Neural field multi-view shape-from-polarisation

Rapee Wanaset

PhD
University of York
Computer Science

June 2025



Abstract

In this thesis, we provide three novel contributions towards 3D reconstruc-
tion by leveraging polarimetric information. First, we modify NeRF to work
with the input obtained from a polarisation camera. In particular, we extend
NeRF to cover 12 channels of the camera sensor. Unlike previous works, this
is the first time that the model is fitted directly to raw polarisation sensor
data, bypassing the need for demosaicing. Since the polarisation state of
reflected light encodes the surface normal used for reconstructing 3D geom-
etry, our method provides richer information about surface orientation than
RawNeRF which uses conventional raw RGB images. This form of input is
challenging for the model training due to input sparsity. Nonetheless, we
show that this setup works reasonably well with a synthetic dataset, while
requiring additional constraints for real-world capture. Secondly, we link sur-
face geometry with polarised radiance through a mixed polarisation model
and then inject the physical insights into the training pipeline - significantly
improving the geometry prediction of the object in the scene. Rather than
guessing the relationship between captured data and surface orientation (as
in a 12-channel black box model), the physics-based model could follow the
physical rule given by the mixed polarisation model. Nevertheless, despite its
physical understanding, this model neglects practical limitations. Therefore,
our last contribution is to investigate the reasons why the model did not be-
have as expected and tackle the issues related to noise and saturation, which
greatly improve the quality of 3D reconstruction - achieving state-of-the-art
performance on the PANDORA benchmark.
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Introduction

The beginning is the most

important part of the work.

Plato

For the last decade, we have seen a massive success in image under-
standing (e.g. 2D segmentation, 2D bounding box and 2D object detection)
primarily due to the availability of large-scale datasets in addition to stor-
age space and computational power becoming more affordable to general re-
search institutions (rather than only well-funded research labs). As the field
becomes mature, models have achieved an impressive performance, for exam-
ple Florence [91] yielding over 99% top-5 accuracy on the ImageNet bench-
mark. Nevertheless, real-world applications, such as autonomous vehicles and
robotics, have struggled to meaningfully perform in daily life (self-driving car
is an ongoing experiment in a few cities in the US and China). This implies
that only image understanding is not sufficient to inform machines about the
physical world and 3D understanding could give an additional cue to unlock

these sophisticated tasks.

There are various techniques that provide geometric information of the
scene such as shape-from-shading, multi-view stereo (MVS) and photometric
stereo. In the same way that artists exploit different colour tone to cre-
ate an illusion of depth in a 2D image, shape-from-shading primarily deals
with the recovery of shape from a gradual variation in an image. Without
explicit assumptions about environment lighting and surface materials, shad-
ing cues are ambiguous and could be interpreted in various ways. Multi-view

stereo leverages consistency across multiple viewpoints. The core idea be-
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hind this technique is to extract image features, match the features from a
scene overlap within an image pair and then estimate depth information by
triangulation. While being robust to an extent, MVS could be fooled when
dealing with shiny objects whose specularities vary across different views.
Among methods discussed in this paragraph, photometric stereo is the only
one relying on active lighting conditions. The key is to maintain camera
position while changing the lighting direction. By analysing the variation in
reflectance, the surface orientation could be obtained. Because lighting needs
to be varied, photometric stereo usually has to be done in studio/laboratory

and does not work with moving objects.

In contrast to the above techniques, shape from polarisation (SfP) is a
powerful technique that allows us to extract 3D information from the way
light interacts with the surface. When unpolarised light reflects from a sur-
face it becomes partially polarised. This applies to both specular reflection
[66] and diffuse reflection [2] that arises from transmission out of the surface
after subsurface scattering. The degree and angle of polarisation are related
to the local surface normal direction and view vector and, hence, their mea-

surement provides constraints for the reconstruction of surface geometry.

However, these methods have seen limited adoption, partly due to the
challenges of capturing polarimetric images. Recent advancements, such as
commodity division-of-focal-plane (DoFP) sensors that capture polarisation
images in a single shot, have mitigated this issue. Nonetheless, polarisa-
tion alone is a weak shape cue, providing strong signals only at occluding
boundaries for diffuse regions or within sparse specularities.

Multi-view polarisation measurements potentially overcome this restric-
tion. As few as two multi-view measurements of the same point uniquely
determine the surface normal direction from polarisation constraints alone
(see Chapter [4f). The challenge is to choose a representation that is amenable
to optimisation while integrating information from multiple views. The re-
cent rise of neural fields [86] and their use for implicit surface representation
[89, [92], 47, B5] provides a compact and adaptive parameterisation that can
be rendered differentiably, e.g. NeRF [55] and NeuS [84]. It is worth noting
that while requiring input from at least two views (in the same way as MVS

does), our method does not perform any feature extraction from images and
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the information across viewpoints is used to supervise the training process
- hence being classified as a shape-from-polarisation method rather than an
MVS one.

Recent works have begun to explore the factorisation, i.e. inverse ren-
dering, of neurally-modelled radiance into underlying physical quantities, in-
cluding illumination, geometry and material properties via the bidirectional
reflectance distribution function (BRDF). Capturing and modelling polarised
radiance offers the potential for higher accuracy, requirement for fewer input
views and the resolution of ambiguities that arise when decomposing RGB
radiance alone. This provides us a motivation to work with polarised radi-
ance (see Chapter . A recent line of work integrates polarisation into neural
radiance models [19, 43]. However, they require the full Stokes vector at each
pixel and perform a full inverse rendering, entailing estimation of the inci-
dent illumination and modelling of a polarised BRDF. Instead, we directly
exploit the shape-from-polarisation cue in a way that is independent of the
illumination environment and make very limited assumptions about material
reflectance models. Moreover, we fit our model directly to raw polarisation
sensor data, bypassing the need for demosaicing, which is more complex for
a Colour Polarisation Filter Array (CPFA) compared to conventional RGB
demosaicing. In contrast to a classic Bayer Filter Array which has 3 colour
channels (Red, Green and Blue) inside the 2 x 2 grid, the CPFA has 12
channels for the combination of 3 colours and 4 polariser orientations inside

a larger grid of size 4 x 4.

As a result of the unique data distribution captured directly from camera
sensor, we propose a loss function that is adapted specifically to work with

raw images (see Chapter [5)).
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1.1 Research objectives

1.1.1 How could we effectively utilise polarimetric cues
inside coordinate-based neural networks in order

to extract scene geometry?

This is the main research topic we have explored throughout this thesis. We
naively begin with using polarisation images as input of a black box pipeline
(Chapter[3), then explicitly establish how polarised radiance is linked to local
surface normal after realising that black box model alone could not perform
well (Chapter [4)); and lastly, we modify color loss to match a wide range of
HDR data, add a theta loss to encourage networks to produce meaningful
results and introduce a smoothness loss to reduce the effect of noises on the

object geometry (Chapter [5)).

1.1.2 Ambiguities naturally arise when a shape-from-
polarisation method is applied; how could we
disambiguate the ambiguities without relying on

additional cues i.e. shape-from-X?

When extracting geometry from polarimetric cues, two types of ambiguity
arise: azimuthal ambiguity and azimuthal model mismatch. The azimuthal
ambiguity is caused by two azimuth angles being indistinguishable, leading to
either convex or concave geometry. This is a classic problem in shape-from-
polarisation, which usually requires extra information (e.g. shading cues and
space carving) to disambiguate. Under an assumption of Lambertian model
for diffuse reflection, our work could resolve the ambiguity without relying
on additional information from other techniques, by utilising polarimetric
cues from at least 2 views. The second type of ambiguity is azimuthal model
mismatch: different polarisation model giving different azimuth angle. After
carefully investigating natural phenomenon, we realise a duality of diffuse
and specular reflections, and develop a mixed polarisation model to avoid

the model mismatch.
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1.1.3 A benefit of multi-view methods is having access
to information from different views; Usually, this
provides observations which exceed the degrees
of freedom; how could we utilise the exceeding

observations for a result fidelity?

Not only does the multi-view information provide sufficient constraints for a
unique local surface normal (as briefly mentioned in section [1.1.2), making
the problem well-posed, but the information from multiple viewpoints also
becomes redundant as the same 3D point being observed many times. The
latter notion inspires us to investigate ways to reduce degrees of freedom
in the experimental system. We have identified raw image input as the
way to do so without sacrificing other benefits offered by the multi-view
setup. Intuitively, a 3D point would be observed in red, green, and blue
channels from different angles. This paired with an interpolation of neural
networks, gives us the ability to predict colors in unobserved channels or even
unobserved viewpoints. The ablation study shown in Figure [5.16| confirms

the validity of this technique.

1.1.4 Under a multi-view setting, how could we effec-
tively decompose a mixed radiance into diffuse

and specular components?

To distinguish between diffuse and specular components, we set an extra
assumption that the diffuse reflection follows Lambertian reflectance. That
being said, we do not restrict ourselves to a matte surface. Instead, our
model composes of diffuse and specular components, thus being capable of
handling a variety of materials.

The reason for Lambertian assumption is to remove viewing dependency
from diffuse reflection. As a result of this assumption, we know that diffuse
radiance is a function of position only, whereas specular radiance is a function
of both position and viewing direction. Following this rationale, we set input

to diffuse and specular networks accordingly and the radiance decomposition
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can be accomplished (Chapter [4]).

1.1.5 Generally, HDR data covers a wider range of
data when compared with LDR data, leading to
a different data distribution; even though neural
networks are a universal approximator, in prac-
tice, an appropriate gradient descent is crucial
for the networks to successfully learn; what is an
appropriate loss function which suits HDR data

distribution?

In the realm of neural network training, it is fairly common to employ L1
or L2 as a training loss. However, doing so for HDR data, would make the
networks biased towards bright image areas. Logarithmic loss is found to
be more robust when training network with HDR data, as having a good
balance of steep gradient in low-value region (dim pixels) and shallow gradi-
ent in high-value region (bright pixels) - leading to a stable training without

gradient exploding.

1.1.6 3D reconstruction infers geometry from 2D im-
ages which consist of noise, unless being synthe-
sised; how could we reduce the noise in geometry,

inherited from the image noise?

Noise is an undesired property of collected data. In the real world, noise
always exists, often beyond the control of experimentators. Ideally, in the
case that noise is controlable, it is a good practice that the experiment is
set up in such a way that has a minimal noise. In the context of computer
vision, for instance, the images could be collected in a lab to reduce a lighting
variation.

Nonetheless, there is always a capturing noise, which affects the quality

of results. In our work, the noises from captured images get baked into
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our 3D reconstruction. As a solution, we introduce a smoothness loss into
our training, which encourages piecewise-coherent geometry. It is noted that
piecewise coherence could be viewed as another assumption in our experiment
but the smoothness loss has worked so far with all datasets. In an extreme
case where we have complicated geometry, an edge-aware smoother could be

an option to eliminate the inherited noises.

1.2 Outline

Other than Chapter |2l which provides an overall picture of the related fields,
this thesis is designed to be read in chronological order where the earlier
chapter is the foundation of the next one. In this thesis, we cover materials

as follow:

e Chapter [28 We show works in related fields including shape from
polarisation, diffuse-specular separation, and neural inverse rendering.
Since our work could be easily extended to performing in a controlled
lighting, an overview of light stage methods is also covered. We close
the chapter by identifying research gap within the fields and reviewing

available datasets.

e Chapter Since NeRF [55] is the foundation of our work, we ex-
plore related concepts such as volume rendering and Signed Distance
Function (SDF). Then we toss a hypothetical question about Shape-
from-Polarisation in the context of coordinate-based scene represen-
tation i.e. NeRF on polarised images. According to this, we extend
NeRF to fit 12 channels offered by CPFA camera sensor. The model
demonstrates a promise that the concept is working to some extent,
and in some image regions, our model is being able to produce finer
details than PANDORA which employs full inverse rendering - hence

providing an inspiration for the next chapter.

e Chapter [4: The result in Chapter [3]is reasonably good when consid-
ering synthetic dataset which is in the ideal context, i.e. perfect focus

without capturing noise, whereas the model trained on real datasets
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gives a meaningful result but still missing some object parts. These
results hint us that the model need a better constraint rather than
completely guessing as done in Chapter [3] Therefore, we add physical
insights from polarisation models. In particular, we develop a mixed
polarisation model showing the link between surface normal direction
and camera measurement. New results show an improvement over the
ones obtained from the black box model i.e. the model used in Chap-
ter[3] Nonetheless, a small portion of results show undesirable artifacts
especially in the real-world scenes. We suspect that the artifacts could
be baked into the model due to an imperfect capture which usually

occurs in real-world scenarios.

Chapter |5: To conclude this trilogy, we address training practicalities
from image capturing to noise handling. We begin with showing two
edge cases of captured image, one being too dim and one being satu-
rated, before proposing a new training loss that works well with HDR
images used to train our model. Then we carefully investigate how
each point in space contributes to final appearance in the image and
impose a condition which restricts non-physical points to contribute in
volume rendering. Finally, we introduce a smoothing prior to tackle
various sources of noise. We observe a great improvement on the re-
sults, and as a result, our model achieves state-of-the-art performance

on the PANDORA benchmark.

Chapter [6f We wrap up the work with a conclusion. During the
process of producing this set of works, we have encountered limitations,
seen concurrently emerging works which are promising, and different
applications to what we originally intended to work for. We, therefore,
make a few suggestions for future researchers who are interested in this

line of works.

A paper with content in Chapters 4| and [5| is accepted to 36th Euro-

graphics Symposium on Rendering (EGSR 2025) under title: Neural field

multi-view shape-from-polarisation.



21

Related work

If T have seen further, it is by
standing on the shoulders of

giants.

Sir Isaac Newton

This chapter will briefly show the prior works that have been done in the
field. Our aim is to cover a wider picture of the research theme. The detailed

discussion on how we develop our methodology can be found in the chapters

B A and ).

2.1 Shape from polarisation

In 1828, Augustin-Jean Fresnel derived the formulae that relates reflection
from and transmission into a surface to the polarisation state of the incident
light. This provides the quantitative model of polarisation and can be used
to relate the local surface normal orientation and the polarisation state of
reflected light.

The Fresnel equations describe the link between surface normal orienta-
tion and polarisation properties of light reflected off a surface. Such link is
exploited by SfP techniques, aimed at estimating surface normal from po-
larimetric measurements. While multi-view stereo typically does not work
well with smooth, featureless and glossy surfaces, polarisation can be used
on a wide range of materials, such as metals [60], dielectrics [2, 27], dark
and shiny surfaces [58, K9], as well as transparent ones [57]. Furthermore,

polarisation cameras are able to record the polarisation state in a single shot,
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thus providing a dense cue, only limited by camera resolution, and enabling
surface orientation estimation at each pixel.

Many polarisation-based methods either deal with specular or diffuse ma-
terials, due to the different reflection phenomena. Atkinson and Hancock [2]
assumed diffuse reflectance to estimate the depth map of an object. Miyazaki
et al. [56] proposed a framework [78] to separate reflection components, from
which the object’s shape can be inferred. Morel et al. [60] developed a SfP
method aimed at metals, using a specular polarisation model.

However, most real-world objects exhibit a mixture of both diffuse and
specular polarisation, causing model mismatch [77]. Smith et al. [74] relaxed
the classic assumption and classify each pixel as diffuse dominant or specular
dominant. Taamazyan et al. [77] used both viewpoint and polarisation infor-
mation to recover shape of an object, relying on a mixed polarisation model.
Polarisation data from at least 2 viewpoints constrains surface normal es-
timation, posed as a non-linear least square problem. Cui et al. [14] used
polarimetric multi-view stereo to handle a variety of objects with mixed po-
larisation reflection, using iso-depth contours to propagate depth from sparse
points.

An additional challenge for SfP methods is the azimuthal ambiguity,
i.e. two azimuthal angles shifted by 7 radians cannot be distinguished from
polarisation information alone. Miyazaki et al. [59] used space carving to
estimate the rough structure of an object, before integrating priors to the
SfP pipeline. Similarly, Zhu and Smith [97] used multi-view information and
a coarse depth map obtained from stereo cues as a guide surface for disam-
biguation. Kadambi et al. [30] combined a single polarisation image with
the depth map obtained from an RGBD camera, the latter used to disam-
biguate normal direction. Proposing PMVIR, Zhao et al. [94, 05] address
the multi-view SfP problem using a mesh-based representation and do not
fully resolve the ambiguity, relying instead on the most plausible azimuth
angle. Moreover, being a refinement method, PMVIR requires a reasonable
initial shape rather than estimating shape directly from polarimetric cues as
generally done in SfP.

By establishing consistency of tangent space among multiple viewpoints,

MVAS [II] manages to reconstruct textureless 3D objects which have been
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challenging for conventional stereo methods. Leveraging a circularly po-
larised light, MVAS provides a number of benefits over traditional multi-view
photometric stereo (MVPS). First, MVAS works with a wider range of ma-
terials i.e. not specific to particular reflectance models such as Lambertian
[12] or a microfacet model [8§]. Second, MVAS does not need an active cap-
ture environment which is a critical requirement for MVPS. In a way, MVAS
could be treated as a circular-based SfP integrated with Tangent Space Con-
sistency. PolarPMS [96] exploits photometric and polarimetric consistencies.
While being able to reconstruct a 3D object up to pixel-level resolution, in
contrast to our methods (see Chapters , , which employs SDF to implic-
itly infer geometry, PolarPMS iteratively generates several pairs of depth and
normal hypotheses and picks the one that minimises inconsistency between
views.

Ba et al. [3] and Lei et al. [42] tackle the monocular SfP problem,
recovering only a single normal map from one view. Both methods train
networks using data from many scenes, learning general priors that generalise
to unseen novel input. While requiring only a single view for each scene, the
networks is a result of averaging multiple views to generate geometric priors
and thus could not give the same level of accuracy as the methods that

dedicate to a single scene (e.g. NeuS[84]).

2.2 Diffuse-specular separation

Reflected radiance can be accurately modelled as a combination of specular
and diffuse reflections. Specular reflection occurs when light is reflected off a
smooth surface, whereas diffuse reflection could be due to either sub-surface
scattering or reflection from a rough surface. Various methods in computer
vision and graphics are simplified under the assumption that reflection from
the object is either solely diffuse or solely specular [2, 56, 60]. For this
reason, many approaches were developed to separate diffuse and specular
components of a surface reflection.

While some methods rely on pixel intensity [72, 51} [76] to separate re-
flectance components, polarisation-based reflectance separation has been widely

exploited. Riviere et al. [68] proposed a passive method for uncontrolled
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environments, that estimates the reflectance of a planar surface using po-
larisation measurements from 3 views, one along the normal and two from
viewpoints near the Brewster angle. Such measurements are used to fit a
sinusoid. Nogué et al. [64] proposed planar surface reflectometry using a
near-field display, which requires 3 linear polarisation measurements under a
fixed display illumination.

Several recent techniques employ neural networks for radiance separation.
Inspired by real-time graphics, Boss et al. [9] presented a pre-integrated
lighting network that converts illumination integration process into a query
network, the latter resulting in efficient rendering and radiance decomposi-
tion. PhySG [92] tackles radiance separation by using Spherical Gaussians
and data-driven embedding to model reflectance and lighting respectively.
Dave et al. [I8] proposed a 2-step method to decompose specular and diffuse
reflectances from a single polarimetric image. The initial separation is done
by analysing the relationship among polarisation cues and reflected radiance,

then refined by the network trained on synthetic scenes.

2.3 Neural inverse rendering

Inverse rendering aims at estimating geometry, material properties and light-
ing from images. The problem is inherently ill-posed, due to the large space
of plausible solutions that can explain acquired images. Recently, neural ap-
proaches have grasped the attention of vision and graphics communities [80].
NeRF [55] takes in input a set of photographs, or even raw images [52], to
synthesise novel views, by encoding the volume density and colour of a scene
within the weights of a coordinate-based Multi-Layer Perceptron (MLP). The
quality of rendered results demonstrates the ability of the network to learn
material properties, occlusions and specularities. Neural representations have
been successfully exploited for relighting [7, 093] 8], shape estimation [8], [84],
material editing [93], [8, B8], and object decomposition [87,[38]. Han et al. [29]
focus on polarimetric cues, splitting them into geometric and photometric
cues derived from Stokes vectors. Cao et al. [10] address 3D reconstruction
in textureless areas, deriving depth priors from neural graphics primitives and

using a graph-based energy function to resolve and scale normal maps into
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depth. While most of the works assume perfect camera pose, BARF [40]
applies coarse-to-fine camera registration making reasonable training from
inaccurate camera poses.

Explicit representations, such as voxels [85, [32], point clouds [23] and
meshes [83] B3], can be used to describe the 3D structure. In recent years,
implicit representations have gained increasing attention for their differen-
tiability and ability to achieve high fidelity with similar network size. Signed
Distance Function (SDF) [84], 92] could be used to represent object surfaces.

PANDORA [I9] incorporates polarisation properties into a neural in-
verse rendering pipeline. The approach uses multi-view polarisation images,
COLMAP [70], [69] camera poses, and binary masks. However, PANDORA
performs full inverse rendering, modelling the specular BRDF and incident
illumination environment, passing this through a polarised BRDF model and
rendering Stokes vectors that are compared to those recorded by the camera.
This requires first demosaicing the raw images to provide full Stokes vectors
at every pixel.

GNeRP [44] uses a Gaussian representation for surface normals, with the
mean indicating overall orientation and covariance capturing high-frequency
variation. It employs DoLP (Degree of Linear Polarisation) reweighting to
balance higher DoLP in specular regions. The method uses implicit neural
BRDF which can handle high-frequency details. NeRSP [29] splits polari-
metric cues into geometric and photometric cues. A camera measurement
is demosaiced and processed to obtain the Stokes vector (used as photomet-
ric cues), from which the geometric cues are also derived. Consequently,
both cues in NeRSP are not fully independent, making their proposed losses
redundant for constraining scene geometry.

While many works assume single-bounce illumination, polarised rays con-
tain rich information (e.g. as modeled by [37]). NelISF [43] relaxes this as-
sumption, using coordinate-based MLPs to capture the Stokes field of the
second-last bounce. Diffuse and specular reflections are modelled separately:
diffuse Mueller matrices depend on surface normals, while specular ones de-
pend on microfacet normals.

NPMVS [10] tackles 3D reconstruction in textureless areas. Depth priors

are derived from neural graphics primitives [62] using only photometric cues.
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An energy function in a graph-based model [97] is minimised to resolve the
normal map, which is then converted to a depth map and scaled to fit the

scene.

2.4 Lightstage-based capture

In general, lightstage-based methods use spherical illumination patterns to
perform a version of photometric stereo. Many light-stage appearance-capture
pipelines aim to recover not only geometry but also spatially varying material
parameters (see [20] for a survey). For example, Ma et al. [49] introduced the
spherical gradient illumination patterns while Lattas et al. [40] use spherical
binary patterns. This provides a per-pixel estimate of the surface normal and
material properties including diffuse albedo and specular intensity. This cue
can be integrated across views using a multiview stereo type approach [25].
Lattas et al. [41] use less-constrained, at desk-based illumination constructed
from a panel of LCDs.

Some of these methods use properties of polarisation for the purposes of
separating diffuse and specular reflection. This is based on a simplistic model
in which specular reflection is assumed to perfectly preserve the plane of lin-
ear polarisation while diffuse reflection completely depolarises the reflected
light. In fact, diffuse reflection caused by subsurface scattering (as in hu-
man skin) partially polarises the light that is transmitted out of the surface
(regardless of whether the incident light was polarised or not) and specular
reflection similarly partially polarises unpolarised incident light when it is
reflected. It is this shape-from-polarisation cue that our method exploits,
negating the need for varying illumination patterns.

In addition, the diffuse/specular separation technique used by [49] re-
quires each light source in the lightstage to be polarised with a particular
plane of polarisation. The orientation of the polarisation filters can only be
tuned for a single viewpoint. This means that such a design cannot be used
to provide multiview information. This reduces coverage of the face but also
means that geometric, multiview shape cues cannot be combined with the
photometric cues. [25] proposed an alternative in which polariser orienta-

tions on the lights were arranged such that an approximate separation was
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possible from any viewpoint on the equator of the dome. This allows the
use of multiview information but at the cost of losing exact diffuse/specular

separation.

2.5 Research gap

So far, we have seen an overall picture of what has been done before. This

section will justify why our research direction is worth pursuing.

e Duality of diffuse and specular reflectances. At the time we
started shaping our research direction, most of the SfP works assumed
either diffuse or specular reflection which, we realised, is not how real-
world objects behave. With that being said, a few exceptions did exist.
For instance, Smith et al. [74] and Cui et al. [14] allow both types
of reflections but have to classify which one is dominant within the
particular pixel, and Taamazyan et al. [77] approximate the degree of
polarisation to obtain the expression for diffuse radiance which co-exists
with specular radiance. These methods rely either on an approximation
or dominant reflection labelling, whose accuracy is sacrificed. When
properly seeing the behavior of light, the reflection comes from both
diffuse and specular phenomena. Hence, to achieve a more accurate
3D reconstruction, we need a model where both types of reflections

co-exist.

e Coordinate-based scene representation with polarimetric cues.
Even though NeRF is designed to synthesise a novel view, NeRF is
also capable of 3D reconstruction. However, none of the follow-up
works tried to incorporate polarimetric cues into the pipeline - not un-
til recently. This provides an inspiration for us to include polarisation
information in the framework and Chapter |3|serves as our first attempt

to do so.

e Less processed input assumes less about inferred geometry -
thus potentially higher accuracy. Most SfP techniques work with
Stokes vectors, if not DoLP and AoLP (Angle of Linear Polarisation).



28

Related work

This requires a full demosaicing which is either done inside the camera
software or manually calculated under an assumption. Bilinear inter-
polation is a common method for demosaicing, which assumes a linear
transition between pixels. This effect would be inherited to the ge-
ometry, smoothing high-frequency details. Therefore, directly working
with what the camera actually captured, i.e. raw image, could avoid
this pitfall. RawNeRF [52] is a good example that deals with raw RGB
images (instead of demosaiced images). Since the polarisation filter ar-
ray is 4-times larger than a conventional color filter array, the benefit of
working directly with raw images for SfP methods could be significantly
higher.

High-quality 3D geometry from passive capture in real time.
Since inverse rendering is generally an ill-posed problem with various
unknowns (e.g. object geometry, material properties and lighting en-
vironment), unless imposing a strong assumption about the scene or
capturing the object with special technique, the estimated geometry is
usually in poor conditions - providing an unmeaningful result, at worst,
when a key assumption is broken or being full of artifacts due to unre-
alistic assumptions. For example, with light stage methods [20], 49| 24]
which usually require many lighting patterns for an object i.e. special
capture, the environmental lighting becomes solidly defined, material
properties could be analysed from different incident lighting and thus
a high-quality geometry could be estimated. However, as requiring dif-
ferent lighting patterns, these methods fail to capture the subject of
interest in real time. There would be no problem if the subject was
a static object, but unfortunately, this group of methods often has
a movable human as the subject of interest. Polarisation is a good
tool to distinguish different lighting states thus having a potential to
capture a moving scene/object within a single shot. Therefore, real-
time-possible polarimetric capture in the context of 3D reconstruction
is worth exploring to ease human capturing process (particularly in film

production).
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2.6 Polarimetric dataset review

In this section, we provide an overview of available datasets. Since our work
solely relies on polarisation images, i.e. our method could not perform on
traditional color images, we will exclude RGB datasets in the following dis-

cussion.

Publicly available polarisation image datasets have seen a limited pres-
ence due to 3 main reasons. An obvious one is that polarisation images have
no direct meaning to general public nevertheless being applied in end-user
applications such as 3D glasses in cinemas and polaroid eyewear. Therefore,
researchers could not easily bootstrap polarisation work in the same way as
traditional vision research employing RGB images on internet. Secondly, po-
larisation is only a small sub-category in a larger research theme. Geometry
extraction, for example, could be done by various techniques such as shape
from shading, multi-view stereo, photometric stereo, shape from polarisa-
tion or even LiDAR sensing technology. This effectively reduces the need
for polarisation in research landscape, thus lowering the number of available
datasets. Requiring special equipment is another reason why we have seen a
limited adoption in both academic and industry. Without polarisation cam-
era, to obtain enough information to fit a sinusoidal curve, a scene has to be
captured at least 3 times by applying polariser on top of a traditional camera,
thus relatively increasing a capture time when compared to non-polarisation
methods.

Beyond the availability of datasets, it is noted that different datasets are
collected to fit different research methodologies. Therefore, varied specifica-
tions are observed. There is a group of methods [3], 30}, [42] which leverage
a single view - restricting multi-view techniques like ours to exploit their
collected data. Although datasets provided by in-the-wild methods [42] are
rich in scene variety, some datasets [30] require a specific setup in capturing
process while some [3] provide a structured variety aiming at a certain num-
ber of object orientations and lighting conditions in the scene. RMVP3D
is the first real-world multi-view polarised image dataset with ground-truth
shape, nonetheless providing limited viewpoints, only suiting for sparse-view
methods [29]. NelISF [43] is a multi-view method which makes their dataset
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publicly available. However, due to a security measure, the access right seems
to be strictly given. Because of similar assumptions and methodology, PAN-
DORA [19] is the dataset we use widely in this thesis, giving a good mix of
object shapes and materials.

The PANDORA dataset consists of 2 sub-categories: rendered polarimet-
ric dataset and real polarimetric dataset. Bust and globe datasets, belonged
to rendered datasets, are generated using Mitsuba 2 [63] by applying pPBRDF
[4] on both objects and then rendering 45 views each under a realistic light-
ing environment. While the globe represents a simple geometry of a sphere,
the bust is full of facial features inheriting a complex structure of a human
face. Due to being rendered, we have an access to ground-truth color and
geometry, and are therefore being able to conduct quantitative evaluation as
reported in Table [3.1] and On the other hand, vase, owl and gnome
datasets are real datasets. Each real dataset, composing of 35 views hori-
zontally rotated around the object, is captured under unstructured lighting
conditions e.g. office hall. The real datasets well represent the real-world
complexity composing of different materials such as ceramics, glass, resin
and plastic. Even though both real and rendered datasets do not cover every
possible angle of the object, there is an intersecting area between each frame,

satisfying our requirements discussed in Section [£.2.3
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Every brilliant experiment, like
every great work of art, starts

with an act of imagination.

Jonah Lehrer

In 2020, just a year before I started my PhD, a scene-representation
paper came out and quickly became a classic recipe for thousands of follow-
up works. The quality of reproduced scene, competitive metrics and the
scene versatility - how could someone in vision/graphics ignore this piece
of work? Neural Radiance Fields or NeRF [55] represents a scene using 5D
coordinates - spatial location (x, y, z) and viewing direction (6, ¢) - achieving
state-of-the-art results at that time.

This chapter aims to reconstruct an object in the scene. We will start from
NeRF, gradually improve different aspects of the pipeline, toss a hypothetical

question and then attempt to answer it.

3.1 What is NeRF, really?

Since NeRF will be thoroughly referred to in this chapter and be the foun-
dation in the following chapters, we will begin with explaining what NeRF
is to refresh its concept in readers’ mind.

NeRF synthesises realistic renderings of scenes by encoding volumetric
density o and colour c,¢, of a scene within the weights of a coordinate-based
multi-layer perceptron (MLP). In particular, the MLP network Fg : (x,d) —

(Crgh, o) maps 3D location x = (x,y, z) and 2D viewing direction (6, ¢) which
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is expressed in the form of 3D Cartesian unit vector d, to its corresponding
volume density and direction emitted colour. NeRF achieves multiview con-
sistency by restricting the network to predict the volume density as a function
of only location o(x) while allowing the predicted colour to be a function of
both location and viewing direction cgp(x,d).

To composite these values into an image, NeRF applies volume rendering
[31] to the colour at each point on the ray. The resulting colour C(r) of

camera ray r(t) = o + td with near and far bounds ¢, and ¢; is:

R ty t
C(r) = / T(#)0 (0(t) e (r(t), d)dt, where T(t) = exp(— / o (x(5))ds)).
tn tn
(3.1)
The above integral in Equation [3.1| could be approximated as the sum of

stratified samples:

N i1
Cr) = ZTiai(crgb)i, where T; = exp(— Zoj(Sj) (3.2)
i=1 j=1

and volume density gets reduced to alpha compositing with alpha values
a; = 1 — exp(—0;0;). The parameter § represents the quantised distance
between adjacent samples.

Nonetheless, volume rendering alone could not yield a clear image with
high-frequency details as the deep networks are biased towards learning low-

frequency function [65]. NeRF employs positional encoding:

v(p) = (sin (2°7p), cos (2°7p), ..., sin (2L 1 p), cos (21 7p)), (3.3)

where L is an arbitrary integer, being respectively chosen to be 10 and 4 for
3D coordinate x and viewing direction d in NeRF.

During optimisation, the loss is calculated as the total squared error be-
tween rendered pixel colour C' from the sampled ray and true pixel colour C'

in the training images:

L=7 (Cr)-Cr)), (3.4)
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where R is the set of rays in each batch.

‘How does it perform?’, you may wonder. The Figure [3.1] shows the
comparison between NeRF and prior methods. NeRF manages to produce
reasonably high quality scenes. The next question is, once we get a plausible
scene reproduction, do we automatically get the geometry of the object inside

the scene as a by-product? The short answer is ‘NO’.

3.2 Modification for surface reconstruction

As NeRF can reproduce the whole scene including the object we want, why
cannot we directly extract object geometry out of the reproduction? NeRF
only aims to synthesize novel views. While being able to reproduce the ob-
ject geometry, NeRF inherits a geometric error during the volume rendering
process (Equation [3.1)).

On a different note, there is another line of works which are specifically
designed to reconstruct 3D surfaces. Implicit Differentiable Renderer or IDR
[89], for example, represents a surface as the intersection points between a
ray and the surface. Due to inefficient back propagation from only one single
point along the ray, the method struggles with objects that have complex
structures or abrupt depth changes.

NeuS or neural rendering scheme [84] comes in to bridge the gap of geo-
metric bias while allowing the back propagation from all points on the ray.
Specifically, NeuS uses Signed Distance Function (SDF) to represent a sur-
face and modify standard volume rendering to accurately learn the surface
representation. Figure [3.2]shows 3D reconstructions from 3 methods. As can
be seen, IDR struggles to produce a meaningful result in the hole region and
NeRF gives a noisy result due to geometric bias, while NeuS produces a high

quality result.

3.2.1 SDF in surface reconstruction

Before going to see how NeuS transforms the traditional volume rendering,
we want to arm our readers with SDF concept and its application in surface

reconstruction.
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Label Reference  NeRF  LLFF[54] SRN[73] NV[§]

f)— - 3» v’};: 3-

Ship

Ship zoomed
Bulldozer
Bulldozer zoomed
Microphone

Microphone zoomed

Figure 3.1. Rendering comparisons among NeRF and prior methods. NeRF is
versatile and could reproduce the appearance of different object such as the ship
body, bulldozer lego structure, and microphone grille. LLFF, while managing to
produce the rough object appearance, could not recover the full length of rope net
clung to the ship body and produces a broken chain in bulldozer. SRN gives blurry
and distorted renderings in every case. NV fails to capture the details inside the
bulldozer wheel and blurs all the fine structure in microphone grille. Images from

[55].
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IDR [89] NeRF [55] NeusS [84] Reference

Figure 3.2. NeuS improvement over the surface- and volumetric meth-
ods. NeuS is able to reproduce a clean surface of the planter whose depth change
abruptly. Images from [84].

Signed distance function, or sometimes called signed distance field, is
defined as the shortest distance of a point x to a surface S, with the sign
determined by whether or not the point x is inside the surface S. The sign
could be arbitrarily assigned by author/context. For instance, Figure
illustrates a SDF of a circle where outside distance is chosen to be positive.
Mathematically, f(x) > 0 outside the circle, f(x) < 0 inside the circle, and
f(x) = 0 on the circle. Thus, by having all the points x that make f(x) = 0,
we simply have the circle.

SDF property. By definition, the gradient vector of a function is the vector
pointing in the direction that the function fastest increases. So, in the case of
SDF, its gradient is the normal vector of the local surface. As we move along
the normal vector 1 infinitesimal unit, the SDF value also increases/decreases
the same 1 unit. Therefore, the magnitude of SDF gradient is always 1

|V f(x)] =1 or being known as Eikonal Equation in mathematics.

3.2.2 Volume-rendering revision

What is it that causes the geometric error in traditional volume rendering?
We are now going back to volume rendering equation to investigate this
issue. We can simplify Equation [3.1 by rewriting the product of accumulated
transmittance 7' and volume density o into the function called weight w:

w(t) = T(t)o(t), (3.5)
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Figure 3.3. Signed Distance Function (SDF) where the distance inside the
circle is defined as being negative.

and hence the rendering equation becomes:

C(r) = /0 () e (), d)t, (3.6)

when we consider the whole space in front of the camera. Assuming we have
an opaque object that is put in a transparent medium, our weight function w
would ideally be zero everywhere except at the surface where the peak is, but
in reality, one can show that the weight function determined by transmittance
and volume density (as in Equation has the peak at a point before the
ray hits the object’s surface - hence introducing the bias.

The bias could be avoided by establishing the right relationship between
the the output colors and SDF. In other words, we have to derive a new
‘weight function’ based on the SDF of the scene. Let’s start from listing the

desired properties of the weight function:

e Unbiased. At a medium intersection point ¢ = t*, the new weight
function hits the local maxima. Mathematically we have %(t*) =0
and %(t*) < 0. This guarantees that the point where the camera ray

hits the zero-level set of SDF, contributes most to the pixel value;

e Occlusion-aware. Given any two points on the ray ty, and t; such
that f(to) = f(t1), w(to) > 0, w(ty) > 0 and ty < t;, the weight
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functions must obey w(ty) > w(t1). This relationship ensures that the
rendering process gives output color dominated by the surface nearest

to the camera when the camera ray passes multiple surfaces.

While there are many possible functions that could satisfy the above re-
quirements, we will follow NeuS choice of logistic density distribution ¢,(z) =
se°/(1+e*")2, or commonly known as the derivative of the Sigmoid func-
tion ®4(z) = (14 €e%7)7 ! i.e. ¢y(z) = P.(x), to avoid unnecessary complex-
ity; the full proof can be found in NeuS supplementary material. So one of

the corrected functions, we are looking for, is:

w(t) = 7(t)p(t), (3.7)

where we use opaque density function p(t) instead of volume density o(¢) in
the standard volume rendering, and consequently the accumulated transmit-

tance 7(t) is determined by:

r(t) = expl(= [ pladu) (38)
in which p(t) is defined as:
— G (f(r(®)))
O, (f(x(t)))

We modify Equation [3.2] accordingly to work with the newly proposed

p(t) = max( ,0). (3.9)

weight function w(t). Specifically, the accumulated transmittance is approx-

imated as

7 =112 (1 — ay), (3.10)
and opacity values become:
(i) new = maX((I)S(f <r(t$zz;r¢();()§)(r(t”l))) ,0). (3.11)

To train NeuS, we optimise the neural networks by minimising 3 losses:

L= Ecolor + )\Lreg + ﬁﬁmask- (312)
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The color loss Lgor is the mean value of color L1:

Ecolor - |O - C|, (313)

the regularising term helps ensuring that the magnitude of SDF gradient is
1 (as we have seen in section [3.2.1):

Lieg = (IVf(x)| = 1), (3.14)

and lastly, mask loss signifies the networks where the object is:

Loask = BCE(M, 0), (3.15)

where BCE is the binary cross entropy loss, M € {0, 1} is binary mask, and

0= Y iy Ti( )new 1s the sum of new weights.

3.3 It’s all about efficiency!

So far, we have not talked about the time taken to train the networks. Using
a large batch size of 4096 rays, NeRF takes around 100-300k iterations to
converge on a high performance GPU (NVIDIA V100) or being equivalent
to 1-2 days. With a smaller batch size of 512 rays, NeuS needs around
15 hours to train 300k iterations for the networks to converge on NVIDIA
RTX2080Ti GPU. The time taken to train these 2 models is considerably
long. Fine tuning a set of parameters could easily take up to a week, given
a limited resource an individual or a small organisation has. Thus the slow
training speed has inspired many researchers to come up with the model that
has a small training time.

One of the bottlenecks in the NeRF framework is coarse-to-fine networks
which first predict coarse ray intervals and then fine ray intervals. While this
architecture helps navigating where the object surface is, there is a redun-
dancy to back propagate to both coarse and fine networks. Instead, Mip-
NeRF 360 [6], employs only one colour network dubbed ‘NeRF MLP’ with
an addition weight network called ‘proposal MLP’, and altogether stream-

lines the gradient propagation to only flow back to NeRF MLP, rather than
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coarse and fine networks as done in NeRF. The process of having proposal
MLP to guide NeRF MLP the range of possible surfaces, could be thought of
as a kind of ‘knowledge distillation’. It is worth noting that there is nothing
being special about proposal MLP - both MLPs are randomly initialized.
This modification simplifies the output of ‘teacher network’ and thus we can
reduce its size, further boosting the training speed in addition to effective
gradient flow.

Instant neural graphic primitives [62], or instant NGP in short, reduces
the amount of time to train NeRF from days to seconds and won the best
inventions of 2022 given by TIME Magazine. That is serveral orders of
magnitude faster than the original NeRF - what is the technique they are
using? It is hash encoding.

Hashing is a method where the data is converted to hash by a hashing
algorithm. Different algorithm has their own use cases such as SHA-2 usually
being used in security applications, while the one used by instant NGP is
mainly to shrink the number of parameters - hence smaller network required.
Nonetheless there is a possibility that 2 values give the same hashing value
or so called hash collision, which is addressed by multi-resolution hash table.
Instant NGP could achieve a similar image quality, measured with PSNR,
by using 8x smaller amount of time using to train NeRF, and 20x fewer

parameters used to train dense grid [13] 2§].

3.4 What if we add polarisation?

So now, we have an efficient scene representation which are unbiased and
occlusion-aware. We modify the weight function to accurately learn object
surface via SDF. We use proposal network as a teacher network to guide
color network. We encode network input with hash encoding, reducing the
number of parameters that are needed to train. What else could we do to
improve 3D object reconstruction?

There is a whole range of Shape-from-Polarisation (SfP) literature show-
ing the correlation between surface normal and radiance reflected from sur-
face. We wonder if polarisation could fit the NeRF-like achitechture we have

been dealing with.
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3.4.1 Data acquisition

Typically, polarisation-based reconstruction would work in either Stokes-

vector space:

S =[Sy, S1, Sa, Ss). (3.16)
So=<E2>+ < E2>, (3.17)
Sy =<E:>—-<E>, (3.18)
Sy =< E?> — < E} >, (3.19)
Sz =< E? > — < E} >, (3.20)

where < E > represents the expected value of electric field in the Carte-
sian basis (Z,7), Cartesian basis rotated anti-clockwise by 45° (&,l;), and
circular basis (i, 7); or a group of unpolarized intensity I,,, degree of linear
polarisation (DoLP) p, and angle of linear polarisation (AoLP) ¢:

Lun = So, (3.21)
= —F= 3.22
SO ? ( )
1 So
o= 5 arctan 5 (3.23)

While these parameters could be obtained from camera or derived from raw
image, they are processed by camera software or distorted by algorithm (e.g.
bilinear interpolation). Instead of relying on secondary data, we will follow
RawNeRF approach [53] using raw data from camera sensor.

Traditionally, to acquire polarisation information, a polarising filter is
put on top of the camera before a standard capture. This process has to be
repeated to acquire the information at different filter angles, thus hindering
a fast acquisition. Recently, commercial-grade polarisation camera becomes
available as another off-the-shelf equipment. The mosaic pattern is placed
on top of camera sensor and the polarisation data could be captured within

one single shot. In a way, this could be thought as gaining extra polarisa-
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tion information at the expense of spatial resolution. We will use the latter
method for the sake of our convenience. Not only does this choice of image
capturing shrinks our acquisition time, but the method also makes capturing

a moving object possible with multiple cameras.

3.4.2 NeRF on polarised images

Now the key question is - how do we modify NeRF to work with the input
from polarisation camera? What is the assumption in NeRF that becomes
invalid in this new setting?
Assumption: NeRF has assumed 3 colour channels (RGB) and perfect
spatial resolution i.e. the result of demosaicing, when rendering an image.
The colour at each point in the object/medium and its transparency /opacity,
which are physical property, stay unchanged. Even if the world has millions of
color spaces, the NeRF framework will also work perfectly fine as the volume
rendering principle is the same. In fact, our world does have an infinity set
of possible color spaces (the wavelength of light is continuous), only we as
human beings limit them to standard RGB due to our inability to distinguish
fine colors. There is one caveat though: light at different wavelength also have
different penetration (this is why an x-ray works). Similar to NeRF and other
following works, we will not take that into account and throughout this thesis
we will assume that all colour channels have the same penetrating property.
Before moving to the NeRF modification, we need to understand the raw
image being captured by polarisation camera. Being directly linked to ma-
terial property, the polarisation cue alone is versatile to various applications
such as scratch detection in transparent material while our application, 3D
reconstruction, is better to have both polarisation and color information.
Thus we employ a color polarised filter shown on the right of Figure So,
instead of getting the standard Bayer pattern RGGB as shown on Figure
3.5 we gain extra polarisation information. Inside the red pixel group, for
example, there are 4 polarisation filters. The pattern is camera-specific and
ours, Triton camera from LUCID, is 90°, 45°, 135° and 0°. We will represent
the combination of color channel and polarisation orientation as 12 channels
including R0, R45, R90, R135, G0, G45, G90, G135, B0, B45, B90 and B135.
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90° | 45° | 90° | 45°

135°| 0° |135°| 0°

90° | 45° | 90° | 45°

135°| 0° [135°| ©O°

Monochrome Polarized Color Polarized

Camera Sensor Camera Sensor

Figure 3.4. Mosaic pattern. Monochrome filter (left) and color filter (right).

Figure 3.5. Bayer pattern is a color filter array (CFA) for arranging RGB color
filters on a square grid of photosensors.

Implementation: We extend NeRF to render the 12 channels, filter out
11 channels that do not correspond to the camera filter, and compare the
rendering with ground truth pixel. We incorporate the unbiased render-
ing scheme (as done in NeuS), proposal network and hash encoding in our
pipeline, with the L1 color loss (Equation . The Figure shows the

overall architecture of our framework.

3.4.3 Results

Training details: We implement our method on Nerfstudio [79] where we
inherit most of the hyperparameters. We test our method on both synthetic
and real datasets. Due to the difference in spatial image dimension, we
apply 2 and 6 layers of color network, with 256 hidden units for each layer, on
synthetic and real datasets respectively. For the activation function, ReLU is

applied throughout, except the final layer where we use exponential function



3.4 What if we add polarisation? 43

Neural SDF

iV, Colour polarisation
| —p SDF =—— Normal: n filter array

Position: X ——p

=——p |atent parameters: z NeuS

Raw Polarisation Image

Viewing direction: v é y 90° 135° 90° 135°
B4S

Latent parameters: z

Volume ol
Sition: Color MLP
Position: x ””” | RerelEmEr o a5 o 45t

Figure 3.6. NeRF in 12 channels. We use a neural signed distance function to
represent the surface and derive the surface normal via differentiation. Another
MLP learn polarised radiance as a blackbox where no physical knowledge is given
to the network. We select the appropriate channel for each measured pixel and
compute a data loss. While it may not be obvious in the diagram, we want to
emphasise the following link: the latent parameters obtained from Neural SDF
Network are used as an input of color network. The link is omitted from the
diagram for a compact visualisation.

to reflect the nature of raw image input. The geometric network is set to have
256 units per layer, and 2 layers in total; softplus is used as the activation

function.

Figures 3.8 and illustrate the rendering results of the re-

flectance and normal estimation whilst Table [3.1] shows a quantitative eval-
uation of synthetic datasets. While our method could reproduce the overall
3D structure of bust and its corresponding appearance, our method struggles
with noise hence leading to to rough surface of nose and surrounded area of
neck. The reconstructed geometry of globe is full of artifacts affecting the
rendering. When applied on real datasets, our method severely suffers from
incomplete reconstruction, lacking a few object parts e.g. gnome’s left leg
and mug handle. In the case where the model is able to reconstruct the whole
object, we observe that the model fails to distinguish between texture and
geometric variation e.g. owl geometry. Nevertheless, as working directly on
raw images, our model is able to recreate the fine geometric details which

never appear on PANDORA reconstruction.

The last obersavation made on the rendering results gives us an affirma-

tion that our method could preserve object geometry, in some cases, even
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Diffuse Specular Mixed Normals

Scene  Method PSNR SSIM PSNR SSIM PSNR SSIM MAE
1Bt (@Bt t(B) t  1()

bust  NeuralPIL* 23.90 0.87 18.04  0.87 26.71  0.87 15.36
PhySG* 22.64 094 23.00 0.94 19.94  0.72 9.81
PANDORA' 25.82  0.81 2296  0.75 2279 0.79 3.91
NeuS* N/A N/A N/A N/A 28.09  0.85 8.53
12-channel NeRF  N/A  N/A N/A  N/A 30.08  0.95 4.25

globe NeuralPIL* 13.09  0.55 12.92  0.55 20.04  0.66 38.73
PhySG* 21.76  0.76 18.90  0.76 17.93  0.70 8.42
PANDORAT 2433 0.77 22.70  0.89 21.76  0.81 1.41
NeuS* N/A N/A N/A  N/A 2357 081  3.72

12-channel NeRF  N/A  N/A N/A  N/A 1883 0.82  1.95

Table 3.1. Quantitative evaluation on PANDORA [19] synthetic image bench-
mark. * = method is given access to ground truth demosaiced RGB images. | =
method is given access ground truth demosaiced 12 channel RGB/polarisation im-
ages.

better than PANDORA which explicitly utilises the polarisation cues in the
reconstructing pipeline.

In this chapter, we have seen the gradual development of the coordinate-
based neural networks which are applied to scene reconstruction and pro-
posed how we could introduce polarimetric cues into the pipeline; in the
next chapter, we will show the theory underpinning polarisation principles

and how we put the related knowledge together into our framework.
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Ground truth 12-channel NeRF (ours) PANDORA [19] PhySG NeuralPIL

Rendering

Normal

Figure 3.7. Comparison of reflectance rendering and surface normals with
baselines on (synthetic) bust dataset. Our method performs reasonably well,
giving the right overall geometry and capturing the bust appearance. Nonetheless,
compared to PANDORA which explicitly utilises the polarisation information, the
reconstructed normal map is prone to noise especially around the nose and neck
regions, and the rendering image lacks specularities at cheek and forehead.
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Rendering

Normals

Ground truth

12-channel NeRF

Figure 3.8. Reflectance rendering and geometry estimation on (synthetic)
globe dataset. While giving a reasonable result on color rendering, our method

shows foggy artifacts. The model struggles to produce a smooth surface of the
sphere.
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ours)

12-channel NeRF (

PANDORA

Figure 3.9. Reflectance rendering and geometry estimation on (real-
world) gnome and vase datasets. Our method could not reconstruct the
whole object and produce artifacts on normal maps. However, it is important to
note the high-frequency geometric details on gnome dataset, which don’t appear
on reconstruction from PANDORA.
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Rendering Normals

Figure 3.10. More 12-channel results of (real-world) Shakespeare and owl
data.
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Polarised Neural Radiance Fields

Everything should be made as
simple as possible, but not

simpler.

Albert Einstein

In the previous chapter, Neural Polarised Radiance Fields, we leverage
the multi-view consistency and the power of neural networks to predict po-
larised radiance. The radiance is then fitted to the ground truth images
captured directly from camera sensor, i.e. raw images. By independently
treating polarisation information captured with differently oriented filter (as
we referred to 12 channels), we provide no physical insight to the networks,
how each channel correlates to the other. In a way, we just ask the networks
to guess the object geometry from extra polarisation information (in addition

to color) and hope the networks would understand the physics.

Instead of relying on implicit understanding of physics, in this chapter,
we will explicitly inject the physical insight into the pipeline. This problem

is known as Shape from Polarisation.

Polarisation state of light describes the direction in which the light oscil-
lates (light is a transverse wave by nature). The key idea behind SfP is that
the state of light changes after being reflected at a surface. A simple way to
observe the polarisation state is to put a polarising filter between our eye and
the light source, rotate the filter, and the image we see would become dark
and bright assuming the light source gives (partially) polarised light. If we
plot the intensity against the polariser angle, we will obtain a sinusoid (see
Figure ; the maximum intensity occurs when the oscillating light passes
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Image Intensity Varies with Polarizer Angle

Imax

Imin

I8 I3, I3

max min

Polarizer Angle

Figure 4.1. Intensity variation as the polarisation filer (polariser) is rotated,
assuming diffuse radiance is unpolarised. Image from [77]

the filter most while the minimum intensity does when the light passes least.
Mathematically, we have:
]ma;v + Imm ]maz - Imin
I(v) = 5 + 5 cos(2(9 — @)), (4.1)

where I,,42, Imin are the maximum and minimum intensities respectively, ¢

is the polariser angle and ¢ is the phase angle which can be derived from the

azimuth angle ¢:

¢»=¢ mod . (4.2)

4.1 Diffuse vs specular radiances

Actually, when concerning the underlying physical phenomena, the above
intensity (Equation is the combination of diffuse and specular radiances.
When light hits a surface, specular reflection is the effect of the light directly
bouncing off the surface into the same medium; whereas diffuse reflection
occurs from the light partially transmitting into another medium, scattering
inside that medium before transmitting back to the medium where the light
is coming from (see Figure for the illustration). In daily life, mirror and
water surface are a perfect example for specular surface while diffuse surface

could be represented by clothing and concrete road.
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\/ air \ / air \/ air
\ object v object V object

(a) Specular reflection (b) Diffuse reflection (c) Mixed reflection

Figure 4.2. Reflection mechanism. Unpolarised light incident on a surface can
be specularly reflected (a), thus acquiring partial polarisation, in agreement with
the Fresnel Equations; (b) diffuse reflection is the result of light scattering multi-
ple times inside the object before being refracted at the surface, again acquiring
partial polarisation due to transmission, out of phase with specular polarisation;
(c) mixed reflection, the model used in this work, is the combination of both types
of reflection.

While the Equation describes the behaviour of polarised light, to
fully understand this physical phenomenon, we need to trace the history
back to 19th century when Augustin-Jean Fresnel derived reflectivity and
transmissivity - or usually being called Fresnel Equations. To keep the thesis
concise, we will not repeat the whole derivation of polarisation model [I] here
but will only quote the result. The diffuse radiance that arises from internal
scattering followed by transmission out of the surface, could be described by

diffuse polarisation model:

I§1use — [) 4 Tapg cos(20 — 2¢), (4.3)

where I; is the unpolarised RGB diffuse radiance in the direction of the

viewer, and p, is the diffuse degree of polarisation being equal to:

. (sin()(n - 1)°
! 4cos(0)/n? — (sin(9))? — (sin(0))*(n + )* + 21* + 2’

(4.4)

where 6 is zenith angle i.e. the angle between the normal direction and the
light ray, and n represents the refractive index of the material underneath

the surface. A similar expression exists for specular reflection:
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IEPeear — T4 Topg cos(20 — 26 + ), (4.5)

where we replace p; with ps and add 7 inside the cosine to account for the
radiance being out of phase with diffuse radiance; the specular degree of

polarisation ps could be calculated as follows:

(@]

_ 2(sin(6))? cos(0)1/n? — (sin())2
n* = (sin(6))? — n*(sin(9))* + 2(sin(6))*"

ps (4.6)

4.2 SfP ambiguities

Now we are equipped with the basic polarisation knowledge showing how the
surface orientation relates to the measurement from the camera; the next

step is to measure and calculate. Is it that simple?

4.2.1 Convex or concave - we cannot say!

We know that the relationship between measured intensity and the rotation
angle of the polariser is sinusoidal. The simplest setup is to align object,
polariser and camera together; and keep rotating the polariser until we find
the darkest/brightest image. Assuming we know the object nature (diffuse
or specular) by observation and attempt for darkest image, to minimise the
intensity in the polarisation model, the obvious solution is to get the cosine
value being equal to —1 as other variables are positive.

The problem immediately arises. As we turn the full round of polariser,
we would observe 2 darkest images. Which one is the one we want? How do
we distinguish these 2 images?

This phenomenon comes from the fact that polariser allows electric field
in the specified direction passing through. For example, having vertical filter
on the polariser would allow both upwards and downwards electric fields to
pass through. This is equivalent to the factor of 2 in front of ¥ and ¢ in the
polarisation models (Equations . As a result of this, distinguishing
between 2 darkest images is impossible without further information.

So for every darkest image we manage to capture, there will be 2 phase
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angles that satisfy the polarisation model (either diffuse or specular one we
are dealing with). As phase angle is directly linked to azimuth angle which
is the intrinsic property of a surface, we end up having 2 possible surfaces as
the solution. This issue is generally known as convex/concave ambiguity

or azimuthal ambiguity.

4.2.2 Diffuse or specular - we do not care!

While simplifying the material behaviour, either being diffuse or specular,
could pave a long way for solving SfP problem, real-world surfaces exhibit
mixed reflections. By applying diffuse assumption on specular surface or
the other way round, we would yield an inaccurate result namely model
mismatch which could happen to both zenith and azimuth angles.
Actually, as illustrated in Figure [4.2] both diffuse and specular reflections
coexist within a surface. When light hits a surface, a portion of light is
specularly reflected back to the same medium; the rest transmits to another
medium and a fraction of that would go through scattering and transmit
back to the medium where the light comes from. With this notion, we can
have a mixed polarisation model, which solves model mismatch, by summing

diffuse and specular models together:

[i’nixed — glffuse + ]—lsgpecular (47)

= (Ig+ Is) + (Lapa — Lsps) cos(20 — 2¢).

4.2.3 Extra constraints needed

To get an accurate surface reconstruction, we have to resolve azimuthal ambi-
guity. This could be done with an additional piece of information to identify
whether the surface is convex or concave e.g. photometric stereo, shading
cue or even depth camera. Surprisingly, the setup we use in chapter [3] gives
the constraints we need for resolving the ambiguity. The key is to capture
every point on the surface from at least 2 viewpoints. How does this work?

Let’s go back to a single-view setup and further assume grayscale radiance

(for the sake of explanation). For a single view, there are four unknowns in
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the mixed model: two components of the orientation of the surface normal
and I; and I,. A single observation with a demosaiced polarisation camera
provides three observations (the three parameters of a sinusoid: unpolarised
intensity, degree of polarisation and angle of polarisation). Hence, inverting
the mixed model is ill-posed for one view. Nevertheless, the surface normal
is independent of viewpoint and, under the Lambertian assumption, so is I,.
Thus, if we add a second view, this means we add one additional unknown
(only I from the second view) but gain three more observations at which
point the problem becomes well-posed. Hence, NeRF setting where there are
many viewpoints captured for one point on the object, would lead to robust

optimisation, being less sensitive to noise.

4.3 Multi-view mixed polarisation model

The mixed polarisation model shown in Equation [4.7]is still fully valid but less
useful as most of the parameters are defined in the specific camera coordinate.
This section will rewrite the mixed polarisation model to explicitly account
for the transformation from a world coordinate to the coordinate of a given

camera. Figure [4.3] shows our setup accompanying the below derivation.

Beginning with the basic properties of the scene, we denote a 3D point in
world coordinates as x = (z,y, z) and the surface normal in world coordinates
at that point as n(x) = [n.(x), n,(x),n.(x)]" with |[n(x)|| = 1. We define
camera pose by a rotation matrix R € SO(3) that rotates world to camera
coordinates and the position of the camera centre by c. Hence, the view
direction from which a camera with centre c observes point x is given by:

c—X

v(c,x) = Te—xI| (4.8)

The spherical coordinates of the surface normal at x in the camera coor-
dinate system can be obtained as follows. The zenith angle is given by the
angle between n(x) and v(c,x): #(c,x,n) = arccos (n(x) - v(c,x)), while the
azimuth angle is given by rotating the surface normal to camera coordinates:

n.(R,x,n) = Rn(x), and then converting the Cartesian representation to
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Figure 4.3. Relationship between parameters.

the spherical azimuth angle:

H(R,x,1) = atan2 (M) | (4.9)

ne(R,x,n)

Assuming known refractive index 7, we can now rewrite our multi-view
mixed model as a function of all free parameters: position (x), the camera
pose (R,c), the surface normal (n) and diffuse and specular unpolarised
radiance (1y, I):

Iy=d(x R, e,n, Iy, I,) = (I;+ 1)+
[Idpd(9<c> X, Il)) - ISpS(Q(C’ X, n))] X
cos [20 — 2¢(¢p(R,x,n))]. (4.10)

4.4 MLP re-parameterisation

NeRF, as explained in the section [3.1], pioneers scene representation using 2
MLPs: a ‘spatial’ MLP outputting volume density and a ‘directional’ MLP

outputting outgoing radiance along viewing direction. To render a pixel’s
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E[y(x)]

/

a) NeRF b) Mip-NeRF

Figure 4.4. The comparison between NeRF [55] and Mip-NeRF [5]. NeRF
(a) samples points x along the rays that are traced from the camera centre through
each pixel whereas Mip-NeRF (b) reasons about 3D conical frustum defined by a
camera pixel. Image from [5].

color, NeRF casts a ray through that pixel, queries MLPs for scene properties,

and composites these values into a color.

One of the reasons that help NeRF achieves a photorealistic result, is
a roughly constant distance between camera and the scene content. Once
this condition is broken, the rendering appears blurred in close-up views
and consists of aliasing in distant views. The straightforward solution is
supersampling multiple rays per pixel, which is computationally intensive
and quickly becomes impractical as rendering each ray requires querying
MLPs hundreds of times. The key idea behind supersampling is that there
are more possible contents in a distance space and the scene thus requires
more rays to represent the further contents. Inspired from mipmapping in
graphics, Mip-NeRF [5] casts a cone using Gaussians that approximate the
conical frustums corresponding to the pixel. Figure [£.4 shows the contrast
of scene coverages using ray in NeRF and cone in Mip-NeRF. By using cone
instead of ray, Mip-NeRF could be trained on a single neural network that

models the scene at multiple scales.

Guaranteed by the universal approximation theorem in Mathematics, the
MLP is naturally a universal approximator that could mimic behaviour of any
continuous functions. The job of machine-learning engineers/scientists is to
find an architecture that helps the machine learn the specified task. NeRF is
such an architecture that allows a matchine to learn the scene representation.
Even though NeRF could successfully reproduce specular reflections, a careful

inspection shows that those reflections are faked by using isotropic emitters
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Ground Truth Ref-NeRF [82] Mip-NeRF [5]

Figure 4.5. The comparison between Ref-NeRF and Mip-NeRF render-
ings. By reparameterisation, Ref-NeRF simplifies interpolating task of MLP thus
gaining a clearer result.

inside semi-transparent shells. The issue here is not that the MLP cannot
learn an accurate view-dependent specular reflection, but the task itself is
too challenging for the machine to properly learn, leading to an undesired
solution that looks similar to specular reflection.

Since an object appearance is a complex entanglement in lighting direc-
tion, object geometry and material, asking a network to predict an outgoing
light by giving viewing direction as input, is therefore a very challenging task
on its own. Even in a simple setup, the specular reflection could drastically
change as we move along the surface. Without dense sampling, interpola-
tion between views is almost impossible. Ref-NeRF [82], built on top of
Mip-NeRF, re-parameterises the input for directional MLP. Instead of using
plain viewing direction, Ref-NeRF employs a reflected view as the network
input. Assuming a uniform object material, the outgoing radiance is a static
function of reflected direction. Doing so simplifies the network’s task of in-
terpolation, helping the model learn an accurate specular reflection. Figure
illustrates the specular reflection from a metal surface as learned by Ref-
NeRF and Mip-NeRF. By re-parameterising the network input, Ref-NeRF

clearly outperforms Mip-NeRF whose interpolating task is more challenging.

4.4.1 Implicit BRDF

First thing first - what is BRDF? BRDF, a short form of Bidirectional Re-

flectance Distribution Function, is a function of 4 variables that defines how



58 Polarised Neural Radiance Fields

light from a source is reflected off an opaque surface. The function takes an
incoming light direction w; and outgoing direction w,, and returns the ratio
of reflected radiance L, exiting along w, to the irradiance incident F; on the

surface from direction wj:

dLo(wo) _  dLo(wo)

ol o) = 4B (n) ~ Talon) cos Ol

(4.11)

In the physical world or physically plausible simulation, BRDF possesses the
following properties [21]:

e positivity: f,(wi,w,) > 0,
e obeying Helmholtz reciprocity: f,(wi,wo) = fo(wo,wi),

e conserving energy: Vuw;, [ fo(wi,ws) cosB,dw, < 1,

where () is the unit hemisphere containing all posible values for w.

BRDF could be measured directly from real objects using calibrated cam-
eras and light sources (see Figure or gonioreflectometer. The measure-
ment involves moving light source many times to establish the relationship
between incoming and outgoing lights at various angles - thus being a very
time-consuming process. Alternatively, we could assume material property
and follow a well-studied model such as Lambertian (perfectly diffuse), Phong

(plastic-like specular), and Torrance-Sparrow (specular microfacet) models.

To find the outgoing radiance L,, we integrate both sides of the Equation
obtaining the rendering equation:

Lo(wo) :/Qf(wi,wO)Li cos 0;dw;. (4.12)

As we are dealing with diffuse and specular reflections, we can further de-
construct the rendering equation into 2 separated components, and extend
the BRDF to be the function of position, also known as Spatially Varying
Bidirectional Reflectance Distribution Function (SVBRDF):
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Figure 4.6. Gonioreflectometer for measuring BRDF.
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where bq is diffuse roughness, b is specular roughness, and n is surface nor-
mal. Since w; and n are a unit vector, cos; and (w; - n) are interchangeable
i.e. representing the same quantity.

Under Lambertian assumption (as mentioned in section [4.2.3)), our diffuse
reflection would be a function of position only. Striving for real-world ob-
jects, we do not set a strong assumption about specular reflection but analyse
the appearance contributed from geometry, illumination, and material prop-
erties.
1st observation: for a rotationally-symetric BRDF that satisfies f(w;,w,) =
p(wr - w;) for a lobe function p, the outgoing radiance is a function of the

reflection direction wy:

Ly(wo) /Li(wi)p(wr cw;)dw; = F(wy). (4.14)

2nd observation: the fresnel effect affects how materials reflect light at
different viewing angles. This is proportionate to cos 6.

3rd observation: the latent parameters 2z from SDF network, which encodes
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the geometric information of the object, would help the MLP assign color to
the right 3D location.

From all the observations and the Lambertian assumption, we could set
2 separated MLPs to represent diffuse and specular reflections by using fol-
lowing rationale. Since diffuse radiance does not depend on viewer direc-
tion we use simply Fj, : (x,z) — I; to map a 3D position to the RGB
unpolarised diffuse radiance at that point. Specular reflectance does de-
pend on viewing direction and geometry, parameterised as discussed above:
Fr, . (x,max(n - v,0),ref(n,v), z) — I;. Again, the output is RGB unpo-
larised specular radiance at that point, but this time in the direction, v, of
the viewer. Since viewing rays may not be restricted to the upper hemisphere
about the normal, we clamp the cosine of the view angle to be non-negative.

The ref(a,b) function represents a vector reflection.

Overall, there are 3 separated networks: neural SDF, diffuse and specular
networks. Neural SDF and diffuse networks are conditioned on position and
its variant only 7.e. no view dependence. It is noted that we output the
latent parameters z from neural SDF network and use them as the input for
diffuse network to ease the MLP’s task. Being view dependent, the specular
network requires both viewing and directional information. The reflected
view and cosine angle are derived from normal direction which could be
obtained by calculating a derivative of SDF value, while we share the same

position-related input as done in diffuse network.

Assumption: Figure [4.7| provides a brief overview of how each element
relates to each other, from network input to loss calculation. As we moved
along each component, we gradually introduced assumptions as follows: A)
both diffuse and specular polarisation models (Equations and are
derived from Fresnel Equations and only valid for dielectric material (e.g.
human skin); B) the incident light must be unpolarised, which is generally
true in nature; C) the light undergoes a single bounce i.e. no interreflections;
D) diffuse reflectance from subsurface scattering is independent of viewing
direction i.e. Lambertian model; E) the refractive index is assumed to be

1.5, which well represents our objects of interest.
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Figure 4.7. Neural shape-from-polarisation. We use a neural signed distance
function (Neural SDF in the diagram) to represent the surface and derive the sur-
face normal via differentiation. Two other MLPs (Unpolarised Specular Radinace
and Unpolarised Diffuse Radiance in the diagram) learn unpolarised diffuse and
specular radiances as black boxes, with diffuse radiance being conditioned on po-
sition and geometric features from Neural SDF MLP i.e. Lambertian assumption,
and specular one additionally on the cosine of zenith angle and reflection direction.
Via a mixed polarisation model, we capture the dependence between surface nor-
mal, camera pose and unpolarised radiances to predict polarised radiance. This is
volume rendered according to the NeuS [84] model for any combination of colour
channel and polariser angle. We select the appropriate channel for each measured
pixel and compute a data loss. While it may not be obvious in the diagram, we
want to emphasise the following links: A) the latent parameters obtained from
Neural SDF Network are used as an input of both diffuse and specular networks,
and B) the normal obtained from Neural SDF Network is used to calculate cosine
of zenith angle and reflection direction. Those links are omitted from the diagram
for a compact visualisation.
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4.4.2 Rotationally precised ray

As we incorporate multi-view polarisation information into our pipeline, we
need to put an extra care on how we define camera rays. In essence, our
rays have to be distinguishable when rotating, in addition to telling how far
the point is from the camera centre in traditional graphics. Thus we define
the ray that we render in terms of a camera pose (R,c) and a pixel with
normalised coordinates u = [u,v,1]7; the ray is defined as {p(R,c,u,t) =
c+tR"u,t >0}

We then volume-render the ray to acquire the object color, using NeRF

[55] time-discrete volume rendering:

s
I(R,c,u,v) = Zw(t,-)[yixed(xi, R,c,n;, Fr,(x;,2;),
i=1
Fr, [x;, max(n; - v;,0),r(n;,v;),z]), (4.15)

VSDF(x;
where X; = p(R, c, u, ti)? n; = |VSDFEX3\’

features from the SDF Network Fspr at x;, the ¢; are the S sample points

v; = v(c,X;), z; are the geometric

along the ray and w(t;) the volume rendering weight given by the density
derived from the SDF value, as in NeuS [84].

4.5 Results

Implementation: There are 3 neural networks in total, including SDF, dif-
fuse and specular networks. The SDF network encodes the object geometry,
via signed distance function, as a function of postion x. This network outputs
A) the signed distance function which tells us the shortest distance between
a queried point and the object surface, and B) latent parameters z which is a
compact representation of the object surfaces. In theory, either position x or
latent parameters z on its own should adequately provide positional contexts
to radiance networks; however, in practice, we observe that providing both
enhances the training performance. For the SDF network, we employ 6 layers
of MLP with intermediate layers having 256 nodes i.e. the network width
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Diffuse Specular Mixed Normals

Scene Method PSNR SSIM PSNR SSIM PSNR SSIM  MAE

TdB) 1 TdB) 1 TdB) 1 + ()
bust NeuralPIL*  23.90 087 1804 087 2671 087  15.36

PhySG* 22.64  0.94 23.00  0.94 1994 072 981
PANDORAT 2582  0.81 22.96  0.75 2279 079 391
NeuS* N/A N/A N/A N/A 2809 085 853
P-NeRF 3779 0.999 3221 0984  34.63 0.963 049
globe NeuralPIL*  13.09  0.55 1292 0.55 20.04 0.66 3873
PhySG* 2176 0.76 18.90  0.76 1793 0.70 842
PANDORAT 2433  0.77 2270 0.89 2176 0.81  1.41
NeuS* N/A N/A N/A N/A 2357 081 372
P-NeRF 3471 0972 2969 0957  29.63 0933  0.14

Table 4.1. Quantitative evaluation on PANDORA [I9] synthetic image bench-
mark. * = method is given access to ground truth demosaiced RGB images. | =
method is given access ground truth demosaiced 12 channel RGB /polarisation im-
ages.

of 256 in size, and softplus as an activation function. As explained earlier,
taking position x and latent parameters z, the diffuse network learns to map
positional information to diffuse radiance. Depending on the dataset types,
the diffuse network requires a different size of MLP: 6 layers for real datasets
and 2 layers for synthetic datasets with 256 nodes for each layer. This reflects
the dimension of the datasets i.e. large images requiring ‘powerful’ MLPs to
represent the scene. Because of being view-dependent, the specular network
additionally takes cosine of zenith angle cos(f) and reflected view direction
ref(n, v). For a similar reason, specular network’s depth is 6 for real datasets
and 2 for synthetic datasets with 256 nodes belonged to each layer. For both
diffuse and specular networks, we use ReLU as an activation function for
all layers except the final one where exponential is applied to reflect a wide
range of HDR data.

To get a performance boost, we apply proposal network and hash encod-
ing as done in Mip-NeRF 360 and instant NGP respectively. As suggested
by NeuS, we apply L1 loss to our final rendering as in Equation [3.13] Since
our method polarises the radiances predicted by neural network, we call our

method Polarised Neural Radiance Field or P-NeRF.
Figures [4.8] and illustrate the 3D reconstruction as well as radiance
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decomposition of synthetic datasets including bust and globe, while Table
shows the corresponding quantitative evaluation. After properly taking
physics phenomena into account, our model becomes better at learning the
scene. Our model can now predict the specularity on the bust’s forehead,
which were missed in the blackbox model 7.e. 12-channel NeRF. Furthermore,
the hole around neck in bust geometry, which without physical insights was
apparent, is now filled and becomes comparable to geometric prediction from
PANDORA. We see a significant improvement on globe geometry without
rough artifacts. Nonetheless, the grid line (in diffuse reflection) on the ocean
of the globe is missed.

Even though, by injecting physical knowledge into our pipeline, P-NeRF
is capable of replicating a synthetic scene, our method struggles with real
datasets where noise appears. Our model could not produce the whole scene
as shown in Figure [4.10, The Figure shows the objects for which our
method manages to learn the whole scene. Nevertheless, the geometric re-
constructions are full of artifacts.

The contrast between result from synthetic and real datasets, suggests
that there could potentially be an issue with the real-world training. Thus,
in the next chapter, we will explore the causes of the issue whether it comes
from the captured images or training practicality. For this chapter, we have
seen how we incorporate SfP technique into machine learning pipeline. In
particular, we develop a mixed polarisation model and make a modification so
that the model is the function of camera pose, allowing multi-view training,
before demonstrating the plausible results which are trained on synthetic

datasets.
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Figure 4.8. Reflectance decomposition and geometry estimation against
ground truth (synthetic) bust data.
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Figure 4.9. Reflectance decomposition and geometry estimation against
ground truth (synthetic) globe data.
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Figure 4.10. Reflectance decomposition and geometry estimation of (real-
world) gnome and vase data.
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Specular

Figure 4.11. More P-NeRF results of (real-world) Shakespeare and owl
data.
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The missing elements

The good thing about science is
that it’s true whether or not you

believe in it.

Neil deGrasse Tyson

While chapter {4 illustrates an elegant blend between traditional shape
from polarisation and emerging neural rendering, there are many details that

were overlooked, which we will investigate in this chapter.

5.1 Data distribution

In Polarised Neural Radiance Fields, we put a set of polarised images of a
scene into a pipeline which predicts diffuse and specular radiances as well
as the scene geometry. Apart from raw image (section obtained from
camera sensor, we never mention image characteristic beyond filter array
which is physically applied on top of camera sensor, and as a camera user,
we do not have much control over how the filter array could be arranged
differently. The same applies for noise sensitivity, focus capability, image
resolution and the list goes on, where we have limited level of control.

As computer vision researchers, we tend to take it for granted that our
images are doing their job as an input to the pipeline we are studying. As
long as the captured images look reasonably good with overall details being
in an appropriate range, we generally assume that our collected data is good

for the next processing step. If this is not the case, we can adjust involving
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factors such as focusing distance for a blurred image or scene lighting for
a bright /dim scene, and start the whole capturing again. Nonetheless, this
might not be possible when we use public dataset which is collected for other
purposes.

In this section, we will dissect a ‘good’ image from data-distribution per-
spective, propose a solution for image saturation when we have no control
over input data, and lastly suggest a loss function that works well on raw

images that we use in our experiment.

5.1.1 What is a good image?

In the context of data collection, a perfect image is the image that captures
scene information at the highest quality allowed by a particular camera. The
perfect image is the ideal situation that rarely, if ever, happens in a physical
lab. Hence, instead of aiming for a perfect image, we will try capturing a
good image. So how does a good image look like?

Before moving any further, we want to introduce histogram, a tool that
could visually illustrate the frequency of a pixel intensity appearing on an
image. For those who are unfamiliar with histogram, it is a representation of
the distribution of quantitative data. Typically, the x-axis would show the
range of values in the form of ”bin” and y-axis would be the number of times
we found a value within the bin interval. We could distinguish a good image
from bad ones by looking at the histogram of pixel intensity.

To better identify the characteristic of a good image, we will begin with
an obviously bad image. That image could be a very dim image whose pixel
intensity ranging from 0 to 400 or around a tenth of 12-bit camera capacity
i.e. HDR or high dynamic range image. When we count the number of
pixels that fit into each histogram bin, we will get the diagram shown in
the top of the Figure |5.1} There is nothing looking suspicious about the
diagram until we take into account the sensor capacity which could store
up to 4096 different pixel values. Realizing this, we plot another histogram
showing the entire range of sensor capacity (Figure , middle). We can
now tell immediately that this image has a bad data distribution since there

is no captured pixel value on the right side of the histogram. How could we
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improve the distribution so that the poor image become a better image?

Without further assuming anything about the captured scene, i.e. uni-
versally applied to any dim images, we can digitally scale the image by mul-
tiplying each pixel intensity by a factor which is larger than 1. The factor
is given by dividing the maximum possible pixel value by the current maxi-
mum pixel value and then rounding down the result. In our case, we multiply
every pixel by the factor of 10 and the bottom of the Figure [5.1] shows the
histogram of the newly distributed data. As expected, the diagram keeps
the same shape with x-axis being scaled. This is what we call a good im-
age whose pixel values fill in most of the histogram from low-value bin to
high-value bin, and cover almost an entire range of sensor capacity.

Digitally scaling the whole image with a certain factor as done in the
above paragraph could alleviate the poorly distributed data, but does not
recover the lost information due to inappropriate capture. For instance, a
dim pixel value of 215 would become the value of 2150 after scaling by a
factor of 10, whereas a proper captured pixel could range between 2145 and
2154. Therefore, wherever possible, we should aim to capture a good image
in the first place rather than applying a digital hack after the fact.

As dim images are simple to spot, we do not observe them in the datasets.

So we never have to scale up pixel intensity, in practice.

5.1.2 Saturation handling - learning to ignore

We have just seen one end of the spectrum where an image is too dim and
we lose image details as we try to recover the data distribution. This section
will show another end of the spectrum where we have a brightly lit scene and
the captured image is saturated. Would the scaling strategy in section [5.1.1
work? Let’s find out.

We start with plotting a histogram of a saturated image as shown at the
top of Figure 5.2l We divide each pixel intensity by a factor of 10 and then
re-plot the histogram, getting the bottom of Figure 5.2} Not only do we get
a clutter of low-value pixels, but we also lose scene details when converting
from decimal to integer (also known as quantisation). So naively repeating

the method for dim images on a saturated image would worsen the issue.
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Figure 5.1. Data distribution of a dim image. (top) The histogram that plots
the data distribution, (middle) the same histogram that shows the whole possible
data range, and (bottom) the histogram of the dim image that is digitally scaled
by a factor of 10.
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What could we do to improve the image? Since the intensity beyond
saturation point is completely ignored by camera sensor, unless relying on
heuristic approach, there is no way to retrieve the ignored information. What
we could do as a person who train neural networks is to be aware that our
input images are saturated and inform machine that there is a saturation.
Doing so would simplify the task of interpolation and hence getting a better
fit from MLPs.

Spotting a saturated image. While we cannot say for sure which image
is saturated from seeing the data distribution alone, there is a common char-
acteristic which is shared among saturated images. Because the pixel that
should be brighter than the saturation point would be recorded as bright as
the saturation, there would be a lot of pixels having the value of saturation.
What these mean is the last bin of the histogram would be significantly taller
than the others (Figure , top). It is noted that this is not a guarantee but
we can say that an image is not saturated when none of the pixels belong to

the last bin of the histogram.

Since we don’t know the exact information in the saturation region, an in-
tuitive approach is to ignore the saturated pixels and let the model only learn
from unsaturated pixels. However, such approach would not fully utilise the
information provided by the image. A better way to deal with saturation
is to encourage model to predict as good as the provided information and
not penalise when both training data is saturated and the model predicts a
value larger than saturation point. To simplify our discussion, we call model
prediction being unsaturated/saturated when the model predicts a value un-
der/above the saturation point. We could break down into 4 scenarios: 1)
when training data and model prediction are unsaturated, the model should
learn to meet the training data; 2) when training data is saturated whereas
the model prediction is not, we expect the model prediction to get closer to
the training data; 3) when model prediction is saturated but the training
data is not, the model should become unsaturated and follow what data sug-
gests; and 4) when both training data and model prediction are saturated,
we have no information to tell how far away the model is from ground truth
data - thus excluding gradient descent from the training. In summary, we

can draw the below table noting whether to include gradient descent in the
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training or not:

‘ saturated prediction unsaturated prediction

saturated data exclude include

unsaturated data include include

Calling a saturation point Cp.,, we could put this notion into practice by

creating a conditional mask:

M, = (C < Chax) V (C < Chax), (5.1)

and applying to color loss (Equation [3.13]) to obtain:

(‘Ccolor>masked = Ms|é - Cl (52)

By this minimal implementation, we utilise all the information provided from

an image - both unsaturated and saturated pixels.

5.1.3 From LDR to HDR

As we have replaced a traditional low dynamic range (LDR) with high dy-
namic range (HDR) image, the data is technically stretched while preserving
good image quality as we capture from the source. For 12-bit images, the
range between lowest- and highest-possible pixel values become 4095 rather
than 255. Since the loss function is basically the difference between model
prediction and training data as defined in Equation the model would be
biased towards the bright region in the image. Calculating loss in the linear
space becomes unsuitable [61] for HDR images. Instead, the loss defined in
logarithmic space is found to be more robust to a larger intensity range.

Thus, we define a new color loss as:

(Leotor)upr = M| log(aC + B) — log(aC + B)|, (5.3)

where a and [ are hyperparameters which we found setting = 60 and 5 = 3
leads to a stable training and a good result. Even though the Equation [5.3
seems arbitrarily set, there is a logic behind both hyperparameters. In the

image space, it is highly possible that there is at least 1 pixel whose intensity
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value is 0. The main point of having /3 is to avoid log(0) which is undefined in
Mathematics, while « is added to allow the model to work on an appropriate
range in the logarithmic curve. Figure |5.3| compares the difference between
linear and logarithmic curves. The logarithmic graph of scaled data yields
a good balance of steep gradient in low-value region and shallow gradient in

high-value region - hence being suitable for HDR data.

5.2 Invisible surface

In the chapter [4, the model works only on some datasets. This shows that
there is a room for the model to optimise in the wrong direction i.e. towards
the undesired solution. To ensure generalisation across datasets, we want to
put further constraint in the training process but what would it be?

We consider a surface i.e. the intersection between 2 mediums. This
surface has 2 faces, (A) the one we observe and (B) the other one that is
hidden behind. In the scope of this work, assuming opaque material, we
don’t consider the light that travels inside the material and penetrates the
surface from face B. Hence, the observed reflection could only come from
face A, or mathematically speaking, the angle between surface normal n and
viewing vector v must be less than 90 degrees; the surface whose the angle is
larger than 90 degrees is, by definition, self-occluded and hence non-visible.
The Figure illustrates this concept.

In NeuS [84] volume rendering, the appearance is the weighted sum of
the radiance values along the casted ray. As explained in the last paragraph,
to be physically plausible and thus meaningful for mixed polarisation model,
we want to restrict the contribution from the back-faced surface (face B) and
only allow the forward-faced surface (face A) to contribute to final appear-
ance. This means that contributing points must have 2 properties: 1) their
weight is greater than zero and 2) their surface normal makes an angle that
is less than 90 degrees to viewing direction. For instance, in Figure [5.5, only
point D can contribute to final appearance while point C cannot, due to how
surfaces are facing the viewer.

Nonetheless, we experimentally found the points that are physically im-
plausible in the model trained with P-NeRF. While this could be simply



5.2 Invisible surface 77

09+
08
07t
06"
I os|
04T
03"
02t

0.1

x linear data (y = x)

135 ~

log(x+3)

125

y=

11451

0 0.2 04 0.6 0.8 1

x logarithmic data (y = log(x + 3))

y=log(60x+3)

0 0.2 04 0.6 0.8 1

x logarithmic scaled data (y = log(60x + 3))

Figure 5.3. The relationship between x and y for different functions. (top)
linear curve gives a one-to-one ratio between x and y, (middle) logarithmic curve
gives almost a linear relationship whose y-axis is shifted, and (bottom) logarithmic
curve from scaled data gives a mixture of large and small gradients which well
balance the signal of back propagation in the training.
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Figure 5.4. Surface visibility. The surface is visible when normal vector points
in the same hemisphere as viewing vector (right) whereas the surface is invisible
when normal vector points in the different hemisphere as viewing vector (left).
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Figure 5.5. Contributing points in volume rendering. The camera is put
above point D on a circle. During volume rendering, only points (e.g. point D)
whose angle between surface normal and viewing vector is less than 90 degrees can
contribute to final appearance, whereas points (e.g. point C) whose angle is larger
than 90 degrees cannot.
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solved by masking out the points which violate the physical constraint, doing
so would stop gradient flow from these points, and as a result, the optimiser
could not improve the solution. Hence, instead of solidly filtering out those
points, we introduce a soft penalty - leading to a stable training. In particu-
lar, we add theta loss that encourages SDF network to produce zenith angle

in a reasonable range (assuming ray sampling size N):

N
Liheta = —% ; min(max(v; - n;, —1),0). (5.4)

Intuitively, when encountering a non-zero theta loss, the optimiser has to
reduce it by either 1) changing the SDF so that the point has viewing angle
being less than 90 degrees, or 2) morphing the object shape. The effect of
latter choice is to reduce visibility of that point by lowering the weight of
that point and giving a higher weight to the object part laying in front of
that point.

5.3 Smooth surface across noisy measurements

When using raw images captured from camera sensor, there is a trade-off
between spatial resolution and polarimetric information. Compared to fully
demosaiced images, our raw images contain only one twelfth of the total
information provided by the scene. This is very sparse and the 3D recon-
struction could be heavily affected at the texture edge where a large intensity
shift occurs.

To make the matter worse, the raw measurements naturally come with
noises due to capturing process. When the camera shutter is opened, there is
a number of photons hitting camera sensor and the electrons at that pixel are
stimulated (proportionally to the number of photons). In practice, though,
the sensor is generally over-sensitive and could measure a random value even
without a single photon hitting that pixel. So, depending on the camera, the
manufacturer has to introduce an offset which treats a certain measurement
as zero level, and what’s below that threshold is sometimes called a "negative

measurement”. A good camera would set that threshold high enough so
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that the measurement is zero in the absence of light. The second source of
noise comes from the photon behavior which follows Poisson distribution.
The statistics describes the number of events occurring in a fixed interval
of time. A good example of this distribution in daily life is the number of
buses passing a particular stop over a period of time. The last source of
error is introduced when converting the analog electrical signal to a digital
value i.e. discretisation. Fortunately, combined noise can be modeled as
Gaussian whose mean is zero, and neural networks would smooth out the
noisy measurement as done in RawNeRF [53].

Since Polarised Neural Radiance Fields links surface normal and radiances
together through mixed polarisation model, the noise shown in the image is
passed on to the geometry and we do not want the reconstructed geome-
try to get affected by those noises. Fortunately, real-world objects usually
possess piecewise coherence regarding geometry e.g. a smooth surface tends
to continue its smoothness. So if we encourage the networks to produce a
surface normal which points to a similar direction to the normal at the 3D
adjacent point (x 4 dx), we will implicitly prohibit the noisy measurements
to get baked into geometry. We define smoothness loss which does that job

as:

Lmooth = arccos n;(x) - n;(x + 0x). (5.5)

In this chapter, we have made the following improvements: we introduce
an extra pre-processing step that ensures well distributed data either when
the images are under-exposed or saturated, we propose a logarithmic loss
which better suits HDR data, we add a theta loss encouraging networks to
predict a reasonable zenith angle hence leading to physically valid model,
and lastly we reduce the effect of noisy measurement from the reconstructed

geometry.

5.4 Lightstage application

Up until this point, we have made a minimal assumption for an incident light

that the light has to be unpolarised. For most settings in nature, this is a
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reasonable assumption.

In this section, we will explore a special lighting condition that leads to
intrinsic properties of the object in the scene. In particular, we apply our
method in spherically-uniform, unpolarised illumination. In contrast to pre-
vious methods [49] 25] [40], 41], we do not modulate individual light sources
to create varying illumination patterns; we only require a single image from
each camera under a fixed, uniform illumination. The method is therefore
single-shot and suitable for dynamic objects such as faces, potentially running
at full frame rate. Because the illumination is unpolarised, we make no as-
sumption about its plane of polarisation relative to the camera. Rather than
using polarisation to approximate diffuse/specular separation, we exploit it

purely as a shape cue.

Under uniform illumination, L;(x,w;) = k, Vw; € , for an arbitrary

constant k. The diffuse term in Eq. then reduces to:
by

Late(,00) = 22 /Q (w; - m)dwr = byk (5.6)

In other words, the diffuse radiance estimated by fitting our model directly

provides the diffuse albedo map (up to a scaling). Under the same lighting,

the specular radiance becomes a view-dependent reflection coefficient that,

after Fresnel compensation, yields the specular albedo (Ry) map [25]. In

practice, we capture multi-view face images under uniform, unpolarised light,

run our PP-NeRF pipeline, take F, as diffuse albedo, and evaluate F7, at

v = n to obtain the specular albedo.

5.5 Results

Assumption: In this chapter, we address practical limitations founded in
the last chapter and therefore set no further assumptions i.e. we share the

same set of assumptions as we previously stated in Chaptefd]
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5.5.1 Under spatially-varying illumination (general case)

Implementation: As we have discussed so far, to make P-NeRF model prac-
tical, we introduce 3 losses: logarithmic color loss, theta loss and smoothness
loss. Technically, we also scale dim images to have a suitable range however
encountering zero such images. Otherwise stated, we inherit the implemen-
tation from Chapter

Since we address the practical aspects of P-NeRF by adding losses to
the training, we name the method in this chapter ”practical P-NeRF” or
PP-NeRF. The Table quantitatively illustrates the effects of losses intro-
duced in this chapter. Except PSNR of specular and mixed radiances, the
combination of losses provides a better training supervision hence obtain-
ing the best result. Without theta loss, the color loss becomes dominant so
the radiance renderings outperform the training with all losses by a small
margin. PP-NeRF is also tested against prior methods. Shown in the Table
5.1, our method gives the best reflectance estimation as well as geometric

reconstruction.

In the Figures 5.6 [5.7, 5.8 [5.9] [5.10, we show how we gradually improve
our first model (12-channel NeRF) by adding physical insights (P-NeRF)

and extra practical constraints (PP-NeRF); as well as results from methods
with similar performance such as PANDORA [19] and PMVIR [94]. Because
results from synthetic datasets (bust and globe) are fairly good since the
introduction of physical insights in chapter [4, we observe PP-NeRF giving
only a marginal improvement over P-NeRF. Nonetheless, it is worth pointing
out that PP-NeRF is able to recreate grid line that was missed in globe’s
diffuse reflectance in P-NeRF result. For car dataset, the clearer details
are observed in geometry estimation and specular highlights are apparent in
the results provided by PP-NeRF. This leads to realistic looking of the car
when considering mixed reflectance. When coming to real datasets (gnome
and vase), PP-NeRF clearly outperforms our prior models (P-NeRF and 12-
channel NeRF). With PP-NeRF, for the first time, we are able to recreate
the whole object (recalling the vase reconstruction where we missed the mug
handle). Thanks to our technique which fits the rendering directly to raw

measurement, i.e. without first demosaicing, PP-NeRF preserve the fine
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Diffuse Specular Mixed Normals

Scene Method PSNR SSIM PSNR SSIM PSNR SSIM  MAE

1 (dB) ) 1 (dB) ) 1 (dB) ) 1)
bust  NeuralPIL* 23.90 0.87 18.04 0.87 26.71 0.87 15.36

PhySG* 2264  0.94 23.00 0.94 19.94 072 981
PANDORAT 25.82 081 2296  0.75 2279 079  3.91
NeuS* N/A  N/A N/A  NJ/A 2809 085 853
PP-NeRF  37.59 0.999  32.01 0.983  32.72 0.962 0.4290

globe NeuralPIL*  13.09  0.55 12,92 0.55 20.04 066  38.73
PhySG* 2176 0.76 18.90  0.76 17.93 070  8.42
PANDORAT 2433  0.77 2270 0.89 21.76 081 141
NeuS* N/A  N/A N/A  N/A 2357 081  3.72

PP-NeRF 36.58 0.975 29.98 0.958 30.25 0.939 0.1144

Table 5.1. Quantitative evaluation on PANDORA [19] synthetic image bench-
mark. * = method is given access to ground truth demosaiced RGB images. | =
method is given access ground truth demosaiced 12 channel RGB /polarisation im-
ages. No smoothness loss is applied to show performance without demosaicing
benefits i.e. 12-time more input.

Diffuse Specular Mixed Normals
Scene Loss Element PSNR SSIM PSNR SSIM PSNR SSIM MAE
1(B) t  1@B) 1 @B 1 1()

bust all 37.95 0.999 32.29 0.984 35.04 0.964 0.3453
no smoothness loss  37.64 0.999 32.05 0.983 34.74 0963  0.4322

no theta loss 37.88 0.999 32.39 0.984 35.14 0.964 0.3460

globe all 36.83 0.976 30.04 0.959 30.32 0.940 0.1035
no smoothness loss  36.64  0.975 30.03  0.958 30.27  0.939  0.1159

no theta loss 36.61  0.975 30.00 0.958 30.23 0.938 0.1072

Table 5.2. Quantitative ablation study on PANDORA [I9] synthetic image
benchmark.

details of gnome’s beard that is missed in reconstruction from PANDORA.
Figures and show the ablation study, visualising the effects of
losses introduced in this chapter. As expected, theta loss plays a minor
role in geometric reconstruction (see Table for comparison) so the results
without theta loss are very similar to the results with all losses. The marginal
changes in reflectance renderings, as measured by PSNR and SSIM, are too
small and thus hard to observe with bare human eyes. Smoothness loss, on
the other hand, help reducing texture baking. For instance, the undesired

texture at the middle of the mug (in vase dataset) becomes less visible when
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the model is trained with smoothness loss.

Benefiting from hash-grid [62] and proposal network [6], our model con-
verges rapidly within 30 minutes on NVIDIA A40 (compared to 15 hours
of NeuS trained on NVIDIA RTX2080Ti). We show the convergence be-
havior in Fig. [5.15] A rough structure of the subject is formed within the
first 350 iterations. The rendered normal map at 5k iteration is similar to
that at 20k, implying the convergence point. To demonstrate the benefit of
training on raw measurements, we conduct the ablation shown in Fig. [5.16]
Demosaicing unintentionally mixes diffuse and specular radiances by spread-
ing specularities into diffuse regions and vice versa. This leads to a specular
artefact around the chin. Moreover, the model trained on raw measurement
preserves high-frequency details which are blurred when compared to a coun-

terpart trained on demosaiced images.

5.5.2 Under uniform illumination (lightstage)

For lightstage capture, we use CPFA cameras from 15 viewpoints simultane-
ously providing a sparser input than for the static objects above. Uniform
spherical illumination is provided by a geodesic dome comprising 160 nodes
each supporting 9 LEDs set at full brightness. We extract meshes from the
reconstructed SDF as follows. First, we construct an oriented point cloud
by projecting all pixels by their expected termination depth [I5] (filtering
pixels with low accumulation values) and refining to ensure they lie on the
zero level set. We evaluate the SDF gradient to determine normals. Second,
we reconstruct a mesh using Poisson surface reconstruction [34]. Finally, we
transfer the diffuse and specular albedos to texture maps using xatlas.

As shown in Fig. [5.13] we demonstrate results for three faces. Column 1
shows one raw CPFA view for each face. Columns 2 — 4 present the learned
decomposition: surface normals, diffuse radiance, and specular radiance, re-
spectively. In Column 5, we render the recovered meshes with their material
maps under HDR light-probe illumination[81] using Blender, demonstrating
accurate geometry, albedo, and specular response. Figure compares our
reconstruction with that of a desktop-based facial-capture system [41]. Pose

and grooming of the participant may vary due to different capture days. To
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make a fair comparison, we omit the photometric-normal refinement [41],
and only render both meshes with their diffuse maps and geometric normals.
Across the three images (raw mesh, textured mesh, and HDR-lit render),
our method matches the competing setup in geometric details while requir-
ing only a single-shot polarisation capture.

In conclusion, in this chapter, we address the practicality of P-NeRF
training (chapter [4). This is particularly important when training data is
imperfect e.g. being full of noises and having saturation. Even for synthetic
data which gives a reasonably good result, we also observe a numerical im-
provement. So the losses discussed in this chapter could be universally ap-
plied - no matter how we collect the data - making the training effective
and thus giving the desired results. Lastly, we demonstrate an application
of PP-NeRF in a lightstage setting.
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Mixed Specular Diffuse Normals

Ground truth

PP-NeRF

P-NeRF

12-channel NeRF

N/A N/A

PANDORA

Figure 5.6. Reflectance decomposition and geometry estimation against
ground truth of (synthetic) bust data.
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Specular Diffuse Normals

P-NeRF PP-NeRF Ground truth

12-channel NeRF

Figure 5.7. Reflectance decomposition and geometry estimation against
ground truth of (synthetic) globe data.
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PANDORA [19] PMVIR [95)

Specular

Geometry Diffuse

Figure 5.8. Reflectance decomposition and geometry estimation on (real-
world) car data.
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Specular Diffuse Normals

PP-NeRF

P-NeRF

12channel NeRF

N/A N/A

PANDORA

Figure 5.9. Reflectance decomposition and geometry estimation on (real-
world) gnome data.
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Mixed Specular Diffuse Normals

13334
333

1323

Figure 5.10. Reflectance decomposition and geometry estimation on
(real-world) vase data.

PP-NeRF

P-NeRF

12-channel NeRF

PANDORA
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Ground truth

All

No smoothness loss

No theta loss

Figure 5.11. Ablation study for (synthetic) bust data.
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Figure 5.12. Ablation study for (real-world) vase data.
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Input Normals Diffuse

Rendering

Specular

Figure 5.13. Three facial subjects with different skin-tones. Columns: (1)
raw CPFA view, (2) predicted surface normals, (3) diffuse radiance, (4) specular
radiance, and (5) mesh re-rendered with the recovered material maps under a
distinct HDR light probe for each subject [81]. All images are tonemapped for
display.
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Geometry Geometry + Diffuse Rendering

Figure 5.14. Qualitative comparison of the same subject captured on two
different days. Top row: our pipeline; bottom row: Lattas et al.[41] Column 1
shows the mesh geometry, Column 2 the mesh shaded with the estimated diffuse
albedo, and Column 3 a Blender render under the Pisa Courtyard HDR probe[&1].
Both renders use geometric normals only; the photometric normals of [41] are
disabled. Despite slight pose and appearance changes, the two reconstructions
exhibit comparable geometric fidelity.

350 iter bk iter ZOk iter

Figure 5.15. Convergence rate: geometry after 350 iterations (~2 minutes), 5k
iterations (30 minutes) and 20k iterations (2 hours).
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Train on raw Train on demosaiced

Figure 5.16. Demosaicing ablation: On the left we show diffuse and specular
radiance for our method. On the right we show an ablation where we first demosaic
and then train our method on all channels. Zoom to see blurring artefacts.
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Conclusions

Now this is not the end. It is
not even the beginning of the
end. But it is, perhaps, the end
of the beginning.

Winston Churchill

6.1 Summary

Through this work, we have seen the gradual development of how polarisation
information could improve 3D reconstruction, from using extra information in
black box model to the constraints needed to achieve state-of-the-art result.

We begin this thesis with a literature review in which we compile interest-
ing work in related areas. The discussion is structured into 3 topics including
shape from polarisation, diffuse-specular separation, and neural inverse ren-
dering. We hope these help the readers understanding the importance of
each topic as well as seeing what have been done so far to tackle challenges
in the field.

We start off the Neural Polarised Radiance Fields chapter by laying the
foundation of Neural Radiance Fields (NeRF). NeRF represents a scene,
using 2 networks: spatial and directional MLPs. The NeRF result shows
many promises including reasoning occlusions, knowing the lighting direc-
tion and understanding material properties - hence inspiring us to work with
coordinate-based architecture. Inside NeRF, we discovered a geometric bias

which gives a surface prediction before the casted ray hitting the physical
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surface. The bias was resolved by replacing traditional weight function with
logistic density distribution [84]. Then we accelerate the training pipeline
with proposal network and hash encoding. Finally we investigate the data
format obtained from polarisation camera sensor, and apply NeRF on raw
polarisation images.

Fresnel Equations describe the relationship between surface normal and
polarisation state of light reflected off the surface. This relation has played a
crucial role in Shape-from-Polarisation work for decades. In Polarised Neural
Radiance Fields chapter, borrowing physical insights from the equations, we
combine diffuse and specular polarisation models into a mixed polarisation
model. We show that, to resolve the normal ambiguity, we need polarimetric
information from at least 2 viewpoints. Then we make observations on the
factors contributing to object appearance before parameterising diffuse and
specular MLPs. In essence, via the mixed polarisation model, we capture the
dependence between surface normal, camera pose and unpolarised radiances
to predict polarised radiance.

Even though Polarised Neural Radiance Fields give reasonably good re-
sults, we realise that there are practical issues needed to be tackled. We
address those details in Practical Polarised Neural Radiance Fields (PP-
NeRF) or chapter . In particular, we propose a new color loss which suits
saturated HDR data, a theta loss which encourages SDF network to produce
zenith angle in the valid range, and lastly a smoothness loss which reduces
the effect of noisy capture getting baked into geometry. After implementing
all the losses, our model generalises to wider datasets as well as achieves the
state-of-the-art result on PANDORA benchmark.

6.2 Future Work

6.2.1 Material diversification

The way we develop our mixed polarisation model narrows down the type of
materials that could be used in the pipeline. In particular, our model works
with dielectric materials such as porcelain and human skin. This imposes

limitations which hinder the wider adaptation of this work. We would like
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to expand the scope of possible materials, considering different underlying
physical phenomena and including it into our framework.

In addition to material behavior, we also set a firm assumption of uni-
versally known refractive index. We would like to output spatially-varying
refractive index. This could be done with either extra output of existing

neural networks or constraints imposed by physical laws.

6.2.2 Increase/decrease in constraint on incident light

Our P-NeRF and PP-NeRF only work when the incident light is unpolarised.
While this is true in general, there could be chances where the assumption is
violated. For example, an object captured nearby a lake would get specular
reflection from the lake surface and the incident lighting becomes partically
polarised. Realising this, we want to relax the assumption set on environmen-
tal light. Considering multi-bounced light, NeISF [43] relaxes the assumption
of unpolarised incident light, showing less baking texture compared to PAN-
DORA [19] which assumes single-bounced illumination.

On the other hand, setting stronger assumption could lead to meaningful
result. Smith et al. [75] exploit constant illumination provided by lightstage
to estimate albedo maps. When our object is lit under such environment, our
estimated diffuse reflectance becomes diffuse albedo - an intrinsic property
of material, being independent of the scene.

Last but not least, setting reasonable assumptions and making sure that
the assumptions are satisfied, are crucial to ensure the accuracy of results.
Li et al. [45] show that even randomly polarised light projected on the scene

could alter the prediction of polarisation-based methods.

6.2.3 Scene representations

While SDF is applied in our work, there are various techniques to represent
a scene namely depth maps, surface normals, voxel grids, point clouds and
meshes. These possess their own properties and require different amount
of memory and processing power. In general, points and meshes are the
most common representation due to its explicitness and short rasterising

time. However, neither of them is differentiable and thus does not work with
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neural optimasation (our framework). So, without knowing what task we are

tackling, it is almost impossible to say which representation is the best.

We started our experiments right after the boom of NeRF. Since NeRF
demonstrates the ability to understand the scene geometry and material
inside the scene, we use NeRF as a baseline and incorporate polarimetric
insights on top. With the popularity of NeRF, we have enjoyed different as-
pects of following-up studies e.g. Ref-NeRF [82] using reflected view to ease
the MLP interpolation, instant-NGP [62] exloiting hash encoding to boost
memory efficiency as well as fasten the training time, and proposal network
offered by Mip-NeRF 360 [6].

In addition to NeRF variations, which modify minor elements inside
NeRF, recent works have explored a wider picture of scene representation
- providing alternative baselines for future researchers to work on 3D recon-
struction. One of the highlights is Gaussian splatting [36] which represents
the scene with 3D Gaussian, preserving desirable properties of continuous
volumetric radiance fields for optimization while avoiding unnecessary com-
putation in the empty space. Due to this concept, the authors achieve state-
of-the-art for real-time scene rendering (measured in PSNR) in only 51 min-
utes of training. Neverthelss, popping artifacts usually occur when the order
of primitives changes. Addressing this issue, EVER [50] positions between
Gaussian splatting and NeRF - parameterising the scene with a collection
of anisotropic primitives while allowing 3D consistent volume rendering. In
particular, the scene is represented using ellipsoid which is fully characterised
by a rotation and scale i.e. similar to Gassian representation. While being
slower than Gassian-based representation, EVER is reasonably fast and can

acheive framerate of 30 FPS at 720p on a consumer-grade gpu.

One of the main issues with original NeRF [55] is fuzzy surface obtained
from density fields. While we decided to adopt NeuS for surface reconstruc-
tion ¢.e. SDF with unbiased weight function, Binary Opacity Grids or BOG
[67] is also an interesting alternative. The idea is to employ a discrete opac-
ity grid representation and apply a binary entropy loss to opacity values,
encouraging them to be either zero or one. To avoid floating artifacts when
converting occupancy grid to triangle mesh, volumetric fusion [16, [17] is used.

BOG is considered to be state-of-the-art for surface-based rendering, bridging
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the gap between volume-based and surface-based methods.

Even though mesh is a discrete geometry which, by nature, is not differ-
entiable (unlike implicit representations such as SDF), Sivaram et al. [22]
present Neural Geometry Fields, representing surface using quadrangular
patches and surface details using coordinate neural network by displacing
the patches. The traditional triangular mesh is extracted from neural geom-
etry field by sampling the displacement. This method reduces the memory

footprint of meshes without compromising on surface details.

6.2.4 Scene acquisition protocol

Today, cameras are surrounded us and many people start learning to capture
images as a recreational activity. As we enter a scientific world, there are
certain specifications we need in an image more than just aesthetic purposes.
However, we did not find a scientific description of how a scene should be
captured.

The lack of such a description creates problems in various forms: the
saturation addressed in chapter |5, the scene coverage discussed in section
[6.2.8] the suggestion to have an ArUco board in the scene [84] or the capturing
distance which helps NeRF achieve a good result [5]. Having a descriptive
procedure which does not rely on the person behind the camera, would not
only improve the quality but also create a wider variety of datasets. Ideally,
we wish to see large datasets that could be described with a few parameters

in the suggested capturing procedure.

6.2.5 Different normals for different wavelengths/techniques

Currently we output 1 normal map for 1 viewpoint. This is true under our
assumptions. However, taking into account the properties of light, techni-
cally we should differentiate the normals obtained from different wavelengths
[49]. Particularly, the blue light with short wavelength would scatter close to
surface while the red light with longer wavelength would get scattered deeper
into the surface. This nature of light gives relatively sharper normal maps

when acquired from blue light (compared to red light).
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Moreover, due to different phenomenas of diffuse and specular reflections,
we should also add specular normals on top of 3 RGB normals. Although 1
normal could well serve our purpose of 3D reconstruction, specific normals
for each phenomena/color would improve plausibility when rendering with

physics-based engine.

6.2.6 Wider range of wavelength

In all of our experiments, we do not care whether the properties of mate-
rial would change or not under our lighting environment. Nonetheless, in
certain circumstances, the material properties could be important and we
want to preserve the quality of the captured object. A basic example is food
where vitamin C decays at different rate under different lighting [9§]. In the
abundance of alternatives, food might not sound appealing, considering the
needs of special equipment. However, when dealing with valuable assets (e.g.
painting by renowned artist) or museum collections (e.g. stuffed animal);
fading, discoloration and embrittlement should be avoided at all costs, and
different range of light could be an option to capture these objects of high

value.

In addition to preserving material properties, the extended range of wave-
length could be applied to transparent objects (to human eyes). For instance,
a marine biologist could estimate the shape of Barreleyes (transparent fish
in the deep ocean) through our technique with the light in different range.
Our methods also fail when encountering an emissive object e.g. glow stick
in concerts and dance clubs. Again, avoiding the visible light and instead

capturing the light in different range could work well in such scenario.

Last but not least, Thermal-NeRF [90] shows a better performance (com-
pared to NeRF) when dealing with infrared rather than visible light. As a
result, we are interested to see the performance of our models when expand-
ing the captured range of light. Especially, as our methods employ 1 channel
per pixel, we are keen to see the tradeoff between sparse input and rich color
information. This insight might lead to different design of future camera

sensor in specific domains.
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6.2.7 Polarimetric filter array

Since the invention of photography, over the centuries, we have seen the
continuous development of cameras from sophisticated experiments of chem-
ical substances in the early days, to the digital devices in the present. One
aspect of this advancement is the color filter array which gives color to a
black-and-white image (after demosicing). There are a number of filters be-

ing developed:

e Bayer filter was invented by Bryce Bayer in 1974. The entire array
is spreaded over 2x2 pixels accounted for 25% red, 50% green and 25%
blue, or often known as RGGB.

e RGBE replaces the green in Bayer filter with emerald denoted by
"E”. Sony, the developer, claimed that the fourth color was used to
reduce color reproduction errors. Nevertheless, this filter only made
one appearance in Sony Cyber-Shot DSC-F828, indicating a hidden

flaw and becoming obsolete.

e Fujifilm X-Trans was developed by Fujifilm and have been used in Fu-
jifilm X series. Unlike traditional 2x2 pattern, Fujifilm X-Trans features
a unique 6x6 pattern of photosites. The array is claimed to minimise

moire artefacts.

¢ Quad Bayer was introduced by Sony. The Bayer 4x4 pattern, where
the 2x2 adjacent pixels are the same color, improves cameras’ per-
formance in the dark. The 2x2 group could be processed together,
essentially behaving as a larger pixel, hence having more light on the

Sensor.

Today, we only see the first generation of polarisation cameras. Similarly
to color filter array, polarisation filter array would encounter differentiations
to suit particular tasks. In our case, we would like to run similar experiments
with different polariser arrays to see its effect on 3D reconstruction.

Regardless of technology advancement, the design of camera sensors gen-

erally involves a trade-off between richer information on the image and lower
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image resolution. Demosaicing is the algorithm to restore the lost informa-
tion that was not captured by camera sensor. As machine learning becomes
mature, recent demosaicing methods start learning from image collections
and create prior to predict the missing information in the arranged filter.
Kurita et al. [39], using a sparse polarisation sensor, propose Stokes Network
Architecture which consists of a refinement for RGB images and compen-
sation network for polarisation information. By allowing the non-polarised
pixels to gain more exposure and augmenting Stokes Vectors with compen-
sation network, the sensor output achieves higher peak signal-to-noise ratio
as well as lower angular error in AoLP, when compared to the output from

conventional polarisation sensors.

6.2.8 Appropriate metrics

Since one of our primary goals is 3D reconstruction, it is crucial to report
the accuracy of reconstructed mesh. However, we show none of them in this
thesis. Why? The metrics designed to compare 2 meshes would mislead the
readers when the object is only observed from some viewpoints i.e. some
parts of the object are not captured in the dataset. Unless coupling with
3D inpainting task, we decided to report only the error in normal maps e.g.
Mean Angular Error (MAE), and not mesh metrics e.g. Hausdorff Distance
(HD).

Nevertheless, metrics are informative when correctly applied. For exam-
ple, both PSNR and SSIM are metric for image but each of them serves
different purpose: PSNR checking absolute error, whereas SSIM reporting
visual similarity. Therefore, in the future, we wish to see a mesh metric that
conditions on scene coverage rather than the whole mesh. Seitz et al. [71]
provides a discussion on mesh evaluation, which is categorised into the ac-
curacy and completeness. Instead of detecting and removing the error due
to incomplete mesh, the authors’ suggestion is to augment the mesh to the
completion ¢.e. a hole-filled mesh, and then exclude the augmented parts

when calculating the accuracy metric.
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