrotron facilities. The 

generation of X-ray relies on an emission of characteristic radiation which can be 

selected by a monochromator. The approaching X-ray is diffracted by the crystal 

monochromator and the desirable wavelength is selected. Focusing optics then 

allows the X-rays to be focused, into a parallel and intense beam for diffraction 

experiments. 

 

2.3.3.1.1. Rotating anode 

A rotating-anode X-ray generator is commonly set up in many crystallography 

laboratories. Initially, electrons are accelerated from a heated tungsten filament 

(cathode) across an electrical potential of several tens of kV towards the target 

anode. The high energy electron beam strikes the anode and ejects an electron 

from an inner shell of the target element. An electron from a higher energy shell 

falls back to fill the empty inner orbital releasing its excess energy as an X-ray 

photon. The characteristic X-ray radiation from the K shell of a copper anode has 

an approximate wavelength of 1.54 Å, whereas a shorter wavelength is obtained 

from molybdenum-based anode (0.71 Å). Due to the large quantity of heat 

generated by electron attack, the target anode requires sufficient cooling, by 

rotating the anode. More heat can be dissipated to the water coolant allowing 

more X-rays to be produced. 
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2.3.3.1.2. Synchrotron 

X-rays can also be generated using a synchrotron and the X-ray beam from 

synchrotron sources is much more intense and brilliant than the in-house X-ray 

source. As the energy is tunable, a synchrotron X-ray source has a significant 

impact on collecting data for some techniques used for determining 

macromolecular structures. In a synchrotron, electrons are produced in an electron 

gun, or injector, by thermionic emission and these electrons are then accelerated 

in a linear accelerator (LINAC) to obtain an extremely high energy. The electron 

stream then travels to a booster synchrotron in which a radio frequency voltage is 

used to accelerate the electron energy, whilst being maintained by magnetic field. 

The final energy obtained is of the order of a few giga electron volts (GeV). The 

powerful electron beam then travels with a high speed in the storage ring where 

large electromagnets are installed to bend and keep the electron beam orbit stable 

in a high vacuum beam tube. Every time the beam is bent, the angular velocity 

changes and the X-rays are emitted at a tangent to the curved path. The beams 

thus produced are called bending magnet beams. Alternatively, insertion devices 

such as wigglers or undulators can be placed in the straight sections of the storage 

ring. These insertion devices are a series of powerful magnets which oscillate the 

beam, rapidly produce even more brilliant X-rays. The X-ray beams pass through 

a front end, to a beam-line where an experimental hutch is established for carrying 

out the X-ray diffraction experiment.   

 

2.3.3.2.  Detectors 

Nowadays, the use of conventional X-ray film for collecting X-ray diffraction 

images has been replaced by imaging plate and charged coupled device (CCD) 

detectors greatly increasing the speed of data collection (Smyth & Martin, 2000).  

 

Imaging plate detectors consist of a layer of phosphor BaFBr doped with Eu2+ 

based material. The incident X-ray stimulates the Europium ions to their excited 

state (Eu3+). After scanning by a He-Ne laser, phosphor-luminescence is induced 

and photons are released. The emitted light intensities are recorded by a photo 

multiplier tube and thus an image of the diffraction pattern can be reconstructed. 

The image plate is erased after each exposure by visible light exposure after 

readout. 
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Unlike imaging detectors, CCD detectors are technologically advanced and more 

favourable in terms of fast readout time, therefore they are predominately 

established in many synchrotron macromolecular crystallography beamlines. 

CCD detectors are made of CCD semiconductor array chips. X-ray photons are 

absorbed in a thin fluorescent screen coated with phosphor Gd2O2S doped with Tb 

which converts X-ray to visible light photons and generates scintillation. The 

screen is attached to fiber optic taper next to a CCD semiconductor in which 

electrons are accumulated proportional to the number of photons before being 

relocated into the readout row and producing electronic diffraction pattern images.  

 

Recently, solid state detectors, such as the hybrid pixel detector PILATUS 1M 

have been introduced. These detectors record the X-rays directly onto each pixel, 

allowing continuous read out and very fast data collection times. 

 

2.3.3.3.  Goniometer 

To be able to rotate the crystal, the apparatus called goniometer or goniostat is 

employed. A loop with a cryoprotected crystal is mounted on a goniometer head 

that allows the crystal movement and automatic adjustment. A rotation of the 

goniometer, φ-angle, is assigned the crystal orientation with reference to the X-ray 

beam and the detector while maintaining the crystal centering. In addition, heating 

the goniometer head is required in order to prevent ice formation from the crystal 

cooling system.  

 

As the majority of the incident X-rays are not scattered by the electrons in the 

crystal, a beam stop, made from a tiny lead piece is placed between the mounted 

crystal and the detector. This object prevents an overexposure on the detector 

from the intense direct beam which may otherwise damage it. 

 

2.3.3.4.  Cryocooler 

The cryocooling system provides a cryogenic nitrogen stream over the crystal 

during an X-ray exposure to reduce radiation damage. In the cryocooler, liquid 

nitrogen from a dewar is first evaporated and the subsequent cooling of the gas to 

100K is undertaken by heat exchange with the liquid nitrogen. The cold stream of 
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cryogenic nitrogen gas is gently blown out over the crystal via the nozzle and is 

surrounded by a dry air stream which counteracts the formation of frost on the 

crystal. 

 

 

2.4. Data processing 

All reflections produced from a diffracting single crystal need to be processed in 

order to obtain a useful dataset for subsequent phasing and electron density 

reconstruction. This stage involves the determination of unit cell dimensions, 

crystal system and space group, data integration, intensity measurement, scaling 

and averaging intensities and calculating structure factor amplitudes. The data 

processing is done automatically by software packages and program suites.  

 

2.4.1. Autoindexing 

Using a couple of diffraction images, usually 90° apart from each other, the 

program Mosflm (Leslie & Powell, 2007) will find diffraction spots that have 

higher intensity pixels than background. The identification of these reflections 

enables the program to index the crystal and obtain unit cell dimensions by 

measuring the reflection spacings which are proportional to reciprocal lattice 

spacings and geometrically related to real lattice spacings. To determine the unit 

cell dimensions, the crystal-to-detector distance must be known as well as the 

direct beam position and the incident wavelength. Therefore, the unit cell 

dimensions, crystal system and lattice type can be computed and a list of possible 

solutions with their degrees of penalty is produced.   

 

2.4.2. Integration 

In order to obtain a single data set, all images collected from the X-ray diffraction 

experiment are integrated. This process involves predicting the position of the 

reflections and estimating the reflection intensities with associated standard 

deviations. The intensities calculated by a summation integration and a 

subsequent profile fitting. The pixel values of all intensity pixels are summed and 

the sum of background values are subtracted. The standard deviation is based on 

Poisson statistics. During the integration of the complete dataset, the unit cell 

parameters are typically fixed but the detector parameters, crystal orientation and 
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mosaic spread are refined to establish the best prediction of spot positions. The 

data integration results are written in a single MTZ file including the indices of all 

reflections (h,k,l) and estimated intensities (Ihkl) and error σ(I).   

 

2.4.3. Data reduction 

To reduce lists of reflections to a unique list, the integrated raw data are scaled 

and the multiple measurements of identical reflections are merged. Scaling is 

required to account for variations in incident beam intensity, crystal shape and 

absorption. The average signal to noise ratio over all N reflections in a resolution 

shell can be expressed as: 

 

I
σ(!)

= ! 1N !
|I ! |
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Symmetry-related reflections are merged into a unique data set representing the 

asymmetric unit of the reciprocal space. Merging statistics are computed to 

indicate the data quality in terms of the reliability factor. The linear merging R-

value is commonly used to describe the merging of N redundant observations of 

reflections h within the desired resolution range. 
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where Ī(h) is the average intensity of each reflection 

 

As the number of equivalent measurements increases, so does R-merge and so a 

redundancy-independent merging R-value can also be calculated. 
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Introducing a term of 1/(N-1)1/2 to the linear merging R-value can improve the 

precision of merging intensities, yielding the precision-indicating merging R-

value.  

R!"# = !
( 1
N− 1)

!
!! ! |I ! ! − Ī(!)|!

!!!
I ! !!

!!!!
 

 

 

2.4.4. Determining data quality 

At this stage, a unique dataset has been obtained and an initial analysis of the 

quality of diffraction data is carried out. There are several criteria to assess the 

data quality. Signal-to-noise ratio (SNR) is one of data quality indicators, either 

the overall SNR of the data or the SNR in the highest resolution shell. 1 < I/σ(I) < 

2 is typically defined as a SNR threshold for the resolution cut-off. The 

completeness of good data is expected to be close to 100% across the entire 

resolution range. Merging statistics are other important indicators to describe the 

internal consistency of the data as well as indicate the level of random error and 

residual systematic error in the data (Evans et al, 2011). 

 

 

2.5. Structure determination 

At this stage, the intensity of every reflection has been measured (Ihkl), which is 

proportional to |Fhkl|2, the remaining unknown is the phase αhkl. As this phase 

information has been lost during the X-ray diffraction experiment, solving the 

phase problem is required in order to fulfill the electron density reconstruction 

according to the equation: 
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There are two possible ways for phasing that are molecular replacement and 

experimental phasing. Providing that there are closely related protein structures 

available in the databases, molecular replacement can be simply employed. If this 

is not the case, then experimental phases must be obtained. This method involves 
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finding the substructure of either heavy atoms or anomalous scattering atoms 

existing in the protein molecules with different techniques subsequently used to 

derive the phase angle. The common methods used to determine the phase angle 

are described below, and both rely on the Patterson function to determine the 

heavy atom substructure.    

 

 

2.5.1. Patterson function 

As the phase of an atomic structure factor depends on the position of the atom in 

the unit cell, to find the coordinates of the heavy atom in the unit cell, the 

Patterson method is employed. The Patterson function P (u,v,w) is a Fourier sum 

of the square of the structure factor amplitude with its frequencies h in the u-

direction, k in the v-direction and l in the w-direction, in the absence of phases.  

 

P(u, v,w) != !1V ! |!!"#|!
!

!e!!"!(!"!!"!!")
!!

 

 

The amplitude contribution of the heavy atom in the derivative crystal can be 

obtained from the difference between the structure-factor amplitudes of the native 

and the derivative. 

 

∆! ! = |!!"|!– !|!!| ! 

 

A difference Patterson function can be derived as the equation below 

 

∆P(u, v,w) != !1V ! ∆!!"# !
!

!e!!"!(!"!!"!!")
!!

 

 

A Patterson map shows peaks at the locations corresponding to vectors between 

atoms and allows location of the atom(s) in the unit cell.   
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2.5.2. Isomorphous replacement 

Due to the isomorphism of native and heavy-atom derivative crystals, structure 

factors of a single reflection from native and the corresponding derivative 

reflection can be used to find out the heavy atom contribution. In vector terms, the 

structure factor for the heavy atom derivative (FPH) is the sum of those for the 

native protein (FP) and the heavy atom alone (FH) as the following: 

 

FPH = FP + FH 

or 

FP = FPH - FH  

 

The structure factor amplitude of the heavy atoms can be estimated from the 

isomorphous difference. 

!! ≃ |!!"|!– !|!!|  
 

If the substructure of the heavy atoms can be determined using the Patterson 

function, then FH can be calculated and |FH| and αH are thus known. 

  

This vector equation can be solved for FP using a Harker diagram which 

represents the relative vectors in the complex plane (Figure 2.6a). From the 

measured reflection intensities of the protein and heavy atom derivative crystals, 

their structure factor amplitudes |FP| and |FPH| can be calculated as the length of 

the vectors FP and FPH without their direction or phase angles. In the Harker 

diagram, a circle of radius |FPH| centered on the head of the vector –FH is drawn, 

representing the vector sum |FPH| - FH and together with a circle of radius |FP| 

centered at the origin. Therefore, the possible vector solutions can be drawn at the 

intersection points of these two circles (Figure 2.6b). To break the phase 

ambiguity, the second heavy atom derivative is used to obtaining the more likely 

phase angle from the overlapping of three circles (Figure2.6c). The phase of the 

native protein αP can be calculated from the following equation. 

 

α! = !α! !± !cos!!
!!"! − !!!! − !!!!

2!!!!
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a)  

b)  

c)  

Figure 2.6 Isomorphous replacement a) A representation of structure factor 

vectors of a native protein FP with phase αP (black) and its heavy atom derivative 

FPH with phase αPH (blue) is shown in an Argand diagram. b) Harker construction 

of single isomorphous replacement with phase ambiguity: two possible phases 

(αP) can be calculated. c) Harker construction of multiple isomorphous 

replacement: two or more heavy atom derivatives are used to resolve the phase 

ambiguity. The illustrations are taken from Taylor (2010). 
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2.5.3. Multi-wavelength anomalous dispersion (MAD) 

A different way to obtain phases is to use the anomalous scattering signal from 

certain atoms in the structure. In terms of X-ray absorption, a group of particular 

atoms can exhibit anomalous scattering when the incident wavelength is near to 

their absorption edges in which the absorption dramatically changes. The 

anomalous differences can be employed to locate the anomalous scatterers. 

 

Selenium is the most widely used as an anomalous scattering atom for MAD 

phasing approach. A fluorescence scan close to the absorption of the Se K-edge 

(0.9795 Å) where the f’ and f’’ are greatest allows the identification of energies to 

be used in MAD data collection (Figure 2.7). Three wavelengths are selected 

based on the absorption curve.  λ1 is at the peak of the anomalous signal f”. λ2 is at 

the point of inflection where the dispersive signal f’ reaches its minimum. λ3 is a 

remote wavelength that maximises the dispersive difference to λ2.  

 

!  
Figure 2.7 Typical absorption curve showing anomalous scattering signal in 

electrons for MAD phasing: The selection of wavelengths used in MAD is based 

on the real and imaginary anomalous scattering contributions, f’ (purple) and f” 

(red). This illustration is taken from Taylor (2010). 
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An atomic scattering factor relating to the anomalous contributions can be 

described as: 

 

! !,! = !! !! + !!′ ! + ! ∙ !′′ !  

 

The atomic scattering factor involves three different terms in which f0 represents a 

normal scattering depending on the Bragg angle whereas the dispersive 

component f’ and the absorption component f’’ represent anomalous scattering 

occurring at the absorption edge depending on the wavelength. The normal 

scattering factor is modified by f’ while f’’ is 90° advanced in phase. This 

anomalous effect leads to the breakdown of the Friedel’s law (Figure 2.8). As a 

result, the structure factor amplitude and intensity of reflection hkl is not equal to 

-h-k-l. The Bijvoet pair F+ and F- can be expressed in the following equations. 

 

!! ! = |!!|! + !a|!!|! + b !! |!!| cosα!+ !b|!!||!!| sinα 

and 

 

!! ! = |!!|! + !a|!!|! + b !! !! cosα!− !b|!!||!!| sinα 

 

where |FT| is the total structure factor amplitude of the protein without anomalous 

contributions and |FA| is the structure factor amplitudes of the anomalous marker. 

The constants a, b and c are dependent on the anomalous scattering contributions 

as described below. 

! = !!′
! + !!′′!
!!! !!!!!!!!!!! = !2!′!! !!!!!!!!!!! = !

2!′′
!!  

The phase angle α is the phase difference between the true protein phase φT and 

the phase of the anomalous scattering contributions φA (Figure 2.9). 

 

α = !φ! − !φ! 

 

When data collected at more than one wavelength are available, these unknown 

variables can be determined and FA, FT and α can be computed. 
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From the broken Friedel’s law, the Bijvoet difference can be calculated as: 

 

∆!± = !!"! − |!!"! | 
 

To locate anomalous scattering atoms, the Bijvoet difference coefficients ΔF2  are 

used to calculate a Patterson map that should  contain only peaks corresponding to 

the interatomic vectors between pairs of anomalous scattering atoms.  

 

  
Figure 2.8 Breakdown of Friedel’s law: When an anomalous scatterer is present, 

the structure factor amplitudes of Bijvoet mates are different, |FPA| ≠  |F-
PA|. The 

vector FP (blue) represents the contributions from all of non-anomalous atoms and 

the vector FA (red) is the contributions from the anomalous scattering atom, 

consisting f0+f’ (green) and f” (orange) components.  
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a)  

b)   

Figure 2.9 Argand diagrams involved in MAD phasing: a) The structure factor of 

the protein with the anomalous scattering atom F+ (black) is made of the 

contribution of the protein FT (purple) and the anomalous scattering contributions 

FA (red). b) The phase shift (α) is described as the difference between the protein 

phase without anomalous contributions (φT) and the phase of the anomalous 

scattering contributions (φA).  
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2.5.4. Molecular replacement 

If the protein of interest has a structurally similar model available, phasing can be 

achieved by using the phase from its structure homologue. Typically, more than 

25% sequence identity and less than 2.0 Å rmsd between Cα atoms of the known 

models and unknown structured protein are considered to be required for this 

technique to work. The principle of molecular replacement based structure 

solution relies on the Patterson function. A Patterson map is calculated using a 

Fourier transform of the reflection intensities, resulting in an interatomic vector 

map. A Patterson map is also generated using calculated structure factor 

amplitudes from the atomic coordinates of the known structure model. In order to 

solve the unknown structure, the Patterson functions of the model and the 

unknown protein structures are aligned. The Patterson map of the known structure 

model is rotated over the other to obtain the relative orientation of the search 

model in the new unit cell. A new Patterson is then calculated on the related 

search model and the translation of the correctly oriented model is obtained by 

searching similar Patterson vectors between symmetry-related molecules in the 

unit cell. Therefore, an initial electron density map of the target protein structure 

can be reconstructed using its own measured amplitudes and phases taken from 

the correctly oriented search model.     

 

 

2.6. Structure refinement 

After an initial model of the protein has been built into the electron density map, 

model refinement is carried out to make the best agreement between the model 

and the X-ray data. A local real space refinement is approached by fitting 

individual residues into the electron density. To get more favorable geometry, the 

atomic positions are adjusted using real space regularization tools. After the local 

real space refinement, stereochemical and conformational errors remain. The 

model is therefore subjected to global reciprocal space restrained refinement. 

Stereochemical restraints including bond length, bond angle, torsion angle, 

chirality and planarity are taken into account during refinement, which has the 

effect of improving the observation-to-parameter ratio of the refinement. A 

number of repeating cycles of refinement are performed to adjust the atomic 

parameters of the model and optimise the fit between observed and calculated 
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structure factor amplitudes until the shifts reach convergence. An overall fitness 

between diffraction data and the model structure is described as a global linear 

residual, R-value. 

 

R = ! |!!"#!– !!!"#!|!
!!"#!

 

 

The agreement between the experimental data and fitted model can be computed 

separately for the working data set and the excluded cross validation data set, 

designated as Rwork and Rfree, respectively. A small subset of randomly selected 

reflections set aside and not involved in the refinement is used for cross-validation 

technique to represent how well the model predicts experimental observations that 

are not themselves used to fit the model. Thus, Rfree is used to evaluate the model 

quality as well as the phase accuracy (Brunger, 1992).   

 

2.6.1. Maximum likelihood 

Maximum likelihood is statistical inference technique that declares that the best 

model on the evidence of the data is the one that explain what has actually been 

observed with the highest probability (McCoy, 2004). The maximum likelihood 

methods play an important role in crystallographic programme algorithms 

involving in data processing, electron density reconstruction and structure 

refinement. In protein crystallography, an experimental data refers to the observed 

structure factor amplitude for each reflection in reciprocal space (|Fobs|) and a 

model means the calculated structure factor of the structure in real space (Fcal). A 

solution is the most likely model with the Fcal that has the highest probability of 

generating the Fobs. A reflection likelihood function can be written as: 

 

Ρ− !"#$ = !Ρ !"#";!"#$% = !Ρ(|!!"#|; |!!"#|) 
  

As the assumption of an independence of all reflections, an approximation of total 

likelihood is the product of the reflection likelihoods.  
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! − !"#$!"!!" = Ρ |!!"#|; |!!"#| =!
!

!Ρ |!!"#|; |!!"#|
!

! 

 

Since the probability distributions are continuous, the sum in this equation is 

converted into an integral with all angles. 

 

! − !"#$!"!#$ = ! !Ρ( !!"# ; |!!"#|)!!!
!!

!
 

 

The likelihood function is given by integrating out the nuisance phase between 

Fobs and Fcal, α. 

Ρ( !!"# ; |!!"#|) = ! !Ρ( !!"# ,!; |!!"#|)!!"
!!

!
 

 

The errors in the phased structure factors in reciprocal space that arises from 

errors in the atomic model in real space can be described by the central limit 

theorem. The probability distribution for Fobs given Fcal is a two dimensional 

Guassian in reciprocal space with variance σ2
Δ centered on Fcal. 

 

Ρ !!"#;!!"# = ! 1!!∆!
!!!

|!!"#!!!!!"#|!
!∆!  

 

From the relationship, Ρ(|Fobs|,α;|Fcal|) = Fobs x Ρ(Fobs;Fcal), it is therefore, 

 

Ρ |!!"#|; |!!"#|

= !2|!!"#|!!∆!
exp − |!!"#|

! + |!!"#|!
!∆!

exp 2|!!"#||!!"#|
!∆!

!!"#$
!!

!
!" 

 

The equation is thus simplified to the Rice distribution equation, 

 

Ρ |!!"#|; |!!"#| = !2|!!"#|!∆!
exp − |!!"#|

! + |!!"#|!
!∆!

!!
2|!!"#||!!"#|

!∆!
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When |Fcal| is equal to zero, the Wilson distribution equation is therefore 

introduced, 

 

Ρ |!!"#|; !!"# = 0 = !2|!!"#|!∆!
exp |!!"#|!

!∆!
 

  

Usually, the log-likelihood (LL) is calculated instead of the likelihood. The LL 

gain value, which is the difference between LLs, can be used to determine the 

success of a procedure in maximum likelihood-based programmes.   

 

 

2.7. Structure validation 

Structure validation is an assessment of geometry and electron density to ensure 

the reliability of the structure model. The model can be checked automatically 

using structure validation tools such as PROCHECK (Laskowski et al, 1993) and 

MolProbity (Chen et al, 2010). The stereochemical parameters of the protein 

structure are verified in terms of an overall goodness of stereochemistry G-factor. 

G-factors should be scored greater than -0.5. The Ramachandran plot is used to 

evaluate the backbone conformation of the protein (Ramachandran et al, 1963). 

All residues should be in the allowed regions of the Ramachandran plot. If there is 

wrong conformation within the structure, it will have Ramachandran outiers. The 

distribution plot of B-factors can reveal an incorrection of model building either 

main chains or side chains with an observation of high B-factor values. 

 

As refinement proceeds, the model is validated using these tools, and corrections 

are made to areas with bad geometry, high B-factors, incorrect torsion angles and 

Ramachandran outliers. These tools are also useful to check that the final model 

contains no errors and is of a sufficient quality for deposition in the protein data 

bank. 
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Chapter 3: Materials and Methods 
 

This chapter describes the materials, methods and strategies used throughout the 

research project. Target selection, the amplification of the protein encoded genes, 

cloning of these genes, protein expression and purification, protein crystallisation, 

X-ray data collection, data processing, structure determination and ligand 

observation by nuclear magnetic resonance (NMR) are included.  

 

 

3.1. Target selection 

All target genes in this project were selected from lists of identified potential 

targets based on literature reviews (see section 1.8). As there is increasing 

attention on the development of rational drug design and biomarkers, putative 

essential genes and also immunogenic proteins of B. pseudomallei were taken into 

account in preparing the target list. Seven B. pseudomallei genes of interest are 

described in section 4.1. 

 

 

3.2. DNA manipulation 

3.2.1. Gene amplification 

The genes encoding target proteins were amplified from the genomic DNA of B. 

pseudomallei strain D286 isolated from a melioidosis-suffering patient in 

Malaysia. Oligonucleotide primers were designed using nucleotide sequences of 

the completely sequenced genome of B. pseudomallei strain K96243 as a 

reference. They were chemically synthesised by commercial company services 

(Eurofins MWG Operon and Sigma-Aldrich) for subsequent polymerase chain 

reaction (PCR) according to published guidelines (Dieffenbach et al, 1993). The 

standard 3-step PCR was carried out using a thermal cycler TC-312 (Techne). The 

reaction was made up of B. pseudomallei genomic DNA template, primers, 

polymerase enzyme, buffer and deoxyribonucleotides (dNTPs). Two different 

protocols were employed depending on the cloning strategies (see Table 3.1). 

Protocol A was used with BiomixTM Red (Bioline) for TA cloning whereas 

DyNAzymeTM EXT DNA polymerase (Finnzymes) was used together with its 
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optimised buffer and dNTPs for restriction enzyme cloning (protocol B). To make 

the DNA template accessible, the initial denaturation at 94˚C was performed for 5 

minutes. In each cycle, denaturation at 94˚C for 1 minute was carried out and the 

reaction was then cooled down to the annealing temperature calculated on the 

basis of the melting temperatures of the oligonucleotide primers (Tm) for 1 

minute. Subsequently, the extension of DNA fragments was followed at 72˚C for 

3 minutes. 25 cycles were repeated and the final extension occurred at 72 ˚C for 5 

minutes as the final step. 

 

 

Table 3.1 Recipe for PCR 

 Protocol A 

(µl) 

Protocol B 

(µl) 

Genomic DNA of B. pseudomallei 1 1 

100 µM forward primer 0.5 0.5 

100 µM reverse primer 0.5 0.5 

2x Biomix Red 25 - 

DyNAzymeTM EXT DNA Polymerase - 1 

10x DyNAzymeTM EXT Buffer - 5 

10 mM dNTP mix - 1 

Optional DMSO ranging from 0-1 µl (up to 10% v/v) 

Sterile deionised water to give final volume of 50 µl 

 

 

3.2.2. Agarose gel electrophoresis 

To analyse DNA fragments including PCR products and digestion products, 1% 

(W/V) agarose gels were prepared in 50 ml 1x TAE buffer and 4 µl GelRedTM 

(Biotium). 5-10 µl DNA samples with an addition of 6x gel loading dye (NEB) 

were run on the gel in TAE buffer at 100 Volts for 40 minutes. To estimate the 

size of the DNA fragments, an appropriate molecular weight DNA marker 

(HyperLadderTM I, Bioline) was used on the same gel. The gel containing DNA 

samples was visualised under ultra-violet light. 
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3.2.3. PCR purification and gel extraction 

After PCR, the PCR products were monitored on a 1% agarose gel and if the 

specific PCR product had been obtained, then it was separated from the rest of the 

reaction mixture using the QIAquick PCR Purification Kit (QIAGEN) according 

to the manufacturer’s instructions. When non-specific PCR products had been 

seen on the agarose gel, the rest of the PCR mixture was then loaded and run on 

another agarose gel electrophoresis. The specific DNA band with an expected size 

of the gene was cut off and recovered from the gel using a QIAquick Gel 

Extraction Kit (QIAGEN) following the manufacturer’s instructions.  

 

3.2.4. Gene cloning 

After PCR purification or gel extraction, PCR products were cloned into pET 

vectors following the manufacturers’ protocols. 

 

3.2.4.1. TA cloning 

Most of target genes (including BPSS0945, BPSS0238, BPSS1416, BPSS0603 

and BPSS0683) in this project were engineered into the pETBlue-1TM AccepTor 

vector (Novagen) which provides a high copy number of the screening vector for 

cloning and also facilitates protein expression (Figure 3.1 in Appendix). As a 

result of PCR, the target genes were synthesised with 3’-deoxyadenosine 

triphosphate overhangs, which were ligated to 3’-deoxyuridine triphosphate 

overhangs present in the linearised vector. With the AccepTor vector kit 

(Novagen), the PCR product was gently mixed with the commercially linearised 

vector, which was then ligated by the ligase provided in the ClonablesTM ligation 

premix. The recipe for ligation is shown in Table 3.2. The ligation reaction was 

performed at 16°C for 2 hours. 

 

Table 3.2 A ligation protocol for the pETBlue-1TM AccepTor vector (Novagen) 

 µl 

PCR product 4 

ClonablesTM 2x Ligation Premix 5 

50 ng/µl AccepTorTM Vector 1 

Total reaction volume 10 
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3.2.4.2. Restriction enzyme cloning 

Some of target genes in this work (including truncated BPSL3022 and 

BPSL0606) were cloned into the pET24-a vector (Figure 3.2 in Appendix) using 

restriction enzymes. Firstly, the gene sequences were analysed for potential 

cleavage sites using NEBcutter (Vincze et al, 2003), according to the recognition 

sequences of the commercially available restriction enzymes. Restriction enzymes 

that would not digest the gene targets were considered to be used for cloning, 

corresponding to the restriction map of the vector. 

 

The vector was digested with two different restriction enzymes for example NdeI 

and BamHI (EcoRI or XhoI are used instead of BamHI for cloning BPSL3022). 

To prepare the linearised vector ready to be used for cloning, the digestion 

mixture is shown below (Table 3.3). 

 

 

Table 3.3 Restriction enzyme digestion 

 µl 

pET24-a vector 10 

NdeI 1 

BamHI 1 

10x buffer* 2 

Sterile deionised water 6 

Total reaction volume 20 

*The selection of buffer depends on individual enzyme activity efficiency. The 

compatible buffer for both enzymes is recommended by the manufacturer (NEB). 

 

 

The digestion was carried out at 37 °C, which is an optimal temperature for 

enzyme activity, for 1 hour. Then, the linearised vector was recovered by the PCR 

purification kit (QIAGEN). The gene fragment from the PCR reaction was 

prepared to be an overhang-provided insert. The digestion was performed in the 

same way as the vector preparation.  
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 Digested vector and insert were mixed together with T4 ligase to join each other 

with compatible sticky ends as the recipe in Table 3.4. The ligation reaction was 

incubated at 16 °C for 3 hours or overnight for enhancing recombinant clones. 

 

Table 3.4 Ligation for recombinant pET24-a 

 µl 

Digested pET24-a 5 

Digested gene insert 12 

T4 Ligase 1 

10x T4 ligase buffer 2 

Total reaction volume 20 

 

 

3.2.5. Transformation of E. coli competent cells 

After cloning, the engineered pETBlue-1 vectors were transformed into NovaBlue 

(Novagen), a derived K12 strain of E. coli recommended for the pETBlue-1 

system.  

 

1 µl of ligation mixture was added to 50 µl of competent cells and placed on ice 

for 30 minutes. Using heat shock to allow physical changes in the bacterial cell 

membrane and plasmids to pass into the cell, the pre-chilled eppendorf tube 

containing the mixture of competent cells and plasmids was incubated in a 42˚C 

water bath for 30 seconds. Then, the reaction was rapidly cooled on ice for 2 

minutes. 250 µl of room temperature SOC medium (Novagen) was added into the 

reaction tube which was shaked at 250 rpm at 37°C for 30-60 minutes prior to 

plating. 50 µl and 100 µl of the transformation mixture was spread on LB media 

agar (Table 3.5) containing 50 µg/ml carbenicillin, 15 µg/ml tetracycline, 70 

µg/ml X-gal and 80 µM IPTG. The plates were inverted and incubated overnight. 

The recombinant clones were screened using suitable antibiotic markers as well as 

blue-white colony screening.  
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The recombinant pET24-a plasmids were transformed into E. coli DH5α cells 

(Novagen), using the above protocol except that the LB agar contained 15 µg/ml 

kanamycin as the antibiotic selective maker. 

 

3.2.6. Screening of recombinant clones by colony PCR 

In order to select the correctly orientated insert clones of the white colonies of 

pETBlue-1 transformants, colony PCR was undertaken, using a vector-specific 

primer and one target gene primer. A colony from an agar plate was picked using 

a sterile pipette tip and transferred to a PCR tube containing 10 µl of sterile water. 

The reaction was heated up to 99 °C for 5 minutes to lyse the cells using the PCR 

machine with heated lid lock on a cap, preventing the tube from opening. It was 

then centrifuge at 12000 g for a minute to remove the cell debris. The supernatant 

was transferred to a new PCR tube as a solution of DNA template for the standard 

PCR. pETBlueUP-primer (TCACGACGTTGTAAAACGAC) was used together 

with a reverse primer of the target gene. Alternatively, pETBlueDOWN-primer 

(GTTAAATTGCTAACGCAGTCA) can be used together with a forward primer 

of the target gene. The standard PCR was carried out following the protocol A in 

Table 3.1. To sub-culture investigating clones for further experiments, the same 

colony was picked and streaked on an agar plate containing 50 µg/ml carbenicillin 

and 15 µg/ml tetracycline. 

 

Table 3.5 Lysogeny broth (LB) media and LB agar recipes 

 g/L 

Tryptone 10 

Yeast extract 5 

Sodium chloride (NaCl) 5 

Agar* 15 

* Agar was added for preparing 1.5% w/v LB agar 

 

3.2.7. Plasmid DNA extraction 

After getting transformants, the recombinant plasmids were propagated in E. coli 

by growing up a selective single colony in 10 ml aliquots of LB media (Table 3.5) 

with appropriate antibiotics at 37°C, 250 rpm for overnight. The bacterial cells 

were harvested using a Sigma 3-16K table-top centrifuge at 5000 rpm for 5-10 
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minutes. After making copies of the recombinant clones in E. coli, the constructed 

DNA plasmids were extracted using the QIAprep Spin Miniprep Kit (QIAGEN) 

following the technical protocols provided by the manufacturer. 
 

3.2.8. Analysis of DNA sequencing 

The recombinant clones were verified by DNA sequencing with universal T7 

promoter primers. The automated fluorescent DNA sequencing was carried out by 

external services (Genetic Core Facility, University of Sheffield and Source 

Bioscience). The chromatogram data were analysed using Finch TV (Geospiza, 

Inc.; Seattle, WA, USA). 

 

3.3. Protein expression 

After the sequence of the recombinant clones was confirmed, the correct clones 

were further used for producing the recombinant proteins. To produce the 

proteins, the recombinant genes encoding B. pseudomallei target proteins were 

expressed in E. coli.  

 

3.3.1. Transformation of Tuner (DE3) pLacI 

pETBlue-1 recombinant plasmids were transformed into a suitable expression 

host that was Tuner (DE3) pLacI (Novagen), which provides an additional source 

of Lac repressor. 
 

1 µl of the pETBlue-1 recombinant plasmids was added to a 20 µl aliquot of 

thawed competent cells and was incubated on ice for 5 minutes. Then, it was 

heated in a 42 °C water bath for exactly 30 seconds and back on ice for 2 minutes. 

80 µl of room temperature SOC medium (Novagen) was added and the mixture 

was incubated at 37°C while shaking at 250 rpm for 60 minutes. 5-50 µl of the 

cell suspension was spread on LB agar containing 50 µg/ml carbenicillin and 34 

µg/ml chloramphenicol and the plates were incubated at 37°C overnight. 
 

3.3.2. Transformation of BL21 (DE3) 

pET24-a recombinant plasmids were transformed into E. coli BL21(DE3) 

competent cells (Novagen). The procedure of transformation was carried out as 

described in section 3.3.1 with an exception of using LB agar containing 15 µg/ml 

kanamycin. 
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3.3.3. Protein over-expression   

An over expression test was initially performed in a 50 ml culture. Transformant 

colonies were initially inoculated in 10 ml of LB media containing the appropriate 

antibiotics (50 µg/ml carbenicillin and 34 µg/ml chloramphenicol were used for 

growing Tuner (DE3) pLacI with pETBlue-1 recombinants whereas 15 µg/ml 

kanamycin was used for growing BL21 (DE3) with pET24-a recombinants) and 

the bacteria were grown at 37°C, 250 rpm overnight after inoculation. 1% 

inoculum was added to 50 ml LB media containing suitable antibiotics as above 

and the culture was incubated at 37°C while shaking at 250 rpm until an OD600 of 

0.6 was reached. Then, 50 µl of 1M IPTG (1 mM IPTG at final concentration) 

was added to an exponential phase growth culture and was incubated at the same 

temperature and shaking conditions for an additional 4 hours. The cell suspension 

was then transferred into 50 ml Falcon tubes. Bacterial cells were harvested using 

a Sigma 3-16K table-top centrifuge at 5000 rpm for 10-15 minutes. After draining 

off the liquid media, cell pastes were kept in -20°C for further analysis of protein 

expression. 

 

In order to optimise the growing conditions for obtaining soluble protein 

production, the final concentration of IPTG added and incubation temperature 

after induction were varied if the initial conditions did not yield soluble protein.  

 

 

To scale up the protein production, 5 ml of overnight pre-culture (1% inoculum) 

was added into 500 ml LB media containing suitable antibiotics. The culture was 

incubated at 37°C while shaking at 250 rpm until an OD600 of 0.6 was reached. 

0.5 ml of 1 M IPTG (1 mM IPTG at final concentration) was added and the 

culture was incubated at 37°C (20°C for BPSS0945 production) while shaking at 

250 rpm for an additional 4 hours prior to harvesting the cells. The culture was 

transferred into 250 ml centrifuge tubes and centrifuged at 10,000 rpm for 15-20 

minutes in a Beckman Avanti J25i centrifuge. Cell pastes were collected in 50 ml 

Falcon tubes and kept in the -20°C freezer for subsequent purification. 
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3.3.4. Selenium-methionine (Se-Met) incorporated protein 

production 

For BPSL0606, a Se-Met substituted protein was required for experimental 

phasing. To produce the Se-Met protein, the recombinant E. coli BL21 (DE3) 

carrying BPSL0606 in pET24-a was grown in LB media containing 15 µg/ml 

kanamycin at 37°C while shaking 250 rpm until OD600 ~ 0.6. The bacterial cells 

were harvested by centrifugation at 10000 rpm for 15-20 minutes at 4 °C and the 

liquid media were drained off. The cells were resuspended in minimal media M9 

(Table 3.6) and the cell suspension was then transferred into new flasks 

containing 500 ml minimal media M9 with Se-Met and all other supplements plus 

15 µg/ml kanamycin (Table3.6). When the OD600 of the bacterial culture in 

minimal media reached 0.6, 0.5 ml of 1 M IPTG (1 mM IPTG at final 

concentration) was added for induction and the culture was incubated at 37°C 

while shaking at 250 rpm for an additional 4 hours prior to harvesting. 

 

Table 3.6 Minimal media preparation for Se-Met substituted protein production 

M9 media   per litre 

Na2HPO4 6.78 g 

KH2PO4 3 g 

NaCl 0.5 g 

NH4Cl  1 g 

Glycerol 5 ml 

Supplements Final concentration 

CaCl2 0.1 mM  

MgSO4 2 mM  

Thiamine hydrochloride 2 µg/ml  

L-lysine 100 µg/ml  

L-threonine 100 µg/ml  

L-phenylalanine 100 µg/ml  

L-isoleucine 100 µg/ml  

L-valine 100 µg/ml  

L-leucine 100 µg/ml  

Se-Met  50 µg/ml 
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M9 minimal media was prepared and sterilised by autoclaving. All supplements 

were prepared in stock solutions, which were sterilised by a 0.2 µm pore size 

syringe filter and the required amounts of sterilised stock solutions were added to 

the autoclaved minimal media before use.  

 

 

3.3.5. Protein expression analysis 

In order to analyse the small-scale over-expression of the recombinant proteins, 

1.5 ml of samples were taken from the culture before and after induction of IPTG. 

Bacterial cells were pelleted by a bench-top centrifuge at 13,000 rpm for 5 

minutes. Proteins from the cell pellets were extracted and analysed by sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE).   

 

3.3.5.1. Cell disruption using BugbusterTM 

BugbusterTM (Novagen) was used to extract proteins in the cells by cell lysis. Cell 

pellets from 1.5 ml of bacterial culture were resuspended with a mixture of 4 µl 

BugbusterTM nuclease and 100 µl BugbusterTM protein extraction reagent. The 

reaction was mixed gently by pipetting the mixture and incubated on a rocking 

platform for 15 minutes at room temperature. The supernatant was then separated 

by centrifugation at 13,000 rpm for 5 minutes using a top bench centrifuge. The 

pellets containing the insoluble fraction of the protein were resuspended with 100 

µl 50 mM Tris-HCl pH 8. The soluble fraction and the insoluble fraction were 

further analysed by SDS PAGE. 

 

3.3.5.2. Cell disruption by ultra-sonication 

Cell pastes were resuspended in 50 mM Tris-HCl pH 8 with a ratio of 1:10 (1 g of 

cell pastes : 10 ml of buffer). The cell suspension was transferred to plastic bottles 

on ice and the bacterial cells were disrupted by ultra-sonication on ice. The ultra-

sonication was performed 3 cycles of 20 seconds each cycle with maximum 

amplitude and the samples were allowed to cool down between each cycle. Cell 

debris was separated from supernatant using in a Beckman Avanti J25i centrifuge 

at 24500 rpm for 10-15 minutes at 4 °C. The supernatant was subsequently 

analysed for protein concentration and proceeded to purification trials. 
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3.3.5.3. Bio-Rad protein assay 

To determine the protein concentration by the Bradford method (Bradford, 1976), 

1-20 µl of protein solution was added into a 1 ml plastic cuvette. 0.8 ml MilliQ 

water and 0.2 ml Bio-Rad reagent were added and the sample was mixed by 

inversion. The sample was then put into a spectrophotometer and the absorbance 

of the sample at 595 nm (A595) was measured against the reference set to zero 

with the solution of MilliQ water and Bio-Rad reagent. A read out value between 

0.1-0.7 was recommended for reliability. An estimated protein concentration was 

calculated from the following formula: 

 

!"#$%&'!!"#!$#%&'%("#! (!" !") = ! !!"!×!15!
!ℎ!!!"#$%&!!"!!ℎ!!!"#$%&'!!"#$%&!(!") 

 

where 15 is an estimated coefficient based on a calibration curve using a standard 

protein. 

 

 

3.3.5.4. Sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS PAGE). 

To visualise proteins for size approximation, about 20 µg protein sample was 

added with 10x reducing agent, 4x NuPAGE sample buffer (Invitrogen) and 

MilliQ water, if required, to a final volume of 20 µl. The mixture was heated in a 

100 °C heating block prior to loading and running on SDS polyacrylamide gel 

consisting of 12% resolving gel and 6% stacking gel (Table 3.7). All samples to 

be analysed were loaded on to the vertical gel with an additional lane of 

Mark12TM unstained standard (Invitrogen) as a protein ladder. The gel was run 

against 1x SDS buffer (diluted from 10x stock solution, Table 3.8) at 200 Volts 

for 50 minutes. Then, the gel was removed from the gel cassette and rinsed with 

water before staining. The gel was soaked in to staining solution (0.1% (w/v) 

Coomassie Brilliant Blue in 20% (v/v) methanol plus 10% (v/v) acetic acid 

solution) until the gel colour was saturated and sufficient to visualise. Then, it was 

destained in destaining solution (20% (v/v) methanol plus 10% (v/v) acetic acid 

solution) until its background was clear.   
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Table 3.7 SDS polyacrylamide gel recipe 

12% resolving gel  

30% Acrylamide/bisacrylamide (29:1) 2.5 ml 

1M Tris-HCl buffer, pH 8.8 2.35 ml 

10% SDS solution 62.5 µl 

10% Ammonium persulphate solution 62.5 µl 

TEMED 6.25 µl 

MilliQ water 1.28 ml 

6% stacking gel  

30% Acrylamide/bisacrylamide (29:1) 0.75 ml 

1M Tris-HCl buffer, pH 6.8 0.47 ml 

10% SDS solution 37.5 µl 

10% Ammonium persulphate solution 37.5 µl 

TEMED 3.75 µl 

MilliQ water 2.46 ml 

 

Table 3.8 10x SDS buffer recipe 

 Per liter 

Glycine 144 g 

Tris 30g 

SDS 10g 

 

 

3.4. Protein purification, crystallisation and data collection 

For each of the proteins studied, purification was undertaken using a combination 

of ion exchange chromatography and gel filtration chromatography. Crystals were 

grown using commercial screens (QIAGEN) using a Hydra II Plus One robot. 

Data collection was collected using both an in-house Rigaku MicroMax 007 

micro-focus copper rotating anode generator and Diamond synchrotron radiation. 



! 63!

Details for each protein are given in the following chapters; section 4.4.4 

(BPSS0945), section 4.6.3.3, 5.1 and 5.2 (BPSL0606). 

 

3.5. Data processing 

All X-ray diffraction images were autoindexed and integrated by Mosflm (Leslie, 

2006). The diffraction data were scaled and merged by SCALA (Evans, 2006) . 

At the Diamond beamlines, diffraction data were automatically processed using 

XDS in the xia2 pipeline (Winter, 2010). The Matthews_coeff program in the 

CCP4 suite (Collaborative Computational Project, 1994) was used to analyse the 

unit cell contents on a basis of the unit cell volume and protein size (Matthews, 

1968).  

 

3.6. Structure determination 

The software suite Phenix (Adams et al, 2010) was used to determine the protein 

structure using molecular replacement and the MAD method. The best structure 

solution was obtained and the protein chains were re-built using the CCP4 suite 

(Collaborative Computational Project, 1994) and Coot (Emsley et al, 2010). 

REFMAC5 was used for structure refinement (Murshudov et al, 2011). Structure 

validation was carried out using RAMPAGE in the CCP4 suite (Lovell et al, 

2003). 

 

3.7. Ligand observation by nuclear magnetic resonance (NMR) 

Freshly purified BPSL0606 protein was prepared in 20 mM Na-phosphate buffer 

pH 6.5 plus 0.1 M NaCl for 1H-NMR experiment. The concentration was 

calculated using the measured absorbance at 280 nm divided by an extinction 

coefficient predicted from ProtParam tool. Acetyl coenzyme A solution was 

prepared at the same molar concentration of the protein. A mixture of purified 

protein and acetyl coenzyme A was prepared in a 1:1 molar ratio. All samples 

were loaded into NMR tubes and added with 50 µl heavy water (D2O) prior to 

loading the samples to a Bruker Avance 600MHz NMR spectrometer equipped 

with a 5mm TXI 13C/15N Z-gradient probe. 1H NMR spectra of samples were 

observed. 
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Chapter 4: Target Selection, Cloning, 

Protein Expression and Purification 
 

This chapter describes target selection, gene amplification, cloning of target 

genes, protein over-expression and protein purification. Although the desired 

outcome of this project would be a molecular structure of each target protein, it is 

unrealistic to assume that this will occur, with failures possible at any 

experimental step. Thus, the gene amplification and cloning of BPSL3022, 

BPSS0945, BPSS0603, BPSS0683, BPSL0606, BPSS0238 and BPSS1416 are 

described. The protein expression of BPSL3022, BPSS0945, BPSS0603, 

BPSS0683 and BPSL0606 are detailed and the protein purification of BPSS0945 

and BPSL0606 are discussed. 

 

 

4.1. Target selection 

A list of target genes in this study was created from a selection of potential drug 

targets, which are detailed below.  

 

Su et al (2008) have experimentally identified 109 immunogenic proteins by 

western blotting a B. pseudomallei D286 genomic expression library against the 

pooled sera of melioidosis patients, as a primary antibody screening. The proteins 

that reacted with the serum of the melioidosis patients may thus be involved in the 

pathogenesis and virulence of a B. pseudomallei infection. Based on a database of 

conserved domains (Marchler-Bauer et al, 2011), these immunogenic proteins 

have been classified into different functional groups, including cell envelope 

biogenesis (13%), cell mobility and secretion (6%), transcription (6%), amino 

acid transport and metabolism (11%), inorganic ion transport and metabolism 

(3%), protein metabolism (8%), energy production and conversion (8%), nucleic 

acid metabolism and repair (5%), miscellaneous metabolic proteins (16%), other 

transporters (7%) and uncharacterised hypothetical proteins (17%).  
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In conjunction, 312 putative essential genes of B. pseudomallei have been 

identified computationally (Chong et al, 2006). The B. pseudomallei genome was 

compared with the human genome sequence to identify those B. pseudomallei 

genes that do not have a homologue in humans. These genes were further 

compared with known essential gene sequences in the database of bacterial 

essential genes (Zhang et al, 2004) to obtain a list of putative essential genes in B. 

pseudomallei. These genes were classified into different functional classes 

according to the Wellcome Trust Sanger Institute annotation naming strategies, 

including regulator proteins (21.2%), inner membrane/outer membrane/secreted/ 

surface structure (20.8%), information transfer (transcription/translation/DNA/ 

RNA modification) (17.9%), central/intermediate/miscellaneous metabolism 

(18.6%), energy metabolism (3.5%), degradation of small and large molecules 

(1.3%), pathogenicity/adaptation/ chaperones (4.5%), some information but no 

function (4.8%) and conserved hypothetical proteins (7.4%).        

 

To make a list of a potential drug candidates in this study, the 109 immunogenic 

proteins from the study of Su et al (2008) were compared with the 312 putative 

essential genes of the study of Chong et al (2006) using the B. pseudomallei locus 

tag identity (BPS_XXXX). The intersection between these two identified groups 

gave a list of four proteins that elicit an immune response in infected individuals, 

and are also predicted to be essential for B. pseudomallei survival (Figure 4.1). 

These proteins (BPSL3022, BPSS0945, BPSS0238 and BPSS1416), which may 

play a role in pathogenesis or virulence and are also attractive drug targets, were 

thus selected as the first four proteins to be characterised (Table 4.1) 

 

A further three uncharacterised proteins, BPSS0603, BPSS0683 and BPSL0606, 

which were also immunogenic proteins but were not putative essential genes, 

were selected and added to the list after failing to obtain crystals from any of the 

first four proteins for crystallographic studies. 
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a)

 
 

b)
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Distribution of 312 B. pseudomallei putative essential genes classified by 
the Wellcome Trust Sanger Institute annotation naming scheme  

Regulator 

IM, OM, secreted, surface structure 

Central/intermediate/miscellaneous metabolism 

Information transfer 

Conserved hypothetical protein 

Some information but no function 

Pathogenecity, adaptation, chaperones 

Energy metabolism 

Degradation of small and large molecules 

13% 

11% 

8% 

8% 

6% 
6% 5% 

3% 

7% 

16% 

17% 

Distribution of 109 identified B. pseudomallei immunogenic proteins 
classified according to the conserved domain database  

Cell envelope biogenesis 

Amino acid transport and metabolism 

Protein metabolism 

Energy production and conversion 

Cell motility and secretion 

Transcription 

Nucleic acid metabolism and repair 

Inorganic ion transport and 
metabolism 
Other transporter 

Other metabolic protein 

Uncharacterized and hypothetical 
protein 
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c)

 
 

Figure 4.1 An initial target selection:  

a) 312 putative essential genes identified for potential drug target were grouped 

by their relative functions (Chong et al, 2006).  

b) The experimentally identified 109 immunogenic proteins were classified into 

their conserved domain related groups (Su et al, 2008). 

c) A Venn diagram showed the intersection between these two identified targets, 

which includes BPSL3022, BPSS0945, BPSS0238 and BPSS1416.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

109 identified immunogenic 
proteins 312 putative essential genes 
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Table 4.1 A list of selected targets 

Locus tag Annotation Gene size 

(base pair) 

No. of 

Amino acid 

Molecular 

weight 

(kDa) 

BPSL3022 Cell division protein 

FtsQ 

753 250 27.93 

BPSS0945 Subfamily M23B 

unassigned peptidase 

948 315 32.03 

BPSS0238 Penicillin binding 

protein 

2163 720 76.75 

BPSS1416 Hypothetical protein 1404 467 47.72 

BPSS0603 Hypothetical protein 303 100 10.99 

BPSS0683 Hypothetical protein 357 118 12.99 

BPSL0606 Hypothetical protein 651 216 23.49 

 

 

4.2. Gene amplification 

Oligonucleotide primers for target gene amplification were designed according to 

their open reading frames of their individual nucleotide sequence based on the 

completely sequenced genome of B. pseudomallei strain K96423.  

 

4.2.1. Primer design 

PCR primers were designed compatible to vectors used for subsequent cloning. 

Two different cloning methods were used in this study.  

 

The first method is TA cloning using the pETBlue-1 vector, which facilitates 

cloning and enables high-level recombinant protein expression in E.coli 

(Novagen). This system requires the insert to start with an ATG start codon so 

that translation initiation occurs, with an optimal spacing of 8 base pairs between 

the ribosome binding site and the start codon. Therefore, the forward primers 

were designed to start with ATG and the reverse primers were designed 

complementary to their own sequence. This method was used for cloning of 

BPSL3022, BPSS0945, BPSS0238, BPSS1416, BPSS0603 and BPSS0683. 
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The second method of cloning used in this project, was restriction enzyme 

cloning, with pET24-a vector, which is a cloning/expression vector that provides a 

C-terminal His tag fusion (Novagen). For the restriction enzyme cloning, primers 

were designed with the additional recognition sequence of restriction enzymes 

used in the cloning. The target sequences were firstly analysed using NEB cutter 

(Vincze et al, 2003) to identify restriction sites present in the target sequences. 

The primers were then designed to contain restriction sites not present in the 

target gene. The forward primer of BPSL3022, BPSS0238, BPSS1416 and 

BPSL0606 contained NdeI (CATATG). The reverse primers for different 

constructs of BPSL3022 either had EcoRI (GAATTC) or XhoI (CTCGAG) sites, 

whereas the reverse primers for BPSS0238, BPSS1416 and BPSL0606 contained 

BamHI (GGATCC). A list of primers used in this study is shown in Table 4.2. 

 

Table 4.2 A list of primers used in this work (underline-restriction site) 
Locus tag 

Annotation 

Cloning 

method 

5’-3’ Oligonucleotides 

Forward primer Reverse primer 

BPSL3022 

Cell division 

protein FtsQ 

   

BPSL3022_1 TA ATGCGGGAAATCCGCATCG 

19 bp 

Tm 60 °C, %GC 57.9 

GCTTACATGCCCGCCGC 

17 bp 

Tm 58 °C, %GC 70.6 

BPSL3022_2 TA  TTACTTCTTGCCCTTGTCGGT  

21 bp 

Tm 62 °C, %GC 47.6 

BPSL3022_1 RE GCGTTCCATATGCGGGAAATC 

21 bp 

Tm 64 °C, %GC 52.4 

GGTGAATTCTTACATGCCCGC 

21 bp 

Tm 64 °C, %GC 52.4 

BPSL3022_2 RE  TGATGAATTCTTACTTCTTGCCCT 

24 bp 

Tm 64 °C, %GC 37.5 

BPSL3022_3 RE  GTCCTCGAGCTTCTTGCCCT 

20 bp 

Tm 64 °C, %GC 60 

BPSS0945 

Subfamily 

M23B 

unassigned 

peptidase 

TA ATGAGCAAGAGCGAGATCGA 

20 bp 

Tm 60 °C, %GC 50 

CTAGCCCTGCTGCCGGC  

17 bp 

Tm 60 °C, %GC 76.5 
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Table 4.2 A list of primers used in this work (underline-restriction site) 

(continued) 
Locus tag 

Annotation 

Cloning 

method 

5’-3’ Oligonucleotides 

Forward primer Reverse primer 

BPSS0238 

Penicillin 

binding 

protein 

TA ATGCCAACGAAGGATTTCGAC 

21 bp 

Tm 62 °C, %GC 47.6 

TCAGTCTTCGGTGCGAAACA  

20 bp 

Tm 60 °C, %GC 50 

 RE GTACGCCGCATATGCCAAC 

19 bp 

Tm 60 °C, %GC 57.9 

GGATCCCCGCTCAGTCTTC 

19 bp 

Tm 62 °C, %GC 63.2 

BPSS1416 

Hypothetical 

protein 

TA ATGCCTGCCTCCATGAGC  

18 bp 

Tm 58 °C, %GC 61.1 

TCATGCGGCGCCCTCCA 

17 bp 

Tm 58 °C, %GC 70.6 

 RE CCGCATATGCCTGCCTCCAT 

20 bp 

Tm 64 °C, %GC 60 

AGGATCCTCATGCGGCGCCC 

20 bp 

Tm 68 °C, %GC 70  

BPSS0603 

Hypothetical 

protein 

TA ATGATAATGGAGGCAAGCATGT  

22 bp 

Tm 62 °C, %GC 40.9 

GTTACGTGCTCGCCGC 

16 bp 

Tm 54 °C, %GC 68.8 

BPSS0683 

Hypothetical 

protein 

TA ATGCGCCTCACCATTCGAAT 

20 bp 

Tm 60 °C, %GC 50 

TCAGCGCACGATGGTGAAT 

19 bp 

Tm 58 °C, %GC 52.6 

BPSL0606 

Hypothetical 

protein 

RE GAATCTCCCATATGGACTGG 

20 bp 

Tm 60 °C, %GC 50 

GGATCCTCATCGGTTCATTC 

20 bp 

Tm 60 °C, %GC 50 

NB:  TA = TA cloning 

 RE = Restriction enzyme cloning 

 

 

4.2.2. Polymerase chain reaction (PCR) 

The amplification of these target genes was carried out using the polymerase 

chain reaction (PCR). The genomic DNA of B. pseudomallei strain D286, kindly 

provided by the Universiti Kebangsaan Malaysia, was used as a template. The 

optimization of PCR was carried out for individual gene amplification by varying 

the annealing temperature and the percentage of dimethyl sulfoxide (DMSO). As 

the B. pseudomallei genome contains high GC levels (68%), the addition of 

DMSO was used in the PCR in order to facilitate base pairing disruption between 

double stranded DNA with high GC contents (Kang et al, 2005; Musso et al, 

2006). The PCR conditions for each gene are shown in Table 4.3.  
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Table 4.3 PCR conditions for target gene amplification 

 Annealing 

temperature (°C) 

DMSO (% V/V) 

BPSL3022_1/TA 56 - 

BPSL3022_2/TA 56 - 

BPSL3022_1/RE 60 - 

BPSL3022_2/RE 56 5 

BPSL3022_3 58 2 

BPSS0945 56 5 

BPSS0238 56 10 

BPSS1416 56 5 

BPSS0603 53 - 

BPSS0683 60 - 

BPSL0606 56 2 
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4.3. BPSL3022-Cell division protein FtsQ 

BPSL3022 truncation: periplasmic protein constructs  

In the B. pseudomallei genome, BPSL3022 has been annotated as the cell division 

protein FtsQ (Winsor et al, 2008). The ftsQ gene in E. coli is found in a cell 

division gene cluster that is involved in septum formation and synthesis of cell 

wall components. The FtsQ protein (31 kDa) consists of a 24 N-terminal amino 

acid residue cytoplasmic tail, residues 25-49 embedded in the cytoplasmic 

membrane and the remainder forming a C-terminal periplasmic domain of 226 

residues (Carson et al, 1991). The structures of FtsQ from E. coli and Yersinia 

enterocolitica have been successfully determined (Van den Ent et al, 2008). Both 

these proteins are composed of two domains. The topology of the α-domain close 

to the membrane is β-α-α-β-β and the C-terminal β-domain consists of nine β-

strands with two long α-helices (Figure 4.2). The constructs for expressing the 

proteins, that crystallised into these two structures of the periplasmic domain of 

FtsQ in E. coli and Y. enterocolitica, contain residues 58-276 and residues 59-285 

for E. coli and Y. enterocolitica FtsQ, respectively, each lacking the N-terminal 

hydrophobic region.  

 
Figure 4.2 Crystal structures of periplasmic FtsQ in E. coli and Y. entericolitica:  

E.coli and Y.entericolitica FtsQ have 56% sequence identity and the rmsd of their 

superposed structures (Cα) is 1.63 Å. This figure is taken from Van den Ent et al 

(2008). 
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The protein sequence of FtsQ in B. pseudomallei (BPSL3022) was analysed using 

hydropathy plot, which showed that the protein contains a N-terminal 

hydrophobic part, which is likely to be a membrane anchor (Figure 4.3). Kyte-

Doolittle scale plots show the distribution of hydrophobic and hydrophilic 

residues on the protein sequence and positive values represent the hydrophobic 

character of the protein. A score of more than 1.6 indicates a potential 

hydrophobic membrane-spanning domain. This corresponds to a prediction of 

transmembrane helices, based on a hidden Markov model by the TMHMM server 

v.2.0 (Krogh et al, 2001). The TMHMM annotation probabilities for the sequence 

of BPSL3022 are shown in Figure 4.4.  

 

 

 
Figure 4.3 A hydropathy plot for BPSL3022, showing the N-terminal 

hydrophobic region (residues 1-24) of this protein. This figure was produced 

using the hydropathy plot server (http://www.vivo.colostate.edu/molkit/ 

hydropathy/index.html). 
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Figure 4.4 Transmembrane prediction of BPSL3022: Residues 10 to 32 of 

BPSL3022 are likely to form a transmembrane helix. This figure was produced 

using TMHMM server (Krogh et al, 2001). 

  

When the secondary structure of BPSL3022 was predicted using 

mGenTHREADER PREDICTION (McGuffin et al, 2000), the top hits had 

approximately 30% identity to the crystal structures of E. coli and Y. 

enterocolitica. Thus, the protein sequence of BPSL3022 was aligned with the 

sequences of the crystal structures of periplasmic FtsQ in E. coli and Y. 

enterocolitica using ClustalW (Thompson et al, 1994), as shown in Figure 4.5.  
 

Using this alignment, two constructs of BPSL3022 were designed, in an attempt 

to optimise the probability of crystallisation. According to the BPSL3022 

sequence, one truncated form of BPSL3022 (named BPSL3022_1) was 

constructed from residue 40 (arginine, R) to residue 239 (methionine, M), where 

the sequence similarity to the FtsQ homologue structures ends, and the other 

construct (named BPSL3022_2) started from residue 40 to the C-terminus, residue 

250 (lysine, K) (Figure 4.5). Therefore, the oligonucleotide primers of the 

truncated BPSL0606 were designed corresponding to the open reading frame 

from the residue 40 with additional start codon ATG to amplify these gene 

fragments.     
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Figure 4.5 Protein sequence alignment of the crystal structures of the periplasmic 

FtsQ protein from E. coli (second line) and Y. enterocolitica (first line) and FtsQ 

from B. pseudomallei (third line); The constructs that crystallised for FtsQ in      

E. coli and Y. enterocolitica were considered in order to design a construct of 

periplasmic FtsQ in B. pseudomallei, on the basis of sequence similarity. 

Completely conserved residues are shown in green, identical residues are in 

yellow and similar residues are shown in cyan. This figure was created using 

Boxshade (Hofmann & Baron). 

 

The protein sequences of the two BPSL3022 truncates were analysed by 

ProtParam (ExPASy server). The short truncated FtsQ consists of 201 amino 

acids with a molecular weight of 22.6 kDa and a theoretical pI of 5.3, whereas the 

long truncated FtsQ is 212 amino acids long and has a molecular weight of 23.9 

kDa with a theoretical pI of 5.7 (Figure 4.6). 
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a)  

b)  

Figure 4.6 Protein sequence analysis of BPSL3022 constructs by ProtParam: a) 

Characteristics of the short truncated BPSL3022 (residues 40-239); b) 

Characteristics of the long truncated BPSL3022 (residues 40-250) 

 

ProtParam: BPSL3022s 

MREIRIDGDT EHINAPTVRA GVVGRLKGNF FTVDLDLARV AFEQMPWVRH ASVRRVWPNA  
LAVTLEEYKP LGTWGNDQLV SVDGELFTAN QGELDAELPS FDGPEGSAKE VVARYRDFAK  
WFAPIHATPE EVTLSPRYAW TVKLSNGMQV ELGRERNSDT LPDRIQRLVA AWPSVTQRWG  
GDIEYADLRY PNGFAIRAAG M  
 
Number of amino acids: 201 Molecular weight: 22584.4 Theoretical pI: 5.30 
 
Amino acid composition:  
Ala (A)  21  10.4% 
Arg (R)  18   9.0% 
Asn (N)   8   4.0% 
Asp (D)  13   6.5% 
Cys (C)   0   0.0% 
Gln (Q)   6   3.0% 
Glu (E)  15   7.5% 
Gly (G)  16   8.0% 
His (H)   3   1.5% 

Ile (I)   7   3.5% 
Leu (L)  16   8.0% 
Lys (K)   5   2.5% 
Met (M)   4   2.0% 
Phe (F)   8   4.0% 
Pro (P)  12   6.0% 
Ser (S)   8   4.0% 
Thr (T)  11   5.5% 
Trp (W)   7   3.5% 

Tyr (Y)   5   2.5% 
Val (V)  18   9.0% 
Pyl (O)   0   0.0% 
Sec (U)   0   0.0% 
 
 (B)   0   0.0% 
 (Z)   0   0.0% 
 (X)   0   0.0% 
 

 
Total number of negatively charged residues (Asp + Glu): 28 
Total number of positively charged residues (Arg + Lys): 23 
 
Atomic composition: 
Carbon      C       1010 
Hydrogen    H       1557 
Nitrogen    N        287 
Oxygen      O        296 
Sulfur      S          4 
 
Formula: C1010H1557N287O296S4 
Total number of atoms: 3154 
 
Extinction coefficients: 
Extinction coefficients are in units of  M-1 cm-1, at 280 nm measured in water. 
Ext. coefficient    45950 
Abs 0.1% (=1 g/l)   2.035, assuming ALL Cys residues appear as half cystines 
 
 
Estimated half-life: 
 
The N-terminal of the sequence considered is M (Met). 
 
The estimated half-life is: 30 hours (mammalian reticulocytes, in vitro). 
                            >20 hours (yeast, in vivo). 
                            >10 hours (Escherichia coli, in vivo). 
 
 
Instability index: 
 
The instability index (II) is computed to be 25.37 
This classifies the protein as stable. 
 

ProtParam: FtsQ (BPSL3022L) 

MREIRIDGDT EHINAPTVRA GVVGRLKGNF FTVDLDLARV AFEQMPWVRH ASVRRVWPNA  
LAVTLEEYKP LGTWGNDQLV SVDGELFTAN QGELDAELPS FDGPEGSAKE VVARYRDFAK  
WFAPIHATPE EVTLSPRYAW TVKLSNGMQV ELGRERNSDT LPDRIQRLVA AWPSVTQRWG  
GDIEYADLRY PNGFAIRAAG MRFLTDTDKG KK  
 
Number of amino acids: 212  Molecular weight: 23874.9  Theoretical pI: 5.71 
 
Amino acid composition:  
Ala (A)  21   9.9% 
Arg (R)  19   9.0% 
Asn (N)   8   3.8% 
Asp (D)  15   7.1% 
Cys (C)   0   0.0% 
Gln (Q)   6   2.8% 
Glu (E)  15   7.1% 
Gly (G)  17   8.0% 
His (H)   3   1.4% 

Ile (I)   7   3.3% 
Leu (L)  17   8.0% 
Lys (K)   8   3.8% 
Met (M)   4   1.9% 
Phe (F)   9   4.2% 
Pro (P)  12   5.7% 
Ser (S)   8   3.8% 
Thr (T)  13   6.1% 
Trp (W)   7   3.3% 

Tyr (Y)   5   2.4% 
Val (V)  18   8.5% 
Pyl (O)   0   0.0% 
Sec (U)   0   0.0% 
 
 (B)   0   0.0% 
 (Z)   0   0.0% 
 (X)   0   0.0% 
 

 
Total number of negatively charged residues (Asp + Glu): 30 
Total number of positively charged residues (Arg + Lys): 27 
 
Atomic composition: 
Carbon      C       1067 
Hydrogen    H       1652 
Nitrogen    N        304 
Oxygen      O        313 
Sulfur      S          4 
 
Formula: C1067H1652N304O313S4 
Total number of atoms: 3340 
 
Extinction coefficients: 
Extinction coefficients are in units of  M-1 cm-1, at 280 nm measured in water. 
Ext. coefficient    45950 
Abs 0.1% (=1 g/l)   1.925, assuming ALL Cys residues appear as half cystines 
 
 
Estimated half-life: 
 
The N-terminal of the sequence considered is M (Met). 
 
The estimated half-life is: 30 hours (mammalian reticulocytes, in 
vitro). 
                            >20 hours (yeast, in vivo). 
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4.3.1. Gene amplification 

The target genes encoding the periplasmic part of B. pseudomallei FtsQ were 

amplified from the genomic DNA of B. pseudomallei strain D286 using the 

oligonucleotide primers designed according to the open reading frame that 

encodes from residue 40 of the full-length protein with additional start codon 

(ATG) to fulfill the requirement of pETBlue-1 vector system. The forward primer 

(5’-ATGCGGGAAATCCGCATCG-3’) and reverse primer (5’- GCTTACATG 

CCCGCCGC-3’) were used in a standard PCR to obtain the short truncated FtsQ, 

while the same forward primer was used together with the reverse primer (5’-

TTACTTCTTGCCCTTGTCGGT-3’) for obtaining the long truncated construct. 

The PCR products for both gene fragments amplification were achieved using an 

annealing temperature of 56 °C with an expected size of approximately 600 base 

pairs (Figure 4.7). 

 
Figure 4.7. PCR products of truncated BPSL3022 gene amplification on a 1% 

agarose gel: The expected size of the PCR products obtained was in the region of 

600 base pairs. 

 

4.3.2. Cloning of BPSL3022_1 and BPSL3022_2 

The PCR products of BPSL3022_1 and BPSL3022_2 were cloned into the 

pETBlue-1 vector by joining the given 3’-dU overhang of the linearised pETBlue-

1TM AccepTor vector and the 3’-dA overhangs of the PCR products. The 

linearised pETBlue-1TM AccepTor vector provides single 3’-dU overhangs that 

can be ligated with an insert with 3’-dA overhangs, generated during PCR with a 

DNA polymerase lacking 3’->5’exonuclease activity. After ligation, the 

recombinant plasmids were transformed into E.coli NovaBlue, which enables 

blue/white screening. White colonies obtained are the bacteria carrying the 
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recombinant plasmids, as the insert interferes with a lacZ α-peptide open reading 

frame in the vector, resulting in the disruption of β-galactosidase production, 

which disables the cleavage of the chromogenic substrate, X-gal, on the agar 

plate. 
 

Recombinant clones of BPSL3022 were selected by the blue white colony 

method. The recombinant plasmids can carry the insert either correctly oriented or 

the wrong way round. To determine the correct orientation of the insert, the white 

colonies were further screened by colony PCR. The use of a vector specific 

primer together with an insert primer for amplifying the investigating plasmid 

DNA yields the expected sized PCR product, if the recombinant has the correct 

orientation. Recombinant plasmids with a positive PCR result were propagated in 

E. coli. The recombinant plasmids were extracted and the sequence confirmed by 

DNA sequencing with universal T7 primers. 
 

The sequencing results of the long truncated (BPSL3022_2) clone showed that 

there were two nucleotides that were different from the reference genome of B. 

pseudomallei strain K96243, resulting in one amino acid alteration at residue 79 

(A to V) (Figure 4.8). On the other hand, the BPSL3022_1 short truncated 

construct could not be successfully cloned, since the plasmid sequencing indicated 

that these clones contained the long truncated insert. This may be due to an 

inappropriate primer design.     
 

 
Figure 4.8 DNA sequencing of BPSL3022_2 in the pETBlue-1 clone: The translated 

protein sequence of the recombinant truncated BPSL3022 (first line) was aligned with the 

full length protein sequence of FtsQ in B. pseudomallei strain K96243 (second line), 

showing one amino acid alteration highlighted in red (Ala to Val). This figure was 

created using Boxshade (Hofmann & Baron). 

BPSL3022_24        1 --------------------------------------MREIRIDGDTEHINAPTVRAGV
gi_53720632_ref    1 MWNNVRQLNLAASALYALLLLVLAAAGCYWLIQRPAFALREIRIDGDTEHINAPTVRAGV
consensus          1 mwnnvrqlnlaasalyallllvlaaagcywliqrpafamREIRIDGDTEHINAPTVRAGV

BPSL3022_24       23 VGRLKGNFFTVDLDLARVVFEQMPWVRHASVRRVWPNALAVTLEEYKPLGTWGNDQLVSV
gi_53720632_ref   61 VGRLKGNFFTVDLDLARVAFEQMPWVRHASVRRVWPNALAVTLEEYKPLGTWGNDQLVSV
consensus         61 VGRLKGNFFTVDLDLARV-FEQMPWVRHASVRRVWPNALAVTLEEYKPLGTWGNDQLVSV

BPSL3022_24       83 DGELFTANQGELDAELPSFDGPEGSAKEVVARYRDFAKWFAPIHATPEEVTLSPRYAWTV
gi_53720632_ref  121 DGELFTANQGELDAELPSFDGPEGSAKEVVARYRDFAKWFAPIHATPEEVTLSPRYAWTV
consensus        121 DGELFTANQGELDAELPSFDGPEGSAKEVVARYRDFAKWFAPIHATPEEVTLSPRYAWTV

BPSL3022_24      143 KLSNGMQVELGRERNSDTLPDRIQRLVAAWPSVTQRWGGDIEYADLRYPNGFAIRAAGMR
gi_53720632_ref  181 KLSNGMQVELGRERNSDTLPDRIQRLVAAWPSVTQRWGGDIEYADLRYPNGFAIRAAGMR
consensus        181 KLSNGMQVELGRERNSDTLPDRIQRLVAAWPSVTQRWGGDIEYADLRYPNGFAIRAAGMR

BPSL3022_24      203 FLTDTDKGKK
gi_53720632_ref  241 FLTDTDKGKK
consensus        241 FLTDTDKGKK
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4.3.3. Protein expression 

Expression of the truncated BPSL3022_2 in pETBlue-1 was carried out in E. coli 

TunerTM (DE3), with 1mM IPTG induction at 37°C for 4 hours after growing to 

mid log phase (OD600 ~ 0.6). After harvesting and disrupting the bacterial cells, 

the protein expression profiles were analysed by SDS PAGE. The expected 

molecular weight of this construct is 23.9 kDa (ProtParam, ExPASy server). 

There was an intense band between 21.5 and 31 kDa on the SDS PAGE gel 

(Figure 4.9). In the host expression system, E. coli TunerTM also produces 

chloramphenicol acetyl transferase (CAT) which is 25.7 kDa in size. Therefore, it 

was uncertain whether the band visualised on the gel was the target protein or the 

CAT protein. It was quite difficult to separate these two proteins with their similar 

pI (BPSL3022_2 pI 5.7, CAT pI 5.9) as there was no affinity tag on the target 

protein.  

 

 

 
Figure 4.9 SDS PAGE BPSL3022_2 in pETBlue-1 expressed in E. coli Tuner 

(DE3) pLacI cells: lane 1 Mark12TM; lane 2 pre-induction; lane 3 soluble fraction 

at 37°C induction for 4 hours; lane 4 insoluble fraction at 37°C induction for 4 

hours 
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As overexpression of the CAT protein often occurs in the pETBlue-1 expression 

system, a different construct, BPSL3022_3, was thus designed in order to clone 

into the pET24-a vector system using the restriction enzyme strategy. This 

construct provides a C-terminal His-tag to the protein in order to ease protein 

purification. The forward primer (5’-GCGTTCCATATGCGGGAAATC-3’) and 

the reverse primer (5’- GTCCTCGAGCTTCTTGCCCT-3’) were used to amplify 

the truncated periplasmic FtsQ of B. pseudomallei (residue 40-250). The PCR 

reaction for this truncated BPSL3022 required the addition of 2% DMSO at an 

annealing temperature of 58°C. The expected size of the PCR product was 

approximately 600 base pairs on a 1% agarose gel.  

 

The cloning of the BPSL3022_3 construct using restriction enzymes was carried 

out by ligating the compatible overhangs of the digested PCR product and a 

linearised pET24-a vector. The PCR product was digested with the restriction 

enzymes, NdeI and XhoI to provide the overhangs 5’…-CA^TATG…-3’ and 5’-

…C^TCGAG…3’, respectively. The pET24-a vector was also digested with these 

restriction enzymes to linearise the vector with compatible ends. Then, the 

ligation was performed using T4 ligase to join the compatible ends of the insert 

and the vector, and this ligated vector was transformed into E. coli DH5α cells for 

screening on kanamycin agar plates. The recombinant clones were confirmed by 

plasmid DNA sequencing using universal T7 primers. There was one nucleotide 

different from the reference sequence based on the B. pseudomallei strain K96243 

genome, but the protein sequence remained unchanged (Figure 4.10). 
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a)  

b)  

Figure 4.10 DNA sequencing of the truncated FtsQ with a C-terminal His tag 

(BPSL3022_3): a) The recombinant plasmid DNA was sequenced using the universal T7 

forward and reverse primers and the insert was identified by sequence alignment of the 

recombinant clone (read from T7 forward primer-first line, read from T7 reverse primer-

second line) against the reference gene sequence (third line);  b) The protein sequence of 

the recombinant truncated BPSL3022 (first line) was identical to the reference FtsQ 

protein sequence of B. pseudomallei strain K96243 (second line), highlighted in green. 

This figure was created using Boxshade (Hofmann & Baron).    

 

ftsqh1f            1 TATACATATGCGGGAAATCCGCATCGACGGGGACACCGAGCACATCAACGCGCCGACCGT
ftsqh1r            1 TATACATATGCGGGAAATCCGCATCGACGGGGACACCGAGCACATCAACGCGCCGACCGT
BPSL3022____cel    1 -------ATGCGGGAAATCCGCATCGACGGGGACACCGAGCACATCAACGCGCCGACCGT
consensus          1 tatacatATGCGGGAAATCCGCATCGACGGGGACACCGAGCACATCAACGCGCCGACCGT

ftsqh1f           61 GCGCGCGGGCGTCGTCGGGCGGCTGAAGGGCAACTTCTTCACCGTCGATCTCGACCTCGC
ftsqh1r           61 GCGCGCGGGCGTCGTCGGGCGGCTGAAGGGCAACTTCTTCACCGTCGATCTCGACCTCGC
BPSL3022____cel   54 GCGCGCGGGCGTCGTCGGGCGGCTGAAGGGCAACTTCTTCACCGTCGATCTCGACCTCGC
consensus         61 GCGCGCGGGCGTCGTCGGGCGGCTGAAGGGCAACTTCTTCACCGTCGATCTCGACCTCGC

ftsqh1f          121 GCGCGTCGCGTTCGAGCAGATGCCGTGGGTGCGCCACGCGAGCGTGCGCCGGGTGTGGCC
ftsqh1r          121 GCGCGTCGCGTTCGAGCAGATGCCGTGGGTGCGCCACGCGAGCGTGCGCCGGGTGTGGCC
BPSL3022____cel  114 GCGCGTCGCGTTCGAGCAGATGCCGTGGGTGCGCCACGCGAGCGTGCGCCGGGTGTGGCC
consensus        121 GCGCGTCGCGTTCGAGCAGATGCCGTGGGTGCGCCACGCGAGCGTGCGCCGGGTGTGGCC

ftsqh1f          181 GAACGCGCTCGCCGTGACGCTCGAAGAGTACAAGCCGCTCGGCACGTGGGGCAACGATCA
ftsqh1r          181 GAACGCGCTCGCCGTGACGCTCGAAGAGTACAAGCCGCTCGGCACGTGGGGCAACGATCA
BPSL3022____cel  174 GAACGCGCTCGCCGTGACGCTCGAAGAGTACAAGCCGCTCGGCACGTGGGGCAACGATCA
consensus        181 GAACGCGCTCGCCGTGACGCTCGAAGAGTACAAGCCGCTCGGCACGTGGGGCAACGATCA

ftsqh1f          241 GCTCGTGAGCGTCGACGGCGAGCTCTTCACCGCGAACCAGGGCGAACTCGATGCGGAGCT
ftsqh1r          241 GCTCGTGAGCGTCGACGGCGAGCTCTTCACCGCGAACCAGGGCGAACTCGATGCGGAGCT
BPSL3022____cel  234 GCTCGTGAGCGTCGACGGCGAGCTCTTCACCGCGAACCAGGGCGAGCTCGATGCGGAGCT
consensus        241 GCTCGTGAGCGTCGACGGCGAGCTCTTCACCGCGAACCAGGGCGAaCTCGATGCGGAGCT

ftsqh1f          301 GCCGTCGTTCGACGGCCCGGAGGGCAGCGCGAAGGAGGTCGTCGCGCGCTATCGCGACTT
ftsqh1r          301 GCCGTCGTTCGACGGCCCGGAGGGCAGCGCGAAGGAGGTCGTCGCGCGCTATCGCGACTT
BPSL3022____cel  294 GCCGTCGTTCGACGGCCCGGAGGGCAGCGCGAAGGAGGTCGTCGCGCGCTATCGCGACTT
consensus        301 GCCGTCGTTCGACGGCCCGGAGGGCAGCGCGAAGGAGGTCGTCGCGCGCTATCGCGACTT

ftsqh1f          361 CGCGAAATGGTTTGCGCCGATCCACGCGACGCCTGAGGAGGTGACGCTGTCGCCGCGCTA
ftsqh1r          361 CGCGAAATGGTTTGCGCCGATCCACGCGACGCCTGAGGAGGTGACGCTGTCGCCGCGCTA
BPSL3022____cel  354 CGCGAAATGGTTTGCGCCGATCCACGCGACGCCTGAGGAGGTGACGCTGTCGCCGCGCTA
consensus        361 CGCGAAATGGTTTGCGCCGATCCACGCGACGCCTGAGGAGGTGACGCTGTCGCCGCGCTA

ftsqh1f          421 CGCGTGGACGGTGAAGCTGTCGAACGGCATGCAGGTCGAGCTCGGCCGCGAGCGCAACAG
ftsqh1r          421 CGCGTGGACGGTGAAGCTGTCGAACGGCATGCAGGTCGAGCTCGGCCGCGAGCGCAACAG
BPSL3022____cel  414 CGCGTGGACGGTGAAGCTGTCGAACGGCATGCAGGTCGAGCTCGGCCGCGAGCGCAACAG
consensus        421 CGCGTGGACGGTGAAGCTGTCGAACGGCATGCAGGTCGAGCTCGGCCGCGAGCGCAACAG

ftsqh1f          481 CGACACGCTGCCCGACCGGATCCAGCGCCTCGTCGCCGCATGGCCGTCGGTCACGCAGCG
ftsqh1r          481 CGACACGCTGCCCGACCGGATCCAGCGCCTCGTCGCCGCATGGCCGTCGGTCACGCAGCG
BPSL3022____cel  474 CGACACGCTGCCCGACCGGATCCAGCGCCTCGTCGCCGCATGGCCGTCGGTCACGCAGCG
consensus        481 CGACACGCTGCCCGACCGGATCCAGCGCCTCGTCGCCGCATGGCCGTCGGTCACGCAGCG

ftsqh1f          541 CTGGGGCGGCGACATCGAGTACGCGGATCTTCGCTATCCGAACGGATTCGCGATTCGCGC
ftsqh1r          541 CTGGGGCGGCGACATCGAGTACGCGGATCTTCGCTATCCGAACGGATTCGCGATTCGCGC
BPSL3022____cel  534 CTGGGGCGGCGACATCGAGTACGCGGATCTTCGCTATCCGAACGGATTCGCGATTCGCGC
consensus        541 CTGGGGCGGCGACATCGAGTACGCGGATCTTCGCTATCCGAACGGATTCGCGATTCGCGC

ftsqh1f          601 GGCGGGCATGCGGTTCCTGACCGATACCGACAAGGGCAAGAAGCTCGAGCACCACCACCA
ftsqh1r          601 GGCGGGCATGCGGTTCCTGACCGATACCGACAAGGGCAAGAAGCTCGAGCACCACCACCA
BPSL3022____cel  594 GGCGGGCATGCGGTTCCTGACCGATACCGACAAGGGCAAGAAGTAA--------------
consensus        601 GGCGGGCATGCGGTTCCTGACCGATACCGACAAGGGCAAGAAGctcgagcaccaccacca

ftsqh1f          661 CCACCACTGA
ftsqh1r          661 CCACCACTGA
BPSL3022____cel      ----------
consensus        661 ccaccactga

ftsqh1             1 --------------------------------------MREIRIDGDTEHINAPTVRAGV
B._pseudomallei    1 MWNNVRQLNLAASALYALLLLVLAAAGCYWLIQRPAFALREIRIDGDTEHINAPTVRAGV
consensus          1 mwnnvrqlnlaasalyallllvlaaagcywliqrpafamREIRIDGDTEHINAPTVRAGV

ftsqh1            23 VGRLKGNFFTVDLDLARVAFEQMPWVRHASVRRVWPNALAVTLEEYKPLGTWGNDQLVSV
B._pseudomallei   61 VGRLKGNFFTVDLDLARVAFEQMPWVRHASVRRVWPNALAVTLEEYKPLGTWGNDQLVSV
consensus         61 VGRLKGNFFTVDLDLARVAFEQMPWVRHASVRRVWPNALAVTLEEYKPLGTWGNDQLVSV

ftsqh1            83 DGELFTANQGELDAELPSFDGPEGSAKEVVARYRDFAKWFAPIHATPEEVTLSPRYAWTV
B._pseudomallei  121 DGELFTANQGELDAELPSFDGPEGSAKEVVARYRDFAKWFAPIHATPEEVTLSPRYAWTV
consensus        121 DGELFTANQGELDAELPSFDGPEGSAKEVVARYRDFAKWFAPIHATPEEVTLSPRYAWTV

ftsqh1           143 KLSNGMQVELGRERNSDTLPDRIQRLVAAWPSVTQRWGGDIEYADLRYPNGFAIRAAGMR
B._pseudomallei  181 KLSNGMQVELGRERNSDTLPDRIQRLVAAWPSVTQRWGGDIEYADLRYPNGFAIRAAGMR
consensus        181 KLSNGMQVELGRERNSDTLPDRIQRLVAAWPSVTQRWGGDIEYADLRYPNGFAIRAAGMR

ftsqh1           203 FLTDTDKGKKLEHHHHHH
B._pseudomallei  241 FLTDTDKGKK--------
consensus        241 FLTDTDKGKKlehhhhhh
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BPSL3022_3 with a C-terminal His tag was expressed in E. coli BL21 (DE3) 

using 1 mM IPTG induction at 37°C for 4 hours. There was a highly expressed 

protein band between 21.5 and 31 kDa on the SDS PAGE gel, but only in the 

insoluble fraction. In order to increase the soluble form of the protein, the 

induction temperature was decreased to 20°C but at this temperature there was no 

expression of the target protein (Figure 4.11). 

 

   

  
 

Figure 4.11 SDS PAGE of BPSL3022_3 with C-terminal His tag in pET24-a 

expressed in E. coli BL21 (DE3). lane 1 Mark12TM; lane 2 pre-induction; lane 3 

soluble fraction at 37°C induction for 4 hours; lane 4 insoluble fraction at 37°C 

induction for 4 hours; lane 5 soluble fraction at 20 °C induction 4 hours; lane 6 

insoluble fraction at 20°C induction 4 hours; lane 7 soluble fraction at 20°C 

induction overnight; lane 8 insoluble fraction at 20°C induction overnight. 

 

 

The constructs of short and long truncated FtsQ (BPSL3022_1 and BPSL3022_2) 

without an affinity tag were also designed and cloned into pET24-a with the 

restriction enzymes NdeI and BamHI. The forward primer used to amplify these 

truncated genes was the same as the truncated BPSL3022 with the C-terminal His 

tag construct, but the reverse primers were different due to the use of different 

restriction enzymes and the gene fragment length. The resultant recombinant 

clones were confirmed by DNA sequencing and the sequence of BPSL3022_1 

was identical to the reference genome in amino acid level while one amino acid 
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was altered in BPSL3022_2 at residue 175 (R to H). This change could be due to 

the different genomic strain in the database or perhaps resulted from the use of 

additional DMSO in the PCR. Protein expression tests were carried out using E. 

coli BL21 (DE3) with 1mM IPTG induction at 37°C for 4 hours. There was no 

expression of either target protein on SDS PAGE. Even if the expression tests 

were carried out in a different expression host E. coli C43 (DE3), which is able to 

prevent cell death associated with recombinant protein expression, but there was 

still no protein expression of truncated BPSL3022.    

 

As further experiments to promote soluble expression of B. pseudomallei FtsQ 

were likely to be time consuming, this project was terminated. 
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4.4. BPSS0945-Subfamily M23B unassigned peptidase 

 

The gene encoding BPSS0945 is located in chromosome 1 of the B. pseudomallei 

strain K96243 genome according to the Burkholderia genome. This gene consists 

of 948 nucleotides, encoding a 315-amino acid protein that has been annotated as 

a member of the subfamily M23B unassigned peptidases (Winsor et al, 2008). 

 

Preliminary analysis of the BPSS0945 protein sequence was performed using 

ProtParam (ExPASy server) and the protein characteristics are described in Figure 

4.12. BPSS0945 has a molecular weight of 32 kDa and a theoretical pI of 9.78. 

 

 
Figure 4.12 Analysis of BPSS0945 protein sequence: The characterization of 

BPSS0945 revealed its molecular weight, theoretical pI, amino acid composition 

and extinction coefficients by ProtParam. 
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The hydrophobicity of BPSS0945 was also characterised by hydropathy plot 

(http://www.vivo.colostate.edu/molkit/hydropathy/index.html). Kyte-Doolittle 

scale plot of BPSS0945 showed the protein is rich in hydrophobic residues at the 

N-terminal region (Figure 4.13). It is unlikely to be a transmembrane protein but 

this hydrophobic region could possibly be a signal peptide. 
 

 
Figure 4.13 A hydropathy plot of BPSS0945: The N-terminal region of the protein 

contains hydrophobic residues. This figure was produced using the hydropathy 

plot server (http://www.vivo.colostate.edu/molkit/hydropathy/index.html). 

 

To predict whether a signal peptide sequence was present in BPSS0945, the 

protein sequence was analysed using the SignalP 4.0 server (Petersen et al, 2011). 

According to the scores, it was likely that residues 1-23 are probably a signal 

peptide, but this annotation is not certain.   
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Figure 4.14 Signal peptide prediction of BPSS0945: There is no predicted signal 

peptide in BPSS0945 using the score cut-off at 0.57. This figure was produced 

using the SignalP 4.0 server (Petersen et al, 2011).  

 

 

4.4.1. Protein structure prediction 

Protein structure prediction for fold recognition and secondary structure for 

BPSS0945 was performed using the PSIPRED Protein Structure Prediction Server 

(McGuffin et al, 2000). BPSS0945 was matched to three proteins in the PDB, 

with more than 99% confidence level. These proteins were a lysostaphin 

peptidase from Vibrio cholerae, a peptidoglycan hydrolase from Staphylococcus 

aureus and an M23 family peptidase from Pseudomonas aeruginosa (Table 4.4). 
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Table 4.4 A list of similar protein structures to the predicted BPSS0945 structure   
PDB 
ID 

Protein Organism % Sequence 
identity to 
BPSS0945  

Crystallisation 
condition 

2gu1 Lysostaphin 
peptidase 

V. cholerae 36 0.2M NH2(SO4), 
20% PEG 4000,  
0.1 Tris pH 8.5, 
25°C 

1qwy Peptidoglycan 
hydrolase, 
LytM 

S. aureus 32 0.17M NH2(SO4), 
25.5%(w/v)PEG 
8K, 15% (v/v) 
glycerol, 21°C 
 

2hsi M23 peptidase P. aeruginosa 30 0.1M HEPES,  
0.2M 
CH3COONH4, 
25% PEG 3350, 
10% glycerol, 
pH 6.5, 17°C 

 

 

The protein sequences of BPSS0945 and the identified homologue proteins were 

aligned and the key residues were identified. As the signature-conserved 

sequences commonly found in these lysostaphin-type like enzymes, which are 

metallopeptidases, have been described, the motifs involved in metal ligand 

binding were considered in this case. The motifs HX(3,6)D and HXH have been 

reported in which the ligand binding occurs. The residues that chelate the metal, 

which are H and D in the HX(3,6)D motif and the first H in the HXH motif are 

conserved in space in all LytM crystal forms, and found in the Zn2+ binding site in 

peptidoglycan amidases (Firczuk et al, 2005). The sequence alignment shows that, 

despite high sequence similarity, BPSS0945 lacks these two conserved motifs 

relating to Zn2+ binding (Figure 4.15). It is possible that BPSS0945 either does not 

bind metal or uses a different constellation of residues than those seen in LytM-

like proteins. 
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Figure 4.15 Protein sequence alignment of BPSS0945 (third line) and proteins 

with known structure; peptidoglycan hydrolase (LytM) from S. aureus (first line), 

Lysostaphin peptidase from V. cholerae (second line) and M23 peptidase from P. 

aeruginosa (fourth line): Identical residues are displayed in green boxes. Metal 

ligand binding motifs are shown with a red border. This figure was created using 

Boxshade (Hofmann & Baron). 

 

 

4.4.2. Gene amplification and cloning 

To clone the BPSS0945 protein, oligonucleotide primers were designed according 

to the open reading frame of the BPSS0945 coding gene, subject to being cloned 

into a pETBlue-1 vector. The forward primer 5’-ATGAGCAAGAGCGAGAT 

CGA-3’ and the reverse primer 5’- CTAGCCCTGCTGCCGGC-3’ were used 

together with the genomic DNA of B. pseudomallei strain D286 to amplify the 

gene fragment by PCR. The PCR product was obtained with the addition of 5% 

DMSO at an annealing temperature of 56°C. Analysis on 1% agarose gel 

electrophoresis showed that the PCR product was about 1,000 base pairs in size, 

and was likely to be BPSS0945 which consists of 948 base pairs (Figure 4.16). 

 

1QWY_A_PDBID_CH    1 --------------AETTNTQQAHT------QMSTQSQDVSYGTYYTIDSNGDYHHTPD-
2GU1_A_PDBID_CH    1 MSLQPKRIHYMVKVGDTLSGIFAQLGVPYSILQKILSVDLDHLQLDMIQPGEELELMMDD
BPSS0945_gi_522    1 --MSKSEIDRSVAWLSGVAAAFVVAG--CATTSPVTPTDTLAAAASSASAAQPAAAPPGD
M23_Pseudomonas    1 -------MPRTLAFVSTLLLAAFCA-------LPAQADSFIMRLLNKPVPGGVAVVDLGE
consensus          1 --l----i-rsvaw-stl-gafa-ag------mpiqs-dvl-g-l-ti-pggda-l-p-d

1QWY_A_PDBID_CH   40 -GNWNQAMFDNKEYSYTFVDAQGHTHYFYNCYPKN-------ANANGSGQTYVNPATAGD
2GU1_A_PDBID_CH   61 MGQLSRLIYHMSIVEKAIYTRENDGSFSYDFQEISGEWREILFSGEINGSFSVSARRVGL
BPSS0945_gi_522   57 AAQHPEHAAAPAPIATRYVVRRGDT--LSAIAQANGCTVRELQAWNRMGRRTRIGIGQVL
M23_Pseudomonas   47 EGPPPRAFYQGK---PVLVVRE-------------------------EGRRWIAVVGIPL
consensus         61 -gq-pramy--k-v----vvregdt-y-y-----ng-----l--an--Grr-v-aigvgl

1QWY_A_PDBID_CH   92 NNDYTASQSQQHINQYGYQSNVGPDASYYSHSNNNQAYNSHDGNGKVNYP----------
2GU1_A_PDBID_CH  121 TSSQVANITQVMKDKIDFSRSLRAGDRFDILVKQQYLGEHNTGNSEIKAISFKLAKGDVS
BPSS0945_gi_522  115 RIAPPGAENAVASEAADGVGATRAAGNAAGAARAADPASGAGGAPVADAP----------
M23_Pseudomonas   79 STKPGPQKLEVRAATGNHEERFSVGSKHYREQRITLKNKRQVNPLPEDLKRIER------
consensus        121 ts-p-an-sqv--d-ady---vragaryy---rnn--g--n-gn--vdap----------

1QWY_A_PDBID_CH  142 -----NGTSNQNGGSASKATASGHAKDASWLTSRKQLQPYGQYHGGG---AHYGVDYAMP
2GU1_A_PDBID_CH  181 AFLAEDGRFYDRAGNSLERAFNRYPVDKAYRQITSGFNPKRKHPVTGRVVPHNGTDFATP
BPSS0945_gi_522  165 ----QPASAPESAADRAADHRVVQETKRHAQSIALAWPAKGAVVETFQPGRNRGIRIVGR
M23_Pseudomonas  133 ----ELAEQTAAYRRFSPGLPSNLMLDKPVDGPLSSPFGLRRFFNGEERNPHSGLDFAVP
consensus        181 ----e-gt--d-ag--s-a--s---vdk-w-ti-sgfqpk-ky---g---ph-Gvdfamp

1QWY_A_PDBID_CH  194 ENSPVYSLTDGTVVQAGWSNYGGGNQVTIKEANSNNYQWYMHNNRLTVSAGDKVKAGDQI
2GU1_A_PDBID_CH  241 IGAPVYSTGDGKVIVVRKHPYAG--NYLVIEHNSVYKTRYLHLDKILVKKGQLVKRGQKI
BPSS0945_gi_522  221 AGDPVRAAASGRVMYAGTG-LNGYGTLILVQHNADFLTAYAHNRKVLVKTGDVVQQGEQI
M23_Pseudomonas  189 AGTPIKAPAAGKVILIGDYFFNG--KTVFVDHGQGFISMFCHLSKIDVKLGQQVPRGGVL
consensus        241 agsPvy--adGkVivag---ynG--qvlivehns-flt-ymH--kilVk-G-lVkrGdqi

1QWY_A_PDBID_CH  254 AYSGSTGNSTAPHVHFQRMSGG-----------IGNQYAVDPTSYLQSR-----------
2GU1_A_PDBID_CH  299 ALAGATGRLTGPHLHFEVLVRNRPVDAMKADLPIAKSLSSNQKTSFLARVSEFDHEGHHH
BPSS0945_gi_522  280 AEMG-TGDSTRAGMLFEVRRDG---------------KPVNPMPYLASRQQG--------
M23_Pseudomonas  247 GKVGATGRATGPHMHWNVSLND---------------ARVDPAIFIGAFQP---------
consensus        301 a-mGaTGrsTgphmhfevmv-g-----------ig----v-p-syla-rq----------

1QWY_A_PDBID_CH      ---
2GU1_A_PDBID_CH  359 HHH
BPSS0945_gi_522      ---
M23_Pseudomonas      ---
consensus        361 ---
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Figure 4.16 Amplification of BPSS0945 coding gene: A 1% agarose gel showing 

that PCR product has approximately 1000 base pairs, corresponding to BPSS0945 

in size (948 base pairs). 

 

The PCR product of BPSS0945 was cloned into the pETBlue-1 vector using the 

TA cloning strategy. After transformation of E. coli NovaBlue, which facilitates 

blue/white screening, the white colonies were selected and verified for correctly 

oriented insert using colony PCR, prior to DNA sequencing. The DNA 

sequencing results of BPSS0945 recombinant clones showed there were three 

nucleotides different from the B. pseudomallei K96243 genome sequence. As a 

result of these nucleotide differences, 2 amino acids were different in the protein 

sequence, residue 133 (V to A) and residue 177 (A to V) (Figure 4.17). In the 

sequences of orthologous proteins from different strains of other completely 

sequenced genomes of B. pseudomallei, the equivalent residues of the altered 

residue 133 are all valine, whereas those of the residue 177 are either alanine or 

valine. These observations could possibly be due to a result of a mutation in the 

PCR process or a real strain variation. A further clarification of the sequence 

differences is required. 
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a)  

b)  

Figure 4.17 DNA sequencing of the BPSS0945 recombinant clone: The recombinant 

plasmid DNA was sequenced and the insert was identified; a) Nucleotide sequence 

alignment of BPSS0945 (second line) and positive clone sequenced using T7 forward 

primer (third line) and T7 reverse primer (first line) shows three nucleotides in the 

recombinant gene which had been amplified from B. pseudomallei strain D286 were 

different from the reference sequence of B. pseudomallei strain K96243; b) Protein 

sequence alignment of the reference sequence of BPSS0945 (first line) and the identified 

insert sequence from positive clone (second line) shows two amino acid residues altered 

(colored in red) from the reference sequence of B. pseudomallei strain K96243. 

0945r        1 --------------------------NNNNNNTTTGTTNAACTTTANGNNGGAGATATAGATTATGAGCAAGAGCGAGAT
BPSS0945     1 ---------------------------------------------------------------ATGAGCAAGAGCGAGAT
0945f        1 NNNNNNNNNNNNNTNNTTGNCTAGCAGATAATTTTGTTTAACTTTAAGAAGGAGATATAGATTATGAGCAAGAGCGAGAT
consensus    1 --------------------------------tttgtt-aacttta-g--ggagatatagattATGAGCAAGAGCGAGAT

0945r       55 CGACCGCAGTGTCGCATGGTTGTCCGGCGTGGCGGCCGCGTTCGTCGTCGCGGGCTGCGCAACCACGTCGCCCGTCACGC
BPSS0945    18 CGACCGCAGTGTCGCATGGTTGTCCGGCGTGGCGGCCGCGTTCGTCGTCGCGGGCTGCGCAACCACGTCGCCCGTCACGC
0945f       81 CGACCGCAGTGTCGCATGGTTGTCCGGCGTGGCGGCCGCGTTCGTCGTCGCGGGCTGCGCAACCACGTCGCCCGTCACGC
consensus   81 CGACCGCAGTGTCGCATGGTTGTCCGGCGTGGCGGCCGCGTTCGTCGTCGCGGGCTGCGCAACCACGTCGCCCGTCACGC

0945r      135 CGACTGATACGCTCGCGGCCGCCGCGTCTTCGGCGAGCGCCGCGCAGCCCGCGGCCGCGCCGCCGGGCGACGCGGCGCAG
BPSS0945    98 CGACTGATACGCTCGCGGCCGCCGCGTCTTCGGCGAGCGCCGCGCAGCCCGCGGCCGCGCCGCCGGGCGACGCGGCGCAG
0945f      161 CGACTGATACGCTCGCGGCCGCCGCGTCTTCGGCGAGCGCCGCGCAGCCCGCGGCCGCGCCGCCGGGCGACGCGGCGCAG
consensus  161 CGACTGATACGCTCGCGGCCGCCGCGTCTTCGGCGAGCGCCGCGCAGCCCGCGGCCGCGCCGCCGGGCGACGCGGCGCAG

0945r      215 CATCCGGAGCACGCCGCCGCGCCGGCGCCGATCGCGACACGCTACGTCGTGAGGCGCGGCGATACGCTGTCGGCGATCGC
BPSS0945   178 CATCCGGAGCACGCCGCCGCGCCGGCGCCGATCGCGACACGCTACGTCGTGAGGCGCGGCGATACGCTGTCGGCGATCGC
0945f      241 CATCCGGAGCACGCCGCCGCGCCGGCGCCGATCGCGACACGCTACGTCGTGAGGCGCGGCGATACGCTGTCGGCGATCGC
consensus  241 CATCCGGAGCACGCCGCCGCGCCGGCGCCGATCGCGACACGCTACGTCGTGAGGCGCGGCGATACGCTGTCGGCGATCGC

0945r      295 GCAAGCGAACGGCTGCACCGTGCGCGAGCTGCAGGCCTGGAACCGGATGGGCCGGCGCACCCGGATCGGCATCGGCCAGG
BPSS0945   258 GCAAGCGAACGGCTGCACCGTGCGCGAGCTGCAGGCTTGGAACCGGATGGGCCGGCGCACCCGGATCGGCATCGGCCAGG
0945f      321 GCAAGCGAACGGCTGCACCGTGCGCGAGCTGCAGGCCTGGAACCGGATGGGCCGGCGCACCCGGATCGGCATCGGCCAGG
consensus  321 GCAAGCGAACGGCTGCACCGTGCGCGAGCTGCAGGCcTGGAACCGGATGGGCCGGCGCACCCGGATCGGCATCGGCCAGG

0945r      375 TATTGCGGATCGCGCCGCCGGGTGCGGAAAACGCGGTCGCCTCCGAGGCGGCGGATGGCGCGGGCGCGACCCGCGCGGCC
BPSS0945   338 TATTGCGGATCGCGCCGCCGGGTGCGGAAAACGCGGTCGCCTCCGAGGCGGCGGATGGCGTGGGCGCGACCCGCGCGGCC
0945f      401 TATTGCGGATCGCGCCGCCGGGTGCGGAAAACGCGGTCGCCTCCGAGGCGGCGGATGGCGCGGGCGCGACCCGCGCGGCC
consensus  401 TATTGCGGATCGCGCCGCCGGGTGCGGAAAACGCGGTCGCCTCCGAGGCGGCGGATGGCGcGGGCGCGACCCGCGCGGCC

0945r      455 GGCAATGCAGCCGGCGCCGCGCGCGCGGCCGATCCGGCGAGCGGCGCGGGCGGGGCGCCTGTCGCCGATGCGCCGCAGCC
BPSS0945   418 GGCAATGCAGCCGGCGCCGCGCGCGCGGCCGATCCGGCGAGCGGCGCGGGCGGGGCGCCTGTCGCCGATGCGCCGCAGCC
0945f      481 GGCAATGCAGCCGGCGCCGCGCGCGCGGCCGATCCGGCGAGCGGCGCGGGCGGGGCGCCTGTCGCCGATGCGCCGCAGCC
consensus  481 GGCAATGCAGCCGGCGCCGCGCGCGCGGCCGATCCGGCGAGCGGCGCGGGCGGGGCGCCTGTCGCCGATGCGCCGCAGCC

0945r      535 TGCATCGGCGCCCGAAAGCGCCGCGGACCGGGTGGCGGACCATCGGGTCGTCCAGGAAACGAAGCGGCACGCGCAATCGA
BPSS0945   498 TGCATCGGCGCCCGAAAGCGCCGCGGACCGGGCGGCGGACCATCGGGTCGTCCAGGAAACGAAGCGGCACGCGCAATCGA
0945f      561 TGCATCGGCGCCCGAAAGCGCCGCGGACCGGGTGGCGGACCATCGGGTCGTCCAGGAAACGAAGCGGCACGCGCAATCGA
consensus  561 TGCATCGGCGCCCGAAAGCGCCGCGGACCGGGtGGCGGACCATCGGGTCGTCCAGGAAACGAAGCGGCACGCGCAATCGA

0945r      615 TCGCGCTCGCGTGGCCGGCGAAGGGCGCGGTCGTCGAAACGTTCCAGCCCGGCCGCAATCGCGGCATCCGGATCGTCGGG
BPSS0945   578 TCGCGCTCGCGTGGCCGGCGAAGGGCGCGGTCGTCGAAACGTTCCAGCCCGGCCGCAATCGCGGCATCCGGATCGTCGGG
0945f      641 TCGCGCTCGCGTGGCCGGCGAAGGGCGCGGTCGTCGAAACGTTCCAGCCCGGCCGCAATCGCGGCATCCGGATCGTCGGG
consensus  641 TCGCGCTCGCGTGGCCGGCGAAGGGCGCGGTCGTCGAAACGTTCCAGCCCGGCCGCAATCGCGGCATCCGGATCGTCGGG

0945r      695 CGCGCGGGCGATCCGGTGCGTGCCGCGGCGTCCGGCCGGGTGATGTACGCGGGCACGGG-CCTGAACGGGTACGGCACGC
BPSS0945   658 CGCGCGGGCGATCCGGTGCGTGCCGCGGCGTCCGGCCGGGTGATGTACGCGGGCACGGG-CCTGAACGGGTACGGCACGC
0945f      721 CGCGCGGGCGATCCGGTGCGTGCCGCGGCGTCCGGCCGGGTGATGTACGCGGGCACGGGCCTGAACGGGTACGGCACGCT
consensus  721 CGCGCGGGCGATCCGGTGCGTGCCGCGGCGTCCGGCCGGGTGATGTACGCGGGCACGGG-CctgAacGGgtacGgcacgc

0945r      774 TGATCCTGGTCCAGCACAACGCGGATTTTCTGACCGCTTACGCGCACAACCG--CAAGGTGCTCGTGAAGACGGGCGACG
BPSS0945   737 TGATCCTGGTCCAGCACAACGCGGATTTTCTGACCGCTTACGCGCACAACCG--CAAGGTGCTCGTGAAGACGGGCGACG
0945f      801 GATCCTGGTCCAGCACAACGCGGATTTTCTGACCGCTTACGCGCACAACCGCAAGGTGCTCGTGAAGACGGGCGACGTCG
consensus  801 tgatCctGgtCcagcacAacgcGgaTTTtctgaCcgcTtacgcgcacAaCcg--caaGgTgcTcgtGAaGacgGgCGaCG

0945r      852 TCGTTCAGC-AGGGCGAACAGATCGCCGAGATGGGCACCGGCGACAGCACGCGCGCCGGCATGCTGTTCGAGGTGCGGCG
BPSS0945   815 TCGTTCAGC-AGGGCGAACAGATCGCCGAGATGGGCACCGGCGACAGCACGCGCGCCGGCATGCTGTTCGAGGTGCGGCG
0945f      881 TTCAAGCAGGGCGAACAGATCNCCCAGATGGGCACCGGC-----------------------------------------
consensus  881 Tcgttcagc-agGgcgAacagatCgccgaGatgggCacCggcgacagcacgcgcgccggcatgctgttcgaggtgcggcg

0945r      931 CGACGGCAAGCCCGTCAATCCGATGCCGTATCTGGCGAGCCGGCAGCAGGGCTAGAATCGAATTCCTGCCCGGGCGTGTA
BPSS0945   894 CGACGGCAAGCCCGTCAATCCGATGCCGTATCTGGCGAGCCGGCAGCAGGGCTAG-------------------------
0945f          --------------------------------------------------------------------------------
consensus  961 cgacggcaagcccgtcaatccgatgccgtatctggcgagccggcagcagggctag-------------------------

0945r     1011 ATCANNNTNNNNNNNNNNNNNN
BPSS0945       ----------------------
0945f          ------------------    
consensus 1041 ----------------------BPSS0945  MSKSEIDRSVAWLSGVAAAFVVAGCATTSPVTPTDTLAAAASSASAAQPAAAPPGDAAQH
25_0945   MSKSEIDRSVAWLSGVAAAFVVAGCATTSPVTPTDTLAAAASSASAAQPAAAPPGDAAQH
consensus MSKSEIDRSVAWLSGVAAAFVVAGCATTSPVTPTDTLAAAASSASAAQPAAAPPGDAAQH

BPSS0945  PEHAAAPAPIATRYVVRRGDTLSAIAQANGCTVRELQAWNRMGRRTRIGIGQVLRIAPPG
25_0945   PEHAAAPAPIATRYVVRRGDTLSAIAQANGCTVRELQAWNRMGRRTRIGIGQVLRIAPPG
consensus PEHAAAPAPIATRYVVRRGDTLSAIAQANGCTVRELQAWNRMGRRTRIGIGQVLRIAPPG

BPSS0945  AENAVASEAADGVGATRAAGNAAGAARAADPASGAGGAPVADAPQPASAPESAADRAADH
25_0945   AENAVASEAADGAGATRAAGNAAGAARAADPASGAGGAPVADAPQPASAPESAADRVADH
consensus AENAVASEAADG-GATRAAGNAAGAARAADPASGAGGAPVADAPQPASAPESAADR-ADH

BPSS0945  RVVQETKRHAQSIALAWPAKGAVVETFQPGRNRGIRIVGRAGDPVRAAASGRVMYAGTGL
25_0945   RVVQETKRHAQSIALAWPAKGAVVETFQPGRNRGIRIVGRAGDPVRAAASGRVMYAGTGL
consensus RVVQETKRHAQSIALAWPAKGAVVETFQPGRNRGIRIVGRAGDPVRAAASGRVMYAGTGL

BPSS0945  NGYGTLILVQHNADFLTAYAHNRKVLVKTGDVVQQGEQIAEMGTGDSTRAGMLFEVRRDG
25_0945   NGYGTLILVQHNADFLTAYAHNRKVLVKTGDVVQQGEQIAEMGTGDSTRAGMLFEVRRDG
consensus NGYGTLILVQHNADFLTAYAHNRKVLVKTGDVVQQGEQIAEMGTGDSTRAGMLFEVRRDG

BPSS0945  KPVNPMPYLASRQQG
25_0945   KPVNPMPYLASRQQG
consensus KPVNPMPYLASRQQG
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4.4.3. Protein expression 

To produce recombinant protein of BPSS0945, E. coli TunerTM (DE3) cells were 

used to express the gene encoding BPSS0945, which had been inserted in a 

pETBlue-1 vector. The recombinant protein was over-produced by adding 1mM 

IPTG. After induction at 37°C for 4 hours, SDS PAGE showed that there were 

obvious bands around 36.5 kDa in both the soluble and insoluble fractions, 

indicative of the target protein, which has the approximate molecular weight of 32 

kDa (Figure 4.18). Reducing the expression temperature to 25°C did not increase 

the soluble protein expression and at 20°C there was no expression of the target 

protein. 

 

 

 
Figure 4.18 Overexpression of BPSS0945: SDS PAGE of BPSS0945 expressed in 

E.coli TunerTM (DE3) pLacI on 12% resolving gel; lane 1 a protein marker 

Mark12TM; lane 2 pre-induction; lane 3 soluble fraction at 37°C induction for 4 

hours; lane 4 insoluble fraction at 37°C induction for 4 hours.  
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4.4.4. Protein purification 

About 9 g of cell paste were resuspended in 50 mM HEPES pH 7.5 and the cells 

were disrupted by ultra-sonication on ice for 2-3 cycles of 20 seconds. Crude 

protein was extracted and separated by centrifugation at 24500 rpm for               

10 minutes. Approximately 56 ml of crude extract was loaded onto a 5 ml SP-HP 

cation exchange column (GE Healthcare), which was pre-equilibrated with         

50 mM HEPES pH 7.5. The protein was eluted with a gradient of 0-1 M NaCl in 

50 mM HEPES pH 7.5. 3 ml fractions were collected and monitored by UV 

absorbance. The protein concentration of fractions corresponding to the UV peak 

was determined by the Bradford assay and the fraction profile was analysed by 

SDS PAGE. The fractions containing BPSS0945 (32 kDa) were combined. 

Ammonium sulphate precipitation was subsequently performed by adding 4 M 

ammonium sulphate to make a final concentration of 1.5 M ammonium sulphate. 

The protein precipitate was recovered by centrifugation at 24500 rpm for            

5-10 minutes and resuspended with 50 mM HEPES pH 7.5 prior to the next 

purification step using gel filtration. The protein sample was loaded onto 

SuperdexTM 200 (GE Healthcare). The protein was eluted using 50 mM Tris-HCl 

pH 8 plus 0.5 M NaCl. 2 ml fractions were collected and monitored by UV 

absorbance. The protein concentration of fractions corresponding to the UV peak 

was determined by the Bradford assay and the fraction profile was analysed by 

SDS PAGE. The fractions containing the purified BPSS0945 protein were pooled 

together (Figure 4.19) and the protein was concentrated to approximately 10 

mg/ml in 10 mM HEPES pH 7.5 with 50 mM NaCl using a 10 kDa MWCO 

VivaspinTM centrifugal concentrator (Vivascience). The average yield of protein 

purification was about 3 mg purified protein obtained from three litres of 

recombinant E. coli culture.         
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Figure 4.19 Purification of BPSS0945: SDS PAGE gel shows the recovery of the 

target protein BPSS0945 in each step of protein purification. Fraction 6, 7 and 8 

in the gel filtration step were collected and the protein was concentrated prior to 

crystallisation trials.  

 

 

           

 
Figure 4.20 Stability of BPSS0945: SDS PAGE gel shows the BPSS0945 protein 

degradation after purification and stored at 4 °C for up to 7 days.  
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4.4.5. Crystallisation trials 

The purified protein was concentrated to approximately 10 mg/ml and then put 

into crystallisation trials. Initial crystallisation screening was performed using 

commercially available NeXtal crystallisation screens (QIAGEN) by the sitting 

drop vapour diffusion technique. 9.5 mg/ml purified protein in 50 mM HEPES  

pH 7 were screened using a Hydra II Plus 1 robot against JCSG, PACT and 

Classic screens. No crystals were observed and most drops were clear, indicating 

a high solubility. Therefore, the protein concentration was increased to 14.5 

mg/ml protein and used against the same screens. Yet again, no crystals were 

obtained.  

 

 

4.4.6. Unstable BPSS0945 

Due to the crystallisation failure, the stability of BPSS0945 was analysed after 

purification. SDS PAGE showed the degradation of protein occurs over time, 

possibly due to its peptidase activity (Figure 4.20). The full-length protein 

completely disappeared within 7 days. This non-homogenous protein solution 

could easily cause failure in the crystallisation step.  

 

The same autolytic phenomenon also occurred in the production of the related 

peptidase LytM, a unique autolysin from Staphylococcus aureus (Ramadurai & 

Jayaswal, 1997). The autolytic activity bands of degraded products of LytM were 

19 and 22 kDa. This protein was further characterised and it may possibly be a 

glycylglycine endopeptidase, based on the biochemical analysis of LytM-cleaved 

peptidoglycan fragments (Ramadurai et al, 1999). BPSS0945 shares 32% 

sequence identity with LytM and it is possible that a similar autolysis to LytM is 

seen for BPSS0945.    

 

As the sequence alignments showed that BPSS0945 is possibly an M23B metal-

dependent peptidase family member, attempts were made to inactivate its 

peptidase function by the addition of 4 mM EDTA, to act as a chelating agent for 

the metal ion.  
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Purified protein at 21 mg/ml with EDTA treatment was again put into screening 

crystallisation trials but there were still no crystals. The protein treated with 

EDTA was analysed on SDS gel showing that the degradation of BPSS0945 still 

occurred (Figure 4.21). However, as the Zn2+ binding motif present in the LytM 

family cannot be found in the sequence of BPSS0945, it is possible that the 

peptidase function of this protein does not require metal, and hence EDTA 

treatment would be ineffective. 

 

 
Figure 4.21 BPSS0945 treated with EDTA: In order to inactivate the activity of 

BPSS0945, EDTA was added to the protein after purified. It seems that 

BPSS0945 still has activity to cleave itself, resulting in non-homogenous solution, 

which may cause crystallisation failure. 
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4.5. BPSS0238 and BPSS1416 

4.5.1. BPSS0238 Penicillin-binding protein 

The gene encoding BPSS0238 is located in chromosome 2 of B. pseudomallei 

strain K96243. This gene consists of 2163 nucleotides, encoding a 720-amino acid 

protein. According to the Burkholderia genome database, it has been annotated as 

a putative penicillin-binding protein (Winsor et al, 2008). The protein sequence of 

BPSS0238 was analysed by ProtParam (ExPasy server). This protein has a 

molecular weight of approximately 77 kDa with a theoretical pI of 9.4 (Figure 

4.22).  
 

 
Figure 4.22 Analysis of BPSS0238 sequence: Molecular weight, pI, amino acid 

and atomic composition and extinction coefficient of BPSS0238 were 

characterised by ProtParam (ExPasy server). 

MPTKDFDMTD HTPHSSPPAS PTPPQGPAPK RRRYFRTLAG LVLGAAIAGG 
AVGTWTLHRI WTALPSVEPL AVYRPALPLR IFSREGELLA EYGVERREFV 
PLDRIPPLVR HALLAAEDAQ FYTHGVVDIG GLARATVANV VTGQPGQGGS 
TITMQVARNF FLTREKVLSR KLAEILMSYK LERAYSKDKL LELYMNEIYL 
GERAYGFAAA ASVYFGKPLD ALTPGEAAVL AGLPKAPSAF NPVVNPARAT 
MRRNYVLGRM RALGYLDEAA YRQAADAPIA LATTPPPGIL AAPYVAERAR  
RMMVERFHDD AYTLGLDVTT TIAMREQRAA DAALARGLAQ VGRRDAKDAL 
EGALVSIDAA TGDILALVGG ADFSHNVFDH ALQAYRQPGS SFKPFVYSAA 
LEKGMFPGVL IDDTQRTLSR DETGANPWRP RNFGNHYEGF IPVRRGLMRS 
KNLVAVSLMQ VARPDFVQQH AARFGFEPLR NPASLPLALG AGSATPLEVA 
SAYGVFANGG VRMEPRLIES VRQRHGGALF DAQPAPGVRV ISARNAFVMD 
SMLRDVVAHG TARRAVALKR ADAAGKTGTS NGSKDVWFAG YSSGVVSVVW  
MGYDAPRSLG RATGSSAALP VWVDYMKTAV DGRGAIERTP PADVALVDGD 
FVYAEYANGD KCAPSLPPFV RSPFACGAAR GAPADGGAPA SAAGAAGAPT 
PAAVDAAERA RVLELFRTED  
 
Number of amino acids: 720 Molecular weight: 76876.7 Theoretical pI: 9.40 
 
Amino acid composition:  
Ala (A) 118  16.4% 
Arg (R)  63   8.8% 
Asn (N)  16   2.2% 
Asp (D)  39   5.4% 
Cys (C)   2   0.3% 
Gln (Q)  16   2.2% 
Glu (E)  31   4.3% 
Gly (G)  65   9.0% 
His (H)  12   1.7% 

Ile (I)  18   2.5% 
Leu (L)  63   8.8% 
Lys (K)  18   2.5% 
Met (M)  18   2.5% 
Phe (F)  29   4.0% 
Pro (P)  54   7.5% 
Ser (S)  36   5.0% 
Thr (T)  35   4.9% 
Trp (W)   6   0.8% 

Tyr (Y)  24   3.3% 
Val (V)  57   7.9% 
Pyl (O)   0   0.0% 
Sec (U)   0   0.0% 
 
 (B)   0   0.0% 
 (Z)   0   0.0% 
 (X)   0   0.0% 

 
 
Total number of negatively charged residues (Asp + Glu): 70 
Total number of positively charged residues (Arg + Lys): 81 
 
Atomic composition: 
Carbon      C       3425 
Hydrogen    H       5395 
Nitrogen    N        989 
Oxygen      O        988 
Sulfur      S         20 
 
Formula: C3425H5395N989O988S20 
Total number of atoms: 10817 
 
Extinction coefficients: 
 
Extinction coefficients are in units of  M-1 cm-1, at 280 nm measured in water. 
 
Ext. coefficient    68885 
Abs 0.1% (=1 g/l)   0.896, assuming all pairs of Cys residues form cystines 
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The hydrophobicity of BPSS0238 was analysed using hydropathy plot 

(http://www.vivo.colostate.edu/molkit/hydropathy/index.html). The Kyte-

Doolittle scale plot revealed it is unlikely to be a transmembrane protein (Figure 

4.23). 

 

 
Figure 4.23 A hydropathy plot of BPSS0238: There was no significant feature of 

transmembrane spanning domain. This figure was produced using the hydropathy 

plot server (http://www.vivo.colostate.edu/molkit/hydropathy/index.html). 

 

4.5.1.1. Gene amplification and cloning 

The oligonuclotide primers (5’-ATGCCAACGAAGGATTTCGAC-3’ and 5’-

TCAGTCTTCGGTGCGAAACA-3’) were used to amplify the gene encoding 

BPSS0238 by PCR. The PCR product was obtained using an annealing 

temperature of 56°C with the addition of 10% DMSO. 

 

 
Figure 4.24 PCR product of BPSS0238: The DNA band on a 1% agarose gel 

corresponds to BPSS0238 with a size of approximately 2000 base pairs.  
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The PCR product was then cloned using the pETBlue-1 cloning system. Plasmid 

DNA sequencing of the recombinant clones revealed that the insert was not the 

BPSS0238 gene. This may be due to the size of this target gene, which is about 2 

kb and possibly not suitable for cloning with the pETBlue-1 vector.  

 

Attempts were made to make a new construct using the pET24-a cloning strategy. 

A new pair of oligonucleotide primers (5’-GTACGCCGCATATGCCAAC-3’ and 

5’-!GGATCCCCGCTCAGTCTTC-3’) were used to amplify the BPSS0238 gene. 

The PCR product was obtained with the expected size of approximately 2000 base 

pairs and was then cloned into the pET24-a plasmid. The recombinant clone was 

confirmed by plasmid DNA sequencing. Analysis of the sequencing results 

showed the identified insert was not the whole target gene of BPSS0238 and was 

truncated at position 239/240 from the open reading frame of this gene. The 

BPSS0238 gene contains the sequence G^GATCT, which is similar to the 

restriction site of BamHI (G^GATCC) that was used in the cloning, resulting in 

shortening of the insert.  
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4.5.2. BPSS1416 Uncharacterised protein 

The gene encoding BPSS1416, a hypothetical protein in B. pseudomallei strain 

K96243, is located in chromosome 2 and the coding nucleotide sequence consists 

of 1,404 base pairs encoding a 467-amino acid protein according to the 

Burkholderia genome database (Winsor et al, 2008). The protein sequence of 

BPSS1416 was analysed using ProtParam (ExPasy server), showing its molecular 

weight of 47.7 kDa with a theoretical pI of 5.5  (Figure 4.25). 

 

 
Figure 4.25 Analysis of BPSS1416 sequence: Amino acid composition of 

BPSS1416 was characterised by ProtParam (Expasy server). 

 

 

MPASMSTDQA LRPLLGCIAD DFTGATDLAN MLVKSGMRTV QTIGVPAAGA 
AVPADAIVVA LKSRTIPAAD AVAQSLAALD WLRAQGCRQF FFKYCSTFDS 
TDAGNIGPVA DALLDALGGE RAFTIACPAF PENGRTVYRG HLFVGDALLG 
ESGMENHPLT PMKDANLVRV LQRQTPSKVG LIRHDAIALG TCAVRETIDT 
LRREGVRIAI ADALTDRDLY VLGEACADLP LITGGSGVAL GLPSNFRLGG 
LLPERGDAAA LPAIGGASAV LAGSASKATH AQVAAWRAER PALRIDPFAA  
ARGEPVVDQA LAFARAHLPQ PVLIYASAAP DEVKQVQQAL GIEAAGHLVE 
ATLAAIARGL REMGVRKFVV AGGETSGAVV QALGVKALRI GAQIDPGVPA 
TATTEGSPCG TTEGSPCGTT EGSPCGATEG SPRGTPDAQP LGLALKSGNF 
GSVDFFEKAL RALEGAA  
 
Number of amino acids: 467  Molecular weight: 47724.5  Theoretical pI: 5.51 
 
Amino acid composition:  
Ala (A)  82  17.6% 
Arg (R)  29   6.2% 
Asn (N)   7   1.5% 
Asp (D)  26   5.6% 
Cys (C)   9   1.9% 
Gln (Q)  16   3.4% 
Glu (E)  21   4.5% 
Gly (G)  52  11.1% 
His (H)   6   1.3% 
Ile (I)  19   4.1% 

Leu (L)  48  10.3% 
Lys (K)  11   2.4% 
Met (M)   7   1.5% 
Phe (F)  15   3.2% 
Pro (P)  29   6.2% 
Ser (S)  22   4.7% 
Thr (T)  29   6.2% 
Trp (W)   2   0.4% 
Tyr (Y)   4   0.9% 
Val (V)  33   7.1% 

Pyl (O)   0   0.0% 
Sec (U)   0   0.0% 
 
 (B)   0   0.0% 
 (Z)   0   0.0% 
 (X)   0   0.0% 
 
 

Total number of negatively charged residues (Asp + Glu): 47 
Total number of positively charged residues (Arg + Lys): 40 
 
Atomic composition: 
Carbon      C       2092 
Hydrogen    H       3386 
Nitrogen    N        602 
Oxygen      O        640 
Sulfur      S         16 
 
Formula: C2092H3386N602O640S16 
Total number of atoms: 6736 
 
Extinction coefficients: 
 
Extinction coefficients are in units of  M-1 cm-1, at 280 nm measured in water. 
 
Ext. coefficient    17460 
Abs 0.1% (=1 g/l)   0.366, assuming all pairs of Cys residues form cystines 
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Analysis of the hydrophobicity of BPSS1416 using hydropathy plot in the Kyte-

Doolittle scale (http://www.vivo.colostate.edu/molkit/hydropathy/index.html) 

indicated it is unlikely to be a transmembrane protein (Figure 4.26).  

 

 
Figure 4.26 A hydropathy plot of BPSS1416: There was no significant 

hydrophobic region found, and the protein is unlikely to be a membrane spanning 

protein. This figure was produced using the website (http://www.vivo.colostate. 

edu/molkit/hydropathy/index.html). 

 

4.5.2.1. Gene amplification and cloning 

The gene encoding BPSS1416 was amplified using the oligonucleotide primers 

(5’- ATGCCTGCCTCCATGAGC-3’ and 5’- TCATGCGGCGCCCTCCA-3’) by 

PCR. The PCR product for the target gene fragment was obtained using an 

annealing temperature of 56°C with the addition of 5% DMSO (Figure 4.27).  

 

The PCR product was then cloned into a pETBlue-1 vector and the recombinant 

clones were selected using similar procedures before. DNA sequencing of the 

recombinant plasmids revealed that they were not successfully cloned as the insert 

was not the target gene. The cloning was repeated but still failed. This may be due 

to the size of this target gene which is about 1.4 kb and is probably not suitable 

for cloning with the pETBlue-1 vector.  
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Figure 4.27 PCR product of BPSS1416: The DNA band with approximately 1400 

base pairs on a 1% agarose gel corresponds to the gene encoding BPSS1416 

(1404 base pairs).  

 

 

A new construct was thus made of this gene to clone into the pET24-a plasmid 

using a restriction enzyme cloning strategy. A new pair of oligonucleotide primers 

(5’-CCGCATATGCCTGCCTCCAT-3’ and 5’-AGGATCCTCATGCGGCG 

CCC-3’) were used to amplify the target gene with a number of different PCR 

conditions but a PCR product that corresponded to the size of the BPSS1416 gene 

(1404 base pairs) was not obtained.   

 
As it was time-consuming process to achieve the cloning of these two genes, these 

projects were terminated. 
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4.6. Other uncharacterised proteins 

4.6.1. BPSS0603 

The gene encoding BPSS0603 in B. pseudomallei strain K96243 is located in 

chromosome 2 and the coding nucleotide sequence consists of 303 base pairs 

encoding 100 amino acids according to the Burkholderia genome database 

(Winsor et al, 2008). 

 

The protein sequence of BPSS0603 was analysed by ProtParam (ExPASy server). 

The amino acid composition of BPSS0603 was described, with an approximate 

molecular weight of 11 kDa, a theoretical pI of 6.55 and an extinction coefficient 

of 24980 M-1cm-1 (Figure 4.28).  

 

 
Figure 4.28 Analysis of BPSS0603 sequence: The characterization of BPSS0603 

revealed its molecular weight, theoretical pI, amino acid composition and 

extinction coefficients by ProtParam. 

 

BPSS 0603 
 
MIMEASMLNW ISRWALRYAP TPEKSATSML VTARMELFAA EQRVIDAKLQ ADYWCTRVSF 
LEVVQKQGID PWVNAQAQKA DDAPAAAVHG AAGPRLAAST 
 
Number of amino acids: 100 Molecular weight: 10992.6  Theoretical pI: 6.55 
 
Amino acid composition:  
Ala (A)  20  20.0% 
Arg (R)   6   6.0% 
Asn (N)   2   2.0% 
Asp (D)   5   5.0% 
Cys (C)   1   1.0% 
Gln (Q)   6   6.0% 
Glu (E)   5   5.0% 
Gly (G)   3   3.0% 
His (H)   1   1.0% 

Ile (I)   4   4.0% 
Leu (L)   7   7.0% 
Lys (K)   4   4.0% 
Met (M)   5   5.0% 
Phe (F)   2   2.0% 
Pro (P)   5   5.0% 
Ser (S)   6   6.0% 
Thr (T)   5   5.0% 
Trp (W)   4   4.0% 

Tyr (Y)   2   2.0% 
Val (V)   7   7.0% 
Pyl (O)   0   0.0% 
Sec (U)   0   0.0% 
 
 (B)   0   0.0% 
 (Z)   0   0.0% 
 (X)   0   0.0%

 
Total number of negatively charged residues (Asp + Glu): 10 
Total number of positively charged residues (Arg + Lys): 10 
 
Atomic composition: 
Carbon      C        487 
Hydrogen    H        768 
Nitrogen    N        136 
Oxygen      O        142 
Sulfur      S          6 
   Formula: C487H768N136O142S6 Total number of atoms: 1539 
 
Extinction coefficients: 
Extinction coefficients are in units of  M-1 cm-1, at 280 nm measured in water. 
Ext. coefficient    24980 
Abs 0.1% (=1 g/l)   2.272, assuming ALL Cys residues appear as half cystines 
Ext. coefficient    24980 
Abs 0.1% (=1 g/l)   2.272, assuming NO Cys residues appear as half cystines 
 
 
Estimated half-life: 
The N-terminal of the sequence considered is M (Met). 
The estimated half-life is: 30 hours (mammalian reticulocytes, in vitro). 
                            >20 hours (yeast, in vivo). 
                            >10 hours (Escherichia coli, in vivo). 
 
Instability index: 
The instability index (II) is computed to be 27.82 
This classifies the protein as stable. 
 
Aliphatic index: 83.20 
Grand average of hydropathicity (GRAVY): -0.049 
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The hydrophobicity of BPSS0603 was characterised using hydropathy plot, and it 

can be seen that there were no hydrophobic membrane-spanning regions present 

in the BPSS0603 sequence (Figure 4.29). 

 

 
Figure 4.29 A hydropathy plot of BPSS0603, showing that it is unlikely to be a 

transmembrane protein. This figure was produced using the hydropathy plot 

server (http://www.vivo.colostate.edu/molkit/hydropathy/index.html). 

  

 

4.6.1.1. Gene amplification and cloning 

The oligonucleotide primers (5’- ATGATAATGGAGGCAAGCATGT-3’ and 5’- 

GTTACGTGCTCGCCGC -3’) were used to amplify the target gene using 

standard PCR. The PCR product was obtained using an annealing temperature of 

53°C. The expected size of a 300-base pair band was seen on a 1% agarose gel 

(Figure 4.30). Due to other non-specific products obtained during PCR, the 

expected band was cut from the gel and gel extraction was performed to recover 

the gene fragment prior to cloning.   
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Figure 4.30 PCR product of BPSS0603: The 300 bp band on a 1% agarose gel 

was cut and the gene fragment was extracted from the gel. 

 

 

The PCR product was then cloned into a pETBlue-1 vector and the recombinant 

clones in E.coli NovaBlue were selected by the blue/white colony method. White 

colonies were further screened by colony PCR for the correctly oriented insert 

clones. The positive clones were confirmed by DNA sequencing. The DNA 

sequencing results showed that the insert was BPSS0603 but with one amino acid 

alteration (residue 64 V to E) compared to the reference B.pseudomallei strain 

K96243 genome (Figure 4.31). In comparison to the orthologous proteins from 

different strains of other completely sequenced genomes of B. pseudomallei, the 

equivalent residues of residue 64 are all valine. The V to E change in this residue 

may therefore have occurred as a result of a mutation during PCR. Alternatively, 

it could be a real strain variation. This needs to be clarified.  

 

 

 
Figure 4.31 DNA sequencing of the recombinant BPSS0603 clone showed there 

is one amino acid (colored in red) different from the reference genome (first line). 

 

 

BPSS0603     1 MIMEASMLNWISRWALRYAPTPEKSATSMLVTARMELFAAEQRVIDAKLQADYWCTRVSF
0603_2       1 MIMEASMLNWISRWALRYAPTPEKSATSMLVTARMELFAAEQRVIDAKLQADYWCTRVSF
consensus    1 MIMEASMLNWISRWALRYAPTPEKSATSMLVTARMELFAAEQRVIDAKLQADYWCTRVSF

BPSS0603    61 LEVVQKQGIDPWVNAQAQKADDAPAAAVHGAAGPRLAAST
0603_2      61 LEVEQKQGIDPWVNAQAQKADDAPAAAVHGAAGPRLAAST
consensus   61 LEV-QKQGIDPWVNAQAQKADDAPAAAVHGAAGPRLAAST

 bp 
 
300 
 
200 
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4.6.1.2. Protein expression 

BPSS0603 was over expressed in E. coli TunerTM (DE3) cells with 1mM IPTG 

added to induce the protein production at 37°C for 4 hours. Analysis on SDS 

PAGE showed that the target protein (11 kDa) forms inclusion bodies and is in 

the insoluble fraction (Figure 4.32). An attempt to enhance the solubility of the 

target protein was carried out with the use of different IPTG concentrations (0.1 

mM, 0.25 mM, 0.5 mM and 1mM IPTG) during induction at 37°C, because as the 

protein synthesis decreases, the protein may be found more in the soluble form. 

The results showed the protein was still in the insoluble fraction in all conditions. 

Decreasing the expression temperature to 30°C, still resulted in protein production 

but it was still insoluble. However, when the over-expression tests were carried 

out at 20°C, no expression of the target protein was seen.  

 

The alteration of the residue 64 from valine (hydrophobic) to glutamic acid 

(polar) may have possibly caused the misfolding of the protein, resulting in its 

presence in the inclusion bodies. 

 

 
 1 2 3 4 

 
Figure 4.32 Overexpression of BPSS0603: SDS PAGE of BPSS0603 expressed in 

E.coli TunerTM (DE3) pLacI on a 15% resolving gel; lane 1 a protein marker 

Mark12TM; lane 2 pre-induction; lane 3 soluble fraction at 37°C induction for 4 

hours; lane 4 insoluble fraction at 37°C induction for 4 hours. 

 

 
 

kDa 
 
 
 
14 
 
 
6 
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4.6.2. BPSS0683 

According to the Burkholderia genome database, the BPSS0683 encoding gene in 

B. pseudomallei strain K96243 is located in chromosome 2 and the coding 

nucleotide sequence consists of 357 base pairs encoding 118 amino acids (Winsor 

et al, 2008). 

 

The protein sequence of BPSS0683 was analysed by ProtParam (ExPASy server). 

The amino acid composition of BPSS0683 was described with an approximate 

molecular weight of 13 kDa, a theoretical pI of 5.09 and an extinction coefficient 

of 22125 M-1cm-1 (Figure 4.33).  

 

 
Figure 4.33 ProtParam of BPSS0683: The protein sequence was analysed and the 

characterization of BPSS0683 was displayed. 

 

The hydropathicity of BPSS0683 was analysed by hydropathy plot. The 

hydropathy plot of BPSS0683 revealed that it is unlikely to be a membrane 

protein (Figure 4.34). 

BPSS 0683 
 
MRLTIRINGS DAPAQQFAVL WLDTDEQLWS REAHQGIDLP AWGKVKDVEG AVALCSADSG  
EALCRLQGLS FSNVRRLSED EEHGNAVLGG KNPQGAWRLQ AVDSASIQPE HREFTIVR 
 
Number of amino acids: 118 Molecular weight: 12994.5 Theoretical pI: 5.09
Amino acid composition:  
Ala (A)  13  11.0% 
Arg (R)   9   7.6% 
Asn (N)   4   3.4% 
Asp (D)   8   6.8% 
Cys (C)   2   1.7% 
Gln (Q)   8   6.8% 
Glu (E)   9   7.6% 
Gly (G)  10   8.5% 
His (H)   3   2.5% 

Ile (I)   5   4.2% 
Leu (L)  12  10.2% 
Lys (K)   3   2.5% 
Met (M)   1   0.8% 
Phe (F)   3   2.5% 
Pro (P)   4   3.4% 
Ser (S)   9   7.6% 
Thr (T)   3   2.5% 
Trp (W)   4   3.4% 

Tyr (Y)   0   0.0% 
Val (V)   8   6.8% 
Pyl (O)   0   0.0% 
Sec (U)   0   0.0% 
 
 (B)   0   0.0% 
 (Z)   0   0.0% 
 (X)   0   0.0% 

 
Total number of negatively charged residues (Asp + Glu): 17 
Total number of positively charged residues (Arg + Lys): 12 
 
Atomic composition: 
Carbon      C        565 
Hydrogen    H        892 
Nitrogen    N        170 
Oxygen      O        177 
Sulfur      S          3 
 
Formula: C565H892N170O177S3 Total number of atoms: 1807 
 
Extinction coefficients:  
Extinction coefficients are in units of  M-1 cm-1, at 280 nm measured in water. 
Ext. coefficient    22125 
Abs 0.1% (=1 g/l)   1.703, assuming ALL Cys residues appear as half cystines 
 
Ext. coefficient    22000 
Abs 0.1% (=1 g/l)   1.693, assuming NO Cys residues appear as half cystines 
 
Estimated half-life: 
The N-terminal of the sequence considered is M (Met). 
The estimated half-life is: 30 hours (mammalian reticulocytes, in vitro). 
                            >20 hours (yeast, in vivo). 
                            >10 hours (Escherichia coli, in vivo). 
 
Instability index: 
The instability index (II) is computed to be 35.40 
This classifies the protein as stable. 
 
Aliphatic index: 86.86 
Grand average of hydropathicity (GRAVY): -0.392 
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Figure 4.34 A hydropathy plot of BPSS0683 showing that strongly hydrophobic 

region is not found along the sequence. This figure was produced using the 

hydropathy plot server (http://www.vivo.colostate.edu/molkit/hydropathy/ 

index.html). 

 
 

4.6.2.1. Gene amplification and cloning 

The gene encoding BPSS0683 was amplified from the genomic DNA of 

B.pseudomallei using the primers 5’-ATGCGCCTCACCATTCGAAT-3’ and 5’- 

TCAGCGCACGATGGTGAAT-3’. The PCR product was obtained using an 

annealing temperature of 60 °C with an expected PCR product size of about 300 

base pairs (Figure 4.35). 

 

  
Figure 4.35 PCR product of BPSS0683: An approximately 300 bp band on 1% 

agarose gel was suspected to be the BPSS0683 gene fragment.  

 bp 
300 
 
200 
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The PCR product was cloned into a pETBlue-1 vector and the recombinant clones 

were screened by the blue-white colony method and colony PCR. The 

recombinant clone with the correctly oriented insert was confirmed by DNA 

sequencing and the results showed that the insert was identical to the reference 

genome of  B.pseudomallei strain K96243. 

 

 

4.6.2.2. Protein expression 

The recombinant BPSS0683 was over expressed in E.coli TunerTM (DE3) with 

1mM IPTG added to induce the protein production at 37°C for 4 hours but it was 

found to be insoluble (Figure 4.36). There were no expression of the target protein 

when the induction temperature was decreased to either 30°C or 20°C. 

 
 1         2        3    4 

 
Figure 4.36 Overexpression of BPSS0683: SDS PAGE of BPSS0683 expressed in 

E.coli TunerTM (DE3) pLacI on a 15% resolving gel; lane 1 a protein marker 

Mark12TM; lane 2 pre-induction; lane 3 soluble fraction at 37°C induction for 4 

hours; lane 4 insoluble fraction at 37°C induction for 4 hours. 
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14 
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4.6.3. BPSL0606 

 

According to the Burkholderia genome database, the gene encoding BPSL0606 in 

the B. pseudomallei strain K96243 is located on chromosome 1 and the coding 

nucleotide sequence consists of 651 base pairs, encoding 216 amino acids 

(Winsor et al, 2008).  

 

A preliminary analysis of BPSL0606 protein sequence was performed using the 

ProtParam (ExPASy) server. An amino acid composition of BPSL0606 was 

described with the molecular weight of 23.5 kDa, with a theoretical pI of 6.24 and 

an extinction coefficient of 20065 M-1cm-1 (Figure 4.37).  

 

 

 
Figure 4.37 The characterization of BPSL0606 sequence by ProtParam (ExPasy 

server) revealed its amino acid composition, molecular weight, pI and extinction 

coefficient. 
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The protein sequence of BPSL0606 was also compared to other proteins in the 

non-redundant database using BlastP (NCBI). The search showed a hit to the 

ElaA family protein, which is predicted as a transferase with an acyl-CoA N-

acyltransferase domain from Burkholderia species and an N-acetyltransferase 

from other bacteria. 
 

In addition, a domain of the Acyl-CoA N-acetyltransferase superfamily (NAT) 

has been found at the N-terminal region of the BPSL0606 protein (residues 1-152) 

using a Superfamily search, the HMM library and a genome assignment server 

(Gough et al, 2001). In comparison to orthologous proteins, BPSL0606 has a C-

terminal sequence extension apart from the NAT domain-containing region 

(Figure 4.38). 
 

Residue 1            152             216 

 
Figure 4.38 Schematic of BPSL0606 domain: A NAT domain (residues 1-152) was 

identified in BPSL0606, with a C-terminal extension not seen in orthologous proteins.  
 

The hydrophobicity of BPSL0606 was characterised using the hydropathy 

programme (http://www.vivo.colostate.edu/molkit/hydropathy/index.html), which 

showed that BPSL0606 is not likely to have a transmembrane component (Figure 

4.39). 
 

 
Figure 4.39 A Kyte-Doolittle hydropathy plot of BPSL0606 showed the protein is 

unlikely to contain a membrane spanning domain. This figure was produced using the 

hydropathy plot server (http://www.vivo.colostate.edu/molkit/hydropathy/ index.html). 

NAT domain 
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4.6.3.1. Gene amplification and cloning 

Oligonucleotide primers were designed for amplifying the full length of             

the BPSL0606 coding gene according to an open reading frame of this gene in  

the B. pseudomallei strain K96243. The forward primer (5’-GAATCTCCCAT 

ATGGACTGG-3’) and the reverse primer (5’-GGATCCTCATCGGTTCA   

TTC-3’) containing NdeI and BamHI restriction sites (underlined) were used in 

PCR with the genomic DNA of B. pseudomallei strain D286.  

 

For amplification of the gene encoding BPSL0606, the PCR product was obtained 

by adding 2%(v/v) DMSO, resulting in an approximately 600 bp DNA fragment 

(Figure 4.40).  

 

 
Figure 4.40 Analysis of PCR product of BPSL0606 on a 1% agarose gel 

electrophoresis: The PCR product has approximate 600 base pairs in length, 

which corresponds to BPSL0606 (651 base pairs). 

 

The gene fragment of BPSL0606 was inserted into the pET-24a plasmid. 

Restriction enzyme digestion of the PCR product and the pET-24a vector were 

carried out to obtain the insert with NdeI and BamHI overhangs, and the NdeI-

BamHI linearised vector, respectively.  The insert was then ligated into the vector 

at the restriction cloning sites using T4 ligase. Recombinant plasmids were 

transformed into E. coli DH5α cells, and screening for positive clones was 

achieved using the kanamycin selective marker in pET-24a. The transformants 

were then propagated in a 10 ml culture to isolate plasmid DNA from candidate 

recombinants for verification.     

 



! 113!

a)  

 

b)  

Figure 4.41 DNA sequencing of the recombinant BPSL0606 clone: The gene 

insert in the recombinant pET24-a was identified; a) Nucleotide sequence 

alignment of BPSL0606 (second line) and positive clone sequenced using T7 

forward primer (first line) and T7 reverse primer (third line) shows the alteration 

of nucleotides in the clone compared to the reference sequence of B. pseudomallei 

strain K96243; b) Protein sequence alignment of BPSL0606 (first line) and the 

identified insert from positive clone (second line) indicates one amino acid of the 

clone altered (colored in red) compared to the reference sequence of B. 

pseudomallei strain K96243. 

BPSL0606     1 MDWTCCEFRHLSSNELYMILRTRNAVLVVEDAHTHLDIDGKDEFAIHVFATDKRGEQPAI
06061/2      1 MDWTCCEFRHLSSNELYMILRTRNAVLVVEDAHTHLDIDGKDEFAIHVFATDKRGEQPAI
consensus    1 MDWTCCEFRHLSSNELYMILRTRNAVLVVEDAHTHLDIDGKDEFAIHVFATDKRGEQPAI

BPSL0606    61 AAYARLLPGDDIDPETTIDKILTSAAHRDDRTIDALIEHVLAAAHARWPDAPVRVQAPAP
06061/2     61 AAYARLLPGDDIDPETTIDKILTSAAHRDDRTIDALIEHVLAAAHARWPDAPVRVQAPAP
consensus   61 AAYARLLPGDDIDPETTIDKILTSAAHRDDRTIDALIEHVLAAAHARWPDAPVRVQAPAP

BPSL0606   121 REGFYNRFGFRKVDGPYLEHGAPYVGMLRAASAPSKAVRNLLDLVGNATGANPGTSAGAV
06061/2    121 REGFYNRFGFRKVDGPYLEHGAPYVGMLRAASAPSKAVRNLLDLVGNATGANPGTSAGAV
consensus  121 REGFYNRFGFRKVDGPYLEHGAPYVGMLRAASAPSKAVRNLLDLVGNATGANPGTSAGAV

BPSL0606   181 PASAARKPRKANAESTTEGERYAFAGRLPADSGMNR
06061/2    181 PASAARKPRKANAESTTEGERYTFAGRLPADSGMNR
consensus  181 PASAARKPRKANAESTTEGERY-FAGRLPADSGMNR
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The positive clone was confirmed by DNA sequencing, which showed there are 

two different nucleotides in comparison to the B. pseudomallei strain K96243 

genome sequence, resulting in 1 amino acid change at residue 203 (A to T) 

(Figure 4.41). This sequence difference could be a result of a mutation in the 

PCR, as this residue in orthologous proteins from different strains of B. 

pseudomallei is always an alanine. Alternatively, it could possibly be a variation 

between the strains of B. pseudomallei. This needs to be clarified.  

 

4.6.3.2. Protein expression 

The recombinant protein of BPSL0606 was over produced in E. coli BL21 (DE3) 

cells, with 1 mM IPTG induction at 37°C for 4 hours. The protein expression 

profile was analysed by SDS PAGE and a large amount of soluble protein was 

present on the gel between 21.5 and 31 kDa, which was expected as the molecular 

weight of the target protein is approximately 23.5 kDa. Reducing the temperature 

to 20 °C during induction did not show a significant increase in the soluble 

protein yield (Figure 4.42).  
 

 

 
 Figure 4.42 BPSL0606 expression profile: lane 1 Mark12TM; lane 2 pre-

induction; lane 3 soluble fraction at 37°C induction for 4 hours; lane 4 insoluble 

fraction at 37°C induction for 4 hours; lane 5 soluble fraction at 20°C induction 4 

hours; lane 6 insoluble fraction at 20°C induction 4 hours; lane 7 soluble fraction 

at 20°C induction overnight; lane 8 insoluble fraction at 20°C induction overnight. 

    1       2        3        4       5        6        7        8 
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Selenomethionine incorporated protein was also produced for BPSL0606. After 

growing the bacterial cells to mid-log phase, the use of minimal media with 

supplements including selenomethionine (described in section 3.3.4) was used in 

order to allow the production of selenomethionine incorporated protein during 

induction by IPTG (Stols et al, 2004). The supplements added inhibit methionine 

biosynthesis in the cells and the additional selenomethionine is provided as an 

external amino acid source for incorporation into the cellular proteins. The 

overexpression of selenomethionine substituted BPSL0606 was performed using 

1 mM IPTG induction at 37°C for 4 hours in a similar manner to the native 

protein production. 

 

 

4.6.3.3. Protein purification 

Approximately 2 g of cell paste was resuspended in 50 mM Tris-HCl pH 8 and 

the cells were disrupted by ultra-sonication on ice for 2-3 cycles of 20 seconds. 

About 20 ml crude extract was obtained after the cell debris was removed by 

centrifugation. The protein solution was loaded onto a 5 ml Heparin HP column 

(GE Healthcare) which was pre-equilibrated with 50 mM Tris-HCl pH 8 and the 

protein was eluted with a gradient of 0-1 M NaCl in 50 mM Tris-HCl pH 8. 2.5 

ml fractions were collected and monitored by UV absorbance. The fractions 

corresponding to the UV peak were analysed using the Bradford assay (Bradford, 

1976) and SDS PAGE in order to select the fractions containing the target protein. 

The second purification step was anion exchange chromatography using a 

ResourceTM Q column (GE Healthcare). The diluted sample was applied to this 

column, pre-equilibrated with 50 mM Tris-HCl pH 8 and the protein was eluted 

with a gradient of 0-1 M NaCl in 50 mM Tris-HCl pH 8. 3 ml fractions were 

collected. The Bio-Rad assay and SDS PAGE were carried out for the fractions 

corresponding to the UV peak. The fractions containing the purified protein 

BPSL0606 (23.5 kDa) were pooled together and the protein was concentrated to 

approximately 10 mg/ml using a 10 kDa MWCO VivaspinTM centrifugal 

concentrator (Vivascience). 
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In the purification steps, BPSL0606, which has its theoretical pI 6.24 predicted by 

ProtParam (ExPASy server) has a net negative charge in the buffer at pH 8 and 

binds to the anion exchange column. The purity of BPSL0606 obtained was 

greater than 95%, which is suitable for subsequent crystallisation trials (Figure 

4.43). The average yield of protein purification was approximately 5 mg protein 

obtained from one litre of recombinant E. coli culture. 
 

 
Figure 4.43 Analysis of BPSL0606 protein purification by 12% SDS-PAGE: 

Lane1 Mark12; Lane2 Cell debris; Lane3 Crude extract; Lane4 Unbound fraction 

from Heparin HP column; Lane5 Heparin HP column-bound fraction and Lane6 

the purified BPSL0606 (23.5 KDa) after Resource Q column. 

   

For the selenomethionine-substituted protein, the same purification protocols were 

employed. Analysis of molecular weight of the purified protein was carried out by 

mass spectrometry. The results provided the molecular mass of native BPSL0606 

and Se-Met substituted protein (Figure 4.44). The difference between the 

molecular weights of sulphur-methionine protein and selenium-methionine 

protein indicate the incorporation of selenium into the methionine residues. As the 

difference of atomic weights between selenium and sulphur atoms is 78.96-32.06 

= 46.9 and BPSL0606 contains 4 methionine residues, the molecular mass of the 

Se-Met protein would be 187.6 greater than the native protein if selenium is fully 

incorporated in all 4 methionines. The difference of molecular mass between the 

Se-Met protein and the native protein obtained from mass spectrometry was 

calculated to be 189. Thus, BPSL0606 was produced with 100% Se incorporation 
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of the methionine residues and was thus suitable for subsequent structure 

determination.  

 

a)  

b)  

Figure 4.44 Analysis of purified BPSL0606 by mass spectrometry: a) Mass 

spectrum of native BPSL0606 with its molecular weight of 23517 Da; b) Mass 

spectrum of Se-Met incorporated protein with its molecular weight of 23706 Da. 

The difference of molecular weights is approximately the difference between 
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atomic weights of sulphur and selenium in 4 methionine residues in BPSL0606, 

indicating the full incorporation of selenium in the Se-Met protein. 

  

 

4.7. Chapter summary 

In summary, from seven selected target genes, five genes including BPSL3022, 

BPSS0945, BPSS0603, BPSS0683 and BPSL0606 were successfully cloned. 

Within these five, two proteins, BPSS0945 and BPSL0606, were expressed in a 

soluble form. These results showed that soluble protein expression remains the 

bottleneck of protein production, to be used in crystallographic studies. 

BPSS0945 was unstable and did not crystallise. BPSL0606 was the only protein 

that was successfully crystallised and whose structure was determined. The 

crystallisation and structure determination of BPSL0606 is described in the 

following chapter. The summary of this work is shown in Table 4.5. 
 

Table 4.5 Summary of target proteins studied in this project. 

 
 

Possible future experiments for those targets that have not led to structures 

include: 
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-BPSL3022: Different constructs of periplasmic FtsQ could be made in order to 

achieve soluble protein expression and crystallisation. Once the structure of B. 

pseudomallei FtsQ is determined, it could be compared to known structures of 

FtsQ from other organisms. This could be useful for understanding aspects of cell 

division in B. pseudomallei. 

 

-BPSS0945: Truncated constructs without residues 1-23, which are probably a 

signal peptide, could be made and the mature protein could be further 

investigated. Attempts to obtain protein crystals and a structure would provide the 

structural information and its biological function.  

 

-BPSS0603: A new clone without sequence difference could be made and the 

soluble protein expression could be observed.  

 

-BPSS0683: To improve the soluble expression of these proteins, co-expression of 

molecular chaperones such as GroES-GroEL, DnaK-DnaJ-GrpE and ClpB could 

be helpful for in vivo protein folding.  

 

-BPSS0238 and BPSS1416: Different cloning systems could be used for 

producing the recombinant proteins. As BPSS0238 is a large protein, choosing 

smaller fragments would perhaps be alternative for cloning this gene and 

producing the soluble protein. 

  

Sequence differences between the clones and the genomes 

All the proteins studied in this thesis have been cloned using genomic DNA from 

B. pseudomallei strain D286. As there was no genome sequence for this strain, the 

sequences of the successfully cloned genes were compared to the sequences of the 

genome of B. pseudomallei strain K96423, the only B. pseudomallei genome 

sequence available. Problems of assignment thus occur if the sequence of the 

cloned gene differs from the genome sequence. These differences could either be 

due to real differences between the strains, or to errors introduced in the PCR 

process. It is thus important to repeat the cloning of any genes where differences 

are seen, to identify any potential PCR errors that may result in incorrect folding, 

solubilisation problems or low yields of the recombinant protein. 
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For BPSL3022, different sequence changes are seen in the different constructs, 

with BPSL3022_2 having an A79V change; BPSL3022_3 having one nucleotide 

difference (no change in protein sequence); BPSL3022_2 having a R175H 

difference and BPSL3022_1 having the same sequence as that seen in the 

genome. As the sequence changes are different between these constructs, these 

differences are thus most likely to be from the PCR reaction. 

 

For BPSS0945, BPSS0603 and BPSL0606, differences are also seen between the 

cloned gene and the genome sequence. In each of these cases the residue present 

in the K96423 strain of B. pseudomallei in also present in the genes from other B. 

pseudomallei strains, indicating again that an error may have been introduced 

during the PCR process, alternatively, these sequence differences could be a real 

strain variation. 

 

For each of these genes the cloning process should be repeated and a number of 

different clones sequenced, to clarify differences in sequence due to PCR errors 

from differences due to genetic drift between strains. This may well result in 

proteins with increased stability, solubility and even an increased chance of 

crystallisation. However, until a full genome sequence is determined for the D286 

strain of B. pseudomallei, the cause of these differences in sequence cannot be 

certain.  
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Chapter 5: Crystallisation, Analysis of 

X-ray Diffraction and Structure 

Determination of BPSL0606 
 

This chapter details the crystallisation of BPSL0606 and the determination of the 

BPSL0606 crystal structure. Preliminary analysis of the X-ray diffraction data is 

included. 

 

5.1. Crystallisation of BPSL0606 

Freshly purified BPSL0606 protein in 10 mM Tris-HCl pH 8, 0.1 M NaCl was 

concentrated to approximately 10 mg/ml using a 10 kDa MWCO vivaspin 

concentrator (Vivascience), prior to crystallisation trials.  
 

Automated crystallisation screening was initially performed using a Hydra II Plus 

One robot and commercially available screening kits (QIAGEN), including the 

PACT, JCSG, PEG, pH clear and Classics screens. The experiment was carried 

out using the sitting-drop vapour-diffusion method, in a 96-well crystallisation 

plate with each well containing 200 nl of protein mixed with an equal amount of 

different crystallisation solutions, which consisted of precipitants, buffers and/or 

salts. All crystallisation trays were sealed using a clear tape and stored at 17°C.  
 

Only a single hit condition from the robot screens was found. BPSL0606 protein 

crystallised in 20 % (w/v) PEG3350, 0.1 M Bis-Tris propane pH 6.5 and 0.2 M 

potassium thiocyanate. The crystals of BPSL0606 obtained from the initial robot 

screening were of a rod morphology, grouped in clusters (Figure 5.1). 
 

To obtain larger crystals, the crystallisation condition for BPSL0606 was further 

optimised by varying the precipitant concentration, buffer pH and the ratio of 

protein and reservoir solution using the hanging drop vapour diffusion technique. 

The optimization of crystallisation included varying the precipitant concentration 

(14%-24% PEG 3350), the pH (0.1 M Bis-Tris Propane pH 6.3, 6.5 and 7) and the 

ratio of protein and reservoir solution (1:1, 1:2 and 2:1). 
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Figure 5.1 Crystals of BPSL0606 observed in the drop F4 in the robot PACT 

screen. The crystals grew in a solution of 20% (w/v) PEG3350, 0.1 M Bis-Tris 

propane pH 6.5 and 0.2 M potassium thiocyanate at 270 K. 

 

Single long rod-like crystals were obtained from 16% (w/v) PEG3350, 0.1 M Bis-

Tris propane pH 6.3 and 0.2 M potassium thiocyanate, with approximate 

dimensions of 400 µm x 25 µm x 25 µm. 

 

Prior to mounting on the diffractometer, the protein crystals were mounted in a 

fibre loop and washed through a cryoprotectant solution, which consisted of the 

mother liquor they grew from and 25% ethylene glycol. They were then flash 

cooled to 100 K with an Oxford Cryosystems Cryostream 700 for X-ray 

diffraction experiments.   

 

The crystals were tested using an ‘in house’ Rigaku MM007 copper rotating 

anode generator and a MAR345 Research image plate. Two test images of 1 

degree rotation and 5 minutes exposure were taken and the X-ray diffraction 

patterns were analysed using the autoindexing routine in Mosflm (Leslie & 

Powell, 2007). The native and Se-M incorporated BPSL0606 protein crystals both 

belonged to the monoclinic crystal system with the Laue group P2/m and 

approximate cell dimensions of a=60.6Å, b=81.4Å, c=78.2Å, α=90°, β=100° and 

γ=90°. 

100 µm 
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a)  

 

b)  

Figure 5.2 Data collection of the native BPSL0606 crystal: a) The sulphur-

methionine BPSL0606 crystal was mounted in a fibre loop and was exposed to a 

100 µm X-ray beam b) A diffraction image of the BPSL0606 crystal: Diffraction 

data were collected to a resolution of 2.2 Å on the ADSC Q315 CCD detector at 

the beamline I03 of the Diamond synchrotron source. The BPSL0606 crystal 

diffracted the X-rays beyond the resolution of 2.35 Å (blue circle). 
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5.2. X-ray data collection 

Single crystals of BPSL0606 were mounted and cryoprotected with 25% ethylene 

glycol with their mother liquor prior to cryocooling using an Oxford Cryosystems 

Cryostream 700 at 100 K. An X-ray diffraction test was carried out using an in-

house Rigaku MicroMax 007 micro-focus copper rotating anode generator 

running at 40kV, 20mA with a MarResearch MAR345 image plate detector 

system. Each crystal was exposed for 5-15 minutes and a few test images were 

observed at a starting angle and 90 degree apart to assess the resolution limit and 

diffraction quality. These images were pre-analysed for its unit cell dimensions, 

mosaicity and Laue group determination using Mosflm (Leslie & Powell, 2007). 

Well diffracting crystals were kept in vials in a liquid nitrogen Dewar and they 

were later transferred to universal pucks for data collection at the Diamond 

Synchrotron.   

 

High-resolution data sets were collected at the macromolecular crystallography 

beamlines of the Diamond Synchrotron. DNA software (http://www.dna.ac.uk/) 

and Mosflm (Leslie & Powell, 2007) were employed for data collection strategies. 

 

The first native data set was collected at beamline I03 of the Diamond 

Synchrotron source. A total of 360 images with a 0.5° rotation per image were 

collected to a resolution of 2.2 Å at the edge of the detector. 

 

 

5.3. Data processing 

For the native data set, diffraction images were initially analysed using the 

autoindexing routine in Mosflm (Leslie & Powell, 2007). Autoindexing was 

performed to estimate the cell dimensions, crystal system, space group and 

mosaicity. The possible solution with low penalty indicated the crystal belonged 

to the monoclinic crystal system in the Laue group P2/m with the cell dimensions 

of a = 60.61 Å, b = 81.39 Å, c = 78.18 Å, α=90°, β=99.99° and γ=90°, with an 

estimated mosaicity of 0.63°. The diffraction data were subsequently integrated 

using Mosflm, resulting in an .mtz file that included the reflection intensities and 

indices. 
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To determine the space group, the POINTLESS program (Evans, 2006) in the 

CCP4 suite was employed. Analysis of systematic absences indicated the presence 

of 21 screw axis along b (0k0; k = 2n), therefore it was likely that the BPSL0606 

crystal belonged to space group P21 (P 1 21 1). 

 

Data reduction was performed using the CCP4 package. The data were scaled by 

the SCALA program (Evans, 2006) and the scaling showed the data were good 

beyond the resolution of 2.5 Å. Between the resolution of 2.6 Å and 2.4 Å, I/σ fell 

from 2.3 to 1.4, which is in the range of a typical signal to noise threshold value 

for a resolution cut-off (1 < I/σ(I) < 2) (Evans, 2011). The data were therefore cut 

to a resolution of 2.35 Å. 

 

The unit cell contents were analysed using Matthews_coef program (Kantardjieff 

& Rupp, 2003; Matthews, 1968) in the CCP4 suite. The unit cell volume was 

calculated to 3.8 x 105 Å3, resulting in the Matthews coefficient values of 2.71 and 

2.03 Å3 Da-1 for 3 and 4 molecules in asymmetric unit with 54.6% and 39.5% 

solvent content, respectively, based on the molecular weight of the full length 

protein of 23.5 kDa.  
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Table 5.1 Data collection statistics of the native, sulphur-methonine BPSL0606 

crystal 

 

Dataset 

Spacegroup P 1 21 1 

Unit cell parameters 

(Å) 

 

a  60.61  

b 81.39  

c 78.18  

α 90.00 ° 

β 99.99 ° 

γ 90.00 ° 

Temperature (K) 100 

X-ray Source DIAMOND I03 

Detector ADSC Q315 CCD 

Resolution (Å)1 29.77-2.35 

(2.41-2.35) 

Energy (keV) 12.800 

Unique observations1 30688 (2254) 

Rmerge 1,2 0.074 (0.583) 

Rpim
1 0.055 (0.434) 

Completeness (%)1 98.4 (98.8) 

Multiplicity1 3.7 (3.6) 

Mean((I)/sd(I))1 10.6 (2.2) 

1Numbers in parentheses indicate values for the highest resolution shell 
2 Rmerge = Σhkl Σi |Ii(hkl) – 〈I(hkl)〉|/ Σhkl Σi Ii(hkl), where 〈I(hkl)〉 is the mean intensity of the 

reflection 
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5.4. Analysis of self-rotation function and self-Patterson function 

A self-rotation function, using the X-ray data between 20-6 Å, shows a peak of 

87.3% of the origin at ω = 90.0°, ϕ = 11.7°, κ = 180.0° using an orthogonalization 

matrix of c along x, a* along y and b* along z. This peak decreases to 85.1% of 

the origin using 20-3 Å data, and the position changes to ω = 90.0°, ϕ = 10.1°, κ = 

180.0°. This gives clear evidence for a non-crystallographic 2-fold axis lying in 

the ac plane, and approximately 10° away from the c axis (Figure 5.3).  Inspection 

of the self-rotation function showed no significant peaks at κ = 90.0° or κ = 

120.0°, indicating that non-crystallographic 4-fold or 3-fold axes are unlikely. 

 

Analysis of self-Patterson using 20-6 Å data shows a peak of 11.5% of the origin 

at (0, 0.44, 0.47) which decreases to 5.1% of the origin using 20-3 Å data. This 

perhaps indicates the presence of non-crystallographic translational symmetry. 

 
Figure 5.3 Analysis of the self-rotation function using data from 20-6 Å: A peak 

of 87.3% of the origin can be seen at ω = 90.0°, ϕ = 11.7°, κ = 180.0°, indicating 

the presence of a non crystallographic 2-fold axis in the ac plane and 11.7° away 

from the c axis. This figure was generated using Polarrfn in the CCP4 suite 

(Collaborative Computational Project, 1994). 
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5.5. Structure determination 

As BPSL0606 shares sequence homology with the acyl coA N-acetyltransferase 

family (Section 4.6.3), then initial attempts were made to determine the structure 

using molecular replacement. The protein with the highest sequence similarity and 

known structure to BPSL0606 is an acyl coA N-acetyltransferase from P. 

aeruginosa (PDB ID: 1XEB). These two proteins share 34.9% sequence identity 

for the N-terminal 150 residues, but the BPSL0606 C-terminal extension of 66 

residues is not present in the P. aeruginosa protein (Figure 5.4).  

 

Therefore, the coordinates of the crystal structure of the Acyl CoA N-

acetyltransferase from P. aeruginosa were used as a search model, together with 

the native BPSL0606 X-ray data for determining BPSL0606 structure by 

molecular replacement, using the program Phaser (McCoy et al, 2007) in the 

CCP4 package. 

 

 

 
Figure 5.4 Fold recognition and secondary structure prediction of BPSL0606:  

The predicted fold recognition and secondary structure of BPSL0606 showed the 

similarity to acyl coA N-acetyltransferase from P. aeruginosa (PDB ID: 1XEB) 

with 35% sequence identity. This figure was produced using mGenTHREADER 

(McGuffin et al, 2000). 
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The best solution from the molecular replacement was obtained with a log-

likelihood gain (LLG) of 647 and a translation function Z-score of 10.5. This 

molecular replacement solution contained four copies of the P. aeruginosa model 

each with 149 residues. Although the packing of the four chains in the crystal 

appeared reasonable  (Figure 5.5), electron density maps calculated using this 

solution did not show any density for the 67 C-terminal residues present in 

BPSL0606 (Figure 5.6).  

 

 
Figure 5.5 Crystal packing for 4 copies of BPSL0606. The 4 molecules in the 

asymmetric unit pack well in the lattice, and there was no clash between them. 

Molecules colored in yellow, blue, pink and green represent 4 copies of 

BPSL0606 and those colored in grey are symmetry related molecules. This figure 

was produced using Coot (Emsley et al, 2010). 

 

 

Furthermore, the molecular replacement map contained bias against the model, 

with inconclusive electron density for many of the sequence changes between the 

1XEB model and BPSL0606. For example, as can be seen in Figure 5.7, the 

electron density did not fit the side chain of Ile 93 in BPSL0606 but agreed with 

the amino acid Gly 93 in the 1XEB search model.  
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Attempts were made to improve the molecular replacement solution by screening 

more crystals for better data quality, but no improvement on the quality or 

resolution of the data could be made. 

 

As the molecular replacement map was not of a very high quality, and because 

none the C-terminal 65 residues were visible in the map, doubts remained as to 

whether the molecular replacement result was a correct solution. Therefore, 

seleno-methionine (Se-Met) incorporated protein was produced to allow 

independent, unbiased structure determination using the multiwavelength 

anomalous dispersive (MAD) method.    

 

 

 
Figure 5.6 The C-terminal 65 residues of BPSL0606 were missing: There was no 

electron density beyond the residue 151 of BPSL0606. The skeleton of BPSL0606 

is shown in violet and the structure of 1XEB, used as a model, is shown in yellow. 

The electron density map, contoured at 1 σ is shown in blue. This figure was 

produced using Coot (Emsley et al, 2010).    
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Figure 5.7 Biased structure determination by molecular replacement: The 

molecular replacement map did not agree in places with the sequence of 

BPSL0606. The skeleton of BPSL0606 is shown in violet and the structure of 

1XEB, used as a model, is shown in yellow. The electron density map, contoured 

at 1 σ is shown in blue. This figure was produced using Coot (Emsley et al, 2010).    
 

 

5.6. Se-methionine protein 

The Se-methionine protein was purified and crystallised in the same conditions as 

the S-methionine protein, with large rod shaped crystals growing from solutions 

of 16% (w/v) PEG3350, 0.1 M Bis-Tris propane pH 6.3 and 0.2 M potassium 

thiocyanate with approximate dimensions of 400 µm x 25 µm x 25 µm (Figure 

5.8). 

 
Figure 5.8 Crystals of the Se-Met protein of BPSL0606 grew in solutions of 16% 

(w/v) PEG3350, 0.1 M Bis-Tris propane pH 6.3 and 0.2 M potassium thiocyanate.  

500 µm 
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For multi wavelength anomalous dispersion (MAD) experiments, an X-ray 

fluorescence scan was carried out in order to determine appropriate wavelengths 

for collecting MAD data using CHOOCH (Evans & Pettifer, 2001). 

 

MAD data were collected at the beamline I04 of the Diamond Synchrotron 

source. Three wavelengths were selected on a basis of a fluorescence scan at the 

absorption K-edge of selenium (Figure 5.9). A peak data set was collected at the 

wavelength λ1 (λ1 = 0.9795 equivalent to E = 12657.9 eV) where the f” 

component is maximised, whereas the inflection data were collected at the 

wavelength λ2 (λ2 = 0.9797 equivalent to E = 12655.4 eV) where the f’ component 

is minimised. The remote data were collected at the wavelength λ3 (λ3 = 0.9763 

equivalent to E = 12700 eV) in which the dispersive difference is maximised. A 

total of 180 images with a 1° rotation per image were collected to a resolution of 

2.0 Å at the edge of the detector for each wavelength. As the crystals were of a 

rod morphology, the crystal was translated through the beam while collecting the 

different data sets to minimise radiation damage (Figure 5.10).  

 

 
Figure 5.9 A fluorescence absorption spectrum of the Se-Met BPSL0606 crystal 

near to the absorption K-edge of Se: The absorption signal f” (above) and 

dispersive signal f’ (below) suggested the suitable wavelengths for collecting 

MAD data sets. This figure was produced using CHOOCH (Evans & Pettifer, 

2001). 
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a)  

b)  

Figure 5.10 MAD data collection: a) A photograph of the BPSL0606 crystal 

mounted in a fibre loop showed the crystal was being shot by the X-ray beam of 

50 µm x 50 µm (red box) and whilst collecting the different data sets, the Se-Met 

crystal was translated through the beam to minimise radiation damage. b) A 

diffraction image was collected to a resolution of 2.0 Å at the edge of the ADSC 

Q315 CCD detector at the beamline I02 of the Diamond synchrotron source. The 

crystal diffracted the X-rays beyond a resolution of 2.2 Å (blue circle) 
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For the MAD data, all data sets were indexed, integrated and scaled similarly to 

the native by the automated program xia2 (Winter, 2010) using the 3dr mode with 

the XDS and XSCALE programs (Kabsch, 2010), provided at the beamline. 

Statistics for data collection of the Se-Met protein crystal of BPSL0606 are shown 

in Table 5.2. 
 

Table 5.2 Data collection statistics of the Se-Met protein crystal of BPSL0606 

Datasets Se-Met 

Inflection Remote Peak 

Spacegroup P 1 21 1 P 1 21 1 P 1 21 1 

Unit cell parameters     

a  60.55 60.60 60.62 

b 82.10 82.24 82.25 

c 78.05 77.98 77.98 

α 90.00 90.00 90.00 

β 100.14 100.22 100.21 

γ 90.00 90.00 90.00 

Temperature (K) 100 100 100 

X-ray Source DIAMOND I02 DIAMOND I02 DIAMOND I02 

Detector ADSC Q315 CCD ADSC Q315 CCD ADSC Q315 CCD 

Resolution (Å)1 56.12-2.39 

(2.45-2.39) 

56.11-2.29 

(2.35-2.29) 

51.76-2.18 

(2.23-2.18) 

Energy (keV) 12.6554 12.700 12.6579 

Unique observations1 29786 (2193) 33910 (2473) 39151 (2829) 

Rmerge 1,2 0.084 (0.712) 0.089 (0.602) 0.081 (0.639) 

Rpim
1 0.065 (0.487) 0.069 (0.42) 0.068 (0.454) 

Completeness (%)1 99.2 (99.3) 99.2 (98.7) 99.1 (98.6) 

Anomalous completeness (%)1 95.4 (96.2) 96.0 (95.3) 95.9 (95.3) 

Multiplicity1 3.7 (3.8) 3.7 (3.8) 3.7 (3.8) 

Anomalous multiplicity1 1.8 (1.8) 1.9 (1.8) 1.8 (1.8) 

Mean((I)/sd(I))1 12.5 (1.9) 9.6 (2.2) 10.2 (2.1) 

1Numbers in parentheses indicate values for the highest resolution shell 
2 Rmerge = Σhkl Σi |Ii(hkl) – 〈I(hkl)〉|/ Σhkl Σi Ii(hkl), where 〈I(hkl)〉 is the mean intensity of the reflection 
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The three-wavelength MAD data sets were input into the automated structure 

determination program Phenix (Adams et al, 2010). The substructure solution 

from Phenix had 12 selenium sites in total, with a figure of merit 0.43 and overall 

Z-score 41.6. As the BPSL0606 sequence contains 4 methionines at positions 1, 

18, 147 and 214, this substructure is consistent with 3 full-length copies in the 

asymmetric unit or alternatively, four copies with either the N-terminal 

methionine or the C-terminal extension missing. Furthermore, Phenix had 

automatically built 476 residues in 4 chains as an initial model. Clear electron 

density was visible for the selenium atoms at the position 1, 18 and 147, which 

accounted for all the peaks in the substructure solution (Figure 5.11). Statistics for 

all selenium atoms found are shown in Table 5.3. 

 

 

Table 5.3 Statistics of the selenium sites identified by experimental phasing  

Selenium site Occupancy B-factor 

Se1 1.21 46.20 

Se2 1.07 51.70 

Se3 0.88 39.40 

Se4 1.04 44.60 

Se5 1.1 60.00 

Se6 1.01 60.00 

Se7 0.69 33.10 

Se8 0.77 53.30 

Se9 0.45 54.50 

Se10 0.50 50.90 

Se11 0.59 52.10 

Se12 0.56 51.60 
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a) b)

c)  

Figure 5.11 Selenium atom location: The initial MAD electron density map, 

contoured at 1 σ, centered around the selenium atoms in residue 1 (a), 18 (b) and 

147 (c). Clear density can be seen to these residues. This figure was produced 

using Pymol (Schrodinger, 2010). 

 

The initial model was inspected for each residue one by one, to modify residues if 

appropriate and to join the fragments together. Rebuilding the model to fit the 

electron density map was performed in COOT (Emsley et al, 2010). During the 

model building task, the model was frequently validated using the validation tools 

in COOT in order to analyse the geometry, incorrect chiral volumes, peptide 

omega, rotamers, density fit as well as unidentified blobs and questionable waters 

throughout the model.  

 

A number of cycles of model refinement and rebuilding were run through the 

program REFMAC5 in the CCP4 suite (Murshudov et al, 2011). Each round of 

running REFMAC5, the modified model was refined against the peak wavelength 

data set at 2.18 Å resolution, to avoid bias from any electron density modification 

from cycle to cycle. The R-factor and R-free were monitored during the 

refinement tasks (Figure 5.12). 
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a)  

 

b)  

Figure 5.12 A portion of the electron density map of BPSL0606. The model was 

built and fitted to the electron density map derived from the 2.18 Å resolution 

data, contoured at 1 σ; a) initial solution, b) final model. This figure was produced 

using Pymol (Schrodinger, 2010). 
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5.7. Structure validation 

After a number of refinement cycles were performed, the model of BPSL0606 

was analysed using the validation tools in the CCP4 suite such as PROCHECK 

(Laskowski et al, 1993) and RAMPAGE (Lovell et al, 2003). The refinement 

parameters are summarised in Table 5.4. The final model had an R-factor and R-

free of 0.196 and 0.25, respectively, which are acceptable at this resolution. 

Ramachandran plots indicated that 97% of residues were in the favoured region 

and 0.3% of residues, specifically residues His 140 of chain C and D, were in the 

outlier region (Figure 5.13). These residues were unfavorable due to poor electron 

density fit.  

 

 Table 5.4 Data refinement statistics of BPSL0606 structure model 
  

Resolution range (Å) 51.76  - 2.18 (2.25  - 2.18) 

Space group P 1 21 1 

Unit cell dimensions (Å) a=60.62, b=82.25, c=77.98 

α=90° β=100.21° γ=90° 

Unique reflections 39131 (3853) 

Completeness (%) 98.90 (98.52) 

Mean I/sigma(I) 10.19 (2.17) 

Wilson B-factor 32.49 

Number of molecules in asymmetric unit 4 

R-factor 0.1957 (0.2684) 

R-free 0.2500 (0.3404) 

Number of atoms 5088 

  macromolecules 4794 

  water 270 

Protein residues 605 

RMS(bonds) 0.015 

RMS(angles) 1.77 

Ramachandran favored (%) 97 

Ramachandran outliers (%) 0.34 

Clashscore 10.11 

Average B-factor 38.00 

  macromolecules 37.80 

  solvent 39.20 

NB: Statistics for the highest-resolution shell are shown in parentheses. 
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b) 

Figure 5.13 Ramachandran plots for the BPSL0606 structure. a) A Ramachandran 

plot showed the protein backbone torsion angle distribution in general including 

β-region, right- and left- handed helical regions b) 97% of all residues were in 

favoured region whereas 2.5% were in the allowed region. Residues His 140 in 

chain C and D were in the outlier region. This figure was produced using 

RAMPAGE (Lovell et al, 2003). 
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5.8. Structure description 

The final BPSL0606 structure contained 4 copies of the protein, each running 

from the N-terminal methionine to residue 151 of the full-length sequence. No 

density was present for the 65 C-terminal residues.  
 

A subunit of the BPSL0606 crystal structure consists of eight β-strands and three 

α-helices. From the N-terminal region, a short β-strand is connected to the first α-

helix (α1) via a helical loop. Following the long helix, three antiparallel strands 

(β2, β3 and β4) are formed and precede the second long α-helix (α2), which is laid 

underneath the β-sheet. A β-strand (β5) is linked to the helix α2 and followed by a 

short α-helix α3, turning back behind the strand β5. Two β strands (β6 and β 7) are 

connected and followed by the last strand β8, parallel to the strand β5 (Figure 

5.14). 
 

In the β-sheets, there is an opening between the strands β4 and β5, like a V-cleft. 

This has the effect of making a groove in structure at the C-terminal ends of the 

strands β4 and β5, which perhaps could be the active site.    
   

 
Figure 5.14 The cartoon representation of the secondary structure of BPSL0606 

subunit colored from N-terminal (blue) to C-terminal (red). This figure was 

produced using Pymol (Schrodinger, 2010). 
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No density was visible for the remaining 65 C-terminal residues, which perhaps 

indicates that these residues are disordered. Using the RONN server (Yang et al, 

2005) to predict potential disordered regions of the protein, based on its sequence, 

there is a high probability of a disordered region from residue 152 to the end, 

which corresponds to the missing residues in the crystal structure (Figure 5.15). 
 

 
Figure 5.15 Protein disorder prediction: The C-terminal part of the BPSL0606 

sequence shows a clear propensity to be a disordered region. This figure was 

produced using RONN server (Yang et al, 2005).  
 

Alternatively, these C-terminal residues may have been cleaved prior to 

crystallisation. If this were the case, then the 151-residue fragment would have an 

approximate molecular weight of 17 kDa. Using this value in a cell content 

analysis, four chains would have a solvent content of 56.3% and Matthews 

coefficient Vm of 2.81 Å3 Da-1. In comparison, four copies of the full-length 

protein packed in asymmetric unit would have a Vm of 2.03 Å3 Da-1, 

corresponding to 39.5% solvent content. It is therefore possible that there is space 

in the crystal lattice for the remaining 65 C-terminal residues (Figure 5.16). 
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Figure 5.16 Available space in the crystal lattice beyond residue 151: There is 

room for the missing 65 C-terminal residues.  This figure was produced using 

Coot (Emsley et al, 2010). 

 

To investigate whether the crystals were grown from the full-length expressed 

protein or whether it had been truncated during crystallisation, the remaining 

crystals in the crystallisation tray were picked out and dissolved in water, prior to 

analysis using SDS PAGE. A single band from the crystallised protein on the SDS 

gel lay between 21.5 and 14.4 kDa, indicating that the crystals were not the full-

length protein of 23.5 kDa (Figure 5.17). It is therefore likely that after 

crystallisation was set up with the full-length expressed protein, proteolysis 

occurred during crystallisation process, resulting cleaved protein being 

crystallised. 

 

As an analysis of the crystallised protein by mass spectrometry could not be 

achieved, the same batch of purified protein that had been stored at 4°C for a few 

months was sent for mass spectrometry instead. The spectrum of the protein mass 

showed the majority of degraded products were in the range of 17 kDa (Figure 

5.18), which corresponds to the obviously intense band of lane 4 on the SDS gel 

(Figure 5.17). This could explain why the structural model of BPSL0606 was 

built up to 151 residues instead of the full-length 216 residues.   
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Figure 5.17 SDS PAGE of the BPSL0606 crystals: Lane1 Mark12 ladder, Lane 2 

and 3 crystallised protein, Lane 4 the same purified batch protein as crystallised 

protein kept in the fridge for a few months.    

 

 
Figure 5.18 Mass spectrometry of the remaining purified protein: From the SDS 

gel, the remaining protein was degraded from 32 kDa to 17 kDa during a few 

months storage at 4°C. 
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Attempts were made to crystallise the remaining protein in the same 

crystallisation condition that the crystal had grown before but it was not 

successful. The stored protein was thus analysed further. 

 

 

5.9. Crystallisation and structure determination of the truncated 

BPSL0606 

Another batch of purified protein BPSL0606 that had been stored in a 4°C 

refrigerator for 2 months after purification was analysed by mass spectrometry 

and the spectrum showed the remaining protein was 17.776 kDa, which 

corresponds to a truncated protein containing 159 residues from N-terminal region 

(Figure 5.19). 

 

 
Figure 5.19 Mass spectrometry of the old protein used for the crystallisation 

experiment: The purified BPSL0606 protein was characterised after keeping at 4 

°C for a few months. The spectrum indicated the remaining protein had the 

molecular weight of 17.8 kDa.  
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An 8 mg/ml solution of this 17.8 kDa protein was screened for crystallisation by 

the sitting-drop vapour-diffusion method and the Hydra II Plus One robot with 

commercially available screening kits (QIAGEN). Approximately 200 µm long 

single crystals (Figure 5.20) were obtained from the condition H7 in the JCSG 

screen containing 25% PEG3350, 0.1 M Bis-Tris pH5.5 and 0.2 M ammonium 

sulphate.   

 

A protein crystal was mounted and washed through a cryoprotectant solution 

containing 25% ethylene glycol, 25% PEG3350, 0.1 M Bis-Tris pH5.5 and 0.2 M 

ammonium sulphate, prior to cooling down to 100 K with an Oxford Cryosystems 

Cryostream 700 for X-ray diffraction tests using an in house Rigaku MM007 

copper rotating anode generator and a MAR345 Research image plate. A couple 

of test images of a few minutes exposure were taken and the X-ray diffraction 

patterns were analysed using the autoindexing routine in Mosflm (Leslie & 

Powell, 2007). The truncated BPSL0606 protein crystals belonged to the 

orthorhombic crystal system, in Laue group P222, with cell dimensions of 

a=60.94Å, b=75.0 Å, c=78.24Å and α=β= γ=90°. 

 

 

 
Figure 5.20 A photograph of a cryoprotected crystal of the truncated BPSL0606 

mounted by a 0.25 µm loop: The crystal was shot by an X-ray beam of 100 µm x 

100 µm (red box) at the Diamond Synchrotron source for data collection. 
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5.9.1. Data collection and processing 

A data set from the truncated protein crystal was collected at the beamline I04 of 

the Diamond Synchrotron source. A total of 90 images with a 1° rotation per 

image were collected to a resolution of 2 Å. Statistics of the data collection are 

shown in Table 5.5. 

 

Table 5.5 Data collection statistics of the truncated BPSL0606 crystal 

Data set  

Spacegroup P 21 21 21 

Unit cell parameters  

a  60.94 

b 75.00 

c 78.24 

α 90.00 

β 90.00 

γ 90.00 

Temperature (K) 100 

X-ray Source DIAMOND I04 

Detector ADSC Q315 CCD 

Resolution (Å)1 48.08-2.18 (2.24-2.18) 

Energy (keV) 12.649 

Unique observations1 19172 (1397) 

Rmerge 1,2 0.089 (0.547) 

Rpim
1 0.066 (0.41) 

Completeness (%)1 99.2 (99.9) 

Multiplicity1 3.5 (3.6) 

Mean((I)/sd(I))1 10.3 (2.0) 

1 Numbers in parentheses indicate values for the highest resolution shell 
2 Rmerge = Σhkl Σi |Ii(hkl) – 〈I(hkl)〉|/ Σhkl Σi Ii(hkl), where 〈I(hkl)〉 is the mean intensity of the 

reflection 
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The space group of the truncated BPSL0606 crystal was determined by the 

POINTLESS program (Evans, 2006). From the analysis of systematic absences, it 

showed high probability of the presence of the 21 screw along all three axes. 

Therefore, the space group P 212121 was chosen. 

 

Analysis of unit cell content was performed using Matthews_coef program in the 

CCP4 suite. The unit cell volume was calculated to 3.6 x 105 Å3, resulting in the 

Matthew’s coefficient value of 2.51 Å3 Da-1 for 2 molecules in asymmetric unit 

with 51.1 % solvent content for the given the protein molecular weight of 17776 

Da. 

 

5.9.2. Structure determination 

The structure of the truncated BPSL0606 was determined by molecular 

replacement using the previously determined BPSL0606 structure. The structure 

determination was carried out using AutoMR in the automated Phenix program 

(Adams et al, 2010). The best solution had a log likelihood gain (LLG) value of 

2,232 and the initial model was automatically built by the AutoBuild program and 

contained 2 copies of the BPSL0606 protein molecules, 304 residues in total with 

R-work 0.23 and R-free 0.28. 

 

The model was rebuilt to fit the electron density in COOT (Emsley et al, 2010). 

Several cycles of model refinement against the 2.18 Å data were carried out using 

REFMAC5 (Murshudov et al, 2011). The R-work and R-free of the final model 

were 0.19 and 0.26, respectively. A summary of refinement statistics is shown in 

Table 5.6. A portion of the electron density map with the model is shown in 

Figure 5.21.  

 

In addition to the two protein molecules, a total of 179 water molecules and 9 

ethylene glycol molecules could be placed in the electron density map (Figure 

5.22). 
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Figure 5.21 The final model of the truncated BPSL0606: The model was refined 

against the 2.18 Å data. The electron density map, contoured at 1.5 σ, is shown in 

brown. This figure was produced using Pymol (Schrodinger, 2010). 

 

 

 
Figure 5.22 Example of other molecules found in the crystal structure: Ethylene 

glycol used in crystallisation was present as well as water molecules as solvent. 

The electron density map, contoured at 1.5 σ, is shown in brown. This figure was 

produced using Pymol (Schrodinger, 2010). 

 

 



! 150!

 

Table 5.6 Data refinement statistics of the truncated BPSL0606 

  

Resolution range (Å) 48.08  - 2.18 (2.258  - 2.18) 

Space group P 21 21 21 

Unit cell dimensions (Å) a=60.94, b=75, c=78.24 

α=β=γ=90° 

Unique reflections 19127 (1899) 

Completeness (%) 99.11 (99.79) 

Mean I/sigma(I) 10.37 (2.17) 

Wilson B-factor 27.91 

R-factor 0.1894 (0.2538) 

R-free 0.2593 (0.3463) 

Number of atoms 2628 

  macromolecules 2406 

  water 179 

Protein residues 304 

RMS(bonds) 0.014 

RMS(angles) 1.71 

Ramachandran favored (%) 96 

Ramachandran outliers (%) 0.33 

Clashscore 6.83 

Average B-factor 33.00 

  macromolecules 32.50 

  solvent 36.30 

Statistics for the highest-resolution shell are shown in parentheses. 

 

 

 

 

 

 

 



! 151!

Structure validation was performed using PROCHECK (Laskowski et al, 1993) 

and RAMPAGE (Lovell et al, 2003) in the CCP4 suite. Ramachandran plots 

showed that 96% of the total residues were in a favored region and only one 

residue (Glu 56) in chain A, being an outlier (Figure 5.23). This residue was 

unfavorable since it has poor electron density for its side chain.  
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b)  

Figure 5.23 Ramachandran plots for the truncated BPSL0606 structure: a) A 

Ramachandran plot showed the protein backbone torsion angle distribution in 

general including β-region, right- and left- handed helical regions b) 96% of all 

residues were in favoured region whereas 3.3% were in the allowed region. 

Residue Glu 56 in chain A was in the outlier region. This figure was produced 

using RAMPAGE (Lovell et al, 2003). 
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5.9.3. Structure description 

The topology of the truncated BPSL0606 structure was exactly the same as the 

previously determined structure of BPSL0606. The conformation of the truncated 

BPSL0606 structure was similar to the BPSL0606 subunit that had been 

determined before. In the crystal structure of the truncated BPSL0606, there were 

two molecules in asymmetric unit and each molecule contained 152 residues.  

 

The five residues 153-159, that from the mass spectrometry results were 

presumably present in protein being crystallised were again not visible in the map, 

showing that these residues are either disordered or a further truncation has 

occurred during crystallisation.  

 

Unlike the previously determined BPSL0606 structure, the crystal structure of the 

truncated BPSL0606 was different in space group and number of molecules in 

asymmetric unit. The truncated BPSL0606 crystal belonged to the space group 

P212121 and consisted of two copies of molecule in the asymmetric unit with 

approximate 51% solvent content whereas the BPSL0606 crystal was in P21, 

filled with four molecules in asymmetric unit with 40% solvent content.  

 

 

Analysis of the crystal structures of BPSL0606 and structure comparison will be 

detailed in the next chapters. 
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Chapter 6: Structure of BPSL0606 

 
This chapter details the crystal structures of BPSL0606. Analysis of the individual 

protein subunits and the protein quaternary structure is included. 

 

 

6.1. The crystal structure of BPSL0606 contained 4 molecules in the 

asymmetric unit (P21 crystal form) 

The full-length BPSL0606 protein was put into crystallisation trials and crystals 

containing truncated protein were obtained. The structure built from the electron 

density that was derived from the X-ray diffraction pattern consisted of 151 

residues of each molecule of 4 copies found in the asymmetric unit. The crystal 

structure of BPSL0606 is shown in Figure 6.1. 

 

 
Figure 6.1 Cartoon representation of the crystal structure of BPSL0606 in the 

asymmetric unit, consisting of 4 protein chains which are denoted by A (green), B 

(cyan), C (magenta) and D (yellow). This figure was produced using Pymol 

(Schrodinger, 2010). 
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 Analysis of the 4 subunits was performed by LSQKAB in the CCP4 suite 

(Kabsch, 1976). An average of RMSD of Cα between each subunit was calculated 

in the range between 0.33 Å and 0.41 Å with maximum XYZ displacement of 

1.25-2.26 Å, summarised in Table 6.1. 

 

 

Table 6.1 Analysis of XYZ displacement between 4 subunits in the BPSL0606 

structure by LSQKAB 

Chain XYZ displacement (Å) 

 RMSD Maximum 

A-B 0.382 2.256 

A-C 0.34 1.739 

A-D 0.34 1.246 

B-C 0.41 1.863 

B-D 0.33 1.529 

C-D 0.394 2.023 

 

 

The main chain Cαs of the 4 subunits in the BPSL0606 structure were 

superimposed (Figure 6.2). For the side chain of these subunits, there was a 

slightly different orientation of some residues. These included the residues His 

140 in chain C and D, which had poor electron density.   
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a)  

b)  

 

Figure 6.2 An overlap of the 4 chains of BPSL0606 seen in the crystal structure: 

Chains A, B, C and D are colored in green, cyan, magenta and yellow, 

respectively and shown as sticks (a) and as ribbons (b). This figure was produced 

using Pymol (Schrodinger, 2010). 

 

6.1.1. Molecular surfaces 

To analyse the protein surface, interface and assemblies involving the stability of 

macromolecules in the crystal form, coordinates of the structure model were input 

into the PISA server via http://pdbe.org/pisa/ (Krissinel, 2009; Krissinel & 

Henrick, 2007). The results revealed the structural information of the individual 

protein chains and also of the molecular assemblies. 
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The solvent accessible areas of each of the four subunits ranged from 8740 Å2 to 

8950 Å2 with an average of 8840 Å2, with approximately 140/151 residues 

contributing solvent exposed atoms (Table 6.2). As 100 Å2 is the approximate 

surface area for a single methionine side chain, for example, the surface areas for 

each molecule are very similar.  

 

 

Table 6.2 Analysis of surface areas of each subunit in the BPSL0606 structure 

  
 

 

6.1.2. Dimer interfaces and assemblies 

In the asymmetric unit of the BPSL0606 crystal, two dimer interfaces were found, 

in which chain A formed an interface with chain B, and chain C formed an 

interface with chain D.  

 

Table 6.3 Analysis of dimer interface in the BPSL0606 structure 

 
 

Within the asymmetric unit, the four chains come together to form two dimers A-

B and C-D (Figure 6.1). A superposition of the C-D dimer onto the A-B dimer 

shows a mean Cα RMSD of 0.32 Å2, indicating that these two dimers are very 

similar (Figure 6.3). 
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Figure 6.3 Superposition of the A-B and C-D dimers: The dimer A-B is closely 

related to the dimer C-D. This figure was produced using Pymol (Schrodinger, 

2010). 

 

The dimer interface is constructed from one face of the α-helix α1, and the loop to 

the strand β2 packing against the equivalent residues for the 2-fold related subunit 

(Figure 6.3). As this proposed dimer interface is not particularly extensive, the 

buried surface area on dimer formation was investigated. 
 

The interface involves 25 residues in chain A, interacting with the same residues 

in chain B (Table 6.3), with an average interface area of 960 Å2, which is 

approximately 11% of the subunit surface area. This value is within the range of 

6-29% of buried surface area seen in a survey of dimeric proteins (Jones & 

Thornton, 1995).  The dimer formation in the crystal packing agrees with the gel 

filtration result, which predicted that BPSL0606 is likely to be a dimeric protein, 

not a monomer. 
  

13 potential hydrogen bonds across the interface were identified, as well as a 

number of hydrophobic interactions (Table 6.3). The residues involved in this 

interface in chain A and chain B are shown in Table 6.4 and the interactions made 

by these residues are described in Table 6.5.    

 

A similar analysis was undertaken for the C-D dimer, which is very similar to the 

A-B dimer and shown in Table 6.6 and 6.7. 
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Table 6.4 Analysis of the A-B dimer interfacing residues of the BPSL0606 

structure: Interfacing residues in Chain A (right) and Chain B (left) are 

highlighted in yellow. 

 

 
 

Table 6.5 Interaction of H-bond between Chain A and Chain B of the BPSL0606 

structure: 13 H-bonds were found in the A-B interface. 
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Figure 6.4 Residues forming the interface of the A-B dimer: The dimer interface 

is formed by 25 residues on the α-helix α1 and the loop connected the strand β2 in 

one chain against the equivalent residues in the other. This figure was produced 

using Pymol (Schrodinger, 2010). 
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Table 6.6 Analysis of the C-D dimer interfacing residues of the BPSL0606 

structure: Interfacing residues in Chain C (right) and Chain D (left) are 

highlighted in yellow. 

 

 
 

Table 6.7 Interaction of H-bond between Chain C and Chain D of the BPSL0606 

structure: 15 H-bonds were found in the C-D interface. 
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6.2. The crystal structure of the truncated BPSL0606 contained 2 

molecules in the asymmetric unit (P212121 crystal form) 

 

In the second, P212121 crystal form of BPSL0606, two subunits are present in the 

asymmetric unit, which are also arranged in the same orientation as the dimer 

seen in crystal form one (Figure 6.5).  

 

 
Figure 6.5 Cartoon representation of the crystal structure of the truncated 

BPSL0606 in the asymmetric unit consisting of 2 protein chains, which are 

designated by A (green) and B (cyan). This figure was produced using Pymol 

(Schrodinger, 2010). 

 

A superposition of each subunit shows the average RMSD of Cα was 0.55 Å with 

a maximum XYZ displacement of 2.56 Å, calculated using LSQKAB in the CCP4 

suite (Kabsch, 1976). The main chains Cα of these two subunits in the truncated 

BPSL0606 structure were similarly oriented (Figure 6.6). A slight difference in 

side chain orientation was observed.  Since residue Glu 56 in Chain A has poor 

electron density, its side chain was displaced from the equivalent residue in Chain 

B, resulting in it being in an outlier region of the Ramachandran plot.  
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Figure 6.6 An overlap of 2 subunits in the truncated BPSL0606 structure: Chain A 

is colored in green and chain B is colored in cyan. This figure was produced using 

Pymol (Schrodinger, 2010). 
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The crystal packing between the dimers in the P212121 and P21 forms is similar 

within one layer but quite different in the other layer as can be seen in Figure 6.7. 

 

 

a)  

b)  

Figure 6.7 Crystal packing of BPSL0606 crystals in P21 and P212121: Symmetry 

related molecules of the dimer (a) in the P21 crystal form containing 4 molecules 

in the asymmetric unit and (b) in the P212121 crystal form containing 2 molecules 

in the asymmetric unit. This figure was produced using Pymol (Schrodinger, 

2010). 
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The molecular 2-fold interface in the P212121 crystal form is built for the same 

residues on the α-helix α1 and the loop connected the strand β2 as in the P21 

crystal form with similar interactions being made (Table 6.8, 6.9 and 6.10). 

 

Table 6.8 Analysis of surface areas of each subunit in the truncated BPSL0606 

structure 

 
 

Table 6.9 Analysis of A-B dimer interfacing residues of the truncated BPSL0606 

structure: Interfacing residues in Chain A (right) and Chain B (left) are 

highlighted in yellow. 
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Table 6.10 Interaction of H-bond between Chain A and Chain B of the truncated 

BPSL0606 structure: 11 H-bonds made by interacting residues in Chain A (right) 

and Chain B (left) found. 

 
 

 

6.3. Interface similarity 

To investigate whether the observed BPSL0606 dimer is biologically relevant, the 

dimer structure was searched against known structures to find any similar 

oligomeric assemblies, using the PISA server (Krissinel, 2009; Krissinel & 

Henrick, 2007). The results are shown in Table 6.11 and 6.12.  

 

Table 6.11 Interface similarity of the A-B dimer (a) and the C-D dimer (b) in the 

crystal form P21. 
 

a) A-B interface similarity 
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b) C-D interface similarity 

 
 

 

Table 6.12 Interface similarity of the dimer in the crystal form P212121 
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The top hit from this analysis was the structure 1XEB, an acyl coA-N-

acetyltransferase from P. aeruginosa (Figure 6.8) 

 

 
Figure 6.8 A similar dimer interface to BPSL0606: Superposition of the dimers in 

BPSL0606 (red) and an acyl coA-N-acetyltransferase from P. aeruginosa (PDB 

ID: 1XEB) (blue) shows their dimer interface similarity. This figure was produced 

using Pymol (Schrodinger, 2010). 

 

The second hit was with the structure 3EFA, a putative N-acetyltransferase from 

Lactobacillus plantarum. This protein also forms a dimer using the same 

secondary structure elements as BPSL0606, however the arrangement of these 

elements at the two fold is quite different, with the helix α1 packing in a crossed 

fashion with its symmetry related mate for the other subunit (Figure 6.9). This 

perhaps indicates that this surface can form more than one type of interaction. The 

proteins further down the list; an uncharacterised GCN5-related N-

acetyltransferase from B. subtilis (PDB ID: 1Q2Y), an N-acyl-L-homoserine 

lactone synthase TofI from B. glumae (PDB ID: 3P2H) and a glyphosate N-

acetyltransferase from B. licheniformis (PDB ID: 2JDD), all share the same 

subunit structure as BPSL0606 but appear to be monomers in their respective 

crystal structures. The ribosomal S18 N-α-protein acetyltransferase from S. 

typhimurium (PDB ID: 2CNM) forms a trimer in the crystal (Figure 6.10), 

indicating that different oligomeric assemblies are possible with this protein fold. 
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The top hits in this analysis are all members of the GCN5-related N-

acetyltransferase (GNAT) superfamily, other members in this family occur as 

dimers, but using totally different interface to that seen in BPSL0606, e.g. 

aminoglycoside 6’N-acetyltransferases from S. enteritidis (PDB ID: 1S3Z) and 

from Acinetobacter haemolyticus (PDB ID: 4EVY) (Figure 6.11). As BPSL0606 

shares the same subunit fold as this family, it may also be a GNAT superfamily 

member. This is discussed in the following chapter.   

 
Figure 6.9 A similar dimer interface to BPSL0606 but different orientation: A 

dimer of a putative N-acetyltransferase from L. plantarum (PDB ID: 3EFA) is 

formed by the helix α1, crossed with its symmetry mate. This figure was produced 

using Pymol (Schrodinger, 2010). 

 
Figure 6.10 A different oligomeric assemblies with similar interface to 

BPSL0606: A ribosomal S18 N-α-protein acetyltransferase from S. typhimurium 

(PDB ID: 2CNM) shares a similar subunit structure to BPSL0606, but forms a 

trimer in the crystal. This figure was produced using Pymol (Schrodinger, 2010). 
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a)  

 

 

b)  

Figure 6.11 Different dimer interfaces to BPSL0606: Most of the GNAT members 

form dimers, some have different interfaces to BPSL0606; aminoglycoside 6’N-

acetyltransferases from S. enteritidis (PDB ID: 1S3Z) (a) and from A. 

haemolyticus (PDB ID: 4EVY) (b). This figure was produced using Pymol 

(Schrodinger, 2010). 
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Chapter 7: Structural and functional 

analysis of BPSL0606 

 
This chapter describes the comparison between the BPSL0606 structure and other 

similar known structures. A structure-based function prediction of BPSL0606 is 

included. 

 

7.1. Structure similarity 

As the structure of proteins is more conserved than the sequence, identifying a 

specific fold in a novel structure could assist a structure-based function prediction. 

However, the similarity of proteins at the structural level does not directly imply 

the protein function (Lee et al, 2007). This knowledge-based approach, by 

comparing the protein fold and structural motifs to those that have been 

characterised in the structural databases, is the most important method for 

predicting function from structure. Any structural similarity seen may infer 

possible biochemical and functional information for an uncharacterised protein 

(Thornton et al, 2000).     

 

The coordinates of the BPSL0606 structure were compared against those 

available published in the protein data bank (PDB) using the Dali server (Holm L, 

2010). The results from this analysis showed that BPSL0606 was structurally 

similar to several proteins related to N-acetyltransferases, including members of 

GCN5-related N-acetyltransferase superfamily (GNAT). The top ten similar 

structures to BPSL0606 are shown in Table 7.1. The structural similarity between 

BPSL0606 and the GNAT family may provide clues to the characteristics of 

BPSL0606. 

 

At the protein sequence level, analysis of BPSL0606 using BlastP showed the 

sequence similarity to an ElaA family protein (a predicted transferase with an 

acyl-coA N-acyltransferase domain) of Burkholderia species and an N-

acetyltransferase from other bacteria. For the protein structure level, the most 
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similar structure of characterised proteins to the BPSL0606 structure was the acyl 

homoserine lactone (AHL) synthase (LasI) from P. aeruginosa, which plays a role 

in virulence gene regulation in this opportunistic human pathogen (Gould et al, 

2004). Like BPSL0606, the LasI structure contains the acyl coA N-acyltransferase 

fold as do members of the GNAT family.  

 

Table 7.1 Top-ten hits for matching the BPSL0606 structure by Dali server 
 PDB 

ID 

Z-
score 

RMSD 

(Cα) 
% 
Sequence 

identity 

No. of 

aligned/ 

total 

residues 

Protein Organism 

1 1XEB 24.6 1.0 35 144/149 Hypothetical protein P. aeruginosa 

2 3EFA 19.1 2.0 22 141/146 Putative acetyl 

transferase 

L. plantarum 

3 1Q2Y 18.2 2.0 18 136/140 Uncharacterised 

GCN5-related N 

acetyltransferase 

(GNAT) 

B. subtilis 

4 1RO5 15.6 2.5 10 145/197 Autoinducer 

synthetic protein 

(LasI)  

P. aeruginosa 

5 1CJW 15.6 2.6 9 140/166 Serotonin N-

acetyltransferase 

Ovis aries 

(sheep) 

6 2JDD 15.4 2.4 14 133/145 Glyphosate N-

acetyltransferase 

B. licheniformis 

7 1J4J 15.3 2.7 11 144/170 Tabtoxin resistance 

protein 

P. syringae pv. 

tabaci 

8 2CNM 15.2 2.3 13 134/151 Ribosomal s18 N-

alpha-protein 

acetyltransferase 

(RimI) 

S. typhimurium 

9 1M4I 14.9 2.7 14 138/181 Aminoglycoside 2’ 

acetyltransferase 

Mycobacterium 

tuberculosis 

10 2G0B 14.8 2.5 11 140/184 N-Acyl Amino Acid 

Synthase (FeeM) 

uncultured 

bacterium 
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a)  

b)  

 

Figure 7.1 A superposition of the BPSL0606 structure (rainbow) and similar 

structures (grey): a) The most similar structure to BPSL0606 analysed by Dali 

was a hypothetical protein from P. aeruginosa (PDB ID 1XEB). b) The most 

similar structure with known function to BPSL0606 was an AHL synthase, LasI 

from P. aeruginosa (PDB ID 1RO5). This figure was produced using Pymol 

(Schrodinger, 2010). 
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7.2. Structural fold and motifs of GNAT family members 

Since the BPSL0606 structure was structurally similar to a number of GNAT-fold 

containing proteins, the following section describes the structural fold and motifs 

of the GNAT family. 

    

The GCN5 (general control non-derepressible 5) -related N-acetyltransferases 

(GNAT) belong to a superfamily of enzymes that catalyse the acetylation of 

various substrates by transferring the acetyl group of acetyl coenzyme A to a 

primary amine of the substrate (Dyda et al, 2000). The chemical reaction 

catalysed by GNATs is shown in Figure 7.2. Proteins from this family function in 

a wide variety of different biochemical processes, including the acetylation of 

aminoglycoside antibiotics (Vakulenko & Mobashery, 2003), eukaryotic 

chromatin modification by histone acetylation (Khan & Khan, 2010), the light-

mediated regulation of melatonin production and mammalian circadian rhythm 

(Scheibner et al, 2002), N-α-acetylation of ribosomal proteins (Hu et al, 2010) 

and mycothiol biosynthesis (Vetting et al, 2006). Members of this superfamily 

that have been structurally characterised include aminoglycoside N-

acetyltransferase (Burk et al, 2003; Vetting et al, 2002; Vetting et al, 2004; 

Vetting et al, 2008b; Wolf et al, 1998; Wybenga-Groot et al, 1999), serotonin N-

acetyltransferase (Hickman et al, 1999; Scheibner et al, 2002; Wolf et al, 2002), 

histone N-acetyltransferase (Clements et al, 1999; Dutnall et al, 1998; Poux & 

Marmorstein, 2003; Rojas et al, 1999; Trievel et al, 1999), glucosamine-6-

phosphate N-acetyltransferase (Peneff et al, 2001), mycothiol synthase (Vetting et 

al, 2003; Vetting et al, 2006), protein N-myristoyl-transferase (Bhatnagar et al, 

1999; Brannigan et al, 2010), tabtoxin resistant protein (He et al, 2003), Rim N-α-

acetyltransferase (Vetting et al, 2008a; Vetting et al, 2005a) and glyphosate N-

acetyltransferase (Siehl et al, 2007). 

 

The structures of these proteins have revealed the core GNAT fold (Figure 7.3), 

which consists of two antiparallel N-terminal β-strands (β0, β1) followed by two 

helices (α1, α2) and three further strands (β2-β4) that in turn, preceded a central 

helix (α3). The fold is completed by a further strand (β5), helix (α4) and a final 

strand (β6) (Vetting et al, 2005b). This common topology of the GNAT structural 

fold contains four conserved sequence motifs, called C, D, A and B, in the order 
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where the motifs follow each other in the primary sequences (Neuwald & 

Landsman, 1997).  

 
Figure 7.2 A schematic of the general reaction of GNATs catalysis: a) Acetyl 

coenzyme A is the acetyl group donor. b) The nucleophilic attack of a primary 

amine occurs on the acyl carbon of the acetyl group, resulting in a predicted 

tetrahedral intermediate. This figure was modified from Dyda et al (2000).   
 

7.2.1. Motif C 

The first motif from the N-terminus that has been identified is motif C, which has 

the weakest conservation at the primary sequence level within this superfamily 

compared to other motifs. The residues of this motif lie mostly on helix α1. 

However, as there is some variation in the secondary structure between members 

of the family in this area the motif is not strictly conserved. For example, in a 

histone N-acetyltransferase from yeast (yHat1) (Dutnall et al, 1998), the helix α1 

is present but not the helix α2, which is present in other GNAT members. The 

absence of the second helix in the yHat1 structure is possibly accommodated by a 

shift in the position of the helix α1, compared to the analogue helix in other 

GNAT structures. Interestingly, in the case of a sheep serotonin N-acetyl 

transferase, the observations of the apo-enzyme structure and the complex form 

with a bisubstrate coenzyme A-S-acetyltryptamine analogue have shown 

conformational changes upon the acetyl coenzyme A binding in which the first 

and second helices were extended, facilitating the serotonin binding (Hickman et 

al, 1999).  

a) 

b) 
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7.2.2. Motifs D and A 

Motif D lies on strands β2 and β3 and is adjacent to motif C in the three 

dimensional structure, and these two elements come together to form the first half 

of the molecule. After a short turn between the strands β3 and β4, the polypeptide 

sequence leads into motif A, which is the longest and universally conserved motif 

of this superfamily. This motif has a conserved sequence of Q/RXXGXGXXL. 

Motif A runs from strand β4 to the carboxyl end of the helix α3, which is the 

longest helix in the GNAT family. This motif is involved in acetyl coenzyme A 

binding and also plays an important role in catalysis. From the crystal structures 

of GNAT members in complex with acetyl coenzyme A, the acetyl coenzyme A is 

found in a V shaped cleft between the strands β4 and β5 (Sternglanz & 

Schindelin, 1999). Adjacent to the first turn of the helix α3, the pyrophosphate 

moiety of acetyl coenzyme A interacts with main-chain amides of the protein. 

This binding pocket is made by hydrogen bonds between amides of the N-

terminal residues of the helix α3 and the phosphate oxygen atoms of the acetyl 

coenzyme A molecule. The pantothenate and β-mercaptoethanolamine parts of 

acetyl coenzyme A are placed along the strand β4 and stabilised by a number of 

hydrogen bonds (Figure 7.4). 

 

7.2.3. Motif B     

The final motif in the GNAT family is motif B, lying along strand β5 and ends at 

the C-terminal end of helix α4. This motif is also partly involved in coenzyme 

binding, with hydrophobic residues on helix α4 forming a hydrophobic pocket that 

stabilises the bottom part of the acetyl coenzyme A binding site. There are some 

differences in the structures in this part of the fold between different family 

members, with, for example, a long extension between strand β5 and  helix α4 in 

the structure of an aminoglycoside 6’ N-acetyltransferase from Enterococcus 

faecium (Wybenga-Groot et al, 1999).  
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Figure 7.3 The topology of the GNAT fold represented by the secondary structure 

elements from the N-terminus: motif C-blue, motif D-red, motif A-green and 

motif B-purple.     

 

 
Figure 7.4 The acetyl coenzyme A binding site in the β4-α3-β5 motif: The most 

conserved motif A (QXXGXGXXL) is shown in yellow sticks. Acetyl coenzyme 

A (grey stick) is bound in a histone N-acetyltransferase from yeast (PDB ID: 

1BOB), with H-bonds (violet dashes). This figure was produced using Pymol 

(Schrodinger, 2010). 

!

!
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7.3. Structure comparison 

In order to compare the structure of BPSL0606 to members of the GNAT 

superfamily, Cα superposition of the relevant structures were performed. The 

superposition of BPSL0606 and eight GNAT structures, including 

aminoglycoside N-acetyltransferases (PDB ID: 1B87 and 1N71), histone N-

acetyltransferases (PDB ID: 1BOB, 1QSR, 1YGH and 1CM0) and serotonin N-

acetyltransferases (PDB ID:1cjw) revealed that the backbone of BPSL0606 is 

similar to different members of this superfamily from different species (Figure 

7.5). The sequence similarity seen in this family is shown in a structure based 

sequence alignment of BPSL0606 and selected GNAT members from different 

species (Figure 7.6).  

 

 

 

 
Figure 7.5 Superposition of the BPSL0606 structure and GNAT structures: The 

backbone of BPSL0606 colored in black is structurally similar to members of the 

GNAT superfamily (other colours), which have a unique fold responsible for 

acetyl coenzyme A binding (shown in stick). Overlapped structures included PDB 

ID: 1B87, 1N71, 1BOB, 1QSR, 1YGH, 1CM0 and 1CJW. This figure was 

produced using Pymol (Schrodinger, 2010). 
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Figure 7.6 Structure-based alignment of BPSL0606 and GNAT proteins from different 

species. PDB ID: 1YGH (GCN5, yeast), 1QSR (GCN5, protozoa), 1CM0 (PCAF, 

human), 1BOB (HAT1, yeast), 1BO4 (AAC3’, Gram negative bacteria) and 1B87 (AAC 

6’, Gram positive bacteria). Secondary structure elements representing the structure of 

BPSL0606 are shown from the N-terminus (blue) to the C-terminus (red). This figure was 

created using Boxshade (Hofmann & Baron). 
 

To identify conserved residues within the GNAT superfamily, more GNAT 

structures that have been deposited in the protein data bank were taken into 

account. A structure based alignment of the known structures of GNATs and 

BPSL0606 (Figure 7.7) shows conserved residues in the known structures of 

proteins within the superfamily from different species. Using this alignment, 

conserved residues in the GNAT family were identified and plotted in the 

equivalent position in the structure of BPSL0606 (Figure 7.8). Within these 

conserved residues, most of those that are highly conserved are also present in 

BPSL0606. Differences between the GNATs conserved residues and the 

equivalent residues in BPSL0606 were inspected. Residue Ile 93 in BPSL0606 is 

different from the equivalent residue in the GNAT proteins, which is either Gly or 

Ala. As this residue lies under the pyrophosphate of acetyl coenzyme A in the 

binding pocket of the GNAT family, the increased size of isoleucine in the 

BPSL0606 structure may affect the ligand binding. Within the GNAT family, two 

hydrophobic residues form  part of the hydrophobic pocket  which lies underneath 
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Figure 7.7 Structure based sequence alignment among the GNAT members and 

BPSL0606. Conserved residues among the known structures of GNATs were identified 

in box shades. Identical residues were highlighted in yellow and similar residues were 

highlighted in cyan. This figure was created using Boxshade (Hofmann & Baron). 
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PDB:3r1k:A       19 AA--S--F------------T-----D------F----------I----GP-------ES
PDB:2vqy:A       21 NRSHI--V------------EW---WGG-----AR---------PTLADVQ-------EQ
PDB:1qsm:A       21 KS--Y--QD-----------FY---EV------S----------FP---DD-------L-
PDB:1j4j:A       23 FE--T--VH----------GGAS-VGF------MADLDMQQAYAW----CD-------G-
PDB:1m4i:A       29 TG--A--F------------AG----D------F----------T----E--------TD
BPSL0606.pdb:A   24 NA--V--LVV---------EDA----HT-----HL---------D----I--------D-
consensus       181 ------------------------------------------------------------

PDB:1cm0:A       46 ---LV-FDP-KH-----K--------------TLALIK--DG------RVIGGICFRM--
PDB:1cjw:A       40 ---EV-QH---F-----LTLC--------PELSLGWFV--EG------RLVAFIIGSLWD
PDB:1i1d:A       38 ---FC-KLIKYW-----NEATVWNDKKIMQYNPMVIVD--KRT----ETVAATGNIII--
PDB:2c27:A      181 ---LA--E---R-----RGEAWF-----DPDGLILAFG--DSPRERPGRLLGFHWTKV--
PDB:2i79:A       43 SEEME-IF---LN---KQASSD-------NQITLLAFL--NG------KIAGIVNITADQ
PDB:2jdd:A       33 ---D---L---LR---GAF-------------HLGGYYG-G-------KLISIASFHQ--
PDB:1s3z:A       32 ---HL-ADGEEI-----LQAD--------HLASFIAMA--DG------VAIGFADASI--
PDB:1n71:A       36 ---EV-EE---M-----MNPE---------RIAVAAVD--QD------ELVGFIGAIPQY
PDB:1s7l:A       53 ---VQ--G---N-----ILLHQR-----GYAKMYLIFC--QN------EMAGVLSFNAI-
PDB:2cnm:A       32 ---FF--G---N-----QGER---------YLNLKLTA--DD------RMAAFAITQV--
PDB:2prb:A       41 ---YLPSV---L-----AQES---------VTPYIAML--NG------EPIGYAQSYVAL
PDB:1bob:A      164 ---E---TDPSW-----Q--------------IYWLLNKKTK------ELIGFVTTYKYW
PDB:1b87:A       36 ---EV-EE---M-----MNPE---------RIAVAAVD--QD------ELVGFIGAIPQY
PDB:1qsr:A       40 ---LV-FDR-HH-----E--------------SMVILK--NK-----QKVIGGICFRQ--
PDB:2fiw:A       55 ---FA--A---RL----SGQ-----------LTLIATL--QG------VPVGFASLKG--
PDB:3exn:A       46 ---DL-QT---L-----EVDP--------RRRAFLLFL--GQ------EPVGYLDAKL--
PDB:3r1k:A       31 ---A---TA-WR-----TLVP--------TDGAVVVRD--GS------EVVGMALYMD--
PDB:2vqy:A       43 ---YLPSV---LAQESVT--------------PYIAML--NG------EPIGYAQSYVAL
PDB:1qsm:A       36 ---DD--F---NFG--RFLDPN------IKMWAAVAVES-SS-----EKIIGMINFFN--
PDB:1j4j:A       50 ---L---KA--D-----IAAG--------SLLLWVVAE--DD------NVLASAQLSL--
PDB:1m4i:A       41 ---W---E---HT----LGG-----------MHALIWH--HG------AIIAHAAVIQ--
BPSL0606.pdb:A   40 ---G---K---D-----EFA-----------IHVFATD--KRGE--QPAIAAYARLLP--
consensus       241 ---------------------------------lva-------------vigfg------

PDB:1cm0:A       72 ---------------FPSQ-------GFTEIVFCAVT-SNEQVKGYGTHLMNHLKEYHIK
PDB:1cjw:A       72 EERLTQESLALHRPRGH----------SAHLHALAVH-RSFRQQGKGSVLLWRYLHHVGA
PDB:1i1d:A       81 ---------------ERKIIH--ELGLCGHIEDIAVN-SKYQGQGLGKLLIDQLVTIGFD
PDB:2c27:A      219 ---------------HPDH------PGLGEVYVLGVD-PAAQRRGLGQMLTSIGIVSLAR
PDB:2i79:A       81 R-----------KRVRH----------IGDLFIVI-G-KRYWNNGLGSLLLEEAIEWAQA
PDB:2jdd:A       58 ---------------AEHSEL--QGQKQYQLRGMATL-EGYREQKAGSSLIKHAEEILRK
PDB:1s3z:A       65 ---------------RHDYVNGCDSSPVVFLEGIFVL-PSFRQRGVAKQLIAAVQRWGTN
PDB:1n71:A       67 --------------GIT----------GWELHPLVVE-SSRRKNQIGTRLVNYLEKEVAS
PDB:1s7l:A       86 --------------EPIN---------KAAYIGYWLD-ESFQGQGIMSQSLQALMTHYAR
PDB:2cnm:A       60 ---------------VLD---------EATLFNIAVD-PDFQRRGLGRMLLEHLIDELET
PDB:2prb:A       73 GSGDG---WWEEETDPG-----------VRGIDQLLANASQLGKGLGTKLVRALVELLFN
PDB:1bob:A      193 HY---------IDKKFR-----------AKISQFLIF-PPYQNKGHGSCLYEAIIQSWLE
PDB:1b87:A       67 --------------GIT----------GWELHPLVVE-SSRRKNQIGTRLVNYLEKEVAS
PDB:1qsr:A       67 ---------------YKPQ-------RFAEVAFLAVT-ANEQVRGYGTRLMNKFKDHMQK
PDB:2fiw:A       82 ---------------P------------DHIDMLYVH-PDYVGRDVGTTLIDALEKLAGA
PDB:3exn:A       76 ---------------GYPE------AEDATLSLLLIR-EDHQGRGLGRQALERFAAGLDG
PDB:3r1k:A       61 ---------------LRLTVPGEVVLPTAGLSFVAVA-PTHRRRGLLRAMCAELHRRIAD
PDB:2vqy:A       75 GSGDG---WWEEETDPG-----------VRGIDQLLANASQLGKGLGTKLVRALVELLFN
PDB:1qsm:A       72 ---------------HMTTWD---FKDKIYINDLYVD-ENSRVKGAGGKLIQFVYDEADK
PDB:1j4j:A       79 ---------------CQKPN----GLNRAEVQKLMVL-PSARGRGLGRQLMDEVEQVAVK
PDB:1m4i:A       67 ---------------RRLIYRG-NALRCGYVEGVAVR-ADWRGQRLVSALLDAVEQVMRG
BPSL0606.pdb:A   69 ---------------GDDI------DPETTIDKILTS-AAHRDDRTIDALIEHVLAAAHA
consensus       301 ----------------------------a-i--l-v-------kglgt-lm--l---v--

PDB:1cm0:A        1 ------------------------------------------------------------
PDB:1cjw:A        1 ------------------------------------------------------------
PDB:1i1d:A        1 ------------------------------------------------------------
PDB:2c27:A        1 DWRSALTADEQRSVRALVTATTAVDGVAPVGEQVLRELGQQRTEHLLVAGSGPIIGYLNL
PDB:2i79:A        1 ------------------------------------------------------------
PDB:2jdd:A        1 ------------------------------------------------------------
PDB:1s3z:A        1 ------------------------------------------------------------
PDB:1n71:A        1 ------------------------------------------------------------
PDB:1s7l:A        1 ------------------------------------------------------------
PDB:2cnm:A        1 ------------------------------------------------------------
PDB:2prb:A        1 ------------------------------------------------------------
PDB:1bob:A        1 ----------------FKPETWTSSANEALRVSIVGENAVQFSPLFTYPIYGDSEKIYGY
PDB:1b87:A        1 ------------------------------------------------------------
PDB:1qsr:A        1 ------------------------------------------------------------
PDB:2fiw:A        1 ------------------------------------------------------------
PDB:3exn:A        1 ------------------------------------------------------------
PDB:3r1k:A        1 ------------------------------------------------------------
PDB:2vqy:A        1 ------------------------------------------------------------
PDB:1qsm:A        1 ------------------------------------------------------------
PDB:1j4j:A        1 ------------------------------------------------------------
PDB:1m4i:A        1 ------------------------------------------------------------
BPSL0606.pdb:A    1 ------------------------------------------------------------
consensus         1 ------------------------------------------------------------

PDB:1cm0:A        1 ------------------------------------------------------------
PDB:1cjw:A        1 ------------------------------------------------------------
PDB:1i1d:A        1 ------------------------------------------------------------
PDB:2c27:A       61 SPPRGAGGAMAELVVHPQSRRRGIGTAMARAALAKTAGRNQFWAHGTLDPARATASALGL
PDB:2i79:A        1 ------------------------------------------------------------
PDB:2jdd:A        1 ------------------------------------------------------------
PDB:1s3z:A        1 ------------------------------------------------------------
PDB:1n71:A        1 ------------------------------------------------------------
PDB:1s7l:A        1 ------------------------------------------------------------
PDB:2cnm:A        1 ------------------------------------------------------------
PDB:2prb:A        1 ------------------------------------------------------------
PDB:1bob:A       45 KDLIIHLAFDSVTFKPYVNVKYSAKLGDDNIVDVEKKLLSFLPKDDVIVRDEAKWVDCFA
PDB:1b87:A        1 ------------------------------------------------------------
PDB:1qsr:A        1 ------------------------------------------------------------
PDB:2fiw:A        1 ------------------------------------------------------------
PDB:3exn:A        1 ------------------------------------------------------------
PDB:3r1k:A        1 ------------------------------------------------------------
PDB:2vqy:A        1 ------------------------------------------------------------
PDB:1qsm:A        1 ------------------------------------------------------------
PDB:1j4j:A        1 ------------------------------------------------------------
PDB:1m4i:A        1 ------------------------------------------------------------
BPSL0606.pdb:A    1 ------------------------------------------------------------
consensus        61 ------------------------------------------------------------

PDB:1cm0:A        1 ----------------------KVIE-FHV-----V-GNSLNQKPNKKILMWLVGLQNVF
PDB:1cjw:A        1 -------------------HTLPANE-FRC-----L-TPE-----------DAAGVFEIE
PDB:1i1d:A        1 ------------------MSLPDGFY-IRR-----M-EEG-----------DLEQVTETL
PDB:2c27:A      121 VGVRELIQMRRPLRDIPEPTIPDGVV-IRT-----Y-AGT----------SDDAELLRVN
PDB:2i79:A        1 --------------------MEYELL-IRE-----A-EPK-----------DAAELVAFL
PDB:2jdd:A        1 ------------------------IE-VKP-----I-N--------------AEDTYELR
PDB:1s3z:A        1 ----------------------SHMD-IRQ-----M-NKT-----------HLEHWRGLR
PDB:1n71:A        1 ------------------------MI-ISE-----FDRNNP---------VLKDQLSDLL
PDB:1s7l:A        1 ----------------EIIPVSTTLE-LRA-----A-DES-----------HVPALHQLV
PDB:2cnm:A        1 -----------------------MNT-ISI-----L-STT-----------DLPAAWQIE
PDB:2prb:A        1 ------------------------SV-TLR-----L-MTE----------HDLAMLYEWL
PDB:1bob:A      105 EERKTHNLSDVFEKVSEYSLNGEEFV-VYK-----S-SLVD--------DFARRMHRRVQ
PDB:1b87:A        1 ------------------------MI-ISE-----FDRNNP---------VLKDQLSDLL
PDB:1qsr:A        1 ------------------------LD-FDI-----L-TNDGTH----RNMKLLIDLKNIF
PDB:2fiw:A        1 -----------------GHMVMSTPA-LRP-----Y-LPE-----------DAAVTAAIF
PDB:3exn:A        1 -------------------MHVLTLD-LAP-----V-TPK-----------DAPLLHRVF
PDB:3r1k:A        1 ------------------------VT-LCS-----P-TED-----------DWPGMFLLA
PDB:2vqy:A        1 -----------------------DSV-TLR-----L-MTE----------HDLAMLYEWL
PDB:1qsm:A        1 ----------------------DNIT-VRF-----V-TEN-----------DKEGWQRLW
PDB:1j4j:A        1 ------------------------AQ-LRR-----V-TAESF-------AHYRHGLAQLL
PDB:1m4i:A        1 -------------------MHTQVHTARLV-----H-TADLD-------SETRQDIRQMV
BPSL0606.pdb:A    1 ------------------------MD-WTCCEFRHL-SSN-----------ELYMILRTR
consensus       121 ------------------------i--i-------v---------------d---l--v-

PDB:1cm0:A       32 SH--Q--L------------P-----R------M----------PK---EYI-----TR-
PDB:1cjw:A       24 RE--A--FI----------SVS---GN------C----------PL---NL-------D-
PDB:1i1d:A       25 K---V--L------------T-----T------V----------GT---ITP-----ES-
PDB:2c27:A      164 NA--A--FA-----------G-----HPE---QGG---------W----TA-------VQ
PDB:2i79:A       23 NR--V--SL----------ETDFTSLDG----DG----------I----L--------LT
PDB:2jdd:A       16 HR--I--L------------R-----PNQPIEAC----------M----F--------ES
PDB:1s3z:A       21 KQ--L--W------------P-----G------H----------P----DD-------A-
PDB:1n71:A       22 RL--T--W------------P-----E------E----------YGD-SSA-------E-
PDB:1s7l:A       27 LK--N--KAW---------LQQ---SLD----WPQ---------Y----VTSQEETRKH-
PDB:2cnm:A       20 QR--A--H------------A-----F------P----------WS---E--------KT
PDB:2prb:A       20 NRSHI--V------------EWW--GA------R----------PTLADVQ-------EQ
PDB:1bob:A      150 IF--S--L------------LFI-EAA------N----------Y----I--------D-
PDB:1b87:A       22 RL--T--W------------P-----E------E----------YGD-SSA-------E-
PDB:1qsr:A       26 SR--Q--L------------P-----K------M----------PK---EYI-----VK-
PDB:2fiw:A       26 VA--S--IEQLTADDYSEEQQE---AW------AS---------AAD-DEA-------K-
PDB:3exn:A       24 HL--SPSY------------FAL-IGME-----L----------PTL-EDV------VR-
PDB:3r1k:A       19 AA--S--F------------T-----D------F----------I----GP-------ES
PDB:2vqy:A       21 NRSHI--V------------EW---WGG-----AR---------PTLADVQ-------EQ
PDB:1qsm:A       21 KS--Y--QD-----------FY---EV------S----------FP---DD-------L-
PDB:1j4j:A       23 FE--T--VH----------GGAS-VGF------MADLDMQQAYAW----CD-------G-
PDB:1m4i:A       29 TG--A--F------------AG----D------F----------T----E--------TD
BPSL0606.pdb:A   24 NA--V--LVV---------EDA----HT-----HL---------D----I--------D-
consensus       181 ------------------------------------------------------------

PDB:1cm0:A       46 ---LV-FDP-KH-----K--------------TLALIK--DG------RVIGGICFRM--
PDB:1cjw:A       40 ---EV-QH---F-----LTLC--------PELSLGWFV--EG------RLVAFIIGSLWD
PDB:1i1d:A       38 ---FC-KLIKYW-----NEATVWNDKKIMQYNPMVIVD--KRT----ETVAATGNIII--
PDB:2c27:A      181 ---LA--E---R-----RGEAWF-----DPDGLILAFG--DSPRERPGRLLGFHWTKV--
PDB:2i79:A       43 SEEME-IF---LN---KQASSD-------NQITLLAFL--NG------KIAGIVNITADQ
PDB:2jdd:A       33 ---D---L---LR---GAF-------------HLGGYYG-G-------KLISIASFHQ--
PDB:1s3z:A       32 ---HL-ADGEEI-----LQAD--------HLASFIAMA--DG------VAIGFADASI--
PDB:1n71:A       36 ---EV-EE---M-----MNPE---------RIAVAAVD--QD------ELVGFIGAIPQY
PDB:1s7l:A       53 ---VQ--G---N-----ILLHQR-----GYAKMYLIFC--QN------EMAGVLSFNAI-
PDB:2cnm:A       32 ---FF--G---N-----QGER---------YLNLKLTA--DD------RMAAFAITQV--
PDB:2prb:A       41 ---YLPSV---L-----AQES---------VTPYIAML--NG------EPIGYAQSYVAL
PDB:1bob:A      164 ---E---TDPSW-----Q--------------IYWLLNKKTK------ELIGFVTTYKYW
PDB:1b87:A       36 ---EV-EE---M-----MNPE---------RIAVAAVD--QD------ELVGFIGAIPQY
PDB:1qsr:A       40 ---LV-FDR-HH-----E--------------SMVILK--NK-----QKVIGGICFRQ--
PDB:2fiw:A       55 ---FA--A---RL----SGQ-----------LTLIATL--QG------VPVGFASLKG--
PDB:3exn:A       46 ---DL-QT---L-----EVDP--------RRRAFLLFL--GQ------EPVGYLDAKL--
PDB:3r1k:A       31 ---A---TA-WR-----TLVP--------TDGAVVVRD--GS------EVVGMALYMD--
PDB:2vqy:A       43 ---YLPSV---LAQESVT--------------PYIAML--NG------EPIGYAQSYVAL
PDB:1qsm:A       36 ---DD--F---NFG--RFLDPN------IKMWAAVAVES-SS-----EKIIGMINFFN--
PDB:1j4j:A       50 ---L---KA--D-----IAAG--------SLLLWVVAE--DD------NVLASAQLSL--
PDB:1m4i:A       41 ---W---E---HT----LGG-----------MHALIWH--HG------AIIAHAAVIQ--
BPSL0606.pdb:A   40 ---G---K---D-----EFA-----------IHVFATD--KRGE--QPAIAAYARLLP--
consensus       241 ---------------------------------lva-------------vigfg------

PDB:1cm0:A       72 ---------------FPSQ-------GFTEIVFCAVT-SNEQVKGYGTHLMNHLKEYHIK
PDB:1cjw:A       72 EERLTQESLALHRPRGH----------SAHLHALAVH-RSFRQQGKGSVLLWRYLHHVGA
PDB:1i1d:A       81 ---------------ERKIIH--ELGLCGHIEDIAVN-SKYQGQGLGKLLIDQLVTIGFD
PDB:2c27:A      219 ---------------HPDH------PGLGEVYVLGVD-PAAQRRGLGQMLTSIGIVSLAR
PDB:2i79:A       81 R-----------KRVRH----------IGDLFIVI-G-KRYWNNGLGSLLLEEAIEWAQA
PDB:2jdd:A       58 ---------------AEHSEL--QGQKQYQLRGMATL-EGYREQKAGSSLIKHAEEILRK
PDB:1s3z:A       65 ---------------RHDYVNGCDSSPVVFLEGIFVL-PSFRQRGVAKQLIAAVQRWGTN
PDB:1n71:A       67 --------------GIT----------GWELHPLVVE-SSRRKNQIGTRLVNYLEKEVAS
PDB:1s7l:A       86 --------------EPIN---------KAAYIGYWLD-ESFQGQGIMSQSLQALMTHYAR
PDB:2cnm:A       60 ---------------VLD---------EATLFNIAVD-PDFQRRGLGRMLLEHLIDELET
PDB:2prb:A       73 GSGDG---WWEEETDPG-----------VRGIDQLLANASQLGKGLGTKLVRALVELLFN
PDB:1bob:A      193 HY---------IDKKFR-----------AKISQFLIF-PPYQNKGHGSCLYEAIIQSWLE
PDB:1b87:A       67 --------------GIT----------GWELHPLVVE-SSRRKNQIGTRLVNYLEKEVAS
PDB:1qsr:A       67 ---------------YKPQ-------RFAEVAFLAVT-ANEQVRGYGTRLMNKFKDHMQK
PDB:2fiw:A       82 ---------------P------------DHIDMLYVH-PDYVGRDVGTTLIDALEKLAGA
PDB:3exn:A       76 ---------------GYPE------AEDATLSLLLIR-EDHQGRGLGRQALERFAAGLDG
PDB:3r1k:A       61 ---------------LRLTVPGEVVLPTAGLSFVAVA-PTHRRRGLLRAMCAELHRRIAD
PDB:2vqy:A       75 GSGDG---WWEEETDPG-----------VRGIDQLLANASQLGKGLGTKLVRALVELLFN
PDB:1qsm:A       72 ---------------HMTTWD---FKDKIYINDLYVD-ENSRVKGAGGKLIQFVYDEADK
PDB:1j4j:A       79 ---------------CQKPN----GLNRAEVQKLMVL-PSARGRGLGRQLMDEVEQVAVK
PDB:1m4i:A       67 ---------------RRLIYRG-NALRCGYVEGVAVR-ADWRGQRLVSALLDAVEQVMRG
BPSL0606.pdb:A   69 ---------------GDDI------DPETTIDKILTS-AAHRDDRTIDALIEHVLAAAHA
consensus       301 ----------------------------a-i--l-v-------kglgt-lm--l---v--

PDB:1cm0:A      109 HD-------IL-NFLT-YADE---Y-------------------------AIGYFKKQ-G
PDB:1cjw:A      121 QPA------VR-RAVL-MCED---A-------------------------LVPFYQRF-G
PDB:1i1d:A      123 YG-------CY-KIIL-DCDE---K-------------------------NVKFYEKCGF
PDB:2c27:A      257 RLKTLDPAVEP-AVLL-YVES---DNV----------------------AAVRTYQSL-G
PDB:2i79:A      118 SGI------LR-RLQL-TVQT---RNQ----------------------AAVHLYQKH-G
PDB:2jdd:A      100 RG-------AD-LLWC-NART---S-------------------------ASGYYKKL-G
PDB:1s3z:A      109 KG-------CR-EMAS-DTSP---ENT----------------------ISQKVHQALGF
PDB:1n71:A      102 RG-------GI-TIYL-GTDDLDHGTTLSQTDLYEHTFDKVASIQNLREHPYEFYEKL-G
PDB:1s7l:A      122 RGD------IR-RFVI-KCRV---DNQ----------------------ASNAVARRN-H
PDB:2cnm:A       95 RG-------VV-TLWL-EVRA---SNA----------------------AAIALYESL-G
PDB:2prb:A      119 DPE------VT-KIQT-DPSP---SNL----------------------RAIRCYEKAGF
PDB:1bob:A      232 DKS------IT-EITVEDPNE---A-------------------------FDDLRDRN-D
PDB:1b87:A      102 RG-------GI-TIYL-GTDDLDHGTTLSQTDLYEHTFDKVASIQNLREHPYEFYEKL-G
PDB:1qsr:A      104 QN-------IE-YLLT-YADN---F-------------------------AIGYFKKQ-G
PDB:2fiw:A      114 RG-------AL-ILTV-DASD---N-------------------------AAEFFAKR-G
PDB:3exn:A      114 V---------RRLYAV-VYGH---NP-----------------------KAKAFFQAQGF
PDB:3r1k:A      105 SG-------YP-VAAL-HASE---GG-----------------------IY----GRF-G
PDB:2vqy:A      121 DPE------VT-KIQT-DPSP---SNL----------------------RAIRCYEKAGF
PDB:1qsm:A      113 LG-------TP-SVYW-CTDE---SNH----------------------RAQLLYVKV-G
PDB:1j4j:A      119 HK-------RG-LLHL-DTEA---GS-----------------------VAEAFYSAL-A
PDB:1m4i:A      110 AY--------Q-LGAL-SSSA---R-------------------------ARRLYASR-G
BPSL0606.pdb:A  107 RWP------DA-PVRV-QAPA---P-------------------------REGFYNRF-G
consensus       361 -g-----------i-l----------------------------------a--yy-k--g

PDB:1cm0:A      131 ------------------------------------F--SKEIKIPKTKYVGYIKDYEGA
PDB:1cjw:A      144 ------------------------------------F--HPAGPCAIVVGSLTFTEMHCS
PDB:1i1d:A      146 ------------------------------------S--NAGVEMQIRK-----------
PDB:2c27:A      289 ------------------------------------F--TTYSVDTAYALA---------
PDB:2i79:A      144 ------------------------------------F--VIEGSQERGAYIEEGKFIDVY
PDB:2jdd:A      122 ------------------------------------F--SEQGEVFDTPPVGPHILMYKR
PDB:1s3z:A      135 ------------------------------------E--ETERVIFYRKRC---------
PDB:1n71:A      152 ------------------------------------Y--KIVGVLPNANGWDKPDIWMAK
PDB:1s7l:A      148 ------------------------------------F--TLEGCMKQAEYLNGDYHDVNM
PDB:2cnm:A      120 ------------------------------------F--NEATIRRNYYPTAQGHEDAII
PDB:2prb:A      146 ------------------------------------E--RQGTVTTPDGPAVYMVQTRQA
PDB:1bob:A      256 IQRLRKLGYDAVFQKHSDLSDEFLESSRKSLKLEERQFNRLVEMLLLLNNS---------
PDB:1b87:A      152 ------------------------------------Y--KIVGVLPNANGWDKPDIWMAK
PDB:1qsr:A      126 ------------------------------------F--TKEHRMPQEKWKGYIKDYDGG
PDB:2fiw:A      136 ------------------------------------Y--VAKQRNTVSINGEWLANTTMT
PDB:3exn:A      138 RYVKDG------------------------GPTLTWY--VRPL-----------------
PDB:3r1k:A      125 ------------------------------------Y--GPATTLHELTVDRRFARFHAD
PDB:2vqy:A      148 ------------------------------------E--RQGTVTTPDGPAVYMVQTRQA
PDB:1qsm:A      138 ------------------------------------Y--KAPKILYKRKGY---------
PDB:1j4j:A      143 ------------------------------------Y--TRVGELPGYCATPDGRLHPTA
PDB:1m4i:A      131 ------------------------------------W--LPWHGPTSVLAPTGPVRTPDD
BPSL0606.pdb:A  130 ------------------------------------F--RKVDGPYLEHGAPYVGMLRAA
consensus       421 ------------------------------------f-------i---------------

PDB:1cm0:A      153 TLMGCELNPR--------------------------------------------------
PDB:1cjw:A      166 L-----------------------------------------------------------
PDB:1i1d:A          ------------------------------------------------------------
PDB:2c27:A          ------------------------------------------------------------
PDB:2i79:A      166 LMGKLI------------------------------------------------------
PDB:2jdd:A      144 IT----------------------------------------------------------
PDB:1s3z:A          ------------------------------------------------------------
PDB:1n71:A      174 TIIPRPD-----------------------------------------------------
PDB:1s7l:A      170 YARIIDAD----------------------------------------------------
PDB:2cnm:A      142 MALPISMKLH--------------------------------------------------
PDB:2prb:A      168 FERTRS------------------------------------------------------
PDB:1bob:A          ------------------------------------------------------------
PDB:1b87:A      174 TIIPRPDS----------------------------------------------------
PDB:1qsr:A      148 TLMECYIHPYVDYGR---------------------------------------------
PDB:2fiw:A      158 KSL---------------------------------------------------------
PDB:3exn:A          ------------------------------------------------------------
PDB:3r1k:A      147 APGGGLGGSSVRLVRPTEHRGEFEAIYERWRQQVPGGLLRPQVLWDELLAECKAAPGGDR
PDB:2vqy:A      170 FERTRSDA----------------------------------------------------
PDB:1qsm:A          ------------------------------------------------------------
PDB:1j4j:A      165 IYFKTL------------------------------------------------------
PDB:1m4i:A      153 DGTVFVLPIDISLDTSAELMCDWRAGDVW-------------------------------
BPSL0606.pdb:A  152 ------------------------------------------------------------
consensus       481 ------------------------------------------------------------

Motif C 

Motif D 

Motif A 

Motif B 
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a)  

 

 

b)  

 

Figure 7.8 Conserved residues of BPSL0606: a) Equivalent residues that are 

conserved within the GNAT superfamily are plotted on the structure of 

BPSL0606 (N-terminus-blue, C-terminus-red). b) Stereo representation of a). This 

figure was produced using Pymol (Schrodinger, 2010). 
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the pantotheine arm of acetyl coenzyme A. There is some variability in the 

residues at these two positions in the family, but the two residues seen in 

BPSL0606, Ile 81 and Tyr 125 are both hydrophobic and could provide the same 

function in this protein. 
 

In addition to the analysis described above, the BPSL0606 structure was analysed 

using the Cathedral server (Redfern et al, 2007) for protein structure 

classification. As expected, there were significant structural matches between the 

BPSL0606 structure and the GNAT superfamily members, which have been 

classified into the superfamily 3.40.630.30. According to the CATH database, the 

superfamily 3.40.630.30 is in a class α-β (3) with architecture of 3-layer sandwich 

(40) containing a topology fold of aminopeptidases (630) and unassigned 

homology (30). Transferases form the majority of the members of this 

superfamily (90%) including acyltransferases that transfer groups other than 

amino-acyl groups (EC 2.3.1.xx). The GNAT superfamily has been also 

categorised in this category.  
 

The structural and sequence comparison of BPSL0606 gave strong indications 

that this protein may well have an acetyl transferase activity, perhaps catalyzing 

the transfer of an acetyl group from acetyl coenzyme A to the primary amine of 

the substrate. The next section of this chapter describes attempts to show the 

binding of acetyl coenzyme A to BPSL0606. 
 

7.4. Cocrystallisation of BPSL0606 and acetyl co-enzyme A 

Attempts to crystallise BPSL0606 with acetyl coenzyme A were made. Different 

concentrations of acetyl coenzyme A solution were mixed with freshly purified 

BPSL0606, prior to crystallisation trials. Inspection of the conditions that have 

been used to prepare complexes of various GNAT members with acetyl coenzyme 

A or coenzyme A (Table 7.2), the acetyl coenzyme A concentration used in the 

experiments with BPSL0606 ranged over 0.5 mM, 1 mM and 2 mM, which were 

equivalent to 1-fold, 2-fold and 4-fold molar excess, respectively. A mixture of 10 

mg/ml purified BPSL0606 protein and 2 mM acetyl coenzyme A solution was 

prepared. The hanging-drop based crystallisation was manually set up using a 

reservoir solution, which consisted of 14-24% PEG 3350, 0.1 M Bis-Tris propane 
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pH 6.3 and 0.2 M potassium thiocyanate, with 1:1, 1:2 and 2:1 ratios of protein 

mixture and reservoir solution. 

 

Table 7.2 Crystallisation conditions for a number of GNAT proteins. 
PDB 

ID 

GNAT proteins Organism Crystallisation conditions References 

Protein 

concentration 

(mg/ml) 

Acetyl 

coenzyme A 

concentration 

1QSR GCN5 related 

proteins 

Tetrahymena 7.5 1.5 mM Rojas et al 

(1999) 

1B87 Aminoglycoside 6’ 

N-acetyltransferase 

E. faecium 7-10 2 mM Wybenga-

Groot et al 

(1999) 

1BO4 Aminoglycoside 3’ 

N-acetyltransferase 

Serratia 

marcescens 

3.5 5 mM 

(coenzyme A) 

Wolf et al 

(1998) 

1BOB Histone  

N-acetyltransferase 

Saccharomyces 

cerevisiae 

10 2-fold molar 

excess 

Dutnall et 

al ( 1998) 

1CM0 PCAF (p300/CBP-

associating factor) 

Human 10 2-fold molar 

excess (sodium 

acetyl 

coenzyme A) 

Clements et 

al (1999) 

 

X-ray data sets from three crystals, one with 0.5 mM acetyl coenzyme A and two 

with 2 mM acetyl coenzyme A, were collected using the Diamond synchrotron 

(Table 7.3). Data processing was in similar manner as mentioned before. The 

structure determination was performed using molecular replacement in Phenix 

(Adams et al, 2010) and the solutions were obtained with LLG 2688.8, 3751.4 and 

3467.5 for the BPSL0606 crystals with 0.5 mM acetyl coenzyme A, and 

BPSL0606 with 2 mM acetyl coenzyme A, respectively. 
 

Models for each structure were rebuilt in Coot and the electron density maps were 

inspected for positive density features in the putative acetyl coenzyme A binding 

site. No electron density was present for acetyl coenzyme A in all three crystals 

(Figure 7.9). The lack of any density for the coenzyme may be because 

BPSL0606 actually does not bind acetyl coenzyme A, or that an intermediate is 

required for binding, or that the crystallisation conditions are not favourable for 

complex formation.  



! 186!

 

Table 7.3 Data collection statistics of crystals from the co-crystallisation 

experiments  

Data set BPSL0606 BPSL0606 BPSL0606 

+0.5 mM AcCoA +2 mM AcCoA +2mM AcCoA 

Spacegroup P 1 21 1 P 1 21 1 P 1 21 1 

Unit cell parameters:    

a (Å) 60.88 60.51 60.71 

b (Å) 81.31 81.08 80.55 

c (Å) 78.46 77.88 77.73 

α (°) 90.00 90.00 90.00 

β (°) 99.14 99.57 98.68 

γ (°) 90.00 90.00 90.00 

Temperature (K) 100 100 100 

X-ray Source DIAMOND I24 DIAMOND I03 DIAMOND I03 

Detector  ADSC Q315 CCD ADSC Q315 CCD 

Resolution (Å)1 36.00-2.81 

(2.89-2.81) 

55.76-2.18 

(2.24-2.18) 

31.97-2.31 

(2.37-2.31) 

Energy (keV) (0.97700) 12.700 12.700 

Unique observations1 18136 (1342) 36560 (2759) 32423 (2392) 

Rmerge 1,2 0.114 (0.897) 0.074 (0.462) 0.082 (0.735) 

Rpim 1 0.092 (0.559) 0.099 (0.433) 0.063 (0.545) 

Completeness (%)1 98.1 (98.7) 94.6 (96.3) 98.9 (98.9) 

Multiplicity1 2.5 (2.6) 2.3 (2.4) 3.3 (3.3) 

Mean((I)/sd(I))1 7.2 (2.0) 8.8 (2.2) 7.8 (1.8) 

1 Numbers in parentheses indicate values for the highest resolution shell 
2 Rmerge = Σhkl Σi |Ii(hkl) – 〈I(hkl)〉|/ Σhkl Σi Ii(hkl), where 〈I(hkl)〉 is the mean intensity of the 

reflection 
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Figure 7.9 No electron density for acetyl coenzyme A: The electron density map, 

contoured at 1σ, around the putative binding site of acetyl coenzyme A in 

BPSL0606 is shown in violet. The modeled position of acetyl coenzyme A seen in 

other GNAT superfamily members is shown in orange, indicating that acetyl 

coenzyme A did not bind to BPSL0606. This figure was produced using Pymol 

(Schrodinger, 2010). 

 

 

Further soaking experiments were carried out in order to increase the amount of 

acetyl coenzyme A and add magnesium chloride, which could provide a divalent 

atom to stabilise the charge on the pyrophosphate of the cofactor, which may be 

required for ligand binding. For crystal soaking, BPSL0606 crystals were 

mounted by a loop and transferred into a drop of solution containing 25% 

ethylene glycol, 22% PEG3350, 0.1 M Bis-Tris Propane pH 6.3, 0.2 M potassium 

thiocyanate, 10 mM magnesium chloride and 2 or 10 mM acetyl coenzyme A. 

The crystals were removed from the solution after soaking for 30-60 minutes.  

X-ray data collection from five crystals, which had been soaked with acetyl 

coenzyme A and magnesium chloride were performed. Statistics for the data 

collection are shown in Table 7.4. Solutions from molecular replacement were 

rebuilt and inspected in Coot. Yet again, there was no electron density for acetyl 

coenzyme A (Figure 7.10).  
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Table 7.4 Data collection statistics of crystals from the soaking experiments  
Data set BPSL0606 BPSL0606 BPSL0606 BPSL0606 BPSL0606 

+ 10 mM 

AcCoA 

1 hr 

+ 2 mM 

AcCoA 

1 hr 

+ 10 mM 

AcCoA 

1 hr 

+ 10 mM 

AcCoA  

O/N 

+ 10 mM 

AcCoA  

O/N 

Spacegroup P 1 21 1 P 1 21 1 P 1 21 1 P 1 21 1 P 1 21 1 

Unit cell parameters      

a (Å) 60.40 60.62 60.54 60.49 60.70 

b (Å) 80.51 80.65 80.38 80.75 81.06 

c (Å) 77.48 77.96 77.47 78.11 78.53 

α (°) 90.00 90.00 90.00 90.00 90.00 

β (°) 98.71 98.79 98.74 98.93 99.23 

γ (°) 90.00 90.00 90.00 90.00 90.00 

Temperature (K) 100 100 100 100 100 

X-ray Source DIAMOND 

I03 

DIAMOND 

I03 

DIAMOND 

I03 

DIAMOND 

I03 

DIAMOND 

I03 

Detector ADSC Q315 

CCD 

ADSC Q315 

CCD 

ADSC Q315 

CCD 

ADSC Q315 

CCD 

ADSC Q315 

CCD 

Resolution (Å)1 25.53-2.31 

(2.37-2.31) 

26.58-2.25 

(2.30-2.25) 

44.01-1.89  

(1.94-1.89) 

33.45-2.04 

(2.09-2.04) 

51.58-1.99 

(2.05-1.99) 

Energy (keV) 12.700 12.700 12.700 12.700 12.700 

Unique 

observations1 

32176 (2390) 34516 (2519) 58283 (4245) 45900 (3421) 50747 (3739) 

Rmerge 1,2 0.082 (0.420) 0.067 (0.656) 0.042 (0.593) 0.051 (0.406) 0.044 (0.550) 

Rpim
1 0.066 (0.33) 0.061 (0.469) 0.035 (0.446) 0.051 (0.399) 0.036 (0.412) 

Completeness (%)1 99.0 (99.8) 97.4 (97.5) 99.0 (98.0) 97.1 (97.5) 99.0 (99.3) 

Multiplicity1 3.3 (3.4) 3.4 (3.6) 3.4 (3.3) 2.7 (2.6) 3.3 (3.4) 

Mean((I)/sd(I))1 8.6 (2.3) 11.2 (2.0) 14.0 (2.1) 11.7 (2.3) 13.7 (2.2) 

1 Numbers in parentheses indicate values for the highest resolution shell 
2 Rmerge = Σhkl Σi |Ii(hkl) – 〈I(hkl)〉|/ Σhkl Σi Ii(hkl), where 〈I(hkl)〉 is the mean 

intensity of the reflection 
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a)  

b)  

Figure 7.10 No acetyl coenzyme A bound to BPSL0606: Electron density maps, 

contoured at 1σ, derived from BPSL0606 crystals soaking with 10 mM acetyl 

coenzyme A and 10 mM magnesium chloride for 1 hour (a) and over-night (b). 

These results indicated that the acetyl coenzyme A did not bind to BPSL0606. 

This figure was produced using Pymol (Schrodinger, 2010). 
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7.5. Ligand observation by NMR 

One way to identify protein-ligand interactions is ligand observation using the 

nuclear magnetic resonance (NMR) technique (Jahnke & Widmer, 2004). As the 

co-crystallisation and soaking experiments had failed to show any acetyl 

coenzyme A binding to BPSL0606, it was decided to use this method in an 

attempt to show acetyl coenzyme A binding. The principle of this technique lies 

on the detectable changes in atomic resonance properties of the ligand when it is 

bound to a protein and the free ligand molecule. Upon ligand binding, a bound 

ligand temporarily behaves like a large molecule. Unlike the unbound form, 

acting as a small molecule, slower tumbling in the bound ligand is observed and 

this behaviour results in the different NMR properties including faster relaxation, 

slower diffusion and large and negative nuclear Overhauser effects (NOEs). These 

differences can be detected by measuring 1H NMR of ligand spectra with and 

without the target protein. Signals of a small molecule like ligand free in solution 

exhibit sharp line widths (Figure 7.11) whereas the broad line-width spectrum is 

observed if the ligand is bound to the target protein (Stockman & Dalvit, 2002). 

 

 
Figure 7.11 An example of ligand binding observation: Top is an expanded region 

of 1D 800 MHz 1H NMR spectrum of a small molecule bound to the protein, 

which exhibits broad line-widths as seen on protein binding. The lower trace 

shows the sharp line-width NMR spectrum of the free ligand. This illustration was 

taken from Stock and Dalvit (2002).  
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To investigate the binding of BPSL0606 and acetyl coenzyme A, a 1:1 ratio 

mixture of BPSL0606 and acetyl coenzyme A solution was observed using 1H 

NMR. Prior to the experiment, heavy water (D2O) was added to the sample in 

order to prevent the interference of water solvent signal, resulting in the sharp 

NMR signal of the sample. The results showed that the behavior of the ligand-

protein mixture in comparison to the ligand itself profile did not change (Figure 

7.12). If the acetyl coenzyme A binds to BPSL0606, a broad line width spectrum 

should be recorded. The spectrum difference confirmed that no significant broad 

line widths were detected (Figure 7.13), indicating that BPSL0606 did not bind to 

acetyl coenzyme A. Alternatively, if the binding and release of the coenzyme 

occurred at a very fast rate, then this technique would not be able to detect any 

such binding.  

 

 

 
Figure 7.12 1D 1H NMR spectra at 600 MHz for ligand observation: 1H-NMR 

spectrum of the 1:1 molar ratio of BPSL0606 and acetyl coenzyme A mixture 

(black) shows no significant signal for binding recorded.   
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Figure 7.13 1D 1H NMR spectra at 600 MHz of the acetyl coenzyme A solution: 

Top is an expanded region of the reference spectrum of acetyl coenzyme A in the 

absence of BPSL0606. Bottom is the difference of the spectrum of the mixture of 

acetyl coenzyme A and BPSL0606 when the protein spectrum was subtracted. No 

signal is indicated for the ligand binding. 
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7.6. Analysis of acetyl coenzyme A binding site 

As no direct evidence could be obtained for acetyl coenzyme A binding to 

BPSL0606, an analysis of the coenzyme binding site in the GNAT family was 

undertaken, to see of it would be possible to model acetyl coenzyme A binding to 

BPSL0606. A signature feature of the GNAT superfamily is a β-bulge between β-

strands β4 and β5, where the acetyl coenzyme A or coenzyme A is bound the 

proteins (Dyda et al, 2000). Binary and ternary complex structures of GNAT 

proteins and acetyl coenzyme A/ coenzyme A have revealed the acetyl coenzyme 

A binding site at this opening V-cleft (Figure 7.14).  

 

  
Figure 7.14 Superposition of the acetyl coenzyme A bound GNAT structures: The 

acetyl coenzyme A binding site is between the strands β4 and β5. The acetyl 

group is buried in the cleft and points toward the main chain amine of a residue on 

the strand β4. The structures shown in this figure include aminoglycoside 6’-N-

acetyltransferases from E. coli (PDB ID: 2VQY-orange) and E. faecium (PDB ID: 

1B87-yellow), a glyphosate N-acetyltransferase from B. licheniformis (PDB ID: 

2JDD-pink), a serotonin N-acetyltransferase from sheep (PDB ID: 1CJW-green) 

and a histone N-acetyltransferase from S. cerevisiae (PDB ID: 1BOB-cyan). This 

figure was produced using Pymol (Schrodinger, 2010). 

 

β4!

β5!
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To compare the interactions made by acetyl coenzyme A with GNAT family 

members, the structures of the binary/ternary complexes of acetyl coenzyme A (or 

coenzyme A) with an aminoglycoside 6’-N-acetyltransferase from E.coli (PDB 

ID: 2VQY) and E. faecium (PDB ID: 1B87), a glyphosate N-acetyltransferase 

from B. licheniformis (PDB ID: 2JDD), a serotonin N-acetyltransferase from 

sheep (PDB ID: 1CJW) and a histone N-acetyltransferase from S. cerevisiae 

(PDB ID: 1BOB) were compared. From an analysis of these structures, it can be 

seen that the conformation of the acetyl coenzyme A in the binary complexes with 

various GNAT members is very similar. From the acetyl group to the 

pyrophosphate group the conformation of acetyl coenzyme A is generally 

uniform, with the pantotheine arm lying in the cleft between the strands β4 and 

β5. The carbonyl and amide groups of the pantotheine arm make hydrogen bonds 

to both of these strands, somewhat completing the hydrogen bonding of the 

central beta sheet. As BPSL0606 has a very similar structure to the other family 

members in the region of beta strands 4 and 5, these main chain interactions 

between the protein and the acetyl coenzyme A could still be made in a binary 

complex, despite differences in the amino acid sequence. 

 

In contrast, there are some differences between various GNAT complex structures 

at the 3’ phosphate ADP of the acetyl coenzyme A. In particular, in the structure 

of histone N-acetyltransferase from S. cerevisae (PDB ID: 1BOB), the adenine 

ring is flipped to the other side, compared to other structures (Figure 7.15).    
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Figure 7.15 Different conformations of bound acetyl coenzyme A: The position of 

3’ phosphate ADP of the acetyl coenzyme A bound to GNAT structures has some 

variation. These structures shown in this figure include aminoglycoside 6’-N-

acetyltransferases from E. coli (PDB ID: 2VQY-orange) and E. faecium (PDB ID: 

1B87-yellow), a glyphosate N-acetyltransferase from B. licheniformis (PDB ID: 

2JDD-pink), a serotonin N-acetyltransferase from sheep (PDB ID: 1CJW-green) 

and a histone N-acetyltransferase from S. cerevisiae (PDB ID: 1BOB-cyan). This 

figure was produced using Pymol (Schrodinger, 2010). 

 

 

 

The majority of the contacts made between the family members and the 

pyrophosphate of acetyl coenzyme A are again hydrogen bonds to main chain 

amides. In addition, some members have interactions to side chains, with for 

example the side chains of Ser 88 and Thr 77 in a glyphosate-N-acetyltransferase 

from B. licheniformis (PDB ID: 2JDD), making hydrogen bonds to the 

pyrophosphate oxygens. In addition, the side chain of Arg 82 in an 

aminoglycoside 6’-N-acetyltransferase from S. enteritidis (PDB ID: 1S3Z) is 

close to the pyrophosphate, making stabilizing electrostatic interactions between 

the positively charged side chain and the negatively charged pyrophosphate.  

Although in many GNAT proteins the residue at an equivalent position to Thr 77 
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in the glyphosate-N-acetyltransferase (PDB ID: 2JDD) is a hydrophobic residue 

(Val or Leu) this residue is serine in the acyl coA N-acetyltransferase from P. 

aeruginosa (PDB ID: 1XEB) (Ser 83) and is also a threonine in BPSL0606 (Thr 

83), perhaps indicating that equivalent interactions are made in these two proteins. 

At the Ser 88 position in the glyphosate N-acetyltransferase (PDB ID: 2JDD) 

there is much more variation in sequence, with Arg, Pro, His Lys, Thr and Gly all 

being present at this position, indicating that this residue is not essential for acetyl 

coenzyme A binding. The residue at this position in BPSL0606 is an aspartic acid 

(Asp 94) which at first glance may preclude the close association the negatively 

charged pyrophosphate to this acidic side chain. However, the side chain of this 

residue adopts many different conformations in the wider family, so may well 

point out into the solvent in a binary complex of acetyl coenzyme A with 

BPSL0606. In addition, Arg 121 in BPSL0606 (on the opposite side of the 

pyrophosphate from Asp 94, is in an ideal position to both coordinate and stabilise 

the negatively charged pyrophosphate.   

 

The adenine ring of acetyl coenzyme A lies on the periphery of the protein, 

packing against the protein surface and can adopt a variety of different positions. 

The 3’ phosphate attached to the ribose ring, is also in different positions in the 

various family member structures, however, there is usually one or more 

positively charged side chains in the vicinity, to stabilise this group. For example, 

Lys 120 and Lys 85 in the glyphosate N-acetyltransferase (PDB ID: 2JDD), 

Arg82 in a ribosomal S18 protein RimI in S. typhimurium (PDB ID: 2CNM) and 

Lys94 in the aminoglycoside 6’-N-acetyltransferases from S. enteritidis (PDB ID: 

1S3Z). The equivalent residues to Lys 120 and Lys 85 in 2JDD are Arg 127 and 

Arg 91 in BPSL0606, respectively and could thus stabilise the 3’ phosphate in a 

BPSL0606-acetyl coenzyme A complex. 

 

In the light of the structural and functional similarity between BPSL0606 and the 

GNAT family members in the acetyl coenzyme A binding site, an acetyl 

coenzyme A molecule was modeled into the active site cleft of BPSL0606 (Figure 

7.16). As can be seen, the coenzyme fits the structure well. It must be noted, 

however, that the relative position of helix α4 is slightly different in BPSL0606 

compared to the other family members and perhaps may adjust its position on 
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coenzyme binding as the case in serotonin N-acetyltransferase structures. The 

crystal structure of the bisubstrate analogue bound serotonin N-acetyltransferase 

from sheep (Figure 7.17b) revealed a conformational change in the protein, 

compared to the apo enzyme (Figure 7.17a). When the acetyl coenzyme A 

binding site is occupied, the protein is reordered to allow the ligand access. In this 

case, the α-helix α1 was dramatically extended in length, substituting the short β-

strand and shortening the loop connected to the α-helix, α2, which was also 

extended (Figure 7.17c). 

 

 

To model an acetyl coenzyme A into BPSL0606, the structure of aminoglycoside 

6’-N-acetyltransferase (AAC6’) from E. faecium (PDB ID: 1B87) in complex 

with acetyl coenzyme A was used to compare the active site as the acetylation of 

aminoglycoside contributes to antibiotic resistance in bacteria which may be the 

case in BPSL0606.  

 

 

The main chain interactions made between acetyl coenzyme A and AAC6’, 

include the amines of five residues in the protein, which are H-bonded to the 

phosphates and pantothenic acid in the acetyl coenzyme A (Table 7.5). The α-

phosphate oxygen atoms in acetyl coenzyme A are H-bonded to the amines of Gln 

86 and Thr 89 and the β-phosphate oxygens are H-bonded to the amines of Lys 84 

and Gly 88. Also the oxygen atom in pantothenic acid interacts with the amine of 

Val 78, which is equivalent to Thr 83 in BPSL0606. Since the backbone of this 

region is similar to BPSL0606 with the exception that the peptides are flipped for 

the residues Lys 84 and Gln 86, it is possible that acetyl coenzyme A could 

interact with BPSL0606 in similar manner. Unlike other acetyl coenzyme A 

bound GNATs structures, this complex lacks a H-bond between the acetyl group 

and the main chain (equivalent to residue Phe 220 in histone N-acetyltransferase, 

PDB ID: 1BOB) due to the low positional accuracy of the acetyl group.  
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Table 7.5 The main chain interaction of the acetyl coenzyme A bound to AAC6’ 

Acetyl coenzyme A AAC6’ 

(PDB ID: 1B87) 

BPSL0606 

α-phosphate Gln 86 (NH) Arg 91 (NH) 

 Thr 89 (NH) Asp 94 (NH) 

β-phosphate Lys 84 (NH) Asp 89 (NH) 

 Gly 88 (NH) Ile 93 (NH) 

Pantotheine Val 78 (NH) Thr 83 (NH) 

 

Side chain interactions with acetyl coenzyme A, include both H-bonds made with 

the phosphate groups and hydrophobic contacts with the pantotheine arm and the 

acetyl portion of the acetyl coenzyme A molecule. Side chain residues of the 

AAC6’ involved in the acetyl coenzyme A contacts are listed in Table 7.6. The 

Lys 149 side chain in ACC6’ interacts with the 3’phosphate, this residue is 

equivalent to Arg127 in BPSL0606, which could make a H-bond as can be seen in 

other GNATs. The hydroxyl group of Thr 89 in AAC6’ makes a contact to the α-

phosphate of acetyl coenzyme A, which could also be possible using the 

equivalent residue, Asp 94, in BPSL0606. The pantothenic acid and β-

mercaptoethylamine moieties in the acetyl coenzyme A are directed into a 

hydrophobic pocket made from the side chains of Phe 146, Leu 76, Val 77 in 

AAC6’. The side chain of Tyr 147 can also make an interaction with the thiol 

group of acetyl coenzyme A. Additionally the hydrophobic side chains of Leu 73 

and Leu 109 develop the binding pocket deep enough to accommodate the acetyl 

moiety of the acetyl coenzyme A. In the V-cleft of BPSL0606, the hydrophobic 

pocket could also be used to bind acetyl coenzyme A, as the residues involved are 

similar to those in the AAC6’. 

 

These AAC6’ residues involved in these interactions and the main chain 

conformation in the acetyl coenzyme A binding site are conserved in BPSL0606, 

indicating that BPSL0606 could possibly bind acetyl coenzyme A in similar 

manner (Figure 7.16). 

 



! 199!

Table 7.6 Comparison of residues involved in side chain interaction made 

between AAC6’ and acetyl coenzyme A and equivalent residues in BPSL0606 

Interactions with 

AcCoA 

Residues involved 

AAC6’  

(PDB ID 1B87) 

BPSL0606 

equivalent residue 

3’-phosphate Lys 149 Arg 127 

α-phosphate Thr 89 Asp 94 

hydrophobic 

pocket for 

pantotheine 

Phe 146 Phe 124 

Leu 76 Ile 81 

Val 77 Leu 82 

Tyr 147 Tyr 125 

hydrophobic 

pocket for the 

acetyl 

Tyr 147 Tyr 125 

Leu 73 Ile 78 

Leu 109 Val 115 

  

 

 
Figure 7.16 Superposition of the BPSL0606 and the aminoglycoside 6’ N-

acetyltransferase from E. faecium (PDB ID: 1B87): The structure of BPSL0606 

(rainbow color) is superimposed on an aminoglycoside 6’-N-acetyltransferase 

(grey) with acetyl coenzyme A (purple) with a Cα-RMSD 1.3Å, showing the 

residues involving in the acetyl coenzyme A binding. This figure was produced 

using Pymol (Schrodinger, 2010). 
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a)   

b)  

c)  

Figure 7.17 The conformational change of serotonin N-acetyltransferase: Surface 

electrostatics of a) unbound structure (PDB ID: 1b6b, violet) and b) bisubstrate 

analogue bound structure (PDB ID: 1b87, green), showing the different 

conformation of serotonine N-acetyltransferase when the acetyl coenzyme A 

binding site is occupied. c) Superposition of both structures shows the different 

secondary structure. This figure was produced using Pymol (Schrodinger, 2010). 
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7.7. Analysis of substrate binding of GNATs 

In the N-acetylation reaction catalysed by the GNAT family, there is a direct 

nucleophilic attack of the amino group of the acceptor on the thioacyl carbon, 

leading to breakage of the S-C bond (Dyda et al, 2000). For this to occur, the 

amino group must be deprotonated, and thus there is often a general base close to 

the acetyl group to facilliate this. For example, in M.tuberculosis Rv1347c, His 

130 and Asp 168 lie on opposite sides of the cleft, close to the acetyl group (Card 

et al, 2005). In BPSL0606 these residues are Asp 79 and Gln 116, respectively, 

and the side chain of Asp 79 would be ideally positioned to act as a general base 

to abstract a proton from the acceptor amino group.  

 

Since acceptor substrates of the GNAT superfamily across species are widely 

diverse, it is difficult to predict the substrate of BPSL0606 from the structure 

alone. However, one of the functions of GNAT members from pathogenic 

bacteria, is to acetylate aminoglycoside antibiotics, as part of an antbiotic 

resistance strategy. A number of enzymes in this class were selected to analyse 

the binding of aminoglycoside substrates in order to try to model the substrate-

binding site in BPSL0606. These include crystal structures of aminoglycoside N-

acetyltransferases bound to aminoglycosides in the Gram-negative bacteria.  

 

Aminoglycoside N-acetyltransferases play an important catalytic role in the 

regioselective acetylation of one amine group in amionoglycoside antibiotics, 

which disrupt the bacterial protein synthesis by binding to the A-site of 16S rRNA 

(Vetting et al, 2008b). This enzymatic modification by N-acetylation of the active 

aminoglycosides inhibits antibiotic binding, resulting in difficulties in infectious 

disease treatment regimes. Aminoglycoside 6’ N-acetyltransferase (AAC6’) is the 

most common aminoglycoside-modifying enzyme found in most Gram-negative 

bacteria (Vakulenko & Mobashery, 2003). Crystal structures of AAC6’ bound to 

acetyl coenzyme A or coenzyme A and aminoglycoside substrates in E. coli 

(Vetting et al, 2008b) were chosen as models in an analysis of substrate binding. 

 

Crystal structures of ternary complexes of AAC6’ from E. coli with acetyl 

coenzyme A or coenzyme A and different aminoglycosides; kanamycin (PDB ID: 

1V0C), parmomycin (PDB ID: 2VQY) and ribostamycin (PDB ID: 2BUE), 
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revealed that the aminoglycoside substrate binding site of AAC6’ is in a cavity 

made by the anti-parallel β-sheet; β2, β3, β4 with α-helices; α1, α2 and the loop 

connected between β6 and β7 (Figure 7.18). In aminoglycosides, the 6-amino 

hexose ring, which is the target of 6’ N-acetylation, was buried in the negatively 

charge active site with the 6’ amine group pointing to the acetyl group of the 

acetyl coenzyme A. Asp 115 and Asp 152 are the crucial residues that interact 

with 3’ amine group of the 2-deoxystreptamine ring and 6’ amine group of the 

amino sugar, determining the substrate specificity (Figure 7.19).  

 

The ternary complex of AAC6’ from E. coli with acetyl coenzyme A and 

kanamycin was used to model the substrates into the BPSL0606 structure as both 

these structures share similar surface electrostatics in the active site. (Figure 7.20) 

In the complex structure, interactions are made between the main chain carbonyl 

of Ser 98 in the AAC6’ with 3”NH3 of kanamycin and the side chain of Asp 100 

with 3”NH3 and 4”-OH. This loop region is not displaced in BPSL0606, therefore, 

it is not possible to have these interactions in BPSL0606. However, the crucial 

residues for the binding of aminoglycoside, described above, are present in the 

same position in BPSL0606. The residues involved in substrate binding in AAC6’ 

(Asp 115 and Asp 152) are similar in BPSL0606 which are Asp 79 and Gln 116, 

respectively, and the side chains of these two residues could be H-bonded with the 

3’ amine group of the 2-deoxystreptamine ring and 6’ amine group of the amino 

sugar in the kanamycin, similar to the AAC6’ complex structure (Figure 7.21). 

 

The substrates acetyl coenzyme A and kanamycin were modeled into the 

BPSL0606 structure to propose a putative active site for this protein (Figure 7.22 

and 7.23). Although both acetyl coenzyme A and kanamycin fit in the active site 

groove of BPSL0606, it is by no means certain that these are the actual substrates 

of this protein and further crystallographic and biochemical analyses must be 

carried out to determine the function of BPSL0606. 
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a)   

b) c)  

Figure 7.18 Crystal structure of the aminoglycoside 6’ N-acetyltransferase from E. coli 

complexed with acetyl coenzyme A and different aminoglycoside substrates: a) A cartoon 

representation of the structure of AAC6’ colored from N-terminus (blue) to C-terminus 

(red) are displayed with bound substrates. b) Surface electrostatics diagram of AAC6’ 

(negative charge in red and positive charge) shows the active sites within the cavity 

where the substrates were bound to the enzyme. c) Aminoglycoside substrates; 

kanamycin (pink), parmomycin (purple), ribostamycin (orange). This figure was 

produced using Pymol (Schrodinger, 2010). 
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Figure 7.19 The active site of AAC6’: Asp 115 and Asp 152 in the AAC6’ are 

significant determinants for aminoglycoside substrate specificity in the catalysis 

of 6’N-acetylation. This figure was produced using Pymol (Schrodinger, 2010). 

 

 

 

a) b)  

Figure 7.20 Surface electrostatics of the structures of AAC6’ complex with 

substrates (a) and BPSL0606 (b): An opening tunnel in BPSL0606 could possible 

be occupied by the acetyl coenzyme A and kanamycin, similar to the AAC6’. This 

figure was produced using Pymol (Schrodinger, 2010). 
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Figure 7.21 The proposed kanamycin binding site of BPSL0606:  Gln 116 and 

Asp 79 in BPSL0606 could stabilise a substrate such as kanamycin in the active 

site. This figure was produced using Pymol (Schrodinger, 2010). 

 

 
Figure 7.22 The proposed acetyl coenzyme A binding site of BPSL0606: Arg 127 

is H-bonded to the 3’phosphate of the acetyl coenzyme A, and the pantotheine 

and acetyl group lie in the hydrophobic pocket. This figure was produced using 

Pymol (Schrodinger, 2010). 
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Figure 7.23 Model of BPSL0606 complex with acetyl coenzyme A and 

kanamycin: Both acetyl coenzyme A and kanamycin could occupy the cavity, 

which may well be the active site of this protein. This figure was produced using 

Pymol (Schrodinger, 2010). 

 

 

7.8. Chapter summary 

Analysis of the BPSL0606 structure has shown that it is structurally similar to the 

GCN-5 related N-acetyltransferase superfamily, in which these proteins use acetyl 

coenzyme A as a functional group donor. Known structures of these superfamily 

members with acetyl coenzyme A were examined and superposed with the 

BPSL0606 structure. Conserved residues among the GNAT family were 

identified and the equivalent residues in BPSL0606 were shown to be similar. 

Cocrystallisation of BPSL0606 and acetyl coenzyme A were set up, but X-ray 

data sets showed that acetyl coenzyme A did not appear in these crystals. Also, 

ligand observation by 1D 1H NMR suggested that BPSL0606 did not bind to 

acetyl coenzyme A. Despite this, the proposed complex of BPSL0606, acetyl 

coenzyme A and kanamycin can be modeled at the putative binding site in 

BPSL0606. 
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Chapter 8: Conclusions and Future work 

 
This chapter summarises the work that contributed to this PhD research. From the 

results obtained, the findings of this thesis provide some informative data as part 

of a directed structural genomics project of B. pseudomallei. Suggestions for what 

could be further investigated are also included.  

 

8.1. Summary 

Since little is known about molecular mechanisms and virulence in B. 

pseudomallei, the potential targets from previously identified putative essential 

genes and immunogenic proteins were selected for this PhD research in order to 

gain more knowledge and informative data from structural studies. Beginning 

with seven target genes, four full-length genes (BPSS0945, BPSS0603, 

BPSS0683, BPSL0606) and one truncated gene (BPSL3022) were successfully 

cloned. Two of them, BPSS0945 and BPSL0606, were expressed in a soluble 

form, which enabled protein crystallisation trials. BPSS0945, a putative subfamily 

M23 unassigned peptidase was unstable, which resulted in a non-homogenous 

protein sample and thus caused crystallisation failure. Only one protein, 

BPSL0606, crystallised sucessfully which enabled a structure to be determined by 

protein crystallography.  

 

The success rate in each step is illustrated in Figure 8.1. This 14% success rate 

compared fairly favourable with a predicted rate of 10-20% for a straightforward 

a bacterial protein crystal structure determination (Rupp, 2010). Success rates in 

each step of structure determination from large structural genomic consortia over 

the world are ranging from one-third to two-thirds of the time (Terwilliger et al, 

2009). According to published data from worldwide structural genomic centers, 

crystal structures have been obtained approximately 3% of total cloned targets 

(http://targetdb-dev.rutgers.edu/statistics/TargetStatistics.html). Soluble protein 

expression and crystallisation are still challenging tasks to feed crystallographic 

work, despite the fact that 15-20% of less than 50 kDa non membrane proteins are 

likely to be suitable for structural biology (Edwards et al, 2000).  
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Figure 8.1 Pyramid of attrition rate in key steps of the structure determination 

project: From target selection, the molecular cloning has a reasonable success rate 

but soluble protein expression and crystallisation have a major impact on 

crystallographic studies. Numbers of genes/proteins in this project that were 

successful in each step are shown in parentheses.  

 

 

BPSL0606 was successfully cloned, expressed as a full-length protein and 

purified. Analysis of the purified protein by mass spectrometry confirmed the 

presence of full-length protein (23.5 kDa), prior to crystallisation trials. Native 

and selenomethionine substituted protein crystallised in space group P21 from 

solutions of 14-24% PEG3350, 0.1 M Bis-tris propane pH 6.3-6.5 and 0.2 M 

potassium thiocyanate, yielding reasonable size single long rod crystals suitable 

for data collection. The crystal structure of BPSL0606 was determined using 

MAD method, to a resolution of 2.2 Å. The 65 C-terminal residues of the protein 

were not visible in the electron density map and the crystals were investigated to 

see if any proteolysis had occurred. SDS PAGE of dissolved crystals showed that 

the molecular weight had reduced to 17 kDa, indicating some truncation of the 

protein, by an, as yet unknown, mechanism.  

 

Target selection 
(7) 

Gene cloning 
(5) 

Protein expression & 
purification 

(2) 

Crystallization 
(1) 

Structure 
(1) 
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Attempts were made to crystallise the truncated protein, from a protein sample 

that was two months old. The mass spectrometry analysis of this sample showed it 

to have a molecular weight of 17 kDa consistent with it representing residues 1-

159. This sample did not crystallise in the same way as the original “full-length” 

sample, forming crystals both under different conditions (25% PEG3350, 0.1 M 

Bis-tris pH 5.5 and 0.2 M ammonium sulphate) and also in a different space group 

(P212121, a=, 60.9 b=75, c=78.2 Å, α=β=γ=90°). The crystal structure obtained 

from the truncated protein was determined at 2.2 Å resolution by molecular 

replacement using the previous structure.   

 

These two structures of BPSL0606 had a similar conformation but showed 

differences in crystal packing in the different layers. The BPSL0606 P21 crystal 

form had four copies in the asymmetric unit, whereas the P212121 crystal form had 

two molecules in the asymmetric unit.  

 

The crystal structure of BPSL0606 consists of eight β-strands and three α-helices, 

including a turn of 310-helix. Structure comparison to the published known 

structures in the protein data bank revealed that BPSL0606 is structurally similar 

to the GCN5-related N-acetyltransferase (GNAT) superfamily. Structure based 

alignment of BPSL0606 the known GNATs structures showed the conservation of 

residues in four signature motifs of the GNAT superfamily.  

 

The dimer formation in crystal packing agrees with gel filtration analysis, which 

predicted that BPSL0606 is likely to be a dimeric protein, not a monomer. The 

dimer interface in the BPSL0606 structure buries approximately 11% of the 

subunit surface area. Two of the residues of the dimer interface (Leu 11 and Ser 

12) are also conserved among the other similar GNAT dimers. The BPSL0606 

interface is also similar to a number of interfaces that belong to GNAT 

superfamily members.  

 

From structure analysis, binding of acetyl coenzyme A seemed possible for 

BPSL0606, as residues involved in the acetyl coenzyme A binding in GNATs are 

also conserved in BPSL0606. The V-cleft made by strands β4 and β5 in 

BPSL0606 also provides possible tunnel that could accommodate acetyl 
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coenzyme A as is seen in the GNAT family members. However, co-crystallisation 

of BPSL0606 and acetyl coenzyme A suggested that BPSL0606 did not bind to 

the acetyl coenzyme A and there was also no indication of binding by acetyl 

coenzyme A and BPSL0606 from ligand observation by H1NMR. A key residue 

in the acetyl coenzyme A binding in the GNAT family is a glycine or alanine 

lying in the pocket. The equivalent residue in BPSL0606 is an isoleucine, Ile 93, 

and this large side chain may prevent acetyl coenzyme A binding. However, it 

must also be mentioned that binary complexes cannot always be crystallised for 

other GNAT members, for example, Rv1347c, a putative antibiotic resistance 

protein from M. tuberculosis. 

 

Since BPSL0606 may be related to one of the GNAT members, aminoglycoside 

N-acetyltransferases, which are involved in antibiotic resistant mechanisms, 

attempts were made to model acetyl coenzyme A and kanamycin into the 

structure of BPSL0606 and a putative active site in BPSL0606 was proposed. As 

the crucial residues for aminoglycoside binding are conserved in BPSL0606 (Asp 

79 and Gln 116), it is possible that kanamycin could accommodate the putative 

binding site even though there is much less negative charge than the 

aminoglycoside N-acetyltransferase.  

 

 

8.2. Future work 

Although the findings in this thesis, provided useful molecular and structural 

information for B. pseudomallei, there are still fundamental research questions 

awaiting further investigations.  
 

As it has proved difficult to show that BPSL0606 binds to acetyl coenzyme A, 

further investigations could include a structure comparison to the acyl homoserine 

lactone (AHL) synthase (LasI) structure from P. aeruginosa (PDB ID: 1RO5). 

This structure is also similar to BPSL0606, however, LasI catalyses a different 

reaction from other members of the GNAT superfamily. Unlike GNAT members, 

LasI uses S-adenosyl-L-methionine (SAM) and acyl acyl-carrier protein (acyl 

ACP) as substrates (Gould et al, 2004). It is possible, therefore, that BPSL0606 

also uses SAM and acyl ACP as binding partners, and cocrystallisation with 
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different substrates including SAM, acyl-ACP and their analogues would be 

carried out to further characterise the active site of BPSL0606. The ternary 

complex structure of TofI from B. glumae and substrates (Chung et al, 2011) 

could also be useful for analysis of potential substrate binding sites. Superposition 

of these structures on to the BPSL0606 structure would assist an identification of 

putative substrate binding sites in BPSL0606. 
 

In addition, a ligand binding assay may also provide a clue in biological function 

of BPSL0606 and could lead to the rational drug and/or inhibitor design. A 

thermal shift assay can be employed to assist a screening of possible substrates 

that could be bound to BPSL0606 and identify the protein-ligand interaction. 
 

A pull down assay of an affinity tagged BPSL0606 against B. pseudomallei cell 

extract would be done in order to determine whether cellular molecules, for 

example signaling molecules like AHL, could interact with BPSL0606. Due to the 

laboratory safety regulation of the harmful pathogen, BPSL0606 homologues in 

closely non-pathogenic strain such as B. thailandensis and B. cenocepacia can be 

substituted for the biochemical studies. For these studies it may be beneficial to 

clone the equivalent protein to BPSL0606 from the non-pathogenic strains of 

Burkholderia. 

 

To clarify sequence differences seen in BPSL3022, BPSS0945, BPSS0603 and 

BPSL0606 whether these have occurred as a result of a mutation from PCR or a 

real strain variation, the amplification and cloning of these genes should be 

repeated and a number of recombinant clones should be sequenced.    

 

Further work on other target proteins studied in this thesis could involve: 

-BPSL3022 cell division protein FtsQ: Making different constructs and 

optimizing the protein expression condition to obtain the soluble protein for 

crystallisation. 
 

-BPSS0945 subfamily M23B unassigned peptidases: Making different constructs 

without the possible signal peptide region to produce the mature protein which 

may be more stable than the full-length protein. In addition, to inactivate the 

autolysis of the protein, protease inhibitors could be used. 
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-BPSS0603: A new clone without sequence difference could be made and the 

soluble protein expression could possibly be observed. 

 

-BPSS0683: Soluble protein expression could be achieved by co-expression of 

molecular chaperones such as GroES-GroEL, DnaK-DnaJ-GrpE and ClpB, which 

could assist the in vivo protein folding. 
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Appendix 

 

 
 

Figure 3.1 The pETBlue-1 vector map and cloning and expression region. The 

vector contains a pre-digested EcoRV cloning site which provides optimal space 

from the ribosome bind site (RBS) for efficient translation initiation when the 

ligated insert begins with 5’ ATG. The protein expression is driven by a strong T7 

RNA polymerase promoter with an inducible lac apparatus. 
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Figure 3.2 The pET24-a vector map and cloning and expression region. The 

pET24-a vector contains multiple cloning sites (RBS) with a kanamycin selective 

marker and also provides an optional C-terminal His tag fusion. It facilitates 

protein expression driven by a strong T7 RNA polymerase promoter with an 

inducible lac apparatus. 
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