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Abstract

This thesis builds on the work of Dunne and collaborators [12–14], advocating for the use of Picard–

Lefschetz (PL) theory to perform semiclassical expansions of path integrals in the context of quantum

field theory. We demonstrate that the PL theory also provides a rigorous framework for evaluating

stochastic path integrals in the weak-noise limit, D → 0. In particular, it offers a natural resolution

to long-standing issues associated with multi-instanton contributions, particularly the role of instanton-

anti-instanton [IĪ] pairs in the thermal escape rate across a potential barrier.

Traditional approaches focus on real-valued [IĪ] configurations, but the integral over the quasi-zero

mode (QZM) direction diverges due to the mutual attraction between instantons and anti-instantons.

The standard analytic workaround continues the noise parameter asD → −D, known as the Bogomolny–

Zinn–Justin (BZJ) procedure. However, while operationally effective, the BZJ procedure lacks concep-

tual clarity and introduces ambiguity. Instead, we apply PL theory to uncover a complex saddle-point

solution, which we call the stochastic complex bounce [CB]. The [CB] dynamics takes place in a tilted

effective potential. In the Markovian-stochastic setting, the tilt is a feature of the discretisation scheme,

whereas in quantum field theory, the tilt arises from fermionic effects.

The [CB] offers a fresh perspective and emerges as a genuine saddle of the complexified action, con-

necting to a convergent integral defined over a special descent manifold known as a Lefschetz thimble.

Embedded within the [CB] is a composite structure of the form of an instanton-anti-instanton [IĪ] pseu-

doparticle pair. A well-defined complex separation characterises the instantonic substructures. The PL

framework refines the BZJ procedure with rigorous justification, and the QZM integral becomes both

convergent and physically transparent when defined over the appropriate Lefschetz thimble.

We present an algorithm using PL theory to evaluate stochastic path integrals in the weak-noise limit,

incorporating quadratic fluctuations around complex saddles. This method is applied to compute escape

rates in two canonical systems: the stochastic cubic potential and the stochastic sine-Gordon potential.
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The thesis concludes by highlighting the broader implications of complex stochastic saddles, including

their applications in non-equilibrium stochastic systems and their potential role in the deeper theoretical

framework of resurgence theory.
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Perturbation theory’s failure is not a bug—it’s a signal.

— Inspired by Dyson (1952)



Chapter 1

Introduction

Chapter summary

This chapter outlines the thesis’s scope and objectives. It outlines the originality of the work, summarises
the main results, and situates them within the path integral formulation of classical Markovian stochastic
dynamics.

We introduce the essential tools of stochastic calculus, ranging from the Langevin equation to the Fokker–
Planck–Smoluchowski framework, with a focus on the path integral representation of transition probabilities.
We work in the weak-noise limit D → 0 and exploit the analogy with semiclassical expansions in quantum
mechanics, where perturbation theory fails without incorporating complex saddles.

We then advocate a shift in viewpoint, extending classical stochastic trajectories into the complex domain
so that new analytic structures emerge which encode both perturbative and non-perturbative information.
Picard–Lefschetz theory provides the natural framework for organising this complexified landscape. We
adopt a practical approach to resolving real-contour ambiguities and set the stage for a systematic study of
complex saddles in a stochastic setting. The chapter closes with a concise roadmap and a preview of the
escape-rate computations developed in later chapters.
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Glossary of abbreviations and notation

OM

(functional)

Onsager–Machlup functional. For additive, overdamped Langevin dynamics, the path weight

is proportional to exp(−S[x]/(4D)), where S[x] =
∫ +T /2
−T /2 (ẋ+ V ′(x))2 dt denotes the

Onsager–Machlup functional. This formulation expresses transition probabilities as a path

integral and is derived in § 2.1.4.

MOSD Method of steepest descents. An asymptotic method for integrals of the form
∫
exp(λf) with

λ≫ 1, obtained by deforming the integration contour onto paths of steepest decrease through

critical points of f . Reviewed in § 1.2.3.

PL (theory) Picard–Lefschetz theory. A framework for deforming integration contours in complexified

path space so that oscillatory integrals become sums of steepest descent contour contributions

associated with critical points. Introduced in § 3.6; the main application of the theory is

reiterated in § 1.2.7.

Thimble Lefschetz thimble. The steepest descent manifold for h = Re(S/(4D)) through a saddle,

along which ImS is constant. Defined (together with dual thimbles) in § 3.6.

EZM Exact zero mode. A symmetry direction of the quadratic fluctuation operator (e.g. time

translation), yielding a zero eigenvalue in the T → ∞ limit and treated by collective

coordinates; see § 2.1.9.

[I], [Ī] Instanton / anti-instanton. Distinguished classical solutions related by time reversal; defined

in § 1.2.4.

QZM Quasi-zero mode. A near-flat direction in a multi-saddle problem (typically the separation

parameter in a multi-instanton configuration). Introduced in § 2.3 and developed in § 3.5.

[IĪ] Instanton-anti-instanton sector. Two-event configuration whose separation integral is the

QZM integral studied extensively in this thesis; see § 2.3.2.

[II] Instanton-instanton sector. Two-event configuration with a QZM whose correct thimble

contour is the full real line; see § 2.3.1.

BZJ Bogomolny–Zinn–Justin (BZJ) continuation. A prescription for the attractive

instanton-anti-instanton QZM integral in which one analytically continues to the repulsive

sheet (equivalently D 7→ e±iπD), evaluates the now well-defined separation integral, and then

returns to D > 0 across the logarithmic branch cut. See § 1.2.8 for a practical overview.

17



18



1.1 Novelty and the aim of the thesis

This thesis presents, to our knowledge, the first systematic study of complex saddles via Picard–Lefschetz

theory [7] for weak-noise asymptotics in Markovian stochastic dynamics. We show that complex sad-

dles and their Lefschetz thimbles resolve the instanton-anti-instanton ambiguity along the real contour

and render ad hoc sign-flip prescriptions such as D→−D unnecessary, replacing them with a geomet-

rically correct contour. The Itô discretisation choice qualitatively alters the extremising solutions by

inducing an O(D) curvature term; together with complexification, this furnishes the geometric setting

in which exact complex stochastic bounce trajectories solve the complexified Euler–Lagrange equation

associated with the Onsager–Machlup functional [118, 135].

Although complex saddles and thimbles are well established for quantum path integrals in quantum

mechanics (see Witten [184]) and quantum field theory (see, e.g., Dunne et al. [13,71]), and have been

contrasted with complex Langevin methods [1], they have not, to our knowledge, been applied to the

Onsager–Machlup formulation of Markovian stochastic dynamics in order to resolve [IĪ] ambiguities

and compute escape rates via thimble contours. Unlike quantum path integrals, the stochastic path

integral is inherently real, so the necessity of complexification here is a mathematically substantive

outcome.

Our main contribution is to import and operationalise standard thimble geometry associated with com-

plex saddles in this stochastic setting. Within the PL framework, the QZM reduces to a bona fide

one-dimensional integral along its thimble (e.g., [15, 71, 184]), providing a robust, contour-fixed treat-

ment of instanton-anti-instanton configurations in the stochastic setting. We demonstrate the method in

the escape-rate computation for Brownian motion in cubic and sine–Gordon potentials, where complex

saddles cleanly recover Kramers’ rate [85] and clarify the limitations of real-contour approaches.

We next review the stochastic foundations and give the full Itô variational derivation, contrasting Itô

and Stratonovich (§ 1.2.2). We then develop steepest descents for the Onsager–Machlup functional

(§ 1.2.3) and give a background on instantons and on bounce solutions (used later in the escape-rate
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analysis), see § 1.2.4 and § 1.2.5. Then, we introduce complexification and Picard–Lefschetz theory

(§ 1.2.7), which leads to the local EZM × QZM× Gaussian factorisation and a thimble-fixed QZM

contour. A minimal toy model (§ 1.2.8) illustrates how thimbles fix the [IĪ] phase unambiguously

(BZJ vs thimble). We conclude with a brief validation on cubic and sine–Gordon escapes (Kramers’

problem; § 1.3) and thesis roadmap, § 1.4.

In the following text, we summarise the thesis and the concepts and techniques we use; some full

derivations are deferred to subsequent chapters and will be appropriately signposted. What follows

serves as a high-level overview.

1.2 Preliminaries

1.2.1 Stochastic foundations

1.2.1.1 Brownian motion, Langevin equation, and the Fokker–Planck–Smoluchowski equation

Brownian motion was first recorded in 1827 by the Scottish botanist Robert Brown, who observed

the incessant jitter of pollen granules suspended in water [29, 30, 141] (see Fig. 1.1). In 1905, Ein-

stein [58, 59, 142] and, independently, in 1906, Smoluchowski [164] provided quantitative theories of

Brownian motion. Their explanation is that a visible grain is buffeted by countless, rapid and uncorre-

lated molecular impacts, leading to diffusive spreading with mean-square displacement,

〈
[x(t)− x(0)]2

〉
= 2D t, (1.1)

where D is the diffusion constant (which we call the noise strength in our setting) and t is the time [36,

58, 74, 151, 172]. Crucially, Einstein linked D to dissipative transport through the Einstein relation

D = µ kBT [36, 58], where kB is the Boltzmann constant [32, 144], µ is a mobility coefficient and T is

the system temperature. This relation is an early form of the fluctuation-dissipation principle: the same

20



microscopic collisions that produce viscous drag also generate thermal fluctuations, and in equilibrium

these balance [34, 80, 86, 104, 105].

Langevin (1908) recast this picture as a stochastic differential equation (SDE) driven by Gaussian white

noise, which takes the heuristic form [37, 114, 140, 172]

mẍ = − ζ ẋ + F (x, t) + ξ(t), (1.2)

where m is the mass of the Brownian particle, ζ is the friction coefficient, F (x, t) is a mechanical

force, and ξ(t) encodes the stochastic data. Assuming a viscous bath, rescaling units to set ζ = 1 (so

the mobility µ = 1/ζ = 1, whence D = kBT in these units), and neglecting inertia (|mẍ| ≪ |ζẋ|),

one obtains the overdamped (small mass m→ 0) Langevin equation with conservative drift [56,74,82,

140, 154]:

ẋ(t) = −V ′(x(t)) + ξ(t), ⟨ξ(t)⟩ = 0, ⟨ξ(t)ξ(t′)⟩ = 2D δ(t− t′), (1.3)

where F = −V ′(x) and ξ(t) models the random kicks and is idealised as Gaussian white noise. In

stochastic calculus notation, writing Xt for the random position, this may be expressed as [96, 155]

dXt = −V ′(Xt) dt +
√
2D dWt, (1.4)

where W = (Wt)t≥0 is a standard Brownian motion (Wiener process) [73, 96, 130, 150, 156]. Here ⟨·⟩

denotes ensemble averaging over realisations of the noise, and Brownian motion is characterised by

W0 = 0, almost surely continuous sample paths, and independent stationary Gaussian increments

Wt −Ws ∼ N (0, t− s) (0 ≤ s < t), (1.5)

where N (µ, σ2) denotes the normal distribution with mean µ and variance σ2. Equivalently, ⟨Wt⟩ = 0
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and

⟨WtWs⟩ = min{t, s}. (1.6)

1 The differential notation dWt is the shorthand for these increments, and (1.4) is understood through

the integrated form

Xt = X0 −
∫ t

0

V ′(Xs) ds +
√
2DWt. (1.7)

(a)

Incoming kick
Bath molecule

(b)

0 5 10 15 20 25 30
t

2.0
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0.5

0.0

0.5

1.0

1.5

x(
t)

Figure 1.1: Microscopic origin of thermal noise and its impact on a Brownian particle. (a) A
mesoscopic tracer (green disc) is incessantly bombarded by fast bath molecules (red); dashed arrows
indicate instantaneous momentum transfers. (b) A numerically generated sample path of the
Ornstein–Uhlenbeck process (the overdamped Langevin dynamics in a harmonic potential),
dXt = −Xt dt+

√
2D dWt.

The overdamped Langevin model has an equivalent ensemble description: if Xt follows (1.4) with

initial law P0, then its probability density P (x, t) satisfies the Fokker–Planck–Smoluchowski equa-

tion [62, 63, 74, 100, 151]

∂P (x, t)

∂t
=

∂

∂x

[
V ′(x)P (x, t)

]
+ D

∂2P (x, t)

∂x2
, P (x, 0) = P0(x). (1.8)

We consider a point start at x0, enforced by the delta-function condition P0(x) = δ(x − x0). On a

bounded interval, reflecting boundaries mean that no probability flux crosses the endpoints. Equiva-

1For t ≥ s, write Wt = Ws + (Wt −Ws) and use independence plus ⟨Wt −Ws⟩ = 0 and ⟨W 2
s ⟩ = s.
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lently, the probability current

J(x, t) = −V ′(x)P (x, t) − D∂xP (x, t) (1.9)

satisfies J = 0 at the boundary. With reflecting boundaries (or for confining V ), the stationary zero-

current solution is the equilibrium density obtained by imposing J(x) ≡ 0, namely Peq(x) ∝ exp
(
−

V (x)/D
)
, i.e. the Boltzmann distribution. Finding an analytical solution of this PDE is difficult and,

except for special choices of V (e.g. harmonic), (1.8) is rarely solvable in closed form. In the weak-

noise regimeD → 0+ (equivalently,D small compared with a characteristic potential scale, for instance

a barrier height ∆V when present; see § 2.1.6, § 2.1.7), it is convenient to use the Onsager–Machlup

path integral formulation [118, 135]

P ∝
∫
Dx exp

(
− 1

4D
S[x]

)
, S[x] =

∫ +T /2

−T /2

(
ẋ+ V ′(x)

)2
dt. (1.10)

Here
∫
Dx denotes an integral over trajectories x(·) on [−T /2, T /2] (with the appropriate endpoint

constraints for the transition probability), defined as the continuum limit of a time sliced integral.

Concretely, for a partition tn = −T /2 + n∆t with ∆t = T /N and xn = x(tn), one may read

∫
Dx (· · · ) ≡ lim

N→∞

∫
RN−1

(N−1∏
n=1

dxn

)
(· · · ), (1.11)

with any overall normalisation absorbed into the proportionality constant in (1.10). A complete deriva-

tion of the stochastic path integral is given in § 2.1.4. It is possible to show that (1.10) solves (1.8),

so solving the Fokker–Planck (FP) equation is equivalent to evaluating the stochastic path integral.

The large parameter 1/(4D) multiplies a functional S, and we apply the method of steepest descents

(MOSD) to evaluate the integral asymptotically [23, 43, 128, 134, 138, 185]. A brief recap of MOSD

and its use in (1.10) appears in § 1.2.3. This asymptotic evaluation of the stochastic path integral in the

weak-noise limit is the focus of this thesis.
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Langevin SDE (overdamped, additive)
dXt = −V ′(Xt) dt+

√
2D dWt

Fokker–Planck (Kolmogorov forward)
∂tP = ∂x

[
V ′(x)P

]
+D∂2

xP

Onsager–Machlup path integral (Itô)

P ∝
∫
Dx exp

(
− 1

4D
S[x]

)

Kolmogorov forward/backward (exact) Wiener/Girsanov (exact)

Feynman–Kac / path integral (exact)

Weak-noise asymptotics: evaluate the OM integral by the method of steepest descents (MOSD) as D → 0.
⇒ Laplace/WKB expansion for P , i.e. an asymptotic solution to both the FP problem and the Langevin dynamics.

Figure 1.2: Equivalence triangle. A schematic illustration depicting the equivalence among the three
formulations, valid under identical initial and boundary conditions. The diagram considers additive
noise; in contrast, multiplicative noise introduces additional drift terms and path integral corrections.
It is essential to maintain consistency in the discretisation scheme (Itô versus Stratonovich)
throughout the analysis.

The overdamped Langevin SDE, its Fokker–Planck (Kolmogorov forward) equation, and the On-

sager–Machlup path integral are different representations of the same Markov diffusion (for fixed

initial/boundary data and a fixed discretisation convention). The arrows in Fig. 1.2 indicate exact cor-

respondences. The only approximation enters when we evaluate the path integral in the weak-noise

limit by the method of steepest descents (MOSD): this yields a Laplace/WKB asymptotic for P , see

historically [102, 181] and for a modern tutorial [16], which is therefore an asymptotic solution to the

FP equation.

We conclude by summarising the equivalence triangle (SDE, FP, OM; additive noise). The SDE ↔

FP correspondence follows directly from Itô’s formula and integration by parts (forward/backward

Kolmogorov theory) [62,74,96,100,133,140,151,153,165]. The SDE↔ OM connection comes from

the Onsager–Machlup construction of path weights together with Girsanov’s change of measure [77,

96, 109, 116, 118, 135]. The FP↔ OM link is the Feynman–Kac representation of parabolic solutions

as Wiener expectations/path integrals [22, 44, 92, 96, 130, 133].
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1.2.2 Itô vs Stratonovich primer and variational overview

This section contrasts the Itô and Stratonovich calculi (see, e.g. [145], [133] and [107] for practical

texts). The methodological choice in this thesis is to work in the Itô convention, which produces a D-

dependent tilt term in the equations of motion and naturally accommodates complex saddles. The full

Itô variational derivation is given in the next subsection, while this subsection gives a fast but sufficient

overview of stochastic calculus at the level required for this thesis. We refer the reader to Itô ’s book

for additional background [90].

Acknowledgement. I thank A. J. McKane for discussions on the Itô variational problem.

1.2.2.1 Stochastic calculus primer

We consider the general one-dimensional SDE

dXt = F (Xt) dt +
√
2DG(Xt) dWt, (1.12)

whereXt is the state,Wt a standard Wiener process, F the drift,G the noise amplitude (“multiplicative”

if G depends on x), and D > 0 the noise strength. Let f ∈ C2 be a test function; the primes denote

x-derivatives.

Let us begin with the Itô discretisation scheme. We define the Itô integral and Itô’s lemma [87,90,103].

Fix t > 0 and let Π = {0 = t0 < t1 < · · · < tN = t} be a partition of [0, t], with mesh size

|Π| = max
0≤k≤N−1

(tk+1 − tk). (1.13)

25



The Itô stochastic integral is defined as the mean-square2 limit of left–point Riemann sums [108]

∫ t

0

G(Xs) dWs = lim
|Π|→0

N−1∑
k=0

G
(
Xtk

) (
Wtk+1

−Wtk

)
, (1.14)

where |Π| → 0 means that we take finer and finer partitions whose maximal step size tends to zero.

Intuitively, the left-point choice reflects that the integrand is evaluated using information available up

to time tk. If, more generally, dXt = µ(Xt) dt+ σ(Xt) dWt, then Itô’s lemma gives

df(Xt) = f ′(Xt)µ(Xt) dt +
1

2
f ′′(Xt)σ

2(Xt) dt + f ′(Xt)σ(Xt) dWt. (1.15)

With µ = F and σ =
√
2DG from (1.12), this becomes

df(Xt) =
[
f ′(Xt)F (Xt) +Df ′′(Xt)G

2(Xt)
]
dt +

√
2Df ′(Xt)G(Xt) dWt, (1.16)

or, equivalently,

df(Xt) = f ′(Xt) dXt +Df ′′(Xt)G
2(Xt) dt, (1.17)

which exhibits the additional drift Df ′′G2 due to the quadratic variation of Wt.

We contrast this to the Stratonovich discretisation scheme. We define the Stratonovich integral and the

Stratonovich chain rule. The Stratonovich integral uses midpoint sums,

∫ t

0

G(Xs) ◦ dWs = lim
|Π|→0

N−1∑
k=0

G
(Xtk +Xtk+1

2

) (
Wtk+1

−Wtk

)
, (1.18)

and satisfies the traditional chain rule,

df(Xt) = f ′(Xt) ◦ dXt, (1.19)

2“mean-square” means that there exists a random variable I such that ⟨|SΠ − I|2⟩ → 0 as |Π| → 0, where SΠ denotes
the Riemann sum.
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where ◦ indicates the Stratonovich prescription, but this notation will be dropped. The midpoint pre-

scription is time-symmetric and restores the classical chain rule.

The important takeaway is that in the path integral variational calculus, the Itô chain rule (1.17) pro-

duces an order-D contribution at the integration by parts step. For gradient drift F = −V ′ with additive

noise, this yields the Euler–Lagrange equations

ẍ = V ′(x)V ′′(x) − DV ′′′(x) (Itô), ẍ = V ′(x)V ′′(x) (Stratonovich), (1.20)

the former featuring the D-dependent “tilt”. So, even though we work under the assumption of additive

white noise, the choice of discretisation scheme alters the saddles of the functional. We derive this

explicitly in the following subsection.

1.2.2.2 Itô vs Stratonovich in the variational calculus

Recall that, in the Onsager–Machlup representation in (1.10), the transition probability has the schematic

form P ∝
∫
Dx exp

(
− S[x]/(4D)

)
. For this reason S[x] plays the role of an action functional in the

path integral, and writing S[x] =
∫
L(t, x, ẋ) dt defines the corresponding Lagrangian L. The dom-

inant trajectories in the weak-noise regime are obtained by stationarity δS = 0, equivalently by the

Euler–Lagrange equation associated with L (with fixed endpoints). A more detailed justification of this

stationary-path principle, and the associated “weak-noise tube” picture, is given in § 2.1.6 and § 2.1.7.

Fix V ∈ C3. Let x(t) be an extremal of S with Dirichlet data x(±T /2) = x1,2. With L(t, x, ẋ) =

(ẋ+ V ′(x))2 and a test variation xε = x+ εη where η(±T /2) = 0 and |ε| ≪ 1,

ẋε = ẋ+ ε η̇, V ′(xε) = V ′(x) + ε V ′′(x) η +O(ε2). (1.21)

Hence,

S[xε] = S[x] + 2ε

∫ +T /2

−T /2
(ẋ+ V ′(x))

(
η̇ + V ′′(x)η

)
dt+O(ε2), (1.22)
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and the first variation is

δS = 2

∫ +T /2

−T /2
(ẋ+ V ′(x))

(
η̇ + V ′′(x)η

)
dt. (1.23)

Integrate the η̇ term by-parts (no stochastic correction since the function η is smooth),

∫
(ẋ+ V ′) η̇ dt =

[
(ẋ+ V ′) η

]+T /2

−T /2
−
∫
η
d

dt

(
ẋ+ V ′(x)

)
dt, (1.24)

and the boundary term vanishes by the Dirichlet condition. To evaluate d
dt
V ′(x(t)), we now insert the

Itô chain rule (1.17) with f = V ′:

d

dt
V ′(x(t)) = V ′′(x) ẋ+DV ′′′(x)︸ ︷︷ ︸

Itô tilt

. (1.25)

Substituting (1.25) into (1.23) and cancelling the V ′′ẋ terms yields

δS = 2

∫ +T /2

−T /2
η(t)

(
− ẍ+ V ′(x)V ′′(x)−DV ′′′(x)

)
dt, (1.26)

so, since δS = 0 for all test functions η, by the fundamental lemma of the calculus of variations,

ẍ(t) = V ′(x)V ′′(x)−DV ′′′(x) . (1.27)

Remarks

• In the Stratonovich convention the chain rule is classical, d
dt
V ′(x) = V ′′(x)ẋ, so (1.27) reduces

to ẍ = V ′V ′′ (without tilt).

• We work with the Onsager–Machlup functional S =
∫
(ẋ + V ′)2 dt (cf. (1.43)), and the Itô

contribution DV ′′′ enters precisely at the integration by parts step via (1.25). This is the key

input for steepest descents and for accommodating complex saddles.

• General drift F (x). With L = (ẋ− F (x))2, the same argument gives ẍ = F F ′ +DF ′′. Setting
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F = −V ′ recovers (1.27).

1.2.3 Steepest descents for the Onsager–Machlup functional

1.2.3.1 1D method of steepest descents template

This section covers the basics of the steepest descent method in the language of the stochastic path

integral, working in the limit D → 0.

Consider the one-dimensional template

I(λ) =

∫
C

f(z) exp
(
λg(z)

)
dz, λ≫ 1, (1.28)

where f and g are analytic in a domain containing the contour C, and no singularities are crossed under

admissible deformations. Write g = u+ iv with u = Re g and v = Im g. By Cauchy’s theorem we can

deform C into a union of constant phase paths C ′ =
⋃
σ∈Σ Γσ chosen so that v is constant along each

Γσ and u decreases away from a saddle zσ with

g′(zσ) = 0, g′′(zσ) ̸= 0. (1.29)

Along such a path, the oscillatory factor is fixed, and one has

∫
Γσ

f(z) exp
(
λg(z)

)
dz = exp

(
iλv(zσ)

) ∫
Γσ

f(z) exp
(
λu(z)

)
dz . (1.30)

To capture the contribution near a given saddle, expand g and f about zσ,

g(z) = gσ +
1

2
g2 (z− zσ)2 +

1

6
g3 (z− zσ)3 + · · · , f(z) = f0 + f1 (z− zσ)+

1

2
f2 (z− zσ)2 + · · · ,

(1.31)

where gσ = g(zσ), gk = g(k)(zσ) and fk = f (k)(zσ). Let z − zσ = κσρ with ρ ∈ R and κσ = exp(iασ)
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a unit complex direction chosen so that the quadratic term points along the steepest descent,

g2 κ
2
σ ∈ R<0 ⇐⇒ 2ασ + arg g2 ≡ π (mod 2π), ασ =

π − arg g2
2

. (1.32)

Indeed, writing g2 = |g2|eiϕ gives g(z) − gσ = 1
2
|g2|ei(ϕ+2ασ)ρ2; the constant phase condition forces

sin(ϕ+ 2ασ) = 0, and the steepest descent choice is ϕ+ 2ασ ≡ π (the other solution gives ascent).

Parametrise the local constant phase line by the signed arclength ρ,

z(ρ) = zσ + κσ ρ, dz = κσ dρ, (1.33)

so that

g
(
z(ρ)

)
= gσ +

1

2
g2 κ

2
σ ρ

2 +O(ρ3) = gσ −
1

2
Aσ ρ

2 +O(ρ3), Aσ := −(g2 κ2σ) > 0, (1.34)

and

f
(
z(ρ)

)
= f0 + f1 κσ ρ+

1

2
f2 κ

2
σ ρ

2 +O(ρ3). (1.35)

The integral near zσ becomes

∫
Γσ

f(z) exp
(
λg(z)

)
dz =

∫ +∞

−∞
f
(
z(ρ)

)
exp
(
λg
(
z(ρ)

))
z′(ρ) dρ

= exp
(
λgσ
) ∫ +∞

−∞

(
f0 +O(ρ)

)
exp

(
−1

2
λAσρ

2 +O
(
λ|ρ|3

))
κσ dρ.

(1.36)

The dominant region is |ρ| = O(λ−1/2), so let us introduce the Laplace rescaling

s =
√
λAσ ρ, dρ =

ds√
λAσ

, (1.37)
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to obtain

∫
Γσ

f(z) exp
(
λg(z)

)
dz = exp

(
λgσ
) κσ√

λAσ

∫
R

(
f0 +O(λ−1/2)

)
exp

(
−1

2
s2
)

ds. (1.38)

Evaluating the Gaussian and simplifying the prefactor,

∫
R
exp

(
−1

2
s2
)
ds =

√
2π,

κσ√
Aσ

=
κσ√
− g2 κ2σ

=
1√
− g2

· κσ√
κ2σ
, (1.39)

and fixing the branch so that
√
− g2 κσ ∈ R>0, one obtains the canonical leading term

∫
Γσ

f(z) exp
(
λg(z)

)
dz = exp

(
λg(zσ)

) √2π√
λ

f(zσ)√
− g′′(zσ)

(
1 +O(λ−1)

)
. (1.40)

(The O(λ−1/2) term vanishes after integration by parity; the first non-zero correction is O(λ−1).)

Summing the contributions from all saddles reached by admissible deformations gives the MOSD

asymptotic formula

I(λ) ∼
∑
σ∈Σ

exp
(
λg(zσ)

) √2π√
λ

f(zσ)√
− g′′(zσ)

. (1.41)

In the following, we give a plot in Fig. 1.3 of representative steepest descent/ascent curves for an

integral of the form

I(λ, a) =

∫
C

exp
(
− λW(z, a)

)
dz, W(z, a) =

z2

2
− a z

4

4
. (1.42)

Here a is a parameter that we can vary, even to complex values, and we can visualise how the descent

curves geometry changes. The saddles solveW ′(z, a) = 0, i.e.

z0 = 0, z± = ± a−1/2,

with the branch of a−1/2 chosen consistently (principal branch unless stated). The leading contributions

are of the form exp
(
− λW(zσ, a)

)
, and the dominant saddle(s) are those that minimise ReW(zσ, a).
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Varying arg a steers which saddle minimises ReW and how the contours attach. We illustrate two

examples below; a more extensive gallery of method of steepest descent/ascent curves is provided in A.

(a) a = exp(0.12iπ). (b) a = exp(1.2iπ).

Figure 1.3: MOSD curves for the model integral I(λ, a) =
∫
C
exp
(
− λW(z, a)

)
dz with

W(z, a) = 1
2
z2 − a 1

4
z4, shown for a = exp(0.12iπ) and a = exp(1.2iπ) (taking λ ∈ R>0). The

background colour indicates the “height function” ReW(z, a), and the thin black curves are contour
lines of ReW . The thick blue curves are steepest descent trajectories: along them ImW is constant
and ReW increases monotonically away from a saddle (as indicated by the shading/contours). The
dashed green curves are the corresponding steepest ascent (dual) trajectories. The black dot marks
the saddle z0 = 0, and the red dots mark the pair z± = ±a−1/2 (principal branch).

1.2.3.2 Applying MOSD to the Onsager–Machlup functional

With the MOSD framework established, we now extend steepest descent reasoning to the stochastic

path integral. In the weak-noise regime D → 0+, paths are weighted by an Onsager–Machlup action

as in (1.10),

P [x] ∝ exp
(
− 1

4D
S[x]

)
, S[x] :=

∫ +T /2

−T /2

(
ẋ(t) + V ′(x(t))

)2
dt, (Itô interpretation). (1.43)
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Here P [x] denotes the (unnormalised) weight assigned to an individual trajectory x(·) in the path in-

tegral, while P (x, t) denotes the probability density in x-space as in (1.8). In the one-dimensional

MOSD template (1.28), the exponent takes the form λg with λ large. In the present setting the same

role is played by λ 7→ (4D)−1 and g 7→ −S. Thus, as D → 0+, trajectories with larger S[x] are

exponentially suppressed, and the dominant contribution comes from a neighbourhood of a stationary

point of S. This is the functional analogue of expanding g(z) about its saddle points.

We therefore identify the most probable trajectory xcl(t) by imposing stationarity δS/δx = 0 with fixed

endpoints. This parallels the saddle condition g′(zσ) = 0, except that the saddle is now an entire path.

Under the Itô convention the variational calculus yields the D-dependent Euler–Lagrange equation,

xcl(t) solves ẍ = V ′V ′′ −DV ′′′, (1.44)

with the D-dependence coming from the Itô chain rule in the variation (see § 1.2.2.2).

To quantify fluctuations about xcl, write x(t) = xcl(t) + y(t) and expand S to quadratic order,

S[x] = S[xcl] +
1

2
⟨y | M̂σ y⟩ + O(y3), (1.45)

where M̂σ is the linear operator that governs small deviations y about xcl. This is directly analogous to

retaining the quadratic term g′′(zσ)(z − zσ)2/2 in the one-dimensional MOSD template (see § 1.2.3).

The local contribution from neighbouring paths therefore reduces to a Gaussian functional integral

governed by the spectrum of M̂σ (see (2.61) for the explicit form).

The quadratic form ⟨y | M̂σ y⟩ encodes the local curvature of S at the stationary path, and plays the role

of the Hessian g′′(zσ) in the finite-dimensional template. In particular, the eigenfunctions of M̂σ pick

out distinguished fluctuation directions in path space, while each eigenvalue controls how rapidly S

increases (or decreases) when we move away from xcl along that direction. Steepest descent logic then

says that the relevant local integration directions are those along which the quadratic approximation has

strictly positive damping in the exponent, so that the fluctuation integral is genuinely Gaussian. This is
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the path integral version of choosing, near zσ, the descent direction κ so that g′′(zσ)κ2 ∈ R<0.

Expanding y in eigenmodes of M̂σ reduces the functional Gaussian to a product of ordinary one-

dimensional Gaussians, one for each mode. Up to overall normalisation, each non-zero eigenvalue

contributes an inverse square-root factor, and their product yields the determinant,

∫
Dy exp

(
− 1

8D
⟨y | M̂σ y⟩

)
∝ 1√

det′ M̂σ

, (1.46)

where the prime indicates omission of exact zero modes. An exact zero mode signals a flat direction

of S generated by a continuous symmetry. For instance, an isolated instanton (see § 1.2.4) can be

translated in time without altering S, resulting in a vanishing eigenvalue along ∂tcxcl. Rather than

yielding a divergent Gaussian, the method of steepest descents instructs us to treat this direction by

introducing the collective coordinate tc and its Jacobian Jtc (see § 1.2.4 and § 2.115).

In addition to exact symmetries, one often encounters nearly flat directions, which we call quasi-zero

modes. Geometrically, these correspond to shallow valleys of S for which the quadratic approximation

does not reliably localise the integral. In such cases, the correct leading contribution is obtained by

keeping the corresponding one-dimensional integral explicit and evaluating it along the appropriate

descent contour. In this thesis, the contour for the soft coordinate θ is fixed by the associated Lefschetz

thimble. See § 1.2.7 for an overview and § 3.6 for the detailed implementation.

With this interpretation, the sector contribution is seen to take the form

Pσ ≃ exp
(
− S[xcl]/(4D)

)
× 1√

det′ M̂σ

×
(

collective coordinate factor
)
×
(

soft-mode integral
)
.

(1.47)

More explicitly, after separating the time-translation collective coordinate tc and a single soft coordinate

θ, one obtains the template form

Pσ ∝ exp
(
−S[xcl]/(4D)

)
× 1√

det′ M̂σ

×
(
Jtc

∫
dtc

)
×
(∫

Jθ

dθ exp
(
−Sint(θ)/(4D)

))
, (1.48)
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where Jtc is the collective coordinate Jacobian (derived in § 2.1.9) and Jθ denotes the steepest descent

contour for θ (see § 3.6). In words, the neighbourhood of a saddle path factorises into stiff directions

that are genuinely Gaussian, exact symmetry directions handled by collective coordinates, and softly

lifted directions retained as explicit steepest descent integrals on their thimbles.

1.2.3.3 Semiclassical contributions in the context of the stochastic path integral

To clarify terminology, we give a brief recap of perturbative versus non-perturbative contributions and

of the term (semi)classical. We use this language by analogy with semiclassical evaluations of quantum-

mechanical path integrals, with the weak-noise limit D → 0 playing the role of the semiclassical

parameter. ThroughoutD > 0; thus weak-noise meansD → 0+, although we often omit the superscript

+ when no confusion can arise.

In the stochastic setting, dominant contributions arise from stationary (saddle) paths xcl of the Onsager–

Machlup action (i.e. extremals satisfying δS/δx = 0 with the relevant boundary conditions), which we

will refer to as classical paths.

A classical configuration xcl contributes a term of the schematic form

A(D) ∼ exp
(
− S[xcl]

4D

)
× F(D), (1.49)

where F(D) is the Gaussian (perturbative) prefactor obtained from the fluctuation operator about xcl.

The exponential factor is non-perturbative3, while F(D) admits a (typically divergent but asymptotic)

expansion in powers of D.

In our setting:

• Exponent (non–perturbative). The Arrhenius factor exp(−S[xcl]/(4D)).

3Since it scales like exp(−A/(4D)), its Taylor expansion at D = 0 vanishes term-by-term, e.g. exp(−1/(4D)) ∼
0 + 0 + 0 + · · ·. This reflects an essential singularity at D = 0, so such terms are invisible to ordinary power-series
perturbation theory.
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• Prefactor (perturbative). Writing x = xcl + y, the quadratic fluctuation operator M̂ yields, up to

overall normalisation conventions,

F(D) ∝ Vol(EZM)× 1√
det′ M̂

×
(
1 + c1D + c2D

2 + · · ·
)
,

where det′ omits exact zero modes (handled by collective coordinates), and the higher-order

terms arise from cubic and higher fluctuations.

1.2.4 Introduction to instantons

Instantons [I] and anti-instantons [Ī] are distinguished classical solutions that interpolate smoothly

between neighbouring critical points of the effective potential in the limit T → ∞. They are localised

in time, and as T → ∞ they arise on the zero-energy level (finite-T connecting trajectories have

H > 0, with the instanton recovered as H → 0). Their derivatives decay exponentially as t→ ±∞.

Consider an archetypal model with a symmetric, inverted double-well effective potential as in Fig. 1.4.

Here the effective potential is U(x) = −
[
V ′(x)

]2 ≤ 0, so its maxima (at critical points of V ) sit at zero

height. We seek the classical trajectory connecting the two maxima at ±λ, namely a path that starts at

x(−T /2) = −λ and ends at x(+T /2) = +λ, taking T → ∞ at the end.
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x

U(x)

−λ +λx = 0

t

Figure 1.4: Effective potential with a symmetric inverted double-well structure. Maxima at ±λ (green)
are at zero height since U = −[V ′]2 ≤ 0. Dashed red curves show the local inverted harmonic
approximation. The cyan curve with arrows illustrates the instanton connecting the maxima; arrows
indicate increasing time along xI(t).

By convention, a rightward transition path with xI(t) strictly increasing in time is called an instan-

ton [148]; an anti-instanton is obtained by time reversal. In the zero-energy limit (H → 0), the first

integral H = ẋ2 + U(x) (details can be found in (2.51)) reduces to the separable gradient form

ẋI(t) =
√
−U
(
xI(t)

)
=
∣∣V ′(xI(t))∣∣ (H → 0),

where the sign is chosen so that ẋI > 0 for the instanton (and ẋĪ = −|V ′| for the anti-instanton [24]).

Under this prescription, the sign in (2.51) is fixed and for instantons we take the positive branch,

yielding ∫ +λ

−λ

dxI√
H − U(xI)

= + T . (1.50)

Since U(±λ) = 0, one has H = ẋ(−T /2)2, so a finite-time connecting trajectory requires H >

0. If H = 0 the connecting time diverges logarithmically because U(xI) → 0 near the endpoints.
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Quantitatively, letting ω± := |V ′′(±λ)|, one finds the large–T behaviour

T ∼
( 1

ω−
+

1

ω+

)
log

C√
H

⇐⇒ H ∼ C ′ exp
(
− 2 T

1
ω−

+ 1
ω+

)
, (1.51)

for constants C,C ′ > 0 set by the inner (core) region. In the symmetric case ω− = ω+ = ω this reduces

to the simplified scaling H ∼ exp(−ω T ) stated earlier.

Physically, the instanton spends most of its time near the critical points, with the nontrivial excursion

occurring over a short interval ∆t around x ≈ 0. The remainder of T is spent lingering near ±λ in

the inverted harmonic regions, and the term “instanton” reflects that the transition happens within an

“instant” relative to the total time T .
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0.5

1.0

x
(t

)

−
λ

+
λ

Width ∆t

Instanton Profile

xI(t)∼ tanh(t)

Figure 1.5: Instanton profile xI(t), interpolating smoothly between ±λ. The transition region ∆t is
localised relative to the full time interval.

In specific models the instanton profile can be written in closed form. As an aside, for the quartic

double-well in Euclidean quantum mechanics,

Veff(x) =
ω2

4

(
x2 − λ2

)2
, (1.52)
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the H = 0 instanton solving ẋ =
√
2Veff(x)

4 is given by the familiar hyperbolic tangent [61, 190],

xI(t) = λ tanh
(ωλ√

2
(t− tc)

)
, (1.53)

illustrating the sharply localised core. In our stochastic setting, the instanton is likewise monotone and

localised, and for symmetric wells, its core is well approximated by a tanh profile.

Since the classical equations are invariant under time translation, any translated instanton xI(t − tc)

is also a valid solution for arbitrary tc as T → ∞. These form a continuous one-parameter family of

degenerate saddles (“critical points at infinity”), with tc specifying the instant of transition.

This time-translation freedom implies that the fluctuation operator M̂ possesses a zero solution we call

the exact zero mode EZM(t) ∝ ẋcl(t) of the homogeneous ODE,

M̂ ẋcl = 0, ẋcl ̸= 0.

On a finite interval with Dirichlet boundary conditions, this does not, in general, satisfy the endpoint

conditions, so there is no Dirichlet zero eigenvalue and the determinant is nonzero; the exact zero mode

emerges in the T → ∞ limit. The flat direction it generates (in tc) is handled using the method of

collective coordinates § 2.1.9.

1.2.5 Bounce solutions and metastable decay in quantum mechanics

This subsection is purely motivational; the stochastic bounce configurations studied in this thesis are

defined later from the Onsager–Machlup functional rather than from a Wick-rotated quantum action.

We briefly recall the semiclassical picture of quantum tunnelling, where the Euclidean path integral

is dominated by non-perturbative saddle point configurations known as bounce solutions, originally

4The factor
√
2 is specific to the standard Euclidean quantum-mechanical normalisation SE =

∫
( 12 ẋ

2+V ) dt, for which
the zero-energy condition gives ẋ =

√
2V . In the stochastic setting used in this thesis, the first integral is H = ẋ2 + U(x)

with U = −[V ′]2, so the corresponding zero-energy limit yields ẋ =
√
−U = |V ′|.
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introduced by Coleman [38, 39]. In the Euclidean formulation of quantum mechanics, tunnelling is

recast as classical motion in the inverted potential −V (x), transforming the problem into one of a

particle rolling on a hill. For definiteness, one may take the cubic model V (x) = −(1/3)x3 + a2x,

whose critical points lie at x = ±a and a full analysis of this potential is given in Chapter 3. In Fig. 1.6

we set a = 1 for illustration and observe that the inversion swaps the roles of maxima and minima.

V (x)

x

−1

+1

−V (x)

x

−1

+1

Figure 1.6: The cubic potential V (x) = −(1/3)x3 + x (left) and its inverted counterpart −V (x)
(right). Inversion swaps the roles of maxima and minima; the marked points are the critical points
x = ±1.

A quantum bounce corresponds to a classical trajectory in−V (x) that starts and ends at the same point

xfv (the false vacuum, i.e. a local minimum of V , equivalently a local maximum of −V ), but executes

a finite excursion to a turning point xT in between. A schematic xb(t) profile is shown in Fig. 1.7.
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Figure 1.7: A schematic of the quantum bounce in the inverted potential −V (x). The solution is
sharply localised in Euclidean time, with width set by the inverse harmonic frequency about xfv, and
reflects rapidly at the turning point.

The particle spends most of its Euclidean time near xfv, then briefly traverses to the turning point xT ,

reflects, and returns. Accordingly, bounce trajectories satisfy the boundary conditions

xb(±∞) = xfv, xb(0) = xT . (1.54)

In many models, bounce solutions can often be written in terms of elliptic functions [186], and they

contribute to the semiclassical expansion through non-perturbative terms of order ∼ exp(−Sbounce/ℏ).

Although bounces are sometimes loosely referred to as “instantons,” they are technically distinct. An

instanton interpolates between two distinct vacua (different maxima of −V ), whereas a bounce is a

closed excursion based at a single false vacuum and encodes metastable decay.

Bounce solutions play a central role across many areas of theoretical physics, from false vacuum de-

cay in cosmology to metastability in condensed matter and tunnelling phenomena in quantum field

theory [83, 112, 113, 127, 131, 160, 177–180].
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As we now transition to the Itô stochastic setting, key differences emerge. First, the relevant landscape

governing saddle trajectories is no longer the inverted physical potential −V . Rather, it is the effective

potential U(x) induced by the Onsager–Machlup functional (cf. § 1.2.2.2), which in general differs

qualitatively from a simple inversion and depends on V (and, in the Itô convention, on D). Second, the

stochastic analogue of a bounce is not a sharply reflecting excursion with a time scale set solely by the

local harmonic frequency. Instead, the relevant saddle is typically an instanton-anti-instanton composite

sector [IĪ], whose separation is controlled by a soft (quasi-zero) mode and can lead to logarithmic time

scales. Finally, in the weak-noise Onsager–Machlup setting, this composite saddle may lie off the real

contour, so complex bounces must be included.

1.2.6 Necessity of complexification

1.2.6.1 Analogy with complex classical trajectories

In conventional classical mechanics, trajectories live on the real phase space (q(t), p(t)) ∈ R2. As

emphasised by Bender and collaborators (e.g. complexified classical dynamics [3, 17–20]), analytic

continuation of (q, p) into C2 uncovers a rich taxonomy of trajectories that persist even where real

motion is classically forbidden.

As a simple illustration, consider the harmonic oscillator

H(p, q) = p2 + q2, q̇ = 2p, ṗ = −2q, (1.55)

and promote q, p to complex variables q = r+ is and p = u+ iv, with r, s, u, v ∈ R. Prescribing a real

energy E ∈ R, conservation ofH gives the complex energy shell

E = p2 + q2 = (u2 − v2) + (r2 − s2) + 2i(uv + rs).
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To obtain the one-parameter families plotted in Fig. 1.8, we take the initial position on the real axis,

r(0) = a, s(0) = 0, u(0) = 0, (1.56)

so that q(0) = a ∈ R and the initial velocity q̇(0) = 2p(0) is purely imaginary. The condition that the

conserved energy equals E then fixes the remaining component of the initial momentum,

E = r(0)2 − v(0)2 =⇒ v(0) = ±
√
a2 − E, (1.57)

which is real provided a2 ≥ E. The resulting orbit is an ellipse in the q-plane,

q(t) = a cos(2t) + i
√
a2 − E sin(2t), (1.58)

so for E > 0 the trajectories intersect the real axis orthogonally (at crossings Im q(t) = 0 one has

sin(2t) = 0, hence p(t) = i
√
a2 − E cos(2t), so q̇(t) = 2p(t) is vertical), while for E < 0 there is no

real phase space motion on the energy shell (one always has p /∈ R, even when q ∈ R), although the

complex orbit remains smooth.
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Figure 1.8: Complex trajectories of the harmonic oscillator in the q-plane generated from the initial
data (1.56) with v(0) fixed by (1.57).
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1.2.6.2 Stochastic analogue and persistence of complex bounces beyond the real bounce regime

The same complexification philosophy underpins our stochastic path integral setting. In the Itô Onsager–

Machlup formulation, the weak-noise landscape relevant for saddle analysis is the effective potential,

U(z) = −
(
V ′(z)

)2
+ 2DV ′′(z), (1.59)

and saddle trajectories satisfy the (Itô-tilted) Euler–Lagrange equation

z̈ = V ′(z)V ′′(z) − DV ′′′(z). (1.60)

For the cubic potential V (x) = −x3

3
+ x (i.e. a = 1 in the model studied rigorously in Chapter 3),

U(x) = −
(
x2 − 1

)2 − 4Dx, (1.61)

so the Itô tilt 2DV ′′ deforms U asD increases. The real critical points of U, which control the existence

of a real [IĪ] bounce on the real contour, satisfy U′(x) = 0 ⇐⇒ x3 − x +D = 0. For 0 < D < Dc

this equation has three real roots, two of which form the barrier pair relevant to the real bounce, and

these coalesce at Dc =
2

3
√
3
≈ 0.385 in a saddle node bifurcation; for D > Dc the pair disappears.
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Figure 1.9: Itô tilt of the effective potential and disappearance of the real bounce.
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BeyondDc the real critical point pair is absent, so the turning point (critical point) condition required to

realise a real instanton-anti-instanton ([IĪ]) bounce no longer has the necessary real solutions. Equiv-

alently, the real bounce saddle xrb ceases to exist as a real trajectory for D > Dc (hence S[xrb] is

not defined as a real-saddle action beyond Dc). Under complexification, however, the same coalescing

pair continues as a complex-conjugate pair, and the stochastic complex bounce persists for D > Dc.

Accordingly, the complex bounce action S[zcb] remains well-defined (and analytic in D) far beyond

the real bounce regime, and its contribution is captured by deforming the path integral contour to the

appropriate Lefschetz thimble.

1.2.7 Lefschetz thimbles and contour selection

For background on Picard–Lefschetz theory as a method to select convergent integration cycles in

oscillatory/complex integrals, we refer to Witten’s formulation in quantum mechanics [184] and the

AGV text [7]; representative applications in quantum field theory include [15, 71].

On the real contour, the [IĪ] sectors contain a soft (quasi-zero) direction, and the associated one-

dimensional integral is poorly defined as a Gaussian approximation. We show in Chapters 3 and 4 that

the complexification under Picard–Lefschetz theory selects the correct contour, known as the Lefschetz

thimble. The path integral measure factorises into an exact symmetry direction (the EZM), a single soft

direction (the QZM), and the remaining stable modes, which are genuinely Gaussian:

Dz ∼ dtc × dθ ×
∏
n∈hard

dan, (EZM) × (QZM) × (stable modes). (1.62)

A complete account of Lefschetz thimbles and the role of PL theory is given in § 3.6. Intuitively, a

thimble is the geometric set spanned by gradient flow lines of a Morse function. We adopt the upward

flow for h = Re(S/(4D)), that is,

∂z(t, u)

∂u
= +

δ

δz(t, u)

(S[z]
4D

)
, z(−T /2, u) = xi, z(+T /2, u) = xf , (1.63)
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where u is the auxiliary flow time parameter (distinct from the physical time t). Along solutions of

(1.63), ImS is constant, and h is non-decreasing, so modulus exp(−S/(4D)) is exponentially damped

away from the saddle.

The thimble associated to a saddle trajectory zσ (an extremal of the action) is the collection of points

whose backward flow time 5 is asymptotic to zσ,

Jσ :=
{
z(·, 0) : [−T /2,+T /2]→ C

∣∣ z(t, u) solves (1.63) and lim
u→−∞

z(t, u) = zσ(t)
}
. (1.64)

Along Jσ, ImS is constant (equal to ImS[zσ]), while h = Re(S/(4D)) increases away from the saddle

along the integration direction, ensuring convergence of exp(−S/(4D)). A heuristic visualisation of

the thimble is shown in Fig. 1.10.

Jσ

zσ

h = Re(S/(4D)); along each trajectory ImS is constant.

Figure 1.10: The thimble is the manifold of the flow of h = Re(S/(4D)); ImS is constant and h
increases away from the saddle for increasing u.

Fig. 1.11 summarises, diagrammatically, the central mechanism used throughout this thesis. Picard–

Lefschetz theory isolates the QZM integral and, crucially, prescribes its steepest descent evaluation

along a refined contour fixed by the thimble (hence fixing the sign/phase of the contribution). For [IĪ]

configurations the QZM contour is necessarily complex and one finds

Jθ = R± iπ,
5Equivalently, one may use the downward flow and impose limu→+∞ z(t, u) = zσ(t).
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(a) Local thimble splitting near zσ

zσ
QZM direction θ

EZM (e.g. translation)Gaussian directions

thimble patch Jσ

QZM line θ
EZM
Gaussian modes

(b) Slice: 1D QZM contour Jθ in the θ-plane
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Im θ

+π
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log(Aω3/D)

Jθ = R+ iπ

Jθ = R− iπ

Figure 1.11: Thimble Jσ near a complex saddle zσ and the 1D QZM slice in the θ-plane. The thimble
splits as EZM direction × QZM line × stable Gaussians. In the θ-plane, the contributing contours are
shifted from the positive half line (blue) and are defined by the lines Jθ = R± iπ. The critical point
(logarithm term represents the real part) sits on the complex rays (green circles).

which is the familiar BZJ-type ±iπ refinement (see § 1.2.8). By contrast, for [II] configurations, the

correct contour stays on the real axis,

Jθ = R,

that is, the whole real line rather than the naive half-ray. An alternative approach to complexified

integrals is complex Langevin dynamics; for a discussion of its merits and limitations in this context,

see, e.g. [1]. In this thesis, we use Picard–Lefschetz geometry to define the integration cycle.

(b) Slice: 1D QZM contour Jθ in the θ-plane for [II] configurations

Re θ

Im θ

log(Aω3/D)
Jθ = R

Figure 1.12: The improved contour for [II] pairs (red line). Instead of the half line R+ (blue line), the
correct contour is the full real line. The critical point is a purely real logarithm (green circle).
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1.2.8 QZM toy model and geometric sign fixing (BZJ versus thimble)

To isolate how thimbles fix ambiguous phases, consider a toy integral modelling the instanton–anti–

instanton quasi-zero mode (QZM), inspired by Dunne et al. [14]:

IQZM(D;A) = exp
(
− 2SI

4D

)∫ ∞

0

dθ
[
exp
( A

4D
e−ωθ

)
− 1
]
, 0 < A < 2SI , ω > 0, (1.65)

where the subtraction removes the large–θ plateau (two well–separated events). With u = e−ωθ (dθ =

−du/(ωu)),

IQZM(D;A) =
e−2SI/(4D)

ω

∫ 1

0

du

u

(
eau − 1

)
, a :=

A

4D
. (1.66)

Here Ei denotes the exponential integral, γE the Euler–Mascheroni constant, and Γ(0, ·) the incomplete

gamma function; see e.g. [132]. Using
∫ 1

0

eau − 1

u
du = Ei(a)− γE − ln a,

IQZM(D;A) =
exp
(
−2SI

4D

)
ω

[
Ei(a)− γE − ln a

]
, a =

A

4D
> 0. (1.67)

This exact expression is real. Working in the weak-noise limit D → 0+ (equivalently a → ∞), use

Ei(a) ∼ ea

a

(
1 +

1

a
+

2!

a2
+ · · ·

)
to obtain

IQZM(D;A) =
exp
(
−2SI

4D

)
ω

[ea
a

(
1 +O

(1
a

))
− γE − ln a

]
=

exp
(
−2SI

4D

)
ω

[
exp

(
A

4D

)
4D

A

(
1 +O

(1
a

))
− γE − ln a

]
.

(1.68)

Thus, the integral is convergent but, for a ≫ 1, is dominated by the endpoint θ = 0; this is precisely

where the physical [IĪ] sector is least reliable. Instead, one wants the separation to be large (θ ≫ 1),

which motivates the continuation method of Bogomolny–Zinn–Justin [24]. This toy model reveals a

multivalued phase and a contribution that lacks geometric interpretation. We contrast this with thimble

integration, which reproduces the same logarithmic structure and phase with a geometric origin, without

any contribution from an ascent direction.
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Route A (BZJ on the real axis). Continue to the repulsive interaction a → −|a| (equivalent to D →

−D):

∫ 1

0

e−|a|u − 1

u
du = −Γ(0, |a|)− γE − ln |a| ∈ R,

= − e
−|a|

|a|

(
1 +O

(
1

|a|

))
− γE − ln |a|,

(1.69)

which follows from Γ(0, a) = −Ei(−a). Rotating back across the cut, the logarithm picks up a branch

jump and one obtains

IBZJ
QZM(D;A) =

e−2SI/(4D)

ω

[
− γE − ln

A

4D
∓ iπ + O

(
e−A/(4D)

)]
. (1.70)

We use the principal branch of ln with a cut along R−; under D → e±iπD one has − ln(−A/(4D)) 7→

− ln(A/(4D)) ∓ iπ. The neglected term is exponentially small on the repulsive sheet; after returning

to ReD > 0 it corresponds to an ascent direction contribution, so discarding it must ultimately be

justified by the contour rather than by size alone (see Chapter 2 for a careful discussion).

Route B (Lefschetz thimble). As shown in Chapters 3 and 4, integrating over the appropriate Lefschetz

contour reproduces the BZJ logarithm and phase, with a geometric origin for the ∓iπ and without any

divergent terms.

1.3 Kramers’ problem, validation and limits

To benchmark the weak-noise picture and to indicate its limits, we compare Kramers’ approximation

with (i) the exact one-dimensional mean first passage time (MFPT) formula (derived fully in § 2.1.3.1)

and (ii) direct simulations of the overdamped Langevin dynamics. Throughout this section, we take the

quartic potential

V (x) = x4 − 4x3 + 4x2 − 0.6x+ 1.6, V ′(x) = 4x3 − 12x2 + 8x− 0.6, (1.71)
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and simulate the SDE given in (1.4) by the Euler–Maruyama scheme (time step ∆t)

xn+1 = xn −∆t V ′(xn) +
√
2D∆t ξn, ξn ∼ N (0, 1). (1.72)

We initialise each trajectory at the metastable well x0 = a with a = 0.0857027 and define the escape

time τ as the first hitting time of the barrier, b = 0.846374, τ := inf{t ≥ 0 : x(t) > b}. For each D,

the numerical escape rate is estimated as Γnum ≈ 1/⟨τ⟩ from an ensemble of independent paths.6

Figure 1.13: Escape rate Γ from simulation versus the exact MFPT rate and Kramers’ approximation
for the potential (1.71), with escape defined by first crossing of b. The simulation uses
Euler–Maruyama (1.72) with ∆t = 0.01, Nsteps = 105, and N = 500 independent trajectories per D.
For this parameter set we observe good agreement up to D ≈ 0.30, beyond which the Kramers
approximation deviates markedly.

In the weak-noise regime (D small compared with the barrier scale), Kramers’ estimate tracks both the

exact rate and the simulation data. This is the regime in which rare, localised barrier-crossing events

dominate escape, and the instanton picture (together with perturbative fluctuations) is quantitatively

accurate. As D increases, the Kramers approximation becomes visibly too shallow on the Arrhenius
6In the simulations used to produce Fig. 1.13, paths that do not cross b by the final time Tmax = Nsteps∆t are discarded;

Tmax is chosen sufficiently large that, for the displayed noise range, essentially all paths escape.
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plot, signalling the breakdown of the approximation.
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(a) Sample escape paths (D= 0.15, ∆t= 0.01, N= 5)
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Figure 1.14: Representative Euler–Maruyama sample paths x(t) for the dynamics in the potential
(1.71), started at x(0) = a and stopped upon first crossing of b (dashed line). Left: weak-noise
(D = 0.2) where trajectories typically spend long times fluctuating near the metastable well before a
rare escape. Right: larger noise (D = 0.4) where escapes occur more readily.

For broader perspective on Kramers’ law, its domain of validity, and generalisations, see the review by

Hänggi–Talkner–Borkovec [85] and the survey by Berglund [21].

1.4 Structure of the thesis

A brief roadmap is as follows.

• Chapter 1. Introduction and overview: complexification, steepest descents, BZJ versus thimbles,

and the minimal stochastic background needed for the sequel.

• Chapter 2. Technical foundations: the Onsager–Machlup path integral (with Itô/Stratonovich

conventions), fluctuation operators, exact zero modes and collective coordinates. We also derive
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a master formula for the functional determinant, in a form that matches the standard quantum-

mechanical instanton prefactors (cf. [14]).

• Chapters 3 and 4. Picard–Lefschetz framework for stochastic dynamics and its consequences for

escape. We construct new exact two-instanton saddles (real and complex bounces) and apply the

resulting thimble prescriptions to escape-rate computations in cubic and periodic (sine–Gordon)

models, recovering the correct Kramers prefactor within the complexified framework.

• Chapter 5. Summary and outlook: connections to non-equilibrium statistical mechanics and to

resurgence, together with a complex-analysis derivation of the universal −1 sign associated with

the complex bounce sector.
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Chapter 2

The stochastic path integral and escape-rate

theory

Chapter summary

This chapter reviews the work of A.J. McKane and H.C. Luckock [117]. We provide a detailed commen-
tary on their results working in the white-noise (Markovian) framework. Our focus is on thermally activated
escape processes involving Brownian particles evolving in a metastable potential V (x). We compute the
associated escape rate ΓK across a potential barrier using a perturbative procedure inspired by Feynman’s
semiclassical path integral formulation of quantum mechanics (with the small parameter 4D playing the role
of ℏ→ 0).

The leading-order term in this expansion is obtained by finding Hamilton’s principal function. The next-to-
leading-order (NLO) correction accounts for Gaussian fluctuations around the classical path and is encoded
in the prefactor, represented by a fluctuation determinant. The determinant is complicated by the presence
of exact and quasi-zero modes, arising from continuous symmetries and nearly flat directions in the action,
respectively. To treat these, we isolate their contributions from the fluctuation determinant and introduce a
master formula to compute this determinant systematically. The (exact) zero modes are handled using the
method of collective coordinates.

Quasi-zero modes associated with instanton-anti-instanton [IĪ] sectors result from the intrinsic mutual at-
traction between the constituent instantons, captured by an interaction action Sint. The contribution of [IĪ]
pairs becomes essential in systems that fail to equilibrate, where fluctuations around metastable states persist
and nontrivial multi-instanton effects are non-negligible. The sign of Sint dictates the convergence of the
corresponding quasi-zero mode integral IQZM. Although this integral is well defined for repulsive instanton-
instanton [II] configurations, it diverges in the attractive [IĪ] case unless an analytic continuation D → −D
is performed. This step, the Bogomolny–Zinn–Justin (BZJ) prescription, serves as the conceptual motivation
for the broader framework of this thesis. The chapter concludes with a discussion of the necessity and inter-
pretation of this analytic continuation of the noise.
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2.1 Path integral formulation and global preliminaries

2.1.1 Bistable potential and escape problem

xα xβ xc

Eb

ωα

ωβ

ωc

ΓK

x

V (x)

Figure 2.1: A canonical bistable potential V (x) with three critical points: the metastable minimum
xα, the barrier top xβ , and the global minimum xc. Forward escape ΓK proceeds from xα to xc via xβ .
Dashed parabolas indicate local quadratic approximations with small-oscillation frequencies ωi. The
barrier height is Eb = V (xβ)− V (xα); blue/orange bands indicate pre- and post-barrier regions.

We begin with a prototypical bistable potential profile [174], as illustrated in Fig. 2.1, characterised by

a metastable well at xα, a barrier at xβ , and a global minimum at xc. The specific analytic form of the

potential is unimportant; we require only that it be at least thrice differentiable, V (x) ∈ C3, to ensure

smoothness and avoid singularities in the formalism.

Throughout, we work in the weak-noise limit D → 0, assuming that the noise strength D is small and

constant. The key scale separation is D ≪ Eb, ensuring that thermally activated barrier-crossing events

are exponentially suppressed (rare events) and dominated by saddle-point configurations in path space.

In quantum field theory, bistable configurations model metastable vacuum decay via instanton-mediated

tunnelling processes [45,68,97]. In the stochastic context, our aim is to calculate the thermally activated
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escape rate of a Brownian particle that begins near the metastable well xα and surmounts the barrier at

xβ .

We are interested in the instanton sectors (see § 1.2.4 for more details), where composite (anti)instanton

configurations interpolate between critical points. A stochastic trajectory following the sequence

xα −→ xβ −→ xc (2.1)

is most naturally viewed as a two-leg ([II]) configuration: an uphill instanton from xα to xβ , followed

by a downhill relaxation to xc. In the Onsager–Machlup form

S[x] =

∫ t1

t0

(
ẋ+ V ′(x)

)2
dt, (2.2)

the downhill leg contributes zero pointwise (since ẋ = −V ′(x) there), so the Arrhenius exponent is set

entirely by the uphill instanton. If one instead rewrites

S[x] = 2∆V +

∫ t1

t0

(
ẋ2 + V ′(x)2

)
dt, ∆V := V

(
x(t1)

)
− V

(
x(t0)

)
, (2.3)

then each leg carries a non-zero bulk cost; however, on the full interval xα→xc the path-independent

term 2∆V cancels the downhill bulk exactly, leaving the same net action. Thus, we will refer to

xα→xβ→xc as a two-leg [II] event. In contrast, the (homoclinic) orbit

xα −→ xβ −→ xα (2.4)

describes an instanton-anti-instanton configuration [IĪ], corresponding to a cyclical trajectory that re-

turns to where it started. As in quantum mechanics, instantons and anti-instantons interact: repulsively

in [II] configurations and attractively in [IĪ] configurations. Crucially, these interactions occur along

the time direction rather than the spatial direction.

The attractive interaction in the [IĪ] sector renders the quasi-zero mode separation integral non-convergent
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in the naive Gaussian approximation, posing a non-trivial challenge for solving the stochastic path inte-

gral in the weak-noise limit. The usual fix is the Bogomolny–Zinn–Justin (BZJ) analytic continuation

of the noise D → −D. This motivates our later use of complex saddles and thimble contours. This

chapter presents a detailed, self-contained derivation of the escape rate in the weak-noise limit, begin-

ning with a formal introduction of the path integral via the Onsager–Machlup action. We follow [117]

and set the stage for subsequent developments that involve exact two-instanton solutions and complex-

ified saddles. This chapter contains original work in § 2.2 where we present a new master formula for

computing fluctuation determinants with zero modes removed.

2.1.2 Onsager–Machlup functional integral

The probability density functional for a given realisation of Gaussian white noise ξ(t) defined over the

time interval [t0, t1] is formally expressed as

P [ξ(t)] ∝ exp

(
− 1

4D

∫ t1

t0

dt ξ(t)2
)
. (2.5)

Here, ξ(t) is a Gaussian stochastic process characterised by the mean and covariance [74, 151, 173]

⟨ξ(t)⟩ = 0, ⟨ξ(t)ξ(t′)⟩ = 2D δ(t− t′), (2.6)

where ⟨·⟩ denotes expectation and D > 0 is the noise strength [118, 135]. The proportionality symbol

in (2.5) arises because the Gaussian white-noise measure (the Wiener measure) requires appropriate

normalisation; for a rigorous treatment, see Appendix B.1 or Chapter 2 of Wio [182]. The white-noise

idealisation corresponds to a noise process with vanishing correlation time. However, many physical

systems exhibit coloured-noise correlations, leading to non-Markovian dynamics, as formulated in [28,

117, 123]; see also [139].

Consider the overdamped Langevin dynamics of a Brownian particle moving in a one-dimensional
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potential V : R → R, subject to stochastic perturbations arising from microscopic collisions. The

stochastic differential equation (SDE) governing the particle position Xt is

dXt = −V ′(Xt) dt+
√
2D dWt, (2.7)

where Wt is a Wiener process [74,173]. We work in the overdamped regime, assuming that the inertial

term mẍ is negligible compared to frictional damping, that is, |mẍ| ≪ |ζẋ|. Here m is the mass of

the particle and ζ the friction coefficient, which we set to unity henceforth, as it only scales the overall

time.

Equivalently, one may express (2.7) as a Langevin equation,

ẋ(t) :=
dx(t)

dt
= −V ′(x(t)) + ξ(t), (2.8)

where the noise term ξ(t) is interpreted in the distributional sense as the time-derivative of the Wiener

process ( [133]),

ξ(t) :=
√
2D

dWt

dt
. (2.9)

For a fixed discretisation and initial condition, this defines a one-to-one mapping

ξ(t) 7→ x(t), (2.10)

whose Jacobian depends on the discretisation scheme (Itô vs. Stratonovich). Substituting ξ = ẋ+V ′(x)

into (2.5) yields the Onsager–Machlup weight for a single path x(t):

P [x(t)] ∝ JOM[x] exp

(
− 1

4D

∫ t1

t0

dt
(
ẋ(t) + V ′(x(t))

)2)
, (2.11)

where JOM[x] is the (scheme-dependent) Onsager–Machlup Jacobian factor [79, 109]1. We will adopt

a consistent convention (specified in Chapter 3) and keep JOM[x] explicit when needed. The func-

1The Jacobian factor strictly enters once we sum over all paths as done in (2.28).
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tional (2.11) exponentially penalises deviations from the deterministic (noise-free) relaxation path,

ẋ = −V ′(x). Before we continue with the path integral formalism, we derive the Kramers’ rate

probabilistically and then compare it with the path integral derivation of the rate.

2.1.3 Kramers’ rate from the exact MFPT formula

Suppose that the system evolves in the metastable potential of Fig. 2.1. We wish to compute the mean

escape rate from the basin of attraction of the local minimum x = xα over the potential barrier at

x = xβ > xα. Let ρ0(x0) be the probability distribution of initial positions supported in the basin

[xL, xβ], where xL < xα < xβ . The mean escape time averaged over this distribution is

⟨τ⟩ =
∫ xβ

xL

dx0 ρ0(x0) τ(x0), (2.12)

where τ(x0) is the mean first passage time (MFPT) for a particle starting at x0 to reach an absorbing

boundary at x = xβ , assuming a reflecting boundary at xL.

The exact MFPT satisfies the backward Fokker–Planck boundary-value problem [151]

D τ ′′(x)− V ′(x) τ ′(x) = −1, (2.13)

with boundary conditions

τ ′(xL) = 0 (reflecting), τ(xβ) = 0 (absorbing). (2.14)

Using the integrating factor µ(x) = exp(−V (x)/D) and integrating once from xL to x yields

τ ′(x) = − 1

D
exp
(V (x)

D

)∫ x

xL

dy exp
(
− V (y)

D

)
. (2.15)

Integrating τ ′ from x0 to xβ and enforcing τ(xβ) = 0 gives the standard double-integral formula [149,
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151]

τ(x0) =
1

D

∫ xβ

x0

dx exp
(V (x)

D

)∫ x

xL

dy exp
(
− V (y)

D

)
, (2.16)

valid for all D > 0. Averaging over the initial data with (2.12) then yields

⟨τ⟩ = 1

D

∫ xβ

xL

du eV (u)/D

∫ u

xL

dv e−V (v)/D

∫ u

xL

dx0 ρ0(x0), (2.17)

where we have exchanged the order of integration so that x0 ≤ u ≤ xβ . The corresponding escape rate

is ΓExact = 1/⟨τ⟩. We assume a delta-peaked initial condition ρ0(x0) = δ(x0 − xα), which reduces to

(2.16).

For the asymptotic evaluation below we take the absorbing boundary slightly beyond the barrier, x =

xb > xβ , so that the barrier top xβ controls the Laplace approximation and the standard overdamped

Kramers prefactor is recovered.

2.1.3.1 Recovering Kramers’ formula from the exact integral

Suppose that the particle begins precisely at the local minimum xα, and let the reflecting boundary

be located at x = xa < xα, while the absorbing boundary is placed slightly beyond the barrier, at

x = xb > xβ . For notational consistency with the exact formula above we may identify xa ≡ xL. Then

the mean first passage time (MFPT) to reach the absorbing boundary is given by the exact expression

τ(xα) =
1

D

∫ xb

xα

dx exp

(
V (x)

D

)∫ x

xa

dy exp

(
−V (y)

D

)
. (2.18)

This formula is valid for arbitrary noise strength D > 0, and encodes the precise solution to the

backward Fokker–Planck equation with reflecting and absorbing boundary conditions. It becomes es-

pecially suited for asymptotic evaluation in the weak-noise limit D ≪ Eb, where the barrier height is

Eb := V (xβ)− V (xα).

To extract the leading-order behaviour of the MFPT in this limit, we apply Laplace’s method to both
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the inner and outer integrals [43, 185], taking advantage of the fact that they are dominated by neigh-

bourhoods near the extremal points of V (x). The outer integral is sharply peaked near the barrier top

at x = xβ , a local maximum satisfying V ′(xβ) = 0, V ′′(xβ) < 0, while the well minimum at x = xα

satisfies V ′(xα) = 0, V ′′(xα) > 0. In each case the dominant contribution arises from a region of

width z ∼
√
D/|V ′′|, so the finite integration limits may be extended to ±∞ when evaluating the

leading-order Gaussian contributions, incurring only exponentially small errors.

We begin with the inner integral. Expanding V (y) about xα to quadratic order yields

V (y) ≈ V (xα) +
1

2
V ′′(xα) (y − xα)2. (2.19)

Substituting this into the integral and extending the limits to ±∞, we find

∫ x

xa

exp

(
−V (y)

D

)
dy ≈ exp

(
−V (xα)

D

)∫ +∞

−∞
exp

(
− 1

2D
V ′′(xα) z

2

)
dz, (2.20)

where we have made the substitution z = y − xα. Evaluating the resulting Gaussian integral gives

∫ x

xa

exp

(
−V (y)

D

)
dy ≈ exp

(
−V (xα)

D

)√
2πD

V ′′(xα)
. (2.21)

Next, we approximate the outer integral near x = xβ , expanding the potential as

V (x) ≈ V (xβ) +
1

2
V ′′(xβ) (x− xβ)2. (2.22)

Substituting this into the exponential and extending the limits to ±∞, we obtain

∫ xb

xα

exp

(
V (x)

D

)
dx ≈ exp

(
V (xβ)

D

)∫ +∞

−∞
exp

(
− 1

2D
|V ′′(xβ)| z2

)
dz, (2.23)
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where we used z = x− xβ . This yields

∫ xb

xα

exp

(
V (x)

D

)
dx ≈ exp

(
V (xβ)

D

)√
2πD

|V ′′(xβ)|
. (2.24)

Combining both approximations, the mean first passage time becomes

τ(xα) ≈
2π√

V ′′(xα) |V ′′(xβ)|
exp

(
V (xβ)− V (xα)

D

)
. (2.25)

Taking the reciprocal yields the classical Kramers escape rate [85, 101] in the overdamped regime:

ΓK =
1

τ(xα)
≈
√
V ′′(xα) |V ′′(xβ)|

2π
exp

(
−Eb
D

)
. (2.26)

This expression reproduces the leading-order prediction for thermally activated escape over a potential

barrier.

2.1.4 Path integral representation of the transition probability

We wish to compute the transition probability for a particle to be found at position x1 at time t1, given

that it starts at x0 at time t0. For a fixed discretisation scheme and initial condition x(t0) = x0, each

realisation of the noise ξ generates a unique stochastic trajectory via the Langevin equation (2.8). A

convenient starting point is the noise path integral, summing over those realisations that satisfy the

initial condition and enforcing the terminal condition by a Dirac delta:

P (x1, t1 | x0, t0) ∝
∫
{ ξ:xξ(t0)=x0 }

Dξ exp

(
− 1

4D

∫ t1

t0

dt ξ(t)2
)
δ
(
xξ(t1)− x1

)
, (2.27)
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where xξ denotes the trajectory obtained from ξ through the SDE. Changing the variables from ξ to the

trajectory x (bijection for fixed discretisation and x(t0) = x0) gives [79, 109, 121]

P (x1, t1 | x0, t0) =
∫
x(t0)=x0

Dx
∣∣∣∣DξDx

∣∣∣∣ exp(−S[x]4D

)
δ
(
x(t1)− x1

)
=

∫
x(t0)=x0

Dx JOM[x] exp
(
−S[x]

4D

)
δ
(
x(t1)− x1

)
,

(2.28)

where JOM[x] is the (scheme-dependent) Onsager–Machlup Jacobian [135] and

S[x] =

∫ t1

t0

dt
(
ẋ+ V ′(x)

)2
. (2.29)

The path integral measure is defined as the continuum limit of a discrete product,

Dx ∝ lim
N→∞

N∏
i=1

dxi, xi := x(ti), ti := t0 + i∆t, N∆t = t1 − t0, (2.30)

with any overall normalisation absorbed into the measure and fixed a posteriori by matching the

Ornstein–Uhlenbeck transition kernel [151], which is a well-known solution describing a particle mov-

ing in a harmonic well. This matching enforces the short-time limit ∆t := t1 − t0 ↓ 0 2, for which

P (x1, t1 | x0, t0)→ δ(x1− x0). We place the dynamics on a symmetric time slab K = [−T /2,+T /2]

and take T → ∞ at the end, following [35]; cf. [69].

For additive noise, a one-parameter family of time-slicings interpolates between Stratonovich (mid-

point) and Itô (left point). Writing α ∈ [0, 1] for this choice, the Onsager–Machlup Jacobian on K

takes the compact form

JOM[x] = exp

(
α

∫ +T /2

−T /2
dt V ′′(x(t))

)
, (2.31)

with α = 1
2

(Stratonovich) and α = 0 (Itô [89, 110]). A derivation based on the discretised Langevin

equation is provided in Appendix B.2.

2t ↓ 0 means there is a sequence tn > 0 with tn+1 ≤ tn and tn → 0. So, it is a right-hand limit with monotonic
decrease.
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Expanding the square in (2.29) yields S[x] =
∫
(ẋ2 + V ′(x)2 + 2ẋ V ′(x)) dt. In Stratonovich calculus,

the mixed term is an ordinary Riemann integral and a total derivative,

∫ t1

t0

2 ẋ V ′(x) dt = 2

∫ t1

t0

V ′(x) ◦ dx = 2∆V, ∆V := V (x1)− V (x0), (2.32)

so that

S[x] = 2∆V +

∫ t1

t0

(
ẋ2 + V ′(x)2

)
dt. (2.33)

In Itô calculus the chain rule picks up an additional correction (§ 1.2.2.1). Using Itô’s lemma for V (x)

with dx = −V ′(x) dt+
√
2D dWt [133, Ch. 4],

∫ t1

t0

2 ẋ V ′(x) dt = 2∆V − 2D

∫ t1

t0

V ′′(x) dt. (2.34)

Thus, compared to the Stratonovich identity (2.32), the Itô action carries a −2D
∫
V ′′ shift. Precisely

this shift is supplied by the Jacobian factor (2.31) (with the appropriate α), so that the combined weight

is convention independent for additive noise.

Collecting the action and Jacobian contributions, one obtains the convention-neutral form

P [x(t)] ∝ exp

(
− 1

4D

∫ +T /2

−T /2
dt
[
(ẋ+ V ′(x))2 − 4DαV ′′(x)

])
, (2.35)

which is independent of the discretisation once JOM is included. For additive white noise, the choice of

α merely redistributes contributions between the stochastic action and the Jacobian; genuine physical

differences arise only for multiplicative or coloured noise. In what follows, we adopt the Stratonovich

convention (α = 1
2
) for algebraic convenience and defer a detailed comparison with Itô to Chapter 3.

To obtain the stochastic path integral representation of transition probabilities, we now integrate over

all paths connecting fixed endpoints. Let P (x1,+T /2 | x0,−T /2) denote the probability that the

system reaches x1 at time +T /2, having started at x0 at time −T /2. This probability is given by the
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path integral,

P (x1,+T /2 | x0,−T /2) = N
∫
x(−T /2)=x0

Dx JOM[x] exp
(
−S[x]

4D

)
δ
(
x(+T /2)− x1

)
, (2.36)

whereN is a normalisation constant, S[x] is the Stratonovich action, and JOM[x] denotes the Stratonovich

Onsager–Machlup Jacobian. The transformation of the measure Dξ 7→ Dx can be made rigorous, e.g.,

Girsanov’s theorem [94], which governs the changes in the measure under drift deformations in the

Wiener space.

2.1.5 The semiclassical limit and the Dirac–Feynman insight

The conditional probability in (2.36) satisfies the Fokker–Planck–Smoluchowski equation via the Feynman–

Kac formula [22, 92, 93, 163]. This naturally invites a brief comparison with a familiar object from

quantum mechanics. In real time, the quantum propagator is the transition amplitude for a particle pre-

pared at q1 at time−T /2 to be found at q2 at time +T /2 [161]. Feynman’s representation expresses this

amplitude as an integral over paths with fixed endpoints, weighted by an oscillatory phase proportional

to the classical action [64, 65, 99, 157],

K
(
q2,+T /2

∣∣∣ q1,−T /2) =

∫
q(−T /2)=q1

Dq exp

(
i

ℏ

∫ +T /2

−T /2
dt
[
1
2
m q̇ 2 − V (q)

])
δ
(
q(+T /2)− q2

)
,

(2.37)

where the delta distribution enforces the endpoint constraint at +T /2.

Under Wick rotation t = − i τ , one analytically continues real time to imaginary time. This transforms

the oscillatory weight into an exponentially damped one and provides the standard imaginary-time form

used in semiclassical analysis. In particular, the time integral changes variable and limits,

exp

(
i

ℏ

∫ +T /2

−T /2
dt
[
1
2
m q̇ 2 − V (q)

])
−→ exp

(
−1

ℏ

∫ +TE/2

−TE/2
dτ
[
1
2
m (q′)2 + V (q)

])
, q′ :=

dq

dτ
,

(2.38)
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which defines the Euclidean action [91, 136, 137, 189],

SE[q] =
∫ +TE/2

−TE/2
dτ
(

1
2
m (q′)2 + V (q)

)
. (2.39)

Closed forms exist only for quadratic V ; otherwise, one proceeds via asymptotics or numerics. Dirac’s

idea, developed by Feynman, is to expand in ℏ. As ℏ → 0 the integral is dominated by paths near the

classical extremum, and the next correction arises from the quadratic expansion, the one-loop term [23,

46, 65, 185].

The weak-noise analysis mirrors this structure. The Onsager–Machlup functional plays the role of SE ,

and the identifications

4D ←→ ℏ, D ≪ Eb ←→ ℏ≪ 1 (2.40)

make the steepest descent the natural tool [69,135]. Unlike the quantum amplitude, the stochastic path

integral is already real and exponentially convergent, so no Wick rotation is required on the stochastic

side. These quantum notions are recalled only to highlight the shared semiclassical organisation of the

two theories. This mapping of parameters (2.40) gives a weak-noise viewpoint of Kramers’ escape [25,

26].

2.1.6 From the semiclassical limit to the weak-noise limit

Building on the structural analogy between the stochastic path integral and the Wick-rotated quantum

path integral, we adapt the procedure for the stochastic problem by taking the weak-noise limit D →

0 [69,158]. The first step is to identify the classical paths that satisfy the Dirichlet boundary conditions.

x(−T /2) = x1, x(+T /2) = x2. (2.41)
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These paths are extremals of the Onsager–Machlup functional. Equivalently, they are the most probable

paths (minimum-action paths) among

γT =
{
x(t)

∣∣ x(−T /2) = x1, x(+T /2) = x2, −T /2 ≤ t ≤ +T /2
}
, (2.42)

with minimisers defined by [57, 158]

xcl,γ(t) ∈ arg min
γ∈γT

S[γ], (2.43)

where

argmin
γ∈γT

S[γ] :=
{
γ⋆ ∈ γT : S[γ⋆] = inf

γ∈γT
S[γ]

}
. (2.44)

Up to the path-independent constant 2∆V (which we drop for the variational problem), the action reads

S[x] =
∫ +T /2

−T /2
dtL(x, ẋ), L(x, ẋ) = mp

2
ẋ 2 − U(x), U(x) := −V ′(x)2. (2.45)

In our normalisation mp = 2, so L = ẋ 2 + V ′(x)2 as used earlier. Thus, the most probable path of an

overdamped particle in V (x), connecting x1 to x2 in time T , maps to a conservative mechanics problem

for a particle of mass 2 in the effective potential U(x) ≤ 0. Because L is time independent, there is a

conserved “energy”3

H = ẋ
∂L
∂ẋ
− L =

mp

2
ẋ 2 + U(x) = ẋ 2 − V ′(x)2, (2.46)

which is constant along any classical segment. For heteroclinic connections between critical points of

V we have V ′(x)→ 0 and ẋ→ 0 at the endpoints, hence H = 0 throughout and

ẋ = ±V ′(x). (2.47)

3Dimensional analysis shows that H is technically a power; we loosely refer to it as energy since we scaled the frictional
constant to unity.
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The minus sign reproduces deterministic relaxation (downhill drift), while the plus sign is its time-

reversal and yields the activated uphill segment (the instanton branch).
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Figure 2.2: Effective potential U(x) = −V ′(x)2 associated with the bistable landscape V (x). Critical
points satisfy U′(x) = −2V ′(x)V ′′(x) = 0. Hence, in addition to the extrema of V (where V ′ = 0),
inflection points of V (where V ′′ = 0) also appear as stationary points of U. The markers x± indicate
these additional points, highlighting that the effective dynamics have a richer stationary structure
than the original landscape.

2.1.7 The weak-noise tube and quadratic fluctuations

The system does not literally trace the smooth Hamiltonian path. The stochastic path integral sums over

trajectories that are almost surely nowhere differentiable (see, e.g., [133, Ch. 2]). The smooth classical

solution is the centreline of maximal probability within an infinitesimal tubular neighbourhood; it is not

a typical realisation of the diffusion. In the weak-noise regime, the dominant contributions are confined

to a tight tube of radius O(
√
D) around the classical path (Schulman gives a straightforward heuristic

on this point; cf. [157, p. 111]). As D → 0, the tube shrinks, and modelling the transition by a single

smooth path becomes a controlled leading-order approximation.

Examining the effective potential where the Hamiltonian dynamics occur (see Fig. 2.2), it becomes

clear that the Hamiltonian particle will spend infinite time near the stationary points of V (x). It ac-

cumulates infinite dwell time not only near the minima but also at the barrier. Physically, this in-

finite plateau is unsatisfactory: to ensure barrier crossing in finite time, the effective potential must
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acquire an appropriate tilt. In Chapter 3 we show how such a tilt emerges naturally, linking back to the

Itô–Stratonovich choice.

x(−T /2)

x(+T /2)

t

−T /2 +T /2

O(
√
D)

xcl(t)

Figure 2.3: Illustration of the weak-noise tube. Only paths (blue) within a tube of radius O(
√
D)

about the smooth centreline xcl (red) contribute appreciably. The endpoints (green) satisfy Dirichlet
boundary conditions at t = −T /2 and t = +T /2.

Following this stochastic Hamiltonian correspondence, we identify the dominant classical configura-

tions by extremising the action, which gives the Euler–Lagrange equations,

δS[x(t)]
δx(t)

∣∣∣∣
x=xcl

= 0 =⇒ ẍ = −1

2
U′(x). (2.48)

As discussed, the parameter H represents the system’s energy,

H = ẋ2 + U(x). (2.49)

On classical solutions, H is conserved [10]:

dH

dt
= 2ẋ

(
ẍ+

1

2
U′(x)

)
= 0. (2.50)
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Rearranging (2.49) gives the first integral,

ẋ = ±
√
H − U(x), (2.51)

which fully specifies the extremal in one dimension. The action evaluated on this path is Hamilton’s

principal function [78]. A useful estimate follows from (2.51). Near any stationary point x∗ of V one

has V ′(x) ≈ V ′′(x∗)(x− x∗) and hence

dt

dx
=

1√
H − U(x)

≈ 1√
H +

(
V ′′(x∗)

)2
(x− x∗)2

. (2.52)

Integrating over a small symmetric interval [x∗ −∆, x∗ +∆] yields

∫
dx√

H +
(
V ′′(x∗)

)2
(x− x∗)2

=
1

|V ′′(x∗)|
arsinh

( |V ′′(x∗)|∆√
H

)
∼ 1

|V ′′(x∗)|
log

C√
H
, (2.53)

so forH ↓ 0, the dwell time diverges logarithmically. AtH = 0, the integral has a 1/|x−x∗| singularity,

and the plateau is truly infinite. This motivates the effective tilt introduced in Chapter 3.

Having determined the leading-order contribution, we now examine the next-order correction, the

quadratic fluctuations around the dominant path. A general path can be written as

x(t) = xcl(t) + y(t), (2.54)

where the fluctuations y(t) must vanish at the endpoints,

y(−T /2) = 0 = y(+T /2). (2.55)
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xcl(t)

y(t)

O(y2)

t

Figure 2.4: Quadratic fluctuations y(t) about the smooth classical path xcl. The grey band indicates
the region where the semiclassical expansion is valid. Endpoints (green) are fixed by the boundary
conditions.

Remark 2.1.1 (On large fluctuations). The fluctuation expansion formally integrates over all paths y(t)

satisfying the Dirichlet conditions. However, only small fluctuations of typical amplitude y ∼ O(
√
D)

contribute significantly in the weak-noise limit. Larger excursions are exponentially suppressed by the

quadratic form in the Onsager–Machlup action, contributing factors like exp[−O(y2)/(4D)] and are

thus negligible. The dominant weight is concentrated in a narrow tube around xcl, justifying the local

expansion and the picture in Fig. 2.4.

We thus integrate over an infinite set of paths clustered tightly around the extremal solution. By insert-

ing the expansion (2.54) into the action, one performs a functional Taylor expansion [60] up to second

order,

S[x] ≈ S[xcl] +

∫ +T /2

−T /2
dt y(t)

[
δS
δx(t)

∣∣∣∣
xcl

]

+
1

2

∫ +T /2

−T /2
dt

∫ +T /2

−T /2
dt′ y(t)

[
δ2S

δx(t)δx(t′)

∣∣∣∣
xcl

]
y(t′) +O(y3). (2.56)

71



The first-order term vanishes by the Euler–Lagrange condition, so the action reduces to

S[x] = S[xcl] +
1

2

∫ +T /2

−T /2
dt

∫ +T /2

−T /2
dt′ y(t)M̂(t, t′) y(t′) +O(y3), (2.57)

The single-integral quadratic form obtained by direct computation is then [79]

S[x] = S[xcl] +

∫ +T /2

−T /2
dt y(t)

[
− d2

dt2
− 1

2
U′′(xcl)

]
y(t) +O(y3). (2.58)

Equivalently, in original units,

S[x] = S[xcl] +
mp

2

∫ +T /2

−T /2
dt y(t)

[
− d2

dt2
− 1

mp

U′′(xcl)
]
y(t) +O(y3), (2.59)

making the dependence on mp explicit. The fluctuation sector is therefore governed by the fluctuation

operator,

M̂ = − d2

dt2
− 1

2
U′′(xcl) = −

d2

dt2
+ V ′′(xcl)

2 + V ′(xcl)V
′′′(xcl), (2.60)

which defines the spectrum of Gaussian fluctuations around the dominant trajectory. This is our second-

order fluctuation operator. We can write the expansion compactly as

S[x] = S[xcl] + ⟨y | M̂ y⟩+O(y3). (2.61)

The inner product is the standard real inner product on the interval K for real-valued functions4, where

K = [−T /2,+T /2],

⟨f | g⟩ =
∫
K

dt f(t) g(t). (2.62)

The term ⟨y | M̂ y⟩ defines the fluctuation action, which captures the contribution from quadratic

fluctuations about the classical path. This shows that the full path integral naturally factorises into a

4Complex conjugation is omitted since the paths are real, for all t, g(t) = g(t).
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classical part and a fluctuation factor,

P ∼ Pclassical × Pfluctuation, (2.63)

up to an overall normalisation constant. The fluctuation sector is non-trivial. The Euler–Lagrange

equations with Dirichlet boundary conditions fix the classical solution, so the Jacobian for the affine

shift x(t)→ y(t) is unity, and the path integration measure transformsDx = Dy [157]. Inserting (2.61)

into the original path integral (2.36) gives, up to quadratic order,

P (x2,+T /2 | x1,−T /2)

= exp
(
− S[xcl]

4D

)∫
y(−T /2)=0

Dy JOM[xcl + y] exp
(
− ⟨y | M̂ y⟩

4D
+O(y3)

)
δ
(
y(+T /2)

)
. (2.64)

The decomposition in (2.63) is now explicit: the classical factor comes from −S[xcl]/(4D), while

the fluctuation piece is a Gaussian path integral about the saddle [189]. Using the earlier form of the

Onsager–Machlup Jacobian, at quadratic order, one may replace5 JOM[xcl + y]→ JOM[xcl].

To evaluate the Gaussian piece, expand y(t) in an orthonormal basis {yn(t)} that diagonalises M̂:

M̂ yn(t) = λn yn(t), (2.65)

with Dirichlet boundary conditions

yn(−T /2) = 0 = yn(+T /2), (2.66)

and orthonormality

⟨yn | ym⟩ =
∫ +T /2

−T /2
dt yn(t) ym(t) = δmn. (2.67)

The original action (2.29) is positive semidefinite, S[x] ≥ 0 for all real, admissible paths. Hence,

5At prefactor accuracy (leading in D), typical fluctuations scale as y = O(
√
D). Expanding log JOM[xcl + y] then shows

that the y-dependent terms modify logP only byO(D), so we evaluate the Jacobian at the saddle: JOM[xcl + y]→ JOM[xcl].
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the classical solution with Dirichlet conditions is a local minimum; inspecting (2.61) shows that M̂ is

therefore positive semidefinite. With these boundary conditions M̂ is also self-adjoint,6 which justifies

the mode expansion.

Hence, we write

x(t) = xcl(t) + y(t) = xcl(t) +
∞∑
n=0

an yn(t), (2.68)

with coefficients an. The fluctuation action becomes diagonal,

⟨y | M̂ y⟩ =
∞∑
n=0

λn a
2
n, (2.69)

so integration over the fluctuation space reduces to an integral over the coefficients an (see Appendix I

of [124] for a detailed justification). This diagonalisation reduces the fluctuation path integral to an

infinite product over decoupled Gaussian modes and underpins the computation of fluctuation determi-

nants.

We transform the path integral from an integral over y(t) to an explicit product over {an}:

P (x2,+T /2 | x1,−T /2) = ND exp
(
−S[xcl]

4D

)
JOM[xcl] lim

N→∞

N∏
n=0

{∫
R
dan exp

(
−λn a

2
n

4D

)}
, (2.70)

where the constant ND fixes the overall normalisation of the free path measure.

Remark 2.1.2 (Normalisation of the mode expansion). In the continuum formulation, the measure Dx

is chosen so that the free Gaussian functional integral equals one. After expanding in the orthonormal

eigenmodes of M̂, the measure becomes a product of standard one-dimensional Gaussians over the

coefficients an, each contributing a factor
√
4πD. The constant ND cancels the resulting product so

that the free theory is correctly normalised [157, 189].

6For test functions f, g vanishing at the endpoints,

⟨M̂f | g⟩ =
∫ +T /2

−T /2

dt
[
− f̈ g − 1

2 f g U′′(xcl)
]
= ⟨f | M̂g⟩,

so the eigenfunctions form a complete orthonormal set.
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Carrying out the Gaussian integrals formally yields

P (x2,+T /2 | x1,−T /2) = ND exp
(
− S[xcl]

4D

)
JOM[xcl] lim

N→∞

N∏
n=0

√
4πD

λn
, (2.71)

= ND exp
(
− S[xcl]

4D

)
JOM[xcl]

[
lim
N→∞

N∏
n=0

√
4πD

]
(detM̂)−

1
2 . (2.72)

Here, detM̂ denotes the product of the eigenvalues {λn} and is the fluctuation determinant. We assume

for simplicity that no zero eigenvalues are present; cases with zero or near-zero modes are treated later.

To begin, consider the simplest solvable case: the free particle with V (x) = 0 everywhere. This

describes unconstrained diffusion along the real axis. The Fokker–Planck–Smoluchowski equation

then reduces to the standard diffusion (heat) equation,

∂P

∂t
= D

∂2P

∂x2
, (2.73)

whose fundamental solution over the time interval T is

Pfree(x2,+T /2 | x1,−T /2) =
1√

4πD T
exp
(
− (x2 − x1)2

4D T

)
. (2.74)

In the path integral representation (2.72), the transition probability for the free particle is

P (x2,+T /2 | x1,−T /2) = ND exp
(
− S[xfree]

4D

)
JOM[xfree]

[
lim
N→∞

N∏
n=1

√
4πD

] (
detM̂free

)−1/2
.

(2.75)

The classical solution satisfying the Dirichlet endpoints is elementary,

xfree(t) =
x2 − x1
T

t +
x1 + x2

2
, (2.76)

and its action evaluates to

S[xfree] =
(x2 − x1)2

T
. (2.77)
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The Onsager–Machlup Jacobian for free diffusion is trivially unity, JOM[xfree] = 1, and the free fluctua-

tion operator reduces to the negative second derivative,

M̂free = −
d2

dt2
, (2.78)

with eigenvalue problem [187]

M̂free yn(t) = λn yn(t), yn(−T /2) = 0 = yn(+T /2). (2.79)

The standard Dirichlet modes on [−T /2,+T /2] are

yn(t) =

√
2

T
sin
(nπ
T
(
t+ T /2

))
, λn =

n2π2

T 2
, n = 1, 2, . . . , (2.80)

and note that there is no non-trivial Dirichlet eigenfunction for n = 0.

Inserting these results into (2.72) and equating with the fundamental solution fixes the normalisation

relation,

ND
[
lim
N→∞

N∏
n=1

√
4πD

]( ∞∏
n=1

n2π2

T 2

)−1/2

=
1√

4πD T
. (2.81)

This provides the needed reference to fix ND once the fluctuation determinant is regularised.

Next, let us assume V (x) ̸= 0 and consider the elementary case where the particle remains stationary

at a fixed point x0 for all time. Assume x0 is a non-degenerate minimum of V , i.e. V ′(x0) = 0 and

V ′′(x0) > 0. That is, at t = −T /2 the particle sits at x0 and at t = +T /2 it remains there. Returning

to the path integral representation (2.72), the conditional probability is

P (x0,+T /2 | x0,−T /2) = ND exp
(
− S[x0]

4D

)
JOM[x0]

[
lim
N→∞

N∏
n=1

√
4πD

] (
detM̂0

)−1/2
. (2.82)

For brevity, define P0(T ) := P (x0,+T /2 | x0,−T /2), the probability that a trajectory starts and ends

at x0 over time T . In the weak-noise limit, fluctuations about x0 are infinitesimal, so only paths within
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the harmonic region of the potential contribute appreciably. Expanding V (x) around x0 gives the local

quadratic approximation,

V (x) ≈ V (x0) +
1

2
V ′′(x0) (x− x0)2 + . . . =⇒ ω2

0 := −1
2
U′′(x0), (2.83)

where the harmonic frequency is ω0 =
√
−1

2
U′′(x0) = |V ′′(x0)|.

In this stationary limit, the action of the constant path x(t) = x0 is zero, S[x0] = 0, since U(x) =

−(V ′(x))2 gives U(x0) = 0 and ẋ ≡ 0 makes the kinetic term vanish. The fluctuation operator is now

harmonic,

M̂0 = −
d2

dt2
+ ω2

0, (2.84)

and the eigenvalue problem M̂0 yn(t) = λn yn(t) with Dirichlet conditions has solutions

yn(t) =

√
2

T
sin
(√

λn − ω2
0 (t+ T /2)

)
, λn = ω2

0 +
n2π2

T 2
, n = 1, 2, . . . . (2.85)

The Onsager–Machlup Jacobian for a stationary harmonic minimum is

JOM[x0] = exp
(
1
2
V ′′(x0) T

)
= exp

(
1
2
ω0 T

)
, (2.86)

since V ′′(x0) = ω0 > 0 at a minimum.

Hence, the conditional probability is

P0(T ) = exp
(
1
2
ω0 T

)
ND

[
lim
N→∞

N∏
n=1

√
4πD

]( ∞∏
n=1

n2π2

T 2

)−1/2

︸ ︷︷ ︸
1√

4πD T

×
( ∞∏
n=1

1 +
ω2
0T 2

n2π2

)−1/2

︸ ︷︷ ︸√
ω0T

sinh(ω0T )

. (2.87)

The first product uses the relation derived in the free particle case (2.81) and the final product follows

77



from Euler’s infinite product expansion [175], resulting in

P0(T ) =
√

ω0

4πD sinh(ω0T )
exp
(
1
2
ω0 T

)
, (2.88)

which matches the Ornstein–Uhlenbeck solution [119]. The P0(T ) fixes the normalisation factor in the

full path integral,

P (x2,+T /2 | x1,−T /2) = P0(T ) exp
(
− S[xcl]

4D

) JOM[xcl]

JOM[x0]

(
detM̂
detM̂0

)−1/2

. (2.89)

This confirms that in the weak-noise approximation, the stochastic path integral is properly normalised

and matches the exact known solutions in the free and harmonic limits.

In constructing (2.89), we have so far assumed that the fluctuation operator admits only positive, non-

zero eigenvalues. Throughout, M̂ acts on L2([−T /2,+T /2]) with Dirichlet boundary conditions and

the spectrum is discrete. We write

σp(M̂) := {λ ∈ R | M̂y = λy for some y ̸= 0 }, (2.90)

and when λn > 0 for all n we denote the spectrum by σ+
p . Since M̂ and M̂0 share the same interval

and BCs, the ratio
detM̂
detM̂0

is finite even though the individual determinants are divergent. Fluctuation determinants in this context

are meaningful only when expressed as a ratio. As all other components of (2.89) are standard, the

chief task is to evaluate this fluctuation determinant ratio.

We could impose the Ornstein–Uhlenbeck result a priori, but this example illustrates how determining

the full spectrum quickly becomes non-trivial. Rather than summing the eigenvalues explicitly, we

use the Gel’fand–Yaglom (GY) method, which computes determinants from a well-posed initial value

problem without solving for the entire spectrum. It states that if y solves M̂y = 0 with y(−T /2) = 0,
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y′(−T /2) = 1 (and y0 for M̂0), then detM̂/ detM̂0 = y(+T /2)/y0(+T /2).

Cases with a zero eigenvalue are handled via the McKane–Tarlie boundary-perturbation [125]: we

slightly perturb one boundary condition so the zero eigenvalue lifts to λε = κ ε +O(ε2) (with κ fixed

by the zero mode), compute detM̂ε (e.g. by Gel’fand–Yaglom), and define the reduced determinant

det′ M̂ = lim
ε→0

detM̂ε

κ ε
.

The full details of this case are given in § 2.2, but first we present the GY method assuming that all

λn > 0.

2.1.8 Gel’fand–Yaglom formula and the functional determinant

Rather than resolving the entire set of eigenvalues, we evaluate fluctuation determinants using the GY

method [75]. We consider the second-order operator

M̂R := − d2

dt2
+R(t), (2.91)

acting on K = [−T /2,+T /2] with Dirichlet boundary conditions y(±T /2) = 0.7 For smooth R with

a strictly positive Dirichlet spectrum on the same interval and boundary conditions as M̂R0 , GY gives

the determinant ratio [67]

detM̂R

detM̂R0

=
ψR(+T /2)
ψR0(+T /2)

, ψ′′
R(t) = R(t)ψR(t), ψR(−T /2) = 0, ψ′

R(−T /2) = 1, (2.92)

i.e., the determinant is fixed relative to a reference operator by solving a single initial value problem

(IVP). Only ratios such as (2.92) enter (2.89).

7The GY formula applies to any interval [t1, t2]; we use the symmetric interval K for later convenience.
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Harmonic reference. Taking R1(t) = ω2
0 gives

ψR1(+T /2) =
sinh(ω0T )

ω0

=⇒ detM̂ω2
0
∝ sinh(ω0T )

ω0

. (2.93)

We will always define determinant ratios against this reference. This fixes the form of the normalisation

constant in (2.70),

ND :=
[
lim
N→∞

N∏
n=1

√
4πD

]−1

= lim
N→∞

(4πD)−N/2. (2.94)

non-trivial fluctuation operator along xcl. For

R2(t) = V ′(xcl(t))V
′′′(xcl(t)) +

[
V ′′(xcl(t))

]2
, (2.95)

define the classical velocity ρ(t) := ẋcl(t). From

...
x cl =

(
V ′′(xcl)

2 + V ′(xcl)V
′′′(xcl)

)
ẋcl (2.96)

we have M̂R2ρ = 0, i.e. ρ is a zero solution of the ODE. Using the reduction of order method [187],

let ϕ(t) = ρ(t)
∫ t
dt′ /ρ(t′)2 and by imposing the initial GY data at −T /2 we find

ψR2(+T /2) = ρ(−T /2) ρ(+T /2)
∫ +T /2

−T /2

dt′

ρ(t′)2
. (2.97)

Therefore, combining (2.92), (2.93) and (2.97),

detM̂R2

detM̂ω2
0

=
ρ(−T /2) ρ(+T /2)
sinh(ω0T )/ω0

∫ +T /2

−T /2

dt′

ρ(t′)2
. (2.98)

Using energy conservation (2.49), ρ2 = H+
(
V ′(x)

)2 and dt = dx /ρ, this becomes the position-space

representation [98]

detM̂R2

detM̂ω2
0

=

√
H + V ′(x1)2

√
H + V ′(x2)2

sinh(ω0T )/ω0

∫ x2

x1

dx(
H + V ′(x)2

)3/2 . (2.99)
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Equations (2.98)-(2.99) complete the determinant part of the transition probability P (x2,+T /2 |

x1,−T /2) for operators without a Dirichlet zero mode.

2.1.9 The method of collective coordinates

In setting up the path integral, we arrived at a step involving formal Gaussian integration over all mode

coefficients {an}. As demonstrated above, there is a zero mode [39,99] associated with time-translation

invariance. On a finite interval with Dirichlet boundary conditions this mode does not, in general,

satisfy the endpoints exactly and its eigenvalue is exponentially small in T ; in the strict infinite-time

limit T → ∞ it satisfies the boundary conditions and becomes an EZM. We reserve the notation EZM

for this limit.

Isolating the zero mode in the mode expansion gives

lim
N→∞

N∏
n=0

{∫
R
dan exp

(
− λn a

2
n

4D

)}
=

∫
R
da0 lim

N→∞

N∏
n=1

{∫
R
dan exp

(
− λn a

2
n

4D

)}
, (2.100)

since λ0 = 0 in the T → ∞ limit. The standard Gaussian approximation then breaks down since

the a0-integral is unsuppressed and diverges [117]. This reflects that the instanton is not isolated but

lies on a one-parameter family of degenerate saddles generated by time translations (the instanton

valley [4, 5, 120]).

The moduli space of single-instanton solutions is

FI =
{
xcl(t− tc) | tc ∈ R

}
⊂ Path Space. (2.101)

Its tangent vector is ẋcl, as seen by expanding about an arbitrary reference t̄c:

xcl
(
t− [ t̄c + δt ]

)
= xcl(t− t̄c)− δt ẋcl(t− t̄c) +O(δt2). (2.102)

81



Thus, to leading order, exciting the zero mode with amplitude a0 is equivalent to a local shift δt,

xcl(t− t̄c)− δt ẋcl(t− t̄c) = xcl(t− t̄c) + a0 y0(t− t̄c), y0(t) =
ẋcl(t)√
⟨ẋcl | ẋcl⟩

. (2.103)

Promoting δt to the global collective coordinate tc spans the entire family.

Matching the expansion yields the following relationship between coordinates [76, 167]

da0 = −
√
⟨ẋcl | ẋcl⟩ dtc, ⇒

∣∣da0∣∣ =
√
⟨ẋcl | ẋcl⟩ dtc, (2.104)

where the measure picks up the absolute value of the Jacobian and the collective coordinate Jacobian is

〈
ẋcl | ẋcl

〉
=

∫ +T /2

−T /2
ẋcl(t)

2 dt =

∫ x2

x1

√
H +

(
V ′(x)

)2
dx −−−→

H→0

∫ x2

x1

|V ′(x)| dx, (2.105)

using ρ2 = ẋ2cl = H +
(
V ′(xcl)

)2 and dt = dx/ρ.

Hence, the divergent zero-mode integral is replaced by an integral over the collective coordinate span-

ning the moduli space, ∫
R
da0 =

√
⟨ẋcl | ẋcl⟩

∫ +T /2

−T /2
dtc . (2.106)

Substituting this back into the fluctuation expansion,

lim
N→∞

N∏
n=0

{∫
R
dan exp

(
− λn a

2
n

4D

)}
=
√
⟨ẋcl | ẋcl⟩

∫ +T /2

−T /2
dtc︸ ︷︷ ︸

zero-mode (EZM) contribution

lim
N→∞

N∏
n=1

{∫
R
dan exp

(
− λn a

2
n

4D

)}
, (2.107)

which shows that the functional determinant must have its null eigenvalue removed, denoted by a prime.

Putting everything together, the properly regularised transition probability with the EZM treated exactly
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reads:

P (x2,+T /2 | x1,−T /2)

= P0(T ) exp
(
− S[xcl]

4D

) JOM[xcl]

JOM[x0]

√
⟨ẋcl | ẋcl⟩
4πD

∫ +T /2

−T /2
dtc

(
det′ M̂
detM̂0

)−1/2

. (2.108)

2.2 Master formula for regularised fluctuation determinants

In the Gel’fand–Yaglom approach of Section 2.1.8, we assumed that the fluctuation operator admits

no exact or exponentially small zero eigenvalues. We now present a refined version that allows for

the calculation of the fluctuation determinant with the EZM correctly removed. The limit T → ∞ is

always taken at the end. While we omit a detailed derivation here, this result is a natural modification

of the method developed by McKane and Tarlie [125].

There are two differences from the standard quantum mechanical presentation which together introduce

an overall factor−4 in our stochastic normalisation: (i) our fluctuation operator carries the opposite sign

convention, which flips the sign after integrating by parts (cf. Eq. (3.3) of [125]); and (ii) the stochastic

weight is exp[−S/(4D)] (with D playing the role of ℏ), so the Gaussian normalisation differs by a

factor of 4 compared to exp[−S/ℏ].

Consider the fluctuation operator

M̂ = − d2

dt2
− 1

2
U′′(xcl) , (2.109)

where U = −[V ′]2. The regularised functional determinant with the EZM removed is

det′ M̂ = − 1

4

〈
ẋcl | ẋcl

〉
ẍcl(−T /2) ẍcl(+T /2)

. (2.110)
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To render this finite we normalise by the Dirichlet harmonic operator

M̂0 = −
d2

dt2
+ ω2

0, with ω2
0 = −1

2
U′′ (at the endpoint). (2.111)

Using the GY result (2.93), we obtain our master formula:

det′ M̂
detM̂0

= − ω0

4 sinh(ω0T )

〈
ẋcl | ẋcl

〉
ẍcl(−T /2) ẍcl(+T /2)

. (2.112)

Equivalently, using ẍcl = −1
2
U′(xcl),

det′ M̂
detM̂0

= − ω0

sinh(ω0T )

〈
ẋcl | ẋcl

〉
U′(xcl(−T /2)) U′(xcl(+T /2))

. (2.113)

Since the EZM is the time derivative of the classical solution and the instanton profile decays exponen-

tially, it admits the asymptotics

ẋcl(t) ∼ α− e
ω0t (t→ −∞), ẋcl(t) ∼ α+ e

−ω0t (t→ +∞), (2.114)

where we define α± > 0 as the positive amplitudes. Combining these with sinh(ω0T ) ∼ 1
2
eω0T and

ẍcl(±T /2) ∼ ±ω0α±e
∓ω0T /2, the master formula reduces in the infinite-time limit to

lim
T →∞

det′ M̂
detM̂0

=
1

2ω0

〈
ẋcl | ẋcl

〉
α− α+

. (2.115)

For an instanton one has ẋI = +V ′(xI) at H = 0, so

SInst[x] =

∫ +T /2

−T /2
dt
[
ẋI + V ′(xI)

]2
= 4

〈
ẋcl | ẋcl

〉
, (2.116)
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and hence the fully explicit instanton determinant

lim
T →∞

det′ M̂Inst

detM̂0

=
1

8ω0

SInst

α− α+

. (2.117)

In summary, the reduced fluctuation determinant is determined by three ingredients: the endpoint har-

monic frequency ω0, the action of the saddle, and the asymptotic falloff amplitudes α± of the zero

mode. Equation (2.117) agrees in structure with known QFT results on reduced determinants and zero

modes; see, e.g., [14, 54].

2.2.1 Instanton configurations and explicit forms

The expression in (2.108) is strictly valid only in the limit T → ∞. However, it also holds approxi-

mately for large but finite T , provided the derivatives of the classical solution decay exponentially at

the endpoints. Returning to the method of collective coordinates on a long but finite interval, a pertur-

bation of the form ∆t ẋcl(t), corresponding to a slight time shift of the classical solution, will nearly

satisfy the boundary conditions. In this scenario, ẋcl is approximately proportional to an eigenfunction

y0 that exactly satisfies the boundary conditions but carries a small positive eigenvalue λ0 ≪ 1.

Physically, this means the nearly flat direction in the path integral (the translation mode) is lifted slightly

by the finite-time cutoff: the fluctuation must bend near the endpoints to satisfy the imposed conditions,

and this gentle bending costs a small positive “energy” in the spectrum of M̂. As T → ∞, this small

eigenvalue vanishes exponentially, recovering the exact zero mode.

Thus, for any sufficiently large T , we may still apply the method of collective coordinates in an ap-

proximate sense. We replace the integral over the near-zero mode by an integral over the collective
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coordinate tc, giving

P (xβ,+T /2 | xα,−T /2)

≃ P0(T )
∫ +T /2

−T /2
dtc exp

(
− S[xcl]

4D

) JOM[xcl]

JOM[x0]

√
⟨ẋcl | ẋcl⟩
4πD

(
det′ M̂
detM̂0

)−1/2

, (2.118)

where xα and xβ denote the asymptotic initial and final positions,

xα = lim
t→−∞

xcl(t), xβ = lim
t→+∞

xcl(t).

For a large but finite interval, the classical action, the Onsager–Machlup Jacobian, and the fluctuation

determinant all depend explicitly on tc through the shifted solution xcl(t − tc). The tc-integral must

therefore sit in front to reflect this dependence. Only in the strict limit T → ∞ does this dependence

drop out, restoring exact time-translation symmetry; the integral then factorises as a trivial moduli

volume. Hence, one checks that (2.118) reproduces (2.108) as T → ∞.

Next, we write explicit forms for each factor. Using the fluctuation determinant master formula (2.112)

and the equation of motion

ẍcl(t) = V ′(xcl)V
′′(xcl) (equivalently, ẍcl = −1

2
U′(xcl)), (2.119)

we find
det′ M̂
detM̂0

=
ω0

4 sinh(ω0T )
⟨ẋcl | ẋcl⟩

ρ(−T /2) ρ(+T /2) |V ′′
α | |V ′′

β |
, (2.120)

where we recall ρ = ẋcl. At the endpoints, ẍcl ≈ V ′′ ρ; writing |V ′′
α,β| makes the overall sign manifestly

positive. For a right-moving instanton, ρ(−T
2
) ρ(+T

2
) > 0, and the exponential factors from sinh(ω0T )

and the endpoint asymptotics of ρ cancel, leaving a finite prefactor as T → ∞.

By construction, the right-moving instanton connecting xα → xβ with xβ > xα follows the uphill
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branch

ẋu(t) = +V ′(xu(t)), (2.121)

while the time-reversed profile corresponds to the downhill branch

ẋd(t) = −V ′(xd(t)). (2.122)

Each depends implicitly on the collective coordinate tc.

The Onsager–Machlup Jacobian along the uphill branch is

JOM[xu]

JOM[x0]
=

√
ẋu(+T /2)
ẋu(−T /2)

exp
(
− 1

2
ω0 T

)
, (2.123)

while for the downhill branch it is

JOM[xd]

JOM[x0]
=

√
ẋd(−T /2)
ẋd(+T /2)

exp
(
− 1

2
ω0 T

)
, (2.124)

with the sign of the endpoint velocity reversing and swapping which endpoint dominates the ratio.

Collecting all factors, the uphill probability in the infinite-time limit 8 reads

P (xβ,+T /2 | xα,−T /2)u ≃

√
|V ′′
α | |V ′′

β |

2πD

∫ +T /2

−T /2
dtc exp

(
− S[xu]

4D

) ∣∣ẋu(+T /2)∣∣. (2.125)

For the downhill path,

P (xα,+T /2 | xβ,−T /2)d ≃

√
|V ′′
α | |V ′′

β |

2πD

∫ +T /2

−T /2
dtc
∣∣ẋd(−T /2)∣∣. (2.126)

Along the downhill branch, the classical action is zero.9 This explicit separation into uphill and down-

8We retain the leading-order terms of the path integral components; taking the exact T → ∞ limit in the integration
bounds would turn ≃ into =.

9We emphasise that (2.126) is used here in this pre-normalised form to isolate the translation mode before passing to the
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hill contributions will feed directly into the Kramers rate derived next.

2.3 Escape rate over a potential barrier

Having presented the foundational aspects of the stochastic path integral, we now demonstrate how to

compute the escape rate over a potential barrier using instanton methods.

2.3.1 Escape rate analysis for instanton-instanton pairs

We analyse the escape process by examining composite instanton-instanton ([II]) pairs. Our goal is to

determine the probability that a particle initially near a metastable well at xα escapes over the barrier

xβ and settles near a stable minimum xc. This is described by glueing together an uphill segment

and a downhill segment, forming a single continuous Hamiltonian trajectory mapped by the stochastic

Hamiltonian correspondence (see Fig. 2.5). For later use, set

ωu := |V ′′(xβ)|, ωd := V ′′(xc) > 0.

rate. The extracted zero mode appears explicitly as
∫ +T /2

−T /2
dtc ∼ T . After dividing out this explicit factor, the corresponding

normalised downhill contribution tends to unity as T → ∞.
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Figure 2.5: A schematic composite [II] solution plotted as a function of time. The black curve
represents the double kink profile, while the fading cyan points indicate the direction of time evolution,
progressing from left to right. Dashed red lines and annotated arrows mark the characteristic widths
∆tu and ∆td of the uphill and downhill excursions, inversely proportional to the corresponding local
barrier and well curvatures, ωu = |V ′′(xβ)| and ωd = V ′′(xc).

We introduce an intermediate matching time T0 at which the trajectory transitions from the uphill to the

downhill segment. A minimal ansatz for the path is

xcl(t) =


xu(t), t ∈ [−T /2, T0],

xd(t), t ∈ [T0, +T /2],
T0 ∈ [−T /2, +T /2]. (2.127)

At the barrier, we enforce position continuity

xu(T0) = xd(T0) = xβ, (2.128)

while the slope generally does not match, ẋu(T0) ̸= ẋd(T0). In practice, the uphill and downhill pieces

are weakly coupled through their overlapping exponential tails; the resulting smooth [II] configuration

is obtained by including a small interaction that corrects this C1 mismatch (see Appendix B).

The composite path admits two time-translation zero modes in the large-T limit: one shifting the uphill
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segment and one shifting the downhill segment. Hence, the collective coordinate method uses two

moduli, tu (uphill midpoint) and td (downhill midpoint). The intermediate time T0 depends implicitly

on both. The full functional integral for the [II] pair reads

P (xc,+T /2 | xα,−T /2) ≃ P0(T )
∫ +T /2

−T /2
dtu

∫ +T /2

tu

dtd exp
(
− S[xcl]

4D

) JOM[xcl]

JOM[x0]

×
√
⟨ẋu | ẋu⟩
4πD

√
⟨ẋd | ẋd⟩
4πD

(
det′′ M̂
detM̂0

)−1/2

, (2.129)

where the double prime removes the two near-zero eigenvalues associated with (tu, td). The second

integral starts at tu to enforce temporal ordering (the downhill relaxation starts after the uphill segment

reaches the barrier).

Determinant factorisation on split intervals. Let K = [−T /2,+T /2], K1 = [−T /2, T0], and

K2 = [T0,+T /2]. On K1 and K2 we impose Dirichlet BCs at the outer ends and enforce continuity at

T0.10 In the limit of large separation (td − tu) → ∞, the determinant on K factorises approximately

into the determinants on K1 and K2, and comparing the harmonic Gel’fand–Yaglom solutions on K

versus K1, K2 yields the interface correction,

P0(T )

[
detM̂|K
detM̂0|K

]−1
2

≃
√

2πD

|V ′′
β |

P0(T0 + T /2)P0(T /2− T0)

[
detM̂|K1

detM̂0|K1

]−1
2
[
detM̂|K2

detM̂0|K2

]−1
2

. (2.130)

The factor
√

2πD/|V ′′
β | removes the duplicated local harmonic contribution at the barrier created by

10Equivalently, one can phrase the composition using the Forman determinant formula for concatenated intervals; we
only need the leading large-separation limit.
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splitting the interval [67]. Removing the two infinitesimal eigenvalues consistently gives

P0(T )

[
det′′ M̂|K
detM̂0|K

]−1
2

≃
√

2πD

|V ′′
β |

P0(T0 + T /2)P0(T /2− T0)

[
det′ M̂|K1

detM̂0|K1

]−1
2
[
det′ M̂|K2

detM̂0|K2

]−1
2

. (2.131)

Other factors. The Onsager–Machlup Jacobian factorises cleanly:

JOM[xcl]|K
JOM[x0]|K

=
JOM[xcl]|K1

JOM[x0]|K1

· JOM[xcl]|K2

JOM[x0]|K2

. (2.132)

Using the improved ansatz from Appendix B, the classical action separates as

S[xcl] = S[xu] + S[xd]︸ ︷︷ ︸
=0 at leading order

+Sint(tu, td), (2.133)

where S[xd] = 0 follows from ẋd = −V ′(xd) (downhill along the drift), up to exponentially small

corrections. The interaction term arises from matching the linearised (inverted) harmonic tails at the

barrier and minimising the slope mismatch; it takes the form

Sint(tu, td) =
4

|V ′′
β |
[
ẋu(T0)

]2
. (2.134)

Change of variables. Set the centre and separation

tc :=
tu + td

2
, s := td − tu ≥ 0, (2.135)

so that ∫ +T /2

−T /2
dtu

∫ +T /2

tu

dtd =

∫ +T /2

−T /2
dtc

∫ T −2|tc|

0

ds . (2.136)

Collecting all factors, the double integral (2.129) simplifies to
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P (xc,+T /2 | xα,−T /2) ≃

√
|V ′′
α | |V ′′

β | |V ′′
c |

(2πD)3
exp
(
− S[xu]

4D

)
Z[II], (2.137)

with the integral

Z[II] =

∫ +T /2

−T /2
dtc

∫ T −2|tc|

0

ds
∣∣∣ẋu(T0)∣∣∣2 exp

(
−
[
ẋu(T0)

]2
D |V ′′

β |

)
, T0 = T0(tc, s), (2.138)

where, in the limit of large separation, T0 = tc + O(e−ωT ). The prefactor in (2.137) will be cross-

checked against the Kramers prefactor in the next subsection.

Effective interaction and QZM integral. Define the function

ν(s) :=
∣∣ẋu(T0)∣∣2. (2.139)

For well separated segments, ẋu decays exponentially from the barrier top, hence

ν(s) ≃ A e−κs, κ := |V ′′
β |, A := ν(0) > 0. (2.140)

Using (2.136) and extending the s-upper limit to +∞ gives

Z[II] ≃ T
∫ ∞

0

ds ν(s) exp
(
− ν(s)

Dκ

)
. (2.141)

The integral in (2.141) is the quasi-zero mode (QZM) integral. A convenient way to display its saddle

structure is to absorb the prefactor ν(s) into the exponential. Writing ν(s) = Ae−κs = exp(lnA− κs)

and pulling constants out, one may define (up to an additive constant)

V+(s) :=
4A
κ
e−κs + 4Dκs, (2.142)

so that ν(s) exp[−ν(s)/(Dκ)] ∝ exp
[
− V+(s)/(4D)

]
.11 The first term in V+ encodes the repulsive

11Explicitly, ν(s) e−ν/(Dκ) = exp
(
− 1

4D [ 4Aκ e−κs + 4Dκs − 4D lnA]
)
. The −4D lnA term is an s-independent

normalisation and can be dropped.
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interaction between the uphill and downhill pieces; the linear term is the “tilt” originating algebraically

from the ν(s) = Ae−κs prefactor when recast in the exponent (equivalently, from the Gaussian mea-

sure/Jacobian once the mode expansion is performed).

The critical point of V+ is

V ′
+(s

∗) = 0 =⇒ e−κs
∗
=
Dκ

A
⇒ s∗ =

1

κ
log
( A
Dκ

)
, (2.143)

so, the dominant contribution sits at a separation s∗ ∼ κ−1 log(1/D). Exact evaluation of the QZM

integral. Using (2.140) directly in (2.141), set u = e−κs so that ds = −(du)/(κu). Then

∫ ∞

0

ds ν(s) exp
(
− ν(s)

Dκ

)
=

∫ ∞

0

ds Ae−κs exp
(
− Ae

−κs

Dκ

)
(2.144)

=
A
κ

∫ 1

0

du exp
(
− A
Dκ

u
)

= D
[
1− exp

(
− A
Dκ

)]
. (2.145)

Hence,

Z[II] ≃ D T
[
1− exp

(
− A
D |V ′′

β |

)]
−−−→
D→0

D T . (2.146)

The exponentially small term exp
[
−A/(D|V ′′

β |)
]

is an important correction that will reappear in the

[IĪ].
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Figure 2.6: Effective interaction potential V+(s) governing the separation s between the uphill and
downhill segments of the [II] configuration; cf. (2.142). The exponential term encodes the repulsion
between segments, while the linear term arises when the overlap factor ν(s) = Ae−κs is absorbed into
the exponential. The unique critical point s∗ = κ−1 log(A/(Dκ)) (green) stabilises the pair at a finite
separation.

Combining the large separation evaluation of the quasi-zero mode integral with (2.137) yields

P (xc,+T /2 | xα,−T /2) ≃ T

√
|V ′′
α | |V ′′

β | |V ′′
c |

2π
√
2πD

exp
(
− S[xu]

4D

)
. (2.147)

To extract a physical escape rate from this density at the final point, note that for a long observation time,

the system depends only on the well label of the initial condition (not its precise microscopic position).

By the Markov property and the fast intrawell relaxation on the time scale 1/ωc (with ωc := V ′′
c > 0

the local curvature scale at the stable minimum), the dependence on the exact starting point is washed

out:

P (x3,+T /2 | xα,−T /2) −→ P (x3,+T /2 | a,−T /2), a ≃ xα. (2.148)

Near the stable minimum xc, the particle rapidly equilibrates, so for x3 in the capture region of the

well the final distribution factorises (again by the Markov property together with rapid relaxation) (see,
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e.g., [74, 151]):

P (x3,+T /2 | a,−T /2) ≃ P (c,+T /2 | a,−T /2)PS(x3) + O
(
e−ωcT

)
, (2.149)

and

PS(x3) =

√
V ′′
c

2πD
exp
(
− V ′′

c

2D
(x3 − xc)2

)
. (2.150)

Hence, the total probability of being captured in the well is obtained by integrating the density over the

capture region (width ∼
√
D/V ′′

c , that is, the standard deviation of the local harmonic equilibrium),

P (c,+T /2 | a,−T /2) ≈
∫
R
P (x3,+T /2 | a,−T /2) dx3 ≃ P (xc,+T /2 | a,−T /2)

√
2πD

V ′′
c

,

(2.151)

where we used that the capture region is narrow and PS is sharply peaked and normalised, so the integral

is well approximated by the value at the peak times its width (Laplace’s method around xc [16]).

Dividing by the observation time then defines the escape rate Γ:

Γ = lim
T →∞

1

T

∫
R
P (x3,+T /2 | a,−T /2) dx3 ≃ lim

T →∞

1

T
P (xc,+T /2 | a,−T /2)

√
2πD

V ′′
c

. (2.152)

Using (2.147) in (2.152) gives the coarse-grained probability and the escape rate,

P (c,+T /2 | a,−T /2) = Γ[II] T , Γ[II] =

√
|V ′′
α | |V ′′

β |

2π
exp
(
− S[xu]

4D

)
. (2.153)

Finally, for gradient flows ẋ = ±V ′(x) one has S[xu] = 4∆V , so

Γ[II] =

√
|V ′′
α | |V ′′

β |

2π
exp
(
− ∆V

D

)
, (2.154)

which is the classic overdamped Kramers rate in the weak-noise limit (cf. [85, 101]).

Remarks on regime and accuracy. The derivation above is valid for D ≪ Eb, large T , and large instan-
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ton segment separation td − tu; neglected corrections are O(D), O(e−ωc T ), and subleading interaction

corrections beyond the large separation approximation. Units are transparent: the path integral output

at fixed x3 is a density in [length−1]; multiplying by the capture width
√
2πD/V ′′

c yields a probability,

and dividing by T yields a rate [time−1].

2.3.2 Escape rate associated with instanton-anti-instanton events

We now analyse the analogous contribution from composite instanton-anti-instanton ([IĪ]) pairs. This

configuration describes a closed fluctuation loop: the pseudoparticle climbs the barrier via an instanton

and then returns via an anti-instanton, ending in the original metastable well.
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Composite [IĪ] Instanton Profile
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Figure 2.7: A schematic composite [IĪ] solution as a function of time. The black curve shows the
pseudoparticle compound, the fading cyan points indicate the time direction, red dashed lines mark
the characteristic excursion widths ∆tu and ∆td (equal by symmetry), and the breathing mode s (the
plateau between events) is shown in blue.

The setup mirrors the [II] case: we glue an uphill instanton trajectory from xα to xβ to its time-reversed

anti-instanton that returns to xα. Time reversal implies the Onsager–Machlup Jacobians and fluctuation
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determinants match segment-wise. The double integral for the [IĪ] sector is

P (xα,+T /2 | xα,−T /2)

≃ P0(T )
∫ +T /2

−T /2
dtu

∫ +T /2

tu

dtd exp
(
− S[xcl]

4D

) JOM[xcl]

JOM[x0]

⟨ẋu | ẋu⟩
4πD

(
det′′ M̂
det M̂0

)−1/2

. (2.155)

Here the factor ⟨ẋu | ẋu⟩/(4πD) comes from the product of two identical collective coordinate Jaco-

bians (one for the instanton shift and one for the anti-instanton shift), each contributing
√
⟨ẋu | ẋu⟩/(4πD).

Determinant factorisation (large separation). With K = [−T /2,+T /2] and an intermediate time

T0, let K1 = [−T /2, T0] and K2 = [T0,+T /2]. In the regime td− tu →∞ (well-separated segments),

P0(T )

[
det′′ M̂

∣∣
K

det M̂0

∣∣
K

]−1/2

≃
√

2πD

|V ′′
β |
P0(T0 + T /2)P0(T /2− T0)

[
det′ M̂

∣∣
K1

det M̂0

∣∣
K1

]−1

. (2.156)

Since K1 and K2 are mirror images in the [IĪ] configuration, their two identical factors with exponent

−1
2

combine to the single bracket with exponent −1 shown above; the prefactor
√

2πD/|V ′′
β | corrects

the double-counting of the local harmonic piece at the barrier.

Interaction sign and instability. The crucial difference with the [II] case is the sign of the interaction

action. Reversing the second segment flips the velocity near the barrier and yields (Appendix B.3)

Sint(tu, td) = −
4

|V ′′
β |
[
ẋu(T0)

]2
, (2.157)

which is negative definite. Thus the [IĪ] composite is a local maximum along the quasi-zero mode

s := td − tu and is intrinsically unstable on the real axis.

Quasi-zero mode integral and the need to complexify. Changing variables to centre and separation,

tc =
tu + td

2
, s = td − tu ≥ 0,
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and using the same large separation estimates as in the [II] case, the quasi-zero mode (QZM) integral

takes the form

Z[IĪ] = T A
∫ ∞

0

ds exp
(
− 1

4D
V−(s)

)
, V−(s) = −

4A
ωβ

e−ωβs + 4Dωβ s, ωβ := |V ′′
β | > 0.

(2.158)

There is no real saddle for s since

∂sV− = 4A e−ωβs + 4Dωβ = 0 =⇒ s⋆ =
1

ωβ

[
log

A
Dωβ

+ i (2k + 1)π
]
, k ∈ Z, (2.159)

is complex. Consequently, R+ is not a steepest descent contour because the integral has no saddle on

the real axis and is dominated by the endpoint s = 0, signalling the breakdown of the large separation

approximation.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

s

−20

−10

0

10

20

V ±
(s

) No s∗

[IĪ] Interaction Potential V−(s)

V+(s)

V−(s)

Figure 2.8: Comparison of the effective interaction potentials for instanton-instanton (V+, dashed)
and instanton-anti-instanton (V−, solid) configurations. The repulsive V+ has a unique minimum s∗

(stabilising the pair), whereas the attractive V− has no real critical point and the pair collapses.

A common workaround is the ad hoc analytic continuation D → D e±iπ to flip the sign in the exponent

and force convergence [24, 188]. However, this choice (±) is ambiguous and, more seriously, it turns

the exponentially suppressed factor e−A/(Dωβ) that appeared in the [II] analysis into an exponentially
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enhanced one, so dropping it becomes inconsistent.

Remark 2.3.1 (Why instanton-instanton pairs behave but instanton-anti-instanton do not). The [II]

sector has an effective interaction

V+(s) = +
4A
ωβ

e−ωβs + 4Dωβs, ωβ := |V ′′
β | > 0, (2.160)

with a real critical point

∂sV+ = −4A e−ωβs + 4Dωβ = 0 =⇒ s∗ =
1

ωβ
log

A
Dωβ

, (2.161)

and ∂2sV+(s∗) = 4Aωβe−ωβs
∗
> 0, so s∗ is a local minimum. Hence, the real s-axis already contains

a steepest descent contour (a Lefschetz thimble) through s∗, and the QZM integral over R+ does not

need contour deformation. By contrast, for [IĪ] the interaction is

V−(s) = −
4A
ωβ

e−ωβs + 4Dωβs, (2.162)

whose critical points solve ∂sV− = 4Ae−ωβs + 4Dωβ = 0, giving

s⋆ =
1

ωβ

[
log

A
Dωβ

± iπ
]
, (2.163)

a conjugate pair of complex saddles with no real critical point. Thus, the real contour R+ is not a valid

contour (thimble), and the QZM integral is not valid in a Gaussian approximation. The well-defined

prescription is to deform to the thimble(s) through s⋆ (details in § 3.6).

We shall demonstrate that the correct weak-noise prescription is to keep D > 0 and deform the s-

contour into the complex plane to the steepest descent thimble(s) through the complex saddle(s) s⋆

(Picard–Lefschetz theory [42, 70, 143, 169, 184]). Only one of the conjugate saddles contributes, with

the choice fixed by intersection numbers [50–52, 71]. This replaces the ill-posed real integral by a

well-defined thimble integral and removes the need for the ad hoc D → −D flip. We develop this
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construction in Chapter 3 and show that it preserves the leading Kramers exponent while providing a

contour-consistent treatment of the [IĪ] sector.
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Chapter 3

Case Study I – Stochastic Cubic Formulation

Chapter Summary

We calculate the escape rate of a Brownian particle in the weak-noise limit (D → 0) using Picard–Lefschetz
theory, focusing on the stochastic cubic potential. We reformulate the dynamics using the Onsager–Machlup
functional in the Itô discretisation, mapping the problem to classical motion in an effective tilted quartic
landscape, where the tilt arises from the Itô calculus.

In the Itô framework, we find that in the weak-noise regime, a new trajectory emerges: the stochastic real
bounce ([RB]). This path shows an extended plateau near the classical turning point, unlike quantum
bounces. However, the saddle-point approximation fails because an attractive quasi-zero mode makes the
fluctuation determinant divergent. The standard Bogomolny–Zinn–Justin prescription, continuing D → −D
to fix this, lacks justification in the stochastic setting and introduces ambiguity ±iπ.

Picard–Lefschetz theory directly addresses these challenges. It complexifies the path space and selects the
appropriate integration cycle, a Lefschetz thimble. This supports another solution: stochastic complex bounce
([CB]), an exact solution to the holomorphic Euler–Lagrange equations on a non-vanishing energy manifold.

With this method, deforming to the thimble allows an exact evaluation of the quasi-zero mode integral and
fixes the ±iπ factor geometrically via thimble orientation, ensuring that D > 0 throughout.
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3.1 The Itô Onsager–Machlup formulation

In contrast to Chapter 2, where we used the Stratonovich prescription, we now adopt the Itô discreti-

sation in formulating the stochastic path integral. Since our analysis concerns additive white noise, the

Onsager–Machlup Jacobian simplifies to unity, provided that the stochastic integral is interpreted in the

Itô sense [106]. Concretely, this choice does not change the physics for additive noise, but it changes

where the 1
2

∫
dt V ′′ contribution appears in the path integral formulation. While the Stratonovich

formalism packages the order-D0 contribution into the Onsager–Machlup Jacobian,

JOM[x] = exp

(
1

2

∫ +T /2

−T /2
dt V ′′(x(t))

)
, (3.1)

the Itô formalism absorbs this term directly into the action functional, as demonstrated in §1.2.2.1. The

origin of this difference lies in how the cross-term
∫
dt 2ẋV ′(x) is evaluated.

Viewing the cross term as an Itô integral, this expression acquires an additional correction due to the

Itô chain rule.

Itô

{∫ +T /2

−T /2
dt 2ẋV ′(x)

}
= 2∆V − 2D

∫ +T /2

−T /2
dt V ′′(x). (3.2)

Thus, the Stratonovich Jacobian re-emerges now as a built-in feature of the action. In equivalent formu-

lations, this same contribution may be described as Jacobian-induced loop effects. The Itô formulation,

therefore, yields an effective action of the form

S[x] =
∫

dt
[
ẋ2 + V ′(x)2 − 2DV ′′(x)

]
, (3.3)

where the final term encodes the tilt induced by the stochastic calculus itself. For a complementary

discussion of tilt effects in Onsager–Machlup functionals (in a closely related setting), see [159].

In the quantum field theory setting studied by Dunne et al. [12–14], the tilt arises from ‘fermionic loop

effects’ and enters at order O(g), with g the coupling constant [183]. The effective potential here takes
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the form

−V± = −1

2
(W ′(x))2 ∓ pgW ′′(x). (3.4)

In the stochastic analogue, the tilt arises not from quantum corrections but from the discretisation

scheme1. It emerges at order O(D) in the action, giving

U(x) = −(V ′(x))2 + 2DV ′′(x), (3.5)

which shares a structure similar to (3.4). From a strictly perturbative viewpoint, adding the order-D

correction directly to the action contaminates the expansion. It mixes different orders in noise strength

and disrupts the order-by-order hierarchy seen in the Stratonovich formalism. This conventional view

keeps the Onsager–Machlup Jacobian outside the action, preserving the clean stratification of the weak-

noise expansion.

Yet, we will show that both formalisms yield the same escape rate up to the prefactor when D is small.

More importantly, the Itô framework naturally reveals complex saddles and presents a clear picture

of the D → −D continuation. Thus, the Itô prescription goes beyond convenience and enhances

compatibility between the stochastic path integral and complexified geometry.

3.1.1 The tilt term and the effective landscape

We now give a brief overview of the geometry generated by the Itô choice and discuss how the formula-

tion differs from the Stratonovich path integral formulation presented in Chapter 2. Some well-known

potentials are plotted, in which the classical mechanics takes place, with the 2DV ′′ term added.

1The point at which the force is evaluated in the discrete-time Langevin equation determines the structure of the Onsager–
Machlup measure.
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Stratonovich vs Itô Effective Potentials

V(x)

D= 0

D= 0.01

D= 0.05

D= 0.1

(c) Augmented sextic potential.

4 2 0 2 4
x

10

5

0

5

10

(x
)

H
=

0
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Figure 3.1: Geometry of the Itô effective potential. The black curve indicates the original potential
V (x) governing the stochastic dynamics, and the coloured curves represent the Itô effective potential
U(x), which governs the Hamiltonian evolution. (a) A symmetric quartic potential [162],
V (x) = (x2 − 1)2, mapped to an inverted and tilted sextic effective potential. (b) A soft-Coulomb-type
potential [115], V (x) = − 1√

1+(x− 1
2
)2
− 1√

1+(x+ 1
2
)2

. (c) A sextic potential augmented by a centrifugal

barrier [47], V (x) = 1
100x2

− x2 + x4 + x6, mapped to a highly deformed Itô landscape. (d) A
Mathieu-type potential [166], V (x) = 1 + 3 cos(x) + sin2(x).

In Fig. 3.1, the bold black curve shows the original stochastic potential V (x). The dashed blue curve

gives its effective Stratonovich landscape −[V ′(x)]2. The coloured curves display the effective Itô

landscape U(x) = −[V ′(x)]2+2DV ′′(x) for the indicated values ofD. The 2DV ′′ tilt shifts the critical

points and removes their degeneracy. Under Stratonovich’s formalism, −[V ′]2 keeps all critical points

at zero. In contrast, U raises or lowers them by terms of order D, splitting minima and maxima. This

deformation of the landscape then produces qualitatively different Hamiltonian trajectories under the

Itô Euler–Lagrange dynamics ẍ = V ′V ′′ −DV ′′′ (see § 1.2.2.2).
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3.1.2 Itô and Stratonovich compared

With this new classical landscape in mind, we now derive the path integral up to equation (2.108) from

Chapter 2. Here, we work within Itô’s framework, with the choice α = 0 (see B.2) in the discretised

Langevin equation. The derivation follows the earlier steps closely, but subtle differences arise. Using

the self-adjointness of the Hamiltonian fluctuation operator, we obtain the analogue of equation (2.72):

P (x2,+T /2|x1,−T /2) = ND exp

(
−S[xcl]

4D

)
JOM[xcl]︸ ︷︷ ︸

=1

[
lim
N→∞

N∏
n=0

√
4πD

]
(detM̂)−

1
2 . (3.6)

The Onsager–Machlup Jacobian evaluates to unity along any Itô path; we thus omit it from all further

expressions. Its structural role is now absorbed into the action functional, which becomes

S[x] = 2∆V +

∫ +T /2

−T /2
dt L(x, ẋ, t), (3.7)

with Lagrangian

L(x, ẋ, t) = mp

2

(
dx

dt

)2

− U(x), U(x) = −V ′(x)2 + 2DV ′′(x). (3.8)

As before, we may set mp/2 = 1 without loss of generality. The classical paths that extremise this

action satisfy the modified Euler–Lagrange equation,

δS[x(t)]
δx(t)

∣∣∣∣
x=xcl

= 0 =⇒ d2x

dt2

∣∣∣∣
x=xcl

= −1

2
U′(x)

∣∣∣∣
x=xcl

. (3.9)

This leads to the Hamiltonian dynamics,

d2x

dt2

∣∣∣∣
x=xcl

= [V ′(x)V ′′(x)−DV ′′′(x)]|x=xcl
. (3.10)
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Previously, the term −DV ′′′(x) was absent in Stratonovich’s formalism, and the extremising solutions

were instantons obeying the first-order equation

dxI
dt

= V ′(xI). (3.11)

Differentiating this with respect to time yields the associated second-order differential equation,

d2xI
dt2

= V ′(xI)V
′′(xI). (3.12)

This trajectory is entirely independent of the noise strength D. In contrast, within the Itô formalism,

the saddle equations acquire an explicit D-dependence. This quantitative modification introduces a

qualitative deformation of the space of extremising paths.

To obtain a first integral for the Itô Euler–Lagrange equation (3.9), we multiply it by 2ẋ and use

d

dt

(
ẋ2
)
= 2ẋẍ,

d

dt

(
V ′(x)2 − 2DV ′′(x)

)
= 2ẋV ′(x)V ′′(x)− 2DẋV ′′′(x).

Along any classical trajectory satisfying (3.9) this gives

d

dt

(
ẋ2 − V ′(x)2 + 2DV ′′(x)

)
= 0,

so the combination ẋ2−V ′(x)2+2DV ′′(x) is constant in time. We denote this real integration constant

by H; it plays the role of an effective conserved energy for the tilted Itô dynamics. The conserved

quantity can therefore be written as

ẋ2 = H + V ′2 − 2DV ′′, (3.13)

so that the corresponding first integral is

dx

dt
= ±
√
H + V ′2 − 2DV ′′. (3.14)
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This first integral solves the Euler–Lagrange equation (3.9) for fixedH . As we shall later demonstrate in

equations (3.3.4) and (3.4.4), the tilt term also deforms the fluctuation operator through a modification

of the associated fluctuation potential.

Finally, the normalisation constant must also be reevaluated. Consider a particle that begins and ends at

a minimum of the original potential. One may either use the Ornstein–Uhlenbeck propagator or follow

the explicit eigenvalue analysis beginning with equation (2.73), yielding

ND =

[
lim
N→∞

N∏
n=0

(4πD)−
1
2

]
(detM̂0)

+ 1
2P0(T ), (3.15)

where the time-dependent factor becomes

P0(T ) =
√

ω0

4πD sinh(ω0T )
. (3.16)

Unlike in the Stratonovich setting, the exponential factor exp(ω0T /2) appearing in equation (2.88) is

absent from the Itô normalisation function.

The corresponding harmonic fluctuation operator is given by

M̂0 = −
d2

dt2
− 1

2
U′′(x0)

= − d2

dt2
+ V ′(x0)V

′′′(x0) + [V ′′(x0)]
2 −DV ′′′′(x0),

(3.17)

which exhibits an explicit dependence on the noise strength D. Around a critical point x0, the fluctua-

tion operator simplifies to

M̂0 = −
d2

dt2
+ ω2

0, (3.18)

with effective frequency

ω2
0 = V ′(x0)V

′′′(x0) + [V ′′(x0)]
2 −DV ′′′′(x0). (3.19)
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A natural assumption is that the noise dependence in the fluctuation spectrum stems solely from the term

involving the fourth derivative of the potential. For example, in a cubic potential where V ′′′′(x) = 0, one

might expect the harmonic frequency ω0 to be noise-independent. However, this intuition is incorrect:

as we demonstrate in Section 3.3, there are two distinct mechanisms through which D-dependence

enters the frequency.

Even when V ′′′′(x) = 0, the frequency ω0 can still acquire dependence on D. This arises because the

point x0 entering the harmonic operator corresponds not to a critical point of the original potential, but

to the critical point xcr of the Itô effective potential, defined by the condition U′(xcr) = 0. Crucially,

the extrema of U(x) generally do not coincide with those of V (x). As illustrated in Fig. 3.1, these

critical points can be displaced relative to their Stratonovich counterparts. In such cases, xcr may be

perturbatively expanded in D, and the condition V ′(xcr) = 0 is violated by a small remainder. That is,

V ′(xcr) = E(D), (3.20)

where E(D) admits a power series expansion in D. Consequently, the frequency inherits a noise de-

pendence of the form

ω = b0 + b1D + b2D
2 + . . . . (3.21)

This contrasts with the Stratonovich formalism, where x0 is fixed by V ′(x0) = 0, eliminating such

corrections by construction.

The method of collective coordinates introduced in § 2.1.9 carries over directly to the Itô framework.

As before, we isolate the divergent contribution associated with the translational zero mode of M̂, and

replace it by an integration over the collective coordinate tc:

√
4πD

λ0
7→

√
⟨ẋcl|ẋcl⟩

∫ +T /2

−T /2
dtc . (3.22)
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The resulting Itô path integral, which incorporates quadratic fluctuations around the saddle, reads

P (x2,+T /2|x1,−T /2) =
√

ω0

4πD sinh(ω0T )
exp

(
−S[xcl]

4D

)

×
√
⟨ẋcl|ẋcl⟩
4πD

∫ +T /2

−T /2
dtc

(
det′ M̂
detM̂0

)− 1
2

. (3.23)

We now compare the weak-noise asymptotics of the stochastic path integral derived in the Itô formalism

with its Stratonovich counterpart (2.108). The key structural differences are as follows:

• Measure / Jacobian. For additive noise the Onsager–Machlup Jacobian is

JStrat
OM [x] = exp

(1
2

∫
V ′′(x) dt

)
, J Itô

OM [x] ≡ 1.

In the weak-noise expansion, this factor is evaluated at xcl and multiplies the weight. We may

equivalently absorb it into the exponent (see the following item).

• Exponent and equations of motion. We keep the canonical action S[x] =
∫
(ẋ + V ′)2dt and

weight exp[−S/(4D)] in both schemes. The total exponent differs by

ΦStrat
D [x] = − 1

4D
S[x] + 1

2

∫
V ′′(x) dt, ΦItô

D [x] = − 1

4D
S[x],

which are algebraically equivalent to the total exponent

− 1

4D

∫ (
ẋ 2 + V ′2 − 2DV ′′) dt.

For the Itô action functional, the equations of motion acquire an additional term through the

calculus of variations,

ẍ = V ′V ′′ −DV ′′′

.
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• Stationary points and harmonic operator. In Stratonovich the effective landscape is US(x) =

−[V ′(x)]2, so U′
S(x) = −2V ′V ′′ and generic stationary points satisfy V ′(x) = 0 (inflection

points with V ′′ = 0 may also appear). In Itô the landscape is U(x) = −[V ′]2 + 2DV ′′, so

U′(x) = −2V ′V ′′ + 2DV ′′′ and stationary points solve V ′V ′′ − DV ′′′ = 0, that do not need

to have V ′ = 0. Expanding near a Stratonovich extremum x∗ with V ′(x∗) = 0, V ′′(x∗) ̸= 0

(δx = O(D)),

xcr = x∗ + δx, δx =
DV ′′′(x∗)

[V ′′(x∗)]2
+O(D2), V ′(xcr) =

DV ′′′(x∗)

V ′′(x∗)
+O(D2).

Linearising the EL equation about xcr gives the local frequency

ω2 = [V ′′(xcr)]
2 + V ′(xcr)V

′′′(xcr)−DV ′′′′(xcr).

• Fluctuations and determinant. In Stratonovich the quadratic operator about xcl is M̂S = −∂2t−
1
2
U′′
S(xcl), which is real and D-independent. In Itô one has M̂ = −∂2t − 1

2
U′′(xcl), which depends

on D both through U and through the D-shift of xcr, making the spectrum and determinant D-

dependent.

• Zero-noise limit. Both formalisms coincide at D = 0 (the Jacobian contributes only at order D0

and the Euler–Lagrange equations agree). For any D > 0 they differ in the stationary set, the

fluctuation operator, and the prefactors, while yielding the same leading Arrhenius exponent.

We now proceed to apply the Itô formalism to a concrete physical example. Our goal is to compute the

components of the Itô stochastic path integral explicitly and recover the corresponding escape rate. We

begin by formally introducing the stochastic cubic potential and setting up the relevant semiclassical

framework.
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3.2 Stochastic cubic potential preliminaries

We begin by considering a prototypical non-confining potential that supports metastable dynamics,

namely the cubic potential

V (x) = −1

3
x3 + a2x, (3.24)

where a > 0 determines the positions of the extrema. This function has a local minimum at x = −a

and a local maximum at x = +a. Physically, the minimum at x = −a plays the role of a metastable

state, from which thermally activated escape occurs.

V (x)

x

t0 = tϵ ≪ 1 t1 = +T ≫ 1

−a

+a

∆Va,−a

V (x)

x

−a

+a

∆Va,−a

Figure 3.2: The cubic potential V (x), illustrated at two distinct times. The orange arrow denotes the
forward direction of time. Initially (left), particles are localised near the metastable well at x = −a.
At later times (right), escape events over the barrier at x = +a have occurred.

To meaningfully discuss thermally activated escape in the potential V (x), the noise strength D must be

small compared to the barrier height,

∆Va,−a = V (+a)− V (−a) = 4

3
a3. (3.25)

We assume a is sufficiently large such that a ≫ D1/3, ensuring a clear separation of scales between

thermal fluctuations and the potential barrier.
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As illustrated in Fig. 3.2, the potential is non-confining. Once particles cross the barrier at x = +a, they

irreversibly escape into a running channel as x → +∞, effectively reaching an absorbing boundary.

The system therefore admits no stationary distribution [2, 126], and, in analogy with quantum field

theory, one may regard it as lacking a true ground state [81].

In computing the forward escape rate, the detailed structure of the potential beyond the barrier is largely

irrelevant. This justifies the use of asymptotic methods that focus on local bounce-like configurations,

which we proceed to analyse next.

3.3 The stochastic real bounce

Starting from the cubic potential (3.24), we consider the problem of evaluating the transition probability

P (−a,+T /2 | −a,−T /2), corresponding to escape over the barrier at x = +a for a Brownian particle

initialised in the metastable well at x = −a. We analyse this using the Itô path integral formalism,

expanding around the dominant weak-noise trajectory and incorporating Gaussian fluctuations.

Under the Markovian stochastic Hamiltonian correspondence (as discussed in § 2.1.7), the escape dy-

namics reduces to a classical problem: the motion of a Hamiltonian particle in the Itô effective potential

U(x) = −[V ′(x)]2 + 2DV ′′(x). (3.26)

A plot of the effective potential U(x) associated with the stochastic cubic model (3.24) is shown in

Fig. 3.3.
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Figure 3.3: Itô effective potential U(x) (with a =
√
2, D = 0.1) governing the stochastic [RB]

dynamics. The horizontal lines indicate three representative energy levels H1 < H2 < H0 defined in
Eq. (3.30). Green circles mark the critical points of U(x), while squares denote the corresponding
turning points of the Itô dynamics at these energy levels. The orange square anticipates the position of
a complex turning point after analytic continuation into the complex plane, foreshadowing the need
for complexified dynamics. The qualitative structure closely follows Figure 10 of Behtash et al. [13].

Inspection of the effective potential reveals that the noise-induced tilt significantly deforms its geometry

such that a conventional bounce trajectory no longer exists. Consider, for instance, a Hamiltonian

particle with energy infinitesimally below the global maximum of U(x). The particle acquires sufficient

kinetic energy to surpass the secondary peak and escape to asymptotically large values of x, which

prevents any return. Accordingly, there exists no real, bounded classical solution satisfying the relevant

boundary conditions. The standard bounce paradigm thus fails to compute P (−a,+T /2 | −a,−T /2).

A natural alternative is to consider the transition probability P (a,+T /2 | a,−T /2), where the particle

begins and ends at the top of the barrier. At this energy level, the Hamiltonian trajectory is bounded

between real turning points: the particle descends to a turning point and returns, yielding a real closed

classical solution that satisfies the desired boundary conditions. Although this setup may initially ap-
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pear artificial, it offers a controlled setting in which to study bounce dynamics within the Itô formalism

and to build intuition for the influence of noise and asymmetry. We refer to this configuration as the

stochastic real bounce, denoted by [RB]. Its trajectory is depicted as the thick red curve in Fig. 3.3.

3.3.1 Critical points, energies and turning points

To begin our analysis of the stochastic real bounce [RB], we examine the geometry of its classical

trajectory. The natural starting point is the set of critical points of the effective potential, defined by

the stationarity condition U′(xkcr) = 0. For the cubic potential V (x) = −1
3
x3 + a2x, this yields the

depressed cubic equation,

(xkcr)
3 − a2xkcr +D = 0, (3.27)

which admits three distinct real roots, provided the discriminant satisfies ∆ = 4(−a2)3 + 27D2 < 0.

These roots may be expressed explicitly in trigonometric form 2:

xkcr = −
2a√
3
cos

(
1

3
arccos

(
3
√
3

2a3
D

)
− 2πk

3

)
, k = 0, 1, 2. (3.28)

This agrees with the set of critical points found by Dunne et al. in Equation (128) in [13]. The

stochastic [RB] trajectory is time-symmetric, reflecting off a turning point xT
1 at t = tc = 0 (without

loss of generality), and approaching the lower maximum of U(x) as T → ±∞. At the energy level

associated with [RB], the turning points xT
2 and xT

3 coalesce.

In the weak-noise regime, corresponding physically to a small tilt in the effective potential, the roots of

2This follows via the substitution xk
cr = − 2a√

3
cos(θ) and the identity cos(3θ) = 4 cos3 θ − 3 cos θ.
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the depressed cubic (3.27) admit asymptotic expansions in powers of D:

xcr
0 ≈ −a−

D

2a2
+

3D2

8a5
+O(D3),

xcr
1 ≈

D

a2
+
D3

a8
+O(D5),

xcr
2 ≈ a− D

2a2
− 3D2

8a5
+O(D3).

(3.29)

These expansions confirm that the critical points of the Itô effective potential are slightly shifted com-

pared to their Stratonovich counterparts. In the noiseless limit D = 0, the tilt vanishes exactly and

U(x) becomes symmetric, recovering the critical point structure of the classical Stratonovich frame-

work. The three critical points collapse to the zero-energy level H = 0. In contrast, for non-zero noise,

this symmetry breaks and the degeneracy is lifted.

To determine the energy associated with each critical point, we evaluate the effective potential at the

corresponding roots,

Hk = U(xkcr), k = 0, 1, 2. (3.30)

These energy levels explicitly depend on the noise strength D, and remain finite (typically negative for

real bounces) even in the infinite-time limit T → ∞. The energy level governing the stochastic real

bounce is the value at the rightmost critical point xcr
2 , which admits the expansion

H2 = U(xcr
2 ) ≈ −4aD +

D2

a2
+O(D3). (3.31)

To determine the corresponding turning points, we proceed by analysing the square of the particle’s

velocity via energy conservation. Turning points are defined as locations where the Hamiltonian particle

momentarily comes to rest, i.e., where its velocity vanishes,

(
dx

dt

)2

= H − U(x)

= H + 4Dx+ x4 − 2a2x2 + a4

≡ Φ(x),

(3.32)
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where Φ(x) is the turning point function. This function encodes the kinematically accessible region of

the Hamiltonian particle and admits a transparent algebraic structure. Since the critical points xkcr lie

on constant-energy surfaces, they satisfy Φ(xkcr) = 0 by construction. Differentiating and evaluating at

xkcr yields Φ′(xkcr) = −U′(xkcr) = 0, confirming that each xkcr is a degenerate double root of Φ(x). This

reflects the vanishing of both the velocity and its derivative at that point. As a monic quartic, Φ(x)

factorises as

Φ(x) = (x− xcr)
2(x− xT )(x− x′T ), (3.33)

where xcr ∈ R is a double root corresponding to a critical point and xT , x′T ∈ R are the associated

non-degenerate turning points. Expanding both sides and comparing with (3.32) yields the coefficient

identities:

(i) Coefficient of x3 : 2xcr + xT + x′T = 0,

(ii) Coefficient of x2 : 2xcr(xT + x′T ) + xTx
′
T + x2cr = −2a2,

(iii) Coefficient of x1 : −2xcrxTx
′
T − x2cr(xT + x′T ) = 4D,

(iv) Coefficient of x0 : x2crxTx
′
T = H + a4.

(3.34)

Using (i), we eliminate one root: x′T = −2xcr − xT . Substituting into (iii) yields a quadratic in xT ,

leading to

xT = −xcr +

√
2D

xcr
and x′T = −xcr −

√
2D

xcr
, (3.35)

provided xcr > 0. Substituting these into (ii) yields the constraint

x2cr +
D

xcr
= a2, (3.36)

which is algebraically equivalent to the critical point condition U′(xcr) = 0, or equivalently the de-

pressed cubic (3.27). These identities will help streamline the analytic study of the stochastic bounce

configuration and its fluctuations.
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3.3.2 Exact analytic solution for the stochastic real bounce

The motion of the stochastic [RB] satisfies the second-order ODE,

d2x

dt2
= −1

2
U′(x)

= 2x3 − 2a2x+ 2D,

(3.37)

subject to the conditions

x(±∞) = xcr
2 , x(tc) = xT , (3.38)

where xcr
2 is given explicitly in (3.28) and the turning point, xT , satisfies the relation of (3.35). We solve

this equation numerically to extract the structural features of the solution.
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(a) A phase plot of the stochastic [RB].
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Figure 3.4: Numerically solving the ODE (tc = 0) with a = 1 and D = 10−6. The colour bar on the
right indicates the direction of time. On the colour bar, the time is normalised to unity.

The phase plot in Fig. 3.4a shows that the stochastic [RB] remains confined to the real axis since

y(t) = 0 ∀ t, returning to its initial position at the end of its trajectory. In Fig. 3.4b, we plot the solution

as a function of time against position, revealing the loop-like structure characteristic of a composite

ansatz pair [ĪI] introduced in Chapter 2. We will now derive the exact analytic solution that exhibits

this behaviour.

To elucidate the structure of the solution, we begin in a general setting, postponing the substitution of
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explicit values for the critical and turning points until the final step. Although their specific locations

vary across energy levels, the underlying ODE structure remains invariant. The classical path satisfies

the algebraic curve equation (3.33), which is equivalent to the differential equation

(
dx

dt

)2

= (x− xcr)
2(x− xT )(x− x′T ), (3.39)

and admits an implicit solution via quadrature:

∫ t

tc

1 dt′ =

∫ x

xT

dx′√
(x′ − xcr)2(x′ − xT )(x′ − x′T )

=: F (x), (3.40)

yielding the relation

t− tc =
∫ x

xT

dx′√
(x′ − xcr)2(x′ − xT )(x′ − x′T )

= F (x). (3.41)

Without loss of generality, we assume the particle reaches the turning point xT at time t = tc = 0. This

choice amounts to a global time translation t 7→ t− tc, which leaves the underlying dynamics invariant

due to time-translation symmetry. At this stage, the solution is implicit in the form t− tc = F (x), and

must be inverted to yield the classical path x(t− tc) = F−1(t− tc).

Rather than solving (3.39) directly using special functions such as the Weierstrass elliptic function

℘ [111], we adopt a constructive and algebraically transparent approach.3 This method systematically

transforms the original equation through a sequence of invertible maps into a solvable form. The

solution strategy is depicted below as a commutative diagram of transformations.

3The idea of reducing the ODE to more accessible forms was motivated by discussions with Professor Alan McKane.
The illustration and implementation of commutative diagrams was an original contribution of the author.
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A B C D E I J

SA SB SC SD SE SI SJ

T1

solution map f

T2 T3 Tn−1 Tn

Solution

R1 R2 R3 Rn−1 Rn

Figure 3.5: An abstract blueprint for solving nonlinear ODEs via sequential transformations.

Here, the objects A,B, . . . , J denote successive forms of the ODE obtained by transformations Ti.

Each transformation Ti represents a (possibly non-linear) change of variables designed to simplify

the algebraic structure of the differential equation, while the reverse maps Ri = T−1
i reconstruct the

original variables. This defines the solution map f , expressed as the composition

f(A) = R1 ◦R2 ◦ · · · ◦Rn ◦ Solution ◦ Tn ◦ · · · ◦ T1(A), (3.42)

where ◦ denotes function composition. The order of composition is essential. We now proceed to solve

the bounce equation explicitly. We first introduce a coordinate shift to centre the dynamics at the critical

point,

(φ(x), φT , φ
′
T ) := (x− xcr, xT − xcr, x

′
T − xcr). (3.43)

This recasts the quartic ODE (3.39) into the translated form

(
dφ

dt

)2

= φ2(φ− φT )(φ− φ′
T ), (3.44)

i.e., a quartic equation with a double root at the origin. We now apply a reciprocal transformation to

simplify the quartic structure,

(ψ(x), ψT , ψ
′
T ) :=

(
1

φ(x)
,
1

φT
,
1

φ′
T

)
. (3.45)
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Under this change of variables, Equation (3.44) becomes

(
dψ

dt

)2

=
1

ψTψ′
T

(ψ − ψT )(ψ − ψ′
T ). (3.46)

The prefactor simplifies upon identifying the square of the local angular frequency around the critical

point,

ω2 := (xT − xcr)(x
′
T − xcr) =

1

ψTψ′
T

. (3.47)

This arises from the linearisation of the effective potential around xcr, where the operator has the form

M̂ = − d2

dt2
+6(xcr)

2−2a2 = − d2

dt2
+(xT −xcr)(x

′
T −xcr). Introducing the scaled time variable t̃ := ωt,

we obtain the simplified equation

(
dψ

dt̃

)2

= (ψ − ψT )(ψ − ψ′
T ). (3.48)

To fix the freedom associated with the time-translation symmetry, we choose the initial condition

x(0) = xT , which implies ψ(0) = ψT . This convention fixes the position modulus, selecting a unique

bounce trajectory up to global time shifts. Define

r := ψT − ψ′
T , η(t̃) := ψ(t̃)− ψT , (3.49)

so that Equation (3.48) becomes (
dη

dt̃

)2

= η(η + r). (3.50)

We now rescale η to symmetrise the right-hand side. Define

η(t̃) =
r

2

(
K(t̃)− 1

)
, with K(0) = 1. (3.51)
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This transforms the ODE into the elementary form

(
dK

dt̃

)2

= K2 − 1, (3.52)

whose solution is the standard hyperbolic cosine,

K(t̃) = cosh
(
t̃
)
. (3.53)

Since each transformation is invertible, we reconstruct the original bounce solution by reversing the

sequence. The result is an exact analytic expression,

xcl(t) = xcr +
(xT − xcr)(1 + C)

cosh(ωt) + C
, (3.54)

where the constant

C =
2xcr − (xT + x′T )

xT − x′T
(3.55)

quantifies the asymmetry of the turning points relative to the critical point.

A B C D E F

SA SB SC SD SE SF

φ

f

ψ t̃ η K

Solution

φ−1 ψ−1 t̃−1 η−1 K−1

Figure 3.6: Commutative diagram illustrating the transformation sequence yielding the exact bounce
solution. The maps are defined as
φ = x− xcr, ψ = 1/φ, t̃ = ωt, η(t̃) = ψ(t̃)− ψT , K(t̃) = 1 + 2

r
η(t̃).

The diagram above compactly summarises the sequence of transformations employed to obtain the ex-

act solution. For example, the solution in the canonical form, denoted by SF , is given by K = cosh
(
t̃
)
,

while SE = r
2
[cosh

(
t̃
)
− 1] represents the form of the solution after inverting the final simplifying

transformation, and so on.
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The explicit stochastic [RB] solution is obtained by substituting the relevant critical and turning point

values into the general solution structure (3.54). This yields

xcl(t) = xcr
2 +

(xT
1 − xcr

2 )(1 + Crb)

cosh(ωrbt) + Crb
, (3.56)

where the turning point is perturbed very slightly from −a,

xT
1 = −a+

√
2D

a
+

D

2a2
+O(D3/2), (3.57)

and the asymmetry constant is

Crb =
2xcr

2 − (xT
1 + xT

0)

xT
1 − xT

0

. (3.58)

Note that this constant is real and very large in the weak-noise limit,

Crb =

√
2a3

D
− 3

2

√
D

2a3
− 15

16

√
D3

2a9
+ · · · ∼

√
2a3

D
as D → 0. (3.59)

At first glance, the structure of the solution may appear opaque. However, using the exact expressions

for the turning points and the identity (3.36), the solution can be reorganised into a more transparent ex-

pression that naturally admits a physical interpretation in terms of a composite anti-instanton-instanton

configuration, reminiscent of the language in Chapter 2. Explicitly, algebraic rearrangement yields

xcl(t) = xcr
2 + (xT

1 − xcr
2 )


(

xcr
2√

2a2 − 2(xcr
2 )

2
+

1

2

)

cosh2 (ωrbt/2) +

(
xcr
2√

2a2 − 2(xcr
2 )

2
− 1

2

)
 . (3.60)

To reveal the compound structure, we define a new temporal separation parameter4

µrb =
2

ωrb
arcosh

(√
xcr
2√

2a2 − 2(xcr
2 )

2
+

1

2

)
, (3.61)

4This follows from the identity [cosh(arcosh(x))]2 = x2, and [sinh(arcosh(x))]2 = x2 − 1.
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where

ωrb :=

√
−1

2
U′′(xcr

2 ) ≈ 2a− 3D

2a2
− 21D2

16a5
+O(D3), (3.62)

denotes the local curvature of the effective Itô potential at the lower peak. Then, we obtain a more

illuminating expression,

xcl(t) = xcr
2 + (xT

1 − xcr
2 )

[
cosh2 (ωrbµrb/2)

cosh2 (ωrbt/2) + sinh2 (ωrbµrb/2)

]
= xT

1 + (xcr
2 − xT

1)

[
sinh2 (ωrbt/2)

cosh2 (ωrbµrb/2) + sinh2 (ωrbt/2)

]
.

(3.63)

Finally, to exhibit the anti-instanton-instanton structure in closed form, we recast the stochastic [RB]

solution as

xcl(t) = xcr
2 −

1

2
(xcr

2 − xT
1) coth

(ωrbµrb
2

) [
tanh

(ωrb
2
(t+ µrb)

)
− tanh

(ωrb
2
(t− µrb)

)]
. (3.64)

It follows directly from this expression that the boundary conditions are satisfied,

lim
t→±∞

xcl(t) = xcr
2 , xcl(0) = xT

1 . (3.65)

If we had chosen to retain the collective coordinate tc, the [RB] would instead take the form

xcl(t) = xcr
2 −

1

2
(xcr

2 − xT
1) coth

(ωrbµrb
2

)
×
[
tanh

(ωrb
2
(t− tc + µrb)

)
− tanh

(ωrb
2
(t− tc − µrb)

)]
. (3.66)

This representation demonstrates the two-instanton structure of the stochastic [RB] solution, derived

entirely from first principles without recourse to an ansatz. The solution is understood as an exact com-

posite anti-instanton-instanton configuration. This matches the expression derived by Dunne et al. in

Equation (143) in [13]. The instantonic substructures are explicitly captured by the two tanh functions,

each localised near its respective centre. Concretely, the trajectory consists of an anti-instanton event
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[Ī] centred at t = tc − µrb, followed by an instanton event [I] centred at t = tc + µrb.

The collective coordinate tc serves as the centre-of-mass of the instanton compound, reflecting its

underlying time-translation invariance. The parameter µrb governs the temporal separation between the

two instantonic events. In the weak-noise limit D → 0, this separation diverges logarithmically and

the configuration becomes dilute, factorising into two weakly interacting segments. The asymptotic

expansion of µrb in this regime is given by

µrb =
1

4a
log

(
8a3

D

)
+

D

16a4

[
−7 + log

(
512a9

D3

)]
+ · · · , (3.67)

confirming the emergence of widely separated instantons in the weak-noise limit, where the total sepa-

ration is dominated by

2µrb ∼
1

2a
log

(
8a3

D

)
. (3.68)
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Figure 3.7: Qualitative structure of the stochastic real bounce [RB] for a = 1. (a) As the noise strength
D decreases, the solution flattens and separates into a dilute anti-instanton-instanton compound. (b)
At fixed small D, the temporal separation 2µrb ∼ log(1/D) becomes clearly resolved, confirming the
logarithmic scaling of the bounce width in the weak-noise limit, as also observed in [12].

In the weak-noise limit, the temporal gap between the anti-instanton and instanton grows large, as

shown by the logarithmic dependence of µrb on the inverse noise strength. This highlights a key trait
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of the [RB] solution: the path starts at the lower maximum of the effective potential xcr
2 as t → −∞,

lingering there for a long period. The system then quickly moves to the turning point xT
1 at time t = tc.

Unlike quantum tunnelling trajectories, which change over time scale 1/ω, the stochastic [RB] stays

near the turning point for about 2µrb ≈ (1/2a) log(8a3/D). Thus, the stochastic bounce has a much

wider temporal footprint than its quantum counterparts, with a long plateau separating the instantonic

events.

This long middle segment shapes the spectrum of the fluctuation operator around the [RB], discussed

in further detail in Section 3.3.4. In one-dimensional systems, knowing the exact analytic form of the

[RB] is not necessary to compute its stochastic action. As shown in the following, the action can be

found independently of the explicit trajectory.
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3.3.3 The stochastic real bounce action

If the total duration T is assumed to be large but finite, the particle does not start exactly at the critical

point. Instead, it begins with a small distance δ to the left, that is, xcl(−T /2) = xcr − δ, where δ is a

function to be determined. We will demonstrate that δ is exponentially suppressed in time and can be

neglected. Assuming T is large but finite, the action functional evaluated along the extremal path takes

the form

S[xcl] =

∫ +T /2

−T /2
dt [H − 2U(x)] =

∫ +T /2

−T /2
dt [2H − 2U(x)−H]

= −HT + 2

∫ +T /2

−T /2
dt [H − U(x)]

= −HT + 4

∫ xT

xcr−δ
dx
√
H − U(x),

(3.69)

where we have used time-reversal symmetry and the fact that ∆V = 0, since the particle returns to

its initial position. The trajectory traces the path xcr − δ → xT → xcr − δ, which, due to symmetry,

corresponds to twice the journey xcr − δ → xT . The resulting action is a line integral over the square

root of a quartic polynomial scaled by a multiplicative factor of 2, and reads

S[x] = −HT + 4

∫ xT

xcr−δ
dx
√
(x− xcr)2(x− xT )(x− x′T ). (3.70)

This integral can be evaluated exactly, yielding 5

S[x] = −HT

+
1

6

{√
(xcr − δ − xT )(xcr − δ − x′T )[3(xT − x

′
T )

2 + 4(xcr − δ − xT )(xcr − δ − x′T )]

− 3(xT − x′T )2(2xcr − 2δ − xT − x′T ) log

(√
xcr − δ − xT
xT − x′T

+

√
xcr − δ − x′T
xT − x′T

)}
. (3.71)

5The logarithmic term corresponds to the explicit form of arsinh
(√

xcr−xT

xT−x′
T

)
, assuming the principal branch is taken.

To avoid subtle issues with branch cuts in inverse hyperbolic functions, we prefer to express the result explicitly in terms of
logarithms.
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The correction δ behaves as δ ∝ exp(−ωT /2)(1+O(exp(−ωT ))). For sufficiently large T , δ becomes

exponentially suppressed and negligible. In the limit T → ∞, δ → 0, and the action simplifies to

S[x] = −HT +
1

6

{√
(xcr − xT )(xcr − x′T )[3(xT − x

′
T )

2 + 4(xcr − xT )(xcr − x′T )]

− 3(xT − x′T )2(2xcr − xT − x′T ) log

(√
xcr − xT
xT − x′T

+

√
xcr − x′T
xT − x′T

)}
. (3.72)

Removing the tilt corresponds to the coalescence of the turning points, xT → x′T , which recovers the

instanton limit, where H = 0. In that case, the instanton action becomes

Sinst[x] =
2

3
(xcr − xT )3, (3.73)

with xcr = a and xT = −a. This yields Sinst =
16a3

3
= 4∆Va,−a. Thus, exponentiating and dividing by

−4D recovers the expected Boltzmann factor exp(−∆V/D). We now simplify the general form of the

action ( (3.72)) for the stochastic real bounce using the relations established in Eq. 3.34. The classical

action then becomes

Srb[x] = −HT +
8a2

3

√
6(xcr

2 )
2 − 2a2 − 16D log

√1

2
+

√
(xcr

2 )
3

2D
+

√
−1

2
+

√
(xcr

2 )
3

2D


= −HT +

16a3

3

√
1− 3D

2a2xcr
2

− 16D log

√1

2
+

√
(xcr

2 )
3

2D
+

√
−1

2
+

√
(xcr

2 )
3

2D

 .

(3.74)

This agrees with the action functional expression found by Dunne et al. in Equation (159a) in [13] left

in terms of the logarithm. For small D, we obtain the asymptotic expansion:

Srb[x] = −HT +
16a3

3
− 4D − 4D log

(
8a3

D

)
+

7D2

2a3
+O(D3). (3.75)
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Figure 3.8: Plot of the stochastic real bounce action, S[RB], for a = 1 as a function of D, omitting
the energy-dependent term. The black curve represents the exact action (Eq. (3.74)), while the green,
red and blue curves correspond to the asymptotic approximations at orders O(D), O(D2) and O(D3)
to O(D10) respectively.

The critical value D = Dc = 2a3/(3
√
3) represents a saddle-node bifurcation. At this value, the

turning points coalesce and, beyond this noise strength, no real bounce is possible because the barrier

completely collapses. In the physical regionD < Dc, we see that as more orders are retained, the better

the approximation to the exact action value. To illustrate this, we plot the error in the asymptotic series

against the exact action value as D varies in Fig. 3.9.
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Figure 3.9: Asymptotic weak-noise expansion of the real bounce action at a = 1. Truncated series
Sk(D) for k = 1, 2, . . . , 10 are compared with the exact action SRB(D). Higher orders consistently
outperform lower orders.

The leading-order contribution to the escape rate is obtained by exponentiating Hamilton’s principal

function and dividing by −4D,

Γrb ∼ exp

(
−Srb[x]

4D

)
= exp

(
−∆V

D

)
· exp

(
HT
4D

)
· exp(1) ·

(
8a3

D

)
· (higher-order terms).

(3.76)

The divergent exponential exp(HT /(4D)) poses no problem, as it cancels against an equivalent term

arising from the Itô normalisation factor P0(T ). The factor of e comes from the term −4D and the

factor of 8a3/D comes from the logarithm term−4D log(8a3/D). Although the Hamiltonian principal

function governs the leading exponential behaviour, our objective is to determine the full prefactor. To

this end, we must analyse the fluctuation determinant associated with the stochastic real bounce.
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3.3.4 Stochastic real bounce fluctuations and functional determinant

We proceed with the analysis of quadratic fluctuations around the stochastic [RB] solution in the weak-

noise limit. These fluctuations are governed by the second variation of the Itô stochastic action, leading

to a Schrödinger-type operator of the form

M̂ = − d2

dt2
− 1

2
U′′(xcl), (3.77)

where the Itô effective potential associated with the cubic potential is defined as U(x) = −(x2−a2)2−

4Dx. Consequently, the fluctuation operator around the stochastic [RB] solution is expressed as

M̂[RB] = −
d2

dt2
+ 6[xcl(t)]

2 − 2a2

= − d2

dt2
+ ω2

rb

[
1− 3

2

(
sech2

(ωrb
2
(t+ µrb)

)
+ sech2

(ωrb
2
(t− µrb)

))]
,

(3.78)

where ω2
rb = 6(xcr

2 )
2− 2a2 represents the local curvature at xcr

2 , and µrb controls the separation between

the anti-instanton and instanton substructures embedded within the stochastic bounce. We denote the

time-dependent term in the fluctuation operator as the fluctuation potential, so that the general form of

the fluctuation operator assumes the schematic structure

M̂ = − d2

dt2
+ “fluctuation potential”. (3.79)

Thus, the fluctuation potential associated with the stochastic [RB] is given by a linear combination of

sech2 functions. The invariance of the action under time translations implies the existence of an exact

zero eigenvalue of M̂[RB]. The zero mode (EZM) is defined as the time derivative of the bounce profile,

y
[RB]
zero mode(t) =

d

dt
xcl(t)

= +
βωrb
2

[
sech2

(ωrb
2
(t+ µrb)

)
− sech2

(ωrb
2
(t− µrb)

)]
,

(3.80)
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where β =
1

2
(xT

1−xcr
2 ) coth

(ωrbµrb
2

)
is a µrb-dependent amplitude factor of the stochastic [RB]. Note

that the derivative with respect to t is equivalent (up to a sign change) to the derivative with respect to

the centre-of-mass collective coordinate tc, i.e.,

y
[RB]
zero mode(t) ∝

dxcl(t)

dtc
. (3.81)

The formal definition of the zero mode involves differentiating with respect to tc, but our definition

remains valid and does not affect the computation of the fluctuation determinant. The normalised zero

mode is given by y0 = ẋcl/
√
⟨ẋcl|ẋcl⟩. It is straightforward to verify that either function satisfies

M̂[RB]

[
y
[RB]
zero mode(t)

]
= 0, (3.82)

confirming the exactness of the zero mode. In the forthcoming graphical analysis, we compare the

fluctuation potential and zero mode of the stochastic real bounce with those of its quantum mechanical

counterpart. This comparison highlights the distinctive features of the stochastic solution, particularly

the reflection symmetry and the double-well structure of its fluctuation potential, which encapsulates

its composite anti-instanton-instanton nature.
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(b) [RB] fluctuation potential for
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Figure 3.10: A plot of the fluctuation potential and normalised zero mode in the background of the
stochastic real bounce solution. The plots in the left panel (Fig. 3.10a and Fig. 3.10c) are shown for
five different noise strengths D. By contrast, the plots in the right panel (Fig. 3.10b and Fig. 3.10d)
are shown at fixed noise strength D = 1× 10−9, with the parameter a = 1.

The fluctuation potential and the zero mode of the stochastic [RB] encode essential information about

the pre-exponential factor and perturbative structure of the escape rate. Fig. 3.10a shows the fluctuation

potential derived from the linearised operator M̂[RB] about the stochastic [RB] configuration. As the

noise strength D decreases, the potential smoothly deforms into a double-well profile. This deforma-

tion signals the emergence of two quasi-independent instanton substructures within the Itô effective

potential, symmetrically placed around the midpoint t = tc = 0. The growing separation of the wells

reflects the anti-instanton-instanton composition of the stochastic [RB], where the constituent instanton
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events become increasingly decoupled as D → 0.

Fig. 3.10b presents the fluctuation potential at small noise. The inter-well separation scales logarith-

mically as log(8/D), which is consistent with the asymptotic behaviour of the separation parameter

µrb. The potential maximum is ω2
rb, determined by the leading-order term in M̂[RB]. The minima are

located near t = ±µrb, where the anti-instanton and instanton peaks reside.

Fig. 3.10c displays the normalised zero mode y[RB]
zero mode(t), which arises from the time translation sym-

metry of the classical path xcl(t). As D → 0, this mode becomes increasingly antisymmetric and

concentrates into two narrow lobes supported near t = ±µrb with a node at t = 0. Near the origin,

the mode flattens significantly, aligning with the physical interpretation that the instanton structures are

localised near the turning points of the path and effectively remain at rest between transitions. This

behaviour reflects the slow dynamics of the system near the critical points, where the fluctuations are

minimal.

Fig. 3.10d depicts the same zero mode at very small noise. The structure reveals two sharply peaked,

oppositely signed lobes of equal amplitude, whose separation scales again as log(8/D). The sign

structure of the zero mode reflects the temporal orientation of the solution: the particle first moves

leftward (anti-instanton) before reversing direction rightward (instanton). The peak amplitudes are

symmetric, indicating equal-magnitude peak speed in the two transition events.

The antisymmetry of the zero mode carries critical spectral implications: by the Sturm–Liouville nodal

theorem [84], the existence of a node (a zero crossing) implies a lower-lying eigenfunction with no

nodes, that is, a negative eigenvalue of the fluctuation operator M̂[RB]. Consequently, in the spectral

hierarchy, the zero mode is not the ground state but the first excited state of the fluctuation operator, a

fundamental result with implications for the perturbative expansion of the escape rate.

This observation is crucial, as it directly leads to the conclusion that the stochastic [RB] is a saddle point

rather than a true minimum. Consequently, the fluctuation determinant is negative. After removing the

zero mode from the spectrum, the remaining eigenvalues consist of one negative eigenvalue and N − 2
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positive eigenvalues in the N → ∞ limit. The reduced functional determinant, after omitting the zero

mode, then takes the form

det′M̂[RB] = λ−−1 · lim
N→∞

N−2∏
n=1

λ+n < 0, (3.83)

where the prime indicates the omission of the zero mode. This spectrum is consistent with the general

structure of the bounce-type saddle points in semiclassical tunnelling [33], where the presence of a

single negative mode indicates instability in one fluctuation direction, a hallmark of saddle points in the

tunnelling process.

In contrast, the quantum mechanical bounce exhibits a simpler fluctuation structure, typically governed

by a single-well Pöschl–Teller potential [40, 66, 147], reflecting its simpler, single-event nature. The

absence of the two-event structure makes the quantum bounce’s fluctuation operator much less complex

than that of the stochastic [RB], which is a coherent anti-instanton-instanton composite.
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(a) Fluctuation potential of the quantum bounce. A
single-well Pöschl–Teller potential.
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Figure 3.11: Fluctuation potential and zero mode for the quantum bounce solution.

Fig. 3.11 illustrates this contrast. The left panel shows the symmetric fluctuation potential with a single

peak at ω2
qb, while the right panel displays the corresponding antisymmetric zero mode. Unlike the

stochastic [RB], the quantum zero mode has a smooth profile and lacks any flattening near the origin,

reflecting the simplicity of its single-event structure.
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Explicit Computation of the Stochastic Real Bounce Fluctuation Determinant

We now compute the fluctuation determinant associated with the stochastic [RB] configuration and

show that it is negative. The computation proceeds via the master formula established in (2.115), which

relates the functional determinant to the asymptotic data of the zero mode. The key computational

aspect is the extraction of the asymptotic prefactors α± characterising the exponential decay of the

normalised zero mode EZM as t→ ±T /2, with T → ∞.

The asymptotic constants can be extracted by differentiating the classical solution twice and examining

the asymptotic decay of ẍcl(t) for large T , while keeping T finite. In our case, we find,

ẍcl(+T /2) = ẍcl(−T /2) ≃ 4βω2
rb sinh(ωrbµrb) exp(−ωrbT /2). (3.84)

The fact that the asymptotic particle acceleration is the same at both endpoints is physically intuitive.

The stochastic [RB] is time-reversal symmetric about the bounce centre t = tc = 0, so xcl(t) = xcl(−t).

As a consequence, its derivatives satisfy ẋcl(t) = −ẋcl(−t) and ẍcl(t) = ẍcl(−t). This symmetry

ensures that both the exponential decay rate and the prefactor of the fluctuations are identical for both

ends of the bounce, which are mirror images of each other under time reversal. Substituting this into

the master formula and taking the T → ∞ limit yields a well-defined expression for the fluctuation

determinant ratio,

lim
T →∞

1

⟨ẋcl|ẋcl⟩
·
det′ M̂[RB]

detM̂0

= − 1

32β2ω3
rb sinh

2(ωrbµrb)

= − D

512a8
− 23D2

2048a11
+O(D5/2).

(3.85)

Thus, to leading order in the weak-noise expansion, the fluctuation determinant is manifestly negative,

lim
T →∞

1

⟨ẋcl|ẋcl⟩
det′ M̂[RB]

detM̂0

= − D

512a8
+ · · · (3.86)
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3.3.5 Conclusion for the stochastic real bounce

The negative fluctuation determinant signals that the Gaussian integral over the unstable mode is ill-

defined on the real contour. In particular, for the mode with eigenvalue λ−1 < 0,

∫
R
da−1 exp

(
− 1

4D
λ−1 a

2
−1

)
diverges. (3.87)

Moreover, this direction is soft since |λ−1| ∼ O(D) due to a quasi-zero mode. This is the familiar

instability of the [IĪ] sector, already encountered in Chapter 2.

The Bogomolny–Zinn-Justin (BZJ) prescription rectifies the problem by analytic continuation D 7→

e±iπD, which renders the Gaussian (and the full QZM integral) convergent, and then returning across

the branch cut; this produces the characteristic ±iπ phase. While operationally effective, this manoeu-

vre leaves a branch choice and lacks geometric rigour.

In the next section, we resolve this cleanly by complexifying the path space and deforming the contour

to the Lefschetz thimble of the contributing complex saddle (the stochastic complex bounce). On this

thimble, the unstable direction is translated into a decaying one, the quadratic form has a positive real

part, and the phase is fixed by thimble orientation, so the entire analysis proceeds at fixed D > 0. Thus,

although the path integral is formally real, its weak-noise asymptotics are governed by saddles in the

complexified configuration space.

3.4 Complexification and the stochastic complex bounce

The motivation behind studying the stochastic real bounce arose from inspecting the Hamiltonian dy-

namics governed by the effective potential depicted in Fig. 3.3. The stochastic real bounce [RB]

emerges as the only suitable classical trajectory to describe the escape rate over the barrier. It is an

exact and purely real solution to the Euler–Lagrange equations derived from the stochastic action.
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However, we face difficulties posed by the negative fluctuation determinant.

We demonstrate that a rigorous framework exists to place this analytic continuation on a firm footing.

This framework requires considering an alternative classical trajectory, fundamentally different from

the real bounce, defined in a complex configuration space. The strength of complexification is that it

elevates [IĪ]-type saddles to the same rigorous footing as the more conventional [II]-type instantons.

Until now, our analysis has been restricted to real-valued trajectories x(t) ∈ R. However, through the

lens of Picard–Lefschetz theory, there is no fundamental obstruction to extending the stochastic path

integral contour into the complex plane. This raises critical questions:

• Do complex-valued classical solutions to the Euler–Lagrange equations exist?

• If they do, do these complex solutions carry physical significance?

The answer is affirmative. Not only do complex classical solutions exist, they provide the relevant

saddles governing the non-perturbative sectors of the weak-noise expansion. In particular, for the

[IĪ]-type configurations, complex trajectories provide the canonical saddles on which the path integral

should be defined.

Revisiting the effective potential landscape from Fig. 3.3, we initially dismissed trajectories emanating

from the global maximum of the potential because they “escape” to infinity in the real configuration

space. Particle trajectories that roll off to infinity correspond to configurations with divergent Euclidean

action since |x(t)| → ∞ for some t. As such, they do not contribute to the weak-noise expansion of

the stochastic path integral since their weight exp(−S/(4D)) → 0 vanishes. This criterion serves as

a natural filter, excluding physically irrelevant solutions that do not correspond to true saddle points of

finite action.

However, this conclusion applies only under the restriction to real trajectories. By allowing trajectories

to explore the complex plane, one discovers exact complex bounce solutions initialised at the global

maximum that remain bounded, thereby providing genuine non-perturbative saddles that contribute to
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the path integral. This was foreshadowed by the orange turning point in Fig. 3.3.

Formally, to properly compute the conditional probability that a particle starts and finishes at −a over

a duration T , we extend the stochastic path integral into the complexified configuration space. This

extension is essential for capturing the non-perturbative contributions that are inaccessible through

real-valued trajectories alone. We write the stochastic path integral as

P (−a,+T /2 | −a,−T /2) =
∫
γ

Dz exp

(
−S[z]

4D

)
, (3.88)

where Dz represents the integration over complex paths z(t), and we choose an integration contour γ.

The choice of integration contour γ and the subsequent decomposition of the stochastic path integral

are determined by Picard-Lefschetz theory, which ensures the correct saddle points are captured and

the integral converges, which we will explore in detail in § 3.6. We focus on the structural impact of

this complexification on the path integral.

All elements of the path integral, including the measure, are promoted to complex variables. The action

functional S[z] is holomorphically extended to the complex domain, with the real-valued terms of the

action now extended as complex functions. Specifically, the action is given by

S[z] =
∫ +T /2

−T /2
dt
[
ż2(t)− U(z(t))

]
, (3.89)

where the effective Itô potential U(z) is analytically continued to the complex plane, yielding the fol-

lowing holomorphic form

U(z) = −(z2 − a2)2 − 4Dz, (3.90)

which is now a holomorphic function on C. We emphasise the mathematical consequences of com-

plexification.

We start by understanding how the complexification in (3.88) affects the diagonalisation procedure and

the derivation of the Itô path integral that previously took the form (3.23).
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3.4.1 Complex paths, fluctuations and diagonalisation of the non-Hermitian

fluctuation operator

We extend the stochastic path integral to complex particle trajectories. In Chapter 2, we derived the

one-loop factor for real paths by expanding about a classical trajectory xcl(t) ∈ R and treating quadratic

fluctuations y(t) as real-valued. After complexification, the classical trajectory becomes

zcl(t) = xcl(t) + i ycl(t), (3.91)

and fluctuations w(t) are taken in the complexified path space. Complexification does not double the

number of integration directions on the cycle: later we will show, using Picard–Lefschetz theory, that

there remains one real steepest descent direction per mode, with quasi-zero modes handled separately

(cf. [143]). Let M̂ denote the fluctuation operator (the Hessian of the holomorphic action) at zcl. For

the stochastic [RB] on the real contour, the operator is self-adjoint. At a genuinely complex saddle the

Hessian is in general non-Hermitian but complex symmetric, so M̂ ̸= M̂†, where † denotes the conju-

gate transpose. In particular, with the (sesquilinear [146]) pairing ⟨· , ·⟩ where ⟨u, v⟩ =
∫
u(t)v(t) dt

one has

⟨M̂f, g⟩ ≠ ⟨f,M̂g⟩, (3.92)

while the (complex) pairing ⟨u | v⟩ =
∫
u(t)v(t) dt renders the Hessian symmetric in the sense

⟨M̂f | g⟩ = ⟨f | M̂g⟩ (see, e.g., [88]). For a finite-mode truncation, the complex symmetric matrix

representing M̂ admits the Autonne–Takagi [9, 168] factorisation

M̂ = U ΣUT, U ∈ U(N), Σ = diag(σ0, σ1, . . . ), σn ≥ 0, (3.93)

so that, in the Takagi basis s = UTc, the quadratic form diagonalises to

∑
n

σns
2
n, (3.94)
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with U unitary and Σ real non-negative [9, 31, 88, 168]. Here, σ0 = 0 corresponds to the translation

zero mode. The mode factors then integrate along their steepest descent rays,

∫
γn

dsn exp

(
−σns

2
n

4D

)
=

√
4πD

σn
, γn = R in Takagi variables, (3.95)

as in the standard multidimensional saddle-point method [143]. The product over all non-zero modes

yields (det′ M̂)−1/2 up to a global orientation phase6 induced by the contour choice. With the transla-

tion zero mode isolated, the transition probability reads

P (z2,+T /2 | z1,−T /2) = ND exp

(
−S[zcl]

4D

)
P

√
ω0

4πD sinh(ω0T )

×
√
⟨żcl | żcl⟩
4πD

∫ T /2

−T /2
dtc

(
det′ M̂
detM̂0

)−1/2

, (3.96)

where ⟨·#·⟩ denotes the chosen pairing, M̂0 is the free operator, and

P = exp(iµ/2) (3.97)

is an orientation factor with phase µ that is later identified with a complex Morse/Maslov index [6, 49,

122] in the Picard–Lefschetz framework.

3.4.2 Exact analytic solution for the stochastic complex bounce

Let us return to individual elements of the complex stochastic path integral. As shown in (3.90), now

the Itô effective potential describes a holomorphic surface where the particle motion takes place. This

represents a shift in the kinematical landscape of classical particles. If we separate the complex path

z(t) into real and imaginary components, i.e., let z(t) = x(t) + iy(t), the holomorphic surface takes

6The magnitude of the measure is unchanged, but the overall phase and the choice of steepest descent directions across
modes produce a net phase (called a complex Morse/Maslov index).
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the following form,

Re[U(z)] = −x4 − y4 + 6x2y2 − 2a2(y2 − x2)− 4Dx− a4,

Im[U(z)] = 4xy3 − 4x3y + 4a2xy − 4Dy.

(3.98)

On the line y = 0, we return to the original real potential where the stochastic [RB] analysis was carried

out. Leaving y to vary, the effective potential geometry becomes much more intricate. A visualisation

of this landscape is shown below.
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Figure 3.12: Visualising the hypersurface corresponding to the complexified version of the Itô
effective potential. The surfaces are plotted over a complex square of radius 2,
−2 ≤ x ≤ 2, −2 ≤ y ≤ 2. Lighter regions indicate large peaks, whereas darker regions indicate deep
wells.

The new solution space is spanned by particle paths that interpolate from the (real) global maximum

of the Itô effective potential and reflect from a turning point that lies in the complex plane. This is

what was hinted at in Fig. 3.3 by the orange turning point. We re-plot the diagram to give a simple

visualisation of the stochastic [CB] trajectory.
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√
2, D = 0.1) governing the stochastic [CB] dynamics.

Green circles mark the critical points of U(x), while blue squares denote real turning points along the
representative energy level H0. The orange square denotes a complex conjugate turning point pair
with a non-zero imaginary part.

The critical point is real and negative, as already found in (3.28),

xcr
0 = − 2a√

3
cos

(
1

3
arccos

(
3
√
3

2a3
D

))
. (3.99)

We shall let zcr
0 = xcr

0 in the spirit of working in a complex configuration space, but the critical point

here is purely real. Referring to Fig. 3.13, now the turning points have a non-zero imaginary part and

are, in fact, a complex conjugate pair. We denote complex turning points by zT
0 (or zT

0 ), and there is

currently ambiguity about which path we choose. Intersection coefficients will formalise this choice in

§ 3.6.
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Figure 3.14: Illustration of the effective, inverted double-well potential U(z) where the stochastic
[RB] motion (red line) and the stochastic [CB] motion (blue lines) take place. As explained
in Fig. 3.12, the actual structure of the effective potential is much more elaborate, but here we
highlight the shift of the particle paths onto the complex plane. This was inspired by Fig. 1 of [12].

Let us assign zT
0 to the path with a positive imaginary part. The energy level here is positive and can be

expanded in powers of D,

H0 = U(zcr
0 ) ≈ 4aD +

D2

a2
+O(D3). (3.100)

The critical point is a double degenerate root, and the turning points form a conjugate pair, which means

the turning point equation (3.33) takes the form of

(
dz

dt

)2

= (z − zcr
0 )

2(z − zT
0 )(z − zT

0 ), (3.101)

where zT
0

zT
0

 = zcr
0

−1
−1

+

√
2D

zcr
0

 1

−1

 . (3.102)
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Then, expanding in small powers of D, we find that

zT
0 = a+ i

√
2D

a
+

D

2a2
+O(D3/2), (3.103)

and zT
0 admits the same real powers but all imaginary components are conjugated. The equations

of motion are found by extremising the holomorphic action S[z] which is equivalent to applying the

condition of vanishing first-order functional derivative,

δS
δz

= 0. (3.104)

Therefore, saddle points of the complexified stochastic path integral correspond to classical trajectories

zcl(t) solving the holomorphic Euler–Lagrange equation,

d2zcl

dt2
= −1

2

∂U

∂z

∣∣∣∣
z=zcl

, (3.105)

subject to the boundary conditions,

lim
T /2→∞

zcl(±T /2) = zcr, z(t = tc) = zT
0 . (3.106)

From the equations of motion, if we set z(t) = x(t) + iy(t), we find the following system of coupled

second-order ODEs,

d2x

dt2
= 2x3 − 6xy2 − 2a2x+ 2D,

d2y

dt2
= −2y3 − 2a2y + 6x2y,

(3.107)

subject to the conditions

x(±∞) = Re zcr
0 , x(tc) = Re zT

0 > 0, y(±∞) = Im zcr
0 , y(tc) = Im zT

0 , (3.108)

144



where zcr
0 is given explicitly in (3.28) and the turning point, zT , satisfies the relation of (3.35) and

we choose the branch with positive imaginary component. We can solve these ODEs numerically to

develop an insight into the new dynamics.
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Figure 3.15: A numerical investigation into the [CB] (tc = 0) with a = 1 and D = 10−6.

Fig. 3.15a shows the characteristic loop of the stochastic [CB] in the complex plane, a hallmark of a

[IĪ]-type trajectory. Rather than lying on the real axis, the orbit traces a semicircular arc with Im z ̸= 0.

The particle reaches a complex turning point whose real part lies just beyond the barrier, then retraces

the arc. Choosing the conjugate turning point reflects the arc across the real axis, producing the same

shape in Im z < 0.

Fig. 3.15b displays the velocity portrait (Re ż, Im ż), consisting of two adjacent, symmetric lobes.

Fig. 3.15c–Fig. 3.15d show that Rex(t) realises a pair of [IĪ] pseudo-events rather than the [ĪI]

145



structure seen for the stochastic [RB]. The imaginary component supplies a well-defined excursion

away from the real axis. The exact analytic solution derived below accurately reproduces these features.

Because the turning point condition depends only on the constant energy level, the analytic construction

of the stochastic [CB] follows the [RB] derivation almost verbatim, with relabelled parameters and

complex boundary data. The complex classical path satisfies the algebraic curve equation (3.101) and

can be solved implicitly by quadrature,

∫ t

tc

1 dt′ =

∫ z

zT
0

dz′√
(z′ − zcr

0 )
2(z′ − zT

0 )(z
′ − zT

0 )
=: F (z). (3.109)

Again, we can set tc = 0 and, to make the inversion of the solution z(t) = F−1(t) clear, we follow the

transformative procedure summarised in the commutative diagram.

A B C D E F

SA SB SC SD SE SF

φ

f

ψ t̃ η K

Solution

φ−1 ψ−1 t̃−1 η−1 K−1

Figure 3.16: Commutative diagram illustrating the transformation sequence yielding the exact bounce
solution. The maps are defined as
φ = z − zcr

0 , ψ = 1/φ, t̃ = ωt, η(t̃) = ψ(t̃)− ψT , K(t̃) = 2η(t̃)/r + 1. with the condition
z(0) = zT

0 .

This yields

zcl(t) = zcr
0 +

(zT
0 − zcr

0 )(1 + Ccb)

cosh(ωcbt) + Ccb
, (3.110)

where the constant,

Ccb =
2zcr

0 − (zT
0 + zT

0 )

zT
0 − zT

0

, (3.111)

is now purely imaginary, which can be seen with some algebra using (3.102) and expanding in small
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powers of D,

Ccb = i

√
2a3

D
+

3i

2

√
D

2a3
− 15i

16

√
D3

2a9
+ · · · ∼ i

√
2a3

D
as D → 0. (3.112)

Following the same algebraic approach as in the [RB] case 3.3.2, we find the stochastic complex bounce

solution as

zcl(t) = zcr
0 −

1

2
(zcr

0 − zT
0 ) coth

(ωcbµcb
2

) [
tanh

(ωcb
2
(t+ µcb)

)
− tanh

(ωcb
2
(t− µcb)

)]
, (3.113)

where the separation parameter is defined as

µcb :=
2

ωcb
arcosh

(√
zcr
0√

2a2 − 2(zcr
0 )

2
+

1

2

)
, (3.114)

and the frequency about the critical point is

ωcb =

√
−1

2
U′′(zcr

0 ) ≈ 2a+
3D

2a2
− 21D2

16a5
+O(D3). (3.115)

Setting tc = 0 was arbitrary; the most general form of the [CB] solution is

zcl(t) = zcr
0 −

1

2
(zcr

0 − zT
0 ) coth

(ωcbµcb
2

)
×
[
tanh

(ωcb
2
(t− tc + µcb)

)
− tanh

(ωcb
2
(t− tc − µcb)

)]
. (3.116)

This matches the expression (150) in [13]. Now, the frequency (3.115) is purely real and admits a series

expansion in D, however, the separation (3.114) is now shifted into the complex plane, as seen through

the series expansion,

µcb =
1

4a

[
log

(
8a3

D

)
+ iπ

]
+

D

16a4

[
−3iπ + 7− log

(
512a9

D3

)]
+ · · · , (3.117)
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where the total separation is dominated by

2µcb ∼
1

2a

[
log

(
8a3

D

)
+ iπ

]
. (3.118)

If we instead chose the path that was centred at the conjugate turning point zT
0 , then the iπ factor would

flip sign while all other elements remain the same. In light of this, we shall write

2µcb ∼
1

2a

[
log

(
8a3

D

)
+ (2σ − 1)iπ

]
=

1

2a

[
log

(
8a3

D

)
± iπ

]
, (3.119)

where the multivalued imaginary part is directly attached to the choice of the complex path σ =

{0,+1}. This choice will be fully understood in § 3.6.

The explicit stochastic [CB] solution (3.113) reveals another two-instanton structure. The solution is

understood as an exact composite instanton-anti-instanton [IĪ] configuration, which is the relevant

complex saddle for a particle initialised in the metastable well. The full trajectory consists of an instan-

ton event [I] centred at t = tc − µcb, followed by an anti-instanton event [Ī] centred at t = tc + µcb

where the separation between the events inherits an imaginary component.

3.4.3 Stochastic complex bounce action and asymptotics

The classical action associated with the complex bounce can be written as

Scb[z] = −HT +
8a2

3

√
6(zcr

0 )
2 − 2a2 + 16D log

√1

2
+

√
(zcr

0 )
3

2D
+

√
−1

2
+

√
(zcr

0 )
3

2D


= −HT +

16a3

3

√
1− 3D

2a2(zcr
0 )

+ 16D log

√1

2
+

√
(zcr

0 )
3

2D
+

√
−1

2
+

√
(zcr

0 )
3

2D

 .

(3.120)
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(b) Imaginary part of the [CB].
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Figure 3.17: Investigating the [CB] solution and decomposing it into its real and imaginary
constituents. All curves shown are generated from the exact analytic complex bounce solution derived
in this section, rather than from numerical integration of the equations of motion. We observe all the
features of our numerical solution and the [RB] solution, except that the transition events ordering
has changed, and there is clear particle motion beyond the real axis.

This agrees with the action functional expression found by Dunne et al. in Equation (159a) in [13] left

in terms of the logarithm. For small D, we obtain the asymptotic expansion,

Scb[z] = −HT +
16a3

3
+ 4D ± 4Diπ − 4D log

(
D

8a3

)
+

7D2

2a3
+O(D3). (3.121)

Omitting the energy-dependent term and imaginary factor, we can analyse the asymptotic expansion.
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Figure 3.18: Plot of the real part of the complex stochastic bounce action, S[CB], for a = 1 as a
function of D, omitting the energy-dependent term. The black curve represents the exact action
( (3.120)), while the red, green, yellow and thin, dashed curves correspond to the asymptotic
approximations at orders O(D), O(D2) and O(D3) to O(D10) respectively (Eq. (3.121)).

In contrast to the stochastic [RB] asymptotics presented in Fig. 3.8 whose action has no meaning be-

yond Dc due to a saddle-node bifurcation, the exact stochastic [CB] action (blue) persists for all D.

The trade-off in accessing higher D regimes (where the Kramers approximation breaks down) is that

the higher-order approximations are less controlled; i.e., sometimes lower-order truncations outper-

form higher-order truncations. The asymptotics are quite controlled up until D ≈ 0.5, a significant

proportion past where the real barrier vanishes.

This “lower-beats-higher” behaviour is a consequence of complexification. We can plot the errors in

the asymptotics against the noise strength to clearly observe this phenomenon.
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Figure 3.19: Asymptotic weak-noise expansion of the complex bounce action at a = 1. Truncated
series Sk(D) for k = 1, 2, . . . , 10 are compared with the exact action SCB(D). For each fixed D there
is an optimal truncation index k∗(D) ∼ ReSCB/D at which the error is minimised; beyond k∗ higher
orders degrade the approximation.

Proceeding with the computation, we apply the master formula of the fluctuation determinant. The

fluctuation operator about the cubic [CB] solution is

M̂[CB] = −
d2

dt2
+ 6[zcl(t)]

2 − 2a2

= − d2

dt2
+ ω2

cb

[
1− 3

2

(
sech2

(ωcb
2
(t+ µcb)

)
+ sech2

(ωcb
2
(t− µcb)

))]
,

(3.122)

and the fluctuation operator has one EZM corresponding to the time translational symmetry of the [CB],

y
[CB]
zero mode(t) =

d

dt
zcl(t)

= +
βωcb
2

[
sech2

(ωcb
2
(t+ µcb)

)
− sech2

(ωcb
2
(t− µcb)

)]
,

(3.123)

where β is a constant independent of time but dependent on the separation µcb given by the prefactor in

the explicit [CB] solution, β = 1
2
(zT

0 − zcr
0 ) coth

(
ωµcb
2

)
. It is easily checked that M̂[CB]y

[CB]
zero mode(t) = 0.
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(a) [CB] fluctuation potential for different
noise strengths D.
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(b) [CB] fluctuation potential for
D = 1× 10−9.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
t

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ze
ro

 M
od

e 
(re

al
 p

ar
t)

Stochastic [CB] Zero Mode for varying D with a= 1

D= 0.1

D= 0.001

D= 10−5

D= 10−7

D= 10−9

(c) The [CB] zero mode
for different D.
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Figure 3.20: A plot of the fluctuation potential and zero mode in the background of the stochastic
complex bounce solution. The plots in the left panel (Fig. 3.20a and Fig. 3.20c) are shown for five
different noise strengths D. By contrast, the plots in the right panel (Fig. 3.20b and Fig. 3.20d) are
shown at fixed noise strength D = 1× 10−9, with the parameter a = 1.

3.4.4 Stochastic complex bounce fluctuations and functional determinant

Computing the fluctuation determinant, we find

lim
T →∞

det′M̂[CB]

detM̂0

= − ⟨żcl|żcl⟩
32β2ω3

cb sinh
2(ωcbµcb)

= +
D

512a8
+O(D2).

(3.124)
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The grave instability in the fluctuation determinant is no longer present. Using the formulation of the

path integral under Itô, the escape rate using the [CB] is found as

−|Γ[CB]|T = − 2a

e
√
2π

exp(−∆V/D)T , (3.125)

whereas using Kramers’ formula, we should get

−|ΓK |T = −a
π
exp(−∆V/D)T . (3.126)

Hence, the [CB] has produced the correct negative sign, but there are some additional unwanted terms

in the formula. By looking at the ratio of these answers, we deduce that we have a multiplicative error

to resolve,

R =
|Γ[CB]|
|ΓK |

=

√
2π

e
. (3.127)

From a mathematician’s perspective, the fact that we have both π and e in the error is exciting and

makes one believe there must be a deeper story behind the mistake. At first glance, one may be tempted

to think that the
√
2π factor is just a normalisation error (perhaps of the measure or eigenvalues) and

that in fact we are only trying to correct a factor of e. However, as we will show, this is not the case;

the factors arise together, originating from the same source.

The results so far have been entirely consistent with Section 5 of Dunne et al. in [13]. We have

reproduced many similar results, but in a stochastic, rather than quantum, setting.

3.5 Quasi-zero modes and the prefactor problem

This error factor, R, is related to the quasi-zero mode (QZM) issue for the [IĪ] pairs discussed in

Chapter 2. Viewing the [CB] solution as a correlated instanton-anti-instanton [IĪ] pair, care is needed

with their interaction. As discussed, [IĪ] configurations attract. Let µcb denote the fixed separation in
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the [CB] solution. If we instead allow the separation to vary, the interaction weakens as the separation

grows, and µcb serves as a collective coordinate. Because the interaction is weak, this direction in

configuration space is nearly flat or pseudo-flat direction of the [IĪ] action. As with the exact zero

mode (EZM), a naive Gaussian treatment of this soft QZM direction is inaccurate: the associated

integral is large and must be handled exactly. We now show how this mistreatment of a non-Gaussian

mode in a Gaussian approximation is the source of the error factor.

In the functional integral step of (2.70) we should therefore separate the modes as

lim
N→∞

N∏
n=0

{∫
R
dan exp

(
− λna

2
n

4D

)}

=

[∫
R
da0

]
︸ ︷︷ ︸

EZM

(∫
C

IQZM

)
︸ ︷︷ ︸

QZM

· lim
N→∞

N∏
n=2

{∫
R
dan exp

(
− λna

2
n

4D

)}
, (3.128)

where C is a contour that will be fixed later, and standard collective coordinates treat the EZM. The

product starts at n = 2 precisely because the integral over the QZM direction (n = 1) must be extracted

from the infinite ladder of Gaussians and handled independently.

3.5.1 Quasi-zero eigenvalue and eigenfunction

We prove that such a QZM direction exists by relating the [CB] fluctuation determinant with standard

instanton determinants. With zero tilt, the cubic instanton reads xI(t) = a tanh
(
a(t − tc)

)
. The

fluctuation operator is Pöschl–Teller [147],

M̂Inst = −
d2

dt2
+ ω2

I

[
1− 2 sech2(at)

]
, (3.129)

and its determinant ratio with zero mode removed is

lim
T →∞

1

⟨ẋI |ẋI⟩
det′ M̂Inst

detM̂0

=
1

64 a5
. (3.130)
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Having computed the [CB] fluctuation determinant explicitly, we can relate the two functional determi-

nants as

lim
T →∞

1

⟨żcl|żcl⟩
det′ M̂[CB]

detM̂0

= 8a2D

[
lim
T →∞

1

⟨ẋI |ẋI⟩
det′ M̂Inst

det M̂0

]2
, (3.131)

thus, a small eigenvalue is embedded in M̂[CB] as D → 0 of order D, indicating the existence of a

pseudo-flat direction in the action. The fact that the instanton determinant appears squared reflects

the two-instanton composition of the [CB]. The prefactor 8a2D is model-dependent and builds the

quasi-eigenvalue. Computing the inner products to leading order numerically,

λD = 8a2D
⟨żcl|żcl⟩
[⟨ẋI |ẋI⟩]2

≈ 12D

a
(D → 0), (3.132)

and we see explicitly the O(D) softness. An analytical derivation, inspired by conversations with

Professor Steve Fitzgerald on this quasi-eigenvalue, is presented in the Appendix C.1 to confirm the

numerical findings. With this, the Gaussian integral over this mode is

∫
da1 exp

(
−λD
4D

a21

)
=

√
πa

3
. (3.133)

If we also take the QZM factor out from the fluctuation determinant,

det′′ M̂[CB] =
det′ M̂[CB]

λD
, (3.134)

we would find to leading order

lim
T →∞

1

⟨żcl|żcl⟩
det′′ M̂[CB]

detM̂0

=
a

12D
· D

512a8
=

1

6144a7
, (3.135)

so the QZM-stripped determinant is independent of D. Hence, softness is solely a result of this QZM.

We can also deduce data about the structure of the quasi-eigenfunction. An approximate form of

the quasi-eigenfunction is given by taking the derivative of the classical solution with respect to the

collective coordinate µcb. Unlike the exact zero mode, the prefactor contains µcb, so the derivative picks
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up an additional term by the product rule,

yQZM(t) = ∂µcbzcl(t)

= +
ωcb
4

(zcr − zT) csch2
(ωcb µcb

2

)[
tanh

(ωcb
2

(
t− tc + µcb

))
− tanh

(ωcb
2

(
t− tc − µcb

))]

− ωcb
4

(zcr−zT) coth
(ωcb µcb

2

)[
sech2

(ωcb
2

(
t−tc+µcb

))
+sech2

(ωcb
2

(
t−tc−µcb

))]
.

(3.136)

It is ’quasi’ in the sense that it is not an exact solution to the eigenvalue problem,

M̂[CB] yQZM = λD yQZM + (small residual) , (3.137)

with the residual suppressed by the exponentially small overlap of the two wells, ∝ e−ωcbµcb . Con-

sequently, if one attempted to solve the eigenvalue problem yQZM, one would obtain an effective t-

dependent eigenvalue; the correct scalar eigenvalue is read using the Rayleigh-Ritz formula [41, 152]

(as used in the Appendix C.1). Using parity, a computation can show yQZM is orthogonal to the EZM,

〈
∂µcbzcl | ∂tczcl

〉
= 0, (3.138)

for the centred bounce (tc = 0) and ⟨yQZM | yQZM⟩ = 8a3/3 + · · · .
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Figure 3.21: The first three eigenmodes exhibit an exact zero mode, a quasi-zero mode, and then a
significantly larger mode, confirming the structure we expected. Taking the derivative of the classical
solution with respect to µcb gives a very good approximate solution, only deviating from the true curve
(Figure (b)) around a small neighbourhood about the origin (t− δ, t+ δ) .

3.5.2 Origin of the
√
2π/e factor

To model the QZM direction and set up the correct integral, we use the large separation [IĪ] ansatz

zansatz
[IĪ] (t, θ) = −a− a tanh

[ωansatz
IĪ
2

(
t− θ

2

)]
+ a tanh

[ωansatz
IĪ
2

(
t+

θ

2

)]
, (3.139)

with separation θ. This is an approximation to our exact [CB] solution. Inserting this expression into

the action and retaining leading order terms yields the interaction potential

V−(θ) = −32 a3 exp(−ωcbθ) + 4Dωcb θ, (3.140)

where we have matched ωcb = ωansatz
IĪ . This potential is purely attractive for [IĪ] sectors. For [II]

pairs, the interaction action is repulsive and free from divergences. The naive (Gaussian) QZM integral

therefore has the form

IGauss =

∫
R
dθ exp

(
− V−(θ)

4D

)
, (3.141)
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and the interaction potential has a complex critical point,

V ′
−(θcrit) = 0 =⇒ θcrit =

1

ωcb

[
ln
(8a3
D

)
± iπ

]
, (3.142)

which matches the leading [CB] separation µcb. Following the MOSD, we expand the interaction po-

tential about the critical point,

V−(θ) ≈ V−(θcrit) +
1

2
V ′′
−(θcrit) (θ − θcrit)

2, (3.143)

and one finds

V−(θcrit) = 4D
[
1 + ln

(8a3
D

)
± iπ

]
, V ′′

−(θcrit) = 4Dω2
cb. (3.144)

Changing variable to u = ωcbθ so that du = ωcb dθ and letting ω = ωcb, the Gaussian integral gives

IGauss =
1

ω

∫
R
d(ωθ) exp

(
− V−(θcrit)

4D

)
exp
(
− 1

8D
V ′′
−(θcrit) (θ − θcrit)

2
)

= exp(±iπ) 1
ω

√
2π

e︸ ︷︷ ︸
Stirling

( D
8a3

)
.

(3.145)

The frequency scale is a consequence of the measure change dθ = d(ωθ)/ω and will later cancel an

identical factor. The Stirling factor
√
2π/e is the “peculiar error factor”R: it arises solely from treating

the QZM by a naive Gaussian on an incorrect contour. The cure is to evaluate the QZM integral exactly

on the appropriate Lefschetz contour C determined by the PL gradient flow. In the next subsection, we

justify the QZM isolation by clarifying the measure factorisation in (3.128) and specify the contour C;

doing so removes this Stirling factor.
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3.6 Picard–Lefschetz resolution of the quasi-zero mode

Our aim is not to survey Stokes phenomena and Morse theory (see, e.g., [129, 176]), but to implement

a method that allows for a precise factorisation of the measure that isolates the non-Gaussian QZM and

fixes its integration cycle, similar to the work presented on the quasi-zero mode integral in [71,72] and

the work by Tanizaki [95, 169, 171]. Picard–Lefschetz (PL) theory provides exactly this: a canonical

deformation of the original real cycle to a sum of “Lefschetz thimbles” on which the phase is stationary

and the integral is convergent, together with a geometric interpretation of the±iπ phase that appears in

the BZJ continuation.

We apply the thimble path integral decomposition as in [12, 15, 71, 169, 170, 184] to the stochastic

path integral; to our knowledge, this is the first explicit treatment in the stochastic context. We begin

by complexifying all components of the path integral, x(t) 7→ z(t) ∈ C and the stochastic action is

promoted to a holomorphic function. S[z]. Using the PL theory framework, the stochastic path integral

may be written as

P =

∫
γ

Dz exp

(
−S[z]

4D

)
=
∑
σ∈Σ

nσ Pσ, (3.146)

where Σ is the set of critical points of S, and nσ ∈ Z are the intersection numbers that encode how

the original real integration cycle decomposes into thimbles. We now focus on the global cycle γ.

Assuming for the moment no exact/near-zero directions, each saddle contributes

Pσ =

∫
Jσ

Dz exp

(
−S[z]

4D

)
. (3.147)

3.6.1 Thimble decomposition and flow equations

We compute Jσ in (3.147) by the antiholomorphic upward flow with flow time u:

∂z

∂u
= +

δS
δz

= +
(
2 z′′(t) + ∂zU

)
,

∂z

∂u
= +

δS
δz

= +
(
2 z′′(t) + ∂zU

)
, (3.148)
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with the convention that the thimble consists of points whose flow originates at the critical point as

u→ −∞: if δS/δz|zσ = 0, then limu→−∞ z(·, u) = zσ. Accordingly,

Jσ :=
{
z(·, 0) | z(·, u) solves (3.148) and lim

u→−∞
z(·, u) = zσ

}
. (3.149)

Furthermore, the dual thimbles are defined by (flow time reversal)

Kσ :=
{
z(·, 0) | lim

u→+∞
z(·, u) = zσ

}
. (3.150)

Along Jσ the imaginary part of the action is constant and ReS is increasing with u (upward flow):

d

du
ReS =

∥∥∥δS
δz

∥∥∥2 ≥ 0,
d

du
ImS = 0. (3.151)

This ensures a good convergence behaviour. The original integration cycle can be expressed as a sum

over the thimbles coupled with an intersection number CR =
∑

σ nσ Jσ, and the full stochastic path

integral is decomposed into a sum over the thimbles,

P =
∑
σ∈Σ

nσ

∫
Jσ

Dz exp

(
−S[z]

4D

)
. (3.152)

The intersection coefficients nσ are determined by the number of times the dual thimble intersects

the original integration cycle. Therefore, it is the geometry of the dual thimbles that dictates whether a

saddle contributes to the stochastic path integral. We plot the thimble geometry for our QZM integration

example in Fig. 3.22 where the intersection coefficients will become clear.

To understand the structure of the cycle, we only need the local structure near the stochastic complex

bounce zcl solution. Around zcl the quadratic form defined by the fluctuation operator M̂[CB] decouples

into: (i) the exact zero mode (translation), (ii) a single soft quasi-mode (the separation QZM), and (iii)
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a family of hard Gaussian modes. Consequently, the functional measure factorises as

Dz ≃ (dtc) (dθ)
∏
n≥2

dan, J ≃ JEZM × J QZM ×
∏
n≥2

R (3.153)

and the integration cycle decomposes accordingly: only the QZM slice is deformed to its Lefschetz

thimble contour, while the EZM and hard Gaussians remain on their real cycles. This fact is also given

in (2.9) of [15]. Crucially, the PL theory provides the exact one-dimensional contour for the QZM

direction beyond the Gaussian approximation, and we will integrate the interaction potential factor

exactly along that contour.

3.6.2 The quasi-zero mode contour and the ±iπ phase

To make the geometry of the thimbles clear, we introduce a regulator ν to the interaction potential

and take the limits above and below ν → 0±. This will be seen as analogous to taking the limit

D → D exp(±iπ). The interaction potential deformed by ν is

V−(θ, ν) = −32a3e−ωθ−iν + 4Dω θ. (3.154)

We shall work with

Sν(θ) =
1

4D
V−(θ, ν) = −

8a3

D
e−ωθ−iν + ωθ. (3.155)

Following the PL gradient flow equations (3.151), we find that

dθ

du
= +

∂Sν(θ)

∂θ
=

8a3ω

D
e−ωθ+iν + ω. (3.156)

Allowing θ to take complex values, we let θ = x + iy and find the following system of coupled

differential equations,

dx

du
=

8a3ω

D
e−ωx cos(ωy + ν) + ω,

dy

du
=

8a3ω

D
e−ωx sin(ωy + ν). (3.157)
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This gives an ODE for x and y,

dx

dy
= cot(ωy + ν) +

Deωx

8a3ω
sin(ωy + ν). (3.158)

Using the fact that the imaginary part of the thimble is constant by construction (stationary phase), and

letting K be such a constant, one finds

K − ωy =
8a3ω

D
e−ωx sin(ωy + ν). (3.159)

Using this result, we can integrate (3.158) to find the general form of the dual thimbles as

x(y) =
1

ω
log

(
A
sin(ωy + ν)

K − ωy

)
. (3.160)

It will be convenient to clearly distinguish between the two saddles by introducing a saddle tracking

parameter, σ = {0,+1}. Then,

θσ =
1

ω

[
ln

(
8a3

D

)
+ (2σ − 1)iπ − iν

]
. (3.161)

One finds

K = Kσ = −ν − (2σ − 1)π, A = 8a3/D, (3.162)

hence we can relate the real and imaginary part of the dual thimble through the equation7

x(y) =
1

ω
log

(
8a3

D

sin(ωy + bσ)

ωy + bσ

)
, bσ = −ν − (2σ − 1)π. (3.163)

This matches Equation (4.34) in [71], but reproduced in the stochastic context. To find the thimbles Jσ

we impose ImV−(θ) = ImV−(θcrit) = ±4Dπ giving

32a3e−ωθR sin(ωθI) + 4Dω θI = ±4Dπ =⇒ θI = ±
π

ω
, θR ∈ R, (3.164)

7Use the fact that sin(ωy + ν) = − sin(ωy + ν + (2σ − 1)π).

162



so the QZM thimble is the horizontal line

Jσ = R± i π
ω
. (3.165)

3.6.3 Exact quasi-zero mode integral and recovery of the Kramers prefactor

With ξ = e−ωθ,

IQZM =

∫
Jσ

dθ exp
(
− V−(θ)

4D

)
=

1

ω
e±iπ

∫ ∞

0

dξ e−(8a3/D) ξ =
e±iπ

ω

( D
8a3

)
Γ(1), (3.166)

where the sign in the exponent exp(±iπ) depends on the saddle we choose. This exact thimble evalua-

tion replaces the naive Gaussian (which yields the Stirling remnant
√
2π/e) and is the only non-trivial

deformation we need: the rest of the modes stay on their real cycles.
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Figure 3.22: Plotting the thimbles Jσ and the dual thimbles Kσ.

The two horizontal thimbles are complex conjugates and enter with equal intersection number for our

boundary data; equivalently, one may work with a single real integral and keep the overall e±iπ phase

as in (3.166). Compared with the Gaussian result IGauss =
e±iπ

ω
(
√
2π/e) (D/8a3) we find

IGauss

IQZM

=

√
2π/e

Γ(1)
=

√
2π

e
, (3.167)
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identifying the “peculiar error factor” as nothing but Stirling’s approximation sneaking in from a naively

chosen contour. This matches the work in [14, 71] and we see that the PL theory supplies the correct

contour Jσ and removes R exactly. Putting everything together, the path integral about the stochastic

complex bounce splits as

∫
R
Dx e−S[x]/(4D) =

∑
σ∈Σ

nσ

[ ∫
R
dtc

] [ ∫
Jσ

dθ e−V−(θ)/(4D)︸ ︷︷ ︸
QZM on thimble

] [∏
n≥2

∫
R
dan e

−λna2n/(4D)
]
, (3.168)

i.e., only the QZM factor is deformed to its Lefschetz thimble while the EZM and orthogonal Gaussian

factors stay on the real axis. No poles are crossed in our problem, so there are no residue contributions.

Reading off Fig. 3.22, we see for ν → 0+, the intersection numbers are (n0, n1) = (0, 1) and for

ν → 0−, the intersection numbers are (n0, n1) = (1, 0). This is the PL decomposition of the stochastic

path integral that fixes the QZM contour.

We conclude that ±iπ in (3.166) is the geometric avatar of the BZJ phase ambiguity: it simply records

which of the two horizontal thimbles R± iπ/ω contributes.

3.7 Itô corrections and a stochastic real and complex bounce dic-

tionary

Recall that the main ingredients for the escape rate formula using the [CB] under Itô is given informally

by

−|ΓIto| = exp(−S ′[zcl]/(4D))× (fluctuation operator)−
1
2 × 1√

4πD
, (3.169)

where ′ in the action indicates the removal of energy divergence −HT , the fluctuation operator is

assumed to have the EZM removed and the 1/
√
4πD factor is from a length scale from smearing.

Unlike when deriving the escape rate traditionally using Stratonovich calculus, the Itô framework gives

an escape rate that has a non-terminating expansion in D. Here, we have an exact formula (when
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T → ∞) for the stochastic bounce action and fluctuation determinant that are coupled to D. If one

were to expand these quantities in small powers of D, one would find the series

ΓIto =
[a
π
+ · · ·

]
exp
(
−∆V/D + 7D/8a3 + · · ·

)
. (3.170)

Full equivalence between Itô and Stratonovich is at the level of the exact path integral, i.e., if we could

sum everything. However, to leading order under the weak-noise limit, these frameworks agree. The

additional terms generated in the Itô case may be tied to a more global complex analysis framework

called resurgence. For this thesis, we do not concern ourselves with the additional corrections and work

strictly to leading order.

3.7.1 Comparing the stochastic real bounce and stochastic complex bounce

The stochastic [RB] sector on the real contour has a divergent quasi-zero mode. Instead of doing a

D → −D operation, Picard-Lefschetz theory keeps D > 0 and instead deforms the contour to the

Lefschetz thimble of the stochastic [CB]. In the QZM variable θ this is the horizontal extension and

vertical translation θ ∈ [0,∞) → [−∞,∞)± iπ/ω.

So, instead of following the [RB] and BZJ procedure, we follow the [CB] with the contour chosen by

the PL theory. This explains why the [CB] data matches the [RB] data and why they are related through

the algebraic substitution D 7→ −D.

To illustrate this relationship, note that the fluctuation determinant of the [CB] is +D/512a8 compared

to the fluctuation determinant of the real bounce that is −D/512a8. This algebraic relation persists for

higher order D. We also see that we do not have an additional phase factor (Maslov-Morse index). The

same relation holds between the separations µrb and µcb, the frequencies ωrb vs ωcb, the actions, and so

on. The factor ±iπ emerges from the branch of the logarithmic term.

In short, the [CB] and PL theory combination refines the analytic continuation programme of the BZJ
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method and tells us that for [IĪ]-type configurations, we should deform the contour of the real axis.

This analysis is consistent with the double-well potential analysis of Dunne et al. in [12], but the

context is within the Markovian white-noise setting and not quantum field theory.

3.8 Using thimble integration to resolve the error factor for more

general cases

The exact integral presented in 3.6.3 is a very special case, but the integration method extends into

more general cases. As established, when studying [IĪ]-type configurations, a generic form of the

interaction potential is

Vint = −Aa3 exp(−ωθ) + B4Dωθ, (3.171)

forA,B > 0. Provided a > 0, the first term in the interaction potential is strictly negative and represents

that the induced interaction between an [IĪ] pair is attractive. The constant B will depend on the form

of the second derivative of the original potential V ′′. Now, let us compute the integral naively using a

Gaussian approximation. The Gaussian integral evaluates to

Inaive = exp(±Biπ) ·
(
4BD
Aa3e

)B

·
√

2π

B
. (3.172)

Comparing with the exact integral over the thimble,

Iexact = exp(±Biπ) ·
(
4D

Aa3

)B

· Γ(B), (3.173)

gives a clear visual of the rate correction factor, R−1. Upon computing the ratio of the exact quantity

to the approximate value,

R−1 = Iexact/Inaive =
Γ(B)(

B
e

)B√
2π/B

. (3.174)
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Stirling’s approximation for the gamma function can be expressed as

Γ(z) =

√
2π

z

(z
e

)z (
1 +O

(
1

z

))
. (3.175)

It is clear that, upon replacing z 7→ B, the error ratio is precisely the difference between Stirling’s

asymptotics for the Gamma function and the exact value of the Gamma function. In the stochastic

cubic potential, we found the simplest case where B = 1, giving the
√
2π/e error.

Note that this argument is not restricted to [IĪ] configurations where the interaction potential (3.171)

is attractive. In fact, if the interaction potential is repulsive, as it is for pairs [II], the same error factor

would emerge. The difference is that there would be no phase factors of the form exp(±Biπ) in either

integral expression, but these factors cancel each other anyway.

3.9 Using the Stratonovich approach

We can follow (2.129) and recover Kramers’ rate using the Stratonovich framework, so long as we

integrate over the thimble exactly. Under the Stratonovich formulation, this leads to formally solving

P (−a,+T /2 | −a,−T /2) ≃ P0(T )
∫ +T /2

−T /2
dtu

∫ +T /2

tu

dtd exp
(
− S[xcl]

4D

) JOM[xcl]

JOM[x0]

×
√
⟨ẋu | ẋu⟩
4πD

√
⟨ẋd | ẋd⟩
4πD

(
det′′ M̂
detM̂0

)−1/2

. (3.176)

Instead of studying a complex bounce solution, we study traditional instanton excursions,

xI(t) = a tanh

(
a

(
t− tc ±

θ

2

))
. (3.177)

The instanton and anti-instanton trajectories have the same fluctuation determinant, giving the “instanton-

squared” determinant. P0 cancels the smearing factor
√
πD/a, the Onsager–Machlup Jacobian JOM[x0]
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and the HT term, meaning that we can simplify (3.176) to

P (−a,+T /2 | −a,−T /2) ≃ 1

4πD

∫ +T /2

−T /2
dtu

∫ +T /2

tu

dtd exp
(
− S[xcl]

4D

)
JOM[xcl]×

(
det′ M̂I

detM̂0

)−1

T

=
T

4πD

(
det′ M̂I

detM̂0

)−1 [
exp(−2SI)

∫
Jθ

exp(−V−(θ)/(4D))

]
. (3.178)

The instanton determinant factor is det = 64a5, twice the instanton action gives the Boltzmann factor

exp(−∆V/D), and the thimble integral over R± iπ gives −D/8a3. Hence, the sector contribution is

P (−a,+T /2 | −a,−T /2)[IĪ] = −
a

π
exp(−∆V/D)T , (3.179)

recovering Kramers’ rate cleanly with no D → −D tricks involved. The exact integral on the slice of

the thimble in the QZM direction reproduces the [IĪ] escape rate as in [117] but is now on the same

footing as the calculation [II]. The Stratonovich scheme gives no additional corrections to the escape

rate as there is no mixing of perturbation orders.

A natural question to ask is, are there any other discretisation schemes that could be chosen? Within

the class of additive-noise discretisations captured by an effective tilt, consistency of the weak-noise

saddle expansion forces ε ∈ {0, D}, corresponding to Stratonovich/Itô.

3.10 Tilt rigidity and why the discretisation is not a dial

We now allow an a priori arbitrary tilt ε in the Onsager–Machlup functional and track its impact through

the saddle, Jacobian, and QZM thimble integral. Consistency of the weak-noise asymptotics forces ε

onto the two canonical choices, recovering precisely the Itô and Stratonovich discretisations.

168



Let us pick ε > 0. Then, the Onsager–Machlup Jacobian takes the form

JOM[x, ε] = exp
[(1

2
− ε

2D

)∫ +T /2

−T /2
dt V ′′(x(t))

]
, (3.180)

while the action functional is

S[x, ε] =
∫ +T /2

−T /2
dt
[
ẋ2 + V ′(x)2 − 2 ε V ′′(x)

]
. (3.181)

Then, we can keep the results for the fluctuation determinant and action functional as already obtained,

but replace D 7→ ε. However, the denominator −4D must remain in terms of D. Instead of the

Onsager–Machlup Jacobian being unity, it now has a more complicated form. Using the classical

solution (in terms of ε), note that V ′′(x) = −2x, so we can integrate the classical solution directly to

find the Onsager–Machlup Jacobian. One finds,

log JOM = −4 i
( ε
D
− 1
)
arctan

(
C − 1√
1− C2

tanh
ω T
4

)
, (3.182)

where C ∈ iR and, to leading order, C ∼ i
√

2a3/ε. Then, Kramers’ rate has the form

−|Γ|T ≈ T√
4πD

[
det′ M̂
detM̂0

]− 1
2

JOM[x, ε] exp(−S[x, ε]/(4D))× error correction. (3.183)

Now we can look at the asymptotics of each term and build our general Kramers’ rate expression. We

find,

lim
T →∞

1

⟨żcl|żcl⟩

[ det′ M̂
det M̂0

]
=

ε

512 a8
+ · · · . (3.184)

log JOM = [∓ iπ + log
(
ε/8a3

)
] (1− ε/D) + · · · , (3.185)

and

−S/(4D) = −∆V/D +
ε

D
[−1∓ iπ − log

(
ε/8a3

)
] + · · · . (3.186)
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The integral over the thimble is now

IQZM =
1

ω

∫
Jσ

d(ωθ) exp
(
− V−/(4D)

)
=

exp(± iπε/D)

ω

( D
8a3

)ε/D
Γ(ε/D), (3.187)

meaning that the error factor using the results of § 3.8 is

err(ε/D) =
Γ(ε/D)( ε

eD

)ε/D√2πD

ε

. (3.188)

If we momentarily ignore the Onsager–Machlup Jacobian factor, we would find

Γε =
a

π

( D
8a3

)ε/D−1

Γ
( ε
D

)
exp(−∆V/D) exp(∓ iπε/D). (3.189)

The phase factor exp(∓ iπε/D) contributes to the overall sign. The Onsager–Machlup Jacobian con-

tains this factor of opposite sign and cancels it perfectly, but leaves behind a definite exp(∓iπ) = −1

term. Adding the Jacobian asymptotics, we arrive at the most general form of Kramers’ rate using the

complex saddle approach,

Γε = −
a

π

( ε
D

)1−ε/D
Γ
( ε
D

)
exp(−∆V/D). (3.190)

Kramers’ rate is recovered if and only if ε ∈ {0, D}.
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Chapter 4

Case Study II – Sine-Gordon Formulation

Chapter Summary

We apply the Picard–Lefschetz machinery of Chapter 3 to a periodic cosine potential where the dynam-
ics are mapped to an effective sine–Gordon model. The periodic landscape admits an additional well-
defined instanton-instanton alongside the instanton-anti-instanton sector. The complex trajectory resolves
the instanton-anti-instanton computation. This chapter shows that the weak-noise asymptotics, determinant
signs, and quasi-zero mode structure carry over from the cubic case, with some new features induced by
periodicity.

4.1 The periodic sine–Gordon landscape

Periodic energy landscapes naturally arise in condensed matter and materials science, particularly in

models of dislocations and adatom motion on crystalline lattices. For example, the Frenkel–Kontorova [8,

27] chain reduces to the sine–Gordon (SG) model in the continuum limit. In SG, three saddle families

govern rare events:

1. Stochastic real bounce [RB]: a real saddle confined to a single cell; on the real contour, it
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possesses a soft negative mode in the [IĪ] sector.

2. Instanton-instanton-type event [II]: a two-instanton trajectory that advances the coordinate by

one period; in SG, this saddle is well defined and contributes.1

3. Stochastic complex bounce [CB]: the complexified [IĪ] saddle selected by contour deformation

at fixed D > 0. It reproduces the [IĪ] rate and determines the±iπ phase via thimble orientation.

4.1.1 Critical points, energies and turning points

Unlike the cubic case in Chapter 3, SG admits a genuinely contributing [II] saddle. We show how

[RB], [II], and [CB] fit together in this periodic landscape: the complex trajectory yields the correct

[IĪ] contribution at fixed D > 0, and [II] controls intercell hops. The classical mechanics results

agree with those of Dunne et al. in Section 6 of [13].

We work in a simple periodic potential,

V (x) = − 4a3 cos
( x
2a

)
, a > 0, (4.1)

which sets the barrier scale for the dynamics. Its basic geometry is as follows:

V ′(x) = 2a2 sin
( x
2a

)
, V ′′(x) = a cos

( x
2a

)
, (4.2)

minima: xmin
k = 4πa k, V (xmin

k ) = −4a3, V ′′(xmin
k ) = +a, (4.3)

maxima: xmax
k = (2k + 1) 2πa, V (xmax

k ) = +4a3, V ′′(xmax
k ) = −a, (4.4)

period: L = 4πa, barrier height (adjacent wells): ∆V = 8a3. (4.5)

The harmonic curvatures at the bottom of the well and the top of the barrier coincide in magnitude

|V ′′(xmax
k )| = V ′′(xmin

k ) = a, and the baseline Kramers escape rate from one well to either neighbour

1In this section, we refer to this solution simply as the [II] solution.
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is

ΓK(D) =
1

2π

√
V ′′(xmin

k ) |V ′′(xmax
k )| exp

(
− ∆V

D

)
=

a

2π
exp
(
− 8a3

D

)
. (4.6)
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(0, − 4a3)

(2aπ, 4a3)

V(x) =−4a3cos(x/2a) with a= 1

Figure 4.1: The periodic potential V (x) = −4a3 cos(x/2a) with a = 1. Adjacent wells are separated
by a barrier of height ∆V = 8a3 and period L = 4πa.

In what follows, we (i) use [RB] to demonstrate the necessity of complexification and the breakdown

of a purely real contour; (ii) characterise glued [II] paths, for which the QZM integral is already well

posed on the full real line; and (iii) evaluate the [CB] contribution by integrating the QZM exactly

along its Lefschetz thimble slice, yielding the exact Γ function factor and restoring the correct sign

structure for [IĪ] events. It is important to note that while the [II]-type event is already defined on

the real line, the QZM integral is non-Gaussian. In both channels, the one-dimensional QZM integral

produces the universal non-Gaussian factor e/
√
2π. Because V is periodic, the dynamics repeat with

spatial period 4πa. In the weak-noise limit, the stochastic Hamiltonian correspondence lets us analyse

the exit geometry by studying the Hamiltonian trajectory in the tilted effective potential under Itô’s

discretisation,

U(x) = −V ′(x)2 + 2DV ′′(x). (4.7)
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For the cosine potential

V (x) = −4a3 cos
(
x/2a

)
(4.8)

we have

V ′(x) = 2a2 sin
( x
2a

)
, V ′′(x) = a cos

( x
2a

)
, (4.9)

so, the total form of the effective potential is

U(x) = −4a4 sin2
( x
2a

)
+ 2aD cos

( x
2a

)
= 4a4 cos2

( x
2a

)
+ 2aD cos

( x
2a

)
− 4a4. (4.10)

The stationary points of the effective potential U(x) = −V ′(x)2+2DV ′′(x) organise into three distinct

energy levels (one period 4πa):

• The highest level Hhi = U(xhik ) = 2aD, achieved at

xhik = 4πa k, k ∈ Z,

with U′′(xhik ) = −(4a3 +D)/(2a) < 0 (local maxima).

• The middle level Hmid = U(xmid
k ) = − 2aD, achieved at

xmid
k = (2k + 1) 2πa, k ∈ Z,

with U′′(xmid
k ) = (D − 4a3)/(2a). Hence, for the weak-noise regime 0 < D < 4a3, these are

also local maxima.

• Lowest level (two symmetric minima per period), existing for 0 < D < 4a3:

cos
( x
2a

)
= − D

4a3
=⇒ xlok,± = 2a

(
π ± arccos

D

4a3

)
+ 4πa k, k ∈ Z,
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with energy

Hlo = U(xlok,±) = − 4a4 − D2

4a2
, U′′(xlok,±) = 2a2

(
1− D2

16a6

)
> 0.

Equivalently, using arccosu = arctan
(√

1− u2/ u
)

(for u ∈ (0, 1]), the two low-level critical points

in each cell can be written as

xlok,± = (2k + 1) 2πa ± 2a arctan

(√
16a6 −D2

D

)
.

As D ↑ 4a3 the pair xlok,± coalesces with xmid
k in a saddle-node bifurcation at energy −8a4.

Thus, for 0 < D < 4a3 each period contains two maxima at x = 4πa k with energy 2aD and x =

(2k + 1) 2πa with energy −2aD and a symmetric pair of minima at xlok,±. As D → 4a3− these minima

coalesce (saddle-node) at x = (2k + 1) 2πa. This agrees with the classical mechanics structure given

by Dunne et al. in Section 6 [13].

175



−20 −15 −10 −5 0 5 10 15 20

x

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

(x
)

xT , xTxcr
0

H
=

0

H
1

H
0

H
2

Effective potential (x) for the stochastic [CB] (sine-Gordon)

[CB] segment

Turning points

Critical points

Complex Turning points

Figure 4.2: Effective potential U(x) (with a =
√
2, D = 0.4) governing the stochastic [CB] dynamics.

Green circles mark the critical points of U(x), while blue squares denote real turning points along the
representative energy level H . The orange square denotes a complex conjugate turning point pair
with non-zero imaginary part.

4.2 Stochastic real bounce

Consider the motion of a Hamiltonian particle that starts at xcr = 2aπ + 4aπk1, k1 ∈ Z, in the infinite

past t → −∞ at the energy level H = −2aD. Assume that the particle bounces off a turning point at

tc = 0 and returns to xcr as t→ +∞. The turning points are

xT = ± 2a arccos

(
1− D

2a3

)
+ 4aπk2, k2 ∈ Z, (4.11)

176



obtained by setting the velocity to zero in the first integral

(
dx

dt

)2

= 4a4
(
1 + cos

x

2a

)[
1− cos

x

2a
− D

2a3

]
. (4.12)

Integrating by quadrature gives,

∫ t

0

dt′ =

∫ x

xT

dx′√
4a4
(
1 + cos x

′

2a

)[
1− cos x

′

2a
− D

2a3

] . (4.13)

At the critical point xcr, the fluctuation operator has a simple closed form,

M̂ = − d2

dt2
− 1

2
U′′(xcr) = −

d2

dt2
+ a2 − D

4a
(4.14)

where the frequency is

ωrb =

√
a2 − D

4a
= a

√
1− D

4a3
. (4.15)

4.2.1 Exact analytic solution for the stochastic real bounce

We solve (4.12) by a sequence of elementary transformations (summarised in Fig. 4.3). Upon inversion,

the classical trajectory takes the equivalent closed forms2

xcl(t) = 2a arccos

1− D

4aω2
rb

cosh2ωrbt

1 +
D

4aω2
rb

cosh2ωrbt


= 4a arctan

(
1

2ωrb

√
D

a
cosh(ωrbt)

)
= 4a arctan

(√
D

4a3 −D
cosh(ωrbt)

)
.

(4.16)

This solution satisfies the boundary conditions modulo 4aπ.

2Using the identity arctan
√
X = 1

2 arccos
(
1−X
1+X

)
.
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Figure 4.3: Transformations used to obtain the closed form: Ω = cos(x/2a), φ = Ω+ 1, ψ = 1/φ,
t̃ = 2ωrbt, η = µ− µD, K = 2η/r + 1 with µD = (2− D

2a3
)−1 and r = D

8aω2
rb

.

To exhibit the solution as a composite [IĪ] pair, write

xcl(t) = 4a arctan

(
1

4ωrb

√
D

a
eωrbµrb

[
eωrb(t−µrb) + e−ωrb(t+µrb)

])
, (4.17)

where the separation µrb is fixed by the addition formula arctanX +arctanY = arctan
(
X+Y
1−XY

)
(mod

π). Setting X = eωrb(t−µrb), Y = e−ωrb(t+µrb) yields

1

4ωrb

√
D

a
eωrbµrb =

1

1− e−2ωrbµrb
, (4.18)

and hence the explicit separation

µrb =
1

ωrb

arsinh

(
2ωrb

√
a

D

)
, (4.19)

which is purely real. Its weak-noise expansion is

µrb =
1

2a
log

(
16a3

D

)
+

D

16a4

[
−1 + log

(
16a3

D

)]
+

D2

512a7

[
−7 + 6 log

(
16a3

D

)]
+O(D3). (4.20)

Thus, the time near the turning point is again logarithmically growing,

2µrb ∼
1

a
log

(
16a3

D

)
, (4.21)
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as D → 0. Using arctan(x−1) = π
2
− arctanx for x > 0, we also have the [IĪ] form

xcl(t) = 4a
[
arctan

(
eωrb(t−µrb)

)
+ arctan

(
e−ωrb(t+µrb)

)]
= 4aπ − 4a

[
arctan

(
eωrb(t+µrb)

)
+ arctan

(
e−ωrb(t−µrb)

)]
,

(4.22)

i.e., an instanton at t = −µrb followed by an anti-instanton at t = +µrb. (4.22) matches (184) in [13].
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Figure 4.4: Stochastic [RB] in the sine–Gordon model with a = 1.

4.2.2 The stochastic real bounce action

The associated action can be written as a line integral,

S[x] = −HT + 4

∫ xT

xcr

dx

√
4a4
(
1 + cos

x

2a

)[
1− cos

x

2a
− D

2a3

]
, (4.23)

which evaluates in closed form to

S[x] = −HT + 32a3
√
1− D

4a3
− 4D log

1 +
√

1− D
4a3

1−
√
1− D

4a3

 . (4.24)

179



Our action functional agrees with the logarithmic expression given in (187b) in [13]. The weak-noise

asymptotic expansion of the action is

S[x] = −HT + 32a3 − 4D − 4D log

(
16a3

D

)
+
D2

4a3
+O(D3). (4.25)

The real bounce solution exists for 0 < D < Dc with Dc = 4a3.

0 2 4 6 8 10

Noise strength D

−30

−20

−10

0

10

20

30

40

50

60

S R
B

D=Dc

Asymptotics of the stochastic real bounce action at a= 1

Exact action

O(D)

O(D 2)

O(D 3)

Higher orders O(D 4)−O(D 10)

0.0 0.5 1.0

D∈ [0, 1.2]

Figure 4.5: Asymptotics of the stochastic real bounce action for the sine–Gordon potential at a = 1.
The solid curve is the exact SRB with the −HT term removed; dashed/dotted curves show weak-noise
truncations at orders O(D), O(D2), O(D3), and O(D4)−O(D10). The vertical line marks Dc = 4a3;
for D > Dc no real bounce exists (shaded). The inset zooms into D ∈ [0, 1.2].

4.2.3 Stochastic real bounce functional determinant

The fluctuation determinant around the stochastic [RB] has one negative mode that is soft, and using

the master formula § 2.2, one finds the same leading-order expression as for the cubic [RB],

lim
T →∞

1

⟨ẋcl | ẋcl⟩
det′ M̂
detM̂0

= − D

512 a8
+ higher-order terms, (4.26)
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exhibiting the same instability. In the same manner, we address this by passing to the complex bounce

in the next subsection, and then analyse the [II] event.

4.3 The stochastic complex bounce

Write the complex path as z(t) = x(t) + i y(t) and set u := x/(2a), v := y/(2a). For the Itô effective

potential U(z) = −
[
V ′(z)

]2
+ 2DV ′′(z) with V ′(z) = 2a2 sin

(
z
2a

)
, one has

Re U(z) = 4a4
[
cos2 u cosh2 v − sin2 u sinh2 v

]
+ 2aD cosu cosh v − 4a4,

Im U(z) = − 4a4 sin(2u) cosh v sinh v − 2aD sinu sinh v,

(4.27)

and the holomorphic Euler–Lagrange equations

ẍ = a3 sin(2u) cosh(2v) +
D

2
sinu cosh v,

ÿ = a3 cos(2u) sinh(2v) +
D

2
cosu sinh v,

(4.28)

obtained from z̈ = V ′(z)V ′′(z)−DV ′′′(z) with V ′′(z) = a cos
(
z
2a

)
, V ′′′(z) = −1

2
sin
(
z
2a

)
.

We expand about the well at the origin zcr = 0. The fluctuation operator is

M̂ = − d2

dt2
− 1

2
U′′(zcr) = − d2

dt2
+ ω2

cb, ω2
cb = a2 +

D

4a
, (4.29)

so that

ωcb = a

√
1 +

D

4a3
. (4.30)

For the right-moving branch, one finds the complex turning point from the first integral as

zT = 2a arccos

(
−1− D

2a3

)
= 2aπ ± 2ai arcosh

(
1 +

D

2a3

)
, (4.31)

using arccos(−1− ξ) = π ± i arcosh(1 + ξ). Multivaluedness encodes the two complex-conjugate
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sheets relevant to the phase ±iπ.

4.3.1 Exact analytic solution for the stochastic complex bounce

A convenient representation of the complex bounce is

zcl(t) = 2aπ ± 4a arctan

(
i cosh(ωcbt)

√
D

D + 4a3

)
, (4.32)

which follows from 1 + cosh(2x) = 2 cosh2 x and the identity arctan
√
X = 1

2
arccos

(
1−X
1+X

)
. Equiva-

lently,

zcl(t) = 2aπ ± 4a arctan

(
i

2ωcb

√
D

a
cosh(ωcbt)

)
, (4.33)

since
1

2ωcb

√
D

a
=

√
D

D + 4a3
. To display the [IĪ] structure, rewrite (4.33) in exponential form and

use the arctan addition law,

zcl(t) = 2aπ ± 4a arctan

(
i

4ωcb

√
D

a

[
eωcbt + e−ωcbt

])
. (4.34)

Introduce a (complex) separation µcb by shifting t 7→ t ± µcb and demand the representation as a

difference of two elementary kinks:

zcl(t) = 2aπ ± 4a
[
arctan

(
eωcb(t+µcb)

)
− arctan

(
eωcb(t−µcb)

)]
. (4.35)

Matching (4.34) and (4.35) gives

1

1− e2ωcbµcb
=

i

4ωcb

√
D

a
e−ωcbµcb , (4.36)
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whose exact solution is

µcb =
1

ωcb

arsinh
(
i 2ωcb

√
a

D

)
=

i

ωcb

arcsin
(
2ωcb

√
a

D

)
, (4.37)

using arsinh(iz) = i arcsin z. For D → 0,

µcb =
1

2a

[
log
(16a3
D

)
±iπ

]
+

D

16a4

[
1∓iπ−log

(16a3
D

)]
+

D2

512a7

[
−7±6iπ+6 log

(16a3
D

)]
+O(D3),

(4.38)

i.e., 2µcb ≃ 1
a

[
log
(
16a3

D

)
±iπ

]
. The imaginary part Imµcb = ±π/(2a)+O(D) encodes the±iπ phase.

At the special value, the trajectory crosses a branch and becomes discontinuous on the real axis (the

“θ = π” singular case); otherwise, the real-time profile is continuous, with a steep but finite transition.

(4.35) agrees with Dunne et al. in (201) of [13], and a clear discussion on the singularity in the solution

is given in Section 6.5 of [13].
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Figure 4.6: Holomorphic Itô effective potential over [−2, 2]× [−2, 2] ⊂ C. Lighter regions are higher;
darker regions are deeper wells.
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4.3.2 The stochastic complex bounce action

The action evaluated on the complex bounce is

S[z] = −HT + 4

∫ zT

zcr

dz

√
2aD

(
1− cos

z

2a

)
+ 4a4

(
1− cos2

z

2a

)
. (4.39)

By substitution, this integrates to the closed form

S[z] = −HT + 32a3
√
1 +

D

4a3
+ 4D log

1 +
√

1 + D
4a3

1−
√

1 + D
4a3

 . (4.40)

The stochastic complex bounce asymptotics read as

S[z] = 32a3 + 4D ± 4iπD + 4D log

(
16a3

D

)
+
D2

4a3
+O(D3). (4.41)

The ± sign comes from the choice of the turning point. We will formalise this in the language of

intersection coefficients shortly.
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4.3.3 Stochastic complex bounce functional determinant

Using the master formula § 2.2, to leading order one finds the fluctuation determinant around the

stochastic [CB] as

lim
T →∞

1

⟨żcl | żcl⟩
det′ M̂
detM̂0

= +
D

512 a8
+ higher-order terms, (4.42)

which is precisely D → −D in the [RB] determinant. This is strictly positive and has the same

leading-order expansion as for the cubic [CB] in Chapter 3.
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4.3.4 Recovery of the Kramers rate

The interaction potential can be derived from the ansatz

xansatz
IĪ (t, θ) = 4a arctan exp

(
ωansatz
IĪ

(
t+

θ

2

))
− 4a arctan exp

(
ωansatz
IĪ

(
t− θ

2

))
+ 2aπ. (4.43)

The interaction potential is attractive, so there is a complex critical point that matches the leading-order

expansion of µcb,

V−(θ) = −64 a3 exp(−ωcbθ) + 4Dωcb θ, (4.44)

where we have matched ωansatz
IĪ = ωcb. In this case, the thimble is just the real axis shifted by ± iπ

ωcb
, that

is,

Jθ = R± i π
ωcb

. (4.45)

So, the e/
√
2π correction factor is needed to resolve the thimble computation. This is equivalent to

setting B = 1 in (3.8). Now, we shall compute the rate for a particle starting at the origin:

P (0,+T /2 | 0,−T /2) ≈ 1√
4πD

[
det′ M̂
detM̂0

]− 1
2

exp
(
− S ′[z]/(4D)

)
T , (4.46)

where S ′ denotes Scb with the energy term −HT omitted. The intersection coefficients follow identi-

cally to the cubic case (3.168), and we have the same dual-thimble shape as in (3.163), which means

we find the rate as

−|Γcb|T = − a

2π
exp(−∆V/D)T . (4.47)

Therefore, Kramers’ rate has been recovered using the PL framework and stochastic [CB]. Since the pe-

riodic potential on R admits no normalisable equilibrium density, one has to study [IĪ] configurations.

On these sectors, complexification provides a systematic contour prescription via Picard–Lefschetz

theory.
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4.4 Instanton-instanton-type event

In the periodic sine–Gordon landscape, there is, in addition to the real and complex bounces, another

classical path that contributes and lies on a real contour: an instanton-instanton-type [II] trajectory. We

consider a particle on the highest Itô-effective energy level, H = 2aD, that moves from one maximum

of the Itô effective potential to the next, crossing a single intermediate barrier. Disregarding any overall

shifts by 4aπ, the path is

0 −→ 2aπ −→ 4aπ,

with x(−T /2) = 0, x(0) = 2aπ, and x(+T /2) = 4aπ. The first integral for the motion reads

(
dx

dt

)2

= 4a4
(
1− cos

x

2a

)[
1 + cos

x

2a
+

D

2a3

]
, (4.48)

and integrating by quadrature gives

t =

∫ t

0

1dt′ =

∫ x

xT

dx′√
4a4
(
1− cos x

′

2a

)[
1 + cos x

′

2a
+ D

2a3

] . (4.49)

Expanding about the critical point xcr = 0, the fluctuation operator is

M̂ = − d2

dt2
− 1

2
U′′(xcr) = −

d2

dt2
+ a2 +

D

4a
, (4.50)

so the frequency is

ωII = a

√
1 +

D

4a3
. (4.51)
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4.4.1 Exact analytic solution for the instanton-instanton-type event

Solving (4.48) by transformations (cf. Fig. 4.10) and inverting yield the exact classical trajectory solu-

tion,

xcl(t) = 2aπ + 4a arctan

(
1

2ωII

√
D

a
sinh(ωIIt)

)
= 2aπ + 4a arctan

(√
D

4a3 +D
sinh(ωIIt)

)
,

(4.52)

which satisfies xcl(−∞) = 0, xcl(0) = 2aπ, xcl(+∞) = 4aπ. To display the composite nature, use the

arctangent addition law to write

xcl(t) = 2aπ + 4a
[
arctan

(
eωII(t+µII)

)
− arctan

(
e−ωII(t−µII)

)]
, (4.53)

which is a sum of two instantons separated by µII . The matching of (4.52)–(4.53) gives

µII =
1

ωII
arcosh

√
4a3 +D

D
, (4.54)

so µII ∈ R for all D > 0. Using arctanX − arctanY = arctan
(
X−Y
1+XY

)
with X = eωII(t+µII), Y =

eωII(−t+µII) shows that arctan
(
sech(ωIIµII) sinh(ωIIt)

)
is reproduced exactly, with sech(ωIIµII) =√

D/(4a3 +D). (4.53) is consistent with the “real bion” solution given by Dunne et al. in (193) of [13].

A B C D E F G

SA SB SC SD SE SF SG

Ω

f

φ ψ t̃ η K

solution

Ω−1 φ−1 ψ−1 t̃−1 η−1 K−1

Figure 4.10: Transformations used to obtain (4.52)–(4.53). One convenient chain of transformations
is: Ω = cos(x/2a), φ = Ω− 1, ψ = 1/φ, t̃ = 2ωIIt, η = µ− µD, K = 2η/r − 1 with
r = D/(8aω2

II). Equivalent choices lead to the same closed form (4.52).
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Figure 4.11: Analytical solution of the [II]-event.

4.4.2 Instanton-instanton-type event action

The action can be written as the line integral

S[x] = −HT + 4

∫ 2aπ

0

dx

√
4a4
(
1− cos

x

2a

)[
1 + cos

x

2a
+

D

2a3

]
, (4.55)

which evaluates to the closed form,

S[x] = −HT + 32a3
√
1 +

D

4a3
+ 4D log


√

1 + D
4a3

+ 1√
1 + D

4a3
− 1

 . (4.56)

This is purely real for D > 0. The asymptotics read:

S[x] = 32a3 + 4D + 4D log

(
16a3

D

)
+
D2

4a3
+O(D3). (4.57)
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4.4.3 Instanton-instanton-type event functional determinant

The fluctuation determinant is positive. In our normalisation,

lim
T →∞

1

⟨ẋcl | ẋcl⟩
det′ M̂
detM̂0

= +
D

512 a8
+ higher-order terms, (4.58)

in contrast to the real bounce case, and agreeing with the complex bounce case. Thus, there is no

unstable direction to account for. Kramers’ rate can also be derived from such a configuration, and

the thimble integration can be performed exactly. For the [IĪ] sector, the relevant Lefschetz thimble is

shifted off the real axis, so the quasi-zero mode must be integrated on a complex contour. In the [II]

sector, the thimble coincides with R; nevertheless, the quasi-zero mode integral is non-Gaussian and

must be treated exactly. We now verify this by completing the computation.

4.4.4 Recovery of the Kramers rate

The interaction potential can be derived from the ansatz

xansatz
II (t, θ) = 4a arctan exp

(
ωansatz
II

(
t+

θ

2

))
+ 4a arctan exp

(
ωansatz
II

(
t− θ

2

))
− 2aπ, (4.59)

the interaction potential changes sign so that a real critical point exists,

V+(θ) = +64 a3 exp(−ωIIθ) + 4DωII θ, (4.60)

where we have matched ωansatz
II = ωII . In this case, the thimble is just the real axis,

Jθ = R, (4.61)
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and so the e/
√
2π error factor is needed. The dual thimble is similar to (3.163) but with no shifts of π

appearing in the expression,

x(y) =
1

ωII
log

(
16a3

D

sin(ωIIy)

ωIIy

)
, (4.62)

which intersects R once at θ∗ = (1/ωII) log(16a
3/D) with positive orientation, hence the intersection

coefficient is +1 and the PL decomposition is trivial. Collecting the remaining ingredients,

P (4aπ,+T /2 | 0,−T /2) ≈ 1√
4πD

[
det′ M̂
detM̂0

]− 1
2

exp
(
− S ′

II [x]/(4D)
)
T , (4.63)

where S ′
II denotes SII with the energy term −HT omitted. Then, we find the rate as

ΓII =
a

2π
exp(−∆V/D). (4.64)

Our analysis is conducted entirely within the stochastic regime; however, the resulting classical me-

chanics shares a structural similarity with the results reported by Dunne et al. in Section 6 of [13],

which pertain to the quantum field theory (QFT) framework. In particular, the effective potential in

our setting is tilted as a direct consequence of the discretisation scheme applied in the stochastic con-

text. Although the classical equations of motion derived in both cases are structurally analogous, the

physical regimes and underlying mechanisms remain fundamentally different.
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Chapter 5

Conclusion and Outlook

Chapter Summary

This chapter summarises the main contributions of the thesis, states a practical algorithm for computing es-
cape rates and discusses further applications in non-equilibrium statistical mechanics

Summary of the main contributions

• Itô variational calculus and the tilted saddle equation. Using the Itô chain rule in the varia-

tional calculus yields an order-D tilt in the equations of motion,

ẍ = V ′(x)V ′′(x) − DV ′′′(x)

reshaping the saddle geometry and making solutions explicitly D-dependent while leaving the

Arrhenius factor unchanged.

• Discovery of stochastic bounces. Solving the Itô Euler–Lagrange equation reveals exact
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two-instanton configurations—stochastic real bounces and stochastic complex bounces—as stochas-

tic analogues of the real bounce and complex bion in QFT. At a critical noise level D = Dc the

real bounce disappears via a saddle-node bifurcation, whereas the complex bounce persists.

• Complexification and thimble-based contour selection. For instanton-instanton sectors [II]

the undeformed real contour (real thimble) suffices but can be improved. For instanton-anti-

instanton ([IĪ]) sectors, we complexify the Onsager–Machlup path integral

P (x1,+T /2 | x1,−T /2) =
∫
γ

Dz exp

(
−S[z]

4D

)
, γ := Lefschetz thimble,

and work on the holomorphic landscape U(z) = −
(
V ′(z)

)2
+ 2DV ′′(z). Although the original

problem is real, the [IĪ] weak-noise asymptotics are governed by complex saddles.

• Local product structure and clean factorisation. Near each relevant saddle, the path integral

measure admits a local product:

Measure ≈ EZM fibre × QZM line × stable Gaussians,

yielding

Pσ ≃ exp

(
− Sσ
4D

)
Vol(EZM)× (Gaussian prefactor)︸ ︷︷ ︸

steepest descents + collective coordinates

×
∫
Jθ

dθ exp

(
−Sint(θ)

4D

)
︸ ︷︷ ︸
QZM integral along the thimble

.

This factorisation and choice of contour is enabled by the Picard–Lefschetz (PL) theory.

• QZM contour and geometric sign (vs. Bogomolny–Zinn–Justin, BZJ). Factorisation isolates

the quasi-zero mode integral. For our [IĪ] case studies, the correct contour is Jθ = R ± iπ; for

[II] pairs, it is the full real line. Thus, both sectors extend beyond a positive half-line, and cru-

cially, the [IĪ] sectors must be shifted off the real axis. This provides a geometric interpretation

of the BZJ prescription. Any naive Gaussian approximation of the QZM (even after complexi-

194



fication) is uncontrolled due to the pseudo-flat direction and produces a spurious Stirling factor,

which we identify and remove in general.

• Non-zero energy and cancellation of divergences. The tilt lifts bounces off zero energy,H > 0,

producing a linear term +H T as T → ∞. We show that this divergence cancels against the

normalisation of the path integral measure, always returning a finite result.

• Fluctuation determinants and the correct overall sign. We present a master formula for com-

puting fluctuation determinants of stochastic bounces. Moreover, we find a relation linking Itô

and Stratonovich prefactors (zero modes removed):

lim
T →∞

1

⟨ẋItô | ẋItô⟩
det′ M̂Itô

detM̂0

= g(a)D

[
lim
T →∞

1

⟨ẋStrat | ẋStrat⟩
det′ M̂Strat

detM̂0

]2
, (5.1)

where the prime denotes removal of zero modes (and g(a) > 0 is model-dependent). For the

stochastic complex bounce the determinant is positive and of order O(D); together with a mul-

tivalued action term ±4πiD this yields an overall factor −1 and the physically correct transition

sign. We demonstrate this explicitly in two case studies on a cubic and sine–Gordon potential.

• Only two tilts reproduce Kramers exactly. With a regulator ε interpolating discretisations,

U(x) = −(V ′)2 + 2ε V ′′, the escape rate takes the schematic form

±
∣∣Γε∣∣ T = ± f(a)

π

( ε
D

)1−ε/D
Γ
( ε
D

)
exp

(
−∆V

D

)
T .

Only the limits ε → 0 (Stratonovich) and ε → D (Itô) reproduce Kramers at leading order. For

clean contour selection and a geometric resolution of the QZM sign, we adopt the Itô framework.
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5.1 Practical algorithm

This thesis presents an algorithmic procedure to recover Kramers’ escape rate by analysing complex

saddles of the stochastic path integral. The complexification and correct treatment of the QZM provide

a systematic and rigorous approach to obtaining the correct formula while maintaining D > 0. From

an applied perspective, the main insight is that [IĪ]-type configurations must be addressed through

complexification and tilting of the effective landscape. Notably, these two aspects are intrinsically

linked: once the Itô discretisation is selected, it is necessary to consider complex trajectories. This

requirement arises from the nature of the tilt term itself, and from the fact that real bounce trajectories

in the tilted landscape originate at the barrier. This step is essential to reproduce the correct sign for

Kramers’ rate. In summary, the algorithm for [IĪ] configurations to derive the rate is as follows:

• Depending on the problem, it may be necessary to employ [IĪ]-type configurations, i.e., non-

confining potentials or those with no well-defined Boltzmann density.

• If [IĪ] configurations are required, select the Itô discretisation scheme and complexify the sys-

tem. This entails studying Hamiltonian mechanics in a tilted, holomorphic potential.

• Derive all necessary results (numerical evaluation is acceptable for more complicated potentials):

the action, extremising solution, and fluctuation determinant using the provided formulae.

• With an understanding of the underlying thimble geometry, assemble all components to obtain the

rate, and multiply by the error factor arising from the Gaussian approximation to a non-Gaussian

mode. The QZM can be isolated and its thimble integral evaluated exactly, or the general error

formula given in § 3.8 may be used.

Thus, tilt, complexification, and error factor constitute the three key elements required to derive the es-

cape rate without recourse toD → −D substitutions. These steps suffice to obtain the correct prefactor

and a geometric resolution of phases, irrespective of the availability of closed-form expressions.
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Figure 5.1: Qualitative evolution of the probability density during finite-time escape. Blue curves
show the potential V (x) (scaled) and red curves the probability density ρ(x, t) (scaled), at three
representative times t1 < t2 < t3. At t1 the density is localised near the left well and spreads under
diffusion. At t2 a secondary peak begins to form in the right well, creating a region where ∂xρ > 0,
which implies ∂xS < 0 and hence a dominant turning path approaching the target from the right. By
t3 the density has developed two well-separated peaks, approaching its long-time form.

5.2 Finite-time and non-equilibrium extensions

Throughout this thesis, we have operated under the assumption of infinite-time averaging for barrier

crossing. The time interval was taken to be sufficiently large and ultimately infinite. The natural

progression is to examine the role of complex saddles at finite observation times T , when the density is

still reorganising between the wells. For general T , the density, initially concentrated as a delta spike

near the left minimum, first shifts and broadens; at intermediate times, a secondary peak emerges in the

right well and subsequently grows, asymptotically approaching the Boltzmann distribution as T → ∞.

Non-equilibrium physics presents more challenges. Consider a general value of T . As seen in Fig. 5.1,

the initial delta function slides towards the local minimum and spreads (time t1). After some time t2

a small peak appears in the far well. This grows as the density flows over the barrier, asymptotically

approaching the Boltzmann density as T → ∞.

When the second peak emerges, the system is far from equilibrium. At this stage, there exists a region

of x in which the density is an increasing function of x (corresponding to the left slope of the nascent

secondary peak). In this region, as D → 0, the action must decrease with increasing x. This behaviour

is only possible if the path reverses and approaches the final point from the right. In the Stratonovich
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effective potential, such turning paths are prohibited—any extremal that crosses the barrier within finite

time will diverge to infinity on the right. By contrast, for the Itô effective potential, turning solutions

are permitted for sufficiently small H . This indicates that the Itô potential (and, by extension, gen-

eral complexification) provides the appropriate framework for analysing finite-time non-equilibrium

dynamics.

A new framework in quantum settings, called resurgence (see, for example, [11,48,53,55,72]), is being

developed that provides a deeper analysis of the complex analysis at play and can be extended to more

complicated multi-instanton structures. It is focused on the analytic continuation of path integrals.

There is great interest in generating the full transseries (i.e., a full series representation containing per-

turbative and non-perturbative effects, logarithmic quasi-mode sectors and highly correlated expansion

coefficients), and this framework is rooted in the idea of complex saddles and PL theory. The same

complex skeleton may lie beneath the weak-noise asymptotics of the stochastic path integral. The key

feature of resurgence is to make the hidden, non-perturbative physics visible; it would be an interesting

task to begin to understand the role resurgence may play in the stochastic context. In particular, it could

give meaning to the additional terms generated in the expansion and provide access to higher-order

non-perturbative physics.

5.3 Universal phase of the complex bounce

In this thesis, we provide detailed calculations of the escape rate for the cubic and sine-Gordon poten-

tials. In both cases for [IĪ]-type trajectories, the action contained a exp(±iπ) = −1 factor that resolved

the sign issue. We show, more generally, how this factor can arise through complex integration.

In the generic Itô case at smallD > 0, the relevant turning points are complex. The associated complex

saddle trajectories then contribute a universal imaginary phase to the action, which fixes the overall

sign of the escape contribution. Our goal is to compute this imaginary piece generally using a contour

formulation. The method is presented in a general form, though we shall use the cubic potential for
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definiteness. It applies to polynomial V , and more generally to analytic V with sufficiently rapid growth

at infinity for the residue-at-infinity argument to be justified. Throughout, we assume V is analytic and

set

A(z) := V ′(z), B(z) := H−2DV ′′(z), P (z) := A(z)2+B(z), p(z) :=
√
P (z). (5.2)

Let zcr ∈ R denote a critical point of the effective potential U (not necessarily a strict critical point of

V ; for small D one has zcr = z0 + O(D) if V ′(z0) = 0 and V ′′(z0) ̸= 0). Let z±T be the two simple

turning points (the simple zeros of P (z)) that bifurcate from zcr for small D; for real-analytic V and

real H,D they satisfy z−T = z+T . We choose a branch cut γ joining z−T to z+T and fix the boundary values

so that on γ

p−(z) = − p+(z), (5.3)

i.e., the square root flips sign across the cut. For one complex bounce, we define the open integral

Iopen :=

∫ z+T

zcr

p(z) dz. (5.4)

We also introduce the cut integral along the upper edge of the branch cut,

Icut :=

∫ z+T

z−T

p+(z) dz, (5.5)

and the dog-bone contour integral,

Idog :=

∮
Γ

p(z) dz, (5.6)

where Γ wraps once counter-clockwise around γ (down one edge, up the other). With these conven-

tions,

Idog = 2 Icut, Iopen − Iopen = Icut, (5.7)

and hence

Im Iopen =
1

2i
Icut =

1

4i
Idog. (5.8)
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The contribution of a single complex bounce to the action is

Re z

Im z

z+T

z−T

zcr

Γ

Γ∞
p+(z)

p−(z) = − p+(z)

Figure 5.2: Dog-bone contour Γ wrapping the branch cut between the complex turning points z±T .
Across the cut the WKB momentum flips sign, p−(z) = −p+(z), so the closed contour integral∮
Γ
p(z) dz equals twice the single-edge cut integral. The dashed circle Γ∞ indicates the blown-up

contour used to evaluate
∮
Γ
p dz via residues (including the residue at infinity).

S1b := 4 Iopen. (5.9)

Using (5.8), its imaginary part is

ImS1b = 4 Im Iopen =
2

i
Icut =

1

i
Idog. (5.10)

To compute Idog we deform Γ away from the cut (optionally out to a large circle |z| = R → ∞)

and use the uniform binomial expansion. For a polynomial V of positive degree, |A(z)| → ∞ while

B(z) = O(1) +O(zdeg V−2) and A(z)2 ≫ B(z). Hence, on |z| = R,

p(z) = A(z)

√
1 +

B(z)

A(z)2
= A(z) +

B(z)

2A(z)
− B(z)2

8A(z)3
+ · · · . (5.11)

Define the meromorphic truncation

pmer(z) := A(z) +
B(z)

2A(z)
= V ′(z) +

H

2

1

V ′(z)
− D

V ′′(z)

V ′(z)
. (5.12)
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Then

Idog =

∮
|z|=R

p(z) dz =

∮
|z|=R

pmer(z) dz +

∮
|z|=R

∑
n≥2

Tn(z) dz︸ ︷︷ ︸
higher-order terms

, (5.13)

where Tn(z) = cnB(z)n/A(z) 2n−1. If deg V = m ≥ 2, then A(z) ∼ zm−1, V ′′(z) ∼ zm−2, and

Tn(z) ∼
zn(m−2)

z(m−1)(2n−1)
= z− [1+m(n−1)] (|z| → ∞). (5.14)

Thus, Tn≥2 have no 1/z term at infinity, so Resz=∞ Tn≥2 = 0. From now on,

Idog =

∮
|z|=R

pmer(z) dz. (5.15)

With A(z) = V ′(z), we have a total derivative so that its Laurent series at infinity has no z−1 term. It

immediately follows that
∮
A(z)dz = 0. For the next term,

Resz=∞
B(z)

2A(z)
= −

∑
zk:A(zk)=0

Resz=zk
B(z)

2A(z)
, (5.16)

where zk denotes the simple poles of 1/V ′(z). At a simple zero zk, A(z) = A′(zk)(z − zk) + O(z −

zk)
2 ≈ V ′′(zk)(z − zk) and B(z) is analytic. Therefore,

Resz=zk
B(z)

2A(z)
=

B(zk)

2A′(zk)
=
H − 2DV ′′(zk)

2V ′′(zk)
. (5.17)

Hence, altogether we get

∮
Γ∞

pmer(z) dz =
H

2

∮
Γ∞

dz

V ′(z)
−D

∮
Γ∞

V ′′(z)

V ′(z)
dz = 2πi

[H
2

∑ 1

V ′′(zk)
−DN

]
. (5.18)

where N is the number (with multiplicity/winding) of zeros of V ′ enclosed by Γ∞.

Cubic check. For V (x) = −1
3
x3 + a2x, one has V ′(z) = −(z2 − a2), V ′′(z) = −2z. On the blown-up
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contour enclosing both zeros zk = ±a,

∑
k

1

V ′′(zk)
=

1

−2a
+

1

+2a
= 0, N = 2, (5.19)

so

Idog = − 4πiD. (5.20)

Using (5.10), this gives

ImS1b =
1

i
Idog = − 4πD, (5.21)

so the OM weight e−S1b/(4D) carries the phase e−i ImS1b/(4D) = eiπ = −1.
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Appendix A

Steepest descent curves as we continue our

parameter
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κ = 0

(a) arg κ = 0.

κ = ιπ /6

(b) arg κ = π/6.

κ = ιπ /3

(c) arg κ = π/3.

κ = ιπ /2

(d) arg κ = π/2.

κ = 
2 ιπ
3

(e) arg κ = 2π/3.

κ = 
5 ιπ
6

(f) arg κ = 5π/6.

κ = ιπ

(g) arg κ = π.

κ = 
7 ιπ
6

(h) arg κ = 7π/6.

κ = 
4 ιπ
3

(i) arg κ = 4π/3.

κ = 
3 ιπ
2

(j) arg κ = 3π/2.

κ = 
5 ιπ
3

(k) arg κ = 5π/3.

κ = 
65 ιπ
33

(l) arg κ = 65π/33.

Figure A.1: One-dimensional steepest descent and steepest ascent curves (Lefschetz thimbles and dual
thimbles) for the finite-dimensional model integral used to introduce the method of steepest descents
in § 1.2.3 (a = κ) and to develop motivation for Picard–Lefschetz theory in § 3.6. Panels 1–12
correspond to the same integrand presented in § 1.2.3.1 under continuation of the complex parameter
through the twelve arguments
arg κ ∈ {0, π/6, π/3, π/2, 2π/3, 5π/6, π, 7π/6, 4π/3, 3π/2, 5π/3, 65π/33} (in the ordering shown).
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Appendix B

Global preliminaries

B.1 Gaussian noise PDF derivation

We briefly derive the continuum Gaussian noise weight used in (2.5). Let [t1, t2] be partitioned into

N equal subintervals of width ∆, so that T := t2 − t1 = N∆ and tk := t1 + k∆ for k = 0, . . . , N .

White noise ξ(t) with covariance ⟨ξ(t) ξ(t′)⟩ = 2D δ(t−t′) is rigorously handled via its time-integrated

increments

ηk :=

∫ tk+1

tk

ξ(t) dt, k = 0, . . . , N − 1. (B.1)

These {ηk} are independent, mean-zero Gaussians with variances

⟨ηkηℓ⟩ = 2D∆ δkℓ. (B.2)

Therefore, their joint density factorises:

PN [{η}] =
N−1∏
k=0

1√
4πD∆

exp

[
− η2k

4D∆

]
= (4πD∆)−N/2 exp

[
− 1

4D∆

N−1∑
k=0

η2k

]
. (B.3)
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To pass to the continuum form, note that ηk =
∫ tk+1

tk
ξ(t) dt ≈ ξ(tk)∆ for small ∆, so

1

∆

N−1∑
k=0

η2k ≈
N−1∑
k=0

ξ(tk)
2∆ −−−→

∆→0

∫ t2

t1

ξ(t)2 dt,

i.e. the discrete quadratic form is a Riemann sum for
∫
ξ2. Hence (B.3) becomes

P [ξ] ≡ ND exp

[
− 1

4D

∫ t2

t1

ξ(t)2 dt

]
, ND = lim

N→∞
(4πD∆)−N/2, (B.4)

which is the continuum Gaussian functional weight stated in (2.5). The prefactorND is the (divergent)

product of one-dimensional Gaussian normalisations; in the main text it is absorbed into the definition

of the free path measure (cf. ND in Sec. 2.72).

Remark B.1.1 (Why use integrated noise increments?). Since white noise is the formal time derivative

of a Wiener process, sampling “point values” ξ(tk) is not well-defined as ordinary random variables.

The integrated increments ηk =
∫ tk+1

tk
ξ dt are bona fide Gaussians with variance 2D∆, which makes

(B.3) rigorous and leads cleanly to the continuum form (B.4).

B.2 Onsager–Machlup Jacobian derivation

We work on a time grid tk = t1 + k∆ for k = 0, 1, . . . , N with t2− t1 = N∆. Define the path samples

xk := x(tk) and the integrated noise increments

ηk :=

∫ tk+1

tk

ξ(t) dt, k = 0, . . . , N − 1, (B.5)

so that ηk ∼ N (0, 2D∆) are independent Gaussians. The λ-discretization of the overdamped Langevin

equation

ẋ = F (x) + ξ(t) (B.6)
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reads

xk+1 − xk = ∆
[
(1− λ)F (xk) + λF (xk+1)

]
+ ηk, k = 0, . . . , N − 1. (B.7)

For λ = 0 and λ = 1
2

this reproduces the Itô and Stratonovich schemes, respectively. Given the fixed

initial data x0, (B.7) defines a one-to-one map

{x1, . . . , xN} ←→ {η0, . . . , ηN−1}, ηk = xk+1 − xk −∆[(1− λ)F (xk) + λF (xk+1)] . (B.8)

The Jacobian matrix J is

Jk,m :=
∂ηk−1

∂xm
, k,m = 1, . . . , N, (B.9)

(i.e. we pair the equation for ηk−1 with the unknown xk). Each ηk−1 depends only on xk−1 and xk, so J

is lower bidiagonal:

∂ηk−1

∂xk
= 1 − λ∆F ′(xk), (B.10)

∂ηk−1

∂xk−1

= −1 − (1− λ)∆F ′(xk−1), (B.11)

∂ηk−1

∂xm
= 0 otherwise. (B.12)

Thus

J =



1− λ∆F ′(x1) 0 0 · · ·

−1− (1− λ)∆F ′(x1) 1− λ∆F ′(x2) 0 · · ·

0 −1− (1− λ)∆F ′(x2) 1− λ∆F ′(x3) · · ·
...

...
... . . .


. (B.13)

Being triangular, its determinant is the product of the diagonal entries:

det J =
N∏
k=1

[ 1− λ∆F ′(xk) ] . (B.14)
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Taking logs and expanding log(1− z) = −z +O(z2),

log det J =
N∑
k=1

log
(
1− λ∆F ′(xk)

)
= −λ∆

N∑
k=1

F ′(xk) + O(∆2). (B.15)

Hence, as ∆→ 0 with N∆ = t2 − t1,

det J −→ exp

(
−λ
∫ t2

t1

F ′(x(t)) dt

)
. (B.16)

Two standard conventions follow immediately:

• Itô (λ = 0): det J ≡ 1.

• Stratonovich (λ = 1
2
): with F = −V ′ (conservative force),

det J = exp

(
1

2

∫ t2

t1

V ′′(x(t)) dt

)
. (B.17)

This is precisely the Onsager–Machlup Jacobian factor that multiplies the Gaussian weight of the noise

in the path integral.

B.3 Interaction action for an instanton–instanton pair

Consider a metastable well at xα, a barrier top at xβ with

V ′′(xβ) = −ωβ, ωβ := |V ′′(xβ)| > 0,

and a stable well at xc (cf. Fig. 2.1). We construct a composite [II] path by gluing an uphill segment xu

(solving ẋ = +V ′(x)) to a downhill segment xd (solving ẋ = −V ′(x)) across a short bridge centered
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at time θ. Near xβ we use

V ′(x) ≃ V ′′(xβ) (x− xβ) = −ωβ (x− xβ),

so for the uphill flow ẋ = +V ′ we have ẋ ≃ −ωβ(x − xβ) (velocity positive immediately to the left

of the barrier), and for the downhill flow ẋ = −V ′ we have ẋ ≃ +ωβ(x − xβ) (velocity positive

immediately to the right).

Fix small δx > 0 and large δθ > 0. Define the three pieces:

(i) Left/uphill tail xi : xi(θ − δθ) = xβ − δx, ẋi(θ − δθ) = +ωβ δx,

(ii) Short bridge xj : xj(θ − δθ) = xβ − δx, xj(θ + δθ) = xβ + δx,

(iii) Right/downhill tail xk : xk(θ + δθ) = xβ + δx, ẋk(θ + δθ) = +ωβ δx.

Here (i) and (iii) are the restrictions of the exact steepest descent solutions xu and xd to the linear

region; (ii) will be the exact Euler–Lagrange solution that interpolates between the two sides.

On the bridge we solve the linearised E–L equation

ẍ = V ′(x)V ′′(x) ≃ ω2
β (x− xβ), t ∈ [θ − δθ, θ + δθ],

with the two-point boundary data above. The unique solution is

xj(t) = xβ + δx
sinh

(
ωβ(t− θ)

)
sinh

(
ωβδθ

) .

For the action density L = ẋ2 + [V ′(x)]2 in the linear region we have

V ′(xj) ≃ −ωβ(xj − xβ), ẋj = ωβδx
cosh

(
ωβ(t− θ)

)
sinh

(
ωβδθ

) .
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A short calculation yields

S[xj]θ+δθθ−δθ =

∫ θ+δθ

θ−δθ

(
ẋ2j + ω2

β(xj − xβ)2
)
dt = 2ωβ (δx)

2 coth
(
ωβδθ

)
. (B.18)

The composite path is xcl = xi ∪ xj ∪ xk, and we compare its action with the reference action of the

pure uphill path xu continued through the barrier region. Writing

S[xcl] = S[xu](−∞,θ−δθ) + S[xj](θ−δθ,θ+δθ) + S[xd](θ+δθ,∞),

and adding and subtracting S[xu](θ−δθ,∞), we get

S[xcl] = S[xu](−∞,∞) +
{
S[xj](θ−δθ,θ+δθ) − S[xu](θ−δθ,∞) + S[xd](θ+δθ,∞)

}
.

The last two terms form a common tail beyond the bridge: both the reference and the glued configu-

ration evolve to the right well along steepest descent flow, so their far right contributions cancel in the

difference.1 Thus the interaction action is localized near the barrier and reads

Sint(δθ, δx) = S[xj]θ+δθθ−δθ − S[xu]
∞
θ−δθ. (B.19)

Along xu we have ẋu = +V ′(xu) ≃ −ωβ(xu − xβ), so ẋ2u = [V ′(xu)]
2 = ω2

β(xu − xβ)
2. Near the

barrier the uphill tail is xu(t)− xβ ≃ − δx e−ωβ(t−(θ−δθ)). Therefore

S[xu]∞θ−δθ =
∫ ∞

θ−δθ

(
ẋ2u + [V ′(xu)]

2
)
dt = 2ω2

β(δx)
2

∫ ∞

0

e−2ωβτ dτ = ωβ (δx)
2. (B.20)

Combining (B.18) and (B.20) in (B.19),

Sint(δθ, δx) = 2ωβ(δx)
2
[
coth(ωβδθ)− 1

]
= 2ωβ(δx)

2 e−ωβδθ

sinh(ωβδθ)
. (B.21)

1Equivalently, one may truncate both paths at θ ± δθ and compare only the local replacement of the uphill tail by the
bridge; the downhill evolution is identical in both and drops out.

210



Using the uphill relation at the bridge center,

ẋu(θ) = ωβ δx e
−ωβδθ,

we obtain for large separation ωβδθ ≫ 1 (so that e−ωβδθ/ sinh(ωβδθ)→ 2e−2ωβδθ):

Sint
δθ→∞−−−−→ 4

ωβ

[
ẋu(θ)

]2
. (B.22)

This is the form used in the main text. It matches the τ → 0 “no correlation” limit of McKane–

Luckock [117] after accounting for our convention that the stochastic action is four times larger (see

Chapter 2).

• The derivation is local: only the linearised barrier region enters Sint. The precise duration 2δθ

drops out of the asymptotics through (B.22).

• The “downhill contributes nothing” statement in the main text means “the downhill tail cancels

in the comparison”: in going from the reference uphill continuation to the glued configuration,

the only net change in action at leading order is the replacement of the uphill tail by the minimal

bridge segment.

B.4 Stationarity, saddle points, and minima in the stochastic path

integral

In the analysis of stochastic path integrals, particularly when studying semiclassical approximations

via steepest descent (or Lefschetz thimble methods), it is crucial to understand the classification of

stationary configurations. This appendix provides a precise mathematical and physical characterisation

of the three canonical classes of stationary points: global minima, local minima, and saddle points, in

the context of variational functionals defined over infinite-dimensional path spaces. These distinctions
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underpin the interpretation of classical solutions and their corresponding fluctuation spectra in both

quantum and stochastic formulations.

B.4.1 Stationarity and the First Variation

Let S[x] denote the action functional. A path xcl(t) is said to be a stationary point of S if it satisfies the

Euler–Lagrange equation:
δS[x]

δx(t)

∣∣∣∣
x=xcl

= 0. (B.23)

This is the condition that the first variation of the action vanishes. Such a path is an extremum of S,

but its nature (minimum, maximum, saddle) is determined by the second variation.

B.4.2 Second Variation and Fluctuation Operator

The second variation defines the quadratic expansion of the action around xcl(t):

S[x] = S[xcl] +
1

2

∫
dt1

∫
dt2 η(t1)M̂(t1, t2)η(t2) +O(η3), (B.24)

where η(t) = x(t) − xcl(t) is the fluctuation and M̂ is the fluctuation operator, formally the Hessian

of S:

M̂[t1, t2] =
δ2S[x]

δx(t1)δx(t2)

∣∣∣∣
x=xcl

. (B.25)

The spectral properties of M̂ determine the nature of xcl(t). In particular, we distinguish three canonical

cases:

B.4.3 Classification of Stationary Points

(i) Global Minimum: A path xcl is a global minimum of S if:
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• It satisfies the Euler–Lagrange equation (stationarity).

• The second variation is strictly positive for all perturbations η(t) ̸= 0 in the allowed function

space: ∫
dt1 dt2 η(t1)M̂(t1, t2) η(t2) > 0 ∀ η ̸= 0. (B.26)

• Moreover, S[xcl] ≤ S[x] for all admissible paths x(t). This ensures global minimality.

(ii) Local Minimum: A path xcl is a local minimum if the above positivity condition holds only for

sufficiently small perturbations:

• The action increases under small deviations:

S[xcl + εη] > S[xcl] for all η, small ε > 0. (B.27)

• The fluctuation operator has non-negative spectrum:

Spec(M̂) ⊆ [0,∞), with zero modes removed or accounted for. (B.28)

Local minima are often metastable states in the path integral framework.

(iii) Saddle Point: A configuration xcl is a saddle point if the second variation is indefinite, i.e., there

exist directions η+ and η− in path space such that:

∫
dt1 dt2 η+(t1)M̂[t1, t2] η+(t2) > 0,

∫
dt1 dt2 η−(t1)M̂[t1, t2] η−(t2) < 0. (B.29)

That is, S increases in some directions and decreases in others. This is precisely the case for the stochas-

tic [RB] solution discussed in the main text: its fluctuation operator possesses a single negative eigen-

value (corresponding to an unstable mode), alongside a zero mode (associated with time-translation

symmetry), and an infinite tower of positive modes.
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Spectral Intuition: The number of negative eigenvalues of M̂ counts the number of unstable direc-

tions. Saddle points with one negative eigenvalue are generic in bounce-type solutions and lead to an

imaginary contribution to the path integral under proper analytic continuation. This is consistent with

their role in tunnelling or escape processes, where they mediate transitions between metastable states.

B.4.4 Path Integral Implications

In the semiclassical evaluation of path integrals, stationary configurations contribute leading-order

terms via the saddle-point approximation. The classification above determines whether such contri-

butions are suppressed, enhanced, or require special contour deformation (as in Lefschetz theory).

In particular:

• Global minima dominate zero-noise path integrals.

• Local minima yield real Gaussian contributions.

• Saddle points yield complex contributions and are essential in capturing non-perturbative effects.

Thus, the detailed structure of the fluctuation spectrum around a classical configuration is not merely

technical: it is central to understanding the structure of perturbative vs. non-perturbative sectors, the

role of negative modes.
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Appendix C

Eigenvalue and eigenfunction analysis for the

quasi-zero mode

This section benefited from conversations with Professor Steve Fitzgerald.

C.1 Analytic estimate of the QZM eigenvalue

We can use the real bounce results and continueD → −D to obtain the quasi-eigenvalue of the complex

bounce. We study the following operator,

M y(t) =
(
− d2

dt2
+ ω2 U(t)

)
y(t) = λ y(t), (C.1)

where U is a double Pöschl–Teller profile with the form

U(t) = 1− 3

2
(S2

+ + S2
−), (C.2)
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where S± = sech(ω(t± t0)/2). Introduce the rescaled variable T = ωt and T0 = ωt0. Then

d2

dt2
= ω2 d2

dT 2
, y′′(t) = ω2 yTT (T ), λ′ =

λ

ω2
. (C.3)

In T -coordinates, the operator is

M′ y =
(
− d2

dT 2
+ U(T )

)
y = λ′ y, (C.4)

with the piecewise potentialM′ =M0 +M1 where

M0 =


− d2

dT 2
+ 1− 3

2
sech2

(T + T0
2

)
, T < 0,

− d2

dT 2
+ 1− 3

2
sech2

(T − T0
2

)
, T > 0,

(C.5)

and

M1 =


−3

2
sech2

(T + T0
2

)
, T < 0,

−3

2
sech2

(T − T0
2

)
, T > 0.

(C.6)

This is continuous at T = 0. Define the (continuous) piecewise function,

y0(T ) =


sech2

(T + T0
2

)
, T < 0,

sech2
(T − T0

2

)
, T > 0.

(C.7)

which is the translation zero mode of each isolated Pöschl–Teller well. A direct check showsM0y0 = 0

away from T = 0 for the decoupled operator M0. The leading (small) eigenvalue of M′ is well

captured by the Rayleigh quotient with the trial state y0:

λ′ =

∫ ∞

−∞
y0M1y0 dT∫ ∞

−∞
y20 dT

= −3

2

I1
I0
, (C.8)
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where

I0 :=

∫ ∞

−∞
y20 dT, I1 := 2

∫ ∞

0

sech4
(T − T0

2

)
sech2

(T + T0
2

)
dT. (C.9)

By evenness and change of variables τ = T−T0
2

,

I0 = 2

∫ ∞

0

sech4
(T − T0

2

)
dT = 4

∫ ∞

−T0/2
sech4 τ dτ.

Using
∫
sech4 τ dτ = tanh τ − 1

3
tanh3 τ and setting µ := tanh

(
T0
2

)
∈ (0, 1), we obtain

I0 = 4
[
tanh τ − 1

3
tanh3 τ

]∞
−T0/2

= 4
(2
3
+ µ− 1

3
µ3
)
. (C.10)

A slightly more involved calculation for I1 gives

I1 =
16 e−2T0

(1 + µ)2

(
1

3
+ µ+

1

3
µ3

)
, e−T0 =

1− µ
1 + µ

. (C.11)

Using the large separation relation for T0 (equivalently µ) andD obtained from the real bounce solution

in Chapter 3, the factor exp(−2T0) reduces to an O(D) contribution. Combining (C.8), (C.10) and

(C.11) gives

λ = ω2λ′ ≈ −12D

a
. (C.12)

Taking D → −D gives the result.

217



Bibliography

[1] Gert Aarts, Lorenzo Bongiovanni, Erhard Seiler, and Dénes Sexty. Some remarks on Lefschetz
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