
 

Gene Expression Patterns 

in Human Prostate Stem 

Cell Differentiation 

 

 

Emma Elizabeth Oldridge 

 

 

PhD 

 

 

 

University of York 

 

Department of Biology 

 

 

 

September 2012 



  

                      2  

 

 

 

 

The identification of phenotypic differences between stem cells (SCs) and their more 

differentiated counterparts is crucial for designing novel SC-based therapeutics for prostate 

cancer (CaP). RARRES1 and LXN were identified as two homologous genes whose expression 

was highly significantly down-regulated in the SC fraction compared to more differentiated 

epithelial cells. The overall aim of this study was to investigate the expression, regulation and 

function of the SC-silenced genes RARRES1 and LXN, and their potential interacting partner 

CPA4 in prostate epithelial differentiation and CaP.  

 

We showed that RARRES1 and LXN were SC-silenced genes, whose expression was induced 

by the pro-differentiation agent all-trans retinoic acid (atRA). AtRA induced expression to a 

higher extent in the most differentiated cells than the SC fraction, suggesting that this sub-

population was less responsive to atRA. Importantly, siRNA suppression of RARRES1 and LXN 

enhanced the SC properties of primary prostate cultures, as shown by a significant increase in 

their colony forming ability. Expression of both RARRES1 and LXN was co-ordinately repressed 

by DNA methylation in CaP cell lines and inhibition of RARRES1 and LXN increased the 

invasive capacity of primary prostate cultures, which also fully rescued an inhibitory effect 

induced by atRA. Despite their homology and adjacent location on chromosome 3, we provide 

evidence that RARRES1 and LXN reside within different sub-cellular compartments; RARRES1 

is not a plasma membrane protein as previously supposed but is located in the endoplasmic 

reticulum, while LXN is localised to the nucleus of prostate epithelial cells.  

 

These data provide novel results identifying two potential tumour suppressor genes as co-

ordinately regulated, SC-silenced genes that function to suppress the invasion and colony 

forming ability of CaP cells. Work now should be focussed on determining whether re-

administration of RARRES1 and LXN would be a valid differentiation strategy for the treatment, 

and potentially eradication, of CaP. 
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1.1. Prostate anatomy  

 

The human prostate is a small glandular organ located at the base of bladder, surrounding the 

urethra. The prostate has an important role in the male reproduction system, producing a 

slightly alkaline fluid containing protein secretions essential for sperm function, such as 

polyamines, prostatic acid phosphatise (PAP) and prostate specific antigen (PSA). The walnut-

shaped gland is a lobar structure composed of four distinct anatomical regions (McNeal, 1981) 

(Figure 1): 

 

 The anterior peripheral zone (PZ) is the largest of the zones and surrounds the 

urethra.  

 The posterior central zone (CZ) is the second largest zone, forms the majority of the 

prostatic base and contains the ejaculatory ducts.  

 The transitional zone (TZ) surrounds the urethra and represents only 5% of the 

prostatic volume, yet is the exclusive zone where benign prostatic hyperplasia (BPH) 

occurs. 

 The anterior zone (AZ) is composed of muscular and fibrous tissue but lacks any 

glandular structures. 

 

 

 

 

The prostate undergoes a considerable amount of growth and differentiation during 

development in the embryo, the first year of life and during puberty. In the embryo, the prostate 

develops from the urogenital sinus in response to testosterone stimulation, to form multi-layered 

epithelium surrounded by stroma. Epithelial growths then invade the stromal compartment to 

produce branched ductal structures, which form the immature acini. During puberty, the multi-

layered epithelium differentiates to produce a mature epithelium bilayer under the influence of a 

testosterone surge. 

 

The onset of prostate development is mainly dependent on the presence of androgens (Cunha 

et al., 1987), although, exposure to oestrogens can alter prostate development by modifying the 

expression of genes such as NKX3.1 and HOX13 (Huang et al., 2004; Prins and Putz, 2008). 

Retinoids also function to control the proliferation and differentiation of prostate epithelium 

(Peehl et al., 1993; Seo et al., 1997). 

 

1. INTRODUCTION 

1.1.1. Prostate development 
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Figure 1. Schematic of the anatomical zones of the human prostate gland.  
The adult prostate gland encapsulates the initial 3 cm of the urethral tube descending from the 
bladder, linking the urethra and ejaculatory ducts at a junction called the verumontanum. Little if 
any disease develops in the central zone, which houses the ejaculatory ductal tube from the 
vesicular seminalis. The peripheral zone surrounds the descending penile urethra and is the 
primary site of pre-cancerous and cancerous lesions. The transition zone is the only site of BPH 
and houses the transitional urethra composed of descending bladder and prostatic urethral 
sections. Modified from (Schauer and Rowley, 2011).  
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1.2. Disorders of the prostate 

 

Three of the four zones within the prostate are composed of epithelial glandular structure and 

are susceptible to a number of different disorders of the prostate: 

 

1) Prostatitis  

 

This is the most common disorder, which arises principally in the CZ, due to inflammation of the 

prostate gland. This inflammation can be caused by acute and chronic bacterial infections or 

non-infectious causes such as stress, autoimmunity or physical injury. The incidence rate of 

prostatitis in adult men is 2-10% (Krieger, 2004). Evidence suggests that inflammation of the 

prostate is a major contributory factor to the initiation of BPH in older men (Lee and Peehl, 

2004; Kramer and Marberger, 2006; Kramer et al., 2007; Nickel, 2008; Sciarra et al., 2008). 

 

2) Benign Prostatic Hyperplasia (BPH)  

 

This age-related disease is characterised by non-malignant hypertrophy in the gland, which 

originates exclusively in the TZ. Trans-urethral resections of the prostate (TURP) are often 

carried out in patients with BPH to alleviate symptoms associated with an enlarged prostate, 

such as increased frequency of urination due to pressure on the bladder or constriction of the 

urethra (Schroder and Blom, 1989) (Figure 2). 

 

3) Prostate Intraepithelial Neoplasia (PIN)   

 

PIN represents the pre-invasive end of the continuum of cellular proliferations within the 

prostatic epithelium and is most commonly found in the PZ of the prostate (Bostwick et al., 

2004). It is characterised by cellular proliferations within pre-existing ducts and acini with 

cytologic changes mimicking cancer, including nuclear and nucleolar enlargement (Bostwick et 

al., 2004). As in cancer, abnormal cellular proliferation occurs causing destruction of the bi-

layered basal-luminal cell stratification, but the basement membrane remains intact. High-grade 

PIN is considered a precursor to prostate cancer (CaP), which develops in the majority of 

patients after 10 years (Sakr et al., 1993; Bostwick et al., 2004) and a number of studies have 

found a high predictive value of PIN for CaP (Table 1).  

 

4) Prostate Cancer (CaP) 

 

The PZ comprises 70% of the prostate mass and is the site where the majority of malignant 

prostate adenocarcinomas are believed to initiate. The remaining cancers originate in the CZ or 

TZ. CaP will be discussed in more detail in Section 1.4.  
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Number of 

men 

Patients with cancer on 

repeated biopsy (%) 

Reference 

100 35 (Davidson et al., 1995) 

48 47.9 (Raviv et al., 1996) 

53 27 (Langer et al., 1996) 

66 58 (Shepherd et al., 1996) 

43 51 (Park et al., 2001) 

245 32 (Kronz et al., 2001) 

88 43 (Igel et al., 2001) 

104 22 (Vukovic et al., 2003) 

190 30.5 (Gokden et al., 2005) 

423 36 (Marshall et al., 2011) 

336 23 (Schlesinger et al., 2005) 

 

Table 1. Cancer detection in patients with high-grade PIN. 
Adapted from (Bostwick et al., 2004). 
 
 

 

 

 

 

 

 
Figure 2. Schematic illustration of the normal prostate and BPH.  
(a) Normal prostate. (b) BPH causes uncontrollable cell proliferation resulting in an enlarged 
prostate. This presses on the urethra and bladder affecting the upper part of the urethra, 
causing a reduction in urinary flow. Adapted from (National Cancer Institute). 
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1.3. Cellular organisation of the prostate epithelium  

 

The normal, mature, human prostate shows a high level of cellular organisation. Three 

phenotypically distinct cell types are apparent within an epithelium bilayer: secretory luminal 

cells, relatively undifferentiated basal cells and rare, scattered neuroendocrine (NE) cells 

(Figure 3). The prostate gland is dependent on androgens for its development and growth, and 

so the integrity of prostatic epithelium is predominantly androgen-dependent. In contrast, the 

basal compartment is androgen-independent, but androgen-responsive, whereby androgens 

are not required for the survival of these cells.  

 

The undifferentiated basal layer is the most proliferative compartment, lacks any secretory 

activity and adheres strongly to basement membrane (BM), which provides a structural barrier 

between the epithelium and the underlying stromal compartment. Basal cells express p63 

(Signoretti et al., 2000), CD44 (Liu et al., 1997) and low levels of androgen receptor (AR). The 

compartment also displays expression of mitosis suppressors, like p27
kip

 and markers of cell 

proliferation, such as c-Met (van Leenders et al., 2003). Basal cells also express the oestrogen 

receptor (ER)β and proliferate under oestrogen therapy (Aumuller, 1983), but this effect on 

proliferation could equally be attributed to ER signalling via the stroma (Risbridger et al., 2010).  

 

A stromal cellular compartment lies beneath the BM which secretes growth factors, such as 

epidermal growth factor (EGF) and fibroblast growth factor (FGF) and a proportion of stromal 

cells are androgen-responsive and express AR. The crucial role of the prostatic stromal cells in 

determining cell fate within the epithelium cannot be discounted, stromal cells are responsible 

for directing epithelial cell development, maintenance and differentiation (Hall et al., 2002; Berry 

et al., 2008). 

 

The columnar luminal layer overlies the basal layer and in contrast, is composed of terminally 

differentiated epithelial cells which are the ‘factory’ within the epithelium, generating secretory 

products like PSA and PAP. They express CD57 (Signoretti et al., 2000), are dependent on 

androgens for their survival (Kyprianou and Isaacs, 1988) and consequently express high levels 

of AR (Bonkhoff and Remberger, 1993). Basal and luminal cell types can be discriminated on 

the basis of their expression of specific cytokeratins (CK). For example, basal cells express CK 

5 and CK 14, whereas CK 8 and CK 18 are predominantly expressed by the luminal cells 

(Sherwood et al., 1991). 

 

A small proportion of terminally-differentiated and androgen-insensitive NE cells are scattered 

throughout the epithelium bilayer (Bui and Reiter, 1998), which secrete NE peptides, such as 

bombesin, calcitonin, and parathyroid hormone-related peptide (Rumpold et al., 2002).  Despite 

the fact that NE-like cells are routinely found in CaP, with increased prevalence in late stage 

metastatic disease (Abrahamsson et al., 1989; Bohrer and Schmoll, 1993; Jiborn et al., 1998; 

Ahlgren et al., 2000; Huang et al., 2006), their precise function is unknown. The relationship of 
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NE cells to basal and luminal cell types has remained unclear, although current evidence 

suggests that they represent a post-mitotic cell type that is derived from luminal secretory cells 

(Bonkhoff et al., 1991; Bonkhoff et al., 1994; Bonkhoff et al., 1995).  

 

 

 

 

 

 

Figure 3. Organisation of the normal prostate.  
(a) The bi-layered prostate consists of an undifferentiated basal layer of cells and a 
differentiated luminal layer of cells. (b) Within the basal layer resides the rare population of stem 
cells and scattered neuro-endocrine cells. Modified from (Collins and Maitland, 2006; Oldridge 
et al., 2012).  
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Stem cells (SCs) are defined by two fundamental properties: self-renewal (the ability to maintain 

an undifferentiated state through numerous cell divisions) and multipotency (the potential to 

differentiate into various specialised cell types). Compared to totipotent embryonic SCs, which 

have the potential to differentiate into any tissue in the body, multipotent adult SCs have limited 

differentiation potential and are committed to differentiate along the specific lineages of the 

tissue in which they reside. The slow cycling prostate SC is often maintained in a quiescent 

state for prolonged periods. Upon entry from G0 phase into the active cell cycle, SCs can 

undergo asymmetric or symmetric division to maintain, deplete or increase SC numbers (Figure 

4) (Morrison and Kimble, 2006).  

 

Haematopoietic SCs (HSCs) were the first adult SC to be isolated and consequently have been 

the focus of the majority of SC biology in previous years (Baum et al., 1992). Only more recently 

have adult SCs in the slow-growing prostate been recognised (Hudson et al., 2000; Collins et 

al., 2001).  

 

Adult SCs possess several distinctive features, on the basis of which they can be identified. 

They usually represent a small subpopulation of quiescent cells with a large nuclear: 

cytoplasmic ratio. They can be induced to proliferate by precise stimuli generated by the SC 

niche or imported soluble factors (Watt and Hogan, 2000) and have a high proliferative 

potential. Moreover, adult SCs give rise to rapidly proliferating transit-amplifying (TA) cells that 

then commit to differentiation (Miller et al., 2005a). 

 

The first convincing demonstration that a population of long-lived androgen-independent SCs 

exist within the prostate epithelium originated from androgen cycling experiments in the rodent. 

These experiments demonstrated that, upon androgen withdrawal (castration) the prostate 

involuted, leading to apoptosis of the majority of luminal (androgen-dependent) cells. Some of 

the basal cells survived and were responsible for the regeneration of the prostate once 

androgens were re-administered some time later (English et al., 1987; Evans and Chandler, 

1987; Kelly and Yin, 2008). These results led Isaacs and Coffey to hypothesise that a 

population of long-lived androgen-independent SCs must exist and proposed a SC model for 

the organisation of the prostate epithelium (Isaacs and Coffey, 1989) (Figure 5). These 

epithelial SCs reside within a ‘SC niche’, which provides the support and signals necessary for 

continued maintenance of this rare cell type (Miller et al., 2005b).  

 

Human prostate epithelial SCs were originally identified and isolated by taking into account their 

association with BMs. These putative SCs were shown to express higher levels of α2β1-integrin 

(α2β1-integrin
high

)
 
compared to other cell populations in the CD44

+
 basal layer and consequently 

were isolated on the basis of their adhesion to type I collagen (Collins et al., 2001). Later, it was 

shown that a small subset of these basal α2β1-integrin
high

 cells also expressed the human 

1.3.1. Prostate epithelial stem cells 
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CD133 cell surface antigen (α2β1-integrin
high

CD133
+
) (Figure 6). This small α2β1-

integrin
high

CD133
+
 quiescent

 
population constituted <0.1% of cells and exhibited important SC 

characteristics: they had a high proliferative potential in vitro and could reform functional 

prostate acinar structures in vivo (Richardson et al., 2004). Molecular characterisation of these 

cells revealed that they did not express AR at mRNA level (Maitland et al., 2011b), indicating 

that they were not dependent on androgens for their survival, nor were they androgen-

responsive.  

 

 

 

 

 

 

 

 

 

 
Figure 4. Stem cells can undergo asymmetric or symmetric division.  
(a) Asymmetric division results in one daughter SC and a differentiated TA progenitor cell, (b) 
symmetric division produces either two identical daughter SCs or (c) two identical TA cells; the 
divisions maintain, deplete or increase SC numbers respectively.  
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Figure 5. Stem cell model for the organisation of the prostate epithelium.  
In the absence of androgens, SCs within the basal layer give rise to TA cells which differentiate 
in the presence of androgen to secretory luminal cells. Adapted from (Collins and Maitland, 
2006).  
 

 

 

 

 

 

 

 

 

Figure 6. Fractionation of basal prostate epithelial cultures.  

Cells can be separated into committed basal cell (CB; α2β1-integrin
low

), TA cell (α2β1-

integrin
high

CD133
-
) and SC (α2β1-integrin

high
CD133

+
) populations based on the expression of 

α2β1-integrin and CD133.  
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A number of observations strongly support the hypothesis that basal and luminal cells within the 

prostatic epithelium are linked in a hierarchical pathway, which is most accurately described as 

a continuum of cells with different stages of change and different proliferative potentials. The 

basal compartment possesses a further level of cellular heterogeneity, consisting of several cell 

types with variable differentiation states (Figure 7).  

 

1) The SC model for the organisation of the prostate epithelium initially suggested that 

three discernible cell types were arranged in an expanding hierarchy: a SC, a TA cell 

(shares basal characteristics with the SC, but is cycling) and a differentiated cell (Isaacs 

and Coffey, 1989). The model proposed that within the adult prostate epithelium, a 

population of androgen-independent multipotent SCs exist in the basal compartment. 

These are able to give rise to all populations within the epithelium through a hierarchical 

pathway to androgen-responsive TA cells, which in turn are driven to differentiate to 

androgen-dependent luminal cells by circulating androgens and stromal factors 

(Bonkhoff and Remberger, 1996). 

 

2) CK expression patterns have also provided evidence of epithelial cells within the normal 

prostate that are phenotypically intermediate between basal and luminal cells. A TA 

subpopulation of basal cells have been identified that co-express both basal and luminal 

cytokeratin markers (Verhagen et al., 1988; Verhagen et al., 1992; Robinson et al., 

1998; Xue et al., 1998; Hudson et al., 2001; Lang et al., 2001; van Leenders et al., 

2001).  

 

3) The late differentiation stage PSA-Pb promoter was activated in differentiated cells, 

derived from primary prostate SCs transduced with lineage-tracking lentiviruses, 

demonstrating the capacity of the basal SC to differentiate through a hierarchy of cells 

(Frame et al., 2010).  

 

4) Most recently, in situ lineage tracking studies of human prostate tissues show that all 

the prostate epithelial cell types have a common clonal origin (Blackwood et al., 2011; 

Gaisa et al., 2011). 

 

 

 

1.3.2. Epithelial hierarchy within the prostate epithelium 
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Figure 7. Hierarchical pathway of human prostate epithelium.  
Predominantly quiescent SCs produce proliferating TA progeny, which mainly commit to 
differentiation producing CB cells. CB cells then further differentiate to secretory luminal cells 
which are largely senescent. Adapted from (Oldridge et al., 2012). 
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1.4. Prostate cancer 

 

CaP is regarded as a slow-growing proliferative disease. However, the aetiology of CaP is still a 

matter of debate, which can be attributed to the high level of heterogeneity seen in the disease. 

In addition to PIN being considered a precursor to CaP, Proliferative Inflammatory Atrophy (PIA) 

is hypothesised to give rise to CaP, either directly (Franks, 1954), or indirectly via development 

into PIN (De Marzo et al., 1999). PIA was a term proposed by De Marzo et al. (1999) to 

designate discrete foci of proliferative glandular epithelium with the morphological appearance 

of simple atrophy (Ruska et al., 1998) or post-atrophic hyperplasia (Cheville and Bostwick, 

1995), occurring in association with inflammation. 

 

CaP is characterised by an imbalance of the differentiation process that leads to the 

accumulation of aberrantly differentiated luminal cancer cells (Nagle et al., 1987). As the 

disease progresses to adenocarcinoma, a number of characteristics are apparent: 

 

 Tissue architecture of the prostate begins to degrade (Gleason, 1966). 

 Loss of the characteristic glandular structure. 

 Destruction of the BM. 

 Considerable decrease in basal cells (<1%). 

 AR
+
 luminal cells constitute the majority of cells (>99%) (Grisanzio and Signoretti, 

2008). 

 Luminal cells are highly proliferative in the diseased state (De Marzo et al., 1998). 

 

 

 

 

There are two main models which may explain the initiation and development of CaP. The 

prevailing model views the tumour as a homogeneous tissue with every cell type possessing 

the ability to initiate tumour formation. A minimum of two independent mutation events within the 

cell would be required to initiate tumourigenesis. Traditional CaP treatments work on the basis 

of this model.  

 

A series of transplant experiments initially proved that cancers are composed of a 

heterogeneous population of cells, which differ in their potential to self-renew and reconstitute 

the original tumour upon transplantation (Brunschwig, 1961; Bruce and Van Der Gaag, 1963; 

Hamburger and Salmon, 1977; Sabbath and Griffin, 1985). These early observations led to the 

SC hypothesis, which states that within a heterogeneous tumour cell population there exists a 

rare subset of ‘cancer SCs’ (CSCs) with tumour-initiating and sustaining characteristics. 

 

The SC hypothesis is the more widely accepted view of the initiation of cancer and a number of 

studies have demonstrated that sub-populations of tumour cells from a number of tissues, 

1.4.1. Cancer stem cells 
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including the prostate (Collins et al., 2005), have CSC characteristics (Table 2). The majority of 

these putative CSCs have been identified using normal SC markers, suggesting that CSCs and 

their normal SC counterparts share many phenotypic markers. In fact, CSCs are analogous to 

normal SCs in that they both have extensive proliferative potential, the ability to give rise to new 

tissues and can divide symmetrically and asymmetrically (Reya et al., 2001). Unlike the bulk of 

the cells in a tumour, SCs have a high capacity for self-renewal, enabling them to be maintained 

throughout the life time of a host. This allows them to acquire the multiple mutational hits 

required for the development of cancer (Vogelstein and Kinzler, 1993).  

 

 

 

 

 

 

 

 

Tissue Reference 

Haematopoietic system (Bonnet and Dick, 1997) 

Breast (Al-Hajj et al., 2003) 

Brain (Singh et al., 2003; Singh et al., 2004) 

Multiple myeloma (Matsui et al., 2004) 

Pancreas (Li et al., 2007) 

Liver (Ma et al., 2007) 

Colon (Ricci-Vitiani et al., 2007) 

Head and neck squamous cell carcinoma (Prince et al., 2007) 

Lung (Eramo et al., 2008) 

Ovary (Zhang et al., 2008) 

Melanoma (Fang et al., 2005; Schatton et al., 2008) 

Endometrium (Rutella et al., 2009) 

Bladder (He et al., 2009) 

Cervix (Feng et al., 2009) 

 

Table 2. Cancer stem cells have been discovered in a number of different tissues. 
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It has been the prevailing view that the CSC in CaP arises from the androgen-dependent AR
+
 

luminal compartment, as this constitutes the majority of cells in CaP. Studies in murine models 

have shown that CaP can indeed arise from luminal cells (Ma et al., 2005; Korsten et al., 2009; 

Wang et al., 2009). Other studies suggest that CaP is derived from intermediate progenitors that 

have acquired the ability to self-renew (Verhagen et al., 1992; van Leenders and Schalken, 

2001). However, there is consistently strong evidence from several independent studies 

supporting the proposal that the disease arises from a SC population residing in the basal 

compartment (Collins et al., 2005; Brown et al., 2007; Hurt et al., 2008; Goldstein et al., 2010; 

Liao et al., 2010; Rajasekhar et al., 2011). 

 

Human prostate CSCs have been identified and isolated in our lab from different grades of 

human prostate CaP biopsies, based on the expression of normal epithelial SC markers 

(CD44
+
α2β1

hi
CD133

+
) and constituted only 0.1% of cells in the tumour (Collins et al., 2005). Only 

this most primitive cell population was able to self-renew in vitro. Moreover, under differentiating 

conditions, AR
+ 

PAP
+ 

CK 18
+
 luminal cells could be identified in these cultures, suggesting that 

they were derived from the more primitive population.  

 

Aldehyde dehydrogenase (ALDH) has also been used as a marker for cancer stem/progenitor 

cells in human CaP cell lines (Yu et al., 2007a) and in the murine prostate (Burger et al., 2009). 

A subpopulation of human CaP PC-3M cells with high ALDH activity (ALDH
hi
α2/α6/αv-

integrin
+
CD44

+
) showed both enhanced clonogenicity and invasiveness in vitro and enhanced 

tumourigenicity and increased metastatic ability in vivo (van den Hoogen et al., 2010).  

 

Results from the murine CaP models suggest the co-existence of multiple CSCs in the mouse. 

However, the current evidence is overwhelming in the human system, in implicating a basal cell 

as the CSC for human CaP. The ultimate evidence for CSC properties is serial 

xenotransplantation. Our own recent experiments (Maitland et al., 2011b) have confirmed that 

the strongest tumour initiating fraction, where fewer than 100 cells are required to initiate new 

tumour growth in immuno-compromised mice, has a purely basal phenotype.  

 

Long-lived prostate SCs are considered excellent candidates for the CSC as they are the only 

cell within a tumour that has the capacity for extensive self-renewal and regeneration (Leong et 

al., 2008). These properties permit their maintenance over the lifetime of the host, facilitating the 

accumulation of the essential genetic and epigenetic changes. In contrast to the SCs, there is 

less opportunity for mutations to accumulate in the shorter-lived differentiated cells. 

 

 

 

  

1.4.2. Prostate cancer stem cells 
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CaP is the most commonly diagnosed cancer in men in the UK, accounting for over a quarter of 

all new male cancer diagnoses (Figure 8a) and attributable for 13% of cancer-related deaths in 

males in 2009, second only to lung cancer (Figure 8b). CaP incidence dramatically increases 

with age; over 95% of all diagnoses occur in men over the age of 60 (Figure 8c).  

 

Familial CaP is an hereditary disease which accounts for 10-20% of all cases of the disease in 

the general population (Stanford and Ostrander, 2001). It is commonly defined as a family in 

which there are: 

1) two first-degree (father, brother, son) relatives or 

2) one first-degree and at least two second-degree (grandfather, uncle, nephew, half-brother) 

relatives with CaP.  

 

Hereditary CaP, a subset of familial CaP, may account for 5-10% of all cases of the disease in 

the general population (Stanford and Ostrander, 2001). It describes families in which there is a 

pattern of Mendelian inheritance of rare susceptibility genes, characterised by at least one of 

the following criteria:  

1) three or more first-degree relatives with CaP, 

2) three successive generations with CaP or 

3) two siblings with CaP diagnosed at <55 years.  

 

The last 20 years have seen a vast increase in CaP incidence, primarily due to the introduction 

of serum testing for PSA levels and an increase in male life expectancy (Quinn and Babb, 

2002). However, since the early 1990s, mortality rates have overall decreased (Office for 

National Statistics; General Register Office for Scotland; Northern Ireland Statistics and 

Research Agency), which could also be attributed to PSA testing (Office for National Statistics). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4.3. Epidemiology of prostate cancer 
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Current screening and diagnosis of CaP relies on the quantification of PSA levels in serum 

(Placer and Morote, 2011). In the normal prostate, PSA functions as a serine protease to 

maintain the fluidity of seminal fluid (Lilja, 1985). However, increased serum levels of PSA is 

linked to CaP progression (Hudson et al., 1989). The PSA test is not infallible, with a 5% rate of 

false positives and 2% rate of false negatives (Brawer, 1999). By requesting that all participants 

undergo biopsy, the Prostate Cancer Prevention Trial (PCPT) has determined the 

specificity and sensitivity of PSA testing. Among 5112 men in the placebo arm of this trial, a 

PSA level >4 ng/ml (the traditional threshold level) had a specificity of 93% and a sensitivity of 

24% (Thompson et al., 2006; Lilja et al., 2008). PSA occurs in blood in stable complexes with 

protease inhibitors (complexed PSA; cPSA) or as free PSA (fPSA). Calculating the percentage 

of non-complexed fPSA has shown evidence of increasing the diagnostic accuracy, compared 

to detecting total PSA levels (Catalona et al., 1998; Morote et al., 2002).  

 

The major issue surrounding the use of PSA as a diagnostic marker is that PSA shows 

detectable expression levels in other tissues, including breast, lung and ovary (Smith et al., 

1995).  Also, high PSA levels can be the result of other conditions including PIN, inflammation 

or infection (Ferrero Doria et al., 1997) and a proportion of men exhibiting ‘normal’ PSA levels 

do have CaP (Thompson et al., 2004). Consequently, the use of PSA levels as a diagnostic test 

should be approached with caution, and combined with further tests for accurate diagnosis.  

 

Once high PSA levels in the serum is diagnosed, multiple biopsies are taken and the tissue is 

most commonly graded according to the Gleason tumour grading system (Figure 9) (Gleason, 

1966; Gleason, 1992). According to this Gleason grading system, two areas of the tissue with 

the most prevalent grade are given a score between one and five. The score is then added 

together to give a Gleason score between two and ten. This method of histologically grading 

prostate tissue biopsies following diagnosis is used to identify optimal treatments. Recently, the 

Gleason grading system was upgraded to accommodate changes in the Gleason system and 

achieve a consensus (Epstein, 2010). The modified Gleason system proposed that Gleason 

grades 2-4 should rarely be diagnosed on needle biopsy (Epstein, 2000), all cribriform cancer 

designated as Gleason grade 4 and poorly formed glands should also be designated as 

Gleason grade 4. 

  

1.4.4. Diagnosis of prostate cancer 

http://www.nature.com/nrc/journal/v8/n4/glossary/nrc2351.html#df2
http://www.nature.com/nrc/journal/v8/n4/glossary/nrc2351.html#df3
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Figure 8. Epidemiology of prostate cancer.  
(a) The most common cancers in males in the UK in 2009. (b) The ten most common causes of 
cancer death in males in the UK in 2009. (c) The average number of new cases per year and 
age-specific incidence rates of CaP in the UK between 2007 and 2009. Modified from (Cancer 
Research UK). 
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Figure 9. The Gleason grading system for prostatic adenocarcinoma.  
(a)  The original Gleason system describes histological patterns of prostate biopsies which are 
graded from 1 (simple round glands, closely-packed in rounded masses with well-defined 
edges) to 5 (anaplastic adenocarcinoma in ragged sheets). (b) The modified Gleason system. 
Adapted from (Gleason, 1966; Gleason, 1992; Epstein, 2010).  
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1.4.5.1. Low grade organ-confined prostate cancer 

 

Current treatments for CaP depend on the stage of the disease. In low Gleason-graded tumours 

confined to the prostate, the tumour cells are usually well-differentiated and organised into 

glandular structures, so treatment can be as simple as surveillance of the disease. 

 

1) Active surveillance 

 

Some patients with a low grade or low volume tumour will never progress to a higher stage, so 

active surveillance may be the best treatment option. This involves monitoring PSA serum levels 

every three months and repeated biopsies every six to twelve months.  

 

2) Radical prostatectomy 

 

For tumours confined to the prostate gland, the most common and most successful treatment is 

surgery via radical prostatectomy (Bill-Axelson et al., 2005). This is usually successful at 

reducing progression of the disease but the cancer needs to be detected at an early stage 

before signs of spreading outside of the prostate. There are also possible side effects which 

include urinary impotence and sexual dysfunction (Catalona et al., 1999).  

 

3) Radiotherapy 

 

An alternative for organ-confined CaP is radiation therapy, which involves applying ionising 

radiation to the tumour to control its growth, by either external beam radiation therapy or 

brachytherapy (Duchesne, 2011). External beam radiation therapy involves the use of an 

external source of ionising radiation targeted at the tumour. Brachytherapy involves the 

implantation of numerous small radioactive seeds into the prostate next to the tumour, either 

temporarily and emitting high doses of radiation (
125

I, 
103

Pd or 
192

Ir) or as a permanent low dose 

implant. With brachytherapy, the radiation dose to surrounding tissues is low and so the 

numbers of undesired side-effects are reduced, whereas external beam radiation therapy is less 

invasive.  

 

 

 

 

 

 

 

 

1.4.5. Current treatments for prostate cancer 
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1.4.5.2. High grade metastatic prostate cancer 

 

Within high Gleason-graded diseases, the cells are less differentiated and the tissue 

architecture is more compromised, indicative of spread outside of the prostate. This results in a 

poorer prognosis, as current treatments are largely ineffective. 

 

1) Androgen deprivation therapy 

 

For metastatic CaP, the current treatment of choice is androgen-deprivation therapy (ADT) 

through the administration of pharmacological drugs. These exploit the dependency of the 

tumour on androgens for growth, by removing circulating androgens or blocking their binding to 

the AR. The major types of hormone ablation therapy are described in Table 3. 

 

 

Type of therapy Mechanism of action Example of Drug Reference 

Anti-androgen 

therapy 

Binds to the AR and prevents 

ligand binding 

Bicalutamide (Iversen et al., 2000) 

Inhibits androgen-mediated 

transcription 

Hydroxyflutamide (Labrie et al., 1990) 

LHRH-agonist Desensitises the pituitary 

gland 

Zoladex (Peeling, 1989) 

Oestrogen 

treatment 

Inhibits 5-α reductase, which 

activates testosterone 

Stilbestrol (Bailar and Byar, 

1970) 

GnRH-antagonist Binds to the GnRH-receptor, 

blocking 5-α reductase activity 

Finasteride (Rittmaster, 1994) 

Androgen 

biosynthesis 

blockade 

Blocks the CYP17 enzyme, 

preventing androgen 

production 

Abiraterone (de Bono et al., 

2011) 

 

Table 3. Types of hormone ablation therapy. 

 

 

2) Chemotherapy 

 

Cytotoxic chemotherapy is often used to treat advanced castration-resistant prostate cancer 

(CRPC), after failure of ADT. The most commonly used drugs include docetaxel, paclitaxel and 

vinblastine, which target dividing cells and prevents them from completing mitosis by inhibiting 

mitotic spindle assembly (Yvon et al., 1999). However, the tumour can become resistant to 

these cytotoxic agents and use of chemotherapeutic drugs prolong life expectancy by a matter 

of months only (Seruga and Tannock, 2011).  
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1.4.5.3. Differentiation therapy as an alternative treatment for prostate cancer 

 

Current therapies for CaP have failed to account for the heterogeneous composition of the 

disease, and eliminate the differentiated bulk of cells within a tumour, resulting in an enrichment 

of a rare population of therapy-resistant CSCs. However, the nature of the CSC makes them 

very difficult to target, for example, their slow cycling rate and protection within the SC niche. 

The key to eradicating the CSC lies in identifying the phenotypic differences between malignant 

SCs and the bulk of differentiated cells in the prostate and exploiting these differences through 

differentiation therapy. SCs from both normal and cancerous tissues have been shown to be 

more resistant to chemotherapeutic reagents than more differentiated cell types (Harrison and 

Lerner, 1991; Phillips et al., 2006) and characteristically express multiple drug resistance (MDR) 

(Chaudhary and Roninson, 1991) and ATP-binding cassette (ABC) transporters (Zhou et al., 

2001; Kim et al., 2002). In addition, there is now evidence of highly efficient DNA repair 

mechanisms, active anti-apoptotic pathways and slower cell cycle kinetics in SCs derived from 

solid tumours (Bao et al., 2006; Liu et al., 2006a; Chiou et al., 2008; Ma et al., 2008).  

 

Differentiation therapy describes the process of inducing a quiescent SC to cycle and 

differentiate into amplifying progeny. Potential strategies of differentiation therapy include: 

 

1) Activation of signalling cascades. Exposure of human glioblastomas to bone 

morphogenetic protein 4 (BMP4) induces differentiation, reduces clonogenic ability and 

markedly reduces the size of the CD133
+
 CSC population (Piccirillo et al., 2006). 

 

2) Inhibition of cell surface markers. CD44 inhibition, through shRNA lentivirus 

particles, has been shown to promote the differentiation of a CD44
+
CD24

-
 breast CSC 

population (Pham et al., 2011). 

 

3) Compounds selectively targeted towards SC. A high-throughput screening 

approach identified salinomycin as a compound that selectively kills CD44
+
CD24

-
 

breast CSCs (Gupta et al., 2009). Moreover, salinomycin treatment in mice inhibited 

tumour growth, induced cellular differentiation and caused a loss of breast CSC gene 

expression. The Src inhibitor, bosutinib, also controlled the development of mammary 

tumours by inducing differentiation (Hebbard et al., 2011). 

 

4) AtRA treatment. All-trans retinoic acid (atRA) is one of the most thoroughly examined 

and clinically tested differentiation agents and has been shown to promote 

differentiation of SCs from a number of different tissues including human HSCs 

(Sammons et al., 2000; Luo et al., 2007), mouse embryonic SCs (Simandi et al., 2010), 

stem-like glioma cells (Campos et al., 2010), rabbit bone marrow-derived 

mesenchymal SCs (Su et al., 2010) and human breast CSCs (Ginestier et al., 2009). 
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Conversely, inhibition of retinoid signalling pathways has been shown to induce the 

expansion of human HSCs (Chute et al., 2006). 

 

 

 

 

Androgens, such as testosterone and DHT (5α-dihydrotestosterone), act through the AR and 

are required for both normal and cancerous prostate development and function (Heinlein and 

Chang, 2004). The AR is a member of the steroid hormone receptor family of transcription 

factors (TFs) and regulates androgen responsive genes such as PSA. 

 

Work in the early 1940s first demonstrated that CaP is initially dependent on androgens for 

growth and survival (Huggins et al., 1941). As a result, ADT has since been used as the main 

therapy to treat advanced and metastatic CaP (Denmeade and Isaacs, 2002). Unfortunately, 

approximately 15% of all patients will not respond to ADT and of those that do, the majority of 

tumours will become androgen-independent within 2-3 years of treatment, resulting in CRPC 

(Denmeade and Isaacs, 2002; Beltran et al., 2011). CRPC is incurable by current treatment 

strategies and patients typically have a median life expectancy of 12-24 months (Yap et al., 

2011). Moreover, studies in a mouse model have demonstrated that ADT frequently leads to a 

more aggressive and metastatic disease (Gingrich et al., 1996).  

 

It remains unclear whether CRPC is an inevitable development of CaP. The prevailing model 

proposes that CRPC arises through adaptation of previously androgen-dependent cells. 

Alternatively, the SC hypothesis suggests that CRPC occurs through activation and/or an 

increase in the number of ADT-resistant, androgen-independent SCs, which consequently 

repopulate the tumour with androgen-independent cells (Shen and Abate-Shen, 2010).  

 

Both the normal prostate and CaP are androgen-dependent and AR plays a key role in 

maintaining the homeostasis of epithelial and stromal tissues. Following ADT, the dependence 

of the prostate on androgens is manifested by rapid apoptosis of epithelial cells and prostate 

regression, which requires paracrine signalling of pro-apoptotic factors from the stromal cells. 

CRPC retains AR expression and expresses AR target genes, suggesting that the receptor and 

pathway play an important role in its development (Gregory et al., 1998). CRPC has been 

shown to retain AR activity through a variety of different mechanisms (Figure 10; (Shen and 

Abate-Shen, 2010)) including: 

 

1) Amplification of AR gene copy number resulting in an increased amount of the AR 

protein (Visakorpi et al., 1995; Koivisto et al., 1997; Linja et al., 2001). 

 

2) Mutations in the AR gene predominantly caused by gain-of-function mutations that 

occur in the ligand-binding domain and produce a receptor that is more sensitive to 

1.4.6. Castration-resistant prostate cancer 
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native ligand or can be activated by other steroid hormones (Taplin et al., 2003). In 

addition, constitutively active splice variants of the AR gene also occur in CRPC (Dehm 

et al., 2008; Guo et al., 2009; Hu et al., 2009).  

 

3) Ligand-independent activation of AR by up-regulation of growth-factor signalling 

pathways such as PI3K, through PTEN deletion (Gao et al., 2006b) and MAPK 

pathways (Gao et al., 2006a). 

 

 

 

 

 

 

 

Figure 10. Mechanisms of retention of AR activity in castrate resistant prostate cancer.  
(a) AR maintains homeostasis in the normal prostate. (b) ADT stimulates the stroma to produce 
pro-apoptotic stimuli which causes regression of the epithelial compartment. (c)  Castration-
resistance promotes survival of the epithelium by overcoming the pro-apoptotic signals from the 
stroma through a number of mechanisms, including: (i) amplification of the AR, (ii) mutation of 
the AR or (iii) activation of the AR by other signalling pathways. Adapted from (Shen and Abate-
Shen, 2010).  

Normal situation 

Androgen-dependent

ADT leads to apoptosis

Androgen-dependent
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Whereas organ-confined primary CaP is curable in the vast majority of cases, metastatic CaP is 

largely incurable due to its systemic nature and the resistance of disseminated cancer cells to 

existing therapeutic agents. In fact, greater than 90% of mortality from cancer is due to 

metastases and not the primary malignant tumours (Valastyan and Weinberg, 2011). Distant 

metastases are established through a complex cascade of events termed the invasion-

metastasis cascade (Figure 11): 

 

1) Primary tumour formation. The development of a primary prostate tumour from a PIN 

lesion is a multistep pathway involving a number of molecular processes, genes and 

pathways, including telomere shortening, DNA damage, PTEN inactivation and MYC 

over-expression (Shen and Abate-Shen, 2010)  

 

2) Local invasion through the BM and stroma. Individual tumour cells may invade via 

the protease-, stress-fibre-, and integrin-dependent “mesenchymal invasion” program or 

the protease-, stress-fibre-, and integrin-independent, Rho/ROCK-dependent 

“amoeboid invasion” program, depending on the microenvironment conditions (Friedl 

and Wolf, 2003). The best characterised alteration occurring upon invasion is the loss of 

the cell-to-cell adhesion molecule, E-cadherin, during an epithelial-to-mesenchymal 

(EMT) transition. Loss of E-cadherin results in dissociation of epithelial cell sheets into 

single cells, detachment of adherens and tight junctions and a loss of cell polarity. This 

causes cells to exhibit multiple mesenchymal attributes, including heightened 

invasiveness (Thiery et al., 2009). After penetration of the BM, the invasive cell 

infiltrates the stroma, which becomes increasingly ‘reactive’ and acquires many of the 

attributes of the stroma from tissues that are in the midst of wound healing or are 

inflamed (Grivennikov et al., 2010). 

 

3) Intravasation into the lymphatic system or blood vessels. Metastatic carcinoma 

cells disseminate from the primary tumour via the circulation or lymphatic system 

(Gupta and Massague, 2006). Invasion into the lymphatic system is the most common 

route for most carcinomas, including CaP (Shridhar, 1979).  

 

4) Survival of transport in the circulation. Viable circulating tumour cells (CTCs) have 

been detected and isolated in the bloodstream of patients with a range of different 

cancers including metastatic lung, pancreatic, breast, colon (Nagrath et al., 2007; Stott 

et al., 2010) and CaP (Ghossein et al., 1995) 

 

5) Arrest at a distant organ site. Individual primary tumours form metastases in only a 

limited subset of secondary organs. For example, primary prostate tumours primarily 

1.4.7. Cancer cell invasion and metastasis 
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metastasise to bone (90%), with metastasis also occurring in the lung (46%), liver 

(25%), pleura (21%), and adrenals (13%) (Bubendorf et al., 2000). 

 

6) Extravasation into distant tissues. Once lodged in the capillaries of distant organs, 

CTCs may initiate growth and form a colony that ruptures the vessel walls, thereby 

placing tumour cells in direct contact with the tissue (Al-Mehdi et al., 2000). 

Alternatively, CTCs may cross from the blood vessel into the tissue by extravasation. 

 

7) Survival and formation of micro-metastases in a foreign environment. The 

microenvironment of the metastatic site usually differs vastly from the primary site. 

However, it has been proposed that cancer cells can address the problem of an 

incompatible microenvironment at the metastatic site via the establishment of a “pre-

metastatic niche” (Psaila and Lyden, 2009). 

 

8) Proliferation at secondary sites forming detectable metastatic colonies. By 

overcoming the incompatibility with the foreign microenvironment and activating self-

renewal pathways, a small minority of disseminated carcinoma cells may succeed in 

completing the process of metastatic colonisation (Valastyan and Weinberg, 2011). 

 

Not every cell in a tumour possesses the ability to metastasise to distant organs, and recent 

data has supported the notion that metastases directly arise from CSCs. Most notably, a distinct 

subset of CD133
+
CXCR4

+
 CSCs localised to the invasive edge of pancreatic carcinomas, 

exhibited significantly stronger migratory activity in vitro than non-CSCs and demonstrated in 

vivo metastatic activity to the liver (Hermann et al., 2007).  
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Figure 11. The stages of invasion and metastasis.  
During metastasis, tumour cells initially invade adjacent tissue and exit the primary site through 
intravasation. Metastatic cancer cells then translocate through the circulation and enter a distant 
tissue through extravasation. Metastatic colonies are developed which adapt to survive and 
thrive in the microenvironment of a distant tissue. Adapted from (Valastyan and Weinberg, 
2011).  
 

 

  



  

                       44 Introduction 

 

 

 

EMT is a trans-differentiation programme characterised by the loss of the differentiation 

characteristics of epithelial cells, including cell-cell adhesion, apical-basal motility and lack of 

motility. Instead, cells acquire mesenchymal features, which include motility, invasiveness and a 

heightened resistance to apoptosis (Polyak and Weinberg, 2009). EMT is critical for normal 

embryonic morphogenesis (Thiery et al., 2009) and wound healing (Savagner et al., 2005). 

However, EMT has become implicated as a means by which transformed epithelial cells can 

undergo metastasis and acquire the ability to invade, resist apoptosis and disseminate 

(Barrallo-Gimeno and Nieto, 2005; Klymkowsky and Savagner, 2009; Polyak and Weinberg, 

2009; Thiery et al., 2009; Yilmaz and Christofori, 2009). EMT is coordinated by a set of TFs, 

including Slug, Snail, Twist, ZEB1, and ZEB2, which suppress the expression of epithelial 

markers and induce expression of markers associated with the mesenchymal state (Thiery et 

al., 2009). These transcriptional regulators have been shown, in experimental models of 

carcinoma formation, to be important for programming invasion and some have been found to 

provoke metastasis when ectopically over-expressed (Hanahan and Weinberg, 2011). In fact, 

EMT-inducing TFs are able to orchestrate most steps of the invasion-metastasis cascade apart 

from the final step of metastatic colonisation (Hanahan and Weinberg, 2011). The reversal of 

EMT, the mesenchymal-to-epithelial (MET) transition, may have a role in the reversion of 

disseminated mesenchymal tumour cells to a more epithelial state in distant metastases (Polyak 

and Weinberg, 2009).  

 

EMT is implicated in progression to a metastatic disease and in acquisition of therapeutic 

resistance, both of which may be linked to the generation of cancer cells, which have 

undergone EMT, with SC-like characteristics. Two independent studies have shown that 

mammary cells that have experienced an EMT behave in many respects similarly to SCs 

isolated from normal or neoplastic cell populations (Mani et al., 2008; Morel et al., 2008). 

Furthermore, Mani et al. (2008) showed that most of the EMT-inducing TFs are expressed at 

higher levels in CD44
+
CD24

-
 mammary SC-like cells than differentiated cells. More recently, it 

has been shown that CaP cells with an EMT phenotype displayed stem-like cell features (Kong 

et al., 2010).  

  

1.4.8. Epithelial-to-mesenchymal transition 
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1.5. Regulation of gene expression in the prostate epithelium 

 

Maintenance of prostate epithelial homeostasis is an equilibrium between self-renewal, 

proliferation and differentiation, which is regulated by changes in gene expression throughout 

the different cell types (Moore and Lemischka, 2006). Gene expression can be regulated either 

by controlling the level of transcription of mRNA from a gene or regulating the translation of 

mRNA into proteins. Transcriptional control of expression can involve regulation by specific TFs 

within the cell, which bind to their target sequences, genetic changes and mutations or 

epigenetic mechanisms.  

 

TF regulation of expression within the prostate has been well studied and a number of TFs have 

been implicated in the regulation of expression within the prostate epithelium. It is well regarded 

that androgens and the AR undoubtedly play a pivotal role in prostate differentiation during 

embryonic (Kellokumpu-Lehtinen et al., 1979) and postnatal development (Kellokumpu-Lehtinen 

et al., 1981; Aumuller, 1991), as well as being essential for the survival of the luminal secretory 

cells in the adult prostate (English et al., 1987). Several other pathways are important in the 

development and differentiation of the prostate epithelium. These include, induction of Notch 

(Leong and Gao, 2008), Wnt (Verras et al., 2004; Lu et al., 2009) and Hedgehog (Berman et al., 

2004; Karhadkar et al., 2004; Sanchez et al., 2004) signalling, which promote prostate epithelial 

cell proliferation and differentiation, even in the absence of androgens.  

 

One of the lesser studied TFs in the prostate is the biologically active derivative of vitamin A 

(retinol), retinoic acid (RA). RA signalling controls the expression of HOX genes, and thus has a 

direct role in the early development of many organs and systems including heart, urogenital 

system, eyes, pancreas and lungs (Duester, 2008). RA is also known to play a crucial role in the 

development and homeostasis of a wide range of other tissues, including prostate (Peehl et al., 

1993; Seo et al., 1997), bone (Karakida et al., 2011), neuron (Ito et al., 2011b) and liver (Huang 

et al., 2009), through regulating numerous genes involved in differentiation, proliferation and 

homeostasis (Bastien and Rochette-Egly, 2004). RA also stimulates apoptosis, by up-regulating 

the expression of caspase 7 and 9 (Donato and Noy, 2005).  

 

The importance of retinoids during tissue development and homeostasis is apparent in vitamin 

A deficiency (VAD) syndrome, which causes congenital malformation during development and 

tissue degeneration, growth retardation and widespread squamous metaplasia after birth 

(Wilson et al., 1953). It is known that RA can either positively (Vezina et al., 2008) or negatively 

affect prostate formation and gland development (Aboseif et al., 1997), depending on the stage 

of prostate development. This suggests that RA plays a crucial role in development and 

differentiation of the prostate epithelium.  
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The RA signal is transduced by a heterodimeric complex of retinoic acid receptors (RARs) and 

retinoid X receptors (RXRs). Both RAR and RXR families consist of 3 isoforms (α, β and γ), 

encoded by different genes (Leid et al., 1992; Kastner et al., 1997). RARs are activated by atRA 

and 9-cis-RA, whereas only 9-cis-RA activates RXRs. In the absence of ligand, RARs are 

primarily found in the nucleus bound to DNA (Bastien and Rochette-Egly, 2004). The RAR/RXR 

heterodimers bind to specific DNA sequences called RA response elements (RAREs) which are 

composed of 2 direct repeats of the PuG(G/T)TCA hexameric motif usually spaced by 5 bp 

(DR5), although 2 bp (DR2) or 1 bp (DR1) spaces do occur (Leid et al., 1992) (Figure 12).  

 

Retinoids and their derivatives are hydrophobic in nature and consequently are stored and 

transported in complex with either cellular retinoid-binding proteins (CRBP) or cellular RA-

binding proteins (CRABP) (Donovan et al., 1995). There are 2 isoforms of CRABP: CRABP1 

and CRAPB2, which possess distinct distributions and functions. A number of studies have 

eluded to the fact that CRABP2, but not CRABP1, is a co-activator of the RAR (Delva et al., 

1999; Dong et al., 1999). Both Delva et al. (1999) and Dong et al. (1999) concluded that 

CRABP1 might be able to sequester RA when RA levels exceed homeostasis (Wolf, 2000). It is 

also significant that RA can itself induce expression of the CRABP2 gene, but not the CRABP1 

gene (Giguere et al., 1990; Durand et al., 1992; Astrom et al., 1994). 

 

CRABP shuttles RA to the nucleus and binds to the RAR/RXR heterodimer, which is stabilised 

by cyclin D3 (Delva et al., 1999; Budhu and Noy, 2002; Despouy et al., 2003). RA binding 

causes conformational changes, which increase the receptors DNA affinity and causes 

dissociation of co-repressors such as NCoR, SMRT, and a histone deacetylase (HDAC) 

complex (Egea et al., 2001). This creates a new hydrophobic cleft surface where co-activators, 

such as the SRC/p160 family, p300/CBP and CARM-1, can bind (Glass and Rosenfeld, 2000; 

McKenna and O'Malley, 2002). These co-activators modify chromatin structure through histone 

acetyltransferase (HAT) or methyltransferase activity, resulting in decondensed and relaxed 

chromatin (Zhang and Reinberg, 2001). This facilitates the recruitment of transcriptional 

machinery (Dilworth and Chambon, 2001; Woychik and Hampsey, 2002) and allows the 

initiation of gene transcription to occur (Figure 12).  

 

 

 

 

 

 

 

 

 

1.5.1. Retinoic acid signalling 
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In cancer, mutation events can occur within tumour suppressor genes or oncogenes, resulting 

in changes in their gene expression. Some examples of commonly mutated genes in CaP 

include PTEN (Li et al., 1997), Rb (Bookstein et al., 1990), p27
kip1

 (Tsihlias et al., 1998) and p53 

(Voeller et al., 1994). Loss of heterozygosity (LOH) is a frequent event in CaP progression 

(Abate-Shen and Shen, 2000) and is defined as the loss of normal function of one allele of a 

gene, in which the other allele was already inactivated. LOH at chromosomes 8p, 10q, 13q, and 

17p are well-characterised events and losses of 6q, 7q, 16q, and 18q have also been reported 

in CaP, although they are not as well characterised (Latil et al., 1994; Zenklusen et al., 1994; 

Elo et al., 1995; Takahashi et al., 1995; Cooney et al., 1996; Cunningham et al., 1996; Latil et 

al., 1997; Macintosh et al., 1998; Saric et al., 1999; Murant et al., 2000). In addition, 

chromosomal gains at 8q and 7 occur during CaP progression (Alcaraz et al., 1994; Bandyk et 

al., 1994; Van Den Berg et al., 1995). 
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Figure 12. Cellular mechanism of retinoic acid activation of gene expression.  
(a) Vitamin A (retinol) is taken up from the blood and binds to cellular retinol binding protein 
(CRBP). Retinol is metabolised to retinal by retinol dehydrogenases (RoDH), which is further 
metabolised to retinoic acid (RA) by retinaldehyde dehydrogenases (RALDH). RA is transported 
to the nucleus bound to a cellular RA-binding protein (CRABP), where the RA ligand binds to a 
RAR/RXR heterodimer bound to a RARE DNA sequence, activating transcription of a target 
gene. (b) In the absence of ligand, RARs bound to RAREs located in the promoter of target 
genes repress transcription through their association with HDAC-containing complexes, 
tethered through co-repressors. (c) Upon RA ligand binding, the co-repressors dissociate, 
allowing the recruitment of co-activators that function to open chromatin. (d) The co-activators 
dissociate and the transcription machinery is recruited to initiate transcription. Adapted from 
(Maden, 2002; Bastien and Rochette-Egly, 2004).  
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1.6. Epigenetic regulation mechanisms 

 

Over the past century the genetic model of cancer has predominated, however the role of 

epigenetics in cancer development has exploded in the last few years and is now accepted as a 

mainstream area of cancer research. Epigenetics can be defined as heritable changes in gene 

expression that cannot be explained by changes in DNA sequence or gene copy number. The 

major epigenetic mechanisms include DNA methylation, chromatin remodelling (histone 

modifications and polycomb complexes) and small non-coding RNAs.  

 

 

 

 

DNA methylation was the first epigenetic modification to be identified and is the most studied to 

date. Until only recently, the only known epigenetic modification of DNA was 5-methylcytosine 

(5mC), which is a covalent modification that occurs when DNA methyltransferases (DNMT) 

catalyses the addition of a methyl group from S-adenosylmethionine to the 5’-carbon position of 

a cytosine pyrimidine ring preferentially at cytosine and guanine (CpG) dinucleotides. There are 

now known to be at least four different DNA modifications.  

 

In 2009, ten-eleven translocation 1 (TET1) was shown to enzymatically oxidise 5mC to 5-

hydroxymethylcytosine (5hmC) (Tahiliani et al., 2009). 5hmC was originally detected in 

mammalian DNA in 1972 (Penn et al., 1972). Although 5hmC may be a bona fide epigenetic 

mark, it is predicted that 5hmC may be an intermediate in the removal of 5mC and the low 

levels of 5hmC found in the genome suggest that it may be a short-lived entity (Branco et al., 

2012). The demethylation pathway may involve even further oxidation of 5hmC to 5-

formylcytosine (5fC) and 5-carboxylcytosine (5caC) by TET enzymes (He et al., 2011; Ito et al., 

2011a). The biological significance of the 5mC oxidation derivatives is still yet to be established, 

but they are likely to be an essential intermediate in the process of active/passive demethylation 

and preclude/enhance the binding of several methyl-CpG-binding domain (MBD) proteins, 

effecting the recruitment of chromatin regulators. Furthermore, 5hmC has been mapped to both 

active and repressed genes and at bivalent transcriptionally-poised genes (Wu and Zhang, 

2011; Dawson and Kouzarides, 2012).  

 

5mC is found almost entirely within CpG dinucleotides (Bird, 2002), which are generally sparse 

in the genome. CpG islands are regions of DNA with a high C+G content that contain a higher 

frequency of clustered CpG dinucleotides relative to the bulk genome (Gardiner-Garden and 

Frommer, 1987). CpG islands are mostly located at the 5’ end of genes, but are also found in 

intronic and extronic sequences of gene bodies (Bird, 1986). Based on Gardiner-Garden and 

Frommers' initial criteria (1987), CpG islands were first identified as being 200 bp in length. 

However, Takai and Jones (2002) modified the criteria and suggested that regions of DNA 

greater than 500 bp with a C+G equal to or greater than 55% and observed CpG/expected CpG 

1.6.1. DNA methylation 
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of 0.65 should be classed as CpG islands and were more likely to be associated with the 5' 

regions of genes.  

 

In normal tissues, 5mC globally marks the vertebrate genome, but is rare within CpG islands 

that are usually unmethylated in normal cells. However, specific CpG islands are 

hypermethylated in normal tissues in a tissue-specific manner (Ghosh et al., 2010). DNA 

methylation is associated with the regulation of gene expression, but it also involved in a 

number of other processes including genomic imprinting, X chromosome inactivation, 

suppression of retrotransposon elements (Bird, 2002) and is crucial for normal mammalian 

development, as embryos that possess abnormal methylation levels die before birth (Li et al., 

1992; Okano et al., 1999).  

 

Two basic models for the mechanism of gene silencing by DNA methylation have evolved: a 

direct or an indirect mechanism (Figure 13). Direct inhibition may result from 5mC sterically 

blocking TFs binding to their cognate DNA sequence at the promoter. Indirect repression would 

be due to MBD proteins binding to methylated cytosines and recruiting co-repressors, to silence 

gene expression (Nan et al., 1997; Nan et al., 1998).  

 

The current model for the establishment and inheritance of DNA methylation patterns relies on 

the original hypotheses of Riggs (1975) and Holliday and Pugh (1975). This model states that 

methylation patterns are established in germ cells and in developing embryos by de novo 

methylation, carried out by DNMT3A and DNMT3B, which methylate previously unmethylated 

CpG sites. Methylation patterns are then inherited between cell generations with high fidelity by 

maintenance methylation, primarily by DNMT1, which has a preference for hemimethylated 

sites generated during DNA synthesis. However, Jones and Liang (2009) have recently 

proposed a revised model for DNA methylation maintenance suggesting that the bulk of the 

methylation is carried out by DNMT1, which is the predominant DNA methylase in the cell 

(Walsh and Bestor, 1999). DNMT3A and DNMT3B then complete the methylation process and 

correct errors left by the DNMT1 enzyme.  

 

DNA demethylation can occur through a progressive passive mechanism, either by not 

methylating the new DNA strand after replication or via inhibition or a lack of DNMTs. 

Alternatively, an active enzyme-mediated mechanism involving 5hmC and TET proteins can 

result in DNA demethylation, which still remains poorly understood (Wu and Zhang, 2011). It is 

now emerging that there is considerable cross-talk between DNA methylation and histone 

modifications during inactivation of the chromatin. For example, it has recently been shown that 

histones packaged with nucleosomes containing the H3Lys27Me3 chromatin mark, causes the 

recruitment of DNMTs to induce methylation (Schlesinger et al., 2007). 
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Figure 13. Mechanisms of transcriptional repression by DNA methylation.  
(a) DNA methylation in the cognate DNA-binding sequences of some TFs can inhibit their 
binding to DNA. (b) Methyl-CpG-binding proteins (MBPs) recognise 5mC DNA and recruit co-
repressor molecules to repress transcription and modify surrounding chromatin. (c) DNMT 
enzymes are linked to HDACs and histone methyltransferases (HMT), so the addition of 5mC to 
DNA is coupled to transcriptional repression and chromatin modification. (d) DNA methylation 
within the genes body can repress transcriptional elongation through the involvement of MBPs. 
Adapted from (Klose and Bird, 2006). 
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The packaging of DNA into highly compacted chromatin is achieved through the winding of DNA 

around an octamer of two subunits of each of the core histones: H2A, H2B, H3, H4 and linker 

H1, forming nucleosomes. Chromatin is presented in two forms (Grewal and Jia, 2007): 

 

 highly condensed heterochromatin that is transcriptionally silent 

 less condensed euchromatin, which is transcriptionally active.  

 

The core histone domain is flanked by protruding N- and C-terminal tails, which are targets for 

several covalent modifications that determine histone-DNA interaction. These include 

methylation, acetylation, phosphorylation, poly-ADP ribosylation, ubiquitination and 

glycosylation, form a ‘histone code’ (Figure 14) (Jenuwein and Allis, 2001).  

                                

Acetylation and methylation, of lysine residues in the majority of cases, are two of the best-

studied histone modifications and both can result in either gene activation or gene silencing 

depending on the nature and position of the alteration. For example, mono-, di- or tri- 

methylation of H3K4, H3K36 and H3K79 results in active gene transcription, but methylation of 

H3K9, H3K27 and H4K20 usually results in gene silencing (Li et al., 2008).   

 

Lysine residues can also be acetylated, a process catalysed by HATs (Roth et al., 2001). This 

removes the positive charge on the histone tails and results in a reduced affinity between 

histones and DNA, consequently opening the chromatin and enhancing transcription. HDACs 

act to deacetylate these lysine residues, resulting in condensed chromatin and repression of 

transcription in the majority of cases (Figure 15) (Shukla et al., 2008). A number of HDACs have 

been identified which are grouped into four classes: class I (HDAC 1-3, 8), class II (HDAC 4-7, 

9, 10), class III (SIRT 1-7) and class IV (HDAC 11) (Minucci and Pelicci, 2006; Epping and 

Bernards, 2009).  

 

Polycomb group (PcG) proteins were originally identified in Drosophila melanogaster, as 

repressors of HOX genes (Lewis, 1978; Struhl, 1981) and when mutated resulted in activation 

of silenced HOX genes. PcG proteins form two multimeric complexes in humans: Polycomb 

repressive complex 1 or 2 (PRC1 or PRC2), which function to silence gene expression.  PcG 

proteins are implicated in cell proliferation, SC identity, cancer, genomic imprinting and X 

inactivation (Schuettengruber et al., 2007). The PcG proteins and DNA methylation have been 

mechanistically linked; the PcG protein EZH2 has been shown to serve as a recruitment 

platform for DNMTs (Vire et al., 2006).  

  

1.6.2. Histone modifications and chromatin remodelling 
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Figure 14. Schematic representation of a nucleosome and histone modifications.  
The N-terminal tails of the core histones (H2A, H2B, H3 and H4) contain post-translational 
modifications of histones: acetylation (A), methylation (M), phosphorylation (P), and 
ubiquitination (U). Several lysines (e.g. Lys 9) can be either acetylated or methylated. Modified 
from (Shukla et al., 2008). 
 

 

 

 

 

 

Figure 15. The balance between histone acetylation and deacetylation determines the 
level at which a gene is transcribed.  
The acetylation of histones leads to an open, transcriptionally permissive chromatin. Histone 
acetylation is a reversible modification and acetyl groups are removed by several HDACs. 
Modified from (Shukla et al., 2008). 
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MicroRNAs (miRNAs) are a class of small non-coding RNA, around 18-25 nucleotides in length, 

that are transcribed from DNA into RNA. They are synthesised (pri-miRNA) and processed (pre-

miRNA) in the nucleus, before they are exported to the cytoplasm. In the cytoplasm they are 

cleaved to form mature miRNA, which bind mRNAs with complementary sequences and alter 

their expression through an RNA-induced silencing complex (RISC). MiRNA expression is 

frequently altered in cancer and miRNAs can act as oncogenes when over-expressed or tumour 

suppressors when silenced (Calin and Croce, 2006; Garzon et al., 2009). 

 

MiRNAs can regulate both normal SCs and CSCs, including prostate CSCs (Croce and Calin, 

2005; Yu et al., 2007b; Shimono et al., 2009; Melton et al., 2010; Liu et al., 2011a), and 

deregulation of miRNAs has been implicated in tumourigenesis (Esquela-Kerscher and Slack, 

2006). Liu et al. (2011a) recently showed that miRNA-34a, a p53 target, is down-regulated 

specifically in CD44
+
 prostate CSCs and expression of miRNA-34a in CD44

+
 prostate CSCs 

inhibits tumour regeneration and metastases in mice.  

 

 

 

 

As epigenetic modifications have such a prominent effect on the progression of cancer, a 

number of drugs that function to reverse epigenetic abnormalities have been tested as potential 

cancer therapies.  

 

1.6.4.1. DNA demethylating agents 

 

Cytosine analogues (Figure 16) are known to possess DNA demethylating activity and 

pharmacologically inhibit the biologically active DNMTs (DNMT1, DNMT3A and DNMT3B) 

(Jones and Taylor, 1980). These analogues initially displayed a high toxicity and so were 

unsuitable for clinical use, however, they have since shown to achieve therapeutic efficacy at a 

lower dose. Consequently, two inhibitors, azacytidine (Vidaza; Celgene) and 5-Aza-2’-

Deoxycytidine (5-Aza-dC), also known as decitabine (Dacogen; Eisai), have recently gained 

approval by the FDA for myelodisplastic syndrome, which leads to leukaemia. This paves the 

way for refining the use of low-dose regimens not only for leukaemia but also for solid tumours 

(Baylin and Jones, 2011). 

 

5-Aza-dC is a cytosine analogue in which the pyrimidine ring carbon 5 is replaced with nitrogen, 

and when incorporated into DNA (by base-pairing with guanine) it cannot be methylated. 

Consequently, almost complete demethylation of genomic DNA occurs after two cell cycles 

(Haaf, 1995). 

1.6.3. MicroRNAs 

1.6.4. Epigenetic therapy in cancer 



  

                       56 Introduction 

 

 

Figure 16. Structure of cytidine and its analogues.  
Adapted from (Haaf, 1995).  
 

 

 

 

 

1.6.4.2. HDAC inhibitors 

 

Deacetylation of histones can be reversed by treating cells with HDAC inhibitors (HDACIs), 

which include trichostatin A (TSA), sodium butyrate (NaBu) and valproic acid. HDACIs have 

received extensive investigation in a number of clinical trials. The FDA have recently approved 

the use of vorinostat (Zolinza; Merck) and romidepsin (Istodax; Celgene) for their remarkable 

efficacy in cutaneous T cell lymphoma (Baylin and Jones, 2011). 

 

Another translational area of HDACIs is their use in overcoming SC resistance mechanisms to 

traditional cancer therapies. Multiple HDACIs were shown to reverse therapeutic resistance to 

chemotherapeutic reagents in cultured cancer stem-like cells (Sharma et al., 2010). This 

suggests that HDACIs could be used as a combination therapy to sensitise against current 

treatments, although, considerable pre-clinical work is necessary before the efficacy of this 

combinatorial treatment is sought.  
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1.6.5.1. DNA methylation 

 

It is widely established that there is a link between DNA methylation and cancer development, 

with methylation changes occurring early and ubiquitously in cancer (Jaenisch and Bird, 2003). 

A striking feature of carcinogenesis is that the majority of malignant tumours show a global 

hypomethylation of sparse CpG sites, compared to their normal counterparts (Feinberg and 

Vogelstein, 1983). Genome-wide DNA hypomethylation of DNA has been found to induce 

tumour formation in mice, by promoting chromosomal instability (Gaudet et al., 2003). 

Metastatic CaP has been shown to exhibit global hypomethylation (Bedford and van Helden, 

1987), which has been linked with chromosome instability and disease progression (Schulz et 

al., 2002). In addition to global hypomethylation occurring at sparse CpG sites, a number of 

genes are found to be up-regulated through hypomethylation of CpG islands located within their 

promoters in CaP (Table 4).   

 

Hypermethylation at the promoters of specific genes is also found in almost all malignant 

tumours. The best characterised epigenetic alteration in CaP is DNA hypermethylation and 

substantial evidence supports the view that DNA hypermethylation has a major role in the 

initiation and development of CaP. More than 50 genes that are hypermethylated in CaP have 

been characterised (Jeronimo et al., 2011). GSTP1 is the most commonly methylated gene in 

CaP, and its inactivation occurs as an early event in cancer progression (Nakayama et al., 

2004). Hypermethylation of GSTP1 was found to be absent in normal prostate epithelium, but 

present in 70% of PIN lesions and more than 90% of adenocarcinomas (Nakayama et al., 

2003). Other genes, also known to be frequently hypermethylated at their CpG islands in CaP 

are shown in Table 5. Frequent promoter hypermethylation of some genes is also found in PIN 

and normal prostate tissue, suggesting that epigenetic alterations are early events in CaP 

progression (Kang et al., 2004; Woodson et al., 2004; Henrique et al., 2006).  

 

Many of the genes frequently repressed by hypermethylation in CaP are usually expressed 

predominantly in the more undifferentiated cells in the normal prostate. For example, GSTP1 is 

expressed only in the basal compartment of normal prostate (Moskaluk et al., 1997) and CD44 

is expressed mainly in basal cells (Liu et al., 1997; Alam et al., 2004).  

 

 

 

 

 

 

 

 

 

1.6.5. Epigenetic changes in prostate cancer 
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Hypomethylated Gene Reference 

CAGE Cancer/testis antigen  (Cho et al., 2003) 

CYP1B1 Cytochrome P450 1B1  (Tokizane et al., 2005) 

HPSE Heparanase (Ogishima et al., 2005) 

PLAU Urokinase-type plasminogen activator (Pakneshan et al., 2003) 

WNT5a Wingless-related MMTV integration site 5A (Wang et al., 2007) 

CRIP1 S100 calcium-binding protein P  (Wang et al., 2007) 

S100P Cysteine-rich protein 1 (Wang et al., 2007) 

 

Table 4. Genes showing frequent regulation by DNA hypomethylation in prostate cancer. 

 
 
 
 
 
 
 

Hypermethylated Gene Reference 

GSTP1 Glutathione S-transferase P1 (Lee et al., 1994) 

APC Familial adenomatous polyposis (Maruyama et al., 2002) 

RARβ Retinoic acid receptor β (Nakayama et al., 2001) 

RASSF1α Ras association domain family protein 1 

isoform A 

(Liu et al., 2002) 

TIMP3 TIMP metallopeptidase inhibitor 3 (Yamanaka et al., 2003) 

MGMT O-6-methylguanine DNA methyltransferase (Yegnasubramanian et al., 

2004) 

MDR1 Multidrug resistance receptor 1 (Ellinger et al., 2008) 

PTGS2 Prostaglandin-endoperoxide synthase 2 (Yegnasubramanian et al., 

2004) 

CD44 Cluster of differentiation 44 (Lou et al., 1999; Kito et al., 

2001) 

 

Table 5. Genes showing frequent regulation by DNA hypermethylation in prostate cancer. 
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1.6.5.2. Chromatin Remodelling 

 

Several histone modifying enzymes are deregulated in CaP, including the EZH2 histone 

methyltransferase PcG protein, which trimethylates H3K27, dimethylates H3K9 (Cao et al., 

2002), is involved in DNA methylation (Vire et al., 2006) and is over-expressed in CRPC 

(Varambally et al., 2002). EZH2 over-expression is associated with hypermethylation and 

repression of genes involved in EMT (Chen et al., 2005), tumour suppression and metastasis 

(Beke et al., 2007) and is associated with a high proliferative rate and CaP aggressiveness 

(Bachmann et al., 2006). LSD1 (or histone demethylase 1a) acts as a transcriptional co-

repressor by removing mono- or dimethyl groups from H3K4, promotes cell proliferation 

(Scoumanne and Chen, 2007) and is associated with CRPC (Metzger et al., 2005; Kahl et al., 

2006). A number of HDACs are also up-regulated in CaP (Patra et al., 2001), including HDAC1 

(Halkidou et al., 2004). 

 

 

1.6.5.3. MicroRNAs 

 

In CaP, miRNA deregulation affects epigenetic reprogramming, blockade of apoptosis, 

promotion of cell cycle, migration and invasion and is an alternative mechanism sustaining 

androgen-independent growth (Coppola et al., 2010; Jeronimo et al., 2011).  
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Epigenetic modifications are essential for the normal function of SCs and early progenitor cells, 

but can be highly deregulated in cancers. Epigenetic regulation plays a crucial role in the 

maintenance of the hierarchical structure of tissues, since it is involved in both SC maintenance 

and fate determination (Ansel et al., 2003; Hsieh and Gage, 2004; Fan et al., 2005; Roloff and 

Nuber, 2005; Sen et al., 2010). The tumour suppressor gene p16ink4A is one of the most 

common and earliest epigenetically silenced genes in a range of cancers, including breast, 

colon and lung. Recent experiments with knockout mice have revealed that germ line loss of 

this gene increases SC life span, consistent with the proposed role of epigenetic modifications 

facilitating early abnormal clonal expansion of cells at risk for cancer (Jones and Baylin, 2007). 

It is also known that the PcG protein, Bmi1, maintains the self-renewal of a number of SCs, 

including HSCs (Park et al., 2003), neural SCs (Molofsky et al., 2003), mammary SCs (Liu et al., 

2006b) and prostate SCs (Lukacs et al., 2010). Recently, it was shown that the Bmi1 pathway is 

one of the key regulatory mechanisms of the ‘stemness’ function of normal SCs and CSCs 

(Glinsky, 2008).  

 

SCs exhibit an epigenetic landscape with a highly dynamic bivalent chromatin state, in which 

active and repressive chromatin marks are closely positioned. Bivalent domains were initially 

proposed as areas of chromatin responsible for silencing developmental genes in embryonic 

SCs, whilst keeping them poised for activation during differentiation (Bernstein et al., 2006). 

Moreover, this bivalent chromatin state has also been shown to be associated with HSCs or 

progenitor cells prior to differentiation (Cui et al., 2009). Evidence has suggested that a bivalent 

SC-like chromatin pattern in important regulatory genes in SCs or progenitor cells may leave 

these genes vulnerable to aberrant DNA hypermethylation and heritable gene silencing, during 

tumour initiation and progression (Ohm et al., 2007). 

 

The key question is whether epigenetic modifications are the driving force for the development 

of cancer, or if they are a secondary event. If indeed they are, reversion of malignancy would be 

more achievable. As epigenetic modifications are found so early in tumourigenesis it is plausible 

that epigenetic changes in SCs may be the instigator for cancer. Feinberg et al. (2006) 

proposed that epigenetic abnormalities might play a seminal role in the earliest steps of cancer 

initiation. He proposed that cancer arises in three steps: (1) epigenetic disruption of progenitor 

cells, (2) an initial mutation and (3) genetic and epigenetic plasticity (Figure 17). The initial step 

involves an epigenetic change occurring in a stem/progenitor cell leading to a polyclonal altered 

population of neoplasia-ready cells. It is proposed that ‘tumour-progenitor genes’, that may 

normally regulate SC characteristics, promote this initial epigenetic change. This tumour-

progenitor gene (or genes) may constitute part of an epigenetic network with positive and 

negative feedback. The second step is an initiating genetic mutation within this epigenetically 

altered progenitor-cell pool, which has traditionally always been thought of as the first step in 

1.6.6. Epigenetic changes in stem cells 
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carcinogenesis. Finally, the cell must acquire an ability to stably evolve its phenotype both 

genetically and epigenetically leading to the development of a primary cancer.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 17. The epigenetic progenitor model of cancer.  
This model proposes that cancer arises in 3 steps: (1) Epigenetic alteration of stem/progenitor 
cells within a tissue. (2) Initial genetic mutation within the altered progenitor pool. (3) Epigenetic 
and genetic plasticity leading to the development of cancer. Adapted from (Feinberg et al., 
2006).  
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1.7. Identification of a prostate cancer stem cell signature 

 

To identify new strategies of SC differentiation therapy, the phenotypic differences between SCs 

and their differentiated progeny needs to be sought. Birnie et al. (2008) have identified an 

expression signature of genes that are over-expressed in prostate SCs compared to more 

differentiated CB cells, using an Affymetrix microarray. More importantly, classes of genes that 

were lowly expressed in the SC compartment were identified. These classes of genes could be 

exploited by future differentiation therapies through restoration of their expression or function. 

Two of the most significantly down-regulated genes in the SC compartment were the two 

homologous genes RARRES1 and LXN. RARRES1 has a known role in CaP progression and 

LXN has been identified as a SC regulator; these genes were consequently selected based on 

their expression in the microarray and their expression, regulation and function was investigated 

in greater detail in this study.  

 

 

 

 

The RARRES1 gene is located on the long arm of chromosome 3 adjacent to the LXN gene, at 

3q25.32 (Figure 18). The gene is 35.38 kb in length, contains one open reading frame, but 

through alternative splicing codes for 2 protein isoforms of 228 (26 kDa) and 294 (33 kDa) 

amino acids.  

 

RARRES1, or Tazarotene Induced Gene 1 (TIG1), was originally identified as the most up-

regulated gene induced by the RAR β/γ - specific retinoid, tazarotene, in human skin raft 

cultures and psoriatic lesions (Nagpal et al., 1996). Gene expression was not induced by RXR 

specific retinoids, indicating that RARRES1 expression is mediated through the RAR pathway in 

the skin. Similarly, RARRES1 expression has been shown to be induced by the vitamin D3 pro-

differentiation agent 1,25-dihydroxyvitamin D in the human colon carcinoma cell line, Caco-2 

(Wood et al., 2004). Expression of RARRES1 is generally low in malignant cancer cell lines and 

is known to be repressed by DNA methylation in a number of cancers, including CaP (Youssef 

et al., 2004; Zhang et al., 2004; Kwong et al., 2005; Mizuiri et al., 2005; Ellinger et al., 2008; 

Yanatatsaneejit et al., 2008; Son et al., 2009; Tamura et al., 2009; Peng et al., 2012).  

 

The cellular localisation of RARRES1 has only been speculated upon. Sequence analysis 

initially predicted RARRES1 to be a transmembrane protein with a small N-terminal intracellular 

region, a single membrane-spanning hydrophobic region and a long C-terminal extracellular 

region (Jing et al., 2002). More recently, RARRES1 was proposed to be a type III 

transmembrane protein based purely on its N-glycosylation status, with its long C-terminal 

domain facing the cytoplasm (Sahab et al., 2011). RARRES1 was only very recently shown to 

be exclusively secreted by plexiform neurofibroma Schwann cells, but not by normal Schwann 

cells, derived from non-neoplastic peripheral nerve (Chen et al., 2012). RARRES1 protein has 

1.7.1. Retinoic acid receptor responder 1 (RARRES1) 
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previously been detected in the conditioned media of 

adenocarcinomic human alveolar basal epithelial (A549) cells (Caccia et al., 2011), Hela cells, 

colorectal carcinoma (Colo205) cells and hepatocellular carcinoma (Hep3B) cells (Wu et al., 

2010).  

 

A functional role for the suppression of RARRES1 expression in cancer cell lines was confirmed 

by studies on a metastatic CaP cell line (PC-3M), where it acted as a metastasis suppressor 

(Jing et al., 2002). A decrease in RARRES1 expression increased the malignant characteristics 

of prostate cells and xenograft tissues; expression was found to reduce the invasiveness of 

malignant PC-3M cells in vitro and reduced tumour size in vivo in nude mice. A similar effect on 

invasion has been seen in Epstein-Barr virus-infected nasopharyngeal carcinoma cells (Kwok et 

al., 2009) and breast carcinoma SUM-159 cells (Peng et al., 2012).  

 

The expression of RARRES1 is closely associated with differentiation and staging of colorectal 

adenocarcinoma cells (Wu et al., 2006). In normal colorectal mucosal tissue, it was found that 

RARRES1 protein expression is highest in terminally-differentiated luminal epithelial cells. 

RARRES1 plays a role in controlling the proliferation and differentiation of adult adipose-derived 

mesenchymal SC (Ohnishi et al., 2009), suggesting it might have a role in SC differentiation. 

Furthermore, over-expression of RARRES1 in endometrial tumour cells and colon cancer cell 

lines resulted in suppression of colony forming ability (Takai et al., 2005).  

 

The mechanism of action of RARRES1 in suppressing invasion in cancer progression is 

currently unknown. The 30% sequence similarity between the C-terminal region of RARRES1 

and LXN suggests that RARRES1 may also function as a carboxypeptidase inhibitor (Aagaard 

et al., 2005). In fact, RARRES1 has only recently been described to interact with the cytosolic 

carboxypeptidase AGBL2 to regulate the α-tubulin tyrosination cycle in the HEK 293 cell line 

(Sahab et al., 2011). 

 

 

 

 

 

 

 

Figure 18. Adjacent location of the RARRES1 and LXN genes.  
RARRES1 and LXN are located adjacent on the long arm of chromosome 3 at the region 
3q25.32-q25.33. Despite their adjoining location, each gene is controlled by an individual 
promoter. 
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Latexin (LXN), or Tissue/Endogenous Carboxypeptidase Inhibitor (TCI/ECI), was initially 

discovered as a marker of neurons in the lateral neocortex of developing and adult rats 

(Arimatsu, 1994). The human LXN gene is 6.28 kb in length and codes for one 222 amino acid 

protein (26 kDa), which displays 84% sequence identity to the rat LXN protein (Liu et al., 2000). 

The adjacent location of RARRES1 and LXN, and also their sequence homology, suggests the 

cluster emerged via gene duplication and subsequent divergence (Aagaard et al., 2005). 

However, the principal differences reside in the termini of the proteins, particularly in the 

existence of a putative N-terminal transmembrane domain in RARRES1, that is absent in LXN. 

In addition, both genes share high sequence homology with cysteine protease inhibitors 

(Aagaard et al., 2005).  

 

The intracellular localisation of LXN in human cells is unknown, but an early study in rat mast 

cells indicated a cytoplasmic granular distribution that was not associated with lysosomal 

structures (Uratani et al., 2000). Similar to RARRES1, LXN expression has only recently been 

shown to be repressed by DNA methylation in medullablastoma, gastric carcinoma, melanoma 

and CaP (Muthusamy et al., 2006; Anderton et al., 2008; Li et al., 2011; Kloth et al., 2012). 

 

LXN has also been identified as a quantitative trait gene responsible for negatively regulating 

HSC numbers in mice (Liang et al., 2007). LXN-deficient HSCs have been shown to possess an 

enhanced colony forming ability (Mitsunaga et al., 2011) and modulation of LXN expression in 

gastric carcinoma cell lines affected colony forming ability in a similar manner (Li et al., 2011). 

Little is known about the biological function of LXN, but it is thought to modulate SC pool size by 

decreasing HSC replication and increasing HSC apoptosis (Liang and Van Zant, 2008). It has 

been proposed that LXN regulates replication and apoptosis in SCs by inhibiting 

carboxypeptidase A (CPA), participating in intracellular signalling pathways or regulating protein 

aggregation. Various studies have shown LXN to have a role in inflammation, in the 

transmission of pain in mice and in protein aggregation (Aagaard et al., 2005; Jin et al., 2006; 

Pallares et al., 2007). It has also recently been found that LXN is involved in BMP-2-induced 

chondrocyte differentiation and plays an important role in skeletogenesis and skeletal 

regeneration (Kadouchi et al., 2009). 

 

LXN could also function via blocking the action of proteinases, as it has been described as the 

only known endogenous CPA inhibitor in mammals (Normant et al., 1995). Recombinant rat 

LXN was first shown to inhibit proteolytic activity of CPA in vitro (Normant et al., 1995). The 

mechanism of inhibition of CPA4 by LXN is unknown at present, but the structure of LXN in 

complex with CPA4 has been resolved (Pallares et al., 2005) (Figure 19). This structure showed 

that LXN is comprised of two topologically equivalent α/β-fold subdomains, packed tightly 

against each other, similar to that of the cysteine protease inhibitor, cystatin C (Pallares et al., 

2005). The human CPA4 protein shows the characteristic α/β-hydrolase fold of A/B 

1.7.2. Latexin (LXN) 
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metallocarboxypeptidases (MCPs) and resembles a funnel-like structure, with the active site 

cleft at the bottom of this ‘funnel’. In the LXN/CPA4 complex, LXN sits on top of this ‘funnel rim’ 

at the interface between its two subdomains and via only relatively few interactions.  

 

Unbiased analysis of Affymetrix gene-expression array data from our laboratory identified 

classes of genes whose expression was significantly down-regulated in the SC population from 

both benign and malignant human CaP compared to more differentiated epithelial cells (Birnie 

et al., 2008). This analysis identified the homologous genes RARRES1 and LXN as two of the 

most highly-significantly down-regulated genes in the SC compartment, whose expression 

increased through differentiation to CB cells.   

 

 

 

 

 

 

 

 

 
Figure 19. Structure of LXN in complex with human CPA4.  
Ribbon plot of the LXN (cyan) and human CPA4 (hCPA4; orange) enzyme complex. LXN 
segments contacting hCPA4 are in magenta. Protein residues coordinating the catalytic zinc ion 
(yellow sphere) in CPA4 are violet, as is the glycosylation site (Asn148A). Modified from 
(Pallares et al., 2005). 
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Carboxypeptidases are members of the MCP family, which hydrolyse and remove carboxy-

terminal amino acids in polypeptides and proteins via catalysis, involving a tightly-bound 

catalytic Zn
2+

 ion (Vendrell et al., 2000). MCPs can be classified into the A/B and N/E 

subfamilies based on structural and sequence similarities. A/B MCPs are synthesised and 

secreted as inactive zymogens, possessing an additional inhibitory 90 amino acid long pro-

domain at the amino-terminus, which blocks access to the active site cleft. Activation of the 

MCP occurs through proteolytic cleavage of the pro-domain, resulting in its release from the 

active site (Vendrell et al., 2000). A/B MCPs can be classified further upon the basis of their 

substrate specificity, with the prototypical CPA having a preference for hydrophobic amino 

acids. The mammalian CPA family contains six members, termed CPA1-6, all with diverse 

functions.  

 

The CPA4 gene comprises a 31.05 kb DNA sequence, containing an open reading frame 

encoding a 421 amino acid protein (Huang et al., 1999). The inactive zymogen pro-CPA4 (47 

kDa) is cleaved into an active CPA4 protease (35 kDa) by trypsin cleavage (Tanco et al., 2010). 

Expression of CPA4 is apparent in a wide range of tissues, including prostate, ovary, brain, 

cervix and thymus; however, the level of expression in these adult tissues is extremely low. 

CPA4 is located at a putative CaP-aggressive locus on chromosome 7q32 (Witte et al., 2000) 

and a non-synonymous coding single-nucleotide polymorphism (G303C) on the CPA4 gene 

was found to be associated with an increased risk of aggressive disease in younger men (Ross 

et al., 2009). CPA4 also lies in a 120 kb gene cluster interval with CPA1, CPA2 and CPA5 

(Bentley et al., 2003). The CPA family lies only 100 kb proximal to a cluster of imprinted genes 

MEST, MESTIT1 and COPG2IT1, yet only the single gene, CPA4, is found to be imprinted in 

normal prostate and BPH tissue (Bentley et al., 2003; Kayashima et al., 2003).  

 

CPA4, originally termed CPA3, was first identified as a gene up-regulated by NaBu in the 

androgen independent CaP cell line, PC3 (Huang et al., 1999). CPA4 induction in these cells 

was mediated via transactivation of p21 by NaBu. A recent publication by Tanco et al. (2010) 

identified that the substrate specificity of CPA4 included chromogranin A and neurotensin, 

which have recognised roles in CaP progression (Kadmon et al., 1991; Sehgal et al., 1994) and 

differentiation (Swift et al., 2010). 

 

 

 

  

1.7.3. Carboxypeptidase A4 (CPA4) 
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1.8. Prostate models 

 

 

 

Established cell lines are the traditional model for studying CaP as they confer significant 

advantages over other models: (1) they can be maintained for extended passages, (2) they are 

easily manipulated, (3) they can be adapted to culture under different conditions and (4) they 

are readily transfectable. A number of well characterised cell lines used in this project 

representing benign, malignant and metastatic models of CaP isolated from various tissues are 

described in Table 6. 

 

 

 

 

Cell lines are an adequate model for optimising protocols, testing hypotheses and generating 

preliminary data, but they do not accurately represent the in vivo situation. In fact, the long-term 

culture of cells in serum-containing media can induce chromosomal changes (Lee et al., 2006; 

Izadpanah et al., 2008) and DNA hypermethylation often occurs during the establishment of 

immortal cell lines (Jones et al., 1990; Kawai et al., 1994; Jaenisch and Bird, 2003; Meissner et 

al., 2008). As a result of the limitations of cell line models, it is important to use primary culture 

models of CaP as they are a ‘near to the patient’ model. However, it must be noted that patient 

biopsies for the derivation of primary cultures can be difficult to obtain and have a limited 

lifespan in vitro. The epithelial cultures used are derived from biopsies taken with consent and 

ethical approval from patients undergoing radical prostatectomy, TURP or cystectomy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.8.1. Prostate epithelial cell lines 

1.8.2. Primary prostate epithelial cultures 
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Cell Line Origin Method of 

immortalisation 

Reference Increasing 

Malignancy 

PNT1a Normal prostate cells 

originating from young 

male organ donors  

Transfection with 

SV40 large T 

antigen 

(Berthon et al., 

1995) 

 

PNT2-C2 

BPH-1 TURP of a BPH tissue Transfection with 

SV40 large T 

antigen 

(Hayward et 

al., 1995) 

P4E6 Well-differentiated early 

Gleason 4 CaP tissue 

Transfection with 

human 

papillomavirus-16 

E6 gene 

(Maitland et al., 

2001). 

RC165N/ 

hTERT 

Primary benign tissues 

of African-American 

CaP patients 

Telomerase (Miki et al., 

2007). 

Bob TURP of CRPC tissue 

 

Spontaneous (Attard et al., 

2009) 

Serbob TURP of CRPC tissue 

 

Spontaneous (Attard et al., 

2009) 

PC346C Advanced, but not 

metastatic, prostate 

adenocarcinoma 

removed via TURP and 

subcutaneously 

implanted into athymic 

mice 

Transfection with 

retrovirus 

(Marques et 

al., 2006) 

LNCaP Left supraclavicular 

lymph node metastasis 

 (Horoszewicz 

et al., 1980)  

VCaP Bone metastasis  (Korenchuk et 

al., 2001) 

DU145 Isolated from the brain 

of a patient with CaP 

metastasis 

 (Stone et al., 

1978) 

PC3 Bone metastasis from 

grade 4 prostate 

adenocarcinoma 

 (Kaighn et al., 

1979) 

 

Table 6. Cell line models of prostate cancer.  
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Following the testing of hypotheses and potential therapies using in vitro assays, the results 

must be validated on an animal model to determine efficacy in vivo. CaP spontaneously arises 

in the dog (Waters and Bostwick, 1997), but for other species genetic manipulation must be 

used to develop valid models for CaP. Transgenic mouse models such as TRAMP and LADY 

are a common way to study CaP in vivo (Greenberg et al., 1995; Kasper et al., 1998). An 

alternative possibility is the orthotopic transplantation (xenografts) of tumourigenic human CaP 

cells into immune-compromised mice models, such as NOD/SCID or RAG2
-/-

γC
-/-

 mice (Shultz 

et al., 1995), which are the model of choice to study CSC in vivo.  

 

While mice share significant similarities to humans, there are also distinct differences. In 

contrast to human prostate, the murine prostate structure is much simpler and consists of a 

luminal-like epithelium in direct contact with BM, containing a discontinuous layer of relatively 

few basal cells and a less complex and sparse stroma (El-Alfy et al., 2000; Tsujimura et al., 

2002). In addition, anatomically the mouse prostate comprises four paired lobes, whereas the 

human prostate is a single gland divided into four distinct zones (Roy-Burman et al., 2004). 

Although the architecture of mouse and human prostates are dissimilar, the study of the murine 

prostate has been of invaluable assistance in prostate SC research. In addition, mouse models 

provide essential information about the efficacy and toleration of potential treatments in vivo, but 

this may not be fully predictive of the response in a human.  

  

1.8.3. In vivo mouse models 
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1.9. Aims of research 

 

There is a need for novel therapeutic strategies to tackle advanced CaP, since traditional 

treatments such as ADT and chemotherapy fail to kill the rare SC component of a tumour. The 

identification of genes that are differentially expressed between SCs and differentiated cells, in 

particular, classes of genes whose expression is significantly down-regulated in the SC fraction, 

is crucial for designing new SC-based therapies.  

 

The two homologous genes RARRES1 and LXN have recently been identified as SC-silenced 

genes within the prostate epithelium (Birnie et al., 2008). The main aim of this project was to 

investigate the expression, regulation and function of these SC-silenced genes, and their 

potential interacting partner, CPA4, in prostate epithelial differentiation. 

 

More specifically, the objectives of the study were to: 

 

 Determine if RARRES1 and LXN were differentially expressed between SC, TA and CB 

cells and between BPH and CaP and elucidate the potential mechanisms of their 

regulation.  

 

 Examine the expression and epigenetic regulation of their potential interacting protein 

CPA4 in the same cell models.  

 

 Explore the roles of RARRES1 and LXN as potential tumour suppressor genes in CaP.  

 

 Investigate the function of RARRES1 and LXN in SC differentiation. 

 

Restoration of expression or function of RARRES1 and LXN within the SC population could act 

as a differentiation therapy, whereby the SC pool is depleted leaving the remaining 

differentiated cells susceptible to current therapies. Expression could be restored by exploiting 

the mechanism responsible for repressing their expression within the SC, or by transfecting 

over-expression vectors into the SC population. It is hypothesised that RARRES1 and LXN may 

function by binding to and inhibiting the carboxypeptidase CPA4. Therefore, if CPA4 is 

artificially supressed within the SC compartment, by shRNA or direct inhibitors, this would 

recapitulate the effect of restoration of RARRES1 and LXN expression.  

 

By answering these questions and furthering our understanding of the regulation of RARRES1, 

LXN and CPA4, novel therapeutics against the SC phenotype within cancer may be found.   



  

                                               71 Materials and Methods 

 

 

 

 

2.1. Mammalian cell culture 

 

 

 

Cells were routinely passaged in T25 or T75 flasks at 37°C with 5% CO2 and medium 

constituents were purchased from Invitrogen, unless otherwise stated. A commercial 

preparation of 0.05% (v/v) trypsin-EDTA in PBS (Invitrogen) was used to sub-culture cells, 

which were split 1:2-1:10 depending on the growth characteristics of individual cell lines. All 

cells were maintained in a humidified atmosphere at 37°C in the presence of 5% CO2 in air. 

Details of cell lines used, their origin and culture conditions are shown in Table 7. 

 

 

Patient prostate tissue was obtained from patients undergoing TURP or radical prostatectomy, 

with informed patient consent and approval from the York Research Ethics Committee. BPH or 

CaP diagnosis was confirmed by histological examination of adjacent tissue fragments. Patient 

tissue details can be found in Appendix 3.  

 

Patient tissues were chopped with a scalpel, pieces retained for histology and digested with 200 

U/mg collagenase (Lorne Laboratories) dissolved in 2.5 ml Keratinocyte Serum-Free Medium 

(KSFM with 5 ng/ml human EGF and 50 µg/ml bovine pituitary extract supplements (Invitrogen)) 

and 5 ml Roswell Park Memorial Institute-1640 medium (RPMI, Invitrogen), supplemented with 

100 U/ml antibiotic/antimycotic solution and 2 mM L-Glutamine (Invitrogen) overnight at 37°C, 

with shaking at 80 RPM. The digestion was then triturated by passing through a 5 ml pipette 

and blunt needle and centrifuged at 2000 RPM for 10 min to sediment cells. To wash out the 

collagenase, two washing steps with PBS were performed: the supernatant was removed, 10 ml 

PBS was added, the cell pellet was re-centrifuged at 2000 RPM for 10 min and the procedure 

repeated. After resuspending the cell pellet in RPMI media supplemented with 10% foetal calf 

serum (FCS) (PAA) and 2mM L-Glutamine (R10), cells were centrifugally fractionated at 800 

RPM for 1 min to remove stromal cells (supernatant). The pellet consisting of the acini-

containing epithelial cells were treated with 5 ml 0.05% trypsin-EDTA for 30 min at 37°C with 

shaking at 80 RPM. Trypsin-EDTA was inactivated with R10 medium, and epithelial cells 

centrifuged at 1500 RPM for 3 min. Cells were routinely co-cultured on type I Collagen-coated 

100 mm plates (BD Biosciences) with mouse STO fibroblast feeder cells in stem cell media 

(SCM), to maintain an undifferentiated basal population of cells. SCM is constituted of 

Keratinocyte Serum-Free Medium, 5 ng/ml human EGF, 50 µg/ml bovine pituitary extract, 2 

ng/ml leukaemia inhibitory factor (Chemicon), 100 ng/ml cholera toxin (Sigma), 1 ng/ml 

granulocyte macrophage colony stimulating factor (Miltenyi Biotec), 2 ng/ml stem cell factor 

2. MATERIALS AND METHODS 

2.1.1. Maintenance of mammalian cell lines 

2.1.2. Isolation and maintenance of primary epithelial cultures 
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(First Link UK Ltd) and 2 mM L-Glutamine. 0.05% trypsin-EDTA was used to sub-culture cells, 

which were split 1:2-1:6 depending on the growth characteristics of individual patient samples, 

to a maximum passage of 8.  

 

 

 

Xenografts were generated by subcutaneously engraftment of patient CaP tissue into the left 

flank of RAG2
-/-

γC
-/-

 mice, supplemented with a 5α-DHT tablet (Innovative Research of America) 

for slow release of androgens (90 days), which was subcutaneously placed under the right 

flank. Once the tumour volume had exceeded a width of 15 mm, tumours were removed and a 

small piece was passaged on by re-engraftment into a different mouse. The remaining tissue 

was used in experiments, fixed in 10% formalin or snap-frozen in OCT embedding medium 

(Thermo Scientific), for histology or DNA extraction. This was performed by Dr. Anne Collins or 

Paul Berry.  

 

 

Xenograft tissue was initially washed in PBS, placed in a plastic tissue freezing mould and 

covered with OCT embedding medium. The mould containing the tissue was then snap-frozen 

in liquid nitrogen, to form a block of frozen OCT with the tissue in the centre and placed at -80°C 

until required. When sections were needed, snap frozen tissue was removed from the -80°C 

freezer and immediately placed on a Cryostat CM1950 (Leica) cutting key at -22°C. Sections 

were cut at 10 µm, collected on a frost-free glass slide (Fisher Scientific) and frozen at -80°C 

until required. This was performed by Katy Hyde.  

 

 

  

2.1.3. Generation and maintenance of xenografts 

2.1.4. Embedding and sectioning of snap-frozen xenograft tissue 



  

                                               73 Materials and Methods 

 

Cell Line  Origin  Culture media  Reference  

PNT2-C2  Clone derived at 
York  

R10 (Berthon et 
al., 1995) 

PNT1a  Obtained with 
kind permission 
from Dr. P 
Berthon  

R10  (Berthon et 
al., 1995) 

BPH-1  Obtained with 
kind permission 
from Dr. Simon 
Hayward  

RPMI, 5% (v/v) FCS, 2 mM L-Glutamine (R5)  (Hayward et 
al., 1995)  

RC165N/ 
hTERT  

Obtained with 
kind permission 
from Dr. Jun Miki  

KSFM , 50µg/ml bovine pituitary extract, 
5ng/ml human EGF, 2mM L-Glutamine  

(Miki et al., 
2007) 

P4E6  Derived at York Keratinocyte Serum-Free Medium (KSFM, 
Invitrogen), 2% (v/v) FCS, 2mM L-Glutamine, 
5ng/ml human EGF (Invitrogen), 50µg/ml 
bovine pituitary extract (Invitrogen) (K2)  

(Maitland et 
al., 2001)  

Bob Obtained with 
kind permission 
from Dr. David 
Hudson  

SCM (Attard et 
al., 2009)  

SerBob   Obtained with 
kind permission 
from Dr. David 
Hudson  

SCM, 10% (v/v) FCS  (Attard et 
al., 2009) 

PC3  ECACC  Ham’s F-12 medium (Lonza Laboratories), 7% 
(v/v) FCS, 2 mM L-Glutamine (H7)  

 

DU145  ATCC  R10   

VCaP  ATCC  R10   

LNCaP  ECACC  R10   

PC346C  Obtained with 
kind permission 
from Prof. Chris 
Bangma  

1:1 mix of Dulbecco’s Modified Eagle’s 
Medium (DMEM) and Ham’s F-12 medium, 
100 µg/ml streptomycin, 100 U/ml penicillin G, 
2% FCS, 0.01% (w/v) BSA (Sigma), 10 ng/ml 
EGF (Sigma), 1% (v/v) ITS-G (GIBCO), 0.1 
nM R1881 (DuPont-New England Nuclear), 
1.4 µM hydrocortisone (Sigma), 1 nM 
triiodothyronine (Sigma), 0.1 mM 
phosphoethanolamine (Sigma), 50 ng/ml 
cholera toxin (Sigma), 0.1 µg/ml fibronectin 
(Sigma), 20 µg/ml fetuin (Sigma)  

(Dubbink et 
al., 1996)  

MDA-MB-
231  

ATCC DMEM, 10% (v/v) FCS, 2 mM L-Glutamine 
(D10)  

 

STO  ATCC  D10   

 

Table 7. Table listing the cell lines used, their origin and culture conditions. 
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For storage in liquid nitrogen, mammalian cells were trypsinised, sedimented by centrifugation 

at 1500 RPM for 3 min and suspended in freezing medium at a concentration of 1-2 x 10
6
 cells 

per ml. 1 ml aliquots of the cell suspension were aliquoted into cryovials and the vials stored at -

80°C for at least 24 hours, until transfer to liquid nitrogen. After thawing, cells were diluted into 

15 ml of R10 culture medium, sedimented by centrifugation and plated in either T25 flasks (cell 

lines) or 100 mm collagen-I coated plates (primary cultures).  

 

 

 

For inactivation by irradiation, mouse STO fibroblast cells were trypsinised at 80-90% 

confluency and sedimented by centrifugation at 1500 RPM for 3 min. Cells were then 

resuspended in 10 ml SCM per 100 cm
2
 of culture surface and treated with a radiation dose of 

60 Gy. Cells could be stored at 4°C for up to 5 days before use. This was routinely performed 

by Caty Hyde, Sandra Klein or Richard Bingham. 

 

 

 

2 g of Norvid A charcoal (Sigma) was added to 100 ml FCS and incubated at 4°C overnight, to 

remove steroid hormones and other lipid-based hormones. The mixture was centrifuged at 5000 

RPM for 10 min to sediment the charcoal, and the supernatant re-centrifuged repeatedly at 

5000 RPM for 10 min until the supernatant cleared. The FCS was then filtered using a 0.2 µM 

filter and stored at 4°C until use. 

 

 

To determine live cell counts, 10 µl 0.4% Trypan Blue Stain (Sigma-Aldrich) was diluted 1:1 with 

10 µl cell suspension. Total cell number (blue and non-stained cells) and live cell number (non-

stained cells) were then counted using a haemocytometer (Neubauer).  

 

 

Cells were trypsinised and sedimented by centrifugation at 1500 RPM for 3 min. Pellets were 

resuspended in 500 µl PBS, placed on ice and analysed on a Vi-Cell Cell Viability Analyser 

(Beckman Coulter). The average number of total and viable cells was quantified from 50 

images. 

 

 

2.1.5. Cryopreservation of mammalian cells 

2.1.6. Irradiation of fibroblasts 

2.1.7. Fetal calf serum hormone depletion 

2.1.8. Determination of live cell number using a haemocytometer 

2.1.9. Determination of viable cell number using the Vi-Cell cell viability 

analyser 
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2.2. Primary culture enrichment  

 

Primary prostate epithelial cultures were enriched for three subpopulations of cells at different 

differentiation states, based on the expression of α2β1-integrin and CD133 as described 

previously (Collins et al., 2001; Richardson et al., 2004): 

 An undifferentiated population of cells with SC characteristics, which expressed high 

levels of α2β1-integrin and CD133 (α2β1-integrin
high

CD133
+
). 

 TA progeny, which expressed high levels of α2β1-integrin, but did not express CD133 

(α2β1-integrin
high

CD133-). 

 Committed to differentiation CB cells, which expressed low levels of α2β1-integrin and 

did not express CD133 (α2β1-integrin
low

CD133-). 

The enriched subpopulations will henceforth be described as SC, TA and CB cell populations.  

 

 

 

Cultured primary prostate epithelial cultures were grown to approximately 80% confluency and 

harvested using 0.05% trypsin-EDTA. Type I collagen-coated 100 mm plates were blocked with 

0.3% BSA (0.3% bovine serum albumin in PBS, heated denatured at 80°C for 5 min) for 1 hour 

at 37°C. 3 ml cell suspension was plated out onto blocked plates and incubated at 37°C for 20 

min (cells from 3 x 100 mm plates were combined onto 1 blocked plate). Media was collected 

and the plates were rinsed 5 times with 5 ml PBS, which was also retained. The collected media 

and washes were spun at 1500 RPM for 5 min to pellet the cells expressing low levels of α2β1-

integrin (α2β1-integrin
low

; CB). The α2β1-integrin
high

 adherent cells were harvested by incubation 

with 0.05% trypsin-EDTA and used for CD133 cell isolation.  

 

 

 

To isolate CD133-expressing cells from established primary prostate epithelial cultures, the 

Direct CD133 Cell Isolation Kit (Miltenyi Biotec) was used. α2β1-integrin
high

 cells were isolated 

(as described in Section 2.2.1) and up to 10
8
 cells were resuspended in 300 µl magnetic-

activated cell sorting (MACS) buffer (2 mM EDTA, 0.5% (v/v) FCS in PBS), 100 µL FcR blocking 

reagent (Miltenyi Biotec) and 100 µL CD133 beads (Miltenyi Biotec) and incubated at 4C for 30 

min. Cells were washed with 3 ml MACS buffer, centrifuged at 1500 RPM for 5 min and the cell 

pellet was resuspended in 500 µl MACS buffer. Magnetic cell labelling and cell separation on 

MACS MS columns were performed according to the manufacturer’s instructions. Briefly, the 

MS column was equilibrated with 500 µl MACS buffer and cells bound to magnetic beads were 

passed through the column. Following three wash steps with 500 µl MACS buffer to collect the 

CD133
-
 fraction, 1 ml MACS buffer was added to the column and the CD133

+
 cells were eluted 

from the beads with a plunger. The procedure was then repeated by passing cells over a 

second MS column to increase purity of the CD133
+
 population from 70-75% to 95%. The 

CD133
-
 and CD133

+
 cells were sedimented by centrifugation at 1500 RPM for 3 min, the 

2.2.1. Enrichment of α2β1-integrin expressing cells 

2.2.2. Enrichment of CD133 expressing cells 
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supernatant carefully aspirated and the cell pellets were frozen at -80°C to use for RNA and 

DNA extraction or resuspended in SCM and plated on 8 well BioCoat collagen-I coated 

chamber slides (BD Bioscience) for immunofluorescence.  

 

 

2.3. Drug treatment of cells 

 

 

 

Cell lines or primary cultures were plated at a density of 5 x 10
4
 cells per well into uncoated (cell 

lines) or collagen-I coated (primary cultures) 24 well plates, 24 hours prior to treatment. Cells 

were treated with 10 mM NaBu dissolved in PBS, or 0.6 µM TSA dissolved in dimethyl sulfoxide 

(DMSO) for 48 hours, or 1 µM 5-Aza-dC dissolved in DMSO for 96 hours (replacing media 

containing drug every 24 hours).  

 

 

 

Cell lines or primary cultures were plated at a density of 5 x 10
4
 cells per well into uncoated (cell 

lines) or collagen-I coated (primary cultures) 24 well plates, 24 hours prior to treatment. Cells 

were treated with 10 nM - 1 µM atRA dissolved in DMSO for 24 - 96 hours. Cell lines were 

grown in charcoal-stripped medium for 24 hours prior to treatment. Medium containing atRA 

was left on cell lines for the duration of the assay, but the medium on primary cultures was 

changed after 48 hours. 

 

 

2.4. Luciferase assay 

 

Primary cultures were plated at a density of 1 x 10
4
 into collagen-I coated 96 well plates, with 10 

µl STO feeder cells, 24 hours prior to treatment. Cells were transfected with the Cignal RARE 

reporter (luc) kit (SABiosciences), which contained a luciferase reporter plasmid, with active 

regulatory elements composed of a TATA box element and a tandem array of RAREs. Cells 

were transfected using the TransIT-2020 transfection reagent (Invitrogen) (see Section 2.5.3.3). 

Cells were also transfected with a non-inducible firefly luciferase reporter as a negative control 

and a constitutively expressing GFP construct, pre-mixed with a constitutively expressing firefly 

luciferase construct, as a positive control. 24 hours after transfection with the plasmid, cells 

were treated with 250 nM – 1 µM atRA (see Section 2.3.2) or a DMSO control. After a further 24 

hours, luciferase expression was measured using the Dual-Glo system (Promega) following the 

manufacturer’s protocol. Briefly, Stop & Glo substrate was diluted 1:100 (v/v) into Stop & Glo 

buffer to create Stop & Glo reagent. To lyse cells, 100 µl lysis buffer containing luciferase 

substrate was added to cells grown in 100 µl cell medium in a 1:1 ratio (v/v) in 96 well plates, 

mixed by pipetting and incubated for 10 min at RT. Firefly luciferase activity was measured on a 

2.3.1. Treatment of cell lines with NaBu, TSA and 5-Aza-dC 

2.3.2. Treatment of cell lines and primary cultures with atRA 
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Polarstar Optima micro-plate reader (BMG). To quench firefly luciferase activity and provide a 

substrate for Renilla luciferase, 100 µl Stop & Glo reagent was then immediately added to the 

wells (1:1 (v/v) with initial culture medium volume), mixed by pipetting, and Renilla luciferase 

activity was measured after 10 min. Renilla luciferase acts as an internal control for monitoring 

transfection efficiencies and monitoring cell viability.  

 

 

2.5. Transfection of mammalian cells 

 

 

 

DharmaFECT 2 transfection reagent (Dharmacon) was used to transfect cell lines with Silencer 

Select scrambled, RARRES1 or LXN siRNA (Applied Biosystems). PNT1a and PC3 cells were 

plated at a density of 0.5-2 x 10
5
 cells per well into 24 well (RNA, cell motility assay) or 6 well 

(protein) plates 24 hours prior to transfection. A 50 μM working stock siRNA solution was 

prepared in RNase-free ddH2O. In separate tubes siRNA (tube 1) and DharmaFECT 2 (tube 2) 

were diluted into OptiMEM reduced serum medium (Fisher Scientific Ltd) in a polystyrene tube 

according to Table 8, gently pipetted to mix and incubated at RT for 5 min. 

 

 

 

 

 

 

Tube 1 Tube 2  

Medium 

(µl) 

 

Total 

medium (µl) 

5 µM siRNA 

(µl) 

optiMEM 

(µl) 

DharmaFECT 

(µl) 

optiMEM 

(µl) 

24 well 1 49 1 49 400 500 

6 well 4 196 4 196 1600 2000 

 

Table 8. The amounts of siRNA and transfection reagent used to transfect cell lines. 

 

 

Tubes 1 and 2 were combined, gently mixed by pipetting and incubated at RT for 20 min to 

allow siRNA-liposomal complex formation. R10 (PNT1a) or H7 (PC3) culture medium was then 

added to complete the transfection mix. Medium was removed from cells, washed once with 

PBS and the siRNA transfection medium added to each well. The siRNA final concentration was 

10 nM and the specific siRNAs used were Silencer Select (Applied Biosystems) siRNAs 

targeting RARRES1 (siRNA ID:s11812), LXN (siRNA ID: s230651) or Negative control #1. Cells 

were harvested at 24, 48 and 72 hours for RNA extraction or at 48, 72 and 96 hours for protein 

extraction. 

 

 

 

 

2.5.1. Transfection of cell lines with siRNA 



  

                                               78 Materials and Methods 

 

 

 

Oligofectamine transfection reagent (Invitrogen) was used to transfect primary cultures with 

scrambled siRNA, RARRES1 siRNA or LXN siRNA. Cells were plated at a density of 5 x 10
4
 -

1.5 x 10
6
 cells per well into 24 well (RNA), 6 well (protein) or 10 cm (invasion assay or colony 

forming assays) plates, 24 hours prior to transfection. A 20 μM working stock siRNA solution 

was prepared in RNase-free ddH2O. In separate tubes, siRNA (tube 1) and Oligofectamine 

(tube 2) were diluted into OptiMEM reduced serum medium in a polystyrene tube, according to 

Table 9, gently pipetted to mix and incubated at RT for 10 min. 

 

 

 

 

 

 

Number 

of cells 

Tube 1 Tube 2 OptiMEM 

Medium 

(µl) 

SiRNA/ 

Oligofect

amine 

mix (µl) 

SCM 

Medium 

(µl) 
5 µM 

siRNA 

(µl) 

optiMEM 

(µl) 

Oligofect

amine 

(µl) 

optiMEM 

(µl) 

24 

well 

5 x 10
4
 1.25 62.5 0.5 49 44 81 500 

6 

well 

2 x 10
5
 5 250 2 68 175 325 2000 

10 

cm 

dish 

1.5 x 

10
6
 

40 2000 16 544 1400 2600 5000 

 

Table 9. The amounts of siRNA and transfection reagent used to transfect primary 

cultures. 

 

 

Tubes 1 and 2 were combined, gently mixed by pipetting and incubated at RT for 25 min to 

allow siRNA-liposomal complex formation. OptiMEM medium was initially added to cells, 

followed by the siRNA/oligofectamine mix and cells were incubated at 37°C in 5% CO2 for 4 

hours. SCM was then added to cells and the plates incubated for a further 4 h. Medium was 

removed from cells, washed once with PBS and fresh SCM was added to cells. Cells were 

incubated and then harvested at 24, 48 and 72 hours for RNA extraction, or at 48, 72 and 96 

hours for protein extraction. Fresh SCM was added every two days. The siRNAs used were as 

described in Section 2.5.1, but the final concentration was 50 nM.  

 

 

 

 

 

 

 

2.5.2. Transfection of primary cells with siRNA 
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2.5.3.1. Bacterial transformation with plasmid DNA 

 

Aliquots of DH5α or Top10 chemically competent E. coli cells (Fisher Scientific Limited) were 

thawed on ice for 30 min before transformation. 1-5 ng pReceiver-M45 (RARRES1), pEZ-M06 

(LXN) and pReceiver-M06 (control vector with eGFP) cDNA expression plasmid DNA 

(GeneCopoeia) was added to each vial and left on ice for 30 min. Cells were heat-shocked for 

30 seconds at 42°C without shaking, and then placed on ice for 2 min, followed by the addition 

of 250 μl of RT super optimal broth (SOC) medium (Invitrogen). Vials were incubated at 37°C 

for 1 hour in a shaking incubator. Cells were plated in lysogeny broth (LB) agar plates (1% (w/v) 

tryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl, 1.5% (w/v) agar) containing 30 μg/ml 

Kanamycin and incubated for 24 hours at 37°C, before colony screening. This was performed 

by Hannah Walker. 

 

2.5.3.2. Bacterial cultures, plasmid isolation and purification 

 

A single colony from a freshly streaked selective plate inoculated a starter culture of 5 ml LB 

medium (1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl, pH 7.0) containing 30 

μg/ml Kanamycin and was incubated for 8 hours at 37°C, with vigorous shaking (300 RPM). The 

starter culture was diluted 1:500 to 1:1000 (v/v) into selective LB liquid media, in a flask with a 

volume of at least four times the volume of the culture, and cultures were grown at 37°C 

overnight with vigorous shaking (300 RPM). To harvest the bacterial cells, cultures were 

centrifuged at 2900 RPM for 10 min using a Heraeus Megafuge 1.0R centrifuge (Thermo 

Scientific) and supernatant discarded. The EndoFree Maxi kit (Qiagen) was used to generate 

Endofree plasmid DNA according to manufacturer’s instruction.  

 

Briefly, cell pellets were resuspended using 10 ml Buffer P1 (50 mM Tris-Cl pH 8.0, 10 mM 

EDTA, 100 μg/ml RNase A). 10 ml Buffer P2 (200 nM NaOH, 1% SDS (w/v)) was added to the 

mixture, mixed thoroughly by vigorously inverting the tube five times and left at RT for 5 min. 

Cold Buffer P3 (3 M potassium acetate, pH 5.5) was added and immediately mixed by 

vigorously inverting the tube five times, until a clear phase and a precipitate could be visible. 

The lysate was poured into the barrel of a QIAfilter cartridge and incubated at RT for 10 min.  

After the lysate was passed through the column using a plunger, 2.5 ml Buffer ER was added to 

the filtered lysate, the tube was inverted 10 times and incubated on ice for 30 min. A QIAGEN-

tip 500 was equilibrated with 10 ml Buffer QBT (750 mM NaCl, 50 mM MOPS, pH 7.0, 15% 

isopropanol (v/v), 0.15% Triton X-100 (v/v)), the filtered supernatant was applied to the 

QIAGEN-tip to promote plasmid binding to the resin and washed twice with 30 ml Buffer QC (1.0 

M NaCl, 50 mM MOPS pH 7.0, 15% isopropanol (v/v), 0.15% Triton X-100 (v/v)). Plasmid DNA 

was eluted using 15 ml QN buffer (1.6 M NaCl, 50 mM MOS pH 7.0, 15% isopropanol (v/v)), 

precipitated by adding 0.7 volumes (10.5 ml) of isopropanol and centrifuged at 14,000 RPM for 

2.5.3. Transfection with cDNA expression vectors 
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30 min at 4°C, using a Heraeus Multifuge X1R centrifuge (Thermo Scientific). The DNA pellet 

was washed with endotoxin-free 70% ethanol (v/v) at RT, re-centrifuged, supernatant removed 

and the DNA pellet air-dried for 10 min and then resuspended in ddH2O. The plasmid DNA was 

diluted down to 1000 ng/µl for use to transfect into mammalian cells. This was performed by 

Hannah Walker.  

 

2.5.3.3. Transfection of cell lines with plasmid DNA 

 

TransIT-2020 transfection reagent was used to transfect cell lines with pReceiver-M45 

(RARRES1), pEZ-M06 (LXN) and pReceiver-M06 (control vector with eGFP) cDNA expression 

plasmid DNA. 0.1-2 x 10
5
 cells per ml were plated in 24 well plates (RNA), 6 well plates (protein) 

or 8 well chamber slides (immunofluorescence) 24 hours prior to transfection so cells were at 

least 50% confluent at transfection. TransIT-2020 reagent was warmed to RT and vortexed 

gently before use. For each well to be transfected (details of volumes for each plate are 

described in Table 10), 100-2500 ng plasmid DNA was diluted into OptiMEM reduced serum 

medium in a polystyrene tube, and gently pipetted to mix. TransIT-2020 reagent was then 

added to the tube, and the mixture gently pipetted to mix. The DNA-reagent mix was incubated 

at RT for 30 min to allow complexes to form and then transferred into culture wells containing 

R10 (for PNT1a and LNCaP cells) or H7 (for PC3 cells) culture medium, drop-wise to different 

areas of the well. Culture plates or slides were rocked to evenly distribute the DNA-reagent 

complexes, and incubated for 6 hours at 37°C. After 6 hours, the culture medium containing the 

DNA-reagent complexes was removed, cells were rinsed with PBS and fresh culture medium 

was added to stop any cytotoxic effects from the reagent. Cells were then incubated for a 

further 18-90 hours before results were analysed.  

 

 

 

 

 

 

 

 

 

 Cell 

suspension 

(µl) 

Opti-MEM 

medium 

(µl) 

1 µg/µl DNA 

stock (µl) 

TransIT-2020 

reagent ( µl) 

Culture 

medium 

(µl) 

8 well chamber 

slide 

100 9 0.1 0.3 92 

24 well plate 500 50 0.5 1.5 50 

6 well plate 2500 250 2.5 7.5 250 

 

Table 10. The amounts of plasmid DNA and transfection reagent used to transfect cell 

lines. 
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2.6. Isolation and analysis of mammalian cell RNA 

 

 

 

RNA was extracted from cells using the RNeasy Mini Kit (QIAGEN). Up to 5 x 10
6
 cells were 

washed once in PBS and incubated with 0.05% trypsin-EDTA at 37°C. Trypsin was blocked with 

R10 medium, centrifuged at 1500 RPM for 3 min and the supernatant aspirated. Pelleted cells 

were resuspended in 350 µl Buffer RLT containing 3.5 µl β-mercaptoethanol and vortexed to 

mix. The cell lysate was pipetted into a QIAshredder homogeniser column (QIAGEN) and 

centrifuged at 13,000 RPM for 2 min. 350 µl 70% ethanol diluted in DEPC-treated water was 

added to the homogenised lysate and mixed well by pipetting. The sample was transferred to an 

RNeasy spin column and centrifuged at 13,000 RPM for 15 seconds. The column was washed 

with 700 µl Buffer RW1 and spun at 13,000 RPM for 15 seconds, followed by washing with 500 

µl Buffer RPE. The column was further washed with 500 µl Buffer RPE and spun at 13,000 RPM 

for 2 min, and then spun at 13,000 RPM for 1 min with a new 2 ml collection tube to remove any 

residual ethanol from the column. The flow-through was discarded after every wash step. RNA 

was eluted with 30 µl RNase-free water after centrifugation at 13,000 RPM for 1 min. RNA 

concentration and quality checks were performed using a NanoDrop ND-1000 

spectrophotometer (Thermo Scientific). RNA samples were routinely stored at -80°C.   

 

 

 

Total RNA (50 ng / 500 ng) was reversed transcribed in a total volume of 14.25 µl, mixed with 

0.75 µl ddH20 and 0.75 µl Random primers (Invitrogen) and heated to 70°C for 10 min. 14.25 µl 

reaction mix consisting of 6 µl 5 x First strand buffer (Invitrogen), 3 µl 0.1 M DTT (Invitrogen), 3 

µl 10 mM dNTPs (Invitrogen), 0.75 µl ddH2O, 1.5 µl Superscript III enzyme (Invitrogen) was 

added and incubated at 45°C for 2 hours. Complementary DNA (cDNA) was purified by ethanol 

(EtOH) precipitation, with the addition of 15 µl 3 M NaCl and 120 µl 100% EtOH and samples 

placed at -80°C for 30 min. Samples were centrifuged at 13,000 RPM for 10 min in a benchtop 

centrifuge  and supernatant removed. The pelleted cDNA was washed in 100 µl 70% EtOH and 

re-centrifuged at 13,000 RPM for 5 min. The supernatant was removed, the pellet was dried 

using a Eppendorf Concentrator 5301 (Eppendorf) at 30°C for 5 min and resuspended in 30 µl 

DEPC-treated ddH2O.  

 

cDNA was purified using the QIAquickPCR Purification Kit (QIAGEN), as described in the 

QIAquick spin handbook. Briefly, 150 µl Buffer PB was added to the PCR sample, mixed by 

pipetting, transferred in the Spin Column and spun at 13,000 RPM for 1 min. Flow-through was 

discarded and the sample washed with 750 µl Buffer PE and re-spun at 13,000 RPM for 1 min. 

Flow-through was again discarded and the tube re-spun for 1 min to remove any residual EtOH. 

30 µl ddH2O was added to the column, incubated for 1 min at RT and then centrifuged at 13,000 

RPM for 1 min to elute the purified cDNA. cDNA concentration and quality checks were 

2.6.1. RNA Extraction 

2.6.2. cDNA Synthesis 
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performed using a NanoDrop spectrophotometer and cDNA samples were routinely stored at -

20°C.   

 

Quantitative reverse-transcriptase PCR (qRT-PCR) was performed in 10 µl reactions 

constituted of 5 µl Taqman Gene Expression Master Mix (Applied Biosystems) or SsoFast 

Probes Supermix (Bio-Rad), 0.5 µl TaqMan gene expression assays (Applied Biosystems) and 

4.5 µl cDNA (30 ng) diluted in ddH20. All reactions were run in triplicate wells on MicroAmp 

Optical (Applied Biosystems) or FrameStar white-tubed (4titude) 96 well plates. Primers used 

were TaqMan gene expression assays (Table 11).   

 

 

 

Gene TaqMan Primer Gene TaqMan Primer 

RARRES1 Hs00161204_m1 γ-actin Hs03044422_g1 

LXN Hs00220138_m1 EEF1A1 Hs00265885_g1 

CPA4 Hs00275311_m1 TPT1 Hs02621289_g1 

RPLPO Hs99999902_m1 YWHAZ Hs03044281_g1 

GAPDH Hs99999905_m1 PPIA Hs99999904_m1 

18S Hs03003631_g1 HPRT1 Hs99999909_m1 

HUWE1 Hs00948075_m1 β-2M Hs99999907_m1 

β-actin Hs99999903_m1   

 

Table 11. Primers used for TaqMan qRT-PCR analysis. 

 

 

Reactions were run on an ABI Prism 7000 Sequence Detection System and analysed using the 

7000 System SDS Software (Applied Biosystems), or on a CFX96 Real-Time PCR Detection 

System and analysed using the Bio-Rad CFX Manager 2.0 (Bio-Rad) and Microsoft Excel. 

Standard thermal cycling conditions included a hot start of 10 min at 95°C followed by 40 cycles 

of 95°C for 15 seconds and 60°C for 1 min (ABI Prism 7000) or 2 min at 95°C followed by 40 

cycles of 95°C for 5 seconds and 60°C for 5 seconds (Bio-Rad CFX96). Analyses were carried 

out using the delta-delta CT method (Schmittgen and Livak, 2008) for relative quantification and 

expression levels standardised to GAPDH, RPLPO or 18S.  

 

 

 

qRT-PCR was performed as described in Section 2.6.3. Reactions were run on a CFX96 Real-

Time PCR Detection System, and analysed using the Bio-Rad CFX Manager 2.0. A best-fit 

standard curve of RARRES1 and LXN expression was constructed using 10-fold serial dilutions 

of cDNA expression plasmids, in triplicate (RARRES1: EX-Z1865-M45; LXN: EX-V0043-M06). 

The standard curve was graphically represented as a semi-log regression line plot of CT value 

 

2.6.3. Quantitative reverse-transcriptase PCR (qRT-PCR) 

2.6.4. Standard curve qRT-PCR for absolute quantification 
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vs. log of input nucleic acid. Expression levels in unknown samples was interpolated from the 

equation of the standard curve and normalised to a calibrator sample, set at 1.  

 

 

2.7. Analysis of DNA methylation by pyrosequencing  

 

 

 

Regions of genomic sequence spanning 10,000 bp downstream and 3000 bp upstream of the 

RARRES1 and LXN transcription start sites were analysed for regions that were rich in CG 

dinucleotides (CpG islands), using the EMBOSS CpGPlot software. The presence and location 

of CpG islands fitting specific criteria within each gene and their promoters was determined: 

 the observed-to-expected CpG ratio was greater than 0.6. 

 the percentage of CG dinucleotides was greater than 50%. 

 the CpG island was greater than 50 bp in length. 

The Ensembl database was utilised to determine if the CpG islands contained any known 

SNPs.  

 

 

Genomic DNA (gDNA) was extracted from cell cultures using the DNeasy Blood and Tissue Kit 

(Qiagen). Briefly, up to 5 x 10
6
 cells were washed once in PBS and incubated with 0.05% (v/v) 

trypsin-EDTA at 37°C. Trypsin was blocked with R10 medium, centrifuged at 1500 RPM for 3 

min and the supernatant aspirated. Pelleted cells were resuspended in 200 µl PBS containing 

20 µl proteinase K and 4 µl RNase A (100 mg/ml), vortexed to mix and incubated for 2 min at 

RT. 200 µl Buffer AL was added to the cell suspension, mixed thoroughly by vortexing and 

incubated at 56°C for 10 min to lyse the cells. 200 µl EtOH was added to the tube and vortexed 

to mix. The cell lysate was pipetted into a DNeasy mini spin column and centrifuged at 8000 

RPM for 1 min. The flow-through was discarded and the column placed into a new collection 

tube, 500 µl Buffer AW1 was added and the tube centrifuged at 8000 RPM for 1 min. The flow-

through was discarded and the column placed into another collection tube. 500 µl Buffer AW2 

was added and the tube centrifuged at 13,000 RPM for 3 min to remove any residual ethanol 

from the column. gDNA was eluted with 200 µl buffer EB, after centrifugation at 8000 RPM for 1 

min.   

 

gDNA was extracted from primary prostate tissues using the same DNeasy Blood and Tissue 

Kit, but with a different protocol by Dr. Davide Pellacani. Briefly, up to 20 mg of tissue was cut 

into small pieces and incubated with 180 µl Buffer ATL and 20 µl proteinase K, mixed 

thoroughly by vortexing and incubated at 56°C until the tissue was completely lysed after 2 

hours. After vortexing for 15 seconds, 200 µl Buffer AL was added and the sample was re-

vortexed. 200 µl absolute EtOH was added, vortexed to mix and the sample was pipetted into a 

2.7.1. Identification of CpG islands 

2.7.2. Isolation of mammalian cell genomic DNA from cells and tissues 
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DNeasy mini spin column and centrifuged at 8000 RPM for 1 min. The flow-through was 

discarded and the column placed into a new collection tube, 500 µl Buffer AW1 was added and 

the tube centrifuged at 8000 RPM for 1 min. The flow-through was discarded and the column 

placed into another collection tube, 500 µl Buffer AW2 was added and the tube centrifuged at 

13,000 RPM for 3 min to dry the DNeasy membrane. gDNA was eluted with 200 µl Buffer AE, 

after centrifugation at 8000 RPM for 1 min.   

 

gDNA was extracted from SC samples and snap frozen xenograft tissue sections using the 

QIAamp DNA micro kit (Qiagen) according to the manufacturer’s instruction, due to the low cell 

number. Briefly, 100 µl ATL buffer was added to the cell pellet, supplemented with 10 µl 

Proteinase K and 100 µl Buffer AL and mixed by pulse-vortexing for 15 seconds. 1 µl carrier 

RNA was added and the lysate incubated at 56°C for 10 min shaking. 50 µl absolute EtOH was 

added, mixed by pulse-vortexing for 15 seconds and incubated for 3 min at RT. The lysate was 

transferred to a QIAamp MinElute Column and centrifuged at 8000 RPM for 1 min. 500 µl buffer 

AW1 was added to the column, centrifuged, 500 µl Buffer AW2 was added and re-centrifuged. 

After each spin, the flow-through was discarded and a new collection tube used. To dry the 

membrane, the column was spun at 14,000 RPM for 3 min, 20 µl Buffer AE was added to the 

membrane, incubated at RT for 5 min and spun at 14,000 RPM for 1 min to elute the gDNA. 

This step was repeated so the DNA was eluted in 40 µl buffer AE. DNA concentration and 

quality checks were performed using a Nanodrop spectrophotometer and DNA samples were 

routinely stored at -20°C. 

 

 

 

To allow determination of the methylation status of gDNA, unmethylated cytosines were 

bisulphite converted to uracil using the EpiTect Bisulphite Kit (Qiagen). Briefly, 85 µl bisulphite 

mix (containing sodium bisulphite) and 35 µl DNA protect buffer were added to 20 µl, of up to 1 

µg, DNA (diluted in RNase-free water). The tubes were inverted several times to mix and 

samples were placed in the thermal block cycler GeneAmp PCR system 9700 (Applied 

Biosystems), using the following thermal profile: 99°C for 5 min, 60°C for 25 min, 99°C for 5 

min, 60°C for 85 min, 99°C for 5 min, 60°C for 175 min and samples were left at RT indefinitely. 

 

After conversion, 560 µl buffer BL was added to the reaction, the tubes were vortexed to mix 

and briefly centrifuged. The mixture was transferred to an EpiTect spin column, centrifuged at 

13000 RPM for 1 min and 500 µl buffer BW wash buffer was added, followed by re-

centrifugation. 500 µl buffer BD desulfonation buffer was then added and after incubation for 15 

min at RT, the column was centrifuged. The column was washed twice with 500 µl buffer BW 

and centrifuged at 13000 RPM for 1 min. The flow through was discarded after every 

centrifugation step. The column was placed in a new collection tube and centrifuged at 13,000 

RPM for 1 min to remove any residual liquid. The DNA was eluted from the column with 20 µl 

elution buffer EB and centrifuged at 13,000 RPM for 1 min. This step was repeated to increase 

2.7.3. Bisulphite conversion of gDNA 
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the yield of DNA. The concentration and quality checks of bisulphite converted DNA were 

performed using a Nanodrop spectrophotometer and DNA samples were routinely stored at -

20°C.   

 

 

 

RARRES1 and LXN were amplified by PCR, using specific primers (see Appendix 2) spanning 

their CpG islands and Platinum Taq DNA Polymerase (Invitrogen). These primers were 

designed specific for bisulphite-converted gDNA using the PyroMark Assay Design Software 

(Qiagen), were HPLC-purified and biotinylated at the 5’-end of the reverse primer.  

 

2.7.4.1. RARRES1 PCR amplification 

 

Briefly, bisulphite converted template DNA (10 ng) was mixed with 0.625 μl of 50 mM 

magnesium chloride (MgCl2; 1.25mM), 0.5 μl of 10 μM specific primers (200 nM), 0.5 μl of 10 

mM dNTPs (200 μM), 2.5 μl of 10 X PCR buffer and 0.1 µl Platinum Taq enzyme mix (0.5 

U/reaction) in a total volume of 25 μl. Samples were placed in the thermal block cycler 

GeneAmp PCR system 9700 (Applied Biosystems) using the following thermal profile: 1 cycle at 

94°C for 5 min, 45 cycles of 30 seconds at 94°C, 30 seconds at 55°C and 30 seconds at 72°C 

and a final elongation step of 5 min at 72°C.  

 

2.7.4.2. LXN nested PCR amplification 

 

As optimisation of a single PCR assay failed to produce high quality PCR products for 

pyrosequencing, a nested PCR approach was used. For the first PCR reaction, LXN was 

amplified using specific primers (see Appendix 2) and Platinum Taq Polymerase. Briefly, 

bisulphite converted template DNA (20 ng) was mixed with 0.5 μl of 50 mM MgCl2 (1 mM), 0.5 

μl of 10 μM specific primers (200 nM), 0.5 μl of 10 mM dNTPs (200 μM), 2.5 μl of 10 X PCR 

buffer and 0.1 µl Platinum Taq enzyme mix (0.5 U/reaction), in a total volume of 25 μl. Samples 

were placed in the thermal block cycler GeneAmp PCR system 9700 (Applied Biosystems), 

using the following thermal profile: 1 cycle at 94°C for 5 min, 35 cycles of 30 seconds at 94°C, 

30 seconds at 55°C and 30 seconds at 72°C and a final elongation step of 5 min at 72°C. The 

LXN DNA product was purified from the reaction mixture using the QIAquickPCR Purification 

Kit, as described in the QIAquick spin handbook. Briefly, 150 µl Buffer PB was added to the 

PCR sample, mixed by pipetting and spun at 13,000 RPM for 1 min. Flow-through was 

discarded and the sample washed with 750 µl Buffer PE and re-spun at 13,000 RPM for 1 min. 

Flow-through was again discarded and the tube re-spun for 1 min, to remove any residual 

ethanol. 30 µl ddH2O was added to the column, incubated for 1 min at RT and then centrifuged 

at 13,000 RPM for 1 min to elute the purified DNA. DNA concentration and quality checks were 

performed using a Nanodrop spectrophotometer. For the second PCR reaction, the 

pyrosequencing primers (which bound within the product from PCR 1), described in Appendix 2, 

2.7.4. PCR amplification for pyrosequencing 
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were used. Briefly, bisulphite converted template DNA (10 ng) was mixed with 0.875 μl of 50 

mM MgCl2 (1.75 mM), 0.5 μl of 10 μM specific primers (200 nM), 0.5 μl of 10 mM dNTPs (200 

μM), 2.5 μl of 10 X PCR buffer and 0.1 µl Platinum Taq enzyme mix (0.5 U/reaction), in a total 

volume of 25 μl. Samples were placed in the thermal block cycler GeneAmp PCR system 9700 

(Applied Biosystems), using the following thermal profile: 1 cycle at 94°C for 5 min, 45 cycles of 

30 seconds at 94°C, 30 seconds at 55°C and 30 seconds at 72°C and a final elongation step of 

5 min at 72°C 

 

2.7.4.3. GSTP1 PCR amplification 

 

Briefly, bisulphite converted template DNA (10 ng) was mixed with 0.75 μl of 50 mM MgCl2 

(1.5mM), 0.5 μl of 10 μM specific primers (200 nM), 0.5 μl of 10 mM dNTPs (200 μM), 2.5 μl of 

10 X PCR buffer and 0.1 µl Platinum Taq enzyme mix (0.5 U/reaction) in a total volume of 25 μl. 

Samples were placed in the gradient thermal cycler TC-5120 (Techne) using the following 

thermal profile: 1 cycle at 94°C for 5 min, 45 cycles of 30 seconds at 94°C, 30 seconds at 55°C 

and 40 seconds at 72°C and a final elongation step of 5 min at 72°C.  

 

 

 

In order to confirm the quality of the PCR products and specificity of the amplification, each 

product was run on 2% (w/v) TAE agarose gel using GelRed nucleic acid stain (1:10,000 (v/v); 

Biotium), to visualise. 2 µl PCR product, 3 µl ddH2O and 1 µl DNA loading dye (4 mg Ficolt 400,  

0.1 M EDTA,  0.1% (w/v) SDS, 0.05% (w/v) bromophenol blue and 0.05% (w/v) xylene cyanol) 

were mixed and loaded onto the gel run in TAE buffer (0.04 M Tris-acetate, 0.001 M EDTA, pH 

8.0), for a minimum of 1 hour at 80 V. 100 bp MW DNA ladders (Invitrogen) were run in adjacent 

lanes for sizing. Gels were visualised using the GeneSnap ID software (Syngene).  

 

 

 

To analyse methylation status, the DNA products were analysed on a Pyromark Q24 

Pyrosequencer (Qiagen), according to the manufacturer’s protocol. Briefly, a mixture of 50 µl 

streptavidin-coated Sepharose beads, 1 ml PyroMark binding buffer and 450 µl ddH2O was 

prepared and mixed to form a homogenous solution. 60 µl sepharose bead mix was added to 

20 µl PCR product in each well of a 24 well plate, to bind and immobilise the biotinylated PCR 

amplicons and the plate was agitated on an Orbis Microplate shaker (Mikura) at 1400 RPM, for 

at least 10 min. Template DNA-sepharose bead complexes were isolated from all wells, in 

parallel, using the PyroMark Q24 vacuum workstation, whereby a vacuum was applied which 

held the beads on probes. The probes were then dipped into 70% EtOH, Pyromark denaturation 

solution to separate the complementary strand from the biotinylated strand, and PyroMark 

washing buffer to wash and neutralise the immobilised biotinylated single-stranded DNA 

(ssDNA). The vacuum was then removed and the ssDNA released from the probes into a 

2.7.5. Agarose gel electrophoresis 

2.7.6. Pyrosequencing analysis  
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PyroMark Q24 plate containing 0.3 µM sequencing primer (specific for the CpG island of 

interest), diluted in PyroMark annealing buffer to enhance hybridisation of the sequencing 

primer. The plate containing ssDNA-sequencing primer mix was heated to 80°C for 5 min, left to 

cool to RT and then analysed on the pyrosequencer. Nucleotide incorporation into the sequence 

generated light in a luciferase-catalysed reaction, proportional to the number of nucleotides 

incorporated, which produced a peak on a pyrogram. The nucleotide sequence was then 

determined from the signal peaks in the pyrogram trace and the percentage methylation at each 

CpG site plotted on a bar chart. Tost and Gut (2007) detailed additional information on DNA 

methylation analysis by pyrosequencing.  

 

 

2.8. Chromatin Immunoprecipitation (ChIP) 

 

 

 

10
7 

- 10
8
 cells were trypsinised, sedimented and resuspended in 5 ml R10 (PNT2-C2 and 

LNCaP) or H7 (PC3) culture medium. Cells were fixed with 1% formaldehyde for 10 min at RT. 

0.125 M glycine was added to stop fixation for 5 min at RT and cells were centrifuged at 1000 

RPM for 5 min at 4°C. Cells were washed twice with 20 ml cold PBS and re-centrifuged for 3 

min. Pellets were resuspended in cold swelling buffer (5 mM PIPES pH 8, 85 mM KCl) 

supplemented with NP-40 (final concentration of 0.2% (v/v)) and complete EDTA-free protease 

inhibitor cocktail (PIC; Roche). The cell suspension was incubated on ice with gentle shaking for 

20 min. The suspension was centrifuged at 1500 RPM for 10 min at 4°C and resuspended in IP 

buffer TSE 150 (0.1% (w/v) SDS, 1% (v/v) Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8, 

150 mM NaCl), supplemented with a PIC. The chromatin was sonicated using a Sonopuls HD 

2070 ultrasonic homogeniser (Bandelin), for 20 cycles of 30 seconds on / 40 seconds off at 

maximum power. Chromatin was centrifuged at 14000 RPM for 30 min at 4°C, aliquoted and 

routinely stored at -80°C.  

 

 

 

A sample of the sonicated chromatin was purified using a phenol/chloroform extraction to 

corroborate correct chromatin disruption by sonication. 20 µl of the sonicated chromatin was 

added to 230 µl TE / 1% SDS buffer (10 mM Tris pH 8, 1 mM EDTA, 1% (w/v) SDS) and 

incubated at 65°C overnight, rocking. 250 µl TE buffer (10 mM Tris pH 8, 1 mM EDTA) was 

added to the sonication control, supplemented with 10 µg glycogen (Roche) and 100 µg 

proteinase K (Invitrogen) and incubated for 2 hours at 37°C. 44 µl lithium chloride (5 M LiCl) 

was added and a phenol/chloroform extraction performed. Briefly, 500 µl phenol/chloroform 

solution was added, vortexed to mix and centrifuged at 15000 RPM for 15 min at RT. The upper 

phase was transferred to a new tube, 1 ml EtOH (100%) was added, tubes were inverted five 

times and incubated at -20°C overnight. The tubes were centrifuged at 14,000 RPM for 15 min 

2.8.1. Chromatin preparation 

2.8.2. Sonication control DNA extraction 
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at 4°C, pellet was rinsed in 1 ml EtOH (70%) and re-centrifuged. The supernatant was removed 

and the DNA pellet dried for 20 min at 45°C in an Eppendorf Concentrator 5301. The pellet was 

resuspended in 100 µl TE buffer, concentration and quality verified using a NanoDrop 

spectrophotometer and run on a 0.75% (w/v) TAE agarose gel using GelRed nucleic acid stain 

(1:10,000 (v/v) dilution) to visualise. 5 µl PCR product, 7.5 µl ddH2O and 2.5 µl DNA loading dye 

were mixed and loaded onto the gel run in TAE buffer, for a minimum of 1 hour at 80 V. 100 bp 

and 1 kB MW DNA ladders (Invitrogen) were run in adjacent lanes for sizing. Gels were 

visualised using the GeneSnap ID software. 

 

 

 

Protein A-sepharose beads (Sigma) were blocked by incubating them in an IP buffer TSE 150 

solution, containing yeast tRNA (Sigma; initially denatured at 95°C for 5 min), to a final 

concentration of 1 μg/ml and BSA (Sigma), to a final concentration of 250 μg/ml, while rotating 

at 4°C for 4 hours. Beads were centrifuged at 3000 RPM for 1 min, rinsed three times with IP 

buffer TSE 150 and stored at 4°C.  

 

Chromatin was cleaned up by incubating 50 μl of 50% pre-blocked protein A-sepharose beads 

with 20 μg (per immunoprecipitation) of chromatin in a total volume of 1 ml IP buffer TSE 150, 

supplemented with a PIC for 1.5 hours at 4°C while rotating. The suspension was centrifuged 

for 1 min at 3000 RPM and supernatant kept in a separate tube. 20 μl of the supernatant was 

retained, to be used as INPUT control, then the rest was divided and incubated with primary 

antibody (Table 12) at 4°C overnight, shaking.  

 

 

Primary antibody Species Isotype Conc. 

(mg/ml) 

Origin Working 

dilution 

Histone 3 Rabbit IgG 1 Abcam 1:100 

H3K4me2 Rabbit IgG 1 Millipore 1:100 

H3K27me3 Rabbit IgG - Millipore 1:100 

IgG control Rabbit IgG 1 Millipore 1:100 

 

Table 12. Description of primary antibodies used for chromatin immunoprecipitation. 

 

 

 

 

Antibody-protein-DNA complexes were recovered by incubation with 50 μl of 50% pre-blocked 

protein A sepharose beads for 1.5 hours at 4°C. Beads were sedimented by centrifugation at 

3000 RPM for 1 min at RT and washed once with 1 ml IP buffer TSE 150, IP buffer TSE 500 

(0.1% (w/v) SDS, 1% (v/v) Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8 and 500 mM NaCl), 

2.8.3. Immunoprecipitation 

2.8.4. Recovery of the immunoprecipitated complexes 
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washing buffer (10 mM Tris-HCl pH 8, 0.25 M LiCl, 0.5% (v/v) NP-40) and twice with 1 ml TE 

buffer. DNA was eluted by adding 100 μl of elution buffer (1% (w/v) SDS, 10 mM EDTA, 50 mM 

Tris-HCl pH 8), vortexed to mix and incubated at 65°C for 15 min. Beads were centrifuged at 

13,000 RPM for 1 min and the supernatant transferred to a separate tube. Beads were rinsed 

with 150 μl TE/1% SDS buffer, vortexed to mix, centrifuged at 13,000 RPM and the supernatant 

pooled with the previous one.  

 

 

 

Immunoprecipitated DNA was incubated at 65°C overnight, rocking. 250 µl TE buffer was added 

to the sonication control, supplemented with 10 µg glycogen and 100 µg proteinase K and 

incubated for 2 hours at 37°C. 44 µl lithium chloride (5 M LiCl) was added and DNA was purified 

by phenol/chloroform extraction, as described in Section 2.8.2. The pellet was resuspended in 

150 µl ddH20, the concentration and quality verified using a NanoDrop spectrophotometer and 

DNA stored at -20°C.  

 

 

 

Standard curve and primer efficiency analysis were initially performed, to confirm the 

amplification of a single product and that the amplification efficiency was between 90-110%. 

Reactions for quantitative PCR (qPCR) experiments were prepared in MicroAmp Optical 96-

Well Reaction Plates (Applied Biosystems) using 7.5 μl of Power SYBR Green 2 X master mix 

(Applied Biosystems), 3 µl of cDNA, 0.6 μl of 10 μM forward primer, 0.6 μl of 10 μM reverse 

primer and ddH2O, up to a total volume of 15 μl. qPCR amplification experiments were run in 

triplicate on an ABI 7000 real-time PCR instrument, using the following thermal profile: 1 cycle 

at 50°C for 15 min, 1 cycle at 95°C for 2 min, 40 cycles of 15 seconds at 95°C and 30 seconds 

at 60°C. To determine the efficiency of the primers, a dissociation step was added at the end of 

each cycle: 95°C for 15 seconds, 60°C for 20 seconds and 95 °C for 15 seconds. The 

enrichment of immunoprecipitated DNA was analysed using eight specific primers spanning the 

CPA2 gene, CPA4 promoter and CPA4 gene. The percentage of immunoprecipitation (% IP) 

was calculated by taking into account the dilution factor and the level of amplification obtained 

from unprecipitated chromatin input DNA. 

 

      
[          ]         

[              ]         
       

 

Where X is the dilution factor of the amount of chromatin used, proportional to the number of 

antibodies used, Y is the dilution factor of the DNA used for qPCR (a factor of 50 as 3 µl was 

used, from 150 µl total DNA) and Z is the dilution factor of the amount of input chromatin (a 

factor of 50 as 20 µl was used, from 1 ml total chromatin).  

 

 

2.8.5. Immunoprecipitated DNA extraction  

2.8.6. Quantitative PCR analysis 
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2.9. Analysis of protein expression 

 

 

 

Cells were washed once in PBS and whole cell lysates were prepared, by direct lysis with 

CytoBuster protein extraction reagent (Novagen). 300 µl reagent was added to a 6 well plate, 

with the addition of a PIC and incubated on ice for 5 min. Cell debris was scraped, pooled into 

the reagent and centrifuged at 4°C at 16,000 g for 5 min, using a Hettich Mikro 220R Centrifuge 

(SLS). The supernatant was removed to a pre-chilled tube and routinely stored at -80°C.  

 

 

 

Whole cell protein lysates were quantified using the Bicinchoninic acid assay (BCA) protein 

assay kit (Thermo Scientific), according to manufacturers’ instructions. Briefly, 25 µl of BSA 

standards, or unknown samples, were pipetted in triplicate into a 96 well plate. 200 µl working 

reagent was added to each well, the plate was mixed on a plate shaker for 30 seconds and the 

plate incubated at 37°C for 30 min. The absorbance was read at 562 nm on a POLARstar 

OPTIMA microplate reader (BMG Labtech), after cooling the plate to RT. A best-fit standard 

curve of BSA standard concentration vs. absorbance was constructed and interpolated, to find 

the protein concentration in the unknown samples.  

 

 

 

For samples to be probed for LXN, 20 µg protein lysate was mixed in a 1:4 (v/v) ratio with 4 x 

SDS loading buffer (10% (v/v) glycerol, 62.5 mM Tris-HCl pH 6.8, 1% (w/v) SDS, 65 mM DTT 

and bromophenol blue to colour), vortexed for 10 seconds and heated to 100°C for 15 min in a 

Grant QBD2 heating block (Grant). The samples were then re-vortexed for 10 seconds and 

centrifuged for 10 seconds. Samples were loaded up to a maximum volume of 50 µl onto a 10% 

Tris-SDS acrylamide gel, cast using the Bio-Rad Protean II system and run at 100 V.  

 

For samples to be probed for RARRES1, 20 µg protein lysate was mixed in a 1:2 (v/v) ratio with 

2 x SDS urea loading buffer (10% (v/v) glycerol, 62.5 mM Tris-HCl pH 6.8, 1% (w/v) SDS, 65 

mM DTT, 8 M urea and bromophenol blue to colour), vortexed for 10 seconds and heated to 

100°C for 15 min. The samples were then re-vortexed for 10 seconds and centrifuged for 10 

seconds. Samples were loaded up to a maximum volume of 50 µl onto a 10% Tris-SDS 

acrylamide gel, containing 5 M urea, cast using the Bio-Rad Protean II system and run at 100 V 

in 1 x SDS running buffer (25 mM tris, 0.19 M glycine and 3.5 mM SDS). Biotinylated (Cell 

Signalling Technology) and Kaleidoscope (Bio-Rad) MW ladders were run in adjacent lanes for 

sizing and visualisation of protein transfer. RARRES1 (Abnova) and LXN (R+D Systems) full-

length recombinant protein were also run in adjacent lanes as positive controls.  

 

2.9.1. Cell lysis 

2.9.2. BCA assay 

2.9.3. SDS-PAGE gel electrophoresis 
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Immobilon-P membrane (Millipore) was wet with methanol for 30 seconds, washed with dH2O 

and equilibrated in transfer buffer (48 mM tris, 39 mM glycine and 10% (v/v) methanol) for 10 

min. Gels were transferred immediately onto the membrane at 100 V for 2 hours at RT, or 30 V 

overnight at 4°C. Membranes were air-dried, re-wet with methanol and washed twice in TBS 

(150 mM NaCl and 50 mM Tris-HCl at pH 7.4). Membranes were blocked with 5% (w/v) non-fat 

skimmed milk (Marvel) for 1 hour at RT and then incubated with primary antibodies (Table 13) in 

1% (w/v) Marvel at RT. Membranes were washed three times in TBST (150 mM NaCl, 50 mM 

Tris-HCl and 0.1% (v/v) Tween-20, pH 7.4). Peroxidase-labelled secondary antibodies (1:3000 

(v/v); Cell Signalling Technologies/Boehringer) and 1:5000 (v/v) anti-biotin-HRP (Cell signalling 

technologies) diluted in 1% (w/v) marvel were added for 1 hour at RT. Membranes were washed 

four times in TBST and coated with HRP substrate (Roche), equilibrated to RT. Membranes 

were exposed to hyperfilm ECL (GE Healthcare) and manually processed using Kodak GBX 

developer and fixer solutions (SLS).  

 

 

Primary 

antibody 

Species Isotype Conc. 

(mg/ml) 

Origin Working 

dilution 

Incubation 

time 

RARRES1 Rabbit IgG 0.2 Santa Cruz 

Biotechnology 

1:200 1 h 

LXN Rabbit IgG 0.15 Sigma 1:500 4 h 

CPA4 Mouse IgG1 1 Sigma 1:1000 1 h 

HA tag Mouse IgG2a 0.2 Santa Cruz 

Biotechnology 

1:1000 1 h 

β-actin Mouse IgG2a - Sigma 1:5000 1 h 

 

Table 13. Description of primary antibodies used for western blotting. 

 

 

 

 

Each membrane was stripped in stripping buffer (20 mM Tris-HCl pH 6.8, 0.1% (w/v) SDS and 

20 mM DTT) for 30 min at 55°C, with shaking and washed three times in TBST. The membrane 

was blocked and reprobed, as detailed above, with β-actin antibodies as an internal control to 

ensure equal loading and to obtain quantitative protein expression intensities using Image J 

software (National Institutes of Health, http://rsbweb.nih.gov/ij/). 

 

 

 

2.9.4. Western blot 

2.9.5. Stripping western blot 

http://rsbweb.nih.gov/ij/
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2.10. Cell function assays 

 

 

 

PNT1a cells were plated at a density of 5 x 10
4
 cells per well in a 24 well plate and incubated at 

37°C for 24 hours. Cells were treated with 10 nM siRNA (Section 2.5.1) or cDNA expression 

vectors (Section 2.5.3.3) and incubated at 37°C for 48 hours. Using a 1 ml pipette tip, a wound 

was created in the cell monolayer, cells were washed with PBS and fresh R10 media was 

added. Migration into the wound was monitored and 10 x images were taken on an Evos XL 

transmitted light microscope (AMG), 18 hours after wounding and the percentage of wound 

closure was calculated. The width of the wound at 0 and 18 hours was measured using Volocity 

software, the average (of 10 points) taken and the relative percentage wound closure at 18 

hours with respect to 0 hours was calculated. 

 

 

 

Cells were transfected with siRNA (Section 2.5.1 and 2.5.2) or over-expression vectors  

(Section 2.5.3.3), 24 hours prior to commencing the invasion assay. Control PNT1a and MDA-

MB-231 cells were grown to ~90% confluency in T75 flasks. Cells were harvested with trypsin-

EDTA and counted using a Haemocytometer. Cell culture inserts (BD Biosciences) were coated 

with 50 µl of 750 µg/ml Matrigel BM matrix (BD Biosciences), diluted in media (RPMI for 

PNT1a/LNCaP, DMEM for MDA-MB-231 or KSFM for primary cells) and left to polymerise for at 

least 2 hours at 37°C. Cells were seeded onto Matrigel-coated 0.8 µM porous cell culture inserts 

and non-Matrigel control inserts, in triplicate, at a density of 2.5 x 10
5
 cells per insert, unless 

otherwise stated. The inserts were transferred onto a plate containing R10 medium as the 

chemo-attractant and incubated at 37°C for 48 hours.  

 

Cells were washed in PBS and the non-invading cells removed from the upper surface of the 

membrane, by scrubbing with a cotton bud. Cells on lower surface of the membrane were fixed 

in 500 µl ice-cold methanol at RT for 20 min. The bottom membrane of the insert was removed 

with a scalpel and mounted onto frost–free glass slides, using Vectashield mounting medium 

containing DAPI (Vector laboratories). Slides were examined under a Nikon Eclipse TE300 

fluorescent microscope (Nikon) and four random images from each of the three replicate 

membranes were taken at 20 x magnification. Nuclei were counted by eye, or using the cell 

count analysis function on the ImageJ software. Invasion/motility ratios were calculated to 

determine the number of invasive cells relative to migratory cells.  

 

 

 

Primary cultures were treated with siRNA as described in Section 2.5.2. Cells were trypsinised 

and plated at 100 cells per well, diluted in 2 ml SCM, in a 6 well collagen-I coated plate, in 

2.10.1. Wound healing assay 

2.10.2. Matrigel invasion assay 

2.10.3. Clonogenic recovery assay 
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triplicate. 500 µl irradiated STOs were added per well and plates were incubated at 37°C in 5% 

CO2. Medium was changed every 2 days and STOs were added when sparse. When colonies 

greater than 32 cells started to emerge (usually after 10-14 days), medium was removed and 

cells were washed with 1 ml PBS. To distinguish epithelial colonies from STOs, the cells were 

fixed with 2 ml crystal violet stain (1% (w/v) crystal violet, 10% (v/v) ethanol and 89% (v/v) PBS) 

and the number of colonies containing greater than 32 cells (5 population doublings) per well 

were counted visually under the 10 x objective of a Leica DM IL LED microscope (Leica 

Microsystems). The percentage colony forming efficiency (CFE) was calculated, by dividing the 

number of colonies by the number of cells plated and multiplying by 100. Relative CFE was 

calculated by setting the CFE for each media sample at 100%.  

 

 

2.11. Flow cytometry analysis 

 

 

 

Primary cells were simultaneously analysed for the expression of CD44, CD49b, CD24 and 

CD133. Cells were trypsinised, sedimented by centrifugation and resuspended in 60-80 µl 

MACS buffer, per 10
6 

cells. Cell suspensions were incubated with MACS FcR blocking buffer 

and the appropriate antibody, as described in Table 14, for 10 min at RT, in the dark. Cells were 

washed in 2 ml MACS buffer and centrifuged at 1300 RPM for 3 min. Cells were resuspended in 

1 ml MACS buffer, placed on ice and analysed on a CyAn ADP flow cytometer (Dako 

Cytomation). Immediately before analysis, 1 µl Sytox Blue dead cell stain (Invitrogen) was 

added to each cell suspension at 1:1000 (v/v) dilution, to differentiate live and dead cells. As a 

control, cells not labelled with any antibody were analysed. Unlabelled cells were resuspended 

in 2 ml MACS buffer prior to analysis, of which 1 ml was analysed on the flow cytometer and 

Sytox Blue was added to the other 1 ml suspension. To prevent bleaching of the fluorescence, 

cells were protected from light where possible during the procedure. CD44 fluorescence was 

recorded in the FITC channel, CD49b and CD24 in the PE channel, CD133 in the APC channel 

and Sytox Blue in the Violet1 channel.  

 

 

Antibody Conjugation Working 

dilution 

Origin of 

antibody 

MACS 

buffer 

(µl) 

MACS 

FcR 

Block (µl) 

Antibody 

(µl) 

Unlabelled  - - - 80 20 - 

CD44  FITC 1:10 Miltenyi Biotec 70 20 10 

CD49b  PE 1:10 AbD Serotec 70 20 10 

CD133 APC 1:10 Clone 293C2, 

Miltenyi Biotec 

70 20 10 

CD24  PE 1:5 BD Bioscience 60 20 20 

 

Table 14. Description of antibodies used for cell surface membrane expression by FACS. 

2.11.1. Analysis of cell surface marker expression  



  

                                               94 Materials and Methods 

 

All results were analysed using the Summit software (Beckman Coulter). An initial gate (R1) 

was set in a pulse width histogram, to include all single cells and exclude doublets. A second 

gate (R2) was applied to the FSlin/SSlog histogram, to include the cell population of interest and 

exclude cell debris. A third gate (R3) was applied to the Violet1 histogram, to include all live 

cells and exclude dead cells. For statistical significance, at least 10,000 events were collected. 

 

 

 

Primary cells were trypsinised, sedimented by centrifugation and resuspended in 5 ml R10 

medium per 10
6 
cells. Cells were centrifuged at 1300 RPM for 5 min and the pellet resuspended 

in 1 ml PBS. To fix the cells, 2.5 ml ice-cold 70% EtOH was added to the cell suspension whilst 

vortexing, to prevent clustering of cells. Cells were incubated on ice for 30 min and centrifuged 

at 1300 RPM for 5 min. The pellet was washed in 5 ml PBS and re-centrifuged. The pellet was 

then resuspended in 400 µl PBS, 50 µl RNase A (1 mg/ml final concentration) and 50 µl 

propidium iodide (PI; 400 µg/ml final concentration) and incubated at 37°C for 30 min. Cells 

were then placed on ice, analysed on a CyAn ADP flow cytometer (Dako Cytomation) and PI 

fluorescence was recorded in the PE channel. To prevent bleaching of the fluorescence, cells 

were protected from light where possible during the procedure. 

 

All results were analysed using the Summit software. Two initial gates were set in an 

FSlin/SSlog (R1) and PElin/PEarea (R2) histogram, to include the cell population of interest and 

exclude cell debris. Four further gates were applied to the PE histogram, to include all cells in 

G0/G1 phases (R3), G2/M phases (R4), S phase (R5) and apoptotic cells (R6). For statistical 

significance, at least 10,000 events were collected. 

 

 

 

PC3 cells were trypsinised and sedimented by centrifugation at 1300 RPM for 3 min. Cells were 

resuspended in 8 ml PBS, split into 4 separate tubes: (1) Unlabelled (PBS only), (2) CaspACE 

only, (3) Sytox blue only and (4) CaspACE + Sytox blue and re-centrifuged at 1300 RPM for 3 

min. The supernatant was removed, 2 µl CaspACE-FITC apoptosis marker (Promega) was 

diluted 1:500 (v/v) into 1 ml PBS and 100 µl diluted CaspACE reagent was added to each cell 

pellet (except unlabelled and Sytox blue only). Cells were incubated at 37°C, in the dark, for 20 

min. Cells were then washed in 2 ml PBS and centrifuged at 1300 RPM for 3 min. Cells were 

resuspended in 1 ml MACS buffer, placed on ice and analysed on a CyAn ADP flow cytometer 

(Dako Cytomation). Immediately before analysis, 1 µl Sytox Blue dead cell stain was added to 

each cell suspension at 1:1000 (v/v) dilution, to differentiate live and dead cells (except 

unlabelled and CaspACE only). To prevent bleaching of the fluorescence, cells were protected 

from light where possible during the procedure. CaspACE fluorescence was recorded in the 

FITC channel and Sytox Blue in the Violet1 channel. 

 

2.11.2. Cell cycle analysis 

2.11.3. Caspase 3 apoptosis assay 
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All results were analysed using the Summit software. An initial gate (R1) was set in a pulse 

width histogram, to include all single cells and exclude doublets. A second gate (R2) was 

applied to the FSlin/SSlog histogram, to include the cell population of interest and exclude cell 

debris. Four further gates were applied to the FITC/Violet1 histogram, to include all dead (R3), 

apoptotic and dead (R4), live (R5) and apoptotic cells (R6). For statistical significance, at least 

10,000 events were collected. 

 

 

2.12. Cell localisation assays 

 

 

 

Immunofluorescence was performed in BD-Biocoat collagen I-coated (primary cultures) or BD-

Falcon uncoated (cell lines) 8-well chamber slides (BD Bioscience). 200 µl cell suspensions 

were plated into chamber slides at 5 x 10
4
 cells per well and incubated at 37°C for at least 24 

hours. Cell medium was then aspirated. Cells were washed twice with PBS and fixed with 200 

µl 4% (w/v) paraformaldehyde pH 7.4, for 20 min. Cells were washed three times with 500 µl 

PBS for 5 min and then permeabilised with 200 µl 0.5% (v/v) Triton X-100 for 20 min. Cells were 

washed a further three times with PBS and the immunofluorescence procedure continued, or 

the slides stored at 4°C. Cells were blocked with 200 µl 10% (v/v) goat serum, diluted 1% (w/v) 

BSA in PBS, for 30 min and then incubated with primary antibody, diluted in 1% (w/v) BSA in 

PBS, for 1 hour. 

 

Cells were washed three times with 500 µl PBS for 5 min and then incubated with 200 µl 

secondary antibody, diluted in 1% BSA in PBS, for 45 min. After a final three washes with 500 µl 

PBS for 5 min, the chambers were removed from the slide, cells covered with Vectashield 

mounting medium with DAPI (Vector laboratories), a 0.13-0.17mm coverslip (SLS) added and 

then sealed with clear nail varnish. Slides were stored at 4°C until analysis on a Nikon Eclipse 

TE300 fluorescent microscope (Nikon), or a LSM 510 meta confocal microscope (Zeiss). Slides 

were gently agitated during incubations, which were performed at RT and protected from light 

where possible, to avoid bleaching of fluorescence. Secondary only controls, where the primary 

antibody was replaced with PBS and IgG controls, where the primary antibody was replaced by 

an isotype IgG control antibody, were performed. Dilutions of primary antibodies used for 

immunofluorescence are listed in Table 15. Secondary Alexa fluor 488 or 568 goat anti-rabbit, 

or goat anti-mouse IgG antibodies (Invitrogen) were used at 1:200 (v/v) dilution. 

 

A more stringent nuclear fixation protocol was also used to detect nuclear LXN expression 

which was carried out as described above with the following modifications. Cells were fixed with 

200 µl of a mixture of 2% (w/v) paraformaldehyde pH 7.4 and 0.2% (v/v) Triton X-100 for 20 

min. Cells were then washed three times with 500 µl PBS for 5 min and permeabilised with 200 

2.12.1. Immunofluorescence 
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µl 0.5% (v/v) NP-40 for 20 min. All washing steps during the immunofluorescence procedure 

were performed with a PBS buffer containing 0.5% (w/v) BSA and 0.175% (v/v) Tween-20.  

 

 

 

Primary antibody Species Isotype Conc. 
(mg/ml) 

Origin Working 
dilution 

HA tag Rabbit IgG - Sigma 1:50 

Ki67 Rabbit IgG 1 Abcam 1:500 

LXN Rabbit IgG 0.15 Sigma 1:100 

RAR α Rabbit IgG 0.2 Santa Cruz 

Biotechnology 

1:100 

RAR β Rabbit IgG 0.2 Santa Cruz 

Biotechnology 

1:100 

RAR γ Rabbit IgG 0.2 Santa Cruz 

Biotechnology 

1:100 

RARRES1 Rabbit IgG 0.2 Santa Cruz 

Biotechnology 

1:100 

α1-Na/K-ATPase Mouse IgG1 1 Abcam 1:100 

Cytokeratin 5 Mouse IgG1 0.05 Vector 

laboratories 

1:200 

Cytokeratin 8 Mouse IgG1 - Sigma 

 

1:200 

Cytokeratin 18 Mouse IgG1 - Sigma 

 

1:200 

HA tag Mouse IgG2a 0.2 Santa Cruz 

Biotechnology 

1:100 

Protein Disulphide 

Isomerase (PDI) 

Mouse IgG2a 1 Abcam 1:100 

IgG control Rabbit IgG 10 Sigma Dependent on 

conc. of primary 

antibody 
IgG control Mouse IgG1 0.5 R+D Systems 

IgG control Mouse IgG2a 0.5 R+D Systems 

 

Table 15. Description of primary antibodies used for immunofluorescence. 

 

 

  
 

 

PC3 cells grown in T25 flasks were washed twice with 5 ml PBS, scraped in 4 ml PBS and 

transferred to a universal tube. Cells were pelleted by centrifugation at 2300 RPM for 10 min. 

Supernatant was aspirated, pellet was resuspended in 200 µl ice cold Tris buffer (40 mM tris pH 

7.4) supplemented with a PIC and incubated at 4C for 10 min, with gentle shaking. The cell 

lysate was sonicated for 10 min, using the Bioruptor sonication system (Diagnode), for 10 

cycles of 30 seconds on / 30 seconds off on ice, at low power. Unbroken cells (UBC) were 

pelleted by centrifugation at 2500 g for 10 min at 4C. Supernatant was removed and 

2.12.2. Cellular fractionation of plasma membrane and cytoplasm 
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transferred to 1.5 ml Eppendorf tube. To disrupt the interactions between cytoskeletal and PM 

proteins, the supernatant was diluted with 800 µl ice cold 0.1 M sodium carbonate (pH 11) 

supplemented with a PIC and shaken for 1 hour at 4C. To collect the carbonate treated 

membranes, the supernatant was ultracentrifuged at 100,000 g for 1 hour at 4C (Rotor: TLA 

100.3, ultracentrifuge TL100.) The supernatant was removed (Wash 1) and stored at -80C. 

The pellet was re-suspended in 800 µl ice cold sodium carbonate supplemented with a PIC and 

shaken for 1 hour at 4C. A second ultracentrifugation step at 100,000 g for 1 hour at 4C was 

performed, to collect the remaining carbonate treated membranes. The supernatant was 

removed (Wash 2) and stored at -80C. The membrane pellet was re-suspended in 200 µl ice 

cold 40 mM Tris (pH 7.4) and shaken for 10 min. A final ultracentrifugation step at 115,000 g for 

20 min at 4C was performed. The supernatant was removed (Wash 3), a SDS sample buffer 

was added to the plasma membrane pellet (PM) and stored -80, or continued with SDS-PAGE 

as described in Section 2.9.3. This was performed by Hannah Walker.  
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3.1. Expression patterns of RARRES1, LXN and CPA4 in prostate cell lines 

 

 

RARRES1 has been proposed as a tumour suppressor gene, whose diminished expression is 

involved in the malignant progression of CaP (Jing et al., 2002). To determine the expression 

pattern of RARRES1 and LXN in a panel of benign prostate and CaP epithelial cell lines, 

quantitative analysis of RARRES1 (Figure 20a) and LXN (Figure 20c) mRNA expression was 

performed. qRT-PCR data demonstrated that RARRES1 was expressed at lower levels in CaP 

cell lines compared to benign cell lines. Furthermore, the expression status of RARRES1 

correlated with the malignancy of the cell line; expression was highest in the least malignant cell 

line, PNT2-C2, but lowest in the most malignant cell lines, PC3 and LNCaP (undetectable after 

40 cycles in the latter). In the benign cell lines, RARRES1 expression was more than 10-fold 

higher in PNT2-C2 cells than the PNT1a cell line. LXN mRNA expression also showed a similar 

trend to RARRES1, where expression correlated with the malignancy status of the cell line. LXN 

was expressed at higher levels in the benign cell lines PNT2-C2 and PNT1a than in the P4E6 

and LNCaP cancer cell lines. In contrast to RARRES1, expression of LXN was low, but 

detectable, in the LNCaP cell line. However, LXN mRNA was not detected in the P4E6 cell line, 

even after 40 cycles of qRT-PCR. One exception was the highly malignant PC3 cell line, where 

LXN was over-expressed to levels almost 10-fold higher than that seen in the benign cell lines.  

 

Protein expression of RARRES1 (Figure 20b) and LXN (Figure 20d) was analysed by SDS-

PAGE and western blot analysis, in the same benign and cancer cell lines, and band intensities 

were quantified relative to a β-actin loading control. Recombinant protein was also loaded on 

each gel to ensure the antibodies were specific for the protein of interest. The expression 

patterns of RARRES1 and LXN, at the protein level, correlated well with that seen at the mRNA 

level, although the quantitative values differed slightly, i.e. RARRES1 protein expression was 

highest in the PNT2-C2 cell line and decreased with malignancy. RARRES1 expression in PC3 

and LNCaP cell lysates was undetected at the protein level. There are 2 splice variants of 

RARRES1, producing a full-length 33 kDa isoform and shorter 26 kDa isoform. All cell lines 

analysed here expressed the full-length 33 kDa RARRES1 and not the shorter variant. As seen 

at the mRNA level, LXN protein expression was highest in the highly malignant PC3 cell line, 

followed by the benign cell lines PNT2-C2 and PNT1a and then the cancer cell lines LNCaP 

and P4E6. Taken together, these results showed that both RARRES1 and LXN expression was 

lower in cancer, compared to benign epithelial cell lines.  

3. RESULTS 

3.1.1. RARRES1 and LXN expression is repressed in prostate cancer cell lines 
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Figure 20. qRT-PCR and western blot analysis of RARRES1 and LXN expression in 
prostate epithelial cell lines.  
mRNA expression of (a) RARRES1 and (c) LXN in benign (PNT2-C2 and PNT1a) and cancer 
(P4E6, PC3 and LNCaP) cell lines, relative to a GAPDH control gene and normalised to a 
calibrator sample (a: PC3, b: LNCaP; expression set at 1). (UD: expression undetectable after 
40 cycles; n=3 technical replicates; error bars expressed as range of the mean). Protein 
expression of (b) RARRES1 (33 kDa) and (d) LXN (26 kDa) in benign and cancer cell lines. 
Full-length recombinant protein (rRARRES1, rLXN) was loaded on each gel, to confirm antibody 
specificity. Protein expression was quantified relative to a β-actin (42 kDa) loading control and 
relative to the PNT2-C2 cell line (set at 1; values below each blot).  
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CPA4 mRNA has previously been shown to be detectable in a number of prostate cell lines, but 

is expressed at extremely low levels in normal prostate tissue (Huang et al., 1999). To 

determine the expression pattern of CPA4, in panel of benign prostate and CaP epithelial cell 

lines, quantitative analysis of CPA4 mRNA expression was performed (Figure 21a). qRT-PCR 

data demonstrated that CPA4 expression was ubiquitous in the cell lines tested and, unlike 

RARRES1 and LXN, did not correlate with malignancy of the cell line. CPA4 mRNA expression 

was highest in the benign PNT1a cell line and lowest in the malignant LNCaP cell line, which 

was the calibrator sample for which expression was set at 1. 

 

Protein levels of CPA4 were analysed by SDS-PAGE and western blot analysis, in the same 

benign and cancer cell lines and band intensities were quantified relative to a β-actin loading 

control (Figure 21b). The antibody used for western blot analysis was able to detect CPA4 in its 

zymogen pro-CPA4 form (47 kDa) and its active CPA4 form (35 kDa), which can be generated 

by trypsin cleavage (Tanco et al., 2010). A positive control LNCaP cell lysate, transfected with 

HA-tagged CPA4 expression vectors, was also loaded on each gel to ensure that the antibodies 

were specific for CPA4. The expression patterns of total CPA4, at the protein level, correlated 

well with those seen at the mRNA level. The exception was the LNCaP cell line, which showed 

the lowest mRNA expression of CPA4, but the highest levels of CPA4 protein expression.  

 

CPA4 has recently been shown to be a soluble secreted protein in HEK 293T cells (Tanco et 

al., 2010), so CPA4 expression was analysed in conditioned media harvested at various time 

points, from the benign PNT1a cell line, which expresses the highest levels of CPA4 (Figure 

21c). Increasing levels of CPA4 were secreted from the PNT1a cell line in the pro-form; and 

detectable levels of expression were not seen until 48 hours after a media change. Next, CPA4 

expression was analysed in conditioned media extracted from a panel of benign and cancer cell 

lines after 72 hours (Figure 21d). CPA4 was secreted from all cell lines screened, in the pro-

form. Expression of CPA4 in conditioned media roughly correlated with that seen in cell lysates, 

with expression being lowest in the P4E6 and PC3 cell lines and highest in the PNT1a and 

LNCaP cell lines. 

 

Within cell lines, CPA4 was predominantly expressed in the inactive pro-form, but the active 

cleaved form of CPA4 was present in the PNT1a and LNCaP cell lines (Figure 21b). In the 

PNT1a cell line, the active form was expressed at equivalent amounts to the inactive form, but 

in the LNCaP cell line, pro-CPA4 was nearly 8-fold more abundant than active CPA4.  

 

 
 
 
 
 
 

3.1.2. CPA4 is ubiquitously expressed in prostate cell lines 
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Figure 21. qRT-PCR and western blot analysis of CPA4 expression in prostate epithelial 
cell lines.  
mRNA expression of (a) CPA4 in benign (PNT2-C2 and PNT1a) and cancer (P4E6, PC3 and 
LNCaP) cell lines, relative to a GAPDH control gene. (n=3 technical replicates; error bars 
expressed as range of the mean). Protein expression of (b) CPA4 in benign and cancer cell 
lines. Protein expression was quantified relative to a β-actin loading control (42kDa; values 
below each blot). (c) Protein expression of CPA4 in PNT1a cell line media, extracted from cells 
over a time course, and in (d) benign and cancer cell line media. A LNCaP cell lysate 
transfected with a HA-tagged CPA4 expression vector (+ve) was loaded on each gel to confirm 
antibody specificity. 
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3.2. Expression patterns of RARRES1, LXN and CPA4 in primary prostate 

epithelial cultures 

 

 

Affymetrix gene-expression array data, obtained in our laboratory and published by Birnie et al. 

(2008), was reanalysed to examine the relative expression of RARRES1, LXN and CPA4 in 

primary prostate epithelial cultures enriched for SCs and CB cells, derived from human CaP 

tissue (n=12) or human benign prostatic hyperplasia (BPH) tissues (n=7) (Figure 22a). CaP 

tissues analysed contained a minimum Gleason score 7 pathology, in which gene expression 

differences were most prominent.  

 

The results show that RARRES1 and LXN were both significantly differentially expressed 

between the SC and CB populations from BPH alone samples and pooled BPH and CaP 

samples. When comparing SC and CB populations from CaP samples, only one of three probes 

(221872_at) for RARRES1 was significantly differentially expressed (Figure 22b). Moreover, this 

was the only probe that was specific for transcript one of RARRES1, suggesting that transcript 

one and not transcript two, is differentially expressed in SC and CB populations from CaP. The 

lack of significance could also be attributed to the high patient variability regularly seen between 

CaP samples. High variation in RARRES1 and LXN expression was most notable in the SC 

population from CaP samples.  

 

In contrast, no significant differential expression was seen when comparing BPH and CaP 

populations of cells (Figure 22c). LXN was overall expressed at higher levels than RARRES1 in 

all subpopulations, but especially in the SC fraction. CPA4 showed ubiquitous expression 

between all cell populations, so CPA4 expression was not studied further in enriched primary 

prostate epithelial cultures. 

 

Taken together, microarray analysis identified RARRES1 and LXN as significantly down-

regulated in SC compared to CB primary prostate BPH epithelial cultures.  

 

  

3.2.1. Microarray analysis identified RARRES1 and LXN as differentially 

expressed in primary prostate epithelial cultures  
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Figure 22. Reanalysis of Affymetrix gene-expression array data.  
(a) Expression of RARRES1 and LXN in primary prostate epithelial cultures enriched for SC and 
CB cells derived from human BPH (n=7) and CaP (n=12) tissues, containing a minimum 
Gleason score 7 pathology. (b) Statistical significance values of stem vs. committed and (c) 
BPH vs. CaP were measured by the Student’s T-test (Unpaired, two-tailed). Significance values 
are highlighted in red. Reanalysis of microarray data (Birnie et al., 2008) was performed by Dr. 
Davide Pellacani and Dr. Alastair Droop.   
 
 
 

A

B

Stem vs

Comm

Gene Probe

BPH Stem vs 

BPH Comm

CaP Stem vs 

CaP Comm Stem vs Comm

RARRES1 206391_at 0.046 0.122 0.011

RARRES1 206392_s_at 0.010 0.058 0.002 P < 0.05

RARRES1 221872_at 0.002 0.038 0.0005 P < 0.01

LXN 218729_at 0.026 0.119 0.008 P < 0.001

BPH vs

CaP

Gene Probe BPH vs CaP

BPH Stem vs

CaP Stem

BPH Comm vs 

CaP Comm

RARRES1 206391_at 0.872 0.354 0.512

RARRES1 206392_s_at 0.787 0.365 0.455

RARRES1 221872_at 0.614 0.381 0.259

LXN 218729_at 0.962 0.251 0.544

C
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To investigate differential expression of RARRES1 and LXN further, quantitative analysis of 

mRNA expression was performed, on a panel of BPH (n=5) and CaP (n=6) primary prostate 

epithelial cultures, enriched for SC, TA and CB cell populations.  

 

We initially used a relative qRT-PCR analysis protocol, where the expression of RARRES1 and 

LXN was quantified relative to an RPLPO control gene (Figure 23a-d). These results showed 

that the expression of RARRES1 and LXN was higher in SC, decreased in TA and increased 

again in CB cultures. This was in contrast with the microarray analysis. A more in depth analysis 

showed that the CT value of RPLPO was consistently higher in the SC population. This led us to 

the conclusion that due to the lower levels of expression of RPLPO in the SC population (higher 

CT value), the expression of both RARRES1 and LXN was showing false high results.  

 

To overcome this technical problem, we first selected different control genes. The microarray 

datasets created in our lab (Birnie et al., 2008) and a compendium of published microarray 

datasets were utilised to identify genes that showed low variation between a number of different 

cell types, including SCs (Figure 23e) (Bioinformatic analysis performed by Dr. Alastair Droop). 

This led to the identification of five potential control genes for relative qRT-PCR analysis: 

HUWE1, γ-actin, EEF1A1, TPT1 and YWHAZ. YWHAZ had previously been identified as a 

suitable control gene for qRT-PCR experiments in SCs (Fink et al., 2008; Curtis et al., 2010). 

Consequently, the viability of these control genes was sought along with other well-known 

control genes. From this data, HUWE1 showed the least variability between cell populations. 

However, the variation between cell populations was still greater than four CT values in the 

majority of patient samples tested.  

 

When calculating the relative expression of RARRES1 and LXN, relative to either RPLPO or 

HUWE1, it was apparent just how important the choice of endogenous control gene was (Figure 

23f). In some samples, depending on the control gene that was used in the calculation, the 

expression pattern of LXN changed. The magnitude of expression of RARRES1 expression in 

the SC was also variable. However, higher expression levels were constantly seen in the SC 

compared to TA and CB fractions.  

 

Consequently, absolute qRT-PCR was utilised to calculate absolute levels of gene expression 

of RARRES1 (Figure 24) and LXN (Figure 25). A standard curve was produced, using serial 

dilutions of a pure cDNA plasmid preparation of either RARRES1 (pReceiver-M45) or LXN 

(pEZ-M06), obtained from GeneCopoeia, which was then used to calculate the expression 

levels of RARRES1 and LXN in the unknown samples. To ensure that accurate results were 

obtained, the concentration and amount of input cDNA was precisely measured using a 

nanodrop spectrophotometer, to be identical for all samples in every well.  

3.2.2. mRNA expression of RARRES1 and LXN is low in primary prostate 

epithelial cultures enriched for stem cells 
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Results demonstrated that both RARRES1 and LXN were now expressed at lower levels in 

SCs, compared to their differentiated TA and CB counterparts. RARRES1 was significantly 

differentially expressed between SC and CB subpopulations derived from BPH cultures (Figure 

24b). In contrast, although there was a trend showing that RARRES1 expression increased 

through differentiation, significantly differential expression was not observed between cell 

populations derived from CaP cultures (Figure 24c). Levels of RARRES1 expression were 

considerably lower in all populations derived from CaP compared to BPH. Moreover, RARRES1 

expression was significantly lower in CB cells derived from CaP, than CB cells derived from 

BPH (Figure 24d). However, RARRES1 was not significantly differentially expressed in CB cells 

between BPH and CaP in the microarray analysis (Figure 22a). This could be attributed to: (1) 

the high variability in RARRES1 expression seen in CB cells from CaP samples in the 

microarray analysis, (2) the different samples analysed using the two techniques or (3) the 

difference in the sensitivity/normalisation of the two experiments. Furthermore, the most 

malignant CaP samples (Gleason grade 8 and 9, castrate-resistant) showed lower expression 

levels of RARRES1 than Gleason grades 6 and 7 CaP samples (Figure 24e). 

 

Analogous to RARRES1, LXN was significantly differentially expressed between SC and TA 

cells derived from both BPH (Figure 25b) and CaP (Figure 25c). Although RARRES1 

expression was at its highest in the most differentiated CB cells, the highest expression of LXN 

was seen in the highly proliferative TA population. Moreover, a 2-fold increase in average LXN 

expression was seen in the TA population from CaP compared to BPH samples. However, a 

higher level of variability was seen in this TA population, most probably due to the patient 

variability between CaP samples. Similar to RARRES1, the most malignant CaP samples 

showed the lowest expression levels of LXN in TA (Figure 25d) and CB (Figure 25e) cells.  

 

Taken together, these results confirm the initial microarray data, and show that RARRES1 and 

LXN are expressed at significantly lower levels in prostate SC compared to TA and CB cells. In 

addition, RARRES1 expression is significantly down-regulated in CB cells from CaP cultures 

compared to CB from BPH cultures. In conjunction with the repression of RARRES1 seen in 

malignant cell lines, this repression in CaP compared to BPH supports a ‘metastasis 

suppressor’ function for RARRES1 in CaP. 
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Figure 23. Relative qRT-PCR analysis of RARRES1 and LXN expression in enriched 
subpopulations from primary prostate epithelial cultures.  
Relative qRT-PCR data showing average fold change in (a, c) RARRES1 and (b, d) LXN gene 
expression relative to a RPLP0 internal control in SC, TA and CB populations, derived from 
BPH (n=6) (a, b) and CaP (n=6) (c, d) epithelial cultures. Average expression denoted by a 
horizontal line (Blue: BPH; Red: CaP). (e) Table showing range of CT values for 12 endogenous 
control genes between SC, TA and CB populations from a number of patient samples obtained 
by qRT-PCR. HUWE1 shows the least variation in CT value (pink). (f) Table showing the relative 
expression of RARRES1 and LXN between SC, TA and CB populations using RPLPO or 
HUWE1 as endogenous control genes. Table shows higher expression (pink) or lower 
expression (blue) in SC compared to TA populations.  
 
  

Range in CT Values between SC, TA and CB enriched cell populations

HUWE1 β-actin 18S γ-actin GAPDH EEF1A1 TPT1 YWHAZ RPLPO PPIA HPRT1 β-2M

YO61/10 4.25 5.78 - 5.97 6.18 6.55 6.40 6.47 6.60 - - -

YO40/10 4.16 6.38 - 6.90 6.96 6.89 7.16 6.86 6.99 - - -

PE665 1.63 1.51 - 2.26 1.19 1.58 1.24 1.17 1.75 - - -

YO52/10 4.88 5.61 - 6.49 6.47 6.75 7.12 7.48 6.42 - - -

YO59/10 - 6.67 5.37 - 5.79 - - - 7.06 6.23 7.16 7.10

YO89/09 - 4.04 4.98 - 5.93 - - - 6.92 5.81 6.19 6.50

AVERAGE 3.73 5.00 5.17 5.40 5.42 5.44 5.48 5.49 5.96 6.02 6.67 6.80

E
Range in CT Values between SC, TA and CB enriched cell populations

HUWE1 β-actin 18S γ-actin GAPDH EEF1A1 TPT1 YWHAZ RPLPO PPIA HPRT1 β-2M

YO61/10 4.25 5.78 - 5.97 6.18 6.55 6.40 6.47 6.60 - - -

YO40/10 4.16 6.38 - 6.90 6.96 6.89 7.16 6.86 6.99 - - -

PE665 1.63 1.51 - 2.26 1.19 1.58 1.24 1.17 1.75 - - -

YO52/10 4.88 5.61 - 6.49 6.47 6.75 7.12 7.48 6.42 - - -

YO52/10 - 6.67 5.37 - 5.79 - - - 7.06 6.23 7.16 7.10

YO89/09 - 4.04 4.98 - 5.93 - - - 6.92 5.81 6.19 6.50

AVERAGE 3.73 5.00 5.17 5.40 5.42 5.44 5.48 5.49 5.96 6.02 6.67 6.80

Relative Expression Values

RARRES1 LXN

RPLPO HUWE1 RPLPO HUWE1

YO61/10 SC 86.40 16.96 49.83 9.78

TA 1.00 1.00 1.00 1.00

CB 1.07 0.95 0.83 0.73

YO59/10 SC 3198.10 287.42 6.14 0.55

TA 1.00 1.00 1.00 1.00

CB 1.99 2.31 0.64 0.74

YO40/10 SC 52.45 7.41 1.04 0.15

TA 1.00 1.00 1.00 1.00

CB 10.13 8.19 0.76 0.61

PE665 SC 3.81 3.70 1.45 1.41

TA 1.00 1.00 1.00 1.00

CB 7.17 3.87 1.18 1.09

YO52/10 SC 131.51 45.19 50.04 0.08

TA 1.00 1.00 1.00 1.00

CB 3.14 1.28 0.52 0.35

E

F
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Figure 24. Absolute qRT-PCR analysis of RARRES1 expression in enriched sub-
populations from primary prostate epithelial cultures.  
(a) Diagrams depicting the relative location of primers used for microarray and qRT-PCR 
analysis within the RARRES1 gene. Each exon is depicted by a numbered arrow. (b) Absolute 
gene expression of RARRES1 in SC, TA and CB populations derived from BPH (n=5) and (c) 
CaP (n=6). (d) Expression values of RARRES1 in CB cells derived from BPH and CaP were 
plotted on the same scale for comparison. (e) Correlation of CaP Gleason grade with 
expression in CB cells. Average expression denoted by a horizontal line (Blue: BPH; Red: CaP). 
Statistical significance values were measured by the Mann-Whitney test (* p<0.05, ** p<0.01).  
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Figure 25. Absolute qRT-PCR analysis of LXN expression in enriched sub-populations 
from primary prostate epithelial cultures.  
(a) Diagram depicting the relative location of primers used for microarray and qRT-PCR analysis 
within the LXN gene. Each exon is depicted by a numbered arrow. (b) Absolute gene 
expression of LXN in SC, TA and CB populations derived from BPH (n=5) and (c) CaP (n=6). 
(d) Correlation of CaP Gleason grade with expression in TA and (e) CB cells. Average 
expression denoted by a horizontal line (Blue: BPH; Red: CaP). Statistical significance values 
were measured by the Mann-Whitney test (* p<0.05, ** p<0.01).  

SC TA CB

E
x

p
re

s
s

io
n

0

50

100

150

200

250

300

350

H040/10

YO59/10

Y061/10

Y052/10

Y082/06

PE109

BPH

A

LXN

Microarray probes and target 

sequence

qRT-PCR probe

E
x
p

re
s
s
io

n

0

200

400

600

800

1000

1200

1400

LXN
BPH

CBTASC

**

**

B

SC TA CB

0

50

100

150

200

250

300

350

PE107

PE665

PE025

PE531

Y089/09 

Y091/09 

H043/11 

PE107 

PE665 

PE025 

PE531

Y089/09

Y091/09

CaP

E
x

p
re

s
s

io
n

0

200

400

600

800

1000

1200

1400

3200

3300

3400

E
x

p
re

s
s

io
n

LXN
CaP

CBTASC

*
***

C

Gleason Grade

0

200

400

600

800

1000

1200

1400

3200

3300

3400

E
x
p

re
s
s

io
n

LXN
CaP TA

Gleason Grade

0

200

400

600

800

1000

E
x
p

re
s
s

io
n

LXN
CaP CB

6 7 8 9 CR

PC

6 7 8 9 CR

PC

D E

BPH

CaP



  

                                                111 Results 

 

 

Since RARRES1 and LXN mRNA was expressed at significantly lower levels in SC than TA and 

CB cultures, from BPH and CaP, protein expression of RARRES1 and LXN was next measured 

in SC, TA and CB populations from malignant (H103/11) and non-malignant BPH (H094/11) 

primary prostate epithelial cultures, by fluorescence microscopy.  

 

Overall, the expression of RARRES1 (Figure 26a) and LXN (Figure 26b) emulated the pattern 

seen at the mRNA level; expression was low in SCs and increased through differentiation. The 

majority of cells in the SC population derived from BPH and CaP cultures did not express 

RARRES1. Around 25% of cells from both samples showed weak staining for RARRES1. 

Almost all cells from the TA and CB populations derived from BPH demonstrated a more 

intense cytoplasmic expression of RARRES1.  

 

In the SC population derived from BPH and CaP cultures, LXN expression was absent or at 

very low levels in around 50% of cells, and expressed, but still at low levels in the other 50%. 

Only one anomalous SC from the BPH culture showed high levels of LXN expression that was 

located to the nucleus and cytoplasm. In parallel with the mRNA expression data, LXN 

expression was at its highest in the TA population in both cultures. Furthermore, expression 

was higher in the TA population derived from CaP than BPH.  In all cells tested, except the 

anomalous SC, LXN expression was localised to the nucleus of primary prostate epithelial 

cultures.  

 

Taken together, RARRES1 and LXN protein is expressed at lower levels in SC, than TA and CB 

cultures, from BPH and CaP. Interestingly, when expressed, RARRES1 shows cytoplasmic 

expression, but LXN is located in the nucleus within the primary prostate epithelial hierarchy.  

 

  

3.2.3. Protein expression of RARRES1 and LXN is low in primary prostate 

epithelial cultures enriched for stem cells 
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Figure 26. Immunofluorescence images of RARRES1 and LXN expression in enriched 
sub-populations from primary prostate epithelial cultures.  
(a) RARRES1 and (b) LXN expression was detected by immunofluorescence in SC, TA and CB 
cells derived from BPH (H094/11) and CaP (H103/11) epithelial cultures. Cells were 
counterstained with DAPI to enable nuclear visualisation. White scale bar represents 10 µm. (c) 
Antibody controls using Rabbit IgG, instead of primary antibody and secondary antibody only.  

Stem Cell

BPH

H094/11

CaP

H103/11

RARRES1

Rabbit IgGSecondary only

Antibody 

Controls

Transit Amplifying Committed Basal

BPH

H094/11

CaP

H103/11

LXN

Stem Cell Transit Amplifying Committed Basal

A

B

C



  

                                                113 Results 

 

3.3. Regulation of RARRES1, LXN and CPA4 by histone acetylation 

 

 

CPA4 was initially identified as a gene induced by NaBu in the PC3 cell line (Huang et al., 

1999). Along with TSA, NaBu is a well characterised general HDACI and chromatin remodeller, 

which functions to relax chromatin by inducing the acetylation of histones, leading to 

transcriptional activation of a small number of genes. To investigate whether CPA4 was 

potentially regulated by chromatin structure in a larger panel of prostate epithelial cell lines, and 

to determine if RARRES1 and LXN were regulated in the same way, a panel of benign prostate 

and prostate cancer cell lines were treated with 0.6 µM TSA or 10 mM NaBu for 48 hours. RNA 

was extracted from cells and mRNA expression levels of RARRES1, LXN and CPA4 were 

quantified using qRT-PCR.  

 

Results showed that treatment with TSA and NaBu induced CPA4 expression in all benign and 

cancer cell lines. CPA4 expression was significantly induced by NaBu in PNT2-C2 (84-fold), 

P4E6 (23-fold) and PC3 (53-fold) cell lines but not in the LNCaP cell line (2-fold increase) 

(Figure 27a). The more potent HDACI, TSA, significantly induced CPA4 in all cell lines tested 

and increased expression to a greater extent than NaBu in PC3 and LNCaP cell lines (PNT2-

C2: 71-fold; P4E6: 4-fold; PC3: 166-fold; LNCaP: 277-fold) (Figure 27d).  

 

In contrast to CPA4, the mRNA expression of RARRES1 and LXN showed no significant 

increase after HDAC inhibition with NaBu (Figure 27b, c), or TSA (Figure 27e, f). In the majority 

of cell lines tested, RARRES1 and LXN expression decreased or remained constant after 

treatment with both HDACIs. The exception was LXN expression in P4E6 cells after treatment 

with NaBu (Figure 27c), where LXN expression increased after treatment. Taken together, 

these results indicate that CPA4 may be regulated by chromatin structure, in particular by 

histone acetylation.  

 

 

3.3.1. CPA4 Expression is induced by HDAC inhibitors in prostate epithelial 

cell lines 



  

                                                114 Results 

 

 

 

Figure 27. qRT-PCR analysis of RARRES1, LXN and CPA4 expression after treatment of 
prostate epithelial cell lines with HDAC inhibitors.  
mRNA expression of (a, d) CPA4, (b, e) RARRES1 and (c, f) LXN was analysed in benign 
(PNT2-C2) and cancer (P4E6, PC3 and LNCaP) cell lines after treatment with 10 mM NaBu or 
0.6 µM TSA for 48 hours. Expression was relative to a GAPDH control gene and plotted on a 
log10 scale to enable optimal visualisation; UD: expression undetectable after 40 cycles; error 
bars expressed as standard deviation of n=2 biological replicates. Statistical significance values 
were measured by the Student’s T-test (Unpaired, two-tailed; * p<0.05, * p<0.01, *** p<0.001).  
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CPA4 expression was induced by HDACIs in prostate epithelial cell lines. To determine whether 

CPA4 expression was also induced by HDAC inhibition in primary prostate epithelial cultures, a 

panel of BPH (n=3) and CaP (n=3) primary prostate epithelial cultures were treated with the 

same HDACIs, under the same conditions as in cell lines: 0.6 µM TSA and 10 mM NaBu for 48 

hours. RNA was extracted from cells and mRNA expression levels of CPA4 were quantified 

using qRT-PCR. RARRES1 and LXN expression was not examined in primary cultures as no 

induction of expression was seen in cell lines after treatment. 

 

All BPH and CaP samples analysed showed a clear increase in CPA4 expression after 

treatment with both NaBu (Figure 28a) and TSA (Figure 28b), although the effect was not 

statistically significant due the high patient variability between samples. Average CPA4 

expression after NaBu treatment was lower in BPH cultures (14-fold) compared to CaP cultures 

(36-fold). Average induction of CPA4 expression after TSA treatment was also lower in BPH 

cultures (8-fold) compared to CaP cultures (10-fold). Similar to the results seen in cell lines, 

basal cells were able to induce CPA4 to a higher level after NaBu treatment than after TSA 

treatment. However, the fold change of CPA4 after treatment was low, in comparison to the high 

magnitude of changes seen in cell lines.  

 

Taken together, these results show that CPA4 may be regulated by chromatin structure, in 

particular by histone acetylation in primary prostate epithelial cultures as well as in prostate 

epithelial cell lines.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.2. CPA4 expression is induced by HDAC inhibitors in primary prostate 

epithelial cultures 
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Figure 28. qRT-PCR analysis of CPA4 expression after treatment of primary prostate 
epithelial cultures with HDAC inhibitors.  
mRNA expression of CPA4 was analysed in primary prostate epithelial cultures derived from 
BPH (n=3) or CaP (n=3) after treatment with (a) 10 mM NaBu or (b) 0.6 µM TSA for 48 hours. 
Expression was relative to a GAPDH control gene. Average expression is denoted by a 
horizontal line (Blue: BPH; Red: CaP). Lines join each sample to highlight the trend in 
expression with and without treatment.  
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CPA4 expression was induced by HDACIs in prostate epithelial cell lines and primary prostate 

epithelial cultures. To directly determine whether CPA4 was regulated by chromatin structure, 

the chromatin status of the CPA4 promoter and gene body was determined by chromatin 

immunoprecipitation (ChIP) on a panel of cell lines (Figure 29a). Regions of active 

(euchromatin) and inactive chromatin (heterochromatin) were immunoprecipitated, using 

antibodies specific for the dimethylation of lysine 4 of histone H3 (H3K4Me2; euchromatin) or 

the trimethylation of lysine 27 of histone 3 (H3K27Me3; heterochromatin). DNA fragments were 

amplified by qPCR using specific primers spanning the CPA2 gene, CPA4 promoter and CPA4 

gene (Figure 29b). Total histone 3 (H3), which is a core component of chromatin and is bound 

to the majority of DNA sequences in the genome, and negative IgG control antibodies were 

used as a positive and negative controls, respectively.  

 

All cell lines tested showed an enrichment for active chromatin (H3K4Me2) within the CPA4 

promoter, but PNT2-C2 cells showed the highest enrichment (0.16) compared to 0.05 in PC3 

and LNCaP cells, which correlated with the high expression of CPA4 seen in this cell line. This 

maximum enrichment in PNT2-C2 cells was seen with the ChIP3 primer set, which is located 

around 2300 bp upstream of the CPA4 transcription start site. 

 

The inactive chromatin mark (H3K27Me3) showed a maximum enrichment of 0.12 in the LNCaP 

cell line, which correlated with the low level of CPA4 transcriptional activity in these cells. In 

contrast, PNT2-C2 and PC3 cells express CPA4 to higher levels and showed a very low 

enrichment of only 0.01 for the inactive chromatin mark.  

 

Taken together, these results suggest that changes in chromatin structure can result in changes 

in gene expression of CPA4; the highest expressing cells (PC3 and PNT2-C2) showed the 

highest levels of euchromatin, but the lowest expressing cell line (LNCaP) had the highest 

enrichment for heterochromatin.  

  

3.3.3. CPA4 expression is regulated by chromatin structure in prostate 

epithelial cell lines 
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Figure 29. ChIP-qPCR analysis of CPA4 chromatin in prostate epithelial cell lines.  
(a) Chromatin immunoprecipitation of CPA4 and its promoter using anti–histone H3 control 
(Total H3), anti-H3K4me2 (euchromatin), anti-H3K27me3 (heterochromatin) and rabbit IgG 
control (Neg IgG) antibodies in benign (PNT2-C2) and cancer (PC3, LNCaP) cell lines. (b) The 
position of primers used for qPCR, with respect to CPA4 and CPA2. X axes: CPA4 promoter 
sequence, 0 kB: CPA4 transcription start site; Y axes: ratio of immunoprecipitated DNA relative 
to input DNA; error bars expressed as standard deviation of n=4 biological replicates. 
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3.4. Regulation of RARRES1, LXN and CPA4 by DNA methylation 

 

 

RARRES1 had previously been shown to be silenced by DNA methylation in human cancers 

including CaP (Youssef et al., 2004; Zhang et al., 2004) and expression was induced by a DNA 

demethylating agent in a number of cell lines (Youssef et al., 2004), including PC3 and LNCaP 

(Zhang et al., 2004). To investigate whether LXN and CPA4 were also induced by a DNA 

demethylating agent, a panel of benign prostate and CaP epithelial cell lines were treated with 1 

µM 5-Aza-dC for 96 hours. RNA was extracted and mRNA expression changes of RARRES1, 

LXN and CPA4 were quantified using qRT-PCR.  

 

Treatment with 5-Aza-dC induced RARRES1 expression significantly in all cancer cell lines 

tested (P4E6: 78-fold; PC3: 37-fold; LNCaP: expression became detectable) (Figure 30a). 

Treatment with 5-Aza-dC induced LXN expression significantly in two out of three cancer cell 

lines tested (P4E6: 8045-fold; LNCaP: 92-fold), but not in the PC3 cell line, where LXN was 

over-expressed at basal levels (Figure 30b). In the benign PNT2-C2 cell line, a decrease in 

RARRES1 expression and a marginal increase in LXN expression (2-fold) was seen after 5-

Aza-dC treatment.  

 

In contrast to RARRES1 and LXN, treatment with 5-Aza-dC induced CPA4 expression 

marginally (to a maximum of 3-fold) in all benign and cancer cell lines (Figure 30c). However, 

this was: (1) not significant, (2) not the magnitude of fold change we would expect to see of a 

gene regulated by DNA methylation or (3) as high as the expression changes seen after HDACI 

treatment.  

 

Taken together, these results suggest that RARRES1 and LXN are regulated by DNA 

methylation in CaP epithelial cell lines. However, they also suggest that CPA4 expression is 

regulated by chromatin structure, but not DNA methylation.   

 

 

 

 

 

 

 

 

 

 

 

3.4.1. RARRES1 and LXN expression is induced by a DNA demethylating 

agent in prostate epithelial cell lines  
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Figure 30. Analysis of RARRES1, LXN and CPA4 expression after treatment with a DNA 
demethylating agent in prostate epithelial cell lines.  
mRNA expression of (a) RARRES1, (b) LXN and (c) CPA4 was analysed in benign (PNT2-C2) 
and cancer (P4E6, PC3 and LNCaP) cell lines, after treatment with 1 µM 5-Aza-dC (AZA) for 96 
hours. Expression was relative to a GAPDH control gene and plotted on a log10 scale to enable 
optimal visualisation; UD: expression undetectable after 40 cycles; error bars expressed as 
standard deviation of n=2 biological replicates. Statistical significance values were measured by 
the Student’s T-test (Unpaired, two-tailed; * p<0.05).  
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RARRES1 and LXN expression was induced by a DNA demethylating agent in CaP epithelial 

cell lines. To determine whether RARRES1 and LXN expression was also induced by DNA 

demethylating treatment in primary prostate epithelial cultures, BPH (n=3) and CaP (n=3) 

primary cultures were treated with the same DNA demethylating agent, under the same 

conditions as in cell lines: 1 µM 5-Aza-dC for 96 hours. RNA was extracted from cells and 

mRNA expression levels of RARRES1 and LXN were quantified using qRT-PCR. CPA4 

expression was not examined in primary cultures, as no induction of expression was seen in cell 

lines after treatment. 

 

All BPH and CaP samples analysed showed an increase in RARRES1 expression after 

treatment though the effect was not statistically significant due the high patient variability 

between primary samples (Figure 31a). A differential effect between BPH and CaP was seen 

with the average RARRES1 increase being considerably higher in CaP cultures (14-fold), 

compared to BPH cultures (2-fold) after 5-Aza-dC treatment, though this was predominantly due 

to one CaP sample (PE671). In contrast, there was no difference in the average LXN 

expression after 5-Aza-dC treatment in both BPH and CaP cultures (Figure 31b). Moreover, 

unlike RARRES1, only two out of three BPH and two out of three CaP samples showed an 

increase in LXN expression after treatment.  

 

Taken together these results suggest that LXN is not regulated by DNA methylation in primary 

prostate epithelial cultures, but RARRES1 may be in specific CaP samples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.2. RARRES1 and LXN expression is induced by a DNA demethylating 

agent in primary prostate epithelial cultures 
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Figure 31. qRT-PCR analysis of RARRES1 and LXN expression after treatment of primary 
prostate epithelial cultures with a DNA demethylating agent.  
mRNA expression of (a) RARRES1 and (b) LXN was analysed in primary epithelial cell cultures 
derived from BPH (n=3) or CaP (n=3), after treatment with 1 µM 5-Aza-dC (AZA) for 96 hours. 
Expression was relative to a GAPDH control gene; UD: expression undetectable after 40 cycles. 
Average expression denoted by a horizontal line (Blue: BPH; Red: CaP). Lines join each 
sample to highlight the trend in expression with and without treatment.  
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3.5. Pyrosequencing analysis of regulation of RARRES1 and LXN by DNA 

methylation 

 

 

Expression of RARRES1 and LXN was induced by a DNA demethylating agent in cancer cell 

lines. To determine whether RARRES1 and LXN could be directly marked by 5mC DNA 

methylation, the presence and location of CpG islands fitting specific criteria within each gene 

and their promoters was determined, using the EMBOSS CpG Plot software (Figure 32): (1) the 

observed-to-expected CpG ratio was greater than 0.6, (2) the percentage of GC dinucleotides 

was greater than 50% and (3) the CpG island was greater than 50 bp in length. The methylation 

of CPA4 was not determined, as no effect on expression was seen after treatment with a DNA 

demethylating agent. RARRES1 contained two CpG islands 16 bp apart, which were located 

upstream of the transcription start site and within exon 1 of the gene, spanning 255 bp and 581 

bp, respectively. LXN contained one smaller 151 bp-long CpG island, within exon 1 of the gene.  

 

The extent of DNA methylation surrounding the promoters of RARRES1 and LXN was 

quantified by pyrosequencing (Section 2.7.6), using assays designed within these CpG islands, 

spanning 11 and 6 CpG sites, respectively, in a panel of benign and CaP cell lines. The 

nucleotide sequence was determined from the signal peaks in the Pyrogram trace and the 

percentage methylation at each CpG site plotted on a bar chart (Figure 33a). Built-in quality 

controls to ensure the DNA had been fully bisulphite-converted were also performed (Figure 

33b). Pyrosequencing was used as it is regarded as the gold-standard for DNA methylation 

analysis, as: (1) it is a highly sensitive technique, (2) it has the ability to quantify individual, 

consecutive CpG sites, (3) it enables the analysis of minimal changes in methylation levels and 

(4) it has a low rate of false positives. 

 

To determine the specificity of the pyrosequencing assays, 100% methylated and 0% 

methylated EpiTect human control bisulphite-converted DNA (Qiagen) were utilised. Average 

methylation levels of RARRES1 (Figure 34a) and LXN (Figure 34b) in the 0% methylation 

control DNA were 4.2% and 5.2%, respectively. In the 100% methylation control DNA, 

methylation of RARRES1 was 88.0% and LXN was 76.7%. These results show that both assays 

were specific, with the RARRES1 assay having a broader range than the LXN assay. A cell line 

was described as being significantly hypermethylated if the average percentage of methylation 

was significantly more than that seen in the 0% methylated control DNA. 

 

The RARRES1 promoter was significantly hypermethylated in three out of seven cancer cell 

lines: P4E6 (6%), PC3 (11%) and LNCaP (73%), but not in the majority of benign cell lines 

(Figure 35a). The exception was the benign PNT1a cell line, which was also significantly 

hypermethylated, although the average methylation was low at 6%. The LXN promoter was 

3.5.1. RARRES1 and LXN expression is repressed by DNA methylation in 

malignant prostate epithelial cell lines 
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significantly hypermethylated in four out of seven cancer cell lines: P4E6 (82%), DU145 (55%), 

Serbob (23%) and LNCaP (64%), but not in the majority of benign cell lines (Figure 35b). The 

exceptions were the benign PNT2-C2 (27%) and BPH-1 (8%) cell lines, which were also 

significantly hypermethylated, although the average methylation was low. 

 

To confirm that the pyrosequencing technique was working correctly and that the cancer cell 

lines were truly cancerous, average percentage methylation levels of a GSTP1 control gene, in 

the same cell lines, were obtained from Dr. Davide Pellacani (Figure 35c). GSTP1 was chosen 

as a positive control for DNA methylation as it one of the most hypermethylated genes in CaP 

(Tokumaru et al., 2004). These results showed that GSTP1 was hypermethylated in four out of 

seven cancer cell lines, and showed the highest levels of methylation (95%) in the most luminal 

cell lines (VCaP and LNCaP). 

 

A direct comparison of the expression of RARRES1 and LXN with the extent of DNA 

methylation confirmed that hypermethylation of RARRES1 (Figure 36a) and LXN (Figure 36b) 

correlated with a down-regulation of expression. Cell lines expressing high levels of mRNA 

(PNT2-C2) had low levels of promoter methylation, but the cell line with the lowest levels of 

mRNA (LNCaP) had the highest levels of promoter methylation of both RARRES1 and LXN.  

 

Taken together, these results confirm that the expression of both RARRES1 and LXN is 

repressed by DNA methylation in CaP cell lines.  
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Figure 32. Location of CpG islands within the RARRES1 and LXN promoters. 
(a) Diagram depicting the location of the CpG islands, relative to exon 1 of the RARRES1 and 
(b) LXN genes, identified by bioinformatics analysis using the EMBOSS CpGPlot software. PCR 
primers and sequencing primers used for pyrosequencing analysis are shown. Individual CpG 
sites are depicted by blue (RARRES1) or green (LXN) vertical lines. 
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Figure 33. Representative pyrogram and bar chart showing levels of CpG methylation 
using pyrosequencing. 
(a) Pyrosequencing pyrogram trace, produced by the PyroMark Q24 software, after analysis of 
the RARRES1 CpG island in 100% methylated control DNA. Highlighted areas in the trace 
indicate CpG positions (light blue) and built-in bisulphite treatment controls (C not followed by 
G; yellow shading). The methylation level of each CpG site is indicated in boxes above the 
trace. The software calculates the percentage of methylated C by quantifying the extent of C 
and T at each CpG site, post bisulphite conversion (indicate methylated C and unmethylated C, 
respectively). (b) Representative graphs show the percentage of promoter methylation at each 
CpG site as quantified by the pyrogram trace, calculated by the PyroMark Q24 software. Bars = 
individual CpG sites; black line = average of all individual CpG sites; error bars expressed as 
standard deviation of n=3 technical replicates. 
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Figure 34. Pyrosequencing analysis of the CpG islands within the RARRES1 and LXN 
genes in 0% and 100% methylated control DNA. 
(a) The percentage promoter methylation of RARRES1 and (b) LXN in 0% and 100% 
methylated control DNA. Bars = single CpG sites; black line = average of individual CpG sites; 
error bars expressed as standard deviation of n=3 technical replicates. 
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Figure 35. Pyrosequencing analysis of the CpG islands within the LXN and RARRES1 
genes in prostate epithelial cell lines. 
(a) The percentage promoter methylation of RARRES1 and (b) LXN in benign and cancer cell 
lines. Statistical significance values were measured by the Student’s T-test (Unpaired, two-
tailed; * p<0.05, ** p<0.01, *** p<0.001). Bars = single CpG sites; black line = average of 
individual CpG sites; error bars expressed as standard deviation of n=3 technical replicates. (c) 
The average percentage promoter methylation of a GSTP1 control gene in the same cell lines 
(experiment performed by Dr. Davide Pellacani).  
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Figure 36. Correlation between expression and DNA methylation of RARRES1 and LXN in 
prostate epithelial cell lines. 
(a) Dot plot showing the correlation between mRNA expression (X-axis) relative to a GAPDH 
control gene, analysed using qRT-PCR (see Figure 20) and average percentage of promoter 
DNA methylation (Y-axis), analysed by pyrosequencing (see Figure 35) of RARRES1 and (b) 
LXN, in benign (PNT2-C2) and cancer (P4E6, PC3 and LNCaP) cell lines. Expression plotted 
on a log10 scale to enable optimal visualisation; UD: expression undetectable after 40 cycles; 
n=3 technical replicates. The percentage promoter methylation was calculated as the average 
of 11 (RARRES1) and 6 (LXN) individual CpG sites.  
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RARRES1 and LXN expression was shown to be regulated by DNA methylation in CaP 

epithelial cell lines. To determine whether RARRES1 and LXN were methylated in primary 

prostate epithelial cultures, pyrosequencing analysis of RARRES1 and LXN in primary BPH 

(n=3) and CaP (n=3) cultures was performed. 

 

Low levels of DNA methylation within RARRES1 and LXN was seen in all BPH and CaP 

cultures analysed (less than 10%). Two out of three CaP cultures (PE671 and PE665) showed 

significant hypermethylation of RARRES1 compared to the 0% methylated control DNA. 

However, the average methylation was still below 10% (Figure 37a). None of the CaP tissues 

analysed showed significant hypermethylation of LXN (Figure 37b).  

 

As the expression of RARRES1 and LXN was significantly lower in SC than TA and CB cells, it 

could be hypothesised that expression is repressed by DNA methylation in the SC. Analysis of 

the methylation of RARRES1 and LXN in whole population epithelial cultures would mask any 

hypermethylation present in the rare SC. Furthermore, as RARRES1 expression was also 

significantly repressed in CB cells from CaP cultures, compared to BPH cultures, RARRES1 

may be hypermethylated in CB cells derived from CaP. Consequently, to investigate if 

RARRES1 and LXN were hypermethylated in enriched subpopulations from primary prostate 

epithelial cultures, pyrosequencing analysis was performed on SCs, TA and CB cells from BPH 

(n=2) and CaP (n=2) cultures.  

 

There was no significant difference in methylation levels of RARRES1 (Figure 38a) or LXN 

(Figure 38b) in any subpopulation from any BPH or CaP sample. Furthermore, all average 

methylation levels were below 10%.  

 

Taken together, this data demonstrates that RARRES1 and LXN possess very low levels of 

DNA methylation in whole population and enriched primary prostate epithelial cultures from 

BPH and CaP. This indicates that the regulation of RARRES1 and LXN expression within SCs, 

TA and CB subpopulations is not due to DNA methylation. It also suggests that the repression 

of RARRES1 expression in CB cells from CaP cultures is not due to DNA methylation.  

  

3.5.2. RARRES1 and LXN show low levels of DNA methylation in primary 

prostate epithelial cultures 
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Figure 37. Pyrosequencing analysis of the CpG islands within the LXN and RARRES1 
genes in primary prostate epithelial cultures. 
(a) The percentage promoter methylation of RARRES1 and (b) LXN in primary prostate 
epithelial cultures derived from BPH (n=3) and CaP (n=3). Statistical significance values were 
measured by the Student’s T-test (Unpaired, two-tailed; * p<0.05, ** p<0.01). Bars = single CpG 
sites; black line = average of individual CpG sites; error bars expressed as standard deviation of 
n=3 technical replicates.  
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Figure 38. Pyrosequencing analysis of the CpG islands within the LXN and RARRES1 
genes in primary prostate epithelial cultures.  
(a) The percentage promoter methylation of RARRES1 and (b) LXN in enriched SC, TA and CB 
cell subpopulations of primary prostate epithelial cultures derived from BPH (n=2) and CaP 
(n=2). Bars = single CpG sites; black line = average of individual CpG sites; error bars 
expressed as standard deviation of n=3 technical replicates. 
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RARRES1 and LXN were repressed by DNA methylation in malignant prostate epithelial cell 

lines. However, RARRES1 and LXN showed low levels of DNA methylation in primary prostate 

basal epithelial cultures. To determine whether RARRES1 and LXN are regulated by DNA 

methylation in primary prostate tissues from which the cultures were derived, pyrosequencing 

analysis was performed on primary BPH (n=3) and CaP (n=3) tissues. The gDNA derived from 

CaP tissue was commercially available high Gleason grade (grade 8 or 9) CaP gDNA obtained 

from Origene, which was reported to contain between 75 - 95% tumour tissue. 

 

The results showed that low levels (less than 11%) of DNA methylation of RARRES1 (Figure 

39a) and LXN (Figure 39b) was seen in all tissues analysed. Unexpectedly, RARRES1 was 

significantly hypermethylated compared to the 0% methylated control DNA in two out of three 

BPH tissues and LXN showed significant hypermethylation in one BPH tissue (although the 

average methylation remained low at less than 15%). However, none of the CaP tissues 

analysed showed significant hypermethylation of RARRES1 and LXN.  

 

To confirm that the CaP tissue was indeed cancer, the average percentage methylation values 

of a GSTP1 control gene, in the same BPH (performed by Dr. Davide Pellacani) and CaP 

tissues, were analysed (Figure 39c). These results showed that GSTP1 was hypermethylated in 

all CaP tissues (66-73% methylation), but not in the BPH tissues, confirming that the tissues did 

contain a high proportion of CaP cells.  

 

Taken together, these results show that RARRES1 and LXN possess very low levels of DNA 

methylation in primary prostate BPH and CaP tissues and so confirm that both genes are not 

regulated by DNA methylation in primary CaP.  

 

  

3.5.3. RARRES1 and LXN show low levels of DNA methylation in primary 

prostate tissues 
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Figure 39. Pyrosequencing analysis of the CpG islands within the LXN and RARRES1 
genes in primary prostate tissues. 
(a) The percentage promoter methylation of RARRES1 and (b) LXN in primary prostate tissues 
derived from BPH (n=3) and CaP (n=3). DNA derived from BPH tissues was extracted from 
glass slides of pooled snap frozen tissue sections by Dr. Davide Pellacani. DNA derived from 
CaP tissues was commercial gDNA obtained from Origene. Statistical significance values were 
measured by the Student’s T-test (Unpaired, two-tailed; ** p<0.01, *** p<0.001). Bars = single 
CpG sites; black line = average of individual CpG sites; error bars expressed as standard 
deviation of n=3 technical replicates. (c) The average percentage promoter methylation of a 
GSTP1 control gene in the same BPH (experiment performed by Dr. Davide Pellacani) and CaP 
tissues. 
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RARRES1 and LXN expression was shown to be regulated by DNA methylation in malignant 

prostate epithelial cell lines, but not in primary CaP tissue. To further confirm that RARRES1 

and LXN are not methylated in primary CaP samples, pyrosequencing analysis of RARRES1 

and LXN in CaP xenograft samples, established in RAG2
-/-

γC
-/-

 mice, was performed. As these 

cells are tumourigenic in mice, they should contain a more homogeneous population of cancer 

cells compared to epithelial tissues, which can contain a portion of benign cells. As these 

xenografts could contain a proportion of mouse cells, methylation levels of RARRES1 (Figure 

40a) and LXN (Figure 40b) were analysed in mouse STO fibroblast gDNA by pyrosequencing 

as a control. This analysis did not produce a pyrogram trace, confirming that the 

pyrosequencing primers used were human-specific, and will detect methylation in human cells 

only.  

 

RARRES1 showed significantly hypermethylation in only one xenograft sample, the early 

passage (P.3) of Y042, though the average methylation was low at less than 10% (Figure 41a). 

No other xenograft, at any passage, showed significant hypermethylation of RARRES1.  

 

LXN was significantly hypermethylated in both the Y019 and Y042 xenograft samples at low 

passage number (Figure 41b). In contrast to RARRES1, methylation of LXN increased 

significantly with serial passaging of the Y042 xenograft sample, to a maximum of 30% at 

passage 23. This suggests that, akin to what was seen in cell lines, serial passaging and 

immortalisation may increase the methylation of certain genes. As this trend to increase LXN 

methylation (3-fold) with increased passage of xenograft tumours is not seen with RARRES1, it 

would suggest that any hypermethylation seen is not due to general methylation of a large 

genomic area that contains both genes.  

 

An independent experiment performed by Dr. Davide Pellacani showed that levels of GSTP1 

methylation in the same xenograft samples at low passage were also very low (less than 4%) 

(Figure 41c).  

 

Taken together, these results show that RARRES1 possesses very low levels of DNA 

methylation in primary xenograft tissues. In contrast, LXN is significantly hypermethylated in 

some primary xenograft tissues and the average methylation increases with increased passage 

of the xenograft.   

 

 

3.5.4. RARRES1 and LXN show low levels of DNA methylation in some 

prostate xenograft tissues 
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Figure 40. Pyrogram traces after pyrosequencing analysis of RARRES1 and LXN using 
mouse STO DNA. 
Pyrosequencing pyrogram trace produced by the PyroMark Q24 software after analysis of DNA 
methylation of RARRES1 and LXN in mouse STO gDNA. The pyrograms confirm that each 
assay does not detect mouse gDNA and is human-specific.  
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Figure 41. Pyrosequencing analysis of the CpG islands within the LXN and RARRES1 
genes in primary prostate xenograft tissues. 
(a) The percentage promoter methylation of RARRES1 and (b) LXN in CaP xenograft tissues 
generated in RAG2

-/-
γC

-/-
 mice, which were serially passaged in vivo. Various passage numbers 

of xenograft tissue were analysed. Statistical significance values were measured by the 
Student’s T-test (Unpaired, two-tailed; ** p<0.01, *** p<0.001). Bars = single CpG sites; black 
line = average of individual CpG sites; error bars expressed as standard deviation of n=3 
technical replicates. (c) The average percentage promoter methylation of a GSTP1 control gene 
in the same xenografts tissues (experiment performed by Dr. Davide Pellacani). 
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3.6. Regulation of RARRES1 and LXN by retinoic acid 

 

 

RARRES1 was initially identified as the most up-regulated gene in response to RA in skin raft 

cultures (Nagpal et al., 1996), so we investigated if RA has a role in controlling expression of 

both RARRES1 and LXN in prostate epithelial cells. We initially carried out bioinformatics 

analysis, using the JASPAR database, of a 5 kB region upstream of each of the RARRES1 and 

LXN transcription start sites (TSS) in order to find putative binding sites for RARs important in 

regulating expression. The consensus sequences used to identify RAREs are shown in Figure 

42a. A schematic diagram detailing the RAREs present in the 5 kB upstream region shows that 

RARRES1 contains one RARE, 3632 bp (relative score: 0.802) upstream of the TSS, and LXN 

contains two RAREs, 2835 bp (relative score: 0.846) and 3402 bp (relative score: 0.819) 

upstream of the TSS (Figure 42b). In addition, RARRES1 contains two further RAREs, 7706 bp 

(relative score: 0.808) and 8833 bp (relative score: 0.830) downstream of the TSS (data not 

shown).  

 

To investigate if RA is able to directly regulate expression of RARRES1 and LXN, a panel of 

prostate epithelial cell lines with basal (PNT1a, BPH-1, RC165 and Bob) and luminal 

characteristics (LNCaP) were treated with 500 nM atRA over a time course and RARRES1 and 

LXN mRNA expression was quantified. Both RARRES1 and LXN showed a time-dependent 

response to atRA in the majority of cell lines tested. Significant induction of RARRES1 

expression was seen in three out of four basal cells, with the greatest increase in expression 

seen after treatment for 24 hours (PNT1a: 3.6-fold; BPH-1: 5.2-fold; RC165: 19.4-fold) (Figure 

42c). The Bob cell line did not respond to atRA treatment. Expression of RARRES1 initially 

decreased in response to atRA in the luminal LNCaP cell line. However, a significant increase 

(3.5-fold) in expression was seen after 72 hours. Significant induction of LXN expression was 

seen in all four basal cell lines, with the greatest increase in expression seen after 24 hours 

treatment (PNT1a: 5.1-fold; BPH-1: 4.1-fold RC165: 35.8-fold; Bob: 2.6-fold) (Figure 42d). In 

contrast to RARRES1 expression, atRA treatment had no effect on LXN expression in the 

LNCaP cell line.  

 

Taken together, these results show that the promoters of both RARRES1 and LXN contain 

RAREs and so could be directly regulated by RA. Moreover, atRA induces RARRES1 and LXN 

expression in basal epithelial cell lines, but not in the luminal LNCaP cell line.  

3.6.1. RARRES1 and LXN expression is induced by retinoic acid in basal 

prostate epithelial cell lines 
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Figure 42. Analysis of RARRES1 and LXN expression after atRA treatment of prostate 
epithelial cell lines. 
(a) Graphical representation of the consensus sequences used to determine RAREs in the 
RARRES1 and LXN promoters (taken from the JASPAR database website). (b) Depiction of 
RAREs found in a 5 kB portion of the RARRES1 and LXN promoters by bioinformatics analysis 
using the JASPAR database. (c) qRT-PCR expression data quantifying the expression of 
RARRES1 and (d) LXN, after treatment of basal (PNT2-C2, BPH-1, RC165 and Bob) and 
luminal (LNCaP) prostate cell lines with 500 nM atRA over a time course. Expression relative to 
an RPLPO control gene; n=3 technical replicates; error bars expressed as range of the mean. 
Statistical significance values were measured by the Student’s t-test (Unpaired, two-tailed; * 
p<0.05, *** p<0.001).  
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RARRES1 and LXN mRNA levels were increased in basal prostate epithelial cell lines following 

atRA treatment. To examine whether RA also regulated expression of RARRES1 and LXN in 

the primary prostate basal epithelial cultures, a primary prostate CaP epithelial culture (PE519) 

was treated with increasing concentrations of atRA over a time course and RARRES1 and LXN 

mRNA expression was quantified by qRT-PCR. 

 

Expression of RARRES1 (Figure 43a) and LXN (Figure 43b) after treatment increased in a dose 

and time-dependent manner, with an initial increase in RARRES1 expression seen after 24 

hours (4-fold) and a further delayed increase seen after 96 hours (570-fold). The magnitude of 

LXN expression after treatment was similar to RARRES1 after 24 hours (4-fold), however, a 

smaller increase after 96 hours (185-fold) was seen. There was one inconsistency in the data 

after treatment with 10 nM atRA for 72 hours, the expression of RARRES1 and LXN appeared 

to decrease compared to 48 hours and increase again at 96 hours. This could be due to the cell 

media being changed for fresh media (without additional atRA being added) after 48 hours. 

However, the half-life of atRA is very short at 0.5-2 hours, so this is probably not the case. It is 

most probably an anomalous time point, as the inconsistency is seen in RARRES1 and LXN 

expression and with no other concentration of atRA. From this result, 100 nM atRA treatment for 

72 hours was chosen as a suitable concentration and time point to use for subsequent 

experiments. This was because: (1) 100 nM atRA produced the greatest increase in expression 

at 72 hours and (2) the increase in expression was greater than at 24 and 48 hours.  

 

While basal cell lines induced RARRES1 and LXN to a maximum level after 24 hours, the 

highest increase in RARRES1 and LXN expression was seen after 96 hours in primary cultures. 

In addition, the fold increase in expression was considerably higher in primary cultures than the 

fold changes seen in cell lines. This difference could be due to primary samples taking longer to 

respond to atRA and induce transcription. Alternatively, in primary samples, atRA may indirectly 

regulate transcription of RARRES1 and LXN by inducing the expression of different genes that 

are able to transactivate RARRES1 and LXN. These genes may not be induced by atRA, or 

may not regulate RARRES1 and LXN transcription in cell lines.  

 

Whole population prostate basal epithelial cultures increased RARRES1 and LXN mRNA 

expression in response to atRA treatment. To investigate whether there was a difference in the 

induction of expression, within different subpopulations in the basal epithelial hierarchy, primary 

prostate BPH and CaP epithelial cultures enriched for SC, TA and CB cells were treated with 

100 nM atRA for 72 hours and RARRES1 and LXN mRNA expression was quantified by qRT-

PCR. The expression of each sample was normalised to the lowest expressor within each 

subpopulation (set at one). Subsequently, RARRES1 and LXN expression, with and without 

3.6.2. RARRES1 and LXN expression is induced by retinoic acid in prostate 

epithelial cell cultures 
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atRA treatment, was compared, but not expression between cell subpopulations. Expression 

levels between SC, TA and CB populations were described in Section 3.2.2.     

 

RARRES1 and LXN expression was induced upon atRA treatment in all enriched cultures. This 

induction in RARRES1 expression was significant in TA (300-fold) and CB (800-fold) cells 

derived from CaP (Figure 44c). In BPH samples, there was a consistent up-regulation in each 

subpopulation after treatment, however, the high variability seen in each cell population resulted 

in a non-significant increase (Figure 44a). The induction in LXN expression was significant in TA 

(50-fold) and CB (100-fold) cells derived from BPH (Figure 24b) and TA (40-fold) and CB (120-

fold) cells derived from CaP (Figure 44d).  

 

The general trend observed for both genes was that the induction of expression after atRA 

treatment increased with the differentiation status of the culture. The average induction of 

expression of RARRES1 in the atRA-treated SC population was lower than in the CB 

population, from both BPH (4-fold lower) and CaP (10-fold lower) cultures. Similary, the 

induction in expression of LXN in the atRA-treated SC population was 4-fold lower than in the 

CB population from CaP cultures. However, there was no difference in average induction of 

LXN expression between any of the subpopulations from atRA-treated BPH cultures; only a 1.4-

fold lower induction in expression was observed in the SC compared to the CB population. This 

discrepancy was most probably due to the average expression of LXN in the atRA-treated BPH 

SC population being skewed to a higher expression, due to one anomalous point (Y048/10). 

Another point to note is that although the expression of RARRES1 and LXN in DMSO-treated 

SC, TA and CB cells was set at one in Figure 44, the starting values between the three 

populations were different as described in Figures 24 and 25. 

 

Taken together, these results indicate that atRA induces RARRES1 and LXN expression in 

primary prostate basal epithelial cultures. Furthermore, atRA is able to induce RARRES1 and 

LXN to higher levels in the most differentiated CB subpopulation.  
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Figure 43. Analysis of RARRES1 and LXN expression after atRA treatment of a primary 
prostate BPH epithelial culture.  
qRT-PCR expression data quantifying the relative expression of (a) RARRES1 and (b) LXN, 
after treatment of a primary CaP epithelial cell culture (PE519) with various concentrations of 
atRA over a time course. Expression relative to an RPLPO control gene; n=3 technical 
replicates; error bars expressed as range of the mean. 
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Figure 44. Analysis of RARRES1 and LXN expression in enriched primary prostate 
epithelial cultures after atRA treatment. 
qRT-PCR expression data quantifying the relative expression of (a, c) RARRES1 and (b, d) 
LXN expression after treatment of primary epithelial cell cultures (enriched for SC, TA and CB 
cells) derived from BPH (n=3) or CaP (n=3) with 100 nM atRA for 72 hours. All expression 
values are relative to an RPLPO endogenous control. Within each subpopulation, expression of 
all DMSO-treated and atRA-treated samples was normalised to the DMSO-treated sample 
showing the lowest expression of RARRES1 or LXN (set at 1). Statistical significance values 
were measured by the Student’s T-test (Unpaired, two-tailed; * P<0.05, ** P<0.01, *** P<0.001). 
Average expression denoted by a horizontal line (Blue: BPH; Red: CaP). Arrows indicate 
outliers.   
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Since atRA induced expression of RARRES1 and LXN in primary prostate epithelial cultures, it 

is probable that RARs are expressed and active within primary cultures. To determine whether 

RARs were expressed within the basal hierarchy, a primary CaP culture (H082/11 LA) was 

treated with 500 nM atRA for 24 hours, and immunofluorescence performed to detect RAR α, β 

and γ protein. Figure 45a shows that all three RAR isoforms were expressed; RAR α 

demonstrated predominantly nuclear expression, but RAR β and γ showed mainly cytoplasmic 

with some nuclear expression. RAR α and γ appeared to be expressed at different levels 

between cells, with high expression seen in some cells and considerably lower expression in 

others. In contrast, the expression of RAR β was homogenous between cells. Furthermore, after 

atRA treatment there was no difference in the localisation of any of the 3 RAR isoforms, RAR α 

remained in the nucleus and RAR β and γ stayed mostly in the cytoplasm. This is not an 

unexpected result, as it is known that RARs are within the nucleus and attached to DNA in the 

absence of RA (Bastien and Rochette-Egly, 2004).  

 

To test the overall ability of primary prostate epithelial cultures to activate transcription following 

atRA treatment, a primary BPH (Y054/11) and CaP (H082/11 RA) culture was transfected with a 

luciferase reporter plasmid. The active regulatory elements in the plasmid were composed of a 

TATA box element and a tandem array of RAREs, which upon ligand-bound RAR binding, 

activated luciferase transcription. 24 hours after transfection with the plasmid, cells were treated 

with increasing concentrations of atRA, and luciferase activity measured after a further 24 

hours. The primary BPH (Figure 45b) and CaP (Figure 45c) cultures were able to significantly 

activate luciferase expression following atRA treatment, to a maximum of 14.8-fold and 26.5-

fold induction, respectively when treated with 1 μM atRA.  

 

The decreased ability of SC subpopulation to induce RARRES1 and LXN expression after atRA 

treatment (Figure 44), suggests that there may be a differential reponse to atRA through 

differentiation in the prostate basal hierarchy. To examine if there was differential expression of 

RARs or intracellular lipid-binding proteins in SCs and CB cells (BPH and CaP results were 

pooled), Affymetrix gene-expression array data (Birnie et al., 2008) was re-examined (Figure 

45d). These results show that all three isoforms of RARs were expressed at low levels, and that 

there was no difference in expression between the SCs and CB cells. Interestingly, RXR α was 

expressed at high levels, but no difference was seen between SC and CB subpopulations. 

However, the CRABP2 gene, encoding a protein that functions to transfer atRA to the nucleus, 

was over-expressed in the CB compared to the SC subpopulation. Taken together, these 

results show that RARs are expressed and transcriptionally active in primary prostate epithelial 

cultures. However, the differential induction in RARRES1 and LXN expression between SC and 

CB subpopulations may be due to differential expression of CRABP2. 

 

3.6.3. Retinoic acid receptors are expressed and active in primary prostate 

epithelial cultures 
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Figure 45. Analysis of expression and transcriptional activity of retinoic acid receptors in 
response to atRA in primary prostate epithelial cell cultures. 
(a) RAR α, β and γ expression was detected by immunofluorescence in primary epithelial 
cultures derived from CaP (H082/11 LA), treated with 500 nM atRA for 24 hours or a DMSO 
control. Cells were counterstained with DAPI to enable nuclear visualisation. White scale bar 
represents 10 µm. (b) Luciferase activity in primary prostate epithelial cell cultures derived from 
BPH (Y054/11) and (c) CaP (H082/11 RA), transfected with a RARE reporter plasmid in 
response to increasing concentrations of atRA. Luciferase activity was normalised to the values 
of the cells transfected with a negative control plasmid (lacked RARE regulatory elements). 
Statistical significance with respect to DMSO control was measured by the Student’s T-test 
(Unpaired, two-tailed; * p<0.05; ** p<0.01). (d) Affymetrix gene-expression array data showing 
mean gene expression values of RARs and intracellular lipid-binding proteins that bind RA in 
SCs and CB cells (BPH and CaP samples pooled together).  
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3.7. Homology of RARRES1 and LXN 

 

 

LXN has been described as the only known endogenous MCP inhibitor in humans. Moreover, 

the crystal structure of LXN in complex with human CPA4 has been solved, which describes an 

inhibitory loop from LXN that protrudes into the CPA4 active site (Pallares et al., 2005). To 

determine whether RARRES1 may also interact with CPA4, both RARRES1 (transcript 1 and 2) 

and LXN amino acid sequences were aligned, using the Clustal W method in the Lasergene 

MegAlign software (Figure 46a).  

 

The alignment identified a 30% protein sequence similarity between RARRES1 and LXN, 

confirming that the two proteins are homologues. The only apparent difference between the two 

proteins was a lack of an N-terminal transmembrane domain in LXN that is present in both 

isoforms of RARRES1. Interestingly, the C-terminal CPA4-binding loop that is present in LXN 

was also present in isoform one of RARRES1. The five key amino acids required for the 

interaction between LXN and CPA4, were completely conserved in LXN from a number of 

different species (Figure 46b), highlighting their importance. Moreover, the same five amino 

acids from the CPA4 binding loop were 100% conserved in RARRES1 from a number of other 

species, including H. Sapiens. These results suggest that RARRES1 may also be able to 

interact with the carboxypeptidase CPA4. 

3.7.1. RARRES1 and LXN share a conserved CPA4 binding domain 
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Figure 46. Amino acid sequence alignment of RARRES1 and LXN. 
(a) Alignment of transcript 1 (TS1) and 2 (TS2) of RARRES1 and LXN aligned by the Clustal W 
method using the Lasergene MegAlign software. Highlighted by red boxes are the N-terminal 
transmembrane domain present in RARRES1 (1-61aa) and the CPA4 binding domain present 
in both RARRES1 TS1 and LXN (240-249aa; taken from (Pallares et al., 2005)). (b) Alignment 
of the CPA4 binding domain and surrounding amino acids (236-251aa) within RARRES1 and 
LXN from various species. Highlighted in red boxes are the key amino acids from LXN that are 
required to bind to CPA4 (240, 242, 247-249aa), which are fully conserved in RARRES1. 
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The cellular location of RARRES1 has been a matter of debate in the literature, with various 

groups speculating upon its location. Nagpal et al. (1996) initially suggested that RARRES1 was 

a transmembrane protein with a long extracellular region, due to the presence of a large 

hydrophobic patch at its N-terminus. More recently, based on the N-glycosylation status of 

RARRES1, it was proposed that the transmembrane protein faced the cytoplasm, enabling 

interaction with cytoplasmic proteins (Sahab et al., 2011). In contrast, little work has been done 

to identify the location of LXN.  

 

Initially, and due to a lack of a specific antibody for RARRES1, haemagglutinin (HA)-tagged 

RARRES1 (RARRES1-HA) and LXN (LXN-HA) cDNA fusion expression vectors obtained from 

GeneCopoeia were transfected into PC3 and LNCaP cell lines to investigate their cellular 

location. Advantages for using epitope-tagged proteins includes: (1) the utilisation of well-

characterised antibodies, (2) the antibody is specific to the tag so cross-reaction is avoided and 

(3) immunochemistry is possible for poorly immunogenic proteins (Jarvik and Telmer, 1998). 

Figure 47 shows that the HA-tagged expression vectors were transfected into cells effectively, 

with a transfection efficiency after 24 hours, of around 30% and 25% for RARRES1-HA in 

LNCaP and PC3 cells, respectively and 30% for LXN-HA in LNCaP cells. These preliminary 

experiments suggested that RARRES1 was located to the cytoplasm of cells and LXN was 

within the nucleus.  

 

Following the commercialisation of a specific antibody to detect RARRES1, LNCaP cells were 

transfected with RARRES1-HA (Figure 47a) and LXN-HA (Figure 47e) and dual labelled with 

native antibody and a HA-tag antibody, which showed co-localisation of both epitope and native 

antibodies after transfection. 

 

To determine the specific location of RARRES1, RARRES1-HA transfected LNCaP and PC3 

cells were co-stained with anti-HA and cell compartmental marker antibodies and visualised 

using confocal microscopy. The results showed that RARRES1-HA did not co-localise with the 

plasma membrane marker α1-Na/K-ATPase (Figure 48b), but did co-stain with the ER marker, 

protein disulphide isomerase (PDI) (Figure 48c, d), suggesting that RARRES1 is located on the 

ER lumen membrane.  

 

The cellular location of LXN was also visualised by confocal microscopy in LXN-HA transfected 

LNCaP cells, by co-staining with anti-LXN and anti-HA antibodies (Figure 48e). In contrast to 

RARRES1, immunofluorescence images showed that LXN-HA was located in a non-random 

pattern in the nucleus of LNCaP cells. To verify that the staining was genuinely nuclear and not 

due to artefacts, a stringent immunofluorescence procedure specifically for nuclear proteins was 

performed, using a 2% paraformaldehyde fixative and 0.2% TX-100, followed by 0.5% NP-40 to 

3.7.2. RARRES1 is located in the ER, and LXN is located in the nucleus of 

prostate epithelial cell lines 
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permeabilise cells (Figure 48f). Despite LXN showing nuclear localisation, it did not contain a 

canonical nuclear localisation signal, as searched for using the PSORT tool 

(http://psort.nibb.ac.jp/form2.html).   

 

To confirm that RARRES1 is not located in the plasma membrane of cells, a cellular 

fractionation technique was performed by Hannah Walker in the PC3 prostate epithelial cell line 

(Figure 49). RARRES1-HA transfection vectors were transfected into the PC3 cell line and cells 

were lysed and fractionated, using sodium carbonate and ultracentrifugation, after 24 hours. 

Western blotting was then utilised to visualise the expression of RARRES1-HA in the unbroken 

cells, wash or plasma membrane fractions. The results showed that RARRES1 was present in 

unbroken cells and the wash fraction after RARRES1-HA transfection, but not in mock (reagent 

only)-transfected cells. Importantly, RARRES1 expression was not detected in the plasma 

membrane fraction, which supported the result found by immunofluorescence. The control 

markers showed that each cell fraction was pure, with the plasma membrane marker α1-K/Na-

ATPase being expressed only in the unbroken cell and plasma membrane fractions. The 

cytoplasmic β-actin marker was detected purely in the unbroken cell and wash fractions.  

 

To confirm that the localisation of RARRES1 and LXN was the same in all cells and not just the 

representative cells in Figure 48, images of RARRES1-HA and LXN-HA expression were taken 

prior to zooming in (Figure 47). This confirmed that cytoplasmic (more specifically ER-located) 

and nuclear expression of RARRES1 and LXN, respectively, was not restricted to a small 

proportion of cells.  

 

Taken together, RARRES1 and LXN are located in different cellular compartments in prostate 

epithelial cell lines. RARRES1 is not located on the plasma membrane, but is more probably 

located within the ER lumen membrane, whereas LXN is located within the nucleus.  

 

 

 

 

http://psort.nibb.ac.jp/form2.html
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Figure 47. Immunofluorescence images of HA-tagged RARRES1 and LXN transfected into 
prostate epithelial cell lines. 
(a) RARRES1 over-expression was detected by immunofluorescence in LNCaP and PC3 cells 
and (b) LXN over-expression in LNCaP cells using anti-HA tag antibodies at 0 hours or 24 
hours after transfection. Cells were counterstained with DAPI to enable nuclear visualisation. 
White scale bar represents 10 µm. (c) Antibody controls using mouse IgG instead of primary 
antibody and secondary antibody only. 
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Figure 48. Immunofluorescence images of HA-tagged RARRES1 and LXN transfected into 
prostate epithelial cell lines. 
Confocal Immunofluorescence images depicting the location of HA-tagged RARRES1 in LNCaP 
(a, b, c) and PC3 (d) cells and LXN in LNCaP (e, f) cells, 24 hours after transfection. Cells we 
co-stained with anti-HA tag and (a) anti-RARRES1, (b) anti-α1-Na/K-ATPase (plasma 
membrane marker), (c, d) anti-protein disulphide isomerise (PDI; ER marker), (e) anti-LXN 
antibodies or (f) anti-LXN antibodies after a more stringent nuclear fixation protocol: 2% 
paraformaldehyde fixative and 0.2% TX-100, followed by 0.5% NP-40 to permeabilise cells. 
Cells were counterstained with DAPI to enable nuclear visualisation. White scale bar represents 
10 µm. (g) Antibody controls using rabbit or mouse IgG instead of primary antibody and 
secondary antibody only.  
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Figure 49. Cellular fractionation by western blotting of HA-tagged RARRES1 in the PC3 
prostate epithelial cell line. 
Western blot data showing protein levels of RARRES1-HA (33 kDa) in the unbroken cell fraction 
(UBC), wash fraction (Wash 1) and plasma membrane fraction (PM) of PC3 cells, transfected 
with HA-tagged RARRES1 or reagent-only control (Mock), for 24 hours prior to lysing the cells. 
Cells were fractionated using the sodium carbonate and ultracentrifugation method. Blots were 
probed with the plasma membrane marker α1-Na/K-ATPase (112 kDa) and cytoplasm marker 
β-actin (42 kDa) to ensure a pure plasma membrane population was obtained. This experiment 
was performed by Hannah Walker.   
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3.8. Function of RARRES1 and LXN in prostate epithelial cell lines 

 

 

To assess the function of RARRES1 and LXN in the cell, knockdown and over-expression 

experiments were performed in prostate epithelial cell lines. SiRNA oligonucleotides targeted 

against RARRES1 and LXN were utilised to knockdown expression, as they: (1) minimise non-

specific effects, (2) provide the ability to control the amount of siRNA more accurately than 

vector driven approaches and (3) are a fast and straightforward method to transiently knock 

down a gene. In all cases, expression knockdown was calculated relative to a non-specific 

scrambled siRNA negative control. 10 nM scrambled, RARRES1 and LXN siRNAs were 

transfected into the PNT1a cell line, derived from normal human prostate (as it expresses 

RARRES1 and LXN to high levels) and mRNA and protein were extracted over a time course. 

 

RARRES1 mRNA was successfully knocked down by greater than 90%, 24 and 48 hours after 

transfection (Figure 50a).  RARRES1 protein levels also suffered a significant knockdown, with 

the siRNA achieving a maximum reduction of 80% after 96 hours (Figure 50b). This delay in 

protein down-regulation is indicative of a long half-life of RARRES1. LXN mRNA (Figure 50c) 

and protein (Figure 50d) was successfully knocked down by almost 100% after 48, 72 and 96 

hours. These results confirm that both siRNAs were able to reduce RARRES1 and LXN 

expression, to a point where changes in cell function could be measured.  

 

Expression-ready, full-length ORF clones containing RARRES1 or LXN cDNA were utilised and 

transfected into cells for over-expression studies as they: (1) are expression and sequence 

verified clones, (2) are a cost-effective and time-effective method and (3) contain HA and/or 

GFP tags to monitor transfection and over-expression. In all cases, over-expression was relative 

to an empty vector negative control. Expression vectors were transfected into PNT1a and 

LNCaP cell lines and mRNA and protein expression quantified by qRT-PCR and western 

blotting, respectively. RARRES1 mRNA was over-expressed to higher levels after 24 hours 

(2,500-fold) than 48 hours (500-fold) in PNT1a cells (Figure 51a). However, in LNCaP cells 

RARRES1 mRNA was higher after 48 hours (9,000-fold) than 24 hours (5,000-fold) (Figure 

51b). RARRES1 protein levels also saw a significant over-expression, with the greatest 

increase seen after 96 hours in both PNT1a (Figure 51e) and LNCaP (Figure 51f) cells. 

Similarly to RARRES1, LXN mRNA was over-expressed to higher levels after 24 hours (10,000-

fold) than 48 hours (1,000-fold) in PNT1a cells (Figure 51c), but expressed at higher levels after 

48 hours (4,500-fold) than 24 hours (2,500-fold) in LNCaP cells (Figure 51d).  LXN protein 

levels also saw a significant over-expression, with the greatest increase seen after 96 hours in 

PNT1a cells (Figure 51g) and after 48 hours in LNCaP cells (Figure 51h). In PNT1a cells, 

RARRES1 and LXN mRNAs were rapidly over-expressed at 24 hours, but then partially down-

regulated at 48 hours. This very transient expression appears to be a feature of this cell type, as 

3.8.1. RARRES1 and LXN expression is modulated by siRNA and over-

expression vectors in prostate epithelial cell lines 
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in LNCaP cells mRNA expression continued to increase at 48 hours and the overall increase in 

expression was of a higher magnitude in this cell line. Taken together, these results confirm that 

both expression vectors were able to increase RARRES1 and LXN expression, to a point where 

changes in cell function could be measured. 
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Figure 50. SiRNA knockdown of RARRES1 and LXN in the PNT1a epithelial cell line. 
qRT-PCR data showing expression of (a) RARRES1 and (b) LXN relative to an 18S 
endogenous control gene over time in reagent-only (mock), 10 nM scrambled (scr), RARRES1 
(RR1) or LXN siRNA (LXN) samples from PNT1a cells. All values are normalised to scr, which 
is set at 1 for each time point; UD: undetectable expression after 40 cycles; n=3 technical 
replicates; error bars expressed as range of the mean. Quantified western blot data showing 
protein levels of (c) RARRES1 (33 kDa) and (d) LXN (29 kDa) over time in mock, scr and 
RR1/LXN samples from PNT1a cells. Protein expression was quantified relative to a β-actin (42 
kDa) loading control and relative to the scr control at each time point (set at 1; values below 
each blot).  
 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Mock Scr RR1 Mock Scr RR1 Mock Scr RR1

R
e
la

ti
v
e
 E

x
p

re
s
s
io

n
 

RARRES1

0.09
0.09

0.21

24 h 48 h 72 h

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Mock Scr LXN Mock Scr LXN Mock Scr LXN

R
e
la

ti
v
e
 E

x
p

re
s
s
io

n
 

LXN

24 h 48 h 72 h

UD 0.00 0.00

A

RARRES1

β-actin

33 kDa

42 kDa

Mock Scr RR1 Mock Scr RR1 Mock Scr RR1

48 h 72 h 96 h

1.4      1.0      0.8 1.9     1.0     0.6 0.4    1.0     0.2

B

C

LXN

β-actin

26 kDa

42 kDa

Mock Scr LXN Mock Scr LXN Mock Scr LXN

2.6     1.0      0.0 0.3      1.0      0.0 1.0      1.0      0.0

48 h 72 h 96 hD



  

                                                159 Results 

 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M
ock

V
ec

to
r

R
A
R
R
E
S
1

 M
ock

 V
ec

to
r

 R
A
R
R
E
S
1

R
e
la

ti
v
e
 E

x
p

re
s
s
io

n

0

1

500

1000

1500

2000

2500

3000

24 h 48 h

RARRES1 

PNT1a

M
ock

V
ec

to
r

R
A
R
R
E
S
1

 M
ock

 V
ec

to
r

 R
A
R
R
E
S
1

R
e
la

ti
v
e
 E

x
p

re
s
s
io

n

0

1

5000

6000

7000

8000

9000

10000

24 h 48 h

RARRES1 

LNCaP

BA

M
ock

V
ec

to
r

LX
N

 M
ock

 V
ec

to
r

 L
X
N

R
e

la
ti

v
e

 E
x

p
re

s
s

io
n

0

1

2000

4000

6000

8000

10000

12000

24 h 48 h

LXN 

PNT1a

M
ock

V
ec

to
r

LX
N

 M
ock

 V
ec

to
r

 L
X
N

R
e

la
ti

v
e

 E
x

p
re

s
s

io
n

0

1

2000

3000

4000

5000

24 h 48 h

LXN

LNCaP

DC



  

                                                160 Results 

 

 

 

 

 
Figure 51. Over-expression of RARRES1 and LXN in the PNT1a and LNCaP epithelial cell 
lines. 
qRT-PCR data showing expression of (a, b) RARRES1 and (c, d) LXN relative to a GAPDH 
endogenous control gene over time in PNT1a (a, c) and LNCaP (b, d) cells transfected with 
reagent-only (mock), empty vector (vect), RARRES1 (RR1) or LXN (LXN) vectors. All values are 
normalised to vect, which is set at 1 for each time point; n=3 technical replicates; error bars 
expressed as range of the mean. Quantified western blot data showing protein levels of (e, f) 
RARRES1 (33 kDa) and (g, h) LXN (29 kDa) over time, in PNT1a (e, g) and LNCaP (f, h) cells 
transfected with mock, vect, RR1 or LXN vectors. Protein expression was quantified relative to a 
β-actin (42 kDa) loading control and relative to the highest expressing sample (set at 1; values 
below each blot).   
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It has been shown previously that RARRES1 expression affects tumour cell invasion in prostate 

cancer PC-3M cells (Jing et al., 2002) and nasopharyngeal carcinoma HK1-EBV cells (Kwok et 

al., 2009). To investigate the motility of prostate epithelial cells after modulating RARRES1 and 

LXN expression, wound healing assays were performed in the highly motile benign PNT1a cell 

line. This assay was utilised as it: (1) mimics, to some extent, cell migration in vivo, (2) is simple 

and (3) is inexpensive (Rodriguez et al., 2005). 

 

Cells were transfected with 10 nM scrambled, RARRES1 and LXN siRNAs or empty vector 

control, RARRES1 and LXN expression vectors and grown to 90% confluency. After 54 hours a 

wound was created in the cell monolayer and migration into the wound was monitored over 18 

hours. Images were taken 18 hours after wounding and the percentage of wound closure was 

calculated. The width of the wound at 0 hours and 18 hours was measured, the average (of 10 

points) taken and the relative percentage wound closure at 18 hours with respect to 0 hours 

was calculated (Figure 52a).  

 

After knock down of RARRES1, the extent of migration significantly (P<0.05) increased from 

56% with the scrambled siRNA-treated cells, to 80% with RARRES1 siRNA-treated (Figure 52b, 

c). Conversely, the percentage closure decreased after LXN knockdown, from 56% in 

scrambled siRNA-treated cells, to 21% in LXN siRNA-treated cells. The reciprocal experiment 

was then performed; RARRES1 and LXN were over-expressed via the transfection of cDNA 

expression vectors into PNT1a cells (Figure 52d, e). Wound closure decreased from 68% in 

vector control-treated cells, to 51% after RARRES1 over-expression and significantly (P<0.05) 

increased to 88%, after LXN over-expression. These results suggest that the two proteins have 

opposite effects on cell motility, RARRES1 represses motility and LXN promotes cell motility. 

 

One point to note is that cells were not serum-starved prior to creating the wound in these 

assays and the effect on cell motility could therefore be due to changes in cell proliferation. 

However, this is unlikely as it has previously been shown that RARRES1 over-expression has 

no effect on the PC-3M prostate cell line (Jing et al., 2002) and visually there was no difference 

in cell number in this experiment.   

 

In summary, these wound healing assays show that RARRES1 represses cell motility, but LXN 

promotes the cell motility of prostate epithelial cell lines.  

 

 

 

 

 

 

3.8.2. RARRES1 and LXN regulate the motility of prostate epithelial cell lines 
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Figure 52. Wound healing assay after modulation of RARRES1 and LXN expression in the 
PNT1a epithelial cell line. 
(a) Schematic of wound healing assay performed. (b/c) Representative images and wound 
healing assay data showing the motility of PNT1a cells transfected with 10 nM scrambled, 
RARRES1 and LXN siRNA or (d/e) empty vector, RARRES1-HA and LXN-HA transfection 
vectors, 72 hours after transfection and 18 hours after wounding with a 1 ml pipette tip. % 
wound closure was calculated by taking an average of the size of the wound after 18 hours, 
relative to the starting wound size (Error bars expressed at the standard deviation of n=3 
biological replicates). Statistical significance values were measured by the Student’s T-test 
(Unpaired, two-tailed; * P<0.05). 
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Experiments in Section 3.8.2 show that RARRES1 and LXN have opposite effects on the 

migration of prostate epithelial cell lines. It has also previously been shown that RARRES1 

expression affects tumour cell invasion in CaP PC-3M cells (Jing et al., 2002) and 

nasopharyngeal carcinoma HK1-EBV cells (Kwok et al., 2009). To investigate the invasive 

capacity of cells after modulating RARRES1 and LXN expression, Matrigel invasion assays 

were performed in non-malignant PNT1a and malignant LNCaP prostate epithelial cell lines. 

PNT1a cells were transfected with 10 nM scrambled, RARRES1 and LXN siRNA and LNCaP 

cells were transfected with vector control, RARRES1 or LXN expression vectors for 24 hours 

prior to commencing the invasion assay, as described in Section 2.10.2. A highly invasive MDA-

MB-231 breast cancer cell line and highly motile, but weakly invasive, PNT1a prostate epithelial 

cell line were used as positive and negative controls, respectively.  

 

Results show that the invasion of relatively non-invasive PNT1a cells increased from 5% in the 

scrambled siRNA-treated cells, to 7% in RARRES1 siRNA-treated and 14% in LXN siRNA-

treated cells (Figure 54a). After RARRES1 knockdown, there was a slight increase in the 

number of motile cells, but a more prominent increase in the number of invasive cells, from 5.8 

in the scrambled siRNA-treated cells, to 9.2 cells per field (Figure 54b). In contrast, after LXN 

knockdown, there was a considerable decrease in the number of motile cells, from 72.5 in 

control treated, to 28.3 cells per field, but only a marginal increase in the number of invasive 

cells. Taken together, these data confirms the wound healing assay data, which showed that 

after RARRES1 and LXN knockdown, cell migration increased and decreased, respectively. 

RARRES1 knockdown increased invasion more than LXN knockdown, but due to the major 

effect of LXN on migration, overall relative invasion was higher after LXN siRNA treatment.  

 

The reciprocal over-expression experiment was next performed in malignant LNCaP cells, 

which harbour the lowest expression of RARRES1 and LXN. Over-expression in the relatively 

non-invasive PNT1a cells would decrease their invasive potential even further, so this cell type 

was not used for this experiment. Results shows that the invasion of LNCaP cells decreased 

from 55.9% in vector-treated cells, to 45.8% after RARRES1 over-expression and 35.3% after 

LXN over-expression (Figure 54c). When looking at the raw data, there was an increase in the 

number of motile cells from 3.8 cells in the control cells, to 5.7 cells after RARRES1 over-

expression and 7.9 cells per field after LXN over-expression (Figure 54d). Unexpectedly, there 

was also an increase in the number of invasive cells from 4.8 cells in the control cells, to 5.9 

cells after RARRES1 over-expression and 6.3 cells per field after LXN over-expression. 

RARRES1 and LXN over-expression in the LNCaP cell line led to a greater increase in the 

migration of cells, compared to the invasion of cells, therefore resulting in a decrease in relative 

invasion. Taken together, the invasion assay results demonstrate that both RARRES1 and LXN 

function to suppress invasion in prostate epithelial cell lines. The result for RARRES1 is clear-

3.8.3. RARRES1 and LXN regulate the invasion of prostate epithelial cell lines 
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cut, a lack of expression increases the invasive capacity of cells. However, the effect that LXN 

has on invasion is predominantly due to its effect on cell motility.  

 

 

 

 

 

 

 
 
Figure 53. Schematic of Matrigel invasion assay. 
1. Cell suspension placed in inserts coated with Matrigel. 2. Invasive/Motile cells move through 
the porous insert (motile) or degrade the Matrigel (invasive). Non-motile/non-invasive cells 
remain in the upper chamber. 3. Cells on the upper surface are removed. Cells on bottom 
surface are fixed with methanol and stained with DAPI. 4. Cells are counted at 20 x 
magnification.  
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Figure 54. Matrigel invasion assay after modulation of RARRES1 and LXN expression in 
prostate epithelial cell lines. 
(a, b) Matrigel invasion assay data showing the relative percentage of invasive PNT1a cells 
transfected with 10 nM scrambled (scr), RARRES1 and LXN siRNA (knockdown) or (c, d) 
LNCaP cells transfected with vector only, RARRES1-HA, and LXN-HA transfection vectors 
(over-expression). All data is 72 hours after transfection. (b, d) Raw data tables showing the 
average number of motile and invasive cells per field of view and the respective relative 
invasion percentages. The percentage of cells invading into Matrigel was measured in the 
presence of RPMI medium + 10% FCS as chemo-attractant, below the Matrigel. The benign 
PNT1a cell line and highly metastatic MDA-MB-231 cell line were used, as negative and 
positive controls for invasion. (Error bars expressed as standard deviation of n=3 technical 
replicates).   
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LXN expression is down regulated by DNA methylation in most malignant prostate epithelial cell 

lines. However, LXN is over-expressed in one of the most metastatic CaP cell lines, PC3. To 

determine the role of LXN in CaP metastasis and the PC3 cell line, expression of LXN was 

knocked down by siRNA. 10 nM scrambled and LXN siRNAs were transfected into the PC3 cell 

line and mRNA and protein were extracted over a time course. 

 

LXN mRNA was knocked down by a maximum of 84%, 48 hours after transfection (Figure 55a).  

LXN protein levels also suffered a significant knockdown, with the siRNA achieving almost 

100% reduction after 72 hours and 96 hours (Figure 55b). These results confirmed that LXN 

siRNAs were able to reduce LXN expression to a point where changes in cell function could be 

measured. After transfection of LXN siRNA into PC3 cells, unlike any other cell line tested, a 

phenotypic effect on the cells was visible. Considerably fewer cells were present after 72 hours 

onwards, compared to the scrambled-siRNA control and cells acquired an apoptotic phenotype 

(Figure 55c).  

 

A flow cytometry-based apoptosis assay was performed to determine whether cell death was 

occurring by apoptosis. A FITC-labelled inhibitor of pan-caspase was used to stain activated 

caspases in the cell, and a dead cell stain, Sytox-blue, was used to detect dead cells. After 

siRNA treatment of PC3 cells for 96 hours, a 5% increase in the number of dead cells (from 

3.3% with scr, to 8.0%) and a 15% increase in dying apoptotic cells (from 2.8% with scr to 

17.5%), was observed (Figure 55d, e). These results show that LXN expression is crucial for the 

viability of PC3 cells, hence the need for these cells to over-express this gene.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.8.4. Knockdown of LXN in the metastatic PC3 cell line induces apoptosis 
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Figure 55. Apoptosis assay after siRNA knockdown of LXN in the PC3 prostate epithelial 
cell line. 
(a) qRT-PCR data showing expression of LXN relative to an 18S endogenous control gene over 
time in reagent-only (mock), 10 nM scrambled (scr) and LXN siRNA (LXN) samples from PC3 
cells. All values are normalised to scr, which is set at 1 for each time point (n=3 technical 
replicates; error bars expressed as range of the mean). (b) Quantified western blot data 
showing protein levels of LXN (29 kDa) over time in mock, scr and LXN samples from PC3 cells. 
Protein expression was quantified relative to a β-actin (42 kDa) loading control and relative to 
the scr control at each time point (set at 1; values below each blot). (c) Images at 20 x 
magnification of PC3 cells transfected with scrambled or LXN siRNA for 96 hours. (d) 
Representative images and (e) quantification of flow cytometry analysis (n=2 replicates) for 
apoptosis of PC3 cells transfected with transfection reagent only (mock), scrambled siRNA or 
LXN siRNA for 96 hours. Cells were dual-stained with a CaspACE-FITC apoptosis marker and 
Sytox Blue dead cell stain (Violet 1).  
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3.9. Function of RARRES1 and LXN in primary prostate epithelial cultures 

 

 

RARRES1 and LXN affect the motility and invasion of epithelial cell lines. To determine the 

function of RARRES1 and LXN in primary prostate epithelial cell cultures, siRNAs against 

RARRES1 and LXN were utilised to knock-down expression. In all cases, expression 

knockdown was relative to a non-specific scrambled siRNA negative control. 50 nM scrambled, 

RARRES1 and LXN siRNAs were transfected into a primary prostate CaP (H131/11 RA) 

epithelial culture and mRNA and protein was extracted over a time course. RARRES1 and LXN 

were knocked down by siRNA instead of being over-expressed in prostate epithelial cultures as: 

(1) they are easier to transfect into typically difficult-to-transfect primary cells, (2) they have 

lower off-target effects and cytotoxicity and (3) RARRES1 and LXN expression is low in only a 

small proportion of cells, so knocking down expression in the remaining cells would result in a 

greater effect than over-expression, in a minority of cells. 

 

RARRES1 mRNA was successfully knocked down to a maximum of 90%, 72 hours after 

transfection (Figure 56a). RARRES1 protein levels also suffered a significant knockdown, with 

the siRNA achieving almost 100% knockdown after 96 hours (Figure 56b). LXN mRNA was 

successfully knocked down to a maximum of 95%, 48 hours after transfection (Figure 56c). LXN 

protein levels also saw a significant knockdown, with the siRNA achieving almost 100% 

knockdown after 72 hours (Figure 56d). These results confirm that despite primary cells being 

notoriously difficult to transfect, both siRNAs are able to reduce RARRES1 and LXN expression 

to a point where changes in cell function could be measured. Furthermore, as seen in cell lines, 

only the full-length 33 kDa RARRES1 isoform was expressed and not the shorter variant. 

 

To confirm that RARRES1 and LXN were also knocked down by siRNA in other primary 

cultures, mRNA expression levels of RARRES1 (Figure 56e) and LXN (Figure 56f) after siRNA 

transfection were measured by qRT-PCR, in a further three primary cultures. These results 

showed that RARRES1 and LXN mRNA was knocked down to levels greater than 60% in all 

samples after 24 hours. Protein knockdown was not analysed as mRNA and protein knockdown 

was shown to correlate in Figure 56a-d.  

 

 

 

 

 

 

3.9.1. RARRES1 and LXN expression is knocked down by siRNA in primary 

prostate epithelial cultures 
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Figure 56. SiRNA knockdown of RARRES1 and LXN in primary prostate epithelial 
cultures. 
qRT-PCR data showing expression of (a) RARRES1 and (c) LXN relative to an 18S 
endogenous control gene over time in reagent-only (mock), 50 nM scrambled siRNA (scr) and 
RARRES1 siRNA (RR1) or LXN siRNA (LXN) samples from H131/11 RA primary epithelial 
cells. All values are normalised to scr, which is set at 1 for each time point; n=3 technical 
replicates; error bars expressed as range of the mean. (b) Quantified western blot data showing 
protein levels of RARRES1 (33 kDa) and (d) LXN (29 kDa) over time in mock, scr and RR1/LXN 
samples from PEH131/11 RA primary epithelial cells. Protein expression was quantified relative 
to a β-actin (42 kDa) loading control and relative to the scr control at each time point (set at 1; 
values below each blot). (e) qRT-PCR data showing expression of RARRES1 and (f) LXN 
relative to an 18S endogenous control gene over time in scr, RR1 or LXN siRNA samples from 
PEH135/11, PEH146/12 and PEH071/11 primary epithelial cells, 24 hours after transfection. 
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Over-expression of RARRES1 in human adipose tissue-derived mesenchymal SCs inhibited cell 

proliferation, whereas knock-down of expression by siRNA promoted cell proliferation (Ohnishi 

et al., 2009). Similarly, knockdown of RARRES1 in nasopharyngeal carcinoma HK1 cells 

increased cell proliferation and over-expression decreased cell proliferation (Kwok et al., 2009). 

However, after over-expression of RARRES1 in the PC-3M prostate cell line, no difference in 

growth rate was seen (Jing et al., 2002). To determine if RARRES1 and LXN regulated 

proliferation of primary prostate epithelial cultures, viable cell counts, Ki67 expression and cell 

cycle analysis were performed.  

 

Primary BPH (n=3) and CaP (n=5) epithelial cultures were initially transfected with 50 nM 

scrambled, RARRES1 or LXN siRNA or remained untransfected (media). At 2 day intervals, 

cells were trypsinised and viable cell number was analysed on the Vi-Cell cell viability analyser 

(Figure 57). Cells were grown without irradiated mouse STO feeder cells, which die 4-5 days 

after plating. Despite the lack of feeder cells, the majority of the BPH and CaP cultures showed 

exponential growth curves. Results show that there was no obvious effect on cell proliferation 

after RARRES1 and LXN knockdown. Knockdown of RARRES1 and LXN in CaP sample 

H131/11 RA seemed to almost double cell numbers after 8 days, suggesting that RARRES1 

and LXN may indeed repress proliferation in this sample. However, this trend was not repeated 

in any other BPH or CaP sample. In fact, in the CaP samples H144/11 and H146/12 RB, 

RARRES1 and LXN knockdown appeared to marginally suppress cell number compared to the 

media and scrambled controls. Therefore, due to the variability between patient samples, it can 

be concluded that knockdown of RARRES1 and LXN does not affect cell proliferation.  

 

To verify if RARRES1 and LXN resulted in an effect on cell proliferation, Ki67 expression was 

quantified in primary BPH (n=3) and CaP (n=4) epithelial cultures, after transfection with 50nM 

scrambled, RARRES1 or LXN siRNA for 96 hours. Results show that there was no significant 

difference in the average percentage of Ki67 positive cells after RARRES1 or LXN knockdown, 

in both BPH (Figure 58b) and CaP (Figure 58c) cultures.   

 

Cell cycle analysis by flow cytometry was finally performed, to investigate if RARRES1 and LXN 

knockdown had an effect on the cell cycle. As previously, primary BPH (n=2) and CaP (n=1) 

epithelial cultures were transfected with 50 nM scrambled, RARRES1 or LXN siRNA or 

remained untransfected (media). After 96 hours, cells were trypsinised, fixed with ethanol and 

then propidium iodide was used to stain the DNA. The proportion of cells in G0/G1, S, or G2/M 

phases was quantified on the flow cytometer. Results show that the majority of cells in all 

samples resided in the G0/G1 phase, but no apparent differences were seen after RARRES1 

and LXN knockdown (Figure 59). The H131/11 RA CaP culture showed a small decrease in the 

number of cells in G0/G1 phase and an increase in cells in S and G2/M phases after RARRES1 

and LXN knockdown, suggesting that a lack of the two proteins was causing cells to re-enter the 

3.9.2. RARRES1 and LXN do not regulate growth or proliferation of primary 

prostate epithelial cultures 
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cell cycle (Figure 59a). However, the opposite trend was seen in the H158/12 BPH sample 

(Figure 59c) and no difference was seen with the H159/11 BPH culture (Figure 59b). Taken 

together these results indicate that RARRES1 and LXN knockdown does not have an effect on 

the cell cycle.  
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Figure 57. Viable cell count analysis of primary prostate epithelial cultures after siRNA 
knockdown of RARRES1 and LXN. 
Viable cell counts of (a) primary BPH (n=3) and (b) CaP (n=5) epithelial cultures were 
performed at 2 day intervals after transfection with 50 nM scrambled (scr), RARRES1 (RR1) or 
LXN siRNA or untransfected (media) on the Vi-Cell cell viability analyser.  Cells were grown in 
the absence of mouse feeder STO cells.  
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Figure 58. Analysis of Ki67 expression by immunofluorescence in primary prostate 
epithelial cultures after siRNA knockdown of RARRES1 and LXN. 
(a) Representative 20 x immunofluorescence images of Ki67 staining of a primary prostate CaP 
(H131/11) epithelial culture after transfection with 50 nM scrambled, RARRES1 or LXN siRNA 
for 96 hours. (b) Quantification of Ki67 staining in primary BPH (n=3) and CaP (n=4) cultures 
after RARRES1 and (c) LXN knockdown. The average percentage of Ki67-positive cells was 
calculated from at least 10 fields of view. Cells were counterstained with DAPI to enable nuclear 
visualisation. White scale bar represents 20 µm.  
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Figure 59. Flow cytometry cell cycle analysis of primary prostate epithelial cultures after 
siRNA knockdown of RARRES1 and LXN. 
Cell cycle analysis by flow cytometry using propidium iodide staining (PE) of primary prostate 
(a) H159/12, (b) H158/12 BPH and (c) H131/11 CaP epithelial cultures, 96 hours after 
transfection with 50 nM scrambled, RARRES1 or LXN siRNA or untransfected (media). (d) 
Representative cell cycle profile.  
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LXN was initially identified as a gene that negatively regulates HSC number (Liang et al., 2007). 

A lack of LXN expression has since been shown to enhance the colony forming efficiency of 

HSCs (Mitsunaga et al., 2011). Similarly, the over-expression of LXN in a gastric cancer cell 

line, MGC803, inhibited colony formation (Li et al., 2011). To determine if RARRES1 and LXN 

knockdown affects colony formation in primary prostate epithelial cultures, colony forming 

assays were performed.  

 

Primary BPH (n=3) and CaP (n=4) epithelial cultures were initially transfected with 50 nM 

scrambled, RARRES1 or LXN siRNA or left untransfected (media only) for 96 hours. Colony 

forming assays were then performed to determine the recovery of the whole cell population 

measured by calculating the colony forming efficiency (CFE). Cells were plated at 100 cells per 

6 well plate in triplicate, with irradiated mouse STO feeder cells. Cells were left for 7-14 days 

until colonies started to emerge, and then fixed with a crystal violet stain. The number of 

colonies containing at least 32 cells (5 cell doublings) were counted visually and the relative 

CFE calculated.  

 

The results show that after RARRES1 knockdown, the average CFE of BPH cultures 

significantly increased from 0.81 with the scrambled siRNA, to 1.66 (Figure 60a) and CaP 

cultures significantly increased from 0.98 with the scrambled siRNA, to 1.65 (Figure 60b). 

Similarly, after LXN knockdown, the average CFE of BPH cultures significantly increased from 

0.81 to 1.99 and CaP cultures significantly increased from 0.98 to 1.83, relative to scrambled 

siRNA.  

 

Taken together, these results show that both RARRES1 and LXN expression significantly 

affects colony formation, with LXN knockdown increasing CFE to a greater extent than 

RARRES1 knockdown.   

 

 

 

 

 

 

 

 

 

 

 

 

3.9.3. RARRES1 and LXN knockdown increases the colony forming efficiency 

of primary prostate epithelial cultures 
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Figure 60. Colony forming assay analysis of primary prostate epithelial cultures after 
siRNA knockdown of RARRES1 and LXN. 
(a) Colony forming assay recovery data after transfection of primary BPH (n=3) and (b) CaP 
(n=4) epithelial cultures with 50 nM scrambled, RARRES1 or LXN siRNA or untransfected 
(media) for 96 hours. Cells were plated at 100 cells per 6 well plate (n=3 replicates), with 
irradiated mouse STO feeder cells. Cells were left for 7-14 days until colonies started to 
emerge, and then fixed with a crystal violet stain. The number of colonies containing at least 32 
cells (5 cell doublings) were counted visually and the relative CFE calculated by dividing the 
number of colonies by the number of cells plated. Relative CFE was calculated by setting the 
CFE for each media sample at 1. Statistical significance values were measured by the Student’s 
T-test (Unpaired, two-tailed; * P<0.05, ** P<0.01, ***P<0.001). 
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RARRES1 and LXN are prostate SC-silenced genes, whose expression increases with 

differentiation and LXN negatively regulates HSC number (Liang et al., 2007). Consequently, 

after knockdown of RARRES1 and LXN in primary prostate epithelial cells, an expansion of 

undifferentiated SC and TA may be hypothesised to occur.  

 

To determine if the differentiation status of primary prostate BPH (n=2) and CaP (n=1) epithelial 

cultures was affected by RARRES1 and LXN knockdown, the expression of a panel of 

differentiation surface markers was analysed by flow cytometry, 96 hours after transfection of 

cells with 50nM scrambled, RARRES1 or LXN siRNA. Basal surface markers analysed included 

the SC marker CD133, a subunit of the α2β1-integrin subunit (CD49b) and the basal cell marker, 

CD44. As shown in Figure 61a, CD133 marks SCs only, but CD49b and CD44 are expressed 

on the majority of basal cells. The expression of the cell marker CD24, which marks a more 

intermediate/differentiated cell phenotype, was also analysed.  

 

Results show that the number of CD24-positive cells in all samples was over 90% and there 

was no difference in the number of CD24-expressing cells, after RARRES1 and LXN 

knockdown (Figure 61b). In contrast, there was a slight decrease in the average median 

expression of CD24 on cells from 185, in scrambled siRNA-treated cells, to 146 after RARRES1 

knockdown and 155 arbitrary units after LXN knockdown. The results also show that the 

number of CD133 positive cells in scrambled siRNA treated samples ranged from 0.01 - 0.05% 

(Figure 61e). There were over twice as many CD133-expressing cells after LXN knockdown, 

compared to the scrambled siRNA control in one sample (H071/11), but no change in any of the 

other samples, or after RARRES1 knockdown. There was also no difference in the median 

expression, or the number of CD44 (Figure 61c) and CD49b-expressing (Figure 61d) cells.  

 

CK expression patterns were also determined in a number of primary prostate epithelial 

cultures, after RARRES1 and LXN knockdown, by immunofluorescence. As expected, the vast 

majority of cells within the basal cultures stained positive for the basal CK5 marker and very few 

cells expressed the differentiated CK 18 and 8 markers. No significant difference in expression 

of CK 5, 18 or 8 was observed between scrambled siRNA-treated cells and RARRES1 siRNA-

treated cells, but there appeared to be a slight increase in CK 8 and 18 expression after LXN 

siRNA treatment, compared to the scrambled control (Figure 62).  

 

Taken together, these results show that there is a slight decrease in CD24 expression, but no 

difference in CD133, CD44 or CD49b expression, after RARRES1 and LXN siRNA knockdown, 

suggesting that a lack of RARRES1 or LXN has a negligible effect on the differentiation status 

of primary prostate epithelial cultures. 

 

3.9.4. RARRES1 and LXN knockdown does not affect the differentiation status 

of primary prostate epithelial cultures 
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Figure 61. Analysis of the expression of differentiation markers in primary prostate 
epithelial cultures after siRNA knockdown of RARRES1 and LXN. 
(a) Diagram depicting which cell types within the human prostate epithelium express the cell 
surface and cytokeratin markers analysed. Flow cytometry analysis data displaying the 
percentage of positive cells, median expression and representative flow cytometry diagram of 
luminal (b) CD24, basal (c) CD44, (d) CD49b and (e) CD133 cell surface markers, in primary 
prostate BPH (blue; n=2) and CaP (red; n=1) epithelial cells after transfection with 50 nM 
scrambled, RARRES1 or LXN siRNA for 96 hours.  
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Figure 62. Analysis of the expression of cytokeratins in primary prostate epithelial 
cultures after siRNA knockdown of RARRES1 and LXN. 
(a) Representative immunofluorescence images of CK 5, 18 and 8 staining of a primary CaP 
epithelial culture (H131/11), after transfection with 50 nM scrambled, RARRES1 or LXN siRNA 
for 96 hours. Cells were counterstained with DAPI to enable nuclear visualisation. White scale 
bar represents 20 µm. (b) Antibody controls using rabbit and mouse IgG instead of primary 
antibody and secondary antibody only. 
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RARRES1 and LXN knockdown increases the invasion of prostate epithelial cell lines. To 

investigate the invasive capacity of primary cells after modulating RARRES1 and LXN 

expression, Matrigel invasion assays were performed in primary prostate BPH (n=4) and CaP 

(n=5) epithelial cultures.   

 

Primary BPH and CaP cultures were transfected with 50 nM scrambled, RARRES1 or LXN 

siRNA or untransfected (media) for 24 hours prior to commencing the invasion assay.  As in cell 

lines, invasive cells were defined as cells that were able to degrade Matrigel BM matrix, RPMI + 

10% FCS was used as a chemo-attractant and cells were counted 72 hours after siRNA 

transfection. The MDA-MB-231 and PNT1a cell lines were used as positive and negative 

controls, respectively.  

 

The results show that the average invasion of BPH primary epithelial cultures increased from 

47% in scrambled siRNA-treated cells, to 77.6% after RARRES1 knockdown and 66.5% after 

LXN knockdown (Figure 63a). After both RARRES1 and LXN knockdown, there was a decrease 

in the number of motile cells in two out of four BPH samples, but an increase in two out of four 

BPH samples (Figure 63c). An increase in the number of invasive cells after RARRES1 

knockdown occurred in all BPH samples analysed and in three out of four samples after LXN 

knockdown.  

 

Similarly, the average invasion of CaP primary epithelial cultures increased from 58.4% in 

scrambled siRNA-treated cells, to 73.3% after RARRES1 knockdown and 80.3% after LXN 

knockdown (Figure 63b). After both RARRES1 and LXN knockdown, there was an increase in 

the number of motile cells in four out of five CaP samples tested. An increase in the number of 

invasive cells after RARRES1 knockdown was observed in all CaP samples analysed and in 

four out of five samples after LXN knockdown.  

 

There was only a small difference in the average percentage invasion (7.7%) of primary 

prostate BPH (46.7%) and CaP (54.4%) epithelial cultures. This amount of invasion was higher 

than expected for non-invasive BPH cultures and a few reasons could account for this: 

 Too high a cell number (2.5 x 10
5
 cells) was placed in the insert at the start of the 

invasion assay. 

 The BPH cultures analysed contained a proportion of invasive cancer cells.  

 The concentration of Matrigel (750 µg/ml) was too low.  

 

Firstly, if too many cells were used in the assay, the invasive cells would invade through the 

Matrigel layer and create ‘tunnels’ for the non-invasive cells to move through. If fewer cells were 

present, then less non-invasive cells would move through the ‘tunnels’. To identify if too high a 

3.9.5. RARRES1 and LXN knockdown regulates the invasion of primary 

prostate epithelial cultures 
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cell number was the cause of the problem, 2.5 x 10
4
 cells from one BPH sample (H189/12; 

identified by an asterisk) were applied to the cell inserts and the percentage invasion measured. 

The results show that the percentage invasion was 37.9% in the untransfected sample, which is 

comparable to that seen for the higher cell number samples, indicating that this may not the 

reason for the high levels of invasion seen in BPH cultures. 

 

Secondly, if the tissue, initially diagnosed as BPH, was found to be CaP after pathology 

analysis, the invasive capacity would be expected to be higher. The pathology reports for all 

BPH samples analysed corroborated the BPH diagnosis for all tissues, confirming that this was 

not the reason for high invasion of BPH cultures. 

 

Finally, if the concentration of Matrigel was too low, then even non-invasive BPH cells would be 

able to move through the Matrigel, leading to a false high result. Consequently, the percentage 

invasion would also be higher for invasive CaP cultures, unless the CaP cultures contained only 

a low percentage of CaP cells in them. The concentration of Matrigel was not varied, as this 

concentration is routinely used in the laboratory for invasion assays and BPH cultures have 

previously been published as lowly invasive using this method (Collins et al., 2005). 

 

Reassuringly, the highest Gleason grade cancer (H135/11; Gleason 9) showed the highest 

levels of invasion in scrambled siRNA-treated cells (64%), indicating that it does contain a 

considerable proportion of cancer cells.  

 

Taken together, these data shows that after RARRES1 and LXN knockdown the invasion of 

primary BPH epithelial cultures significantly increases. This corresponds with the data seen in 

cell lines and further confirms and proposes a metastasis function for RARRES1 and LXN, 

respectively.  
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Figure 63. Matrigel invasion assay after siRNA knockdown of RARRES1 and LXN 
expression in primary prostate epithelial cultures. 
(a) Matrigel invasion assay data showing the percentage invasion/migration of primary prostate 
BPH (n=4) and (b) CaP (n=5) epithelial cultures transfected with 50 nM scrambled, RARRES1 
or LXN siRNA. All data is 72 hours after transfection. (c) Raw data table showing the average 
number of motile and invasive cells per field of view and the respective invasion/migration 
percentages. Values that are higher (red) and lower (blue) than the Scr control are shaded. The 
percentage of cells invading into Matrigel was measured in the presence of RPMI medium 
+10% FCS as chemo-attractant, below the Matrigel. The benign PNT1a cell line and highly 
metastatic MDA-MB-231 cell line were used as negative and positive controls for invasion (not 
shown), respectively. The samples marked with a * indicate experiments where 25,000 cells 
instead of 250,000 cells were plated per insert. Statistical significance values were measured by 
the Student’s T-test (Unpaired, two-tailed; * P<0.05).  
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RARRES1 and LXN knockdown increases the invasion of prostate epithelial cell lines and 

primary prostate epithelial cultures. RA induces the expression of RARRES1 and LXN in 

primary prostate epithelial cultures and so would be expected to decrease the invasion of these 

cells. To investigate the invasive capacity of primary cells after RA treatment and then siRNA 

knockdown of RARRES1 and LXN expression, Matrigel invasion assays were performed. 

 

A primary BPH epithelial culture (H189/12) was treated with 100 nM atRA for 18 hours, before 

transfecting the cells with 50 nM scrambled, RARRES1 or LXN siRNA or left untransfected 

(media only) for a further 24 hours prior to commencing the invasion assay. As previously, 

invasive cells were defined as cells that were able to degrade Matrigel BM matrix, RPMI + 10% 

FCS was used as a chemo-attractant and cells were counted 72 hours after siRNA transfection. 

The MDA-MB-231 and PNT1a cell lines were used as positive and negative controls, 

respectively.  

 

The results show that the average invasion of the BPH culture decreased from 40.5% with the 

DMSO vehicle control treatment, to 26.7% with atRA treatment (Figure 64a). AtRA-treatment 

decreased the number of motile cells from 1.9 to 1.6 and the number of invasive cells from 0.7 

to 0.4, indicating that atRA has a combined effect on reducing the motility and invasion of 

primary cultures (Figure 64b).  

 

As expected, after both RARRES1 and LXN knockdown, there was an increase in the average 

invasion of DMSO-treated cells from 51.3% with the scrambled siRNA, to 73.4% with RARRES1 

siRNA and 56.1% with LXN siRNA.  

 

Interestingly, after knockdown of RARRES1 and LXN expression in atRA-treated cells, there 

was a greater increase in average invasion, than after knockdown in DMSO-treated cells. 

Invasion increased to 94% in atRA-treated cells, compared to 73.4% in DMSO-treated cells 

after RARRES1 knockdown. However, this can be attributed to a decrease in the number of 

motile cells (from 2.1 to 1.7), rather than an increase in the number of invasive cells. Similarly, 

invasion increased to 65.5% in atRA-treated cells, compared to 56.1% in DMSO-treated cells, 

after LXN knockdown. Again, this is probably due to a decrease in the number of motile cells 

from 2.7 to 1.5, rather than an increase in invasive cells (which also decreases from 1.4 to 0.9).  

 

This data suggests that atRA treatment decreases the invasion of primary prostate epithelial 

cultures, but subsequent knockdown of RARRES1 or LXN results in a rescue of invasion, to 

levels higher than those seen in DMSO-treated cells.  

3.9.6. RARRES1 and LXN knockdown rescues the decrease in invasion of 

primary prostate epithelial cultures after retinoic acid treatment 
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Figure 64. Matrigel invasion assay after atRA treatment followed by siRNA knockdown of 
RARRES1 and LXN expression in primary prostate epithelial cultures. 
(a) Matrigel invasion assay data showing the relative percentage of invasive primary prostate 
BPH (H189/12) epithelial cells initially treated with 100 nM atRA for 18 hours, and then 
transfected with 50 nM scrambled, RARRES1 or LXN siRNA for a further 72 hours. (b) Raw 
data table showing the average number of motile and invasive cells per field of view, and the 
respective relative invasion percentages. The percentage of cells invading into Matrigel was 
measured in the presence of RPMI medium +10% FCS as chemo-attractant, below the Matrigel. 
The benign PNT1a cell line and highly metastatic MDA-MB-231 cell line were used as negative 
and positive controls for invasion. Statistical significance values were measured by the 
Student’s T-test (Unpaired, two-tailed; * P<0.05).  
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The identification of phenotypic differences between undifferentiated SCs and their more 

differentiated counterparts is crucial for designing new SC-based therapeutics for CaP. 

Examination of expression profiles of genes differentially expressed between SCs and their 

differentiated counterparts (Birnie et al., 2008) identified an expression signature of genes, 

which were over-expressed in the SC compartment derived from CaP tissues, providing new 

therapeutic targets. However, there were also classes of genes whose expression was 

significantly down-regulated in the SC fraction, compared to more differentiated epithelial cells.  

For these genes, the restoration of their expression or function could act as a differentiation 

therapy and deplete the SC pool. Two highly homologous genes: RARRES1 and LXN were 

identified as two of the most significantly down-regulated genes in prostate SCs. RARRES1 and 

LXN were explored as potential tumour suppressor and differentiation-associated genes, whose 

expression, epigenetic regulation and function was investigated in detail in this study. The 

expression and epigenetic regulation of their potential interacting protein CPA4 was also 

analysed in the same cell models.  

 

 

4.1. Expression patterns of RARRES1 and LXN 

 

The publication of a seminal paper by Jing et al. (2002) initially suggested that RARRES1 may 

be a tumour suppressor gene that is involved in the malignant progression of CaP, due to its 

diminished expression in CaP cell lines and primary tissues. Since then, RARRES1 expression 

has been shown to be reduced in a number of human cancer cell lines and primary tissues 

(Youssef et al., 2004), primary colorectal adenocarcinoma (Wu et al., 2006), colon cancer cell 

lines (Wu et al., 2011) and breast cancer cell lines (Peng et al., 2012). More recently, LXN 

expression has been shown to be significantly reduced in human gastric carcinoma tissues (Li 

et al., 2011). Moreover, over-expression of LXN in the same tissues reduced tumour growth in 

mice, suggesting a tumour suppressor function for LXN. The findings in this present work 

showed that RARRES1 expression was indeed down-regulated in CaP cell lines, compared to 

benign cells and expression decreased with increased malignancy of the cell line (Section 

3.1.1). Furthermore, it is the first data to show that LXN expression is also down-regulated in 

CaP cell lines, with the exception of the metastatic PC3 cells, where LXN was over-expressed. 

This confirmed a role for RARRES1 as a metastasis suppressor in CaP and suggested that 

LXN could also be involved in CaP progression.  

 

We showed that all prostate epithelial cell lines analysed expressed the full-length RARRES1 

protein isoform, but not the shorter variant. This was in contrast to a study by Wu et al. (2011), 

which showed that both isoforms of RARRES1 were expressed at higher levels in normal 

prostate tissue compared to a range of different normal tissues, including colon, lung and bone 

4. DISCUSSION 
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marrow. Furthermore, the full-length isoform was expressed at higher levels than the shorter 

isoform in normal prostate tissues. However, Wu et al. (2011) used normal prostate tissue 

extracts composed of a combination of stromal and epithelial compartments, as opposed to a 

pure epithelial cell component examined in this study. This suggests that expression of the 

shorter form of RARRES1 may be expressed within prostate stromal cells, but epithelial cells 

express only the full-length RARRES1 isoform. 

 

Analysis of gene expression profiles identified RARRES1 and LXN as two of the most 

significantly down-regulated genes in prostate SCs (Section 3.2.1). Further analysis of 

differential expression at the mRNA (Section 3.2.2) and protein (Section 3.2.3) levels confirmed 

that both RARRES1 and LXN expression was significantly lower in the SC fraction from BPH 

and LXN expression was also significantly reduced in the SC fraction from CaP samples. 

Interestingly, and following from both the CaP cell line expression data and previous literature 

data (Jing et al., 2002; Youssef et al., 2004), RARRES1 expression was considerably lower in 

SC, TA and CB subpopulations from CaP compared to BPH, which was statistically significant 

in the CB subpopulation. Furthermore, the most malignant CaP samples (Gleason grade 8 and 

9, castrate-resistant) showed the lowest levels of expression of both RARRES1 and LXN. 

These results indicate that the expression of both genes is progressively lost with increased 

malignancy of the cancer and could be due to de-differentiation and increased invasiveness of 

the cancer as it becomes more aggressive. 

 

The SC connection was not unexpected for LXN, as it has previously been described as a gene 

responsible for negatively regulating HSC number in mice (Liang et al., 2007). Surprisingly, a 

previous study showed that LXN was preferentially expressed in murine haematopoietic 

stem/progenitor cells, compared to more differentiated cells (Mitsunaga et al., 2011). Mitsunaga 

et al. (2011) suggested that LXN inhibited the self-renewal capacity of HSCs by maintaining the 

expression levels of molecules involved in their interaction with the bone marrow niche. These 

results seem incoherent for two reasons. Firstly, they do not determine the expression level of 

LXN in a pure HSC population, instead they conclude that the LXN-positive cells lie within a 

bone marrow mononuclear fraction, which may include haematopoietic stem/progenitor cells. 

However, immunohistochemical staining revealed that LXN-expressing cells resided close to 

the inner surface of bone, suggesting that they represented HSCs. Secondly, as HSCs have a 

considerable capacity for self-renewal (Orkin and Zon, 2008), it would be contradictory for LXN 

to be expressed at high levels within this cell population. LXN would be expected to be poorly 

expressed within the HSC population, as it is in prostate SCs in this study. Mitsunaga et al. 

(2011) may be looking at a cell-type more committed to differentiation than an HSC, such as a 

TA-equivalent cell, which expresses LXN at higher levels than SCs or CB cells in this study. 

RARRES1 has been shown to control the proliferation and differentiation of adult adipose-

derived mesenchymal SCs (Ohnishi et al., 2009), which suggests that it may also be a putative 

SC controller. However, this is the first study to elucidate a connection between RARRES1 and 

prostate SC differentiation.  
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To further this analysis, it would be interesting to explore how the expression levels of 

RARRES1 and LXN in luminal cells derived from BPH and CaP tissues compare with basal cell 

expression at the RNA and protein level. As luminal cells constitute the majority of cells (>99%) 

in CaP following transformation (Grisanzio and Signoretti, 2008) and RARRES1 and LXN are 

putative tumour suppressor genes, it would be expected that expression would be low in luminal 

cells from CaP, due to repression by DNA methylation. In contrast, as RARRES1 expression 

correlates with the differentiation of normal colorectal (Wu et al., 2006) and prostate (Jing et al., 

2002) tissues, RARRES1 would be expected to be expressed at higher levels in luminal cells 

compared to basal cells from normal prostate and BPH. This may be due to an increased 

activity of the RA pathway through differentiation, resulting in an enhanced expression of RA-

responsive genes in more terminally differentiated luminal cells (Figure 66). Luminal cell lines 

have been shown to sustain atRA-dependent gene expression, to a higher extent than basal 

cell lines (Rivera-Gonzalez et al., 2012). Furthermore, CRABP2, which functions to deliver RA 

to nuclear RARs, was expressed at higher levels in the CB compared to the SC subpopulation 

of primary prostate cultures by Affymetrix gene-expression array analysis (see Section 4.4). 

This suggests that, although RAR expression does not increase through differentiation in the 

basal hierarchy, the increase in CRABP2 expression could account for the enhanced RARRES1 

and LXN expression. Additionally, CRABP2 expression has been shown to be down-regulated 

in head and neck tumours (Calmon et al., 2009) and CaP (Okuducu et al., 2005) which could 

contribute to the repression of RARRES1 and LXN expression in cancer.  

 

 

4.2. Expression and chromatin structure regulation of CPA4 

 

The expression status of CPA4 was investigated in prostate epithelial cell lines (Section 3.1.2). 

The results showed that there was no defined pattern of CPA4 expression between benign 

prostate and CaP cell lines; CPA4 was ubiquitously expressed. Intriguingly, the LNCaP cell line 

showed low mRNA, but high protein expression of CPA4, which could be explained by CPA4 

having an increased half-life, specifically in these cells, due to increased stabilisation or reduced 

degradation of the protein. CPA4 possesses a signal peptide sequence (Tanco et al., 2010), 

suggesting that the protein is targeted to the ER lumen and then either retained in the secretory 

pathway, targeted to lysosomes or secreted. In these prostate cell lines, CPA4 was 

predominantly expressed and secreted from cells in an inactive pro-form.  

 

We explored chromatin regulation of CPA4 by initially treating a panel of benign and CaP cell 

lines and primary cultures with two HDACIs: TSA and NaBu. HDACIs function mainly by 

enzymatically inhibiting HDACs, which relaxes chromatin by inducing the acetylation of 

histones, leading to transcriptional activation of a small number of genes. Our results showed 

that CPA4 was significantly induced by both HDACIs in all benign prostate and CaP cell lines 

(Section 3.3.1) and primary BPH and CaP epithelial cultures (Section 3.3.2). NaBu induced 
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CPA4 expression to a greater extent than TSA in the most basal and non-malignant cell lines 

(PNT2-C2 and P4E6), whereas TSA had a larger effect on the more differentiated and 

malignant cell lines (PC3 and LNCaP). Similarly, in primary prostate basal epithelial cultures, 

CPA4 expression was induced to higher levels after NaBu treatment, than after TSA treatment. 

This suggests that there was a differentiation- or cancer-associated effect between the actions 

of NaBu and TSA. Although little is known about the mechanism of action of these HDACIs, it 

could be attributed to the fact that the pan-HDACI, TSA, targets class one, two and four HDACs 

with nanomolar potency compared to NaBu, which targets only class one HDACs (Schultz et al., 

2004; Bieliauskas and Pflum, 2008). However, it has recently been reported that TSA has a 

greater specificity for cancer cells compared to normal cells (Chang et al., 2012), which 

corroborates our data in cell lines. However, TSA did not possess an enhanced specificity for 

primary CaP cells, suggesting that TSA may have a greater specificity for intermediate/luminal 

cancer cells rather than basal cells, which constitute the majority of cells in the PC3 and LNCaP 

cell lines. Furthermore, the fold change of CPA4 expression, after treatment of primary epithelial 

cultures, was low in comparison to the high magnitude of change seen in cell lines. This could 

be due to a higher concentration of HDACI being necessary to induce the same magnitude of 

expression of CPA4 in primary cultures. In contrast to CPA4, HDAC inhibition caused a 

reduction in the mRNA levels of RARRES1 and LXN in the majority of cells lines tested, 

suggesting that HDAC is not the primary repressive epigenetic mechanism for these two genes 

in prostate epithelial cell lines (Section 3.3.1). 

 

As CPA4 expression was modified by chromatin remodelers, we sought to determine whether 

CPA4 was directly regulated by chromatin structure. ChIP analysis highlighted a correlation 

between expression status and active or inactive chromatin marks present on the CPA4 

promoter. The cell line with the highest transcriptional activity of CPA4 (PNT2-C2) had an 

enrichment for an active euchromatin mark and the cell line that expressed the lowest levels of 

expression of CPA4 (LNCaP) had an enrichment for an inactive heterochromatin mark (Section 

3.3.3). This is the first evidence to show that CPA4 is directly regulated by chromatin structure. 

A previous study initially identified CPA4, named CPA3 at that time, as a gene indirectly up-

regulated by NaBu differentiation treatment of the PC3 CaP cell line (Huang et al., 1999). 

Huang et al. (1999) found that induction of CPA4 expression, by HDACIs, was blocked by the 

protein synthesis inhibitor cycloheximide, but induction of p21 was not. Furthermore, anti-sense 

expression of p21 inhibited induction of CPA4 by NaBu. This suggests that HDAC inhibition 

directly led to transactivation of the p21 gene, which mediated induction of CPA4 expression in 

PC3 cells. Our data, taken together with these studies, alludes to the fact that CPA4 can be 

regulated by chromatin structure directly, but HDAC inhibition in PC3 cells is able to induce 

CPA4 expression further, through an indirect mechanism involving p21.  
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4.3. Methylation of RARRES1 and LXN in the prostate 

 

Examination of the promoter and gene body of both RARRES1 and LXN identified that both 

RARRES1 and LXN possessed potentially functional CpG islands (Section 3.5.1). Recent 

approaches enabling genome-wide studies (Weber et al., 2005; Harris et al., 2010; Huang et al., 

2010) have emphasised that the location of CpG islands in relation to a gene, influences its 

effect on transcriptional control and methylation of a CpG island, located within the vicinity of the 

TSS blocks the initiation of transcription (Jones, 2012). Therefore, the location of the CpG 

islands at the 5’ end of both genes suggests that DNA methylation within this region would 

interfere with initiation of transcription of RARRES1 and LXN. Consequently, pyrosequencing 

assays were created within a region that has previously described RARRES1 hypermethylation 

(Youssef et al., 2004; Zhang et al., 2004) and within the LXN CpG island.  

 

Pyrosequencing analysis demonstrated that the expression of RARRES1 and LXN was 

significantly hypermethylated in CaP cell lines (Section 3.5.1), corroborating the literature 

(Youssef et al., 2004; Zhang et al., 2004; Ellinger et al., 2008; Kloth et al., 2012). Furthermore, 

both RARRES1 and LXN were, at least partially, independently regulated by DNA methylation in 

the PC3 cell line in particular. Moreover, high levels of DNA methylation of RARRES1 and LXN 

showed a positive correlation with low transcriptional activity. RARRES1 and LXN expression 

was restored in CaP cell lines upon treatment with a DNA demethylating agent, further 

supporting the conclusion that their expression correlates with DNA methylation (Section 3.4.1). 

However, CPA4 expression was not induced by the same DNA demethylating agent in CaP cell 

lines, suggesting that although CPA4 is regulated by chromatin structure, it is not regulated by 

DNA methylation.  

 

Surprisingly, low levels of DNA methylation in the RARRES1 and LXN CpG islands were found 

in primary epithelial cultures (Section 3.5.2) and primary tissues (Section 3.5.3), derived from 

CaP patients. Similarly, CaP xenograft tissues showed low levels of DNA methylation of both 

genes, but levels of LXN methylation increased with increased passaging of the xenograft 

(Section 3.5.4). In addition, DNA demethylating treatment of primary CaP epithelial cultures 

showed that LXN was not regulated by DNA methylation, but RARRES1 was, in specific 

samples (Section 3.4.2). Our results are contrary to previously published data, which described 

RARRES1 as a gene hypermethylated in primary CaP (Figure 65). The first evidence that 

RARRES1 was hypermethylated in cancer used a COBRA method to show that, amongst other 

cancer cell lines, PC3 and LNCaP cells hypermethylated RARRES1 (Youssef et al., 2004), 

corroborating the data in this study. They also showed that 53% of human cancer tissues 

exhibited hypermethylation of RARRES1 within the same region analysed in this project. 

Further studies reported that 52% (Zhang et al., 2004) and 96% (Ellinger et al., 2008) of human 

CaP tissues hypermethylated RARRES1. More recently, a pyrosequencing assay identified 

RARRES1 and LXN as being hypermethylated in 60% and 29% of primary CaP tissues, 
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respectively (Kloth et al., 2012). The lack of hypermethylation seen here in primary tissues and 

epithelial cultures derived from CaP could be explained by:   

 

(1) The techniques to quantify DNA methylation differed between this and previous 

studies: 

 

Most of the initial studies, which found that a high proportion of human CaP hypermethylated 

RARRES1, used a methylation-specific PCR (MSP) technique. MSP is a sensitive method for 

the detection of low level methylation and can be sensitive to at least 0.1% methylated template 

(Herman et al., 1996), but it is prone to false positives (Aggerholm and Hokland, 2000; Rand et 

al., 2002). MSP has been made quantitative by the addition of fluorescent TaqMan probes, 

enabling real time detection (Eads et al., 2000), which is what was utilised by Erlanger et al. 

(2008). However, due to its quantitative nature and increased sensitivity (Derks et al., 2004), it 

may result in even more false positives. Hence the extremely high incidence of RARRES1 

methylation (96%) found using this technique. The most recent study (Kloth et al., 2012) used 

the same pyrosequencing technique as utilised in this project to quantify methylation and this 

resulted in a lower occurrence of methylation (60%). Kloth et al. (2012) set the threshold for 

hypermethylation of RARRES1 in individual tissues at only 8.5%, however, this was higher than 

the average level of methylation of RARRES1 seen in the majority of samples tested in this 

study. Therefore, as a pyrosequencing technique has also found higher levels of DNA 

methylation of RARRES1 and LXN, it seems that the technique used here is not a good reason 

for the discrepancy.  

 

(2) Hypermethylation of RARRES1 and LXN is established in luminal CaP cells: 

 

The primary epithelial cultures used in this study are of an undifferentiated basal phenotype. 

Culturing of cells results in a loss of the differentiated luminal cells from tissues which constitute 

the majority of cells in CaP (>99%) (Grisanzio and Signoretti, 2008) and also means that 

primary epithelial cultures represent a very different model from the (mostly luminal) cancer cell 

line models (e.g. LNCaP and VCaP). Similarly, the xenograft tumours analysed in this study are 

largely of a basal/intermediate phenotype (Maitland et al., 2011a), resulting from either an 

amplification of undifferentiated basal cells or de-differentiation of luminal cells in the mouse. 

Consequently, if hypermethylation of RARRES1 and LXN is established during differentiation 

and is present only in the luminal cell fraction, this would mean that the basal cultures and 

xenograft tissues would possess only very low levels of methylation. The issue of whether 

RARRES1 and LXN silencing is a cause or consequence of DNA hypermethylation remains 

unknown and whether silencing or DNA methylation comes first, has long been a matter of 

debate in the field. In fact, genome-wide studies have shown that genes that are already 

silenced by PcG protein complexes are much more likely to be methylated in cancer (Ohm et 

al., 2007; Schlesinger et al., 2007; Widschwendter et al., 2007; Gal-Yam et al., 2008). These 

studies suggest that silencing of RARRES1 and LXN by a different epigenetic mechanism, such 
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as pre-marking by PcG complexes in basal cancer cells is a pre-requisite to DNA 

hypermethylation, established during differentiation in luminal cancer cells. It would be 

interesting to investigate whether other epigenetic mechanisms, such as PcG complexes, are 

responsible for the initial gene repression in basal cells.  

 

Lack of DNA methylation in basal CaP cells is not restricted to these genes; it has been shown 

in our laboratory to be true also for GSTP1, one of the most hypermethylated genes in CaP. 

GSTP1 has been shown to be hypermethylated, but not expressed, only in CaP luminal cells, 

while it was expressed, but not hypermethylated, in BPH luminal cells and BPH or CaP derived 

basal cells (Pellacani et al., 2012). It would therefore be interesting to correlate expression and 

methylation of RARRES1 and LXN in luminal cells derived from both BPH and CaP. This is the 

most convincing explanation as to why DNA hypermethylation is not present in primary basal 

epithelial cultures, but does not explain why RARRES1 and LXN are not methylated in the 

primary CaP tissues analysed.  

 

(3) The presence, in our primary cultures and tissues, of a heterogeneous mix of 

benign and cancerous cells: 

 

We currently fractionate epithelial from stromal cells within a tissue sample and ensure that the 

cells derived from CaP tissue are cancer by removing core tissue biopsies from regions of the 

prostate with palpable tumours. In addition, the epithelial cultures contain a high proportion of 

cancerous cells as they: (1) express the TMPRSS2:ERG gene fusion (Birnie et al., 2008), (2) 

express high levels of active telomerase (Rane, unpublished), (3) have a higher invasive 

capacity compared to BPH cultures (Collins et al., 2005) and (4) express carcinogenesis-

associated genes (Birnie et al., 2008). To gain a higher sensitivity during methylation analysis, 

the solution might be to find a way to analyse a more homogeneous population of cells. 

However, neither RARRES1 nor LXN were hypermethylated in primary CaP tissues purchased 

from Origene, which were certified Gleason grades 8 or 9, contained between 75-95% tumour 

tissue and significantly hypermethylated the GSTP1 gene. It is possible that the frequency of 

hypermethylation of RARRES1 and LXN is low and the three CaP samples analysed did not 

hypermethylate either gene. In fact, previous data showed that 60% and 29% of human CaP 

tissues hypermethylated RARRES1 and LXN, respectively, as detected by pyrosequencing 

(Kloth et al., 2012). 

 

(4) DNA methylation of RARRES1 and LXN is present in a different CpG island: 

 

Previous studies showed that hypermethylation of RARRES1 occurred within two different 

regions, encompassing each CpG island (proximal and distal regions) surrounding the 

RARRES1 promoter (Figure 65). A recent interesting paper has shown that in breast cancer, 

hypermethylation at the proximal, but not at the distal region of the RARRES1 promoter was 

necessary to exert a repression of expression (Peng et al., 2012). This concurs with the lack of 
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RARRES1 hypermethylation seen in primary CaP samples within the proximal region and 

confirms that it was correct to design the pyrosequencing assay within the proximal region. 

Primary breast cancer tissues displayed significant hypermethylation of RARRES1 at the distal 

site, but not at the proximal site and showed no significant reduction in RARRES1 expression. 

Conversely, breast cancer cell lines, which hypermethylated RARRES1 at both sites, also 

significantly repressed its expression. If this is also the case in the prostate, it is possible that 

hypermethylation is necessary within the proximal region to exert an effect on gene silencing. 

Moreover, previous studies which demonstrated hypermethylation of RARRES1 within the distal 

region did not correlate the hypermethylation with a repression of gene expression (Tokumaru 

et al., 2004; Ellinger et al., 2008; Kloth et al., 2012). Peng et al. (2012) also showed that the TF, 

CTCF, was important for inhibiting the spread of methylation from the distal site to the proximal 

and sustaining the RARRES1 promoter in a transcription-prone state. This is a plausible reason 

as to why RARRES1 is not hypermethylated in primary CaP and future work should involve 

quantifying the extent of DNA methylation within this distal region in our prostate cell models. 

Indeed the reason for the discrepancy could be a combination of all four factors.  

 

The differentiation-associated properties of RARRES1 and LXN would suggest that tight 

regulation of their expression within the basal epithelial hierarchy is required. The data 

presented here shows that although the expression of RARRES1 and LXN was low in prostate 

SCs, DNA methylation was not responsible for repression of expression in enriched 

subpopulations of cells derived from basal primary cultures. Despite this, there have been a 

number of studies suggesting that induction of cell differentiation and cell fate determination in 

adult SCs are controlled by epigenetic changes in DNA methylation and chromatin structure 

(Hsieh and Gage, 2004; Tagoh et al., 2004; Fan et al., 2005; Roloff and Nuber, 2005; Xi and 

Xie, 2005). Areas of epigenetic regulation other than DNA methylation are increasingly being 

explored for their involvement in regulating the proliferation and differentiation of adult SC 

(Gangaraju and Lin, 2009). In particular in haematopoiesis, Chen et al. (2004) provided the first 

evidence that miRNAs are involved in the differentiation of an adult SC lineage. Since then, 

miRNAs have been shown to be involved in SC differentiation in a number of tissues including 

bone (Luzi et al., 2008; Mizuno et al., 2008), skin (Yi et al., 2008), brain (Silber et al., 2008) and 

prostate (Liu et al., 2011a). Subsequently, it would be interesting to investigate, in future work, 

whether miRNAs or chromatin structure play a role in controlling the expression of RARRES1 

and LXN in prostate SCs and their differentiated counterparts.  
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(Zhang et al., 
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methylation specific 

PCR (5) 

(Tokumaru et 

al., 2004) 

Positive result 

96% of 80 human CaP 

tissues 

Quantitative 

Methylation Specific 

PCR (6) 

 

(Ellinger et al., 

2008) 

Calculated using 

ROC analysis 

60% of 86 human CaP 

tissues 

Pyrosequencing (7) (Kloth et al., 

2012) 

>8.5%  

(defined using ROC 

analysis) 

 

Figure 65. Locations of primers used in different publications measuring RARRES1 
methylation. 
(a) Diagram depicting the relative locations of primer sets spanning both CpG islands used in a 
number of different studies to measure RARRES1 methylation by a range of different 
techniques. (b) Table showing the percentage hypermethylation of RARRES1 in each study.  
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4.4. Retinoic acid regulation of RARRES1 and LXN 

 

The presence of RAREs upstream of the RARRES1 and LXN transcription start sites initially 

suggested a direct role for regulation of both genes by RA within the prostate (Section 3.6.1). 

Indeed, initial experiments showed that both RARRES1 and LXN were induced by atRA in basal 

prostate cell lines, but not in the luminal LNCaP cell line (Section 3.6.1). Previous studies have 

shown that the LNCaP cells can sustain atRA-dependent gene expression (Rivera-Gonzalez et 

al., 2012), so the lack of induction of RARRES1 and LXN in this cell line is more likely due to the 

much higher levels of DNA methylation of these genes in LNCaP cells. The RA ligand may be 

prevented from binding to the RARs and/or recruiting co-activators due to: (1) methylated CpG 

sites directly blocking binding, (2) the formation of heterochromatin associated with methylated 

DNA preventing access or (3) the binding of MBD proteins to methylated cytosines, which 

recruit HDAC proteins leading to a non-permissive chromatin state that prevents binding 

(Vaissiere et al., 2008). All cell lines were treated with one initial dose of 500 nM atRA at 0 

hours, and media was not changed for the duration of the experiment. This, and the fact that 

atRA has a half-life of only 0.8 hours (Muindi et al., 1992) could account for the rapid induction 

of expression of RARRES1 and LXN at 24 hours and then decay in the majority of cell lines.  

 

More importantly, after atRA treatment of primary prostate basal cultures and enrichment for 

SCs, TA and CB cells, the expression of both RARRES1 and LXN was significantly induced in 

each population (Section 3.6.2). Furthermore, the more differentiated TA and CB cells were 

more responsive to atRA and consequently induced RARRES1 and LXN expression to a 

greater magnitude than in the SC fraction. These results correlate with previous studies which 

showed that RA promoted SC differentiation in a range of different tissues, including human 

HSCs (Sammons et al., 2000; Luo et al., 2007), mouse embryonic SCs (Simandi et al., 2010), 

stem-like glioma cells (Campos et al., 2010), rabbit bone marrow-derived mesenchymal SCs 

(Su et al., 2010) and human breast cancer SCs (Ginestier et al., 2009). Conversely, inhibition of 

retinoid signalling pathways has been shown to induce the expansion of human HSCs (Chute et 

al., 2006). 

 

Prostate SCs demonstrate high ALDH activity (van den Hoogen et al., 2010), suggesting that 

they possess the ability to convert vitamin A to RA. However, as our results show less induction 

of RARRES1 and LXN in the SC population, we hypothesise that the SC may be less 

responsive to atRA and the RA ligand produced acts in a paracrine signalling fashion by 

promoting RA-dependent expression in neighbouring differentiated cells, more than in the SC 

itself.  In fact, there is data from the developing embryo suggesting that RA synthesised in one 

cell type can act on an adjacent cell type (Matt et al., 2005; Duester, 2008). Duester (2008) 

described the paracrine mechanism of RA signalling during early organogenesis, which could 

also be occurring within the prostate epithelium. ALDH
+
 prostate SCs facilitate conversion of 

retinol to RA. RA is then released and taken up by surrounding CRABP2-expressing TA, CB 



 

 

                                                 201 Discussion 

 

and luminal cells, which transfer RA to the nucleus and initiate gene transcription of RARRES1 

and LXN (Figure 65).  

 

Retinoids stimulate both prostate epithelial differentiation and growth (Peehl et al., 1993; Seo et 

al., 1997), while squamous metaplasia develops in RAR γ knockout mice (Lohnes et al., 1995) 

and pre-neoplastic lesions develop after RXR α inactivation in the prostatic epithelium (Huang et 

al., 2002). All these phenomena are consistent with an effect of RA on a tumour initiating cell or 

CSC. Depending on the stage of prostate development, RA can either positively (Vezina et al., 

2008) or negatively affect prostate formation and gland development (Aboseif et al., 1997). 

Given the inhibitory effects on adult stem and amplifying cells, both RARRES1 and LXN could 

play a role in embryonic morphogenesis.   

 

We showed that the RA pathway was expressed and active within primary prostate basal 

cultures (Section 3.6.3). Before and after atRA treatment, RAR α showed predominantly nuclear 

expression, but RAR β and γ were mainly cytoplasmic and displayed some nuclear expression. 

Their localisation presumably did not change after atRA treatment, since according to the 

present model, RARs are within the nucleus and bound to RAREs in the absence of RA ligand 

(Dilworth et al., 2000; Dilworth and Chambon, 2001; Bastien and Rochette-Egly, 2004). RAR α 

has previously been shown to be expressed within the nuclei of BPH and CaP epithelial cells, 

corroborating the RAR α expression pattern in this study (Gyftopoulos et al., 2000). 

Interestingly, RAR β and γ showed some cytoplasmic expression in these cells correlating with 

a previous study investigating the immunohistochemical (IHC) localisation of RARs in the 

human prostate, which found strong positivity of RAR γ in the cytoplasm of cells, with some 

nuclear staining and saw strong positivity of RAR α in both cytoplasm and nuclei (Richter et al., 

2002). Richter et al. (2002) also found that RAR β expression was absent from carcinoma 

tissues but was present in basal cells from normal prostate, BPH and PIN tissues; however, this 

was predominantly nuclear expression. This suggests that although RAR β expression is lost in 

CaP (Nakayama et al., 2001; Zhang et al., 2004), basal cells derived from cancer tissues still 

retain RAR β expression. Using immunocytochemistry we found expression of RAR β in CaP 

basal cells, but due to Richter et al. (2002) using an IHC technique on tissue sections, the 

expression status in luminal cells possibly masked the positivity in the few basal cells seen in 

cancer. Although the same antibodies used by Richter et al. (2002) were used in this study, 

different techniques, patient samples  and sample types were used. In addition, this study used 

epithelial cultures rather than tissue sections, so slightly contrasting results might be expected. 

  

We concluded that the differential induction in RARRES1 and LXN expression between SC, TA 

and CB subpopulations may be due to differential expression of CRABP2, as no difference in 

the expression of RAR α, β and γ was observed. CRABP2 was expressed at higher levels in the 

CB compared to the SC subpopulation by Affymetrix gene-expression array analysis and 

functions to deliver RA from the cytosol to nuclear RARs (Figure 66) (Cornic et al., 1994; Dong 

et al., 1999; Noy, 2000; Sessler and Noy, 2005). A recent study has shown that induction of 
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differentiation of embryonic SC, by the removal of leukaemia inhibitory factor (LIF) or with 

retinoid treatment, greatly increases the expression of CRABP2 (Lane et al., 2008), supporting 

the hypothesis that CRABP2 expression increases through cell differentiation. Indeed, it would 

be important in future work to investigate the differential expression and function of CRABP2 

within the basal prostate epithelial hierarchy and to determine whether the differentiation-

specific induction of RARRES1 and LXN is due to CRABP2 expression and function.  

 

Taken together, this data suggests that RA plays an important role in basal prostate cell 

differentiation by inducing the expression of these novel differentiation-associated, SC-silenced 

genes. It would now be important to identify which of the RARs bind directly to the promoters of 

RARRES1 and LXN to directly regulate transcriptional activity, by performing ChIP with and 

without atRA treatment. The hypothesis would be that RAR β and γ are responsible for 

regulating RARRES1, due to its expression being induced by a RAR β/γ-specific retinoid in skin 

keratinocytes (Nagpal et al., 1996). Here, RAR β and γ showed some nuclear expression but 

RAR α displayed predominantly nuclear expression, suggesting that in contrast to skin, in 

prostate basal cells RAR α is responsible for inducing RARRES1 and LXN expression.  
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Figure 66. Model predicting the role of retinoic acid in prostate epithelial differentiation. 
ALDH-positive prostate SCs convert high quantities of retinol to RA, which act in a paracrine 
signalling fashion on neighbouring TA, CB and luminal cells (LC), to induce RA-dependent 
expression of RARRES1 and LXN. Levels of the RA binding protein CRABP2, increase through 
differentiation to a maximum in CB and LC, suggesting that this protein is a major factor in 
inducing high levels of RARRES1 and LXN expression in more differentiated cells. RARs are 
predicted to be expressed to high levels in LC. In contrast, in CaP tissue CRABP2 and RARβ 
are repressed by DNA methylation, which could contribute to the predicted repressed 
expression of RARRES1 and LXN.    
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4.5. Cellular localisation of RARRES1 and LXN 

 

Determining the sub-cellular localisation of proteins, in particular of novel proteins, is important 

for understanding their molecular function. Sequence alignment performed in this study and 

other studies (Aagaard et al., 2005) showed that RARRES1 and LXN shared 30% amino acid 

sequence homology and differed predominantly by the lack of an N-terminal transmembrane 

domain present in RARRES1, but absent in LXN (Section 3.7.1). This predicted that although 

RARRES1 and LXN are homologous, their cellular localisation is potentially different. The 

intracellular localisation of RARRES1 has been speculated upon in the literature, although no 

study has convincingly shown its precise location. Sequence analysis initially predicted that 

RARRES1 was a transmembrane protein with a small N-terminal intracellular region, a single 

membrane-spanning hydrophobic region and a long C-terminal extracellular region (Jing et al., 

2002). More recently, it was proposed that RARRES1 is a type III transmembrane protein purely 

based on its N-glycosylation status, with its long C-terminal domain now facing the cytoplasm 

(Sahab et al., 2011). The intracellular localisation of LXN in human cells is unknown, but an 

early study in rat mast cells indicated a cytoplasmic granular distribution that was not associated 

with lysosomal structures (Uratani et al., 2000).  

 

In this study we provided undisputable evidence by two independent techniques: 

immunofluorescence (with native and epitope-tagged protein) and cellular fractionation, that 

RARRES1 is not a plasma membrane protein, as previously supposed, but resides within the 

ER (Section 3.7.2). This is also the first study to provide a localisation for LXN in human cells, 

which conversely resides predominantly within the nucleus. HA-tagged RARRES1 co-localised 

with the ER lumen marker, PDI, in both LNCaP and PC3 cells, but did not co-localise with the 

plasma membrane marker, α1-Na/K-ATPase. This result was further supported by a cellular 

fractionation assay, which showed that HA-tagged RARRES1 did not reside within the plasma 

membrane compartment in PC3 cells. Immunofluorescence was also performed with native 

protein in primary epithelial cultures, which showed the same cellular localisation of RARRES1 

and LXN after staining. This confirmed that the epitope tagged protein did not interfere with 

native localisation of LXN and RARRES1. Electron microscopy was briefly performed to 

elucidate which side of the ER membrane RARRES1 was positioned, i.e. facing the cytoplasm 

or the lumen, but produced unsatisfactory results due to technical problems. The ER is the 

largest organelle with a plethora of functions associated with it (Lynes and Simmen, 2011), so 

identifying the function of RARRES1 within the ER would be complex.  

 

A very recent paper has shown that RARRES1 is secreted by plexiform neurofibroma Schwann 

cells, but not by normal Schwann cells derived from non-neoplastic peripheral nerve (Chen et 

al., 2012). While Chen et al. (2012) detected intracellular RARRES1 at the correct molecular 

mass (33 kDa), the secreted RARRES1 protein was of a higher molecular mass (~110 kDa) and 

could not be detected by commercial RARRES1 antibodies, suggesting that it may be post-

translationally modified, potentially by heparan sulphate modifications. Furthermore, only the C-
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terminal domain of RARRES1 could be detected in conditioned media, suggesting that either 

RARRES1 is cleaved at the transmembrane domain in the secretory vesicle or an, as yet, 

undiscovered splice variant lacking a transmembrane domain is secreted. A possible secretory 

function for RARRES1 firmly supports a localisation for RARRES1 within the ER, possibly facing 

the lumen. In contrast, Chen et al. (2012) showed that the expression of RARRES1 increased in 

neoplastic Schwann cells compared to normal Schwann cells, suggesting that secretory 

RARRES1 may be tissue-specific. However, RARRES1 protein has also previously been 

detected in the conditioned media secretome of human alveolar adenocarcinoma A549 cells 

(Caccia et al., 2011), Hela cells, colorectal carcinoma (Colo205) cells and hepatocellular 

carcinoma (Hep3B) cells (Wu et al., 2010). It would be interesting in future experiments to 

investigate if a secreted form of RARRES1 is present in conditioned media from benign prostate 

epithelial cells.  

 

Although LXN resides predominantly within the nucleus, we identified that it lacks a canonical 

nuclear localisation signal (NLS), suggesting that LXN is transported to the nucleus tethered to 

a protein complex or via the ER. In fact, only 62% of proteins localised to Cajal bodies and 41% 

of proteins concentrated at the nuclear periphery contain an NLS (Bickmore and Sutherland, 

2002). In further work it would be interesting to identify the protein, or protein complex, that LXN 

interacts with, in order to further elucidate its function, by performing co-immunoprecipitation 

coupled with mass spectrometry. Similar to the ER, proteins within the nucleus have a multitude 

of functions associated with them.  

 

 

4.6. RARRES1 and LXN as invasion suppressors 

 

Progression of cancer is a multistep process where a defined set of events are common to 

cancer cells (Hahn and Weinberg, 2002; Hanahan and Weinberg, 2011). One hallmark of 

cancer progression is tumour invasion and metastasis, whereby through a series of discrete 

steps, tumour cells increase their migratory capacity and acquire an enhanced capacity to 

invade surrounding tissues resulting in metastasis. Contrasting results in epithelial cell lines 

showed that both RARRES1 and LXN had opposite effects on the migration of PNT1a cells 

(Section 3.8.2). As an invasion suppressor, the function of RARRES1 to suppress migration 

was expected. However, the function of LXN in promoting the migration of the same cells was 

unexpected.  

 

To then determine the effect of RARRES1 and LXN on invasion, Matrigel invasion assays, 

based on the Boyden chamber assay, were performed (Section 3.8.3) (Albini et al., 1987). 

These results showed that RARRES1 functioned to suppress invasion in epithelial cell lines, but 

LXN predominantly effected migration of the same cells. One hypothesis for the contrasting 

results for the effect of RARRES1 and LXN in cell lines could be that in the stage of metastasis, 

where the cancer cell invades into the basement membrane, LXN and RARRES1 expression is 

http://en.wikipedia.org/wiki/Human
http://en.wikipedia.org/wiki/Pulmonary_alveolus
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not needed (such as in metastatic LNCaP cells). However, for the migratory stage of 

metastasis, LXN expression may be needed. The over-expression of LXN at basal levels in the 

highly metastatic CaP cell line, PC3, may support this theory. A CaspACE assay was used as a 

highly sensitive and quantitative assay to measure caspase 3 activity (an early marker of 

apoptotic cell death) and after knock down of LXN in the PC3 cell line, we showed here that a 

significant proportion of the cells underwent apoptosis (Section 3.8.4). This result suggests that 

LXN expression is crucial for the viability of PC3 cells.  

 

To determine if the effect of RARRES1 and LXN on migration and invasion was recapitulated in 

primary prostate cells, siRNA knockdown only was performed (Section 3.9.1). After siRNA 

knockdown of RARRES1 and LXN in primary epithelial cultures, a significant increase in the 

overall invasive capacity of both BPH and CaP cultures was observed (Section 3.9.5). There 

was a larger increase in invasion seen in BPH samples after suppression of RARRES1, 

compared to CaP samples, which could easily be attributed to the decreased expression levels 

of RARRES1 observed in CaP samples. Therefore, the effect of knocking down expression 

would be less significant than in BPH samples, where basal expression levels were higher. 

Unlike prostate cell lines, suppression of LXN in primary cultures did not result in an obvious 

effect on the number of migratory cells. This result suggests that, despite the cell line data, both 

RARRES1 and LXN function to suppress invasion of prostate epithelial cultures. This result 

exemplifies further the differences between cell line and primary cell models and reiterates the 

importance of confirming every result seen in cell lines in a primary cell model.   

 

Indeed, these results corroborate previous studies, which showed that low levels of RARRES1 

increased the invasion of CaP PC-3M cells and nasopharyngeal and breast cancer cell lines 

(Jing et al., 2002; Kwok et al., 2009; Peng et al., 2012). However, this is the only study to show 

that RARRES1 suppresses invasion in primary cancer epithelial cells. Moreover, it is the first 

study to show that LXN also functions as an invasion suppressor. Future studies should involve 

determining how RARRES1 and LXN suppress the invasive capacity of prostate epithelial cells.  

 

Inhibition of ECM peptidases or other proteinases is the most likely explanation for the function 

of RARRES1 and LXN, as both genes have been shown to possess carboxypeptidase domains 

in this study (Section 3.7.1). Due to the ER-location of RARRES1, it could function to sequester 

cell adhesion molecules within the cell. As LXN is predominantly nuclear it could function to 

regulate or be regulated by TFs. No effect on cell growth, proliferation, cell cycle or apoptosis 

was seen after siRNA knockdown of RARRES1 or LXN (Section 3.9.2), suggesting that they do 

not modulate cell cycle and proliferation regulators, or pro-apoptotic proteins.  

 

The role of RARRES1 and LXN in invasion and also as SC-silenced genes, suggests a function 

for them in the EMT. Recent studies have demonstrated that EMT plays a critical role in tumour 

metastasis and invasion (Thiery, 2002) and is linked with SC differentiation (Mani et al., 2008; 

Santisteban et al., 2009). Consequently, it would be interesting to determine if after repression 
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of RARRES1 and LXN expression, markers for EMT, such as a loss of E-cadherin and gain of 

N-cadherin and vimentin expression is seen. 

 

 

4.7. Effect of retinoic acid on invasion 

 

We showed that RA treatment of a primary BPH epithelial culture also resulted in a reduction of 

the invasive capacity of the culture, in a similar manner to over-expression of RARRES1 

(Section 3.9.6). These results correlate with a number of studies, which have shown that 

retinoids have a well-recognised role in suppressing tumour growth and metastasis in vivo and 

inhibiting invasion in vitro (Lotan, 1991). One of the first studies, which stated that RA 

suppresses cancer cell invasion in vitro, was performed in rat mammary adenocarcinoma cells 

(Nakajima et al., 1989). More recently, RA has been shown to suppress invasion in a number of 

prostate models in addition to human neuroblastoma cell lines (Messi et al., 2008) and thyroid 

carcinoma cell lines (Lan et al., 2009). AtRA-treated DU145 cells (Webber and Waghray, 1995) 

and 13-cis-RA-treated LNCaP cells (Dahiya et al., 1994) had a reduced ability to invade 

Matrigel compared to controls. RA treatment of DU145 cells also reduced urokinase-type 

plasminogen activator (uPA) activity (Waghray and Webber, 1995) and reduced uPA-mediated 

degradation of fibronectin and laminin (Webber and Waghray, 1995). Similarly, in an invasive 

rat prostate adenocarcinoma model, atRA inhibited invasion but also inhibited MMP2, MMP 9, 

α-, β-, and γ- catenin expression (Nwankwo, 2002).  

 

The effect of atRA treatment on invasion is presumable due to a shift in the cultures to a more 

differentiated and therefore less invasive phenotype. In fact, studies in breast cancer have 

shown that the most primitive CD44
+
CD24

-
 breast CSC displayed an enhanced invasive 

capacity (Sheridan et al., 2006). Furthermore, it has recently been shown that a small 

population of CSCs are critical for the initiation of metastatic growth at a secondary site 

(Malanchi et al., 2012). For future work it would be interesting to determine if atRA treatment 

suppresses the invasion of a highly invasive CaP culture to an even greater extent.    

 

 

4.8. Function of RARRES1 and LXN in differentiation 

 

As RARRES1 and LXN expression is low in prostate SCs and increasingly up-regulated through 

differentiation, it would be predicted that after siRNA knockdown of both proteins, there would 

be an expansion of the undifferentiated cell pool (SC and TA cells) in primary prostate cultures. 

In this study we show that there was a marginal decrease in CD24 expression after suppression 

of both RARRES1 and LXN, but no difference in the number of CD24-positive cells or any basal 

cell surface marker after 96 hours treatment (Section 3.9.4). Surprisingly, there was a slight 

increase in luminal CK 8 and 18 expression after LXN siRNA treatment, compared to the 

scrambled control in representative images, however, this was minimal. Therefore, it can be 
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concluded that, based on cell marker expression, knockdown of RARRES1 and LXN did not 

affect the proportion of SCs versus differentiated cells within primary prostate cultures. 

However, it could be that 96 hours is too early a time point to see an increase in any basal cell 

marker. The results here show that the primary prostate cultures derived from human prostate 

tissue are predominantly of a basal to intermediate phenotype: around 65% of cells expressed 

CD44 (albeit at low levels), 95% of cells expressed CD49b to relatively high levels, 95% of cells 

expressed CD24 at intermediate levels and 0.03% of cells constituted a rare population of 

CD133-positive cells. In addition, the vast majority of cells stained positive for the basal CK 5 

marker but very few cells expressed the luminal CK 8 and CK 18 cell markers. These results are 

concordant with previously published data, which showed that the cultures under the same 

conditions expressed α2β1-integrin (CD49b) and CK 5, did not express CK 18 (Collins et al., 

2001) but possessed a rare subset of CD133-expressing cells (Richardson et al., 2004).  

 

Knockdown of RARRES1 and LXN expression also did not result in a change in the growth or 

proliferation of primary prostate cultures up to 8 days after treatment, as measured by cell 

viability counts, Ki67 staining and cell cycle analysis (Section 3.9.2). The results clearly showed 

that each culture displayed an exponential growth curve and the Ki67 expression data 

suggested that the majority of cells were proliferative and in cycle. Furthermore, the cell cycle 

analysis data showed that the majority of cells were in G0/G1 phases, with only a minority of 

cells in S-phase and G2/M phase.  

 

To investigate the effect of RARRES1 and LXN on SC function, in vitro colony forming assays 

(CFA) were performed. Interestingly, after both RARRES1 and LXN suppression there was a 

significant increase in the CFE of both BPH and CaP primary prostate cultures (Section 3.9.3). 

The increase in CFE for RARRES1 is concordant with published data, which showed that 

RARRES1 over-expression in endometrial tumour cells and colon cancer cell lines resulted in 

suppression of colony forming ability (Takai and Jones, 2002). It was also found that RARRES1 

plays a role in controlling the proliferation and differentiation of adult adipose-derived 

mesenchymal SCs (Ohnishi et al., 2009). Similarly, LXN-deficient HSCs have been shown to 

possess an enhanced colony forming ability (Mitsunaga et al., 2011) and modulation of LXN 

expression in gastric carcinoma cell lines affected colony forming ability in a similar manner (Li 

et al., 2011). The CFA is a technique to measure the self-renewal, proliferative capacity and 

potential of the SC to initiate colony growth. Therefore, this study is the first to show RARRES1 

and LXN both suppress the self-renewal and proliferative potential of prostate SCs when 

expressed, which explains why their expression is low in the SC population. As there is no 

change in the proportion of cell types or proliferative properties of the cultures after suppression 

of RARRES1 or LXN, this result suggests that the more differentiated cells (TA and CB cells) 

within the cultures that usually possess a low CFE (Collins et al., 2005) acquire an enhanced 

CFE after loss of RARRES1 and LXN expression.  
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4.9. Mechanism of RARRES1 and LXN action 

 

The precise mechanism of action of the two closely related genes RARRES1 and LXN has 

proven elusive. LXN has been described as the only known endogenous carboxypeptidase 

inhibitor and has been shown to inhibit the proteolytic activity of CPA in the rat (Normant et al., 

1995). Furthermore, the crystal structure of LXN in complex with CPA4 has been solved, which 

showed that the protein interaction involves few contacts and inhibition is mainly caused by a C-

terminal inhibitory loop (Pallares et al., 2005). Therefore, we performed amino acid sequence 

alignment of RARRES1 and LXN and identified that this inhibitory loop, which is conserved in 

LXN between species, is also present and highly conserved in RARRES1, suggesting that it too 

is able to interact with CPA4 (Section 3.7.1). Moreover, the five key amino acids required for the 

interaction of LXN with CPA4 were 100% conserved in both LXN and RARRES1 and between 

species. This suggests that both proteins may primarily function as carboxypeptidase inhibitors. 

Interestingly, only the full-length RARRES1 protein isoform but not the shorter variant 

possesses the CPA4 binding site. This raises the question, how would RARRES1 without a 

CPA4 binding site function, if not through CPA4? Perhaps it interacts with a different protein 

through a different domain. However, the results here show that all prostate epithelial cell lines 

and primary prostate cultures tested express only the full-length protein isoform. The ability of 

LXN and/or RARRES1 to function by binding to and inhibiting CPA4 sounds plausible when 

considering the function of this peptidase. The CPA4 gene is located in a putative CaP 

aggressiveness locus on chromosome 7q32 (Witte et al., 2000) and a non-synonymous coding 

single-nucleotide polymorphism (G303C) on the CPA4 gene was found to be associated with an 

increased risk of aggressive disease in younger men (Ross et al., 2009). Furthermore, a recent 

publication by Tanco et al. (2010) identified that the substrate specificity of CPA4 included 

chromogranin A and neurotensin, which have recognised roles in CaP progression (Kadmon et 

al., 1991; Sehgal et al., 1994) and differentiation (Swift et al., 2010).  

 

Taking the localisation data into account, it is possible that ER-located RARRES1 could form a 

complex with the secreted CPA4 protein in prostate cells, whereas it would be less likely for 

nuclear LXN to form a complex with CPA4, due to compartmentalisation. To determine if 

RARRES1 and LXN were able to interact with CPA4 in the cell, co-immunoprecipitation analysis 

was performed on transfected HA-tagged RARRES1 and LXN by a technician in our laboratory 

(Hannah Walker; data not shown). The results showed that neither LXN nor RARRES1 was 

pulled down with CPA4 in LNCaP cells, confirming that neither LXN nor RARRES1 form a 

complex with CPA4 in these cells. However, a lack of interaction could be attributed to the HA-

tag on RARRES1 and LXN inhibiting a possible interaction, or the co-immunoprecipitation 

method not working correctly. To ensure the co-immunoprecipitation method was working 

effectively, a well-recognised protein interaction could be used as a positive control, such as the 

β-catenin/APC protein complex or more importantly, the RARRES1/AGBL2 protein interaction.  
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To determine if RARRES1 and LXN do interact with a carboxypeptidase through their CPA4-

interacting domain, future experiments could involve mutating either one or two of the most 

important amino acids in the inhibitory loop, i.e. glutamine (247, Q) or glutamic acid (248, E). If, 

after over-expression of mutated RARRES1 and LXN in prostate epithelial cell lines, there is no 

effect on invasion or motility, it can be presumed that both proteins function through this 

interaction domain. To test whether the differing sub-cellular localisations of RARRES1 and 

LXN account for their contrasting functions in cell lines, deletion of the N-terminal 

transmembrane domain in RARRES1 could be performed. If after removal of this domain, 

RARRES1 relocates and acts in a similar manner to LXN, it could be concluded that the 

differing localisation patterns account for the contrasting effects on motility of the two homologs 

in the PNT1a cell line, possibly by interacting with different proteins or protein complexes.  

 

Sahab et al. (2011) recently showed that RARRES1 is able to interact with a cytosolic 

carboxypeptidase AGBL2 in the HEK 293 cell line. AGBL2 functions to regulate the tyrosination 

cycle by removing the C-terminal tyrosine of α-tubulin, which is important for microtubule 

function (Konishi and Setou, 2009). Detyrosinated α-tubulin is a more stable form of tubulin that 

is resistant to depolymerisation (Khawaja et al., 1988). It accumulates in cancer cells during 

tumour progression in nude mice (Lafanechere et al., 1998) and is frequently found in breast 

cancer (Mialhe et al., 2001). Moreover, a role for detyrosinated tubulin in SC differentiation, 

EMT and tumour invasion has been suggested (Whipple et al., 2010). Taking the localisation 

data into account, ER-located RARRES1 could potentially be able to bind AGBL2 if its long 

terminal C-terminal domain was facing the cytoplasm, but it is unlikely that nuclear LXN would, 

due to compartmentalisation. A loss of RARRES1 expression in the SC compartment and in 

cancer progression suggests there would be an increase in the amount of detyrosinated tubulin, 

which could account for the increased incidence in tumour invasion, EMT and SC differentiation 

(Figure 67). 
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Figure 67. Model predicting the expression and function of RARRES1 and LXN within the 
prostate epithelial hierarchy. 
RARRES1 and LXN expression is low in prostate SCs due to reduced RA activity or unknown 
epigenetic mechanisms, such as miRNA repression. Expression of both genes increases 
through differentiation, potentially due to an induction of RA activity, to a maximum in CB from 
CaP. Expression of RARRES1 and LXN is then predicted to be repressed by DNA methylation 
through further differentiation into LC, but in BPH, RARRES1 and LXN expression is predicted 
to increase further. Where RARRES1 is expressed, it is predicted to interact with AGBL2 and 
control the extent of tyrosinated tubulin, whereas LXN is predicted to interact with a different 
peptidase. In the absence of RARRES1, AGBL2 is active causing an increased amount of 
detyrosinated tubulin, which may contribute to EMT, SC differentiation and tumour invasion.  
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4.10. Differentiation therapy  

 

The heterogeneity of CaP is reflected in its response to current treatments and the CSC 

hypothesis states that to cure CaP, elimination of the rare CSC is essential (Reya et al., 2001). 

Given the quiescent, long-lived nature of SCs and their protection by location in the ‘SC niche’, 

targeting this extremely rare population of cells is not a straightforward task. The key to 

eradicating the CSC lies in identifying the phenotypic differences between malignant SCs and 

the bulk of differentiated cells in the prostate. New therapeutic strategies would be required, 

which may include overcoming the mechanisms of SC resistance or SC differentiation therapy.  

 

Differentiation therapy describes the process of inducing a quiescent SC to cycle and 

differentiate into amplifying progeny, which would ultimately obliterate the resistant SC pool. 

There have been a number of studies suggesting that SCs differentiate to TA, which further 

differentiate to CB and luminal cells within the prostate epithelial hierarchy (Isaacs and Coffey, 

1989; Frame et al., 2010). Consequently, differentiation therapy should function to increase the 

number of TA and CB cells, rather than increase luminal cell number.  

 

The dangers associated with targeting stemness are an important consideration to take into 

account when identifying new differentiation therapies. Elimination of normal prostate SCs could 

be tolerated, in the same way that removal of the prostate gland via radical prostatectomy is. 

However, untargeted inhibition of non-tissue specific stemness pathways, such as Wnt and 

Notch (Reya et al., 2001) could have undesired consequences in other tissues. Indeed, a recent 

study showed that progressive disruption of Notch1 in mice caused widespread vascular 

tumours, predominantly in the liver, which resulted in massive haemorrhages after extended 

periods of exposure, consistent with an effect on SCs (Liu et al., 2011b). There must be 

selectivity in targeting differentiation therapies towards a specific tissue or eradicating, 

specifically, CSCs. If a treatment is targeted towards the tissue in which the tumour resides, 

depending on the tissue, it can non-selectively eradicate both CSCs and normal SCs. This 

would suffice for CaP, but for tissues where normal SCs are an essential component, an 

alternative therapy that is selective only for CSC would be necessary. The major advantage of 

this is that it could potentially be used on a tissue-wide scale. A further factor to consider when 

designing differentiation therapies is the timing of treatments. In theory, removing the resistant 

and renewing part of the tumour with a single differentiation therapy should eradicate the 

tumour. However, targeting this rare SC population among the bulk of differentiated cells would 

prove difficult. Future differentiation therapies should be administered in combination with 

current therapeutics, which target the differentiated bulk of the tumour. It would be sensible to 

initially treat patients with current therapeutics to unmask the rare SC population, which could 

then be eradicated with differentiation therapy. Administering both therapeutics at the same time 

could increase potential cytotoxicity effects and weaken the response. Administering 

differentiation therapy first and then current therapeutics would pose the same problem as 

treating with the single differentiation therapy.  
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The results in this study show, that after inhibition of the SC-associated genes, RARRES1 and 

LXN in primary prostate epithelial cells, there is a highly significant increase in their colony 

forming ability and invasive capacity. Therefore, after over-expression of either gene in primary 

prostate cultures, it would be expected that there should be a decrease in colony forming ability 

and invasion, consistent with a differentiation effect on the SC population. In fact, after over-

expression of RARRES1 and LXN in prostate epithelial cell lines, a decrease in invasion is 

seen. Consequently, a possible differentiation therapy could be transfection of prostate-specific 

RARRES1 and LXN lentiviral expression vectors into the prostate tumour. However, this would 

be technically very challenging and an easier alternative could be administration of RA, which 

should effectively increase RARRES1 and LXN expression and promote differentiation of the 

SC compartment.  
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4.11. Conclusions 

 

This work has provided evidence that RARRES1 and LXN are two highly homologous genes, 

whose expression and regulation are closely related. Despite this, they reside in contrasting 

cellular locations but function similarly to suppress invasion and colony formation in primary 

prostate epithelial cultures. We have shown that RARRES1 and LXN are similarly repressed by 

DNA methylation in CaP epithelial cell lines, but are not in primary CaP epithelial cultures and 

tissues. Both RARRES1 and LXN were also identified as genes whose expression was down-

regulated in prostate SCs, but was induced upon atRA treatment of basal primary cultures and 

cell lines. These new findings will lead to a better understanding of how SC-silenced genes are 

regulated and function in both normal prostate and CaP differentiation. Elucidating the protein 

networks that allow these highly similar genes to function will provide further insight into the 

complex regulation of SC differentiation, as well as invasion and metastasis in CaP.  

 

This study also highlights the importance of RA in controlling gene expression patterns within 

individual sub-populations. The identification of RARRES1 and LXN as novel RA-induced, SC-

associated genes has alluded to the significance of RA control of differentiation within the 

prostate epithelium. The majority of research on CaP, to date, has focussed on AR and 

androgens, despite the knowledge that basal cells, in particular SC, are independent of 

androgen signalling. Consequently, the results from this study show that focus should be moved 

to the involvement of RA in differentiation and CaP.  

 

Furthermore, the identification that two SC-silenced genes, which also function as invasion 

suppressors, adds weight to the CSC hypothesis and that the SC is the ultimate controller of 

metastasis. Work should now be focussed on determining whether transfection of RARRES1 

and LXN lentiviral expression vectors are able to reduce clonogenic ability and diminish the SC 

pool in primary prostate cultures. This would determine whether re-administration of RARRES1 

and LXN would be a valid differentiation strategy for the treatment, and potentially eradication, 

of CaP.  
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Appendix 1: Maps of vector plasmids 

 

pReceiver-M45 (GeneCopoeia) 

 

 

pReceiver-M06 (GeneCopoeia) 

 

pReceiver-M45

RARRES1
7728 bp

pReceiver-M06

Control vector with 

eGFP
6617 bp
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pReceiver-M06

LXN
6564 bp
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Appendix 2: PCR primer sequences 

 

Primer Name Primer Sequence (5’ to 3’) Purpose 

ChIP 1 Forward GCT GGG TGA AGG CAA AGA CA 

ChIP for CPA4 

 

ChIP 1 Reverse CCA GGA AGG GCA GTT AGA GG 

ChIP 2 Forward TGG GAT TAC AGG CGT GAG C 

ChIP 2 Reverse CAG TCT GGG ATG ATA GGA AAG TT 

ChIP 3 Forward CTA AGC CAG CCT GAG CAA AGA T  

ChIP 3 Reverse CAA AGG TGG GGA TGA GGA AC 

ChIP 4 Forward TGG GAG AGG CAT TGG TAG 

ChIP 4 Reverse CCC CGG GGA GTC AGT CAT A 

ChIP 5 Forward CAA ATC CAT TCT CAC GCC ATA GTA 

ChIP 5 Reverse CTT CAG CAG CCA ATC CAG AG 

ChIP 6 Forward CCG CAA TGT CCT CCC TCC TTT CAG 

ChIP 6 Reverse GGC GGG GTT TCT CTA TGT TGG TCA 

ChIP 7 Forward GAG TTT GGG CTG GGT CCG AGA TG 

ChIP 7 Reverse GCC AAG CTA CAG AGG TCA ACA AA 

ChIP 8 Forward CTT GCC GAG GTC AGG GAA CGA T 

ChIP 8 Reverse TGG AGG TCA GCG GGT AAC T  

RARRES1 Pyro Forward AGT TTT AGG ATG TTG GGG TTT  

Pyrosequencing 

for RARRES1 

RARRES1 Pyro Reverse 

Biotin 

TAC CCA AAT ATC ACC TCC CAA  

RARRES1 Pyro 

Sequencing 

GGA GTT TTA TTT TTT TAA TT  

LXN Nested PCR 

Forward 

GTT GGT GTT TGA TAA GTA TGT T  

Pyrosequencing 

for LXN 

 

LXN Nested PCR 

Reverse 

CCC CTA CTA AAC TCA CCT CCA T  

LXN Pyro Forward GAT GTA GGG AGT TTG GGT TTA AAT AG  

LXN Pyro Reverse Biotin CCA ATA AAC AAT AAC TTC AAA ACT T  

LXN Pyro Sequencing GGG AGT TTG GGT TTA AAT A  

GSTP1 Pyro Forward GGG GAG GGA TTA TTT TTA TAA G 

Pyrosequencing 

for GSTP1 

GSTP1 Pyro Reverse 

Biotin 

AAT TAA CCC CAT ACT AAA AAC TCT 

GSTP1 Pyro Sequence GGA TTA TTT TTA TAA GGT 
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Appendix 3: Patient primary epithelial sample details 

 

Patient ID Pathology Gleason grade Age Operation 

PE109/06 BPH - 70 TURP 

PE561 BPH - 72 TURP 

Y082/06 BPH/TCC - 73 Cystectomy 

Y045/08 BPH - 77 TURP 

PE047/08 BPH - 67 TURP 

(PE)Y054/08 BPH - 66 TURP 

Y023/09 BPH - 88 TURP 

Y029/09 BPH - 91 TURP 

Y030/09 BPH - 70 TURP 

Y044/09 BPH - 75 TURP 

Y088/09 BPH - 71 TURP 

Y003/10 BPH - 74 TURP 

Y030/10 BPH - 67 TURP 

H040/10 BPH - - TURP 

Y040/10 BPH - 67 TURP 

Y048/10 BPH - 70 TURP 

Y052/10 BPH - 72 TURP 

Y059/10 BPH - 60 TURP 

Y061/10 BPH - 81 TURP 

H040/11 BPH - - TURP 

Y054/11 BPH - 76 TURP 

H071/11 BPH - - TURP 

H094/11 BPH - 56 TURP 

H150/12 BPH - 65 LRP 

H158/12 BPH - 64 TURP 

H159/12 BPH - 62 TURP 

H169/12 BPH - 71 TURP 

H189/12 BPH - 51 TURP 

PE025 Cancer 4+4 68 Radical 

PE107 Cancer 3+3 68 Radical 

PE434 Cancer 8 / 9 59 Radical 

PE519 Cancer 3+3 79 Cystectomy 

PE531 Cancer 4+5 57 Radical 

PE665 Cancer 3+4 53 Radical 

PE667 Cancer 3+3 47 Radical 
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PE671 Cancer 3+4 62 Radical 

Y089/09 Cancer CRPC 85 TURP 

H016/09 Cancer 7 - Radical 

Y021/09 Cancer CRPC (4+5) 67 TURP 

Y091/09 Cancer CRPC 81 TURP 

H031/11 RB/LM Cancer 7 - Radical 

H043/11 Cancer 7 - ORP 

H046/11 Cancer 3+5 - LRP 

H062/11 Cancer - 67 LRP 

H082/11 RA/LA Cancer - 53 ORP 

H103/11 Cancer - 55 LRP 

H131/11 

RA/RB/LM 

Cancer - 70 LRP 

H135/11 Cancer 9 56 TURP 

H144/11 Cancer 7 66 ORP 

H146/12 RB Cancer 7 57 LRP 

H150/12 Cancer 6 65 LRP 
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µg 

µl 

µM 

µm 

103
Pd 

125
I 

18S 

192
Ir 

5-Aza-dC 

5caC 

5fC 

5hmC 

5mC 

ADP 

ADT 

AGBL2 

ALDH 

APC 

AR 

ATCC 

AtRA 

AZ 

Aza 

B. Taurus 

BCA 

BM 

BMP 

bp 

BPH 

BSA 

CAGE 

CaP 

CARM-1 

CB 

CD 

cDNA 

CFA 

CFE 

ChIP 

Microgram 

Microlitre 

Micromolar 

Micrometre 

Palladium radioisotope 

Iodine radioisotope 

18 Svedberg units ribosomal RNA 

Iridium radioisotope 

5-Aza-2’-deoxycytidine 

5-carboxylcytosine 

5-formylcytosine 

5-hydroxymethylcytosine 

5-methylcytosine 

Adenosine diphosphate 

Androgen deprivation therapy 

ATP/GTP binding protein-like 2 

Aldehyde dehydrogenase 

Allophycocyanin 

Androgen receptor 

American type culture collection 

All-trans retinoic acid 

Anterior zone 

5-Aza-2’-deoxycytidine 

Bos Taurus 

Bicinchoninic acid 

Basement membrane 

Bone morphogenetic protein 

Base pairs 

Benign prostatic hyperplasia 

Bovine serum albumin 

Cancer/testis antigen gene 

Prostate cancer 

Coactivator-associated arginine methyltransferase 1 

Committed basal 

Cluster of differentiation 

Complimentary DNA 

Colony forming ability 

Colony forming efficiency 

Chromatin immunoprecipitation 

ABBREVIATIONS 



  

                                                221 Abbreviations 

 

CK 

Cl 

Cm 

Cm
2 

C-MET 

CO2 

COBRA 

Comm 

COPG2IT1 

CPA 

CpG 

CRABP 

CRBP 

CRIP1 

CRPC 

CRU 

CSC 

CT 

CTC 

CXCR4 

CYP17 

CYP1B1 

CZ 

D10 

DAPI 

ddH20 

DEPC 

dH2O 

DHT 

DMEM 

DMSO 

DNA 

DNMT 

dNTPS 

DR 

DTT 

E.Coli 

ECACC 

ECI 

ECL 

ECM 

Cytokeratin 

Chloride 

Centimetre 

Centimetre squared 

C-Mesenchymal epithelial transition factor 

Carbon dioxide 

Combined bisulphite restriction analysis 

Committed basal 

Coatomer protein complex, subunit gamma 2, imprinted transcript 1 

Carboxypeptidase 

Cytosine-phosphate-guanine 

Cellular retinoic acid binding proteins 

Cellular retinol binding protein 

Cysteine-rich protein 1 

Castrate resistant prostate cancer 

Cancer research unit 

Cancer stem cell 

Threshold cycle 

Circulating tumour cell 

Chemokine (C-X-C motif) receptor 4 

Cytochrome P450, family 17 

Cytochrome P450, family 1, subfamily B, polypeptide 1 

Central zone 

DMEM + 10% FCS 

4',6-diamidino-2-phenylindole 

Double distilled water 

Diethylpyrocarbonate 

Distilled water 

Dihydrotestosterone 

Dulbecco’s modified eagle medium 

Dimethyl sulfoxide 

Deoxyribonucleic acid 

DNA methyltransferase 

Deoxyribonucleotide triphosphate 

Direct repeat 

Dithiothreitol 

Escherichia coli 

European collection of cell cultures 

Endogenous carboxypeptidase inhibitor 

Enhanced chemiluminescence 

Extracellular matrix 
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EDTA 

EEF1A1 

EGF 

eGFP 

EMBOSS 

EMT 

ER 

ERG 

ES 

EtOH 

EZH2 

FCS 

FDA 

FGF 

FITC 

FS 

g 

G0 

G1 

G2/M 

GAPDH 

gDNA 

GFP 

GNRH 

GSTP1 

GY 

H. Sapiens 

H3 

H3K4 

H3K4Me2 

H3K9 

H3K27 

H3K27Me3 

H3K36 

H3K79 

H4K20 

H7 

HA 

HAT 

HCl 

HDAC 

Ethylenediaminetetraacetic acid 

Eukaryotic translation elongation factor 1 alpha 1 

Epidermal growth factor 

Enhanced green fluorescent protein 

European molecular biology open software suite 

Epithelial-to-mesenchymal transition 

Endoplasmic reticulum 

V-ets erythroblastosis virus E26 oncogene homolog  

Embryonic stem 

Ethanol 

Enhancer of Zeste homolog 2 

Fetal calf serum 

Food and Drug Administration 

Fibroblast growth factor 

Fluorescein isothiocyanate 

Forward scatter 

Gram 

G zero phase 

Gap 1 phase 

Gap 2 phase/mitosis 

Glyceraldehyde 3-phosphate dehydrogenase 

Genomic DNA 

Green fluorescent protein 

Gonadotrophin-releasing hormone 

Glutathione S-transferase Pi 1 

Gray 

Homo Sapiens 

Histone 3 

Histone 3 lysine 4 

Di-methylated histone 3 at lysine 4  

Histone 3 lysine 9 

Histone 3 lysine 27 

Tri-methylated histone 3 at lysine 27 

Histone 3 lysine 36 

Histone 3 lysine 79 

Histone 4 lysine 20 

Ham’s F-12 medium + 7% FCS 

Haemagglutinin 

Histone acetyl transferase 

Hydrogen chloride 

Histone deacetylase 
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HMT 

HNSCC 

HOX 

HPLC 

HPRT1 

HPSE 

HRP 

HSC 

HUWE1 

 

IgG 

IHC 

IP 

ITS-G 

kB 

KCl 

kDa 

Ki67 (MKI67) 

KSFM 

LA 

LB 

LB 

LHRH 

LiCl 

LIF 

Lin 

LOH 

LRP 

LSD1 

LXN 

M. Musculus 

MACS 

MAPK 

MBD 

MCP 

MDR1 

MEST 

MESTIT1 

MET 

MgCl2 

MGMT 

Histone methyltransferases 

Head and neck squamous cell carcinoma 

Homeobox 

High-performance liquid chromatography 

Hypoxanthine phosphoribosyltransferase 1 

Heparanase 

Horseradish peroxidase 

Haematopoietic stem cell 

HECT, UBA and WWE domain containing 1, E3 ubiquitin protein 

ligase 

Immunoglobulin G 

Immunohistochemistry 

Immunoprecipitation 

Insulin, transferrin, selenium solution 

Kilobase 

Potassium chloride 

Kilo Dalton 

Antigen identified by monoclonal antibody Ki-67 

Keratinocyte serum free medium 

Left apex 

Left base 

Lysogeny broth 

Luteinizing-releasing hormone 

Lithium chloride 

Leukaemia inhibitory factor 

Linear 

Loss of heterozygosity 

Laparoscopic radical prostatectomy 

Amine oxidase (flavin containing) domain 2 

Latexin 

Mus musculus 

Magnetic-activated cell sorting 

Mitogen-activated protein kinase 

Methyl-CpG-binding domain protein 

Metallocarboxypeptidase 

Multidrug resistance protein 1 

Mesoderm specific transcript homolog 

MEST intronic transcript 1, antisense RNA 

Mesenchymal-to-epithelial transition 

Magnesium chloride 

O-6-methylguanine-DNA methyltransferase 
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Min 

MiRNA 

ml 

mM 

mm 

MMP 

MOPS 

mRNA 

MSP 

Mw 

NaBu 

NaCl 

NaOH 

NCOR 

NE 

ng 

NKX3.1 

NLS 

nM 

NP-40 

ORF 

ORP 

P16INK4A 

P21 

P27KIP 

P160 

P300-CBP 

P53 

P63 

PAGE 

PAP 

PBS 

PcG 

PCR 

PDI 

PE 

PI 

PI3K 

PIC 

PIN 

PIPES 

Minute 

Micro RNA 

Millilitre 

Millimolar 

millimetre 

Matrix metallopeptidase 

3-(N-morpholino)propanesulfonic acid 

Messenger RNA 

Methylation specific PCR 

Molecular weight 

Sodium butyrate 

Sodium chloride 

Sodium hydroxide 

Nuclear receptor corepressor 

Neuroendocrine 

Nanogram 

NK3 transcription factor related, locus 1  

Nuclear localisation signal 

Nanomolar 

Tergitol-type NP-40 

Open reading frame 

Open radical prostatectomy 

Cyclin-dependent kinase inhibitor 2A (CDKN2A) 

Cyclin-dependent kinase inhibitor 1A 

Cyclin-dependent kinase inhibitor 1B(CDKN1B) 

MYB binding protein 

E1a-binding protein p300-CREB binding protein 

Tumour protein 53 

Tumour protein 63 

Polyacrylamide gel electrophoresis 

Prostatic acid phosphatase 

Phosphate-buffered saline 

Polycomb complex 

Polymerase chain reaction 

Protein disulphide isomerase 

Phycoerythrin 

Propidium iodide 

Phosphoinositide 3-kinase 

Protein inhibitor cocktail 

Prostatic intraepithelial neoplasia 

Piperazine-N,N′-bis(2-ethanesulfonic acid) 
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PLAU 

PM 

PPIA 

PSA 

PSAPb 

PTEN 

PTGS2 

Pyro 

PZ 

qPCR 

qRT-PCR 

R. Norvegicus 

R1 

R10 

R1881 

R2 

R3 

R5 

RA 

Radical 

Rag2 

RALDH 

RAR 

RARE 

RARRES1 

RARα 

RARβ 

RARγ 

RASSF1α 

RB 

RHO 

RISC 

RNA 

ROC 

ROCK 

RoDH 

RPLP0 

RPM 

RPMI 

RR1 

RT 

Urokinase-type plasminogen activator 

Plasma membrane 

Peptidylprolyl isomerise A 

Prostate-specific antigen 

PSA-probasin 

Phosphatase and tensin homolog  

Prostaglandin-endoperoxide synthase 2 

Pyrosequencing 

Peripheral zone 

Quantitative PCR 

Quantitative real-time PCR 

Rattus Norvegicus 

Region 1 

RPMI + 10% FCS 

Metribolone 

Region 2 

Region 3 

RPMI + 5% FCS 

Retinoic acid 

Radical prostatectomy 

Recombination activating gene 2 

Retinaldehyde dehydrogenase type 2 

Retinoic acid receptor 

Retinoic acid response element 

Retinoic acid receptor responder 1 

RAR alpha 

RAR beta 

RAR gamma 

Ras association domain-containing protein 1 

Right base 

Rhodopsin 

RNA-induced silencing complex 

Ribonucleic acid 

Receiver operator characteristic 

Rho-associated, coiled-coil containing protein kinase 

Retinol dehydrogenase 

Ribosomal protein, large, P0 

Revolutions per minute 

Roswell Park Memorial Institute medium 

RARRES1 

Room temperature 
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RXR 

S100P 

SC 

SCM 

Scr 

SDS 

siRNA 

SIRT 

SMRT 

SOC 

SRC 

SS 

Stem 

SV40 

T25 

T75 

TA 

TAE 

Taq 

TBS 

TBST 

TCC 

TCI 

TE 

TET 

TF 

Tie2 

TIG1 

TIMP3 

TMPRSS2 

TPT1 

tRNA 

TS 

TSA 

TSE 

TSS 

TURP 

TX-100 

TZ 

U/mg 

U/ml 

Retinoid X receptor 

S100 calcium binding protein P 

Stem cell 

Stem cell medium 

Scrambled siRNA 

Sodium dodecyl sulphate 

Small interfering RNA 

Sirtuin 

Silencing mediator for retinoic and thyroid receptors 

Super optimal broth 

V-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog 

Side scatter 

Stem cell 

Simian vacuolating virus 40 Tag 

25 cm
2
 tissue culture flask 

75 cm
2
 tissue culture flask 

Transit-amplifying cell 

Tris base, acetic acid and EDTA buffer 

Thermus aquaticus 

Tris-buffered saline 

Tris-buffered saline with Tween-20 

Transitional cell carcinoma 

Tissue carboxypeptidase inhibitor 

Tris EDTA buffer 

Tet methylcytosine dioxygenase 

Transcription factor 

Endothelium-specific receptor tyrosine kinase 2 

Tazarotene induced gene 1 

TIMP metallopeptidase inhibitor 3 

Transmembrane protease, serine 2 

Tumour protein, translationally-controlled 1 

Transfer ribonucleic acid 

Transcript 

Trichostatin A 

Tris, sucrose, EDTA buffer 

Transcription start site 

Transurethral resection of the prostate 

Triton X-100 

Transitional zone 

Units per milligram 

Units per millilitre 
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UBC 

UD 

UK 

uPa 

V 

v/v 

VAD 

Vect 

w/v 

WNT 

YWHAZ 

 

ZEB 

α1-Na/K-ATPase 

β-2m 

β-actin 

γ-actin 

 

 

Unbroken cells 

Undetected 

United Kingdom 

Urokinase-type plasminogen activator  

Volts 

Volume per volume 

Vitamin A deficiency 

Vector  

Weight per volume 

Wingless-type MMTV integration site family 

Tyrosine 3-monooxygenase /tryptophan 5-monooxygenase activation 

protein, zeta polypeptide 

Zinc finger E-box binding homeobox 

Alpha 1 sodium-potassium adenosine triphosphate   

Beta-2 microglobulin 

Beta actin 

Gamma actin 
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