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The aim of this work is to achieve an understanding of the effect of skin mechanical 

properties on the friction of human finger-pads. This project primarily concentrates 

on gaining a more fundamental understanding of the frictional properties of skin. To 

achieve this, various parameters (epidermis thickness, sweat-gland counts, etc.) 

affecting skin friction were evaluated using an in-vivo technique, Optical Coherence 

Tomography (OCT) and a friction testing device. This project is also interested in 

investigating how those parameters alter the friction for different ages, genders, 

ethnicities and different contact conditions, such as moisture, temperature, loads, etc.   

 

Experimental studies were conducted to investigate the skin frictional behaviour. The 

findings showed that the skin friction obeys a two-term relationship. The skin friction 

was found to be strongly associated with its Young’s modulus. 

 

Tests on the skin structural properties showed the moisture level of the skin, skin 

thickness and skin morphological properties play important roles in determining the 

skin friction. The findings gained can be applied to explain how the skin friction 

varies among different participants. Further tests showed that physico-chemical 

properties of the skin can have a significant effect on the skin friction. 

 

The OCT system was combined with a multi-axis force plate to measure the contact 

area between fingers and smooth surfaces. Static measurement showed both apparent 

and real contact area increase with normal load following a power-law relationship. 

This is associated with the skin mechanical properties. The dynamic contact area was 

investigated using a Digital Image Correlation (DIC) method. As a finger was sliding 

along a flat surface, the dynamic apparent contact area was found to decrease with 

time.  
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There was a “bell curve” response observed in the skin friction when a finger was 

soaked in water for 400 s. This is thought to be due to the water absorption. It was 

achieved by investigating the structural and the mechanical properties of skin. The 

mechanism of water absorption reduced skin stiffness, which resulted in a rise of the 

contact area. 

 

Finally a pilot study on sub-surface deformation in-vivo at human fingers during 

movement was conducted using combined OCT and friction measurements. This 

study provided some knowledge of the effect of the skin lateral Young’s modulus on 

the skin friction.  

 

 

Keywords:  Skin tribology, OCT, Skin structure, Skin mechanical properties, Contact 
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2
) 
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2
) 
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2
) 

  
   stick ratio of the struck region area to the total contact area 

S skin stiffness (N/m) 

    lateral stiffness of skin (N/m) 

    normal stiffness of skin (N/m) 
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t estimated standard error of a regression 
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Ua recovery of skin after remove vacuum of cutometer  
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Ur skin immediate retraction  

Uv skin viscoelasticity  

   sliding velocity (m/s) 

W elastic work done (W) 

                        Poissons ratio of skin  

      Poissons ratio of a contacting substance 
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Chapter 1 

 

 

Introduction 

 

 

 

 
1.1 Background 

The term of “biotribology” was introduced by Dowson and Wight in the early 1970s 

(Dowson & Wight, 1973), and embraces all concepts of lubrication, wear, and 

friction concerned with biological systems. Biotribology is an interdisciplinary 

subject that draws on a range of rheology, biomechanics, chemistry, material science, 

etc. The subject has grown enormously and become one of the most exciting research 

areas in past decades. The range of research topics covers biological attachment and 

friction in animal world to human joints, replacement and soft-tissue friction 

(Dowson, 2012), which can be classified into two groups (Stachowiak & Batchelor, 

2005):  

a) the frictional processes that naturally occur in tissues and organs of animals or 

humans.  

b) the frictional processes that arise after implantations of artificial organs or 

medical devices in human body. 

 

Initially, studies of friction in natural biological systems were carried out on a wide 

range of sliding and frictional interfaces. With respect to most of these interfaces, 

lubrication is essential to successful functional operations in humans or animals. One 

of the most typical examples is the articular interfaces of synovial joints lubricated 

by a mixed lubrication. There is some contact and wear generally takes place in these 

synovial joints during movements of human or animals, such as running, walking, 

and jumping. In order to meet these functional needs, some boundary lubricating 

films are required to reduce friction, wear, and provide good protection to these 
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cartilage surfaces. In addition, natural friction processes are also found in other 

biological systems, such as the interactions between eyelids and corneas in humans, 

the contact between skin and external objects in humans or animals, and the motion 

of combing hair (Gohar & Rahnejat, 2008; Dowson, 2012). The application of 

tribology relating to implantations of artificial devices in the human body is one of 

the main research areas in biotribology. This subject has been extensively studied 

with aims to protect the implanted devices from wearing down and creating pain due 

to friction, and give them longer functional life. Consequently, these studies are 

specifically concerned with several aspects of this frictional process, including the 

tribology of artificial joints replacements, wear of screws and plates in bone fractures 

repair, wear of denture and restorative materials, and wear of replacement heart 

valves (Davim, 2010).  Skin is the largest organ in human body, it acts as a protective 

shell between the internal and external environments, preventing all kinds of physical 

and chemical damage to the inner organs, maintaining water balance and regulating 

body temperature. As the first line of defence, skin is always exposed to the external 

environment, and has to directly contact with a variety of surfaces in human daily 

activities. Many problems from the physical or chemical interactions between human 

skin and contacting materials have been reported. For example, sweating during 

exercise can result in a slippery surface and cause sports injuries. This could be 

prevented by adding powder on the contact interface or using sports equipments with 

non-slip surfaces to provide high friction force. It is not always necessary to retain 

high friction coefficient in human daily tasks. For instance, high friction forces 

between human skin and the blades of a hair shaver can lead to a large skin 

deformation and cause skin cutting. Therefore, a lower friction coefficient is required 

in this case. Consequently, in order to satisfy human needs and improve the quality 

of human life, knowledge of these problems is required. In recent years, the tribology 

of human skin has become one of the key topics in the study of biotribology. This 

topic is also an interdisciplinary subject and closely related to many research areas.  

 

1.2 Motivation for this Research 

To date, the study of bio-tribological properties of skin at human finger-pads has 

attracted much attention, which is attributed to its importance in human daily life. A 

good understanding of skin friction is generally believed to have potential benefits to 
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the performance of conducting tasks, but also the prevention of pain and discomfort 

(for instance, a good understanding of the mechanism between skin and various 

materials could help avoid the chance of getting blisters on human hands). As a 

finger comes into contact with surfaces and start to move, there are four key factors 

that appear to strongly influence the skin friction between the finger-pad and the 

contacting surfaces, including the complex interplay of materials, properties of 

finger-pad skin, contact conditions and environmental conditions (see Figure 1.1). 

The current knowledge of the tribology of finger-pad skin is mainly focused on skin 

in touch with various materials under various testing conditions. The mechanical 

properties of skin related to cosmetic or skin-care products have been fully examined 

using various techniques. However, very few studies have addressed on the 

contribution of skin mechanical properties on its frictional properties.  

 

 

 
Figure 1.1: Important factors affecting human skin friction 

 

 

The mechanical properties of skin were found to be strongly dependent on its 

structural properties (Peter, 1991; Frederick et al., 2001). Geerligs et al. (2011) 

developed a finite element model to estimate the Young’s modulus of a tested sample 

with different thicknesses based on a NeoHookean model. They found that the 

Young’s modulus is inversely proportional to the thickness of samples. Therefore, an 

understanding of mechanical and structure properties can be achieved by examining 

the morphological features and internal structures of skin. It would be very helpful if 
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these external and internal geometries of human skin could be directly imaged. In 

order to characterise skin properties and their effects on skin friction, it is necessary 

to characterise skin’s mechanical properties (i.e. Young’s modulus), structural 

properties and physico-chemical properties. In previous research, it was found that 

the skin friction coefficient varies widely from person to person, and even within the 

same person at different anatomical regions (Cua et al., 1990; Zhang & Mak, 1999; 

Sivamani et al., 2003; Derler et al., 2009; Zhu et al., 2011, Veijen et al., 2012). It is 

believed that investigation of the skin structure may help to explain the wide spread 

of friction data found among test candidates and anatomical regions.  

 

Skin friction is found to not only depend on the skin’s properties and the contact 

materials, but on its contact parameters (e.g. contact area, sliding speed, and sliding 

direction) (Tomlinson et al., 2007; Terekhov & Hayward, 2011). By examining the 

area of contact between human skin and surfaces, it is believed, the understanding of 

the friction mechanisms can be improved. A study of surface area between fingertip 

and surfaces conducted by Terekhov and Hayward (2011), suggested that the total 

contact area could divided into a shrinking, stuck region and a growing, slip region. 

The minimal surface adhesion area is considered to be associated with the dynamic 

friction coefficient. An experimental model has been developed by Bowden & Tabor 

(1964) with aims to explain the relationship between the friction force and the 

contact area. However, measuring the area of contact between the skin and objects 

under a certain load is difficult due to the current limited techniques. A number of 

different techniques have been applied to analyse the contact area, such as an ink 

stamping method (Childs, 2006; Warman & Ennos, 2009; Tomlinson, 2009), optical 

method (Andre´ et al., 2008; Soneda & Nakano, 2010), and electrical resistance 

(Tomlinson, 2009). However, most of those methods described only allow 

measurement of the area of contact statically. In addition, there were also big errors 

occurred in some measurements due to the drawbacks of ink spread, noise effects 

and threshold value setting in later image processing. Thus, exploration of a new 

method for measuring dynamic contact area is desirable. 

 

From previously published literature, it is also noted that the friction of skin is 

sensitive to different environmental conditions, e.g. hydration, temperature, etc. 

(Adam et al., 2007; Tomlinson et al., 2007; Andre´ et al., 2008; Gerhardt et al., 2008; 
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Soneda & Nakano, 2010; Hendriks & Franklin, 2010, Veijen et al., 2012). Three 

possible mechanisms were proposed for the friction increase: water absorption, 

viscous shearing of liquid bridges formed and capillary adhesion (Dinc et al., 1991). 

With respect to the mechanism of water absorption, Tomlinson et al. (2010) attribute 

the changes of skin friction to the changes of skin mechanical parameters (e.g. 

stiffness, Young’s modulus) and some contact parameters (e.g. contact area, sliding 

speed) caused by water being absorbed through the skin. Therefore, investigating the 

changes to the skin structure provides another effective way to study the effects of 

hydration on skin friction.  

 

1.3 Aims and Objectives 

The aim of this study is to gain a further understanding of the frictional properties of 

human finger-pads. The results of the study will contribute to fundamental 

knowledge that is required in those studies related to human-object interactions. For 

example, knowledge of the friction involved an interaction between human fingers 

and objects under different conditions can be fed into product design and 

development for different backgrounds. In addition, this research could be used to 

evaluate skin care or cosmetic products as the Optical Coherence Tomography 

(OCT) allows accurate in-vivo assessment of morphological properties of human 

skin, as well as the internal structure. 

The objectives of the thesis proposal are summarised as: 

 Investigating the influence of mechanical properties of human skin on 

frictional properties of finger-pads. 

 Investigating potential relationships between skin structural parameters and 

skin friction. 

 Measuring both the static and dynamic contact area of finger-pads, and 

determining the relationship between contact area and skin friction. 

 Studying the mechanism of water absorption and its effect on friction of 

human finger-pads. 

 Assessing the in-plane deformation properties of finger-pad skin during 

finger sliding. 
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1.4 Contributions of the Thesis 

The main contributions of this thesis are of following: 

 The relationship between the skin friction coefficient of finger-pads and 

normal loads has been investigated using different techniques. A two-part 

model has been proposed to describe the frictional properties of finger-pads 

skin. 

 Skin friction of human finger-pads is found to be strongly dependent on its 

mechanical properties (i.e. Young’s modulus). 

 An Optical Coherence Tomography system (OCT) approach has been used to 

measure structural properties of finger-pad skin. The effects of skin structural 

properties on the friction of finger-pads have also been investigated, which 

could help to explain the wide spread of skin friction of finger-pads among 

subjects. 

 Different methods have been developed to measure the static and dynamic 

contact areas between finger-pads and contacting surfaces, in particular real 

contact area, including a finger-print ink method, an OCT method, and a 

Digital Image Correlation method (DIC).  The relationship between contact 

area and skin friction has been investigated using both theoretical and 

experimental data. 

 The proposed mechanism of water absorption concerned with skin hydration 

has been studied via investigating the thickness of stratum corneum (SC) of 

finger-pad skin and contact area. 

 In order to study the in-plane deformation properties of finger-pad skin, a 2D 

DIC method has been developed.  

 

1.5 Structure of the Thesis 

The thesis is organised into eight chapters that address the key aspects of this 

research: 

Chapter 2 presents a review of the current knowledge of the tribology of human 

skin, including the basic concepts relating to human skin structure, skin mechanical 
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properties, theoretical background of skin friction, and the influences of skin 

properties, contact materials and contact parameters on skin friction. The later part of 

this section also describes various techniques used for measuring skin friction and 

skin structure in previous studies. 

 

Chapter 3 outlines equipment and testing procedures that have been developed for 

investigating the structure, mechanical, and frictional properties of human finger-pad 

skin at The University of Sheffield and Philips Applied Technologies in the current 

study.  

 

Chapter 4 describes the comparison of different techniques used to measure the 

human skin friction in order to select the most suitable device for the measurement of 

the skin friction coefficient of finger-pads in this research. Experimental studies on 

investigating the relationship between friction coefficient and normal load have also 

been carried out. The frictional properties of human skin are further studied using 

artificial fingers. Finally, it discusses the influence of age, gender and ethnicity on 

skin friction of finger-pads. 

 

Chapter 5 presents work on assessing the physical parameters of finger-pad skin, 

which is expected to help explain the wide spread of friction data among tested 

subjects. The relationship between the superficial serum/sweat of skin on skin 

friction is studied by a tape stripping method. A skin rubbing method is also 

introduced to examine the effect of the stratum corneum thickness on skin friction.  

 

Chapter 6 describes two different techniques used to measure the contact areas 

between finger-pads and contacting surfaces, including a fingerprint ink method and 

an Optical Coherence Tomography method. However, these two methods are 

restricted to static measurements, and cannot be used to investigate the relationship 

between contact area and skin friction. Further studies describe a new Digital Image 

Correlation method (DIC) method to determine dynamic contact area during finger 

sliding.  

 

Chapter 7 investigates the mechanism of water absorption that has been proposed to 

explain the changes on the skin friction related to skin hydration. This study has been 

completed by analysing the morphology and mechanical properties of skin when the 
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tested finger was soaked in water. In addition, the effect of water absorption on the 

contact areas has also been carried out.  

 

Chapter 8 describes a new approach (2D DIC) to study the in-plane deformation of 

finger-pad skin in vivo during finger sliding. The full field maps of the displacement 

and the strain are presented, which is believed to assess the deformation behaviour of 

finger-pad skin with respect to different stages of movements as well as different 

loads.  

 

Chapter 9 describes the details of key findings resulting from this research and 

discusses future work. 
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Chapter 2   

 

 

Literature Review 

 

 

 

 
In this chapter, the current findings and fundamental concepts of skin frictional 

behaviour are presented. It starts with an overview on the anatomy and histology of 

the skin, as well as its mechanical properties for individual layers. Then, a general 

introduction to the theoretical background of skin friction is given, followed by the 

influences of the skin properties and complex interplay of materials on skin friction 

since they are intimately associated with the skin friction. Some other parameters 

such as load, contact area, hydration, lubrication and speed are important for the skin 

friction and are investigated in this chapter, particularly contact area and hydration. 

Finally, various techniques with respect to the skin friction measurement and the 

study of skin structure are discussed. 

 

2.1  Structure of Skin 

Skin is the largest organ in the body and it is also the first line of defence to the 

exterior to protect humans against inhospitable environment and damages. In the 

mean time, it is very important for maintaining the human body in a balanced and 

healthy condition through its principle processes, including absorption, 

thermoregulation, sensation, etc. Skin consists of an approximate area of 1.5    to 2 

   in an adult and 0.2    to 1    in child; most of it is 2 mm to 4 mm thick 

depending on the anatomic location on the body, as well as age, gender and other 

factors. The skin on palm and the soles of feet is relatively thicker than other parts of 

body, while the thinnest skin is found on the eyelid (approximate 0.5 mm) (Wood & 

Bladon, 1985; Jones & Lederman, 2006; Schlangen & Nuijs, 2000). Areas of thick 

skin are “glabrous” (having no hair) and covered with a pattern of ridges. Sometimes 
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termed “friction skin”, it improve the performance involved in physical activities 

(e.g. grasping) (Jones & Lederman, 2006). 

 

Human skin is mainly composed by two distinct layers: the epidermis and the 

dermis, as shown in Figure 2.1. The outside layer is the epidermis, which directly 

contacts with the environment. The epidermis is also divided into five layers, which 

are, in descending order: stratum corneum, stratum lucidum, stratum granulosum, 

stratum spinsum and stratum basale. The stratum corneum consists of dead cells 

without a nucleus that are divided and transferred from the inner stratum basale. In 

the sub-division process of cells in the stratum basale, half new-borne cells move 

towards the surface and begin a maturation process, while the other half new-borne 

cells remain on the basement and continuously divide. Once those new-borne cells 

enter the stratum spinsum layer, they synthesize a kind of protein, keratin. These 

keratins start to lose their nuclear and become dead and dry cells as they migrate 

towards the outmost surface of the skin (Wood & Bladon, 1985; Jones & Lederman, 

2006).  The thickness of the stratum corneum is found to be only 0.06 mm to 0.1 mm 

in most regions of the body. The thickest stratum corneum is found on the palm and 

feet soles which help to give them additional protection since they are involved in 

daily activities more frequently compared with other parts of the body. The stratum 

corneum is also covered by a film of serum that is result of secretion from sebaceous 

glands, water and sweat. This film of serum acts as a barrier to prevent water loss 

and moisten skin.  

 

Beneath the epidermis is the dermis, it consists of papillary and reticular layers, and 

is much thicker than the epidermis (5-7 times higher). The papillary layer is the 

interface between epidermis and dermis. In the skin of palm and feet soles, the 

pattern of ridges in the epidermis is formed based on its dermal papillae structure. 

Additionally, the papillary layer contains a large amount of connective tissues cells, 

and small and loose of collagen and elastin fibres. Compared to the papillary layer, 

the reticular layer contains a high density of collagens, elastin and the extrafibrillar 

matrix, which provides strong support to the skin and gives skin its properties of 

elasticity and extensibility. With aging, the elastins gradually lose elasticity, and in 

this case, skin becomes looser and wrinkles appear. As can be seen in Figure 2.1, 

there are lots of blood vessels, nerves endings and various glands can be found in the 
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dermis, which provide nourishment to the epidermis, and also help remove waste 

generated from the body and regulate the body temperature (Jones & Lederman, 

2006; Schlangen & Nuijs, 2000).   

 

 

Figure 2.1:  Structure of finger skin (Katz, 2005). 

 

2.2  Skin Mechanical Properties 

Unlike normal solids, human skin exists as a heterogeneous, anisotropic and a non-

linear viscoelastic material that is very similar to rubber (Hendriks, 2005; Delalleau 

et al., 2008). The skin’s mechanical properties include both elastic and viscous 

properties and are intimately associated with its complex structure (Payne, 1991). As 

discussed above, each layer of skin is made of various types of tissue, and possesses 

different mechanical properties. For example, in the dermis, collagen and elastin 

fibres form a network that not only supports the structure of skin, but also provides 

its elasticity. Viscous properties of skin are related to delayed recovery from 

deformation which attribute to viscous sliding of fibrous networks. Therefore, the 

mechanical behaviour of the skin is ascribed to the contribution of dermis in most 

research and generally characterised by a non-linear stress-strain relationship. The 

ratio of stress over strain is considered the elasticity of the skin (Young’s modulus). 

This stress-strain relationship can be split into three stages (see Figure 2.2). In stage 

I, the stress-strain follows a linear relationship with a Young’s modulus of 5 kPa, 

which is due to the fact that the elastins in the dermis provide a resistance “buffer” to 
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skin deformation. In the second stage, collagen fibres involved gradually stretch 

instead of elastin fibres, resulting in a non-linear stress relationship for strains greater 

than 0.3. In the third stage, all collagen fibres are stretched, contributing to the stress-

strain behaviour appearing as a straight line again, and the corresponding slope of the 

straight line becomes steeper, thus skin becomes more stiff (Silver et al., 2001; 

Hendriks, 2005; Holzapfel, 2000).  

 

 

Figure 2.2: The stress-strain relationship for normal human skin related to a tension test, 

modified from Holzapfel (2000). 

 

In contrast to the dermis, the epidermis is mainly composed of keratinocytes and is 

relatively thin in most regions of the body. In previous studies, some researchers 

believed that the contribution of the epidermis to the overall mechanical properties of 

skin is so small that it can be neglected (Peter, 1991; Hendriks, 2005), except for the 

palm and the feet soles. However, the epidermis is considered important in 

determining the skin mechanical properties as it is the outmost layer, interfacing with 

the external environment and influencing the skin conditions directly as it is affected 

more by exogenous factors, such as temperature, humidity, cosmetics and etc. A 

number of studies on investigating the effects of humidity and hydration on the 

elasticity of skin have been reported. Richard et al. (1971) found an initial decrease 

in the breaking strength of the stratum corneum as relative humidity rises from 1 to 

100%. The elongation at fracture increased from 20% to 190%, however. A similar 

observation was also found by Wu et al. (2006) and Liang and Boppart (2010). The 

results in their experiments indicated that the Young’s modulus is reduced with 

increasing hydration, which could be attributed to the hydrating process softening the 
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stratum corneum. In addition, Agache et al. (1980) also reported that the Young’s 

modulus varies with respect to age, regions of body and individual.  

 

The measurement of skin mechanical properties has been carried out using various 

methods in-vivo and in-vitro, which can be mainly classified into tensile tests (e.g. 

suction), compression tests (e.g. indentation) and torsion tests (see Table 2.1). The 

tensile test is a method for determining the behaviour of materials under axial tensile 

loading and can be performed on many materials including metals, plastics, rubbers, 

etc. In the studies of skin mechanical properties, most measurement techniques were 

designed based on the tensile deformation test. For example, suction test is 

commonly used to measure elastic and mechanical properties of the upper skin layer 

in-vivo (more details about the techniques are described in Chapter 3). Different from 

the tensile test, the compression test is method for determining the behaviour of 

materials under s compressive load. This test is generally used to measure elastic 

limit, yield strength, compressive strength, etc. Recently, some researchers have used 

this method to measure the elasticity of human skin (Bader & Bowker, 1983). The 

Young’s modulus in a lateral direction was reported to be closely associated with the 

thickness of skin and stiffness in both tensile and compression tests (Park & Baddiel, 

1972; Daly, 1982; Hendriks, 2005; Pailler-Mattei et al., 2008; Delalleau et al., 2008). 

The torsion test can provide global mechanical properties of human skin. For 

example, Escoffier et al. (1989) using a torsion device to investigate the Young’s 

modulus on a participant’s forearm. They found that the Young’s modulus seemed 

not to be influenced by the hypodermis and underlying tissue of skin.  

 

Not much information in connection to skin properties effects on skin friction is 

given in previous studies. The only work that has been done by Pailler-Matteri et al. 

(2007), suggested that the coefficient of friction increases due to skin adhesion force. 

It was also observed that both normal and lateral stiffness of skin were reduced by 

tape stripping, which was in good correlation with evolution of skin adhesion force; 

however, no evidence showed that there is a direct relationship between skin stiffness 

and the skin friction.   
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Table 2.1: In-vivo measurements of the modulus of elasticity for skin. 

Authors Skin region Measurement 

technique 

Young’s Modulus  

(Elasticity) 

Bader & Bowker 

(1983) 

Agache et al. 

(1980) 

 

 

Barel et al. 

(1995) 

 

Diridollou et al. 

(2000) 

Hendriks et al. 

(2005) 

Sanders (1973) 

Grahame (1969) 

Escoffier (1989) 

Alexander & 

Cook (1976) 

 

Forearm/Thigh 

Forearm 

 

Back 

Forearm 

Forehead 

Volar forearm 

 

Forearm 

Doral side forearm 

Forearm 

Forearm, anterior part 

Forearm, upper back 

Forearm, anterior part 

Indenter (20 mm) 

Torsion (25 mm) 

 

Suction (2 mm)  

 

Suction (6 mm) 

Suction (6 mm) 

Torsion (8.7 mm) 

Suction 

Torsion 

Suction 

     11.1-2.0 kPa (whole              

     skin)      

0.42 MPa (young skin) 

0.85 MPa (aged skin) 

 

               2.1 MPa (stratum – 

     corneum) 

0.13-0.17 MPa 

0.20-0.32 MPa 

0.153 MPa 

2.1 x 10
9 
Pa (dermis) 

0.02-0.1 MPa 

     18-57 MPa 

1.1-1.32 MPa 

     270-350 Pa 

     270-800 Pa 

 

 

2.3  Theoretical Background of Skin Friction  

The frictional behaviour of skin is complex and involves different interactions 

between skin and substrates, which can be interpreted using the friction behaviour of 

rubber since skin shows similar viscoelastic properties as rubber. Those physical 

reactions are the results of many different mechanisms, such as interfacial shear, 

adhesion, capillary action and viscoelastic hysteresis (Derler et al., 2009; Tomlinson, 

2009). A simple model (Amonton’s law) cannot provide an accurate description for 

the skin friction. In dry sliding contacts, the skin friction is generally modelled as 

viscoelastic deformation forces of microscopical asperities in contact, (see Figure 

2.3). Skin friction can be described to follow a classical two-term model; it is given 

by (Bowden & Tabor, 1954):  

                                                                                                                  (2.1) 
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where     is the adhesion force of the interface,     is related to the incomplete 

recovery of the energy dissipated by skin deformation. 

 

 

Figure 2.3: Principle components of elastomeric friction, modified from (Moore, 1971). 

 

However, the friction of skin is assumed to be only associated with an adhesion 

mechanism, for dry and smooth surfaces, while the deformation is normally ignored 

(Wolfram, 1983; Johnson et al., 1993; Adams et al., 2007). Therefore, the friction 

force is expected to follow a linear relationship (Johnson, 1993; Han et al., 1996): 

                                                                                                                 (2.2) 

where   is the interfacial shear stress and     is the real contact area. The adhesion 

force is determined by two factors: a) surface energetic of the counterfaces, i.e. the 

molecular nature of adhesive bonds-Van der Waals forces, electrostatics, hydrogen, 

hydrophobic, etc. and b) the area of contact over which such adhesive bonds are 

formed (Tomlinson, 2009; Mossel & Roosen, 1994; Tang et al., 2008). According to 

Herzian theory, the contact area is proportional to the 2/3 power of the load, in the 

case of a hemispherical probe sliding on deformable materials such as rubber or skin 

(Johnson, 1993; Adams et al., 2007).  

    
   

   
                                                                                                             (2.3) 
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where   is the radius of sphere,   is the applied normal load and    the reduced 

Young’s modulus and given by the following expression:  

   
       

 

     
 

      
 

    
 
  

                                                                                        (2.4)                       

where       and      are the Poisson Ratios with respect to skin and a contacting 

substance,       and     are Young’s modulus for skin and a contacting substance, 

respectively. In general, the reduced elastic modulus depends on the properties of 

skin due to             and expressed as                 
 , thus the contact 

area can be written as: 

    
   

                
  

                                                                                          (2.5)                         

Combining the Equation (2.2), the friction coefficient can be expressed as: 

  
    

 
    

  

                
  

               
                                            (2.6)     

                            

In the case of dry sliding friction on a surface with high roughness, skin friction is 

reported to depend on the adhesion mechanism and hysteresis. In contrast with 

smooth surfaces, the influence of hysteresis in the friction significantly increases, 

resulting from the deformation of skin due to the surface asperities sliding over the 

skin surface (Derler et al., 2009).  The deformation force can be expressed as 

(Greenwood & Tabor, 1958), 

    
   

   
                                                                                                                (2.7)                                             

where   the radius of the circle of contact under a load of N and equal to 

 
   

 

       
 

     
    . In moving forward a unit distance (D=1), the elastic work (W) done 

in horizontal direction is:  

       
  

   
  

   

 

       
 

     
                                                                              (2.8)                                                 

The work lost per unit distance of sliding is   , thus the friction coefficient due to 

deformation can be expressed as: 

     
  

 
  

  

   
  
       

 

     
              

                                                       (2.9)                                                
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In a recent study, Tomlinson et al., (2011) has conducted experimental work on skin 

friction for human finger in contact with fine rough surfaces. They concluded that the 

skin friction force can be analysed in terms of an adhesion force (   ), a hysteresis 

mechanism (   ) and an interlocking mechanism (    ), and can be expressed as: 

                                                                                                        (2.10)     

 

Figure 2.4: Human finger skin in contact with a single ridge.   is the applied normal load,   

is the angle of the ridge, p is the pressure along the contact area,   is the length of the contact 

area and N’ is the resultant force due to the pressure of human skin against the ridge 

(Tomlinson et al., 2011). 

 

The hysteresis friction is considered to be associated with hysteresis effects and 

ploughing of the finger skin by the contacting surface asperities in the case of a 

finger contacting a triangular ridged surface. As can be seen in Figure 2.4, the normal 

force is applied to the whole ridge; however, the skin is only displaced by the leading 

edge, therefore the deformation force is only along this side of the ridge. The 

deformation force can be calculated based on the numerical model derived by 

Greenwood and Tabor (1958), and the equation is given by the following form: 

      
 

 
                                                                                                        (2.11) 

This model only works for the finger in contact with a single ridge, however, it 

cannot be used to fully describe the deformation force since the adjacent ridges 

restrict the finger from fully deforming.  By considering this, Tomlinson et al. (2011) 

derived a new model for the case of the finger in contact with mutli-ridges (see figure 

2.5). The model is expressed as: 
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                                                  (2.12)                      

where   is the viscoelastic hysteresis loss fraction,   is the number of ridges,   is the 

distance between each ridge,         is the height of ridge and      is the normal 

load at which the deformation reaches a maximum. However, the above models are 

restricted to micro-scale deformation of skin (ridges height smaller than 42.5 µm).  

 

 
Figure 2.5: Schematic of circular representation of a finger deformation on a ridge. r is the 

radius of the circle without adjacent ridge and r
’ 
is the radius of circle with adjacent ridge 

(Tomlinson et al., 2011). 

 

 

The interlocking mechanism refers to skin surface ridges moving over contacting 

surface asperities. Adams (1991) indicated that friction coefficient involves 

Coulmbic interlocking in the case that one spherical particle climbing over another 

spherical particle. The friction force was found to be equal to the tangent of the angle 

between the normal force and the vertical. This can be applied for the finger ridges 

‘climbing’ over a ridge with the same result. Therefore, the mechanism of the 

interlocking friction can be described as: 

                                                                                                                (2.13) 

 

There is another mechanism that is involved in skin friction when skin is saturated by 

water and excess water accumulates in the surface, is termed hydrodynamic 

lubrication. As shown in Figure 2.6, the hydrodynamic effect arises from the 

complete separation of the sliding surfaces by a liquid film, could replace the 

adhesion component of friction due to the viscous friction. An expression for the 
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friction coefficient with respect to hydrodynamic lubrication has been derived by 

Dowson (1997): 

           
 

 
     

     
 

 
                                                                     (2.14)                                              

where   is the normal load,   the viscosity of the fluid,   the sliding velocity,    the 

apparent contact area and    the contact pressure.  

 

 

Figure 2.6:  Liquid bridges formed at the interface between finger ridges and a flat surface, 

redrawn from (Dinc et al., 1991; Tomlinson et al., 2010). 

 

2.4  Influence of Skin Properties on Skin Friction                                              

2.4.1 Skin Roughness 

As observed by naked eyes, the cutaneous surface is not smooth, but covered with 

hairy, sebum and series net-work of grooves.  These patterns of ridges vary widely 

over the body. It is known as the “fingerprint” on hand fingers and feet soles and 

exhibits concentric ridges. On the dorsum (back) of the hand and forearm the skin 

surface in a grid-net pattern in that furrows intersect to enclose triangular and 

quadrilateral plateaus (Sarkany & Caron, 1965; Derler & Gerhardt, 2011).  

 

In most studies, the skin surface topography was quantitatively recorded using 

profilometry methods and generally expressed as a mean roughness value of Ra. 

There are great variations in the mean value of roughness Ra according to anatomic 

regions of body and among different individuals, as shown in Table 2.2. By 

analysing those parameters in experiments, the roughness value was reported as high 

as 44 µm on the back of hand, while the forearm seems to be relatively smooth with a 

small value. In addition, Li et al. (2006) and Jacobi et al. (2004) found initially 

increases in the skin roughness of forearm and hand back with increased age.  
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So far, the study of skin texture has been widely investigated in the fields of 

cosmetics, medical diagnosis, and so on. For example, in cosmetics, characterising 

the skin surface texture is desirable for evaluating and improving the designed 

products. It seems little work has been done on the skin tribology correlation to skin 

roughness. Although many researchers found that the coefficient of friction varies 

with anatomic locations of body and is smaller for the forearm skin of an older 

person compared with that of the young (Zhang & Mak, 1999; Cua et al., 1990; 

Elsner et al., 1990; Asserin et al., 2000), none of them reveals this is due to the effect 

of the skin roughness, except Nakajima and Naraska (1993). They reported that the 

number of “domains” (i.e. areas enclosed by lines) has a big impact on the skin 

friction, particularly static friction. As the number of “domains” decreases, the static 

friction coefficient increases.  

 

Table 2.2: Summary of skin roughness value-Ra for various anatomic locations of human 

body. 

Author   Age       Skin Region                         Measurement  

Technique 

Roughness 

Value (µm) 

Rohr&Schrader (1998) 

Rosén et al. (2005) 

                  Forearm 

      43        Forearm 

     DermaTop 

     GFM PRIMOS  

  14.5 

  17 

Hof & Hopermann (2000)                   Forearm      GFM PRIMOS    10.9 

                   Hand Back  

                  Cheek 

   27.3 

Friedman et al. (2002)      GFM PRIMOS   

     GFM PRIMOS  

 

 

 

      Perthometer M1  

 

      DermaTop 

                                                                                 

      Dermsurf Image  

      System 

  24.8 

  42.3 

   30.8 

   33.3 

   37.5 

   18.9~32.7 

8.6~22.4 

 12-14 

  12-15             

16.92±3.37                      

23.24±4.22                    

20.01±6.22                  

27.98±10.47                   

21.99±8.51                  

32.85±13.71                   

21.76±4.99                  

34.91±10.93                  

28.50±6.78                   

43.93±14.91 

Jacobi et al. (2004)                               

 

 

 

Derler et al. (2009)                                       

 

Lagarde et al. (2005) 

 

Li et al. (2006) 

 

 

 

 

 

 

 

 

25±2.5    Back 

   27           Forearm                          

41±2.7    Forearm 

65            Forearm 

 23-45      Index finger                                

                  Edge of hand 

25-65     Forearm 

               Temple                                                                                                

20-29      Forearm 

                Hand back 

30-39      Forearm 

                Hand back 

40-49      Forearm 

                Hand back 

50-59      Forearm 

                Hand back 

60-74      Forearm 

                Hand back 
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2.4.2 Skin Hydration  

The water content of human body takes 70% of total weight; there is abundant water 

in human skin that is stored in the epidermis, dermis and underlying tissues.  It is 

fundamental to allow skin cells to work properly and maintain skin in a health 

condition. Adequate water gives you soft and smooth skin. The normal water content 

in healthy skin shows a high proportion in the dermis (around 70%), reducing to only 

10% ~15% in the stratum corneum. As mentioned earlier, the stratum corneum layer 

plays a critical role in preventing excessive water loss through skin. The capability of 

water-holding relates to the unique intercellular lipids in the startum corneum that 

form a barrier to transepidermal water loss (TEWL),  as well as other various 

compounds called the “natural moisturizing factor” (NMF), is skin's own self-

moisturizing tool to help retain moisture level in the skin by attracting and retaining 

water. However, when the surface lipid or the level of NMF are reduced, the water 

content in the stratum corneum will decline resulting in skin becoming dry, scaling, 

rough and flaky (Verdier & Bonté, 2007; Fluhr et al., 2004 ). Since sweat is one of 

the main components of the surface film that helps maintain dampness (Wood & 

Bladon, 1985), studying the number of sweat glands may be a very useful way for 

investigation of the hydration of skin. The number of sweat glands in a finger tip was 

evaluated by Juniper et al. (1964). During the experiment, a finger was firstly stained 

by a solution of 3% iodine and 95% alcohol, second, a 1:1 starch-castor oil paste was 

massaged into the stain area when the iodine had dried, and fingertip was finally put 

under a 40-power pocket microscope with viewing field of 10     to count the 

number of sweat glands. The results showed that the number of sweat glands ranging 

from 20 to 40 per 10 mm
2
. There were significant changes in the number of sweat 

glands in both females and males with increasing age. Sweat glands, were found to 

have a trend of reducing in older age group people.  In later studies, Dinc et al. 

(1991) used a high speed scanning optical coherence tomography (OCT) to help 

count the number of sweat glands. In the OCT images, dynamics of sweat ducts were 

captured and observed clearly as a bright thick broken line. It was found that the 

density of sweat glands was around 150 to 350 per square centimetre, the sweat 

glands had a diameter of approximately 5-20 µm (Nohara et al., 2005). 

 

There are different biophysical techniques that can be used to measure skin 

hydration, which can be divided into two types according to the principle: 



Chapter 2                                                                                            Literature Review 

22 

 

capacitance and conductance (André et al., 2008). Currently, devices available to 

measure the water content of the stratum corneum based on the measurement of 

electrical capacitance of the skin surface, include Corneometers, the Skicon, the 

MoistureMeter, and the Nova DPM 9003 (Cua et al., 1990; Tomlinson, 2009; 

Verdier & Bonté, 2007).  The water content data is provided in arbitrary units (AU), 

ranging 0 to 120 AU for a “corneometer” and 0 to 100 AU for the “moisturemeter”, 

respectively.  

 

In addition to the above method, the measurement of skin hydration also can be 

achieved by monitoring the transepidermal water loss (TEWL) that is directly related 

to its barrier function. Under normal conditions, the rate of evaporation is very slow 

(approximate 3~5 g/hm
2 

in forearm and back) (Cua et al., 1990). Treffel et al. (1994) 

have examined the skin hydration and TEWL in dominant and non-dominant 

forearms using an “evaporimeter” in their studies. They found that both skin 

hydration and TEWL show comparatively high values in a dominant forearm, which 

could be attributed to the larger muscle bulk and the increased metabolism of the 

dominant forearm. However, no work correlating to skin friction has been reported 

here. Lodén et al. (1992) pointed that there is a significant relationship between skin 

hydration and friction in normal skin. No correlation was found however, between 

TEWL and friction. The same conclusion was drawn by Cua et al. (1990) who 

suggested that skin friction strongly depends on skin hydration in most regions of 

body. The contribution of TEWL to skin friction was observed only in the palm and 

thigh. Moreover, those skin characteristics are known to be affected by endogenous 

and environmental factors, including aging, exposure to sunlight, chemicals, and 

mechanical damage; related work will be discussed in following sections. 

 

2.4.3 Anatomic Region, Age, Gender and Ethnicity 

There has been a large amount of work carried out on skin friction; however the 

different studies involve different subject groups and different test areas. With 

respect to anatomic site, the friction coefficient shows a huge variety, ranging from 

0.12 on the abdomen to 1.4 on the finger pad or palm (Cua et al., 1990; Zhang & 

Mak, 1999; Derler et al., 2009; Hendriks & Franklin, 2010; Zhu et al., 2011; Veijgen 

et al., 2012). Ramalho et al., (2007) investigated the friction coefficient on the palm 
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and forearm and found that the palm had a higher value (1.2) than that of forearm 

(0.15~1). They assumed that the difference was related to skin thickness. In later 

studies, Zhang and Mak (1999) reasoned it was due to the fact that the palm is rarely 

sweat free, but the forearm is. Some authors reported that the friction coefficient is 

also dependent on the water content of skin and TEWL. For example, Cua et al. 

(1990) investigated skin frictional properties with respect to age, sex and anatomical 

regions using a frictionmeter. They observed that some regions (e.g. lower back, 

dorsal forearm) with higher capacitance, have lower friction coefficients. There was 

a correlation between the friction coefficient and TEWL found on the palm and 

thigh. They also found that the friction coefficient is independent of age at most of 

the anatomical regions. In the studies of Cole et al. (1999), who developed a grasping 

and lifting rig to exam the friction force on human finger-pads, it was indicated that 

the friction coefficient decreases with age. Recently, Zhu et al., (2011) conducted 

age-related tests in a large Chinese population using a Frictionmeter and a 

Corneometer. Their experimental results show that the skin friction coefficient on the 

dorsal hand skin gradually increases with age, up to 40 year old. Unfortunately no 

related details were given to explain the differences observed. With respect to 

gender, Cua et al. (1990) reported that the friction coefficient does not show 

significant difference between female and male. Similar conclusion was drawn by 

Zhu et al. (2011), who assessed the friction coefficient of skin on various anatomical 

regions. However, Veijgen et al. (2012) observed some significant differences on the 

dynamic friction coefficient at index finger-pads and dorsum of hands between men 

and women. Zhu et al. (2011) attributed the difference to the differences in skin 

hydration. The results of their studies show that there was no significant difference in 

friction coefficient on the forehead, however, on the canthus and the dorsal hand 

skin, the friction coefficients were showed to vary with gender. Sivamani et al. 

(2003) found no difference in the friction coefficient with regard to ethnicity.  

 

2.5  Effect of Interface Materials on Skin Friction 

In daily life human skin is in constant contact with various materials (e.g. textiles, 

rubber, metals), a good understanding the effect of materials on skin friction is 

generally believed to have potential benefits to the performance of conducting tasks, 

but also the prevention of pain and discomfort.  For instance, a good understanding 
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of the mechanism between skin and various materials could help avoid the chance of 

getting blisters on the foot (Derler et al., 2009).  Much of current knowledge focuses 

on characterising the effect of contact materials on the friction of skin since it is one 

of the important design parameters that has to be considered (Hendriks & Franklin, 

2010, Kuilenburg et al., 2012). Numerous materials have been tested in previous 

studies, and it has been found that the coefficient of friction widely varies with 

materials.  

 

In addition, it is generally agreed that the surface roughness of contacting materials is 

the other important factor affecting the skin friction. One study related to this was 

carried out by Derler et al. (2007, 2009), who assessed the friction coefficient 

between a finger and various textures. The results of those experiments showed that 

the smooth surfaces (Ra = 0.006~0.05 µm) have higher friction coefficients than 

those of rough surfaces (Ra = 11.94~45 µm) under dry conditions. A similar 

conclusion was drawn by Hendriks and Franklin (2010), they found that the friction 

coefficients of arm and cheek reduce with roughness following a power-law linear 

relation under both dry and humid condition. The average value of exponent n was 

equal to -0.4. They also reported that the amplitude of surface roughness has a 

significant impact on the friction coefficient, especially for surfaces with low Ra 

roughness values (i.e. <1 µm). In the studies of Van Kuilenburg et al. (2012), they 

indicated that the frictional behaviour of micro-scale textures is determined by the 

surface properties of human skin. However, in the case of very rough surfaces, some 

authors observed an increasing trend of friction coefficient with increasing material 

roughness (Cole et al., 1999; Tomlinson et al., 2009). For example, Tomlinson et al. 

(2009) found that as the roughness increases the friction coefficient increases when a 

finger was sliding against steel, up to a point (Ra= 26 µm). After that the friction 

coefficient researches a plateau.  Tomlinson et al. (2009) have carried out a further 

study with respect to fine ridges and large rectangular ridges, respectively. On the 

surface with fine ridges, the main contributor to friction is the interlocking friction at 

heights greater than 42.5 µm, and hysteresis for ridges with height over 250 µm. In 

the case of large rectangular ridges, the increase of friction coefficient was attributed 

to the deformation of skin reducing with narrow ridges, leading the contribution of 

adhesion increasing.  
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2.6 Effect of Contact Conditions on Skin Friction 

2.6.1 Load 

According to Amontons’ law of friction, the ratio of friction force to normal force is 

known as “friction coefficient”, which was assumed to remain constant regardless of 

the applied normal load (Sivamani & Goodman, 2003). In most recent studies, it was 

concluded that the Amontons’ law could not hold for human skin friction, as a result 

of human skin being a soft tissue. The friction behaviour of skin cannot be fully 

described by a simple linear model. From experiments performed by Comaish & 

Bottoms (1971) and Han et al. (1996) with various materials sliding against dorsum 

of a hand and abdominal skin using a simple linear rubbing technique, the static 

friction coefficient of skin was shown to decrease initially as the load increased and 

reach a plateau once the load was over a particular value (approximately 3 N). They 

reasoned that the decrease in friction coefficient was due to the viscoelastic 

properties of the skin allowing for a nonlinear deformation of the skin with increased 

normal load. A relatively complex model has been developed to express the 

relationship between the friction coefficient and loads:      , where   is the 

friction coefficient, N is the load and n is the exponent of load (a positive constant 

and less than 1). A suggested value of n for the skin is around 0.3 (Comaish & 

Bottoms, 1971; Asserin et al., 2000; Sivamani & Goodman, 2003).  However, Tang 

et al. (2008) observed that increasing the load increased the friction coefficient when 

a polypropylene ball is sliding along the forearm. This could be due to the difference 

in testing materials, which was supported by Tomlinson (2009) in later studies, who 

investigated the friction coefficient for several materials under various load and 

found that all of materials show a decreasing trend with load, except polyprolene. 

 

Tomlinson et al. (2009) have assessed the relationship of friction force to normal 

force with a finger sliding over different materials for both low load and high load 

conditions. For low load test (in the range of 0 to 10 N), a two part linear 

relationships was observed (see Figure 2.7).  All data points between 0 N and 2 N 

seemed to show a linear relationship between friction force and normal force. Past 

the 2 N point there was still a linear relationship, but with a smaller gradient 

compared to that of the first line. A similar finding was also reported by Ramalho et 

al. (2007), who investigated the skin frictional behaviour at various anatomical sites 
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of body. They found a double stage Amontons-Coulomb linear model at the tested 

forearm.  

 

 

Figure 2.7: Two-part relationship between normal load and friction force (Tomlinson et al.,  

2009). 

 

 

2.6.2 Contact Area 

As stated earlier, the friction force of skin is dominated by the adhesion force for 

smooth surfaces at high load; the adhesion is found to be proportional to the real 

contact area. Therefore, examining the area of contact could provide a better 

understanding of the friction mechanism, and therefore how friction varies with load.   

According to Herzian theory, in the elastic phase, the contact area is proportional to 

the 2/3 power of the load, in the case of a hemispherical probe sliding on deformable 

materials such as rubber or skin. The equation is given by the expression:  

  
   

   
     , where   is the radius of sphere,   is the applied load and    is the 

reduced Young’s modulus (Johnson, 1985; Adams et al., 2007). This model was 

accepted in most applications of skin friction using the probe method. However, this 

does not apply to the case of a finger sliding, because human fingers do not 

experience smooth spherical contact. In later studies, Han et al. (1996) indicated that 

the contact areas of human fingers were proportional to the normal force to the 

power of  . The equation is expressed as:      , in which   and b are constants. 

The value of    was found to be in the range of 0.2 to 0.4 in their studies. Therefore 

the contact area would increase with normal load. In similar studies, Soneda and 

Nakano (2010) found that the value of    for apparent contact area was 0.54 and real 
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contact area was 0.66. However, someone argued that the normal load was not the 

key influencing factor on contact area as the contact area is also affected significantly 

by lots of parameters, such as the skin properties, size of contacting objects, 

environments conditions, etc. For instant, Warman and Ennos (2009) have conducted 

an experiment, where a finger was sliding along a perspex sheet attached on a force 

gauge; the results showed that the contact area of the finger pad was reduced by a 

power of 1/3 compare with flat skin. They also investigated the contact areas for 

fingers interacted with different sizes of objects. It was found that the larger size of 

object had a bigger contact area, which led to a higher friction force and hence the 

friction coefficient. 

 

 
(a)                                                   (b) 

Figure 2.8:  (a) Finger pattern of a human finger in, (b) fingerprint created by finger ridge 

structure. 

 

Measuring the contact area between the skin and objects is hard, especially the real 

contact area, though many researchers have been investigating it for years. A number 

of different techniques have been applied to analyse the contact area, such as an ink 

stamping method (Childs, 2006; Warman and Ennos, 2009; Tomlinson, 2009), 

optical methods (André et al., 2008; Tomlinson, 2009; Soneda & Nakano, 2010), 

electrical resistance (Tomlinson, 2009), etc. Ink stamping and optical methods were 

associated with the morphology of skin. For example, the portion of ridge on the skin 

surface showed as black regions when a finger was applied with ink and was 

stamped on a white paper (see Figure 2.8). Those white areas among black ink were 

assumed to be non-contact areas. Therefore the real area could be calculated by 

counting number of pixels. Tests were carried on the same finger under constant 

load; a high-speed video was also introduced in the testing for providing estimation 
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of nominal contact areas. Tomlinson (2009) found the percentage of ridges takes up 

approximately 50% of the total area of finger print. In Childs’ (2006) work, when a 

1.77 N load was applied on a finger, the contact area (apparent contact) was 11.50 

mm
2
; the percentage of real contact was 34%. However, Soneda and Nakano (2010) 

found that, in similar tests, the apparent contact area and real contact area were 

99.4±14.8 mm
2
 and 29.9 ± 7.0 mm

2
, at the load applied was over 1 N, respectively. In 

this case, the percentage of real contact area accounted approximately 30% of 

apparent contact area. However, most of above methods described only allow static 

measurements. There are big errors in the measurements due to the drawbacks of ink 

spread, noise effects and threshold value setting in later image processing. Thus, 

exploring a new method is desired. 

 

 

2.6.3 Hydration/Lubrication 

Skin is hard to maintain in a “dry” condition. The state of the hand is easily changed 

with environmental factors. As well as perspiration secreted by sweat glands and 

external moisture, food and some cosmetics also influence the degree of hydration of 

the skin.  So, in some research, hydration was considered as one of the most 

important areas in skin friction studies.  

 

In general, dry skin has a lower coefficient of friction than that with hydration 

(Comaish & Bottoms, 1971; Yoshimune et al., 2009; Veijen et al., 2012). In these 

papers, a linear correlation between skin moisture and friction was reported. On the 

other hand, some authors observed a “bell curve” response in the friction coefficient 

when water was added to a dry contact, where the skin friction increased, up until a 

certain level of moisture and then decreased (Adams et al., 2007; Andre´ et al., 2009; 

Nonomura et al., 2009). For example, Adams et al. (2007) examined the friction of a 

hemi-spherical glass probe contacting the forearm; water was added to the forearm 

during the test. The coefficient of dynamic friction has a continuous increase as 

water is added at the beginning of a probe test, after it reaches a peak at 240 seconds, 

the coefficient of friction decreases as excess water is removed, (see Figure 2.9).  

 

Three possible mechanisms were proposed for causing the friction increase: water 

absorption, viscous shearing of liquid bridges formed and capillary adhesion (Dinc et 
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al., 1991). With respect to the mechanism of water absorption, the contact area 

increases with hydration hence the friction coefficient (Adams et al., 2007; Gerhardt 

et al., 2008). The increase in viscous shearing of liquid bridges formed between the 

ridges on the finger surface and counterface could contribute to the increase in 

friction (Dinc et al., 1991). Capillary adhesion is the result of the surface is pulling 

together leading to a higher contact area (Persson, 2008; Deleau et al., 2009). Many 

experiments have been carried out with respect to each mechanism, individually. In 

particular, Tomlinson et al., (2010) have designed various tests to investigate the 

relative contribution of each mechanism on the skin friction in moist condition. After 

being fully examined, the water absorption was believed to be the major cause of the 

friction coefficient increase, followed by capillary adhesion. The viscous shear was 

found unlikely to affect friction.  

 

Adams et al., (2007) and Gerhardt et al. (2008) found that the increase in the 

coefficient of friction resulted from the increase of real area of contact coupled with 

the effect of water plasticisation of the stratum corneum. Persson et al. (2008) 

suggested that the effect of capillary action is highly dependent upon the Young’s 

modulus of the contacting zone. Values of the Young’s modulus of the stratum 

corneum vary greatly, depending on the water content of the stratum corneum. On 

the basis of these findings, it can be concluded that friction coefficient is a function 

of skin mechanical properties. As part of work done by Hendriks et al. (2004) on the 

influence of hydration on mechanical properties of skin in-vivo, it was found that the 

skin mechanical properties vary with subjects. In three of thirteen subjects, the 

stiffness of the skin became less with hydration. An opposite phenomenon was found 

in other eight subjects, which shows an increase in the stiffness of the skin.  Norlen 

et al. (1997) found that the area dimension of non-extracted stratum corneum is 8.4% 

±1.4% bigger than its original size after incubation by distilled water for 90 minutes, 

as well as the thickness dimensions, the stratum corneum increased to 17.2 ± 3.6 µm 

from 13.6 ± 3.5 µm. 

 



Chapter 2                                                                                            Literature Review 

30 

 

 

Figure 2.9: The dynamic coefficients of friction of skin for PP probe measured during 

hydration and drying (Adams et al., 2007). 

 

2.6.4 Speed 

Up to now, little work has been carried out on the influence of sliding speed on 

friction, Zhang and Mak (1999) found that the coefficient of friction had a slight 

change (7 ± 2%) as the rotation speed of a probe increased from 25 rpm to 62.5 rpm. 

Similar work by Tang et al. (2008), as shown in Figure 2.10, who observed an 

increase with rising sliding speed. The coefficient of friction rose up to 0.52 when 

increasing the sliding speed from 0.5 mm/s to 4 mm/s. They reasoned that when a 

probe slid on the skin, a phenomenon of “stick-slip” occurred between the skin and 

probe.  In this case, the skin acted as an elastic material and was deformed into a 

stack as the probe contacted the skin, which would stand in the path way of a probe 

and held back the probe (as friction force). When the probe rotated at a fast speed, 

the deformed skin was not able to recover immediately, so more hysteresis energy 

was lost, for that the increasing hysteresis friction led to a higher coefficient of 

friction. In the case of a low speed sliding, skin had enough time to recover, little 

hysteresis friction was lost during sliding, therefore the friction force was smaller 

than with high speed (Zhang & Mak, 1999; Tang et al., 2008). 
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Figure 2.10: The coefficient of friction measured under various speeds (Tang et al., 

2008). 

 

2.7  Techniques for Measuring Skin Friction  

The measurement of friction force has been carried out in many studies, and different 

machines have been specifically designed to measure skin friction. Those 

instruments are mainly classified into the probe method and the plate method. The 

basis of the probe method is the use of a spherical probe sliding on the surface of 

skin, e.g. the Tabor-Eldredge tribometer (Eldredge & Tabor, 1995; Sivamani & 

Goodman, 2003), as shown in Figure 2.11 (a). The design enables the probe to 

slide/roll at a constant speed with a constant contact load, which is of benefit to the 

accurate repeatability of testing. The probe method can also be grouped into two 

classes: 1) sliding type, 2) rolling type. In past studies, the probe method was widely 

used in measurement of dynamic skin friction in the forearm rather than the hand. 

The first design introduces a probe attached to a fixed weight sliding over the skin; 

therefore the dynamic skin friction is recorded. The rolling type has dominated in 

recent skin friction studies; the measurement apparatus of rolling type is similar as 

that of sliding type (see Figure 2.11 (b)). It relies on the torsion spring or light 

techniques to calculate the skin friction. These probe methods can be performed in 

various regions of the body. However, the disadvantage of those methods is that they 

are simulation tests, and are not representative of that which would be seen in real 

life. 

 

Unlike the probe method, the plate method is specific for measuring the finger 

friction.  A typical example is shown in Figure 2.11 (c). This device consists of two 
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load cells, one of them was placed at the front of the rig used to capture the lateral 

force, and the other one was placed under the flat plate for measuring the normal 

load when a finger runs along a surface (Eldredge & Tabor, 1995; Sivamani & 

Goodman, 2003; Tomlinson et al., 2007). The advantage of the plate method is that it 

can investigate the frictional behaviour of skin with various materials by using the 

actual move of the finger. However, this technique brings difficulties in controlling 

the load and speed applied since human controlled. Table 2.3 shows a summary of 

some of the tests carried out using different techniques. The coefficient of friction 

can be seen to vary substantially, but this is thought to be mainly due to the 

differences on test materials, methods (e.g. load applied, speed) as well as different 

fingers used. 

 

      

           (a)                                                                   (b) 

 

   (c) 
Figure 2.11: Skin friction measuring instruments: (a) Tabor-Eldredge tribometer run testing 

via probe sliding over skin, (b) UMT probe, provide translational, rotational and 

reciprocating motion for measuring important parameters of skin, (c) Finger friction rig for 

measuring finger skin friction, where finger moves along the plate (Eldredge & Tabor, 1995; 

Sivamani & Goodman, 2003; Tomlinson et al., 2007). 
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Table 2.3: Outline of in-vivo skin friction coefficient µ. 

Authors                           Measuring 

Region        

    Test 

Materials 

Load       

(N) 

Test Method Friction 

Coefficient  

Sivamani et al. 

(2003) 

Asserin et al. 

(2000) 

Spurr (1976)                                                

Naylor (1955) 

Highley (1977) 

Adams et al. 

(2007) 

Koudine & 

Barquin (2000) 

Cua et al. (1990) 

 

 

 

Comaish et al. 

(1971)   

 

Prall (1973)      

Elsner et al. 

(1990)   

 

Tomlinson et al. 

(2007)    

Bobjer et al. 

(1993) 

Gee et al. (2005) 

Han et al. (1996)  

Veijgen et al. 

(2012)         

Finger 

 

Volar forearm 

 

Fingertip 

Tibia 

Volar forearm 

Inner forearm 

 

Dorsal forearm 

Volar forearm 

Forehead 

Volar forearm 

Palm 

Abdomen 

Upper back 

Dorsum of 

hand 

 

 

Vulvar 

Forearm 

Finger 

 

Finger 

 

Finger 

Finger 

Forearm 

Steel 

 

Ruby 

 

PE 

PA 

 

Glass/PP 

 

 

 

 

Teflon 

 

 

 

 

 

 

Teflon 

 

Glass/Steel 

 

Polycarbonate 

 

Rubber 

Acrylic 

Stainless steel 

0.2 

 

0-0.3 

 

 

5.1 

0.28 

 

 

 

 

 

 

1.96 

 

 

 

 

 

 

 

 

1.96 

 

 

15-20 

 

1-20 

 

11 

0.5-6 

0.5-2  

UMT probe  

rolling 

Spherical 

indentor 

Finger moving 

Probe sliding 

Wheel rotating 

Probe sliding 

 

 Plate moving 

 

 

Probe rotating 

 

 

Linear moving 

 

 

 

Disc rotating 

Disc rotating 

 

Finger moving 

 

Moving belt 

 

Finger moving 

Plate moving 

Cylinder 

rotating 

0.33-0.55 

 

0.7 

 

0.42-0.55 

0.5-0.6 

0.19-0.28 

0.27-0.36 

 

0.24 

0.64 

0.34 

0.26 

0.21 

0.12 

0.25 

 

0.25-0.55 

(static) 

0.2-0.48  

0.4 

0.66 

0.48 

 

0.97-1.1 

 

0.7-1.4 

 

0.6-1.75 

0.4-1.5 

0.53-1.78 

 

 

2.8 Techniques for Measuring Skin Structure Parameters in-vivo  

To gain insight to the internal structure of skin without biological biopsies, various 

non-invasive in-vivo skin image techniques have been developed and these include 

ultrasound, confocal microscopy, Magnetic Resonance Imaging (MRI), Optical 

Coherence Tomography (OCT), etc. These techniques are widely used in medical 

fields for examining eye health and diagnosing skin disease as they allow the 
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clinicians to visualize the structure and properties of skin through simple naked eye 

examination. Ultrasound can be used to image skin and measure the thickness of 

human body (up to 10 cm), however the resolution is too low for imaging the fine 

structure of skin. Confocal microscopy provides relative high resolution that enable 

to visualize details of skin structure at a cellular level. Unfortunately, it is limited to 

image only 0.35 mm depth of skin. The images made are parallel to the skin surface. 

Both MRI and OCT can produce high resolution images of the vertical section of the 

skin in short time.  By considering the portability of the device, OCT system is 

commonly applied to investigate the properties of skin combined with other 

instruments (Hendriks, 2005; Wu, 2005). 

 

 

Figure 2.12: A modified set-up of OCT system. 

 

Optical Coherence Tomography (OCT) has been developed as a non-invasive 

technique for investigating human skin by producing cross-section images of tissue 

(Huang et al., 1991), a typical example shown in Figure 2.12 (Fercher et al., 2003). 

This technique is widely used in the medical field for caring eye health and 

diagnosing skin disease. The principle of the OCT technique is dominated by 

interferometric methods. Infrared light split into two paths, one path launches into 

the sample and the other one goes to a reference mirror. The combination of lights 

scattering in the sample and the reference generates a two dimension as image 

(Welzel, 2008). Normally the OCT can image to a depth of 1~2 mm in a sample with 
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varying path length. With features of non-invasive, ability of penetrating into skin, 

and high resolution of in-vivo images, OCT is now mainly being applied in 

dermatology studies. Different information can be extracted by analysing skin 

images, such as number of sweat glands, thickness of stratum corneum, etc. Further 

detail will be described in the following Chapter 3. 

 

2.9 Conclusions 

This review summarises and highlights the work carried out in the field of human 

skin tribology as well as discussing the currently available technologies applied for 

measuring skin friction. Owing to its viscoelastic properties, human skin exhibits 

very complex frictional behaviour. In the literature, it can be seen that the skin 

friction coefficient widely varies within different ages and anatomical sites of body. 

Derler et al. (2009) indicated that the human skin friction is intimately associated 

with both skin properties and interplay materials. Understanding the contribution of 

the skin properties on the skin friction is desired. Thus, investigations of skin 

roughness, hydration and mechanical properties have also been reviewed. Currently, 

the mechanical properties of skin have been studied in the term of  Young’s modulus. 

 

Different mechanisms of the skin friction have been proposed with respect to various 

contact conditions (e.g. load, sliding speed, contact area, etc). Under dry conditions, 

skin friction is generally considered to be dominated by adhesion and deformation 

mechanisms. It has been shown that the adhesion mechanism strongly depends on the 

real contact area between human skin and surfaces. The skin friction increases with 

increasing the contact area. Various methods have been applied to measure the 

contact area, includes a finger-print ink method, an optical method and an electrical 

resistance. However, most of these methods were restricted to the measurements of 

apparent contact area statically. There is a requirement to explore a new method to 

measure the real contact area.  

 

In the case of wet conditions, it shows that the skin friction increases with increasing 

the moisture level of skin up to a certain level. Three different possible mechanisms 

have been suggested to explain this phenomenon. Compared to the mechanisms of 

water absorption and capillary adhesion, the effect of viscous shear seems limited. 

Many studies indicated that the mechanism of the water absorption is ascribed to the 
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increase in the contact area due to skin absorbs water and becomes smooth.  

However, no study has been conducted to investigate the skin properties related to 

water hydration. The mechanism of the capillary adhesion is highly dependent on the 

Young’s modulus of the contacting zone (Persson et al., 2008). When skin is 

hydrated with water, the skin will become soft, leads surface ridges pulling together, 

hence increase the contact area. An investigation of the skin properties and how the 

Young’s modulus of skin change related to water hydration is needed.
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Chapter 3 

 

 

Equipment and Testing Procedures 

 

 

 

 
This chapter outlines all experiment-related instruments and testing procedures that 

have been used or developed in this research. Firstly, it introduces three different 

devices that have been applied to measure the frictional properties of human finger-

pad skin, including a finger friction rig, a multi-axis force plate and a pinch grip rig. 

This is followed by standard testing procedures with respect to each method. This 

chapter then describes a medical optical system (Optical Coherence Tomography) 

used to investigate human skin structure, as well as the related image analysis 

technique for determining the thickness of stratum corneum (SC). The later part of 

this chapter describes a non-invasive “cutometer” MPA 580 and a simple indentation 

device used to assess the mechanical properties of human finger-pads. Finally, a brief 

description of the method of measuring human skin roughness is given.  

 

3.1 Measurements of Frictional Properties  

3.1.1 Finger Friction Rig 

To measure the dynamic friction coefficient of human finger-pads, a finger friction 

rig has been designed and built at The University of Sheffield (see Figure 3.1). This 

rig originally consists of two strain gauge load cells, a work plate, an amplification 

unit, and a PC. The main frame of the rig is made of steel as well as the work plate. 

These two load cells used are s-shaped 50 kg rated load cells which are used to 

measure both the normal force and shear force in the range of 0.05 kg to 50 kg in 

0.05 kg increments (for more details about the equipment, see Lewis et al. (2007) and 

Tomlinson et al. (2009)).  



Chapter 3                                                             Equipment and Testing Procedures 

38 

 

To simplify the data acquisition system and improve the efficiency of measurements, 

a National Instruments data-acquisition card (DAQ: NI USB-9237) was used to 

replace the amplification in the original design. The NI USB-9237 is a 4-channel 

analog input device and manufactured by National Instruments. The sample rates on 

four channels up 50 kS/s. The advantage of this new data acquisition card is that it is 

the combination of digital and analog filtering to remove the noise and optimize 

output signals.   

 

 

Figure 3.1:  The experimental set-up of the friction measurement rig. 

 

3.1.2 Multi-axis Force Plate 

In this research, the friction experiments in the studies of contact area (Chapter 6), 

hydration (Chapter 7) and deformation (Chapter 8), in particular at low load 

conditions, were carried out using a multi-component force platform system 

(HE6X6) from Advanced Mechanical Technology Ltd; as shown in Figure 3.2. This 

set-up is mainly composed of a HE6X6 force plate, a PC, a PJB-101 interface box 

(AccuGait System posturographic plane) with a RJ cable and a RS-232 cable. This 

HE6X6 force plate is designed based on the strain gauge flexibility technique, which 

is able to provide three force components along the x, y, and z axes as well as their 

corresponding moments. These three force components are summed from the data of 

eight channels of ± 10 voltage. This device is ideal for quantifying low loads. The 

maximum load in the z axis is 44 N and 22 N for x and y axes. The working area on 

the top surface of the force plate is about 130 mm Χ 130 mm, which allows a finger to 

freely move around the plate and to attach test materials.  
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Figure 3.2: The set-up of the multi-component force platform system. 

 

The software of “NetForce” is also provided with user interface and database 

functions (see Appendix B). It was used for controlling the platform and gathering all 

raw data from the force transducer. As can be seen in Appendix B, there are three 

real-time data displays in the window of “NetForce”. Both displays on the left side 

are data displays, in which 12 different channels (6 force data channels, 6 moment 

data channels) are used to monitor the outputs of force and moment. The one on the 

right side is real-time COP display (center of pressure), which can be used to plot the 

movement by detecting the data of COP. For instance, when a finger is moving on 

the top surface of the force plate, z axis always gives the normal force named   , x 

and y axes provide shear force in each orientation, named    and    respectively. To 

calculate the friction coefficient of the finger,    and    or    are selected to be 

assessed only according to Amonton’s law.  

 

3.1.3 Experimental Procedures 

For the various techniques used to determine the friction coefficient of human finger-

pads, there were different testing procedures developed. Since the finger friction rig 

and the multi-axis force plate are standard dynamic friction measurement devices, 

they used a similar testing procedure. There were some slightly differences in the 

details depending on the specific aims of tests.  

 

In general, measurements were made by sliding fingers along the top surface of the 

work plates. The work plate of the finger friction rig was rigid (Ra ≈ 1.6 µm). The 
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tested fingers approached the top surface so that the largest area of the upper section 

(distal phalanx) of the finger was presented parallel to the surface. The angle 

between the surface and the fingers ranged between 25° and 35°. The fingers were 

then moved linearly towards the body. During experiments, subjects were requested 

to keep a constant speed for each test, counting slowly from 1 to 5 from start to finish 

of the slide (giving approximately 10-28 mm/s) (Tomlinson, 2009). To determine the 

friction coefficient of the tested fingers, subjects were also requested to repeat the 

test several times using the same method, but with different normal loads (> 2 N). 

Finally a demographic survey was completed, including age, gender and ethnicity 

(see Appendix C).   

 

Figure 3.3 shows force data that was collected from friction experiments. Both the 

normal load and the friction force were plotted as a function of time as the tested 

fingers slide along the work plate. It can be seen that the normal load initially reaches 

a plateau and remains constant (at approximately 4 N) during finger movement. The 

friction force curve can be divided and analysed in two phases including “static” and 

dynamic movements. In the static movement, there was a movement at the finger-

pad skin, and no relative sliding took place at the interface between the finger-pads 

and surfaces due to a high resisting force. As the normal load and the friction force 

were increased, the static friction increases until it reaches a maximum value. After 

that, the fingers break free and start to slide at a steady rate. To calculate the dynamic 

friction coefficient of the fingers, the force data taken from a relatively constant 

period in the dynamic movement were used. The ratio of the normal force to the 

friction force is generally considered to be the dynamic friction coefficient.  
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Figure 3.3: The normal load and the friction force plotted as a function of time. 

 

3.1.4 Pinch Grip Rig 

This pinch grip rig was designed by Peter Mylon (a PhD student at The University of 

Sheffield) with aims to assess human finger-grip ability. As shown in Figure 3.4, this 

experimental set-up consists of a pinch rig that is connected to a PC with a data 

acquisition unit (DAQ). This device shares a similar design with the above two rigs. 

The pinch grip forces and shear forces applied by subjects were measured directly 

with three load cells with capacities of 10 kg in the sides and 25 kg in the middle. 

These load cells (LCM703-100 universal link load cell, Omega) were attached to two 

aluminium discs (approximate 3 cm in diameter) that allow subjects to perform a 

pinch using their thumb and index finger. Various tested materials can be easily 

attached to the surfaces of discs by adhesive tape. This means that this rig could also 

be used to investigate the effect of different materials on finger-grip ability. The 

friction force can be altered by adding dead weights to the metal rod that was 

inserted into the centre of the rig. Finally, all obtained force data is recorded by a 

computer using a Labview data acquisition programme (see Appendix D).  
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Figure 3.4: The experimental set-up of the pinch grip rig. 

 

3.1.5 Experimental Procedure for the Pinch Grip Rig 

Experiments were generally performed by a thumb and an index finger of a subject 

following verbal instructions. The subject was asked to conduct the thumb-index grip 

and lift the rig at the “START” instruction; keep it about this position until the 

“DROP” instruction was given; at the “DROP” instruction, the subject was requested 

to move the thumb and the index finger apart slowly to allow the rig to drop. Each 

test was repeated several times. In order to avoid the effect of gripping time on the 

output data, experiments performed should not run too fast or too slow.  

 

An example of the force data acquired from the friction measurements using the 

pinch grip rig is displayed in Figure 3.5. According to previous studies (Johansson & 

Westling, 1984; Kinoshita & Francis, 1996; Bleenerhassett et al., 2006), this data can 

be divided into five phases referring to the performance of the thumb-index grip, 

including preload, loading, lift-off, unloading and slipping. To calculate the static 

friction coefficient, both the normal force (pinch force) and the friction force (i.e. a 

combined lift force) exerted by the thumb and index finger are needed at the moment 

when the rig starts to slip. The tangential forces recorded are strongly dependent on 

dead weights, and appear as constant values in the phase of lift-off. Lift force 1 was 

recorded from the tested thumb and lift force 2 for the tested index finger. At the 

moment of the beginning slip, it can be seen that there are some sudden decreases on 

the tangential forces (at around 15.7 s). Therefore, the tangential forces at that point 

are considered as the slip forces. The corresponding normal force could also be 

determined according to the signal of the tangential forces. In addition, it is observed 
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that lift forces are non-zero when the pinch force is zero. This could be attributed to 

the fact that the two load cells at the sides of the pinch grip rig are relatively sensitive 

compared to the load cell in the middle, which causes the outputs of the friction force 

to be easily impacted by vibration of the two discs. It can also be observed that it 

generally takes about 0.2 seconds for the system to settle down as all signals finally 

return to zero with time (from 15.8 s to 16 s) after the rig impacts with surface (see 

figure 3.5). 
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Figure 3.5: The normal load and the friction force obtained from the pinch grip rig are 

plotted as a function of time (lift force 1 is the friction force acquired from the thumb, 

lift force 2 is the friction force acquired from the index finger and combination lift force 

is the sum of lift force 1 and 2). 
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3.2 Investigations of Skin Structure 

3.2.1 Optical Coherence Tomography 

Optical Coherence Tomography (OCT) has been developed as a non-invasive 

imaging technique that allows for cross-section images of biological tissues. This 

technique is widely used in the medical fields for assessing eye health and 

diagnosing skin disease. The principle of the OCT technique is dominated by the 

interferometric method. The infrared light is split into two paths, one path launches 

into the sample where it is scattered (sample arm) and the other one goes to a 

reference mirror (reference arm). These two beams of light signals reflected from the 

sample and the mirror arms, respectively, are overlayed then. A constructive 

interference takes place only when signals in both arms are equal. The combination 

and subsequent inference of these two light paths generates a two dimensional image. 

In biological materials, the optical properties (light scattering and reflectance) vary 

widely with different tissues or cells. The internal structure of the tested sample is 

displayed with different grey-levels in OCT images. The penetration depth of the 

light signal in samples is limited to few millimeters by the power of the light source 

used and its wavelength. The axial resolution depends on the bandwidth of the light 

source. Measurements at different depths in tissues can be achieved by changing the 

length of the reference arm. The lateral scans (B-scan) are determined by the 

mechanical movement of the probe beam, composed of single line images (A-scan). 

The lateral resolution is independent of bandwidth of light source, determined only 

by the numerical aperture of the lens of the OCT system. For a 3D volumetric image, 

a combination multiple lateral scans is required (Fercher et al., 2003; Welzel, 2008).  

 

In the current research, the studies of human skin structure were carried out using a 

commercial Optical Coherence Tomography system (Michelson Diagnostic Ltd), see 

Figure 3.6 (Fercher et al., 2003). This system uses a light source with a centre 

wavelength of 1300 nm and 110 nm FWHM bandwidth (Santec Limited). A two 

dimensional image has a lateral dimension of 4 mm (up to 6 mm) and a penetration 

depth of 2 mm. The resolution of the image is 10 µm (axis) x 15 µm (lateral). The 

step size was approximate 4 µm in both axis (x) and lateral (z) directions. In the case 

of multi-slice scanning, the interval between slides in the y direction was set to be 

0.04 mm. The average refractive index of the sample medium is assumed to be 1.44 
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(Lu et al., 2011). The system is capable of producing a few slices for each 

measurement in a second. The disadvantage of the system is that the resolution in the 

axial and lateral directions is relatively low to observe fine details of skin (skin cells).  

 

 

Figure 3.6:  A typical set-up of an OCT system. 

 

3.2.2 Image Analysis  

In a 2D image of skin, the skin structure was clear according to the distribution of the 

intensities of the signal. Each layer of the skin displays different light refractance 

properties and produces peaks on the linear profile of light intensity in the vertical 

depth (Bagei et al., 2008). As seen in Figure 3.7(a), the skin surface is defined as a 

bright line at the top surface of the cross-sectional image of the skin, which 

corresponds to the refractance intensity reaching its first peak in Figure 3.7(c). This 

may be attributed to those dead cells and/or lipid film on the surface of the skin that 

give strong light reflection. Beneath the skin surface is a thick homogenous band 

containing some bright spiral lines (Gambichler et al., 2011). This layer is generally 

considered as the cornified layer of the skin (i.e. stratum corneum and stratum 

lucidum), which is confirmed by the histological image of thick skin (see Figure 

3.7(b)) (taken from Burkitt et al. (1993)). The layer of the stratum lucidum is a 

relative thin layer located under the stratum corneum and gives less dense of light 

refractance in OCT images. Hence, the border between the stratum corneum and the 

stratum lucidum cannot be clearly detected in OCT images. Therefore, the thickness 

of the stratum corneum is generally estimated from the thickness of the whole 

Lens    

 Work 
plate 
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cornified layer in OCT images of the skin. The living epidermis is observed as a 

more signal dense layer with waves of papillary ridges (Welzel et al., 1997; 

Fruhstorfer et al., 2000). In contrast to the living epidermis, the layer of the dermis is 

usually less dense. There is no distinct boundary between the layer of the living 

epidermis and the layer of the dermis. In addition, some sweat ducts were captured 

and observed as bright thick broken lines in the cornified layer of the skin in OCT 

images. Therefore, the measurement of number of sweat ducts was mainly dependent 

on a manual count of the spiral lines in the images.  

 

The thickness of the stratum corneum was easily determined by measuring the 

distance between the skin surface (first peak in Figure 3.7(c)) and the border between 

the cornified and living epidermis (the trough before the second peak in Figure 

3.7(c)). 16 single frames were collected from each participant; frame Nos. 1, 5, 10, 

15 were selected to be assessed individually. For each frame, ten predefined 

measurement points in the OCT images of skin were used for determining the 

thickness of the stratum corneum. The measurements were performed manually 

using the “image tools” (ruler) in “Matlab”. The average data of ten predefined 

points for four frames was calculated (in pixels) to give the thickness of the stratum 

cornuem. All of measurements were done in pixels unit and then converted to SI 

units (e.g. 512 pixels in 2 mm). 
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(a)                                                                                                    (b) 

 
                                                                                      (C) 
Figure 3.7:  (a) Optical coherence tomography images of the skin of the left middle finger, 

(b) Tissue histology of the thick human skin  tissue (Burkitt et al., 1993); no scale on original 

source found, here this is used only for indentifying various layers of skin. (c) Intensity 

profile of the OCT image (A-scan). 

 

3.2.3 Experimental Procedures 

During image scanning, volunteers were guided to place their fingers on the work 

plate and facing the lens of OCT. The work plate was attached to mechanical stages 

for adjusting the distance between fingers and lens. In order to obtain the average 

value of the thickness of the stratum corneum, the examined finger pads have to be 

fixed in position to ensure images are taken in the same position. 

 

3.3. Measurements of Mechanical Properties  

3.3.1 Cutometer MPA 580 used at Philips Applied Technologies 

A non-invasive “cutometer” MPA 580 based on the suction method was used to 

characterise the biomechanical properties of human skin, via measuring the vertical 

deformation of the skin surface with response to the negative pressure. As seen in 

Figure 3.8, the device consists of a handheld probe with a distinctive central suction 

head (2, 4, 6 and 8 mm in diameter), attached to the main unit with an air and an 
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electric cable. The main unit includes a vacuum pump that can generate constant 

pressure up to 500 mbar and evaluation electronics. This device provides two modes: 

a stress-strain mode and a strain-time mode. With respect to the stress-strain mode, it 

is mostly used for studying the elastic properties of skin; the deformation of the skin 

is displayed as a function of stress. The strain-time mode refers to the measurement 

of the viscoelastic properties of skin. It was used with a 5-second application 

followed by a 5-second relaxation under a constant negative pressure.  

 

 

Figure 3.8: A modified schematic diagram of the cutometer (Cua et al., 1990). 

 

A typical strain-time curve for human skin is illustrated in Figure 3.9. The following 

deformation parameters used to describe the curve were proposed by Agache et al., 

(1980): immediate distension-skin extensibility (Ue); delayed distension reflecting 

the viscoelastic contribution of the skin (Uv); immediate retraction (Ur); final skin 

deformation-skin distensibility (Uf); total recovery of skin after remove vacuume 

(Ua); gross elasticity of the skin, including viscous deformation (Ua/ Uf); net 

elasticity of the skin without viscous deformation (Ur/ Ue); the portion of the 

viscoelasticity on elastic segment of the curve (Uv/ Ue); biological elasticity (Ur/ Uf) 

(Barel et al., 2004; Cua et al., 1990).  Apart from those biomechanical parameters 

that can be directly read from the device, it also permits determination of the normal 

contact stiffness of skin since the normal force and the corresponding deformation of 

the skin are known. The normal stiffness of the skin ( ) is given by: 

  
  

  
                                                                                                                     (3.1)               
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where   is the applied normal load to the skin and   is the vertical deformation of 

the skin. The normal force to the skin is defined as the applied pressure   

(approximate value of 500 mbar) multiplied by the area of the probe    (the diameter 

of probe used is equal to 2 mm) that is attached to the main apparatus.  

                                                                                                                   (3.2)    

 

 

Figure 3.9: A strain-time curve of the cutometer on human skin (Cua et al., 1990). 

 

3.3.2 Experimental Procedure 

The measurements were performed using the time-strain mode that can be used to 

estimate the viscoelastic properties of the skin. The tested region of the human body 

was requested not to be treated by any chemical or cosmetic products in the 12 hours 

prior to the measurement. A 2 mm diameter measuring probe was used, which 

applied a constant pressure of 500 mbar to the skin. 

 

3.3.3 Indentation Tests  

A purpose built indentation device has been developed at The University of Sheffield 

to measure the stiffness of soft elastic objects (e.g. rubber, human skin). This device 

consists of a force gauge (940-233E, Mitutoyo) with a 5.5 mm diameter spherical tip, 

a digital scale (Absolute, Mitutoyo) and a manual test stand (shown in Figure 3.10). 

It is able to measure the penetration depth in the tested objects as function of the 

applied load during loading. Measurements were performed in controlled applied 

load mode. The applied load was controlled manually by the hand-wheel of the test 
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stand (out of the picture). In order to measure the penetration depth, the tip of the 

digital scale was placed in contact with a flat metal strip that was attached to the 

extend rod of the force gauge. The tested samples were required to be fixed in a 

position in order to reduce the impact associated with sample movement through the 

tests. Prior to loading, the tip of the force gauge was initially positioned as it just 

touched the tested samples, for this case, we assume that there was no load applied to 

the sample. The maximum load applied to the tested samples ranged from 0.5 to 10 

N with an increment of 0.5 N.  

 

 

Figure 3.10: A photograph of the indentation device to determine the stiffness of samples. 

 

A representative load-displacement curve from the indentation tests of artificial 

fingers (results in Chapter 4) is shown in Figure 3.11. A second order polynomial 

model is applied to describe the curve behaviour, is given as: 

                                                                                                          (3.3)                          

where   is the load applied, B, U and H are constant and   is the penetration depth. 

Therefore, according to Equation (3.1) the stiffness of the artificial fingers can be 

calculated as: 

  
  

  
                                                                                                      (3.4)              
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This load-displacement sensing indentation test could also be used to estimate the 

Young’s modulus of the tested samples. For example, Oliver and Pharr (1992) have 

proposed a simple model which was used to determine the Young’s modulus of skin 

based on the indentation tests. This model is expressed as: 

      
   

   
                                                                                                    (3.5)                                            

where   is the projected contact area.  

 

 

Figure 3.11: An example of the load-deflection data. 

 

3.4 Measurement of Skin Roughness 

For measurements of skin roughness on human finger-pads, an indirect approach 

using a surface profilometer (MitutoyoSurftest SV-600) has been introduced. Since 

finger-pads skin is a non-flat and soft material, it is not possible to conduct 

measurements on finger-pads directly, for this case, a polymer replica of the hand 

skin has been made. Human skin texture can be moulded on the polymer replicas, so 

that the roughness of human skin can be quantified as the profilometer stylus moving 

over the casts (see Appendix E). In this research, measurements were carried out 

exactly following Tomlinson’s roughness procedure (2009), in which the stylus was 

moved 2 mm along in the same direction as the finger-pad or the palm in the friction 

tests, with a speed of 0.1 mm/s. In order to gain reliable data of roughness, each 

measurement needs to be repeated at 3 different positions on the tested region and 

average values calculated. 
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3.5 Conclusions 

This chapter gives an overview of all required equipments and testing procedures 

that have been used to collect the data presented within this thesis. The skin friction 

on human finger-pads was measured by using different friction rigs. The OCT 

system enables charactersion of the skin structural properties. The use of “cutometer” 

MPA 580 and an indentation device make it possible to have comprehensive 

assessments of the skin mechanical properties. In the next chapter, the investigation 

of the skin frictional properties on human finger-pads is conducted.  
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Chapter 4   

 

 

Investigations of the Skin Frictional Properties of 

Human Finger-pads 

 

 

 

 
From the literature review, it was found that the frictional behaviour of human skin is 

unique and does not obey the traditional friction law of Amontons-Coulomb. For a 

better understanding of skin frictional properties, a few series of friction tests were 

conducted in this chapter. Firstly, an experimental comparison of three different 

techniques has been made in order to select the most suitable device for measuring 

the skin friction coefficient. A pilot study to investigate the relationship between the 

friction coefficient and the normal load was also carried out. Finally, this chapter 

describes how the skin friction coefficient varies with age, gender and ethnicity in 

participants.  

 

4.1 Experiment 1: Comparison of Different Techniques for Measuring Finger-

pad Skin Friction 

4.1.1 Introduction  

Various instruments (discussed in Chapter 2) have been applied to measure skin 

friction, which can be classified into two classes of techniques. The first technique is 

the rolling method, which allows apparatus to roll against the examined skin tissue. 

This method provides high accuracy, repeatability for tests, and could be performed 

in most anatomical sites of human body. The second technique is based on the 

sliding method which allows apparatus to slide along the examined skin tissue. The 

advantage of this technique is that it can investigate the frictional behaviour of skin 

with various materials during the actual movement. It is believed that the sliding 

method is more suitable for measuring the frictional properties of fingers. In the 
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current studies, three different finger-specific devices based on the sliding method, 

including a purpose built finger friction rig, a multi-axis force plate and a pinch grip 

rig were used to measure the skin friction coefficient of finger-pads (more details 

about these devices have been discussed in Chapter 3).  

 

4.1.2 Experimental Procedure 

Experiments were carried out under normal laboratory conditions. The temperature 

was in the range of 20˚C and 26˚C and the humidity was around 58% RH. In order to 

avoid the effects of different materials and roughness conditions on the friction 

measurements, a smooth aluminium strip (Ra ≈ 0.2 µm) was attached to the work 

plates of the finger friction rig and the multi-axis force plate, on which the tested 

finger could be positioned to perform the slide movement. The discs of the pinch grip 

rig are made of aluminium and have a similar roughness of 0.5 µm. A 25-year-old 

female was invited to carry out all experiments in this study. In the measurements 

using the finger friction rig and the multi-axis force plate, the subject was requested 

to drag her dominant index finger along the aluminium strip with various loads (in 

the range of 0.2 N to 12 N). Similarly, six different dead weights were added to the 

pinch grip rig for gaining different shear force. 

 

4.1.3 Results and Discussion 

Figure 4.1 shows a plot of the log friction forces against the log normal forces. It is 

observed that, for all three different techniques used, the log friction force rose with 

the log normal force in a function of                   , where   is the slope 

of the linear relationship,   is a constant. With regard to the investigation of the 

relationship between the friction force and normal force, it will be discussed in 

Section 4.2. It is found that the value of   (Table 4.1) relating to the multi-axis force 

plate is greater than those of finger friction rig and pinch grip rig. On the other hand, 

there is no significant difference observed in the y-intercept ( ) between the finger 

friction rig and the multi-axis force plate (equal to -0.5), while the value of   for the 

pinch grip rig was zero.  
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Figure 4.1: Log normal force against Log friction force using all three different techniques. 

 

Table 4.1: Some parameters of the linear relationships between log normal force and log 

friction force. 
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0.96 

1.00 
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The results of the above experiments show that the log friction force is linearly 

proportional to the log normal load for all three devices used. There is no significant 

difference observed in the slope (B) of the linear relationship between the finger 

friction rig and the multi-axis force plate. This is reasonable as these two devices are 

very similar in apparatus and operation. The parameter of R squared as well as the 

parameter of t (Table 4.1) is considered one of the most important parameters for 

comparing three different equipments in the current study. R
2
 is the square of the 

correlation coefficient as an indicator for measuring how well the real data fits the 

regression line. The closer the R
2
 is equal to one, the stronger relationship between 

variables that could be used to predict the trend. It can be clearly seen that R
2
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relating to the pinch grip rig and the finger friction rig. The parameter t is the 

estimated standard deviation of the residuals (standard error of the regression). The 

value of t will be equal to zero if there is a perfect prediction. By analysing these 

parameters obtained relating to three different techniques, it is suggested that the 

multi-axis force plate is the most accurate device to measure the skin friction 

coefficient. 

 

Although, the results gained from the finger friction rig also suggests a linear 

relationship for the log normal load and the log friction force, the standard error is 

twice large as those of the other two techniques. This could be attributed to the low 

sensitivity in the measurements using the finger force rig. According to Chapter 2, 

the finger friction rig has a large measuring range (between 0.2 and 500 N). 

However, those forces applied by a finger (up to 30 N) seem too small to be detected, 

thus big errors could result in the data collection. On the other hand, the multi-axis 

force plate is specifically designed for qualifying low loads. This technique allows 

the measurements of forces in Z direction up to 44 N (with resolution of 0.02 N), 22 

N for X and Y directions (with resolution of 0.01 N), which enables it to detect even 

tiny changes in the force applied due to its high sensitivity. Therefore, the correlation 

related to the finger force plate is relatively weak compared to that using the multi-

axis force plate.   

 
Figure 4.2: Data of the friction coefficient with different normal forces obtained using three 

different techniques. 
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Figure 4.2 shows the variation of the friction coefficient for the finger with different 

loads and different devices. It can be seen that both the finger friction rig and the 

multi-axis force plate show similar trends in friction coefficient, which is around 0.4 

for 0.3 N and is reduced to 0.3 when load is greater than 2 N. While, the pinch grip 

rig displayed relative constant values of friction coefficient with load.  

 

The pinch grip rig provides a simple way to assess human gripping ability as 

measurements of normal force (i.e. the force is applied by human finger) and 

tangential force (i.e. shear force from dead weight load). In this study, it was used a 

method for measuring the skin friction coefficient (discussed in Chapter 3). The 

friction coefficients obtained by the pinch grip appear to slightly higher than those 

obtained using the other two techniques (Figure 4.2). This could be caused by the 

fact that the different methods tested different fingers.  In the above two experiments 

using finger sliding, only one finger of the subject (the right index finger) was 

examined, the friction coefficient obtained could be considered as the friction 

coefficient of the right index finger. However, this experiment was performed by 

both the right index finger and the right thumb finger, so the results of the pinch grip 

rig were the average values of the friction coefficients obtained from both fingers. It 

is impossible for this technique to characterise the frictional properties on a single 

finger. The other disadvantage is that this technique is limited to those tests with 

small load (≤ 3 N) as the mass of the rig is 300 g. Moreover, the most challenging 

thing about using this pinch grip rig is the difficulty of identifying the point of “slip 

initiation” in the display of data for the measurements of dynamic friction 

coefficient. The determination could also be affected by subject biases. The same 

problem was also reported by Savescu et al. (2008), who indicated that the 

measurements of finger friction were likely influenced by some subjective errors.  

 

It can be concluded that the multi-axis force plate is the best device for the 

measurement of the skin friction coefficient of fingers for this research. The finger 

friction rig could also be a good option for the tests under high load conditions. Due 

to the wide variability in the identification of the “slip initiation” point, the pinch grip 

rig was not considered for use in this study. In addition, although the multi-axis force 

plate could perform relatively accurate measurements, there are still some 
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disadvantages. For example, it is difficult to manage the applied load and speed since 

they are manually controlled by the subject.  

 

4.2 Experiment 2: Investigation of the Relationship between the Normal Force 

and the Friction Force 

 

4.2.1 Introduction 

According to Amontons-Coulomb’s laws of friction, the friction coefficient is 

considered to be independent of the load applied. However, in most recent studies, it 

was found that this conclusion does not hold for soft viscoelastic materials (e.g. 

rubber, skin). A number of studies have been done on investigating the effect of load 

on the friction coefficient of skin as well as the relationship between the normal force 

and the friction force. In the case that a spherical probe was used for investigating the 

frictional behaviour of human skin, the friction coefficient of skin was generally 

reported to decrease with loads following the relationship of      , where   is the 

exponent of the linear regression and suggested to be around 0.3 for human skin.  For 

example, Koudine et al. (2000) found that the dynamic friction coefficient of skin 

decreases with increasing the normal load to the power of -0.28. The corresponding 

value of   was reported to be -0.32 in the studies of Sivamani et al. (2003). Some 

other authors looked at the relationship between the normal force and the friction 

force instead of the relationship between the friction coefficient and the normal force. 

A simple power relationship has been developed by Asserin et al. (2000) to estimate 

how friction force is altered with loads,      , where   is friction coefficient,   

is the friction force,   is the normal force and   is friction factor (a constant). 

However, the results of the studies of Tomlinson et al. (2009) did not follow this 

trend. They attempted to explain the relationship between the normal force and the 

friction force in terms of skin elastic properties. A two-part relationship was used to 

characterise the skin friction behaviour referring to the level of load applied. For a 

finger-pad contacting a smooth flat surface with loads greater than 1 N, the frictional 

force appeared to follow a linear relationship. There was a different relationship 

between the normal force and the friction force at the low load condition. Derler et 

al. (2009) have investigated the relationship between the pressure and the friction 

coefficient of skin in order to characterise the load dependence of the friction 

coefficient. The results of their experiments demonstrated that the friction coefficient 
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can be expressed as a function of pressure:         , where   is a constant,   is 

the contact pressure and     is the exponent of linear regression. The exponent 

    was found to be ranged from -0.26 to -0.15 when a dry finger was sliding 

against a smooth glass using a pushing motion, ranged from -0.96 to -0.79 for a 

pulling motion. In summary, the frictional properties of human skin are very 

complex and a deep understanding of how friction coefficient varies with load is 

required.  

 

4.2.2 Experimental Procedure 

The findings from section 4.1 suggested that the multi-axis force plate is best device 

that could be used to measure the skin friction coefficient of fingers. Therefore, all 

experiments were carried out to test the right index finger of a female (aged 26) using 

the multi-axis force plate system under normal laboratory conditions. The subject 

was asked to slide her index finger on a smooth optical glass window (Quartz Glass) 

(Ra ≤ 0.01 µm) and a relatively smooth aluminium strip (Ra ≈ 0.5 µm) that were 

attached to the force plate individually, under various loads. The materials were 

cleaned using a cleaning wet wipe every three runs to avoid the effect of the 

superficial sebum and/or the sweat across the skin surface on the friction force.   

 

4.2.3 Results and Discussion 

The friction coefficient shows a non-linear decreasing trend with increasing normal 

load for glass and aluminium, as shown in Figure 4.3. There is initially a rapid 

decrease in the friction coefficient for low loads (≤ 2.5 N) and it reaches a plateau 

after the initial stage. This phenomenon indicates that Amontons law is not 

applicable for human skin. In order to further investigate the relationship between 

these two variables, all the data were plotted in a log-log form. As seen in Figure 4.4, 

the log friction coefficient shows a linear dependence on the log normal load, for 

both materials. The slopes of the log-linear relationships were -0.22 for glass (R
2
 = 

0.91), -0.16 for aluminium (R
2
 = 0.87).  
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Figure 4.3: Plot of the friction coefficient against the normal force for glass and aluminium. 

 

 

 

Figure 4.4: Plot of log normal load against log friction coefficient for glass and aluminium. 

 

Figure 4.5 displays the output of the indentation test on the right index finger of the 

participant. Two possible relationships between the normal load and the deflection 

are plotted on the graph. The point of intersection of these two lines is near 2.5 N (2 

mm). At low load conditions (≤ 2.5 N), the skin on finger-pads becomes stiff with 

increasing the load as the deflection of skin increases from 0.38 mm to 1.88 mm. 

After that, there is a relatively slight rise in the stiffness when the applied load ranges 

from 2.5 N to 6 N.   
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Figure 4.5: Plot of deflection against normal load for human finger.  

 

As discussed above, the relationship between the friction coefficient and the normal 

load could be split into two parts, so they will be assessed separately referring to the 

mechanical properties of human skin. Figure 4.6 (a) shows the relationship between 

the friction coefficient and the normal load in the condition of low load, its log-log 

form is plotted in Figure 4.6 (b). It can be observed that the slopes of the linear 

regressions are slightly higher than those in Figure 4.4, for both materials.  The 

correlations of determination are also very high. In contrast to those results at low 

load condition, the correlation between the friction coefficient and the normal load 

for high loads (>2.5 N) is weak as the value of R
2
 is smaller than 0.75 (0.25 for the 

glass and 0.33 for the aluminium).  

 

Figure 4.7 shows the difference in the friction coefficient between the glass and the 

aluminium tested at the same loads, where the corresponding data of skin deflection 

at the tested finger-pad is also plotted. It can be seen that the magnitude of difference 

shows a decreasing trend as increasing the normal load.  
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(a) 

 

 
                                                                            (b) 
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                 (c) 

 

 
           (d) 

Figure 4.6: Plots of friction coefficient against normal load on normal and logarithmic 

graphs: (a) and (b) for low loads, (c) and (d) for high loads. 
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Figure 4.7:  Difference in the skin friction coefficient between the glass and the 

aluminium samples and corresponding deflection of the tested finger as a function of 

the normal load (error ± 0.1 N). 

 

 

The above study shows that the friction coefficient of skin decreases non-linearly 

with increasing normal load, which verifies that Amontons law could not 

characterise the skin frictional behaviour of human fingers. Furthermore, the skin 

friction coefficient of fingers was found to be associated with its Young’s modulus in 

vertical direction and can be described as a two-part relationship (see Figure 4.7). A 

similar phenomenon was also found by Tomlinson et al. (2009), who looked at the 

relationship between the friction force and the normal load, instead of the friction 

coefficient and the normal load. They suggested a linear relationship for high loads (> 

1 N) for the case that a dry human finger was sliding along a smooth surface. 

However, in the current study, the cut-off points for both the friction tests and the 

stiffness measurements were found to be around 2.5 N. The difference could be 

attributed to different fingers being used, where the mechanical properties of the skin 

on various fingers are obviously different. In this study, the friction coefficient 

appears to be proportional to the normal load, at low load conditions (≤ 2.5 N), in 

accordance with the model of      . The value of n is found to be 0.28 for glass 

and 0.17 for aluminium. This finding could be explained by the mechanical 
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low load is applied on the skin. The skin exhibits different types of deformation with 

various loads, which causes the mechanical properties of the skin to alter with load, 

thus the skin behaves as different materials and gives different coefficients of friction. 

When skin is suffering heavy loads (> 2.5 N), it stiffens at high strain and acts as a 

material with steady mechanical properties (see Figure 4.5). In this case, the friction 

of skin is considered to rely on adhesion force, and the deformation factor is 

normally ignored (Greenwood & Tabor, 1958; Wolfram, 1983). Thus, we can 

assume that the coefficient of friction is a constant and independent on the load under 

the condition of the applied load that reaches a certain level. This could be the reason 

why there was no or weak correlation observed between the log friction coefficient 

and the log normal load in Figure 4.6 (d).  

 

This research also provides an interesting result for comparing the friction 

coefficients between the employed glass and aluminium under the same load 

conditions. It can be observed that the magnitude of the difference tends to be 

gradually reduced with increasing the normal load. There were big differences in 

friction coefficient between the glass and the aluminium at low loads. This could be 

attributed to the fact that the surface properties of the tested materials have 

significant impacts on the skin friction, where the skin on finger-pads does not fully 

contact surfaces. In this case, there are many contributions to the skin friction force, 

including molecular forces, electrostatic forces, chemical hydrogen bonds and 

capillary forces (Scherge & Georb, 2001). The friction force is considered to be 

dominated by the mechanical properties of the skin when the skin experiences high 

loads, because the influence of surface properties of materials to the skin friction at 

high load conditions is relatively small compared to that at low load conditions.  

 

4.3 Experiment 3: The Frictional Properties of Artificial Fingers 

4.3.1 Experimental Materials and Methods 

In order to investigate the effect of skin elastic properties on the skin friction 

coefficient of fingers, some artificial fingers with different stiffness and sizes were 

made. These artificial fingers mainly consist of two parts, bones and finger-pads. The 

bones were made from the casting plaster. The soft finger-pads were developed using 

the Room Temperature Vulcanizing (RTV) silicone rubber (base and catalyst with 

http://en.wikipedia.org/wiki/Vulcanizing
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ratio 1:1).  In order to simulate the feel of human skin, a deadener was added to the 

silicone fluid to soften the RTV silicone rubber. To give different stiffness, the 

proportions of the deadener in the silicone fluid were: 30%, 25%, 20%, 15% and 

10%. Then the mixture was poured into spherical shape molds with three different 

dimensions of 8 mm, 6 mm and 4 mm. Finally, all samples were coated with 

astringent powder to provide dry and no-sticky surfaces. The stiffness of the samples 

was determined using a simple indentation device (see Chapter 3) to obtain 

measurements of the force applied and the deflection from the initial position, 

expressed as: 

     
                                                                                                               (4.1)                          

where   is the force applied to sample,   is the penetration depth. Measurements of 

the friction coefficient of artificial skin were carried out on the aluminium strip using 

the multi-axis force plate following the standard testing procedure (see Chapter 3). 

The normal load applied was 1 N.  

 

4.3.2 Results and Discussion 

Figure 4.8 shows five artificial fingers with the same thickness of 8mm, but different 

stiffness; in which the sample S1 is the most stiff one (5% deadener) and the sample 

S5 is the least stiff one (35% deadener). The normal load against the deflection for 

both artificial samples and a human index finger are plotted in Figure 4.9. In this 

figure, it can be observed that the human finger exhibits unique properties from those 

artificial ones. However, the trends of variety for samples S3 are similar to that of the 

human finger within the force range of 0 to 2 N. Thus, the sample S3 sample is 

considered the best simulation model for human fingers at low loads. 

 



Chapter 4                            Investigations of the Skin Friction of Human Finger-pads 

68 

 

 

Figure 4.8: Five samples of artificial fingers with depth of 8mm, but different stiffness.  

 

 

  

Figure 4.9: Plot of deflection against normal load for all five artificial fingers with depth of 

8 mm. 

 

Three different thicknesses of Sample S3 were developed and assessed. The 

corresponding normal load against the deflection is shown in Figure 4.10. A 2nd 

order polynomial model is suggested to describe the relationship between the normal 

load and the deflection as it is the best fitting line to all the data points. The values of 

B and C in polynomial functions for all the artificial samples and the human finger 

are given in Table 4.2, as well as the magnitude of stiffness with a deflection of 2 mm. 

The stiffness could be qualified using Equation (1). The stiffness of the artificial 

fingers was found to be 4 N/mm for 8 mm thick sample (S8), 9 N/mm for 6 mm thick 

one (S6) and 15.5 N/mm for 4 mm thick one (S4), respectively. It is noted that 
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decreasing the thickness of finger-pads from 8 mm to 4 mm results in an increase of 

two orders of magnitude in the stiffness. 

 

 
Figure 4.10:  Plot of deflection against normal load for Sample S3 with the thickness of 4 

mm, 6 mm and 8 mm. 

 

 
Table 4.2:  Parameters of polynomial relationships for all artificial fingers (8 mm) and a 

human finger. 

            

Samples S3 B U H 
    

     

(      ) 

8 mm 

6 mm 

4 mm 

Human finger 

0.74 

1.92 

1.97 

3.02 

-0.98 

-2.93 

0.88 

-5.78 

1.68 

1.86 

0.52 

3.01 

1.98 

4.74 

8.76 

6.31 

 

 

Figure 4.11 shows the friction coefficient data for all Sample S3 specimens and the 

human finger under a normal load of 1 N.  As expected, the friction coefficient 

shows a slight decrease from 0.75 to 0.6 in response to the decrease in the thickness 

of finger-pads. It proves that there is a significant relationship between the thickness 

of finger-pads and the friction coefficient.  The skin friction coefficient of the human 

finger appears to be relatively small compared to those artificial fingers.  
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Figure 4.11: (a) Stiffness for Sample S3 with three different depths (8 mm, 6 mm and 4 mm) 

and (b) corresponding friction coefficient data for all three samples. 

 

According to previous studies, it was accepted that the thickness of different skin 

layers is one of the key factors affecting the skin mechanical properties (Grahame, 

1969; Sander, 1973; Agache, 1980; Bader & Bowker, 1983; Escoffier, 1989; Barel, 

1995; Diridollar, 2000; Hendriks, 2005; Geerligs et al., 2011). The human skin is a 

multi-layer tissue consisting of epidermis and dermis, each of which is endowed with 

different mechanical properties. When subjected to an external force, the skin 

generally works as a whole (2009). However, due to the technical limitation in this 

study, it only possible to develop the finger-pad models with a single layer. 

Therefore, this study concentrated on the influence of the depth of skin on skin 

friction with consideration of the related change in the global Young’s modulus. 

 

In earlier studies of skin friction, it was indicated that the friction of skin in a dry 

state involves two mechanisms of interfacial shear force and deformation. The 

equation was given by Adams et al. (2007), as follows: 

                                                                                                                 (4.2)                                                       

where     is the interfacial shear force,     is the deformation force. However, the 

friction of skin is assumed to be only associated with adhesion mechanism, for dry 

and smooth surfaces, while the deformation is normally ignored (Wolfram, 1983; 

Johnson et al., 1993; Adams et al., 2007). In the case of a hemispherical probe 
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sliding on deformable materials such as rubber or skin, the friction force can be 

expressed as: 

                                                                                      (4.3)                                                                                                         

where   is the shear strength,     is the real area of contact,   is the radius of probe 

and   is the applied load.   is the reduced Young’s modulus and is defined as 

 
      

     
 

     
      

    
 

    
  , where      ,       and     ,       

are the Young’s modulus and Poisson's ratio for the contact surface and the human 

skin respectively. Due to     >>      , the reduced Young’s modulus is considered 

to be associated with the Young’s modulus of the human skin (Johnson  et al., 1993; 

Adams et al., 2007). With respect to the contribution of skin deformation to the skin 

friction, Greenwood and Tabor (Greenwood & Tabor, 1958) developed a model to 

estimate the friction force that arises from energy dissipated. The expression of 

deformation force is written in the following form: 

                                                                                         (4.4)                               

where    is the viscoelastic hysteresis loss fraction (Greenwood & Tabor, 1958; 

Adams et al., 2007). Combing the equations (4.2) and (4.3), the friction coefficient 

could be expressed as: 

       
 
 

  
 

                                                                                         

  
 

  
 

                                                                                   

        (4.5)                                                                                                                      

The friction coefficient is inversely proportional to the Young’s modulus of the skin.  

 

To measure the Young’s modulus of skin, there are a number of tests that have been 

carried out in-vivo and in-vitro, which can be mainly classified into tensile tests, 

torsion tests, indentation and suction tests (Grahame, 1969; Sander, 1973; Agache, 

1980; Bader & Bowker, 1983; Escoffier, 1989; Barel, 1995; Diridollar, 2000; 

Hendriks, 2005; Geerligs et al., 2011). For example, Oliver & Pharr (1992) proposed 

a method to investigate the global Young’s modulus of skin using load-displacement 

sensing indentation tests. The global Young’s modulus of skin can be calculated by 

the following equation: 
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                                                                                                    (4.6)                

where   is the projected contact area. According to the equation (4.6), the 

corresponding Young’s modulus is expected to increase with increasing stiffness. 

Some experiments were carried out by Geerligs et al. (2011) with a sapphire sphere 

with a radius of 500 µm at various thicknesses of the silicon rubber (in the range of 

50 µm ~ 2 mm) under various loads. The experimental results show that the normal 

stiffness of the rubber decreases as the thickness of the rubber decreases. However, 

the Young’s modulus was found to rise from 1.69 MPa to 3.67 MPa, which is not in 

accordance with Oliver & Pharr’s model (1992). They explained that the difference 

between the experimental findings and theoretical prediction maybe because the 

artificial samples examined were too thin. In the current study, the skin thickness is 

shown to have an influence on the skin friction measured (see Figure 4.11). It can be 

clearly seen that the decrease in the thickness of samples decreases the corresponding 

friction coefficient. It was also found that the stiffness value reduces with increasing 

the thickness of the sample (see Table 4.2). These experimental results are in good 

agreement with the prediction of Equations (4.5) and (4.6). A stiffness of 6.31 N/mm 

was provided by the human finger which is larger than those of 8 mm and 6 mm 

thick artificial samples, hence a relatively larger value of friction coefficient is 

expected for the human finger. However, the corresponding data of friction 

coefficient measured for the human finger provided a minimum value. This could be 

due to the fact that the surfaces of these artificial fingers are smooth and cause larger 

contact areas than that of the human finger covered with ridges. Another possible 

reason for this, though, is the relatively strong adhesion on the surface of finger-pads 

contributing to the friction coefficient. 

 

4.4 Experiment 4: Effects of Gender, Age and Ethnicity on Friction of Human 

Finger 

 

4.4.1 Introduction 

From previous studies on the skin friction coefficient, it is known that the friction 

coefficient varies with anatomical regions of a human body. It is generally 

considered that the skin friction coefficient on hands, forearms and feet are higher 

than those on the abdomen, legs and back (Cua et al., 1990; Zhang & Mak, 1999; 



Chapter 4                            Investigations of the Skin Friction of Human Finger-pads 

73 

 

Sivamani et al., 2003; Derler et al., 2009; Hendriks & Franklin, 2010; Zhu et al., 

2011). The skin friction coefficient also appears to be associated with gender, age 

and ethnicity. For example, Zhu et al. (2011) reported that the skin friction 

coefficient varies with gender as some differences in the friction coefficient were 

found on the canthus and the dorsal hand between females and males.  For the 

influence of age on the skin friction coefficient, Elsner et al. (1999) observed that the 

friction coefficients on the forearm (or volar) for younger women was higher 

compared to that for old women. Numerous studies related to gender, age and 

ethnicity on skin friction coefficient have been conducted, however, few studies have 

addressed human fingers particularly. For a better understanding towards the 

frictional behaviour of human fingers, this section studies how the friction coefficient 

of human fingers is altered with gender, age and ethnicity.  

 

4.4.2 Experimental Procedure 

Twenty-one Asian volunteers (16 females and 5 males) and thirty-one western 

volunteers (16 females and 15 males) were invited to participate in this study, aged 

between 19 to 80 years. The tests were performed on the index fingers of their 

dominant hands using the multi-axis force plate. Each volunteer was requested to 

apply 5 different normal loads (in the range of 2 to 25 N) in order to allow 

calculation of the friction coefficient (from the gradient). Finally a demographic 

survey was completed, including age, gender and ethnicity.   

 

4.4.3 Results and Discussion 

Table 4.3 summarises the friction coefficient data that was collected from the 

dominant index fingers of volunteers. The friction measurement results were 

assessed with respect to gender, age and ethnicity, individually. Figure 4.12 shows a 

scatter plot of the friction coefficient for all participants aged between 19-24 years. 

The analysis of data was divided into parts, gender and ethnicity. There is no 

significant difference found in the friction coefficient with regard to gender for both 

Asian and Westerns. The friction coefficient is also unlikely to be affected by 

ethnicity. The investigation of the effect of age on the skin friction coefficient for 

fingers was done on western males. As shown in Figure 4.13, the skin friction 
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coefficient increases with age up to 40 years. There is a big reduction in the skin 

friction coefficient for volunteers over 60 years of age.  

 

Table 4.3 Friction coefficient data for the index fingers of all participants. 

 

  Asian       Western    
 Age Female SD Male SD Female SD Male SD 

19-24 0.70 0.43 0.76 0.36 0.76 0.58 0.65 0.21 

25-30 0.67 0.74 
    

1.63 0.50 

30-40 
  

1.57 
   

1.72 0.93 

60+ 
    

0.40 0.17 0.57 0.26 
 

 

 
Figure 4.12: A scatter plot shows the friction coefficient for all participants aged between 

19-24 years, the means for each group are indicated by horizontal lines (find the values and 

SD in Table 4.3) 

 

 

 

 
Figure 4.13: The effect of age on the friction coefficient for western male volunteers. 
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The results of above experiments indicate that skin friction coefficient is independent 

of ethnicity and gender. A similar conclusion was also drawn by Sivamani et al. 

(2003) who examined the influences of age, gender and ethnicity on the skin friction 

at volar foearm using a UMT Series Micro-Tribometer (UMT). In addition, Cua et al. 

(1990) reported no significant gender-related difference in skin friction for various 

anatomical regions of the body. However, Tomlinson, et al. (2009) observed a 

different phenomenon. In their studies, the average friction coefficient in 32 

volunteers with three different materials were measured and compared. In the case of 

glass and rugby ball rubber, they found that the skin friction coefficients in males 

were slightly higher than in age-matched females. However, there was no reason 

given to explain the difference. In recent studies, Zhu et al. (2011) conducted a study 

of characterization of skin frictional properties in a normal Chinese population. 

Experimental results of comparison of skin friction coefficient between males and 

females indicated that females aged 31-40 years have relatively high values of the 

skin friction coefficient than that of age-matched males. They attributed this 

difference to the fact that females have higher estrogen levels since estrogen 

replacement can change skin biophysical properties in female aged around 30 years 

(Hall & Phillips, 2005, Man et al., 2009, Xin et al., 2010). Furthermore, there are 

many other possibilities that could cause the difference. For example, in general, it is 

believed that a male’s hand has thick stratum corneum and is relatively stiffer than 

that of female. Therefore, it can be assumed that the male’s skin has a high Young’s 

modulus according to the model of Equation (4.6). A lower friction coefficient is 

expected for a skin with a higher Young’s modulus. The other possible reason could 

be attributed to the different size of finger-pads and skin moisture level difference.  

 

As expected, the effect of age on the skin friction coefficient for human fingers is 

significant. It is observed that the skin friction coefficient for fingers in males 

increases from 0.65 to 1.72 as the age increases from 19~24 years to 30~40 years. 

For the group of 60+ years, the skin friction coefficient reduced to be only one third 

of those aged 30~40 years. A similar conclusion was also drawn by Zhu et al. (2011), 

who investigated the skin friction coefficient at three different anatomical sites of 

body using a large Chinese sampling population. The results of their experiments 

show that the skin friction coefficient for a dorsal hand shows a gradually increasing 

trend with age increase from 0 to 40 years in males. Moreover, there are maximum 
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friction coefficients observed on the canthus and the forehead of females around 40 

years old. These observations are reasonable because the skin friction coefficient is 

strongly associated with skin structure.  

 

With increasing age, the mount of collagen in skin gradually reduces, which results 

in a decrease in the thickness of skin (Shuster et al., 1975). This observation agrees 

with other studies (Escoffier et al., 1980; Takema et al., 1994; Gniadecka & Jemec, 

1998). In the recent studies on skin dynamic properties, the results of indentation 

tests show that the elasticity of skin was 10.7 ± 2.64 kPa for the youngest group, 

which is relatively high than those in the oldest group (7.17 ± 2.06 kPa) (Zahouani et 

al., 2011). However, a different phenomenon was reported by Diridollou et al. 

(2001), who found the thickness of skin on the forearm increases as a function of age 

up to 60 years. There was a significant decrease after 60 years. In their studies, a 

suction technique has been applied to measure the Young’s modulus of skin. The 

experimental results showed that the Young’s modulus of skin in older groups is 

higher than young groups. These differences between the above studies may be 

attributed to the difference in the anatomical sites and measuring techniques used. 

Consequently, we could predict that the corresponding Young’s modulus of skin 

would increase with increasing age leading to a relatively high value of skin friction 

coefficient in old subjects according to Equation (4.6). However, the assumption is 

not applicable for those subjects aged over 60 year. For the 60+ group, it is limited to 

use the thickness of skin as a guide to the change in the friction coefficient since 

there are some other factors involved. Cua et al. (1990, 1995) indicated that low 

levels of the capacitance, trans-epidermal water loss and lipid content contribute to a 

low friction coefficient in elderly people (aged between 72 and 77 years) compared 

to that in young people (aged between 23 and 29 years). Additionally, these changes 

in the Young’s modulus of skin are unlikely in accordance with the model of Oliver 

& Pharr (1992). This might be due to that the standard Oliver and Pharr’s model is 

limited for soft materials with viscoelastic behaviour (i.e. human skin).  

 

4.5 Conclusions 

The studies conducted in this chapter revealed that the multi-axis force plate is the 

most suitable device for the measurement of the skin friction coefficient in our 

research. The relationship between the skin friction coefficient and the normal load 
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was also initially assessed. It was found that, under the high load conditions (>2.5 N), 

the skin friction coefficient tends to be independent on the normal load, as a constant. 

On the other hand, a power-law relationship was suggested to describe the skin 

frictional behaviour of fingers at low load conditions. The friction tests using 

artificial fingers simulated potential correlation between the skin friction coefficient 

and the mechanical properties of skin. In the end, the skin friction coefficient was 

shown to vary with gender, age and ethnicity. More details about the mechanisms 

behind the phenomena observed will be further discussed in Chapter 5.  
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Chapter 5 

 

 

The Contribution of Skin Structure to Skin 

Friction 

 

 

 

 
The frictional behaviour of human skin is not only determined by the complex 

interplay of materials, but also the properties of skin (Derler et al., 2009). The current 

knowledge on the tribology of the skin mainly focuses on skin in touch with various 

materials, however, little is known about the effect of skin properties on friction. It is 

important to characterise this, as it may help explain the wide spread of friction data 

among test candidates (see Chapter 4) under nominally similar test conditions. This 

chapter focuses on the investigation of skin structure on skin friction. To achieve it, 

an AMTI multi-axis force plate combined with an Optical Coherence Tomography 

(OCT) system were used in experiments. In this chapter, the friction behaviour has 

been assessed via the following work: firstly, investigating the potential relationship 

between skin structural properties (i.e. the thickness of stratum corneum and the 

number of sweat glands) and skin friction using the OCT system; secondly, 

measuring skin physical parameters using the “cutometer” MPA 580 and studying 

how the friction coefficient was altered by these parameters. 

 

5.1 Experiment 1: Evaluating the Impact of Various Skin Properties on Skin 

Friction 

5.1.1 Introduction 

The aim of this test was to explain the wide spread of the friction data among test 

candidates by investigating some structure parameters of the skin on their dominant 

index fingers, such as the thickness of the stratum corneum (SC), skin hydration and 

number of sweat ducts (related OCT image analysis has been discussed in Chapter 

3). The measurements were carried out under normal laboratory conditions and at a 
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room temperature of 24°C and a relative humidity of 58%. Seven white male 

volunteers were invited to participate in this study, aged between 22 to 29 years. 

Volunteers were requested to wash their hands and dry them using a paper towel, 

prior to the test. The tests were performed on the index fingers of their dominant 

hands. Firstly images of their fingers were taken using the OCT system. During 

image scanning, volunteers were guided to place their fingers on a work plate and 

facing the lens of OCT. The work plate was attached to mechanical stages for 

adjusting the distance between fingers and lens. In order to obtain the average value 

of the thickness of the stratum corneum, the examined finger pads have to be fixed in 

position to ensure images were taken in the same position. The levels of moisture in 

the skin were recorded in “arbitrary units” (AU) using a “Moist Sense” Device 

(Moritex USA). 

 

5.1.2 Results and Discussion   

The skin and friction related parameters, including the mean value of dynamic 

friction coefficient, number of sweat ducts (SD) in an area of 1 cm
2
, the stratum 

corneum (SC) thickness from all seven participants are shown in Table 5.1. It is 

observed that the number of sweat ducts varies widely between participants. 

Similarly, the measurement of stratum corneum thickness shows a variation between 

participants. The values of friction coefficient ranging from 0.2 to 0.58 were obtained 

in the friction measurements for all participants. There is no significant difference in 

moisture level of skin from participant 1 to participant 5; participants 6 and 7 show 

relatively low values. 

Table 5.1 Skin and friction data for seven human participants. 

Participant Age 
Sweat 

ducts      

(in cm
2
) 

Moisture level  

(± 2 AU) 
Thickness of 

SC  (µm) 
Speed   

(mm/s) 

Friction 

Coefficient           

(> 2 N) 

1 23 940 90 370 12.8 0.38 

2 24 470 89 640 24.8 0.59 

3 25 310 94 440 27.9 1.25 

4 26 470 96 210 16.0 1.44 

5 29 780 95 320 23.6 2.19 

6 24 470 60 320 19.7 0.56 

7 22 1090 72 530 10.1 0.80 
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Figure 5.1: The relations between (a) the thickness of the stratum corneum and the 

corresponding coefficient of friction measured, (b) the coefficient of friction and the 

moisture level of the skin and (c) the coefficient of friction and the number of sweat glands 

in a cm
2
 area (moisture level of skin error ± 2 au (Tomlinson et al., 2010), friction coefficient 

error 0.4% and thickness of stratum corneum SD 6%). 
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Based on previous studies, it was expected that the thickness of the different skin 

layers could be one of the key factors affecting the skin mechanical properties 

(Hendriks, 2005; Geerligs et al., 2011; Agache et al., 1980; Alexander & Cook, 

1976; Bader & Bowker, 1983; Barel et al., 1995; Diridollou et al., 2000; Escoffier et 

al., 1989; Grahame, 1969; Sanders, 1973). The human skin is a multi-layer tissue 

consisting of epidermis and dermis, each of which is endowed with different 

mechanical properties. When subjected to an external force, the skin generally works 

as a whole (Tomlinson et al., 2009). However, in this study, concentration was 

placed on the influence of the stratum corneum on skin friction with consideration of 

the related changes in the Young’s modulus.  

 

Pailler-Mattei et al. (2007) found that the normal stiffness of the skin and the global 

Young’s modulus seem not to be affected by the reduction of the stratum corneum 

thickness. This could be explained by the fact that the thickness of the stratum 

corneum removed was too small (up to 6 µm). However, the lateral stiffness of the 

skin was found to be reduced when the thickness of the stratum corneum was 

reduced by tape stripping. The friction coefficient decreased as a function of the 

thickness of the stratum corneum, which matched well to that of the lateral stiffness 

with respect to the removal of the thickness of the stratum corneum when the first 

micron of stratum corneum was removed. However, no details were given to explain 

what exactly was causing the effect. The research performed by Geerligs et al. (2011) 

with a sapphire sphere on various thicknesses of the silicon rubber, revealed that 

normal stiffness of the silicon rubber reduces with increasing the thickness of the 

silicon rubber from 50 µm to 2 mm. The Young’s modulus of the silicon rubber was 

shown to decrease with increasing the thickness of the silicon rubber respectively, 

which indicates that the friction coefficient of the silicon rubber should increase with 

the silicon rubber thickness. On the basis of this experimental finding, it can be 

assumed that the both normal and lateral stiffness of the thick stratum corneum are 

smaller than those of the relatively thin stratum corneum. Therefore, the Young’s 

modulus of the skin is expected to decrease with increasing the thickness of the 

stratum corneum, leading to a corresponding increase in the friction coefficient of the 

skin. However, Figure 5.1(a) shows a different phenomenon that was not expected, 

where no direct relationship is found between the friction coefficient and the 

thickness of stratum corneum. This phenomenon may be due to the fact that there are 
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too many factors influencing the measurement of skin friction such as skin moisture 

level, participants’ age, gender and sliding speed, etc., the influence of the thickness 

of the stratum corneum on skin friction is difficult to be analysed individually.  

 

Naturally, human skin has an adhesive behaviour due to the hydrolipidic film 

produced by the sebaceous glands present on the skin surface (Pailler-Mattei et al., 

2004). This secretion is not only to destroy bacteria on skin, but also to help maintain 

skin hydration. For dry and smooth surfaces, the friction force of skin was considered 

to be dominated by the adhesion force, so the moisture level of skin is another factor 

needed to be assessed. In Figure 5.1(b), the coefficient of friction shows an 

increasing trend when the moisture level increases, in which the peak value of 

friction coefficient found is around 95 AU. Similar research has been done by 

Tomlinson et al. (2010), who carried out a survey to look at how moisture varied 

between people. They found that the moisture level of the skin varies from person to 

person (in the range of 40 to 99 + AU) and is very sensitive to the environmental 

conditions. However, due to the limitation of their study, the friction coefficient of 

the skin versus natural moisture level was not investigated. The results of their 

further research indicated that the friction coefficient of skin increased significantly 

when artificially increasing the moisture level by wetting the fingers (Tomlinson et 

al., 2010).  

 

Since sweat is one of the main components of the surface film that helps skin 

maintain dampness (Wood & Bladon, 1985), studying the number of sweat glands 

may be a very useful way for predicting the hydration of the skin. In this study, the 

number of sweat glands per     was found to be between 300 and 1000, which were 

slightly higher compared with those results from Juniper & Dykman (1967) and Dinc 

et al. (1991). The number of sweat glands was evaluated by Juniper, et al. using a 

microscope and ranged from 200 to 400 per     (Juniper & Dykman, 1967). In the 

study of Dinc et al. (1991), he used the same OCT method as that described here to 

help count the number of sweat glands. The density of sweat glands was around 150 

to 350 per    . Therefore, the result in the study was considered as reliable data, in a 

reasonable range for participants with varying age, sex and ethnicity.  However, the 

contribution of the number of sweat glands to the moisture level is not significant 

since no correlation is found between them, (see Table 5.1). This is due to the fact 
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that the skin hydration level is determined by not only the perspiration of the skin, 

but also the hydration level of the skin layer. The number of sweat glands seems to 

have little effect on the skin moisture level in its natural state. The inter-individual 

differences of the 7 volunteers could be another possibility for what causes the 

phenomenon. In the case that skin is being hydrated with perspiration, this 

assumption will no longer hold since much sweat is secreted by sweat glands and 

acts as a lubrication layer on the surface of skin. It could be assumed that the 

magnitude of friction coefficient of skin will reduce as the number of sweat glands 

increases, during significant perspiration. Additionally, the measurement of skin 

hydration also can be achieved by monitoring the transepidermal water loss (TEWL) 

that is directly related to its barrier function. Cua et al. (1990) suggested that the skin 

friction strongly depends on skin hydration in most regions of the body. The 

contribution of TEWL to skin friction was observed only in the palm and tight.  The 

results of the study by LodeÂn et al. (1992) indicated that the TWEL tends to 

increase with increasing the capacitance in some area of normal skin. However, there 

was no correlation between the TEWL and the friction in both atopic and control 

group.   

 

5.2 Experiment 2: Detailed Analysis of the Influence of Mechanical and 

Structural Properties on Skin Friction 

5.2.1 Introduction 

As observed above, the skin friction coefficient widely varies from person to person, 

which could be attributed to various skin parameters as well as some human factors. 

It brings challenge to investigating the relationship between each individual 

structural parameter (e.g. the thickness of the SC, the moisture level of skin) and skin 

friction.  In order to avoid the influences of human factors on skin friction, such as, 

age, sex, etc., and mainly focusing on one structural parameter, this test was designed 

based on one participant. The measurements of skin mechanical properties using the 

“cutometer” MPA 580 were carried out by a PhD student (Daniel Gad) at Philips 

Applied Technologies, under my supervision.  
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5.2.2 Experimental Procedures 

Measuring Skin Physical Parameters and Friction 

Studies of how the skin friction coefficient differs with various regions of body were 

done by two series of tests. The first series of tests looked at the mechanical 

properties of the skin. This test was done with the right hand of participant 1 in a 

normal lab condition, where all five fingers and palm were examined. The hand was 

not treated by any chemical or cosmetic products in the 12 hours prior to the 

measurement. The measurements were performed using the time-strain mode that 

can be used to estimate the viscoelastic properties of the skin. A 2 mm diameter 

measuring probe was used, which applied a constant pressure of 500 mbar to the 

skin.  

 

In the second series of tests the friction coefficient and some physical parameters of 

the skin were measured on the right hand of participant 2, with the same positions as 

examined in above mechanical tests. With respect to the friction test, the top of the 

force plate was covered with a 5 mm wide acetal bar that is less than a finger-pad 

width, so that all fingers can experience the same contact area under a certain load, 

since the contact area is one of the key factors influencing the skin friction. As 

observed in Chapter 4, when a low load (< 2 N) was applied to the skin, the surface 

properties of the skin dominate the skin friction. Therefore, this test was done in both 

low load (< 2 N) and high load (> 2 N) conditions to examine the effect of the skin 

mechanical properties on the skin friction, individually.  

 

The Effect of the Superficial Sebum/Sweat on Skin Friction  

As discussed earlier, a thin hydrolipid film covers the surface of skin, which not only 

helps maintain the skin in good condition, but also influences some of its physic-

chemical properties. To investigate the influence of the hydrolipid film on skin 

friction, a simple test was designed, named the tape stripping test. This test was 

carried out on the left index fingers of two participants. An adhesive tape was 

adhered to the finger-pad and peeled off after a few seconds. After that, images of the 

finger-pad using the OCT system were taken and then begin the friction 

measurements were carried out using the force plate.  
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The Effect of the Thickness of Stratum Corneum on Skin Friction 

The aim of this test was to examine the effect of the SC thickness on skin friction, 

since the skin thickness was found to be associated with some mechanical properties 

of the skin (e.g. distensibility). To do this a simple rubbing test was designed and 

carried out on the right middle finger of the two participants. A sheet of fine grade 

sandpaper was used to rub the surface of finger-pads, causing some skin tissue to be 

removed and hence reduce the thickness of the SC. OCT was used to take images of 

the finger-pads to determine startum corneum thickness.  

 

5.2.3 Results  

Measuring Skin Physical Parameters and Friction 

 

The cutometer and OCT results for the first series of tests are given in Table 5.2, 

which shows some deformation parameters (e.g. skin distensibility, elasticity, 

viscosity) with respect to the examined regions of hand, as well as the thickness of 

the SC from OCT. The distensibility of the skin (R0) was found to be strongly 

dependent on the thickness of the skin. There were no significant relationships found 

between the thickness of the SC and other biological ratios, however. 

 

Table 5.2 Cutometer deformation parameters and the thickness of stratum corneum for 

different regions of hand. 

Region of Hand R0 (±SD) R2 (±SD) R5 (±SD) R7(±SD) 

Thickness 

of SC   

(mm) 

Thumb-pad 

Index Finger-pad 

Middle Finger-pad 

Ring Finger-pad 

Little Finger-pad 

Palm 

0.166±0.012 

0.157±0.008 

0.165±0.011 

0.149±0.007 

0.142±0.012 

0.078±0.002 

0.727±0.070 

0.748±0.040 

0.697±0.042 

0.705±0.047 

0.691±0.023 

0.725±0.049 

0.375±0.085 

0.368±0.033    

0.360±0.074 

0.390±0.024 

0.439±0.083 

  0.696±0.073 

0.235±0.032 

0.248±0.027 

0.246±0.043 

0.254±0.015 

0.281±0.032 

0.336±0.037 

0.21 

0.20 

0.20 

0.18 

0.16 

0.13 

R0: the skin distensibility (Uf), R2: gross elasticity of the skin (Ua/ Uf), R5: pure elasticity of 

the skin (Ur/ Ue) and R7: biological elasticity of the skin (Ur/ Uf). 
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Table 5.3 displays some corresponding data of physical parameters measured from 

all five finger-pads and the palm, as well as the friction coefficients at different load 

conditions. The moisture levels among all positions examined were very similar in 

the range of 39~42 AU, except for the ring finger which had a slightly higher 

reading. This was expected since all fingers and palm examined were taken from in 

the same hand of one participant, so they should have similar temperature and 

moisture levels under the same body conditions. It was also observed that the 

thickness of the SC varies among fingers. The thumb and index finger have relatively 

thick SC compared with other regions which are twice as thick as those of the palm. 

This difference may be due to these fingers being nvolved in human daily activities 

frequently, thick SC could help prevent skin from damage or injury.  

 

The measurable roughness of the skin was reported to range from 7 to 30 with 

respect to different regions of the hand. As expected, there was no significant 

difference among them except for the thumb which compared well with the data in 

Childs et al. (2006). Most tested regions of the hand have similar frictional 

behaviours, particularly when they experienced high loads (> 2 N). In this case, 

except the thumb and the ring finger, the magnitudes of the friction coefficient are 

around 0.34. At the low load condition, the friction coefficient showed a higher 

variability among those tested regions compared with that at high load condition, 

ranging from 0.30 for the palm to 0.42 for the ring finger.  

 
Table 5.3 Skin surface properties and friction coefficients for different regions of hand. 

Region of Hand 
Moistsense 

(± 2 AU) 

Thickness of 

SC (mm) 

Roughness 

(µm) 

CoF (N = 1 N) 

 

CoF (N > 2 N) 

 

Thumb-pad 40 0.61 10-30 0.37 0.40 

Index Finger-pad 42 0.63 9.5-16 0.32 0.34 

Middle Finger-

pad 
41 0.54 10-16.5 0.35 0.35 

Ring Finger-pad 44 0.45 7-13.4 0.42 0.43 

Little Finger-pad 39 0.48 8-15 0.33 0.35 

Palm 42 0.27 7-14 0.30 0.34 
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The Effect of Superficial Sebum/Sweat on Skin Friction 

Figure 5.2 (I) shows OCT images obtained from the tested finger-pad of participant 1 

after the tape stripping. The corresponding changes in the structural properties were 

quantified and plotted as described in Figure 5.2 (II), (III) and (IV). As can be seen in 

Figure 5.2 (II), there was a slight reduction on the thickness of the stratum corneum 

(approximate 10 µm) in the first 5 tape strippings, resulting from some dead cells 

(horny substance) and sebum film/sweat being removed. After that, the thickness of 

the SC finally reached a plateau for the rest of the stripping. Unfortunately, those 

changes were too small to be viewed by naked eyes in the obtained OCT images. 

Figure 5.2 (III) shows some corresponding changes occurred on the moisture level of 

the skin after remove of the sebum film on the skin surface. This phenomenon 

displays as a curve and could be explained using two phases. In the first phase, the 

“moistsense” reading was found to drop slightly within the first 6 strippings, after 

that it increases to reach a constant value (65 AU) in the second phase. Figure 5.2 

(IV) displays the friction force against the number of strippings, in which the friction 

force was observed to dramatically increase when 10 µm of the SC was removed, see 

figure 5.2 (V).   

 

In the case of the female, similar phenomena were found in the thickness of the 

stratum corneum, moisture level of the skin (see Figure 5.3), which helped to 

confirm the assumption that only surface sebum and little dead cells were being 

removed by tape stripping. The corresponding results of the friction force shown in 

Figure 5.3 (IV) present a different trend compared to the case of the participant 1 

though. There was a slight drop of 2% in the friction force with 8 tape strippings, 

after that, the friction force was found to rise to 0.36. Moreover, it can be seen that 

the moisture level of participant 2 was relatively low compared in participant 1. This 

may be why the changes in the friction force was not significant in participant 2. A 

linear relationship between the friction force and skin moisture level was also 

observed in participant 2 (Figure 5.3 (V)).  
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(I) 

 

  
            (II)                                                      (III) 

       
                                    (IV)                                                               (V)      
 

Figure 5.2: (I) OCT images of the skin of  the index finger-pad of participant 1 were taken 

with various numbers of tape stripping; plots of the corresponding changes in the thickness 

of the stratun corneum (II), moistsense reading (III) and friction force (IV), as well as the 

relationship between the friction force and the moistsense reading (V). 
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(I) 

 

 
                                   (II)                                                            (III)                                                                                                

 
                                  (V)                                                              (IV)                                                                                      

 
Figure 5.3: (I) OCT images of the skin of  the index finger-pad of participant 2 were taken 

with various numbers of tape stripping; plots of the corresponding changes in the thickness 

of the stratun corneum (II), moistsense reading (III) and friction force (IV), as well as the 

relationship between the friction force and the moistsense reading (V). 
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Figure 5.4 (a) shows that for the measurements of elasticity of the skin in participant 

1, as seen in results, there is no significant change in the elasticity of the skin with 

the tape stripping, as well as the normal stiffness of the skin (Figure 5.4 (b)). The 

general trends in both figures appear to be approximately constant when considering 

the error bar for each point; consequently, it can be assumed that the change of skin 

surface properties related to the tape stripping do not affect its elasticity and normal 

stiffness.   

 

 
 

 

Figure 5.4: Changes in pure elasticity and normal stiffness of the skin at the finger-pad of 

participant 1 for various numbers of tape strippings. 
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The Effect of the Thickness of Stratum Corneum on Skin Friction 

The results refering to the influence of the skin rubbing on the thickness of the 

stratum corneum, the “moistsense” reading and the friction force are summarized in 

Figure 5.5 (participant 1) and 5.6 (participant 2). It is clear to see that the thickness of 

the SC significantly decreases (approximate 0.03 mm in the male and 0.06 mm in the 

female) when the finger-pad is rubbed by sand paper, particularly in first 6 skin 

rubbings (see Figure 5.5 (II) and Figure 5.6 (II)). There was no further decrease with 

increasing the number of skin rubbings from 8 to 12, the reason may lie in the fact 

that the sandpaper was fully covered with skin tissue after being used for a period of 

time and relatively less tissue was removed. In the OCT images (Figure 5.5 (I) and 

Figure 5.6 (I)), the layer of the SC is clearly showed and corresponding changes in 

the thickness with various numbers of rubbings is easily observed by naked eyes, 

which will help validate the data obtained. While it was also found that the skin in 

both subjects gradually becomes relatively smooth. This was attributed to the fact 

that the ridges on the skin surface were worn down by the sand paper. The moisture 

level of the natural skin in participant 2 (approximate 36 AU) was lower than half of 

the moisture level in participant 1 (approximate 91 AU). Furthermore, Figure 5.5 

(III) shows that the “moistsense” reading in the male decreases slightly in the 

beginning, after that it gives a successive increase (from 90 AU to 94 AU) with skin 

rubbing. However, the corresponding results in the female were found to not follow 

the same trend. As increasing the number of skin rubbings, the “moistsense” reading 

increased from 36 AU to 47 AU and decreased to 44 AU. In the friction 

measurements, the friction forces were displayed as a function of the number of skin 

rubbings, which are very similar with those of the skin thickness. The friction force 

was observed to drop by 29% in participant 1 and 34% in participant 2, respectively. 

For example, as can be seen in Figure 5.5 (III), the friction force was 3.5 N for the 

natural skin and reduced to 2.3 N after 6 rubbings with the same normal load applied 

to the skin. The investigations of the relationship between friction force and 

thickness of the stratum cornem indicate that the friction force was dependent on the 

thickness of the stratum cornem as all data points were fitted into linear regression 

lines (see Figure 5.3 (V) and Figure 5.4 (V)). However, the normal stiffness of the 

skin seems not to be effected by the number of skin rubbings according to the results 

in Figure 5.7.  
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    (I) 

 
                                    (II)                                                              (III) 

         
                                  (IV)                                                              (V)                                                                            

Figure 5.5: (I) OCT images of the skin of  the middle finger-pad of participant 1 were taken 

with various numbers of skin rubbing; plots of the corresponding changes in the thickness of 

the stratun corneum (II), moistsense reading (III) and friction force (IV), as well as the 

relationship between the friction force and the moistsense reading (V). 
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(I) 

 
                                     (II)                                                             (III)                                                 

              
                                   (IV)                                                              (V) 

Figure 5.6: (I) OCT images of the skin of  the middle finger-pad of participant 2  were taken 

with various numbers of skin rubbing; plots of the corresponding changes in the thickness of 

the stratun corneum (II), moistsense reading (III) and friction force (IV), as well as the 

relationship between the friction force and the moistsense reading (V). 
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Figure 5.7: The change in normal stiffness of the skin at the finger-pad of Participant 1 with 

skin rubbing. 

 

5.2.4 Discussion 

Scherge & Gorb (2001) suggested that the impact of surface properties dominates 

their friction forces at low force condition (< 1 N).  In order to understand how skin 

friction alters with its surface properties, some parameters of the skin properties have 

been assessed in this study, including skin roughness, skin hydration, the thickness of 

the SC. As can be seen in Table 5.3, the skin friction widely varied between 

anatomic regions tested with low load, compared with that at high load condition. 

This could be explained by the fact that, under low load condition, almost all skin 

parameters make contributions to the skin friction and lead to a large variety. 

However, only few factors affect the skin friction under the higher load conditions. 

By analysing all parameters, it was found that the skin hydration makes a great 

impact on the skin friction at low and high load conditions. For example, by 

comparing the friction coefficient between the ring finger and the little finger, it was 

noticed that the ring finger has a higher value than that of the little finger, due to both 

of them have similar thickness of the SC and surface roughness, therefore it can be 

assumed that there is a potential relationship between the moisture level of the skin 

and the skin friction.   

 

In both tape stripping and skin rubbing tests, the “moistsense” readings of the skin 

show an initial decrease and then increase with removal of the superficial serum and 

the skin tissue. Leveque (2005) and Pailler Matteri et al. (2007) reported that human 
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skin has a gradient of material properties across different layers. A water gradient 

exists through skin layers, which can be attributed to the capabilities of water 

diffusion in internal layers and water evaporation at the skin surface. The changes 

that occurred in the moisture level seem to be related to water gradient in skin layers. 

In the first 5 peelings of tape stripping test, it was assumed that only the serum film 

at the surface of the skin was removed, as no changes occurred on the skin structure. 

Skin becomes drier with the number of tape strippings, so the “moistsense” reading 

obtained from the surface reduced. An increasing trend of the “moistsense” reading 

was found in further stripping (ranging from 8 to 10) and may be due to that the 

numerous extractions of the serum film resulting in a reduction of the thickness of 

the SC when the serum film was cleared way. As skin cell layers were removed, 

those cells beneath the removed cells were exposed and formed a new skin surface. 

Those new cells have relative high water content because they are close to living 

layers, hydrated by water diffusing longer and faster compared with the outmost skin 

cells (Philip & Bozena, 2005). Therefore the “moistsense” reading was found to 

increase as more skin cells removed. This explanation also holds for the case of skin 

rubbing test. Finally, the “moistsense” reading and the friction force reach a plateau 

in both experiments as no more skin tissue was removed.  

 

A significant increase was found in the friction force with tape stripping, particularly 

in the first 10 strippings (Figure 5.2 (III)). As discussed earlier, the frictional 

behaviour of the skin involves an adhesion mechanism and deformation mechanism 

under low load conditions (< 2 N). The deformation mechanism refers to the 

deformation of asperities on the skin surface. However, no significant morphological 

change was found on the skin with the tape stripping except the thickness of the SC 

(see Figure 5.3 (I)). Therefore, it can be assumed that the component of deformation 

mechanism can be neglected and the friction force is only dominated by the adhesion 

mechanism. According to previous research, the biological adhesion between living 

tissues and substrates is considered to be associated with their structures and 

chemical properties (Pailler-Mattei & Zahouani, 2004). Marti et al. (1988) and 

Erlanson et al. (1988) indicated that the adhesion force in most cases can be 

expressed as a combination of electronsatic forces, van der Waals forces, capillary 

forces and forces due to chemical bonds or acid-base interactions. In later studies, 

Scherge & Gorb (2001) found that there are four main contributions to the adhesion 
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force for a silicon model in the micro-range. This observation is applicable for the 

study of the skin frictional behaviour, since both of them appear to behave similarly 

with respect to the friction. Those four contributors to the adhesion force of skin are 

molecular forces, electrostatic forces, capillary forces and forces due to excess 

charge. However, in ambient environments, it is believed that only the molecular 

forces (van der Waals forces) and electrostatic forces play important roles for 

governing the adhesion force, as well as chemical hydrogen bonds. Consequently, in 

this study, the total changes of the friction force can be calculated following the 

equation of Maksić & Thomas (1999), Scherge & Gorb (2001) and Butt et al. (2005): 

                                                                                                   (5.3)                           

where       is the change of van der Waals force,      is the electrostatic force and 

       is the force due to chemical bonds or acid-base interactions. The van der 

Waals force is attributed to a repulsive and/or an attractive interaction between 

molecules. For two flat surfaces, the van der Waals force follows the law of Butt et 

al. (2005): 

      
  

 
  

  

    
                                                                                             (5.4)                            

where    is the van der Waals energy,   is the distance and    is the Hamaker 

constant (equal to                ,   is the constant in the atom-atom potential, 

   and     are the numbers of atoms per unit volume). However, the van der Waals 

force is generally considered as a relatively small force compared with other factors 

in most cases, because the spacing between the solids is not able to be reduced to 10 

nm, because of their rough surfaces (Scherge & Gorb, 2001). According to Equation 

(5.4), there was no significant change on the van der Waals force since the Hamaker 

constant and the distance were not altered with tape stripping. Therefore, it can be 

assumed that the influence of the van der Waals force on the adhesion force can be 

neglected. The electrostatic forces and the force due to chemical bond are the main 

contributors to the change of the adhesion force. 

 

Landau and Lifshits (1960) have proposed a model for measuring the electrostatic 

energy between two different dielectrics (respective dielectric constant    for 

medium dielectric and       for skin). In accordance with this model, the electrostatic 
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force correspond to a electronic charge  , at a distance of   to the interface, is given 

by 

     
    

 
 

   

           
  
        

        
                                                                        (5.5)                              

where    is the dielectric constant of the air (see Figure 5.8). It shows that the 

electrostatic force is proportional to the electronic charge of the dielectrics tested.  

 

 
Figure 5.8: Schematic of the measurement of the electrostatic force.  

 

The electronic charge   on the stripped skin can be calculated with “moistsense” 

reading. The measuring principle of skin “moistsense” reading is one of capacitance, 

with non-electric contact with the skin (Fluhr et al., 1994; Tomlinson et al., 2009). 

                    
    

  
                                                                   (5.6)                                   

where    is the arbitrary constant,   is the capacitance,   is the difference of 

dielectric constant between skin and contacting dielectric        , s is the size of 

sensor surface and    is the distance between negative and positive poles. Since the 

value of  , the contact area ( ) and the distance (   ) are constant, the “        ” 

highly depends on the capacitance, thus the dielectric constant of the skin. The 

surface electrical charge, is defined as      , where   is the potential 

difference (a constant). 

  
        

  
                                                                                        (5.7)                                      

By replacing the term of electronic charge   in Equation (5.5), the model of the 

electrostatic force is given by the following equation:   

     
               

 

           
  
        

        
        

  
        

        
                         (5.8)                       
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Therefore, it can be assumed that the absolute value of the electrostatic force would 

increase when the electronic charge increases due to the increase of the dielectric 

constant of skin. This assumption was verified by the results in Figure 5.2 (V) and 

5.3 (V), where the friction force shows an increasing trend as the “moistsense” 

reading increases from 59 AU to 68 AU. This conclusion was also drawn by Guerret-

Piécourt et al. (2003), who assessed the influence of the electrical charges on the 

friction coefficient of insulating materials using a scanning electron microscope 

mirror method (SEMM). In their experiments, they found that the sapphire’s ability 

for trapping electrons was improved after it was irradiated by UV, leading to more 

electrons being trapped, hence increasing the adhesion force.  

 

In recent studies, Pailler-Mattei et al. (2007) conducted similar tape stripping tests on 

the inner forearm. The results of their experiments show that the adhesion force 

rapidly increases for the first tape stripping, which is in good accordance with data 

presented here. They reasoned that it may be caused by the electrical phenomenon at 

the interface between skin and a probe. In a later study, they used a “fieldmeter” 

device to measure and compare the electric charge on the surface of skin before and 

after tape stripping (Pailler-Mattei et al., 2011). Unfortunately, they did not observe 

any significant change on the electric charge, as well as the physico-chemical 

properties. This could be explained by the fact that unlike human fingers which have 

hydrophilic skin (sebum-rich), the forearm is considered to be hydrophobic skin 

(sebum-poor). There is little sebum or no found at the surface of the forearm. Thus 

the change of the adhesion force seems to be mainly attributable to the removal of 

the SC. Therefore, it is not surprising no correlation was found between the 

superficial sebum and the adhesion force in their studies. However, in the current 

test, corresponding changes on the moisture level of the skin with respect to the 

numbers of tape strippings can be directly observed.  

 

According to Butt et al. (2005), the force due to chemical bonds or acid-base 

interactions formed at the jump-off-contact can be measured by a simple model. It is 

assumed that the chemical bond form randomly and have all the same value of force 

(  ). The total force (      ) for n chemical bonds formed is obtained as follows: 

                                                                                                              (5.9)                        



Chapter 5                            The Contribution of Skin Structure to Skin Friction 

99 

 

where    is a non-specific interaction, depending on the chemical components of the 

interfaces. Elkhyat et al. (2004) have investigated the effect of the 

hydrophilic/hydrophobic balance for both slider surfaces and sliding materials on 

friction coefficient. The results from their tests indicated that friction coefficient for 

the hydrophobic/hydrophobic tribo-pair is relatively lower than those for 

hydrophilic/hydrophobic and hydrophilic/hydrophilic tribo-pairs. For example, under 

similar conditions, the forearm skin (serum-poor) was considered as a medium level 

of hydrophobic surface and exhibits a lower friction coefficient compared with other 

low-level hydrophobic surfaces. However, in the current study, those physico-

chemical properties of the skin (hydrophilicity) and their effects on the skin friction 

related to the tape stripping test cannot be assessed due to limited techniques. 

 

In contrast to the tape stripping tests, the results of the rubbing tests showed that the 

friction force is reduced significantly with skin rubbing, see Figure 5.5 (IV) and 5.6 

(IV). This may be caused by the morphological and structural changes of the stratum 

conreum with skin rubbing (e.g. skin ridges, moisture level and thickness of SC). For 

example, in Figure 5.5 (I), it was found that the ridges at the surface of the skin 

shrink after skin rubbing, which contributes to a relative flat surface of the skin. 

Meanwhile, the thickness of the SC was found to gradually diminish after a few skin 

rubbings, which is validated by the experimental data in Figure 5.5 (II). In general, it 

is believed that the mechanical properties of the stratum corneum cannot influence 

the global mechanical properties of the skin (Pailler-Mattei et al. 2007, 2011). This 

could explain why the mechanical parameters of the skin are independent on the 

thickness of the SC in the “cutometer” measurement except the distensability of the 

skin (see Table 5.2). As mentioned above, the frictional interaction between human 

skin and contacting surfaces is complicated, and involves various mechanisms. The 

skin would experience two different deformations with respect to the normal load 

and shear force respectively when it was sliding against a flat surface. For a better 

understanding of the skin frictional behaviour, deformations in both vertical and 

horizontal directions were analysed and represented by two parameters, the normal 

stiffness (  ) and the lateral stiffness (  ). They can be used to determine the 

Young’s modulus of skin in both directions according to the following relationship 

(Pailler-Mattei et al., 2007; Geerligs et al., 2011): 
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                   (5.10)                      

Wolfman (1983) derived a relationship between the adhesion component of the 

friction coefficient and the Young’s modulus, the equation is given as follows: 

                                                                                                              (5.11)                        

where   is the normal load,   is the reduced Young’s modulus and     is the 

adhesion component of friction coefficient.  As a consequence, the adhesion friction 

can be written as a function of stiffness, as 

        
   

                                                                                                         (5.12)                               

However, in the current test, there was no significant change in the normal stiffness 

after skin rubbing, even though the thickness of the SC was reduced by 25 µm, which 

confirms that the change of the thickness of the SC is too small to affect the global 

mechanical properties of the skin (Figure 5.7). Due to the limitation of techniques, 

particularly the lateral stiffness of the skin was not investigated here. In similar 

studies, Pailler-Mattei et al. (2007) found that both the normal stiffness and the 

lateral stiffness appear to decrease as a function of the stratum corneum removed, 

however. The thickness of the SC had a drop of 6 µm after 30 tape strippings, the 

corresponding adhesion force was observed to slightly decrease as well, expect for 

the first tape stripping, which is in a good agreement with Equation (5.6). As a 

consequence, those observations reveal that the reduction of friction force after skin 

rubbing may be attributed to the reduction of the lateral stiffness of the skin with 

respect to the removal of the SC.   

  

The morphological change of the SC is other reason to for friction force reduction in 

the skin rubbing test. As can be seen in Figure 5.5 (I), those ridges on the surface 

shrink with skin rubbing, thus, the skin becomes more flat, and hence increases the 

contact area between the finger skin and a surface. In fact, this hypothesis was not 

hold for all subjects as the skin surface became rougher instead. Under a normal 

condition, after the outmost layer of skin is rubbed by sandpaper, it becomes brittle 

and scaly, which can be directly observed by the naked eye, particularly in subject 2 

(see Figure 5.6 (I)). Therefore, the contact area should decrease after skin rubbing. 



Chapter 5                            The Contribution of Skin Structure to Skin Friction 

101 

 

Those influences on the friction force with respect to the physico-chemical properties 

of the skin should not be considered, such as chemical bonds, electronstatic forces, 

because it was assumed the superfacial sebum was removed by hand wash prior the 

rubbing test. 

 

5.3 Conclusions 

This chapter introduces a commercial OCT system combined with a “cutometer” 

MPA 580 device to investigate skin properties and related influences on skin 

frictional behaviour. In the first series of tests, it looked at the potential relationships 

between various structural parameters and skin friction. Results showed there was no 

significant relationship between the natural thickness of stratum corneum and skin 

friction, which could be attributed to the fact that there were too many factors 

influencing the measurement of skin friction. The friction coefficient increased 

slightly with increasing moisture level of the skin, however, the moisture level was 

not likely affected by the number of sweat ducts in skin. In the second series of tests, 

a skin rubbing test and a tape stripping test were developed to evaluate the effects of 

skin surface properties on skin friction. In the case of the tape stripping tests, no 

significant change was observed on the thickness of the stratum corneum. It was also 

found that the skin friction coefficient initially increases and then reaches a plateau 

with increasing the number of tape stripping. The moisture level of the skin had a 

significant effect on the friction force as a linear relationship found between the 

friction force and the “moistsense” reading. In the case of the skin rubbing tests, the 

skin friction coefficient was found to have a significant drop with skin rubbing. Two 

different possibilities have been proposed to explain the change: (a) skin became 

smooth as the ridges on the skin surface shrink with skin rubbing and hence 

increased the friction force, (b) the thickness of the stratum corneum was reduced, 

which decreased the lateral Young’s modulus of skin and decreased the friction 

force.  
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Chapter 6 

 

 

Measurements of the Contact Area between 

Finger-pads and Flat Surfaces 

 

 

 

 
From Chapters 4 and 5, it was found that skin friction is not only determined by the 

mechanical properties of finger-pad skin and the applied load, but also strongly 

depends on the contact area (or contact pressure) between finger-pads and contact 

surfaces. Similar conclusions were also suggested by other authors (Bowden & 

Tabor, 1964; Loden et al., 1992; Gulati & Srinivasan, 1995; Han et al., 1996; 

Sivamani et al., 2003; Derler et al., 2009). For example, Bowden & Tabor (1964) 

investigated the effect of load on the friction of polymers, and indicated that the 

contact area is the major factor affecting the friction. They also concluded that the 

friction of visco-elastic materials is ascribed to the adhesion mechanism in the case 

that the tested materials experience slow movements. Furthermore, they derived a 

simple model to explain the relationship between the friction force and the contact 

area, expressed as:        , where   is the shear strength,     is the real area of 

contact. The contact area was shown to be proportional to the normal load applied. 

This observation is in good agreement with the results in other studies (Derler et al., 

2009; Childs, 2006; Warman & Ennos, 2009; Tomlinson, 2009; Soneda & Nakano, 

2010).  

 

For those samples with ridges of hemispherical shape, there are two different 

deformations, i.e. pure plastic deformation and pure elastic deformation, which are 

considered to be involved in the contact area (Archard, 1957; Moore, 1972). The real 

contact area is expected to be directly proportional to the normal load in the case of 

pure plastic contact. Different from the plastic contact, the real contact area is 

proportional to the normal load to the power of 2/3 in the case of pure elastic contact, 
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which is in accordance with the Hertz’s equation. El-shimi (1977) suggested that the 

contact area for visco-elastic materials is likely to be dependent on the elastic 

deformation rather than the plastic deformation. However, Han et al. (1996) 

indicated that the Hertz’s model is only applicable for the case of a hemispherical 

probe sliding on deformable materials. As human fingers do not experience smooth 

spherical contact, Hertz’s model cannot be used to accurately estimate the contact 

area between finger-pads and contact surfaces. They also suggested that the change 

in the contact area with loads follows a power-law relationship. 

 

Although, the investigation of the contact area between finger-pad skin and object 

interfaces is critical for characterising the frictional behaviour of skin, it is difficult to 

measure the real contact area due to the limited techniques available, however. As 

discussed in Chapter 2, human finger-pad skin is not smooth and is covered with a 

pattern of ridges. These ridges do not permit skin to contact surfaces completely, 

even at high load (see Figure 6.1). The objective of this chapter is to experimentally 

investigate both static and dynamic contact areas (macro- and micro- scales) between 

human finger-pads and smooth glass surfaces using various methods, including a 

fingerprint stamping method, an Optical Coherence Tomography (OCT) method and 

a Digital Image Correlation (DIC) method. Since the contact area alters with 

different fingers as well as different contact angles between the finger-pads and 

contact surfaces (Warman & Ennos, 2009; Tomlinson et al., 2007), experiments to 

study the effects of finger angle and different fingers on the skin friction were also 

conducted in this study. 

 

Figure 6.1: (a) the macro-scale of a finger-pad in contact with a flat surface, (b) the micro-

scale of the contact region without load, and (c) the micro-scale of the contact region with a 

load (W) applied. 
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6.1 Measurements of Static Contact Area 

To calculate the static contact area of finger-pads in contact with glass surfaces, the 

fingerprint ink method and the OCT method were employed in this study. Four 

separate sets of tests have been carried out: (a) to investigate the effect of the normal 

load on the contact area, (b) to investigate the effect of the finger angle on the skin 

friction, (c) to measure the contact area at different fingers, (d) to compare the 

fingerprint ink method with the OCT method.  

 

6.1.1 Methods  

6.1.1.1 Finger-print Ink Method    

Experimental Set-up 

As discussed in previous literature (Chapter 2), the fingerprint ink method is one of 

the most common methods that has been used for calculating the contact area of 

finger-pads in contact with flat surfaces. In the current study, measurements were 

performed on the multi-axis force plate (see Chapter 3 for more details). A white 

paper sheet was attached on the top surface of the force plate, which allowed 

participants to record their fingerprints by pressing down stained finger-pads.  

 

Experimental Procedure 

To investigate the effect of the normal load on the contact area, the right index 

finger-pad of a 25 year old female was used. Firstly, the finger-pad was pressed onto 

an ink sponge so that a thin film of ink covered the surface of the skin. The stained 

finger-pad was then pressed onto a white paper sheet at an angle of 25° ~ 40° with 

various loads (in the range of 0.5 ~ 24.5 N) to produce fingerprints. In order to avoid 

ink drying and image blurring, the participant was requested to conduct the test 

quickly. The time delay between finger-pad staining and the contact area 

measurement was approximately 2 ~ 5 seconds. To investigate the effect of the 

contact angles on the contact area, the participant was also asked to repeat the test 

under the condition of various angles, including 15°, 30°, 45° and 60°. Finally, the 

test was repeated by all 5 fingers of the right hand at a 40° angle. All fingerprints 

produced were recorded using a digital camera.  
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Image Analysis 

All fingerprints obtained were recorded using a digital camera and then transferred to 

a PC, and then were analysed using a “Matlab” programme. The total apparent and 

real contact areas were measured respectively, samples of which is shown in Figure 

6.2. The shape of the index fingerprint at angles between 15° and 45° could be 

assumed as an ellipse, in this case, the apparent contact area could be determined 

using the equation:      , where   is the length of the semi-major axis and   is the 

length of the semi-minor axis (Figure 6.2(a)). To calculate the real contact area, the 

images of fingerprints were converted to binary black-white images, in which the 

non-contact region is presented as white and the real contact area refers to the inked 

area (Figure 6.2(b)). The threshold of the image binarization was determined such 

that the boundaries of fingerprints before and after binarization were similar. The real 

contact area was calculated using the sum of the number of black pixels inside the 

outline of the contact zone in binary images (Derler et al., 2009; Soneda & Nakano, 

2010).  

 

                                          
(a)                                                                                      (b) 

Figure 6.2: Images of a fingerprint. (a) made by staining a fingerprint and press it onto a 

white paper sheet, where i and g is length semi-major and minor axis respectively, (b) a 

binary image of (a). 

 

6.1.1.2 OCT Method  

Experimental Set-up 

The Optical Coherence Tomography system provides a new and effective method to 

calculate the actual contact area. A force plate with a glass insert was built to allow a 
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finger press force to be recorded while OCT images were collected (Figure 6.3). The 

glass window is made of optical glass (Quartz Glass) with thickness 1 mm. It is 

transparent, smooth (Ra ≤ 0.01 µm) and relatively stiff (Young’s modulus ≈ 73 GPa).  

In order to reduce the light reflectance from the top surface of the glass window and 

improve the clarity of OCT images, the top surface of the glass plate was angled so 

as not to be perpendicular to the axis of the camera. 2D cross-section OCT images of 

human skin are generally used to study the sub-facial structure of the skin. In the 

current studies, in order to gain contact area data, the multi-slice OCT system that 

can provide 16 slices was applied. In the case of multi-slice scanning, the interval 

between slides in the Y direction was set at 0.05 mm. 

 

 

Figure 6.3: The OCT system used for producing skin images. 

 

Experimental Procedure 

The experiments were done using the same finger used in the fingerprint stamping 

method. Due to the fact that the OCT system is limited to imaging a 4 ~ 6 mm wide 

rectangle of human skin, four different regions of the finger-pad were selected to 

estimate the real contact area between the finger-pad and contacting surfaces (see 

Figure 6.4). The participant was requested to wash her hands and dry them using a 

paper towel, prior to the test. The participant was then guided to press her index 

finger-pad against the glass window with the various loads. The angle between the 

finger-pad and the glass window was controlled to be between 25° and 40°. During 

the process, the index finger was fixed and not allowed to move away from the glass, 

which helped to ensure that the images of finger pad skin were scanned from the 



Chapter 6                            Measurements of Contact  Area 

107 

 

same position. In order to compare these two different methods, the corresponding 

data with respect to the same tested positions on the finger-pad were also measured 

using the fingerprint stamping method.   

 

 
                                    (a)                                                         (b) 

Figure 6.4:  (a) Four different regions of the right index finger-pad were selected for 

comparing the OCT method, and (b) the fingerprint stamping method. 

 

 

Image Analysis 

An example is given to explain how to determine the real contact length from a 2D 

OCT skin image. As seen in Figure 6.5(a), an OCT image of a finger-pad was taken 

from an unloaded index finger, in which the ridges were clearly observed at the 

surface of skin. The finger-pad was then loaded against the glass insert, the grooves 

between the ridges on the surface shrank and the surface of the finger-pad became 

smoother. These flat portions caused by the deformation of skin ridges were 

considered to be the contacting region (see Figure 6.5(b)). The measurement of the 

real contact length in the 2D image of skin was in accordance with the sum of 

lengths of flat regions in ridges,        
 
        , where     is the real contact 

length,     is the total contact length and    is the contact length for individual ridge, 

as shown in Figure 6.6. The measurements were conducted using the ruler in the 

image tools of “Matlab”. In the case of multi-slice images of skin, the sample 

interval was set 0.05 mm between each slice. Therefore, the real contact area for a 

single slice could be estimated by multiplying the real contact length (   ) by the 

sample interval. The total real contact area was in accordance with the sum of real 

contact areas from all slices,              
 
   . 
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                                           (a)                                                                                      (b)  

Figure 6.5: 2D OCT images of a finger, (a) in nature state (no load applied), (b) in contact 

with a glass plate (0.2 N load applied). 

 
 

 
Figure 6.6: Schematic diagram of finger-pad loaded against a glass insert. 

 

 

6.1.2 Results and Discussion 

6.1.2.1 The Effect of the Normal Load on the Contact Area 

Figure 6.7 shows some images of fingerprints that were taken from the same index 

finger-pad under different loads. In this study, the apparent contact area of a finger-

pad refers to the size of the fingerprint, and the real contact area depends on the 

mount of black ink. By comparing these eight images, it can be found that the 

apparent contact area has an increasing trend with increasing load, particularly in the 

first four images (from Figure 6.7(a) to 6.7(d)). These changes in the contact area 

(i.e., apparent and real contact areas) have been quantified and plotted in Figure 6.8. 

In order to study the effect of the normal load on the contact area in detail, these 

fingerprint images were divided into two groups considering the level of load applied, 

which is also believed to be helpful for explaining the two-part relationship of skin 

friction obtained (see Chapter 4).   
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Figure 6.7: Binary images of fingerprints varying with loads, (a) 0.47 N, (b) 0.66 N, (c) 1.02 

N, (d) 1.50 N, (e) 2.82 N, (f) 6.07 N, (g) 12.81N and (h) 24.46 N. 

 

Four different relationships between the contact areas and the normal load were 

plotted in Figure 6.8 (a) and (b) (i.e. apparent and real contact area at “low” and 

“high” load conditions). With respect to the low load condition (< 2 N), as increasing 

the normal load, the results showed a 68% increase (from 78     to 130    ) in 

the apparent contact area and a 156% increase in the real contact area (from 16     

to 39    ). As expected, the change in the apparent contact area at the high load 

condition is relatively smaller (a 30% increase) compared to that at the low load 

condition. The power-law line regression of the real contact area seems not to be 

affected by the normal load due to no significant difference being found for both low 

and high load conditions. The increasing trends for all contact areas were found to 

obey the power law: 

                                                                                                                        (6.1)                         

where   is the normal load and   is the exponent of   (constant). As suggested by 

the equation, at the low load condition, the real contact area was found to depend on 

the normal load to the power of 0.66, while the apparent contact area was found to 

depend on the load to the power of 0.41. The corresponding data were found to be 

0.41 for the real contact area and 0.11 for the apparent contact area. A power law 

dependence between the real contact pressure (was calculated by dividing normal 

loads by real contact areas) and the normal load with an exponent of 0.66 was also 

found in Figure 6.9. The coefficient of determination (R
2
) is around 0.96. 
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Figure 6.8: Both the apparent (blue cross) and the real contact area (red circle) between the 

finger-pad and paper sheets measured as a function of the normal load: (a) under “low load” 

conditions (< 2 N), (b) under “high load” conditions (> 3 N). 
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Figure 6.9: Variation of the real contact pressure with normal loads. 

 

 

 

As discussed earlier, human skin is a heterogeneous, anisotropic and a non-linear 

viscoelastic material. Owing to these unique properties, it allows more skin tissue to 

come into direct contact with a surface and hence the apparent contact area increases 

with increasing load. Figure 6.8 shows that the apparent contact area has a rapid 

increase at the low load condition and it reaches a plateau (approximately 200 mm
2
) 

at the high load condition. This observation could be explained by the stress-strain 

behaviour of the skin (see Figure 6.10). In the case that low magnitude loads are 

applied to human skin (phase II), the collagen fibres in the skin will be straightened, 

and result in large deformations, which is reflected on the steep increase of the 

apparent contact area. When the external load goes up to a certain level, the stress-

strain relationship tends to be linear due to the fact that skin gradually approaches its 

maximum capability of extension, becomes stiff, and leads to small deformations 

(phase III). Therefore, there was no significant change observed in the apparent 

contact at the high load condition. The real contact areas obtained in both cases show 

different phenomenon compared to those of the apparent contact areas. Due to the 

fact that the real contact area is related to the junctions of the skin asperities and a 

surface, the real contact area will keep increasing because of the deformation of 

asperities on skin surface, though the apparent contact area no longer changes under 

the condition of a certain load.  
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Figure 6.10: Stress-strain curve for human skin (Tomlinson et al., 2007). 

 

As suggested by Hertz (1882), the contact area for no-linear elastic materials  would 

be expected to increase with the normal load to the power of 2/3, and is given by the 

expression: 

     
   

   
                                                                                                            (6.2)                           

where R is the radius of the sphere and E is the reduced Young’s modulus. In general, 

it is believed that human skin exhibits similar mechanical properties to those of the 

rubber. Therefore, the Hertz theory has been widely used to estimate the contact 

mechanism of human skin. For example, Tomlinson (2009) modified the Hertz 

contact model in order to determine the contact area between human fingers and a 

flat surface. With respect to her new model, R was assumed to be the radius of the 

finger, E was the reduced Young’s modulus  
        

  

     
,       is the Young’s 

modulus of human skin (approximately 0.49 MPa) and       is the Poisson’s ratio of 

human skin (approximately 0.5). A similar model was also proposed by van 

Kuilenburg et al. (2012), they found that the apparent contact area depends on the 

normal load to the power of 0.36. In the current study, a comparison between the 

estimated contact areas calculated using different Hertz models and the experimental 

data obtained in this study has been made (see Figure 6.11). In the case of constant 

Young’s modulus, it can be seen that the results of Tomlinson and van Kuilenburg 

show a similar linear behaviour. The value of the exponent for the current 

experimental data (0.22) is much smaller than 2/3, which is in a good agreement with 

the experimental results of Han et al. (1996). They have investigated the contact area 
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between human fingers and a transparent acrylic board using a CCD camera and 

found that the corresponding exponent value ranged from 0.2 to 0.4. They reasoned 

the Hertzian contact theory is not suitable to calculate the contact area as human 

fingers do not experience spherical contact. This assumption was evidenced by 

Figure 6.8 in the current study. In the study of Xydas & Kao (1999), they found that 

the corresponding exponent values of their experiments were found to be 0.55 for 

rubber fingers, 0.51 for silicon fingers and 0.09 for real fingers. Moreover, they 

indicated that the Hertz model is a linear elastic model and since human skin exhibits 

as a non-linear elastic material involving large deformations, the Hertz model with 

constant Young’s modulus could not be used to describe the contact mechanism of 

human fingers. A similar conclusion was also drawn by Tomlinson (2009), they 

found that the area of contact calculated using vary Young’s modulus and their 

experimental data show similar change trend with some minor difference. 

 

Figure 6.11: Variation of the relationships between the apparent contact area and the 

normal load for different methods. 

 

Soneda and Nakano (2010) have conducted a similar study of contact area using the 

optical method. They found that both the apparent and real contact areas increased 

following the power law (Equation 6.1) when the load increased. The dependence of 

the apparent contact area (  ) was 0.52 ± 0.06 and the real contact area (   ) was 

0.68 ± 0.09 for load between 0.1 N and 5 N. A similar observation was also reported 
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by Warman and Ennos (2009), who indicated that the apparent contact area rose with 

the normal load to power between 0.54 and 0.85 for all five fingers under the 

condition of a load less than 2 N and the real contact area was about 66.7% of the 

total perimeter area. These results appear large in contrast with the results of the 

current study. In the current study, under the low load condition, the corresponding 

exponent of     was 0.41 and the exponent of     was 0.66.  Increasing the normal 

force, the exponent of     reduced to 0.11 and 0.46 for the exponent of     . These 

wide variation ranges in the exponents for both    and     among the above studies 

could be attributed to several possibilities. The first possibility is that the results in 

the experiments of the fingerprint ink method were inaccurate due to these 

drawbacks of ink spread, noise effect, threshold setting, etc. The second possibility 

may lie in the difference among various tested subjects and finger-pads. 

Environmental conditions, such as temperature and humidity, test materials, and 

performing angle will also influence the results.   

 

In the recent study carried out by Derler et al. (2009), who looked at the effect of the 

normal load on the apparent contact areas for both the edge of hand and a finger 

using a CCD camera. The experimental data points for each anatomical site were 

fitted into a polynomial equation:                  , where  ,  , and   

were constant. They found that there are steep initial increases on the apparent 

contact area with load for both anatomical sites (between 1 N and 8 N). After that, 

the apparent contact area reached a plateau with maximum value of about 4 cm
2
 on 

the index finger and 15     on the edge of the hand, respectively. Although they 

applied a polynomial model to describe the relationship between the apparent contact 

area and the normal load, rather than a power-law model, their trends of changes are 

consistent with the results of the current study. In addition, the maximum apparent 

contact for the finger was found to be slightly larger than the results obtained (ranged 

from 1.3 cm
2 

to 2.9 cm
2 

with respect to different fingers) in the current study (see 

Figure 6.11). This difference could be attributed to the fact different finger-pads were 

examined in these two tests. 
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6.1.2.2 The Effect of the Finger Angle on the Contact Area and Skin Friction 

Figure 6.12 shows four fingerprints of an index finger that were taken at four 

different angles (i.e. 15⁰, 30⁰, 45⁰ and 60⁰), where the fingerprints at the angles of  

15⁰ and 30⁰ appear to be elliptical shape and gradually turn to round shape when the 

angle increases to 45⁰ and 60⁰.  Moreover, it was also found that, under the same 

load conditions, the apparent contact area of the fingerprint reduces when increasing 

the finger angle.  

 

Figure 6.13 displays the relationships between the friction force and the normal force 

with respect to all four angles, which are presented by the linear law:       , 

where   and   are constant. The values of    were in the range of 0.93 and 0.98. 

According to the findings in Chapter 4, it is known that the skin friction obeys a 

linear regression model at the high load condition, thus the slope of   was assumed 

to be the friction coefficient. The magnitude of the slope ( ) shows a slight decrease 

when increasing the contact angle from 15⁰ to 45⁰. The minimum value of friction 

coefficient was found at the angle of 60⁰.  

 

 

Figure 6.12:  Index fingerprints obtained at different angles, (a) 15 degree, (b) 30 degree, (c) 

45 degree and (d) 60 degree. 
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Figure 6.13: The relationship between the normal force and the friction force for four 

different finger angles. 

 

As observed in Figure 6.12, the magnitude of the slope ( ) has the highest value 

(0.64) at the angle of 15⁰ and decreases to 0.27 when the angle rises to 60⁰, which is 

in good agreement with expectation that the increase in the angle between a finger 

pad and an object can reduce the friction coefficient. The friction coefficient is 

intimately associated with the contact pressure as expressed:     , in which   was 

-0.67 (Derler et al, 2008). As the finger angle is increased by the uplift of a finger 

and the contact region (apparent contact area) is reduced due to less and less tissue 

coming in contact with objects. The decreased contact areas result in an increase in 

the contact pressure under the same condition of load, so that the coefficient of 

friction increases. The other possibility is that the front part of the finger-pad is 

stiffer with less tissue. As increasing the finger angle, the finger-pad involved in 

contact became stiffer, and resulted in high Young’s modulus and low skin friction 

coefficient. Han et al. (1999) have investigated the friction behaviour of skin under 

various conditions. They found that the exponent of the contact area equation ranges 

between 0.2 and 0.4 for three different angles (30°, 45° and 60°). The exponent value 

showed a decreasing trend when the finger angle increased from 30⁰ to 60⁰, a similar 

phenomenon was also found for the coefficient of friction. The results relating to 

friction coefficient in both studies were very similar. Han et al. (1999) indicated that 

the relationship between the contact pressure and the dynamic friction coefficient is a 

continued decreasing curve line. However, due to the technical restriction in the 
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current study, the dynamic friction coefficient could not be measured with the 

contact area at the same time.  

 

6.1.2.3 Contact Areas for Different Fingers 

Table 6.1 shows the experimental results of the maximum normal load, the related 

apparent contact area and the coefficient of skin friction at 45 degree for all fingers. 

It can be observed that the thumb has the largest value of the apparent contact area, 

and its corresponding load to achieve the maximum apparent contact area is also 

largest compared with other fingers. The minimum apparent contact area was found 

in the little finger. The maximum skin friction coefficient was found in the thumb, 

followed by the ring finger, the middle index finger and the little finger, which is 

exactly the same as the order of the apparent contact area, except the ring finger. The 

normal load applied in the measurement of skin friction ranged from 3 to 12 N.  

Figure 6.14 displays how the apparent contact area changes with the normal load for 

all five fingers. It can be seen that the apparent contact area is unlikely to be affected 

by the load at the high load condition, which matches well to the observations in 

Figure 6.8.  

Table 6.1: Experimental results of 5 fingers using the ink printing method. 

Fingers 
Mean Apparent 

Contact Area (cm
2
) 

Normal Force  for 

Maximum Apparent 

Contact Area (N) 

Coefficient of 

Friction (µ) (load 

> 3 N) 

Thumb-pad 2.88 15.2 0.47 

Index Finger-pad 1.35 3.1 0.36 

Middle Finger-pad 1.97 11.9 0.41 

Ring Finger-pad 1.71 3.6 0.44 

Little Finger-pad 1.27 3.4 0.34 

 



Chapter 6                            Measurements of Contact  Area 

118 

 

 

Figure 6.14: The data of the apparent contact area obtained from all five fingers with 

various loads. 
 

As discussed above, the contact area between human skin and contacting surfaces is 

considered closely associated with the fingers’ physiological structures. In general, 

thumb has the largest finger-pad and is followed by middle finger; no significant 

difference exists between index finger and ring finger, and little finger has the 

smallest finger-pad. Therefore, it is not surprised to observe a similar trend of change 

in the apparent contact areas (Figure 6.14). By analysing the data in Table 6.1, it was 

also found that the skin friction coefficient varies from finger to finger in the same 

hand, which follows the same order of the apparent contact area related, except the 

ring finger. From the findings in Chapter 5, it is known that the skin moisture level in 

the ring finger is relatively higher compared to other fingers. This is the reason why 

the ring finger, with a smaller contact area, presents a larger skin friction coefficient 

than that of the middle finger with a relatively larger contact area. The above 

observations reveal that the skin friction of fingers strongly depends on the contact 

area. However, different results were reported by Warman & Ennos (2009) in similar 

studies. The results of their tests seem not to agree with the conclusion that the 

friction coefficient of a human finger-pad is mainly determined by the contact area. 

They found that the largest friction coefficient was found in little finger followed by 

thumb, index finger, middle finger and ring finger; the maximum contact area was 

found in the index finger, however. Unfortunately, no detailed analysis was given to 

explain this phenomenon.  
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6.1.2.4 Comparison of Different Methods 

The OCT images of the finger skin in Figure 6.15 show that the flattening of the 

finger ridges as increasing levels of pressure were applied. Therefore, the real contact 

area would be expected to rise as the load increase due to more and more skin tissue 

coming into contact with the glass.   

 

 

Figure 6.15: 2D images of finger skin with different levels of pressure applied on: (a) 0 

N, (b) 0.7N (c) 3N and (d) 10N. 

 

 

A power-law relationship was applied to describe the ratio of the real contact area to 

the apparent contact area as a function of the normal load, with the coefficient of 

determination (Figure 6.16). Figure 6.16 displays the experimental results that were 

measured in four different positions on the examined finger-pad, in which, with 

increasing normal load, the ratio of the real contact area to the apparent one was 

found to increase by approximately 20% for the OCT method, and 10% for the 

fingerprint stamping method.  

 

Table 6.2 shows some parameters of the power-law relationship between the ratio of 

the real contact area to the apparent one and the normal load obtained from both 

methods. The exponent   was found to range from 0.12 to 0.20 for the OCT method 

and from 0.40 to 0.66 for the fingerprint stamping method depending on different 

positions. With respect to the coefficient of determination, the OCT method presents 

a high correlation between the ratio of the real against apparent contact area due to 
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the values of (R
2
) varying between 0.8 and 1 for all different positions. In contrast to 

the OCT method, the corresponding values of (R
2
) obtained from the fingerprint 

stamping method are relatively small, thus a weak correlation between these two 

variables would be expected.  

 

 
 

 

Figure 6.16: Ratio of the real contact area against the apparent contact area with load at 

four different positions: (a) OCT method and (b) fingerprint stamping method. 
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Table 6.2: Some parameters of the power-law relationships between the ratio of the real 

contact area against the apparent contact area and the normal load obtained from both 

methods. 

position 

OCT method Fingerprint stamping method 

constant 

(e) 

exponent 

( ) 

coefficient of 

determination 

(R
2
) 

constant 

(e) 

exponent 

( ) 

coefficient of 

determination 

(R
2
) 

position 1 

position 2 

position 3 

position 4 

0.6293 

0.5681 

0.5747 

0.5873 

0.1997 

0.1481 

0.1225 

0.1681 

0.8022 

0.9973 

0.9774 

0.976 

0.2062 

0.1888 

0.2661 

0.2516 

0.3132 

0.2911 

0.4211 

0.1533 

0.555 

0.4608 

0.6629 

0.3953 

 

 

There have been several studies measuring the real contact area of finger skin in 

contact with objects and involved different techniques such as the fingerprint ink 

method (Childs & Henson,  2006; Warman & Ennos, 2009; Tomlinson, 2009), the 

electrical resistance method (Tomlinson, 2009), optical methods (André et al., 2008; 

Tomlinson, 2009; Soneda & Nakano, 2010), etc.  The fingerprint ink method is the 

most common method used at the moment. Tomlinson (2009) conducted 

investigations of contact area for fingers interacting with various materials using 

three different methods. In the experiment of the fingerprint ink method, the contact 

area of the examined finger was reported to increase with load following a linear 

relationship, and the ratio of the ridges area to the total area was between 0.38 and 

0.5. In the similar studies of Childs & Henson’s (2006), they found that the apparent 

contact area increases with load (up to 2 N) to the power of 0.2. The percentage of 

the real contact area to the apparent contact area was found to increase with load as 

well. The ratio was 12% at the load of 0.41 N, increased to 34% when the load rose 

to 1.77 N. These results are very similar to the results in the current study. As can be 

seen in Figure 6.16 (b), the results of the ratio were fitted into a curve regression. The 

percentages of the real contact area to the apparent contact area were found to be 

around 0.15 for 0.5 N, and 0.3 for 2 N. These results were also in good agreement 

with the experimental results from the experiments of Soneda & Nakano (2010), who 

developed a device based on light reflection for investigating the contact mechanism 

of human fingers. The principle of the measurements of the apparent contact area and 
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the real contact area relates the morphology of the finger skin. They found that the 

mean value of  
   

  
 was 0.3 at a contact of 1 N.   

 

In contrast to the above results, the OCT method shows a relatively higher 

percentage, about 0.45 for 0.2 N and 0.60 for 1.2 N. This difference is probably due 

to the over-estimated real contact length measured between finger skin and the glass 

window in the OCT tests. In the OCT tests, the measurement of the real contact area 

was done by manual observation. Due to the fact that there was strong light 

reflectance on the superficial of the stratum corneum considerable affect the 

measurement results, the experimental results measured were considered inaccurate. 

As discussed above, there are many disadvantages to apply the fingerprint ink 

method for measuring the contact areas of fingers, including ink spread, noise effects 

and threshold value setting. It can be assumed that the area of ink coverage would 

increase due to ink spread, and can result in a large real contact are. On the other 

hand, some amount of ink coverage might be lost due to inappropriate choice of 

threshold value setting in image processing. This might account for the reason why 

the ratios of the real contact area to the apparent contact area are smaller for the 

fingerprint ink method than those of optical experiments.  

 

The limitation of the OCT technique related to the measurement of contact area is 

that the scanned area of the finger-pad (4 mm × 0.8 mm) was so small that it cannot 

be used to estimate the contact areas of whole finger-pad. However, in contrast to 

other methods, the OCT technique provides an accurate method for examining the 

internal micro-structure of skin that could help to predict the changing trend in the 

real contact area of finger-pads. In this study, we have compared the OCT method 

and the fingerprint ink method (see Figure 6.16). In the OCT tests, the experimental 

results show the linear regression models with respect to four different positions 

perform higher similarities than those in the fingerprint ink tests. Additionally, it was 

noted that the corresponding coefficient of determination (R
2
) related to these linear 

regression models obtained are ranged from 0.8 to 1 for the OCT tests, 0.40 to 0.66 

for the fingerprint tests. These strong correlation relationships between variables in 

Table 6.2 reveal that the OCT method provides more accurate experimental results 

than use of the fingerprint ink method. 
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6.2 Measurements of Dynamic Contact Area 

The work outlined in the above sections described various methods for measuring the 

contact area (i.e. the apparent contact area and the real contact area) statically. 

However, all experimental results are static state data that were measured for fingers 

held against surfaces. These data are limited in terms of characterising the dynamic 

frictional behaviour of human fingers. This section introduces two different 

approaches to measure the dynamic contact area between fingers and contacting 

surfaces. Furthermore, the relationship between the dynamic contact area and friction 

coefficient will also be analysed.  

 

6.2.1 Experimental Details 

6.2.1.1  OCT Tests 

The in-vivo experiments were conducted on the right middle finger of a 25 year old 

female using the OCT system (details have been discussed in Section 6.1.1.2) and the 

multi-axis force plate combined with a linear positioning stage (Reliance Precision 

Mechatronics) (see Figure 6.17). Measurements of dynamic contact were carried out 

by sliding the multi-axis force plate with a glass plate insert against the finger. 

During the measurements, the subject was requested to hold the tested finger against 

the glass plate and face up to the lens of the OCT system. The finger was not allowed 

to move away from the glass plate. The frame rate of the OCT system was about 2.5 

slices per second. 

 

Figure 6.17: Schematic representation of the linear stage combined with the multi-axis force 

plate. 
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6.2.1.2  DIC Tests 

A Digital Image Correlation system (DIC) (for more details, see Chapter 8) based on 

the principle of light reflection was also introduced to measure the dynamic contact 

area. The experiments were carried out with the same finger as in the OCT tests. The 

tested finger was stained with random back-spots on its surface; in this case, the 

contact condition between the finger-pad and the glass window could change. In the 

current study, the effect of the painted spots on measurements is considered to be 

relatively small and can therefore be neglected. The left image (Figure 6.18) is a 

reference image that is generally used for calibration. The middle DIC image was 

recorded for the middle finger in contact with the glass window. It can be clearly 

seen that there is a bright ellipse region on the finger-pad, which is considered as the 

contact region between the finger-pad and the glass window. This bright region 

might appear because pressing fingers onto objects hard causes the blood flow in the 

finger-pad to be cut so, the skin on the contact region of the finger-pad becomes 

relatively pale compared to other normal anatomical sites. In order to quantify the 

size of the bright ellipse region, the image is modified by enhancing the contrast. In 

the enhanced image, the contact area can be easily traced by a yellow line (Figure 

6.16 (c)). The results of the contact area measured are in pixels, therefore, they need 

to be converted to mm
2
 (1 pixel = 2.5Χ10

-3
 mm

2
).  

 

 

Figure 6.18: DIC images of the middle finger-pad: (a) a reference image, (b) an image for 

the finger pressing against the glass window and (c) an enhanced image of (b). 
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6.2.2 Results and Discussion 

6.2.2.1 OCT Tests 

Figure 6.19 shows two OCT images of the finger in contact with the glass under 

different contact conditions.  During the preloading phase (static phase), the finger 

ridges came into contact with the glass surface, as shown in Figure 6.19 (a). It can be 

seen that the skin does not completely contact with the glass plate as some gaps were 

found between the skin and the glass plate. As the finger started to move against the 

glass plate, a friction force that rose from the relative motion and acted a surface drag. 

The friction force resulted in a large real contact area between the skin ridges and the 

glass as the finger ridges were diminished and the skin became smooth (see Figure 

6.19 (b)).  

 

 

Figure 6.19: OCT images of finger skin in contact with the glass (gap between the skin and 

the glass plate was marked by red circle), which were obtained from (a) static phase and (b) 

dynamic phase. 
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6.2.2.2 DIC Tests 

Figure 6.20 shows a schematic diagram of a finger moving along a glass plate. DIC 

images of the tested finger-pad were collected at different positions. Figure 6.21 

displays the corresponding plot of the friction force and the normal force obtained 

from the multi-axis force plate during finger sliding, as well as some correlated DIC 

images of the finger-pad. In these DIC images, the direction of finger movement 

across the glass window is shown by a blue arrow. Meanwhile, the contact regions 

on the finger-pads were also traced by dashed lines with respect to different stages of 

movement. 

 

    

Figure 6.20: A schematic diagram showing that DIC images of a finger-pad (from P0 to 

P15) were taken from different positions when the finger moving along a glass plate: P0-P5 

were collected from the pre-movement period, P6 was taken from the point that the finger 

started to move, and P9-P15 were taken from the movement period. 
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Figure 6.21: Graph showing the data of the friction force and the normal force, as well as 

the correlated finger-pad images from the DIC system. 

 

 

These experimental results and images were divided into a static phase (adhesion) 

and a dynamic (slip) phase (Figures 6.22 and 23). Each phase has been assessed 

individually. Figure 6.22 shows the experimental results of the apparent contact area 

as a function of time for the finger sliding over the glass window at a constant 

normal force 6 ± 0.5 N. In the static phase, the contact area is found to decrease from 

230 mm
2
 to 214 mm

2
. However, there was no significant change observed in the 

contact area with time in the dynamic phase. Figure 6.23 shows the time-dependent 

evolution of the friction force during the same period of Figure 6.22. The friction 

force was found to gradually increase before sliding began at around 4.9 s. After that, 

the finger started to slip with a constant friction force of about 4.8 ± 0.2 N. 
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Figure 6.22: The apparent contact area as a function of time for an middle finger 

sliding along a glass window (mean values ± SD). 

 

 

 
Figure 6.23: The friction force as a function of time for an middle finger sliding 

along a glass window (mean values ± SD). 

 

Recently, André et al. (2008) conducted some experiments to investigate the contact 

mechanism of human fingers in contact with a smooth glass surface during the 

transition from the stuck contact to full slip, under dry and wet conditions. These 

experiments were performed using an optical fingerprint recording system combined 

with a force sensor, in which the areas of contact regions on finger-pads were present 

as ellipses. The experimental results showed that the normalized contact area 

between the examined fingertip and the prism varies with subjects. As the normal 

load was increased from 0.2 N to 10 N, the normalized contact area was increased by 

a factor of three. They also found that there is 12.5% decrease in the horizontal 

ellipse axis with time at a constant normal force of 5 N, which revealed that the 
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normalized contact area was decreased by 6.25. They suggested that the decrease in 

the normalized contact area during preloading may be due to the initial deformation 

of skin. These observations are in good agreement with the results of our studies. 

Figure 6.22 shows that the apparent contact area has a decrease of 7% when the 

middle finger moves along the glass window during the transition from the static 

phase to the dynamic phase. Owing to the increase in the friction force due to 

adhesion, the skin on the surface of finger-pads was stretched in the same direction 

of finger movement (lateral direction), which results in a decrease in the dimension 

of the contact region in the horizontal direction. However, no significant change 

occurred in the lateral dimension of the contact regions. With respect to more 

information about the deformation on skin surface of finger-pads responded to 

friction force, it will be discussed in Chapter 8.  

 

From previous studies, it is noted that the friction of skin is assumed to be only 

associated with an adhesion mechanism in the case of fingers in contact with dry and 

smooth surfaces, while the deformation is normally ignored (Wolfram, 1983; 

Johnson et al., 1993; Adams et al., 2007).  The friction force is generally reported to 

be proportional to the real contact area. Therefore, we can assume that as the real 

contact area on fingers decrease, the friction force of skin will decrease. However, in 

the current study, the experimental results obtained are the apparent area of contact 

between human finger-pads and surfaces, which could not be used to estimate the 

friction force based on the above theory. Terekhov & Hayward (2011) have 

developed a simple numerical model to characterise the friction force between a 

fingertip and a flat surface in the stick-slip transition. This model is given by: 

       
               

                                                                            (6.3)                      

where   
  is the stick ratio of the struck region area to the total contact area (between 

1 and 0);    is the dynamic friction coefficient; and        is the traction in the stuck 

area and is given by: 

        
    

   
      

                                                                                          (6.4)                         

where    is the static friction coefficient. By adding Equation (6.4) to Equation (6.3), 

the model could be simplified as: 

           
     

 
        

                                                                   (6.5)                       
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From Figure 6.18, it can be seen that the maximum value of the static friction force is 

similar to the average dynamic friction force at a constant normal load of 6 N. 

Therefore, we can tell that the static friction coefficient (  ) is the same as the 

dynamic friction coefficient ( ) in the case of fingers in contact with dry and smooth 

glass surfaces. Therefore, Equation (6.5) can be expressed as: 

           
    

 
      

                                                                         (6.6)                       

 

Since the dynamic friction coefficient and the normal load are constant, it can be 

seen that the friction force is strongly dependent on the stick ratio (  
 ). Terekhov & 

Hayward (2011) indicated that the stuck contact area reduces with increasing friction 

force. However, this conclusion is only valid if the dynamic friction coefficient is 

larger than the static friction coefficient. For the case that the dynamic friction 

coefficient is equal or smaller than the static friction coefficient, no related 

discussion was given in their study. A similar conclusion was also drawn by André et 

al. (2008), they found that both the stick area and the total contact area decrease over 

time when fingers sliding along a flat surface. As the friction force increased, the 

stick area had a significant decrease compared to the total contact area, hence the 

stick ratio was shown to gradually decrease from 1 to 0. On the basis of above 

findings, we can suggest that the stick ratio of the stuck area to the total contact area 

decreases in the transition from a stuck state to full slip, and results in an increase in 

the friction force.  

 

Figure 6.24: Dynamic friction coefficient measured as a function of the contact pressure 

applied (mean values ± SD). 
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From the above findings, it has been shown that the apparent contact area and the 

friction force vary with time in the static phase, and both of them reach steady-state 

in the dynamic phase. In this section, in order to gain accurate results of the contact 

areas and the friction coefficients, at least two DIC images with related friction data 

obtained from a point in the steady-state phase were analysed. Figure 6.24 shows the 

skin friction coefficient plotted as a function of the apparent contact pressure. These 

experimental data points can be fitted by a curve and described by a power-law 

model with the exponent of -0.38, as expected. The coefficient of determination was 

around 0.62. Furthermore, the skin friction coefficient was found to decrease by 42% 

when the apparent contact pressure increased from 4.7 kPa to 23.8 kPa.    

 

In order to investigate the effect of the contact pressure on skin friction, Adam et al. 

(2007) derived an expression based on the adhesion mechanism dominating the skin 

friction in the case that skin is in contact with a smooth glass surface under dry 

conditions. This simple model is given as: 

  
 

 
 

     

 
                                                                                                     (6.7)                  

where    is the intrinsic interfacial shear strength (       
 

   
), and   is a 

pressure coefficient.  

Figure 6.8 (a) and (b) suggest that the real contact area between human fingers and 

flat surfaces can be written as:        , where   is a constant. Adding it to 

Equation (6.7), we obtain: 

   
    

  

 
                                                                                               (6.8)                   

The real contact pressure was found to increase with the normal load following a 

power-law model (Figure 6.9), and is given as: 

                                                                                                                      (6.9)                       

where k is a constant. Therefore, the relationship between the skin friction coefficient 

and the real contact pressure could be described as follows: 

     
   

 
 
                                                                                                             (6.10)                              

According to the results in Figure 6.8, the exponent   related to the real contact area 

is found to be 0.66 at load between 0.4 N and 1.8 N, and 0.46 at load between 3 N 
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and 24 N. The value of the exponent   is 0.66. The exponent of   in Equation (6.10) 

is calculated to be -0.51 at the low load condition, and -0.83 at the high load 

condition. Compared to the results measured directly from the DIC tests, the value of 

the exponent   obtained from Equation (6.10) is relatively large. This observation 

could be explained by the fact that the values of these parameters used in Equation 

(6.10) were derived from the measurements of static contact areas, which are 

different from those in the DIC tests. As suggested by Figure 6.22, the dynamic areas 

of apparent contact are always smaller than the static areas of apparent contact. A 

similar phenomenon should be expected in the real contact area. These differences in 

the real contact area between the static and dynamic movements contribute to 

different values for the exponents   and  , thus result in different exponents of  . 

 

Soneda & Nakano (2010) also used a similar model    
  

     

     
 
 (where nap is the 

exponent related to the static area of apparent contact and nre is the exponent related 

to the static area of real contact) to analyse the relationship between the skin friction 

coefficient and the contact pressure. For loads between 0.1 N and 10 N, the exponent 

of   was calculated to be -0.67, which was within the range of our results in the 

current study. A similar study was also carried out by Derler et al. (2008), in which 

subjects rubbed their index fingers and the edges of hands against smooth glass and 

rough glass with loads up to 50 N, under dry and wet conditions. They found that the 

skin friction coefficients for both anatomical sites decrease with increasing the 

contact pressure in accordance with the model of       . The exponent     was 

found to be ranged from -0.79 to -0.96 for the case that dry fingers were dragged 

along a smooth glass. The corresponding value of exponent     was between -1.05 

and -1.42 under wet sliding conditions. It is interesting to note that these results 

related to dry sliding condition are close to these calculated results in this section. 

Additionally, it can be seen that Derler’s model is slightly different from the model 

in the current study, because the model derived by Derler et al. (2008) was under the 

assumption that the contact pressure is independent on the normal load. However, in 

the current study, it is shown that the contact pressure is strongly associated with the 

normal force in a relationship represented by a power function rather than a linear 

function (Figure 6.9). 
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6.3 Conclusions 

In this chapter, three different techniques have been introduced to investigate the 

contact area between finger-pads and smooth glass surfaces. With respect to the 

fingerprint ink method, the experimental results suggested that the data points of the 

real contact area and the apparent area are in good agreement with power-law 

relationship under both low and high load conditions. The corresponding exponent 

values of   were smaller than 2/3 suggested in Hertzian theory. In the case of 

investigating the effect of the finger angle on the skin friction, it was found that as 

increasing the finger angle from 15˚ to 60˚ the skin friction coefficient decreased by 

42%. It has also been shown that the OCT method is an effective way for measuring 

the real contact area between these asperities on skin surface and objects. The final 

part of this study has assessed the dynamic contact area using the DIC technique, as 

well as the pressure dependence of skin friction coefficient. The dynamic contact 

area was found to reduce with time in the transition from the static phase to the 

dynamic phase. As expected, the pressure dependence of skin friction coefficient was 

in accordance with a power-law expression with an exponent of -0.38. 
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Chapter 7 

 

 

Investigation of Water Hydration on the Skin 

Friction of Finger-pads  

 

 

 

 
As previously discussed, human skin is sensitive to environmental conditions and 

hard to maintain in a “dry” condition. It is found that the skin friction varies with 

different moisture levels of skin. Three different relationships (i.e. a linear, a power-

law, and a bell-curved relationship) have been generally proposed to describe the 

hydration dependence of the skin friction coefficient (Cua et al., 1990; Sivamani et 

al., 2003; Adams et al., 2007; Gerhardt et al., 2008; André et al., 2009; Tomlinson et 

al., 2010; Hendriks & Franklin, 2010). For example, Cua et al. (1990) found a 

significant linear relationship between the skin hydration and the skin friction 

coefficient for both young and old groups. Sivamani et al. (2003) reported that the 

dynamic friction coefficient for the hydrated abdomen skin gradually decreases from 

0.35 to 0.2 (pre-hydration value) after water exposure. Adams et al. (2007) and 

Tomlinson et al. (2010) observed a “bell curve” response in the friction coefficient 

with respect to different contacting materials and hydrated fingers. The experimental 

results showed an initial increase in the skin friction with increasing soaking time 

and then a decrease once the skin reaches its maximum hydration balance. Three 

possible mechanisms have been proposed for the friction increase: water absorption, 

viscous shearing of liquid bridges and capillary adhesion (Dinc et al., 1991). 

Tomlinson et al. (2010) carried out various tests on investigating the effect of the 

skin moisture on the skin friction with respect to each mechanism. After being fully 

analysed, water absorption was the main contributor of the change on the skin 

friction coefficient. In the case that fingers were soaked in water, there would be 

some changes to the skin mechanical parameters (e.g. stiffness, Young’s modulus) 

and contact parameters (e.g. contact area, applied load) caused by water being 
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absorbed into the skin, which could impact the skin friction coefficient. They also 

proposed that, when water was added to skin, the skin would swell and became soft 

and smooth, leading the stiffness and/or roughness of the skin to decrease, hence 

increasing the area of contact. However, there seems to be little work carried out on 

the skin structure-related changes.  

 

The aim of this chapter is to extend further understanding of the effect of the skin 

hydration on the skin frictional behavior by investigating some related changes of the 

skin structure and the mechanical properties. Firstly, measurements of the thickness 

of the stratum corneum in combination with skin friction tests were carried out. 

Experiments were then conducted to assess the effect of the skin hydration on skin 

mechanical properties using a “cutometer” device. A further study was carried out to 

investigate how the contact area between finger-pads and contact surfaces is altered 

with skin hydration. 

 

7.1 Experimental Materials and Methods 

7.1.1 Measurements of Skin Friction Coefficient and Stratum Corneum 

Thickness  

These experiments were carried out on the index fingers of the dominant hands of 

two healthy subjects. The tested hands were washed with soap and dried in air for 30 

minutes before the test. The subjects were required to soak their index fingers in tap 

water for various periods of time, up to 3 minutes, and then to dry off any surface 

water using paper towels. In order to avoid water evaporating, these tested fingers 

were then immediately moved to the work plate and scanned by the OCT system. 

Finally, the corresponding friction coefficient was measured using the multi-axis 

force plate (discussed in Chapter 3). Measurements were made at a normal load of 

1.5 N ± 0.2. The moisture level of skin with respect to different periods of hydration 

was also recorded using a “Moistsense” (Tomlinson, 2009), prior to the friction 

measurement. The time delay between skin hydration and friction measurement was 

approximately 15 s ~ 30 s. 

 

7.1.2 Measurements of Skin Mechanical Properties  

To investigate the effect of skin hydration on the mechanical properties of finger-pad 

skin, the right index finger of participant 1 was investigated using a non-invasive 
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“cutometer” MPA 580 (details have been described in Chapter 3). The subject was 

requested to prepare the finger tested following the same procedure as that of the 

friction measurement. 

 

7.1.3 Measurements of Contact Area 

The measurement of contact area was also carried out on the index finger of 

participant 1 using the OCT system. More details about the set-up of the system and 

image analysis have been given in Chapter 6. In the tests, the subject’s finger was 

soaked in tap water and then dried off skin surface water with paper towels. The 

measurements of the contact area were taken by pressing the dried and soaked finger 

against the glass window of the multi-axis force plate. The normal force applied was 

1 ± 0.1 N.  

 

7.2 Results 

7.2.1 Measurements of Skin Friction Coefficient and Stratum Corneum 

Thickness  

Figure 7.1 shows four OCT images of skin that were collected from the right index 

finger of participant 2 relating to different periods of time soaked in water (i.e. dry, 

20 s, 120 s and 400 s). In each image, the stratum corneum layer is identified by 

vertical arrows, which enable the change in thickness of stratum corneum to be 

observed.  
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Figure 7.1: Skin OCT images for a finger of participant 2 after being soaked in water for 

different periods of time: (a) dry skin, (b) 20 seconds, (c) 160 seconds and  (d) 400 seconds. 

 

These changes in the thickness of the stratum corneum with respect to the soaking 

time were quantified and plotted in Figure 7.2(a). It was found that the thickness of 

the stratum corneum is increased by 16 ± 1% when increasing the soaking time for 

both subjects as expected. In the natural state, the thickness of the stratum corneum 

was found to be 0.2 mm in the male and 0.32 mm in participant 2 and it rose to 0.234 

mm in the male and 0.37 mm in the female after being soaked for 400 seconds. The 

skin seems to become saturated after 120 seconds of hydration as no significant 

change was observed in the thickness of the stratum cornuem for both subjects. 

Furthermore, the surface texture on the skin is unlikely to be affected by the 

absorption of water as no significant change was observed on the surface ridges. 

 

Figure 7.2 (b) shows plots of the moisture level of skin as a function of hydration 

time for both subjects respectively, in which two non-linear relationships are 

observed. In the natural skin conditions, participant 1 has a higher moisture level of 

skin (70 AU) than that of participant 2 (40 AU). The moisture level of skin is 

increased by 10% in participant 1 and 80% in participant 2 after 80 s of hydration. In 

the test done by the female, the result shows that the moisture level of skin has a 

rapid increase at the beginning, and then levels off at around 70 AU with soaking 

time. This could be due to the keratinocytes in the upper layer of skin (stratum 
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corneum) reaching a hydration-balance and being unable absorb more water, thereby 

the moisture level remains constant between 80 s and 160 s. After that, the skin may 

become over-hydrated and begin to reduce the capacity of water-binding, which will 

cause the moisture level to slightly drop and reach a plateau. A similar phenomenon 

was also found in the case of the male. However, the corresponding moisture level of 

skin was found to decrease from 70 AU to 50 AU when the tested finger was initially 

soaked in water for 5 seconds. 

 

The corresponding changes in the skin friction coefficient for the fingers soaked in 

water are presented in Figure 7.2(c). It can be seen that both figures are very similar 

to those of the skin moisture (Figure 7.2(b)), i.e. there is an initial decrease in the 

skin friction coefficient for the male, which corresponds to these starting points in 

Figure 7.2(b). After then, the friction coefficient starts to increase and then decrease 

and reaches a plateau related to the moisture level of the skin. By analysing the 

figures of the friction coefficient, it was noted that there is 25% increase in 

participant 1, 35% in participant 2 when the tested fingers were saturated, which 

indicates that the frictional properties of the finger-pad skin appear to be more easily 

influenced by water in the female. In addition, the friction coefficient for participant 

1 is approximately three times higher than that of participant 2 under both natural 

and wet skin conditions.  
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                                                                 (a) 

 
                                                                    (b) 

 

 
                                                                       (c) 

 
Figure 7.2: Relationships between (a) the change of the thickness of the SC and hydration 

time, (b) the moisture level of skin and hydration time, and (c) the friction coefficient of skin 

and hydration time. 

 

 

 

7.2.2 Measurement of Skin Mechanical Properties  

To investigate the effect of skin hydration on the mechanical properties of finger-pad 

skin, some cutometer-specific parameters relating to the skin deformation, elasticity 
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and viscoelastic properties (i.e. Uf, Ur/ Ue, Ua/ Uf, Uv/ Ue and Ur/ Uf) were analysed, 

as shown in Figure 7.3. The total skin deformation (Uf) was found to decrease from 

0.15 mm to 0.11 mm when increasing the hydration time. After being hydrated for 

120 seconds, the deformation of skin gradually returned to the initial value.  There 

was an opposite phenomenon found in the global elasticity of skin (Ur/ Ue), in which 

the global elasticity initially increases to a peak of 0.7 between 120 s and 160 s, after 

that it starts to decrease down to 0.5 with hydration time (Figure 3 (b)). Figure 7.3 (c) 

shows that the net elasticity (Ua/ Uf) is unlikely affected by water hydration. The 

ratio of the viscoelastic to the elastic distension (Uv/ Ue) was found to be independent 

on the epidermal water content. It can also be seen that there is a significant decrease 

on the parameter of Uv/ Ue with hydration time in Figure 7.3 (d). With respect to the 

biological elasticity of skin (Ur/ Uf), it was found that the value of Ur/ Uf slightly 

increases from 0.17 to 0.22 after application of water.  
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Figure 7.3: Some cutometer-specific parameters versus hydration time for a finger-pad was 

soaked in water. 

 

7.2.3 Measurements of Contact Area 

Figure 7.4 shows four OCT skin images of a finger-pad in contact with a glass 

window (0.2 N load applied) with respect to different periods of hydration time; the 
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top superimposed line represents the ridge boundary at skin surface, and the bottom 

one within the living epidermis is the papillary layer. When increasing the hydration 

time, more and more skin tissue will be expected to be involved in contact with the 

glass plate, which will result in an increase in the contact length between the finger 

skin and the glass surface. This assumption is proved to be true by the results of 

experiments in the current study. As can be seen in Figure 4.5, the ratio of the real 

contact area against the nominal contact area is around 0.4 for the natural finger. 

When the finger was soaked in water, the corresponding ratio was found to increase 

to 0.5 for 20 s hydration, 0.57 for 80 s and 0.64 for 400 s hydration, respectively.  

 

 

 

Figure 7.4: The OCT images for a dried and hydrated finger in contact with a glass plate 

(0.2 N load applied) with respect to different periods of hydration time: (a) dry skin, (b) 20 

seconds, (c) 80 seconds and (d) 400 seconds. 
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Figure 7.5: The plot of the ratio of real contact area to nominal contact area with hydration 

time. 

 

 

 

7.3 Discussion 

 

7.3.1 The Effect of Skin Hydration on the Skin Friction Coefficient 

The results of the friction measurements show that there is a curved relationship 

between the skin friction coefficient and the hydration time for both participants 

(Figure 7.2 (c)). In a similar study of Tomlinson et al. (2010), a finger examined was 

soaked in tap water for different times and dried with paper towels prior the friction 

tests. The results of their experiments indicated that the skin friction coefficient has 

an initial increase with hydration time and reaches a plateau after 30 s, which is in 

good agreement with the corresponding results of the current studies.  However, the 

corresponding skin friction coefficient with long period hydration (over 3 minutes) 

was not tested. This could be the reason why no bell curve response is found in their 

study. Additionally, the friction coefficient reported in the current study is relatively 

smaller than that in the study of Tomlinson et al. (2010), particularly for participant 

2. This difference in the skin friction coefficient could be attributed to different 

fingers, as well as different experimental conditions (e.g. load applied, hydrating 

time and participants).  

 

This curved relationship between the skin friction coefficient and the hydration time 

in the current study was found to be in accordance with the “bell-shape” distribution 

reported by Adams et al. (2007), who investigated the skin frictional behaviour for a 

polypropylene probe sliding against human forearms. They found that the skin 
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friction coefficient increased from 0.2 to 4.2 when demineralised water was directly 

applied to the inner forearm using syringe, and returns to the value for dried skin as 

water removed from the skin. It is surprising to observe a similar frictional behaviour 

response to skin hydration using different experimental methodologies. In the current 

study and Tomlinson et al. (2010), skin friction experiments were designed on the 

basis of water absorption being the only possible cause of the skin friction increase 

as most surface moisture was removed using towel drying. In the studies of Adams et 

al. (2007), however, there were several mechanisms that could possibly influence the 

experimental results. As adding water directly to the examined skin surface during 

sliding movement, the skin became soft due to a part of the water being absorbed by 

the human skin, and thereby contributing to the increase in the contact area and the 

skin friction coefficient. With respect to the water that had not permeated into the 

skin, it forms “liquid bridges” between the finger ridges and the contacting surface, 

which may make some contributions to the increase of the friction coefficient due to 

the viscous shear stress being increased. The contact area in this case might increase 

and cause the increase of the capillary adhesion as well. Consequently, several 

different physical mechanisms have been assumed to be able to  contribute to the 

changes in the friction coefficient, the similarity of results obtained from these two 

different experiments reveals the hypothesis that water absorption has a large impact 

on the skin friction is true.  

 

Other authors (Gerhardt et al., 2008; Tomlinson et al., 2010; André et al., 2009) 

investigated the relationship between skin moisture and skin friction, rather than that 

between the hydration time and the skin friction. For example, Gerhardt et al. (2008) 

conducted a study on investigating the effect of epidermis moisture on the skin 

friction against a hospital textile. They found a highly positive linear correlation 

between the skin hydration and friction coefficient for all participants. Hendricks & 

Franklin (2010) have examined the effect of climate conditions on the skin friction 

coefficient. They suggested a power-law relationship between the skin friction 

coefficient and the skin moisture level at the forearms of participants, and a linear 

relationship at the anatomical site of cheeks. However, these observations are not 

consistent with the findings in the study of Tomlinson et al. (2010), who examined 

how the skin friction coefficient is altered with different levels of skin moisture in 

the case that fingers were brought into contact with various materials. The results of 
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their experiments show that the skin friction coefficients increase and reach a peak at 

around 90 AU, after that they start to decrease. While, it is interesting to observe that 

the decreasing trend in those data points beyond the moisture of 90 au is linear which 

matches up well to those in other studies (Gerhardt et al., 2008; Hendricks & 

Franklin, 2010). Unfortunately, no mechanism was given to explain this effect. In the 

current studies, it is believed that the investigation of the skin moisture level is 

difficult to predict the frictional behaviour of skin. As can be seen in Figure 7.2 (b), 

for the male, the skin moisture obtained (approximately 70 AU) at the hydration 

point of 40 s is the same as that of 160 s. However, the corresponding skin friction 

coefficients at these two points are different, which could be attributed to the 

differences on the skin structure and/or the skin mechanical properties with respect to 

different hydration time.  

 

7.3.2 Morphology and Mechanical Properties of Skin  

Owing to the plasticizing effect of water, the human skin surface is expected to 

become smoother under water treatment, thereby generating a larger contact area and 

skin friction. However, information on human skin structure related to water 

hydration is not generally available. Sato et al. (2000) have analysed the effect of 

water hydration on the skin texture of a rat. They observed a reduction in the 

roughness of the rat skin when it was immersed in distilled water. In this study, these 

changes on skin structure in OCT images caused by the hydration are visible to the 

naked eyes (see Figure 7.1). However, no significant changes were observed on the 

skin surface texture as expected, but in the thickness of the stratum corneum. When a 

finger is exposed to water, the keratinocytes of stratum corneum absorb water and 

swell, which leads the stratum corneum to become thicker as well as the moisture 

level increase (Tomlinson et al., 2010). These surface ridges, as they are known, 

form corresponding to the pattern of the papillary layer (Wood & Bladon, 1985). 

However, due to the fact that the time scale of water hydration was not sufficient, it 

is believed that no (or less) water has been transmitted into the layers of living 

epidermis and/or dermis and alter the appearance of the skin surface. This 

assumption was evidenced by the findings of Bouwstra et al. (2003), who found that 

the swelling of cells mainly occurs in the vertical direction of the human abdomen 

skin. 57% and 87% water content was present in the middle cell layers of stratum 

corneum followed by superfacial cell layers, no swelling was observed in the deeper 
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cell layers. The thickness of cells was found to increase linearly as a function of 

hydration time. The average cell thickness in the stratum corneum was 360 ± 27 nm 

at nature state and increased to 2970 ± 260 nm when fully hydrated. In recent studies, 

Egawa et al. (2007) measured the thickness of the stratum corneum from the water 

concentration profile of skin using a confocal Raman spectrometer. When hydrating 

the skin of volar forearm for 15, 50 and 90 min, the thickness of stratum corneum 

was found to increase by 3%, 40% and 96%, respectively. It is reasonable to observe 

that the thickness of SC varies in different studies due to the skin thickness varying 

from person to person. These experimental findings also strongly support that the 

results obtained using OCT system are reliable (see Figure 7.2 (a)). Based on the 

above findings, it is noted that the effect of skin morphology on skin friction can be 

neglected in the current study since no significant changes took place on the skin 

surface in the short soaking time used.   

 

Hendricks & Franklin (2010) indicated that moisture reduces the skin stiffness by at 

least an order of magnitude in the stratum corneum of finger-pads under humidity 

conditions, which leads to more skin being deformed, and therefore the contact area 

increases. A similar conclusion was drawn by Yuan & Verma (2006), who found the 

Young’s modulus of wet skin is one order of magnitude smaller than that of dry skin. 

In the study of Adams et al. (2007), it was found that water absorption causes the 

skin to swell and reduces the Young’s modulus, and therefore the contact area 

increases. Consequently, we can assume that those changes in the skin structure are 

due to water absorption, which has potential influences on the skin friction 

coefficient according to those observations in Chapters 4 and 5. Furthermore, the 

results in Chapter 4 indicate that both the Young’s modulus and the stiffness of 

artificial fingers reduce when increasing their thicknesses. Therefore, in this study, a 

decrease in the Young’s modulus of the finger-pad skin would be expected due to 

water absorption increasing the thickness of the stratum corneum. However, in the 

measurements of skin mechanical properties (Figure 7.3), where various mechanical 

parameters were assessed with respect to different periods of hydration, the 

experimental results indicate that neither the net nor the biological elasticity of skin 

is likely to be affected by water absorption. This could be explained by the fact that 

the “cutometer” MPA580 device allows us to measure the elasticity of the whole skin 

rather than individual layers of skin. It is generally believed that the dermis layer of 
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skin dominates the global elasticity of skin. As discussed early in this chapter, the 

effect of water hydration on the skin structure only occurred in the epidermis since 

no-water is transmitted into the dermis, therefore it is not surprised to observe no 

significant change on the skin elasticity in Figure 7.3. 

 

7.3.3 Measurements of Contact Area 

In previous studies, many authors indicated that the increase of skin friction is 

ascribed to an increase in the contact area between skin and surfaces due to skin’s 

Young’s modulus reducing with water hydration (Adams et al., 2007; Gerhardt et al., 

2008; André et al., 2008; Tomlinson et al., 2010; Hendricks & Franklin, 2010; 

Pasumarty et al., 2011). However, there is little work that has been done at the 

moment. The only related work was reported by André et al. (2011), who studied the 

ratio of the stuck skin area to the total contact area using an optical system during a 

finger sliding along a glass surface under dry and wet conditions. They found that the 

ratio of the stuck skin area to the total contact area is strongly associated with skin 

friction force (discussed in Chapter 6). This ratio was found to be higher for the wet 

skin than that for the dry skin. Moreover, the ratio of the friction force (TF) against 

its ultimate value (TF during slip) was shown to reduce as a function of the 

hydration. However, there was no work done on the skin friction coefficient related 

to the skin hydration. 

 

In the current study, we introduced an OCT system to quantify the change of the real 

contact area between a finger and a glass surface with respect to different periods of 

water hydration. Due to the fact that within the OCT system it is impossible to 

monitor the whole finger-pad, a small area (3.2 mm
2
) on the finger-pad was selected 

to predict the tendency of the contact area related to skin hydration. The real contact 

area was determined by a reference to the contact length between the finger surface 

ridges and the glass window (for more details, see Chapter 6). It can be seen in 

Figure 7.5, the ratio of the real contact area to the apparent contact area between the 

finger and the glass surface increases by about 60% with hydration time, particularly 

in the first 80 s. Meanwhile, it is also noted that both the real contact area and the 

thickness of the stratum corneum experienced the same trend, which reveals that the 

increase of contact area could be ascribed to the decrease in the skin stiffness due to 

skin swell.   
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Since these experiments were designed based on the mechanism of water absorption, 

and the adhesion force was thought to dominate the skin friction, it would be 

expected to see that the skin friction coefficient is strongly dependent on the contact 

area. However, the figure (Figure 7.2 (c)) of the friction coefficient against water 

hydration presents a different tendency compared to that of the contact area (Figure 

5), which reveals that there were other mechanisms enhancing the skin friction 

besides the water absorption. Masen (2011) suggested that the increase of friction 

coefficient of the skin related to hydration could be attributed to the increase in both 

adhesion and deformation. When skin is hydrated with water, it softens skin and 

causes the folding of the skin around the contact surface ridges, resulting in the real 

area of contact increasing, hence the adhesion increasing. Meanwhile, the 

deformation of skin will have a corresponding increase due to the further increase of 

area of contact associated with the adhesion (Masen, 2011).  

 

In addition to above, Pailler-Mattei et al. (2007) suggested that the skin friction 

coefficient increases with removal of the thickness of the stratum corneum and they 

believed that the increase of the friction coefficient is associated with those changes 

in the physico-chemical properties of skin due to tape stripping. We can assume that 

there may be some physico-chemical properties of skin that are altered by water 

absorption, which results in some changes occurring in the skin friction. However, 

the measurement of changes in the physico-chemical properties of skin 

corresponding to water hydration is restricted due to current limited techniques. 

 

7.4 Conclusions 

This chapter presents the work on investigating the effect of skin hydration on the 

skin friction coefficient based on the mechanism of water absorption. The results of 

experiments show that the skin friction coefficient increases with hydration time (up 

to 400 seconds) following a “bell-shape” curve behavior. It was also found that the 

increase in the ratio of the real contact area to the apparent contact area is likely due 

to the skin swell. Under water treatment, the stratum corneum will become thick, 

which will lead decreases in the stiffness and the young’s modulus of the skin. It has 

also been shown, in addition to the mechanism of water absorption, there may be 

other mechanisms contributing to the skin friction.
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Chapter 8 

 

 

A Pilot Study to Investigate the in-plane 

Deformation of Finger-pad Skin in-vivo using a 

Digital Image Correlation System 

 

 

 

 
From the findings in previous chapters and other related studies (Johnson et al., 

1993; Adams et al., 2007; Pailler-Mattei et al., 2007; Kwiatkowsa et al., 2009), 

human skin friction is found to be associated with its deformation and mechanical 

properties. A number of experiments related to human skin deformation and 

mechanical properties have been conducted in-vitro and in-vivo. With respect to the 

mechanical properties, there are different techniques that have been reported to 

measure skin’s Young’s modulus and stiffness. For example, Oliver and Pharr (1992) 

proposed a method to investigate global Young’s modulus of skin using the load-

displacement sensing indentation tests. A simple model has been developed to 

determine the Young’s modulus and was given as:       
   

   
  , where   is 

the stiffness of skin based on a normally loaded finger-pad and   is the projected 

contact area. On the basis of this model, Pailler-Mattei et al. (2007) and Yuan & 

Verma (2006) reported that the elastic modulus of a dry stratum corneum was 

approximately 1 GPa using an Atomic Force Microscope (AFM) indentation. They 

also found that the elastic modulus of the isolated stratum corneum varies with 

indentation depth. Experiments performed by Barel et al. (1995) and Diridollou et al. 

(2000) with a suction device on a subject’s volar forearm revealed that the Young’s 

modulus of skin was equal to 130 kPa and 150 kPa, respectively. In the study of 

Escoffier et al. (1989), a torsion method has been applied to measure the Young’s 

modulus of skin. They concluded that the Young’s modulus is unlikely to be 

influenced by hypodermis and underlying tissue of skin. It is noted that most of these 
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experiments were limited to the investigation of the in-vivo normal mechanical 

response of skin, which cannot be used to accurately describe human skin’s 

anisotropic characteristics.   

 

In addition, Johnson et al. (1993) and Pailler-Mattei et al. (2007) concluded that the 

shear modulus of human skin (e.g. tangential stiffness and interfacial shear strength) 

plays a crucial role in determining its frictional behaviour. In the case of 

investigating the transverse mechanical properties (Young’s modulus) of skin, an in-

vitro tension test has been widely used. However, due to the difficulty of preparing 

human skin samples, in general, this technique uses animal skin to help estimate the 

transverse mechanical properties of human skin. Recently, a new non-invasive 

method, Digital Image Correlation (DIC), has been proposed to characterise skin 

transverse mechanical properties from tensile tests. The DIC system was developed 

from a speckle photography technique, and originally used to provide strain and 

displacement fields of solids, in particular metals. This technique provides the 

opportunity for measurements to be carried out on real human body part, without the 

need for strain gauging or application of needles etc. Owing to these advantages, the 

DIC system is gradually becoming a common method for determining the in-vivo 

mechanical response of human skin. For example, Hendriks (2005) used a 3D-DIC 

system combined with a purpose built tensile device to measure the in-vivo sub-

surface deformation in human forearm. Experimental results showed that both the in-

plane strain and deformation of the surface of skin decreases with increasing suction 

depth (out of plane). A similar study was also carried out by Evans & Holt (2009), in 

which adhesive tape was used to connect the tested skin surface of the tested forearm 

and a load cell. Skin images were acquired in all three directions when a load of 1 N 

was applied on the surface of the skin in a transverse direction. The corresponding 

maximum displacement in the loading direction was found to be 8.48 mm.  

 

Though the mechanical properties of human skin have been investigated extensively, 

there is little work that has been reported on in-vivo surface deformation at human 

finger tissue during dynamic movements. Therefore, in this chapter, a 2D-DIC 

system coupled with a multi-axis force plate has been used to determine the 

deformation behaviour of finger-pad skin with respect to different stages of 
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movement when the finger slides along a glass plate. Work on the effect of load on 

the deformation behaviour of the skin has also been done. 

 

8.1 Materials and Methods 

8.1.1 Digital Image Correlation 

Digital Image Correlation is an optical technique which can provide non-contact full-

field displacement/strain measurements of the surfaces of specimens. The 

fundamental principle of the 2D-DIC technique is to track and match the same points 

in two images recorded before and after deformation based on the grey intensity 

variance (Sutton et al., 1983). This technique is only applicable on flat specimens 

with random speckle pattern on their surfaces. These patterns produce unique 

contrast distributions on the surfaces of specimens that can be used to evaluate the 

correlation between the undeformed and deformed images. Due to the difficulties 

that arise from the matching procedure using a single pixel or whole image to 

determine the correlation, the reference image is divided into a mesh of subsets (see 

Figure 8.1) (Hendriks, 2005; Yoneyama & Murasawa, 2011). The full-field 

displacement field with respect to external forces can be determined by computing 

the displacement of each subset. 

 

Figure 8.1: Basic Principle of 2D digital image correlation (Sutton et al., 1983). 

 

 

As shown in Figure 8.1(a), a coordinate           is plotted in the selected subset in 

the initial reference image, which can be mapped to the coordinate           after 

deformation (Figure 8.1(b)). The displacement mapping function between these two 

coordinates is expressed as: 
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                                                                                            (8.1)                                     

where   and   represent two components of the displacement field. The 

displacement field for each subset in DIC image is assumed to be homogenous and 

bilinear in x and y directions (Marcellier et al., 2001; Jacquemoud et al., 2007): 

                                                                                               (8.2)                          

                                                                                              (8.3)                                                      

where   ,   ,    and   are elongation terms,    and    are shearing terms and   and 

   are translation terms. The coordinate           can be defined using the first-

order Taylor expansion: 

         
  

  
   

  

  
                                                                                  (8.4)                                                         

         
  

  
   

  

  
                                                                                  (8.5)                                                

where 
  

  
,  

  

  
, 
  

  
 and 

  

  
 are displacement gradients.    and    are the distances 

between the centre of the subset and the coordinate           along x and y axes 

respectively, which are given by: 

                                                                                                                  (8.6)                  

 

                                                                                                                  (8.7)                                    

The deformation of the subset-image can also be computed using the relationship 

between the reference image and the deformed image. The normalised correlation 

coefficient is expressed as (Tung & Sui, 2010):  

     
         

     
       

 
                                                                                              (8.8)                                             

where     and       are the greyscale of a reference subset-image on the coordinate (i , 

j) and a deformed subset-image on the coordinate (      ), respectively. There will be a 

perfect correlation between these two coordinates when the correlation coefficient 

value is equal to 1. The corresponding strain field (Green-Lagrange strain tensor   ) 

can be expressed as a function of deformation tensor    of displacement field: 

   
 

 
                                                                                                        (8.9)                                       
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where   is the unit tensor. Chu et al. (1985) derived a new model of the strain tensor 

E' related to the displacement field as follows: 

    
 

 
            

 

 
                                                                                    (8.10)                                     

where i, j and k Є(x , y) and      
   

  
. The strain value with respect to different 

directions can be determined using the following equations: 
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8.1.2 Experimental Set-up 

In the experiments, images and force data during finger movements were recorded 

separately using two standard measurement systems (Figure 8.2). A 2D DIC system 

was used to record the images of finger-pad skin throughout the tests. The 2D DIC 

system consists of a 5MP AVT Pike camera (2452 Χ 2054 pixels), a computer and 

two white-light sources (one white-light source is out of the picture). The Pike 

camera is capable of high speed flash synchronization at full resolution. In the 

current study, the frame rate applied was set to be 6.7 frame/s. All required images 

were analysed using a commercial DIC software package (Vic-2D, 2007, Correlated 

Solutions, Inc). A multi-axis force plate combined with a metal frame and a glass 

insert used to measure the forces applied (details have been discussed in Chapter 6).  
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Figure 8.2: Experimental set-up of a 2D optical image acquisition system. 

 

8.1.3 Experimental Procedure 

Experiments were carried out on the right middle finger of a 26 year-old female. 

Prior to the tests, the tested finger-pad was requested to be cleaned and random 

black-dots were applied, as seen in Figure 8.3 (a).  In order to image deformations 

occurring on the finger-pad skin at various stages of movement, the subject was 

requested to press her finger against the bottom of the glass window and face up to 

the camera. To assess the effect of normal load on the deformation behaviour of skin, 

this experiment was also repeated under different loads. All measurements were 

conducted at a constant speed around 10 ± 2 mm/s.  

 

 

                          (a)                                    (b)                                       (c) 

Figure 8.3: DIC images of the middle finger-pad: (a) a reference image, (b) area of analysis 

on the finger-pad (red region represents the initial area of contact) and (c) two centre lines 

were plotted along XX and YY axes. 
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In later image analysis, as can be seen in Figure 8.3 (b), there was an initial contact 

between the finger-pad and the glass plate when the finger came into contact with the 

glass (approximately 133.5 mm
2
 at 0.2 N). A rectangular region on the finger-pad for 

all images was selected and analysed (10 Χ 17 mm
2). Furthermore, this window was 

divided into a mesh of subsets (40 Χ 40 pixels) in order to gain the correlation 

between the images acquired before and after deformation. To quantify the 

deformation behaviour of finger-pad skin at each stage during sliding movement, two 

lines across the centre of the finger-pad were drawn (XX (horizontal direction) and 

YY (the direction of finger movement)), see Figure 8.3 (c). With respect to each 

centre line, there were 100 points were selected along the line for analysis. Due to the 

fact that the initial area of contact was about 80% of the selected rectangular region, 

the measurement of strain data took place mainly between point 10 and 90 in both 

centre lines.  

 

8.2 Results and Discussion 

In the current study, all experiments have been performed on a “dotted” finger-pad 

that was sliding along a smooth and transparent glass plate. Figure 8.4 shows three 

vector displacement maps of the examined region on the finger-pad along XY axis, 

with respect to different stages of finger movement. The initial image (Figure 8.4(a)) 

was taken when the finger was flattening with glass (at 0.2 N), in which minor 

deformation was observed on the finger-pad skin. When the finger came into contact 

with the glass window (static phase) and started to move (dynamic phase), the 

patterns on the skin moved over the imaging area, which resulted in some distortions 

in both XX and YY directions (see Figure 8.4 (b) and (c)). These distortions can be 

used to estimate the motion of the finger-pad skin regarding to finger movements, i.e. 

it can be seen that there is a significant motion in the XX direction in the 

displacement map (Figure 8.4 (b)) of the finger-pad corresponding to the static phase 

by comparing to the initial one. This means that localized deformations mainly occur 

in the XX direction on the finger-pad skin when a finger only experiences a normal 

force. While in the case that the finger is sliding over a surface, a friction force 

between the finger skin and the surface emerged that led to some distortions in the 

YY direction on the skin.  
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(a)                                              (b)                                               (c)  

Figure 8.4: Displacement field of a finger in XY axes corresponding to: (a) finger is 

flattening with glass with minor deformation, (b) finger in contact with glass without 

movement between interfaces (static phase), and (c) dynamic movement. 

 

Figure 8.5 shows a schematic diagram of a finger moving along a glass plate, in 

which DIC images of the tested finger-pad were identified at different positions. 

Image P0 to P15 were collected from the pre-movement period, P16 was taken from 

the point that the finger started to move, and P17 to P56 corresponds to a dynamic 

movement. 

 

Figure 8.5: A schematic diagram shows that DIC images of a finger-pad (from P0 to P56) 

were taken from different positions when the finger moving along a glass plate: P0-P15 were 

collected from the pre-movement period, P16 was taken from the point that the finger started 

to move, and P17-P56 were taken from the movement period. 

 

Skin mechanical properties corresponding to those planar skin deformations on skin 

surface can be quantified using full-field strain maps. Figure 8.6 illustrates the results 

of the strain data that were obtained from the measurement conducted along the 

horizontal direction on the tested finger-pad skin under different load condition, 

where a horizontal line across the middle of the imaging region was drawn to help 

measure the change of strain value on the skin. These corresponding strain data 
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produce a wave-shape line, which means skin stretches mainly exist around the left 

and right edge regions in the imaging window. The local highest strain value can 

reach around 22% when a low force (approximately 1 N) is loaded on the texted 

skin. The centre region of the finger-pad skin with strains around 2.5 % is rarely 

influenced by external forces. It was also found that the values of the strain across 

the finger-pad skin increase when the normal load increases.  

 

 

Figure 8.6:  (a) The plot of strain data along the centre line in XX direction (measurement 

started from the left edge of the imaging window to the right edge) on a finger-pad skin 

under different loads, (b) four examples of corresponding DIC images of the skin. 
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Figure 8.7: Four different data points in a figure of friction and normal forces as a function 

of time were selected and analysed using strain fields, i.e. P1 was collected from the natural 

state; P12 was taken from the static phase (no movement occurred in the interface between 

the finger-pad and the glass); P16 was the point that the finger broke free and started to move 

and P37 was taken from the dynamic phase.    

 

Figure 8.7 displays a view of the local shear strain on the finger-pad skin surface 

corresponding to the friction force during the finger sliding. Calculations of the strain 

value started from the end closest to the distal interphalangeal joint on the front 

fingertip. Four different points in the time history curves (Figure 8.7 (a)) of the 

normal force and the friction force were taken and analysed. Point P1 was located at 

the point where no or less external forces were applied to the skin, and acts as a 

reference point, thus its corresponding strain values were found to be equal to zero 

along the vertical line in YY axis. After the finger was placed onto the glass surface, 

the normal load initially reached a plateau (approximately 2.5 N) at around 4 s; 

meanwhile the friction force was continually increasing. At this moment there was 

no relative moment between the finger-pad and the glass, Point P12 was chosen at 
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the point when the normal force reached its maximum value. It can be seen that the 

skin was stretched at the front fingertip with a strain value of 2.3%, and squeezed at 

around the distal interphalangeal joint with a strain value of -3.2%. Point P16 was 

referred to as the transition point between the static stage and dynamic motion of the 

finger. At Point P16 the shear strain value of the skin was found to increase to 3.6% 

at the front fingertip, and decrease to -11.2% at around the distal interphalangeal 

joint. Point P37 was taken from the point where finger was sliding along the glass 

steadily. Due to the fact that both the normal and friction force remained unchanged 

when the finger moved from P16 to P37, it is reasonable to observe that P37 gives a 

similar plot of the strain data along the vertical line (in YY direction) on the skin.  

 

In addition, the strain values in the centre region of the vertical line (in YY direction) 

on the skin (ranged from 30 pixels (5 mm) to 60 pixels (10 mm)) were found 

relatively small compared to other regions for all tested positions. This observation 

confirms the previous finding that skin deformation only exists in specific areas on 

skin. It can be seen that the middle region of the finger-pad was unlikely to be 

influenced by external forces in the preloading phase during finger movement over a 

dry and smooth surface. The value of the strain rose to about 1% in the dynamic 

phase.  

 

By analysing the DIC images, it was found that, as the finger started to contact with 

the glass surface, there was an initial contact area between the centre of finger-pad 

skin and the glass plate. The centre skin was sticking to the glass plate while the 

surrounding skin moved with the finger. In this case, the initial contact area can be 

referred to as the “stick” region. The trailing edge in the imaged region of the skin 

performed some large deformations when the finger overcame the interface 

resistance and started to move, which can be defined as the “slip” region. As the 

finger sliding along the glass plate, the stuck region gradually evolved to a slip 

region and then remained unchanged. The current finding is in good agreement with 

previous observations reported by Tada et al. (2005). Tada et al. (2005) used a tactile 

imaging system (includes a light source, CCD camera, etc.) and a force sensor to 

investigate the contact interface between a finger-pad and a transparent indenter 

under different contact conditions. They reported that the full stick region gradually 
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transformed into full slip region during finger sliding. The skin was being stuck for a 

longer period in the case of low speed and high load.   

 

Recently, similar studies were also reported by André et al. (2008) and Terekhov & 

Hayward (2011). In their studies, an optical flow technique based on the light 

reflection has been employed to investigate the contact area of a finger in contact 

with a planar surface. The principle of the optical flow technique was to use a 

matching algorithm to detect the motion of the tested object. They observed that a 

round stick region (black region) existing on the middle of the contact area, is 

enclosed by slip region (grey region), as seen in Figure 8.8. At a constant normal 

load of 5 N, the stick ratio (stick area against the contact area) was found to decrease 

from 0.6 to 0 with increasing the friction force due to the stick area diminished 

continuously in the preloading phase. In the current study, the stick ratio can also be 

quantified by analysing the strain data with respect to different phases of finger 

movement. As shown in Figure 8.7, at Point P1, the strain was found to equal to zero 

along the YY axis, thus the ratio should be equal to 1. As the friction force increased 

to 1.79 N (at Point P12), the stick ratio was found to be reduced to 0.48. Since the 

middle region of the contact area evolved to a slip region during dynamic movement, 

the corresponding values of the stick ratio were equal to zero for Point P16 and P37. 

 

Figure 8.8: Experimental results of the studies conducted by André (2011).  
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Figure 8.9: The plot of shear strain data along the vertical line in YY axis (obtained from 

position P37) with respect to different skin dynamic friction coefficients.  

 

Figure 8.9 shows a plot of the shear strain data obtained from Point P37 as a function 

of the distance along the vertical line corresponding to different dynamic friction 

coefficients. As the value of the dynamic friction coefficient decreased, the 

corresponding shear strain data was found to gradually reduce from 5% to 0 at the 

fingertip, and -10% to -24% at the region around the distal interphalangeal joint. 

Interestingly, it can be seen that there was a small difference in the shear strain value 

for the regions of skin stretch (at the fingertip) and squeeze (at the region closest to 

the distal interphalangeal joint) in the case of the highest dynamic friction 

coefficients. The difference between the absolute values of the shear strain between 

these two different regions became bigger as the value of the dynamic friction 

coefficient reduced.  

 

This phenomenon could be attributed to the differences in the friction force 

corresponding to different dynamic friction coefficient. In general, under same 

contact conditions, skin dynamic friction coefficient reduces as the normal load 

increased. Thus, it can be assumed that a high value of friction coefficient has a 

relatively small normal load compared to that of a low friction coefficient. Although, 

the increasing rate of friction force reduces with increasing the normal load, the 

friction force is still relatively high for a high normal load compared to that of a low 
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normal load. Increasing friction force caused large deformations occurred in the 

transverse direction of skin, hence increasing the value of strain. Therefore it is not 

surprising to observe a large value of strain for a high dynamic friction coefficient. 

This hypothesis seems be supported by the observations of Tada et al. (2005). They 

indicated that increasing the normal load would lead to larger stuck region of contact 

area, resulted in a large stuck area. It is reasonable to observe that the strain value 

increased with increasing the friction force due to the fact that the friction force is 

proportional to the contact area. 

 

8.4 Conclusions 

This chapter describes a pilot study to investigate the in-plane deformation on finger-

pad skin in-vivo using a 2D Digital Image Correlation system. This technique can 

provide full fields of the displacement map and strain distribution on the finger-pad 

skin corresponding to both static and dynamic movement. By analysing these 

displacement maps or strain distribution on the skin, it is possible to determine the 

transverse mechanical properties of the finger-pad skin. Results of this study 

demonstrated that, in the case of static movement, the skin in the horizontal direction 

(XX axis) performed some relatively large deformations when a normal load was 

applied on the skin. For a finger moving over a glass surface, the friction force 

between the finger and the glass has a significant impact on the skin in the direction 

of finger movement (YY axis). All the above findings can be used as the basis for 

assessing the contribution of skin properties on skin friction. In further studies, it 

would be expected that this technique could also be extended to other aspects in the 

research field of skin tribology and improve the understanding of the complex skin 

frictional behaviour on human finger-pads.  
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Chapter 9 

 

 

Conclusions and Future Work 

 

 

 

 
In this final chapter the main results and findings from the thesis work are 

summarised and evaluated. Some possibilities for further research into the topic of 

skin friction of human finger-pads are also outlined. 

 

The thesis aims to gain a better understanding of the human skin frictional properties 

at finger-pads. From literature, the frictional behaviour of human skin is found to be 

determined by the complex interplay of materials and surface properties of skin. 

However, the current knowledge on tribology of skin mainly relates to skin in touch 

with various materials, and little is known for the effect of properties of skin on 

friction. Therefore, comprehensive studies to understand how the skin properties 

affect the friction of human finger-pads are required. In this thesis, the skin frictional 

properties of human finger-pads have been assessed by combing skin friction 

measurements using different finger friction rigs with the investigation of skin 

structural properties using an Optical Coherence Tomography. Firstly, various tests 

have been carried out to examine the influence of different factors (e.g. load, ages, 

gender, ethnicity, etc.) on skin friction. Secondly, the OCT technique has been 

applied to image the sub-surface skin structure, so as to measure the thickness of 

stratum corneum, the number of sweat ducts and the surface properties of skin, from 

which the potential relationships between skin structure and its mechanical properties 

have been assessed. Then, this technique has been extended to measure both the 

static and dynamic contact areas of finger-pads in contact with a flat surface, which 

is considered to provide an accurate method for predicting the real contact area 

compared to the finger-print ink method. Then, the effect of water 

hydration/lubrication on skin friction based on the mechanism of water absorption 

has  also been investigated. Finally, a pilot study has been conducted using a 2D DIC 
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system to characterise the lateral skin properties, as the lateral deformation or 

mechanical properties of skin are believed to have important roles in determining 

skin friction. 

 

9.1 Conclusions 

Investigation of the skin frictional properties 

This thesis has presented a general investigation into the frictional properties of 

human finger-pads in contact with smooth surfaces under dry conditions (Chapter 4). 

It starts with an evaluation of three different techniques available in The University 

of Sheffield for measuring the skin friction coefficient at human finger-pads, 

including a finger friction rig, a multi-axis force plate and a pinch grip rig. The 

results of the comparison suggested that the multi-axis force plate was the most 

suitable device for use in this study. The finger friction rig was only considered for 

use in the case of high load tests due to its low sensitivity in measurements. It also 

indicated that the pinch grip rig was not applicable for measuring finger friction in 

this study.  

 

Human skin has a complex frictional behaviour. In this study, the investigation of the 

skin friction of human fingers indicated that skin friction coefficient varies with 

loads following a two-term relationship. The first term of the two-term relationship 

was a power function obtained from low load tests (≤ 2.5 N). The skin friction 

coefficient was shown to continuously decrease with increasing normal load. In this 

case, it was assumed that skin friction is associated with both deformation and 

adhesion mechanisms. When low loads were applied on finger-pad skin, the skin 

exhibited different types of deformation with different loads, which resulted in 

different mechanical properties of skin and skin friction coefficient.  Increasing the 

normal load up to certain level, skin became stiff and behaved as a material with 

steady mechanical properties. The skin friction was considered to be only dominated 

by the adhesion mechanism. Therefore, it was not surprising to observe a linear 

regression between the skin friction coefficient and the normal load under high load 

conditions.  
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The contribution of skin structure to skin friction  

In order to explain the wide spread of friction data obtained among participants in 

previous work, it would be helpful to investigate the effects of skin properties on its 

friction and mechanical properties, respectively. Chapter 5 describes some 

experimental works conducted using a commercial OCT system combined with a 

“cutometer” MPA 580 device. The findings in these studies suggested that the 

moisture level of skin, skin thickness, and physic-chemical properties play important 

roles in determining skin friction. The skin friction coefficient was found to increase 

as a function of the moisture level of skin, which was in good agreement with the 

experimental observations in the study of Tomlinson et al. (2010) and others (Dinc et 

al., 1991; Adams et al., 2007; Gerhardt et al., 2008; Hendricks & Franklin, 2010). 

 

Furthermore, a skin rubbing test and a tape stripping test were developed to evaluate 

if there are potential relationships between skin structural properties and skin friction 

coefficient. Experimental results of the skin rubbing test showed that the skin friction 

coefficient has a significant drop with skin rubbing. One of the possibilities for the 

change in the skin friction coefficient is that skin becomes smooth as the ridges on 

the skin surface shrink with skin rubbing. The other possibility could be attributed to 

the decrease in the lateral Young’s modulus of skin with respect to the removal of the 

stratum corneum. In the case of the tape stripping test, it was found that the skin 

friction coefficient initially increases and then reaches a plateau when increasing the 

number of tape strips. This phenomenon was ascribed to the changes of adhesion 

force related to tape stripping. In the current study, the adhesion force was then well 

studied by investigating van der Waals forces, electrostatic forces, and chemical 

hydration bonds. Experimental results suggested that the electrostatic forces and the 

force due to chemical bond are the main contributors to the change of the adhesion 

force. However, due to the current limited techniques in this study, it won not 

possible to measure the changes in the electrostatic forces and the chemical bonds. 

 

Measurements of contact area 

In Chapter 6, different experimental tests were carried out to determine both static 

and dynamic contact area between human finger-pads and flat surfaces. The 

measurements of the static contact area measured using a finger-print ink method and 

an OCT method were strongly associated with the morphological properties of 
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finger-pads skin. Both the apparent and real contact area were found to increase as 

increasing applied normal load, which were in good agreement with a power law 

relationship of      . Comparing the OCT method and the finger-print ink 

method, indicated that the OCT method provides more accurate experimental results 

than use of the finger-print ink method. In addition, the investigations of the effect of 

contact angle and different fingers on skin friction showed that the skin friction was 

reduced by 42% when the contact angle increased from 15° to 60°. The findings also 

confirmed that the skin frictional properties of fingers strongly depended on the 

contact area. However, the results of static measurements were restricted in term of 

characterising the dynamic frictional behaviour of fingers.  

 

In order to measure dynamic contact area during finger sliding, a DIC method was 

introduced into this study. As the tested finger was moving along a glass surface, the 

apparent contact area between the finger-pad and the glass was found to reduce with 

time, particularly in the static phase. The skin friction was assessed in terms of 

applied contact pressure. The pressure dependence of the skin friction coefficient 

was in accordance with a power-law expression. Moreover, the OCT method was 

also applied in the measurement of the dynamic contact area. However, due to the 

limitation of imaging area on the skin, the OCT method was more useful for 

monitoring how skin structural properties change during finger sliding.  

 

The effect of hydration on skin friction  

As suggested by previous studies on the effect of water hydration or lubrication on 

skin friction, the mechanism of water absorption was considered to be the main 

contributor to the change of skin friction. Therefore, in the current study, the 

investigation into the influence of hydration or lubrication on skin friction focused on 

investigating skin structural, mechanical properties and contact area due to water 

absorption of the skin (Chapter 7). In the measurements of skin structural properties, 

the thickness of the stratum corneum was assessed as a predictor of changes in the 

skin physical structure. When a finger was soaked in water for 400 s, its stratum 

corneum thickness was found to increase by 16%. No significant change was 

observed on the surface ridges of the skin. As expected, a “bell” curve line was found 

between the moisture level of skin and hydration time, which was very similar to that 

of the skin friction. According to previous findings (Chapter 4), skin mechanical 
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properties are closely associated with its thickness. Therefore, a decrease in the 

Young’s modulus of the finger-pad skin was expected due to water absorption 

increasing the thickness of the stratum corneum. However, the corresponding 

experimental results showed that skin mechanical properties were unlikely to be 

affected by water absorption. These phenomena evidenced that skin moisture level 

plays a crucial role in determining the skin friction of finger-pads. Furthermore, the 

effect of water absorption on the contact area between finger-pads and a flat surface 

was also conducted using the OCT system. In measurements, changes in the ratio of 

the real contact area against the apparent contact area related to water absorption 

have been measured. A 60% rise was found in the ratio with hydration time, which 

could be attributed to the decrease in the skin stiffness due to skin swell. In addition, 

there may other mechanisms that could enhance the skin friction. Therefore, further 

studies on these mechanisms behind this phenomenon are needed.  

 

In-plane deformation of finger-pad skin in-vivo 

From the knowledge gathered from previous studies and Chapter 4, there was a gap 

in the lateral deformation/mechanical properties of skin in the studies of human skin 

friction.  Chapter 8 presents a pilot study of using a Digital Image Correlation system 

to characterise the in-plane deformation properties of finger-pad skin in vivo. These 

studies have been achieved via analysis of displacement maps and strain distributions 

obtained on the skin surface. When a finger was brought into contact with a flat 

surface, there were some distortions observed in the horizontal direction on the 

finger-pad. When the finger overcame the interface resistance and started to move, 

deformations in the direction of finger sliding on the skin gradually became 

significant. These observations can be used as the basis for assessing the contribution 

of skin properties on skin friction. 

 

9.2 Future Work 

The work presented in this thesis has involved a detailed study of several aspects of 

finger friction with the aim to close the gaps in the current knowledge on the skin 

friction of human finger-pads. A number of questions have arisen during this 

research, which suggest a variety of research directions that need to be pursued. Each 
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aspect below contains a list of suggestions that could be undertaken in further 

research. 

 

Skin frictional properties 

 All experiments conducted in the current study were based on the hypothesis 

that skin friction was only associated with the adhesion mechanism in the 

case when a finger was sliding a smooth surface under dry conditions. In real 

daily life, human finger could not be always in contact with flat surfaces. 

There is a need for detailed studies to be performed on other mechanisms (e.g. 

deformation mechanisms and interlocking) related to rough contact between 

finger-pads and surfaces.  

 

 Due to the current limited techniques, most measurements of skin friction 

were restricted to between 1 N and 10 N (defined as the macroscopic level). 

Theoretical concepts of skin friction in the microscale (< 1 N) are widely 

unknown. Knowledge of the microtribology would allow a detailed 

investigation of the deformation mechanism in connection with skin 

structural properties, and improve the knowledge of tactile perception and 

haptics necessary for the developments of artificial devices.   

 

Human skin properties 

 It is general considered that skin friction is highly dependent on the global 

Young’s modulus of skin rather than the layer of the stratum corneum. The 

global Young’s modulus of skin is ascribed to the contribution of the dermis. 

The OCT system applied in this study is ideal for investigating skin surface 

properties. Measurements of the thickness of dermis can accurately 

characterise the relationship between skin structural properties and skin 

friction, which could be achieved using some medical instruments with 

ability that can image a fewer millimetre depth in skin, such as advanced 

OCT system, MRI and ultrasound.  

 

 Findings in Chapter 5 provide evidence that the physico-chemical properties 

of skin have enormous influences on the skin friction force. However, these 
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physio-chemical properties involving various mechanisms are poorly 

understood, therefore, related studies will be required in future research.  

 

Contact conditions 

 The importance of the contact area between finger-pads and surfaces on skin 

friction has been emphasised. However, in the current study, measurements 

using the OCT (in micro-scale) and the DIC systems (in macro-scale) were 

only applicable for fingers are contacting with flat and transparent materials. 

A new method needs to be developed. It should be able to investigate of the 

contact area between finger-pads and various rough and non-transparent 

surfaces.   

 

 So far, the study of the effect of hydration on skin friction is focused on the 

mechanism of water absorption, as well as some related changed in skin 

structural properties and contact area. Knowledge of the capillary adhesion 

and viscous shearing of liquid bridges in relation to skin friction is still not 

clear. Further studies are required to identify their roles in the frictional 

properties of hydrated skin with respect to each mechanism.   
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Appendix B- Screen of “NetForce” 
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Appendix C –Participant Consent Form from The University of Sheffield 

 

 

Title of Project: Investigation of the effect of mechanical properties of human skin in the 

friction coefficient of finger-pads.  

Name of Researcher: Xiaoxiao Liu 

Participant Identification Number for this project: 

 

Participant ID Number for Questionnaire (if applicable): 

                  Please initial box 

1. I confirm that I have read and understood the information sheet  

      for the above project and have had the opportunity to ask questions. 

2. I understand that my participation is voluntary and that I am 

      free to withdraw at any time without giving any reason.   

     I may also request that my data/recordings be deleted at any time. 

 

3. I understand that my responses will be anonymised before analysis. 

      I give permission for members of the research team to have access  

      to my anonymised responses.   

 

 I understand that video footage of task performance will be taken during 

      the testing session and that I am free to stop any video of me being taken. 

 I agree to take part in the above project. 

 

 

________________________ ________________         ____________________ 

Name of Participant Date Signature 

 

_________________________ ________________         ____________________ 

Researcher Date Signature 

 

Copies: 

 

One copy for the participant and one copy for the Principal Investigator / Supervisor. 
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Appendix D - User Interface of Pinch Grip Rig and Labview Programme 

(developed by Peter T Mylon) 

 

User interface: 

 

 
 

 

 

Labview Programme: 

 
% find the max and minimum values in a dataset and compile into a 

list 

  
fnames = dir('C:\Documents and Settings\Xiaoxiao 

Liu\Desktop\pinchGrip\*.txt') 
dir_length=length(fnames) 
%av_max=[]; 
%av_min=[]; 
%sdev_max=[]; 
%sdev_min=[]; 

  
for k=1:dir_length 
 file = fnames(k).name 
figure 
 %file='F:\Pinch Grip Data\pinchGrip_2012-03-26_14-09-34_22.txt' 

  
[time,pinchforce,liftforce1,liftforce2]=textread(file,'%f %f %*f %f 

%*f %f','headerlines',23); % read the first two columns into time 

and force arrays 
%f_length=length(force); % get the length of the force array 
ind=[2:2:length(time)]; 
time(ind)=[]; 
pinchforce(ind)=[]; 
liftforce1(ind)=[]; 
liftforce2(ind)=[]; 
%[accel]=textread(file,'%*f %f %*f %*f %*f %*f','headerlines',23); 
%ind=[1:2:length(accel)]; 
%accel(ind)=[]; 
%[max_loc, max_vals]= peakfinder(force) 
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%[min_loc, min_vals]= peakfinder(force,[],[],-1) 
%max_sort=sort(max_vals,'descend'); % sort max values into a 

descending list, i.e highest at top 
%min_sort=sort(min_vals,'ascend');  % sort max values into a 

ascending list, i.e lowest at top 
%v=round(length(max_sort)/5); % this is the number of minimum or max 

values selected from the list of peaks / troughs  
%w=round(length(min_sort)/5); % this is the number of minimum or max 

values selected from the list of peaks / troughs  
%max_list=max_sort(1:v) % take the top 'v' values from the list, to 

give the biggest peaks 
%min_list=min_sort(1:w) 

  
%av_max=[av_max mean(max_vals)] 
%av_min=[av_min mean(min_vals)] 
%sdev_max=[sdev_max std(max_vals)] 
%sdev_min=[sdev_min std(min_vals)] 
subplot(2,1,1) 
whitebg('white') 
%Plot the three graphs in seperate axes on the same figure window: 
plot(time,pinchforce,'r') 
hold on 
plot(time,liftforce1,'g') 
hold on 
plot(time,liftforce2,'b') 
hold on 
plot(time,liftforce1 + liftforce2,'k') 
xlabel('Time (s)') 
%add some axes labels 
ylabel('Force (N)') 
legend('Pinch Force','Lift Force 1','Lift Force 2','Combined Lift 

Force') 
%title('Candidate: 4 Sextant: Lower Left Hand Condition: No Gloves') 
%end 
% subplot(2,1,2) 
% whitebg('white') 
% %Plot the three graphs in seperate axes on the same figure window: 
% plot(time,accel,'r') 
% xlabel('Time (s)') 
% %add some axes labels 
% ylabel('Acceleration (g)') 
% title(file) 

  
 end 
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Appendix E – A Sample of Polymer Replica of a Finger-pad 

 

 
 

 

 

 

 

 

 

 

 

 

 

 


