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ABSTRACT

Motivated by the need to understand the origin of inflation and address theoretical
limitations of general relativity, this thesis investigates four complementary directions
beyond standard single-field inflation. Each approach is rooted in well-motivated ex-
tensions of gravity and multifield inflationary dynamics, aiming to bridge fundamental
theory and cosmological observations. After introducing the theoretical foundations of
modified gravity and inflation, the thesis presents original research across four main
themes: multifield inflation with kinetic couplings, scale-invariant models, non-local
gravity, and cyclic cosmologies.

First, multifield models with non-trivial kinetic couplings are analysed. Arising from
conformal transformations in non-minimally coupled theories, these models exhibit rich
dynamics including adiabatic and isocurvature perturbations. Using our sampling algo-
rithm, the thesis explores their predictions and compares them with cosmological data.

Second, the R? scale-invariant inflationary model is studied, where mass scales emerge
dynamically via spontaneous symmetry breaking. This model addresses the hierarchy
problem and yields predictions consistent with current observations, offering an inter-
esting alternative to Starobinsky and a-attractor scenarios.

Third, the thesis examines inflation in non-local hybrid metric-Palatini gravity, in-
spired by attempts to include quantum corrections through non-local operators. Refor-
mulating the theory with auxiliary fields, we identify stable configurations and investi-
gate how non-local terms deform the inflationary potential in observable ways.

Finally, a non-inflationary alternative is explored: the cyclic universe. A general
framework is developed to study the evolution of primordial gravitational waves across
cosmological cycles. The impact of initial conditions and vacuum choice is assessed,
with implications for the robustness of gravitational wave predictions.

Together, these results offer novel insight into early-universe cosmology, proposing
viable alternatives to standard inflation, and guiding future observational and theoretical

research.
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INTRODUCTION

Understanding the physical processes that shaped the early Universe remains one of
the most pressing open questions in modern cosmology. While the standard cosmolog-
ical model, built upon general relativity (GR) and the inflationary paradigm, explains a
broad range of observations with remarkable accuracy [7-11], it leaves unanswered fun-
damental theoretical challenges. Among them are the physical origin of the inflationary
potential [12], the nature and generation of mass scales, the naturalness of initial condi-
tions [13], and the ultraviolet (UV) completion of gravity [14-16].

This thesis is motivated by the need to address these challenges through the explo-
ration of theoretical extensions to the standard inflationary scenario. Specifically, we
focus on four main directions. The first three include multifield inflation with kinetic
couplings, scale-invariant models where mass scales arise dynamically, and non-local
modifications of gravity inspired by attempts to improve UV behaviour. Lastly, we in-
vestigate an alternative “inflationary” scenario, a cyclic model where the universe under-
goes repeated phases of contraction and expansion. This model offers a novel perspective
on avoiding the inflationary phase and provides insights into the universe’s evolution
prior to the hot Big Bang phase. Each framework offers a distinct perspective on fun-
damental problems and introduces characteristic phenomenological features that can be
compared to observational data.

Our approach is guided by four core questions:

1. In multifield models of inflation, the dynamics can be significantly altered by in-
teractions between the fields. These interactions open new avenues for generating
observable features beyond what is predicted by single-field models. This raises
the question of whether kinetic couplings between fields during inflation could
yield predictions that better align with observational data, or generate distinctive

signatures such as isocurvature modes and non-Gaussianities.

2. The mass of the Higgs boson highlights the hierarchy problem, where fundamental
scales differ by many orders of magnitude [17, 18]. Without a protective mecha-

nism, quantum effects tend to drive mass parameters toward very large values,
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meaning the observed small masses require extremely precise adjustments of the
underlying parameters — a situation known as fine-tuning. Classical scale invari-
ance, if broken dynamically, could provide a natural mechanism for these scales,
including those driving inflation, to emerge without excessive fine-tuning. Could
this framework also offer clear criteria to distinguish between different inflation-

ary models?

3. Non-local modifications of gravity have been proposed as a way to capture quan-
tum gravitational effects at cosmological scales [19]. Could these non-local hybrid
models produce dynamically stable inflationary scenarios and provide insights

into quantum gravity corrections?

4. Finally, going beyond inflationary dynamics: can cyclic cosmological scenarios
reproduce key observational features, and how robust are their predictions for
primordial gravitational waves, particularly regarding vacuum choice and contri-

butions from earlier cycles?

In what follows, we briefly introduce the various frameworks used to address the
above questions, outline the methods, and present the structure of the thesis, explaining

the logical flow from foundational principles to detailed phenomenological analysis.

CONCEPTUAL MOTIVATIONS. The inflationary paradigm was introduced to resolve key
shortcomings of the Hot Big Bang model, such as the horizon and flatness problems
[7, 20], and has succeeded in predicting a nearly scale-invariant spectrum of primordial
fluctuations [21, 22]. Despite its empirical success, several conceptual questions remain.

Origin of mass scales: standard inflation relies on introducing explicit mass parame-
ters by hand. Scale-invariant models propose instead that mass scales can arise dynam-
ically via spontaneous symmetry breaking [4, 23-25], offering an elegant resolution to
the hierarchy problem.

Number of fields: High-energy completions of gravity often include multiple scalar
fields [26]. Multifield inflation can naturally emerge in these settings, leading to richer
dynamics and potentially observable signatures beyond single-field models [27-29].

Ultraviolet completion and non-locality: GR is non-renormalisable in the UV [15].
Modifications such as non-local operators (e.g. inverse d’Alembertian terms) can soften
UV divergences and might capture aspects of quantum gravity corrections [19]. By in-
vestigating these directions, we aim to clarify their theoretical consistency and study
whether they can produce inflationary scenarios compatible with current observations.

Alternatives to inflation: While inflation remains the dominant paradigm, it is not

the only mechanism capable of explaining the observed near scale invariance and flat-
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ness [30-32]. Cyclic models provide a qualitatively different framework that can predict
distinct features in the primordial tensor spectrum [33-37]. By studying the cyclic sce-
nario, we explore the robustness of its predictions, particularly the suppression of tensor
modes [38], and assess the implications of different choices of vacuum state and initial

conditions.

METHODOLOGY AND APPROACH. Our analysis starts from the action principle for each
theoretical framework, deriving the corresponding equations of motion and identify-
ing the dynamical degrees of freedom. For multifield models, we consider general two-
field systems with non-trivial kinetic couplings arising from conformal transformations
in non-minimally coupled theories. We analyse the background evolution, perturba-
tions, and observational signatures. In scale-invariant models, we study the spontaneous
breaking of classical scale invariance and its role in dynamically generating the Planck
scale and inflationary scale. The resulting inflationary observables such as the spectral
index, tensor-to-scalar ratio, and number of e-folds, are then compared to established
models like Starobinsky inflation [39]. For non-local and hybrid gravity models, we
reformulate non-local terms as local scalar-tensor theories using auxiliary fields. This
allows us to study stability, ghost conditions, and the inflationary potential’s deforma-
tion due to non-local operators. Finally, in studying the cyclic universe model, we start
by reviewing its background dynamics and the sequence of cosmological phases charac-
terising each cycle. Our analysis focuses on the production and evolution of primordial
gravitational waves, beginning in the dark energy phase of the previous cycle. We de-
velop a general formalism to track tensor perturbations across the phases, making no
restrictive assumptions about the initial vacuum state. This approach allows us to as-
sess the sensitivity of predictions to vacuum choice and to quantify the contribution of
modes generated during earlier phases. By combining analytical estimates with numeri-
cal integration, we investigate the impact of these contributions on the observable tensor
spectrum and examine the backreaction constraints required to preserve the consistency

of the cyclic scenario.

STRUCTURE OF THE THESIS. The thesis is divided into two parts. Part I establishes the
theoretical foundations necessary for understanding the original extensions developed

in Part II.
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Part I: Foundations

Chapter 1: “About Gravity” introduces the geometric description of gravity in GR,
highlighting its basis in the equivalence principle and general covariance. We discuss
the Einstein field equations, derived from the Einstein-Hilbert action, and explain why
GR is highly successful yet theoretically incomplete for what concern cosmology. The
chapter also outlines motivations for modified gravity theories, including metric and

Palatini f(R) models, hybrid metric-Palatini gravity, and non-local extensions.

Chapter 2: “Structure and Dynamics of the Isotropic Universe” applies GR to cosmol-
ogy. We derive the Friedmann equations starting from the assumption of spatial ho-
mogeneity and isotropy (the cosmological principle) and introduce the standard ACDM
model. The chapter also discusses the role of inflation in explaining the observed large-

scale structure and its theoretical motivations.

Chapter 3: “The Theory of Inflation” focuses on the dynamics of inflation. We explain
the slow-roll approximation, derive predictions for scalar and tensor perturbations, and
discuss key observables. The chapter motivates why multifield dynamics and modi-
fied gravity extensions might be necessary to address fine-tuning, generate richer phe-

nomenology, or connect inflation to fundamental theories.

Part II: Beyond Standard Inflation

Chapter 4: “Multifield Inflation with Kinetic Couplings” investigates two-field infla-
tionary models where the fields are coupled through a non-trivial field-space metric.
We derive background and perturbation equations, analyse adiabatic and isocurvature
modes, and perform numerical analyses to explore the impact of kinetic couplings on

observables.

Chapter 5: “Scale-Invariant Inflation” studies models where classical scale invariance
is imposed at the level of the action. We explore how spontaneous symmetry breaking
dynamically generates mass scales, derive inflationary dynamics, and compare predic-
tions with observational constraints. Finally, we comment on the possibility of distin-
guishing the model from Starobinsky and a-attractor inflation [40]. Overall, we argue
that scale-invariant inflation is in excellent health, and possesses features which make
it an interesting benchmark for tests of inflation from future CMB data.

Chapter 6: “Inflation in Non-local Hybrid Modified Gravity” focuses on non-local ex-
tensions of hybrid metric-Palatini gravity. Using auxiliary fields, we analyse ghost con-

ditions, derive inflationary dynamics, and examine how non-local terms lead to defor-
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mation of the Starobinsky-like potential offering a new way to test the robustness of the
model.

Chapter 7: “Alternative Mechanisms to Inflation” explores an alternative paradigm
to inflation: the cyclic universe model. Motivated by the need to test the robustness of
inflationary predictions and the possibility of resolving the initial singularity, we provide
a detailed analysis of primordial gravitational wave production in cyclic cosmologies.
In particular, we investigate how the choice of vacuum state and contributions from
earlier phases, such as the dark energy epoch of the preceding cycle, affect the tensor
spectrum observed today. This complementary study sheds light on the predictivity of
cyclic models and their viability as alternatives to inflation.

Chapter 8: “Conclusions” discusses the main results and future directions.

Finally, supplementary material for Chapter 1, Chapter 4, Chapter 5 and Chapter 6

is present in the appendices in Part IIL

Our goal is to contribute to the broader effort of connecting fundamental physics
with cosmological observations, by examining models that remain close to data but orig-

inate from deeper theoretical motivations.



PArT I FOUNDATIONS



1 ABOUT GRAVITY

General Relativity (GR) is the theory of gravity formulated by Einstein in 1915. It
is founded on two core principles: the equivalence principle, which establishes a deep
connection between the effects of gravitation and acceleration, and the principle of gen-
eral covariance, which states that the laws of physics should take the same form in all
coordinate systems. Together, these principles lead to a radical shift in how gravitational
phenomena are understood. In GR, gravity is no longer described as a force acting in-
stantaneously at a distance, but rather as a manifestation of the curvature of spacetime,
determined by the distribution of energy and matter. In this geometric picture, spacetime
is modelled as a four-dimensional differentiable manifold, whose structure is encoded in
the metric tensor g, (t, x). This symmetric tensor determines distances, time intervals,
and angles, and thus fully characterises the geometry of spacetime. Importantly, it does
so in a way that is independent of the observer’s frame of reference, reflecting the princi-
ple of general covariance. A crucial conceptual consequence of this framework is the role
played by spacetime itself. Because GR is invariant under diffeomorphisms — or coordi-
nate transformations — points on the manifold have no physical meaning on their own.
Only relations between dynamical quantities are physically meaningful. In this sense,
coordinates in GR are not physical quantities but arbitrary labels used to parametrise
a fully covariant theory of geometry. This distinguishes GR from other theories where
diffeomorphism invariance, in the form of reparametrisation invariance, can be artifi-
cially imposed and later undone; the theory of GR is inherently covariant, and there is

no non-covariant formulation to return to.

In this chapter of the thesis we delve into the dynamics of spacetime as described by
GR in Section 1.1, beginning with the Einstein field equations. We then move beyond
GR in Section 1.2 to explore modified theories of gravity, which are motivated by both
theoretical and observational challenges. Particular attention is given to extensions for-
mulated in the metric, Palatini, hybrid metric-Palatini approaches, and non-local gravity,
as well as to theories incorporating scale invariance. These generalised frameworks offer
alternative descriptions of gravitational dynamics, often with additional degrees of free-

dom or geometric structures. They provide fertile ground for addressing open problems
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in fundamental physics, such as the nature of dark energy, the origin of cosmic inflation,
and the behaviour of gravity at high energies or in strong-field regimes. Here, we set
the stage for a detailed exploration of theories of gravity, laying the mathematical and

conceptual groundwork needed for the discussions in later chapters.

1.1 THE DYNAMICS OF SPACETIME IN GENERAL RELATIVITY

The dynamics of spacetime is specified by its metric denoted by g,,(t,x), which
connects the observer-dependent coordinates x* with the invariant distance between

events via the line element ds?. The invariant line element is
ds® = g, (t,x)dx"dx", (1.1)

where dx® = dt is the time coordinate and dx’ with i = {1,2,3} are the spatial coor-
dinates. We use a mostly plus convention for the metric signature and natural units in
whichc =% =1.

The concept of proper time plays a fundamental role in describing the motion of
particles on curved spacetime. Proper time, denoted by Ar, is defined as the invariant
interval measured along a timelike worldline (ds* < 0) between two events. Mathemat-
ically, if two events A and B are connected by a timelike path y parametrised by A such
that 1(0) = A and A(1) = B, the proper time is given by

1 v

Ar = / R R (12)
which directly follows from the metric’s role in determining the distance between events.
This definition emphasises that proper time is an intrinsic measure - independent of
any coordinate system — and it serves as the “clock” along a particle’s worldline. The
importance of proper time becomes even more evident when we consider the motion of
freely falling systems. According to the Equivalence Principle, at any spacetime point
one can choose a set of coordinates {£#} defining a locally inertial frame (LIF) in which

the metric takes the Minkowskian form at that point,
ds? = —(d&%)? + (dE")? + (d&%)? + (dE)? =y, dEHdE, (1.3)

where 1, =diag(—1,1,1,1). In this LIF, and only locally, the equations of motion of a
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freely falling particle reduce to those of Special Relativity,

d2 o
dfz =0, (1.4)

indicating that, at a given event, the worldline is tangent to a straight line in the locally
inertial coordinates. When we describe the same motion in a general coordinate system
x#, the metric takes the general form g, and the transformation from £* to x* = x* (&%)
introduces additional terms. These terms are encoded in the Christoffel symbols of the

Levi-Civita connection,

1
F/;Zv = Eg)m (gvﬂk,/l +gury — gpv,/l)s (15)

which in general do not vanish, even in flat spacetime, since they depend on the choice
of coordinates. They therefore do not represent intrinsic curvature; curvature is instead
encoded in the Riemann tensor R,,s, which will be introduced later in the chapter. The

equation of motion in the general coordinates becomes the geodesic equation,

d’x®  _, dx*dx"

Tz Yoo = 0. (1.6)
Here, the term involving the Christoffel symbols represents the gravitational “force”
that, in Newtonian mechanics, would be identified with the gradient of the gravitational
potential (as well as the additional apparent accelerations). The metric g is identified
with the gravitational potential. Thus, starting from the invariant definition of proper

time we are naturally led to the concept of geodesic motion.

For massless particles, such as photons, the situation is somewhat different since
proper time is identically zero. Indeed, these particles move along null geodesics ds* = 0
and the definitions given in (1.2) and (1.6) no longer apply (i.e. the derivation of the
geodesic equation using proper time fails). Instead, one introduces an affine parameter
A that labels points along the curve and defines k* = dx*/A, which plays the role of
a tangent vector to the null trajectory (i.e. k*k, = 0). The equation of motion then
takes the covariant form k#V k" = 0, where V, is the covariant derivative such that
V.k" = 9,k" + T,;;k?. However, for massive particle, by defining the four-velocity of
a particle as u* = dx*/dr and its four-momentum P¥ = mu" where P¥ = (E,p) and

E? = m? + p?, it is possible to rewrite (1.6) in the compact form

PV, P¥ = 0. (1.7)

To complete the picture, we now address how geometry itself is not fixed but dynam-
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ically determined by the distribution of matter and energy. We start by considering the
Einstein-Hilbert action, where R denotes the Ricci scalar, a geometrical quantity built
from the metric g,,(t,x), an arbitrary scalar quantity known as cosmological constant

A, and the action of generic matter as

M2
S:TP/d4x\/—_g(R—2A)+/d4x\/—_g.£M, (1.8)

where M2 = 1/(87G) is the reduced Planck mass, g is the determinant of the metric g,
and L) is the matter Lagrangian density. The negative sign in the brackets of (1.8) is
a convention and the factor of 2 is a choice to simplify later results. To derive the field
equations, we vary the total action with respect to the metric. From the first term in (1.8)

we have
1
O[vV=9 (R=2A)] =+/=g|Ru — Eg”VR + Agyy |89 + (total derivative terms),  (1.9)

[

where Ry, = R},

is the symmetric Ricci tensor obtained by the contraction of the Rie-
mann curvature tensor Rﬁgv = 801“3# - 8VF§H + Fglpl“vpy - Fv’lplfy. The total derivative terms
arise from the variation of R, and can be neglected under appropriate boundary condi-
tions. This feature is specific to the Einstein—Hilbert action and explains why the metric
and Palatini formulations of general relativity yield equivalent dynamics. As will be
discussed later, this equivalence is generally lost in extended theories of gravity, where
higher-order or non-minimal curvature terms are present. Setting the total variation
6S = 0 for arbitrary d¢g"” and incorporating the matter variation from the second term

of (1.8) giving the stress-energy tensor

Ty = ~2 09 LM), (1.10)
V=9  og"
via
SSy = —% / d*x\=g T, 59", (1.11)
we obtain
Guw =Ry — %glﬂ,R = 871G Ty — Aguvs (1.12)

where G, is the so-called Einstein tensor and the term Ag,,, in (1.12) acts as a uniform
energy density filling space. The left-hand side of Einstein’s equation (1.12), related to
the spacetime geometry, is directly connected with the matter content of spacetime, in
the form of matter or a cosmological constant. Originally, the cosmological constant

A was introduced to explain a static Universe, by balancing gravity’s effects, and to
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keep the Universe from contracting; but it was later discarded after the discovery of the
Universe’s expansion by Edwin Hubble. Decades later, the concept resurfaced as a key
ingredient in explaining the accelerated expansion of the Universe: observations clearly
point to the presence of an “energy” in the Universe that behaves like a cosmological
constant. This is why A is usually included in the action (1.8). Furthermore, in (1.12),
the term Ag,, is the only relevant operator at low energies (and it is clearly covariant).
This is because, at low energies, the physics is dominated by operators with dimension
< 4 in 4D spacetime, as operators with higher dimensions are suppressed by powers of
the cutoff scale [41]. Moreover, as the metric g, is covariant and satisfies V¥g,, = 0, the
Einstein tensor (1.12) satisfies the contracted Bianchi identities V#G,, = 0. As a result,

the conservation of the energy-momentum tensor
VAT, =0, (1.13)

is automatically ensured by the Einstein field equations and is fully compatible with the
presence of a cosmological constant in (1.8). The component v = 0 corresponds to energy

conservation, while the remaining spatial components express momentum conservation.

1.2 BEYOND GENERAL RELATIVITY

Modified gravity theories, often referred to as Extended Theories of Gravity (ETGs),
emerge from the need to extend or modify Einstein’s General Relativity to address both
its theoretical and observational shortcomings [42, 43]. In the standard formulation of
GR, the gravitational dynamics is governed by the Einstein-Hilbert action, which is linear
in the Ricci scalar R. Although this description has been extremely powerful in modelling
Solar System gravitational phenomena and in other situations where weak gravitational
forces are at play [44, 45], this paradigm faces difficulty in handling extremely high-
energy contexts — where quantum effects are expected to apply [19, 46-49] — and to
the largest cosmological scales, where phenomena such as dark energy and dark matter
dominate [50].

To overcome these limitations, modified gravity theories suggest adding to the grav-
itational Lagrangian extra terms, like higher-order curvature invariants (e.g. f(R) mod-
els), non-minimal couplings with matter, and extra degrees of freedom in the form of
scalar or tensor fields [43, 51, 52]. These modifications are not arbitrary; they are tightly
constrained by symmetry principles inherited from the gauge-theoretical formulation of
gravity. By ensuring that any added terms respect the fundamental symmetries — such

as diffeomorphism invariance — these theories maintain the successful predictions of GR
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in the appropriate limits while offering new mechanisms to explain cosmic acceleration
without resorting to unknown forms of energy.

In the ultraviolet (UV) regime, such modifications aim to address the issues of quan-
tising gravity by providing a renormalisable or effective framework that could capture
quantum corrections. Conversely, in the infrared (IR) domain, they may offer alternative
explanations for astrophysical observations — such as flat galaxy rotation curves - by ef-
fectively altering the gravitational force at large distances. For instance, the inclusion
of higher-order terms in the gravitational action can lead to Yukawa-like corrections
in the weak-field limit, thereby modifying Newtonian dynamics without the need for
additional exotic matter components [15, 53, 54].

Overall, modified gravity theories represent a versatile framework that not only pre-
serves the empirical successes of GR but also opens new avenues for exploring the inter-
face between classical gravitational physics and quantum phenomena. This approach is
pivotal in addressing some of the most pressing questions in contemporary cosmology
and high-energy physics, ultimately seeking a more complete and unified understanding

of gravity across all scales.

1.2.1 MODIFIED GRAVITY

As previously discussed, one of Einstein’s straightforward modifications to GR was
the inclusion of a cosmological constant. While conceptually appealing, this change still
reveals discrepancies between theoretical predictions and observations [8, 55]. One of
the simplest ways to generalise the Einstein-Hilbert action is replacing R with a more

general function f(R), so that the action becomes

2

M
S = TP / d*x /=g f(R) + Sy, (1.14)

with Sy denoting the matter action. This is sufficiently general to encapsulate some of
the basic characteristics of higher-order gravity, but at the same time, these functions
are simple enough to allow for straightforward analysis. Many different f(R) models
have been explored (see e.g. [51, 52, 56—59]), however, since GR has been extensively
tested and confirmed on local scales, it follows that f(R) reduces to R within the solar
system at the present day [60].

Variation of (1.14) leads to the following fields equation for the metric, resulting in

a change in the Einstein tensor

f'(R)Ryy — %f(R)gW - V,Vof'(R) + g,»0Of"(R) = kT, (1.15)



1.2. Beyond General Relativity 13

where k = MEZ and f"(R) = df/dR. According to (1.15), the metric satisfies a system of
fourth-order partial differential equations and the modification of the action results in an
additional scalar degree of freedom, identified by f’(R). In standard GR, f’(R) reduces

to 1 and the additional degree of freedom vanishes. By rewriting (1.15) in the form

L g K o 9w ey
Ruy = SguR = f/(R)Tuv 7@ BB - (R
f’(R) [V va (R) - g,uva (R)]. (1.16)

it becomes evident that the right-hand side acts as an effective source for the metric.
Besides the matter contribution, the additional terms involving derivatives of f’(R) rep-
resent the influence of a new scalar degree of freedom arising from the curvature itself.

The scalar curvature satisfies a second-order differential equation,
30f"(R) + Rf'(R) — 2f(R) = kT, (1.17)

which can be obtained by taking the trace of (1.15). By means of (1.15) and (1.17), both
the metric g,, and the scalar curvature R are dynamical. In GR, the metric is the sole
dynamical field, and the matter distribution entirely dictates its behaviour through the
field equations (1.12). The scalar curvature R is also determined by the local matter
content, but via the algebraic relation R = —xT. Hence, the physical interpretation of
(1.15) and (1.17) highlights the crucial role of the scalar curvature in the field equations
of f(R) theories. However, (1.17) indicates that the true dynamical quantity is f’(R)
rather than R itself, indeed, f"(R) is the only term in the field equations that is explicitly

influenced by differential operators. We can then define

¢ = f(R),

(1.18)
V(¢) = gR($) — f(R(9)),

where R(¢) is obtained by inverting the first relation. This inversion is only possible
if f”(R) # 0, ensuring that ¢ is an independent scalar degree of freedom and that the

theory differs from GR. Using these definitions, the field equations can be recast as

B = 500k = 5T = 220,V (§) + 519,96 = gu09) (1.19
304 + 2V (¢) — Z; kT. (1.20)

This slight change of notation helps to identify (1.19) and (1.20) with the Brans-Dicke
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theory with parameter v = 0 [61]. One can effectively rewrite the action as a scalar-

tensor theory defining the Jordan frame (JF) as

MZ
$= 5 [ dGIOR= V)] + Su(gt). (1.21)

This formulation is dynamically equivalent to the original f(R) action because substitut-
ing the definition (1.18) and eliminating ¢ via its algebraic equation of motion recovers
the initial f(R) form. In other words, S; simply introduces ¢ as an auxiliary field whose
dynamics reproduce those encoded in f(R). To remove the non-minimal coupling’, we

consider a conformal rescaling of the metric

G = Rguw = ¢ guv» (1.22)

and the scalar field redefinition ¢ — ¢ with

dp = Mp \/g% (1.23)

for which we obtain the associated action

M. 1 Y I T
Sg = / d4X\/—_9~[7PR - 59~W3H¢av¢ —e€ Vi V(QS)]
z ¢
; sM(e—‘/?M—PgW, lp),

(1.24)

in the Einstein frame (EF). The action (1.24) is now written with the “new” scalar field (/5
minimally coupled to the Ricci curvature and has a canonical kinetic energy. For a more
general derivation, see Appendix A.

The choice between the JF and EF in scalar-tensor theories remains a topic of de-
bate due to their mathematical equivalence but potential physical inequivalence [62]. A
conformal transformation relates the two frames, ensuring that the underlying dynam-
ics are equivalent; however, physical inequivalence may arise once one specifies which
metric - g,, in the JF or g, in the EF - defines physical measurements such as lengths,
times, and particle trajectories.

In the JF, the gravitational coupling is dynamically determined by the scalar field,
leading to a varying effective gravitational constant. While this preserves the stan-
dard conservation of energy-momentum and ensures that massive test particles follow

geodesics, it complicates analytical treatments and observational constraints. In con-

By non-minimal coupling we mean a scalar degree of freedom (in this case known as ¢) that interacts
with the metric and the curvature scalar.
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trast, the EF reformulates the theory to resemble GR with a fixed gravitational coupling,
simplifying the equations and making it more manageable. However, this comes at the
cost of introducing a non-trivial coupling between the scalar field and matter

4
Me Ty, (1.25)

/Z
Ty =—-e V°
which manifests as a fifth force acting on test particles, thereby violating standard geodesic
motion®. Furthermore, while massless particles such as photons propagate identically in
both frames, the motion of massive bodies differs, making the physical equivalence of the
two formulations uncertain. The transformation between frames due to follows (1.22)
implies that physical quantities such as masses and distances can be frame-dependent.
This directly affects cosmological and astrophysical interpretations, where solar system
experiments and cosmic evolution models typically favour the JF due to its closer align-
ment with GR predictions. While both frames offer valuable insights, the question of
which is “physical” ultimately depends on the context: the JF is often preferred for direct
experimental comparisons, while the EF is advantageous for theoretical and high-energy

considerations.

THE PALATINI FORMALISM. In the Palatini formalism [64], instead of using the standard
metric variation of the Einstein-Hilbert action, the Einstein equations are derived by
independently varying the action with respect to both the metric and an independent
connection. While the action remains formally unchanged, the Riemann and Ricci ten-
sors are now constructed using this independent connection, denoted as Fjv (whereas the
Levi-Civita connection are denoted by {Jj, }). Notably, the metric is not required to obtain
the Ricci tensor from the Riemann tensor. To distinguish this formulation, the Ricci ten-
sor associated with Fljlv is denoted as R, and the corresponding Ricci scalar is given by
R = g""R,y(T). The key idea behind the Palatini formalism is to treat the connection T,
which defines the Ricci tensor, as an entity independent of the metric g on the spacetime
manifold M, typically assuming it to be torsion-free. When the action depends on func-
tions of curvature invariants, such as f(R), or when it is non-minimally coupled to a
scalar field, the Palatini and metric variational principles lead to different field equations,
resulting in distinct theories [65, 66]. However, in the standard Hilbert-Einstein theory,
the Palatini formulation turns out to be equivalent to the metric approach. This equiva-
lence arises because the field equations for the independent connection ultimately lead

to the Levi-Civita connection of the metric g, thereby reducing the theory to the usual

2In order to screen the fifth force, the so called chameleon mechanism was introduced, see [63].
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metric formulation. The action of Palatini gravity takes the form

MZ
Spal = 7" / d*xyJ=g f(R) + Sat(gun V). (1.26)

The matter action Sy is assumed to depend solely on the metric and matter fields. This
assumption means that the independent affine connection does not enter the matter sec-
tor, so that the variation of Sy with respect to the independent connection vanishes. For
tensor fields this simply implies a minimal coupling prescription through the Levi-Civita
connection of g,,. For spinor fields, however, the situation is different: since they do not
transform as tensors under spacetime diffeomorphisms, the Levi-Civita connection can-
not act on them. Their coupling to gravity requires a local Lorentz frame, encoded in

the tetrad e/ (which maps world indices p to flat tangent-space indices a), together with

a
U

frame. Thus the metric alone is insufficient to define a covariant derivative on spinors,

the associated spin connection w® which defines parallel transport in the local Lorentz
making the tetrad formalism indispensable for fermionic matter. This is the standard
choice in Palatini f(R) theories: the independent connection becomes compatible with
a conformally related metric, as we will show later. Under this assumption, variation of

the action yields the field equations
, 1
f (R)ﬂ(,uv) - Ef(R)gpv =K T/%, (1.27)

V(=9 f'(R)g") =0, (1.28)

denoting by Ry, the symmetrical part of R,,, and V the covariant derivative built from
the independent connections. (1.27) and (1.28) are obtained by varying with respect to
the metric and the connection, respectively. For detailed calculations see [67, 68]. This
assumption plays a crucial role in deriving Einstein’s equations from the linear form
of the action (1.26) and is a defining feature of the Palatini formalism. Indeed, we are
implicitly assuming that parallel transport is determined by the Levi-Civita connection
of the metric {};,} introduced in (1.5), rather than the independent connection I“;}V. It is

straightforward to show that the connection components

1
2f"

A A A A
Ly ={n}+ [25(pav)f/ = 99" 79[, (1.29)
are the Christoffel symbols of the auxiliary metric h,, mentioned in what follows. In this
setting, the metric g determines the causal structure of spacetime, whereas the connec-

tion I" governs the trajectories of particles moving within it. We stress that, by means
of the trace of (1.27), R = R(T) and f’(R) = f’(T). More in detail, the connection T
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is compatible with the conformal metric h,, = f’(R) g,» in order to satisfy (1.28), so
Ruv(I) = R,y (h) and thus R(h) = R*'R,,(T) =

rewrite (1.27) as

f’(R)gHVﬂyV(F) - f’(R) Hence we can

Guv(h) = - A(T)hy, (1.30)

f ’(T)
where A(T) = (R f' — £)/(2f"*) = (f + k T)/(2f"*) and we dropped the dependence
of T in the notation. If one chooses to ignore the original physical motivations behind
the construction of the theory in the JF and instead interprets the EF metric h, as the
physical metric defining the geodesics of free particles (thereby redefining the physical
observables), then (1.30) can be viewed as describing a theory with a density-dependent

effective Newton constant and a varying cosmological constant A(T) [69-76].

The Palatini action (1.26) can be rewritten in the scalar-tensor representation making

use of the relation

R = — (V. f VFf') +

2f’2 |:|f’ (1.31)

f/

as M2
Sy = TP / d4x\/—_g(¢R + %a,,gba”gb - V(¢))+SM(gst V). (1.32)

The above is identified as the action of a Brans-Dicke theory with parameter vy = —3/2,

in the presence of a field potential [61, 77]. Consequently, in the EF it is recast as

M3 .
Sg = / d'xy= (TPR— U(¢>)+5M<¢‘lg~,w, V), (1:33)

where U(¢) = MgV(gb)/ (2¢). Note that in this setting, there is no redefinition for the

scalar.

Despite offering an alternative variational principle, the Palatini formulation of f(R)
gravity exhibits several notable shortcomings that challenge its viability as a modified
theory of gravity. One key issue is the nontrivial coupling between matter and geome-
try, which arises because the independent connection depends explicitly on the matter
content through the trace of the energy-momentum tensor. This leads to problematic
consequences, such as the breakdown of the equivalence principle. The Palatini ap-
proach also struggles to reproduce the correct Newtonian and post-Newtonian limits in
the presence of non-relativistic matter, raising compatibility concerns with solar system
tests. Furthermore, in this formulation there are no propagating fields (see (1.27)) as
opposed to the metric formalism (see (1.17)), this does not necessarily result in a more
consistent theory as the screening mechanism is not required to screen forces that are
not observed (see footnote 2). The resulting field equations are nonlinear in the matter

sector, leading to technical and conceptual difficulties such as curvature singularities in



18 Chapter 1. About gravity

compact stars [78, 79] — features that are not present in the metric formulation and are
generally regarded as unphysical. Taken together, these limitations suggest that, despite
its theoretical appeal, the Palatini formulation faces significant obstacles that must be

addressed for it to serve as a viable framework for modified gravity.

THE HYBRID METRIC-PALATINI FORMALISM. A promising development is the hybrid
metric-Palatini gravity, which combines features of both formalisms by adding a Pala-
tini f(R) term to the Einstein-Hilbert action [54, 80-84]. This theory overcomes many of
the difficulties of previous models while remaining consistent with cosmological, galac-
tic, and local gravitational tests [85-87]. Notably, in its scalar-tensor formulation, it
includes a light, long-range scalar field that modifies large-scale dynamics without af-
fecting solar system behaviour. Perturbative analyses also indicate that this model is
free from instabilities [88]. An extension of this framework, known as generalised hy-
brid metric-Palatini gravity, was proposed in [81]. In this model, the action depends on
both the metric and Palatini curvature scalars. This generalisation preserves the benefi-
cial features of the original hybrid theory [89, 90], and further investigations have shown
the existence of stable static cosmological solutions [91], compatibility with large-scale
structure observations [92], and a well-posed initial value problem under general con-
ditions [93].

The generalised hybrid metric-Palatini gravity is described by the action

M2
5= [ dVTFRR) + Sulgp ). (134

Varying the action with respect to the metric and the independent connection, we obtain

the field equations

F(R) Ry + f/(R)Ryy — %gﬂv FRR) = (V,9, = guD) f(R) = KT,
7. (vTG f (R)g) =0.

(1.35)

The second equation implies, again, that fjv is the Levi-Civita connection of a confor-

mally related metric h,, = f"(R)g.

To facilitate the analysis, we reformulate the theory in a scalar-tensor form by intro-

ducing auxiliary fields « and f, leading to the action

MZ
S=5 / d*xy=glf (@ B) + fu(R = @) + f3(R = B)] + Su (¥, gy, (1.36)

where f, = 0f/0a and fz = 0f/dp. Defining scalar fields ¢ = f; and y = f3, and
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introducing the potential

V(g x) = =f(a,p) + pa + xp, (1.37)

we can invert the relations ¢ = f; and y = f3 to express a and § in terms of ¢ and y,

provided that the Hessian of f(«, ff) is non-degenerate:

det (f““ f“ﬂ) £0
Toa fop

This guarantees that the Legendre-type transform is well defined, and the action can be

rewritten without explicit dependence on « and f as

M2
5= / d*x\=glR + xR =V (¢, )] + Su (¥, gy)- (1.38)

It is important to emphasise that, in this representation, the scalar fields do not corre-
spond to actual matter fields, but rather serve as alternative representations of the cur-
vature terms R and R. Furthermore, since we have chosen the signs in the definitions
of the scalar fields to ensure positive kinetic energies, there is no need to be concerned
about ghost instabilities. Then, by means of h,, = yg,,, the Palatini scalar (1.31) can be
rewritten as

R=R+ %aﬂxa,,;(— %D)(, (1.39)

and the above can be replaced in the action

+Sm (Y, g,uv)- (1.40)

MZ
5=t / dxyg| (6 + DR - %8")@){ ~V(pp)

One can define a new scalar field £ = ¢ + y in order to simplify the analysis. Thus, (1.40)

can be rearranged as

+SM(¢s gyv)’ (1~41)

My [ 3
§=— / d X\/—_g[éR - aa”xayx -V(E-xx)

where only the scalar field & is coupled to the metric Ricci scalar. By varying (1.41) with
respect to the metric, we obtain

1 1

3 1 3 K
Ry — Egva - £ (VuVo€ - g0DE) + z_ay)( 2 >9mv (a pxd x —W(, )()) = ETpv’

Ex
(1.42)
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where W (¢, y) = V(& — x, x), while the equations for £ and y are given by

oW (¢,
R=2E0 (1.43)
¢
3 3 AW (&,
— 0 x - ox _ Wi x) =0. (1.44)
2x ox
By taking the trace of (1.42), resulting in
306 3 oW kT
R=""F - 9 8dlé+ — - —, (1.45)
¢ 284" ¢ ¢

and plugging it into (1.43) and (1.44), we obtain a set of coupled differential equations

W) —EWe _x
3 3

1
O&+—a, xd" y + T,
2x

- . (1.46)
Dx—aa”){aﬂ){ - EWX =0,

where Wy = oW /9¢, W, = 9W /9. Note that £ is coupled to matter while y is not’. This

distinction has significant implications for the resulting cosmological dynamics.

NON-LOCAL GRAVITY. We now summarize the key aspects of non-local gravity theories.
Unlike their local counterparts, these models incorporate non-local operators into the
effective action to bridge gravity and quantum theory.

Depending on the form of the non-locality, such theories fall into two main fami-
lies: Infinite Derivative Theories of Gravity (IDGs) and Integral Kernel Theories of Gravity
(IKGs). IDGs employ analytic transcendental functions of the covariant d’Alembertian
operator O. For example, the model of [94] resolves classical black-hole and Big Bang
singularities [49]. By contrast, IKGs rely primarily on the inverse operator O0~'. First
studied in [19], it was shown that applying O~ to the scalar curvature R naturally drives
the late-time acceleration of the universe without invoking dark energy. In their quest
to unify gravity with the other fundamental interactions, IDGs provide a renormalisable
and unitary framework for quantum gravity [48], while IKGs address infrared quantum
corrections arising from quantum field theory in curved spacetime [95]. Despite these
attractive features, no existing local or non-local theory has yet succeeded in resolv-
ing all large-scale structure challenges while remaining fully compatible with current

observations.

3In this context, although the transformation & = ¢ + y may appear to artificially link the variables
£ and y, it in fact preserves the full dynamical content of the theory. This can be further confirmed by
deriving the equations of motion for the original fields directly from equation (1.40), for more details see
[54].
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Here, we focus in IKGs as we are interested in investigating cosmology. The inverse
d’Alembertian operator acts on curvature invariants [96], such as the Ricci scalar R.

Among the simplest models there is

£ =yglfi(R + (o' RO?R .,0"R)], (1.47)

where n is a positive integer. To make these non-local models analytically tractable, the
theory is treated in a local form by introducing auxiliary scalar fields — such as U; and La-
grange multipliers A; — which effectively encode the action of the inverse d’Alembertian
operator. This reformulation allows for the application of standard techniques in classi-
cal and quantum field theory. However, a key aspect of this theory is the identification
of propagating degrees of freedom and the detection of ghost fields — degrees of freedom
with negative kinetic energy — which signal a pathological instability in the theory [96].
The starting point is the non-local action (1.47). To localise it, the Lagrange multipliers

A; and auxiliary fields U; are introduced, which leads to

= / d4x\/—_g[fl(0) + Z_f(R -o)+ fo(Uy, ... U,
(1.48)
+ A (R—0Uy) + A, (U —aly) + ... + Ay (Up—y — OUy) |,

where we assume *f;/d0? # 0 in order to be on shell and 9f;/dU, # 0. The term f, by

itself does not introduce ghosts, provided the background theory (set by f;) is stable

o — 8_ﬁ >0
do

— >0

" (1.49)

The action (1.48) can be rewritten in the form

(/11+ fz)R+f1+f2— fa )LlDU1+Z/1 Uy — Uy |, (1.50)

i=2

s= [ axyg

in which le = 1. Since each U; depends on R and R = ¢ on-shell, it follows that
f2(Us,...,Up) = f2(Ui(0),...,Us(0)). Therefore, f, acquires an implicit dependence
on o through the auxiliary fields U;. We define

o= an+8 (L51)
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and we use the invertibility o = o(®, A1), to rewrite the action as

:/d4X\/—_g q)R'l‘ZVa/liVan-i-fl +fz(0'(q),/11))—((ID—/ll)O'((D,/ll)-FZ/liUi_l].

i=1 i=2
(1.52)

Under a conformal transformation g,, — g, = ® g, one finds

/d4x\/_

o 3_gba, DopD+ o Zg Pous dpUs — V (@, {A,,U})] (1.53)
where the potential is

= —[@-ao@a -5 - fz—ZA | (1.54)

Finally, we perform a field redefinitions

® = Mpqi, (1.55)
gj+1 .
Uj:ﬁ (j=1,...,n), (1.56)
M,
/1]' :Mpzj_l dn+1+j (] = 1,...,n), (157)

and the action takes the canonical form

/d4x\/_

-R-— 9 ‘Baafh 9Bq1 + — Zg Oaqn+1+j 95qj+1 — V(q1> - - -, Q2n+1)]
(1.58)

or equivalently, in the EF

SEF:/dx\/—[ R——gﬁG uqi Ipq1 — V(q)] (1.59)

with the indices (k,[) = {1, ..., 2n + 1}. The only nonzero components of the symmetric

field-space metric G¥ are

Gl = i, GJtLJtn —i, j=1,...,n. (1.60)

2q1 2q1
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At this stage, we perform the final field redefinition

Q2j+1 Q2jr1
g1 =01, qj+1 :sz—#, qj+14n = Q2j + é , J=1...,n (1.61)
In the new {Q} basis, the kinetic matrix diagonalises with
Gl = i, G2 = _l, G2IF12/+1 — L, j=1,...,n. (1.62)
2q; a1 44

Therefore, independently of the sign of g;, the theory always contains n ghost modes.

The only known exception is the particularly simple coupling model

L =+/—gR(@'R), (1.63)

which can be rendered ghost-free under the condition
6 7 (——1
—f(O0'R) > 1, (1.64)
q1

where q; is a field-dependent quantity [96]. In Chapter 6, we will further investigate
(1.47) and (1.63) within the hybrid metric-Palatini formalism, studying the implications

for cosmology.

1.2.2 SCALE-INVARIANT GRAVITY

Dilatation symmetry, often referred to as scale invariance, is the invariance of a sys-
tem under rescaling of spacetime coordinates and fields such that the action remains

unchanged. Under this global spacetime rescaling®, spacetime coordinates transform as

xt— xt =@ xH, (1.65)
where o is a spacetime-independent parameter. In particular, the primary focus will be
on scaling dimension (or weight), which is the power of the rescaling factor. Indeed, the

desirable property is to have a field that transforms as

$(x) = e (x) = e $(e”%), (1.66)

4 The term global it is sometimes referred to as rigid and indicates that the scaling factor is a constant
(as opposed to a local or position-dependent Weyl/conformal transformation where w would be replaced
by a function Q(x)).
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where A is the scaling weight. The inverse scaling factor e” appears in the argument be-
cause we place ourselves at x and then ask what the field configuration was at the point
we originated from — that is, the point obtained by applying the inverse transformation
to X, an active transformation in which the field is truly shifted. In four-dimensional
spacetime, classically invariant models are formulated under such transformations pro-

viding that each term in the action has a scaling weight of four. Since d*x — e *“d‘x
and /=g = 4/=g due to g,,(X) = g,,(e“x), employing (1.66)

e(2A+2)(u
£kin - 2 ap¢ap¢; (1.67)

we obtain A = 1. Focusing on the gravitational sector, note that the Christoffel symbols

and Ricci tensor transform under

Fﬁv(x) — e? F[,)V(e“’)?),

(1.68)
Ry(x) — ez“’Ryv(e”f).
This scaling behaviour results in an action that remains invariant [97], given by
1 A
S= [ d*xy=g Cgre L pe_ 1y 0 - ¢, 1.69
[ v (§ ore g - G0 - 39 (169)

where a non-minimally coupled scalar field with quartic potential is considered to pre-
serve the scale-invariance of the action. In this formulation, «, & and A are positive,

dimensionless parameters that can be constrained by comparison with data.

Another approach to discuss scaling is to keep the spacetime point fixed® but in-
troduce a rescaling of the spacetime metric tensor as g, (x) = e’f guv(x) and the field
transforms as ®(x) = e~# ®(x), where f is the scaling factor (different in general from
w). The invariance of the action (1.69) is still satisfied. Indeed, in a fully diffeomorphism-
invariant theory, the absence of dimensionful parameters in the action implies that the
theory has a global scale symmetry, then a spacetime dilatation is equivalent to an in-
ternal scaling, in the sense that they can not be physically discriminated because the
two classes of transformations act indistinguishably on the space of solutions. On the
other hand, in a theory that is invariant only under a restricted class of diffeomorphis,
e.g. in Unimodular gravity [98-101], the absence of dimensional parameters will guaran-
tee only invariance under dilatation. Clearly, performing both transformations (which

we call product symmetry) with the specific choice of e” = e, leaves again the action

SAn internal transformation is a change of the fields themselves at fixed spacetime points, without
modifying the coordinates.
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unchanged. This two-parameter structure forms an Abelian group®. The theory can be
seen as a special case of scalar-tensor theory in the JF.

This class of theories goes beyond mathematical elegance: scale-invariant gravity of-
fers a compelling framework to address fundamental open questions in modern physics

and cosmology. Several features make it particularly attractive:

« One of the long-standing puzzles in theoretical physics is the origin of fundamen-
tal mass scales, such as the Planck scale or the electroweak scale. In scale-invariant
theories, all such scales are absent at the classical level and emerge dynamically,
typically through spontaneous or quantum breaking of scale invariance. This pro-
vides a natural mechanism for scale generation, circumventing the need for in-

putting mass parameters by hand.

+ The inclusion of dimensionless couplings avoids the introduction of new mass
scales in the theory, which is crucial as it prevents the imposition of a “natural”
cutoff, such as the Planck scale, from the very beginning. The higher-derivative
terms (e.g. R®) add extra terms to the equations of motion for the gravitational
field. These terms modify the behaviour of gravity at very high energies and can
improve the way gravity behaves in the UV limit, especially when embedded in
more general frameworks like asymptotically safe gravity’ or conformal exten-
sions®. This opens pathways toward constructing a renormalisable or even UV-

complete gravitational theory without requiring full string theory machinery.

« Because all couplings are dimensionless, the theory is predictive. The parameters

&, a, A can be directly constrained using cosmological observables.

We will delve deeper into the connection between scale-invariant gravity and cos-

mology in Chapter 5.

®An Abelian group is a mathematical structure where elements can be combined using an operation
(e.g. addition or composition), and the result doesn’t depend on the order in which they are combined.

"In this framework, gravity becomes well-defined (renormalisable) at very high energies. It suggests
that the gravitational theory can be made finite at high energies, preventing the usual problems of infini-
ties, by fine-tuning the couplings [102, 103].

8Conformal extensions refer to theories where gravity may be coupled to other fields in a way that
respects conformal symmetry, allowing the theory to remain consistent and finite at high energies.



2 STRUCTURE AND DYNAMICS OF THE

ISOTROPIC UNIVERSE

The modern understanding of the Universe on the largest scales is built on the princi-
ples of homogeneity and isotropy, which are encapsulated in the cosmological principle.
These symmetries form the foundation of the Friedmann-Lemaitre-Robertson-Walker
(FLRW) metric, a solution to Einstein’s field equations that describes a spatially homo-
geneous and isotropic expanding (or contracting) universe.

This chapter introduces the mathematical and physical framework used to model
the large-scale dynamics of the Universe under the assumption of isotropy and homo-
geneity. We begin by constructing the FLRW metric in Section 2.1 and reviewing its
key geometrical features, including the classification of spatial curvature. We then go
through the Einstein field equations and show how they lead to the Friedmann equations
in Section 2.2, which govern the expansion rate as a function of the matter and energy
content of the cosmos. In Section 2.3, we explore the behavior of different components
of the ACDM model - such as radiation, matter, and vacuum energy — and how their
relative densities evolve with cosmic expansion. Special attention is given to the roles
of the Hubble parameter and the scale factor, which together characterise the Universe’s

expansion history.

2.1 THE ROBERTSON-WALKER GEOMETRY

In this section, we explore the properties of a homogeneous and isotropic universe,
whose spatial geometry is described by a maximally symmetric 3D space'. Our goal is to
extract cosmological insights directly from the structure of the spacetime metric without
relying on Einstein’s field equations. In particular, we focus on characterising particle
motion against an expanding background to establish its kinematic properties and to
shed light on certain phenomenological aspects of the observed Universe. Specifically,

we examine the motion of nearby galaxies (i.e. the Hubble law).

Which was studied long before by Gauss, Lobachevsky, and Riemann.

26
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In cosmology, the spacial geometry of such a universe is conventionally represented
by the Robertson-Walker (RW) line element.

2.1.1 KINEMATICS OF THE ISOTROPIC UNIVERSE

Even though our observable Universe is full of highly inhomogeneous structures
such as stars, galaxies and galaxy clusters, the fundamental assumption of modern cos-
mology is that it can be considered homogeneous and isotropic when viewed on suffi-
ciently large scales.

It is well established that any spatially homogeneous and isotropic spacetime that
evolves over time can be decomposed into space-like slices [104, 105]. Consequently,
we can represent our spacetime as a manifold M = R X ¥ where R denotes the time
direction and ¥ is a three-dimensional, homogeneous, and isotropic hypersurface. By
choosing a foliation where the time threading is orthogonal to these slices, the metric
satisfies go; = 0°. Furthermore, due to the homogeneity of spacetime, the time intervals
between the slices are the same everywhere. As a result, we can choose a universal time
coordinate ¢ such that gog = —1. These coordinates are known as comoving coordinates.
Notice that only a comoving observer (i.e. one at rest in these coordinates) perceives
the Universe as isotropic; any observer moving relative to these coordinates will detect
anisotropies — for instance, via the Doppler effect - since a non-zero velocity introduces
a preferred direction, breaking rotational symmetry.

The metric can be written as
ds® = —dt* + az(t)dlf{ , (2.1)

where the time-dependent dimensionless function a(t) is called the scale factor and dll%W

denotes the spatial line element of a three-space

dR?

R .

Al = hazvdx“dxﬂ =1_KkR + R%(d6* + sin® 0dp?), (2.2)
with R = a(t)r is the physical distance, 6 and ¢ being the usual spherical coordinates,
K(t) = k/a*(t) being the time-dependent curvature in terms of the scale factor and a

constant k. Thus, one can rewrite [106]

dr?

1—kr?

ds® = —dt* + aZ(t)[ + rdez], (2.3)

2If non-zero, the go; component would fix a preferred direction because it transforms as a three-vector
under spatial coordinate transformations.
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where dQ? denotes the metric of the unit 2-sphere. This metric is known as the Friedmann-
Lemaitre-Robertson-Walker metric and shows how the RW geometry forms the spatial
part of it. In (2.3), k takes one of the values {+1, 0, —1}. Depending on the sign of k, we
identify three distinct possibilities. When k > 0, space has positive curvature, corre-
sponding to a closed universe; if k = 0, the space is flat, representing a flat universe; and

when k < 0, the space is negatively curved, describing an open universe.

In the context of the ADM formalism [107], we can also express the metric in the

form

dr?

1—kr?

ds®> = —=N(t)%dt* + az(t)[ + rdeZ], (2.4)

where N(t) is the lapse function. This function controls the rate at which time flows
between different spatial hypersurfaces (constant-time slices) and dictates how proper
time is measured relative to the time coordinate ¢. Specifically, the lapse function relates

the proper time dz (1.2) and the coordinate time dt through
dr = N(t) dt. (2.5)

If N(t) = 1, the proper time matches the coordinate time ¢°. In this gauge, time and space
coordinates are treated differently since the scale factor a(t) multiplies only the spatial
line element. This becomes particularly important when studying the propagation of
light. For this reason, it is convenient to introduce conformal time 7 defined by
dt
dn= —, 2.6
1= 20 (2.6)
where t is the proper (or cosmic) time. When expressed in terms of conformal time, the
FLRW metric takes a more symmetric form
2 _ 2 2 dr? 20102 | cin2 2
ds® =a°(n)|—dn” + T2 + r°(d0° + sin” 6d¢~) |, (2.7)
where a(n) is the scale factor as a function of conformal time (note that this is the same as
working in the conformal gauge with N(t) = a(t)). This formulation is especially useful

for analysing causal structures and the behaviour of massless particles like photons.

3Here, coordinate time matches also cosmic time as the FLRW coordinates are chosen to follow co-
moving observers.
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2.1.2 PARTICLE MOTION

This subsection highlights an important aspect of how a particle’s momentum evolves

as it moves through a FLRW spacetime.

The path of a test particle in an expanding universe follows a geodesic (see (1.6))
determined by the FLRW metric (2.3). To understand the key effects, we focus on the
zero component of the geodesic equation

du’ a ,

—+ —u“=0. 2.8
ds+au (238)

Here, u? = azhﬁl‘;u“uﬂ is the squared magnitude of the particle’s spatial velocity. For

a massive particle, the 4-velocity satisfies u*u, = —1. Then, by substituting it into the

FLRW metric we obtain the normalisation condition (u°)? = u?+1, leading to the relation

u°du® = udu. Hence, (2.8) simplifies to
au 4, (2.9)
where we used u’ds = dt. This differential equation has a straightforward solution
U o —. (2.10)

If the particle has a rest mass my, then its momentum is p = myu, which also scales
inversely with a(t). This behaviour - commonly known as redshifting of momentum -
is a direct result of the Universe’s expansion. Importantly, this conclusion is independent
of the specific choice of affine parameter and thus holds even for massless particles like

photons. For photons, this leads to
E=p=—o -, (2.11)

where E is the energy and A is the wavelength. Consider a photon emitted at the time

and observed at the time ¢, the ratio of their wavelengths satisfies

— = =1+z (2.12)

where z denotes the redshift. Since a(ty) > a(t.) in an expanding universe, the observed
wavelength is longer than the emitted one, confirming the redshift effect. Additionally,
comoving distances between observers also scale with the cosmic scale factor, just like

photon wavelengths. Therefore, any physical length [;,ys must be understood as a func-
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tion of time via [,py(t) = a(t)l. This time-dependent nature of all physical scales reflects

the non-static geometry of an expanding universe.

2.1.3 THE HUBBLE LAW

In this subsection, we will explain how the recession of galaxies — observed as red-
shifts — is not due to actual motion through space but is instead a kinematical effect of
the expansion of the Universe described by the FLRW geometry.

Galaxies, modelled as free-falling, pressureless particles (i.e. dust), remain at fixed
comoving coordinates. Their apparent motion arises because the space between them
expands. This phenomenon - the Hubble flow - can be captured locally (for nearby
galaxies, z < 1) by the Hubble law

v = Hyd, (2.13)

where v is the apparent recessional velocity, d the proper distance, and H, the Hubble
constant. Its derivation involves expressing the scale factor near the present time t; as a
Taylor expansion

a(t) = ag + ar=y,(t — to) + ..., (2.14)

which, when plugged into the redshift (2.12) gives

a 1

— =——=1—-Hy(ty—t) + .., 2.15

e R (ICRD) (2.15)
in which the Hubble parameter is defined as H(t) = a/a, along with its present value, the
Hubble constant Hy = H(ty). To obtain (2.13) we need to connect the observed redshift
to the light travel time of the emitting galaxy. To relate this time interval to the distance,

we consider a null geodesic (light path, see (2.3))

fo dt Toodr
ML . — (2.16)
¢ oa(t) 0 1—kr?

that for a flat universe (k = 0) results in ¢ty — t = aor. This result leads to (ty — t) =~ d,

where d = ayr is the present distance to the source. We can then write
z=Hyd + ..., (2.17)

where we used the expansion 1/(1 + z) ~ 1 — z for z < 1. By treating the geometric
redshift of photons from a galaxy as a Doppler shift caused by a physical velocity v, we
recover the familiar form of Hubble law at low redshift (2.13). It may be extended to in-

clude higher-order terms in the expansion of the scale factor. However, the extension to
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higher-order terms raises subtle issues concerning the definition of distance in cosmol-
ogy and its determination. Recall that the physical (or proper) distance at cosmic time ¢*
between an observer at r = 0 and a source at comoving coordinate r is d(t)phys = a(t)r.
In practice, proper distance is not directly observable. Instead, cosmological distances
are typically inferred from standard candles — objects of known intrinsic luminosity, such

as Supernovae Ia. The luminosity distance d; relates to the proper distance via
dp =d(1+2z), (2.18)
and repeating the steps above, one can find that
1 2
H()dL =z+ 5(1 + QQ)Z + ..., (219)

where gy = —d/(a H?) at t = 0 is the deceleration parameter of the Universe.

THE HUBBLE LENGTH AND THE COSMOLOGICAL HORIZON. Here we introduce two fun-
damental length scales relevant to cosmology. The Hubble length, defined as

Ly(t)y=H'(t) = @ (2.20)

a()’
is the characteristic length scale associated with the expansion rate, representing the
typical distance over which causal processes can occur in a Hubble time® (i.e. H1(t)).

The cosmological horizon — or particle horizon — defined as

t g
dy = a(t) /o %, (2.21)
measures the maximum physical distance that light could have travelled since the begin-
ning of the Universe. The distinction between these two scales is crucial. Indeed, while
the Hubble radius defines a sort of causal boundary for local processes, the particle hori-
zon sets the limit on the size of the observable Universe. In particular, this implies that
spatial regions which are separated by more than one cosmological horizon cannot be
in thermal equilibrium. Also, since comoving distances are constant by definition (i.e.
dlpnys = a(t)dlrw), the ratio between the horizon and any given comoving distance de-
creases as we move backwards in time. In other words, objects that are in causal contact

today were not necessarily in causal contact in the past. We anticipate that the horizon

“Cosmic time is the proper time measured by comoving observers in an FLRW universe, and it serves
as the time coordinate that tracks the expansion of the universe.
5In our convention the Hubble time coincides with the Hubble length as ¢ = 1.
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paradox (explained in Section 2.3) is resolved in the inflationary scenario through an

early period of de Sitter expansion, as we will discuss in Chapter 3.

2.2 THE FLRW cosmMoLOGY

2.2.1 FIELD EQUATIONS FOR THE HOMOGENEOUS & ISOTROPIC UNIVERSE

The evolution of a universe described by the FLRW metric follows from Einstein’s
field equations. To understand how the Universe changes over time, we must define
its matter content, which is represented through the energy-momentum tensor (1.10).
For a universe that is homogeneous and isotropic, we will consider as a form for matter
that of a perfect fluid. The energy-momentum tensor of such a fluid includes only time-

dependent pressure P and energy density p, ensuring uniformity in space
T = (p + P)uyu, + Pgy,. (2.22)

For an observer moving with the fluid, the 4-velocity simplifies u, = (=1,0,0,0), and
the energy-momentum tensor becomes diagonal with components T#, = (—p, P, P, P).
Each fluid can be characterised by an equation of state w = P/p, where typical values for
ordinary matter obey the strong energy condition w > —1/3 (see [108]). The v = 0 com-
ponent of the energy-momentum conservation equation (1.13) leads to the continuity
equation

p+3Hp(1+w) =0, (2.23)

where w is the equation of state parameter. Solving this differential equation considering

w = const., gives the evolution of the energy density p in terms of the scale factor

p(t) = p(io)a(t) >+, (2.24)

where p(ty) is the present day energy density, and the scale factor is normalised so that
a(ty) = 1. This result shows how the energy density of a given component changes as
the Universe expands, with the rate of change determined by the value of w.

Let us examine four key types of perfect fluids commonly encountered in cosmology

and determine how their energy densities evolve with the scale factor, using (2.24).

Pressureless matter (dust). In this case w = 0, meaning the pressure P is zero. The energy
density then scales as p,, < a™>, reflecting the fact that, as the Universe expands, the vol-

ume increases and matter becomes more diluted. This description applies to ordinary
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baryonic matter after recombination® as well as to cold dark matter, which interacts pri-

marily through gravity and only very weakly (if at all) via other forces.

Radiation. When the fluid consists of highly relativistic particles, it is characterised by
w = 1/3. The energy density in this case scales as p, «c a~*. The additional factor of a™!
compared to matter, arises from the redshifting of particle energies due to their wave-

like nature as the Universe expands, since E « a™! (see (2.11)).

Cosmological constant A. Here w = —1, which violates the strong energy condition typ-
ical of ordinary matter. The energy density remains constant, py o« const, meaning that
energy is effectively created as the Universe expands — a behaviour fundamentally dif-

ferent from that of matter or radiation.

By substituting the FLRW metric (2.3) into the Einstein field equation (1.12), we ob-

tain )
2 a p kA
“\a) 3z a2 3
P (2.25)
i p(A+3w) A
a 6M? 3’

for the (tt)-component and (ij)-component respectively. These are referred to as the
Friedmann equations. However, we will occasionally refer to the latter specifically as the
“acceleration equation”. The first equation illustrates that the Universe expansion rate
is determined by the total energy density, the spatial curvature, and the cosmological
constant. When both A = 0 and k = 0, the presence of matter alone is enough to drive
expansion, ie. (a/a > 0). Meanwhile, the second equation shows that if A = 0, ordi-
nary matter that satisfies the strong energy condition leads to a decelerating expansion,
meaning d < 0.

The total energy content of the Universe is made up of a mix of the different fluid
components discussed above. Thus, the overall energy density and pressure can be ex-

pressed as the sum of the individual contributions
p(t) =D pi(t),  P() =) P(t). (2.26)

It is useful to introduce a density parameter for each component, defined as Q;(t) =
pi(t)/pc(t), where p.(t) = 3MI§H (t)? is the critical density. These individual parameters

contribute to the total density parameter Q(¢), which is related to the spatial curvature

SRecombination refers to the epoch when the expanding Universe cooled enough (T ~ 3000 K) for free
photon and electrons to combine into neutral hydrogen atoms.
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through the relation
Q(t) = Z Qi(t), Q1)+ Qu(t) =1, (2.27)

where Q(t) represents the curvature contribution. We define the various Q;(¢) at the
present time with the subscript 0 as Q;o = pio/pco Where the critical density today is
Peo = 3M1§Hg. This gives us the set {Q;0, @m0, Qk.0, Ca0} representing the present-day
energy density fractions of each cosmological component (i.e. radiation, matter, curva-
ture and cosmological constant). For simplicity, we will omit the subscript 0 when re-
ferring to present-day density parameters, unless it is necessary to highlight their time
dependence. Hence employing (2.20) and (2.12), the Hubble rate in (2.25) takes the form

H*(z) = HZ[Q(1+2)* + Qn(1+2)° + Qu(1+2) 72+ Qu. (2.28)

2.2.2 ASYMPTOTIC SOLUTION TOWARDS THE B1G BANG

Once the relation (2.24) is specified, the Friedmann equation can be solved exactly,
resulting in the power-law scale factor behaviours discussed above. In the limit a —
0 - i.e approaching the Big Bang — and for any fluid with w > —1/3, the curvature
contribution becomes subdominant with respect to the energy density. Accordingly,

one may write

H? ~ %a*“*w), (2.29)
3 P
which yields
2
ARG 2Mp
a(t) == , = —=r 2.30
© (t) L+ w3, (230

where t is an integration constant, usually taken to be the age of the Universe to ensure
the scale factor today is fixed to unity. This solution shows that for any equation-of-state
parameter satisfying w > —1, the scale factor goes to zero as t — 0, and the energy

density diverges according to

2
4M

e (2.31)

p(t) =
thereby signalling a diverging solution towards the Big Bang (in this framework, space-
time is geodesically incomplete; this means that geodesics (1.6) cannot be extended to ar-
bitrary values of affine parameter in the past direction). Introducing the reduced Planck

time tp = M;"' and reduced Planck density pp = t;* = 0(10'7GeV/cm?), one may
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equivalently write

2
pp Ip
)=————|—] . 2.32

P 67[(1+w)2(t) (2:32)
This form shows that for t < tp, classical Friedmann evolution must be replaced by a
quantum-gravity description or alternative mechanisms as big bounce or cyclic universe,

which we will discuss in Section 3.5 and in particular in Chapter 7.

2.3 Tuae ACDM MODEL

The determination of cosmological parameters relies on a variety of assumptions,
including the choice of data sets, prior distributions, and analysis techniques. In what
follows, we quote present-day values for the energy density parameters of radiation,
matter, spatial curvature, and the cosmological constant as obtained from fitting Planck

temperature, polarisation, and lensing data within the six-parameter ACDM model [9]

Q, =(9.02+0.21) x 107>,  Q,, =0.3153 + 0.0073, (2.3
2.33
|Qkl <5%x107%,  Qu =0.6847 + 0.0073,

with quoted uncertainties corresponding to the 68% confidence level (CL) and upper
limits at 95%. These values indicate that approximately 70% of the Universe’s energy
content is in the form of dark energy — an unknown component with an equation of
state parameter measured as w = —1.03 + 0.03 (68% CL) based on combined Planck,
Pantheon Supernovae, and BAO data [9]. This result is consistent with dark energy
behaving like a cosmological constant A, justifying the interchangeable use of the two
terms. A large value of Q, is required to account for the observed accelerated expansion
of the Universe, a phenomenon first discovered in 1998 through observations of type Ia
supernovae [10, 109] and later confirmed by Cosmic Microwave Background (CMB) data
from WMAP [110].

Despite its success in explaining cosmic acceleration, the introduction of A raises
theoretical challenges. The nature of dark energy remains unknown - it could stem from
physics beyond the Standard Model or modifications to general relativity, as explored in
alternative gravity theories (see [52, 111] and Subsection 1.2.1). A natural candidate is
vacuum energy, yet quantum field theory predicts its magnitude to be vastly larger than
what is observed, leading to the so-called cosmological constant problem — a major open
issue in contemporary physics [112].

Matter accounts for roughly 30% of the total energy density today, but only about
5% of this is ordinary, baryonic matter (Q;, = 0.049). The majority is cold dark mat-

ter (CDM), with Q. = 0.262, a non-relativistic form of matter that interacts primarily
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Figure 2.1: Dimensionless energy density p;(t)/pc, plotted against the scale factor (in log scale),
showing the evolution of radiation, matter, and the cosmological constant in the ACDM model.
The dashed grey lines indicate the point for which p, = p,, and the transition to the dark-
energy-dominated era, respectively.

through gravity and, at most, weakly through other forces. Its presence is crucial to the
formation of large-scale structures in the Universe and is supported by evidence from
galaxy rotation curves, gravitational lensing, and the dynamics of galaxy clusters [113].
However, the fundamental nature of CDM particles remains elusive, and understanding

their properties is a key focus in modern cosmology.

Radiation contributes only a tiny fraction of the current energy budget, primarily
in the form of CMB photons. Observational constraints also suggest that the spatial
curvature of the Universe is extremely small, favouring a flat geometry. The smallness
of both Q, and Qj implies that Q4 and Q,, approximately add up to 1, consistent with
the ACDM framework (2.27).

Using these measured values (2.33) and (2.24), we can determine the evolution of

different eras of the Universe

i(t
pl) _ Q;a(t) 30+, (2.34)
PC,O

as depicted in Figure 2.1. The logarithm of the energy density parameters for radiation,
matter, and dark energy is plotted as a function of the scale factor a(t). Initially, radiation
dominates and its energy density decreases rapidly until it becomes equal to that of
matter — a time known as matter-radiation equality a.q(t). Thereafter, the Universe

enters a matter-dominated phase, followed by a transition to the dark energy-dominated
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era as the matter density drops below p,. This sequence outlines the thermal history of
the Universe and complements the earlier discussion at the beginning of Section 2.2.
As the simplest cosmological model, ACDM relies on just six parameters to accu-
rately fit current observational data and has demonstrated remarkable agreement with
measurements over the past two decades’. Despite its success, the physical origin of the
cosmological constant remains unclear, and the fundamental nature of dark energy and
dark matter — which together account for approximately 95% of the Universe’s total en-
ergy content — continues to pose a major challenge for modern cosmology, highlighting

the need for further theoretical and observational investigation.

2.3.1 PuzzLEs WITHIN THE BiG BANG COSMOLOGY

While the standard Big Bang cosmology, together with the Universe composition as
prescribed by the ACDM model, elegantly describes a broad range of observations — from
primordial nucleosynthesis to today’s accelerated expansion — it nevertheless hinges on
exquisitely special initial conditions. In particular, the early Universe would have had to
be arranged so that causally disconnected regions share the same temperature, its spatial
curvature would have been vanishingly small, and unwanted topological defects®would
have been essentially absent.

To see how acute this fine-tuning is, we can divide it into three classic Big Bang puz-
zles and, as we will see, a mechanism that solves one of them (dubbed horizon problem,
as explained below) automatically resolves the others. However, the Big Bang singular-

ity itself is not resolved by that mechanism.

HORIZON PROBLEM. One of the major puzzles in standard Big Bang cosmology stems
from the extraordinary uniformity of the cosmic microwave background (CMB). Mea-
surements show that the CMB exhibits an almost perfect blackbody spectrum at a tem-
perature of T = 2.725 K, with temperature fluctuations suppressed to a level of AT/T ~
107>, see Figure 2.2.

Despite this remarkable isotropy, standard radiation — or matter — dominated expan-
sion predicts that regions separated by more than a few degrees on the sky at the time
of recombination could have never been in causal contact. The observable homogeneity,
therefore, cannot be the result of local causal processes within the conventional Hot’ Big

Bang framework. The issue becomes evident when considering the concept of the parti-

"It may now be facing its first significant test, as discrepancies in measurements — such as of the Hubble
constant Hy and weak lensing - challenge its framework (see [9, 114-130] and [131-137] respectively).

8Monopoles are a type of topological defect. For further details, see [138-140].

9The word “Hot” refers specifically to the standard cosmological model describing the Universe after
it became extremely hot, dense, and began expanding from an early relativistic thermal state.
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Figure 2.2: Red and blue regions indicate hotter and cooler spots, respectively, in the
Planck 2018 map of the CMB temperature anisotropies [141].

cle horizon (2.21), which defines the maximum comoving distance that light could have
travelled since the beginning of the Universe. In a spatially flat (k = 0) FLRW metric, the

spacetime interval can be written as
ds* = a*(n)(=dn* + dr?), (2.35)

for particles travelling in the radial direction. For a photon trajectory (i.e. ds* = 0), the

comoving distance'’ travelled by light between two conformal times (2.6) is

A —/af@ (2.36)
n= . aH .

Here, (aH)™! is the comoving Hubble radius. By using (2.24), it can be rewritten as
3
(aH) ™ = (Hyeetgse ) 1ad 0+, (2.37)

Inserting (2.37) into (2.36) yields

§ arec
(Hreeatl ™) 1gz(+3w)| (2.38)

1+ 3w 0

Alrec =

For any fluids satisfying w > —1/3, the early time contribution (i.e. a = 0) vanishes and

the integral evaluates to

2 _
A’7rec = m(Hrecarec) 1’ (2-39)

19The maximum distance a CMB photon could have covered stretches from the initial singularity, where
a = 0, up to the time of recombination a,.. when the CMB was emitted.
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which is manifestly finite. In other words, before recombination the particle horizon
spans only a limited comoving distance. Consequently, photons emanating from widely
separated points on the last-scattering surface could not have been in causal contact un-
der standard Big Bang evolution. To quantify the largest angle on the sky over which
causal contact was possible, one defines twice the comoving particle horizon at recom-
bination (see footnote 6)

Alprec

Qcasual = 2ghor = zd—’ (2-40)
A

where d, is the comoving distance from us to the last-scattering surface. Equivalently,

converting the notation to the redshift z,

i :’c dz/H(z)
J7 dz/H(2)

Ocasual = ~ 2.3 deg, (2.41)
obtained by considering (2.28) and (2.33) with z,. = 1080. Thus, any two points on
the CMB separated by more than ~ 2 deg could have never exchanged signals prior to

recombination under the standard model, see Figure 2.3.

Mo

anC
ni /\
Figure 2.3: Spacetime diagram of comoving coordinate r vs conformal time 7. The past light

cones of two CMB photons (A and B), both observed today at O, fail to overlap if one follows
the Big Bang history — underscoring the horizon problem.

FLATNESS PROBLEM. The Friedmann equation (2.25) relates the expansion rate H to the
energy density p and the spatial curvature k. Taking into account the definition of the

density parameter (2.27), we can relate

k

Qk = 1—Q(t) :_((,I—H')Z.

(2.42)
Thus, the deviation from flatness grows with time because aH typically decreases in a
decelerating universe. Maintaining |Qo — 1| < 1072 today [9] would require an extraor-

dinarily fine-tuned initial condition. Indeed, considering that the Universe is matter-
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dominated just before and around zeq ~ 10, we use the matter-era scaling to obtain
|Qeq = 1] ~ [Q0 — 1](1 + zeq) ™ < 107°. (2.43)

At early times (e.g. Planck time), |Q — 1| must have been incredibly small, of order of
107%, This extremely small number reflects how precisely the initial conditions must be
fine-tuned for the Universe to remain nearly flat, and highlights the need for a mecha-

nism that dynamically enforces or preserves flatness.

MONOPOLE (RELICS) PROBLEM. Despite theoretical expectations, magnetic monopoles
have never been observed [142] — an inconsistency that the standard Hot Big Bang cos-
mology cannot readily explain. This constitutes the so-called monopole problem. Grand
Unified Theories (GUTs) [143, 144], which are extensions of the Standard Model based
on larger gauge groups and expected to unify the fundamental interactions at energies
above 10'¢ GeV, predict the copious production of magnetic monopoles during the spon-
taneous symmetry-breaking phase transitions as the Universe cools [145-147]. Without
a mechanism to suppress them, the resulting monopole abundance would vastly exceed
observational limits, leading to a catastrophic overclosure of the Universe. However,
given our limited understanding of physical processes at extremely high energies, the
monopole problem remains a subject of debate. Indeed, it is not universally accepted as

a major shortcoming of the standard Hot Big Bang theory.



3 THE THEORY OF INFLATION

In the early 1980s, the idea of cosmic inflation revolutionised our understanding of
the Universe’s earliest moments. Originally proposed by Alan Guth in 1981 [7], inflation
describes a very brief period of extremely rapid and accelerated expansion that occurred
just after the Big Bang. Driven by the potential energy of a scalar field known as the
inflaton, this expansion stretched space by an enormous factor in a fraction of a second.
The motivation for inflation arose from several fundamental puzzles left unresolved by
the standard Big Bang cosmology. As mentioned in Section 2.2, there were three main
issues that needed to be addressed. The horizon problem asks why distant regions of the
cosmic microwave background (CMB) have almost identical temperatures despite never
being in causal contact in standard cosmology. The flatness problem concerns the ques-
tion of why the Universe today appears so close to spatial flatness, requiring an extraor-
dinary fine-tuning of initial conditions. The monopole problem arises from the absence
of hypothetical relics like magnetic monopoles, which are predicted by grand unified
theories but have never been observed. While Guth’s original old inflation model solved
these problems conceptually, it introduced a new issue known as the “graceful exit prob-
lem”. In this model, the Universe expands exponentially while trapped in a false vacuum
(a high-energy state) which is a local but not global minimum of the potential; quantum
tunnelling allows the field to overcome the energy barrier and transition to the true vac-
uum (a low-energy state), but this process occurs non-uniformly, forming tiny spherical
“bubbles” of true vacuum that spontaneously nucleate within the surrounding false vac-
uum. To exit inflation, bubbles of the true vacuum must form and collide to reheat the
Universe. However, if the bubble nucleation rate is too low, as required for sufficient
inflation, the bubbles remain rare and widely separated due to rapid expansion. They do
not merge efficiently, leading to large inhomogeneities. This makes it impossible to end
inflation smoothly and uniformly across space. This led to two key developments. An-
drei Linde’s new inflation and later chaotic inflation models [148] introduced the idea that
inflation could happen via the slow-roll of a scalar field down a gently sloping potential,
avoiding violent bubble collisions and ensuring a long enough inflationary phase. Alexei

Starobinsky independently proposed a model of inflation [39] based on modifications of

41
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Einstein’s gravity, adding an R? term to the gravitational action (essentially working
with an f(R) = R + R? model, see (1.69)), which we will discuss in Section 3.4. This led
to an exponential expansion without invoking a scalar field directly, and its predictions
remain remarkably consistent with current observations. Together, these approaches
established inflation as a dynamical and predictive framework. Quantum fluctuations of
the inflaton field, stretched beyond the Hubble radius during inflation, become frozen
and re-enter later as classical perturbations, seeding the formation of large-scale struc-

ture and imprinting the nearly scale-invariant spectrum observed in the CMB.

This chapter explores these foundational aspects of inflation in detail. We start with
Section 3.1, where we explore: classical dynamics of single-field inflation, the successes
of inflation in explaining the large-scale homogeneity, isotropy, and flatness of the Uni-
verse; the slow-roll approximation, a regime where the inflaton potential energy domi-
nates over its kinetic energy, leading to quasi-exponential expansion; the crucial phase
of reheating where the inflaton decays and transfers its energy into radiation and matter,
smoothly connecting inflation to the standard Hot Big Bang evolution. In Section 3.2 we
explore the generation of inflationary perturbations, namely how quantum fluctuations
during inflation translate into temperature anisotropies in the CMB and ultimately lead
to the cosmic structures we see today. In Section 3.3 we introduce multifield models,
where more than one scalar field drive inflation, enriching the dynamics and allowing
new observational signatures. We then focus on modified gravity in the inflationary con-
text in Section 3.4, in particular on the Starobinsky model of inflation. We also discuss

alternatives to inflation in Section 3.5.

3.1 CLASSICAL DYNAMICS OF SINGLE-FIELD INFLATION

We begin with the action for a scalar field ¢ [7, 106, 149-155] — commonly called the

inflaton — minimally coupled to gravity

s = [axvgly - 0magad-ve). (1)

where R is the Ricci scalar and V (¢) the inflaton potential. In this chapter we set M3 = 1,
and assume spatial homogeneity, ¢ = ¢(¢). The energy-momentum tensor (1.10) follows

from variation with respect to g*”,

Ty = 04 0vp — Guv|5 977 0p s + V(9)|. (3.2)
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~~o

Slow roll

Reheating

_____

Figure 3.1: The typical shape of a good inflationary potential.

In a FLRW background, once (3.2) is contracted with the inverse of the metric T =

Ty,g’*, its (00) and (ij)-components yield

Ty = —p, T! = P&, (3.3)

where
p=2 8 +V($), (3.9)
P=_ -V, (3.5)

with dots denoting time derivative. Inflation requires potential domination

%gb'z < V(¢), (3.6)

which implies that the inflaton field rolls slowly down its potential, see Figure 3.1. Conse-
quently, inflation under this assumption is referred to as slow-roll inflation. The equation-

of-state parameter is then

390 -V(9)

. ~ -1, 3.7
292+ V(9) &0

violating the strong energy condition w > —1/3 (see [108]) and driving accelerated ex-
pansion. Indeed, by means of (2.24), an almost constant energy density, p =~ const,

implies an almost constant Hubble rate, so that the Universe undergoes exponential ex-
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pansion. The scale factor evolves as
a(t) = ay e i), (3.8)

describing a quasi-de Sitter spacetime, where a;, is the scale factor at the onset of this

phase, t;,. In a spatially flat universe (cf (2.3) with k = 0), the Friedmann equations read

# = (5§ + V). (3.9)

. 1 1.
H=->(p+P)=—=¢*. (3.10)
2 2
Differentiating the first and using the second yields the inflaton equation of motion,
¢ +3Ho +V'(¢) =0, (3.11)

also known as the Klein-Gordon equation, where V'(¢) = dV /d¢. Given V(¢) and initial
conditions, these determine ¢ (¢) and H(t) dynamically. Inflation ends once % $* < V(9)

is no longer satisfied and w > —%.

3.1.1 Success OoF INFLATION

In Subsection 2.3.1 we demonstrated that cosmological fluids satisfying the strong
energy condition — that is, with an equation of state parameter w > —% — lead to a
finite comoving particle horizon. Specifically, for a constant w > —%, the contribution
from the lower limit of integration a = 0 vanishes (2.38), implying that the earliest
contributions to the conformal time are negligible yielding a finite comoving horizon at
recombination (2.39). However, the situation changes dramatically if the Universe was
instead dominated at early times by a fluid with w < —%. In that case, the early-time

contribution to the integral diverges

-1
2 3 (1+w) 1
ni= 1+ 3w (Hrecarzec ) a2(1+3W)

— —o00. (3.12)
a—0
If this phase persists long enough, it allows previously casually disconnected regions
(A and B in Figure 3.2) enough conformal time to become casully connected — thereby
offering a resolution to the horizon problem. Indeed, by extending the conformal time
back to n; = —oo, the past light-cones of two distant CMB photons (labelled as A and B in
Figure 3.2) now intersect prior to the standard Big Bang evolution, within a new phase
starting at 7i, and ending at 7epq, during which the strong energy condition is violated.

The key physical consequence of the strong energy condition violation is the behavior
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of the Hubble radius (2.20). In this regime, the Hubble radius decreases with time
d (aH)™' <0 (3.13)
—(a . )
dt

Using the definition of the Hubble parameter H(t) of (2.20), the above condition implies

g

— >0, (3.14)
a

which is the signature of an accelerated expansion. Thus, a shrinking Hubble radius -

associated with a phase where w < —% - not only alters the causal structure of the

Universe but also corresponds to a period of inflationary-like growth that can solve the

horizon problem.
&>
e}
To
Standard Hot Big Bang evolution
A B
TTI'EC
Nend T v
Inflation

Min

n‘ = -0

Figure 3.2: The figure shows two CMB photons, emitted (or last scattered) at points A and B
and observed today at point O. The horizon problem is resolved by introducing an early phase
of cosmic evolution — preceding the standard Big Bang expansion — in which the Universe is
dominated by a fluid with an equation of state parameter @ < —1/3. This phase, occurring
between the initial singularity and the onset of standard cosmology n;n, allows for causal contact
between regions A and B that would otherwise be casually disconnected.

The resolution of the flatness problem is rooted in the dynamical evolution of the
density parameter Q during this inflationary de Sitter-like expansion, as the deviation
from flatness (2.42) shrinks rapidly. Specifically, the relation between its initial and final

values is given by

Qe — 1] = |Q; — 1]e™?F, (3.15)
where
aend Nend Tend
N =log :/ dN = H(t)dt, (3.16)
QAini N; tin
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is the number of e-folds of inflation measuring its duration, namely the number of times
the Universe expands by factor of e. Following the end of inflation, Qj begins to grow
again, scaling as a® during the radiation-dominated era and as a during the matter-
dominated era. Assuming the standard Friedmann evolution begins at the Planck scale,
the curvature term is amplified by roughly a factor of 10%° between the end of inflation

and today. This yields the estimate
Q0 — 1] = 10°|Q; — 1]e™N < 1072, (3.17)

where the inequality reflects current observational bounds on the spatial curvature.
Solving this condition places a lower bound on the number of e-folds required for infla-
tion to resolve the flatness problem: N = 65. In other words, 65 e-folds are needed to
dynamically flatten the Universe to the precision we observe today, providing a natural

explanation for its near-flat geometry.

3.1.2 THE SLOW-ROLL APPROXIMATION

Analysing the dynamics of the inflaton field under the slow-roll condition (3.6) en-
ables the derivation of approximate analytical solutions. The slow-roll approximation is
most effectively described through a hierarchy of small parameters derived either from
the inflaton potential V(¢) or from the Hubble rate H(¢) during inflation. Therefore,
starting from (3.9), we have

3H? ~ V(¢). (3.18)

Then, we can rewrite (3.6) into the equivalent form

|H|

D) < 1. (3.19)
Moreover, taking the derivative of (3.18), and using the above, we also obtain

V'(¢) ~ —3H¢, (3.20)

implying |¢| < 3H|¢@|. Thus, it is useful to introduce the following potential slow-roll

parameters as

1(V'\° v (3.2
ey==—1—1 , = —, .
Y=o\ W=y

V/ V/// V/Z V////
£ = , o) = : (3.22)

V2
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Another useful hierarchy is defined as

H dlog €i—1

- 0 = ———— . 3.23
HZ %7 Tdlogk (3.23)

€ =
At leading order in the slow-roll expansion, the potential slow-roll parameters can be
related to the Hubble rate hierarchy through ¢y ~ ey, €; ~ 4ey —2ny. Unlike the potential
parameters, the {¢;} parameters are more directly linked to the background dynamics.
Throughout the slow-roll regime, all of these quantities are expected to remain small,
with the limit 1 > |ey| = |eg| — 0 signalling the onset of inflation.

The parameters ey and ny characterise the shape of the inflaton potential and con-
trol the dynamics of inflation. Specifically, ey measures the flatness of the potential and
determines the ratio between the kinetic and potential energy of the inflaton, while ny
quantifies the curvature of the potential and affects the acceleration of the field. When
ev, |nv| < 1, the friction term 3H¢ in (3.11) dominates the Klein-Gordon equation, lead-
ing to a quasi-exponential expansion (see (3.8)). In this regime, the slow-roll solution acts
as an attractor [156], meaning that the dynamics of the inflaton rapidly converge to the
slow-roll trajectory regardless of the initial conditions, ensuring a period of sustained

inflation and generating a nearly scale-invariant spectrum of perturbations.

3.1.3 REHEATING

When the inflationary condition (3.18) breaks down, inflation ends, and the inflaton
field typically rolls into a potential well (see Figure 3.1) and starts to oscillate around
its minimum, where it decays leading to particle production. This phase is known as
reheating [157-164], and plays a crucial role in filling the Universe with particles.

During inflation, the Universe undergoes exponential expansion, smoothing out cur-
vature and inhomogeneities. However, this process also dilutes any pre-existing matter
or radiation, leaving the post-inflation Universe nearly empty and dominated by a co-
herently oscillating scalar field. At this stage, the Hot Big Bang conditions have not yet
been realised: there are no particles or radiation, only an enormous amount of energy
stored in the scalar field which solves the monopole problem (by diluting any previ-
ously produced magnetic monopoles to negligibly low densities). Because the energy
density during inflation remains nearly constant, the total energy E; = pVj increases ex-
ponentially with the volume of the Universe. When inflation ends and the inflaton field
begins to oscillate, this energy can be efficiently converted into radiation and particles
— a process that depends on the specific form of the scalar potential and how the infla-
ton couples to matter. Typically, reheating occurs rapidly, as we show below. During

the oscillatory phase, if the potential is approximately quadratic near its minimum (i.e.
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V(g) = m72¢2)’ the inflaton behaves like a simple harmonic oscillator
¢ +m?p ~0. (3.24)

Solving this equation alongside the Friedmann equation (2.25), we obtain the time-dependent

solution

o(t) = gH cos(mt), (3.25)

describing rapid oscillations of the inflaton field — as the mass becomes large — about
the potential minimum with frequency set by the mass m. During this phase, the Hub-
ble time H™! is much longer than the oscillation period m™!, allowing us to neglect the
Hubble damping term in the equation of motion. Substituting this solution into the
expression for the pressure of the inflaton field (3.5), and averaging' over several oscil-
lations yields

(P) =3H*(1 — 2 cos®(mt)) ~ 0. (3.26)

This shows that the inflaton, when oscillating in a quadratic potential, behaves like a
pressureless, non-relativistic fluid — effectively cold matter. Hence, the equation of state

during reheating is w = 0. The duration of reheating, measured in terms of e-folds
ANyp = Nip — Nends (3.27)

depends on both w and the energy density at the end of reheating py,. It is given by

(3.28)

ANI'h pend ):

= 3(1+w) og( Prh

where penq is the energy density at the end of inflation. In the typical case where w = 0,

reheating mimics a matter-dominated epoch.

We can write the energy continuity equation for the inflaton, considering (3.5), as
3H -
p+3Hp =—3HP = 7(mzqs2 — $?). (3.29)

It gradually loses energy and the right-hand side averages to zero over one period by

means of (3.26), yielding the long-term behavior

(p) + 3H(p) = 0. (3.30)

It is evident that this equation describes a matter-like decay of the energy density. As

"We use the angular brackets to represent averages in this chapter.
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the inflaton continues to oscillate near the minimum, it may decay into other particles.

If this decay is slow, the energy evolution is modified as

(p)+ BH +T){p) =0, (3.31)

where I represents the decay rate of the inflaton and the term —I'(p) accounts for the
energy transferred to the produced particles. In some cases, especially when the inflaton
decays into bosons, this process can be highly efficient and non-linear, a regime known
as preheating”. Eventually, the particles interact and thermalise, restoring equilibrium at

a certain temperature. This marks the transition to the standard Hot Big Bang evolution.

3.2 INFLATIONARY PERTURBATIONS

The origin of primordial perturbations lies in the quantum nature of the inflaton
field during inflation. While the inflaton field ¢ evolves classically along its potential
V(¢), it also experiences small quantum fluctuations around its classical trajectory. Due
to the rapid expansion of the Universe during inflation, these quantum fluctuations are
stretched to superhorizon scales, where A,nys > Ly and they effectively become classi-
cal because they lose causal contact, undergo decoherence and freeze in amplitude [21,
165-167]. These classicalised fluctuations provide the seeds for the primordial power
spectra of scalar and tensor perturbations — ultimately leading to the formation of cos-
mic structures [149, 151, 168, 169]. To rigorously describe these quantum fluctuations,
it is necessary to account not only for perturbations in the inflaton field §¢ but also for

perturbations in the spacetime metric [106, 170-172]
ds® = —(1 + 2A) dt* + 2a(t)B; dx'dt + a*(t) [ (1 - 2¢/)5;j + 2E;;| dx'dx/, (3.32)

where A is a scalar defined on spatial slices which transforms as a scalar under spatial
coordinate transformations (sometimes also called 3-scalar), ¢ is a 3-scalar called spatial
curvature perturbation, B; = 0;B—S; is 3-vector named shift and E;; = 20;;E + 29(;F;) + h;;
is the 3-tensor shear [8]. For a full description of these quantities see [106]. Interest-
ingly, at linear order, the combination of a fixed gauge choice and the linearised Einstein
equations relates the metric and scalar field perturbations in such a way that the sys-

tem reduces to a single physical degree of freedom governing the dynamics [152, 173].

2During preheating, the oscillating inflaton causes the effective mass of the coupled bosonic field to
change periodically in time [106, 157]. This time-dependent mass acts like a driving force that can reso-
nantly amplify specific momentum modes and certain wavelengths of the bosonic field get “pumped up”
much more than others. This selective growth leads to a rapid increase in the number of particles and it
is called parametric resonance [157].
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A convenient approach is to work in the spatially flat gauge, where the curvature of
constant-time hypersurfaces vanishes and the spatial part of the metric remains unper-
turbed

Y =0, and E;; =0, (3.33)

therefore the spatial metric reduces to h;; = a*(t)8;;. This is a gauge choice: vector
and tensor perturbations are still present in general, but at linear order they decouple
from the scalar sector and are neglected in the following analysis. Hence, the dynam-
ics of scalar perturbations are captured entirely by d¢ at linear order which allows us
to treat it as the only independent physical degree of freedom. We can treat the infla-
ton perturbations as massless as the potential is nearly flat (3.6) so that the field mass
is small compared to the Hubble scale (i.e. m; = V”(¢) < H?(t)). This simplifies the
equations and captures the essential physics of how quantum fluctuations evolve during
inflation®. The total field is then expressed as a sum of the background and its (gener-
ally not homogeneous) perturbations ¢(¢,x) — @(t) + d¢p(t,x). Since §¢ is spatially
inhomogeneous, its dynamics must include spatial derivatives. The exact equation of
motion for the perturbations comes from expanding the full Klein-Gordon equation in

an expanding spacetime, including metric perturbations,
8¢ +3HS$ — a 2V25p + V' ($)dp + - =0,

where the dots represent additional terms arising from the coupling between d¢ and
metric perturbations (e.g. terms proportional to ¢ i/ or AV’(¢)).

Under the slow-roll approximation and by neglecting metric perturbations to leading
order, these additional terms are small compared to the dominant kinetic and gradient
terms. Similarly, the inflaton mass term V" (¢) 8¢ is negligible compared to H25¢ due to
V”(¢) < H?(t). Therefore, the equation reduces at leading order to

8¢ +3HS¢ — a 2V?6¢p =0, (3.34)

which is the massless, minimally coupled* Klein-Gordon equation in an expanding uni-
verse.

During inflation it is convenient to switch to conformal time (2.6), so that the scalar-field
perturbation satisfies

5¢" + 2254 — V2s¢ =0, (3.35)
a

3Later in the section we will discuss also the massive case
*Perturbations only feel the usual Hubble friction from the expanding metric, not additional curvature-
dependent forces.



3.2. Inflationary perturbations 51

and one proceeds to quantise by promoting d¢ to an operator and expanding in Fourier

modes,
d*k
(27)3

with creation and annihilation operators satisfying

8¢ (1, %) = [81c(m)bice™™ + S () by e~ ], (3.36)
[by. b1 = 8°(k - K), [b.b,] =0. (3.37)
Each mode d¢y then follows
S, + 250 + k2S¢ = 0, (3.38)
a

where k? = |k|? is the spatial Euclidean amplitude, and defining the Mukhanov variable
ur(n) = a(n)d¢k(n) [21, 174], one casts the dynamics of the Fourier modes as

’”

up + (k2 - %)uk = 0. (3.39)

This equation can be considered the generalisation of the Klein-Gordon equation in an
expanding universe. To define the initial vacuum state of quantum perturbations, we

take the UV limit where k* > a”/a (i.e. the Universe’s expansion is low) and (3.39)

reduces to
up + k*uy =0, (3.40)
with general solution
1 . .
ue(n) = —=(axe™ + Pre™). (3.41)

Vak

All of the physical information about a given mode is encoded in the constants o and
Br, whose values are fixed by imposing boundary conditions on the perturbations in the
UV regime. In fact, the canonical commutation relations for (l;k, l;;) translate into the

requirement that the mode functions satisfy the Wronskian normalisation
W (e, wp) = we(u) = (up)'ue =i, - lol” = 1Bl = 1, (3.42)

exactly as in flat Minkowski space. However, this single constraint does not fully deter-
mine o and f; a second, physically motivated condition is needed to select a unique
vacuum in an expanding FLRW background. We require that, in the limit  — —oo (at
the very beginning of inflation), modes with wavelength A ~ 1/k are much smaller than
the Hubble radius (i.e. subhorizon modes). In this regime, the effects of spacetime cur-

vature are negligible, and physics should approximate that of Minkowski space. Thus,
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each mode reduces to the familiar positive-frequency Minkowski solution. This singles
out @y =1, fr = 0 so that

e—ikr]

o

The above is what defines the Bunch-Davies vacuum in inflationary cosmology. It is

ur(n) — (3.43)

not the only discussed choice in literature (see e.g. [175-178] and Chapter 7), but it is
of course the most reasonable choice as it does not require extra physics to generate
an exited vacuum. It guarantees that at the earliest times, when all modes are deeply
subhorizon, there are only the standard quantum vacuum fluctuations. In the infrared

limit (or superhorizon scales k? < a”/a), one finds

144

u — a—uk =0, (3.44)
a
whose solution
ur(n) <a(n) — ¢ = const, (3.45)
demonstrates mode freezing”. In a de-Sitter space, where a() = —(Hn) ! and a”’/a =
2172, (3.39) becomes
2
u + (k2 + —z)uk =0, (3.46)
n
whose general solution is
up = &e_ik”(l - i)+ieik’7(l + L), (3.47)
Vek kn] ~2k kn

and with the Bunch-Davies choice simplifies to

e_ik”(1 : ) (3.48)
U = - —. .
V2k kn

Hence, the complete expression of the field operator 52]5 in the de-Sitter spacetime is

*

8¢ (n,%) = Lk [(%)Eke“‘"‘ - (%)Bﬂe‘ik'x] . (3.49)

(27)3 |\ a

One can now compute the two-point function around the vacuum state in the de-Sitter

SNote that, when the slow-roll approximation is not considered, §¢ in the flat gauge is not conserved
on super-horizon scales, while the curvature perturbation introduced later { is conserved outside the
horizon.
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limit

dk 3k (ury,
(27)° a?

(0168 (7, x)3¢ (1, x)[0) = ) (Olbiby, |0y e X 4 .. (3.50)
which gives us the power spectrum of the fluctuations. Here, the only non-vanishing

matrix element is indeed

(O1Bi], 10y = (0 (Bibf, = B, Bic) 10) = (0l [ b, 110y = (k= K),  (351)
giving
- - dkdk (wug\ K

0166 (1 %)8¢ (7, x')|0) = E et KX S ac-w)  (352)
(2m)° a?
d3k |uk |2 ik-(x—x")
d’k S

= | G Psy (k) e, (3.54)

Defining the dimensionless power spectrum
k* k® |ugl?
Pss = —Psy(k) = ———, 3.55
6 =5 5 (K) o g2 (3.55)

and since |ug|? = ﬁ (1 + k2+72) from (3.48), one obtains

2
1+ (aiH) ] , (3.56)

showing that on superhorizon scales k < aH the spectrum “freezes” to the constant

2
Pao(h) = 1)

amplitude

2
Psy (k) ~ (%) , (3.57)

consistent with the phenomenon of modes freezing we discussed previously (3.45).

Hence, in a conventional, non-inflationary universe dominated by matter or radi-
ation, the comoving Hubble length (2.20) increases with time. As a result, comoving
modes satisfy k < aH at early times, meaning they lie outside the Hubble horizon and ap-
pear frozen. Only at late times, once inflation has ended and the horizon begins to grow
again, they re-enter the horizon (i.e. k > aH), and begin to evolve dynamically, as shown
in Figure 3.3. In contrast, during an inflationary phase, the comoving Hubble length de-

creases due to accelerated expansion. Modes that initially have small wavelengths and
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behave as underdamped oscillators (k > aH) are stretched by the expansion and even-
tually cross outside the Hubble horizon (k < aH), while on subhorizon scales, these
fluctuations originate from quantum vacuum zero-point energy, where spacetime cur-

vature effects are negligible. Upon horizon exit, these modes become overdamped and

comoving
length o

Horizon Horizon

exit E re-entry
J i \ / k1

» time

Standard Hot Big Bang

Inflation evolution

Figure 3.3: Picture of the evolution of a comoving mode with wavenumber k as it crosses the
Hubble horizon during and after inflation. The sub-horizon regime (k > aH) is shaded in light
blue, while the super-horizon regime (k < aH) is shaded in purple.

effectively freeze, leading to a classical spectrum of perturbations on large scales (3.57).
The linear nature of their evolution ensures that these fluctuations preserve Gaussianity
and remain statistically Gaussian, forming a Gaussian random field at all times. Indeed,
a free (non-interacting) quantum field has a ground state that is a Gaussian wavefunc-
tional.

Instead, for a massive or self-interacting scalar field, (3.39) modifies as

4

a
uy, + (k2 +a’m? - —)uk =0. (3.58)
a

In particular, we can substitute a®m? = m?/(Hn)? into (3.58) which gives a Bessel equa-

tion
vi-1
v -k 2w =0 3.59
u +—— |u =0, (3.59)
n
where v = % — E—; Massive fields with m? > %H 2 (with v € C) oscillate even on super-

1
horizon scales but are underdamped as the solution scales as uy o« (—n)2 X (oscillatory terms) ~

1
a 2 X (oscillatory terms), suppressing the generation of perturbations. However, light

fields with m? < %H 2 (with v € R) do acquire quantum fluctuations, with a nearly scale-
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invariant amplitude evaluated at Hubble crossing. In particular, the inflaton field must
be light during inflation, satisfying the slow-roll condition |7| < 1, to allow for the

generation of the observed spectrum of primordial fluctuations.

However, to accurately follow the evolution of perturbations from the end of inflation
into the radiation-dominated era, it is necessary to account for interactions between
fields. Moreover, even in the absence of explicit interactions, gravitational backreaction
must still be considered. Indeed, inflaton perturbations generate density perturbations,
or more generally, perturbation in the energy-momentum tensor, which is the source
for the metric. Hence, there will also be metric perturbations (3.32) which can be split
into scalar and tensor parts according to their transformation properties on the spatial
hypersurfaces. Vector perturbations S; and F; are not important as they decay with the

expansion of the Universe [106].

Let us now focus on the scalar perturbation. A convenient gauge which completely
fixes the coordinates is the so-called longitudinal or conformal Newtonian gauge defined

by B = E = 0 of (3.32) which also corresponds to a basis first introduced in [179]

d . B

d=A-—|a"|E-—|]. 3.60
a2 00

,. (. B
Y=y +aH|E-—]. (3.61)

a

Hence, the perturbed scalar Einstein equations

5G, = 871G ST/, (3.62)

relate the scalar metric perturbations to matter perturbations via the energy and mo-
mentum constraints [8, 180]

) 2 ) 1 1
3H(Y + HD) + k—z(\lf + H(a*E — aB)) = 5(STO" = —55/), (3.63)
a

. 1 1
¥+ H = —§5Ti° = —§5q. (3.64)

If the matter content does not generate anisotropic stress at linear order in the pertur-
bations (that is, if 5Tji = 0 for i # j), then the two metric perturbation potentials become
equal, ® = ¥ [180]. Furthermore, we can define two commonly used gauge-invariant
quantities constructed from combinations of metric and matter perturbations. The first

is the curvature perturbation on uniform-density hypersurfaces, introduced in [165] as

-{=y+ %5/?, (3.65)
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in the longitudinal gauge. The second is the comoving curvature perturbation [180],

which measures the curvature on comoving hypersurfaces

R=y - dq. (3.66)

p+P

By means of (2.23), we can obtain the difference between these two curvature perturba-

tions, which is proportional to the comoving density perturbation [179]
H
—{ =R+ —6pm (3.67)
p

where 8p,, = 5p—3HJq. It is then possible to express (3.66) in the context of single-field®
inflation by substituting (3.10) and 8q = —¢5¢, hence

H
R=y+ —=5¢. (3.68)
¢
It is worth noticing that during slow-roll inflation (driven by a single scalar field) %p ~ %

and on large scales we see that { ~ —R as §p,, ~ 0. Alternatively, in [158] it is shown that
the same definition arises by combining (3.67) with the gauge-invariant generalisation
of the Poisson equation’

k? 1
—d=—=5p,,. 69
p S0P (3.69)

Thus, the power spectrum of scalar curvature perturbations is commonly given by

_ 4k’
¢= (277:)3

1Z)%. (3.70)

This expression is derived following the same steps used for the field operator 521), where
one starts from the two-point correlation function in Fourier space (3.50) and defines the
power spectrum as its amplitude. As we mentioned above, in a de-Sitter spacetime, the
spectrum of the inflaton fluctuations is precisely scale-invariant since all modes exit
the horizon with the same amplitude. Consequently, during a quasi de-Sitter phase, we
expect any scale dependence to be small. This motivates parameterising the primordial

scalar power spectrum using a simple power-law form

k ns—1
Ps(k) = A (k_) > (3.71)

®In the contest of multifield inflation, explained in Section 3.3, the expression for the curvature per-
turbation will be different.
"The total matter perturbation in the longitudinal gauge is also called €,,, see [181].
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where A; = Ps(k.) is the amplitude evaluated at a chosen pivot scale k.,

d log P
s — 1= —— 3.72
4 dlogk (3.72)

defines the scalar tilt and n; is known as the spectral index.

On the other hand, tensor perturbations denoted by h;; in (3.32), are defined as being
both transverse 9'h;; = 0 and traceless §Vh;; = 0. These properties ensure that ten-
sor modes are gauge-invariant. As such, h;; describes the freely propagating degrees of
freedom of the gravitational field — namely, gravitational waves — which evolve inde-
pendently of linear perturbations in matter. We expand any tensor perturbation h;; in
terms of the eigenfunctions el.(f) (x) of the spatial Laplacian, V? el.(f) = —k? el.(f) , Where k is
the comoving wavenumber and P = {+, X} labels the two polarization states®. Factoring

out the time dependence into a single amplitude h(t) gives
hij(t,x) = h(t) e} (x). (3.73)

Then, the spatial part of the Einstein equations yields a wave equation for the amplitude
2

h+3Hh + %h = 0. (3.74)

Following the steps starting from (3.36), we recover the Mukanov equation (3.39). There-

fore, summing over the two polarisation states, the dimensionless tensor power spec-

pr= o)

27

trum is given by

(3.75)

k=aH
As said before, in the quasi de-Sitter phase any scale dependence is small, so one typically

adopts the power-law parametrisation

Pr(k) = Ar(kk) , (3.76)

where Ar = Pr(k.),nt = d ;?HT is the tensor tilt and k. is the chosen pivot scale. Usually,

to quantify the relative strength of tensor to scalar perturbations, the ratio

L ~ 166, (3.77)

rs—
As

8The decomposition of a perturbation field into Laplacian eigenmodes separates its spatial dependence
(encoded in the known eigenfunctions ') from its time evolution (given by an ordinary differential
equation for the amplitude of each mode).
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is used, where ¢ is the first Hubble slow-roll parameter (3.23).

3.3 MULTIFIELD INFLATION

More than four decades after Guth’s seminal paper [7], inflation has proven to be re-
markably successful and remains the leading paradigm for explaining the early Universe
and the Hot Big Bang. Nonetheless, over the years, the simplest single-field models have
revealed certain limitations and theoretical challenges. These shortcomings have moti-
vated the scientific community to explore more general and sophisticated frameworks,

notably multifield inflationary models.

3.3.1 WHY MULTIFIELD INFLATION?

A compelling motivation for multifield inflation arises from the sensitivity of infla-
tionary dynamics to Planck-scale physics. Embedding inflation within a UV-complete
framework often leads to an enriched particle spectrum, challenging the assumption
that a single field governs the early Universe’s dynamics. This has important implica-
tions for key observables such as the scalar spectral index ng, the tensor-to-scalar ratio r,
and primordial non-Gaussianities. Moreover, recent swampland conjectures [182] sug-
gest that many single-field inflationary models may not be consistent with theories of
quantum gravity. In particular, they constrain the scalar potential through the condition
|VV| > ¢V/Mp, which disfavours the flat potentials typically used in slow-roll infla-
tion. Multifield models, especially those involving curved (non-geodesic) trajectories in
field space, have been shown to evade these constraints [183], providing a more robust
theoretical foundation.

While current observations are consistent with single-field inflation, they do not
exclude the presence of additional fields. Many multifield models yield observational
predictions that are degenerate with the single-field case, motivating the need for next-
generation experiments. Future missions such as CMB-5S4 [184], LiteBIRD [185], Simons
Observatory [186], and PICO [187] aim to detect B-mode polarisation in the CMB - a po-
tential imprint of primordial gravitational waves. Large-scale structure surveys such as
DESI [188], LSST [189], Euclid, and SKA [190] may also uncover signatures of primordial
non-Gaussianities [191], offering further tests of multifield dynamics.

To be precise, high-energy theories that attempt to extend the Standard Model - such
as string theory and supergravity — generically predict the presence of multiple scalar
fields. These include compactification moduli, axions, Kaluza-Klein modes, and gauge

fields [192]. This provides additional theoretical motivation for multifield inflation as a
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motivated scenario.

Given these theoretical challenges and observational prospects, the study of multi-
field inflation has gained substantial attention in the past two decades. In the following
section, we introduce the core formalism of multifield inflation, focusing on the new
dynamical features that emerge from the presence of multiple interacting scalar fields.
Two essential ingredients that distinguish these models from their single-field counter-
parts are the geometry of field space and the structure of the multifield potential, both

of which can crucially affect inflationary dynamics and observables.

3.3.2 MULTIFIELD DYNAMICS AND PERTURBATIONS

Extending the framework of inflation from a single field to a multifield scenario in-
troduces two key new elements: the field-space geometry and the structure of the mul-
tifield potential. While these features enrich the inflationary dynamics and may lead to
novel observational signatures, they can also introduce new issues related to fine-tuning.
Analyses of this kind are usually motivated by phenomenology. The most straightfor-
ward expression for a general multifield inflationary model can be formulated as [193,
194]

s= [ d‘*xv——g@ - 26u(@a9#¢ - V(). (378)

where the indices I] and K stand for multiple scalar fields, Gy; is the field-space metric
that depends on the value of one scalar field, and V(¢X) is the scalar potential. In a
spatially flat FLRW Universe (2.3), the background equations of motion are given by
(see, e.g. [194])

1
3H? = 562 +V, (3.79)
: 1
H= —552, (3.80)
Di$" +3HY' + GV =0, (3.81)

where V; = 9V /¢, and the total kinetic energy of the fields is defined with the average
field

&* = Gd'd. (3.82)

The covariant time derivative is defined by D;Al = Al + FJIKgi] AX| where FJIK are the
Christoffel symbols associated with the field-space metric. In particular, by considering
a two-field model ¢X={¢, y} and G;;($) = diag{1, e?*¥)} with the exponential function
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ensuring that the kinetic term does not change sign; (3.81) read as

¢ +3H$ + Vy = bye? 37, (3.83)
F+ (3H +2byd) y + eV, = 0. (3.84)

As first introduced in [27, 193] (see also [195]), we adopt an orthonormal basis in field
space to aid in interpreting the evolution and interplay of cosmological perturbations. In
this basis, field-dependent quantities are decomposed into what are known as adiabatic
and entropy components. An adiabatic perturbation corresponds to a shift of all fields
(or all components of a fluid) in the same way so that their relative composition stays
the same. An entropy perturbation changes the relative contributions of different fields.
In other words, adiabatic perturbations seed curvature (metric) perturbations leading to
structure formation (as we will see later) while entropy perturbations can convert into
curvature perturbations in later phases. For the two-dimensional field space G;; defined

above, the corresponding unit vectors forming this basis are

. e b .
ui==40,  ul=—(né), (3.85)

| =

o

Q

I

where u,

is tangent to the field trajectory in field space (defining the adiabatic compo-
nent) and u! is the orthogonal to it (defining the entropy component). By construction,
they satisfy

wu,; +ulug = 5}. (3.86)

Therefore, from (3.82) we have 6% = ¢? + e? y? and the adiabatic field reads as
do =cos0dp +sinfe’dy, (3.87)

in which cosf = ¢/ and sin = e® y/6. In this notation, following [196] for conve-

nience, the unit vectors that satisfy (3.86) are
I _ -b _; I_ : -b
u, = (cosf,e’sinf), wu;=(—sinb, e " cosh). (3.83)

Here, 0 denotes the rotation angle relative to the tangent of the background field trajec-
tory, see Figure 3.4. Using this formalism, we define the adiabatic and entropy perturba-

tions, denoted by do and Js, respectively, as

So =ul 64, (3.89)
5s = ul 6¢". (3.90)
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— 60, 0s
— 09, &x
—— Perturbation

Field trajectory

¢

Figure 3.4: lllustration of a decomposition of a perturbation (red) into adiabatic (50) and en-
tropy (Js) component (green) in field space. The usual perturbation components (blue) along the
¢ and y axes are also shown.

Moreover, one can define derivatives of the potential along the adiabatic and entropy

directions as follows
Vo=ulv, Vv, =uly, (3.91)

Voo =ubulVi, Vi =ululvy, Vi =ululvy). (3.92)

With some manipulation, (3.81) can be recast as (see [197])
6+3H+V, =0. (3.93)
In addition, the contribution of the entropy field is given by

. Vs
0 =———bysinb. (3.94)
o)
The quantity (3.94) is commonly referred to as the turn rate of the trajectory in field
space, while the corresponding dimensionless parameter characterising the deviation of
the background trajectory from a field space geodesic is

Vs

Hi = —E. (395)
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Making use of (3.83) and (3.84) we now write the linear perturbation equations (3.34) in
the longitudinal gauge (3.61) for the fields ([193, 198-201])

2
8¢ + 3HS$ + (% + Vg — (byg + 2b3) ¥ 2”) 8¢ + Vi, 8y — 2bge® xSy = 4gd — 2V, 0,

(3.96)
. . k2 :
Sy + (3H + 2byd)Sy + (E + e‘ZbVXX) Sy +2byxo¢

+e 2 (VX¢ — 2byVy + 2bsgd )() 5p = 4yd - 27V, @, (3.97)
Then, the energy and the momentum constraint equations (3.64) are, respectively

. : k? 1, - )
3H (b +H®) + HO + & = —= [¢ 8¢ + 20y 8y + bye® y25p + Vydp + Vi, Sx|, (3.98)
a

b+HD =~ (¢5¢+e2”;(5;() —0'50' (3.99)

From (3.68), the dimensionless comoving curvature’ and isocurvature perturbations are
given by
H H
{ = —do, S = —Fs. (3.100)
o o

Note that perturbations that satisfy ds = 0 (i.e. a purely local shift along the back-
ground path) are only adiabatic and isocurvature perturbations are automatically gauge-
invariant. We also point out that expressing (3.100) in a dimensionless form is needed to
ensure meaningful physical interpretation and comparison with observable quantities
like the CMB power spectrum.

We can also express the first of (3.100) in terms of the metric perturbation ® [204],
by rearranging (3.99) and using (3.80); this yields

{=0+ g@HH@)- (3.101)

Its evolution equation is
. k*H
= ——CD 2— S 3.102
=25 (3.102)

and means that on super-horizon scales (i.e. k/a — 0), the isocurvature mode is a source
for the curvature perturbation. The coupling between adiabatic and isocurvature pertur-
bations does not vanish on super-Hubble scales even when 6 = 0 because of the presence

of the extra term in (3.94) given by by. This behavior differs from the case of scalar fields

Note that in the literature one often finds that the symbol { is (mis)used to refer to the comoving
curvature perturbation, particularly on super-horizon scales, due to its conservation properties — such as
adiabatic modes — and widespread adoption in nonlinear and §N formalisms [202, 203].
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with canonical kinetic term, as discussed in [205], where the adiabatic (curvature) and
isocurvature modes decouple when 6 = 0, see (3.94). To derive the equation govern-
ing the entropy perturbation Js, we differentiate (3.90) twice with respect to time and
make use of (3.96) and (3.97) as well as the comoving matter perturbation (3.69) [179].
Moreover, taking into account (3.102) we finally obtain

. . k2 9 2 .2 V2 VS v
Ss + 3Hos + =t Vis +30° + byg(t) + by f () — bygo” — 45_82 Ss = zﬁg’, (3.103)

where the following notation is used

g(t) = —6*(1 + 3sin®9) (3.104a)
f(t) = Vy(1 + sin® 0) — 4V, sin 6, (3.104b)

along with the definition of (3.92). It is evident from (3.103) that adiabatic and entropy
perturbation modes interact. Indeed, (3.103) describes how the entropy mode evolves
due to sourcing from the adiabatic component [193]. In other words, we can rewrite
the right hand side of (3.103) using (3.95) and show that the modes are coupled in the
presence of a non-zero bending of the trajectory (n, # 0). Thus, at leading order in the

slow-roll approximation, the dimensionless squared mass of the entropic mode is

m? V.
IT; = FSZS + eoMpRss — 17, (3.105)

where the projection of the covariant Hessian of the potential along the entropic direc-
tion is given by Vi = uﬁu{ (Viy— Fllj Vi) where I“Ilj are the Christoffel symbols associated
with the field-space metric. The quantity R denotes the Ricci scalar of the field-space
manifold. When the kinetic energy density, e,H?, becomes sufficiently large during in-
flation, a negative field-space Ricci scalar R can cause the effective mass of the entropy
field to turn negative. This, in turn, may lead to a geometrical destabilisation [206]. In
such a scenario, the entropy perturbation becomes tachyonic, destabilising the back-
ground trajectory. As a result, inflation may terminate earlier than expected, potentially
altering the predicted inflationary observables [206]. Alternatively, the geometrical in-
stability can steer the system away from its original path, redirecting it along a new,
side-tracked trajectory in field space [197, 207, 208].

In Chapter 4, we will go beyond the work in the literature, allowing the kinetic cou-
pling to depend on both fields. Our aim is to study adiabatic and isocurvature perturba-

tions in such extended theories and test them with observations.
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3.4 MODIFIED GRAVITY AND INFLATION

Modified gravity theories extend or generalise GR by incorporating additional de-
grees of freedom or geometric structures, as discussed in Chapter 1. These modifica-
tions often arise in attempts to reconcile gravity with quantum field theory, explain the
late-time cosmic acceleration without invoking dark energy, or generate inflationary

dynamics from purely gravitational effects.

This part of the thesis focuses on the role of modified gravity in the context of infla-
tion. A central example is Starobinsky inflation [209], one of the earliest and most com-
pelling models of inflation based on a modification of the Einstein-Hilbert action. The
idea is to generate inflation through a purely “quantum-gravitational” effect, by consid-
ering the case of a FLRW universe filled with massless conformally invariant quantum
fields [210, 211]. Because of conformal invariance — the symmetry under local rescaling
of the metric and corresponding field transformations, see footnote 4 — these massless
fields do not undergo particle creation, so the stress-energy tensor is only made of terms
that arise from the interaction of quantum free matter fields with a classical gravitational
field. Those terms are quadratic in the space-time curvature [212, 213], and give rise to
a non-vanishing expectation value for the effective stress-energy tensor, (T/,V> which,
in the context of semi-classical gravity, sources the Einstein equations. Not only does
this model arise naturally from quantum corrections to gravity, but it also provides pre-
dictions that remain in excellent agreement with current cosmological observations [9],

such as the scalar spectral index n;, and tensor-to-scalar ratio, r.

Starobinsky inflation is characterised by an f(R) action of the form

M 1
S = - / d*x\=g (R + —2R2) , (3.106)
JT;

where p is a model parameter with dimensions of mass. At low curvatures, the higher-
order correction remains subdominant and thus effectively hidden. This behavior be-
comes clear when transitioning to the EF, where the additional scalar degree of freedom
arising from the R? term is recast as a scalar field ¢. Following the procedure outlined

in Subsection 1.2.1, the action takes the form

4

M2 1 MZ 2 N 2
TPR—EgWa,,g/)avqs— s (l—e ‘/;MP) . (3.107)

S:/d4x\/—_g

The potential in (3.107) is flat for large values of ¢, supporting a slow-roll inflationary

phase as discussed in Subsection 3.1.2. The number of e-folds N (3.16), is calculated by



3.5. Alternatives to inflation 65

integrating the slow-roll equation

vV dp 3 gy
N %/ —,iﬁz ~ —e\/;MP, (3.108)
q’)end V MP 4

assuming ¢;/Mp > 1. Inverting this relation gives the field value in terms of N, allowing

us to compute the slow-roll parameters (3.23) as

> (3.109)
ey X —s, )
VT 4N?
1
~ —. 3.110
v Ey ( )

These in turn lead to predictions for the observable inflationary parameters (3.72), (3.77)

as
2
ng~1—6ey +2ny ~ 1 — —, (3.111)
N
12
r = l6ey = N (3.112)

For N =~ 55, these yield ng =~ 0.965 and r ~ 0.0037 in excellent agreement with the latest
Planck satellite data [9, 51]. The success of these predictions with minimal assumptions
and parameters makes the Starobinsky model a benchmark in inflationary cosmology
and a compelling candidate for describing the physics of the early Universe. The model
presented above is also taken as a reference model for comparison with alternative sce-
narios. In particular, in Chapter 5 we examine a scale-invariant inflationary model and
compare its predictions with those of the Starobinsky model. The aim is to test the
consistency and observational viability of both models against the latest cosmological
data, especially those derived from the CMB. As we will see, this comparison allows us
to assess whether the scale-invariant framework offers any theoretical or observational

advantages over the well-established Starobinsky paradigm.

3.5 ALTERNATIVES TO INFLATION

While cosmic inflation has been the prevailing paradigm for explaining the early
Universe’s rapid expansion and the origin of large-scale structures, several alternative
models have been proposed that challenge or bypass the need for an inflationary epoch.
Among these, cyclic cosmologies offer compelling frameworks wherein the universe un-
dergoes endless sequences of expansions and contractions, effectively eliminating the

concept of a singular beginning. One prominent example is the ekpyrotic model, in-
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troduced by Khoury, Ovrut, Steinhardt, and Turok in [34]. Rooted in string theory and
higher-dimensional brane cosmology, this model posits that our observable Universe re-
sides on a four-dimensional brane that periodically collides with a parallel brane in a
higher-dimensional space. Each collision corresponds to a “Big Bang”, initiating a new
cycle of cosmic evolution. During the slow contraction phase preceding each bounce, the
universe becomes homogeneous, isotropic, and flat, addressing the horizon and flatness
problems without invoking a rapid inflationary expansion. Moreover, the ekpyrotic sce-
nario predicts a nearly scale-invariant spectrum of cosmological perturbations, aligning
with observations of the CMB.

Building upon the ekpyrotic framework, Steinhardt and Turok proposed a more com-
prehensive cyclic model in [35]. In this scenario, the universe undergoes an infinite se-
quence of cycles, each comprising a period of expansion, followed by contraction, and
culminating in a bounce that initiates the next cycle. A key feature of this model is the
role of dark energy, which drives the current accelerated expansion and sets the stage
for the subsequent contraction phase. This cyclic approach not only addresses the initial
conditions problem but also provides a mechanism for entropy dilution, ensuring that

each cycle begins under similar conditions.

Another noteworthy alternative is Conformal Cyclic Cosmology (CCC), proposed
by Roger Penrose [214]. In CCC, the universe is envisioned as a succession of “aeons”,
where the infinite future of one aeon becomes the Big Bang of the next through a con-
formal rescaling of spacetime. This model suggests that information could, in principle,
be transmitted from one aeon to the next, potentially leaving imprints in the CMB. Pen-
rose and Gurzadyan have claimed to identify concentric low-variance circles in the CMB
data from WMAP and BOOMERANG experiments, which they interpret as evidence sup-
porting CCC [215]. However, these claims remain controversial within the cosmological

community [216].

Beyond cyclic models, other alternatives to inflation include bouncing cosmologies
[32, 217, 218], where the universe undergoes a contraction phase followed by a bounce
leading to expansion, and string gas cosmology [219] which attributes early-universe
dynamics to thermal fluctuations in a pre-Big Bang string phase. While these models of-
fer intriguing mechanisms for addressing the shortcomings of the standard inflationary
model, they often face challenges in matching the full range of cosmological observa-
tions as precisely as inflation. Nevertheless, they continue to stimulate active research,
particularly in contexts where quantum gravity, higher-dimensional theories, or scale

invariance play a central role.

In Chapter 7, we continue along this path of exploring alternatives to inflation by

studying the production and evolution of primordial gravitational waves in a cyclic uni-
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verse, as detailed in our recent work [6]. Building on the foundations of ekpyrotic and
cyclic models, we investigate whether the predictions for tensor perturbations are sen-
sitive to the phase in which initial conditions are imposed, and how different choices of
vacuum state influence the resulting spectrum. Unlike previous studies, which typically
begin in the ekpyrotic phase and assume a Bunch-Davies vacuum (3.48), our analysis
starts in the dark energy phase of the preceding cycle, making no prior assumptions
about the vacuum. This broader approach allows us to assess the resilience of gravita-
tional wave predictions across cycles and to derive stringent constraints on allowable
deviations from the standard vacuum state. In doing so, we aim to clarify the theoretical
robustness of cyclic cosmologies and contribute to the broader effort of evaluating viable

alternatives to inflationary theory.
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4 MULTIFIELD INFLATION WITH

KINETIC COUPLINGS

As discussed in Part I, two-field models of inflation have emerged as a theoretically
well-motivated extension of the single-field paradigm, offering a richer dynamics and a
broader range of observational signatures [27, 220]. While the simplest models already
exhibit novel features — such as the generation of isocurvature modes and trajectory-
dependent perturbation evolution — they represent only a subset of the broader class of
multifield theories inspired by high-energy physics. In particular, effective field theo-
ries arising from string theory, and other ultraviolet completions naturally predict non-
trivial, curved field-space geometries where the field-space metric can depend on mul-
tiple fields simultaneously [150, 195, 221, 222]. Capturing the full implications of these
geometries for inflationary dynamics and observables is currently an active field of re-
search [206, 223, 224] (e.g. non trivial field space metric can alter the predictions for
isocurvature perturbations, gravitational waves, peaks in power spectrum).

This chapter advances the discussion by presenting a generalised formalism for a
two-field system in which the field-space metric is allowed to depend non-trivially on
both fields. It is based on [1] and [2] and represents a substantial extension beyond
previous treatments considered in Part I. Our formalism enables a more accurate and
flexible treatment of inflationary dynamics in curved field spaces, including scenarios
with strong turning trajectories and non-canonical kinetic couplings. Therefore, our
goal is to exploit this formalism to derive analytical expressions for key inflationary ob-
servables. Moreover, the computational framework developed in this work evolves the
full background and linear perturbation equations numerically in the slow-roll approx-
imation, accurately tracks the coupled evolution of adiabatic and isocurvature modes
on superhorizon scales, and implements the transfer matrix formalism to propagate ini-
tial conditions to late-time observables. These predictions are then interfaced with a
Boltzmann integrator code, enabling a consistent comparison with cosmological data.
Moreover, to compare this broad class of models with observations, we introduce a new

sampling algorithm designed to efficiently explore high-dimensional parameter spaces,
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accounting for the increased model complexity introduced by the general field-space
dependence. Therefore, this chapter marks a key methodological development, extend-
ing the scope of multifield inflationary analyses beyond conventional assumptions and
laying the groundwork for studies of more realistic inflationary scenarios motivated by
fundamental theories.

The structure of the chapter is as follows. In Section 4.1 we define the theoreti-
cal framework, specifying the generalised field-space metric and associated background
dynamics in Section 4.2. In Section 4.3 we outline the numerical methods used to evolve
the system and compute inflationary observables; we describe the sampling strategy and
its interfacing with the Boltzmann code; we apply this pipeline to a concrete example

and discuss the resulting constraints.

4.1 FI1ELD EQUATIONS AND PERTURBATIONS

The dynamics of the two-field model is governed by the action
4 R 1 ny 1 J 1
S= [ d'xy=g 57 EQUQ A g’ —VI(¢g)|, (4.1)

with ¢! = {i, y} and a field-space metric G; that depends on both fields. Such an
action naturally arises when one begins in the JF with a nonminimal coupling f (¢, y)R
— following the same footing of Subsection 1.2.1, in particular (1.23) — and performs a

conformal transformation to the EF, yielding

1
2f
and h(y, y) is any function of the fields. By an appropriate choice of field coordinates
[225] this can be diagonalised to

3
QU = (S[] + 5 h)]h,], f = eh(¢’X)’ (4.2)

ey=" " (43)
Y7o P ‘

resembling polar coordinates on the field manifold. While earlier studies have almost
universally taken F = F(y) [193, 196, 200, 225-227], our work considers the more general
case F = F(¢, y) with dependence on both fields. This introduces an intrinsic coupling
in the kinetic sector that can not be removed by simple field redefinitions, when F is
taken to be a product function. This generalisation is both well-motivated by ultraviolet
completions of gravity [192, 228] and crucial for capturing the full dynamics of curved

field-space inflation [200, 221, 223]. To simplify the calculations and to be in line with
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the literature [225], we write F(i/, y) = e?*X). In what follows, we drop the explicit

¥, x arguments of b and the commas indicating partial derivatives, for brevity.

We begin by considering a flat FLRW Universe (2.3), and proceed by deriving the

equations of motion from (4.1) for the homogeneous background

¥+ 3HY + Vy, = e®by 1%, (4.4)
X+ (3H +2byy + by Y) y = —e 2V, (4.5)

whereas the Friedmann equations (2.25) read

H? = % (%l/}z + %eZb)(Z +V (¥, x)), (4.6)

H= —% (z/}2 + eZ”;gz) : (4.7)

To study the evolution of the field perturbations, it is convenient to move to Fourier

space. The equations of motion in the Newtonian gauge are given by

2

. . k
Y + 3HSY + | = + Vyy — €® (byy + 2b}) )gz] 5y
a

(4.8)
— 2bye® 6 —e®(b byb,) 7| Sy = 4dy —
2bye )()(+[V¢,X e (¢X+2¢X))(] X =49y - 2V,

kz 2b .
— + € (V= 2Viby) + by ¥° + 2b,y | Sx
az XX X¥X XX Xy (4‘9)

+ 2by 18U + [2byy i + €% (Viy = 26y Vy) + by 7109 = 4djy = 20¢7V,,

Sx + (3H + 2byyr +2b,y) Sy +

The perturbed Einstein equations (3.62) give

2
3H(® + H®) + HO + k—2q>
1 ¢ (4.10)
= =5 (980 + e xSy + € g2 (by 8y + bydx) + VS + VY]

d+HO = % [5y + e* xS x] . (4.11)

The other important quantity is the comoving curvature perturbation (3.101), which can

be recast in terms of the fields

(4.12)

§:¢+H(—¢5‘/j+62b)55x).

¢'2 + eszZ
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Its evolution (3.102) is given by

. k*H
= ——CID 2
i 63
K H Ve = Vi \ (8y  Sx
a’ H (lpz + e2b 2)2 ¢ X
2 2b 2 _ 02
<o n |1 (SE T v (- )
a‘ H 2dt e2 X + 1)02 ¢ X
where
(b % Zb) = 2byyj sin? 6. (4.14)
N
Here we used (4.4), (4.5), (4.10), (4.11) and the relation
b
o ok _ e (4.15)

We note that the frictional damping (4.14) of the y field by ¢ is the same obtained by
[193] in the case of b = b(¥)).

As in Subsection 3.3.2, we now rotate our field basis from {¢/, y} to the tangent and
normal directions along the background trajectory, namely (3.85) which naturally sepa-
rates adiabatic and isocurvature perturbations. Hence, the inflationary dynamics can be
described by ¢ and 6, (3.93) and (3.94) respectively. It is important to note that, also here,
the structure of (3.93) and (3.94) is the very same as in the case for b = b(1) since ¢ has
a canonical kinetic term and y does not (see (4.3)). However, the assumption of having
b(gbI ), with I = {1, 2}, affects the feeding of the curvature perturbations indirectly, as we

will show below. In this generalisation, (3.103) reads as

2 2
8s + 3HSs + k —+ Vs +360% - 6%by, +b7g(1) + byf(£) +b,I(t) -

(4.16)
iy
==

where now

G(t) = =6*(1 + 3sin” ), (4.17a)

£(t) = Vy(1 + sin® §) — 4V, sin 6, (4.17b)

lN(t) = —¢ % cos? ovy. (4.17¢)

The additional dependence of the field metric on y enters only indirectly via the evolu-

tion of the fields. In the case of (4.16), there is an explicit dependence on b,, changing
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the effective mass of the entropy perturbation Js.

Before applying these equations to the slow-roll regime and to specific models, it
is instructive to relate our findings to other formulations in the literature. Although a
comprehensive comparison lies beyond the scope of this work, one can envisage con-
structing a “dictionary” between our approach and the more geometric treatments, for
example those described in [183, 225, 229]. As a concrete example, we compare our ex-
pression for the effective mass of the entropy perturbation with the result derived in
[229] for a multifield model (3.105). In our parametrisation we find (3.95) becomes
N = I% +b¢% sin 6, (4.18)

while the projection of the covariant Hessian of the potential along the entropic direction

reads
Vs = Vs + 2b¢e_b sin 6 cos OV, + by (1 — sin? OVy — bxe_% cos® A (4.19)
and the Ricci scalar of the field space is
Reg = -2 (b?p + bW) . (4.20)

We highlight that the Ricci scalar depends only on derivatives with respect to i/, not on
the derivatives with respect to y. Collecting terms and considering the super-horizon

scales, yields
M oqpy = Viss + €MpRiH® — 115 HE = Vg +36% = 6%byy + b7.G(1) + by f (1) + b A(1), (4.21)

where §(t), f (1), l (t) are time-dependent functions whose explicit forms follow from
(4.19). In particular, the term proportional to b, traces back to the non-trivial projection
in (4.19), and its sign is determined by the product b,V,. As we will show below, in the
slow-roll approximation this contribution can be related directly to the velocity of the y
field.

When the kinetic energy parameter €y H Zlel grows sufficiently during inflation and
Rgs < 0, the effective mass (4.21) can turn tachyonic, leading to geometric destabilisa-
tion, as discussed in Subsection 3.3.2. In the models studied here, however, turns in the
field trajectory occur only towards the end of inflation, when entropy fluctuations have
already decayed sufficiently. Having established the exact evolution equations for cur-
vature and entropy perturbations, we now proceed to their large-wavelength limit in the

slow-roll regime.
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As noted in Subsection 3.1.2, we adopt the slow-roll approximation for both scalar
fields, under which

€= <1l = quﬁI ¢ < V(gh),

€ = I;—Z <1 = 20'Dip; < HGy §' ¢, (4.22)
0

and thus we do not consider scenarios like hyperinflation, angular inflation, or side-
tracked inflation [227, 230-234]. The background equations (4.5), (4.4) and the Fried-

mann equation (4.6) simplify to

v

Gcosf =1 ~ —%, Gsinfe™ = y = —ée_%, Wz
H2 ~ V(‘;b’ X) '

5

2
3Mp,

whose solutions for the turn rate and adiabatic acceleration read

4 . .
T & Nos + %bl/, sin @ cos® 0 + %bxe_b sin” @ cos 6, (4.24)
% ~ €) — Noo — %W sin” 0 cos 6 — %bxe_b sin’ 0, (4.25)
in which
_ (4.26)
N =32 '

It is then clear that the kinetic coupling contributes already at horizon crossing through
the slow-roll parameters. At horizon crossing (k. = aH), the curvature-perturbation

power spectrum (3.71) is
H2
Py~ : 4.27
4 87T2€0 ( )

and the spectral index (3.72) can be recast in terms of the slow-roll parameters

dln Pé* 1] € ZHHGO - éon
= ==l = —2€0+ — €1x. 4.28
"= THar |, H[H?( 2 )] o (4.28)
Now, substituting (4.22) into the above and making use of
€0 = 2Heg(2€0 — 16 — V2€0by sin® 0 cos 0 — e_b\/ZeobX sin® 0), (4.29)

we arrive at

n. = —6€g + 2155 + 2V2€0by sin? 6 cos 6 + Ze_b\/ZeobX sin® 6. (4.30)
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Note that in the limit of a flat field metric, (4.30) is equal to the expression presented
in [235]. We also relate the higher-order running that describes the successive scale

dependence of the primordial power spectrum beyond the leading-order tilt, as

_ dn éo él
" Hdt H H|
= — 24¢€) — 4n>, + 16€gn 5o — 2&7 sin* 0e~20 — 2£,&, sin® 0 cos Be™? — 2£,&, sin® 0 cos® Ge™”

— 4£1& sin’ 0 cos 0e™® — 68,144 sin® Oe ™ — 1481, sin® 0 cos e — 28 sin® e~

+ 6&% sin* 0 cos® 0e 2" + 16&,€y sin® Qe b + 2&, sin® O cos e b + 2&, sin* e

(o

%

+ 2§ sin® 0 cos? 0 + 28100 sin® 0 — 121145 sin 6 cos? 6 — 6E1N60 sin® 0 cos 0

- 4§f sin 0 cos* 0 + 16& € sin? 0 cos 0 — 2ay44| |

(4.31)

where, following [196], we have introduced new higher-order slow-roll parameters

é'/l = V2€0b¢, é:z = 260[?1”/,,

i i ) (4.32)
§1 = VZE()bX, rfz = 2€0bXX, §12 = 2€0b}(¢’

and a;jx = VoVijk/ V2. One can similarly derive a formula for the running of the running,

_ da

« = /| > 4.33
b= il (4.33)

but given its complexity we omit its explicit expression here.

4.1.1 SUPER-HORIZON SCALES

Building on Subsection 3.3.2, where we showed that on super-Hubble scales the cur-
vature perturbation is driven solely by the entropy mode (see (3.102)), we can express
the evolution of curvature and isocurvature perturbations entirely in terms of slow-roll

parameters

[~ —2%8 = AHS,

S 4.34)
. H. H H? (
S:f(SS'i‘ ——i_ —5S:BHS
o H? Hs)| ¢
In the above, A and B are time-dependent dimensionless functions
.. 3 Z b .. 2 0 .
A =215 + 2& sin” O — 2&e77 sin“ B cos 0 = 2— + 2&; sin 6,
H
, (4.35)

B = —lss + Noo — 26 + £ cos 0(1 + 2sin® 0) + Ee P sin0(2sin® 0 — 1) + 22 + 22
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This result follows from substituting (4.16), (4.24), and (4.25), and imposing that on super-
horizon scales |8s| < 3H|ds|, |6o| < 3H|8a]. To obtain the curvature-perturbation
spectrum at the end of inflation, it is then essential to relate the curvature and entropy
perturbations at the horizon crossing with the ones at the end of inflation, most conve-

niently expressed in the transfer-matrix formalism [236]

1 7
¢\ 2 6] (4.36)
S 0 Tss] \S .
where ,
Tes(tat) = / AGYH(E) Tss (b 1),
b (4.37)

tl
Tss(ts, t') = exp (/ B(t”)H(t”)dt”) )
by

Although the functions introduced in equation (4.35) remain effectively constant through-
out most of the slow-roll phase, they can change appreciably towards the end of inflation.
For this reason, when evaluating the time integrals in equation (4.37), we retain the full
time dependence of A and B rather than treating them as fixed parameters. Thus, we
express the curvature power spectrum at the end of inflation in terms of its value at
Hubble exit by introducing the transfer angle ©, according to

e

cos?@®’

Pr=(1+T5)P; = (4.38)
Here, the modification is due to the transfer function 7;s from entropy to curvature

perturbations, and the transfer angle © is defined by
cos’® = (1+ 7;29)‘1. (4.39)

Because 7;s is constructed from the coefficients A and B in (4.35), the transfer angle
© encodes direct information about the underlying field-space geometry. Even if adia-
batic and isocurvature modes are initially uncorrelated, any bending of the background
trajectory in field space during inflation produces a non-zero 7;s and thus induces a cor-
relation between { and Js. This offers an alternative perspective on the discussed result

(3.103) and then generalised in our work, (4.16). Moreover, we can also obtain explicit
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formulas for the spectral index and its runnings evaluated at the end of inflation

ng =~ n, —2sin (A, cos © + B, sin ©),

s =~ ay +2cos O(A, cos© + B, sin©®) X (A, cos 20 + B, sin 20),

Bs = Pix —2cos O(A, cos O + B, sin ©) X (B, cos 20 — A, sin 20)
X (As + 2A, cos 20 + B, sin 20).

(4.40)

4.2 INVESTIGATION OF SOME KINETIC COUPLINGS

In this section, we briefly apply the general formalism of Section 4.1 to three case
studies of two-field inflationary models. They all share the potential
1oa2 1 2 2 2.2 2
V:Emwgb +§mx)( +g“y" x°, (4.41)
in which m; (I = {, y}) denotes the masses of the fields and g a coupling constant, but

differ in their field-space metric.

BILINEAR COUPLING MODEL. In the bilinear coupling model, we set b(¢, y) = —c}%
P

(with ¢ a constant). We find numerically that the background trajectory stays almost
solely along the y/-direction until ¢ reaches its minimum at zero - so the entropic direc-

tion is almost exactly aligned with the y-axis, see Figure 4.1. Since the y-field does not

2

evolve significantly, its effective mass squared m? ~ Vg ~ ¥

to H?, i.e.

remains large compared

V.
Nss = 3—;2 > 1. (4.42)

A large 1, means that the isocurvature perturbations in y are heavy and decay expo-

nentially. In particular, the first of (4.34) in terms of e-fold can be recast as

dS
where B is as in (4.35) and whose solution is
S(N) ¢ BN, (4.44)

This means that, B > 0 gives exponential growth of the entropy mode, while B < 0 (as

in the heavy-mass limit) gives exponential decay. This can be better understood with
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Figure 4.1: Field trajectory on the potential V (¢, y) for ¢ = —0.05 (the values for i and y are in
Planck units). The values used here are those commonly found in the literature: my =3-107°
Mp, my =6-107% Mp, g =107%, N = 55 e-folds.

the second transfer function (4.37)

_SWN) _ R B@an

58 = SN , (4.45)

that encapsulates the net growth or decay of isocurvature fluctuations over inflation. If
|7ss| < 1, isocurvature modes have decayed by the end of inflation, if |7ss| > 1 they
have been amplified. In this scenario, { remains near its minimum (¢ = 0) until very
late, leaving y effectively frozen, resulting in |7ss| = 0.29 < 1. Once ¢ reaches its mini-
mum and y becomes dynamical, the bending of the trajectory can in principle mediate
a transfer of isocurvature fluctuations into the curvature perturbation. However, since
ds was already suppressed by the earlier large-mass phase, there is no sufficient residual
isocurvature power available for conversion, and consequently the resulting enhance-

ment of P, see (4.38), remains small. Indeed, we find 75| = 0.04 < 1.

LOGARITHMIC COUPLING MODEL. In the logarithmic coupling scenario, we define
2b(Y, ) = In [(atﬁ +by)?/ Mgl]. We find numerically that the background trajectory

undergoes a pronounced turn shortly before the end of inflation, when the linear com-
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bination (ay + by) passes through zero. Indeed, as (ay + by) — 0, the kinetic term
for y disappears, so variations in y no longer contribute meaningfully to the dynam-
ics. The entropic direction becomes effectively massless. So entropy perturbations stop
decaying and momentarily “freeze”, allowing them to be efficiently transferred into the
curvature perturbation via the sharp turn (3.95). Hence, the net result is that a substan-
tial fraction of the surviving entropy power is converted into curvature modes, yielding

an order-unity amplification given by

Pr 2.01x107°

P 3.14x 10710 o (4.46)

by the end of inflation. An amplification of the primordial power spectrum between hori-
zon exit and the end of inflation can significantly increase the abundance of primordial
black holes (PBHs). In particular, if the curvature perturbation grows on super-horizon
scales, the enhanced modes will lead to larger density contrasts upon re-entry, increasing
the probability of PBH formation.

4.3 TRACKING THE MULTIFIELD DYNAMICS WITH

COSMOLOGICAL DATA

Adiabatic and isocurvature modes can persist beyond the end of inflation and influ-
ence how perturbations evolve during the radiation-dominated era. This has important
implications for cosmology, as these modes can leave measurable imprints on the early
Universe that we can test using astrophysical and cosmological observations. For that
reason, it is essential to use current data to uncover clues about inflation and gain in-
sight into some properties of the fields that drove it [237-253]. In particular, recent
high-precision measurements of the CMB - including its temperature fluctuations and
polarization — have given us the ability to tightly constrain both adiabatic and isocur-
vature contributions [241, 254]. This opens a valuable window into testing multifield
inflation models. However, making accurate predictions from general multifield theo-
ries remains difficult, because observable quantities are sensitive to many factors. For
example, different initial conditions for the fields can lead to different trajectories in field
space, which in turn can shift predictions for observables like the scalar amplitude, spec-
tral index, and tensor modes. This makes comparing multifield models with observations
more complicated than in the simpler single-field case. Moreover, many standard tools

used in cosmological data analysis - like Boltzmann solvers and sampling algorithms
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— are either not aware of the physics of inflation or assume single-field potential'. To
address this challenge, this section introduces a new numerical framework that can accu-
rately compute predictions for general multifield inflation models, including those with
non-trivial field-space geometries. Our method has three main components. First, we
solve the full background equations numerically across the entire inflationary period.
Once a slow-roll regime is confirmed, we apply a first-order slow-roll approximation
to compute key observables, such as the scalar power spectrum (4.27), tensor-to-scalar
ratio (3.77), and isocurvature modes. We also track how adiabatic and isocurvature per-
turbations evolve on super-horizon scales and how entropy modes convert into curva-
ture modes after horizon crossing, using the transfer matrix formalism (4.37). Second,
we link our predictions to the well-established Boltzmann code to compute the com-
plete cosmological evolution and produce CMB observables. Finally, we constrain the
model’s parameter space using a novel sampling algorithm that efficiently explores the

large number of possibilities and isolates the regions that match observations.

4.3.1 INTEGRATION SCHEME AND SAMPLING METHOD

After specifying the field-space metric G;; and the initial field values ¢X with their
velocities, we integrate the full equations of motion (4.4), (4.5) for up to Nyax = 10*
e-folds. Throughout this integration we compute the slow-roll parameter ¢, from (3.23)
and identify the first occurrence of € = 1 as a candidate end of inflation. Should this
condition not be reached within Ny, e-folds, the model is discarded. On the other hand,
if the condition €y = 1 is satisfied, we verify that none of the fields, when normalised
to their initial values, exceed a prescribed threshold?; if they do, we continue integrat-
ing until this criterion is met, simultaneously confirming that €, does not subsequently
fall below unity. If we get back to €y < 1, the corresponding point at which ¢y = 1
coincides again with all fields below the threshold is then adopted as the true end of
inflation. Next, we measure the total number of e-folds AN elapsed between the ini-
tial condition and the established end of inflation, imposing the requirement AN > 100
to ensure sufficient expansion for the observed large-scale homogeneity and isotropy.
In cases where AN < 100, we perform a backward integration from the original initial

conditions to determine whether the deficit arises from an unfortunate choice of starting

1A few numerical tools for multifield inflation have been developed as well. See, e.g. [255].

For the bilinear coupling model analysed in what follows, we set /i < 1073, y/xmi < 1072
We emphasise that this diagnostic is included specifically to identify and exclude models exhibiting a
double-inflation phase, see e.g. [256-259]. Although in the case study model of this section a secondary
phase of inflation is exceedingly unlikely — since the end of the fields’ motion generally marks a per-
manent end to inflation — our algorithm is fully equipped to detect and accommodate such behavior, as
demonstrated in Appendix B.
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point or from an intrinsic inability of the model to sustain slow-roll; models exhibiting
pathological behavior under this test are rejected. Having secured a valid inflationary
trajectory of adequate duration, we reconstruct the evolution of the fields and slow-roll
parameters over the full interval. We then select N, = 55 e-folds before the end of in-
flation as the horizon-crossing epoch, record all relevant slow-roll parameters at that
instant, and integrate the super-horizon dynamics of both adiabatic and isocurvature
perturbations. Finally, employing the transfer-matrix formalism described in Subsec-
tion 4.1.1, we compute the primordial scalar power spectrum and associated observables
at the end of inflation.

Upon successful termination of the integration, we extract all primary inflationary
observables — namely, the scalar amplitude As, the scalar spectral index ns, its running
a5, the running of the running f;, and the tensor-to-scalar ratio r. These quantities
serve as initial conditions for the Boltzmann solver “Code for Anisotropies in the Mi-
crowave Background”CAMB3 [261, 262], together with the ACDM parameters Quh?, Q. h?,
Onmc and 7. In this way, we translate the multifield inflationary predictions into the stan-
dard cosmological observables — CMB temperature and polarisation power spectra and
the matter power spectrum — under both canonical and extended background models.
To compare theory with data, we then perform a Monte Carlo exploration of the mul-
tifield parameter space (of order 10® samples). At each step, we draw the fields’ initial
conditions and model parameters from prescribed priors, integrate the background and
perturbations (applying the end-of-inflation and minimum-AN consistency checks de-
scribed above), and compute the resulting As, ng, @, fs, and r. We retain only models

that simultaneously satisfy the following conditions:
« Ay €[1.5,25] %107

. n, € [0.94, 0.99]

as € [-0.2, 0.2]

Bs € [-0.2, 0.2]
e r<0.1

where the ranges chosen reflect the bounds of the values measured by the most recent
CMB experiments [263, 264]. This step is not strictly necessary, as one could - in prin-
ciple — include all models in the analysis and assign them a likelihood, even if their

predictions lie outside the target observational ranges. In such cases, the models would

*Note that the same procedure can be applied to interface our algorithm with the “Cosmic Linear
Anisotropy Solving System”, (CLASS) code [260].
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receive a log-likelihood of negative infinity and contribute nothing to the final parameter
constraints, leading to identical overall results. However, due to the broad prior volume*
often explored in multifield scenarios, the space of possible outcomes can be highly un-
predictable, resulting in a large number of models that fall well outside observationally
viable regions. To avoid the unnecessary computational cost of evaluating likelihoods
for models that are already strongly disfavored by data — and which would not influence
the posterior — we apply this filtering step as a practical efficiency measure. Therefore,
accepted models are then passed to CAMB, and we record the full set of cosmological
outputs alongside their input parameters. In this way, we generate a chain of models
that are equivalent to those produced by typical Markov Chains Monte Carlo (MCMC)
technique, assigning to each retained model a likelihood constructed as a multivariate

Gaussian,

1
Lie o< exp | =2 (x - wEx -, (4.47)

where x are the predicted observables, and y and ¥ are the mean and covariance derived
from the Planck 2018 TT, TE, EE, low-¢ and lensing data [9, 265-267], together with the
BICEP/Keck Array X B-mode likelihood [264]. We refer to Appendix B for further de-
tails. The resulting posterior distributions then yield robust constraints on the multifield

inflationary parameters.

4.3.2 PREDICTIONS

Concretely, we demonstrate and validate every aspect of our methodology using the
bilinear coupling model introduced in Section 4.2. Once the field-space metric and the
self-interaction potential are specified, the formalism developed in the previous section
can be directly applied, and the multifield dynamics can be numerically solved using
the integration scheme outlined in Subsection 4.3.1. In particular, the evolution of the
fields — and thus their trajectory in field space — depends on the model’s free param-
eters (namely my, m,, g and c) as well as on the initial conditions (Yy;, l/}ini, Xini> Yini)-
In this subsection, we examine the role of each of these parameters separately, focus-
ing on their impact on both the inflationary dynamics and the resulting cosmological
observables. This step provides a clearer understanding of the model’s behavior and
helps interpret the outcomes of the full Monte Carlo exploration presented in the next
subsection. We begin by assessing the stability of the model’s predictions under varia-

tions in the initial field values. In particular, we investigate how the trajectories in field

*In Bayesian inference or parameter estimation, the prior represents our initial assumptions about the
values parameters can take, before considering data. The prior volume refers to the size or range of the
parameter space over which these priors are defined.
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space respond to random changes in the initial positions i,; and yini, while keeping the
model parameters fixed and setting the initial velocities lﬁini = Yini ® 0. The resulting

trajectories are shown in Figure 4.2. Although different initial field values can lead to
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Figure 4.2: Field trajectories and their projections in different 2D-planes in grey as functions of
the e-folds of expansions between the beginning of the integration and the end of inflation. The
integration process begins at N = 0 with randomly selected initial conditions, represented by
a black star-like dot in the figure. The end of inflation marked by another black star-like dot is
determined using the method explained in Subsection 4.3.1. The color-bar shows the value of the
Hubble parameter along the field trajectories. For all trajectories, the model’s free parameters
are in Planck unit and fixed to: my = 1.58 X 107%, m, =3.86 X 107%, ¢ = —0.06, and g =2 X 10~%.

inflationary phases of different duration, they generally leave the predicted cosmologi-
cal observables unaffected. This suggests that the physical predictions of the model are
largely insensitive to the choice of initial conditions.

In contrast, variations in the model’s free parameters — particularly the parameter
¢, which governs the curvature of the field-space manifold — have a more pronounced
impact on the dynamics. The value of ¢ significantly influences the interaction between
curvature and isocurvature modes during the super-horizon evolution, from horizon exit
to the end of inflation. Specifically, as c is gradually decreased (i.e. made more negative),
the velocity of the y field remains nearly constant, and it becomes effectively frozen
for an extended period. It only reenters the dynamics once the ¢ field approaches the
minimum of the potential, see Figure 4.3. This behavior directly affects the degree to
which isocurvature modes can source the curvature perturbation. Indeed, as discussed
in Section 4.2, the more rapid the turn the faster isocurvature modes decay and the less
they are able to source the curvature modes. Conversely, increasing c leads to the rapid
suppression of y, effectively reducing the system to a single-field regime. In this limit,
curvature and isocurvature modes become almost uncorrelated. However, if the trajec-

tory in field space exhibits curvature from horizon crossing through to the end of infla-
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Figure 4.3: Effects of the field-space curvature parameter c on the evolution of the fields in the
Y — x plane. Field values are normalised to their respective initial conditions, so all trajectories
begin at the point (1, 1), while the origin (0,0) represents the idealised end of inflation. Red
and blue trajectories correspond to negative and positive values of ¢, respectively, as indicated
in the legend. The green curve denotes the case of a flat field-space metric, G;; = diag{1,1},
(i.e. ¢ = 0). All other model parameters are fixed to my = 1.58 X 107%, m, = 3.86 x 107°, and
g=2x1078.

tion, an important coupling between the two sectors emerges — potentially introducing
significant correlation that can amplify or suppress the final curvature power spectrum,

as illustrated in Figure 4.4.

Turning to the influence of the field masses, Figure 4.4 demonstrates that increasing
or decreasing m, and my respectively raises or lowers the power in the temperature-

anisotropy spectrum. To see why, recall from (4.23) that on the slow-roll trajectory
Vy =~ =3yH,  V,=-332*V0H (4.48)
For our quartic interaction potential (4.41), one computes

Vi = 2b,V, — 3¢2V0H, (4.49)

|

7 It follows that the effective mass of the y field can be written as

using %

3 4 2
m? = 2b,V, + Eazez W0 — 2972, (4.50)
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Figure 4.4: Impact of varying model parameters on the CMB angular power spectrum, as shown
across the different panels/legends of the figure. The black curve represents the baseline model,
defined by the following set of parameter values: my = 1.58 X 107%, m, = 3.86 X 107°, ¢ = —0.06,

andg=2x1078.

so that on the slow-roll trajectory defined by (4.49) there is a correlation between the

mass m, and the coupling b,. By contrast, one finds for the { mass

3
2 ) 2.2
my = 26" - 29°x°, (4.51)
which implies that a larger my, drives a faster change in the Hubble parameter (since & ~
—H). This shortens the duration of inflation and thereby reduces the overall amplitude
of the scalar power spectrum, as seen in Figure 4.4. Moreover, the same figure confirms

that raising either ¢ or m, boosts the initial power-spectrum amplitude, in accordance

with (4.50).

4.3.3 MONTE CARLO ANALYSIS AND PARAMETER CONSTRAINTS

We are now ready to employ the sampling procedure described in Subsection 4.3.1 to
map out the parameter space of our multifield model. Our exploration spans the four free
parameters (my, my, ¢, and g) together with the fields initial values (ini, Yini) Which, as
shown in Subsection 4.3.2, determine the inflationary trajectory. To cover a broad region

of model space, we draw each parameter and initial condition from wide, uniform priors
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(see Table 4.1), generating as many distinct combinations as there are Monte Carlo steps.
At each step, we integrate the background and perturbation equations, compute the full
field evolution, and extract all primordial observables — including Aj;, ns, @, fs and r.
We then evaluate each sample against CMB data by means of our Gaussian likelihood

(4.47). Using this framework, we perform a comprehensive Monte Carlo analysis of over
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Figure 4.5: Distribution of the models in the 4D parameter space. The box has the size of the
prior volume.

5 X 10° iterations, ultimately retaining roughly 2 x 10 viable models - each associated
with its own likelihood. From this ensemble, we extract posterior distributions for every
sampled parameter and for derived quantities such as the super-horizon entropy trans-
fer. Table 4.1 summarises our numerical findings, while Figure 4.5 illustrates the spread
of accepted models within the four-dimensional prior volume. Figure 4.6 then presents
the 68% and 95% confidence-level contours for all key parameters and observables. Our
first check concerns the primordial inflationary observables. For the amplitude of scalar
spectrum, we find A; = (2.109 + 0.033) x 107 at 68% CL, in perfect agreement with
the model-independent analysis performed with the full Planck and BK18 likelihoods.
Similarly, for the spectral index we get n, = 0.9621%000>> at 68% CL, while for the am-
plitude of primordial gravitational waves we obtain an upped bound r < 0.04 at 95%
CL. Finally, the higher-order runnings are constrained to a; = (—0.747337) x 107 and
Bs = (—0.103*0-953) x 107> at 68% CL, favoring slightly negative values but remaining
consistent with zero at the 95% level. One significant aspect of our method is yielding
direct observational bounds on each model parameter. At the 95% confidence level, we
find the following upper limits (in Planck units): my < 2.30x107® and m, < 1.01x107°.
Each of these values lies well within the limits, confirming that our results are driven

by the data rather than prior choices (meaning that we adopted uninformative ranges,
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Initial Conditions Constraints Unifrom Prior Ranges
Vini/ M, - Yini/ M, € [14, 17]

Xini/ M, - Xini/M, € [10, 4]
Model’s Parameters Constraints Unifrom Prior Ranges
my, <230-107° log,o(my) € [-8, —4]
m, <1.01-107° log,o(m,) € [-8, —4]

c < —0.0211 ce[-1,1]

g <9.72-1077 log,,(9) € [-8, —5]
Primordial spectra Constraints

A, (2.109 £ 0.033) - 107
ng 0.9621%0:00°3

as (—0.74*3-37) x 1073

b (~0.103%338 ) x 10°°
r < 0.04

Entropy Transfer Constraints

® < —0.686

Ax > —1.71

By > —0.341

Table 4.1: External priors and observational constraints at 16 (68% CL) or upper bounds at 2o

(95% CL) on parameters.
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without introducing any unwanted bias in the parameter space). To understand how
these parameters interplay, recall from Figure 4.4 that making ¢ more negative amplifies
CMB temperature anisotropies, whereas increasing g suppresses it. Consequently, more
negative c¢ values are only allowed alongside larger g, a trend clearly visible in the 4D
scatter of Figure 4.5 and in the 68%/95% contours of Figure 4.6. The strong preference
for ¢ < 0 originates in the geometry of field space: positive ¢ exponentially flattens
Gy (¢%), effectively freezing one field and reducing the model to a single quadratic in-
flaton. Such single-field quadratic models predict a tensor-to-scalar ratio that is already
excluded by the latest B-mode limits from BK18 and the Planck temperature and po-
larisation data, thereby ruling out ¢ > 0. Finally, our algorithm allows us to derive
constraints on any relevant physical quantities in the model, including parameters and
functions that govern the transfer of entropy between adiabatic and isocurvature pertur-
bations. For instance, we obtain a 95% CL upper limit on the transfer angle parameter of
(4.39), © < —0.686, quantifying the correction to inflationary observables between hori-
zon exit and the end of inflation. Likewise, we constrain the transfer-matrix functions
A(t) and B(t) that encode the time-dependent coupling between curvature and entropy
perturbations. Evaluated at horizon crossing, these are A, > —1.71 and B, > —0.341 at
95% CL. These results underscore how, in multifield scenarios with a curved field-space
metric, the dynamics of isocurvature modes and their transfer into the curvature sector

decisively shape the final observable predictions, as emphasised in [1].

The work presented in this chapter on multifield inflation with kinetic couplings lays
the foundation for future studies exploring more generalised theories of gravity. Indeed,
in Chapter 5, we will apply the numerical method developed here to study and analyse
a scale-invariant quadratic inflationary model, and we will also compare its predictions
with those of competing models such as Starobinsky inflation. Furthermore, in Chapter 6
we will investigate hybrid metric-Palatini gravity models that incorporate non-local geo-
metric operators in the gravitational action’, such as terms of the form fl.., o !R,...).
These non-local modifications can induce deformations of well-known inflationary po-
tentials — such as the Starobinsky potential in (3.107) — offering a novel framework to

test the stability and predictive power of the model.

SHybrid and non-local gravity models are introduced in Subsection 1.2.1.



5 SCALE-INVARIANT INFLATION

Inflationary cosmology, first proposed to address the horizon and flatness problems
as discussed in Part I (see Subsection 3.1.1), has become a cornerstone of the modern
cosmological paradigm. Observations of the CMB have revealed a nearly scale-invariant
spectrum of primordial density fluctuations (n; ~ 0.96) [263] alongside stringent upper
limits on primordial tensor modes, firmly ruling out simple monomial potentials and
favoring models with an extended plateau [209, 263]. Yet, maintaining such a plateau
across super-Planckian field ranges presents a persistent theoretical challenge: quantum
loop corrections generically induce lower-dimensional operators — such as mass terms
and vacuum-energy contributions — that tend to steepen the potential [12, 150, 268].
These “dangerous” terms must either be forbidden by symmetries, which provide a nat-
ural protection, or else be suppressed through finely tuned cancellations, which raise
concerns about naturalness. A powerful resolution lies in invoking scale-invariance, the
requirement that no explicit mass or length scale appears in the fundamental action, as
shown in Subsection 1.2.2. At the classical level, this symmetry constrains all operators
in four dimensions to mass dimension four with dimensionless couplings, automatically
forbidding super-renormalisable terms such as m?¢? or vacuum energy terms A*. Quan-
tum mechanically, an exact (or softly broken) scale symmetry ensures that loop correc-
tions can only renormalise existing operators, producing at most logarithmic running
rather than dangerous power-law divergences [269-273]. In this way, scale-invariance
acts as a “gatekeeper”, protecting the flat directions of the potential and avoiding large

hierarchical tunings.

The Starobinsky model mentioned in Part I (see Section 3.4) elegantly realises these
principles within the gravitational sector. By considering in the EH action operators of
exactly dimension four with a dimensionless coefficient, the theory enjoys scale sym-
metry at high curvature. A conformal transformation to the EF reveals a single scalaron
field with a potential [209]

4

M,
V(x) = 4—“(1—e—V2/3X/MP1)2, (5.1)
(04
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already introduced in (3.107), so that at large values of the field the potential becomes
almost perfectly flat and it is not spoiled by the usual quantum corrections that would

otherwise create unwanted mass or vacuum-energy terms.

Building on this success, one can incorporate a scalar sector while preserving scale
symmetry. Introducing a real scalar field ¢ with a non-minimal coupling and a quar-
tic self-interaction A¢* leads to the purely scale-invariant action of (1.69) which, on a
homogeneous FLRW background, admits two de Sitter regimes — an initial saddle and
a late-time attractor — between which the scalar field dynamically acquires a vacuum
expectation value, spontaneously breaking scale symmetry and generating the Planck
mass. Analytical investigations [4, 274-276] have shown that this scale-invariant infla-
tionary scenario yields spectral indices well within the bounds set by current observa-
tions, even after including one-loop quantum corrections [275]. Moreover, studies of
the two-field formulation in the EF demonstrate that scale symmetry effectively reduces
the dynamics to a single degree of freedom, thereby eliminating isocurvature modes
[23, 277]. Nonetheless, several key issues remain open. First, it is crucial to confirm
the analytic results by numerically solving the full field equations throughout the entire
inflationary epoch - a non trivial task given the inherent two-field nature of the model
in the EF. Second, quantitative fits to the latest CMB data are needed to place precise
bounds on the parameters «, & A. Third, one should assess the robustness of inflation-
ary trajectories against changes in initial conditions, and consider priors directly on the
fundamental couplings rather than on the derived observables n; and r. Beyond these,
further work is required to verify the predicted suppression of isocurvature perturba-
tions, to compute the level of primordial non-Gaussianity, and to pinpoint observational
imprints that could distinguish scale-invariant inflation from competing models such as

Starobinsky’s.

The present study based on [3] is dedicated to tackling these challenges, thereby
strengthening the case for scale-invariant inflation as a phenomenologically viable model
of the early universe. The main objectives of this chapter are the following. We outline
the methodology used and demonstrate that entropy perturbations vanish as a conse-
quence of scale symmetry in Section 5.1. We introduce a field redefinition that facilitates
the analysis with our code, allowing us to derive all quantities needed for the numer-
ical implementation. We evaluate the level of local non-Gaussianity predicted in the
squeezed limit. Finally, in Section 5.2 we make comparison with competitive models of

inflation such as the Starobinsky model.
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5.1 THEORETICAL ASPECTS

The JF action (1.69), that we report here for convenience

= [ g (£ R g R - 0000 - 10%) 52)

(where a not to be confused with the running of the spectral index «;) is dynamically

equivalent to the following formulation involving an auxiliary scalar field

2 2 4
Sy = / d*x\—g [(% + %) R- % -~ %ayqﬁa”qﬁ -~ %gb‘l} , (5.3)
as the equation of motion for the field implies 1> = R. Note this is not the most general
action quadratic in curvature invariants [278, 279] — as it lacks a term quadratic in the
Weyl tensor. However, our aim is to study cosmology and on a flat FLRW background,
which is conformally flat, the Weyl tensor vanishes identically. Therefore, including a
Cﬁvpg term does not affect the classical dynamics (this statement may not hold at the
perturbative level, see [280], however such effects lie beyond the scope of our study).
Since the auxiliary field satisfies the constraint /> = R on shell, the action (5.3) matches
the class of two-scalar scale-invariant models analysed in [23] (and earlier in the context

of Higgs-dilaton models in [277]). To transition to the EF, we perform the Weyl rescaling
~  _ 20(x)
g =€ uv > (5.4)

with the conformal factor defined by

In > (“_‘ﬁz + fiz) (5.5)

1
w=—
2 M2\ 18 6

where here M is an arbitrary parameter with mass dimension 1. Introducing the field

f = Me™ the action takes the compact EF (4.1) form

2
e = [ dty7g [%R— SGug"0'a9 - v<¢f>], (56)

where the scalar field multiplet and field-space metric are given by

é o6 g

¢I

with b(f) = In (f/M).
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The corresponding EF potential becomes

_3§¢272 Q¢4f4 9M4

V(#)=V(4.D = 20 daM?*  da

, (5.8)

where we have defined
Q=al+&. (5.9)

Scale symmetry implies the existence of a conserved Noether current, which can be

computed under an infinitesimal Weyl transformation,

Guv — e_ze(x)g,uv ~(1- 2€(x))9pv,
¢ — e = (1-e(x))g, (5.10)
Y — e Oy = (1-e(x))y.

The Noether current is defined as

5L
Ky = Soue(x)’

(5.11)

In our case, to calculate it, we can split the Lagrangian of (5.3) into the parts that will

contribute to the current when varied

1
Ly = —5(&}5)2»
L= %x/—_ngR, (5.12)
L= SvgeR
Starting with £ we find that
5Ly
Sape) PP 19

by means of §(9¢)? = 20"$5(9,¢) and 5(9,¢) = —(9,€)¢ — €9,¢ in which we neglected

the second term as it does not contribute to K,. Variation of £; gives

5Ly = %((—46\/——9)%1@ + \=g(=26*)R + =Gy/*(2€R + 60€)

_0{
T 18

(5.14)
(—4¢2R + 6y 9" 9,€ |,

in which we substitute §(y/—g) = —4e€y/—¢g and R = 2€R + 60¢, and the covariant
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derivatives reduce to partial derivatives. Moreover, we can rewrite
Y23 a,e = 9,(Yd'e) — (9,9°)de, (5.15)

and ignoring the first term on the right hand side because it is a boundary term. Hence,

6Ly

2a
Sty 3 o

The very same procedure applies for £L,; one obtains

6L,
Sopen) 0 o

By substituting all the results into (5.11), the Noether current takes the form
2
K, =(2E+1)¢po,d + 3% Youy. (5.18)
One can introduce the scalar function

K = % (28 +1)¢* + %ag//z , (5.19)

so that K, = 9,K. Strictly speaking, K is not conserved in the sense of a constant of

motion; rather, it satisfies the massless free field equation
oK = 0. (5.20)

In a spatially flat FLRW universe, this reads

K +3HK =0, (5.21)
whose general solution is
K=c + / dt (5.22)
=c+c ——. .

where a(t) is the scale factor. The second term decays rapidly due to the expansion of
the universe, so K dynamically approaches a constant. This reflects a dynamical freezing
rather than exact conservation, and it constrains the field motion in the (¢, 1) plane to
an elliptical trajectory. Expressing K in terms of f = Me™® with w as in (5.5), we have

2 2
M ( ¢, 6MP)

K=—
2

TR (5.23)
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as also derived in [277], and setting ¢; = M} without loss of generality gives the ellipse

2 oM> VoM
45_2 " _ZP =2 - f=—2 (5.24)

This trajectory is illustrated in Figure 5.1 and aligns with numerical solutions of the
background equations of motion. The approach of K to a constant is thus a dynamical
consequence of the expansion for a free massless field, rather than a strict statement of

conservation, illustrating how symmetries can effectively constrain multifield dynamics.
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Figure 5.1: The grey curve shows the analytical expression of the ellipse from (5.24) with
¢; = M3, while the red curve represents the field trajectory obtained by numerically solving
the background equations. The arrow indicates the direction of evolution, and the numerical
integration is performed up to the end of inflation.

Examples include Higgs inflation, where SU (2) symmetry appears as an SO(4) sym-
metry in field space [281], the Higgs-dilaton model of inflation [282, 283] and the scale-
invariant generalisation of [284].

Given that, we proceed with presenting the key analytical results that underpin the
theoretical framework of the model, serving as a foundation for the numerical analysis

to follow.

5.1.1 VANISHING OF ENTROPY PERTURBATION

In this subsection we outline the methodology used and demonstrate that entropy
perturbations vanish as a consequence of scale symmetry.

To facilitate the interpretation of the evolution of cosmological perturbations and
their interrelation, we introduce an orthonormal basis in field space, as discussed in

Subsection 3.3.2. This allows us to decompose field-dependent quantities into adiabatic
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and entropy components. For the two-dimensional field space defined in (5.7), the unit

vectors forming the orthogonal basis (3.86) are given by

I _ 1 [ ¢ I _ 1 _ _obi ﬁ .
ul = (¢, f), ul = Vee 25 E_g).  (5.25)
\/eZbg{;2 + 6e‘2bf2 \/ezbd;z + 6e‘2bf2 \/E

By means of (3.82), we can write
5% = e?§? + 6e 722, (5.26)
where the adiabatic field o is defined via:
do = €’ cos 0d¢ + Ve6e? sin 0dj, (5.27)

in which cos@ = e gb /6 and sinf = \/ge_bf /6. In this notation, the unit vectors that
satisfy (3.86) are

I b ¢’ ) I ( b ¢’

u.=|e " cosh,—sinb|, u,. =[—e"’sinf,—cosbO|, (5.28)

’ V6 ’ V6
to be in line with [196], as discussed in Subsection 3.3.2. Within this formalism, adiabatic
and entropy perturbations, which we denote by do and Js, are defined by (3.90). In
particular, we can evaluate the entropy perturbations by imposing the constraint given
in (5.24)

127" M2¢

— -b b —
ds = \/ge Cos 95f — € Sin 95(]5 = [W

cos 0 — e’ sin 0] é¢ =0, (5.29)

following directly by substituting the explicit forms of sin @ and cos 8, and using f =
(97/d¢$). This demonstrates that entropy perturbations vanish in our model as a direct
consequence of the constraint in (5.24), which itself originates from the conservation of
the Noether current associated with scale symmetry. Hence, in the two field model, the
absence of entropy perturbations is ultimately a manifestation of scale invariance'. An
important implication of this result is that it eliminates concerns about a tachyonic mass
for entropy perturbations — a known issue in many multifield inflationary models with
hyperbolic field space geometry, where it can prematurely end inflation [206]. In con-
trast, scale invariance in our setup offers protection against such geometric instabilities.

Furthermore, the formalism adopted here is not affected by the apparent destabilisation

IThis is not true in the three field framework [285].
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effects explored in [286], where the need for a careful definition of the entropy variable
when assessing the presence of growing isocurvature modes is emphasised. Given our
result in (5.29), the decomposition of perturbations into components tangent and normal

to the inflationary trajectory is well-defined and free from such ambiguities.

5.1.2 FIELD REDEFINITION AND OBSERVABLE PREDICTIONS

In the following analysis, we demonstrate that the dynamical content of the model
can be effectively shifted onto a single field, allowing for a single-field description of
inflation. The remaining field behaves as a spectator throughout the inflationary evolu-

tion. Starting from (5.23), we define new fields

= V6Mp arcsinh(\/%ﬁ;/lz), (5.30)
¢ 3M:
=3 lag ) o

Hence, the Lagrangian density in the EF (4.1) becomes

_ME 1
Le R — =9,pd"p — 3 cosh’ (\/gM) A xd' x — V(gh), (5.32)

V22
1 0
(i) ’ G = (0 ezb(p)) ’ (5.33)

and the coupling is now defined as

in which

¢I

b(p) = %m [6cosh2 ( \/EPMP)] . (5.34)

The scalar potential in the {p, y} basis depends only on p and can be written as

P Y N
\/EMP) + 4Q sinh (\/EMP)] . (5.35)

The shape of (5.35) is that of a “Mexican hat” potential with a nonzero minimum. The

4

IM,
V(¢h =V(p) = [1 — 4& sinh? (

vacuum expectation value of the field leads to a residual vacuum energy, which effec-
tively acts as a cosmological constant. As shown in [97], one can tune the couplings so
that the R* and ¢* contributions cancel this constant exactly, though not in agreement
with observational spectral indices. For phenomenologically viable parameters, the left-

over vacuum energy is large and requires an additional cancellation mechanism - e.g.
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via a third, scale-symmetric field that participates in inflation rather than remaining a
spectator, as explored in [285]. Extending our analysis to include such a field is an inter-
esting avenue for future work. At the background level, the homogeneous KG equations
are

j+3Hp+V,=b,e?? 2 (5.36)

§+3Hy +2b, yp = 0. (5.37)

The Einstein equations determining the evolution of the scale factor are

1(p? b

3 ( ot (p) (5.38)
. 1
o= (pz + 2P )&2), (5.39)

in which we set M = 1. From the above, y clearly behaves as the Goldstone mode:
it settles to a constant value. Consequently, the only active degree of freedom driving
inflation is p, in agreement with the fact that V(¢’) = V(p). Indeed, In the slow-roll
regime, (5.37) reduces to the single-field inflationary equation for p. Equivalently, in the
rotated field basis (3.88), one finds 8 ~ 0. The evolution on the entropy direction (3.94)
vanishes identically, so the background trajectory remains straight and flat. There is no
potential coupling between adiabatic and entropy perturbations (since Vi = 0) either.
Therefore, all dynamics reduces to the tangent field o, which in slow roll (4.25) reduces
to .
o
e ~ €0 — Npp- (5.40)
In this regime, equations (4.27) and (4.28) hold. Inserting the two Friedmann equations
(5.38) and (5.39) in the definition of ¢ given in (3.23), and further employing (5.40) we
get
€0 = 260H (269 — 115p), (5.41)

which, inserted in (4.28), gives
n. = —6€y + 1. (5.42)

On the other hand, its running (4.31) takes the form

- 2 Vopp
o > —24€jy + 16601, + 2V2€) cOs GW, (5.43)
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and the running of the running (4.33) is

8\/568/2 cosOV,pp  2v2€) cos Onp,Vppp
- +
H? 3H? (5.44)

Bo = — 19262 + 64€n,p — 32e0n’, +

2
4eg cos” OV,

+
3H?

To generate the predictions, we need the derivatives of the potential (5.35) up to fourth
order, and those of the function (5.34) up to second order. We derive these expressions
explicitly in Appendix C; these will be useful later for numerical implementation.

In the same vein as in the previous section, moving on super-horizon scales, we
can also evaluate — in the slow-roll regime — the dimensionless function A (4.35) which
reduces to

A=2&sin6~0, (5.45)

with §; = +2eyb, which demonstrates that isocurvature modes do not influence the
adiabatic spectrum. Indeed, since 6 ~ 0 and hence A ~ 0, the cross-transfer 7;s vanishes
(see (4.37)) and the final spectrum remains identical to its value at horizon crossing (i.e.

it is simply multiplied by 1).

5.1.3 NON-GAUSSIANITY

Starting from the fact that the inflationary dynamics is effectively governed by the
field p, as demonstrated in the previous section, we expect observables such as non-
Gaussianities to reflect the behavior of a single-field inflation model with canonical ki-
netic terms. Primordial cosmological perturbations are usually expressed in terms of
the curvature perturbations on uniform energy density hypersurfaces (3.101) and (4.12).
Moreover, when evaluated on a final uniform-density slice at time ¢., { can be written
as the spatial variation in the number of e-folds between an initial flat slice at ¢, and the
comoving slice at t,

{(t,x) = SN (1, ts, X). (5.46)

This “ON relation”[202, 203] allows us to track the full nonlinear evolution of super-
horizon perturbations without solving the complete set of perturbed field equations.

The spatial variation can be expanded as
_ Ty s 4T 1 Ky s 4] 7
ON(t,, t., x) = N(N, ¢2)d¢, (x) + zNU(g{)* )09, (X)0¢: (%) + ... (5.47)

up to second order in the field fluctuations §¢!(x) = ¢L(x) — ¢L. For small 5¢%(x), the

two points ¢! (x) and the background value ¢! lie on a unique geodesic in field space,
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which we parametrise by A. Introducing the tangent-space vector Q' = d¢!/dA|)—,
which transforms covariantly under field-space coordinate transformations [287, 288]

we can express 5¢! in terms of Q! as
1
S’ = Q! - ZF}KQJQK +.., (5.48)
and hence recast (5.47) in a manifestly covariant form as
1
{(N,x) = Ni(N, ¢))QL(x) + SDIDIN(N. 6)Q, QLX) +...,  (549)

again truncating at second order. We now consider the correlation functions of the cur-

vature perturbation in Fourier space. The two-point function is parametrised as

27
({ (k) (k2)) = (27)°8° (ky + k) Py (ky) = (27)°8 (ks + kz)Fﬂog(kl), (5.50)
1
where Py (k) and #; (k) are respectively the power spectrum and reduced power spec-

trum, and the three-point correlation function defines the bispectrum:

(k) (k3){ (ks)) = (27)°8° (k + ko + k) By (i, ko, ks) (5.51)

By definition, a purely Gaussian field has vanishing connected higher-point functions
beyond the two-point function; thus any nonzero bispectrum signals primordial non-
Gaussianity. Improved upper limits on the amount of non-Gaussianity critically test
inflationary dynamics: minimal single-field slow-roll predicts negligible signals, while
measurable non-Gaussianities points to additional fields, non-trivial kinetic structure, or
non-standard vacua. Observationally, non-Gaussianities leave imprints in the CMB bis-
pectrum and on large-scale structures. Even small levels affect the abundance and clus-
tering of rare objects, impacting the thermal and ionisation history. Therefore, studying
primordial non-Gaussianities provides a unique and powerful probe of the physics of
the very early universe and guides model-building in inflationary cosmology. A com-
mon phenomenological parameterisation of “local” or “squeezed”” non-Gaussianities is

given by their magnitude with the parameter fyi,

5  By(ki ka ks)

A= 6 P(k1)P;(ky) + c.p.

(5.52)

Different inflationary (or alternative) mechanisms yield bispectra peaking on characteristic triangular
configurations in momentum space. The squeezed triangle arises in models where curvature perturbations
are generated or modulated by a second light field outside the horizon [289-291].
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where c.p. denotes cyclic permutations of k;,k; and k3. We stress that the SN formalism
is only valid in the squeezed limit of the three-point correlation function (k3 < k; = k»).

Following [287] and using (5.49), we find the power spectrum

2 2
Pr = (5) G/NIN; = (2”) NZ, (5.53)

where N =~ / dp/(My+/2€y(p)). Hence, in the slow-roll regime, the non-Gaussianity

parameter becomes (for detailed derivation see Appendix C)

A 5 QiKNKQ{LNLDIN] 5 Ng(Npp - F;prp) 5N, SM (») 2] 1
NL — — = - = - ~ —Mey(p) ————.
6 (G NiNk)? 6 N, 6 N 3 P \[2¢0(p)

This expression coincides exactly with the result found in single-field inflation with a
canonical kinetic term [292]. This agreement reflects the fact that, as noted above, our
model’s inflationary evolution is effectively governed by the field p with a canonical
kinetic structure. Since slow-roll dynamics suppress fyr, the predicted non-Gaussianity
remains well below current observational bounds. Nevertheless, one should also include
the comparably small contribution arising at horizon crossing. Employing the Malda-
cena consistency relation — naturally incorporated in the SN framework [293] — one

obtains 5
fa = (1 —ny). (5.55)

We have explicitly checked that, over the region of parameter space constrained by the
numerical analysis presented in the following section, fyi remains well below the cur-
rent upper bounds on non-Gaussianity from the Planck temperature and polarisation
bispectra. In particular, Planck constrains the local amplitude to fl\lgfal =—-0.9+5.1[294].
For instance, at our benchmark point & = 0.00039, & = 1.87 X 101 Q =1.64 x 1077, pPx =
5.15 Mp, we obtain fI\lfical = —0.015, well within current observational bounds. Note that
large-scale structure constraints on foc!

NL
283, 295-297]. We focus on the local amplitude for three reasons: first, it peaks in the

are at least an order of magnitude weaker [248,

squeezed limit — where one of the three momenta is much smaller than the others -
which is precisely where the N formalism applies. Second, the local shape provides a
clean diagnostic to discriminate between single-field and multifield inflation: single-field
models predict an unobservably small local non-Gaussianity [298, 299], while multi-field
models can generate a sizable signal [290, 300]. Third, the local amplitude is the most
tightly constrained among the standard bispectrum shapes considered in cosmological
data analyses. These shapes are: the local shape which peaks in the squeezed configu-

ration and is associated with superhorizon evolution or modulation by light fields; the
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equilateral shape, which peaks when all three momenta are of similar magnitude, typ-
ically arising in models with non-canonical kinetic terms or higher-derivative interac-
tions [301, 302]; and the orthogonal shape, which has a more complex structure and
was designed to be orthogonal to the local and equilateral templates, capturing certain
higher-derivative models [303]. They serve as benchmarks in CMB analyses, notably
those by the Planck collaboration [294], which place the tightest current bounds on pri-

mordial non-Gaussianities.

5.2 COSMOLOGICAL CONSTRAINTS

The theoretical parametrisation described in Subsection 5.1.2 leaves three free pa-
rameters — & Q, a. We perform a Monte Carlo analysis with the aim of exploring the
3D parameter space, comparing the model’s predictions against observational data. In
doing so, we follow exactly the sampling strategy discussed in Section 4.3 employing
an algorithm designed to cover a large parameter volume and pinpoint the subregion
where theory and observations are in best agreement. The procedure of our sampling

algorithm is as follows.

1. Parameters and initial conditions Sampling: at each Monte Carlo iteration,
we draw the three model parameters (£, Q, @) and the fields’ initial values from
uniform priors (see rightmost column of Table 5.1). This simultaneously explores

both parameter space and sensitivity to initial conditions.

2. Fields evolution and inflation-end test: for each chosen parameter set and ini-
tial field values from step 1, we numerically solve the fields’ equations of motion
and track their evolution over the inflationary potential, allowing up to Ny, = 107
e-folds to accommodate the possibility of an extended slow-roll phase that could
lead to eternal inflation. During integration, we monitor the slow-roll parameter
€9 and declare the trajectory eternally inflating — and thus discard it - if €, never
reaches unity before Ny,x. If €y occurs at some N < Np.x, we mark that point
as the end of inflation, then apply the checks from Subsection 4.3.1. Furthermore,
we check: no re-entry into a slow-roll regime, ¢y # 0 throughout the evolution,
and a total of AN > 70 e-folds to ensure the observed universe’s homogeneity and
isotropy. Only trajectories passing all these tests advance to step 3; otherwise, we

return to step 1 to sample anew.

3. Observable reconstruction: once the trajectory passes all the end-of-inflation
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checks, we reconstruct the full evolution of the fields and slow-roll parameters
as a function of N. In particular, at N, = 55° e-folds before the end, we extract
all relevant observables: the scalar power-spectrum amplitude Ag, its spectral in-
dex ng, the running «;, and the tensor-to-scalar ratio r = Ar/A;. Our numerical
code also implements the transfer-matrix formalism (4.37) [236] to capture any
super-horizon exchange between isocurvature and curvature modes. However, as
shown analytically in Subsection 5.1.2, scale invariance enforces 7;s = 0 and we
confirm numerically that entropy transfer vanishes. Consequently, the inflation-
ary observables are fixed at horizon crossing - just as in single-field models - and

remain unchanged through to the end of inflation, since 1 + 775 =1 (4.38).

4. Likelihood evaluation and chain construction: we save the model’s predicted
observables as a sequence of points, analogous to an MCMC chain, as we discussed
in Subsection 4.3.1. Each point’s likelihood is evaluated using a multi-dimensional

normal distribution,
1 T w1
L o exp -3 (x-p) T (x—p)), (5.56)

where the parameter vector x = (As, ng, O, r), and p and X are the mean vector
and covariance matrix derived from the joint Planck 2018 (TT, TE, EE + lensing)
analysis [265, 267] combined with the 2018 BICEP/Keck foreground-cleaned B-
mode likelihood [264]. For details see Appendix B.

5. Iteration: The algorithm then returns to step 1 and repeats, gradually building up

the posterior distribution over {£, Q, a}.

Using this procedure, we accumulate 7 X 10* sample points — each assigned its computed
likelihood — allowing us to place bounds on the model’s free parameters and to investi-
gate correlations both among those parameters and among derived observables (e.g. n,
A, r, etc.). Although the output resembles an MCMC chain, our algorithm is purely ran-
dom, as discussed in Appendix B. The algorithm does not require a proposal distribution
or acceptance criterion (such as Metropolis-Hastings [305]), and every sample carries

equal weight by construction. Consequently, there is no formal convergence metric (e.g.

SEstimating the exact value of N, would necessitate a detailed treatment of reheating, which lies out-
side the scope of this work. However, fixing it to 55 in the Einstein frame is well justified: as we demon-
strate below in (5.62), the same n; - r relation familiar from Starobinsky inflation (see (3.111) and (3.112))
applies here. Therefore, even with reheating taken into account, the departure from the standard Starobin-
sky value N, = 55 remains below one e-fold [304].
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Initial conditions Constraints Uniform prior ranges
Pini/ Mp (unconstrained) pini/Mp € [0.1,2]
Xini/ Mp (unconstrained) Xini/Mp € [0.1,10]
Model parameters Constraints Uniform prior ranges
£ < 0.00142 log,,(§) € [-5,-1]

a 1.95170976 x 101 107 x a € [1,3]

Q 0.937972 % 107 Q€ [£,287
Primordial spectra parameters Constraints

A, (2.112+0.033) - 1077 (derived)

ns 0.9638*0-001 (derived)

s <12x107* (derived)

r > 0.00332 (derived)

Table 5.1: External priors and observational constraints are listed for the initial conditions of the
fields p and y (first two rows), the model parameters ¢ (specifically log,, £), , and Q (next three
rows), and the (derived) inflationary observables that characterize the primordial scalar and
tensor power spectra: As, ns, s, and r (bottom four rows). Regarding observational constraints,
we report 10 (68% CL) intervals for two-sided bounds, and 20 (95% CL) upper or lower limits for
all other cases.

Gelman-Rubin [306]), and convergence is instead assessed empirically by verifying that
parameter constraints remain stable as additional samples are added. As an additional
empirical check of convergence, we verified that increasing the number of points in the
chains and computing the one-dimensional marginalised posterior distributions led to
consistent statistical behavior in the tails. In particular, the regions corresponding to the
5% CL were found to contain approximately 5% of the total number of models. This is
precisely the expected outcome when marginalising over the parameter space and pro-
vides strong evidence that the tails of the posterior distributions were properly sampled

and sufficiently populated.

Constraints on the model parameters — including the initial conditions for the fields
p and y — as well as on the inflationary observables associated with the primordial scalar
and tensor power spectra (treated as derived parameters), are summarised in Table 5.1.
For parameters consistent with two-tailed bounds, we report 68% CL intervals, while
for those lacking such evidence, we quote 95% CL upper or lower bounds. Figure 5.2

displays two-dimensional joint and one-dimensional marginalised posterior probability
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Figure 5.2: Triangular plot illustrating the two-dimensional joint and one-dimensional
marginalised posterior probability distributions for a subset of parameters: the (natural loga-
rithm of the) amplitude of primordial scalar perturbations A, the scalar spectral index ng, and
the (logarithms of the) coupling parameters &, Q, and a. The parameters & and « govern the
strengths of the #?R and R? terms, respectively, in the JF action (see (1.69)), while the ratio Q/a
controls the sinh*(p) term in the potential expressed in the (p, y) field basis (5.35). The plot also
includes the (logarithm of the) tensor-to-scalar ratio r.

distributions for a selection of parameters (excluding the distributions for the initial field
values). A key result of our analysis is that, despite allowing pj,; and yin; to vary over
broad flat priors, these initial conditions remain entirely unconstrained. This outcome
highlights the insensitivity of our model to the initial field values — an encouraging
feature. By contrast, the three free model parameters — «, &, and Q (with a flat prior
imposed on log,, £) — are well constrained within their prior ranges. The resulting 68%
CL intervals and 95% CL limits remain away from the boundaries of the prior domains,
suggesting that our constraints are driven by the underlying physics of the model rather
than prior choices. To briefly recap the physical meaning of these parameters: £ and «

control the strength of the ¢2R and R? terms, respectively, in the JF action (see (1.69)),
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while Q/a determines the strength of the sinh®(p) term in the potential expressed in
terms of the fields (p, y) (see (5.35)). Given fixed values of @ and ¢, the parameter Q also
determines A, which sets the strength of the quartic interaction in the original JF action
(1.69).

In more detail, the parameter a, which determines the strength of the R? term, is
directly tied to the overall amplitude of the inflationary potential via (5.35). As a re-
sult, it significantly influences the amplitudes of both the primordial scalar and ten-
sor power spectra. This connection is particularly clear in the correlations between
a, As, and r, as shown in Figure 5.2. Since the amplitude of scalar perturbations A
has been tightly constrained by Planck observations — primarily through its impact on
the heights of the acoustic peaks in the CMB temperature and polarisation spectra —
such measurements impose strong requirements on the amplitude of the inflationary
potential. Consequently, A; serves as a calibrator for inflationary models. This re-
mains true in our scale-invariant framework which, reproducing the observed value
As = (2.112 + 0.033) x 107°,in excellent agreement with existing literature, results in

the constraint o = 1.9511’8:?16 x 1010,

On the other hand, the parameter £, which controls the strength of the non-minimal
coupling ¢?R, has a significant impact on both the scalar spectral index ns and the am-
plitude of primordial tensor fluctuations via the tensor-to-scalar ratio r. As shown in
the left panel of Figure 5.3, values of & ~ 1072 tend to shift n, towards smaller values,
around n; ~ 0.95, whereas for £ < 1073, the predictions flatten out to a plateau near
ns ~ 0.965, in good agreement with the Planck results. There are, however, two impor-
tant caveats to this statement. First, CMB data from the Atacama Cosmology Telescope
(ACT) are, in principle, compatible with ng = 1, albeit with some degree of tension with
Planck data [307-311]. Second, the quoted value of n; is derived assuming the ACDM
framework. Models involving new early-time physics — often proposed as possible reso-
lutions of the Hubble tension [121-123, 125, 129] - typically predict higher values of n,
in some cases approaching ng ~ 1 (see, e.g. [312-321] for explicit examples). This trend
arises because a larger scalar tilt can help compensate for shifts in the CMB spectrum
induced by an enhanced early integrated Sachs-Wolfe effect, as well as modifications in
the damping tail [115, 312, 319, 322, 323]. In view of these caveats, we caution against
drawing too strong conclusions from the value of n, inferred by Planck under the as-
sumption of ACDM [324, 325]. Therefore, in order to maintain consistency with the
observed value of ng, excessively large values of & are not viable, as they would push
the model into a region of parameter space where ng; becomes too small to remain in
agreement with Planck data. This requirement leads to the 95% confidence level upper

bound & < 0.00142. It is worth highlighting that this constraint excludes ¢ = 1 with
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very high statistical significance. In our parametrisation of the non-minimal coupling
term 2R, the coupling appears as £/6, meaning that £ = 1 corresponds to the conformal
coupling. Consequently, our results rule out conformal invariance within the context of
this model. This outcome is not unexpected, as conformal invariance imposes stronger
symmetry constraints than scale invariance alone. It is worth noting that the low-n;
tail of the distribution is more extended than its high-ng counterpart. This asymmetry
gives rise to the somewhat non-Gaussian shapes observed in the contours of Figure 5.2.
As evident from the same figure, smaller values of n, are correlated with larger values
of &, and vice versa. Consequently, the sharper high-n; tail is a reflection of the lower
bound imposed on the log,, £ prior, which we set to log;, £ > —5. Naturally, the choice
of this lower prior edge is somewhat arbitrary, as sampling in log,, £ space prevents us
from exploring arbitrarily small values of £ (i.e. we cannot probe the exact £ — 0 limit).
Nonetheless, our results remain robust and well-converged, even though convergence
is not achieved in the strict MCMC sense. Moreover, we note that the allowed values
of £ in our analysis are significantly smaller than those typically required for the non-
minimal coupling in Higgs inflation models [326-328]. As a result, our model does not
suffer from the potential issues related to unitarity violation that have been raised in the
context of Higgs inflation [327, 329-332]. We emphasise, however, that a direct compar-
ison between the two scenarios is not entirely appropriate, since the scalar field driving

inflation in our case is not the Higgs boson.

Regarding the parameter Q — which, as previously discussed, controls the strength of
the sinh*(p) term in the potential within the (p, y) field-space representation, or equiv-
alently (once a and ¢ are fixed) the strength of the quartic term in the JF action — it
is important to clarify the prior range adopted in our analysis: Q € [£?, 2£%]. This
choice is motivated by semi-analytical considerations which indicate that, for a given
value of &, avoiding eternal inflation requires Q to lie within a relatively narrow range,
specifically Q € [&2, 1.15 £%] [274]. Our numerical results confirm this semi-analytical
expectation. In particular, we observe that deviations from this interval tend to lead to
scenarios where the numerical evolution enters a regime of eternal inflation. Conse-
quently, we adopt the prior reported in Table 5.1, which is slightly more conservative
than the analytical bound, allowing for a broader exploration of the parameter space.
As with a and ¢, the parameter Q also influences the shape of the inflationary potential
and, therefore, impacts the resulting cosmological observables. This sensitivity leads to
non-trivial correlations between Q and both the model parameters and the inflationary
predictions, as illustrated in Figure 5.2. In our analysis, we set a two-tailed constraint on
Q, Q=0.93*072%x107°.

We conclude this section with a few final remarks concerning both the predictive
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Figure 5.3: Left panel: 2D scatter plot in the log,, £&-n; plane, where £ parametrises the strength
of the non-minimal coupling ¢?R in the JF action. Points are color-coded according to the value
of the tensor-to-scalar ratio r.

Right panel: 2D scatter plot in the 10*a;—ng plane, where a; denotes the running of the scalar
spectral index. Points correspond to predictions from the scale-invariant model studied in this
work and are color-coded by the value of the tensor-to-scalar ratio r. For comparison, predictions
from Starobinsky inflation are also shown (dotted contours), though these are not color-coded
by r.

power of our scale-invariant model and the distinctive features of the methodology
adopted in this work. Our approach differs substantially from the standard procedures
commonly found in the literature. Typically, predictions from inflationary models are
compared to observational data by overlaying theoretical curves — computed at fixed
benchmark values for the model parameters — onto pre-computed 2D marginalised prob-
ability contours in the ng—r plane.* A representative example of this standard method-
ology is illustrated in Figure 8 of the Planck 2018 inflation paper [263]. In contrast, a
key advantage of our method (see also [333, 334]) is that it allows us to compute fully
model-dependent predictions for inflationary observables such as the tensor-to-scalar
ratio r and the running of the spectral index ;. Hence, assuming a specific model re-
duces the freedom to tune parameters independently, because the observables are inter-
connected by consistency conditions. These considerations are clearly reflected in the
correlations observed within the 3D parameter space spanned by ng, r, and s, as shown
in the right panel of Figure 5.3. In particular, we find that more negative values of «; are
only realised when n; ~ 0.965 and r ~ 0.0036. This region corresponds to the regime
in which the effects of the non-minimal coupling ¢?R, controlled by &, are negligible —

effectively reducing the dynamics to those of Starobinsky inflation, where the R? term

*This approach does not fully explore the parameter space of the model - it just checks how a few
specific examples compare to the data.
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dominates. On the other hand, lower values of n; < 0.96 are associated with smaller
values of r and less negative (i.e. smaller in absolute value) values of «;, indicating a
significant deviation from the predictions of Starobinsky-like models. It is important to
note that these correlations emerge after marginalising over all free parameters of the
model — namely ¢, a, and Q — as well as over the initial conditions for the fields. Conse-
quently, this approach provides a more comprehensive view of the correlations among
inflationary observables within our specific scenario, thereby highlighting the predic-
tive power of scale-invariant inflation. For example, we obtain the model-dependent
predictions r > 0.00332 and @; < 1.2 x 107 (both at 95% CL), indicating a non-zero
amplitude of primordial gravitational waves and a small running of the scalar spectral
index. These are not generic features, but rather robust predictions that follow directly
from the structure of the model. As such, they can be tested in the near future with
forthcoming CMB experiments [184, 186, 335-337], providing an opportunity to either
support or falsify the scenario. On the other hand, one may naturally ask whether these
predictions are sufficient to distinguish this model from other competing frameworks.

The next subsection is devoted to addressing both of these aspects in detail.

5.2.1 COMPARISON WITH STAROBINSKY INFLATION

As this approach differs fundamentally from the more conventional method of sim-
ply overlaying theoretical curves on pre-computed 2D marginalised ns—r contours, our
analysis should be interpreted as a model-specific prediction, as explained in the pre-
vious section. A natural question that arises is whether — and to what extent - these
predictions can be distinguished from those of other well-known inflationary scenarios,
such as Starobinsky inflation [39] or its a-attractor extensions [40, 338-341] (see also
[342-351] for related developments). In this context, we note that Starobinsky inflation
itself may be viewed as a scale-invariant model in the regime where the R* term domi-
nates the dynamics — an assumption that typically holds in its standard realisation. One
should therefore expect some degree of overlap in the predictions of the two frameworks,
at least for specific ranges of model parameters.

We choose to compare our results against Starobinsky and a-attractor inflation not
only due to their quasi-scale-invariant nature, but also because they are in excellent
agreement with current observational data and are often used as benchmarks in fore-
casting the sensitivity of future CMB experiments.

To address these questions, in Figure 5.4 we present a comparison of the marginalised
contours in the n;—r plane for our scale-invariant inflationary model (shown in red) with
those obtained for Starobinsky inflation (green) and a-attractor inflation (light blue). For

the latter two models, the predictions are derived following the methodology outlined



110 Chapter 5. Scale-invariant inflation

0.0038} I o-attractors \
Il Starobinsky
0.0037 | M Scale-Symmetry

0.0036

0.0035¢}

0.0034

0.0033f

0.0032

0.0031f

0958 0960 00962 0964  0.966

Ns

Figure 5.4: 2D contours in the ng—r plane for the scale-invariant inflationary model studied
in this work (red contours), shown in comparison with those of Starobinsky inflation (green
contours) and a-attractors (light blue contours). The contours are derived using observational
data from the Planck 2018 legacy release, combined with BICEP/Keck measurements (including
BICEP2, Keck Array, and BICEP3 data up to 2018).

in [333]. This approach incorporates the relation between inflationary observables,

ng~1-— é (5.57)
with a = 1 corresponding to the Starobinsky limit. This consistency relation is assumed
within the cosmological model, and constraints are then obtained using the same dataset
employed in our analysis of the scale-invariant inflationary model, to ensure a fair and
meaningful comparison. Although the predictions of the three models overlap across a
substantial region of parameter space, several notable differences can be identified. Most
prominently, the red contours — corresponding to our scale-invariant inflationary model
- exhibit a positive correlation between the amplitude of tensor modes and the scalar
spectral index. That is, higher values of r are associated with higher values of n,. This
behavior stands in sharp contrast to that of Starobinsky inflation, where the two observ-
ables are related by (5.57) with a = 1. This relation enforces a negative correlation: as r
increases, ns decreases. As a result the marginalised contours of the two models appear
rotated with respect to each other in the n;—r plane. Consequently, a significant portion
of the parameter space that lies within the 68% CL region for the scale-invariant model
falls outside the 95% confidence level region of Starobinsky inflation - and vice versa. In

the case of the more general a-attractor scenario — where (5.57) is applied with a treated
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as a free parameter — the correlation between n; and r is effectively washed out due to
marginalisation over . When n; is fixed, « primarily affects the tensor amplitude, ef-
fectively moving predictions vertically in the n;—r plane between the Starobinsky limit
(¢ = 1) and the predictions of chaotic inflation with a quadratic potential (V o ¢?).
This flexibility allows for a wide range of r values to be accommodated by varying «,
resulting in significantly broader posterior contours once « is marginalised over. Hence,
the differences between scale-invariant inflation and Starobinsky inflation appear suf-
ficiently significant to prompt further discussion regarding: their physical origin, and
the implications that can be drawn in light of future, more precise CMB measurements
from upcoming satellite and ground-based experiments. Our main observations are as

follows:

1. With regard to the first point, we argued in the previous subsection that the pa-
rameter & exerts the strongest influence on the constraints in the ny—r plane. Re-
examining the left panel of Figure 5.3, we see that the predictions of Starobinsky
inflation are fully recovered in the limit £ — 0, where the R? term dominates
the dynamics. In this negligible-¢ regime we approach the familiar plateau at
ns =~ 0.965,r ~ 0.0036, precisely the region where the red (scale-invariant) and
green (Starobinsky) contours overlap in Figure 5.4. Conversely, increasing & shifts
the model toward smaller values of both n; and r, driving it into a portion of the
ns—r plane that Starobinsky inflation cannot reach. The same trend is evident
in the right panel of Figure 5.3: as long as ¢ remains negligible (leftmost por-
tion of the plot), the scale-invariant predictions (colored points) lie on top of the
Starobinsky contours (dashed); once ¢ becomes appreciable, the points migrate
away, manifesting the distinct behaviour of the scale-invariant scenario in the full
three-dimensional space spanned by ng, r, and a;. The fact that the predictions of
scale-invariant inflation reduce to those of Starobinsky inflation in the limit & — 0
can also be demonstrated semi-analytically, providing additional support for the
robustness of our numerical results. To illustrate this, let us consider the potential
slow-roll parameters (3.21), which depend only on the field p

2 2
ev(p) = % (%) : nv(p) = Mﬁ%, (5.58)

from which the inflationary observables can be expressed as

ns(p) = 1—6ev(p) +2nv(p),  r(p) = 16ey(p). (5.59)

These expressions can be computed analytically and simplify considerably in the
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limit Q — &2, as discussed earlier. By additionally taking the limit &£ — 0, we find

~1- —fcosh(gA'ZP) (5.60)
_—§2s hz( AZP) (5.61)

Combining (5.60) and (5.61) allows us to eliminate the field dependence and obtain

the following relation between the observables

1 r
ng~1-— g\/Sr + 6482 ~ 1 - \/; (5.62)

which is exactly the consistency relation found in Starobinsky inflation (5.57) with
a = 1. However, as soon as £ # 0 — and thus the non-minimal coupling ¢*R is
present — the predictions of scale-invariant inflation begin to deviate from those

of Starobinsky inflation. This departure is clearly visible in Figure 5.4.

. Concerning future observations, we expect that the next generation of CMB exper-

iments will significantly enhance our ability to constrain the amplitude of primor-
dial tensor modes, potentially leading to their first detection. In some cases, these
experiments are also projected to reduce the uncertainties on the scalar spectral
index n;. To quote a few representative forecasts (assuming a standard power-law
form for the primordial spectra), the SO collaboration [186] anticipates a sensitiv-
ity of o(r) ~ 0.003 on the tensor-to-scalar ratio, along with an expected improve-
ment in the measurement of the scalar spectral index to o(ns) ~ 0.003. CMB-S4
[336] is projected to achieve even higher sensitivity, with o(r) ~ 0.001-0.007 de-
pending on foreground assumptions [336], and o(ns) ~ 0.002. Similarly, LiteBIRD
[337] is expected to reach o(r) < 0.001, although its impact on constraining n;
will be more limited — unsurprisingly, as LiteBIRD is primarily designed to probe
large angular scale polarisation. These improvements in sensitivity could be de-
cisive for testing the predictions of scale-invariant inflation. Assuming that our
model provides a faithful description of the early Universe, our results based on
current data predict a primordial tensor amplitude of at least » > 0.003. This value
lies well within the detection capabilities of all aforementioned experiments. For
example, CMB-54 is expected to detect a signal with » > 0.003 at up to 50 sig-
nificance [336]. Conversely, if no detection is made, CMB-S4 is forecast to place
an upper bound of r < 0.001 at 95% CL. This implies that a null detection at that
sensitivity would strongly disfavor, if not outright rule out, the scale-invariant in-

flationary scenario. Similar arguments apply to SO and LiteBIRD. That said, in
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the optimistic case where r is detected, a key question remains: will a combined
measurement of ng and r be sufficient to distinguish between different models,
such as scale-invariant and Starobinsky inflation? On one hand, the forthcoming
experiments are expected to significantly tighten the allowed region in the ns—r
plane compared to current constraints from Planck and BICEP/Keck. Given the
model-dependent differences visible in Figure 5.4, this may suggest that future ob-
servations could help discriminate between the two frameworks. Nonetheless, it
is important to stress that predictions in the ny—r plane depend sensitively on the
value of £. Assuming that ¢ takes relatively large values in nature, differences be-
tween the models can reach up to Ang; ~ 0.006 when r ~ 0.032. In light of these
considerations, it seems unlikely that upcoming CMB data alone will allow for a
decisive distinction between scale-invariant and Starobinsky inflation at high sta-
tistical significance. This situation could change, however, if a widely accepted
resolution to the Hubble tension were to shift the preferred value of n; away from
that predicted by ACDM. Such a shift could force us to reconsider the viability of

various inflationary models altogether.



6 INFLATION IN NON-LOCAL HYBRID

MODIFIED GRAVITY

Building on the discussion in Part I (Section 1.2), where we introduced the metric and
Palatini formulations of gravity as distinct approaches, as well as the hybrid formalism
that blends their features and the framework of non-local gravitational theories, we are
now ready to present a model that unifies all these elements: non-local hybrid metric-
Palatini gravity.

This work is based on [5] and it represents a pioneering step in the exploration of
non-local modifications within the hybrid metric-Palatini framework, providing a rigor-
ous analysis of the stability conditions of these combined theories and evaluating their
viability, particularly in the context of early universe cosmology. Within the frame-
work of hybrid gravity, we investigate non-localities introduced as powers of the inverse
d’Alembert operator, assumed to act on both types of curvature scalars: the metric Ricci
scalar R and the Palatini Ricci scalar R. By doing so, we extend the analysis from the
purely metric case studied in [96], incorporating Palatini contributions through the hy-
brid formalism developed for f(R, R) theories in [54, 81, 352]. Following the approach
of [96], we treat the non-local theory as dynamically equivalent to a local scalar-tensor
model, where non-localities are localised via a suitable procedure involving auxiliary
fields. We show in Section 6.1 that a naive extension of the analysis in [96] to the hybrid
metric-Palatini case fails to eliminate ghost instabilities. Ghost instabilities refer to de-
grees of freedom with negative kinetic energy, which result in unphysical behavior such
as vacuum decay and loss of unitarity in quantum theory [353-355]. Specifically, the
number of ghost modes depends on the sum of the highest powers of the 0~ operators
acting on both metric and Palatini curvature terms. We argue that this is an inherent fea-
ture of any non-degenerate' non-local F(R,R,...,0 ™R,...,0™"R) action, even when
restricting to a purely Palatini approach, in contrast with standard f(R) gravity which

introduces no additional degrees of freedom (for more details, see Appendix D). Building

'Non-degenerate action means that the kinetic matrix is invertible ensuring that the scalar field rep-
resentation is meaningful and the dynamics is well-defined.

114
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on this observation, in Section 6.2 we examine special configurations where degeneracy
is explicitly broken; namely, metric f(R) (or Palatini f(R)) models supplemented by
Palatini (or metric) non-local terms. In these cases, the non-localities appear linearly in
curvature terms, leading to deformations of the Starobinsky-like potential and offering a
new way to test the robustness of the model. We show how this hybridisation can restore
dynamical stability, and we derive a set of algebraic conditions that ensure the absence
of ghost modes within the resulting three-dimensional scalar field space. In Section 6.3
we then explore the possibility of realising inflation in this framework. As a first step,
we verify the well-posedness of the first-order slow-roll parameter, which imposes addi-
tional constraints on the derivatives of the potential and the scalar fields. We then carry
out a numerical analysis of the inflationary dynamics at the background level, studying
how the scalar fields trajectories over the potential and the number of e-folds depend on
different choices of initial non-local terms. We focus in particular on quadratic metric
f(R) models with Palatini non-localities, which turn out to be the only viable setup for a
finite slow-roll phase; the quadratic Palatini f(R) models with metric non-localities in-
stead lead to an infinite slow-roll phase along one scalar field direction. Finally, for each
viable scenario that achieves the correct number of e-folds, we numerically confirm that

the no-ghost condition holds throughout the scalar field evolution.

6.1 NON-LOCALITIES FOR HYBRID METRIC-PALATINI

GRAVITY

The starting point of our analysis is the non-local gravity model introduced in Sub-
section 1.2.1, which we extend here by incorporating the hybrid metric-Palatini frame-

work as developed in Subsection 1.2.1 [54, 81]. In this context, we consider the action
S = / d*xy=gF (RR,0'R,...,0"RO'R,...,0"R), (6.1)

where F is a function of both the Ricci scalar R, constructed from the Levi-Civita connec-
tion of the metric g,,, and the Palatini Ricci scalar R, which depends on an independent

connection I'”

s namely

R=¢"Ru(g), 6:2)
R = g™ R, (T). (6.3)
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To recast the original action into a scalar-tensor representation (see Subsection 1.2.1),

we introduce auxiliary scalar fields and rewrite (6.1) as

S= / d4x\/—_g[F (R,R, &,B) ~ (0@ = R) - py(Tfs — R)

m n (6.4)
= D M(Oa — i) = ) pi(OF; = B
i=2 =2
where @ = (ay, ..., an) and E = (B, ..., Pn) are tuples of real scalar fields, and A;, p; are

the corresponding Lagrange multipliers. Varying the action with respect to the Lagrange
multipliers enforces the non-local structure of the original formulation, as shown by the

relations
5,S=0=a; =07'R,
5,S=0=a, =0'ay =0 °R,
5S=0=a =0, =0'R,

and similarly for f; and the Palatini scalar R. This procedure ensures that the scalar-
tensor representation remains dynamically equivalent to the original non-local formu-
lation. The term F(R, R, @, E) can be further reformulated by introducing two auxiliary

fields y and p, yielding
F(RR.&f) = (R~ y) + &R - 1) + F(x.n.d.p), (6.5)

where we defined the derivatives

oF oF
¢ = e E= o (6.6)
By plugging (6.5) into the action (6.4) we achieve
5= [ dxyFg| 9+ MR+ @4 pIR-W(S.E2 L5
(6.7)

+ Z, YV, VEA + Z; V,,,B,-V”pj],
Jj= Jj=
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provided the Hessian condition F,,F,, — (Fy,)* # 0, also known as non-degenerate

condition which ensures a well-defined inversion of variables:

x=f($.Ed P,

. (6.8)
n=9($¢ap).

In (6.7) we also have defined the effective potential

W =$f($,63B) +E9(8,63 B) — F(.EE P — ) ajmakj = ) Bioap  (69)
=1

j=1 J

with the identification oy = fy = 0. Next, by varying (6.7) with respect to the indepen-

dent connection F[,)V,

compatibility V,g,, = 0, one obtains the connection equation (1.28)

under the assumptions of vanishing torsion I“lfv = I“‘f;l and metric

V,(v=9E4¢") =0, (6.10)

where E = £ + p;. This equation admits as a solution the Levi-Civita connection associ-

ated with the conformally related metric

hy = Egpuy, (6.11)

which implies

1
Ih = EhP" (9uhve + Ovhyue — dshyy) - (6.12)

Rewriting this expression in terms of the original metric g,, and the scalar field 2, we
obtain (1.29)
1 - - -
I ={n}+ = (800,5 + 89, — gud”E) , (6.13)

—
—
—

where {ZV} is (1.5). This allows us to express the Palatini Ricci scalar as (1.31)

3
R = R + ﬁVyEV”: - DE. (614)

11| —

where R is the Ricci scalar built from the Levi-Civita connection of the metric g,,, the
additional terms arise due to the independent variation of the affine connection in the
Palatini formalism. Importantly, in Palatini gravity one does not need to assume from
the start that the connection is torsionless and metric-compatible. A fully dynamical
treatment, in which the torsion and non-metricity tensors are initially allowed, leads to
the same result once the connection equations are solved. This is because such non-

Riemannian components do not introduce physical propagating degrees of freedom. In-
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stead, they are algebraically determined by the derivatives of the scalar field Z, and can
be interpreted as spurious degrees of freedom — extra components of the connection that
are not dynamical and can be eliminated without affecting the physics. This elimination
is possible thanks to the projective symmetry of the Palatini action: under a transfor-
mation of the form F/f)v - va + 55 &, for an arbitrary covector field &, the Ricci scalar
R remains invariant up to a total derivative. As a result, the connection possesses re-
dundant components that can be gauged away. After accounting for this symmetry, the
remaining connection degrees of freedom can be fully expressed in terms of the metric
and the scalar field, leading again to the curvature expression (6.14). Therefore, even
when torsion and non-metricity are initially included, they do not yield new physics in
this context and ultimately reduce to known metric-dependent terms (for all the details
see, e.g. [356-359)).

Substituting (6.14) into the action (6.7), we finally obtain

3 N
S= / d'xy=g| (¢ + 1 + R+ ——V,EV'E - W($. L& S 1)

. ) (6.15)
+ D V@V + ) VBV,
j=1 j=1

At this stage, we note that it is always possible to perform a linear field redefinition of

the form
P+ +E=0,
= a0+ a2
a = al) Yl + al)ys?, (6.16)

oy =00+ 600

=40+ b0t

which is well-defined provided the Jacobian of the transformation is non-degenerate.

This requirement translates into the condition
m n
IJ| = H det AD) ]—[ det BY) # 0, (6.17)
i=1 j=1
where we defined the matrices

@ @ 0 )
o a%%) B(j’=(b%]1> b%%) (6.18)
i i’ j i) |° :

a by by

21 4y

AW =
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and it is easy to verify that the non-degeneracy condition is simply
detAD 0, detBY £0 Vij. (6.19)
Under these conditions, the action can be rewritten as
3(VE)?
S] 5 2 d4X\/_ (I)R ( ) - W(q) — l//h wz: w15w2)+
K
(6.20)
ki (ORV (z) kl Nop, ()
+ZK@V,, Dyry, ZHU)V o Vo] )
with (k,I) = 1,2, and where the kinetic matrices K(;) and H(;y are given by
_ ay  aj; 3(ay gy +ayyayy)
Ky = {1,000 4 40,0 (0 » (6.21)
(au Ay + Ay ay; ) Aqp Ay
()3, 1 pDpD) 4 pO)p0)
) = b1}1 szl E(bljl sz blé szl ) (6.22)
i oL N ) )
sogud e i
A simple choice for the matrices A®Y) and BY) is
. ; 1 1
AW = gU) = ( ) : (6.23)
1 -1
which diagonalises the kinetic matrices as
1 0 o
K(i) = H(j) = > v LJ. (6.24)
0 -1
With this choice, the action simplifies to
1 3(VE)? i
SJ 5 Py ((I)R (2,_) + (\IJ + Q) — W((I), E, l//l, 1,02, W1, 602)) s (625)
K =
where we have defined the shorthand
m
w= 3 (v - vy (6.26)
i=1
n
Q= [(Vwi”)2 (Voi)? ] . (6.27)

j=1

Finally, performing a conformal transformation to the EF via q,, = ®g,,, the action
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becomes
1 (VD)2 3(VE)2 W+Q W(OE oo, )
Sg=— [ d*xv=q|R(q) - + + - _
E= e x q( (@) - =52 205 > o7

(6.28)
It follows that, upon fixing the total order of non-localities to be N = n + m, where n
and m are the exponents that appear in (6.1), the theory generically contains at least N
ghost-like degrees of freedom regardless of the sign of the field ® or the specific form of
the function F. Furthermore, if we impose ® > 0 to ensure the conformal transformation
is well-defined, an additional ghost arises whenever = > 0. This result is consistent with
the findings of [54].

In particular, focusing on the ® > 0 branch, we can redefine the scalar fields as

=2
o= e\/?tbc’ == O'E?C, (6.29)
where o= = +1 denotes the sign of the field =. With these redefinitions, the action takes

the form

02(VE?Z + W +Q  W(D,E ¢, s, &1, &2)
e\/2/3q)c 62 \/2/3¢)C ’

(6.30)

where all kinetic terms are canonically normalised, up to an overall coupling to the scalar

Se= 5 [ dveg (R(g) - (Vo) +

field ®¢. A detailed discussion of the special case in which only one curvature invariant
appears in the original action is presented in Appendix D, where we show that this does

not affect the general conclusion regarding the structure and number of ghost fields.

6.2 GHOST FREE CONFIGURATIONS

Ghost instabilities can be avoided by considering a linear coupling between the met-
ric Ricci scalar and the non-local sector of the action, as it is shown in [96], see also
Subsection 1.2.1. Here, we generalise the result I just mentioned by introducing two spe-
cific models where the dynamics is stabilised through the inclusion of non-local terms

that retain the same type of coupling as in [96], but are constructed on top of standard
f(R)-like theories.

To achieve this, we adopt the approach of [352], introducing hybridisation additively:
we supplement the f(R) sector with non-local contributions built from the type of cur-

vature not originally present in the argument of the f function. This leads to two viable
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configurations, described by the following Lagrangians:
Li=f(R)+RG@'R)-V(@ 'R, L=f(R)+RGO'R)-V(O'R), (6.31)

where G is a non-local operator. For completeness, we have included the function V,
which does not affect the stability of the scalar degrees of freedom (as will be discussed
below), but instead plays the role of a potential in the scalar-tensor representation of
the theory. We also note that the configurations in (6.31) fall outside the general class
discussed in Section 6.1, since the condition FrrFrg — F;R # 0 is no longer satisfied in

this case.

We begin by analysing the first case, namely a Palatini f(R) theory supplemented
with metric nonlocalities, as given by £L; in (6.31). Following the procedure outlined

previously, the corresponding action can be recast in the scalar-tensor form

iz / d*xy=g >f(7€) +RG(O'R) - V(D_lR)]
=3 d4x\/_ §R —U(&) + (A+G(a)R+ VFaV,A—V(a)
(6.32)
= d4x\/_ (§ +A+G(a)R+ %(Vf)z + Vi VA= (V(a) + U(.f))]
s [ @V R+ ST+ Va0 - £ Gl - W(a )|

where, in the final line, we introduced the redefinition ¢ = £ + 1 + G(«) and defined the
effective potential W(a, &) = V(a) + U(&). Going to the EF via the conformal rescaling

quv = ¢ gy, the action becomes

51 =

3 gy VTP E-G@) Wi §>] |

20¢ @ ?
(6.33)

where R is the Ricci scalar associated with the EF metric quv- The kinetic sector of the

3
- d4x\/_[R— (pz(v¢)2+

theory is encoded in the matrix

3 1
w O
1
K==, -2 1 | (6.34)
¢ 28 2
1 1 ’
-z 2 Gl

written in the basis (¢, £ «). To ensure the absence of ghost instabilities, it is necessary

that the kinetic matrix K; is positive definite. For symmetric matrices, this requirement
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is equivalent to demanding that all eigenvalues are positive. Although, in principle, the
eigenvalues of the kinetic matrix can be obtained by diagonalising it, the unspecified
functional dependence of G on the scalar field o generally prevents an explicit deriva-
tion of the transformation between the original field basis and the diagonal one. As a
consequence, the action cannot be straightforwardly expressed in a diagonal form. To
overcome this limitation and facilitate the analysis of the positivity of the kinetic sector,
we make use of Sylvester’s criterion. This criterion states that a symmetric real matrix is
positive definite if and only if all the leading principal minors - i.e. the determinants of
the upper-left k X k submatrices M with 1 < k < n (where n is the matrix dimension)
— are strictly positive. Applying Sylvester’s criterion to the kinetic matrix K; given in

(6.34), we obtain the following conditions:

Ml = — >0
1 _24)2 )
Myl = ——— > 0 (6.35)
2 = - 5 .
43¢
3(¢ — &) — 18G' (a)
gy = 209~ >0
8p*¢

Solving this system of inequalities, we find the allowed region to be

0>0, £<0, Gla)>? ; 4 (6.36)

We discard the alternative solution corresponding to ¢ < 0,¢& > 0,and G’ () < (¢p—¢)/6,
since in that case the conformal transformation used to define the EF becomes ill-defined.
Finally, we observe that some of the kinetic terms in the matrix K; can be brought
to canonical form by performing suitable field redefinitions, as outlined in Section 6.1.

Specifically, we introduce the following transformations (6.29)

o N

Q= e\/gcbc, §: —%, \Pc = / \/G,(O{) dO(, (637)

where the definition of ¥, depends on the explicit form of the function G(«). Under

these redefinitions, the action in (6.33) can be recast as

1 -
S, = o d4x\/_—q[R — (V®,)? = (VE.)* +

(V)

eV5®e

d 2 = Wi (¥, =

a qu,c\/j VHD, + _CVpEcqu)c _ M],

d¥. 3 3 2 Vi
(6.38)

where we emphasise that the potential term becomes separable in the fields ¥, and =,

1

+
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up to a global factor depending solely on ®., namely
EZ
Wi (¥, Z¢) =V(a(¥,:)) +U (—?C) . (6.39)

We anticipate that this peculiar structure hinders the implementation of a viable infla-
tionary scenario. In particular, the separability of the potential fails to generate a mech-
anism capable of naturally slowing down the evolution of the field ®., which may roll

indefinitely.

As for the model £,, it retains the same formal structure as £, with the two curva-
ture scalars interchanged. That is, we now consider a metric f(R) theory supplemented
by Palatini non-localities. Applying the localisation procedure, the action becomes

Sy = d*xv=9 [f(R) + RG(O™'R) - V(o 'R)|

2 952
=5 [ Vg [ER-U@ + (o + GBNR + V89 - V(B)]
4 3(V(p +G(P)*
=5 | VT [+ pr GENR+ = Bm i £ VAV = (V) + U(@)]
- L [ dxy=g|gre 3(35) + VBV - G(B)) —w2<ﬁ,¢—¢>],

where we introduced the new field definitions ¢ = & + p + G(f) and ¢ = p + G(f),
keeping f unchanged. Going to the EF, the action becomes

1 = 3(V$)?  3(Vy)?  VupVE(Y -G Wa(B, ¢ —
ik [ iy 000 SOV VGG Mp9-))
(6.40)
The corresponding kinetic matrix takes the form
. g 0 0
K2‘$ 0 —% -3 | (6.41)
0 -3 G'(B)

Following the analysis applied to K;, we again employ Sylvester’s criterion to determine

the conditions for positive definiteness of K;, which yield:

Ml = = >0
1 - 2¢2 )
IMz|| = - > 0, (6.42)

9
443y
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3(y +6G'(P))
_—3¢4¢ >0

These inequalities are simultaneously satisfied for the configuration:

4

g.

| Ms]| =

¢ >0, ¥ <0, G'(p) > -

We now perform the same field redefinitions as in the case of S;, simply exchanging the

roles of ¢ and « with those of ¥ and S, respectively

=2
=Vt y=-= ws / VG'(B) dp. (6.43)

With these, the action S, takes the final form

1 - (VE)2+(V¥,)? 1dp =
S, = — [ d*x=q|R - (V®,)? - —¢ e A
27 k2 *V=q|R= (Vo) V0. 3dY, \To, #
(6.44)
%(QC:TC:EC)
RAVELS ‘

In this case, the potential exhibits the appealing feature that the U component depends

simultaneously on both the = and @, fields
p =2
W@ 0 20 = V(B8 + U (VT 25, (6.

which can, in principle, provide a mechanism to prevent the field . from undergoing an
unbounded slow-roll phase. The dependence on ¥, remains separable and, as discussed
in Section 6.1, can generally be neglected when focusing on inflationary dynamics. We
conclude this section by noting that (6.44) can be further brought into a diagonal form.
However, since this transformation does not lead to significant improvements in the
numerical analysis, we relegate the corresponding expression to Appendix D. In what
follows, we turn our attention to an application of this framework to early-universe

inflationary cosmology.

6.3 HYBRID NON-LOCAL COSMOLOGY

In this section, we apply what described above to the case of a homogeneous and

isotropic cosmological background given by the flat FLRW metric (2.3). To express the
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equations of motion in a more compact form, we rewrite (6.38) and (6.44)

(VE)? + (V¥)?

V,o+ ——V,E|-Y;
Gl\/7 Se‘/_q) H ) l

where y; = {a, f} and 0; = {1, 0} for i = {1, 2} respectively, and the generalised potential

R— (Vd)? -

[ ey

(6.46)

N vy

b

is defined as Y; = % To lighten the notation, we omit the subscript c¢. Varying the
82 3®

action (6.46) with respect to the scalar fields @, E, and ¥ leads to the equations of motion

e~ Vi® 19Y,
od + VE) + (V¥)?) - = —
NG ((VE)* + (V¥)?) 350
Oj dyi = _\/?q)d)(i —_
——V, | &V - — 35—V, ¥V'E =0, 6.47
Ve " (dqf ) 3ve d¥ * (6.47)

= a2y, \[ dy; dxi
2 A yyp)2 — "V, VI + 0¥ | = 6.48
6 |avz VY 3 d¥ d¥ (6.48)
2 Vie oy,
oy - \/jv,,\lfvﬂcb _el ok
2 ¥
dy: VE): B
A | % NFopg 4 Snm 4 (V=) V,OVIE| = (6.49)
T av | Ve 6 6  3v6 "

Turning to the gravitational sector, variation with respect to the metric yields the Ein-

stein equations (1.12). The (¢¢)-component gives the Friedmann equation (2.25)

\/7CI>+e_\/_q> ')+Y,), (6.50)

1. o dy
H =2 02+ e V3o (&2 4+ 92) - Yy
6 av

while the (ij)-component leads to

.1, o dyis
H=—- |62+ eVioEe 4 y2) - Uiy
2 a¥

2. =
ai\/;cb + e_‘/gq)gE)), (6.51)

To ensure physical viability, we impose that the leading-order slow-roll parameter (3.23)
remains positive, ¢ > 0, thereby excluding phantom-like behavior (w < —1) in the

single-field limit. Finally, we can recast the no-ghost condition for the kinetic matrix in
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terms of the fields ®, =, and ¥ as

1 (dyi\* Vo, B
A (ﬁ) (Gie 35+ ?) <1 (6.52)
In the following, we present and analyse the numerical results obtained by integrat-
ing the equations of motion derived in this section, considering different case studies.
Specifically, we distinguish between two scenarios: V(O 'R) = 0 and V(O™ !R) # 0. For
each case, we investigate the effects of adopting different functional forms for the kinetic
coupling. The numerical integration of the equations of motion is performed using the
algorithm adapted from the previous chapters, suitably modified to address the features

of these models.

6.3.1 THE case V(O R) =0

As discussed in Section 6.2, imposing this condition does not compromise the dy-
namical stability of the theory; it simply removes the dependence of the global potential
on the field ¥ (cf (6.45)). Furthermore, for the local f(R) (or f(R) sector, we consider
a minimal quadratic extension of the standard Einstein-Hilbert term, while the hybrid
non-local modifications are encoded in the function G, as introduced in (6.31). This leads

to study actions of the form
.£1 = (11R + b1R2 + RG(D_IR), .£2 =aR + bsz +R G(D_IR), (653)
which, following the procedure outlined in Section 6.2, yield the EF potential

[0 -00eVE® + (12 — o

Yi(®, 5, ¥) =
4bi€2\/gq)

(6.54)

A necessary feature we require of the potential is the existence of a global minimum,
so that the slow-roll phase can eventually end and the reheating stage can take place.
In (6.54), we notice that for o7 = 1 the potential Y; becomes independent of the field &.
Even if the system settles into a minimum in the (¥, =) subspace, the evolution along the
®-direction remains slow-rolling, and inflation does not naturally end. Since our main
interest lies in standard slow-roll realisations of inflationary scenarios, we postpone to
future work the analysis of alternative multifield mechanisms such as ultra-slow-roll,
hybrid inflation, or rapid-turn inflation. Here, our primary aim is to demonstrate that

a hybrid non-local extension of standard f(R) gravity can consistently support infla-
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tionary dynamics at least at the background level, without addressing the perturbative
sector at this stage. Therefore, we restrict our attention to the case o, = 0, in which the
potential simplifies to

[eVi® 4+ 22— g,]7

6

4b2 62\/?1)

Y2(9,8) = (6.55)

We aim to construct a plateau-like potential (by choosing the parameters a, and b,)
endowed with a global minimum, which enables inflation to take place. Nevertheless,
the detailed shape of the potential is not strictly fixed by these values. In particular,
requiring the potential to remain positive imposes the constraints a, > 0 and b, > 0,
where a; sets the position of the minimum and 1/b; determines the overall height of the

potential. For this setup, the no-ghost condition can be expressed as

0< d)(252<1 (6.56)
d¥ 6 ’ '

which, depending on the choice of the function y,(¥), identifies the subregion of the
=, ¥'}-plane where the scalar fields’ motion must remain confined. We note that when
oz = 0, the field ® does not appear in this inequality, and thus its evolution is not con-

strained a priori in the ®-direction.

The explicit form of y,(¥) depends on the initial choice of the non-local coupling
function G. However, since the factor dy,/d¥ also enters the equations of motion
(6.47) and (6.49), it is computationally convenient to specify directly different functional
choices for

dy,

In particular, we consider the following two cases
K(¥) = kyl*, K(¥) = ke, (6.57)

which we refer to as the power-law and exponential kinetic coupling scenarios, respec-
tively. These choices determine the form of the non-diagonal kinetic terms in (6.46). The

original coupling function G can be reconstructed by inverting the definition of ¥. First,

we have
X2 = X20 = / K(¥)dY, (6.58)
and then ,
d¥
G-Gy = —1 d 6.59
’ -/ (dXZ) Az (6.59)

where ¥ = ¥( x;) is obtained by inverting (6.58).
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Special care must be taken regarding the integration constants Gy, y20, and ¥y (the
last of which may arise on the right-hand side of (6.58)). These constants can introduce
unwanted contributions into the original action (6.31) and potentially spoil the dynam-
ical consistency of the model. For instance, a nonzero G, generates a linear term in the
scalar curvature not present in the original f(R) Lagrangian, thus violating the assump-
tions made in Section 6.2. Moreover, specific nontrivial combinations of y; o and ¥y may
have analogous effects. Hence, the constants {Gy, y2,0, ¥o} must satisfy certain mutual

conditions to preserve the ghost-free nature of the theory.

As an illustrative example, consider the simplest case K = k. Then,

1
G(x2) =Go + ﬁ()(z - X20)s (6.60)

and consistency requires Gy = y2,0/k?. By working directly with the function K (¥), we
avoid these subtleties and can search for dynamically consistent configurations more

transparently within the scalar-tensor reformulation.

POWER-LAW KINETIC COUPLING. The first scenario we examine is the power-law kinetic
coupling
K(¥) = ky!*", (6.61)

whose associated function G(y;) is derived explicitly in Appendix D. We start by fo-
cusing on the case n = —1, which corresponds to a constant non-local coupling term.
This choice significantly simplifies the equations of motion, yielding field trajectories
that mainly depend on the initial conditions. In the EF, the kinetic terms introduce non-
diagonal components, which in turn affect the background evolution. From this point
onward, we consider non-local contributions with k < 1 so that these terms effectively
act as perturbative corrections. In Figure 6.1, we numerically integrate the complete
system of equations (6.47), (6.48), and (6.49) up to the end of inflation, defined by the
condition ¢y = 1. The numerical results indicate that inflationary solutions do exist:
the scalar fields slowly roll down the potential, as illustrated in the bottom-right plot of
Figure 6.1. However, careful tuning of parameters is required to simultaneously avoid

ghost instabilities and achieve a sufficient number of e-folds.

In this context, the no-ghost condition (6.56) becomes
k=¥ < 6. (6.62)

This inequality constrains the allowed evolution of the fields, especially in the {=, ¥}

plane.
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The evolution highlights the leading role of the inflaton, identified here with the

field ®. In contrast, the = field quickly decays towards zero. Given that the potential

Y2(®,E) in (6.55) is independent of ¥, the coupling between = and ¥ originates only

from the non-local term. This coupling induces an initial displacement (or “kick”) in the

V¥ field, after which its motion is slowed down by the expansion of the universe. It is also

noteworthy that turning on the dependence of ¥ in (6.61) makes the non-local coupling

dynamically relevant. Indeed, for higher values of n, the ¥ field tends to stabilise at larger

values, becoming effectively frozen (see Figure 6.1). In such cases, the model effectively

behaves like single-field inflation supplemented by a spectator field, as the inflationary

dynamics is mainly controlled by the evolution of ®. In the next section, we will compare

these results to the case n = 0 when a non-vanishing potential V # 0 is included.
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Figure 6.1: Power-law kinetic coupling case with V' = 0: normalised field trajectories over the
shaded potential Y,(®, =) for parameters a; = 2.3, b, = 0.001, k = 0.1 and different choices of n:
n =0 (blue), n = —1 (orange), and n = 1 (green).

EXPONENTIAL KINETIC COUPLING. We set the exponential kinetic coupling to

K(¥) = ke,

(6.63)

with the corresponding G( ;) function derived in Appendix D. The condition ensuring
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dynamical stability takes the form
k= e™| < 6. (6.64)

The exponential coupling significantly influences the dynamics. As the parameter n
increases toward positive values, the coupling between the fields = and ¥ becomes
stronger, causing the ¥ field to stabilise at lower values after an initial decline, as shown
in Figure 6.2. In this regime, the ¥ field effectively becomes almost frozen, reducing the

system to a single-field dynamics with a spectator field.
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Figure 6.2: Exponential coupling case with V = 0: normalised field trajectories over the shaded
potential profile Y2(®, E) for a; = 2.3, b, = 0.001, k = 0.1 with n = 2 (blue), n = —1 (orange), and
n =1 (green).

6.3.2 THE case V(O 'R) # 0

IN this subsection we extend our analysis to include the case where the initial action
features a non-vanishing potential term V(0™ 'R). This introduces an additional depen-

dence on the field ¥ into the global potential Y, as determined by the relation (6.58).
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Specifically, following the discussion at the start of Section 6.3, we choose for V a simple
quadratic form, namely V () = Vo xZ, where V; is a constant parameter. As a result, the

global potential in the EF becomes

=2

Vox; (¥) + (V3 + 2 _gp)°

Yo (D, 5, ¥) = 6
4b2 ezﬁq)

, (6.65)

in which non-localities introduce deformations to the Starobinsky-like potential, pro-
viding a novel pathway to test the robustness of the model. This requires the study of

perturbations, which is beyond the scope of this work.

POWER-LAW KINETIC COUPLING. For the choice K(¥) given by (6.61), we obtain

k
=L g2 6.66
X2 1o (6.66)
n+2
where, for simplicity, we set the integration constant to y9 = — . With this parametri-
sation, the potential term V takes the form
kZVO 2(n+2)
V(¥) = —=Y . (6.67)

(n+2)2

Focusing on the case n = 0, for which K(¥) ~ ¥, the behaviour closely resembles that
discussed in Subsection 6.3.1. Furthermore, the condition H?/Ygy > 1 implies that the
field ¥ remains light during inflation. Consequently, it becomes “Hubble-damped” and
is not driven to zero by the potential; instead, its kinetic energy diminishes over time,
effectively freezing the field. The variation in the coupling strength modifies the overall
amplitude of the potential (see Figure 6.3), which would in turn affect the scalar spectral

amplitude A of primordial perturbations by either enhancing or suppressing it.

EXPONENTIAL KINETIC COUPLING. For the choice K(¥) given by (6.63), the function y»

becomes .
x2 = —e", (6.68)
n

k

where we have set the integration constant to y,o = He"%. In this setup, the potential

term V is given by

V(¥) =

K2V,
— e, (6.69)

The modification of the Starobinsky-like potential (6.65) by the additional V (¥) term

for ® — 0 creates conditions suitable for inflation, depending on the specific shape of



132 Chapter 6. Inflation in non-local hybrid modified gravity

1.04 = : 1.04 _ -
_______ — ®ini=9, jn=0 | Zini=3, Zini=0
094 T~ ) 0in=9, ®;n=0 0] | Zini=3, Zm=0
0.8 4 . 0.6 |
S0.71 g |
S n1  0.44
8 n
€ 06 |
0.2 4
0.5 la
0.04 [fHpr——mmmmmrrrrrrirror—m—m——————
0.4 If
]
-0.24
0.3 i
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
N N
1.004 | . n=-1
— W;i=0.2, Vjn;=0 0
. _— N=
0.90 4 Wini=0.2, Winj=0
1000 T
0.80 A
£
0.70 A
5
<
0.60 - ~
0.50 A
0.40 A
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V(¥); see Figure 6.4. Also in this case, the condition H?/Ygy > 1 holds, ensuring that
¥ remains light during inflation. Overall, the resulting field dynamics closely resembles

those of the power-law kinetic coupling scenario.

6.4 CONCLUSION

The main findings of our analysis are as follows. We have shown that non-degenerate
hybrid metric-Palatini models, when extended with non-local terms involving inverse
d’Alembertian operators, are generally affected by ghost instabilities. By reformulating
the theory in a scalar-tensor representation, we make the interaction between local and
non-local contributions transparent. Our analysis reveals that the number of ghost in-
stabilities is determined by the sum of the highest powers of the 0% operators acting
on the metric and Palatini curvature terms. We argue that this is an inherent feature
of any non-degenerate non-local action of the form F(R, R, ...,O0°™R, .., 07 "R), even un-
der a purely Palatini formulation. This contrasts with standard f(R) gravity, where no

extra degrees of freedom arise. Our findings generalise the results of [96] obtained for
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the purely metric case and are consistent with the known doubling of degrees of free-
dom in generalised hybrid metric-Palatini gravity [54, 81] compared to models involving
only a single curvature scalar. Furthermore, We demonstrate that Lagrangian densities
satisfying the condition fgrgfrr — fﬁﬂ # 0 are sufficient to eliminate ghost instabilities,
provided that the local and non-local terms are associated with different types of cur-
vature. Specifically, we show that straightforward extensions of standard f(R) theories
that introduce non-local Palatini (or metric) terms — where the curvature scalars couple

! operator — achieve this goal. These models can con-

linearly to functions of the O~
sistently accommodate up to three scalar degrees of freedom, whereas, by comparison,

generalised hybrid models typically exhibit only two.

Building on these considerations, the second part of our work focused on a specific
class of well-defined hybrid actions in which local and non-local contributions are asso-
ciated with different types of curvature. We studied configurations where metric f(R) (or
Palatini f(R)) models are supplemented by Palatini (or metric) non-local terms, explic-
itly breaking degeneracy by coupling non-localities linearly to the curvature. We then

explored the viability of these models in early universe cosmology, examining whether
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inflation can emerge within the resulting EF multifield scenario. Our analysis investi-
gated how non-local terms and non-minimal kinetic couplings between fields — reflect-
ing the non-local structure of the original frame — affect the background evolution, the
total number of e-folds, and the scalar field trajectories. As a preparatory step, we ver-
ified the well-posedness of the first-order slow-roll parameter, which imposed further
constraints among the potential derivatives and the fields. We found that non-localities
deform the Starobinsky-like potential, offering a new perspective on testing the model’s
robustness. Quantitatively, we examined two representative configurations based on
whether the potential term V(O 'R) vanishes or not. In the case it does not vanish,
the dynamics is dominated by the coupling between the non-local terms and the scalar
fields. We showed that the qualitative behavior of the fields is largely insensitive to
the specific form of the kinetic coupling K(¥): whether K is power-law or exponential,
the = field quickly settles to the minimum of the potential, ¥ becomes frozen due to
Hubble damping, and ® drives inflation - effectively reducing the dynamics to a single-
field scenario with a spectator field. Stability of these trajectories requires satisfying the
no-ghost condition. Instead, including a quadratic potential term V(0~'R) enriches the
inflationary dynamics by introducing additional interactions among the fields, resulting
in extra constraints that naturally help end inflation. We also noted that the effective
mass of the ¥ field remains light, meaning that for general initial conditions it does not
evolve to zero during inflation.

Overall, our study demonstrates that non-local effects not only deform the Starobinsky-
like potential, but also directly impact the background dynamics during slow-roll infla-
tion. These effects imprint characteristic signatures, suggesting a promising new direc-
tion to test the resilience of the Starobinsky model and to probe potential non-localities
in gravitational interactions at high energy scales, relevant for the inflationary Universe.
Although our analysis was limited to background-level effects, it establishes a robust
foundation for future studies of inflationary perturbations and their observational con-

sequences within non-local hybrid metric-Palatini gravity.



7 ALTERNATIVE MECHANISM TO

INFLATION

At the end of Part I, we provided an overview of alternative scenarios to cosmological
inflation, highlighting theoretical frameworks capable of reproducing key observational
features of our Universe. Among these, the cyclic universe model emerges as a partic-
ularly intriguing alternative, as mentioned at the end of Section 3.5. In this chapter, we
focus on a detailed investigation of this model: we lay the groundwork by discussing
its observational motivations and by setting up the formalism necessary to study its
predictions for primordial gravitational waves.

As we already discussed, the most compelling observational evidence supporting
cosmological inflation [7, 20, 360, 361] as the leading paradigm for the early Universe is
currently provided by the Planck satellite measurement of the spectral index of scalar
perturbations, ng = 0.9649 + 0.0042 [263]. In the simplest single-field slow-roll inflation-
ary models, the spectrum of scalar modes is expected to be nearly, though not exactly,
scale-invariant [21, 166, 167, 362]. Deviations from scale-invariance is quantified by
the extent to which n; differs from unity [12, 106, 173]. Consequently, the Planck data
appear in excellent agreement with the theoretical expectations of inflationary models
[9, 263], excluding a Harrison-Zel’dovich scale-invariant spectrum [363-365] (n; = 1) at
more than 8.5¢ significance and thereby lending considerable support to the inflationary
framework.

That said, it is important to stress that this agreement, by itself, does not constitute
definitive proof of cosmological inflation. Even adopting a flexible perspective and set-
ting aside both the uncertainties associated with n, constraints from CMB experiments
other than Planck’ and the potential implications of recent cosmological tensions [119-
121, 125], alternative theoretical mechanisms have been proposed that also predict an

almost scale-invariant spectrum of primordial density perturbations without invoking

IConstraints on ns have also been obtained by WMAP [366, 367], ACT [307, 308], and the South Pole
Telescope (SPT) [368, 369]. Planck remains the only experiment to exclude ng = 1 at significantly more
than 30. In contrast, ACT even shows a mild preference for ny = 1 [310], as also mentioned in the previous
chapters.

135
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inflation.

A notable example is the cyclic universe scenario [30, 33, 35-37, 370, 371], which
replaces the traditional Big Bang origin with a periodic cosmic history. This model has
been widely discussed in contexts ranging from quantum gravity and modified gravity
to gravitational waves and dark energy (see, e.g. [38, 372-402] or the reviews [31, 32]).
Broadly speaking, each cycle includes a standard hot Big Bang phase where large-scale
structure forms, followed by a slow accelerated expansion mirroring the present dark
energy-dominated epoch. This late-time acceleration serves to smooth inhomogeneities
and flatten spatial curvature. Subsequently, a contracting (ekpyrotic) phase generates
nearly scale-invariant density perturbations, which culminates in a Big-crunch/Big-Bang

transition that produces new matter and radiation, initiating the next cycle.

Both inflation and the cyclic scenario provide physical mechanisms able of gener-
ating an almost scale-invariant spectrum of scalar perturbations [403-405], and both
explain the observed large-scale homogeneity of the CMB [406] and the near-flatness of
spatial geometry [407-427]. At first glance, distinguishing between them is challenging
when considering only scalar modes [428, 429]. However, the predictions for primordial
tensor modes differ: inflation generally predicts a nearly scale-invariant (red-tilted) ten-
sor spectrum [12, 106, 430], whereas the cyclic universe typically leads to a blue-tilted
tensor spectrum with an amplitude orders of magnitude below the sensitivity of fore-
seeable experiments [38]. As a result, a detection of primordial gravitational waves, for
example via large-scale B-mode polarisation in the CMB, would strongly favour inflation
and disprove the cyclic scenario. Although this is often seen as a predictive strength of
inflation, it is essential to recognise important caveats. First, primordial tensor modes
have not yet been detected [264], so observationally the cyclic scenario remains viable.
Second, the inflationary prediction for the tensor amplitude and tilt depends strongly
on the specific model. Even within single-field slow-roll inflation, consistency relations
among inflationary parameters [12, 106] can be broken by various physical effects: mod-
ified gravity [431-434], multifield dynamics [1, 2, 195, 225, 435], axion couplings [436—
439], couplings to axion-gauge or spin-2 fields [440, 441], breaking of diffeomorphism
invariance [442-445], higher-curvature terms [168], higher-order operators [446, 447],
violations of the null energy condition [448, 449], alternative vacuum choices [176, 450,
451], sound speed resonances [452], elastic media [453], or quantum gravity-inspired
effects [454-456]. Some of these mechanisms lead to blue-tilted spectra or suppress ten-
sor amplitudes to undetectable levels [457-465], and models can even be constructed
to yield arbitrarily small tensor signals [466]. This makes it difficult to falsify inflation
solely by the absence of detected primordial gravitational waves, a limitation often cited

in critiques of inflation’s predictive power.
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Turning back to the cyclic scenario, a natural question is whether similar limita-
tions apply. In particular, it is crucial to investigate the robustness of its prediction of a
suppressed tensor amplitude. To that end, we review the production of primordial grav-
itational waves in the cyclic Universe, clarifying several conceptual issues relevant to
its predictivity. Existing literature typically calculates the tensor spectrum by imposing
Bunch-Davies initial conditions in the ekpyrotic contracting phase [38]. While for scalar
modes the impact of choosing initial conditions in different phases has been analysed
[467], tensor modes have always been evolved starting in the ekpyrotic phase, neglecting
possible contributions from tensor modes generated during the preceding dark energy
phase. This motivates us to study whether these earlier contributions affect the tensor
spectrum observed today, and more generally, to assess how sensitive predictions are to
the choice of vacuum state. Specifically, we construct a general framework to follow the
evolution of tensor modes across cycles, making no assumptions about the initial vac-
uum and starting the calculation from the dark energy phase of the previous cycle. Our
results show that modes produced during the dark energy phase make negligible contri-
butions on observable scales, except for corrections on the largest scales comparable to
the current Hubble radius. More importantly, we find that significant excitations away
from the Bunch-Davies vacuum in the dark energy phase can easily lead to backreaction
problems, overwhelming the energy density of the modulus field and thereby spoiling
the model’s consistency. Avoiding such backreaction imposes strong constraints, effec-
tively limiting the freedom to choose alternative vacua.

This chapter is based on [6], and with the exception of Section 7.1 where we re-
view the cyclic model and its background dynamics, it constitutes original research. In
Section 7.2 we examine the evolution of primordial gravitational waves starting from
the dark energy phase of the previous cycle. In Section 7.3 we discuss the implications
for predictivity, the role of vacuum choice, and the contribution of modes from earlier

cycles.

7.1 CYCLIC MODEL AND BACKGROUND DYNAMICS

We consider a simple scalar field setup in the EF (3.1) where ¢ is a modulus field
responsible for the dark energy-dominated phase, as well as the following ekpyrotic and
contracting kinetic phases, discussed in more detail below. A modulus field typically
refers to a scalar field that describes the size or shape of extra dimensions in theories
with extra dimensions, like string theory or braneworld models. Here, it parametrises
the inter-brane distance or equivalently the size of the fifth dimension [36]. In general,

moduli fields are dynamical, meaning they can evolve over time and can influence the



138 Chapter 7. Alternative mechanism to inflation

expansion or contraction of the Universe. Assuming a spatially flat FLRW background
(2.3), the scalar field ¢ obeys the standard Klein-Gordon equation (3.11). Furthermore,
neglecting any coupling between the scalar field and Standard Model species, and dis-
regarding additional contributions from these species to the total energy density, the
evolution of the scale factor is determined by the Friedmann equation (3.9). In what
follows, to effectively capture the dynamics of the cyclic Universe, we consider a phe-

nomenological potential of the form

V(g) =V (1) Y (g), (7.1)

where V; is of the same order of magnitude as the vacuum energy observed in the
present-day Universe, ¢ is a positive constant, and Y(¢) is a step function that mod-
ulates the potential. The assumption of this specific potential is motivated in part by its
analytical simplicity and in part by its widespread use in the literature [36, 371, 468],
which facilitates a direct comparison with previous results. It is important to stress,
however, that cyclic models can emerge from a wide variety of scalar field potentials,
which are ultimately expected to originate from an underlying higher-dimensional the-
ory. In single-field ekpyrotic models, however, the scalar perturbation spectrum is highly
blue-tilted and far from scale-invariant [404, 469]. Therefore, reproducing the observed
nearly scale-invariant scalar spectrum typically requires a two-field setup where isocur-
vature perturbations are converted into curvature perturbations [404] or to generalise
the string-inspired potential V(¢) = —Voe *?/™ in [469] by adding a constant to it.
This point is relevant when comparing tensor and scalar modes of the same wavelength.
Without loss of generality, the essential requirement is that the potential leads to a vi-
able spectrum of scalar perturbations. This typically needs the presence of a steep and
strongly negatively curved region over field ranges relevant to observations. A poten-
tial of the form (7.1) serves multiple purposes, including modelling the dark energy re-
sponsible for the present-day accelerated expansion of the Universe. More crucially, it
facilitates the transition from expansion to contraction by allowing the scalar field to roll
from positive to negative values of the potential. This process keeps going until the mo-
ment when H? = 0, thereby initiating a contracting phase characterised by an equation
of state w > 1. For instance, solving (3.9) for the scale factor shows that when the dy-
namics are dominated by the negative part of the potential, V ~ —Vye™*¢ (corresponding

to the ekpyrotic phase), the scale factor evolves as [467]

a(t) ~ (=1)%, (7.2)
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where t is negative and @ = 2/c?. It is also convenient to introduce the conformal time
(2.6), which will be frequently used in subsequent analysis. In terms of conformal time,

the scale factor during the ekpyrotic phase evolves as

T
a(r) ~ | (c1)%(r - any@ 00| (7.3)
T
highlighting that the Universe undergoes a slow contraction while the scalar field rolls
down its steep, negative potential, producing an acceptable spectrum of cosmological
scalar perturbations.

In the literature, the ekpyrotic phase is typically taken as the starting point of the cy-
cle, where the initial conditions for primordial perturbations are set[34, 37, 429]. Here,
however, we aim to extend the standard approach by including the contribution of ten-
sor perturbations generated during the dark energy phase of the previous cycle. The
goal is to investigate whether these additional perturbations can leave any imprint on
the tensor spectrum observed in the current cycle and, if not, to clarify the underlying
reasons. To this end, our strategy is to begin the analysis in the dark energy phase of the
previous cycle (without imposing any assumption on the vacuum state) and then evolve
the system through four distinct phases: dark energy, ekpyrotic, contracting kinetic, ex-
panding kinetic — as we explain below. Consequently, before proceeding to the explicit
calculation of the tensor spectrum, it is useful to devote the next two subsections to re-
viewing the background dynamics of the model. We will then trace the evolution starting
from the dark energy phase of the previous cycle, ensuring the continuity of the scale
factor across the transitions between phases. Furthermore, we derive constraints on the
model parameters by imposing minimal theoretical requirements, such as the continuity
of the Hubble parameter H(t) and the overall consistency of the cyclic scenario across

successive cycles.

7.1.1 EVOLUTION AND CONTINUITY ACROSS STAGES

DARK ENERGY PHASE. We begin by considering the dark energy phase, during which
the expansion rate H remains approximately constant and the scale factor a(t) evolves
as

a(t) = a(ty)e )t <1, (7.4)

where t; denotes the transition time between the dark energy and the ekpyrotic phase.

Expressing the scale factor in terms of the conformal time 7, we find

1

a(r) = m (7.5)
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where the constant B is determined by ensuring continuity of the scale factor at 7 = 7,

leading to®
1

B=—+ 1. 7.6
a(Ttr)H Tir ( )

Moreover, by using (7.3), the ratio of the scale factor at the transition time 7, and at the

end of the ekpyrotic phase 7,4 can be written as

a(Ty) B ( Ttr — Tek )a (7.7)

a(Tend) Tend — Tek

where @ = /(1 — &), and 7ex = (1 —20) Tepg corresponds to the conformal time at which

the potential diverges to minus infinity.

EKPYROTIC PHASE. Next, we move to the ekpyrotic phase. During this stage, the poten-
tial becomes negative, and in the EF, this leads the scale factor to enter a phase of slow

contraction

al\T T—T
) = ( ek ) , T < T < Tend- (7.8)
a(Tend) Tend — Tek

It is worth emphasising that, since @ < 1, this contraction proceeds very gradually.
CONTRACTING KINETIC PHASE. Once 7 > 7,4, We enter a regime where the potential

becomes negligible, that is, ¢ < @eng. During this period — known as the contracting

kinetic phase - the scale factor evolves as

a(7) _( -

2
- 5 en O, 79
a(r) <1+m) Fend < 7 < 7.9)

where y is a small positive parameter that quantifies the amount of radiation produced

at 7 =0.

EXPANDING KINETIC PHASE. In the final stage of the cycle, known as the expanding

kinetic phase, the scale factor takes the form

r\z
a(r) = (—) , 0<r<m. (7.10)

Tr
For convenience, we choose coordinates so that a(z;) = 1 at time t,, corresponding to the

onset of the radiation-dominated era. The conformal time 7, = (2H;)™! is determined

2The explicit value of B is obtained by considering Hy, a(ti), and 7, which are specified in the fol-
lowing sections.
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by the radiation temperature T, with H; o T?/Mp. Following [33], we adopt a conser-
vative value T, ~ 107 GeV, similar to the temperature expected at the end of reheating
in standard inflationary scenario, ensuring that the model remains compatible with the

successful predictions of primordial Big Bang Nucleosynthesis.

7.1.2 PARAMETER CONSTRAINTS

To ensure that the Hubble parameter returns to its initial value each cycle, we follow
[467] and impose

Hend - —Vend (7 11)
Hy Vo '

where V4 is the depth of the potential minimum and Vj the height of its plateau. Since

the comoving wavenumbers generated when ¢ rolls from V = 0 to V ~ —V,q4 span

kmax - _Vend (7 12)
kmin VO ’ ‘

we require at least N = 60 e-folds in the ekpyrotic phase to cover the observable range

of scales [9, 263]. This in turn constrains the transition time between dark energy and

ekpyrosis
H, Aend 4
T gy T 60, (7.13)
end Tir — Tek
Because a(7) = const during the ekpyrotic contracting phase [467], (7.13) implies
|7t — Tex| > 2 @ Tena @% 4 €. (7.14)

Next, we demand that the kinetic phases last long enough for ¢ to roll from the
potential minimum (¢ = ¢eng) through the bounce (¢ — —oo) and back up past Peng
onto the plateau, initiating radiation domination. By neglecting a brief w > 1 interval,

integration of the Klein-Gordon equation (3.11) under kinetic domination gives

2
¢ = Pend = c11n(t/tena), C% = 3’ (7.15)

where t.q is the time to reach ¢.,q from the bounce. During the high-w portion, V' =~
Vo(1 — e7?) and one finds

I >(Vend) 2%2

(7.16)
fend VO
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Since t;/tend ® VVend/Hr, (7.16) yields

V. \%
Hr < end ( 0 ) 202 , (717)
MP Vend
which restricts the conformal-time ratio
Vons |V
T = |1/ Tend 2 (%d)‘/; ~ 108, (7.18)
0

using Vp ~ lO‘leMf)1 and Vopg ~ 10_20M§ [38]. In summary, the key background con-

straints for our cyclic model are

|Tr/Tend| 2 108, (Ttr = Teld) 2 109, oy = (7.19)

7.2 GENERAL PRIMORDIAL TENSOR SPECTRUM

In a spatially flat FLRW background (2.3) and working in synchronous gauge®, the
line element with only tensor (transverse d'h;; = 0 and traceless 6"/ h;; = 0) perturbations

reads

ds® = az(r) [de - (51']' + hi]') dx' dxj] . (7.20)

We work in Fourier space to highlight the contribution of each wavenumber k to h;;(t, x).
Focusing on a single polarisation (3.73) and assuming statistical isotropy, one finds that

each mode hy(7) obeys (3.74) in conformal time
” a ’ 2
by + 2; b, +k“h =0, (7.21)

Introducing the rescaled variable f;(7) = a(r) h(7), (7.21) becomes

4

Y+ (kz + %) fi =0. (7.22)

Further redefining f; = ivT u; casts (7.22) into the standard form of a Bessel equation.
In each phase of the cyclic model, the general solution is a linear combination of Hankel
functions Hﬁl) and H‘Ez).

3In synchronous gauge comoving observers follow geodesics. Here, one demands that there be no
perturbation in the (tt) and (ti)-components of the metric, i.e. go,, = 0 with p = {0, 1, 2, 3}.
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7.2.1 GENERAL SOLUTIONS IN THE DIFFERENT PHASES

For 7 < 7, during which a(r) = m, the general solution of (7.22) can be written

in terms of Hankel functions as
fi(0) =N=kn Dy B (k) + Do) BY (<k) |, n=r=B,  (123)
2 2

where B is given by (7.6), and D; 2(k) are integration constants for each mode k.

In the interval 7y; < T < Tend, When a(7) o (7 — 7ex ), the solution takes the form

@ =i |40 B @) + A0 B )| y=-k(r-ra)  (024)

with A;,(k) as the corresponding constants.

For the contracting kinetic phase, 7eng < 7 < 0, where a(7) « (=7)'/?, one obtains
filr) =V=kr [Bl(k) HV (=k7) + By (k) Héz)(—kr)]. (7.25)

1/2

Finally, in the expanding kinetic phase 0 < 7 < 7;, where a(7) o« 7'/, the general

solution is

fi(r) = Vkr [Cl(k) HO (k1) + Cy(k) Héz)(kr)]. (7.26)

The matching is not performed at 7 = 0, where the metric would be singular and pertur-
bation theory breaks down, but rather at a finite conformal time close to the transition
between the two phases, where both the background and perturbations remain well de-
fined.

In what follows, we determine the integration constants D; ;(k), A1 2(k), B12(k) and
C1.2(k) by enforcing continuity of fi(r) and f/(7) at each transition of phase. At 7 = 7,
— the boundary between dark energy and ekpyrotic stage — continuity of f; yields

Vit [ DiH{)) (xie) + DoHy) ()| = v [AH,Y (yie) + A2HL” ()], (7.27)
and continuity of f; yields in matrix form
Y A =X D,
o | -1
with
(1) (2)
VY Hy (ytr) VYu Hy (ytr)

Yo HY, () = 2 Hn () VI Hy 2 () = (”(yn)

=1
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X _ xtr 3/2 (xtr) xtl" 3/2 (xtI’)
=\ VR H, ) () = FHy (i) VS Hy ) (k) = Z=Hy (o)

Dy
D,

A= s Xy = —kn(ty), Yo = k(1w — Tek)-

At 7 = 7.4, namely the end of the ekpyrotic phase, matching gives

Y B=X A,
-2 -2
with . ,
H (x.) H? (x.)
gz - H( ) 1 H(l) H( ) l H(z) ’
Ve HY (x) + 5 (x) Ve H? (x0) + 3 (xe)
V2a HY (2ax.) V2a H? (2ax.)
X =

1 1 ;
-2 n—z n—5
V2ax. H( )1(2axe) \/ﬁH,(ll)(ZOtxe) V2ax. Hr(i)l(Zaxe) - \/T_ieH,(lz)(Z(xxe)

B
B:( 1), er_kTend~

B,

At the bounce 7 = 0, kinetic contraction-kinetic expansion, one finds the simple

—\/1+)(Bz, C2:_\/1+XBI-

relation

7.2.2 PRESENT DAY STRAIN SPECTRUM

We quantify the primordial gravitational-wave background via the dimensionless

strain spectrum [38, 106]
k3/2
Ah(k, 1) = — |hk(r)|. (7.28)
T

Evaluating this during radiation domination (7 = 7;) using the matched solutions gives

kzv—

7 a() Mpt Hy (k) + Ca (k) Hy” (k)| (7.29)

Ah(k, ;) =

where we define x; = k7;. The present-day spectrum Ah(k, 7y) is obtained by applying a
transfer function 7 (k)
Ah(k, 1) =T (k) Ah(k, 1), (7.30)
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with the fitting form [38]

T (k) ~ (%)2(1 + kieq + ke]jkr)’ (7.31)

where )

T
k.=a H. ~
'y arr MP

is the comoving horizon scale at radiation-domination.

Although we have set a(z;) = 1 internally, comparison with observations requires
normalising a(zy) = 1. Since a « 1/T, one finds
a(n)) _ T,

r 20
~ L L 10%,
a(ry) To

so that the rescaled comoving frequency becomes ki = ke/a(ty) ~ 1071 Hz. Hereafter
we denote k; simply as k;. Using Ty/T; ~ 6.6 X 102, the ratio of the present horizon to
the radiation-era horizon is

i—f ~ % ~ 6.6 %1072, (7.32)

and during matter domination H o« a~3/2 implies

k

% ~ AT+ zeq ~ 10%, (7.33)
0

with zeq the redshift of matter-radiation equality. We can also place a bound on k,
modes on the horizon at the previous dark energy phase, which will be useful later. The
comoving wavelengths of these modes are determined by the duration of the ekpyrotic
phase, which we require to last at least ~ 60 e-folds in order to homogenise and flatten

the universe for the next cycle. A yet more stringent bound follows from (7.11), since

- V;end

N = In (Hena/Ho) ~ In
Vo

(7.34)
Substituting Vj at today’s dark-energy density and Vg at the GUT scale yields N ~ 115,

and implies the comoving horizon shrinks by ~ 10°, yielding

kend N

10°°. (7.35)
ktr



146 Chapter 7. Alternative mechanism to inflation

7.3 VACUUM CHOICE AND BACKREACTION CONSTRAINTS

The derivation of the tensor spectrum in the previous section is completely general
with respect to the choice of vacuum state and includes contributions from modes gen-
erated in the dark energy phase of the prior cycle. This framework allows us to probe
two key questions: how sensitive the spectrum is to non-Bunch-Davies (non-BD) ini-
tial conditions, and whether modes from the previous cycle’s dark energy era leave an
observable imprint today.

In quantum field theory the vacuum state is the lowest-energy field configuration,
but in an effective description (such as our cyclic model) integrating out high-energy de-
grees of freedom can provide the choice of vacuum to be nontrivial. Inflationary studies
have shown that exotic vacua — parameterised by nonzero Bogoliubov coefficient f; -
can violate standard consistency relations and yield blue-tilted tensor spectra (e.g. [176,
450, 451]). In cyclic cosmology, previous works have always assumed the BD vacuum
during the ekpyrotic phase [38], but if new physics at a scale M modifies the initial state
in the dark energy phase, one must ensure that excited quanta do not backreact catas-
trophically on the modulus field. Following [450, 470, 471], we allow the Bogoliubov
coefficient S =2 D, (k) \/g to be nonzero, and impose a UV cutoff by requiring S — 0
for modes with k > M a(z;). Following [471], we model

Br = Boexp|-k*/ (M a(z))’], (7.36)

where M ~ 10~*Mp is the effective cutoff and f, its amplitude. The energy density of
non-BD quanta (particles associated with the non-BD vacuum due to f # 0), at time 7

is

1 d*k 2 a(z.)\*
Pnon-BD "~ a(’l')4/ (271_)3 |ﬁk| k ~ (ﬁ) ,BSM4 (7.37)

Requiring puon-ep < MjH? during the dark energy phase (where H ~ H,) yields

H Mp

i~ 10753, (7.38)

Po <

an extraordinarily tight bound, independent of the precise choice of the cutoff time 7,
because total expansion from one cycle to the next ensures (a(z.)/a(z;))* < 1. Hence,
avoiding any backreaction during the dark energy phase imposes an extraordinarily tight
upper bound on deviations from the Bunch-Davies vacuum. For context, the analogous
constraint in inflationary cosmology is By < 107° [471], which is weaker than our result.
This discrepancy arises because, although inflation and dark energy share similar back-

ground dynamics, their characteristic energy densities differ by more than 10'%°. The
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vastly higher energy scale of inflation makes it far harder for perturbations to backre-
act, and thus permits much larger departures from the BD vacuum. One might instead
choose to fix the vacuum during the ekpyrotic phase, where H grows rapidly while a

remains almost constant (7.12). In that case, one finds
Bo < 10* (M ~ 107 Mp), (7.39)

allowing much freedom in vacuum choice for that phase. Nevertheless, one must still
verify that any large deviation from the BD vacuum during ekpyrosis does not intro-
duce pathologies in later phases. Given that the dark-energy epoch occurs at the lowest
energy scale and that the cyclic model shows remarkable insensitivity to initial condi-
tions from one cycle to the next (as we confirm in the following), we state that fixing
the vacuum in the dark-energy phase is both the most restrictive and the most conser-
vative assumption. From a model-building perspective, this makes the BD initial state

the safest choice.

7.3.1 GRAVITATIONAL WAVES PRODUCED FROM DIFFERENT PHASES

Our general computation of the strain spectrum of gravitational waves allows us
to explore how the predicted spectrum is modified when including contributions from
tensor modes produced during the dark energy phase of the preceding cycle. This, in
turn, enables us to assess the robustness of these predictions by directly comparing them
to those found in previous works, which typically begin in the ekpyrotic contracting
phase. Here, we compare the strain spectrum predictions obtained in the following two

scenarios:

1. Using our general calculation, starting in the dark energy phase of the previous
cycle. In this case, we impose BD vacuum conditions on the coefficients D; and

D, during the dark energy stage, given by

1
D1 = —\/E, Dz =0. (740)
2V k

2. Starting the calculation in the ekpyrotic phase (omitting the matching at 7 = 7;,)

and imposing BD initial conditions as adopted in [38]

1 |n
A =-. =, Ay, =0. 7.41
1 2\/; 2 ( )

It is important to stress that, although our calculation remains entirely general with
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respect to the choice of vacuum state, significant deviations from the BD vacuum in the
dark energy phase are strongly constrained, as demonstrated in the previous discussion.
This provides a compelling physical motivation for imposing the BD vacuum in the dark
energy phase in scenario 1. Conversely, for scenario 2, we adopt BD initial conditions in
the ekpyrotic phase to remain consistent with the framework of [38], thereby facilitating

a direct comparison.
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Figure 7.1: Strain spectrum as a function of comoving frequency k for gravitational waves
generated when the cycle begins in the dark energy phase (blue) and in the ekpyrotic phase
(orange). BD initial conditions are assumed in both cases. The points ko, kg, ky, and kepq denote
the comoving frequencies corresponding to the present-day horizon, matter-radiation equality,
the onset of radiation domination, and the ekpyrotic-kinetic transition, respectively.

After performing the matching across the relevant cosmological phases, the strain
spectra of tensor modes for the two cases can be computed using (7.29) and (7.31). The
resulting spectra are displayed in Figure 7.1, where case I is shown in blue and case 2
in orange. There is a difference of up to an order of magnitude in the strain amplitude
Ah for modes corresponding to ko, which is the comoving wavenumber at the horizon
today. This difference can be attributed to the evolution of modes generated during
the dark energy phase of the previous cycle, corresponding to case 1. To clarify this
point, we refer to Figure 7.2, which illustrates the evolution of the comoving Hubble
horizon across the different phases of the model. We note that the horizon size at the

end of the dark energy phase (i.e. k;') is several orders of magnitude larger than the
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Figure 7.2: lllustrative plot showing the evolution of the comoving Hubble horizon, (aH)™!,
across the ekpyrotic, kinetic contracting, kinetic expanding, radiation-dominated, and matter-
dominated phases, depicted in magenta, orange, dark blue, green, and cyan, respectively. Key
horizon-crossing modes are indicated by horizontal dashed lines labeled with their correspond-
ing comoving wavenumbers; less significant modes are also labeled.

present-day horizon (i.e. k;'). This guarantees that none of these super-horizon modes
could have re-entered by today. As a result, modes produced during the dark energy
phase that exit the horizon become effectively frozen and experience further stretching
throughout this epoch. On the other hand, sub-horizon modes generated during the
same phase undergo oscillations with a decaying amplitude, following h o a~!. This
behaviour can be explicitly shown by solving (7.22) under the dark energy background
evolution given by (7.4). As a consequence, we expect sub-horizon modes produced deep
within the dark energy phase (as well as during earlier phases of the previous cycle) to
decay to negligible amplitudes when compared to modes produced near the end of the
same phase or during the subsequent ekpyrotic phase. In contrast, sub-horizon modes
generated close to the end of the dark energy phase can persist into the ekpyrotic phase

of the next cycle, effectively acting as additional quanta in the vacuum initial conditions
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of the following ekpyrotic phase. This contribution is captured by the coefficient A,
in (7.24) and may produce observable signatures on scales corresponding to the long-
wavelength part of the strain spectrum. Referring again to Figure 7.1, we observe that the
differences induced by these amplitude oscillations — expected from the under-damped
solution of a simple harmonic oscillator — are confined to the frequency range between k,
and keq, before modes become frozen during the ekpyrotic phase. As discussed in [467],
the following phases induce a red tilt on the initially scale-invariant spectrum generated
during the dark energy phase. It is important to note that for an ekpyrotic phase lasting
approximately N ~ 115 e-folds, the magnitude of the coefficient A, can reach O(10'°)*
for modes between ko and keq, before dropping sharply to around O(107") for modes
near k. This behaviour accounts for the observed discrepancy between imposing BD
initial conditions in the dark energy phase, as specified in (7.40), and imposing them in
the ekpyrotic phase, as specified in (7.41).

We conclude with an important final observation: preserving the correct background
evolution of the modulus field requires the vacuum state during the dark energy phase
to be BD-like. This condition implies that perturbations present in the current cycle
must decay to amplitudes negligible compared to the energy density associated with
the BD vacuum, preventing them from acting as additional quanta above the vacuum
state. We emphasise that this requirement is naturally fulfilled by the evolution of ten-
sor perturbations after the bounce, particularly during the subsequent radiation and
matter-dominated eras. In particular, the transfer function given in (7.31) ensures that
the amplitudes of short-wavelength modes — those that re-enter the horizon first and
could potentially cause the most significant backreaction — are suppressed by a factor
of (ko/k)?. Consequently, the amplitude of the shortest wavelength modes in the ob-
servable spectrum (k ~ kenq) is reduced by more than 20 orders of magnitude during the
radiation and matter eras.

As a result, the evolution through these phases ensures that the amplitude of all
modes decays across every cycle before each dark energy phase, effectively restoring the
vacuum to a BD state each time. This mechanism protects the dark energy phase from
potential backreaction effects, underlining the robustness of the model and demonstrat-
ing that, from a theoretical perspective, imposing initial conditions in the dark energy

phase remains the most conservative and reliable choice for consistent model building.

*A; remains of order unity because it matches directly to the scale-invariant amplitude inherited from
the BD vacuum.
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The objective of this thesis is to elucidate the phenomenology and viability of alterna-
tive and generalised models of the early Universe, providing insights into multifield in-
flationary dynamics, the behavior of gravitational waves and scale-invariant symmetry
in cosmology. Motivated by current observational tensions and theoretical challenges
in standard inflationary cosmology, these works explore a range of models that incor-
porate novel mechanisms, field interactions, non-local terms, and symmetry principles

to understand the origin and evolution of primordial perturbations.

Chapter 4 analyses multifield inflationary models featuring non-trivial kinetic cou-
plings, focusing on both analytical and numerical aspects. We start by deriving analyt-
ically the background field equations and linear perturbation equations for two scalar
fields with a curved field-space metric, highlighting the explicit dependence on the ki-
netic coupling parameter. We study the decomposition of perturbations into adiabatic
and isocurvature modes and analyse their evolution on super-horizon scales, providing
conditions under which isocurvature modes can convert into curvature perturbations.
We also analytically discuss how field-space curvature modifies the effective entropic
mass and affects stability. Regarding the numerics, we implement a Monte Carlo Markov
Chain (MCMC) approach to explore the parameter space, using a dedicated integration
scheme for solving the background dynamics from initial random field values to the end
of inflation (typically at N ~ 55 e-folds). We systematically sample over parameters
such as the mass of the fields and both the potential and kinetic couplings, and compute
inflationary observables including the scalar spectral index n;, tensor-to-scalar ratio r,
and the running parameters «; and f;. The numerical results show how variations in
the kinetic coupling parameter impact the shape of field trajectories, the evolution of
the Hubble parameter, and the predicted CMB angular power spectra. Additionally, we
present posterior distributions and contour plots illustrating constraints on the model
parameters at 68% and 95% confidence levels, derived by comparing theoretical predic-
tions with observational data. The combination of analytical insight and numerical con-
straints confirms that kinetic couplings can significantly alter multifield dynamics, po-

tentially leading to distinct observational imprints that can be tested with current and
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future CMB data. The general formalism and the novel sample code of this work can be

used to test the robustness of inflationary models.

Chapter 5 focuses on scale-invariant inflationary models, combining analytical and
numerical studies to assess their viability and predictions. The chapter begins by con-
sidering a scale-invariant action involving a non-minimally coupled scalar field ¢/, a
quadratic curvature term R?, and a quartic self-interaction, all preserving classical scale
symmetry. A key result is the spontaneous breaking of scale symmetry via dynami-
cal field evolution, leading to a conserved Noether charge and a characteristic elliptical
field-space trajectory. The analysis demonstrates that entropy (isocurvature) perturba-
tions vanish due to scale invariance, simplifying the dynamics effectively to a single-field
system and avoiding typical multifield instabilities. Analytical expressions for slow-roll
parameters, spectral index ng, tensor-to-scalar ratio r, and their runnings are derived
explicitly, revealing that in the limit of vanishing non-minimal coupling &, predictions
coincide with Starobinsky inflation. A dedicated algorithm numerically samples the pa-
rameter space ( the parameter « which determines the strength of R? term, the parameter
¢ controlling the strength of the coupling #?R, Q related to the strength of the quartic
term in the JF) and solves the full background equations and perturbations. Constraints
are placed using likelihoods built from Planck 2018 and BICEP/Keck data, generating
posterior distributions for observables such as the spectral index ng, the tensor to scalar
ratio r, and the running parameters such as «;. Results show that the model predicts a
non-zero lower bound on r > 0.00332 and small running o < 1.2x10™* (both at 95% CL),
making these predictions testable with future CMB observations. Additionally, a detailed
comparison with Starobinsky and a-attractor models in the n; — r plane demonstrates
that, despite overlapping regions, scale-invariant inflation occupies distinct parameter
space, particularly when & is non-negligible. Finally, the analysis robustly rules out large
& values, excluding conformal coupling (¢ = 1) at high significance, and confirms that
initial conditions do not strongly affect inflationary predictions. Overall, Chapter 5 val-
idates scale-invariant inflation as a theoretically motivated and observationally viable
scenario, highlighting its unique phenomenological features and potential discriminat-

ing power in future cosmological surveys.

A promising future direction is to pioneer the study of primordial black hole (PBH)
formation within the framework of scale-invariant quadratic gravity. PBHs are hypoth-
esised to form from the collapse of overdense regions in the early Universe and are of
particular interest due to their potential to account for a significant fraction of dark mat-
ter. Their purely gravitational interactions make them natural dark matter candidates,
and their formation history may also influence small-scale structure through inherited

clustering properties. Beyond their intrinsic interest, PBHs offer a powerful probe for
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testing early-Universe models. While many cosmological scenarios yield similar predic-
tions — such as gravitational wave signatures - the study of PBHs provides an indepen-

dent avenue for constraining and discriminating between theoretical frameworks.

Chapter 6 investigates inflation in the context of non-local hybrid metric-Palatini
gravity, analytically and numerically exploring the effects of non-local operators on early
Universe dynamics. We start by formulating the action with non-local terms expressed
through inverse d’Alembertian operators acting on both metric and Palatini curvature
scalars. The theory is recast into an equivalent scalar-tensor representation using aux-
iliary fields, allowing explicit identification of ghost conditions. A rigorous analysis
demonstrates that generic non-degenerate non-local hybrid models suffer from ghost in-
stabilities unless local and non-local terms are assigned to different curvatures. Algebraic
no-ghost conditions are derived, constraining the parameter space and the functional
form of the non-local couplings. We then tackle the inflationary background dynamics
numerically considering the FLRW metric. Two main scenarios are considered: with
vanishing and nonvanishing non-local potential (V (0™ 'R) = 0 and V(O !R) # 0). Field
equations for the scalar fields @, = and ¥ are integrated, and we investigate how differ-
ent non-local coupling choices (power-law or exponential) affect scalar field trajectories,
the number of e-folds, and deformation of the potential. The results show that for met-
ric f(R) models with coupling Palatini non-localities, a finite slow-roll phase is possible
with successful exit from inflation. On the other hand, considering Platini f(R) models
with coupling metric non-localities leads to an infinite slow-roll phase and no natural
end to inflation. This scenario happens as the shape of the potential coming from the
f(R) does not provide the model with a global minimum. For each viable setup, the no-
ghost condition is numerically verified throughout the evolution. The analysis further
reveals that non-local terms deform the effective Starobinsky-like potential, offering dis-
tinctive features that could be probed observationally. Overall, Chapter 6 demonstrates
that carefully constructed non-local hybrid gravity models can consistently support in-
flation at the background level, while also providing a framework to explore new phe-

nomenological imprints in the early Universe.

A promising future direction is to test the robustness of the model by extending the
analysis beyond the background level and investigate the evolution of cosmological per-
turbations. Studying both scalar and tensor perturbations in this non-local hybrid frame-
work is essential for assessing the model’s viability against observational constraints,
particularly from the CMB anisotropies and large-scale structure data. This includes
analysing the power spectra, spectral indices, tensor-to-scalar ratio, and potential non-
Gaussian signatures. In models where non-localities deform the effective inflationary

potential, perturbations can carry distinct imprints that may serve as observational dis-
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criminants. Moreover, evaluating the stability of perturbations is crucial for confirming
the absence of additional ghost or gradient instabilities at the linear level. Such an anal-
ysis could also clarify whether the successful exit from inflation seen in some scenarios
agree with observations. Overall, the perturbative study would significantly advance the
understanding of non-local hybrid gravity models and help determine their predictive

power in the context of early-universe cosmology.

Chapter 7 explores an alternative to the standard inflationary paradigm by analysing
cyclic cosmologies, with a particular focus on the ekpyrotic scenario. The chapter starts
by reviewing a cyclic model with a phenomenological scalar potential designed to in-
duce successive phases of expansion and contraction. The evolution of the scale factor
across different cosmological epochs (ekpyrotic, kinetic contracting, bounce, and kinetic
expanding phases) is derived explicitly, using both cosmic and conformal time parametri-
sations. Constraints on the model parameters are analytically obtained to ensure a suf-
ficient number of e-folds (N ~ 115) in the ekpyrotic phase, necessary to homogenise
and flatten the Universe. Moreover, model parameters such as potential depth and tran-
sition times are constrained to satisfy continuity and stability requirements. We then
study the evolution of primordial tensor perturbations across cycles numerically, start-
ing from the dark energy phase of the previous cycle, and considering different vacuum
choices. Two scenarios are explored: one with Bunch-Davies (BD) vacuum imposed dur-
ing the dark energy phase, and one (compared to the one already studied in literature)
with BD vacuum imposed in the ekpyrotic phase. The strain spectra of gravitational
waves are computed for both cases, revealing differences up to an order of magnitude
in the present-day strain amplitude for the longest modes. The analysis further demon-
strates that deviations from the BD vacuum can introduce backreaction problems, po-
tentially spoiling the cyclic evolution unless strong constraints on the excited modes
are imposed. It is shown that the cyclic model predictions for tensor modes remain ro-
bust under conservative vacuum choices, with contributions from previous dark energy
phases decaying sufficiently before the start of the new cycle. Overall, Chapter 7 estab-
lishes that cyclic scenarios can reproduce a nearly scale-invariant scalar spectrum while

predicting a suppressed tensor spectrum by validating the choice of the vacuum state.

Unlike other parts of this thesis, the analysis presented in this chapter is self-contained
and does not directly point toward immediate extensions. The study provides a complete
exploration of tensor perturbations within the chosen cyclic framework, offering a stan-

dalone contribution to the ongoing investigation of alternatives to inflation.

Taken together, these chapters illustrate how diverse theoretical extensions — from

multifield kinetic couplings to scale-invariant models, non-local hybrid gravity, and
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cyclic cosmologies — provide a rich landscape of early-universe scenarios, each offering
distinctive predictions and observational signatures that help deepen our understanding

of cosmic origins and guide future experimental tests.
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A CONFORMAL TRANSFORMATION

BETWEEN JF AND EF

We start from the JF action for an f(R) theory with an additional scalar field y:

Sy = / d*x/-g [f(ﬁ) - %gﬂ”w X - U(x)] . (A1)

We introduce an auxiliary field « for which we can rewrite (A1) as

S=/d4x\/—_j

f(@) +f(@) (R=-a) = 2§ dux dux - U()()]- (a2

Variation of the action with respect to a leads to f”(«) (R — @) = 0 onshell, so for
f"(a) # 0 we recover a = R. We then define the scalaron field ¢ = f’ (@), and we define
the two-field potential

Vg, x) =aq—f(a) +U(y), (A3)

where the first two terms come from the f-gravity sector (expressed in terms of & and
its “momentum” ¢), and U (y) is the potential that the original matter field carries. Once
the f(R) has been chosen, we can invert the relation to express « in terms of ¢ and then

rewrite V (¢, y) purely in terms of {¢, y}. The action becomes

- =~ 1.
S = / d'x \=g [q)R = 59" ux oux = V(e 0| (A4)
Next, we perform a conformal transformation

V-=0=9  Guw=%gu. R=Q7?2R-6Q730Q. (A5)

We substitute (A5) into (A4) yielding
1
S= / d*x =g [(p (Q*R-6Q0Q) - 5929‘”8#)( ax—QWVip, x| (A6)
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We choose ¢Q? = 1/2k (with x = 87G) which brings the Ricci term into canonical

Einstein form. The mixed term ¢ Q OQ can be expanded as

1 1 9u(y/=99" 3,Q
in(A6)/d4x\/—_g(pQ|:|Q :_/d4x —5— (V=99 )’
2x RN

(A7)
and then integrated by parts

1 1 1 1
4 4 4
/d x\V=gpQoQ = o /d x\/—g@,(a)g’”’an = o /d x\/—gag”"aﬂQ ,Q,
(A8)
leading to a kinetic term for ¢ once substituted back into (A6). The boundary term in (A8)
is neglected under the assumption of a flat FLRW universe with no physical boundary.

By collecting terms the action can be written as

R 1 Vg, x)
S= [ d'xy=g|— - "0 3y — —— g A x Ay x — . (A9
/ x g[zK Pk UL Pl DY S (A9)
Finally, via a field ¢ redefinition
0= — M
2k

we bring (A9) to the familiar two-field EF form
4 R _3pam L B4 v ~2py
Se= [ dxN=g |- = B¢y —se g oy d -V ) (AL0)

with f = 4/2k/3 to ensure a canonical kinetic term for /.



B DOUBLE INFLATION AND

LIKELIHOOD VALIDATION

B.1 DOUBLE QUADRATIC POTENTIAL AND DOUBLE

INFLATION

In this appendix, we apply our numerical framework introduced in Chapter 4 to a

simple two-field example — a canonical double-quadratic potential
V= 1m2 P+ 1m2 P (B1)

2 VT 2T

which corresponds to setting ¢ = 0 and g = 0 in the more general parametrisation
of Section 4.2. Although this model has been studied extensively in the literature, our
goals here are twofold: first, to verify that our code reproduces well-known results; and
second, to showcase its ability to detect and track “double inflation”scenarios, in which
two distinct fields drive successive phases of accelerated expansion.! Figure B1 shows
the tensor-to-scalar ratio r as a function of the mass ratio log,,(m, /my) for roughly 10*
realisations in which the scalar amplitude A and spectral index ng lie within observa-
tionally allowed ranges. As noted in [224] (and confirmed here), this model generically
predicts r > 0.13 independently of the fields’ initial conditions or mass ratio — values
that exceed the current upper limits from the CMB B-mode polarization released by the
Keck Array collaboration. Hence, although we do not perform a full data likelihood anal-
ysis (the model is already ruled out by its high tensor amplitude), we use our sampler to
cross-validate this prediction. Indeed, even across many orders of magnitude in m, /my,
and with randomly chosen initial conditions, r remains above the 95% CL bound from
the joint Planck+BK18 analysis, in excellent agreement with Figure 8 of [224]. A closer

analysis of the figure reveals the presence of minor dispersion of patterns that deviate

ISuch double-inflation behaviours arise more naturally in purely quadratic, canonical models than in
the bilinear coupling case of Section 4.2.
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Figure B1: Predictions for the tensor-to-scalar ratio r as a function of the mass ratio
log,,(m, /my) for ~ 10* models in which the scalar amplitude A; and spectral index n; lie within
ranges consistent with our observational constraints.

from the degeneration line between the mass ratio and the value of r. These points cor-
respond to genuine double-inflation trajectories, where the first phase is driven by ¢ and
the second by y. Reference [224] mentions these trajectories but treats them as if they
were a single inflationary epoch. By contrast, our code automatically identifies each
distinct inflationary stage and reconstructs its dynamics separately, producing accurate
predictions for models with multiple acceleration epochs. To illustrate this feature, we
select one of the lowest r (r ~ 0.05; still above observational bounds) and plot its detailed
evolution in Figure B2. In the top panel, €)(N) first reaches unity after about 55 e-folds
(grey dashed line), marking the end of the y/-driven phase. The second and third panels
show that ¢ has essentially settled by this time, while y remains dynamically active.
Rather than stopping, our integrator continues and finds a second period of inflation as
x rolls. The bottom panel tracks the Hubble rate H(N), throughout both stages. At each
phase transition, our algorithm re-evaluates all observables — including r — thereby pro-

viding a fully consistent treatment of complicated, multi-stage inflationary dynamics.

B.2 SAMPLING AND LIKELIHOOD VALIDATION

In this appendix, we present a step-by-step description of the procedure used to con-
struct and validate our analytical likelihood described in Section 4.3, which is based on
a joint analysis of the B-mode polarization data from BK18 and the Planck 2018 mea-

surements of temperature and polarisation anisotropies. Most importantly, we demon-
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Figure B2: Evolution of the slow-roll parameter € (top panel), the scalar fields ¢y and y (middle
panels), and the Hubble rate H (bottom panel) in a double-inflation model featuring two succes-
sive stages of accelerated expansion.
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strate that our likelihood reproduces results consistent with those obtained from stan-

dard MCMC analyses widely used in the literature. Throughout this validation, we do

Parameter Real likelihoods This work
log(101°Ag) 3.049 + 0.016 3.051 + 0.015
ng 0.9624 + 0.0044 0.9621 + 0.0046
as 0.002 + 0.010 0.002 + 0.010
Bs 0.012 + 0.012 0.013 + 0.013
r < 0.0354 < 0.0357

Table B1: Results for the ACDM+a; + fs+r model obtained using the publicly available sampler
Cobaya [472], in combination with the full Planck 2018 likelihoods [9, 265, 266] and the BK18
B-mode polarization data [264] (labeled as Real likelihoods), are compared with the results ob-
tained for the same model using our sampling algorithm together with the analytical likelihood
defined in (4.47) (labeled as This work).

not assume any specific inflationary model and remain agnostic about the underlying
inflationary dynamics, in keeping with the standard approach adopted in cosmological

data analyses.

1. Extended cosmological model and MCMC analysis: As a first step, we con-
sider an extension of the standard ACDM model that includes three additional pa-
rameters: the tensor-to-scalar ratio r, the running of the spectral index «;, and the
running of the running f;. We refer to this extended model as ACDM+a; + f5s + 1.
We then perform a full MCMC analysis using the Cobaya sampler [472] in com-
bination with the CAMB Boltzmann integrator [261, 262]. Cobaya incorporates the
efficient “fast dragging”procedure developed in [473]. For our baseline dataset, we

include:
« Planck 2018 TT, TE, EE likelihoods, including low multipole data (£ < 30) [9,
265, 266];

« Planck 2018 lensing likelihood, based on the reconstructed lensing potential
[267];

+ Bicep/Keck Array X (BK18) likelihood for CMB B-mode polarization, cleaned

of foreground contamination [264].

The resulting constraints on the extended parameter set are summarised in Ta-

ble B1, and serve as updated bounds on this cosmological extension based on the
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latest data.

2. Construction of likelihood: In the second step, we use the results of the MCMC
analysis to construct our analytical Gaussian likelihood, defined in (4.47). Specifi-
cally, we adopt the mean vector y and covariance matrix > derived from the pos-
terior distribution of the ACDM+a; + fs + r model.

3. Validation via sampling of inflationary observables: Finally, we validate the
analytical likelihood by showing that it yields equivalent constraints to those ob-
tained using the full experimental likelihoods. To this end, we perform an inde-
pendent sampling of the inflationary observables {A;, ns, a, fs} using our custom
sampling algorithm, and apply the analytical likelihood defined by (4.47). This
approach directly samples from the observable parameter space, using the same
priors as in the MCMC analysis. As this method avoids the complexity of solving
inflationary dynamics for each sample — and the potential numerical issues that
may arise — it is computationally efficient and allows us to evaluate approximately
10° models. Figure B3 shows a direct comparison between the results obtained
with our analytical likelihood (labeled This work) and those from the full MCMC
analysis using real experimental likelihoods (labeled Real likelihoods). One can see
that both approaches yield consistent constraints for all inflationary parameters.
Numerical comparisons are provided in Table B1, further confirming the validity

of our method.
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Figure B3: Comparison between the marginalised 1D and 2D posterior distributions obtained
using our analytical likelihood (red curves, labeled This work) and those obtained from real ex-
perimental likelihoods via Cobaya (grey curves, labeled Real likelihoods) for the inflationary
parameters {As, ng, s, Bs, r}. The agreement validates our approach.



C TECHNICAL DERIVATIONS FOR THE

SCALE-INVARIANT MODEL

C.1 DERIVATIVES OF V(p) AND b(p)

The derivatives of the potential V(p) (5.35) read:

9 EM? 2
V, = ——§ sinh( p ) smh( ) sinh? ( P ),
V6 « VeM VeM
3 Q)M? 2 ?,QM2
V,, = _3(E+QM” cosh( p ) h( )
a VoM o VoM 1)
() [l
Voo = sinh + Q —4Q cosh
ppp a \/_M f \/_M
2 Q 2 Q 4
Voppp == E+re) Oh( P )+8—cosh( P )
o VeM a VoM
The derivatives of the coupling b(p) (5.34) are:
1 1 1
b, = tanh b,, = ) C2
' VeM (\/_M) M 2( p ) (2
cosh® | —
VoM

These formulas are used in the numerical implementation of (5.42), (5.43) and (5.44).

C.2 DERIVATION OF THE NUMERATOR IN THE fnL

EXPRESSION

By definition (cf (5.52) and/or (5.54)), in terms of the bispectrum B, and the power

spectrum Py, one has
5 B{(khkz, k3)

W= G Btk Proka) + ep.

(C3)
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Let us calculate By (ky, k2, k3). We start by considering { =~ N; Q' + % D1D;N Q'Q from
(5.49). Hence, by inserting { into the three-point function (5.51), we get

<(N1QI) (N]Q]) (%DK@LN QKQL)> ~ N[ N] DKDLN<QIQK><Q]QL> + p-c., (C4)

to leading order. Each contraction obeys (Q'QX) o« GX Py (k), where Py(k) = (H./27)?
- by considering (5.50) and (5.53). Including the combinatorial factor (from the three
ways to choose which pair arises from the quadratic piece), the bispectrum in momentum

space is
By (k1 ka, k3) o« Ny Ny Dx DN [GIX 6/ P(ky) P(ks) + 2 perms.]. (C5)
In the squeezed limit k3 < k; = k,, the dominant contribution becomes
By (k1. Kz ks) o Ny Ny D DLN G G" P(ky) P(ks). (Ce)

Noting that Dx DN = Z)K(NL) = Z)K(aLN), and relabeling dummy indices, the com-
bination N N]Z)KZ)LNQ*IK Q*JL can be rewritten as Q*IKNKQ*]LNLDIN]. Hence the full
numerator takes the form % GIK NKQ*J LNLDIN ; which is in agreement with (5.54).



D ANALYTICAL ASPECTS OF THE EF

REPRESENTATION

D.1 GHOSTS FOR THE PURELY METRIC AND PALATINI CASE

Following the procedure outlined in Section 6.1, it is straightforward to verify that
when the original function F of (6.1) depends solely on a single curvature scalar, the

resulting action in the EF takes the form

II W(®, iy, 7
— — ( V5 ﬂz), (Dl)

sp=5a | d4xH(R<q>—5i (VO + e ™ v

where §; = 0 or §; = 1 corresponds to the Palatini and metric configurations, respectively.
Here, ® and IT denote the scalar field and the sum of kinetic terms associated with the
specific representation of the model under consideration. In the case §; = 1, the results
of [96] are recovered, i.e. the theory propagates N ghost-like degrees of freedom. On
the other hand, choosing §; = 0 implies that © lacks independent dynamics and can be
entirely expressed in terms of the other scalar fields, as is typically the case in Palatini

f(R) theories. Indeed, varying (D1) with respect to © yields

oW
ow — 22— Ve, (D2)
20

which, once the potential W is specified, can in principle be solved for ©® = O(7y, 7).
It is important to emphasise that, even in this case, the kinetic sector IT still includes N

ghost-like fields, indicating that the theory remains dynamically unstable.

D.2 DIAGONALISATION FOR 0y = 0

In this section, we present the diagonalised form of the action given in (6.44), ob-

tained through the field redefinition ¥ = n + w, E = n — . This transformation leads to
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the following expression

S, = # d*xy=q (R _ (vay - K w)(Vn):\J/rgf(m ) (Vo)?
V(B(n+w)+U (e‘/gq) + @) (03)
JRAVEL ’
where the kinetic coefficients Kz (7, w) are defined as
Ke(nwy=231-2 % . (D4)
3 d¥lyopie

D.3 EXPRESSIONS FOR THE G FUNCTION

In this section we derive the functions G(y2) introduced in Section 6.2. Following
the procedure described in Subsection 6.3.1, the explicit forms of the non-local function

G(x2) corresponding to a power-law kinetic coupling in the EF are given by:

1| n+2 o)

G()(z) = G() + % \PO n_ (\P(;H-Z + 2 ()(2 - Xz’o)) 2:|, n+#2, (DS)
\Ijg 2(x2—x2,0)

G(xo) =Go+ (e F 1), n=2. (Do)

2k

In contrast, for an exponential kinetic coupling, the resulting expression reads

X2 — X2,0
keYo (ken‘lfo + n()(z — XZ,O)).

G(xz2) =Go + (D7)
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