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Abstract

Since its modern inception in the early twentieth century, cosmology has developed
drastically due to new observational methods. With this, our understanding of the Uni-
verse has changed accordingly, requiring new theoretical insights. For the past twenty-
five years, ΛCDM has been considered the standard model of cosmology. However, with
ever-increasing observational precision, new tensions in the data have emerged. There are
many hints that this crisis in cosmology should be addressed by considering alternatives
to ΛCDM, especially the dark energy ‘Λ’ and the cold dark matter ‘CDM’ components.
These two highly studied but scarcely understood energy sources form what we refer to
as the dark sector. Dark sector physics often results in novel phenomenology that can
alleviate cosmological tensions whilst also providing a robust theoretical framework.

In this thesis, we will first review the basics of modern cosmology, culminating in the
description of the ΛCDM and cosmological tensions. We then introduce alternative dark
sector models from the literature, focusing on scalar fields. The bulk of this work focuses
on studying new models of interacting scalar field dark matter (DM) and dark energy
(DE). We study a model inspired by hybrid inflation, obtaining a previously unknown
form of dark energy-dark matter coupling. By comparing this model to cosmological
data we conclude that it can alleviate the H0 tension. We also propose a framework for
DM-DE scalar fields based on effective field theory. This results in the DM component
developing a negative equation of state at late times. We look for evidence of this new
signature in cosmological observations and find that whilst this model can reduce the S8

tension, new data will be needed to establish whether this model is fully viable.
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Chapter 1

Introduction

Cosmology is the branch of science which aims to explain the past, present and future
of our universe. Since it is concerned with everything, understanding cosmology requires
concepts from all areas of physics, from gravity to quantum theory to thermodynamics to
astronomy and more. It is now widely accepted that the universe began in a condensed,
hot state and cooled down rapidly through expansion, in a process called the hot big bang.
From this, it follows that cosmology deals with some of the most extreme phenomena in
all of physics, all the way from localised high-energy interactions to large-scale processes
at record-low temperatures.

Being one of the oldest sciences, cosmology has evolved over the centuries thanks to
technological and theoretical progress; and while some of its considerations remain in
the realm of metaphysics, it is now based on solid theoretical grounds and a plethora of
reliable astronomical observations. The main theoretical breakthrough – which cemented
cosmology as a science – came from Einstein’s theory of general relativity (GR) in 1915
[31]. Using Einstein’s insights, Friedmann, Lemaître, Robertson and Walker (FLRW)
independently developed a mathematical description of our universe in the 1920’s and
1930’s [32–35]. This was based on the assumptions that our universe is homogeneous -
it looks the same wherever you are observing from - and isotropic - it looks the same no
matter which direction you look in. On the observational side, Hubble’s 1929 observation
of receding galaxies [7] was the first evidence that our universe is in fact expanding, and
a confirmation of the FLRW solution which typically predicts an expanding universe.

Since these early developments, cosmology has developed rapidly, driven by new
observations. A unique challenge of cosmology comes from its very nature: since we are
concerned with studying the universe as a whole, observations are non-replicable due to
the cosmic scales involved. Thankfully, due to the sheer size of the universe, there are

1
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many instances of objects in a given class – galaxies, stars etc. – and so cosmology relies
heavily on statistics to draw conclusions. The uncertainties in cosmological observations
come not only from standard systematics, but also from the fact that we can only observe
one realisation of the universe. The latter phenomenon is usually referred to as cosmic
variance. Despite these limitations, cosmology has evolved in under a century from a
lack of observations with prohibitively large errors to now being considered a precision
science [36], with a number of state of the art telescopes and percent level uncertainties.
This increase in the quality of observations has led to many theoretical breakthroughs
to explain them, culminating in the currently accepted standard model of cosmology,
ΛCDM, which we will describe in Chapter 3.

In this thesis, we will first review the relevant background to understand modern
cosmology. We will then go beyond the standard model, and describe new models which
aim to solve some outstanding problems emerging both from theoretical and observa-
tional considerations. In particular, we will focus on the nature of dark matter (DM)
and dark energy (DE) and their possible joint origin.

The thesis is organised as follows: Chapter 2 introduces the mathematical foundations
of cosmology, including Einstein’s general relativity and the basics of physical cosmology.
These concepts come together with observational cosmological methods in Chapter 3,
culminating with a description of the ΛCDM model and its challenges. In Chapter 4
we present alternatives to ΛCDM, focussing on scalar fields and their use to model dark
matter and dark energy. After this, all material presented is new, independent research.
Chapter 5 proposes a new model for DM and DE based on two scalar fields interacting
through the hybrid inflation [37] potential. In Chapter 6 we constrain the parameters
of the hybrid dark sector model by comparing its theoretical predictions to cosmological
observables. In Chapter 7 we introduce an interacting scalar fields framework for DM
and DE based on effective field theory. The model has the interesting property of yielding
a negative equation of state for DM at late times. We study in detail a simplified model
based on this framework in Chapter 8, including the behaviour of perturbations and a
Bayesian analysis of the parameters preferred by cosmological data. In this thesis we
will work in units where ℏ = c = 1 and adopt the (−,+,+,+) metric signature.



Chapter 2

Mathematical foundations of
cosmology

The interplay between geometry and physics is central to our understanding of the uni-
verse. In this chapter, we will see how the foundations of general relativity – introduced
in Section 2.1 – can naturally lead to a theory of an expanding universe and therefore
cosmology (in Section 2.2).

2.1 General relativity

In order to describe the evolution of our universe, we need the physical and mathematical
framework of general relativity. Developed by Albert Einstein in 1915 [31], general
relativity is a geometric theory of gravity. At its core, it explains what we call gravity
as the curvature of spacetime. The curvature of spacetime is influenced by any matter
present in the spacetime, and that matter evolves according to the curvature. This holds
true in cosmology, where the contents of the universe directly influence how the universe
evolves.

2.1.1 Einstein’s GR basics

The central degree of freedom in GR is the metric tensor gµν [38–40], which allows us
to define physical distances between points in spacetime, and in turn make sense of
causality in the universe. The metric is conventionally written as a line element ds2,
which represents the length of an infinitesimal displacement vector:

ds2 = gµνdxµdxν , (2.1)

3
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where dxµ is a basis covector.
To formalise the notion of curvature, we need to generalise the concept of a derivative

in curved spacetime. This is provided by a connection ∇, which evaluates the rate of
change of a tensor between two neighbouring points and is defined as such for an arbitrary
tensor of rank (k, l):

∇µT
ν1...νk
ρ1...ρl

= ∂µT
ν1...νk
ρ1...ρl

+ Γν1
µλT

λ...νk
ρ1...ρl

+ ...+ Γνk
µλT

ν1...λ
ρ1...ρl

(2.2)

− Γλ
µρ1

T ν1...νk
λ...ρl

− ...− Γλ
µρl

T ν1...νk
ρ1...λ

,

where we have introduced the Christoffel symbols Γµ
νρ. In GR, we require that the

connection satisfy two extra conditions [38]:

• it is torsion free: Γµ
νρ = Γµ

ρν

• it is metric compatible: ∇ρgµν = 0.

It turns out there is only one such connection, called the Levi-Civita connection and
defined as follows:

Γρ
µν =

1

2
gρλ(∂µgνλ + ∂νgλµ − ∂λgµν). (2.3)

Next, we can introduce curvature in the form of the Riemann tensor, which is related to
the change in a vector after having been parallel transported around a loop:

Rσ
ρµν ≡ ∂µΓ

σ
νρ − ∂νΓ

σ
µρ + Γσ

µλΓ
λ
νρ − Γσ

νλΓ
λ
µρ. (2.4)

The Riemann tensor has multiple algebraic symmetries and it obeys a differential con-
straint, the Bianchi identity:

∇[λRρσ]µν = 0, (2.5)

where indices in square brackets are antisymmetrised. We now define useful contractions
of the Riemann tensor: the Ricci tensor

Rµν ≡ Rλ
µλν , (2.6)

which is symmetric, and the Ricci scalar

R ≡ Rµνg
µν . (2.7)
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From there we define the Einstein tensor

Gµν ≡ Rµν −
1

2
Rgµν , (2.8)

which is symmetric and covariantly conserved, meaning its covariant derivative vanishes:

∇µGµν = 0. (2.9)

We now seek to find an equation which describes the dynamics of a generic spacetime
containing some matter or energy (the case of a vacuum spacetime follows straightfor-
wardly). In order to do this, we first need to model the matter 1 in our spacetime. To do
this we define the energy-momentum (EM) tensor T µν which heuristically is "the flux of
four-momentum pµ across a surface of constant xν" [38]. To generalise conservation of
energy-momentum to curved spacetime, the following covariant conservation law applies
to all non-interacting energy-momentum tensors:

∇µTµν = 0. (2.10)

It is common in cosmology to model a group of particles as a fluid, in which case the com-
ponents of the energy-momentum tensor have a straightforward physical interpretation
in the fluid’s rest frame:

• T 00 represents the energy density ρ,

• T i0 is the momentum density,

• T ii give the x, y, z components of the pressure2,

• T ij for i ̸= j describe shear stress.

A simple but useful special case is that of perfect fluids, which can be described with
only two degrees of freedom: the energy density ρ and the pressure p (notice in this case
the pressure is the same in all directions). Perfect fluids have no shear stress in the frame
where momentum density vanishes. Their EM tensor can generally be written as

T µν = (ρ+ p)uµuν + pgµν (2.11)
1Here we use matter in a loose sense to mean any form of stress-energy present in the universe.

Later, in the context of cosmology, matter will refer to presureless dust.
2No sum is implied here.
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where uµ is the four-velocity of the fluid.
Now back to our main problem. We need an equation relating gravity (the metric)

to whatever ‘stuff’ is in our spacetime (the energy-momentum). Einstein’s insight (one
of many!) was to see that whatever the actual description of gravity was, it had to
agree with Newton’s on appropriately small scales. By deriving the Newtonian limit of
GR and comparing it to Poisson’s equation, the simplest second-order set of equations
corresponding to these constraints are Einstein’s equations:

Rµν −
1

2
Rgµν = 8πGTµν , (2.12)

where G is Newton’s gravitational constant. The neat tensor notation hides 10 non-linear
equations which in general are very difficult to solve. Nevertheless, Einstein’s equations
encompass the deep fundamental fact that the curvature of spacetime (and hence what
we perceive as gravity) is influenced by, and influences, the energy-momentum present in
the spacetime. In cosmology, we will solve these equations by assuming some physically
motivated symmetries present in our universe, as well as specifying the energy contents
of the universe. Before we do this, however, let us take a detour and derive Eq. (2.12)
from a different approach, namely that of the principle of least action.

2.1.2 The Einstein-Hilbert action

In order to understand GR as a classical field theory, we now seek an action which
can yield Einstein’s equations. Along with being an elegant formulation of GR, this
approach makes it easier to modify Einstein’s original theory by adding extra ingredients
and couplings - one might, for example, want to combine electrodynamics and GR. The
degree of freedom which we will vary according to the principle of least action is the
metric itself, gµν . This action will necessarily be of the form

SH =

∫
d4x

√
−gLH (2.13)

where LH is a Lorentz scalar which we will call the Lagrangian3, and the extra factor of
√
−g is necessary to keep the volume element invariant under coordinate transformations.
A non-trivial scalar L must be at least second order in derivatives of the metric4 [40].

At second order, the only possible scalar is the Ricci scalar R . For simplicity’s sake (i.e.
3Strictly speaking, this is the Lagrangian density.
4We discuss the cosmological constant in the next section.
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avoiding higher derivatives orders), Hilbert proposed the following action

SH =
1

16πG

∫
d4x

√
−g R, (2.14)

which turns out to be the right one. To see this, we can first compute the variation in
the action δSH caused by a small variation in the metric δgµν . The principle of least
action then tells us that the equation of motion is obtained by taking this variation and
setting it to 0, in other words:

δSH

δgµν
= 0 (2.15)

We omit the full derivation here but the upshot is the following:

δSH

δgµν
=

√
−g

[
Rµν −

1

2
Rgµν

]
= 0 (2.16)

which is precisely Einstein’s equations in vacuum. In order to add matter, we define a
new action

S =
1

16πG
SH + SM (2.17)

where SM is the action for matter. By defining the energy-momentum tensor as

Tµν = −2
1√
−g

δSM

δgµν
, (2.18)

we recover the full Einstein equations after varying S.

2.1.3 The cosmological constant

As we will see in detail in Section 2.2.5, Einstein’s equations admit solutions describing
a dynamical (usually expanding) universe. In the early 20th century, the idea that
our universe might be expanding was an eccentric one, and the fact that his theory of
gravitation allowed for this was a difficult pill to swallow for Einstein. To ensure a static
universe solution, he decided to modify his field equations in the most minimal way
possible whilst still preserving most of its properties, by adding a linear combination of
the metric to the original tensor. What results, as was proved by Lovelock in 1971 [41],
is the most generic two-index symmetric tensor equation constructed in 4D from the
metric with up to second-order derivatives and is divergence free. The action required
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to obtain the modified equations is the following:

S =

∫
d4x

√
−g

(
1

16πG
(R− 2Λ) + LM

)
, (2.19)

where Λ is a constant, usually referred to as the cosmological constant (CC), and LM is
the matter Lagrangian. The corresponding equations of motion obtained after varying
this action are the Einstein equations with a cosmological constant:

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν . (2.20)

It turns out that the static solution obtained by adding the CC is unstable to small
perturbations in the curvature or the matter density. Moreover, Hubble’s observations
of receding galaxies in 1929 [7], suggesting the universe was in fact expanding, prompted
Einstein to label this as his "greatest blunder" [42]. We will come back to the issue of
the cosmological constant in Section 2.2.4 and evaluate whether this was indeed such a
massive blunder on Einstein’s part.

2.2 Cosmology

Solving the Einstein equations is hard. It is hard in vacuum, and it is even harder in
the presence of mass-energy. We know that the universe is full of stuff, and therefore we
will focus on the latter case. In order to make progress, we will have to make use of the
powerful concept of symmetries, motivated by physical observations.

2.2.1 The cosmological principle

Whilst it may seem counter-intuitive at first, the cornerstone of modern cosmology is
the assumption that our universe is spatially homogeneous and isotropic, also called the
cosmological principle. Broadly speaking, this states that on large enough scales, the
universe looks the same to an observer wherever they are (homogeneity) and whichever
direction they look (isotropy). Of course, we know from everyday life that the universe
is neither of these things on our planetary scale, hence the importance of specifying that
we are talking about large scales. Still, we know that there are lots of galaxies far away
in the universe, and that they surely do not all look the same. On top of that, how can
we know what the universe looks like to a different observer, since no human has even
left our solar system?
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First, let us consider isotropy. There is strong evidence that the universe looks the
same in all directions, mainly coming from the cosmic microwave background (CMB).
We will discuss this in more detail later, but the CMB is a relic radiation emitted
around 300,000 years after the Big Bang, which certainly represents a large enough
scale. Statistically, the CMB radiation looks the same (i.e. each photon is the same
temperature) regardless of direction. This isotropy is remarkably only broken at a scale
of one part in around 105 (see Fig. 5.7), and these anisotropies are the seeds of all the
structure we observe today in the universe.

Figure 2.1: Sky map of the CMB temperature anisotropy from the Planck Collabora-
tion [4, 5].

Homogeneity is trickier to prove, since we only have one place from which to ob-
serve the universe. If we invoke the Copernican principle and assume that we are not
in a special place in the universe, isotropy for us would imply isotropy everywhere in
the universe. Remarkably, isotropy at every point in spacetime necessarily implies ho-
mogeneity [43]. Observationally, we can rely on galaxy surveys (see Fig. 2.2) to probe
homogeneity in our universe: if the statistical properties of galaxy distribution in a given
volume are independent of their location in the universe, then the universe can be con-
sidered to be homogeneous. Recent galaxy surveys suggest that the universe starts to
look homogeneous at around 100 Mpc [44].

Now that we are happy to consider that the universe is broadly speaking homogeneous
and isotropic, we will take this as a fact and explore what it means mathematically. The
idea is to consider a spatially homogeneous and isotropic background spacetime on which
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Figure 2.2: The map of the universe from the Sloane Digital Sky Survey (SDSS) [6].
Each dot represents a galaxy, coloured according to the age of their stars. Redder, more
strongly clustered galaxies contain older stars. The missing directions in the wedge were
not observed due to foreground dust. Image credit M. Blanton and SDSS collaboration
https://www.sdss4.org/science/orangepie/.

we can study small perturbations which introduce inhomogeneity and anisotropy. These
small perturbations will then be the seeds of the structure we observe today.

In short, we want to foliate our spacetime with spacelike hypersurfaces - that is,
associate a spacelike hypersurface with each point in time, where time is described by
a continuous parameter. In other words, at each moment in time we associate a hy-
persurface representing space. This hypersurface must be both rotationally invariant
(isotropic) and translationally invariant (homogeneous) - such a 3-space is said to be
maximally symmetric. These conditions imply that the components of the metric can
only depend on time and that the spatial curvature must be constant throughout space.

https://www.sdss4.org/science/orangepie/
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2.2.2 The Friedmann-Lemaitre-Robertson-Walker metric

Putting all the insights from the previous sections together, the most general metric ex-
hibiting spatial isotropy and homogeneity is the Friedmann-Lemaitre-Robertson-Walker
metric:

ds2 = −dt2 + a2(t)γijdxidxj. (2.21)

The coordinates we choose are standard in cosmology and are as follows: t is called cosmic
time and represents the proper time of an observer with no peculiar velocity in a spatially
isotropic and homogeneous universe. It is a preferred time coordinate in our spacetime.
The spatial coordinates {x, y, z} denote comoving coordinates. These spatial coordinates
evolve along with the expansion of the universe, meaning that the comoving distance
between two points remains constant throughout cosmic history. Physical distances are
proportional to the scale factor a(t) and so evolve with time. Proper distance can be
recovered through xi

phys(t) = a(t)xi. The scale factor is a dimensionless quantity related
to the relative size of the universe, so it is a direct measure of its expansion and evolution.
Finally, γij represents the metric for a maximally symmetric 3-space. Since curvature is
constant on the 3-space, it is sufficient to consider 3 distinct cases, depending on whether
the curvature K is positive, negative or zero.

• If K > 0, the spacelike hypersurface is the 3-sphere and the universe is closed.

• If K = 0, the 3-space is simply Euclidean space and the universe is flat.

• If K < 0 the spatial slices are hyperboloids and the universe is open.

In comoving spherical coordinates, the spatial metric can be written as

γijdxidxj =
dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2). (2.22)

Note that {r, θ, φ} are derived from the comoving spatial coordinates {x, y, z} hence
they are also comoving. The above metric can be rewritten in terms of a new radial
coordinate χ, defined as

dχ ≡ dr√
1−Kr2

. (2.23)
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Integrating yields r = Sk(χ), where [38]

Sk(χ)


sinχ for K > 0

χ for K = 0

sinhχ for K < 0,

(2.24)

and so the spatial metric can be rewritten as

γijdxidxj = dχ2 + S2
k(χ)(dθ

2 + sin2 θdφ2). (2.25)

There is a common alternate time coordinate called conformal time τ , defined as
dt = adτ . Writing the FLRW metric with K = 0 in conformal time yields

ds2 = a2(t)
(
−dτ 2 + γijdxidxj

)
, (2.26)

i.e. gµν = a(t)ηµν where ηµν is the Minkowski metric of special relativity – a flat, static
spacetime. We will denote derivatives with respect to conformal time with a ′ symbol,
i.e. f ′ ≡ df

dτ

Let us now consider the implications of the spacetime symmetries on the energy-
momentum tensor introduced in Section 2.1.1 [45]. Let us decompose our EM tensor into
a scalar T00, a 3-vector Ti0 = T0i and a 3-tensor Tij. Now, we know from homogeneity
that any scalar must be a function of time only, and from isotropy that any 3-vector must
vanish (since there are no preferred directions). Moreover, it can be shown that isotropy
forces the element of a 3-tensor to be proportional to the 3-metric, with homogeneity
again requiring that the constant of proportionality be only a function of time. We can
therefore write the components of Tµν as

• T00 = ρ(t),

• Ti0 = T0i = 0,

• Tij = p(t)gij.

Note that the symmetries do not allow for momentum density or shear stress, and force
the pressure to be the same in every direction. In a comoving frame, the fluid is at rest
and so

uµ = (1, 0, 0, 0), (2.27)
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which means the EM tensor for a fluid in a homogeneous and isotropic universe can be
written as

Tµν = (ρ+ p)uµuν + pgµν . (2.28)

The above equation is exactly Eq. (2.11), meaning that the spacetime symmetries im-
posed by the cosmological principle have picked out the perfect fluid as the only allowed
form of fluid mass-energy.

For completeness, we also include the trace of the EM tensor

T = T µ
µ = −ρ+ 3p, (2.29)

which can be a useful quantity.

2.2.3 The Friedmann equations

Equipped with the metric and the energy-momentum tensor, we are now ready to write
down the Einstein equations. Note that the use of symmetry has greatly reduced the
number of degrees of freedom in the metric from 10 (since the Einstein tensor is sym-
metric) to just one: the scale factor a(t). Let us start by calculating the Einstein tensor
in an FLRW spacetime. Following symmetry arguments, we know that the Gi0 = G0i

components vanish, and that Gij ∝ gij. After some calculations we are left with

G00 = 3

[(
ȧ

a

)2

+
K

a2

]
(2.30)

Gij = −

[
2
ä

a
+

(
ȧ

a

)2

+
K

a2

]
gij, (2.31)

where we use the overdot to refer to cosmic time derivative, i.e. ḟ ≡ df
dt

For reference,
the Ricci scalar reduces to

R = 6

[
ä

a
+

(
ȧ

a

)2

+
K

a2

]
. (2.32)

Now, plugging in Eqs. (2.30), (2.31) into the Einstein equations and doing some
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rearranging, we obtain the Friedmann equations:(
ȧ

a

)2

=
8πG

3
ρ− K

a2
, (2.33)

ä

a
= −4πG

3
(ρ+ 3p), (2.34)

where it is to be understood that ρ and p correspond to the sum of the energy density
and pressure of all types of mass-energy in the universe (we will describe the contents
of our universe in Section 2.2.4). These equations allow us to solve for the scale factor
and so for the evolution of the universe. There is, however, a caveat. We have two
Friedmann equations for 3 variables, a(t), ρ(t) and p(t). In order to close this system,
we must introduce an equation of state (EoS) for the fluid, that is a relation between
the energy density and the pressure p = p(ρ). For a linear barotropic fluid, this is given
by

p = wρ, (2.35)

where w is the constant equation of state. We will relax the assumption that w is a
constant later in this thesis.

We define the Hubble parameter,

H(t) ≡ ȧ

a
, (2.36)

which is used to describe the expansion rate of the universe at a given time. In an
expanding universe, H(t) is necessarily positive. In terms of conformal time, we define

H(η) ≡ a′

a
. (2.37)

We can derive another useful cosmological equation from the conservation of energy-
momentum, Eq. (2.10). Plugging in our FLRW metric, we obtain the simple expression

ρ̇+ 3H(ρ+ p) = 0. (2.38)

Note that the first Friedmann equation, Eq. (2.33), in conjunction with the energy-
momentum conservation equation, Eq. (2.38), are equivalent to the two Friedmann
equations – Eqs. (2.33), (2.34). We will generally use the former combination in the rest
of this work, and refer to Eq. (2.33) simply as the Friedmann equation.

Finally, let us introduce the density parameter Ω(t), which is used to describe the
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fractional density of different energy components in the universe. This is defined as

Ω ≡ 8πG

3H2
ρ =

ρ

ρcrit
, (2.39)

where we have defined ρcrit the critical density, which is the density required to keep the
universe flat at any given time. This can be seen by rewriting the Friedmann equation
as

Ω− 1 =
K

a2H2
, (2.40)

which shows that if the energy density is equal to the critical density, the spatial curvature
is necessarily zero.

2.2.4 Mass-energy in the universe

Now that we have developed the mathematical machinery to describe our universe, let
us see in detail how the mass-energy content of the universe influences its evolution. To
this end, we will first solve Eq. (2.38) for a linear barotropic fluid. In this case the
equation simplifies to

ρ̇+ 3Hρ(1 + w) = 0, (2.41)

which can be straightforwardly integrated to yield

ρ(t) = ρi

(
a(t)

ai

)−3(1+w)

, (2.42)

where the subscript i denotes the value of the functions at some initial time ti. Note
that here we have assumed there is only one fluid species in the universe, which we will
justify in a moment.

Clearly, which equation of state one chooses for their perfect fluid directly changes
how the universe evolves. In order to restrict which values of w are allowed, we turn to
the energy conditions. In short, these are mathematical constraints on the EM tensor
constructed in an effort to make the mass-energy content of spacetime physically realistic.
Energy conditions provide a relativistic, coordinate-invariant generalisation of the idea
that energy density should not be negative. Here we describe the main energy conditions,
in the case of a linear barotropic perfect fluid 5:

• The null energy condition (NEC) requires ρ+ p ≥ 0.
5See [38] for fully covariant formulation
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• The weak energy condition (WEC) requires ρ ≥ 0, ρ+ p ≥ 0.

• The dominant energy condition (DEC) requires ρ ≥ |p|.

• The strong energy condition (SEC) requires ρ+ p ≥ 0, ρ+ 3p ≥ 0.

For now we will adopt the weak energy condition, which means that we will consider
perfect fluids with positive energy density and w ≥ −1.

Let us discuss the main three sources of mass-energy we will encounter in cosmology:

Matter Also called dust, matter is the most familiar (although not most abundant, see
Section 3.2.2) source of mass-energy in our universe. Physically it is defined as a
fluid made up of non-relativistic, non-interacting particles such that their pressure
is negligible. In practice, this means that w = 0 and so their energy density evolves
as ρ ∝ a−3. This is in keeping with the expectation that the number density dilutes
inversely proportional to the volume of the universe as it expands, and the mass
of the particles stays unchanged. Dust is used to model6 all baryonic and leptonic
matter that make up gases, stars and galaxies, as well as cold dark matter (CDM)
which we will discuss in Section 3.1.2.

Radiation This term is used to describe either actual electromagnetic radiation (photons)
or massive relativistic particles (neutrinos). Their equation of state is w = 1/3.
This can be seen by taking the EM tensor of Maxwell’s electromagnetic theory and
showing its trace is equal to 0. Equating this to the trace of a perfect fluid EM
tensor (Eq. (2.29)), we see that p = ρ/3 [38]. Solving the continuity equation Eq.
(2.41), we get ρ ∝ a−4. Radiation dilutes quicker than matter in an expanding uni-
verse. This is because the number density of the photons evolves with the volume
of the universe, photons also lose energy at a rate of a−1 due to redshift, which we
will discuss in more detail in Section 2.2.6.

Vacuum energy Let us go back to the cosmological constant from Eq. (2.20). If one
moves this contribution to the right hand side and considers it as a source of mass-
energy, we find that this corresponds to the energy-momentum tensor of a perfect
fluid with p = −ρ, or w = −1. The energy density is ρ = Λ

8πG
which in principle can

be positive or negative depending on the sign of Λ (although adopting the WEC
restricts it to positive values). One interpretation for the cosmological constant
is that it represents a vacuum energy of the universe, constant at every point in
spacetime.

6On large scales.
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Most models for realistic universes will include a combination of all three components
described above, as well as curvature. Since they decay at different rates, it is common
to divide the history of the universe into separate epochs, when a particular component
dominates the sum of energy densities. Radiation decays quickest, and so can only
dominate at early times if its initial energy density is high enough. At some later point,
matter might take over and the universe becomes matter dominated. The vacuum energy,
being constant, will always come to dominate regardless of how small it is, as long as
there is no collapse. There is also a possibility that the curvature contribution will
become dominant. Indeed, looking at Eq. (2.33), the K term is proportional to a−2 and
so decays slower than matter. Since the behaviour of ρ directly enters into the Friedmann
equation, we shall see next how the universe (i.e. the scale factor) evolves in each epoch.

2.2.5 Dynamics of the universe

We can now solve the Friedmann equation (Eq. (2.33)) throughout the history of the
universe, by adopting the simplifying assumption of a single-component universe. Indeed,
as mentioned in the previous section, since all types of mass-energy decay at different
rates in a dynamical universe, there will be stretches of time where one component
comes to dominate the energy-momentum of the universe, and so we can ignore the
other components at that point. For a perfect fluid with equation of state p = wρ, the
Friedmann equation can be solved exactly in terms of cosmic time

a(t) ∝

 t2/(3(1+w)) if w ̸= −1

eHt if w = −1,
(2.43)

and in conformal time

a(τ) ∝

 τ 2/(1+3w) if w ̸= −1

|τ |−1 if w = −1.
(2.44)

A few interesting things to note: first, the scale factor grows quicker in matter domin-
ation (MD) than in radiation domination (RD), but it expands quickest during vacuum
energy domination (ΛD). Next, it is easy to see by looking at Eq. (2.33) that the Hubble
rate H(t) decreases during RD and MD, while it stays constant in ΛD. Finally, looking
at Eq. (2.34), we can see that the expansion of the universe accelerates (ä > 0) for
w ≤ −1/3, meaning that it is actually decelerating during RD and MD, but accelerating
during ΛD.

In the above discussion we have neglected curvature. Indeed, as mentioned earlier a
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universe with a cosmological constant will necessarily end up in ΛD, but depending on
the size of the K term in Eq. (2.40) curvature may influence the dynamics. The sign of
K is crucial to the type of evolution it yields. Suppose there is no cosmological constant
7, then curvature will become dominant after MD. If the universe is open (K < 0), then
there will just be a new expanding epoch with ρ ∝ a−2 and a(t) ∝ t. The universe will
expand at a steady rate (ä = 0) forever. However, if the universe is closed (K > 0),
when curvature takes over the contribution will now be negative. The expansion will
then slow down until the matter energy density is equal to the curvature contribution,
at which point the rhs of Eq. (2.33) will become 0. It is of course not possible for this
to go negative as it must be equal to H2, but H itself will become negative, meaning
that the universe will start contracting instead of expanding! This may result in what
we call a big crunch, when the universe shrinks back to a singularity at a = 0 8.

2.2.6 Cosmological redshift and measuring distances

One of the main ways we gather information about our universe is by observing distant
objects such as stars and galaxies. In order to use these observations, we will be interested
in working out how far these objects are from us. Here we develop the mathematical
machinery to understand distances in cosmology.

First, let us discuss photons, since electromagnetic radiation is how we typically
observe astronomical objects. As photons travel to reach observers on Earth, their
wavelength gets stretched due to the expansion of the universe. Formally, the momentum
p of photons is proportional to a−1(t), and the relation to the wavelength is given by
λ = h/p (where h is the Planck constant) hence λ ∝ a(t):

λ(t0) =
a(t0)

a(t1)
λ(t1). (2.45)

We define the redshift z as the fractional change in photon wavelength between the
source (where the photon was emitted) and the observer:

z ≡ λobs − λem

λem
. (2.46)

Plugging in Eq. (2.45) and assuming the common convention of setting the present-day
7It is also possible that curvature takes over after ΛD if there exists a mechanism for the cosmological

constant to decay.
8Note that the expanding universe models also suffer from a singularity at a = 0. This would have

happened in the past, at which point all energy densities diverge.
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scale factor to 1 (a0=1), we obtain the following important relation between redshift and
scale-factor:

a(t) =
1

1 + z
(2.47)

where we have generalised the emitted time tem to be any value of t. The equation above
means that the observed redshift of an object tells us when the photon was emitted.

For small redshifts (z ≪ 1), it is common to associate cosmological redshift with
standard Doppler-effect redshift, and hence the receding velocity of a nearby object is
simply v = z in natural units. At larger scales, the curvature of spacetime becomes
important and this simplification does not hold any more.

Expanding the scale factor for a nearby source around a(t0) ≡ a0, we get

a(t) = a0 + (t− t0)ȧ(t0) +O
(
(t− t0)

2
)
+ . . .

≈ a0 [1 + (t− t0)H0] (2.48)

where H0 is the Hubble rate today.
Now we define the comoving distance dc, which remains constant between two objects

as the universe expands [45]:

dc =

∫ t0

t

dt′

a(t′)
, (2.49)

as well as the particle horizon (often just referred to as the horizon)

dh(t) =

∫ t

0

dt′

a(t′)
, (2.50)

which represents the maximum size of a causally-connected patch at a given (conformal)
time. In a standard cosmology, the horizon is roughly equal to dh ∼ (aH)−1.

The proper distance dp is the distance between two objects in a reference frame with
constant cosmological time:

dp = a(t)χ(r) (2.51)

where χ was defined in Eq. (2.24). For objects at low redshift, comoving and proper
distances agree and so dc ≈ dp ≈ (t0 − t) ≡ d. Plugging the definition of redshift into
Eq. (2.48), we get

v ≈ z ≈ H0d. (2.52)

This is Hubble’s law, which states that the redshift of a nearby object is proportional to
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its distance and the constant of proportionality is precisely the Hubble rate today9.
At higher redshifts, when we cannot take a simple first order approximation, we have

to define new distance measures which are compatible with the curvature of spacetime.
First, we generalise the idea of using luminosity L (which is intrinsic to a bright object)
and flux F (which is the signal we observe in units of energy per time per area) in order
to find the distance. We define the luminosity distance dL:

d2L ≡ L

4πF
. (2.53)

The general equation for flux in euclidean space is F = L/A where A is the area of
a sphere centred at the source. In an expanding universe however, this relationship will
not be as straightforward. Indeed, we have to account for the fact that the photons will
be redshifted and so their observed energy will be perceived as less than it was when
emitted. Also, due to time dilation the rate at which the photons are observed is also
reduced by the same factor of redshift. In total, the observed flux is therefore

F =
L

(1 + z)2A
. (2.54)

If the source is situated at a comoving distance χ, the area A defined above is given as

A = 4πS2
k(χ), (2.55)

which in the end gives the the following expression for the luminosity distance:

dL = (1 + z)Sk(χ). (2.56)

We now explore a second way of measuring distances to far-away objects. If we know
the intrinsic size of an object - for simplicity we will call this the diameter D - then by
comparing this length to its observed angular size δθ in the sky it is possible to infer
its distance. Following our intuition from Euclidean space for a small angular size, we
define the angular diameter distance dA:

dA ≡ D

δθ
. (2.57)

Using the FLRW metric we find that D = a(t)Sk(χ)δθ, and so the angular diameter
9Note that this assumes that there is no peculiar velocity component, i.e. any velocity of the object

is due to the expansion of the universe with no other, non-comoving, motion.
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distance is
dA =

Sk(χ)

1 + z
=

dL
(1 + z)2

. (2.58)

2.3 Cosmological perturbation theory

We have seen so far that on large scales the universe can be well approximated as being
homogeneous and isotropic. However, it also remains true that when we look out into
the night sky, we see direct proof that these assumptions do not hold true for smaller
scales. Indeed, the structure in the universe such as galaxies and clusters seems to
break the symmetry. This implies that our first order approximation for the background
universe does not hold everywhere, and on smaller scales we shall look for a more refined
approach. The framework we use is that of perturbation theory, where we assume a
background maximally symmetric universe on top of which we introduce some small
perturbations. We will keep to linear perturbations in this work, but in order to study
structure formation it is often necessary to go to higher orders.

2.3.1 The metric and the energy-momentum tensor

The question remains of what we mean by perturbations of the background. In Einstein’s
equations we had two ingredients: the metric, and the EM tensor. We will simply
introduce some small perturbations in these two components, which will break isotropy
and homogeneity [46]. We only consider perturbations around the flat FLRW metric,
as we will not need the fully general equations in the rest of this work. Expanding the
metric and EM tensor in this way we get:

gµν = ḡµν + δgµν (2.59)

Tµν = T̄µν + δTµν , (2.60)

where the over-bar signifies the background quantity and δ indicates the perturbation.
The Einstein equation for the perturbations are simply

δGµν = 8πGδTµν , (2.61)

where we have decomposed the Einstein tensor into a background part and a perturbed
part by plugging in Eq. (2.59).

Let us look at the perturbed metric in more detail. In conformal time, we rewrite
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Eq. (2.59) as
gµν = a2(τ)(ηµν + hµν), (2.62)

which defines hµν . Before we write down the components of hµν , let us consider the
following: remember we arrived at the background FLRW metric by imposing spatial
homogeneity and isotropy. It is therefore interesting to ask ourselves what happens to
hµν when we apply spatial rotations to the whole metric. It turns out that the h00

component behaves as a scalar under these transformations, hi0 behaves as a vector and
hij behaves as a tensor. It is possible to decompose the last two sets of components into
scalar, vector and tensor parts. For our purposes, we will only be interested in the scalar
part of the perturbed FLRW metric10, and so we write this as:

h00 = −2Φ (2.63)

hi0 = ∇iB (2.64)

hij = −2(δijΨ−∇i∇jE), (2.65)

where Φ, B, Ψ, E are scalar functions of conformal time and comoving spatial coordin-
ates.

Let us now discuss the perturbed EM tensor. To this end, let us perturb the energy
density, pressure and velocity of the fluid:

ρ = ρ̄+ δρ (2.66)

p = p̄+ δp (2.67)

ui = δui. (2.68)

We also define what we will refer to as the velocity perturbation vi:

vi ≡ aui, (2.69)

as well as the density contrast δ:

δ ≡ δρ

ρ̄
. (2.70)

Keeping only the scalar part of the perturbations, we get the following components for
10Remarkably, the scalar, vector and tensor parts of the perturbation decouple at linear order, which

makes it possible to consider only scalar perturbations [46].
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the perturbed EM tensor:

δT 0
0 = −δρ (2.71)

δT 0
i = −(ρ̄+ p̄)∇i(v −B) (2.72)

δT i
0 = (ρ̄+ p̄)∇iv (2.73)

δT i
j = δpδij + (∂i∂j −

1

2
δij∇2)Σ, (2.74)

where v is the scalar part of the velocity perturbation vi, Σ is the scalar part of the
anisotropic stress Σij. We will usually assume no anisotropic stress and so set Σ = 0.

2.3.2 Gauge transformations

So far we have ignored an important subtlety of perturbing our background FLRW
metric. In order for us to be able to decompose spacetime into a background part and
a perturbed part, the two have to share the same coordinate system. Because of the
extra freedom (reduced symmetry) in the perturbed spacetime, there are many choices
of coordinates in the perturbed spacetime that are equivalent at the background level.
In this context, we will refer to a choice of coordinates as a gauge, and going from one
allowed gauge to another will be referred to as a gauge transformation. In practice, gauge
transformations are those coordinate transformations for which Eq. (2.59) still holds.
We will go from one gauge to another via the following transformation:

x̃α = x̂α + ξα, (2.75)

where x̃α are the coordinates in the new gauge, x̂α are the coordinates in the original
gauge and ξα is a linear-order vector defining the gauge transformation. Under this
transformation, background quantities remain unchanged but perturbed ones change.
For the scalar metric perturbations, a gauge transformation induces the following:

Φ̃ = Φ− ξ0′ − a′

a
ξ0 (2.76)

B̃ = B + ξ′ + ξ0 (2.77)

Ψ̃ = Ψ− 1

3
∇2ξ +

a′

a
ξ0 (2.78)

Ẽ = E + ξ, (2.79)
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where ξ is the scalar part of the spatial component, i.e. ξi = ∇iξ. For the EM tensor
scalar perturbations, the gauge transformation laws are:

δ̃ρ = δρ− ρ̄′ξ0 (2.80)

δ̃ = δ − ρ̄′

ρ̄
ξ0 (2.81)

δ̃p = δp− p̄ξ0 (2.82)

ṽ = v + ξ′ (2.83)

Σ̃ = Σ. (2.84)

Two gauges are worth mentioning as examples. First, the so-called Newtonian gauge is
one in which BN = EN = 0 (the superscript N denotes the Newtonian gauge). The
exact form of the gauge transformation as per Eq. (2.75) is the following:

ξ = −E (2.85)

ξ0 = −B + E ′. (2.86)

We will use mainly the synchronous gauge in this work, for numerical convenience. It
is defined by the requirement that ΦS = BS = 0, where the subscript S denotes the
synchronous gauge. Formally it is obtained by setting

ξ0′ +Hξ0 = Φ (2.87)

ξ′ = −ξ0 −B, (2.88)

which, since it is a set of differential equation, only specifies the gauge up to an integration
constant. We follow Ma & Bertschinger’s [47] notation and define

h ≡ −6ΨS (2.89)

η ≡ ΨS +
1

3
∇2ES (2.90)

µ ≡ 2ES. (2.91)

2.3.3 Equations of motion for a perturbed universe

Taking the components of the perturbed metric and EM tensor, it is straightforward (if
tedious!) to work out the components of the perturbed Einstein tensor and therefore
write down the Einstein equations. To simplify notation, we will choose to show the
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equations in the synchronous gauge and in Fourier space. We use the following Fourier
space conventions: we expand scalar functions as

f(τ, x⃗) =

∫
d3xfk(τ)e

ik⃗·x⃗ (2.92)

where x⃗ = (x, y, z) and k⃗ is a comoving wave vector. It is therefore straightforward to
go from coordinate space to Fourier space by using the following dictionary:

∂i → iki

∇2 → −k2.

Additionally, we adopt the convention of Liddle & Lyth [48] and include the following
factors of k when defining the Fourier components of B and E:

B → Bk

k

E → Ek

k2
.

In general this convention also holds for any other scalar constructed by decomposing a
vector (extra 1/k factor) or a tensor (extra 1/k2 factor).

We can now write down Einstein’s equations at linear order in perturbation theory:

k2η − 1

2
Hh′ = −4πGa2δρ (2.93)

k2η′ = 4πGa2(ρ̄+ p̄)kv (2.94)

h′′ + 2Hh′ − 2k2η = −24πGa2δp (2.95)

h′′ + 6η′′ + 2Hh′ + 12Hη′ − 2k2η = −16πGa2Σ. (2.96)

Similarly to the background case, conservation of energy-momentum leads to useful
equations at first order, here written in a general gauge:

δρ′ =− 3H(δρ+ δp) + (ρ̄+ p̄)(3Ψ′ + E ′ − kv) (2.97)

(ρ̄+ p̄)(v −B)′ =− (ρ̄+ p̄)′(v −B)− 4H(ρ̄+ p̄)(v −B)

+ kδp− 2

3
kΣ + k(ρ̄+ p̄)Φ. (2.98)

Once again, we need to specify some extra information about our fluid in order to solve
the above equation. There are two analogues to the EoS at perturbative level: the
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adiabatic sound-speed, defined as

c2a ≡
˙̄p
˙̄ρ
, (2.99)

and the effective sound-speed:

c2s ≡
δp

δρ
. (2.100)

For perfect fluids, the two sound-speeds are equal to the equation of state w. However
we will consider fluids which break this assumption in Chapter 7.

2.4 Summary

In this chapter we have introduced the fundamentals of GR, developing this framework in
order to describe our own universe. This led us to cosmology by assuming homogeneity
and isotropy. We discussed the expansion of the universe, and how it is influenced by its
energy content. We described different distance measures in cosmology before moving
on to linear perturbation theory, which explains the seeds of the large-scale structure we
observe in our universe today. In the next chapter we will make use of these concepts
along with observations to draw conclusions on the nature of our universe.



Chapter 3

ΛCDM: the standard model of
cosmology

Cosmology is the branch of astrophysics that aims to study our universe as a whole. It
is concerned with the evolution of the universe, from its earliest moments to its current
state as well as its future fate. Having introduced the theoretical foundations of cosmo-
logy in the previous chapter, we will now explore the various observations that tell us
about the contents of our universe. In doing this, we will arrive at the standard model of
cosmology, ΛCDM, and describe its features, successes and shortcomings. This chapter
is organised thus: Section 3.1 describes key concepts in observational cosmology. Sec-
tion 3.2 introduces the standard model of cosmology, ΛCDM, and Section 3.3 discusses
limitations of this model.

3.1 Observational cosmology

In this section, we review the historical developments of observational cosmology, and
how this field has helped us understand the contents of our universe.

3.1.1 The expanding universe

The notion of an expanding universe was first explored in the framework of GR by de
Sitter in 1917 [49], and then further by Friedmann and Lemaitre in the 1920’s [32, 33].
Around this time, work from Slipher [50] showed that far away galaxies exhibited a
red Doppler shift, as if they were receding away from us. Definitive evidence that the
universe is expanding was provided by Edwin Hubble in 1929 [7] when he observed that

27
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further away galaxies receded quicker than closer ones. He discovered that the relation
between redshift, or recessional velocity, and the distance to the galaxy was linear, which
is precisely what would later be called Hubble’s law as introduced in Eq. (2.52). His
measurement of H0 = 500km/s/Mpc was off by a factor of 7 compared to the modern
accepted value which has settled around H0 ≈ 70km/s/Mpc, as we will see in Section
3.3.2. The original Hubble diagram (distance against velocity) from that paper is shown
in Fig. 3.1. Measuring the redshift of galaxies is done by observing galaxy spectra,

Figure 3.1: The original Hubble diagram, showing distance against velocity (with the
original wrong units!). Taken from [7].

finding recognisable transition lines in those spectra and comparing their wavelength
to the expected value. In order to find the distance, we use so-called standard candles
- bright objects for which we know the intrinsic luminosity based on some physical
or observational arguments. In particular, Hubble used a class of standard candles
known as Cepheid variables. These are stars that pulsate periodically, changing their
luminosity in the process. There is a known relationship between the period and the
luminosity, meaning that by observing the period of brightness change one can infer the
star’s intrinsic luminosity. From this, one can use the luminosity distance measure to
establish the distance to that star. Hubble chose galaxies which contained such Cepheid
variable stars in order to estimate their distance to Earth. Since his original paper, there
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have been a multitude of further studies confirming Hubble’s conclusion regarding the
expansion of the universe, and the value of the Hubble constant is now determined at
around the percent level, although as we will see in Section 3.3.2 results from different
observations seem to disagree with each other.

3.1.2 Dark matter

We now turn our attention to a type of matter we have not encountered so far, and
yet is incredibly important in our current understanding of the universe. When we look
out to the sky, most of the light we observe originates directly from baryonic matter 1,
either from planets, stars, galaxies or the interstellar gas medium. It would be reasonable
to expect that most of the mass-energy in the universe comes from these, but an ever
increasing amount of observational evidence tells us otherwise.

The first hints that there might be more than meets the eye in our universe came
in the 1930’s from Fritz Zwicky and Sinclair Smith [51]. They took observations of the
Virgo cluster and estimated the total mass made up by all the galaxies inside it. Using
the virial theorem, it was then possible to estimate the average velocity dispersion of
galaxies inside the cluster, and compare it to the observed velocities. The results hinted
that to obtain the correct velocity dispersion, one would need much more mass in the
cluster than was observed. One hypothesis was that the cluster was full of extra matter
that was not visible with telescopes - dark matter. However, the smoking gun for dark
matter did not come until the 1970’s. Vera Rubin and others observed anomalies in
the rotation curves of galaxies [52]; given their luminosity, they could infer their masses
using stellar mass estimates. From there, it was then possible to predict the rotation
velocity as a function of their radii simply using Newtonian dynamics. The observations
found that the galaxies were rotating too fast at large radii when compared to theoretical
predictions, meaning that there must be extra gravitational matter located in galactic
halos. This kind of matter is usually called dark matter (DM) due to the fact that
it does not interact electromagnetically, and therefore cannot be detected by standard
telescopes. The existence of cold dark matter – cold referring to it being non-relativistic
– is now widely accepted in the scientific community as a key ingredient in the universe.
Modern observations suggest that DM makes up around 30% of the total energy density
in the universe today [8].

From a theoretical point of view, it is necessary to model CDM to integrate it within
1Strictly speaking, baryonic matter should only refer to things made up of protons and neutrons, but

in cosmology this loosely refers to all atoms and ions, neglecting the mass contributions from electrons.
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our general relativity, FLRW framework. In its simplest form, CDM can be thought
of as a non-relativistic, non-interacting and therefore pressureless perfect fluid. This
means the equation of state of CDM is simply w = 0, and it behaves exactly as standard
baryonic matter on cosmological scales2.

3.1.3 Dark energy and late-time acceleration

After the discovery of DM, estimates for the total energy density pointed at the fact
that there did not seem to be enough matter in the universe to reach critical density (i.e.
Ω < 1). This meant that either the universe was open, or there was more CDM as yet
undetected, or there was some other source of mass-energy in the universe causing it to be
flat. This conundrum was resolved in 1998, when the Supernova Cosmology Project [53]
and the High-Z Supernova Search team [54] independently presented groundbreaking
observations suggesting that the universe was expanding in an accelerated fashion. They
did this by observing type Ia supernovae (SN-Ia), which are standardisable candles.
These supernova (SN) explosions peak at a specific luminosity which is believed to be
the same for the whole star population. Since these objects are farther away than Cepheid
variables, they probe the luminosity distance beyond the linear approximation described
in Section 2.2.6. The luminosity distance in this case is approximately

dL(z) =
1 + z

H0

∫ z

0

dz′√
Ωm(1 + z′)3 + ΩΛ

, (3.1)

where Ωm and ΩΛ are the fractional energy densities of matter and dark energy, respect-
ively. This means it is possible to determine the relative abundance of matter (both dark
and baryonic) and of a hypothetical cosmological constant3.

These observations showed that far-away supernovae were fainter than expected in a
matter-dominated (decelerating) universe, meaning the expansion of the universe must
be accelerating. Indeed, [54] found that ΩΛ > 0 at over 3σ significance level, and a
preference for a flat universe (when combining with CMB data). It can be seen from Eq.
(2.34) that a universe dominated by a CC will be accelerating.

It is now widely accepted that the universe is currently dominated by a dark energy
(DE) component which behaves like a cosmological constant, i.e. p = −ρ.

Type Ia supernovae surveys have continually progressed in the past 30 years or so,
2This is true at background level, however at linear perturbation level the non-gravitational inter-

actions of baryons result in different dynamics to CDM.
3Here we have written the above equation in a convenient way, already assuming that a CC was the

correct form of mass-energy to include.
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and there are now several state of the art collaborations such as Pantheon+ [55], Dark
Energy Survey (DES) [56] and Union3 [57]. The data from these allows one to constrain
Ωm in an independent fashion, assuming a flat universe with cosmological constant.

3.1.4 The cosmic microwave background

We now discuss the crown jewel of observational cosmology, the single observation which
tells us the most about our universe. The cosmic microwave background (CMB) consists
of relic radiation (i.e. photons) emitted around the time of recombination. Around
300, 000 years after the big bang, the scattering rate between photons and electrons
became smaller than the expansion rate, leading to photons being free to travel and
rendering the universe transparent (as opposed to its previous opaque stage due to the
mean-free-path of photons being too small). Photons we observe today that were emitted
at the time of decoupling are said to come from the spherical surface of last scattering.
These highly energetic photons travelled through the expanding universe and lost energy
to cosmological redshift, reaching us at a temperature of 2.726 K.

This remarkable feature was first observed by Wilson and Penzias in 1964 [58] by
accident. They found an extra background noise in their radio antenna when pointing
it at the sky. After eliminating any external sources of error, they realised that this
corresponded to an isotropic signal in the radio frequency. It was suggested by Dicke,
Peebles and Wilkinson [59] that this might be a remnant radiation from the big bang.
Remarkably, the signal was the same in all directions, providing early evidence of isotropy
in the universe. Later, in 1989, the COBE satellite was launched in order to observe the
CMB without having to deal with atmospheric effects. COBE confirmed the original
observation that the CMB was isotropic, and also showed its spectrum was that of
a perfect (or as close as one can be) black-body radiation [60]. Its most significant
discovery, however, was that there were actually small temperature anisotropies present
in the CMB, at roughly one part in 105. Newer generations of CMB space satellites like
WMAP [12] and the state of the art Planck [8], as well as ground based telescopes like
ACT [10] and SPT [61] have since then pushed the precision with which the anisotropies
are observed, allowing cosmologists to constrain model parameters with high precision
(below percent level for H0 with Planck).

The main observable for the CMB anisotropies is the temperature power spectrum,
also called the TT power spectrum. We define the dimensionless temperature fluctuation
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as [62–64]

Θ(θ, φ) ≡ δT (θ, φ)

⟨T ⟩
≡ T (θ, φ)− ⟨T ⟩

⟨T ⟩
, (3.2)

where θ is the polar angle, φ is the azimuthal angle, ⟨T ⟩ is the average temperature over
the whole sky, whilst T (θ, φ) is the temperature at any given point in the sky. Since the
temperature fluctuations are defined on the surface of a sphere, it is common to expand
these in spherical harmonics Ylm(θ, φ):

Θ(θ, φ) =
∞∑
l=0

l∑
m=−l

almYlm(θ, φ), (3.3)

where alm are the coefficients of the expansion. In order to extract information from
the anisotropies, we will be interested in the correlation function, describing the average
product of the temperature fluctuation for two points on the sphere separated by a given
angle. In other words, this is a measure of the average temperature anisotropy for a
certain scale in the CMB. We define the correlation function as

CTT (θ) =
〈
Θ(n̂)Θ(n̂′)

〉
, (3.4)

where n̂, n̂′ are vectors from the observer to the last scattering surface such that cos θ =

n̂ · n̂′, and the angle brackets denote averaging over all possible points separated by
an angle θ. Due to angular resolution limitations, in practice it is impossible to obtain
CTT (θ) for all angles and it is again more convenient to expand into spherical harmonics:

CTT (θ) =
1

4π

∞∑
ℓ=0

(2ℓ+ 1)CTT
ℓ Pℓ(cos θ), (3.5)

where Cℓ are the multipole moments and Pℓ are the Legendre polynomials. It can be
shown that the following relation holds:

⟨aℓma∗ℓ′m′⟩ = δℓℓ′δmm′Cℓ. (3.6)

It is possible to invert Eq. (3.3) to obtain an explicit form for aℓm. From there, the CTT
ℓ

coefficients can be written as:

CTT
ℓ =

2

π

∫ ∞

0

dk k2|Θℓ(k)|2, (3.7)
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where we have defined Θℓ(k) as

Θℓ(k) ≡
1

(−i)ℓ

∫ 1

−1

dµ

2
Pℓ(µ)Θ(k, µ) (3.8)

In the above equation, Θ(k, µ) is the Fourier transform of Θ(θ, φ) and µ = k̂ · p̂ where k̂ is
the normalised photon wavenumber and p̂ is the direction of propagation of the photon.
Finally, it is conventional to define the following quantity when plotting the CMB power
spectrum:

DTT
ℓ ≡ ℓ(ℓ+ 1)

2π
CTT

ℓ . (3.9)

From a theoretical point of view, we want to compute the CTT
ℓ coefficients for a

given cosmological model, varying its parameters and comparing these results with the
observed power spectrum. There are two important aspects to consider when computing
the value of Θℓ today. First, the initial conditions of the perturbations are set by inflation
(see more in Section 3.2.1). Second, the evolution of the photon perturbations, as they
travel from the surface of last scattering to present day, depends on the other perturbed
quantities in the universe. Indeed, the photons’ energy will change as they travel through
gravitational wells, and so the path they take influences their final state. In order to
model these effects, we adopt the line-of-sight integral approach [65] which expresses
Θℓ(k, η0) as

Θℓ(k, η0) =

∫ η0

0

dη S(k, η)jℓ[k(η0 − η)], (3.10)

where we denote conformal time as η for the rest of this discussion and η0 is the conformal
time today. The jℓ are spherical Bessel functions, and S(k, η) is the so-called source
function:

S(k, η) ≈ g(η)[Θ0(k, η) + Ψ(k, η)] +
i

k
[vb(k, η)g(η)]

′ + e−τ [Ψ′(k, η)− Φ′(k, η)], (3.11)

where Θ0 is the temperature monopole and vb is the baryon peculiar velocity. In the
above equation we have ignored small polarisation effects and defined the optical depth
τ :

τ(η) ≡
∫ η0

η

dη′ neσTa, (3.12)

where ne is the electron number density and σT is the Compton scattering cross section,
as well as the visibility function g(η):

g(η) ≡ −τ ′(η)e−τ(η). (3.13)
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The optical depth is a measure of the line-of-sight opacity of the free electrons for CMB
photons. In other words, τ is large when the free electron density is high and the photons
scatter off them at a high rate, causing photon perturbations to wash out. This is the
case at early times before recombination. The visibility function models the probability
density of a photon to have been last scattered at conformal time η. This function is
sharply peaked around recombination, although it can also tell us about reionisation4

in the form of a second peak [66, 67]. Indeed, after reionisation photons can scatter off
electrons again, which can reduce the perturbations at late-times. We now describe the
physical interpretation of each term in the source function, Eq. (3.11):

• The first term is the so-called Sachs-Wolfe effect. This term represents the extra
perturbation from the gravitational potential: At recombination, photons inside a
gravitational well will have to climb out, losing energy to redshift. This term is
therefore an effective temperature anisotropy due to inhomogeneities in the grav-
itational potential at recombination. Due to the visibility function multiplying it,
this is only relevant around recombination and so these give an indication of the
perturbations that froze in after last scattering.

• The second term is a Doppler effect due to the baryon velocity vb, which are tightly
coupled to the CMB photons before decoupling.

• The third term is the integrated Sachs-Wolfe (ISW) effect. This takes into account
the dynamical nature of the gravitational potentials as photons travel through them
to reach observers on Earth. It is a post-recombination effect which encompasses
the late-time evolution of perturbations in the universe.

So far we have focused on the temperature power spectrum CTT
ℓ , however there is

more information in the CMB still. Photons exhibit polarisation, and this polarisa-
tion changes when interacting with electrons via Compton scattering. This means that
recombination may leave a net polarisation imprint on CMB photons. There are two
types of polarisation modes: E-modes are due to scalar perturbations and are about
10 times smaller in magnitude than temperature anisotropies. B-mode polarisation is
mainly created by gravitational waves, so is a tensor perturbation effect. These create
a much smaller signal that has not been detected yet5. The E-modes produce a pattern
of anisotropies that can be observed from the CMB and turned into a power spectrum

4See Section 3.2.1 for a description of recombination and reionisation.
5Although they were thought to have been discovered by the BICEP collaboration [68] in 2014, the

conclusion was ruled out and explained by foreground effects [69].
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CEE
ℓ . Taking cross correlations between temperature and polarisation anisotropies yields

the CTE
ℓ spectrum.

As photons travel from the last scattering surface to reach us, massive objects along
their path will deviate their trajectories according to gravitational lensing. This means
that large scale structure (LSS) affects the CMB anisotropies. It is possible to obtain
a lensing map from the temperature and polarisation maps by comparing the size of
specific hot and cold spots to the average. This creates a new observable, the lensing
spectrum Cϕϕ

ℓ which provides additional information about the late universe. All spectra
discussed in this section are shown from Planck in Fig. 3.2.
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Figure 3.2: Figure showing all Planck power spectra from the 2018 data release, in-
cluding the observed data points for the TT , TE, EE and lensing spectra, as well as the
ΛCDM best fit model in solid blue. Taken from https://www.cosmos.esa.int/web/
planck/picture-gallery [8].

https://www.cosmos.esa.int/web/planck/picture-gallery
https://www.cosmos.esa.int/web/planck/picture-gallery
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3.1.5 Baryonic acoustic oscillations

Before recombination, the universe was made up of a hot baryon-photon plasma. Gravity
drove baryons to cluster together, but radiation pressure forced them outwards. The
interplay of these two forces created acoustic waves that travelled from overdensities and
expanded outward in the plasma. These waves are akin to sound waves, and have a
sound speed cs that can be expressed as [64,70]

cs =
1√

3
(
1 + 3ρb

4ργ

) , (3.14)

where ρb is the baryon energy density and ργ is the photon energy density. After re-
combination and decoupling, baryons no longer interact with photons at a high enough
rate to be tightly coupled - the name for this period is the drag epoch. At this point,
the acoustic oscillations freeze and imprint a specific pattern of perturbations. There
is a preferred scale separating overdensities corresponding to the comoving distance a
sound wave could have travelled by the time of decoupling. This quantity is known as
the sound horizon rs:

rs(z) =

∫ ∞

z

cs(z
′)

H(z′)
dz′. (3.15)

This physical phenomenon leaves an imprint in the CMB photons in the form of the
relative amplitudes of the peaks in the CTT

ℓ ’s. It also follows that the baryon perturb-
ations should be imprinted by the baryon acoustic oscillations (BAO). Since baryons
interact through gravity with CDM, the overdensities left over by BAO end up accruing
DM, which means later down the line cosmological structure. The upshot is that BAO
predicts galaxies to be more correlated on the sound horizon scale.

In practice there are two possible measurements when observing galaxy distributions.
One might observe a strong correlation in the transverse direction, meaning in terms of
angular separation. In this case what is measured is the angular separation θs(z) at a
particular redshift

θs(z) ≡
rs(zdrag)

dM(z)
, (3.16)

where we have defined the comoving angular diameter distance dM(z) ≡ (1 + z)dA(z)

and the sound horizon is evaluated at the drag epoch [71–73]. If the correlation is in the
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line-of-sight direction, the relevant observable is the redshift separation ∆zs(z):

∆zs(z) ≡
rs(zdrag)

dH(z)
(3.17)

where we defined dH(z) ≡ 1/H(z) in natural units. In other words the preferred redshift
separation imprinted by BAO probes the Hubble parameter. There is a final distance
measure that is also used in BAO experiments: for observations with low signal-to-noise
ratio, it is common to combine dM and dH to obtain a spherically angle-averaged distance
dV :

dV (z) ≡ (d2MdH)
1/3. (3.18)

BAO observations such as SDSS [6] and DESI [13] use the statistics of galaxy distri-
butions to determine θs and ∆zs. By calibrating rs from the Planck CMB observations
or big bang nucleosynthesis (BBN) observations [74], it is therefore possible to constrain
dM , dH and dV , which tell us much about the evolution of our universe - especially
constraining Ωm and H0.

3.1.6 The matter power spectrum

We can define a similar quantity to the CMB power spectra in terms of the matter
fluctuations. Indeed, we have seen in Section 2.3 that the matter perturbations are
important due to their influence on the evolution of the gravitational potentials. The
amplitude of the density contrast is directly related to the observed clustering of large
scale structure. One way to measure clustering is by observing the two-point correlation
function for galaxies. Physically, it can be thought of as the probability of a galaxy being
found a distance |x− x′| from a given galaxy located at x′ [75]. The two-point function
is defined as [45]:

ξ(|x− x′|) ≡ ⟨δ(x)δ(x′)⟩, (3.19)

where δ(x) is the three-dimensional Dirac delta function. In Fourier space, the two-point
function is

⟨δ(k)δ(k′)⟩ ≡ (2π)3δ(k− k′)P(k), (3.20)

where P(k) is the matter power spectrum which can be defined through ξ(r) as

P(k) =
4π

k

∫ ∞

0

dr r sin (kr)ξ(r). (3.21)
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In essence, the matter power spectrum is the Fourier transform of the two-point correl-
ation function. A higher value of the power spectrum corresponds to more clustering at
a given scale k.

Schematically, the power spectrum behaves in the following way [45]:

P(k) ∝

 kns for k < keq

kns−4 for k > keq,
(3.22)

where the spectral index ns is a dimensional quantity close to one6 and keq ≡ aeqHeq is
the wave-number of modes which enter the horizon at matter-radiation equality.

3.2 Towards a standard model of cosmology

We now put all the previous sections together and introduce the accepted standard model
of cosmology, describing the history of our universe.

3.2.1 A brief history of our universe

Following the observations described in Section 3.1, we know that the universe is ex-
panding. We have developed a mathematical framework to describe how this evolution
behaves, characterised by the scale factor a(t). It is straightforward to see that as t → 0

and a → 0, ρ → ∞. This implies a singularity in the energy density as the scale factor
goes to 0. Applying the laws of thermodynamics to an expanding universe, it can be
shown that the photon temperature goes as T ∝ a−1, which also implies that the tem-
perature diverges at early times. These findings lead to the natural conclusion that the
universe started from an initial singularity with a small scale factor, high temperature
and high energy density. From there, it expanded and cooled down eventually reaching
the stage that we find ourselves in. This is the hot big bang theory. We will now describe
the evolution of the universe [48,76] since the big bang, which we will take as its starting
point.

The early universe and inflation

We know little of the very first instants of the universe, and a complete understanding
would require a fully fledged theory of quantum gravity due to interactions taking place
at very small scales and high energies during this epoch. However, we know that at some

6See Section 3.2.2 for more details on ns.
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point in the early universe the temperature dropped enough for the electroweak force
to no longer be unified with the strong force. Around this time, before around 10−36s
(or about 1016GeV in terms of energy scales) after the big bang, the universe enters
an inflationary epoch. This is a period of quasi7 de Sitter expansion, i.e. exponential
accelerated growth similar to the late-time dark energy epoch. Such an epoch is needed
to address two theoretical problems present in the standard evolution history of the
universe:

1. The flatness problem states roughly that if the universe is close to being flat today,
it had to have been even closer to flat in the past. Consider Eq. (2.40) and set the
current universe to be close to but not quite flat – say, |1−Ω0| < 10−1. Propagating
the equations backwards in time through matter and radiation domination leads
to the fact that at early times, the quantity |1−Ω(t)| would have had to be much,
much smaller. Plugging in the numbers, at around the Planck time t ≈ 5× 10−44s
we would need the universe to be flat at around 1 part in 1060. This amount of
fine-tuning is not attractive from a theoretical point of view, and so prompted
cosmologists to look for a solution.

2. The horizon problem stems from the observation that the universe is homogeneous
and isotropic on large scales. This leads to the problem that two points on the
celestial sphere might be separated by a distance greater than the horizon distance,
meaning they would have never been in causal contact. This problem is glaring
in the CMB, where points separated by more than about 2◦ would have not have
been in causal contact at the time of recombination. It seems unlikely that the
CMB could be uniform up to 10−5K when most parts of it were never in causal
contact.

The inflation solution, first proposed by Alan Guth in 1981 [77] solves both problems:
the accelerated period of expansion drives the universe to flatness, regardless of initial
condition, and increases the size of the horizon exponentially since H stays constant but
a increases by several orders of magnitude (a might grow between 20 and 30 orders of
magnitude, depending on the specific inflation model).

The physics of inflation are often described by a slow rolling scalar field (see Chapter
4). Remarkably, due to the rapid growth of the universe, quantum fluctuations of this
field get blown up to macroscopic scales during inflation and provide the seeds for the

7It is only ‘quasi’ de Sitter because this period needs to end for our universe to develop into what
we know.
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inhomogeneities at recombination observed in the CMB (see Section 3.1.4). In this sense,
we say that inflation sets the initial conditions for perturbations in the universe. After
inflation, the inflaton field eventually decays into standard model particles, transferring
its energy to relativistic particles. This process is called reheating [78] and starts the
radiation domination epoch.

Radiation domination

After inflation finishes, radiation becomes the dominant form of energy-density, made up
of photons as well as relativistic particles. Around 150 GeV (∼ 10−12 s), the electroweak
phase transition takes place, leaving the weak force and the electromagnetic force sep-
arate, and particles acquire mass via the Higgs mechanism. At this point, the universe
is made up of a quark-gluon plasma, as the energies are too high for hadrons (made up
of quarks in a bound state) to form.

After around 1 to 10 s, at an energy scale of around 1-10 MeV, big bang nucleosyn-
thesis starts to take place. This means free protons and neutron bind together into nuclei
for the first time, mainly forming into hydrogen and helium-4.

Matter domination

Matter-radiation equality, the epoch when the energy density of radiation decayed enough
to match that of matter, happens after around 104 years, or a redshift of z ∼ 104.

The universe remains a plasma of photons, nuclei and electrons until around 300, 000

years after the Big Bang, at a temperature of around 3000K. At this point, the temperat-
ure has become low enough for nuclei and electrons to form atoms. This is recombination.
Shortly after this, as the universe becomes less and less ionised (since most of the free
electrons pair up with nuclei), the interaction rate between photons and electrons drops
until the photons become free streaming. This is decoupling. Before this, the universe
was effectively opaque as the mean-free-path of photons was very short due to high
interactions. Photons which became free after decoupling make up the CMB radiation.

After recombination, a long time goes before the formation of stars, and not much is
known about this era. Recent observations have revealed the oldest known galaxy has a
redshift of about z ∼ 14 [79], which would make it almost 300 million years old. From
then on, reionisation takes place, during which the mostly neutral atoms in the universe
become ions once more. Structure continues to form into what we observe today.
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Dark energy domination

The final step in our universe’s history is the start of dark energy domination, beginning
the accelerated expansion of the universe. Whilst this seems like a recent occurrence in
terms of redshift, z ∼ 0.4 or less, in cosmic time this happened a whopping 10 billion
years after the start of the universe. This is also roughly when our solar system formed.
The universe today is believed to be about 13.8 billion years old.

3.2.2 The ΛCDM model

We can now finally formulate the standard model of cosmology, which has been es-
tablished since the start of the century, and is built on all the previously mentioned
observational evidence, as well as theoretical breakthroughs.

The ΛCDM model can be summarised thus:

• The theoretical cornerstone of the standard model is Einstein’s general relativity,
coupled with the cosmological principle. This leads, as we saw, to the FLRW
metric, the linear perturbations of which can explain the anisotropies in the CMB.

• A period of inflation in the early universe is required to solve the horizon and
flatness problems, as well as set the initial conditions for the perturbations.

• The universe is populated with relativistic species like photons and neutrinos 8 –
the sum of all neutrino species masses is taken to be

∑
mν = 0.06eV – as well as

ordinary baryonic matter such as protons and neutrons.

• A cold dark matter component – the ‘CDM’ in ΛCDM – is present in the universe,
modelled as pressureless dust.

• Dark energy is modelled as a cosmological constant Λ, i.e. a perfect fluid with
equation of state w = −1.

The ΛCDM model can be characterised by 6 parameters only, and these are con-
strained using cosmological data9:

Ωch
2 parametrises the CDM energy density in the universe, where h = H0/(100 km s−1 Mpc−1).

Ωbh
2 parametrises the energy density of baryons.

8Strictly speaking neutrinos are only relativistic in the early universe since they are massive.
9See Appendix A for more details.



Chapter 3: ΛCDM: the standard model of cosmology 43

θs(z∗) is the angular scale of the sound horizon, θs(z∗) = rs(z∗)/dM(z∗), where z∗ is the
redshift at recombination. This is well constrained by the acoustic peaks in the
CMB, and through its dependence on angular distance constrains the fractional
energy density of the curvature of the universe Ωk.

τreio is the optical depth to reionisation. It provides insight on when reionisation took
place. A higher τreio yields to a suppression of anisotropies on small scales ℓ ∼> 100

since photons scatter off electrons more, smoothing out anisotropies.

As is the square of the typical curvature perturbations generated during inflation. It
also governs the amplitude of the CTT

ℓ ’s.

ns is the spectral index of primordial perturbations. It describes how primordial per-
turbations depend on scale k, and how CTT

ℓ behaves at small-scale.

Table 3.1 shows the best fit values for the ΛCDM parameters from the Planck CMB
data.

Parameter Best-fit value
Ωch

2 0.1198± 0.0012
Ωbh

2 0.02233± 0.00015
100θs 1.04108± 0.00031
τrei 0.0540± 0.0074

log (1010As) 3.043± 0.014
ns 0.9652± 0.0042

Table 3.1: ΛCDM parameter constraints from Planck18, using the combined Plik and
CamSpec likelihoods [8].

Overall, the ΛCDM model is a great triumph for cosmology, as it is able to successfully
explain observations from BBN, the CMB, all the way to large-scale structure and the
late time acceleration of our universe.

3.3 Limitations of ΛCDM

Despite its ability to describe a wide range of cosmological observations, the ΛCDM
model is not without its challenges. Theoretical concerns and observational discrepancies
have emerged, prompting ongoing debate and further research exploration. Some of these
stem from the fundamental assumptions of the model, while others arise from tensions
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between different measurements of key cosmological parameters. Understanding these
limitations is essential to determining whether ΛCDM needs to simply be improved
upon (with, say, a more robust theoretical foundation) or if entirely new physics might
be required to fully explain the universe.

3.3.1 Theoretical issues

Whilst ΛCDM provides a strong framework, it only prescribes the contents of the universe
in a superficial way, with no explanation for their origin. To this day, the nature of dark
matter and dark energy remain an open problem in cosmology, along with the very first
instants of the universe.

The cosmological constant

First, the so-called cosmological constant problem highlights the theoretical difficulty of
justifying the observed value of Λ. Current observations indicate that the energy density
contributed by the cosmological constant is very small [8], ρΛ ≈ 10−47 GeV4. On the
other hand, we know from quantum field theory (QFT) that vacuum fluctuations of
fields create a zero-point energy which should contribute to the cosmological constant.
However, theoretical calculations of the vacuum energy from QFT yield results that are
over a 100 orders of magnitude too large10 [80]! This is a serious fundamental problem
that has so far not been resolved (and that we will not try to resolve in this work).
Attempts to address the cosmological constant problem include supersymmetry, which
predicts the vacuum energy to be zero through a cancellation of terms between fermions
and bosons [81]. However, we do not observe supersymmetry at our energy scales which
means that it must be broken (if it was there in the first place) at low energies, leading
to a non-zero cosmological constant once more.

Another issue related to Λ is the so-called cosmological coincidence problem. This
can essentially be stated by asking the question ‘Why now?’; we currently live in an
era when the energy density of matter is of the same order of magnitude as that of
the cosmological constant [82]. We know that this was not the case for most of the
universe’s history, and that this therefore requires a high degree of fine tuning in the
initial conditions. One possible solution is to employ anthropic arguments [83] – to say
that, somehow, this situation is most ‘likely’ given that we can observe it.

10One might argue that such a calculation should only be valid when worked through from a funda-
mental theory of quantum gravity rather than QFT.
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The two problems discussed above hint at the fact that the origin of dark energy
might be dynamical, instead of simply emerging from a cosmological constant. Indeed,
if there is a fundamental cancellation that solves the cosmological constant problem,
dark energy has to emerge from a different theoretical mechanism. Moreover, if DE
is dynamical, there could be a mechanism explaining the coincidence of density ratios.
One way to obtain such suitable solutions is by modifying the gravitational sector of the
theory [84], that is to alter the Einstein field equations which dictate the dynamics of the
universe. We will focus on a class of alternative methods which postulate the existence
of a new kind of matter in the universe called quintessence [85]. As we will see in more
detail in Section 4.1.2, this consists of a scalar field slowly rolling along its potential
with a time-varying equation of state, meaning that it does not necessarily behave like
a cosmological constant outside of the current era.

Cold Dark Matter

While ΛCDM requires the existence of cold dark matter, it does not specify its fun-
damental nature. Indeed, the pressureless fluid approximation does not describe the
microscopic physics that may explain DM. There are DM candidates at virtually all
mass scales, ranging from ultra light particles to primordial black holes [86], but most
models rely on the presence of a DM fermionic particle which interacts mainly grav-
itationally. The most widely studied scenario is that of Weakly Interacting Massive
Particles (WIMPs) [87] which have been the subject of many experimental detection at-
tempts, both directly or indirectly. Another popular class of candidates are the axions,
or axion-like particles (ALPs). These are pseudo-scalar particles which are generally
very light, weakly interacting and couple to the electromagnetic sector. Axions were ori-
ginally introduced as a solution to the strong CP problem in quantum chromodynamics
(QCD) [88], but have since been studied extensively in a cosmological setting [89] after
it was proposed that CDM could be explained by considering light bosons [90]. In this
case, the DM is a bosonic wave-like state (also sometimes called fuzzy) that behaves like
one would expect CDM to on large scales. In this work, we will consider a generalisation
of the axion model and simply consider scalar-field dark matter.

Early universe

It is standard to consider ΛCDM to include some mechanism for inflation, in order
to solve the flatness and horizon problems as well as set the initial conditions for the
CMB. There is no single prescription for this however, and there are many inflationary
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models, from modified gravity to multi-scalar field models [91]. Unfortunately, it is not
clear whether observations will ever be able to narrow down the possibilities to just one
model [92, 93].

Going back even further than inflation, we have seen in Section 2.2.5 that the FLRW
metric leads to a singularity at t = 0. Modifications to the standard expansion history
have been proposed to avoid the singularity by adding a period of contraction prior to
the big bang, leading to a big bounce instead [94]. In these scenarios, the scale factor
never reaches 0 thus avoiding the singularity. Another avenue is that taken by quantum
gravity. Indeed, it is reasonable to expect quantum effects to take over when the universe
is sufficiently small and highly energetic, at which point the GR description breaks down.
Whilst much research has been conducted in this field, it seems we are not currently close
to reaching a consensus or a complete description of quantum gravity [95].

3.3.2 Cosmological tensions

High-precision observations have revealed inconsistencies in key cosmological measure-
ments, such as the Hubble constant and the distribution of matter. These discrepancies
challenge the internal consistency of ΛCDM and may indicate the need for new physics,
unless they are caused by systematics.

The Hubble tension

Measuring the expansion rate today H0 has been a main aim of modern cosmology ever
since Hubble’s first observations mentioned in Section 3.1.1. Since then, the precision
with which we can determine H0 has increased manifold, down to around the percent
level [8]. There are two main ways to obtain H0 from measurements: one follows Hubble’s
original method, using standard candles to fit Hubble’s law, and the other takes advant-
age of the CMB observations to statistically determine the best fit H0. The former
method is a local measurement dependent on astrophysical physical assumptions, whilst
the latter is an early-time measurement which depends on the cosmological model as-
sumed (in this case ΛCDM). The Hubble tension can be summarised as the fact that
the late-time standard candle measurements of H0 disagree with the early time CMB
value by more than 5σ [14]. This is indeed a problem, as one would expect these values
to agree regardless of what data they are extracted from, considering H0 is a constant.
Before describing possible explanations or solutions for the Hubble tension, let us first
describe how the H0 measurements are made in the first place.
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The state of the art for determining H0 from local probes is the so-called cosmic
distance ladder method. The idea is to build a robust Hubble diagram using different
standard candles. The first ‘rung’ of the ladder is built using geometric measurements.
The distance to close bright objects can be determined using parallax. These measure-
ments are then used to calibrate the luminosity of Cepheid variables, which form the
second rung of the ladder. These are used up to distances of 10-40 Mpc. The third rung
of the ladder consists of type Ia supernovae. These are calibrated using Cepheid variables
in the same host galaxies, at low redshift. Once calibrated, it is possible to use further
away SN-Ia in the Hubble flow and get a good estimate of the Hubble constant. Each
rung yields an absolute magnitude M used to calibrate the next rung. This absolute
magnitude is related to the luminosity distance in Mpc via

m−M = 5 log dL [Mpc] + 25, (3.23)

where m is the apparent magnitude, which measures an object’s brightness reverse log-
arithmically and dL was defined in Section 2.2.6. The distance ladder is illustrated in
Fig. 3.3.
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Figure 3.3: The cosmic distance ladder, from [9]. Each rung is shown, along with
magnitude residuals – i.e. deviations from the straight line relationship of Eq. (3.23).

The current best estimate for the Hubble constant from local measurements comes
from the SH0ES collaboration, which report a value of H0 = 73.04± 1.04 km s−1 Mpc−1

[14]. It is important to note that there are other methods used to construct the distance
ladder. In particular, the Chicago-Carnegie Hubble Program (CCHP) collaboration use
tip of the red giant branch (TRGB) stars to calibrate the SN-Ia instead of Cepheids.
Their latest reported value11 is H0 = 69.96± 2.17 km s−1 Mpc−1 [16].

We have seen in Section 3.1.4 that the CMB is an incredibly powerful measurement
11Note this paper [15] by the SH0ES collaboration which claims that the lower H0 value reported by

CCHP is due to a selection effect from using a smaller supernovae sample.
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when it comes to constraining our cosmology. Remarkably, even though the CMB was
emitted at recombination, it still contains information about the path the photons took
to reach us, and therefore can tell us about the rate of expansion today. To do this,
however, one must provide a cosmological model. Indeed, a specific cosmological model
will predict power spectra for a given set of parameters, and these power spectra can be
compared to the observed data points. The best-fit parameters then tell us about the
cosmology of our universe, including H0. The best-fit value obtained by the final Planck
data release is H0 = 67.27± 0.6 km s−1 Mpc−1 [8], which is in over 5σ tension with the
SH0ES result. It is also possible to use other CMB observations such as ACT, SPT and
WMAP, as well as BAO observations calibrated with BBN in order to constrain H0. All
these early-time probes are in various levels of tension with the late-time observations.
A summary of the different values of the Hubble constant is provided in Fig. 3.4.
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Figure 3.4: Whisker plot showing different observed values of the Hubble constant.
The red band corresponds to the Planck 2018 best-fit value, while the blue band is the
SH0ES measurement. The values are taken in order from [8, 10–20]. SBF stands for
Surface Brightness Fluctuation. This figure was produced using code provided in [21].

Two main possibilities arise when trying to explain the source of the tension. First,
there might be some unaccounted for systematic errors in the data, coming from either
Planck or late-time observations, be it from the actual observation or from the astrophys-
ics assumptions (in the late-time case) made to arrive at the result. Many discussions
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have been made on this topic, and both sides (Planck and SH0ES) claim to have a strong
handle on systematics [21]. The only remaining option, and perhaps most interesting
one, is that ΛCDM might not be the best way to describe our universe. Indeed, since H0

from Planck is model-dependent, one can imagine modifying ΛCDM in order to obtain
a higher value. This is currently a strong driving force in theoretical cosmology, where
a lot of model building is now motivated by the need to solve the Hubble tension.

Broadly the proposed solutions – none of which fully satisfactorily solve the tension
at the time of writing – can be divided into two categories: early-time and late-time
solutions. The idea behind early-time solutions is to modify physics around the recom-
bination era in order to affect the CMB. The angular scale of the sound horizon θs(z∗) is
tightly constrained by the CMB, and so the sound horizon rs(z∗) is free to change as long
as the comoving angular distance dM changes accordingly too. Since rs ∼ 1/H(z∗) from
Eq. (3.15) and dM ∼ 1/H0, it is in principle possible to increase H0 to its SH0ES value
by decreasing the sound horizon at last scattering [96]. Such models include early dark
energy [97], modified radiation contents (Neff ) [98] and modified recombination (such
as time-varying electron mass) [99]. Late-time solutions modify the expansion history of
the universe post recombination, by introducing a dynamical DE component, introdu-
cing new interactions [100] or modifying gravity (see [101] and references therein). For
extensive reviews of possible solutions to the Hubble tension, see [21, 102].

The S8 tension

The S8 tension is another inconsistency between the CMB and late-time probes, con-
cerning the amount of clustering in the universe. Formally, the S8 parameter is defined
as

S8 ≡ σ8

√
Ωm

0.3
, (3.24)

where we have introduced σ8, the root mean squared matter density fluctuation in a
sphere of comoving radius R = 8h−1 Mpc [64]:

σ8 ≡ ⟨δ2m,8(x)⟩. (3.25)

In the above,

δm,8(x) ≡
∫

d3x′δm(x’)W8(|x − x’|) (3.26)
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where W8(x) is the following top-hat function :

W8(x) =

 3/(4πR3) if x < R

0 otherwise,
(3.27)

for R = 8h−1 Mpc. The σ8 parameter also describes the amplitude of the matter power
spectrum at scales of 8h−1 Mpc.

Low redshift measurements of S8 are obtained by studying gravitational weak lensing
or redshift-space galaxy clustering [103]. The former uses the lensing of distant galaxies
by foreground matter to estimate the amount of structure in the universe. The latter
uses the galaxy power spectrum to infer σ8 and Ωm and therefore S8.

On the other hand, S8 can also be estimated from the CMB by similar methods to
the H0 measurements. Values of S8 obtained from CMB experiments seem in 2 − 3σ

tension compared to low-redshift measurements which prefer lower values of S8 [104]. It
is important to note that both CMB and late-time measurements are cosmological model-
dependent, and so the values quoted are for ΛCDM only. Fig. 3.5 shows a selection of
S8 measurements, highlighting the tension between early and late-time probes.
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Figure 3.5: Whisker plot showing different observed values of S8. The green band
corresponds to the Planck 2018 best-fit value, while the yellow band is the DES-Y3
measurement. The values are taken in order from [8,10,22–27]. This figure was produced
using code provided in [21].

Other observational anomalies

Despite H0 and S8 being the most established tensions in ΛCDM, there are other an-
omalies arising from different observations in cosmology. Here we will simply provide a
short list with references for the interested reader.

• The CMB lensing anomaly refers to a possible internal inconsistency with the
Planck data. To see this, one introduces an Alens parameter which scales by hand
the effect of gravitational lensing on the CMB – Alens < 1 means less lensing than
in GR, Alens > 1 means more lensing. When leaving this free to vary in the Planck
analysis, the data actually prefers a value larger than 1 [8, 105]. Note, however,
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that this preference goes away when using an alternate likelihood for the Planck
data [106,107], and it is also not present in ACT data [108].

• The sound horizon problem is closely related to the H0 tension. As discussed
in Section 3.1.5, BAO data provides distance information if it is calibrated with
a value for the sound horizon. At the same time, SN-Ia also provide distance
information after being calibrated with a H0 value. The distance data obtained by
BAO calibrated by Planck disagrees significantly with that from Pantheon+ SN-Ia
calibrated with SH0ES [96, 109]. This inconsistency between late-time probes is
caused by a tension between early and late-time calibrators, possibly hinting at
some new physics pre-recombination.

3.4 Summary

In this chapter we reviewed the historical developments of observational cosmology, start-
ing from the discovery of the expansion of the universe, through to dark matter and dark
energy. We then discussed modern observational probes such as the CMB, BAO and
the matter power spectrum. To finish, we introduced the standard model of cosmology
ΛCDM, covering its triumphs as well as its limitations – with a particular focus on cos-
mological tensions. In the next chapter we will look to extend our model beyond ΛCDM
by considering alternative formulations of DE and DM.



Chapter 4

Beyond Λ and CDM

We have seen in the previous chapter that although very successful, the ΛCDM model
is under scrutiny due to theoretical shortcomings as well as tensions in the observed
data. The accumulation of these reasons is a strong motivator to consider modifications
to the standard cosmological history. In this chapter we will focus on extensions of
ΛCDM pertaining to CDM and DE. Since not much is known about these exotic sources
of matter, it is possible to come up with models which deviate from ΛCDM while still
being allowed by data. In particular, in Section 4.1 we will discuss the use of scalar fields
for DM and DE, and in Section 4.2 cover interactions in the dark sector (i.e. between
DM and DE).

4.1 Scalar fields in cosmology

Scalar fields are ubiquitous in all areas of physics, and cosmology is no exception. When
exploring physics beyond the standard model, scalar fields are often the simplest and
most natural extension to consider, as they introduce new dynamical degrees of freedom
without the complications of higher-spin fields or additional symmetries. In cosmology,
scalar fields have mostly been used to describe inflation, dark energy and dark matter.
These scalar fields can can exhibit a wide range of dynamical behaviours, leading to a
rich phenomenology.

55
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4.1.1 Scalar fields basics

We modify the Einstein-Hilbert action in the following way by adding the standard
Lagrangian for a canonical scalar field ϕ to the matter Lagrangian of the theory:

S =

∫
d4x

√
−g

[
1

2
M2

PlR− 1

2
(∂ϕ)2 − V (ϕ)

]
, (4.1)

where V (ϕ) denotes the potential of the scalar field and M2
Pl is the reduced Planck mass,

defined as M2
Pl =

1
8πG

.
Varying the above action with respect to ϕ, we obtain the Klein-Gordon (KG) equa-

tion:
∇µ∇µϕ− ∂V

∂ϕ
= 0, (4.2)

and varying the scalar field part of the action with respect to the metric as in Eq. (2.18)
we get the EM tensor for a general scalar field:

T (ϕ)
µν = ∇µϕ∇νϕ− gµν

(
1

2
gαβ∇αϕ∇βϕ+ V (ϕ)

)
. (4.3)

So far the discussion has been general and applies for scalar fields in any GR metrics.
In practice, the scalar field acts as a source of matter and shows up on the right hand
side of the Einstein equations as part of the energy-momentum tensor. To specialise to
cosmology, we need to use the flat FLRW metric. Doing this yields the KG equation

ϕ̈+ 3Hϕ̇+ V,ϕ = 0, (4.4)

which dictates the dynamics of the scalar field. Note the presence of H in the second
term on the lhs: this leads to damping in an expanding universe (H > 0), and is a
driving term in a collapsing universe (H < 0).

Inserting the flat FLRW metric, Eq. (4.3) yields the components of the EM tensor
in an expanding universe:

• T
(ϕ)
00 = 1

2
ϕ̇2 + V (ϕ),

• T
(ϕ)
i0 = T

(ϕ)
0i = 0,

• T
(ϕ)
ij =

(
1
2
ϕ̇2 − V (ϕ)

)
gij.

Comparing this to the energy momentum of a generic fluid (see Section 2.2.2), it is
natural to associate an energy density and pressure to the scalar field in the following
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way1 [111]:

ρ =
1

2
ϕ̇2 + V (ϕ) (4.5)

p =
1

2
ϕ̇2 − V (ϕ). (4.6)

Using the definitions above, it is straightforward to see that the KG equation is equivalent
to the fluid continuity equation (Eq. (2.38)). We thus see that for positive potentials,
the equation of state can take any value between −1 ≤ w ≤ 1. The specific dynamics
of the scalar field will be determined by its potential, as well as the expansion of the
universe (i.e. the other matter sources in the universe). For our purpose, we will be
mostly interested in the cases with w = −1 (DE) and w = 0 (DM).

We now discuss linear perturbations of the scalar field ϕ. Following the approach in
Section 2.3, we write ϕ as

ϕ = ϕ̄+ δϕ, (4.7)

where the bar denotes the background quantity, and the perturbation δϕ depends on
both time and spatial coordinates. In the rest of this chapter we omit the over-bar
notation and simply denote the background field as ϕ. It is then possible to plug in the
expanded ϕ as well as the expanded metric into Eq. (4.2) and linearise to obtain the
following perturbed KG equation in general gauge (see Section 2.3 for definitions of the
various terms below) :

δϕ̈+ 3Hδϕ̇+
k2

a2
δϕ+ V,ϕϕδϕ = ϕ̇

(
Φ̇ + 3Ψ̇− k

a
B + Ė

)
+ 2(ϕ̈+ 3Hϕ̇)Φ. (4.8)

Similarly, we can expand the EM tensor from Eq. (4.3) to linear order to get the per-
turbed EM tensor. As for the background, it is then possible to compare the components
to those of the EM tensor for a perfect fluid, and obtain the following dictionary linking
scalar field perturbations to fluid perturbations [111]:

δρ = ϕ̇δϕ̇− ϕ̇2Φ + V,ϕδϕ, (4.9)

δp = ϕ̇δϕ̇− ϕ̇2Φ− V,ϕδϕ, (4.10)
a

k
(ρ+ p)(v −B) = ϕ̇δϕ. (4.11)

Since ϕ is a scalar, its perturbations change in the following way under a gauge trans-
1Note that these equalities hold more generally in GR, see [110]
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formation [112]:
δ̃ϕ = δϕ− ϕ̄′ξ0, (4.12)

similar to energy density perturbations.

4.1.2 Quintessence

We now turn to describing dark energy dynamics with a scalar field. Such a field needs
an equation of state close to w ≈ −1 in order to behave like dark energy. To be precise,
to ensure an accelerated expansion the scalar field has to have w < −1/3.

Looking at Eqs. (4.5), (4.6), it is possible to obtain a DE-like EoS if

1

2
ϕ̇2 ≪ V (ϕ). (4.13)

In that case, ρ ≈ −p and the energy density is nearly constant. This particular regime is
usually referred to as slow-roll, referencing the small kinetic contribution to the energy
density. In general this is achieved by having a shallow potential, preventing the field
from rolling down and accruing kinetic energy [113].

Broadly, there are two classes of basic quintessence models.

• Freezing models start with a EoS w ̸= −1 at early-times, and eventually reaches
w ≈ −1 at late-time. The field slows down as the universe expands, eventually
effectively freezing. These models can be obtained with inverse power law poten-
tials V ∝ ϕ−n [114] and exponential potentials V ∝ e−λϕ [73, 115]. Interestingly,
exponential potentials exhibit scaling behaviour, meaning their EoS scales in the
same way as the dominant component in the universe for λ2 > 3(1+wd) where wd

is the EoS of the dominant species.

• Thawing models, on the contrary, start-off non-dynamical with w ≈ −1 and begin
rolling down their potential at late-times. Such behaviour can be obtained with
a simple massive scalar field with potential V = 1

2
m2ϕ2 [116]. We will study this

in more detail when discussing scalar dark matter, but a light scalar field of mass
around 10−33eV will be held by Hubble friction until late-times and so behave close
to a cosmological constant. Even lighter fields will still be frozen today.

Whilst quintessence does not offer a solution for the cosmological constant problem,
it is built on the assumption that if some physical mechanism solves it, then the observed
cosmological constant needs to be explained somehow. However, the dynamical nature of
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the dark energy in the quintessence scenario can help alleviate the coincidence problem.
This is especially true for scaling solutions, where the DE density parameter need not
have been so unnaturally small before DE domination.

4.1.3 Scalar field dark matter

The notion that scalar fields might be used to model dark matter dates back to Michael
Turner’s seminal 1983 paper [117]. In his study he proved that a coherently oscillating
massive scalar field behaved like dark matter on large timescales. The idea is that the
scalar field is oscillating in its ϕ2 potential but is also being damped by the expansion of
the universe (the 3Hϕ̇ term in Eq. (4.2)). This damping leads to a decaying envelope
in addition to the oscillations. On large timescales, the oscillations are not necessarily
resolved and it is convenient to average them out over a period of oscillation. Once this
is done, the behaviour of the scalar field fluid is approximately that of pressureless dust.
We will see that at linear perturbation level the story is slightly different, and this leads
to modified structure formation in the late universe.

First, let us prove that a massive oscillating scalar field behaves like matter in an
expanding universe. Since V (ϕ) = 1

2
m2ϕ2, the KG equation becomes

ϕ̈+ 3Hϕ̇+m2ϕ = 0. (4.14)

Ignoring the Hubble term, this is simply the equation for a harmonic oscillator. We
therefore expect the solution to display damped oscillations. There are two regimes of
interest: if H > m, the Hubble friction is so large that the field is stuck [118] - the
friction term dominates over the mass term and so ϕ is constant. This is the dark energy
regime described in the previous section. If H < m, the field thaws and starts feeling
the effect of its potential. The dynamics of the field then will be to roll down towards
the minimum of its potential. Due to the parabolic nature of V , ϕ will start to oscillate
around the minimum, with some extra damping due to the friction term.

Let us solve this equation for a given epoch, characterised by the equation of state
wd. According to Eq. (2.43), the Hubble rate is simply

H =
2

3(1 + wd)

1

t
, (4.15)
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and so the KG equation becomes

ϕ̈+
2

1 + wd

1

t
ϕ̇+m2ϕ = 0. (4.16)

To solve this, let us change variables and write ϕ ≡ φt−α, where

α ≡ 1

1 + wd

− 1

2
. (4.17)

The equation then becomes

t2φ̈+ tφ̇+ φ(m2t2 − α2) = 0. (4.18)

The general solution for φ is a linear combination of Bessel functions of the first kind
Jα(mt) and second kind Yα(mt), both of order α. Therefore the solution for ϕ is [119,120]

ϕ(t) = t−α [C Jα(mt) +DYα(mt)] , (4.19)

where C, D are integration constants. In matter domination, this reduces exactly to

ϕ(t) =
(a0
a

) 3
2
[ϕ+ cos(mt) + ϕ− sin(mt)], (4.20)

where ϕ+ and ϕ− are related to C and D. In fact we will use this approximation
throughout rather than the exact Bessel solution. Indeed, Bessel functions tend to sin

and cos functions for mt ≫ 1. Since we are assuming m > H and H ∝ 1/t, mt ≫ 1 is
satisfied as long as m ≫ H. Therefore a good approximation at first order in H/m is
Eq. (4.20) for all relevant epochs.

We will now take Eq. (4.20), plug it into the definition of the energy density and
pressure, Eqs. (4.5), (4.6) and average these quantities over a period of oscillation. This
means we want to compute

⟨ρ⟩ = 1

2
⟨ϕ̇2⟩+ 1

2
m2⟨ϕ2⟩, (4.21)

⟨p⟩ = 1

2
⟨ϕ̇2⟩ − 1

2
m2⟨ϕ2⟩. (4.22)

Here, the angle brackets denote the following time averaging:

⟨f(t)⟩ ≡ 1

T

∫ t+T

t

f(t′)dt′ (4.23)
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for a periodic function f(t) with period T . In the case of the massive scalar field,
T = 2π/m. Treating the oscillation envelope as constant over a period of oscillation –
this means we can take out the factor of a−3/2 from the integral, treating the oscilla-
tion timescale as much smaller than cosmological timescales – we obtain the following
averaged quantities:

⟨ϕ⟩ = 0, (4.24)

⟨ϕ̇⟩ = 0, (4.25)

⟨ϕ2⟩ = 1

2
(ϕ2

+ + ϕ2
−)
(a0
a

)−3

, (4.26)

⟨ϕ̇2⟩ = 1

2
m2(ϕ2

+ + ϕ2
−)
(a0
a

)−3

. (4.27)

Plugging these back into Eqs. (4.5), (4.6), we get

⟨ρ⟩ = 1

2
m2(ϕ2

+ + ϕ2
−)
(a0
a

)−3

, (4.28)

⟨p⟩ = 0, (4.29)

showing that ⟨ρ⟩ ∝ a−3 behaves like matter and consistently ⟨w⟩ ≡ ⟨p⟩
⟨ρ⟩ = 0. It is

possible to generalise the above result to all (positive) power-law potentials of the form
V (ϕ) ∝ ϕn: in that case [117], ⟨w⟩ = n−2

n+2
.

Whilst the background behaviour of a massive scalar field can be well approximated
by pressureless dust (for a more accurate fluid approximation scheme see [121]), things
change at linear order in perturbation theory. In particular, the sound speed of perturb-
ations is non-zero for light scalar field dark matter, which is different to CDM (in which
case it is 0). To see this, we follow the original derivation by Hwang and Noh [122].

First, we come up with an ansatz to solve Eq. (4.8):

δϕ(k, t) = δϕ+(k, t) sin(mt) + δϕ−(k, t) cos(mt), (4.30)

where δϕ+, δϕ− are slowly varying functions (compared to the scale of oscillation). To
simplify calculations we now move to the axion-comoving gauge, which sets us in the
rest frame of the axion. This means that after time-averaging,

⟨T 0
i ⟩ = 0. (4.31)

This is achieved by setting v = B = 0. Plugging Eq. (4.30) into Eq. (4.8) and looking
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at terms multiplying cos(mt)2, we get

δϕ̈+ + 2δϕ̇−m+ 3H
(
δϕ−m+ δϕ̇+

)
+ δϕ+

k2

a2
= (ϕ̇+ + ϕ−m)

(
Φ̇ + 3Ψ̇ + Ė

)
− 2m2ϕ+Φ.

(4.32)

We now solve this equation at leading order in H/m, since we are considering fast
oscillations compared to the expansion of the universe. Since our ansatz separates the
fast oscillations from the slower timescale evolution, we can say that δϕ̇± ∼ H and
δϕ̈± ∼ H2. Further, the derivatives of the metric components are also varying on Hubble
timescales, so for our purposes Φ̇ ∼ Ψ̇ ∼ Ė ∼ H. The leading order is therefore the 0th

order in H/m. Discarding higher order terms leads to the following solution:

Φ = −a
3
2

2

δϕ+

ϕ+

k2

m2a2
. (4.33)

From Eq. (4.11) we see that in the comoving gauge

⟨ϕ̇δϕ⟩ = 0. (4.34)

Since
⟨ϕ̇δϕ⟩ = a−

3
2m[δϕ+ϕ− − δϕ−ϕ+], (4.35)

our choice of gauge implies
δϕ+ϕ− = δϕ−ϕ+. (4.36)

Furthermore, applying our gauge condition to Eq. (2.98) yields

Φ = − ⟨δp⟩
⟨ρ+ p⟩

. (4.37)

Recall
⟨ρ+ p⟩ = ⟨ϕ̇2⟩ = m2

2
(ϕ2

+ + ϕ2
−)
(a0
a

)3
, (4.38)

so combining Eqs. (4.33), (4.37) we get

⟨δp⟩ = a−
3
2

4
(ϕ2

+ + ϕ2
−)

δϕ+

ϕ+

m2

[
k2

a2m2

]
. (4.39)

We can now compute ⟨δρ⟩ in order to obtain the sound speed c2s ≡ ⟨δp⟩/⟨δρ⟩. First we
2The result is the same for terms proportional to sin(mt).
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compute the individual terms:

⟨ϕ̇δϕ̇⟩ = a−
3
2

2
m[δϕ̇−ϕ+ − δϕ̇+ϕ− +m(δϕ−ϕ− + δϕ+ϕ+)] (4.40)

⟨ϕδϕ⟩ = a−
3
2

2
(δϕ+ϕ+ + δϕ−ϕ−). (4.41)

Dropping higher order terms in H/m like δϕ̇+ and δϕ̇− and using Eq. (4.36) we get

⟨δρ⟩ = a−
3
2

2
(ϕ2

+ + ϕ2
−)

δϕ+

ϕ+

m2

[
1

2

k2

a2m2
+ 2

]
. (4.42)

Putting it all together, we get the sound-speed in comoving gauge:

c2s =
1
2

k2

a2m2

1
2

k2

a2m2 + 2
. (4.43)

There are two main regimes of note for this:

• If k ≫ ma, c2s ≈ 1 and structure formation is suppressed due to the extra pressure
contribution. This happens on small scales at early times for small scalar field
mass.

• If k ≪ ma, c2s ≈ k2/(4a2m2) and so tends to zero, meaning a return to the CDM
regime. This is the case at late times, on large scales and for heavier scalar masses.

Fig. 4.1 shows the evolution of c2s at different scales, computed using a modified version
of the publicly available CLASS Boltzmann code3 [123].

3https://github.com/lesgourg/class_public

https://github.com/lesgourg/class_public
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Figure 4.1: Plot of the evolution of the sound speed c2s for different values of wavenum-
ber k in units of h Mpc−1. The mass of the scalar field DM is fixed at m = 10−19 eV, and
the other cosmological parameters are chosen to match the Planck 2018 ΛCDM best-fit
values.

In practice, one needs masses of order around 10−20eV or smaller [124] to have a
sizeable effect on cosmological observables. The most notable effect is a reduction in
the matter power spectrum at small scales – the impact on the CMB is much smaller.
Figures 4.2, 4.3 show the angular and matter power spectra for various axion masses.
In order to compute the aforementioned observables, we need to solve for the evolution
of ⟨δρ⟩ and ⟨v⟩. To do this, we need to change back to either synchronous or Newtonian
gauge, as these are the gauges used in Boltzmann solvers. The sound speed in Eq. (4.43)
essentially defines a pressure perturbation in the comoving gauge as a multiple of the
energy density perturbation.

To go from an arbitrary gauge (denoted by superscript X) to the comoving gauge
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Figure 4.2: Plot of the TT CMB power spectrum for ultra-light scalar field dark matter
compared to ΛCDM. DM masses are in eV. All other cosmological parameters are set to
the best-fit values for Planck 2018 ΛCDM. The impact of such a DM is only noticeable
on the CMB for extremely light fields.

(superscript C) requires the following transformation [46]:

ξ′X→C = −vX (4.44)

ξ0X→C = (vX −BX). (4.45)

This means that to go from the synchronous gauge (superscript S) to the conformal
gauge requires (since BS=0):

ξ′S→C = −vS (4.46)

ξ0S→C = vS. (4.47)

We can now write down the gauge transformation for the perturbed pressure, energy
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Figure 4.3: Plot of the matter power spectrum for ultra-light scalar field dark matter
compared to ΛCDM. DM masses are in eV. All other cosmological parameters are set to
the best-fit values for Planck 2018 ΛCDM.

density and velocity following Section 2.3. It is then possible to invert these gauge
transformations and go from comoving gauge to synchronous gauge by realising that

ξ′C→S = −ξ′S→C (4.48)

ξ0C→S = −ξ0S→C . (4.49)

Writing the equations for δρ and v in synchronous gauge, we need to obtain ⟨δpS⟩ from
⟨δpC⟩ which is proportional to ⟨δρC⟩. We have the following expression for ⟨δpS⟩ [125]:

⟨δpS⟩ = ⟨δpC⟩+ p′⟨vS⟩

= c2s⟨δρC⟩+ c2adρ
′⟨vS⟩

= c2s⟨δρS⟩+ 3H(⟨ρ⟩+ ⟨p⟩)(c2s − c2ad)⟨vS⟩ (4.50)
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where we have defined the adiabatic sound speed as c2ad ≡ ⟨ṗ⟩/⟨ρ̇⟩ and used

⟨δρC⟩ = ⟨δρS⟩ − ρ′⟨vS⟩. (4.51)

In the end we get the following equations for the oscillation averaged scalar fluid per-
turbations in synchronous gauge, where we omit angle brackets and the S subscript for
ease of notation:

δρ′ = −3Hδρ(1 + c2s)− (ρ+ p)(
1

2
h′ + kv)− 9H2(ρ+ p)(c2s − cad2)v (4.52)

(ρ+ p)v′ = −(ρ+ p)′v − 4H(ρ+ p)v + k[c2sδρ+ 3H(ρ+ p)(c2s − c2ad)v] (4.53)

The most studied candidates for scalar field dark matter are the so-called axions
and axion-like particles4. These include the QCD axion [88], which was developed as a
solution to the strong CP problem, and string theory axions which arise naturally when
compactifying down to four dimensions [126]. Technically these axions are pseudoscalars,
but in terms of cosmology the difference is not relevant. In this work, we will study
scalar fields without considering their embedding into fundamental theories, but rather
as proof-of-concept toy-models to explore low-energy, late-time cosmological phenomena.

4.2 Interactions between dark energy and dark matter

So far we have discussed ways to model dark energy and dark matter beyond the ΛCDM
description, leading to observable differences. We now generalise our approach and
consider interactions between the two dark components of the universe. In the standard
case, it is assumed that DE and DM only interact through gravity, however it is possible
to imagine that the two are part of a dark sector which involves some further interactions
between the two. These dark sectors have been extensively studied from a particle physics
point of view [127] as well as from a cosmological phenomenology point of view [101,128].
Not only can such an interaction yield new observable signatures, some models also
attempt to solve cosmological tensions and theoretical problems such as the coincidence
problem.

The simplest way to implement such interactions is to introduce some energy transfer
4We will use axion and ALP interchangeably.
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between the DM and DE species in the following way:

ρ̇DE + 3HρDE(1 + wDE) = Q (4.54)

ρ̇DM + 3HρDM = −Q, (4.55)

(4.56)

where the opposite signs of Q in the two equations ensures conservation of total energy-
momentum.

The specific form of Q is model-dependent, and it is common to take a phenomen-
ological approach by simply assuming a coupling Q and studying its effect on observ-
ables [100]. It is common in this approach to choose Q ∝ HρDM, Q ∝ HρDE, or a linear
combination of the two [101]. Although this method yields interesting phenomenology,
it does not provide any hints at the microscopic physics of DE or DM. This can be
improved with coupled quintessence [129], which couples a dark energy scalar field ϕ to
a dark matter fluid5. In this framework, the interaction between DE and DM leads to
an exchange of energy between the two. One motivation for this form of coupling is
that it is a simple form which arises naturally in string theory or certain scalar-tensor
theories [130].

The equations in this case are:

ϕ̈+ 3Hϕ̇+ V,ϕ = βρDM (4.57)

ρ̇DM + 3HρDM = −βρDMϕ̇, (4.58)

where β is a coupling constant. The potential is not specified, although the exponen-
tial potential is commonly used. These equations can be derived from an action by
introducing a conformal coupling between DE and DM6. Consider the following

S =

∫
d4x

√
−g

(
M2

Pl

2
R− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

)
+ SSM + SDM, (4.59)

where SSM denotes the Lagrangian containing the standard model fields propagating
in geodesics of the metric gµν . SDM contains the Lagrangian for the DM fluid, but
propagates on the conformal metric g̃µν :

SDM =

∫
d4x
√
−g̃LDM, (4.60)

5Note that in the original coupled quintessence paper the scalar field also couples to baryons.
6We will consider these interactions in more detail in the following chapters.
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where
g̃µν ≡ C(ϕ)gµν , (4.61)

and C(ϕ) is the conformal factor.
Varying the above action we get the following modified Klein-Gordon equation:

∇µ∇µϕ = V,ϕ −
C,ϕ

2C
TDM, (4.62)

where we have defined the EM tensor in the following way:

TDM
µν ≡ −2

1√
−g

δ(
√
−g̃LDM)

δgµν
, (4.63)

and defined its trace TDM ≡ TDM µ
µ . Conservation of energy-momentum tells us that

∇µ(T ϕ
µν + TDM

µν ) = 0, (4.64)

where T ϕ
µν is the standard EM tensor for a scalar field defined in Eq. (4.3). Plugging

Eq. (4.62) into the above, we get the following conservation equation for the DM:

∇µTDM
µν =

C,ϕ

2C
TDM∇νϕ. (4.65)

For a rigorous treatment see [131] (this result holds only for DM). Choosing C = e2βϕ

yields exactly Eqs. (4.57). In this case the conformal coupling can be interpreted as
introducing a time-varying mass to the DM: mDM ∝ C(ϕ).

It is also possible to obtain a similar set of coupled quintessence equations from a
conformal coupling using a scalar field dark matter – see [132,133] and Chapter 7.

4.3 Summary

In this chapter we introduced scalar fields in the context of cosmology in order to describe
DE and DM beyond ΛCDM. Both formulations are similar, with the main difference
being that DE is described by a slowly rolling scalar field, while a DM scalar field must
be oscillating in a quadratic potential. In the case of DM, we used a fluid approximation
to derive the equation of state and the sound speed at background and linear perturbation
level respectively. We then discussed the coupled quintessence scenario, in which DM
and DE exchange energy via an interaction term. This scenario generally involves a DE
scalar field interacting with a fluid DM component, but in the rest of this thesis we will
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focus on models where both DE and DM are scalar fields.



Chapter 5

A hybrid model for the dark sector

5.1 Introduction

We have seen in the previous chapters how successful the ΛCDM is when it comes to
fitting the observed cosmological data. However, we have also seen that this model has
many shortcomings, one of them being the origin of DM and DE.

There is a plethora of phenomenological proposals for DM, motivated by theories
beyond the standard model of particle physics. Candidates for DM range from weakly
interacting massive particles to light scalar fields; see, e.g. [124, 126, 134–141] and refer-
ences therein. DE is often seen as a separate issue, not related to DM. However, we saw
in Chapter 4 that it is common to consider a dark sector made up of two interacting
components for DM and DE. Whilst most of these models rely on a phenomenological
description of DM – that is, DM is a perfect fluid – some approaches involve two funda-
mental scalar fields as DM and DE [132,142–147].

In this chapter, we explore new phenomenology in the dark sector by considering two
interacting scalar fields for DM and DE. This interaction is driven by a shared potential
V , which will take the well-known form of the hybrid inflation potential [37]. This choice
leads to a hierarchy of masses for DM and DE, which we discuss in more detail in the
next section. The DM field is identified with the heavier field, and its mass is set by the
expectation value of the DE field, corresponding to the flat direction of the potential. We
will show that the DE field is limited to evolving very slowly under these conditions. One
consequence of the theory proposed is that the current period of accelerated expansion
is transient. In the future, both fields will settle at a local minimum, for which the
potential energy vanishes. The subsequent evolution of the universe is then determined
by other factors, such as the curvature of space.

71
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The motivation for this work is twofold: first, we wish to bridge the gap between a
two-field system and the more traditionally studied field-fluid scenario. To do this, we
apply time-averaging to the field-field equations of motion. The second motivation is to
find a simple setup (that of hybrid inflation) which yields interesting physics in the dark
sector, with possible implications for the ultimate fate of the universe.

The chapter is organised as follows: In Section 5.2, we present the model. The con-
ditions on the model parameter are discussed in Section 5.3. To study the cosmological
background dynamics and calculate the evolution of perturbations, we develop a fluid
description for the DM field in Section 5.4. In Section 5.5, we describe the evolution
of the universe and the predictions for the CMB anisotropies and large-scale structures
spectra. The results and phenomenology of the model are discussed in Section 5.6. We
conclude in Section 5.7.

5.2 Model

In this section, we discuss the field contents of the model studied in this chapter. The
set-up under consideration is based on that of hybrid inflation [37] with the addition of
the standard model fields and is defined through the following action:

S =

∫
d4x

√
−g

[
1

2
M2

PlR− 1

2
(∂ϕ)2 − 1

2
(∂χ)2 − V (ϕ, χ)

]
+ SSM. (5.1)

We aim to have ϕ playing the role of DE and χ being DM. The standard model fields are
accounted for in the action SSM. The term V (ϕ, χ) stands for the effective interaction
potential, given in analogy to the one in hybrid inflation as

V (ϕ, χ) =
λ

4
(M2 − χ2)2 +

1

2
g2ϕ2χ2 +

1

2
µ2ϕ2 (5.2)

≡ V0 −
1

2
λM2χ2 +

1

4
λχ4 +

1

2
g2ϕ2χ2 +

1

2
µ2ϕ2, (5.3)

where M and µ are mass scales, g and λ are dimensionless coupling constants and
V0 ≡ 1

4
λM4 is the scale of the potential. See Fig. 5.1 for a plot of the potential

for a given set of parameter values. For ϕ and χ to play the role of DE and DM,
respectively, appropriate choices of the parameter values have to be made. We will
discuss this in-depth in the next section. The global minimum of the potential is at
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χ = ±M and ϕ = 0, for which the potential energy vanishes. Note that our set-up differs
from [148], where ϕ and χ play the role of DM and DE, respectively. Consequently, the
physical interpretation of the fields, their dynamics and the choices of parameters change
significantly.

Figure 5.1: Hybrid inflation potential, plotted with λ = 1.5, M = 7, g = 1.7 and
µ = 4, all in Planck units.

The effective masses of the DM scalar field χ and of the DE scalar field ϕ are de-
termined by the second order derivatives of the potential, given by

m2
χ ≡ ∂2V

∂χ2
= g2ϕ2 − λM2 + 3λχ2, (5.4)

and
m2

ϕ ≡ ∂2V

∂ϕ2
= g2χ2 + µ2, (5.5)

respectively.
We consider a spatially flat universe described by the FLRW metric. The equations
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of motion for each scalar field read

ϕ̈+ 3Hϕ̇ = −(g2χ2 + µ2)ϕ, (5.6)

χ̈+ 3Hχ̇ = −λχ3 + (λM2 − g2ϕ2)χ, (5.7)

and the Friedmann equations are

Ḣ = − 1

2M2
Pl
(ρ+ P ), (5.8)

H2 =
1

3M2
Pl
ρ, (5.9)

where ρ and P are the collective energy density and pressure of both scalar fields, baryons,
and radiation expressed as

ρ =
1

2
ϕ̇2 +

1

2
χ̇2 + V (ϕ, χ) + ρb + ργ, (5.10)

P =
1

2
ϕ̇2 +

1

2
χ̇2 − V (ϕ, χ) + pγ, (5.11)

respectively. For convenience, we split the energy density contributions of each scalar
field into two different quantities:

ρχ =
1

2
χ̇2 − 1

2
λM2χ2 +

1

4
λχ4 +

1

2
g2ϕ2χ2, (5.12)

ρϕ =
1

2
ϕ̇2 + V0 +

1

2
µ2ϕ2, (5.13)

It is important to emphasise that this splitting is a choice and has no impact on the
underlying physics so long as the sum of both parts is equal to the whole energy density
of the scalar fields system. The particular choice in Eq. (5.12) is such that all oscillating
terms (i.e. those containing χ) are grouped to obtain the effective pressureless behaviour
needed for structure formation in the matter domination era. The ϕ-field is expected
to behave like a cosmological constant at late times. Nevertheless, we will see that the
evolution may still differ at early times, driven by the interaction with the χ-field.

Under this scenario, if ϕ is displaced sufficiently far from the origin, then χ will
oscillate around zero. There is an abrupt transition in the shape of the potential when
the effective DM mass, given by Eq. (5.4), changes from positive to negative. Using
Eq. (5.4) and assuming that χ has decayed enough as it oscillates around 0 so as to
ignore the quartic term in the potential, this transition happens approximately when ϕ
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reaches a critical value given by

|ϕc| ≈
√
λM

g
. (5.14)

For ϕ > ϕc, χ behaves as dark matter, and ϕ is a dynamical dark energy component,
slowly rolling down its potential. Moreover, the dynamics of ϕ are mainly determined by
the dominant constant scale in the potential, V0, and the interaction with χ. However,
when ϕ approaches the critical value ϕc, χ quickly drops and starts oscillating around
χ = ±M . Simultaneously, V (ϕ, χ) drops to zero leading to a sudden decay of dark
energy and implying that the epoch of DE domination is just a transient phenomenon
in this theory.

5.3 Conditions on model parameters

In this section, we examine the necessary conditions to fulfil the scenario described above.
In other words, we look for constraints on the free parameters g, M and λ. For ϕ to
play the role of DE, the field needs to roll slowly, and the potential energy needs to be
of order ρDE,0, the DE density today. Thus, we demand that V0 =

1
4
λM4 ≈ 10−47GeV4.

The contribution from the µ2–term cannot be larger than this because it also affects the
dark energy density. Thus, the mass scale M is of order 10−3eV, as expected in models
with DE.

On the other hand, for χ to behave like dark matter, it must oscillate in a quadratic
potential from the early universe onwards [117]. Firstly to prevent the damping term
in Eq. (5.7) from withholding the oscillations, mχ ≈ gϕ ≫ H must hold. Secondly,
we need to ensure that the quadratic term dominates over the quartic one in Eq. (5.3),
which translates into the condition g2ϕ2−λM2 ≫ 1

2
λχ2. As discussed below, ϕ does not

change significantly during the cosmological evolution, and the value of ϕ today must be
large, (ϕ0 ∼> 10 M2

Pl). Therefore, the mass of the χ-field, mχ = gϕ, is large unless g is
exceedingly small.

At some time ti in the early universe, H ≈ mχ, at which point the field starts
to oscillate rapidly around 0 as the expansion rate becomes smaller than the mass.
To estimate the temperature of this transition, we assume that the universe is in the
radiation-dominated epoch after an inflationary phase. During this period,

H2 =
1

3M2
Pl

π2

30
g∗(T )T

4,
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with g∗(T ) being the effective number of relativistic degrees of freedom at a temperature
T (which is of the order of several hundred in theories beyond the standard model).
Therefore we infer that the oscillations happen at a temperature

T ≈ 1015
( g

10−7

)1/2( ϕi

10M2
Pl

)1/2 ( g∗
100

)−1/4

GeV.

This corroborates the assumption that the field starts to oscillate very early on in the
radiation dominated epoch, almost immediately after a period of inflation in this frame-
work. Below we will derive the evolution for the χ–field (Eq. (5.40)), which allows us
to find the initial field amplitude χi in the very early universe. Using the fact that
ρDM,0 ≈ g2ϕ2

0χ
2
0 ≈ 4× 10−47 GeV4 (where the 0 indicates the present time) and that the

amplitude evolves as χ(t) = χi(ai/a)
3/2 = χi(T/Ti)

3/2, we find, using the expression for
the temperature above

χi

GeV
≈ 1.4 · 106

( g

10−7

)−1/4
(

ϕ0

10M2
Pl

)−1/4 ( g∗
100

)−3/8

.

This is the initial field amplitude the χ-field must have after inflation in order to predict
the right amount of DM today (emphasising again that we assume that the field χ is
responsible for all DM).

As the model is currently formulated, during inflation the ϕ–field is light. The only
requirement is that its field excursion is large (ϕ ∼> 10 MPl), so that in the radiation
dominated epoch the mass of the χ–field also remains large and, as we will see in Section
5.4, the coupling between χ and ϕ is small enough. Since ϕ is light during inflation it is
subject to quantum fluctuations, which are of order Hinf/2π, where Hinf is the expansion
rate during inflation. But the ϕ–field is a (almost) flat direction and subdominant during
the radiation and matter dominated epoch. Therefore the quantum fluctuations will not
result in large isocurvature modes in the DE sector. However, the situation with the
χ–field is more delicate. If ϕ is light during inflation, i.e. gϕ < Hinf , then the quantum
fluctuations of χ are also of the order Hinf/2π, resulting in potentially large isocurvature
modes with an amplitude [149]

AI =
(H2

inf/M
2
Pl)

π2(χ2
inf/M

2
Pl)

,

where χinf is the value of χ during inflation, which has to be of order 106 GeV for
g ≈ 10−7. As it is the case for axion–like fields, there are ways to evade isocurvature
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bounds. We consider two of these briefly: Firstly, the field χ is heavy during inflation,
so that gϕ > Hinf . In this case, the isocurvature modes are suppressed. The challenge
with this option is that at the end of inflation the field amplitude needs to be large
enough so that the χ–field can play the role of DM (or at least be a non–negligible part
of the DM sector). Alternatively, the dynamics of χ during inflation is non–standard,
either by coupling χ to gravity (as in e.g. [150]) or by coupling χ directly to the inflaton
field. In this case, the dark sector is bigger than just the fields ϕ and χ we consider here
and it would be interesting to study this option further, also from the model–building
perspective. For the rest of the chapter, however, we are dealing with the post–inflation
period and assume that the isocurvature perturbations can be kept small.

For the numerical study in the following sections, we select initial conditions, taken
at zi = 1014, such that ϕi ≫ ϕc, i.e. gϕi ≫

√
λM from Eq. (5.14) and since mχ ≫ H we

have
gϕi ≫ H, (5.15)

where a subscript i denotes quantities evaluated at the initial redshift zi in the numerical
simulations. On the other hand, as previously argued, ϕ must be rolling slowly so that
m2

ϕ ≪ H2. Assuming that µ is small compared to gχ, the following constraint is obtained
from Eq. (5.5):

g2χ2 ≪ H2. (5.16)

In the original hybrid inflation setting, it is well-understood that the oscillations of χ
around the minimum do not play an important role since the potential is dominated
by V0 in the early stages of inflation. This is required in order to get a period of quasi
de-Sitter expansion – it is ‘quasi’ in the sense that the exponential expansion must end
at some point, to make way for radiation domination as is widely accepted in the big
bang scenario. The energy scale of inflation is rather high, with H ∼ 1014 GeV [151]
and it is therefore natural to have V0 dominate over the oscillating part in that case. In
our late-time scenario, the oscillations of χ around 0 are expected to dominate the field
dynamics in the early universe and at later times as well. Again, this is reasonable since
in our model V0 has to match the very small observational prediction for the cosmological
constant ρΛ ∼ 10−47 GeV4 [8]. This leaves a wide range of initial conditions for the χ field
to dominate the potential in the early and late universe. During the matter-dominated
epoch, the χ-field dominates the dynamics. As we will describe in more detail in the next
section, the DM fractional energy density will eventually start to decrease. At the same
time, the universe keeps expanding, and the ϕ-field keeps slowly varying until, finally,
DE dominates the evolution, driven by the potential energy. Therefore, at early times
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we require
1

2
µ2ϕ2 + V0 ≪

1

2
g2ϕ2χ2, (5.17)

warranting a period of matter domination. From this, we infer

ρχ =
1

2
χ̇2 +

1

2
m2

χχ
2

≈ m2
χχ

2, (5.18)

where we have used that mχ ≈ gϕ and relied on the fact that the rapidly oscillating χ-
field is approximately pressureless when averaged over several oscillation periods. Note
that because of how slowly ϕ is evolving, the effective DM mass is nearly constant.
Solving for χ2 and replacing in Eq. (5.16) leads to

g2
ρχ
m2

χ

≪ H2. (5.19)

During the matter-dominated era, when χ stands as the predominant contribution, the
Friedmann equation can be approximated as

H2 ≈ ρχ

3M2
Pl
. (5.20)

Therefore, from Eq. (5.19), we arrive at the following condition

1 ≪ 1

3

(
ϕ

MPl

)2

, (5.21)

where we have employed mχ ≈ gϕ. The inequality above can only be satisfied if the
ϕ-field is trans-Planckian, that is, if ϕ ≫ MPl. Therefore, ϕ must be at least of the
order of the Planck scale to satisfy the constraint in Eq. (5.21) and fulfil the scenario
intended in this theory. This condition is required in many inflationary models [151]
and is still a debated subject in the literature. Indeed, in a quantum theory of gravity,
one expects the presence of Planck-suppressed operators in the Lagrangian of the form
ϕ4+n

MPlv
n for n ≥ 1; for large field values, these higher-order operators cannot be ignored

in the quantum theory, which can lead to problems [152]. Since we are not concerned
with a UV complete theory of quantum gravity in this work, we will accept that ϕ can
take large values, up to and above the order of the Planck scale. Consequently, unless
g is exceedingly small, this results in a considerably large DM mass, in direct contrast
with models with ultralight and light scalar fields as DM candidates [90, 124, 153]. We
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remark that this can potentially be accommodated in the WIMPzilla scenario, proposed
and analysed in [138] and [154], which considers heavy weakly interacting DM and
shows that such particles can be created in large enough quantities in the early universe
through e.g. gravitational production.

It is useful to note that in the previous paragraph we have assumed that the χ field
makes up the entire dark matter content of the universe. However it may be the case that
DM is actually made up of different components. Assuming that ρχ is only a fraction of
the total DM energy density ρDM, Eq. (5.15) becomes

1 ≪ 1

3

(
ρDM

ρχ

)(
ϕ

MPl

)2

. (5.22)

It is therefore possible to ease the large-field constraint by considering cases where ρχ

only makes up a small fraction of the whole DM content. However, one would need a
comparatively small contribution due to the power of 2 in Eq. (5.22), making this model
less relevant phenomenologically.

Another necessary condition for χ to be a viable DM particle candidate is that the
scalar field must be stable. This means that the χ field does not decay efficiently into the
ϕ field, since this decay channel is kinematically allowed due to the mass scale difference
between the fields. We must therefore check that the decay rate Γ for this interaction
is smaller than the Hubble rate of expansion when averaged over the oscillation time
scale, i.e. Γ < H. Indeed, if the universe is expanding at a faster rate than the fields
can interact, then the decay will not happen enough to change the energy of the fields
significantly. The relevant interaction term in the Lagrangian is 1

2
g2ϕ2χ2. This can be

represented by a Feynman diagram associated to the following Feynman rule [155] shown
in Fig. 5.2.

Figure 5.2: Feynman diagram for the two-to-two scattering interaction between ϕ and
χ. M is the quantum amplitude associated with the corresponding interacting process.



Chapter 5: A hybrid model for the dark sector 80

The decay rate for a dark matter particle is given by Γ = nσv [45], where n is the
number density of the decaying particle, σ is the interaction cross-section and v is the
particle velocity. The over-line denotes thermal averaging (usually denoted by angle
brackets in the literature). It is straightforward to obtain the number density for the χ

field,
nχ = mχ⟨χ2⟩, (5.23)

where we averaged χ2 over an oscillation cycle, as is required to see that the scalar field
indeed behaves like dark matter. To calculate the thermally averaged cross-section, we
follow the approach in [156, 157] and expand σv in powers of x−1 where x ≡ mχ/T and
T is the temperature of the universe:

σv(x) = σv|s=4m2
χ
+ 6m2

χ

∂(σv)

∂s

∣∣∣∣
s=4m2

χ

x−1 +O(x−2), (5.24)

where s is a Mandelstam variable s = (p1 + p2)
2 and p1 and p2 are the four-momenta

of both incoming particles. Let us clarify on why we evaluate at s = 4m2
χ: first, notice

that expanding around small x−1 corresponds to the non-relativistic limit where T <<

mχ, which is equivalent to an expansion around v = 0 where v is the relative velocity
v = |v⃗1 − v⃗2|. It is easiest to work in the centre of mass frame, in which case one can
write p1 = (E, p⃗), p2 = (E,−p⃗) and so

s = 4E2 = 4(m2
χ + |p⃗|2)

≈ 4m2
χ

(
1 +

v2

4

)
(5.25)

where we have used the fact that the particles are non-relativistic in the second line. Note
the factor of 1

4
comes from the definition of the relative velocity in the centre of mass

frame, where v ≈ 2 |p⃗|
mχ

. Expanding around v = 0 is therefore analogous to expanding
around s = 4m2

χ. In the following we will only take the above expansion to zeroth order.
The calculation of this term is straightforward using the following general formula for a
two-to-two scattering process [158,159]

σv =
1

16π ((s− (m2
1 +m2

2))
√
λ12

∫ t0

t1

dt|M(s, t)|2, (5.26)

where t = (p1 − p3)
2 and u = (p1 − p4)

2 are the remaining two Mandelstam variables, p3
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and p4 are the four-momenta of the outgoing particles, and

t0 =
1

4s

[
(m2

1 −m2
2 −m2

3 +m2
4)

2 − (
√

λ12 −
√

λ34)
2
]

(5.27)

t1 =
1

4s

[
(m2

1 −m2
2 −m2

3 +m2
4)

2 − (
√

λ12 +
√

λ34)
2
]

(5.28)

and
λij ≡ (s−m2

i −m2
j)

2 − 4m2
im

2
j . (5.29)

In our case, m1,2 = mχ and m3,4 = mϕ. This leads to

σv ≈
g4
√

m2
χ −m2

ϕ

8πm3
χ

(5.30)

≈ g4

8πm2
χ

(5.31)

(5.32)

where we have used the fact that mχ ≫ mϕ in the second line. The decay rate is therefore
given by

Γ(χχ → ϕϕ) =
g4⟨χ2⟩
8πmχ

. (5.33)

Due to the direct dependence of the amplitude on the χ field, and the fact that ⟨χ2⟩ ∝ a−3

(see Section 5.4 for more details), we conclude that Γ ∝ a−3 , while H scales as a−3/2

and a−2 during matter and radiation dominated epochs respectively. This implies that
the decay width drops much more rapidly than the expansion rate over the history of
the universe. Consequently, for any sensible values of g ≤ 1, the DM field will remain
stable.

A final remark before we discuss the cosmological evolution of the system is whether
quantum corrections to the potential can spoil the considerations above. In general,
quantum corrections to the tree–level potential are expected to be of order M2

Pl (choosing
MPl to be the natural cut–off). In supersymmetric theories, however, the corrections are
of order ln(ϕ/MPl) [160]. These ln–corrections can be kept small if the coupling constants
are small, which is a natural case for the model considered here.
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5.4 Fluid approximation and dynamics

Since simulation of the oscillations in the χ-field are computationally expensive, we wish
to find reasonable approximations allowing for the study of the cosmological evolution.
More precisely, we recast our framework as an interacting quintessence model through
a fluid description of the DM field χ. Despite its similarities with other scalar-field
models of DM, one crucial difference in this scenario is that the mass of the DM field
evolves as the DE field is slowly rolling. As seen in Section 4.1.3 it is a well-known result
that one can describe its dynamics according to an oscillating envelope with amplitude
A(t) ∝ a−

3
2 . Employing the Wentzel-Kramer-Brillouin (WKB) approximation, we can

solve for the dynamics of the oscillating scalar field χ using the conditions derived in the
previous section (gϕ ≫ H and ϕ̇/ϕ ≪ 1). We want to solve

χ̈+ 3Hχ̇+ g2ϕ2χ = 0. (5.34)

We set
χ = eiA(t) (5.35)

and plug this into Eq. (5.34) to get

Ȧ2 − iÄ− 3HiȦ− g2ϕ2 = 0. (5.36)

Assuming that Ä ≪ g2ϕ2, we can find the following approximate solution for Ȧ:

Ȧ ≈ ±gϕ+
3

2
iH. (5.37)

Taking the derivative and plugging back into Eq. (5.36), we get

Ȧ =
3

2
iH ± gϕ

[
1± ϕ̇

2gϕ2

]
, (5.38)

which can be integrated:

A ≈ A0 + i
3

2
ln

(
a

ai

)
± gϕ(t− ti) +

i

2
ln

(
ϕ

ϕi

)
. (5.39)

We therefore arrive at a solution of the form

χ(t) = χi

(
ϕi

ϕ

)1/2 (ai
a

)3/2
sin
(
gϕ (t− ti)

)
. (5.40)
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where χi is the initial amplitude of χ. Since ϕ is evolving slowly, the ratio ϕi/ϕ is
practically constant, meaning that the χ-field behaves like pressureless dust according
to ρχ ∝ χ2 ∝ a−3. Taking the expression for ρχ in Eq. (5.18), we gather that the energy
density of DM averaged over an oscillation period is roughly given by

⟨ρχ⟩ ≈ ρχ,i

(
ϕ

ϕi

)(ai
a

)3
, (5.41)

where ρχ,i =
1
2
g2ϕ2

iχ
2
i is the energy density of χ at t = ti.

For simplicity, since we will be considering time–scales much larger than the oscilla-
tion span, we drop the bracket notation henceforth, and oscillation-averaged quantities
will always be implied. It is worth pointing out that the (averaged) density in Eq. (5.41)
depends linearly on ϕ. Therefore, we obtain the following continuity equation for the
oscillation-averaged interacting fluid:

ρ̇χ + 3Hρχ =
ϕ̇

ϕ
ρχ. (5.42)

In this context, the equation of motion for the DE field is recast as

ϕ̈+ 3Hϕ̇ = −1

ϕ
ρχ. (5.43)

The previous equation is entirely equivalent to a continuity equation for DE, assuming
a perfect fluid description for the field as well, with ρϕ ≈ ϕ̇2/2 + V0 and pϕ ≈ ϕ̇2/2− V0:

ρ̇ϕ + 3H(ρϕ + Pϕ) = − ϕ̇

ϕ
ρχ, (5.44)

following conservation of the total energy density of both ϕ and χ, as required by the
general covariance of Einstein’s equations. According to the approximation in Eq. (5.41),
Eq. (5.43) becomes

1

a3
d

dt

(
a3ϕ̇
)
= −ρχ,i

ϕi

(ai
a

)3
, (5.45)

which, when integrated with respect to time, yields the following expression for the rate
of change of the field, ϕ̇:

ϕ̇ =
(ai
a

)3(
Ki −

ρχ,i
ϕi

t

)
, (5.46)

where Ki ≡ ϕ̇i +
ρχ,i

ϕi
ti is an integration constant and ϕ̇i is the initial field velocity, that

is when a(ti) = ai. Hence, provided that the relation between a and t is known, the
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behaviour of ϕ is fully determined. As verified in the previous section, the fluid approx-
imation yields a suitable description after inflation since the χ-field starts oscillating
around 0 after this period has ended, and radiation becomes the dominant contributor
in the universe at t = ti. Consequently, solving Eq. (5.46) in the radiation-dominated
epoch, during which a(t) ∝ t1/2, we obtain

ϕ(t) = ϕi + Ci − Ai

(
t

ti

) 1
2

−Bi

(
t

ti

)− 1
2

, (5.47)

where Ci ≡ 2
(

ρχ,i

ϕi
t2i +Kiti

)
, Ai ≡ 2

ρχ,i

ϕi
t2i and Bi ≡ 2Kiti are constants. Therefore

during this period, the energy density of ϕ scales according to

ρϕ ∝ ϕ̇2 ∝ a−1. (5.48)

Eq. (5.47) sets the field’s evolution until the matter-radiation equality at teq. When
the matter-dominated era begins, a(t) ∝ t2/3 which leads to the following solution of
Eq. (5.46):

ϕ(t) = ϕeq + Ceq − Aeq ln

(
t

teq

)
−Beq

(
t

teq

)−1

, (5.49)

where equivalently Ceq ≡ teqKeq, Aeq ≡ t2eq
ρχ,eq

ϕeq
, and Beq ≡ teqKeq are constants depend-

ing on initial conditions taken at radiation-matter equality, denoted by the subscript
‘eq’. The constant Keq is defined in analogy to Ki in Eq. (5.46), with each quantity
taken at time teq instead of ti. Since the field is slow-rolling, it is reasonable to assume
ϕ̇eq ≪ teqρχ,eq/ϕeq, resulting in Beq ≈ teqAeq. It is worth noting that Eq. (5.49) implies
that ϕ̇ ∝ a−

3
2 since t ∝ a

3
2 during matter domination. Moreover, considering that the

coupling to DM is the main driver of the field’s dynamics and accordingly ϕ̇2 ≫ V0, we
arrive at

ρϕ ∝ ϕ̇2 ∝ a−3. (5.50)

It is noteworthy that, during this regime, the DE component scales with ordinary matter
and CDM. This scaling is not a general feature of interacting dark energy models with
a constant potential, making this model novel in this regard. Solutions of this kind are
relevant to address the cosmic coincidence problem of ΛCDM concerning the comparable
magnitude for the energy density of DE (Λ in the standard model) and CDM at present
[161–164]. In the Section 5.6, we illustrate and analyse the dynamics in this regime
through numerical simulations.

The form of the coupling term on the right-hand side of Eq. (5.42) implies that ϕ must
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be large up until the current cosmological era, in line with the discussion in Section 5.3, as
required to avoid drastic deviations from the ΛCDM case. Albeit counter-intuitive at first
glance, this framework hinges on the fact that ϕ is rolling slowly as ϕ̇/(ϕH) ≪ 1, which
we have also confirmed numerically, implying that ϕ > MPl, according to Eq. (5.21).

From a mathematical point of view, the result of the fluid approximation of the system
considered here is analogous to encapsulating the effect of a 5th–force, mediated by a
dark energy scalar field, in a conformally rescaled metric that determines the geodesics
for the dark matter particles g̃µν , as given in Section 4.2 by

g̃µν = C (ϕ) gµν , (5.51)

in terms of the gravitational metric gµν , with the conformal factor identified as

C(ϕ) =
ϕ2

M2
Pl

for |ϕ| > |ϕc|, (5.52)

see Eq. (5.14) for definition of the critical field value. The transformation is always
invertible as |ϕ| > |ϕc|. Note that the fluid approximation will break down well before
ϕ can approach 0. Moreover, it follows that C (ϕ) > 0 and the Lorentzian signature
of the metric is preserved, avoiding any instabilities related to metric singularities. In
this framework, the form of the energy transfer function for the fluid approximation is
recovered and reads:

Q = −C,ϕ

2C
ρχ = −ρχ

ϕ
. (5.53)

By modelling both components of the dark sector as perfect fluids, it is possible to rewrite
the relevant dynamical equations, such as the conservation relations. We use conformal
time in our numerical work. The equations for the DM and DE fluids read

ρ′χ + 3Hρχ = −Qϕ′ =
ϕ′

ϕ
ρχ, (5.54)

ρ′ϕ + 3H (ρϕ + pϕ) = Qϕ′ = −ϕ′

ϕ
ρχ. (5.55)

These equations lay out the energy exchange between the fluids, with the direction
directly related to the sign of ϕ′/ϕ. If this ratio is positive, it is DE sourcing the DM
component, while if it is negative, there will be an energy flow from ϕ to the dark
matter fluid. Regardless of the initial conditions chosen, we find that ϕ and ϕ′ always
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have opposite signs. Consequently, this model exhibits a unidirectional energy transfer
from the χ fluid to the ϕ-field. The modified Klein-Gordon equation encodes the same
information:

ϕ′′ + 2Hϕ′ = −a2

ϕ
ρχ = a2Q, (5.56)

and can be numerically integrated for different realisations of the system yielding par-
ticular solutions for the dynamical evolution of the model.

For numerical purposes, the only free model-specific parameters are the initial con-
ditions for the DE scalar field ϕi = ϕ (τi) and ϕ′

i = ϕ′ (τi) and the scale of the hybrid
potential V0. It is important to note that the parameters in the potential energy in
Eq. (5.2) drop out completely from the calculation, meaning we do not need to choose
their values to solve the system numerically so long as we assume that they satisfy the
constraints derived in Section 5.3. However, we set µ equal to zero for simplicity since
it does not contribute up to current times. Without loss of generality, we compute V0

through a shooting method for the fiducial value of the present DE relative energy dens-
ity: Ω0

ϕ = ρ0ϕ/(3M
2
PlH

2
0 ). Moreover, and as previously mentioned, the value of ϕ′

i has no
impact on the dynamics as the scalar field is quickly driven towards the minimum deep
in the radiation-dominated epoch where its contribution is negligible. For this reason,
and without loss of generality, in the numerical study, we always take ϕ′

i = 0. In this way,
the analysis presented can be focused on the effects of varying the only free parameter:
the initial condition for the scalar field ϕi. We will focus only on scenarios for which
ϕi > 0, as the solutions for ϕi < 0 would lead to the same dynamics starting from the
opposite side of the symmetric potential.

5.5 Cosmological perturbations and observables

Following the discussion on the background evolution, we now map the cosmological
perturbations onto an interacting DE model. We are interested in studying the modific-
ations to the gravitational interaction in contrast to ΛCDM and assessing the measurable
imprints left by the approximations made at the background level. For this purpose, we
consider perturbations in the Newtonian gauge [165], corresponding to the following line
element

ds2 = a2(τ)
[
− (1 + 2Ψ) dτ 2 + (1− 2Φ) δijdx

idxj
]
, (5.57)
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where Ψ(τ, x⃗) and Φ(τ, x⃗) are the conventional Newtonian scalar potentials. For the
remainder of this section, a δ denotes perturbed quantities, and since we are dealing
with a system of scalar fields, the anisotropic stress vanishes. Moreover, we work in
Fourier space, such that the mapping ∇2 → −k2 holds for the spatial derivatives of the
respective quantities.

The equations of motion for δϕ and δρχ in the coupled DE framework are

δϕ′′ + 2Hδϕ′ + k2δϕ = (Ψ′ + 3Φ′)ϕ′ + 2a2QΨ+ a2δQ, (5.58)

δ′χ = −(θχ − 3Φ′) +
Q

ρχ
ϕ′δχ −

Q

ρχ
δϕ′ − θ′

ρχ
δQ, (5.59)

where we have defined the density contrast δχ = δρχ/ρχ, θχ is the DM velocity perturb-
ation and the perturbed coupling δQ is given by

δQ =
ρχδϕ− ϕδρχ

ϕ2
. (5.60)

It is worth remarking that in Eq. (5.59), both the equation of state wχ = pχ
ρχ

and
the sound speed c2s = δpχ

δρχ
of the DM fluid were set to zero. The former assumption is

motivated by the study of the background dynamics in the previous section, while the
latter is justified when looking at the explicit form of the sound speed for an oscillating
scalar field, which under this approximation becomes [124],

c2s =
k2/(4m2

χa
2)

1 + k2/(4m2
χa

2)
. (5.61)

This equation strictly holds for an uncoupled scalar field, but since the coupling con-
sidered here is small, it captures the essential physics. Since mχ is required to be con-
siderably large in our model and we are considering scales k ≪ 2mχa, it is a reasonable
assumption to take c2s = 0, which we have also confirmed numerically.

To better appreciate the influence of the coupling on the evolution of the density mat-
ter perturbations, we look at scales in the sub-horizon limit (k ≫ H) together with the
quasi-static approximation. The latter relies on the matter and field perturbations being
the main contributors to the time variation of the gravitational potentials. In practice,
this implies neglecting the time derivatives of the perturbations and metric potentials,
leading to the following simplification for the equation of motion for δχ (neglecting the
contribution of baryons) [166,167]:
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δ′′χ +Heffδ
′
χ ≃ 4πGeffρχδχ, (5.62)

where we have defined the effective Hubble term

Heff = H
(
1 +

Q

ρχ

ϕ′

H

)
, (5.63)

which involves an additional friction contribution related to the changes to the back-
ground expansion evolution, and the effective gravitational constant, which in the small-
scale limit (large k) becomes dominant and is given simply as

Geff ≃ GN

(
1 + 2M2

Pl

Q2

ρ2χ

)
, (5.64)

as expected according to the general results for scalar-tensor gravity models under a
conformal transformation [168–170].

5.6 Phenomenology

In this section, we explore the dynamics of DM and DE, discuss the main signatures
left by the hybrid dark sector on the cosmological observables, and compare the predic-
tions against ΛCDM. As expected, the qualitative features of the model are in line with
standard coupled quintessence scenarios with constant effective interactions [129, 130]
(see [8, 171–181] for recent studies). Nevertheless, there are distinct quantitative signa-
tures due to the slow-rolling of the scalar field, on which we wish to focus. For illustration
purposes, we consider four different realisations of the evolution of the model, character-
ised by ϕi/MPl = {8, 10, 15, 20}, with ϕi being the free parameter responsible for setting
not only the initial dynamics of the scalar field but also the strength of the coupling
in the dark sector. The initial velocity is kept constant at ϕ′

i = 0 since it has no sig-
nificant impact on the overall dynamics, as we will verify in more detail below. The
cosmological parameters are fixed to standard Planck 2018 fiducial values for a ΛCDM
cosmology [8]: H0 = 67.56 km/s/Mpc for the Hubble parameter, and Ωbh

2 = 0.022

and Ωch
2 = 0.12 for the relative energy density of the baryon and dark matter fluids,

with h = H0/100. The Friedmann constraint sets the scale of the potential. For the
perturbative analysis, we assume Gaussian adiabatic initial conditions, a scalar power
spectrum with an amplitude of curvature fluctuations As = 2.215 × 10−9 at the pivot
scale kpiv = 0.05 Mpc−1, and with spectral index ns = 0.962. Moreover, and without
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Figure 5.3: Left panel: Redshift evolution of the relative energy densities Ωi of the
dark matter fluid χ, baryons, radiation and the scalar field ϕ for the hybrid model. ϕi

values are given in Planck units. Right panel: Ratio of the dark energy density (top
panel) and fractional deviations in the Hubble rate (bottom panel) in the hybrid coupled
model with respect to the standard model as a function of redshift 1 + z, for different
values of ϕi.

loss of generality, we assume vanishing initial conditions for the scalar field perturbation
and its corresponding velocity, that is, δϕi = δϕ′

i = 0. To calculate the evolution of the
background and cosmological perturbations, we adapted the publicly available CLASS

code1 [123,182,183] for our purposes.

5.6.1 Background evolution

Since the potential V (ϕ, χ) is constant in the fluid approximation, in the absence of the
coupling the field remains static, making its evolution indistinguishable from a cosmo-
logical constant. However, when the coupling is turned on, the interaction between DM
and DE drives the evolution of the DE field, as shown in the left panel of Fig. 5.4. When
the coupling becomes relevant – at the end of the radiation domination epoch – the field
ϕ begins to evolve slowly and its energy density starts to track that of the DM to which
it couples. During this phase, the scalar field behaves effectively like a pressureless fluid,
although contrary to the DM field it is not oscillating. This scaling regime ends when
the kinetic energy of the field becomes comparable to its potential energy, set by V0,
i.e. when ϕ′2 ≈ a2V0. The transition out of this regime is also influenced by the initial
value of the field ϕi, as it sets the value of ϕ′ (see Eq. (5.46)). A higher value of ϕi

leads to dynamics which are closer to ΛCDM, and therefore the field exits the scaling
1https://github.com/lesgourg/class_public

https://github.com/lesgourg/class_public
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Figure 5.4: Left panel: Evolution of the energy densities ρ of the dark matter fluid χ,
baryons, radiation and the scalar field ϕ for ϕi = 8 MPl. To appreciate the differences, we
also include ρϕ for the ϕi = 15 MPl case and ρΛ for the standard model for completeness.
Right panel: Percentage deviations of the effective gravitational constant, as defined in
Eq. (5.64), with respect to the standard GN for ϕi = {8, 10, 15, 20} MPl.

regime earlier (see right panel of Fig. 5.3 and left panel of Fig. 5.4). On the other hand,
ϕ′ is rapidly adjusted, regardless of the initial velocity, as the field is driven down the
effective potential. This means that ϕ′

i only sets the start of the scaling period, which
happens earlier for higher initial velocities. Since this transition happens during radi-
ation domination, it does not change the background dynamics of the model as both DM
and DE are subdominant during that epoch. A similar effect has been identified in [184],
driven by a significant acceleration of the scalar field instead. When the ϕ−field exits the
matter-scaling regime, it heads towards a cosmological constant-like attractor solution,
where it will keep slowly rolling down until the fluid approximation breaks down.

The impact of the coupling is also evident in the amplification of ρϕ during the scaling
regime for higher coupling values (smaller ϕi). This leads to slightly earlier matter-dark
energy equality. The DM density is also increased in these cases, to compensate for DM
losing energy to DE. This results in an earlier radiation-matter equality, as can be seen
in the left panel of Fig. 5.3.

In the lower right panel of Fig. 5.3, we show the percentage deviations in the Hubble
rate H(z) for the hybrid model compared to ΛCDM. Despite fixing H0 to its ΛCDM
value, we observe up to a 9% increase in H(z) for the lowest value of ϕi considered.
This increase is only present during matter-domination, and is due to the enhanced
densities ρχ and ρϕ. It will be useful to refer to this result when studying the growth of
matter perturbations at different scales. We now turn our attention to the evolution of
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Figure 5.5: Left panel: Evolution of the cosmological observable fσ8 (defined in
Eq. (5.67)) with redshift 1+z for the hybrid coupled model with a range of ϕi values and
for the ΛCDM case. The redshift distortion space data points and corresponding error
bars correspond to the compilation presented in [28]. Right panel: The matter power
spectrum as a function of Fourier scales k (top panel) and corresponding percentage
deviations (bottom panel), for the hybrid coupled model with respect to the ΛCDM case
(thin black solid line).

cosmological perturbations.

5.6.2 Cosmological perturbations

The linear growth rate f(z, k), of the total matter perturbation (i.e. both baryons and
DM) δm, parametrises their evolution and is defined by

f(z, k) =
1

H
δ′m(z, k)

δm(z, k)
, (5.65)

where
δm(z, k) =

Ωbδb + ΩDMδDM

Ωb + ΩDM

. (5.66)

In the above equation, the b subscript stands for baryons. The departure in the evol-
ution of f(z, k) in the hybrid model in contrast with ΛCDM coincides with the onset
of the matter-dominated era when the coupling in the dark sector becomes important.
The combined variable fσ8 is directly connected to data since it is a scale-independent
physical quantity that can be statistically constrained by observations of the growth of
structures at different redshifts [185] and is expressed as

fσ8(z, kσ8) =
σ8(0, kσ8)

H
δ′m(z, kσ8)

δm(0, kσ8)
, (5.67)
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where σ8 is the root mean square mass fluctuation amplitude for spheres of size 8h−1

Mpc (or equivalently for Fourier scales kσ8 = 0.125h Mpc−1), parametrised as

σ8(z, kσ8) = σ8(0, kσ8)
δm(z, kσ8)

δm(0, kσ8)
, (5.68)

and it is generally used to set the amplitude of the matter power spectrum at present
σ0
8 ≡ σ8(0, kσ8).

Observations of redshift-space distortions (RSD) are a probe for the evolution of the
matter perturbations. This effect arises from a Doppler shift ascribed to changes in
the peculiar velocities of galaxies moving in clusters. Hence it can be used as a probe
for the linear growth of structures and is observed as an additional contribution to the
expansion redshift, with the redshift distribution of galaxies appearing ‘distorted’.

The left panel of Fig. 5.5 shows how fσ8 evolves with redshift for different coupling
values. In all cases with non-zero coupling, we see an enhancement in the linear growth
of matter perturbations which is maximised for the lowest values of ϕi. This can be
traced back to the modifications in the expansion history discussed above. For context,
we also include observational data of RSD2 from the compilation in [28] (see references
therein) which include observations from various surveys. As is visible in the plots, the
enhancement in linear growth fσ8 in the hybrid model goes in the wrong direction to
match the data optimally. Indeed, by fixing the primordial perturbations amplitude As,
a higher fσ8 means a higher σ8. In these conditions, we conclude that the model may
struggle to address the S8 tension, although only a more thorough analysis could confirm
this since the data analysis implicitly assumes the ΛCDM model.

The right panel of Fig. 5.5 plots the matter power spectrum P (k) (top) and the
relative deviations from ΛCDM (bottom). On large scales (low k), we find a small
suppression, while on smaller scales (higher k) the power is significantly enhanced. For
the smallest value of ϕi, the deviation reaches 81% at k = 10−1hMpc−1 – at this scale,
the linear approximation starts to break down as non-linear effects become important.
This scale-dependent behaviour is expected: the modified gravitational constant affects
the growth of perturbations more strongly on small scales, especially for low ϕi. The
slight suppression at large scales can be explained by the changes in the expansion rate
H(z). A higher H(z) leads to a larger friction term in Eq. (5.63), which inhibits the
growth of matter perturbations. This effect dominates over the fifth-force only on the
largest scales, and is negligible for large values of ϕi. Lastly, we note that the turnover

2https://gitlab.com/federicomarulli/CosmoBolognaLib

https://gitlab.com/federicomarulli/CosmoBolognaLib/tree/master/External/Data/
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Figure 5.6: Redshift evolution of the sum of the gravitational potentials, Φ+Ψ, (top
left panel) and the corresponding derivative with respect to conformal time, Φ′+Ψ′ (top
right panel) for the hybrid coupled model with ϕi = {8, 10, 15} MPl and for the ΛCDM
case, including the percentage deviations from the standard model (bottom panels).

scale in the matter power spectrum is shifted towards smaller scales compared to ΛCDM.
This is due to the change of radiation-matter equality towards larger redshifts.

In the left panel of Fig. 5.6, we present the redshift evolution of the gravitational
potentials Φ + Ψ (top) along with their relative deviations from ΛCDM (bottom), for
a representative intermediate scale k = 0.01 Mpc−1. The most significant deviations
occur during the matter-dominated era, which is when the expansion rate varies most
from ΛCDM and ρϕ scales like matter. We show the lensing power spectrum Cϕϕ

ℓ , which
depends on the lensing potential ϕlens = Φ + Ψ via its source term in the line-of-sight
integral, in the left panel of Fig. 5.7. We find that Cϕϕ

ℓ is enhanced across all angular
scales, which is consistent with the increased lensing potential. This boost could help
explain the excess lensing signal observed in Planck temperature data, as mentioned
in Chapter 3. Physically, this enhancement can be explained by the evolution of the
matter density contrast δm, which increases due to the stronger effective gravitational
interaction between DM particles (as seen in Fig. 5.4).

Similar features are imprinted in the CMB TT power spectrum, shown in the right
panel of Fig. 5.7. The dominant contribution to the modifications arises from the ISW
effect, which is sourced by the derivative of the lensing potential (see right panel of Fig.
5.6). This includes both an early contribution – resulting in an increase of the time-
derivative due to earlier onset of matter domination – and a late-time contribution –
induced by the non-trivial dynamics of the dark sector, leading to changes in the lensing
of the CMB by large scale structures. The late-time ISW effect also tends to suppress
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Figure 5.7: Lensing (top left panel) and TT (top right panel) power spectra as a
function of the angular scale ℓ for the hybrid coupled model with ϕi = {8, 10, 15} MPl

and for the ΛCDM case, along with the fractional deviations from the standard model
(bottom panels).

Φ′ + Ψ′ at low redshifts. We also observe a suppression in the amplitude of the peaks
and troughs of the TT spectrum, along with a narrowing of their widths. These changes
are associated with the decrease of the baryon to DM energy density ratio ρb/ρϕ (due
to increased DM density) around recombination, which is a well-known signature in the
literature [176,186]. This effect induces a degeneracy between the coupling strength (i.e.
ϕi) and H0, as both parameters impact the amplitude and position of the first acoustic
peak. Additionally, the shift of the peaks to higher multipoles is a consequence of the
modified expansion history. In particular, the change in distance to the last scattering
surface leads to a smaller value for the sound horizon at the drag epoch compared to
ΛCDM. In both panels of Fig. 5.7, the increased Hubble rate leads to a systematic shift
in power towards smaller angular scales.

5.7 Conclusions

In this chapter, we have proposed a hybrid model for the dark sector, in which DM
and DE originate from two interacting scalar fields. We employed a form of potential
commonly used in hybrid inflation to model the DM–DE system. The cosmology in this
setup is studied in considerable detail. The heavy scalar field quickly oscillates from
deep inside the radiation-dominated epoch and consequently behaves like pressureless
DM. We have shown that, once the heavy field starts to oscillate rapidly, the two scalar
fields can be described by a DM fluid coupled to a slowly evolving DE field.
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To finish, we highlight the following predictions of the model proposed:

• We find that the DE field must have a large field value today (ϕ > MPl) so that
the fluid description is valid. Consequently, the coupling between DM and DE is
relatively small today, and the DM is very heavy (similar to DM in the WIMPZilla
scenario). At the same time, the energy scales in the potential are significantly
reduced compared to the Planck scale. The mass scale M is of order eV or so,
depending on the coupling constant λ. The fact that this model requires super-
Planckian field excursions, like in inflationary scenarios, provides a challenge to
model building in theories beyond the standard model. But it is interesting to
note that the model proposed here combines two mass scales: the small mass scale
M and the large field excursions for the DE field ϕ.

• Another prediction of the model is that the epoch of dark energy domination is
transient. In future, the DM field becomes light and will no longer behave like a
pressureless fluid. Both scalar fields will settle at the true minimum of the potential
(at ϕ = 0 and χ = ±M). The universe’s future will then depend on whether space
is closed. If the universe is closed, the expansion will stop and collapse, opening
up the possibility of a bounce in the long-distant future.

As we have seen, if the coupling is large enough today, the DE field leaves distinct
signatures on the temperature-temperature power spectrum of CMB anisotropies and in
the growth of structures encoded in the matter power spectrum. These characteristic
changes can be tested against current and future observational data. A more thorough
and detailed study is highly desirable, resorting to different independent data sets and
sampling the remaining relevant cosmological parameters. We will describe this work in
the next chapter.



Chapter 6

Alleviating cosmological tensions with
a hybrid dark sector

6.1 Introduction

In the last chapter we introduced a hybrid dark sector model to describe a shared origin
for DM and DE. Starting from two scalar fields, we derived a one-parameter extension to
ΛCDM adding a coupling between DE and DM. The coupling is inversely proportional to
the initial value of the DE field ϕi. This parameter governs the coupling strength between
DM and DE, mediating the energy transfer from the DM fluid to the DE field. The
interaction modifies the expansion history and offers a potential resolution to the Hubble
and S8 tensions while aligning with recent preferences for dynamical dark energy [13,
187–193]. In this chapter, we constrain the hybrid model using current cosmological
data, assuming adiabatic initial conditions for the cosmological perturbations.

The chapter is organised as follows. After introducing the model in Section 6.2, we
detail the methodology followed in this analysis and present and discuss the results in
Section 6.3. We conclude our work in Section 6.4, where we also present an outlook for
future directions of investigation.

6.2 A hybrid model for the dark sector

As introduced in Chapter 5, the hybrid dark sector model is a coupled scalar field model
based on the hybrid inflation potential. After averaging out the fast oscillations of the χ
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DM field, we are left with a DM fluid ρc
1 interacting with a DE scalar ϕ, whose evolutions

are described by Eqs. (5.42), (5.43) respectively. The coupling between DM and DE is
proportional to 1/ϕ, meaning the system’s modified dynamics are fully determined by the
initial value of the DE field, ϕi. As shown in Chapter 5, the DE scalar field is invariably
driven towards the minimum of the potential at very early stages when its contribution is
effectively negligible for the cosmological evolution. For this reason, the initial velocity
of the DE scalar field ϕ̇i does not have a relevant impact on the dynamics, and so,
without loss of generality, we always set ϕ̇i = 0. This model is thus a one-parameter
extension of the ΛCDM model.2 For the data analysis in the following sections, we
sample the initial value of the coupling parameter 1/ϕi, which is more intuitive and
defines a compact parameter range. In the limit 1/ϕi → 0, ΛCDM is recovered. Larger
coupling values (corresponding to ϕi closer to the theoretical limit in Eq. (5.21)) lead to
greater deviations from standard cosmology.

We demonstrate the main effect of the coupling in Fig. 6.1, showing deviations
from ΛCDM by introducing the following reparametrization of the background DE dens-
ity [167,194]:

ρϕ,eff(a) = ρϕ + ρc(a)− ρc,0a
−3. (6.1)

The quantity ρϕ,eff describes an effective dark energy fluid, which includes the DE com-
ponent plus the non-standard component of DM arising due to the interaction in the dark
sector, effectively mimicking an uncoupled dark sector at the level of the background.
In other words, it encloses the deviation from the standard ΛCDM evolution in a single
component. The evolution of ρϕ,eff is given by

ρ̇ϕ,eff + 3Hρϕ,eff(1 + wϕ,eff) = 0 , (6.2)

where we have defined the effective equation of state

wϕ,eff =
pϕ
ρϕ,eff

. (6.3)

This effective equation of state is the equation of state of DE, assuming an uncoupled
DM species, as it is usually taken as given when analysing low-redshift data such as
supernovae. In Figure 6.1, we show the equation of state parameter of this effective dark

1In this chapter we refer to the DM fluid as ρc rather than ρχ in order to align with the ΛCDM
notation.

2In this framework, V0 is merely the scale of the potential, not a true degree of freedom, that is used
to numerically enforce the closure relation

∑
i Ωi = 1 through a shooting method.
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Figure 6.1: Effective DE equation of state parameter for different values of ϕi. All
cosmological parameters are fixed to the mean values for the hybrid model under the
Pl18+DESI data combination (see Section 6.3.1) for various values of the coupling para-
meter 1/ϕi. We also show the equation of state parameter for the ϕ DE scalar field for
the Pl18+DESI scenario in the red dotted line.
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energy sector, supposing standard CDM evolution.
The effective DE behaviour can be investigated from the individual evolutions of ρc

and ρϕ: as described in Chapter 5, the ρϕ component tracks the DM during the matter
domination era until its kinetic part decays enough for the constant potential to take
over, at which point it transitions to a cosmological constant. The ρc component starts
as standard CDM at early times, then diluting faster than a−3 when the ϕ field starts
to evolve, and the coupling turns on. As a result, the effective DE field behaves as an
additional DM component at early times until matter domination. At this point, the
effective EoS becomes positive and ρϕ,eff is dominated by the ρc contribution. At late
times, the EoS transitions back to that of a cosmological constant. This means that,
effectively, a fraction of the DM energy density becomes DE at late times. Although it
resembles tracking dark energy (e.g. [195]), it is also different from such models as the
DE field does not always scale with the dominant component in this effective description.

It is also important to note that the coupling constant g present in the potential in
Eq. (5.3) is absent from the effective fluid equations (see Chapter 5 for more details),
meaning that its value cannot be constrained under this fluid approximation. This, in
turn, implies that the masses of DM and DE are not constrained in this model, as they
depend linearly on g. Conversely, in Section 6.3.2, we will use our best-fit results to
derive an upper limit on g.

The dynamics of the hybrid model also introduce modifications at the level of the
linear perturbations in comparison to ΛCDM. We refer to Chapter 5 for the complete
derivation of the perturbation equations and a discussion of the evolution of cosmolo-
gical perturbations in this model. This work aims to constrain the hybrid model with
cosmological data, which is the focus of the remainder of the chapter.

6.3 Analysis

6.3.1 Methodology and datasets

We implement the relevant equations for the hybrid model in our modified version of
the Einstein-Boltzmann solver code CLASS. We perform a Markov Chain Monte Carlo
(MCMC) analysis by interfacing the solver with the publicly available sampler Monte

Python3 [196, 197] to confront the hybrid model with recent cosmological data. Cosmo-
logical and nuisance parameters are varied according to Cholesky’s parameter decom-

3https://github.com/brinckmann/montepython_public

https://github.com/brinckmann/montepython_public
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Parameter Prior
Ωbh

2 [0.005, 0.1]
Ωch

2 [0.001, 0.99]
100θs [0.5, 10]
τreio [0.02, 0.08]
ns [0.7, 1.3]

log (1010As) [1.7, 5.0]
1/ϕi [0, 1]

Table 6.1: Flat priors on the cosmological and model parameters sampled in this work.

position [198]. We consider chains to be converged with the Gelman-Rubin convergence
criterion R − 1 < 0.01 [199]. The corresponding chains are treated and analysed using
the GetDist4 Python package [200].

We assume wide uniform priors for the set of sampled cosmological parameters

{Ωbh
2,Ωch

2, 100θs, τreio, ns, log(10
10As)}

in the range detailed in Table 6.1. These are the standard ΛCDM parameters, namely
the physical density of baryonic matter today, the physical density of dark matter today,
the angular scale of the sound horizon at the time of last scattering, the optical depth
to reionisation, the scalar spectral index, and the amplitude of the primordial scalar
power spectrum at the pivot scale kpivot = 0.05Mpc−1. Regarding the free parameter
of the hybrid model, the initial condition of the dark energy scalar field ϕi, we opt for
sampling over its inverse 1/ϕi to reduce the impact of the diverging parameter space in
which the model reduces to the ΛCDM limit (ϕi ≫ 1), with a uniform prior covering
the range of validity of the model’s assumptions. The other independent parameters
are fixed to their Planck best-fit values [8], including the assumption of two massless
and one massive neutrino species with mν = 0.06 eV. Although not explicitly listed, a
large number of nuisance parameters are varied simultaneously, following the respective
collaboration recommendations.

Our baseline datasets are the ones listed below:

• Planck 2018 (Pl18): The Planck-2018 CMB high-ℓ TTTEEE, low-ℓ TTEE, and
lensing likelihoods [5, 8, 201]. Specifically, this includes the high-ℓ Plik likelihood
for TT over the range 30 ≤ ℓ ≤ 2508, and for TE and EE within 30 ≤ ℓ ≤ 1996,
combined with the low-ℓ TT and EE likelihoods for 2 ≤ ℓ ≤ 29, based on the

4https://github.com/cmbant/getdist

https://github.com/cmbant/getdist
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Commander algorithm and the SimAll likelihood (see references above for detail
on these likelihoods). Although newer versions of the Planck likelihood have been
developed [106, 107], we use the baseline collaboration likelihood and expect only
slightly tighter constraints with alternative likelihoods, which will not impact our
main results.

• DESI: The BAO measurements obtained from the first year of Dark Energy Spec-
troscopic Instrument (DESI) observations. These data are based on galaxy and
quasar observations [202] as well as Lyman-α tracers [203], as detailed in Table I of
Ref. [13]. Covering an effective redshift range of approximately z ∼ 0.1− 4.1, the
measurements include the transverse comoving distance (dM/rd), the Hubble hori-
zon (dH/rd), and the angle-averaged distance (dV /rd), each normalised to the co-
moving sound horizon at the drag epoch, rd. The appropriate correlations between
measurements of dM/rd and dH/rd are considered in the computations.

• Pantheon+ (SN): The Pantheon+ catalogue distance modulus measurements
derived from 1701 light curves of 1550 Type Ia supernovae (SNeIa), detected spec-
troscopically, spanning a redshift range of 0.001 < z < 2.26. The data, compiled
in the Pantheon+ sample [55, 204], include observed magnitudes post-processed
for systematic effects, with residual corrections and marginalisation over nuisance
parameters [205]. These can be translated into uncalibrated luminosity distances
of the SNeIa.

• Pantheon+ with SH0ES R22 (SH0ES): In our analysis, we consider the Pan-
theon+ sample with and without the SH0ES Cepheid host distance anchors as
calibrators [14], typically employed to address degeneracies in the M − H0 plane
(where M is the absolute magnitude, see Section 3.3.2).

Our baseline dataset is Planck 2018, denoted as "Pl18", to which we increment-
ally add other combinations to assess the constraints imposed by each dataset on the
model. Separate combinations with DESI BAO and Pantheon+ data are referred to as
"Pl18+DESI" and "Pl18+SN", respectively, while the full addition of background data
to the CMB is denoted as "Pl18+DESI+SN". Finally, whenever the SH0ES Cepheid
anchors are considered, the "SN" data is represented as "SH0ES", and the inclusion of
all datasets is denoted as "Pl18+DESI+SH0ES".
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Figure 6.2: One-dimensional posterior probability distribution functions and two-
dimensional contours at 68% and 95% CL for the parameters of interest in the hybrid
model and the standard ΛCDM model for reference, for the minimal Pl18 dataset and
the full combination Pl18+DESI+SH0ES, as indicated in the legend and listed in Section
6.3.1.
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Section 6.3.1.
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Parameter Pl18 Pl18+SN Pl18+SH0ES Pl18+DESI Pl18+DESI+SN Pl18+DESI+SH0ES

ωb 0.02236± 0.00015 0.02231± 0.00014 0.02237± 0.00015 0.02240± 0.00015 0.02239± 0.00015 0.02237± 0.00015

ωc 0.1184+0.0029
−0.0016 0.1202± 0.0014 0.1139± 0.0014 0.1174± 0.0011 0.11820± 0.00099 0.11577± 0.00089

100θs 1.04187± 0.00030 1.04182± 0.00029 1.04190± 0.00030 1.04193± 0.00030 1.04194± 0.00029 1.04188± 0.00029

τ reio 0.0548± 0.0077 0.0539± 0.0077 0.0558± 0.0079 0.0557± 0.0079 0.0557± 0.0077 0.0554± 0.0078

ns 0.9660± 0.0045 0.9640± 0.0041 0.9683± 0.0041 0.9677± 0.0040 0.9673± 0.0039 0.9670± 0.0041

log 1010As 3.047± 0.016 3.046± 0.016 3.049± 0.016 3.047± 0.016 3.047± 0.016 3.048± 0.016

1/ϕi < 0.0390 < 0.0220 0.0661+0.0095
−0.0073 0.037+0.019

−0.012 0.029+0.017
−0.015 0.0570+0.0096

−0.0070

Best-fit: [0.0054] [0.0019] [0.0676] [0.0455] [0.0341] [0.0591]

σ8 0.8263+0.0095
−0.021 0.8185+0.0079

−0.010 0.858± 0.017 0.827+0.013
−0.018 0.821+0.010

−0.015 0.847± 0.015

H0 68.55+0.80
−1.8 67.42+0.59

−0.72 71.49± 0.87 69.04+0.65
−0.76 68.51+0.51

−0.63 70.30± 0.56

Ωm 0.300+0.021
−0.011 0.3138+0.0093

−0.0084 0.2669± 0.0091 0.2934± 0.0080 0.2997+0.0073
−0.0065 0.2796± 0.0061

S8 0.826± 0.018 0.837± 0.015 0.809± 0.014 0.817± 0.013 0.821± 0.013 0.818± 0.013

∆χ2
min 0.14 0.08 −16.32 −2.8 −1.06 −12.76

logBM,ΛCDM −3.3 −3.6 4.5 −2.0 −2.8 2.5

QSH0ES
DMAP −− 4.78 −− −− 4.65 −−

Table 6.2: Observational constraints at a 68% confidence level on the independent
and derived cosmological parameters using different dataset combinations for the hybrid
model, as detailed in Section 6.3.1. ∆χ2

min represents the difference in the best-fit χ2

of the profile likelihood global minimisation, and logBM,ΛCDM indicates the ratio of
the Bayesian evidence, both computed with respect to ΛCDM. The value of QSH0ES

DMAP is
calculated according to Eq. (6.4). For reference, the same results for ΛCDM are given
in Table B.1 of Appendix B.

6.3.2 Results

In this section, we discuss the constraints placed by each dataset combination on the
hybrid model in direct comparison with the ΛCDM model. Table 6.2 summarises the
results of the analysis described in Section 6.3.1 for the Pl18, Pl18+SN, Pl18+SH0ES,
Pl18+DESI, Pl18+DESI+SN, Pl18+DESI+SH0ES datasets at the 68% confidence level
(CL). The corresponding 1D and 2D marginalised posterior distributions are depicted in
Figs. 6.2, 6.3 for relevant parameters and key data combinations at 68% and 95% CL.
Similar tables for the same datasets in the ΛCDM model can be found in Appendix B.

To determine the model preference in terms of the fit to each data combination, we
report the difference in the value of the minimum χ2 with respect to the ΛCDM model,
∆χ2

min = χ2
min,Hybrid − χ2

min,ΛCDM, computed through a global minimisation approach
using the simulated-annealing optimiser Procoli5 package [206] – see Appendix B for
more detail. A negative value of ∆χ2

min indicates a better fit for the hybrid model, while
a positive value suggests otherwise. Additionally, we report on the Bayesian evidence

5https://github.com/tkarwal/procoli

https://github.com/tkarwal/procoli
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logBM,ΛCDM test for model comparison, for which we employed the public MCEvidence6

code [207, 208]. The greater the evidence for the hybrid model relative to ΛCDM, the
larger the Bayes factor ratio (the difference of the logarithms) will be. Furthermore, if
its value is negative, there is no evidence supporting the hybrid model over ΛCDM for
a given dataset, while the opposite holds if it is positive.

Finally, the difference of the maximum a posteriori (DMAP) metric tension for H0

given a particular dataset D is [209]

QSH0ES
DMAP,D =

√
χ2
min(D +MB)− χ2

min(D), (6.4)

and is used to assess the compatibility between the constraints derived for the model
under the dataset D and the SH0ES prior on the value of H0.7 This method has the added
benefit of being insensitive to prior volume effects, and the global maximum likelihood
values are derived directly from Procoli.

At the end of Table 6.2, we list the ∆χ2
min values and the associated Bayesian evidence

compared to ΛCDM for all the data combinations, and also the QSH0ES
DMAP,D tension for the

relevant cases. In Table B.2 of Appendix B, we list in detail the χ2
min values associated

with each likelihood for the different models and data combinations used in this study.
We summarise our main findings below, based on the results in the above figures and

tables.
Starting with the baseline CMB Pl18 dataset, we note that the fit is similar to ΛCDM

as evidenced by ∆χ2
min = 0.14. There is no preference for a non-zero value of 1/ϕi at 1σ,

as 1/ϕi < 0.0390. The constraints on other parameters are overall similar to ΛCDM as
can be seen in Fig. 6.2, but the large tail in the distribution due to the weak constraint on
1/ϕi leads to small deviations, as well as a worse Bayesian evidence (this is exacerbated
by the fact that we have one extra parameter in the theory). However, we observe a
positive (negative) correlation between 1/ϕi and H0 (S8), which hints at the potential
of this model to alleviate cosmological tensions. Note that the H0 correlation remains
for all dataset combinations whilst the S8 correlation weakens as additional datasets are
introduced (see Fig. 6.3).

Adding BAO data from DESI to Pl18 improves the constraining power by breaking
6https://github.com/yabebalFantaye/MCEvidence
7The formulation of the DMAP metric tension in Eq. (6.4) is only valid for datasets differing by one

degree of freedom. Since when imposing the SH0ES calibration as listed in Section 6.3.1 we consider
only a sub-sample of the supernovae in the entire Pantheon+ catalogue, we opt instead for replacing
the full SH0ES likelihood with the Pantheon+ sample plus a Gaussian prior on the absolute magnitude
calibration MB of the supernovae in SH0ES [14]. We use this approximation for the sole purpose of
computing QSH0ES

DMAP,D, and we have confirmed that it does not impact the results.

https://github.com/yabebalFantaye/MCEvidence
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Figure 6.4: 2D contours at 68% and 95% CL for the initial condition of the scalar
field 1/ϕi and the Hubble parameter H0 (in units of km/s/Mpc). The results are inferred
considering different combinations of Planck 2018, DESI BAO distance, and SN distance
moduli data. The grey dashed line and band represent the value of H0 measured by the
SH0ES collaboration and the respective uncertainties.
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geometrical degeneracies in the CMB. Moreover, it is known that DESI favours dynamical
DE at late times [13] and this preference shows up here too. The coupling is detected at
2σ level, with 1/ϕi = 0.037+0.025

−0.033 at 95% CL. This can be seen in Fig. 6.3 as a defined
peak in the 1D posterior for 1/ϕi. Consequently, this leads to narrower constraints on
other cosmological parameters. The hybrid model fits this data combination better than
the baseline, with ∆χ2

min = −2.8, but this is not enough to favour it over ΛCDM in
terms of Bayesian evidence.

The combination of Pl18+SN provides a similar fit to ΛCDM, with narrower con-
straints and a slight aversion to a non-zero coupling, with 1/ϕi < 0.0220. However,
adding the SH0ES prior changes things, increasing H0 and providing a 3σ detection of
the coupling with 1/ϕi = 0.066+0.019

−0.028 at 99% CL.
Considering Pl18+DESI+SN, we see that the constraints are close to those of Pl18

+ DESI. However, there is a decrease in the degree of preference for a non-zero coupling,
with only a 1σ detection: 1/ϕi = 0.029+0.017

−0.015 at 68% CL. This can be explained by the
addition of SN, which prefer a value closer to zero for the coupling. The addition of the
SH0ES prior once again increases the value of H0 and leads to a 3σ detection for the
coupling with 1/ϕi = 0.057+0.019

−0.029 at 99% CL.
It is important to note that the SH0ES prior in both cases increases the quality

of the fit drastically, with ∆χ2
min = −16.32 for Pl18+SH0ES and ∆χ2

min = −12.76 for
Pl18+DESI+SH0ES. The Bayesian evidence increases, leading to a strong to moderate
preference for the hybrid model over ΛCDM according to Jeffreys’ scale. However, the
QSH0ES

DMAP indicator shows that there is still a large residual tension between the datasets.
The breakdown of χ2

min in Table B.2 shows that the tension is indeed hidden in a worsened
fit to the Pl18 and DESI likelihoods compared to the case without the SH0ES calibration.
With respect to ΛCDM, there is a better fit to Pl18 and SH0ES in the hybrid case but
a worse fit to DESI.

Overall, the hybrid model leads to a slight alleviation of the H0 tension, with
QSH0ES

DMAP, P l18+SN = 4.78σ and QSH0ES
DMAP,Pl18+DESI+SN = 4.65σ, compared to QSH0ES

DMAP,Pl18+SN =

6.25σ and QSH0ES
DMAP,Pl18+DESI+SN = 5.76σ for ΛCDM. This means the hybrid model provides

only a mild reduction of the H0 tension. The H0 tension is of the same order regard-
less of the inclusion of DESI in the baseline dataset because the posteriors obtained are
compatible at 1σ, and the value of H0 predicted is too low in both cases compared to
SH0ES. Once the SH0ES calibration is added to the analysis, the predicted value of
H0 ∼ 70 is a compromise between the two incompatible values (the value preferred by
SH0ES and the value preferred by the datasets without the prior), reflecting the tension
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Figure 6.5: Top panel : Redshift evolution of the dark matter energy density for the
hybrid model and ΛCDM model, with cosmological parameters fixed to the best-fit of
the hybrid model under the Pl18+DESI+SH0ES dataset combination in both cases. The
corresponding baseline case of the ΛCDM best-fit is shown in grey for reference. Bottom
panel : Percent relative deviations in the value of the Hubble rate with respect to the
ΛCDM Pl18+DESI+SH0ES best-fit for the same scenarios.

in the datasets under the model under consideration. This effect is illustrated in Fig.
6.4, where we display the 2D contours for the model parameter 1/ϕi and H0 for the
incremental datasets used in this analysis.

We can explore the origin of the correlation between 1/ϕi and H0 by looking at the
behaviour of ωc ≡ Ωch

2 shown in Fig. 6.3. Indeed, there is a negative correlation between
1/ϕi and ωc, i.e. a stronger interaction leads to smaller values for ωc. A smaller ωc allows
to compensate the larger h, yielding an overall smaller Ωm, which helps in keeping the
angular diameter distance to recombination (and therefore the angular size of the sound
horizon) fixed. Note that this mechanism is different from regular dynamical dark energy,
which requires a phantom behaviour [109].



Chapter 6: Alleviating cosmological tensions with a hybrid dark sector 109

0123456
log(1 + z)

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

w
φ
,e

ff

Hybrid (1/φi = 0.06)
w0wa DESI

Figure 6.6: Redshift evolution of the effective EoS parameter of DE in the hybrid model
with the Pl18+DESI+SH0ES best-fit compared with the EoS parameter for DE reported
by the DESI collaboration for a CPL w0wa parametrisation w(a) = w0+(1−a)wa [29,30]
under Pl18+DESI+SN with best-fit values w0 = −0.827 and wa = −0.75 [13].
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In Fig. 6.5, we illustrate the impact of the interaction on the evolution of the
DM density. We fix cosmological parameters to the best-fit values obtained with the
Pl18+DESI+SH0ES dataset combination for the hybrid model. We divide the DM
density by the DM density in ΛCDM, for the best-fit values from the ΛCDM analysis.
We can see that if our model behaved like ΛCDM, this would lead to an overall reduction
in DM density due to lower ωc. However, we can see that in the hybrid model this ratio
is redshift-dependent. At early times, we have a higher ρc and at late times the ratio
becomes smaller than in ΛCDM. This can be explained by considering Eq. (6.3): this
tells us that there is an additional redshift-dependent component to DM, on top of the
traditional CDM component. This extra component starts decaying quicker than normal
DM (see Fig. 6.1) which leads to a lower value today. It is interesting to note that the
early enhancement in ρc in the hybrid model can explain the higher preferred value for
σ8. However, S8 is suppressed as Ωm is smaller.

From the results obtained from the combination of Planck 2018 and DESI BAO dis-
tance measurements, there is some evidence to support the interaction between DE and
DM through the hybrid fluid approximation. Indeed, it is known that DESI data tends
to bring the physical matter density down in ΛCDM. This leads to a slight disagree-
ment between DESI and Pl18 (∼ 2σ) under ΛCDM. As a result, the time-dependence
of ρc in the hybrid model is favoured when DESI is added to the baseline dataset, with
∆χ2

min = 0.14 in Pl18 going to ∆χ2
min = −2.8 for Pl18+DESI. However, this is not

supported by Pantheon+ data, which favours a larger Ωm than DESI. In the analysis
reported by the DESI collaboration [13] for minimal parametrisations of dynamical dark
energy, a considerable preference in favour of phantom dark energy over ΛCDM (with the
combination of Planck 2018, DESI, and SNIa data) was reported and has been the focus
of multiple studies. In the context of the hybrid model, the preference for a late-time
effective phantom-like behaviour for DE is replaced by the coupled dark sector with a
non-vanishing detection of 1/ϕi > 0 exceeding the 95% CL. The phenomenological dif-
ference in the dynamics of DE under the hybrid model compared to the CPL [29, 30]
parametrisation highlighted in the DESI Y1 data release [13] is illustrated in Fig. 6.6
with wϕ, eff as defined in Eq. (6.3), mimicking DE in an uncoupled dark sector. We stress
that in that case, wϕ, eff never becomes phantom. This suggests an alternative explan-
ation to the mild discrepancy between DESI and Pl18. However, this behaviour does
not help reconcile Pl18+DESI data with the (uncalibrated) SNe, which favour larger Ωm

and a phantom DE behaviour [210,211]. Future BAO and SNe data are thus crucial for
the fate of the hybrid model.
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Finally, using the fact that mχ ≈ gϕ in conjunction with our best-fit results, we can
put an upper limit on the coupling constant g. For Planck+DESI+SH0ES, we find the
best-fit value ϕi = 16.92MPl. Requiring that the DM mass is smaller than the Planck
mass yields the most conservative upper limit on the value of g. However, another
conservative requirement is ensuring that the DM is not oscillating during inflation:
requiring mχ ∼< 1012 GeV leads to g ∼< 10−8. Stronger upper limits on the DM mass will
put more stringent constraints on the value of the coupling constant g.

6.4 Conclusions

In this chapter, we have explored the predictions of the hybrid model proposed in Chapter
5 and its fit to currently available datasets, namely Planck 2018 CMB data, the Pan-
theon+ catalogue of SN distance moduli – with and without the Cepheid calibration
from SH0ES – and the recent BAO distance measurements by the DESI collaboration.
From the phenomenological side, this model has interesting features derived from a Lag-
rangian formulation with a fluid description motivated by the physics of the dark sector.
The model extends the standard ΛCDM framework by introducing one single additional
parameter, the initial value of the DE scalar field ϕ (ϕi), which governs the strength of
the interaction between dark matter and dark energy (∝ 1/ϕi). On the observational
side, the main effect of this coupling is to provide a non-trivial time dependence to the
dark matter and dark energy densities as the effective DE field transitions from behav-
ing like DM at early times to regular DE at late times. As a result, the dynamics of
the scalar field and the dark sector interaction induce a negative correlation between
the physical density of dark matter ωc and the coupling parameter. This correlation
helps accommodate the tendency of the DESI data to bring the matter density down in
ΛCDM, leading to a better fit to this dataset in the hybrid model. At the same time,
this is also entangled with a positive correlation between 1/ϕi and H0 (required to pre-
serve the angular diameter distance to recombination), making it possible to alleviate
the Hubble tension slightly.

Our main conclusions regarding the hybrid model in light of CMB, BAO and SNe
data are as follows:

• For Pl18 alone, the hybrid model is virtually indistinguishable from ΛCDM in
terms of the quality of the fit (∆χ2

min ≃ 0), and we derive an upper bound on the
initial field value 1/ϕi < 0.0390.
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• When DESI data are included, the hybrid model provides a better fit than ΛCDM,
thanks to the ability to accommodate the lower Ωm favoured by DESI. The inclu-
sion of (uncalibrated) Pantheon+ data, however, reduces the relative improvement
in χ2, and the Bayesian evidence comparison remains inconclusive for most com-
binations, often favouring ΛCDM due to the increased prior volume.

• The hybrid model demonstrates potential to slightly alleviate the Hubble tension,
with a relaxation of the constrain to H0, allowing for values closer to those from
SH0ES measurements when combining all datasets. However, the alleviation is
insufficient to eliminate the tensions, estimated to be 4.65σ in the hybrid model
down from 5.76σ in ΛCDM.

• The coupling parameter 1/ϕi correlates positively with σ8 due to the additional
DM contribution at early times, but the decrease in Ωm at late times dominates,
yielding a slightly smaller S8.

Overall, while the hybrid model offers promising avenues for addressing theoretical
questions related to the nature of the dark sector and observational issues such as the
cosmological tensions, whether it provides a better fit to available data in comparison
with ΛCDM is dataset-dependent, and significant challenges remain in reconciling all
the observational incompatibilities within this framework. Nevertheless, the ability to
introduce time dependence in the DM (and DE) densities is an interesting phenomeno-
logical feature of the model, which helps address DESI measurements and accommodate
larger H0 values. In this study, we focused on purely adiabatic initial conditions. The
impact of isocurvature modes on the constraints is worth investigating in future work.

In light of these results, we highlight the importance of phenomenological models of
the dark sector, which, through their inherent dynamics, can address the cosmological
tensions under specific regimes. We emphasise the need to investigate the phenomen-
ological predictions of such models and assess these against the available observational
data.



Chapter 7

Scalar field dark matter with
time-varying equation of state

7.1 Introduction

So far, we have focussed our discussion of DM on heavy scalar fields. We now approach
the problem of modelling DM from a different angle, namely that of axion-like particles,
or fuzzy dark matter. Ultralight scalars often emerge in particle physics and string
theory compactifications, where axion-like particles arise as Kaluza-Klein zero modes
of anti-symmetric tensor fields [212–214]. Arguments based on measurements of CMB
anisotropies constrain the mass of these ultralight fields to be mϕ ∼> 10−24 eV [124, 140,
215–217], while observations of the Lyman-α forest extend this lower bound to about
mϕ ∼ 10−21 eV [218–222], assuming these particles account for over 30% of the total dark
matter content. Albeit less widely agreed upon, studies on the kinematics of ultra-faint
dwarf galaxies further bring the lower limit to around mϕ ∼ 10−19 eV [223–225]. Other
probes include galaxy clustering [226,227], weak lensing measurements [228,229] and 21
cm observations [230–232]. It should be noted that the analyses mentioned above often
rely on the assumption that the ultralight DM makes up the whole of DM and interacts
solely through gravitational means.

The other dark ingredient of the standard model of cosmology is the cosmological
constant Λ, the simplest realisation of dark energy in the form of a background energy
component which accounts for the current accelerated expansion of the universe. Given
that the value of the cosmological constant has to be very small, alternative candidates for
DE have been proposed, including slowly evolving scalar fields [113, 114, 130, 233, 234],
three-form fields [235] and other more exotic proposals (see [73, 195, 236] for reviews

113



Chapter 7: Scalar field dark matter with time-varying equation of state 114

on dark energy models). If DE is a dynamical degree of freedom, couplings to other
types of matter fields are generally expected unless a particular symmetry forbids such
interactions [237]. Constraints coming from solar system probes [238] suggest that the
coupling of a slowly rolling DE scalar field to the standard model fields has to be much
weaker than gravity, as the field’s small mass results in a very large interaction range.
On the other hand, these constraints can be relaxed for couplings to DM only, derived
based on model-dependent cosmological observations. Some interacting dark energy
(IDE) models may address shortcomings of the ΛCDM model such as the Hubble tension
[21,100,102,103,239,240], providing a guiding direction and framework for further study.
Of particular interest are a class of models in which the DM-DE coupling is directly
proportional to the energy density of dark energy, as studied for example in Refs. [1,
241–252].

Given our ignorance about the theoretical origins of DM and DE, it is essential to keep
an open mind about their properties and whether they interact directly. Here, we will
keep the same philosophy developed in the past chapters – namely to consider a common
origin for DM and DE at the Lagrangian level. We will consider two interacting scalar
fields, one light, oscillating DM field and one lighter, slowly-varying DE field. Our work
aims to study the properties of scalar field DM. The novelty with respect to the previous
literature is twofold. First, unlike the typical approach to coupled DM/DE models,
where dark matter is a perfect fluid, here it is a fast oscillating field at the minimum
of its potential (for similar discussions, see [132, 253, 254]). Secondly, the interaction is
mediated not by dark energy but by the fast oscillating dark matter field, whereas dark
energy is slowly varying. Still, we expect our results to hold even if DE is a cosmological
constant (but coupled to DM) or a three-form field [235]. We will see in Section 7.5
that in the specific case of a conformal transformation, the interaction is proportional
to the averaged energy density of dark energy, which provides nice motivation for the
phenomenologically studied models.

This chapter is organised as follows: we motivate and describe the proposed frame-
work in Section 7.2. In this section, we also collect the field equations and useful relations,
which will be relevant to the subsequent calculations. In Section 7.3, we derive an effect-
ive fluid-field description, a valid approximation from the onset of the DM field quick
oscillations around the minimum of an effective potential. The treatment of the associ-
ated fluid-field cosmological perturbations is discussed in Section 7.4. In Section 7.5, we
provide concrete realisations of the model. We summarise our findings in Section 7.6.
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7.2 Model

The action we consider, inspired by effective field theories (EFT), contains two interact-
ing scalar fields and is given by

S =

∫
d4x

√
−g

(
M2

Pl

2
R− 1

2
gµν∂µϕ∂νϕ− U(ϕ)− 1

2
gµν∂µχ∂νχ− V (χ)

)
(7.1)

−
∫

d4x
√
−g

(
ϕQ0

(
χ,X(χ)

)
+

1

2
ϕ2Q1

(
χ,X(χ)

)
+ ...

)
+ SSM,

where R is the Ricci-scalar and MPl ≡ 1/
√
8πG is the reduced Planck mass. In the

action above, SSM denotes the Lagrangian containing the standard model fields. Q0 and
Q1 are coupling functions, depending on the slowly varying DE field χ and its kinetic
term X(χ) = −1

2
gµν∂µχ∂νχ. The dots denote higher-order terms, which we assume are

negligible in the following. This action can be thought of as a general formulation for
an interacting DM-DE scalars system, where the interaction term is expanded order-by-
order in the DM field ϕ.

The equation of motion for the dark matter field ϕ reads

∇µ∇µϕ = U,ϕ +Q0 + ϕQ1 , (7.2)

while the equation of motion for the dark energy field χ is(
1− ϕQ0,X − 1

2
ϕ2Q1,X

)
∇µ∇µχ =

−∇µχ∇µ

(
1− ϕQ0,X − 1

2
ϕ2Q1,X

)
+ V,χ + ϕQ0,χ +

1

2
ϕ2Q1,χ. (7.3)

The Einstein equations for this system take the form

Gµν = κ2
(
T (ϕ)
µν + T (SM)

µν + T (χ)
µν + T (coup)

µν

)
, (7.4)

where T
(coup)
µν is the contribution of the coupling terms to the total energy-momentum

tensor. We identify, as is customary, T (ϕ)
µν with the energy-momentum tensor of DM and

T
(χ)
µν + T

(coup)
µν ≡ TDE

µν as the DE energy-momentum tensor1.
For pedagogical reasons, we specialise to the case in which the functions Q0 and Q1

1If we were to include the coupling terms into the definition of the energy-momentum tensor for
DM, the effective potential would have a minimum at negative values of the potential, a situation we
want to avoid, as this can lead to negative energy density for DM. This problem does not exist with the
split performed here.
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are only functions of the field χ and do not depend on the kinetic term X(χ). This is
done to simplify the DE equations of motion, but it is important to note that our core
results regarding the DM dynamics do not change based on this choice. In this case, the
covariant definitions of the EM tensors are as follows:

T (ϕ)
µν = ∇µϕ∇νϕ− gµν

(
1

2
gαβ∇αϕ∇βϕ+ V (ϕ)

)
, (7.5)

T (χ)
µν = ∇µχ∇νχ− gµν

(
1

2
gαβ∇αχ∇βχ+ U(χ)

)
, (7.6)

T (coup)
µν = −gµν

(
ϕQ0 (χ) +

1

2
ϕ2Q1 (χ) + ...

)
. (7.7)

Since ϕ plays the role of DM, we assume that ϕ has the potential U(ϕ) = 1
2
m2ϕ2.

Concerning χ, we assume it is a DE field that evolves very slowly on time scales much
larger than the oscillations of ϕ. Hence, V (χ) will be a typical quintessential potential,
e.g. of exponential form. We assume a flat FLRW spacetime. The Friedmann equation
is given by

H2 =
1

3M2
Pl

(ρϕ + ρDE + ρSM) , (7.8)

where we have defined

ρϕ =
1

2
ϕ̇2 + U(ϕ), (7.9)

ρDE =
1

2
χ̇2 + V (χ) + ϕQ0 +

1

2
ϕ2Q1, (7.10)

and the pressure components pick up a minus sign in front of non-kinetic terms.
The modified Klein-Gordon equation for the ϕ and χ fields read

ϕ̈+ 3Hϕ̇+m2ϕ = −Q(t) ≡ −Q0(χ)−Q1(χ)ϕ , (7.11)

and
χ̈+ 3Hχ̇+ Vχ = −ϕQ0,χ −

1

2
ϕ2Q1,χ. (7.12)

We note that the modified Klein-Gordon equation in Eq. (7.11) for the DM field ϕ can
be written in the form

ρ̇ϕ + 3H(ρϕ + Pϕ) = −(Q0 +Q1ϕ)ϕ̇. (7.13)
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This concludes the derivation of the relevant equations for this theory. In the next
section we will use them to derive a fluid-field description for the system.

7.3 Towards a fluid-field description

We now seek to solve the equations derived in the previous section to study the evolu-
tion of both the DM and DE species. The main difference and challenge of our model
compared to interacting quintessence models is that the coupling described here by Q(t)

depends on ϕ, which must rapidly oscillate for ϕ to behave like DM. Therefore, we have
to perform an analysis based on the time-averaged character of the field over a period
of oscillation to extract its average evolution and make the equations more manageable.

From Eq. (7.11), the equation of motion for ϕ can be recast into

ϕ̈+ 3Hϕ̇+m2
eff(t)ϕ = −Q0(t), (7.14)

where we have defined the effective mass

m2
eff(t) ≡ m2 +Q1(t). (7.15)

Before solving these equations, we want to stress that the following analysis hinges on
the form of Eq. (7.11) and that the functions Q0 and Q1 are slowly varying. The exact
form of Q0 and Q1 does not play a role in the overall phenomenology of the DM.

We will be interested in the case where m > H and the scalar field is under-damped,
allowing for the oscillations to begin before the DM-dominated epoch begins. To solve
Eq. (7.14) we employ an ansatz for ϕ:

ϕ(t) = ϕosc(t) + A(t), (7.16)

where ϕosc is the solution to the homogeneous version of the Klein-Gordon equation:

ϕ̈osc + 3Hϕ̇osc +m2
eff(t)ϕosc = 0, (7.17)

while A(t) solves
Ä+ 3HȦ+m2

eff(t)A = −Q0(t). (7.18)

On the basis that A is sourced by a slowly-evolving function, Q0, we make the assumption
that A(t) itself is slowly varying such that Ä, 3HȦ ≪ m2

effA and thus, we can neglect
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the first two terms of the above equation. This results in an approximated analytical
solution for A:

A(t) ≈ − Q0(t)

m2
eff(t)

. (7.19)

Making use of the WKB approximation (as in Chapter 5), we find the following solution
for ϕosc:

ϕosc(t) =
(a0
a

)3/2( m0

meff

)1/2

(ϕ+ sin (mefft) + ϕ− cos (mefft)) , (7.20)

where m0 is the effective mass taken at t = t0, and ϕ+ and ϕ− are constants. We can
then average ϕ over one oscillation period to get

⟨ϕ⟩ = A, (7.21)

and for its velocity
⟨ϕ̇⟩ = Ȧ. (7.22)

Likewise, the variance of these quantities becomes,

⟨ϕ2⟩ = 1

2
(ϕ2

+ + ϕ2
−)

(
m0

meff

)(a0
a

)3
+ A2, (7.23)

⟨ϕ̇2⟩ = 1

2
m2

eff(ϕ
2
+ + ϕ2

−)

(
m0

meff

)(a0
a

)3
, (7.24)

where in the last line we have ignored an Ȧ2 term, since under our assumptions Ȧ ≪
meffA.

The above expressions are crucial to the final results shown in this section. For
standard uncoupled scalar field DM, both the field value and its derivative average out
to zero. These equations encode that, in our case, the field does not oscillate around
zero; instead, its averaged value is shifted by A due to the interaction. Therefore, the
average energy density and pressure of the field are

⟨ρϕ⟩ =
1

4
(ϕ2

+ + ϕ2
−)

(
m0

meff

)(a0
a

)3
(m2

eff +m2) +
m2A2

2
, (7.25)

and
⟨pϕ⟩ =

1

4
(ϕ2

+ + ϕ2
−)

(
m0

meff

)(a0
a

)3
(m2

eff −m2)− m2A2

2
, (7.26)

respectively. Here, we clearly see that the interaction between DM and DE results in a
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change in the DM pressure, causing its departure from zero. The pressure can also be
expressed as

⟨pϕ⟩ =
(
⟨ρϕ⟩ −

m2A2

2

)
m2

eff −m2

m2
eff +m2

− m2A2

2
, (7.27)

in which case the equation of state becomes

wϕ ≡ ⟨pϕ⟩
⟨ρϕ⟩

=

(
1− m2A2

2⟨ρϕ⟩

)
m2

eff −m2

m2
eff +m2

− m2A2

2⟨ρϕ⟩
. (7.28)

Provided the kinetic energy of the dark energy field is small compared to its potential,
Q1 is positive and meff > m. This means that the equation of state of dark matter
starts by being positive in its early stages. Around matter-dark energy equality, the
equation of state begins to decrease and, in fact, becomes increasingly negative, as
illustrated in Section 7.5. The very late-time occurrence of this transition is ascribed to
the dependence of the coupling on the dark energy density, implying that the coupling
only has a significant impact on wϕ when DE begins to dominate.

Differentiating the averaged density, Eq. (7.25), we obtain

d⟨ρϕ⟩
dt

+ 3H (⟨ρϕ⟩+ ⟨pϕ⟩) =
3H

4
(ϕ2

+ + ϕ2
−)

(
m0

meff

)(a0
a

)3
(m2

eff −m2) +m2AȦ, (7.29)

or equivalently
d

dt
⟨ρϕ⟩+ 3H

(
⟨ρϕ⟩ −

m2A2

2

)
= m2AȦ. (7.30)

Had we done the time-averaging of Eq. (7.13) directly, we would conclude that, in fact

d⟨ρϕ⟩
dt

= ⟨ρ̇ϕ⟩. (7.31)

We now define an effective equation of state parameter for DM as

weff = − 1

⟨ρϕ⟩

(
m2A2

2
+

m2AȦ

3H

)
, (7.32)

such that Eq. (7.30) becomes

⟨ρ̇ϕ⟩+ 3H⟨ρϕ⟩(1 + weff) = 0. (7.33)

Finally, and for completeness, the equation of motion for the dark energy field, ob-
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tained by substituting Eqs. (7.21) and (7.22) into Eq. (7.12), yields

χ̈+ 3Hχ̇+ V,χ =
Q0

m2
eff

Q0,χ −
2⟨ρϕ⟩+ Q2

0

m2
eff

2 (m2
eff +m2)

Q1,χ. (7.34)

It is worth noting that the last term on the r.h.s depends on the DM energy density,
which, in principle, could be large. Therefore, it is a requirement that Q1,χ

m2
eff+m2 is small

enough to avoid this coupling term driving the evolution of the χ field, which would
invalidate our assumption that DE is slowly rolling.

7.4 Perturbations

We now turn to the study of linear perturbations for our model. This will lead up to the
derivation of the sound speed, which is crucial to solving the fluid-scalar field equations
of motion.

We follow the approach developed in [122] and described in Chapter 4 to compute the
sound speed, considering only scalar perturbations. We adopt the following conventions
for the metric scalar perturbations in a general gauge:

δg00 = −2Φ, (7.35)

δgi0 = a∇iB, (7.36)

δgij = −2a2(δijΨ−∇i∇jE), (7.37)

where Φ, Ψ, B and E are the four scalar degrees of freedom which can be expanded and
decomposed in independently evolving Fourier modes k. This results in the following
equations of motion for the perturbations of the scalar fields δχ and δϕ:

δχ̈+ 3Hδχ̇+

(
k2

a2
+ V,χχ

)
δχ = χ̇

(
Φ̇ + 3Ψ̇− k

a
B + Ė

)
+ 2(χ̈+ 3Hχ̇)Φ− δϕQ0,χ − ϕQ0,χχ δχ

− ϕ δϕQ1,χ − 1
2
ϕ2Q1,χχ δχ.

(7.38)

and

δϕ̈+ 3Hδϕ̇+
k2

a2
δϕ+m2δϕ = ϕ̇

(
Φ̇ + 3Ψ̇− k

a
B + Ė

)
+ 2(ϕ̈+ 3Hϕ̇)Φ− δQ. (7.39)

Here, we have defined δQ as the perturbation of the coupling function. As for the
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background evolution, we can expand it as

δQ = δQ0 + ϕδQ1 + δϕQ1, (7.40)

such that Eq. (7.39) becomes

δϕ̈+3Hδϕ̇+
k2

a2
δϕ+m2

effδϕ = ϕ̇

(
Φ̇ + 3Ψ̇− k

a
B + Ė

)
+2(ϕ̈+3Hϕ̇)Φ−δQ0−ϕδQ1. (7.41)

The exact form of δQ0 and δQ1 depends on the details of the model.
The perturbed perfect fluid quantities are defined in terms of the time-averaged

oscillating DM scalar field and its perturbation [111]:

δρ = ⟨ϕ̇δϕ̇− ϕ̇2Φ +m2ϕδϕ⟩, (7.42)

δp = ⟨ϕ̇δϕ̇− ϕ̇2Φ−m2ϕδϕ⟩, (7.43)
a

k
(ρ+ p)(v −B) = ⟨ϕ̇δϕ⟩. (7.44)

It should be understood that the fluid variables are themselves time-averaged quantit-
ies. Bringing together Eqs. (7.41)-(7.44), we arrive at the following expressions for the
perturbed continuity equations:

δρ̇+ 3H(δρ+ δp) = (ρ+ p)

(
3Ψ̇ + Ė − k

a
v

)
− ⟨δQϕ̇⟩ − ⟨Qδϕ̇⟩, (7.45)

1

a4(ρ+ p)

d

dt
[a4(ρ+ p)(v −B)] =

k

a
Φ +

k

a(ρ+ p)
[δp− ⟨Qδϕ⟩]. (7.46)

For convenience and to simplify the calculations, we consider the axion-comoving
gauge2, which amounts to setting B = v. Thus, in this context, Eq. (7.46) reduces to

Φ = − δp

ρ+ p
+

⟨Qδϕ⟩
ρ+ p

. (7.47)

Analogous to background fluid-field treatment, we specify the following ansatz for the
perturbation of the ϕ field:

δϕ(k, t) = δϕ+(k, t) sin(mefft) + δϕ−(k, t) cos(mefft) + δA(t). (7.48)
2The name of the gauge is used in the literature [97,122], but we note here that ϕ is not necessarily

an axion field but a generic DM scalar field.
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It is important to note that δA(t) is not just the perturbation of A(t) defined in Eq.
(7.19), as will be shown explicitly below.

For the rest of the calculation, we will assume a quasi-static approximation following
[122] and our calculation in Chapter 4, and will also be discarding derivatives of A and
δA on similar grounds. In axion comoving gauge we have ⟨ϕ̇δϕ⟩ = 0 from Eq. (7.44),
which implies

a−
3
2

(
m0

meff

) 1
2

meff [δϕ+ϕ− − δϕ−ϕ+] + ȦδA = 0 (7.49)

and so leads to the following useful relation:

δϕ+ϕ− = δϕ−ϕ+ (7.50)

after discarding small A terms. Now we can solve Eq. (7.41) to leading order in H/m

since the field oscillates if m ≫ H. This implies assuming that metric perturbations vary
only on cosmological time scales t ∼ H−1 ≫ m−1. We start by substituting the ansatz
in Eq. (7.48) into Eq. (7.41). Splitting the equation into oscillating and non-oscillating
terms, we get:

δÄ+
k2

a2
δA+m2

effδA = −δQ0 − δQ1A (7.51)

for the non-oscillating terms which, in the quasi-static approximation, yields

δA = −δQ0 + δQ1A
k2

a2
+m2

eff

= −
δQ0 − Q0

m2
eff
δQ1

k2

a2
+m2

eff

. (7.52)

Grouping the oscillating terms in powers of H/m and considering only leading order, we
obtain:

Φ = −1

2

(
a

a0

)3/2(
m0

meff

)−1/2
δϕ+

ϕ+

k2

m2
effa

2
− 1

2m2
eff

δQ1, (7.53)

which can be compared to Eq. (4.33). To compute the perturbed pressure and energy
density we will need the following time averaged quantities (up to leading order in H/m):

⟨ϕ̇δϕ̇⟩ = a−
3
2

2

(
m0

meff

) 1
2

m2
eff(δϕ+ϕ+ + δϕ−ϕ−) (7.54)

⟨ϕδϕ⟩ = a−
3
2

2

(
m0

meff

) 1
2

(δϕ+ϕ+ + δϕ−ϕ−) + AδA. (7.55)

Replacing these expressions, as well as Eq. (7.53) into the perturbed fluid equations
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for δp and δρ, Eqs. (7.42) and (7.43) we arrive at

δp =
a−

3
2

2

(
m0

meff

) 1
2

(ϕ2
+ + ϕ2

−)
δϕ+

ϕ+

m2
eff

[
1

2

k2

a2m2
eff

+
Q1

m2
eff

]
− m2AδA+

a−3

4

(
m0

meff

)
(ϕ2

+ + ϕ2
−)δQ1, (7.56)

δρ =
a−

3
2

2

(
m0

meff

) 1
2

(ϕ2
+ + ϕ2

−)
δϕ+

ϕ+

m2
eff

[
1

2

k2

a2m2
eff

+ 2− Q1

m2
eff

]
+ m2AδA+

a−3

4

(
m0

meff

)
(ϕ2

+ + ϕ2
−)δQ1. (7.57)

From here, and using Eq. (7.53), we can compute the pressure perturbation, given by

δp = c2sδρ−m2AδA(1 + c2s) +
1

2

ρ+ p

m2
eff

δQ1(1− c2s), (7.58)

where we have defined the effective sound speed

c2s =

1
2

k2

a2m2
eff

+ Q1

m2
eff

1
2

k2

a2m2
eff

+ 2− Q1

m2
eff

=
1
2

k2

a2m2 +
Q1

m2

1
2

k2

a2m2 + 2 + Q1

m2

, (7.59)

and the second equality follows from the definition of m2
eff in Eq. (7.15). It is important

to note that this effective sound speed is akin to that of the non-interacting axion,
presented in [97,122] and Chapter 4. See also [145,255] for calculations of non-standard
axion sound-speed. Accordingly, and as expected, Eq. (7.59) reduces to that case in the
limit where Q1 is zero.

Furthermore, according to Eq. (7.58), in contrast to the non-interacting case, the
pressure perturbation is not precisely proportional to the density perturbation. This can
be interpreted as a non-adiabatic contribution to the pressure perturbation caused by
the interaction with the dark energy scalar field [132,143,256,257].

7.5 Concrete model examples

In this section, we provide two concrete examples for obtaining equations of motion for
the DM field of the same form as Eq. (7.11).
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7.5.1 Conformal coupling

This setup is inspired by that of field theories of dark energy, such as coupled quintessence
[129,130,132,253,254,258], but with the role of the fields for DM and DE swapped. That
is, we treat ϕ in the action below as a dark matter scalar field, and the dark energy sector
is coupled conformally to the DM sector, resulting in the following effective action for
this model:

S =

∫
d4x

√
−g

(
M2

Pl

2
R− 1

2
gµν∂µϕ∂νϕ− U(ϕ)

)
+ SSM + SDE. (7.60)

In what follows, we assume that the DE sector can be described by a slowly evolving
scalar field χ, described by the action

SDE =

∫
d4x
√
−g̃

(
1

2
g̃µν∂µχ∂νχ− V (χ)

)
, (7.61)

where the metric g̃ is related to the metric g via a conformal transformation of the form
g̃µν = C(ϕ)gµν . Rewriting SDE in terms of the metric gµν results in

SDE =

∫
d4x

√
−g

(
C(ϕ)

2
gµν∂µχ∂νχ− C2(ϕ)V (χ)

)
. (7.62)

In contrast to models such as coupled quintessence, in which C depends on the dark
energy field, the function C in this framework is dependent on dark matter properties.

The equation of motion for the DE field χ is derived from the corresponding variation
of the action in Eq. (7.60) and reads

∇µ∇µχ− C
dV

dχ
= −∇αC

C
∇αχ. (7.63)

The equation for the DM field ϕ is derived in an analogous manner and yields

∇µ∇µϕ− ∂U

∂ϕ
= Q, (7.64)

where the coupling Q was defined as

Q = ∇µ

(
∂Lχ

∂(∇µϕ)

)
− ∂Lχ

∂ϕ

=
C,ϕ

2C

[
Cgαβ∇αχ∇βχ+ 4C2U

]
. (7.65)
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The Einstein equations result from variation of the action with the gravitational
metric gµν , resulting in

Rµν −
1

2
Rgµν = κ2

(
T (ϕ)
µν + T (χ)

µν + T (SM)
µν

)
, (7.66)

where Rµν is the Ricci tensor, κ ≡ 1/MPl and T
(i)
µν are the energy-momentum tensors for

each i-th fluid, which for the dark sector scalar fields ϕ and χ read

T (ϕ)
µν = ∇µϕ∇νϕ− gµν

(
1

2
gαβ∇αϕ∇βϕ+ V (ϕ)

)
, (7.67)

T (χ)
µν = C∇µχ∇νχ− gµν

(
C

2
gαβ∇αχ∇βχ+ C2U(χ)

)
, (7.68)

respectively, and obey the following conservation equations:

∇µT (ϕ)
µν = Q∇νϕ, ∇µT (χ)

µν = −Q∇νϕ, (7.69)

which are physically equivalent to the modified Klein-Gordon equations.
For the background cosmology, we consider the case of a flat Friedmann-Lemaître-

Robertson-Walker universe, for which the field equations read

ϕ̈+ 3Hϕ̇+ U,ϕ =
1

2
C,ϕχ̇

2 − 2CC,ϕV, (7.70)

χ̈+

(
3H +

C,ϕ

C
ϕ̇

)
χ̇+ CV,χ = 0. (7.71)

The energy densities ρϕ and ρχ and the corresponding pressures pϕ and pχ are given by

ρϕ =
1

2
ϕ̇2 + U(ϕ), pϕ =

1

2
ϕ̇2 − U(ϕ), (7.72)

ρχ =
1

2
Cχ̇2 + C2V (χ), pχ =

1

2
Cχ̇2 − C2V (χ). (7.73)

The Friedmann equations, which govern the expansion of the universe and which can be
derived from Einstein’s equations, Eq. (7.66), read

H2 =
κ2

3

[
1

2
ϕ̇2 + U(ϕ) +

1

2
C(ϕ)χ̇2 + C(ϕ)2V (χ)

]
, (7.74)
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Ḣ = −κ2

2

[
ϕ̇2 + C(ϕ)χ̇2

]
. (7.75)

Finally, the modified Klein-Gordon equations for ϕ and χ, Eqs. (7.63) and (7.63), become

ρ̇ϕ + 3H (ρϕ + pϕ) = −C,ϕ

2C
(ρχ − 3pχ) ϕ̇, (7.76)

ρ̇χ + 3H (ρχ + pχ) =
C,ϕ

2C
(ρχ − 3pχ) ϕ̇. (7.77)

Since we wish for ϕ to behave as dark matter and χ as dark energy, in this analysis,
we focus on the following self-interacting scalar field potentials:

V (χ) = V0e
−κλχ, (7.78)

U(ϕ) =
1

2
m2ϕ2. (7.79)

The function Q defined in Eq. (7.65) can be written as

Q =
C,ϕ

2C
(ρχ − 3pχ) , (7.80)

for a field-dependent conformal function C. The form of this Q is proportional to the
energy density of DE, providing a concrete theoretical realisation for a widely studied
class of phenomenological interacting DE models (see [100] and references therein) which
was previously missing. This means that the equation of motion for the ϕ field is of the
form

ϕ̈+ 3Hϕ̇+m2ϕ = −Q(t). (7.81)

Choosing a polynomial form for C(ϕ) will yield a similar form to that described in Eq.
(7.1). From there, it is straightforward to read off the specific forms of Q0 and Q1, after
which we can directly apply the results of Sections 7.3 and 7.4. Concretely, we now
choose

C(ϕ) = 1 + 2κβϕ, (7.82)

for the conformal coupling where β is a dimensionless constant and we use κ ≡ 1
MPl

.
With our choice of C(ϕ), we can decompose the source term above as

Q(t) = Q0(t) +Q1(t)ϕ, (7.83)
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where the functions Q0, Q1 are of the specific form:

Q0(χ,X
(χ)) = 4κβV (χ)− 2κβX(χ) (7.84)

Q1(χ) = 8κ2β2V (χ). (7.85)

In an FLRW spacetime, the above coupling functions reduce to

Q0(t) = −κβ(χ̇2 − 4V ), (7.86)

Q1(t) = 8κ2β2V . (7.87)

The equation of motion for ϕ can then be recast into

ϕ̈+ 3Hϕ̇+m2
eff(t)ϕ = −Q0(t), (7.88)

as in Section 7.3. After time-averaging the DM field, the DE equation of motion becomes

χ̈+

(
3H +

2κβȦ

1 + 2βκA

)
χ̇+ V,χ (1 + 2βκA) = 0, (7.89)

which is different to Eq. (7.34) due to the extra kinetic contribution in Q0. However, the
differences in DE dynamics can easily be kept small whilst yielding the same changes in
the DM dynamics.

Here we prove that the relation between Q0 and Q1 from Eqs. (7.86), (7.87) implies
that the EoS transitions to negative values around DM-DE equality. Indeed, from Eq.
(7.28), we see that wϕ < 0 when

⟨ρϕ⟩ <
1 + Z

Z

m2A2

2
, (7.90)

where Z = (m2
eff − m2)/(m2

eff + m2) ≈ Q1/2m
2. As A ≈ −Q0/m

2, it turns out that
wϕ < 0 when ⟨ρϕ⟩ drops below

⟨ρϕ⟩ <
Q2

0

Q1

≈ V ≈ ρχ . (7.91)

Consequently, the DM pressure becomes appreciably negative only at very low redshift.
At linear perturbative level, the equation of motion for δϕ is the same as that presen-
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ted in Section 7.4. For completeness, the corresponding equation for δχ is

δχ̈+

(
3H +

C,ϕ

C
ϕ̇

)
δχ̇+

(
k2

a2
+ C(ϕ)V,χχ

)
δχ

= χ̇

(
Φ̇ + 3Ψ̇− k

a
B + Ė

)
− 2C(ϕ)V,χ Φ− C,ϕ V,χ δϕ

− C,ϕ

C
χ̇ δϕ̇−

(
C,ϕ

C

)
,ϕ

ϕ̇ χ̇ δϕ.

(7.92)

In contrast to our discussion in the previous sections, here Q0 contains a dependency
on the kinetic term X(χ) which comes out of the conformal coupling. The difference
brought by the kinetic dependence comes in the form of a modified equation of motion
for the DE χ field. We have checked explicitly that this extra kinetic term does not spoil
our initial assumption that χ is slow-rolling. We leave it for future work to study the
modified dynamics of the DE in these models, and the effect of a kinetic coupling.

It is important to note that any model, such as the conformal coupling described
above, that admits a Q0 that depends on the kinetic term X(χ) can be potentially
problematic. Indeed, since the ϕ field is oscillating, the kinetic term for the χ field can
become negative if the Q0 contribution is larger than 1, which can lead to instabilities
in the δχ perturbations. However, since the oscillations are on much smaller timescales
than the evolution of the χ perturbations, we would expect that instabilities do not grow
due to the kinetic term becoming negative only briefly every oscillation cycle. Since we
do not study this in detail, we will keep to scenarios where strictly 2κβϕ < 1 in order to
avoid possible instabilities. In this scenario, it is natural to think of the linear conformal
coupling as a first order Taylor expansion of an exponential conformal coupling, which
are common in the literature. This restriction on ϕ, it turns out, is quite limiting. To
see this, let us first estimate the initial value of the ϕ field, ϕi when it starts rolling,
at around H ≈ m. To do this, we assume that the field will start rolling during the
radiation epoch, which is required for ϕ to make up all of DM. Starting from

ρϕ,0 ≈
1

2
ϕ2
im

2a3i , (7.93)

and writing m ≈ H as m ≈ Heq (aeq/ai)
2 where the subscript eq indicates a quantity

evaluated at matter-radiation equality, we get the following approximation for the initial
value:

ϕi ≈
√
2ρ

1/2
ϕ,0H

−3/4
eq a−3/2

eq m−1/4. (7.94)
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Setting the condition 2κβϕi < 1 ensures that the condition holds at all times, as ϕ only
decays over time once it starts oscillating. Plugging in some numbers [259] we are left
with

β ⪅ 10−19
( m

eV

)1/4
eV−1. (7.95)

Now we can estimate the maximum value for the non-zero equation of state of DM today
in this model using Eqs. (7.28), (7.84):

wϕ,0 ≈
16β2V 2

m2ρϕ,0
. (7.96)

Plugging in numbers once more [259], we get this upper limit on wϕ,0:

wϕ,0 ⪅ 10−47
( m

eV

)−3/2

. (7.97)

Even for the lightest possible scalar field DM currently allowed, we get an incredibly
small value for wϕ,0 which would be completely indistinguishable from ΛCDM. This
means that unless there is an additional physical process which ‘turns on’ the conformal
coupling at a later time – when ϕ has already decayed to a small enough number –
this model cannot produce any different physics to ΛCDM. We will not study further
any extensions of this model trying to address these limitations, but still highlight its
usefulness in providing a concrete implementation of Eq. (7.1) as well as a physical
motivation for phenomenological interactive DE models. Instead, we will now study the
simplest model described by Eq. (7.1).

7.5.2 Minimal Λ scenario

We now move on to a much simpler model, which will serve as an approximate toy-model
to develop an intuition of the possible physical effects derived in Sections 7.3 and 7.4.

We will take the 0th-order approximation of our framework. Let us consider a quasi-
static χ field. This means that DE behaves almost as a cosmological constant, and that
Q0 and Q1 are also very slowly varying. In this scenario, we have checked that the back
reaction of the coupling onto the χ field dynamics is minimal, meaning that the DE stays
slowly evolving. In this context, it is then sensible to approximate χ as a cosmological
constant, and Q0 and Q1 as constants also. We can then follow our previous results and
simply plug in constant Q0 and Q1. One can then solve for the background evolution



Chapter 7: Scalar field dark matter with time-varying equation of state 130

assuming χ is non-dynamical (i.e. a cosmological constant)3.
To illustrate the physics of this minimal model, we produce a modified version of the

CLASS code to solve for the dynamics. Note that all values of Q0 and Q1 in the plots are
given in CLASS units. To convert to SI units, multiply Q0 by 10−31 eV3 and multiply Q1

by 4× 10−59 eV2. Fig. 7.1 shows the evolution of the field’s equation of state parameter
wϕ from Eq. (7.28). From this, we see that the DM equation of state parameter is
positive at early time and becomes negative around DM-DE equality. It is important
to note that the effective equation of state, from Eq. (7.32), is strictly negative in this
model, as Ȧ = 0. Since it is weff that dictates the actual evolution of the DM component
according to Eq. (7.33), the DM in this model will behave like CDM (at background
level) for most of the expansion history, until it starts diluting slower around DM-DE
equality due to the negative effective EoS. We will study this model in more detail in
Chapter 8.

The effect of the coupling on the DM sound speed can be appreciated in Figs. 7.2
and 7.3. At early times, the k2/a2m2 term dominates, and we get a similar behaviour to
that of the non-interacting case. On the other hand, at late times, when k2/a2m2 ≪ Q1,
the sound speed becomes practically constant, according to c2s ≈ Q1

2m2 . As expected, in
the absence of the coupling, c2s falls to zero at small redshifts.

3We will study this model and its perturbations in more detail in the next chapter.
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Figure 7.1: Evolution of the equation of state of dark matter wϕ defined in Eq. (7.28),
for the minimal Λ model. The model parameters used in this illustrative example are
m = 10−17 eV as well as the remaining Planck ΛCDM best-fit parameters. Different
curves are shown for different values of Q0 and Q1.
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Figure 7.2: Evolution of the effective sound speed in terms of redshift z, as defined
in Eq. (7.59), for a set of k values {0.001, 0.01, 0.1, 1, 10} (in Mpc−1), and the following
set of parameters: m = 10−17eV, Q0 = 0, Q1 = 1024 and all other parameters fixed to
Planck ΛCDM best-fit.
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Figure 7.3: Evolution of the effective sound speed for two values of Q1, defined in Eq.
(7.59), compared with a non-coupled standard axion, with the same parameters used as
in Fig. 7.2 and k = 10 Mpc−1.
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7.6 Summary and conclusions

In this chapter, we have introduced a novel model of the dark sector consisting of scalar
field dark matter interacting with quintessence dark energy. The couplings between
the dark matter scalar field ϕ and the slowly evolving dark energy field χ is mediated
by interactions of the form ϕO(χ,X(χ)) and ϕ2O(χ,X(χ)). The aim of our work is to
study whether the properties of the DM scalar field, such as the equation of state and the
adiabatic sound speed, change in the presence of such couplings. Furthermore, as a result
of these couplings, we have found an effective theory of interacting dark matter and dark
energy in which the coupling term is linked to the energy density of DE rather than DM.
Our framework not only offers a theoretical basis for many extensively studied models of
interacting dark energy found in the existing literature, e.g. in [239,242,246,251,252,260–
262], but also introduces significant differences. In our setup, the coupling between DM
and DE offsets the oscillations of the scalar field, resulting in a non-zero average for its
equation of state parameter. By averaging over these rapid oscillations, we have derived
a fluid-field description of the system, revealing a non-zero average value for the field
determined by the coupling. Consequently, the effective DM fluid exhibits a non-zero
physical pressure, starkly contrasting with standard IDE models. This physical pressure
transitions from slightly positive at early times to negative after DM-DE equality. The
main observational effect most likely comes from the change in the DM equation of state
at very late times, at a redshift smaller than the redshift of the DE-DM equality. Thus,
our work carries implications in the context of searches for non-standard CDM physics
and provides theoretical support for such models (see [263–266]). Notably, the non-
standard equation of state of DM impacts the analysis and interpretation of cosmological
observational data, such as Pantheon+ [55] or the recently published DESI data [13].

At the linear perturbation level, we have computed the pressure perturbation and
sound speed of the averaged DM fluid. Our findings reveal terms proportional to the
density perturbation δρ plus non-adiabatic pressure terms depending on the perturbation
of the DE scalar field. Notably, due to the coupling, the adiabatic term deviates from
the standard axion scalar field scenario. This results in an effective sound speed that
remains non-zero across all scales, unlike the uncoupled case where it vanishes at small
k. Consequently, we anticipate a slight power suppression in the matter power spectrum
at all scales within the interacting scenario considered here. Furthermore, the influence
of non-adiabatic pressure contributions on observables in this context warrants further
investigation, as well as the changes to the properties of DE, such as the sound speed
[267, 268] and the full evolution of perturbations in the DE field. A comprehensive
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study of these points requires a full implementation of the theory in publicly available
Boltzmann codes such as CLASS or CAMB4 [269].

Finally, we have studied two realisations of our framework, first using a conformal
coupling to obtain Lagrangian of the correct form, and then considering a minimal model
of DM coupling to a cosmological constant instead of a DE scalar field. The conformal
coupling provides motivation for phenomenological DE models, although further study is
needed to determine if the model is stable for observationally relevant parameter values.
The minimal model provides a robust 0th-order approximation for our formalism, which
makes it much simpler to study whilst showcasing the main physical effects expected
from the model – i.e. a modified EoS and sound-speed. We will study the minimal
model in more detail, as well as constrain its parameters using cosmological data, in
Chapter 8.

4https://github.com/cmbant/CAMB

https://github.com/cmbant/CAMB


Chapter 8

Cosmological constraints on late-time
negative pressure dark matter

8.1 Introduction

We have seen throughout this thesis that interaction between DM and DE at the scalar
field level can yield interesting phenomenology. In the previous chapter, we discussed
a model where the interaction leads to minimal modifications to the DE dynamics,
whilst introducing new physics in the DM sector. This is a less explored approach, as
traditional DE-DM interactions assume a standard CDM and a modified DE sector [100,
101]. It is important to study such models as alternative to the traditional interacting
dark energy scenarios, especially in light of current cosmological tensions. For more
analyses of non-standard DM, see [263, 265, 266, 270]. In this chapter we will study in
detail the simplest model described by the framework introduced in Chapter 7. That
is, we will treat the DE scalar field as being constant, thus behaving like a cosmological
constant. We will therefore take Q0 to be a constant, and we will set Q1 = 0. These
choices, although seemingly drastic, manage to capture the core physics whilst greatly
reducing computational complexity. We refer to this minimal model as ΛQDM, which
is a one-parameter extension to ΛCDM. We will first derive the equations of motion
for ΛQDM, then study its evolution by implementing these equations in the CLASS

Boltzmann-solver. This will allow us to understand the dynamics of the model both
at linear and perturbation level. Next, we will perform an analysis of the model against
available cosmological data, using the Cobaya package to interface a MCMC algorithm
with the CLASS solver. In essence, this determines a set of best-fit parameters for the
model, as well as a measure of the goodness of fit which we compare to ΛCDM. This

136
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chapter is organised as follows: in Section 8.2 we describe the ΛQDM model, in Section
8.3 we study the phenomenology of the model, Section 8.4 describes the data analysis
and Section 8.5 outlines the conclusions of the work.

8.2 The interacting ΛQDM model

We build upon the minimal model described in the previous chapter. We start with Eq.
(7.1) and consider a slowly varying χ field. As a 0th order approximation, we consider χ
as a constant, as well as Q0 and Q1. Since we are interested in the simplest model, and
the Q1 term is higher order in ϕ, we will simply set Q1 to 0 for this analysis. This makes
this model a one-parameter extension to ΛCDM, as we will discuss in more detail later.
The minimal model aims to capture the essential physical effects of the fully covariant
formulation of Chapter 7 whilst distilling the complexity down.

The minimal ΛQDM model can be formulated by taking Eqs. (7.9), (7.10) and
demoting χ to a constant Λ:

ρϕ =
1

2
ϕ̇2 +

1

2
m2ϕ2 (8.1)

ρΛ = Λ+ ϕQ0. (8.2)

At background level, the equation of motion for ϕ is

ϕ̈+ 3Hϕ̇+m2ϕ = −Q0. (8.3)

Following Section 7.3, we define

A = −Q0

m2
. (8.4)

Solving for ϕ and averaging over a period of oscillation, we get the fluid equation of
motion:

ρ̇ϕ + 3Hρϕ(1 + wϕ) = 0, (8.5)

where
wϕ = −m2A2

2ρϕ
= − Q2

0

2m2ρϕ
. (8.6)

It should be understood that the above quantities are now period-averaged. Time-



Chapter 8: Cosmological constraints on late-time negative pressure dark matter 138

averaging the DE energy density leads to

ρΛ = Λ− Q2
0

m2
, (8.7)

which is just a constant offset that can be reabsorbed into the definition of Λ. At
background level, then, the only modification to the ΛCDM is the time-varying equation
of state wϕ, which becomes negative at late-time as ρϕ dilutes1.

At the perturbation level, the equations in general gauge for δϕ are the same as Eq.
(7.39), with δQ = 0 since Q0 is constant and Q1 = 0:

δϕ̈+ 3Hδϕ̇+
k2

a2
δϕ+m2δϕ = ϕ̇

(
Φ̇ + 3Ψ̇− k

a
B + Ė

)
+ 2(ϕ̈+ 3Hϕ̇)Φ, (8.8)

δρ̇ϕ + 3H(δρϕ + δpϕ) = (ρϕ + pϕ)

(
3Ψ̇ + Ė − k

a
v

)
−Q0⟨δϕ̇⟩. (8.9)

1

a4(ρϕ + pϕ)

d

dt
[a4(ρϕ + pϕ)(v −B)] =

k

a
Φ +

k

a(ρϕ + pϕ)
[δpϕ −Q0⟨δϕ⟩]. (8.10)

Since there is no slowly-evolving driving term on the rhs of Eq. (8.8), we choose the
following ansatz for δϕ:

δϕ(k, t) = δϕ+(k, t) sin(mt) + δϕ−(k, t) cos(mt), (8.11)

which is equivalent to setting δA = 0 in Eq. (7.48). Following the procedure described
in Section 7.4, the averaged pressure perturbation is

⟨δpϕ⟩ = c2s⟨δρϕ⟩, (8.12)

where

c2s =
1
2

k2

a2m2

1
2

k2

a2m2 + 2
, (8.13)

which is the standard sound speed for scalar field dark matter and ultralight axion-like
particles. Next, we discuss the perturbed equations of motion in synchronous gauge. As
discussed in Appendix A, we have to convert all comoving-gauge-specific quantities to
the synchronous or Newtonian gauge. We choose to adopt the comoving gauge in this
study, without loss of generality. The pressure perturbation becomes (dropping the ϕ

1Note that the asymptotic future behaviour of ρϕ is that of a cosmological constant, and so wϕ → −1
instead of growing forever.
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subscript for clarity):
δpS = c2sδρ

S + 3Hρ(1 + wϕ)c
2
sv

S (8.14)

where we have used the fact that the adiabatic sound speed is 0 since p is constant, and
the S, C superscripts stand for synchronous and axion comoving gauges respectively.
The perturbed field quantities are

⟨δϕS⟩ = ⟨δϕC⟩+ ⟨ϕ̇⟩vS = 0, (8.15)

⟨δϕ̇S⟩ = ⟨δϕ̇C⟩+ ⟨ϕ̈⟩vS = 0, (8.16)

since A is constant and δA = 0.
Thus, the perturbation equations in the synchronous gauge are

δρ′ = −3Hδρ(1 + c2s)− ρ(1 + wϕ)(
1

2
h′ + kv)− 9H2ρ(1 + wϕ)c

2
sv, (8.17)

v′ = −(1− 3c2s)Hv + k
c2s

ρ(1 + wϕ)
δρ, (8.18)

which correspond exactly to a generalised dark matter component with no adiabatic
sound speed [111,271]. For definitions of terms above see Section 2.3.3. We adopt initial
conditions derived in [272], namely

δi = −1

4
(1 + wϕ)

4− 3c2s
4− 6wϕ + 3c2s

(kτi)
2 (8.19)

vi = −1

4

c2s
4− 6wϕ + 3c2s

(kτi)
3, (8.20)

where τi is the initial conformal time used in the numerical simulation.

8.3 Cosmological observables/ Phenomenology

In this section we implement the above equations numerically by modifying the CLASS

code. At the background level, the only difference with ΛCDM comes from the non-zero
CDM equation of state, which turns on at late times. At linear perturbations level, there
are two effects to take into account: the equation of state, and the sound-speed. We will
see that for the allowed scalar field DM mass range, the sound-speed shows very little
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impact on observables.

8.3.1 Background evolution

We study first in detail the background evolution of the model. In this case, it is
interesting to note that the mass m only enters the equation of motion in the ratio Q0/m,
meaning this ratio is the only parameter at background level. For our numerical analysis,
we will set m = 10−17eV, and vary the value of Q0. Other cosmological parameters are
fixed to their ΛCDM values. It is worth mentioning that the values of Q0 for which
a sizeable effect on the dynamics is produced is quite narrow. Indeed, Q0 values from
Q0 = 0 (the ΛCDM limit) to around Q0 = 10−24 eV3 (i.e. Q0 = 107 in CLASS units) do
not change the EoS in a meaningful way. On the other hand, values of Q0 > 10−21 eV3

– while technically allowed – require prohibitively large values of Ωc today, making them
non-viable.

We can get an idea of the overall behaviour of the model by looking at the evolution of
ρϕ. In Fig. 8.1, we show the ratio of ρϕ to ρCDM in ΛCDM - or equivalently ρϕ(Q0 = 0).
It is clear to see that the modifications to the expansion history happen at redshifts z < 1,
as expected from the evolution of the equation of state. At late time, the equation of
state becomes negative, which means the energy density decays slower than a−3. Due
to the way the CLASS code works, initial values of ρϕ,i will be obtained via a shooting
procedure in order to recover the correct energy density today. This explains why the
energy density in the past becomes smaller for large values of Q0. In reality, in order to
match ρϕ to the ΛCDM around recombination, one would need to increase the present
energy density ρϕ,0. Since the main effect of the coupling is to slow down the decay
of ρϕ, the expected physical result should be a higher DM density today. The model
parameters used in this illustrative example are m = 10−17 eV as well as the remaining
Planck ΛCDM best-fit parameters. Values of Q0 are shown in CLASS units, see Chapter
7 for conversion factor.
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Figure 8.1: Evolution of the ratio of DM energy density in ΛQDM and ΛCDM for
different values of Q0.

Another consequence of having lower ρϕ at early time is evidenced in the relative
abundances of the different components of the universe. At early time, there is less dark
matter and so radiation-matter equality occurs later than in ΛCDM. At late time, since
ρϕ behaves increasingly like a DE component, the matter-DE equality occurs earlier.
Overall, this leads to a shortening of the matter domination era.

Finally, we can see the effect of the coupling on the Hubble rate in Fig. 8.2: keeping
H0 constant, we see a decrease in H during matter domination for large couplings, which
directly follows from the lower ρϕ. The effect of the coupling is minimal during radiation
domination, so H goes back to its ΛCDM value at early-time. Note again that this effect
is due to fixing H0 to its ΛCDM value. Changing this, along with ρϕ,0 would modify the
expansion history in different ways. We will study the correlation between the model
parameters in more detail in Section 8.4.
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Figure 8.2: Evolution of the fractional difference in H between ΛQDM and ΛCDM,
for different values of Q0.

8.3.2 Cosmological perturbations

We now turn our attention to the linear perturbations of the model. At this level, the
degeneracy between Q0 and m is broken due to the equation of state c2s, which contains
m on its own. This means in principle that we need two parameters to describe the
model’s perturbation. However, we have seen in Section 4.1.3 that the impact of a non-
zero sound-speed for ultralight scalar field dark matter on the matter power spectrum is
small, and indistinguishable in the CMB. The effect on the perturbations of this model
can be separated into a contribution from the EoS, which depends on Q0/m and one
from the sound-speed which depends on m. Since we have shown that the sound-speed
does not contribute in this case2, we can simply go back to the same treatment we used
at background level by fixing m and varying Q0.

Both the density and velocity perturbations are suppressed in our model as Q0 in-
2We have checked that this is the case in the ΛQDM model also.
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Figure 8.3: Left : Evolution of the density contrast for DM in ΛQDM and ΛCDM
for different values of Q0. Right : Evolution of the DM velocity potential in ΛQDM and
ΛCDM for the same values of Q0 as left. For both plots k = 0.1 Mpc−1.

creases. A similar phenomenon is also observed in the Newtonian potentials (Fig. 8.4).
This is a direct result of a lower ρϕ (and therefore lower H) during matter domination.
The suppression is also due to the earlier transition to DE domination, which tends to
reduce the growth of DM perturbations.

Let us now focus on the observables arising due to perturbations. The most important
of these is the CMB temperature power spectrum, shown in Fig. 8.5. As Q0 increases, the
CMB peaks are enhanced, in particular the first, and shifted. Again, this is primarily a
consequence of lower ρc around recombination. The lower value leads to a increase in the
angular scale of the sound horizon as well as an increase in the angular diameter distance
to last scattering, therefore shifting the peaks to higher ℓ values. Another consequence
of higher Q0 and smaller ρϕ is an increase in the power in the acoustic peaks, as in
ΛCDM [64]: less DM means radiation-matter equality occurs later, meaning the photon
perturbations are enhanced and the early ISW effect is enhanced. Increasing ρϕ,0 can
compensate for the low ρϕ at early times caused by a high Q0. Such an increase of DM
density during matter domination, so as to match the abundance of ΛCDM, would lead
to an increase of H, which would flatten the ∆H/H curve. It follows, then, that the
effect of increasing the coupling can be almost entirely negated by increasing the present
DM density. This leaves the CMB similar to ΛCDM. It is therefore reasonable to expect
a strong correlation between Q0 and the fractional CDM energy density today Ωc,0 when
we later compare our model to real data.

The lensing power spectrum, shown in Fig. 8.6, exhibits a decrease in power for
higher Q0. Since the source term for lensing include the lensing potential ϕlens = Φ+Ψ,
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Figure 8.4: Plot of the lensing potential Φ + Ψ in ΛQDM and ΛCDM for different
values of Q0, and k = 0.1 Mpc−1.

its behaviour mirrors that of Φ+Ψ from Fig. 8.4: As the DM perturbations are smaller
from around recombination, due mainly to lower H and lower ρϕ, the lensing potential
is smaller and therefore the lensing power is also lower. In practice this implies less
structure formation, which can also be observed by looking at the matter power spectrum
in Fig. 8.7.

Whilst these simulations give us an idea of the physics at play in this model, and
the effect of the coupling, the conclusions presented should be taken with a grain of
salt. Since we are fixing parameters to their ΛCDM values, the model does not fit
observations well and therefore overcompensates at earlier times - by reducing ρϕ and
H during matter domination. In practice, we will study the effects of the best-fit model
after comparing it to data. This will allow us to discuss degeneracies and correlations
in the parameter space, and make sense of the non-trivial effects of varying multiple
cosmological parameters at the same time.
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Figure 8.5: Top panel : temperature power spectra against angular scale ℓ for various
values of Q0 in ΛQDM and for ΛCDM. Bottom panel : fractional difference between
ΛQDM and ΛCDM values for CTT

ℓ .
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Figure 8.6: Top panel : lensing power spectra against angular scale ℓ for various values
of Q0 in ΛQDM and for ΛCDM. Bottom panel : fractional difference between ΛQDM
and ΛCDM values for Cϕϕ

ℓ .
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Figure 8.7: Top panel : matter power spectra against wave number k for various values
of Q0 in ΛQDM and for ΛCDM. Bottom panel : fractional difference between ΛQDM
and ΛCDM values for P (k).
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8.4 Constraints on model parameters

8.4.1 Methodology and datasets

Using our modified CLASS code, we perform a MCMC anaysis using the publicly available
sampler Cobaya to establish how well our model fits cosmological data. Cosmological
and nuisance parameters are varied according to Cholesky’s parameter decomposition.
We consider chains to be converged with the Gelman-Rubin convergence criterion R −
1 <0.03. The obtained chains are analysed using the GetDist Python package.

We assume standard ΛCDM priors as shown in Table 8.1. Note that we choose to
vary H0 instead of θs; these two approaches are equivalent as far as the CLASS code
is concerned. For Q0, we opt for a flat prior on a rescaled version of the parameter,
10−8 × Q0. Note that this is in CLASS units. The reason for this rescaling is that
most of the values of Q0, from 0 to around ∼ 107, show no effect on any cosmological
observables. This implies most of the parameter space is simply equivalent to ΛCDM.
In order to reduce the ΛCDM-like parameter volume, we rescale the extra parameter so
that more weight is put on the phenomenologically distinct part of the parameter space.
As stated in the previous section, we can fix the mass of the scalar field m and vary
Q0; we set m = 10−17 eV without loss of generality. The other independent parameters
are fixed to their Planck best-fit values [8], including the assumption of two massless
and one massive neutrino species with mν = 0.06 eV. Although not explicitly listed, a
large number of nuisance parameters are varied simultaneously, following the respective
collaboration recommendations.

Parameter Prior
Ωbh

2 [0.005, 0.1]
Ωch

2 [0.001, 0.99]
H0 [20, 100]
τreio [0.02, 0.08]
ns [0.7, 1.3]

log (1010As) [1.7, 5.0]
10−8Q0 [0, 8]

Table 8.1: Flat priors on the cosmological and model parameters sampled in this work.

We use the following datasets:

• Planck PR4 (PR4): The latest Planck CMB release, introduced in [107]. It
includes the large-scale low-l TT likelihood Commander and low-l EE likelihood
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simAll from Planck 2018 release. Both of these are in the range 2 ≤ l ≤ 29. The
high-l likelihood for TT , EE and TE spectra is the NPIPE CamSpec likelihood
[106], in the range 30 ≤ l ∼< 2500. The PR4 lensing likelihood is also included, as
described in [273].

• DESI: As described in Section 6.3.1.

• Pantheon+ (SN): As described in Section 6.3.1.

• Pantheon+ with SH0ES R22 (SH0ES): As described in Section 6.3.1.

We will use different combinations of datasets starting with our baseline of Planck
PR4, which we refer to as PR4. We then consider Planck PR4 and Pantheon+ (PR4+SN),
PR4 and DESI (PR4+DESI), PR4 and Pantheon+ and DESI (PR4+SN+DESI) and fi-
nally we combine all datasets including the H0 prior: PR4+DESI+SH0ES.

8.4.2 Results

We now discuss the constraints on the model parameters imposed by the various data-
set combinations, and compare them to ΛCDM. We quantify the goodness of fit for
each dataset by using the difference in χ2 between our model and ΛCDM: ∆χ2

min =

χ2
min,ΛQDM − χ2

min,ΛCDM. A negative value of ∆χ2
min indicates a better fit for the Q0

model compared to ΛCDM. These chi-squared values are obtained using the minimizer

method from Cobaya. From here on we will refer to ρϕ as ρc in order to compare to the
ΛCDM values.

We show the 68% confidence intervals for the ΛQDM parameters and ∆χ2 val-
ues in Table 8.2 (see Appendix C for the same table for ΛCDM). Fig. 8.8 shows
the posterior distributions comparing the ΛQDM and ΛCDM models for the PR4 and
PR4+DESI+SH0ES. Fig. 8.9 shows the posterior distributions for the ΛQDM model for
all dataset combinations except PR4+DESI+SH0ES.

As a general observation, all datasets seem to agree with our earlier hypothesis that
Q0 and Ωc should be highly correlated, whilst Q0 and H0 are not. That is to say, an
increase in Q0 can be compensated by an increase in ωc. In turn, this increase in ωc

leads to the CDM energy density at recombination ρc,rec being close to its ΛCDM value,
and H will also be unchanged during that time. The resulting cosmology is therefore
close to ΛCDM as far as the CMB and other late time background probes are concerned.
We will discuss later what other data could be included to narrow down the constraints.
Another interesting result, which is consistent across all datasets, is a lower preferred
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Parameter PR4 PR4+SN PR4+DESI PR4+DESI+SN PR4+DESI+SH0ES

ωb 0.02216± 0.00013 0.02214± 0.00013 0.02227± 0.00013 0.02225± 0.00013 0.02233± 0.00012

ωc 0.141+0.012
−0.025 0.139+0.011

−0.024 0.137+0.010
−0.023 0.139+0.013

−0.025 0.138+0.012
−0.025

τ reio 0.0523± 0.0072 0.0514± 0.0069 0.0573± 0.0071 0.0561+0.0064
−0.0073 0.0591± 0.0071

ns 0.9620± 0.0042 0.9614± 0.0041 0.9659± 0.0037 0.9650± 0.0037 0.9673± 0.0036

log 1010As 3.037± 0.014 3.036± 0.014 3.045± 0.014 3.043± 0.013 3.048± 0.014

H0 67.18± 0.46 67.04± 0.44 67.87± 0.36 67.73± 0.35 68.12± 0.35

10−8Q0 −− < 4.91 < 4.83 −− −−

σ8 0.714+0.10
−0.060 0.722+0.098

−0.055 0.721+0.098
−0.053 0.712+0.10

−0.062 0.716+0.10
−0.087

Ωm 0.361+0.028
−0.056 0.359+0.026

−0.053 0.346+0.023
−0.050 0.353+0.028

−0.055 0.345+0.026
−0.054

S8 0.777+0.056
−0.033 0.783+0.054

−0.030 0.768+0.053
−0.028 0.766+0.056

−0.033 0.761+0.056
−0.031

∆χ2
min 0.78 0.26 1.38 0.98 2.88

Table 8.2: Observational constraints at 68% confidence level on the independent and
derived cosmological parameters using all dataset combinations for the ΛQDM model,
as detailed in Section 8.4.1. ∆χ2

min values are also included, computed as explained in
Section 8.4.1.

value for σ8 and S8. This makes sense from our previous analysis as we saw in Fig. 8.7
that higher Q0 values led to smaller matter power spectra. Due to its degeneracy with
ωc, Q0 is largely unconstrained – see Table 8.2. Other parameters, including As, ns, τreio,
ωb, remain unchanged by the addition of the late-time negative EoS for DM. The baseline
dataset, i.e. including only PR4 CMB data, reveals an almost equal preferred value of
H0 compared to ΛCDM, H0 = 67.18 ± 0.46. At the same time, the mean value for ωc

increases to ωc = 0.141+0.012
−0.025 and S8 decreases to S8 = 0.777+0.056

−0.033. The overall behaviour
of parameters under a change of dataset in ΛQDM is consistent with that observed in
ΛCDM. For example, the value of the best-fit H0 decreases when considering PR4+SN,
but increases when including DESI data, with the highest value predictably obtained
for the full dataset combination PR4+DESI+SN+SH0ES. Both in ΛCDM and ΛQDM,
DESI data prefers lower values of ωc and S8, while Pantheon+ prefers slightly higher
values of ωc and S8. This can explain why the fit, as evidenced by the ∆χ2

min values, is
worsened when adding DESI data, as our model tends to increase ωc rather than reduce
it. Combining PR4+DESI+SN leads to only a slight increase in ωc and S8 compared to
PR4+DESI.

Overall, judging by the ∆χ2 values, ΛQDM is generally indistinguishable from, or
fits slightly worse than ΛCDM. The fit is in particular worse for datasets which naturally
prefer a higher (lower) value for H0 (ωc), such as PR4+DESI and PR4+DESI+SH0ES.
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As we will see below, the ΛQDM model breaks the degeneracy between H0 and ωc (see
Fig. 8.8). This means that it is not possible to adjust the H0 parameter in ΛQDM in
order to lower ωc, leading to a still high value of ωc in ΛQDM which worsens the fit.

Whilst the ΛQDM model does show preference for a lower value of S8, as shown in
Fig. 8.10, a full analysis using LSS data would be needed to establish the degree to which
the S8 tension is addressed in this model. What is more, since Q0 is unconstrained, S8

correspondingly can take a range of values. It is possible that adding LSS data may
break the degeneracy between Q0 and Ωc, but we leave this analysis for future work.

There are two main reasons why the model does not depart much from ΛCDM, and
thus does not alleviate the Hubble tension. First, due to the correlation between ωc and
Q0, the correlation between ωc and H0 completely disappears compared to ΛCDM. This
can be explained by the fact that the value of ωc at recombination is tightly constrained
by the first peak of the CMB in this model, as in ΛCDM. Since Ωc at recombination
is adjusted by varying Ωc,0 and Q0, H0 does not have any freedom to vary. This leads
into the second reason, which is that the changes to the physics are focussed on very
late times, z < 1. This reduces the ability to imprint new signatures into the CMB, as
the only possible effect is the late-time ISW, which we have checked deviates minimally
from ΛCDM in this model. What is more, the late time probes DESI and Pantheon+
lack constraining power at low enough redshifts, and therefore do not contribute much
to the total χ2 value. It is interesting to note the preference in this model for higher ωc,
which seems to agree with supernovae data. It would be interesting to use alternative
SN datasets, such as DESY5 which prefers even higher CDM densities compared to
Pantheon+ [274].
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Figure 8.8: One-dimensional posterior probability distribution functions and two-
dimensional contours at 68% and 95% CL for the parameters of interest in the ΛQDM
model and the standard ΛCDM model for reference, for the PR4 dataset and the full
combination PR4+DESI+SH0ES.
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Figure 8.9: One-dimensional posterior probability distribution functions and two-
dimensional contours at 68% and 95% CL for the parameters of interest in the ΛQDM
model for incremental dataset combinations, as indicated in the legend and listed in
Section 8.4.1.
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Figure 8.10: 2D contours at 68% and 95% CL for Q0 and the S8 parameter in the
ΛQDM. The results are inferred considering different combinations of Planck PR4, DESI
BAO distance, and SN distance moduli data. The yellow dashed line and band represent
the value of S8 from DESY3 and the corresponding uncertainties.
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8.5 Conclusions

In this chapter we have studied in detail the ΛQDM model, both in terms of its cosmo-
logical observables and how well it fits cosmological datasets – including Planck PR4,
DESI and Pantheon+. The Q0 model is the simplest extension to ΛCDM based on the
EFT of interacting DM-DE described in Chapter 7. In this model, we consider only the
linear interaction between the DM and DE fields – we set Q0 ̸= 0 and Q1 = 0 – and the
dynamics of the DE scalar field are approximated at 0th order – i.e. as a cosmological
constant – and so Q0 is a constant. Although this is a much simplified model, it is
important to note that the key physics of the model described in Section 7.3 are still
present here, namely the equation of state of DM becomes negative at late time, around
DM-DE equality.

We studied the background and linear perturbation dynamics of the model, as well
as cosmological observables. At the background level, the negative EoS leads the DM
to decay more slowly at late times. This implies that, for H0 and Ωc fixed to ΛCDM
values, the energy density of DM ρc is lower in the past, leading to a lower H0. This
effect is also seen in the perturbations, leading to an enhancement in the CMB first
peak, and a decrease in the matter power spectrum. The effects of the coupling are only
relevant when Q0 is large enough to match the DE scale. This corresponds roughly to
Q0 > 5× 107 in CLASS units. We then constrained this model by comparing it to a wide
range of cosmological datasets including CMB, BAO and Supernovae data. From the
data analysis, it is clear that Q0 and Ωc are strongly correlated, to the point where any
increase in Q0 can be balanced by an increase in Ωc today. A related correlation arises
for clustering with S8 decreasing as Q0 increases. H0 is entirely uncorrelated to Q0 and
its value is consistent with that obtained in ΛCDM. The fit of the Q0 model is slightly
worse than that of ΛCDM, as estimated with the ∆χ2 values. We suspect that using
LSS data, such as redshift space distortion, could break some degeneracies and provide
better constraints on Q0. It would also be interesting to use alternate SN data such as
DESY5 to see if the preference for higher ωc is enhanced.

Overall, this work showcases how a simple model for very-late-time interactions in the
dark sector based on a Lagrangian description can lead to interesting phenomenology,
especially reducing the preferred value of S8.



Chapter 9

Conclusions

In this thesis, we gave an introduction to modern cosmology, with a focus on dark sector
dynamics, its observational signatures and viability in light of new data. In particular,
we focused on novel scalar field models for DM and DE, including interactions. These
models have not been studied extensively in the literature, even though they provide in-
teresting theoretical and phenomenological implications. Indeed, two-scalar field models
can be thought of as toy-models for low-energy realisations of unifying theories, such as
string theory – which commonly predicts multiple interacting scalar fields [214]. Whilst
adopting a top-down approach – starting from a high-energy theory and working out the
cosmology – is attractive, they are often restrictive and less well understood. We bridge
the gap in our approach by starting from a Lagrangian formulation and computing the
cosmological evolution of the DM and DE components, agnostic of any fundamental
theory.

We started with a brief review of the background material as well as the current
literature in scalar field dark sectors. In Chapter 2 we introduced GR and the basics of
physical cosmology. In Chapter 3 we discussed the relevant observational probes in the
historical development of cosmology as well as the standard model ΛCDM, elaborating
on its successes and limitations. In Chapter 4 we covered essential elements from the
literature pertaining to scalar fields in cosmology, involving DE and DM models as well
as their interactions. From Chapter 5 onwards, we present new results found as part of
the doctoral research.

Chapter 5 provides a novel model for an interacting dark sector based on two scalar
fields and the hybrid inflation potential. We start from the two-scalars description and
average out the rapid oscillations of the DM field, to end up with a DM fluid interacting
with a DE scalar ϕ. The coupling is proportional to the DM energy density and 1/ϕ,

156



Chapter 9: Conclusions 157

which was not previously studied as a phenomenological coupling. We solve for the
evolution of this system both analytically and numerically, obtaining observables such
as the CMB and matter power spectra. We also find that in this model, the mass of
the DM field is typically large and the DE domination is transient – there is a phase
transition in the future at which point the DE scalar decays completely.

In Chapter 6 we confront the hybrid dark sector model against modern cosmological
data, including CMB, BAO and supernovae. We find a preference for a non-zero coupling
when including the SH0ES prior, which also yields a higher value for H0, reducing
the tension to 4.65σ in the hybrid model compared to 5.76σ in ΛCDM. The coupling
parameter 1/ϕi also leads to a smaller value for S8. These results highlight the potential
of late time modifications to ΛCDM, and motivate adopting a more top-down approach
which can lead to new and interesting phenomenology.

In Chapter 7 we propose a new framework to study interacting DM and DE scalar
fields based on effective field theory. Starting from a Lagrangian, we show that averaging
over the fast-oscillations of the DM scalar leads to a DM fluid with non-zero equation
of state. This is a novel result, as interacting DM-DE models usually assume cold DM
with modified DE dynamics. The equation of state in this model is typically posit-
ive at early times and becomes negative around matter-DE equality. We also compute
the sound-speed of DM perturbations in this framework, which we find to be different
to the standard result for non-interacting axions, leading to a suppression of power in
the matter power spectrum on all scales. We also study two realisations of the frame-
work. A conformal coupling depending on the fast-oscillating DM field is used, which we
show is equivalent to the EFT approach. This leads to a coupling proportional to ρDE,
providing theoretical motivation for a wide class of phenomenological models, although
the parameter values can potentially lead to instabilities. We also study a 0th-order
approximation of our framework by considering the DE field to be a constant.

We investigate further the minimal DE-DM EFT interacting model in Chapter 8,
computing its observables and performing data-analysis to compare its fit to ΛCDM.
We set Q1 = 0, naming the model ΛQDM. This model is very similar to ΛCDM apart
from its evolution during DE domination, when the EoS of DM becomes negative. At
the level of the CMB, this effect can be compensated by increasing Ωc at present time.
Running the data-analysis, we find that Q0 is strongly positively correlated with Ωc and
negatively correlated with S8. This means that the ΛQDM prefers lower values of S8, in
line with the S8 tension, however H0 remains unchanged compared to ΛCDM. The fit of
this model is slightly worse than ΛCDM when including DESI BAO measurements, as
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these tend to prefer lower values for Ωc. The parameter Q0 is not well constrained with
this combination of datasets, although new LSS data could break degeneracies.

To conclude, our investigation of two-scalar field interacting dark sectors has shown
that rich phenomenology can be found when considering more fundamental models. We
hope that further theoretical questioning and cosmological data will be able to shed light
on the dark sector, potentially solving observational tensions at the same time.
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Appendix A

Numerical and statistical methods

Here we describe the numerical and statistical methods used in this thesis.

A.1 Einstein-Boltzmann solvers

In order to make accurate predictions in cosmology, we need powerful numerical meth-
ods to solve the relevant equations. These are the Einstein-Boltzmann equations, which
include the evolution of perturbations described in the main text as well as equations
governing the thermodynamics of the universe [64]. Numerical solvers tailored for this
purpose are usually referred to as Einstein-Boltzmann codes. The two state of the art
examples are1 CAMB [269] and CLASS [123]. In this work we use CLASS, which is writ-
ten in C. CLASS is easily modifiable to add new interactions, particles or fluids to the
standard cosmology. Generally, one needs to modify the input.c, background.c and
perturbations.c modules. This includes adding new parameters to be read by the pro-
gram, and then modifying the background and perturbations equations and quantities.
Running CLASS then only requires a set of parameters (at the minimum one needs to
provide the ΛCDM parameters) and extra precision options are available. Note that the
perturbation equations can be given either in Newtonian or synchronous gauge. In this
thesis we will adopt the synchronous gauge without loss of generality.

A.2 Statistical methods

Cosmology is a unique branch of science in the sense that observations are non-repeatable.
Indeed, we only have one universe to observe, and so we must make the most of this to

1For a comparison of the two, see for example [275].
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extract physical information from observations. To do this requires a good understanding
of statistics and probability.

A.2.1 Bayesian inference

We will follow a Bayesian approach to statistics and probability, which relies on the
following philosophy: the parameters of the theoretical model underlying the physics of
the universe are fundamentally unknown, and we must try to estimate them – i.e. assign
a probability distribution – as best as possible using the available data. In the Bayesian
context the data is fixed, in contrast to the frequentist approach where the parameters
are fixed and the data can be repeated. We will need three quantities when discussing
Bayesian inference, given a set of parameters ϑ and a set of data points d:

• The posterior distribution p(ϑ|d) is the probability of the model parameters being
a certain value, given the observed data. It is the central quantity that needs to be
calculated in cosmology, as it allows us to make predictions about different models.

• The prior distribution p(ϑ) is the probability of the model. This is an essential
part of the Bayesian approach, which describe our beliefs about the model prior to
the experiment. In practice, the prior could be influenced by previous experiments
or by theoretical considerations.

• The likelihood distribution p(d|ϑ) is the probability of the data, given the model
parameters. In general this is constructed as a Gaussian distribution, assuming the
apparatus is subject to random Gaussian noise. The likelihood is also sometimes
written as L(d;ϑ).

• The evidence p(d) =
∫
p(d|ϑ)p(ϑ)dϑ, also called marginal likelihood, is a normal-

isation factor describing the probability of the data. Since it is independent of the
model parameters, it does not play a role in determining the best-fit parameters.
It is however important in the context of Bayesian model selection, as we will see
below.

The above four quantities come together in the fundamental equation of Bayesian
statistics, Bayes’ theorem [276–278]:

p(ϑ|d) = p(ϑ)p(d|ϑ)
p(d)

, (A.1)
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which states that the posterior distribution is proportional to the product of the prior and
the likelihood. The aim of the game, then, is to calculate the likelihood, and therefore
the posterior, in order to find the model parameters corresponding to the maximum
probability.

As we will be dealing with high dimensional likelihoods, it is often convenient to
deal with the one-dimensional posterior distribution for a given model parameter θi,
assuming a total of j parameters. This is obtained by marginalisation, i.e. integrating
the posterior over all other parameters:

p(ϑi|d) =
∫

· · ·
∫

p(ϑ|d)dϑ1 . . . dϑi−1dϑi+1 . . . dϑj. (A.2)

Finally, we will often quote confidence intervals. Generally we will consider 1σ, 2σ
and 3σ (standard deviation), which means the true value of a parameter is within the
interval 68%, 95% and 99.7% of the time for a Gaussian distribution.

A.2.2 Markov-Chain Monte-Carlo methods

When dealing with cosmological data, it can be computationally expensive to calculate
the likelihood [279] which usually takes a non-analytical form. This is exacerbated by a
high parameter dimensionality. Exploring the parameter space efficiently is therefore a
priority when considering Bayesian inference. Indeed, simply drawing a grid including all
parameters, and calculating the likelihood at all points, would be prohibitively expensive
in most cases, due to potential high dimensionality, multi-modality (i.e. the likelihood
has several peaks) or degeneracies between parameters (meaning one parameter might
leave the likelihood unchanged along a particular trajectory in parameter space). All
of these arguments lead to the need for a clever algorithm to determine the posterior.
Here we will focus on Markov Chain Monte Carlo (MCMC) methods, which were first
suggested for cosmology in [280]. An MCMC algorithm is designed to explore a probab-
ility distribution using random sampling (the Monte Carlo part), where each new step
depends only on the previous one (the Markov Chain part). The output of such an
algorithm is a chain, which is a list of steps containing a realisation of the model (i.e. a
list of parameters) and their associated likelihood/posterior probability. It is then simple
to reconstruct the whole distribution – either by considering the density of parameters
in the chains or the associated posterior value directly – and marginalisation does not
require any integration in this case.

The most commonly used algorithm is the Metropolis-Hastings [281, 282] algorithm
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which follows the following simple rules:

1. Select a starting point ϑ(0) within the parameter space.

2. Propose a next step in parameter space ϑ(c). The function responsible for such a
step is called the proposal distribution q(ϑ(0),ϑ(c)) must obey the detailed balanced
condition, meaning that moving back to the starting point is equally likely com-
pared to moving away from it. The proposal distribution is usually chosen to be
Gaussian.

3. Evaluate the posterior at ϑ(c). If the probability at the new point is higher, accept
the new point. If it is lower, calculate the acceptance ratio

α =
p(ϑ(0)|d)
p(ϑ(c)|d)

. (A.3)

Generate a random number µ in the interval [0, 1). Accept the step iff µ ≤ α. In
case of rejection, create a new point in the chain equal to the previous. Either way,
a new point in the chain is created at each step.

4. Return to step 1 until reaching termination condition.

The termination condition in the Metropolis-Hastings algorithm is usually taken to be
convergence. Conceptually, if running several chains for the same model and data, all
chains should eventually reach the same distribution. Formally this is quantified by the
Gelman-Rubin [199] criterion R. It is common to consider chains with R − 1 ≤ 0.01 as
converged.

We implement the MCMC algorithm using the MontePython [196] and cobaya [283]
codes, which interface the Einstein-Boltzmann solver with MCMC algorithms.

A.2.3 Evaluating goodness of fit

Once we have a (marginalised) posterior distribution, which tells us the best-fit para-
meters for our model, an important question still remains: does my model actually fit
the data well? In the Bayesian sense, this question has no absolute answer, and can only
be answered in relation to a different model. That is, we can only say that a model fits
the data better or worse compared to another model.

In the case of a purely Gaussian likelihood, maximising the likelihood/posterior (and
therefore obtaining the best-fit value) corresponds to minimising the chi-squared statistic,



Chapter A: Numerical and statistical methods 187

obtained in the following way:
χ2 ≡ −2 logL. (A.4)

Note that this is only a good estimate of fit for likelihoods close to Gaussian. The chi-
squared can be used to compare two models in the following way: the model with the
smaller minimum chi-squared, and therefore larger maximum likelihood, is a better fit
to the data. This is usually quantified with the ∆χ2 quantity, defined for two models A
and B as

∆χ2 ≡ χ2
min(A)− χ2

min(B). (A.5)

If ∆χ2 < 0, model A is a better fit to the data, and vice versa for ∆χ2 > 0.
Another model comparison approach relies on the evidence. The ratio of probabilities

for models A and B given the data is given by Bayes’ theorem as

p(A|d)
p(B|d)

=
p(A)p(d|A)
p(B)p(d|B)

(A.6)

where p(A) is the prior for model A and p(d|A) is simply the evidence for model A

and accordingly for model B. Assuming we have no prior bias for one given model, the
fraction becomes the Bayes factor

BA,B =
p(d|A)
p(d|B)

, (A.7)

which is used for model selection. Due to the marginalisation needed to obtain the
evidence, the Bayes factor includes both goodness of fit as well as number of parameters
to select a model, following the principle of Occam’s razor. In general, BA,B > 1 implies a
preference for model A and BA,B < −1 prefers model B. Values between −1 < BA,B < 1

lead are inconclusive. A full interpretation of Bayes factor values can be obtained using
Jeffreys’ scale [284].

In order to analyse the chains to compute the above quantities, as well as to produce
plots, we use the GetDist [200] package.



Appendix B

Extra constraints from hybrid dark
sector and ΛCDM models

In this appendix, we provide results for the dataset combinations considered in Chapter 6
for the ΛCDM model. Table B.1 follows the same organisation as Table 6.2, with the res-
ults pertaining to the ΛCDM model for the Pl18, Pl18+SN, Pl18+SH0ES, Pl18+DESI,
Pl18+DESI+SN, Pl18+DESI+SH0ES datasets.

Parameter Pl18 Pl18+SN Pl18+SH0ES Pl18+DESI Pl18+DESI+SN Pl18+DESI+SH0ES

ωb 0.02235± 0.00015 0.02231± 0.00015 0.02264± 0.00014 0.02249± 0.00013 0.02246± 0.00013 0.02265± 0.00013

ωc 0.1202± 0.0014 0.1207± 0.0013 0.1169± 0.0011 0.11817± 0.00094 0.11862± 0.00091 0.11678± 0.00083

100θs 1.04187± 0.00030 1.04182± 0.00029 1.04221± 0.00028 1.04206± 0.00028 1.04203± 0.00028 1.04223± 0.00028

τreio 0.0543± 0.0078 0.0536± 0.0077 0.0591± 0.0079 0.0572± 0.0078 0.0565± 0.0077 0.0595± 0.0078

ns 0.9647± 0.0045 0.9635± 0.0042 0.9729± 0.0039 0.9697± 0.0038 0.9686± 0.0036 0.9733± 0.0035

log 1010As 3.045± 0.016 3.045± 0.016 3.048± 0.016 3.046± 0.016 3.046± 0.016 3.048± 0.016

σ8 0.8118± 0.0074 0.8125± 0.0074 0.8026± 0.0074 0.8066± 0.0071 0.8078± 0.0071 0.8030± 0.0071

H0 67.29± 0.61 67.08± 0.56 68.86± 0.49 68.21± 0.42 68.01± 0.40 68.91± 0.38

Ωm 0.3150± 0.0085 0.3179± 0.0078 0.2944± 0.0062 0.3024± 0.0055 0.3050± 0.0053 0.2936± 0.0047

S8 0.832± 0.016 0.836± 0.015 0.795± 0.013 0.810± 0.012 0.815± 0.012 0.794± 0.011

QSH0ES
DMAP −− 6.25 −− −− 5.76 −−

Table B.1: Observational constraints at a 68% confidence level on the independent and
derived cosmological parameters using different dataset combinations for the ΛCDM
model, as detailed in Section 6.3.1. The value of QSH0ES

DMAP is calculated according to Eq.
(6.4).

We provide a breakdown of the χ2 fit for each model and data combination considered
through a profile likelihood analysis performed with Procoli [206]. In Table B.2, we list
the overall and individual dataset best-fit χ2 values for the ΛCDM model and the hybrid
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Data Model Total χ2 Pl18 DESI SN SH0ES

Pl18 ΛCDM 2766.53 2766.53 - - -
Hybrid 2766.55 2766.55 - - -

Pl18+DESI ΛCDM 2783.32 2768.82 14.50 - -
Hybrid 2780.51 2767.64 12.87 - -

Pl18+DESI+SN ΛCDM 4195.78 2768.03 15.69 1412.06 -
Hybrid 4194.54 2767.28 14.14 1413.12 -

Pl18+DESI+SH0ES ΛCDM 4105.02 2773.33 12.85 - 1318.84
Hybrid 4092.07 2768.53 14.38 - 1309.16

Pl18+SN ΛCDM 4177.11 2766.79 - 1410.32 -
Hybrid 4177.03 2766.65 - 1410.38 -

Pl18+SH0ES ΛCDM 4091.93 2772.62 - - 1319.31
Hybrid 4075.63 2769.23 - - 1306.40

Table B.2: Best-fit χ2-values of overall and individual datasets considered in this work
for the ΛCDM and hybrid models for various likelihood combinations.

model, as detailed in Section 6.3.1.



Appendix C

Constraints on ΛCDM from Planck
PR4 and additional datasets

In this appendix, we provide results from the dataset combinations considered in Chapter
8 for the ΛCDM model. Table C.1 follows the same organisation as Table 8.2, with the
results pertaining to the ΛCDM model for the PR4, PR4+SN, PR4+DESI, PR4+DESI+SN,
PR4+DESI+SH0ES datasets.

Parameter PR4 PR4+SN PR4+DESI PR4+DESI+SN PR4+DESI+SH0ES

ωb 0.02216± 0.00014 0.02213± 0.00013 0.02226± 0.00012 0.02224± 0.00013 0.02232± 0.00012

ωc 0.1198± 0.0011 0.1201± 0.0010 0.11833± 0.00081 0.11861± 0.00080 0.11782± 0.00076

τ reio 0.0525± 0.0072 0.0517± 0.0071 0.0573± 0.0071 0.0564± 0.0070 0.0592+0.0066
−0.0075

ns 0.9625± 0.0040 0.9616± 0.0039 0.9661± 0.0036 0.9654± 0.0036 0.9675± 0.0036

log 1010As 3.037± 0.014 3.036± 0.014 3.045± 0.014 3.043± 0.014 3.048± 0.014

H0 67.19± 0.47 67.06± 0.44 67.86± 0.36 67.74± 0.36 68.12± 0.34

σ8 0.8075± 0.0055 0.8078± 0.0054 0.8062± 0.0057 0.8065± 0.0056 0.8059± 0.0057

Ωm 0.3146± 0.0065 0.3164± 0.0062 0.3053± 0.0048 0.3070± 0.0048 0.3021± 0.0045

S8 0.827± 0.011 0.830± 0.010 0.8133± 0.0090 0.8158± 0.0090 0.8087± 0.0087

Table C.1: Observational constraints at 68% confidence level on the independent and
derived cosmological parameters using all dataset combinations for the ΛCDM model,
as detailed in Section 8.4.1.
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