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Abstract

Cryptocurrency heists have become an increasingly frequent and disruptive phenomenon,
raising concerns about their broader impact on the cryptocurrency market. This thesis uses an
event study approach, using various cryptocurrency heists as case studies to systematically
examine the impact of cryptocurrency heists on the cryptocurrency market. The first study
investigates the impact of cryptocurrency heists on Bitcoin’s market efficiency within the
Adaptive Market Hypothesis (AMH) framework. Using permutation entropy and the
Complexity—entropy causality plane, the study finds that Bitcoin’s efficiency declines
significantly on and immediately after most major cryptocurrency heists, highlighting the
impact of security breaches on Bitcoin market stability and further supporting the notion that
Bitcoin market efficiency evolves in response to changes in the external environment. The
second study examines the bidirectional predictive relationship between Bitcoin price and
investor sentiment using the Cryptocurrency Fear & Greed Index (CFGI). A time-varying
Granger causality analysis around the KuCoin exchange heist reveals that while no
significant feedback loop exists before this heist, a strong sentiment-price interaction emerges
afterwards. This intensified sentiment-price predictive relationship suggests that heightened
uncertainty following a heist amplifies investor reactions, creating price declines and market
panic. The third study extends the analysis to decentralised finance (DeFi), assessing liquidity
shocks and spillover effects by low-frequency price impact measures and the Quantile VAR
model from six major DeFi heists. Findings indicate that while affected platforms’ native
DeFi tokens experience severe liquidity declines, spillover effects on mainstream DeFi tokens
remain limited, suggesting some degree of DeFi market stability. This thesis contributes to
the literature by demonstrating that cryptocurrency heists significantly impact market stability
and investor behaviour. The findings emphasise the importance of robust security measures,
crisis management, and governance improvements to mitigate risks in the cryptocurrency

market.
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Chapter 1 Thesis Introduction

1.1 Thesis Background

Cryptocurrency is a digital asset designed to function as a medium of exchange, using
cryptographic technology to secure transactions, control the creation of new units, and verify
asset transfers (Corbet et al.,, 2019a). Unlike traditional financial systems that rely on
centralised institutions such as banks and governments, cryptocurrency operates on
decentralised networks, primarily using blockchain technology (Dorofeyev et al., 2018;
Ghosh et al., 2020; Hérdle et al., 2020). This decentralisation offers several advantages,
including lower transaction costs, enhanced privacy, global accessibility, and financial
inclusion for individuals without access to traditional banking services (Chen & Bellavitis,
2020; Ozili, 2022; Hayes, 2024). For example, in countries with an underdeveloped banking
infrastructure, individuals can use cryptocurrencies to send and receive payments without
relying on traditional banks. In Venezuela, where hyperinflation has severely devalued the
national currency, many citizens have turned to Bitcoin and other cryptocurrencies to
preserve wealth and conduct transactions beyond the reach of government-imposed capital

controls (Mills, 2024).

Since Bitcoin was first introduced by Satoshi Nakamoto (2008), more than 9,000
cryptocurrencies have emerged, including Ethereum, Ripple, Binance Coin, and Solana. As of
2024, the total market capitalisation of cryptocurrencies has reached approximately $3.18
trillion (CoinMarketCap, 2024). Over the past decade, academic research on cryptocurrency
has expanded rapidly, exploring various aspects of this emerging financial ecosystem. Corbet
et al. (2019a) conducted a comprehensive review of cryptocurrency studies published
between 2014 and 2018 and found that market efficiency had received the greatest attention,
accounting for 26 of the 104 papers reviewed. This was followed by research on the
cryptocurrency structure (18 papers), as well as studies on price dynamics and diversification,
which comprised 12 and 11 papers, respectively. More recently, Almeida and Gongalves
(2024) classified the body of research on the microstructure of the cryptocurrency market up
to 2021, showing that topics such as market efficiency, liquidity, volatility, uncertainty, price
behaviour, connectedness, and investment attributes have continued to attract significant
academic interest. This sustained attention is largely driven by the inconsistent and often
contradictory findings across studies regarding the microstructural characteristics of the

cryptocurrency market.



The analysis of cryptocurrency’s market efficiency is predominantly anchored in the
framework of the Efficient Market Hypothesis (EMH). The EMH posits that asset prices fully
and immediately reflect all available information (Fama, 1970). EMH is commonly classified
into three forms according to the type of information incorporated into prices: the weak form,
which states that prices reflect all historical price and return information; the semi-strong
form, which holds that prices adjust rapidly to all publicly available information; and the
strong form, which asserts that prices fully incorporate both public and private (insider)
information. Early evidence generally supports a high level of efficiency in most developed
markets, where returns are generally found to be largely unpredictable based on past price
information (Lim, 2007; Hull & McGroarty, 2014; Rizvi et al., 2014; Ali et al., 2018). By
contrast, studies focusing on emerging markets report a weak form of efficiency, suggesting
greater return predictability and slower information incorporation (Huang, 1995; Lee et al.,

2001; Cajueiro & Tabak, 2004; Jin, 2006; Hoque et al., 2007).

In the cryptocurrency market, Urquhart (2016) applied a series of randomness tests and
demonstrated that the Bitcoin market was inefficient between August 1, 2010, and July 31,
2016, although such inefficiencies tended to diminish over time. Similarly, Kang et al. (2022)
found that speculative trading contributed significantly to Bitcoin’s inefficiency. A range of
studies employing multifractality analysis of time series (Bariviera, 2017; Alvarez-Ramirez et
al., 2018; Al-Yahyaee et al., 2018; Jiang et al., 2018; Takaishi, 2018; Yi et al., 2022; Kakinaka
& Umeno, 2022) also suggest that the Bitcoin market is inefficient. However, some evidence
indicates weak-form efficiency. Nadarajah and Chu (2017) and Tiwari et al. (2018) reported
that Bitcoin may exhibit weak-form efficiency, while Zargar and Kumar (2019) found that
low-frequency Bitcoin returns followed a memory-less random process during 2013-2018.
Nevertheless, they cautioned that traders could still obtain abnormal returns through high-
frequency speculative strategies. Overall, these conflicting findings indicate that Bitcoin’s
market efficiency is not static but evolves in response to changes in market conditions.
Differences in methodological approaches, sample periods, and market environments

contribute to varying empirical results across studies.

This has prompted scholars to study market efficiency from a dynamic perspective. Khuntia
and Pattanayak (2018), Stosic et al. (2019), and Khursheed et al. (2020) showed that the
efficiency of Bitcoin and other major cryptocurrencies fluctuates between efficient and
inefficient states over time, with efficiency tending to deteriorate during periods of market

turbulence and to improve under more stable conditions. In addition, Mensi et al. (2019a,
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2019b, 2019¢c) demonstrated that inefficiency is more pronounced when the cryptocurrency
market is declining, while it appears to subside during bullish phases. Mokni et al. (2024)
employed the adjusted market inefficiency magnitude (AMIM) metric and a quantile
regression model to further confirm the time-varying behaviour of Bitcoin’s market efficiency.
Existing studies have also identified several key factors that influence the evolution of market
efficiency. For example, improvements in liquidity (Brauneis & Mestel, 2018; Wei, 2018;
Al-Yahyaee et al., 2020; Takaishi & Adachi, 2020; Mokni et al., 2024), the development of
derivatives markets (Kochling et al., 2019; Ruan et al., 2021), and strengthened regulatory
oversight (Alexander & Heck, 2020) have all been shown to enhance the efficiency of the
Bitcoin market. Therefore, market efficiency should be understood from a dynamic rather

than a static perspective.

Similarly, the liquidity of the cryptocurrency market has continued to receive sustained
attention from scholars. Liquidity represents one of the fundamental attributes of financial
markets, reflecting the ease with which assets can be traded without generating significant
price movements. A liquid market supports efficient price discovery, reduces trading frictions,
enables effective risk sharing, and strengthens investor confidence (Amihud & Mendelson,
1986; Pastor & Stambaugh, 2003). In contrast, illiquidity tends to amplify pricing deviations,
heighten trading frictions, and, in extreme cases, contribute to systemic vulnerabilities
(Brunnermeier & Pedersen, 2009). Consequently, liquidity has become a central dimension
for understanding market quality, return dynamics, and investor behaviour (Chordia et al.,
2000). A substantial body of studies has examined liquidity through the lens of information

asymmetry, which is regarded as a key determinant of trading conditions.

Akerlof (1978) proposed that when one party possesses superior information, adverse
selection problems arise, discouraging uninformed participants from trading, thereby
reducing market activity and depth. Extending this insight to financial markets, Grossman
and Stiglitz (1980) argued that information can never be fully reflected in prices, as the cost
of acquiring information ensures a persistent imbalance between informed and uninformed
traders. This informational disparity generates uncertainty for less-informed traders, causing
them to trade more cautiously and withdraw liquidity from the market. Kyle (1985) further
formalised the strategic interaction between informed and uninformed traders, showing that
informed traders exploit their informational advantage gradually to avoid revealing it, while
uninformed traders face higher valuation uncertainty and reduce their trading aggressiveness.

This behaviour slows the incorporation of information into prices and diminishes the
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willingness of uninformed traders to supply liquidity. Glosten and Milgrom (1985) directly
linked information asymmetry to liquidity provision by demonstrating that market makers
widen spreads to protect themselves against losses when trading with better-informed
investors. As information asymmetry increases, market makers require greater compensation

for adverse selection risk, raising trading costs and reducing liquidity.

Collectively, these findings show that information asymmetry reduces the willingness of
uninformed participants to trade, increases the cost of supplying liquidity, and ultimately
weakens market liquidity. Empirical evidence from traditional markets demonstrates that
information disparities between informed and uninformed traders are closely linked to
liquidity fluctuations, market participation, and asset price dynamics (Stoll, 1989; Hasbrouck,
1991; Brennan & Subrahmanyam, 1996; Huang & Stoll, 1997; Chordia et al., 2000; Easley et
al., 2002; Pastor & Stambaugh, 2003). These studies collectively underline that liquidity
conditions are strongly shaped by the information environment and that information

asymmetry plays an integral role in explaining variations in market functioning.

Information asymmetry is particularly pronounced in the cryptocurrency market owing to
decentralisation, limited disclosure requirements, and the anonymity of market participants
(Othman et al., 2019; Park & Chai, 2020; Alfieri et al., 2025). The fragmented nature of
trading across numerous exchanges further contributes to information frictions, which can
lead to pricing discrepancies and arbitrage opportunities (Makarov & Schoar, 2020).
Evidence also suggests that informed trading plays a measurable role in cryptocurrency
pricing, as information-based trading components have been found to correlate positively
with return volatility and negatively with several liquidity metrics (Tini¢ et al., 2023).
Moreover, information asymmetry has been shown to weaken liquidity in token issuance
markets, particularly during periods of security shocks such as cyberattacks, with tokens
issued on the same blockchain as the attacked asset being disproportionately affected
(Manahov & Li, 2025c). The majority of empirical findings further suggest that
cryptocurrencies exhibit lower liquidity and more fragile trading conditions relative to
traditional financial assets (Loi, 2018; Corbet et al., 2019a; Smales, 2019; Trimborn et al.,
2020). Taken together, this literature establishes information asymmetry as a crucial
theoretical foundation for understanding the liquidity characteristics of the cryptocurrency

market.



As the cryptocurrency has emerged as a new asset class with a rapidly expanding range of
cryptocurrencies, scholars have increasingly examined the level of interconnectedness
between cryptocurrencies and traditional financial assets, as well as across cryptocurrencies
themselves, to understand patterns of risk transmission and spillover effects. The
interconnectedness among assets is not only a reflection of co-movements but also reveals
how information and shocks propagate across markets. Hasbrouck (1995) introduced a
framework to quantify the contribution of different markets to price discovery, demonstrating
that some markets lead in incorporating information while others follow. This highlights that
price discovery is not confined to individual markets; rather, it is a collective process shaped
by the interaction and relative informational dominance of different trading venues. As a
result, the degree of connectedness between markets reflects the efficiency of cross-market
information transmission and the level of market integration (Baele, 2005). While price
discovery models explain how information diffuses across markets, they do not fully capture
the transmission of shocks and volatility. Diebold and Yilmaz (2012) later formalised this
notion by proposing a connectedness framework to measure the extent and direction of return
and volatility spillovers across markets, offering a broader perspective on cross-market
interdependence. These approaches have since been widely used to assess the degree of
interdependence between financial markets (Samarakoon, 2011; Dhanaraj et al., 2013; Zhang
et al., 2017; Raddant & Kenett, 2021; Hoque et al., 2024), offering a useful lens through

which to examine cryptocurrency market linkages.

Research examining interconnectedness within cryptocurrency markets generally provides
evidence of return and volatility spillovers across major cryptocurrencies. Before 2017,
Bitcoin’s price dynamics appeared relatively isolated, with limited interaction with other
cryptocurrencies (Zigba et al., 2019). However, Kumar and Anandarao (2019) found that
spillover effects strengthened substantially after 2017 and were further amplified following
major market events such as Chinese regulatory interventions and the creation of Bitcoin
Cash in 2018 (Zeng et al., 2020; Karimi et al., 2023). The later studies suggest a high level of
co-movement and contagion within the market, indicating that shocks in one cryptocurrency
can rapidly transmit to others (Corbet et al., 2018b; Tiwari et al., 2020; Shahzad et al., 2021).
More recent findings indicate that Ethereum has increasingly assumed a leading role as a
transmitter of volatility within the cryptocurrency network, frequently driving spillover
effects across the market (Kumar et al., 2022). Interestingly, smaller-capitalisation

cryptocurrencies have also been shown to exert influence on major cryptocurrencies (Huynh



et al., 2020), suggesting a non-hierarchical and evolving dependency structure within the
cryptocurrency network. However, the degree of interconnectedness among cryptocurrencies
is not consistent across studies. Some evidence indicates that major cryptocurrencies exhibit
weak correlations and lack a common long-run trend (Gil-Alana et al., 2020; Kostika &
Laopodis, 2020), and no clear lead—lag relationship between Bitcoin and Ethereum has been
identified during certain periods (Sifat et al., 2019). Consequently, an increasing number of
scholars recognise that cryptocurrency connectedness is time-varying, strengthening during
periods of market stress and weakening in calmer market conditions (Antonakakis et al., 2019;

Aslanidis et al., 2019).

Studies exploring the linkages between cryptocurrencies and traditional financial assets
present mixed evidence (Adelopo & Luo, 2025). Kalyvas et al. (2021) identified positive
return co-movements between cryptocurrencies and technology or clean energy indices,
especially when market sentiment strengthens. Spillover effects from cryptocurrencies to
commodities and equity markets have also been documented, with Bitcoin influencing
precious metals, equities, and certain currency markets (Kurka, 2019; Rehman, 2020; Elsayed
et al.,, 2022). Evidence further shows that cryptocurrencies can both transmit and receive
information flows from global markets. For example, the US oil index acts primarily as a
spillover recipient, whereas the European oil index serves as a source of information to the
cryptocurrency market (Huynh et al, 2022). However, other studies characterise
cryptocurrencies as relatively segmented from traditional financial markets. For example,
Aslanidis et al. (2019) reported weak or insignificant correlations between cryptocurrencies
and conventional assets, including bonds, equities, gold, and broad financial indices. No
cointegration relationship has been identified in many cases (Corbet et al., 2018b; Gil-Alana
et al., 2020), supporting the view that the cryptocurrency may serve as a potential
diversification instrument, particularly for commodity risk (Milunovich, 2018; Giudici &

Abu-Hashish, 2019; Huynh et al., 2024).

Beyond market efficiency, liquidity, and interconnectedness, several other research directions
have contributed to a broader understanding of the cryptocurrency market. A widely
established finding is that cryptocurrencies exhibit pronounced volatility (Cheung et al., 2015;
Wu et al., 2022), with substantial heterogeneity across cryptocurrencies in terms of return
behaviour, regime dynamics, and sensitivity to external shocks (Bejaoui et al., 2020),
particularly during periods of geopolitical tension or major news events (Aysan et al., 2019;

Katsiampa, 2019b; Cheng & Yen, 2020). Building on this, scholars have sought to explain
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and predict return patterns in the cryptocurrency market. Evidence shows that various
measures of market uncertainty and risk, such as economic policy uncertainty (Demir et al.,
2018; Cheng & Yen, 2020), volatility indices (Panagiotidis et al., 2019), and size and reversal
factors (Shen et al., 2020), offer greater explanatory and predictive power than traditional
asset-pricing models. There is also evidence that simple price-based indicators, including
previous closing prices and recent high prices, possess predictive power for future returns
(Yang & Zhao, 2021). These return dynamics have been linked to speculative behaviour, with
several studies documenting the presence of price bubbles in the cryptocurrency market,
reinforcing the view that price formation is often driven by speculation rather than
fundamentals (Phillips et al., 2011, 2015b; Baek & Elbeck, 2015; Corbet et al., 2018a; Fry,
2018; Hafner, 2020). What is more, some studies have examined the investment properties of
cryptocurrencies. Findings suggest that they may provide diversification benefits relative to
traditional financial assets (Corbet et al., 2018b; Giudici & Abu-Hashish, 2019; Kurka, 2019;
Gil-Alana et al., 2020), particularly for cryptocurrencies with higher market capitalisation and
liquidity (Wang et al., 2019). In certain cases, Bitcoin has also demonstrated hedging
capabilities against geopolitical risk (Aysan et al., 2019; Kurka, 2019) and inflation
expectations (Blau et al., 2021).

Despite significant progress in understanding the financial characteristics of the
cryptocurrency market, one critical dimension remains notably underexplored: the impact of
hacking events on market functioning. Unlike traditional financial systems, cryptocurrency
trading operates under a decentralised and irreversible structure with weak regulatory
oversight and limited investor protection, rendering the market highly vulnerable to security
breaches and cyberattacks (Corbet et al., 2019a). Once a security breach or theft occurs, the
stolen assets are typically irretrievable, which can rapidly erode investor confidence and
trigger spillover effects across tokens and trading platforms (Manahov & Li, 2025a, 2025b).
As the cryptocurrency market has expanded rapidly, security risks have intensified,
particularly with the growing frequency of cryptocurrency heists (Barnes, 2018; Gandal et al.,
2018; Corbet et al., 2020a; Corbet, 2021; Chen et al., 2023). These incidents involve hackers
exploiting vulnerabilities in cryptocurrency exchanges, wallets, and decentralised finance
(DeFi) platforms to steal large amounts of digital assets. One of the most well-known cases is
the Mt. Gox exchange theft in 2014. This was the first large-scale hacking attack on a
cryptocurrency exchange and remains the largest Bitcoin theft suffered by an exchange to

date. The platform had been losing funds since 2011, but the theft was only discovered in



February 2014. Over the years, hackers stole 100,000 Bitcoins from the exchange itself and
750,000 Bitcoins from its customers. At that time, these Bitcoins were valued at $470 million,
but today, their value would be approximately $81.3 billion. Shortly after the hack, Mt. Gox
exchange entered liquidation proceedings (Hunter, 2024). Figure 1.1 shows that since 2021,
the frequency of cryptocurrency heists has significantly increased, with a particular focus on
attacks targeting DeFi platforms. For instance, before 2021, the average number of
cryptocurrency heists per month did not exceed 10. However, since 2021, this figure has
doubled, reaching an average of 20 cryptocurrency heists per month, with attacks on DeFi
platforms accounting for more than half of them. In July 2023 alone, the number of
cryptocurrency heists surged to nearly 50, with almost 30 specifically targeting DeFi
platforms. To date, hackers have stolen over $12 billion in funds. If hackers were to retain all
the cryptocurrency they had stolen and cash it out, their wealth would amount to

approximately $50 billion (Tsihitas, 2025).

Figure 1.1: Number of cryptocurrency heists between 2011 and 2024

Total # of Heists Actual Amount Stolen (USD) Equivalent Stolen Today (USD)
1,033 12,881,461,261 50,854,151,552
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During the early stage of my doctoral research, I co-authored a study with one of my
supervisors that examined how cryptocurrency heists affected the performance of tourism
tokens (Manahov & Li, 2024). This preliminary work provided the empirical evidence that
hacking incidents significantly influence investor behaviour within a specific segment of the
cryptocurrency market. However, as I expanded this study and reviewed the wider literature,
it became apparent that academic attention to cryptocurrency heists remained limited,
fragmented, and insufficiently integrated into mainstream discussions of cryptocurrency
market microstructure. Existing studies predominantly examine market behaviour under
normal market conditions or during macroeconomic or geopolitical shocks, yet offer limited
insights into how extreme, endogenous events such as cryptocurrency heists disrupt market
functioning. These cryptocurrency heists are fundamentally different from external shocks
because they directly undermine trust in the decentralised financial system and challenge the
security of the decentralisation system. Existing studies have primarily focused on short-term
price responses to hacking incidents (Corbet et al., 2020a; Hu et al., 2020; Grobys, 2021;
Chen et al., 2023; Umar, 2021, 2025), with limited attention to their broader implications for
market efficiency, liquidity, and the transmission of shocks across cryptocurrencies and
platforms. A deeper examination of these mechanisms is therefore essential to understand
how security breaches reshape market functioning and to identify vulnerabilities within the
cryptocurrency ecosystem. This research gap forms the starting point of this thesis and

motivates the development of the research agenda explored in the subsequent chapters.
1.2 Thesis Motivation

The growing prevalence of cryptocurrency heists has raised questions about how security
vulnerabilities within decentralised financial ecosystems impact market behaviour. Given that
cyberattacks have become a frequent occurrence in the cryptocurrency market, understanding
their effects extends beyond the realm of security concerns, becoming an important issue that
influences market dynamics, asset pricing, liquidity, and cross-platform spillover effects.
These incidents provide a unique lens through which we can examine how the cryptocurrency
market responds to endogenous shocks originating from within the system. However, despite
the increasing frequency and scale of cryptocurrency heists, there is still limited empirical
evidence in the academic literature regarding the extent and scope of their impact. This
research gap highlights the need for a more comprehensive investigation into the financial

consequences of security breaches in the cryptocurrency market.



This thesis focuses on Bitcoin due to its dominant position in the cryptocurrency market, high
liquidity, and role as a benchmark asset that can better reflect overall cryptocurrency market
dynamics compared to smaller, less liquid tokens (Antonakakis et al., 2019). Most scholars
classify Bitcoin as a financial asset rather than a currency. For example, Luther and White
(2014) argued that Bitcoin’s price instability makes it unsuitable as a payment method.
Similarly, Yermack (2024) found that Bitcoin fails to fulfil the fundamental functions of a
currency, namely serving as a medium of exchange, a store of value, and a unit of account.
Bitcoin’s high volatility introduces significant short-term risks compared to traditional fiat
currencies. Baek and Elbeck (2015) further contended that Bitcoin is better understood as a
financial asset, given its speculative nature and price being largely driven by market

participants rather than intrinsic value.

Given Bitcoin’s classification as a financial asset, understanding its market efficiency
becomes particularly important. Market efficiency determines whether asset prices accurately
reflect all available information, which is essential for price discovery, risk management, and
investment decision-making (Fama, 1970; Malkiel, 2003). As Corbet et al. (2019a) have
stated, Bitcoin’s market efficiency has been one of the most widely studied topics in the field
of cryptocurrency research. Most empirical studies indicate that Bitcoin’s market exhibits
inefficiencies (Urquhart, 2016; Bariviera, 2017; Alvarez-Ramirez et al., 2018; Al-Yahyaee et
al., 2018). However, as the market matures through improvements in liquidity, the adoption
of derivatives, and increased regulatory oversight, the Bitcoin market has the potential to
become more efficient over time (Brauneis & Mestel, 2018; Wei, 2018; Shanaev et al., 2020;
Takaishi & Adachi, 2020; Shynkevich, 2021). Therefore, based on the current empirical
findings, we can infer that Bitcoin’s market efficiency is not fixed but rather evolves in
response to changes in the external environment. While Bitcoin market efficiency has been
widely studied, the impact of cryptocurrency heists on its efficiency remains underexplored.
Analysing Bitcoin’s market efficiency following such incidents can help us better understand
their effects on market dynamics, providing investors with clearer investment insights while
offering valuable guidance for regulators in formulating more effective policies to maintain

market stability.

Existing literature on Bitcoin’s market efficiency has primarily examined it through the lens
of the EMH. However, a key limitation of this approach is that it views market efficiency as a
static concept, assuming that markets are either fully efficient or entirely inefficient, which is

inconsistent with the constantly evolving market environment and investor behaviour. As
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previous empirical studies have shown, Bitcoin’s market efficiency varies under different
market conditions. Therefore, market efficiency should be regarded as a dynamic concept that
adapts to changing conditions (Lo, 2004). Based on this assumption, it is essential to analyse
how Bitcoin’s market efficiency evolves before and after cryptocurrency heists from a
dynamic perspective to provide a more comprehensive assessment of their impact on market

efficiency.

If Bitcoin’s market efficiency is affected by cryptocurrency heists, then it is essential to
further explore the potential driving factors behind these efficiency changes in the context of
such incidents. Behavioural finance theory (Shleifer, 2000; Barberis & Thaler, 2003) suggests
that during extreme market incidents, investors may engage in panic-driven trading,
exacerbating market inefficiencies. Previous studies have shown that investor sentiment plays
a crucial role during black swan events in financial markets (Fisher & Statman, 2000;
Zouaoui et al., 2011; Chundakkadan & Nedumparambil, 2022; Hsu & Tang, 2022). It is
reasonable to hypothesise that sentiment is also a key factor influencing Bitcoin’s market
efficiency following cryptocurrency heists. Fear-driven or panic-induced emotional reactions
can exacerbate inefficiencies and prolong market instability. For instance, panic selling may
lead to excessive volatility and cause prices to deviate from their fundamental values (Baker
& Ricciardi, 2014; Lal et al., 2024). Additionally, sentiment-driven trading reduces liquidity
(Chiu et al., 2018; Dunham & Garcia, 2021) as investors hesitate to participate in the market
during heightened uncertainty, further impairing efficiency. In such an environment,
misinformation and herd behaviour can spread rapidly, distorting price discovery and
delaying market stabilisation. Given the significant influence of sentiment on trading
behaviour, investigating the interaction between price movements and investor sentiment

during cryptocurrency heists is essential.

Finally, considering that DeFi has become a crucial component of the cryptocurrency market',
it is important to acknowledge that while decentralisation may improve financial efficiency, it
also introduces significant vulnerabilities to security breaches. In recent years, hacking
attacks have increasingly targeted DeFi platforms, yet the existing literature has paid limited
attention to how the DeFi ecosystem responds to such incidents. Therefore, broadening the
analytical scope beyond Bitcoin is necessary to investigate the potential repercussions of

cryptocurrency heists on the DeFi ecosystem. The spillover effects posit that when a shock

! According to data provided by Statista (2025), as of February 2025, DeFi accounts for 3.6% of the total
cryptocurrency market cap.

11



occurs in one market or asset, it may transmit through channels such as price linkages, capital
flows, and investor sentiment to other related markets or assets, thereby generating broader
systemic impacts (Diebold & Yilmaz, 2012). In the DeFi context, although individual
platforms are technically independent, they are tightly interconnected through shared investor
bases, similar smart contract protocols, and cross-platform liquidity pools. This structural
interdependence creates a high potential for contagion effects. When a DeFi platform
experiences a critical security breach or a large-scale cryptocurrency heist, the resulting
turmoil may not only cause severe fluctuations in the price of its native DeFi token but also
undermine investor confidence in the broader DeFi ecosystem. Such fear-driven reactions
may trigger panic selling and liquidity withdrawals across other DeFi platforms, potentially

transforming a platform-specific incident into a risk affecting the entire DeFi market.

Therefore, by analysing how major DeFi heists (i.e. cryptocurrency heists targeting DeFi
platforms) affect both platform-specific token (DeFi token) performance and the broader
DeFi market, it could assess whether these incidents generate systemic risks beyond the
directly affected platforms. Since DeFi operates without traditional financial intermediaries,
understanding its resilience to security breaches is essential for evaluating its long-term

sustainability and regulatory needs.
1.3 Aims and Objectives

This thesis aims to systematically investigate the impact of cryptocurrency heists on the
cryptocurrency market, including market efficiency, investor sentiment, and risk contagion
among different crypto assets. Based on the findings, this thesis will also explore potential
regulatory measures to mitigate the adverse effects of cryptocurrency heists, thereby
enhancing market stability and investor confidence, and providing policy guidance for

building a more secure and sustainable cryptocurrency ecosystem.

The first study (in Chapter 2) of this thesis examines how cryptocurrency heists influence
Bitcoin’s market efficiency. Within the Adaptive Market Hypothesis (AMH) framework, this
chapter analyses the twelve largest cryptocurrency heists (Mt. Gox, Coincheck, KuCoin,
PancakeBunny, Poly Network, Bitmart, Wormhole, Ronin Network, Beanstalk, Nomad,
Binance and FTX) and their effects on Bitcoin’s market efficiency. In contrast to the EMH,
which treats market efficiency as a static concept, the AMH views market efficiency as
dynamic and evolving in response to external shocks and changes in investor behaviour.

Therefore, it is more suitable for examining the impact of unexpected incidents such as
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cryptocurrency heists on Bitcoin’s market efficiency. This chapter uses the permutation
entropy and the Complexity—entropy causality plane to assess changes in Bitcoin’s market
efficiency the day before, the day of, and the day after the cryptocurrency heist. The findings
indicate that Bitcoin’s market efficiency declines significantly on the day of and immediately
following these cryptocurrency heists, characterised by reduced permutation entropy and
increased complexity. Furthermore, the chapter reveals that tokens directly targeted by theft
experience even greater efficiency losses compared to Bitcoin. This suggests that investor
attention is disproportionately drawn to affected tokens, amplifying their volatility while
causing a relatively smaller impact on Bitcoin’s efficiency. These results underscore the
importance of market stability measures and enhanced security protocols to mitigate the

disruptive effects of cryptocurrency heists.

The second study (in Chapter 3) of this thesis investigates the bidirectional predictive
relationship between Bitcoin price and market sentiment in the context of cryptocurrency
heists from a behavioural finance perspective. Using the Cryptocurrency Fear & Greed Index
(CFGI) as a proxy for investor sentiment, this study applies a time-varying Granger causality
test to analyse the predictive relationship between Bitcoin price and sentiment before and
after the KuCoin exchange heist (large amounts of Bitcoin stolen). The results show that there
is no statistically significant bidirectional predictive relationship between Bitcoin price and
CFGI 90 days before the KuCoin exchange heist. However, within 90 days of the KuCoin
exchange heist, a strong feedback loop emerges, where CFGI fluctuations statistically
significantly influence Bitcoin price movements and vice versa. This intensified predictive
relationship suggests that heightened uncertainty amplifies investor reactions, potentially
creating a cycle of price declines and market panic. Additionally, this chapter finds that the
bidirectional predictive relationship between Bitcoin price and CFGI does not always hold
after cryptocurrency heists. Only cryptocurrency heists that directly impact Bitcoin exhibit a
strong sentiment-price feedback mechanism, whereas those targeting other crypto assets
display a weaker predictive relationship. This may be attributed to CFGI primarily measuring
sentiment within the Bitcoin market, making it less reflective of fluctuations in other
cryptocurrencies. These findings underscore the importance of understanding market
sentiment dynamics during periods of heightened uncertainty, as they play a crucial role in
shaping price movements and investor behaviour. Finally, this chapter also employs a TVP-
VAR-based connectedness approach to examine the impact of CFGI volatility during the

KuCoin exchange heist. The results indicate that CFGI fluctuations have a weaker influence
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on other cryptocurrencies, such as Ethereum and Binance Coin, than on Bitcoin. This
suggests that the effects of CFGI volatility remain primarily confined to the Bitcoin market,
with minimal impact on other cryptocurrency markets during the KuCoin exchange heist. As
a result, while investors can use CFGI to make short-term trading decisions for Bitcoin
during Bitcoin-specific heists, its applicability to other cryptocurrencies may be limited.
Relying solely on CFGI may lead investors with diversified cryptocurrency portfolios to draw

misleading conclusions, potentially affecting the effectiveness of their investment strategies.

The third study (in Chapter 4) of this thesis expands the analysis beyond Bitcoin to examine
the impact of cryptocurrency heists on the DeFi ecosystem. This chapter investigates six
major DeFi heists in 2022 (Qubit Finance, Ronin Network, Beanstalk, Maiar Exchange,
Binance and Mango Markets) and their effects on the liquidity of the stolen platforms’ native
DeFi tokens and overall DeFi market stability. Using low-frequency price impact measures
(the Amihud illiquidity ratio, the Amivest liquidity ratio, and the Kyle and Obizhaeva
estimator) and the Quantile VAR model (QVAR model), the analysis reveals that the liquidity
of stolen platforms’ native DeFi tokens declines sharply after a DeFi heist. At the same time,
the level of interconnectedness among mainstream DeFi tokens is significantly higher than
that between the stolen platform’s native DeFi token and mainstream DeFi tokens. This
indicates that the volatility spillover effect from the stolen platform’s native DeFi token to
mainstream DeFi tokens is relatively limited. Despite the severe disruption experienced by
the affected platform, the overall DeFi market has remained relatively stable. However, if
investor confidence in DeFi security deteriorates, for example in the event of attacks targeting
DeFi governance mechanisms, market-wide volatility may increase, posing risks to the entire
DeFi ecosystem. These findings emphasise the importance of robust security measures,
transparency in crisis management, and continuous improvements in DeFi governance to

sustain market stability.
1.4 Contributions and Limitations

This thesis makes several significant contributions to the literature on cryptocurrency markets,
particularly in the context of cryptocurrency heists and their broader implications. First, it
provides a systematic examination of how cryptocurrency heists impact Bitcoin’s market
efficiency, an area that has remained largely underexplored. While prior studies have
primarily assessed Bitcoin’s efficiency through the lens of the EMH, this thesis adopts a

dynamic framework based on the AMH to capture the evolving nature of market efficiency
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before and after cryptocurrency heists. By employing permutation entropy and Complexity—
entropy causality plane, this thesis empirically demonstrates that Bitcoin’s efficiency
deteriorates significantly during most cryptocurrency heists. This finding further indicates
that Bitcoin market efficiency is dynamically changing based on the market conditions, and

highlights the disruptive impact of security breaches on market stability.

Changes in investor sentiment can influence investor behaviour, potentially leading to
fluctuations in market efficiency. Therefore, this thesis further extends its analysis to investor
sentiment, representing a critical yet underexplored factor in understanding the bidirectional
predictive relationship between price and sentiment during extreme market incidents. By
using CFGI to examine the bidirectional predictive relationship between Bitcoin price and
investor sentiment, this thesis finds that heists targeting Bitcoin amplify the predictive
relationship between sentiment and Bitcoin price dynamics. The heightened uncertainty
following such heists strengthens the feedback loop between CFGI fluctuations and Bitcoin
price movements, creating a cycle of falling prices and rising panic sentiment. However, this
sentiment-price feedback loop appears to be primarily confined to Bitcoin, with limited
impact on other major cryptocurrencies. This finding suggests that although the CFGI
provides useful insights into Bitcoin price movements during crisis incidents, its applicability
to other cryptocurrencies may be limited. This highlights the importance for investors of not
relying solely on a single sentiment indicator. Instead, they should take into account the
differences in construction methodologies and emphasis across various sentiment measures,
and adopt a more comprehensive approach by combining multiple indicators to capture shifts

in market sentiment better.

Another key contribution of this thesis is its expansion of the analysis beyond Bitcoin to the
DeFi ecosystem, a rapidly growing sector that has increasingly become a target for hacking
attacks. While existing literature has largely focused on DeFi’s potential, regulation, and risk-
return characteristics, little attention has been given to how security breaches affect its
liquidity and stability. This thesis fills this gap by investigating major DeFi heists in 2022 and
their effects on both the liquidity of stolen platforms’ native DeFi tokens and the broader
DeFi market. The results show that although DeFi platforms are vulnerable to hacking attacks,
such security risks are often localised in nature. In particular, attacks targeting smaller DeFi
projects tend to have a limited impact on the broader DeFi ecosystem. However, the results
also show a high level of connectivity between mainstream DeFi platforms. When

mainstream DeFi platforms are compromised, the consequences can trigger widespread
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market contagion. Therefore, to prevent such systemic risks, it is essential to strengthen
security mechanisms, improve governance structures, and enhance the transparency of crisis
management. These measures are crucial for reducing the likelihood of DeFi-related attacks

and maintaining investor confidence in the market.

In addition to its empirical contributions, this thesis advances academic knowledge in three
key dimensions. First, it systematically reviews and synthesises major cryptocurrency heists
and conceptualises such security breaches as internally rooted shocks with externally
disruptive characteristics. This introduces a novel analytical perspective that differs from
traditional studies focusing on macroeconomic or policy shocks. By integrating market
microstructure theory with behavioural finance, the thesis provides a comprehensive
explanation of how security incidents influence market efficiency, investor sentiment,
liquidity, and risk transmission mechanisms. Second, this thesis integrates a variety of
analytical tools in terms of methodology. It not only adopts commonly used event study
methods, Granger causality tests, and liquidity indicators, but also introduces models and
methods that are less commonly used in security event analysis. For example, it introduces
methods such as permutation entropy and the Complexity—entropy causality plane in market
efficiency analysis to more sensitively capture the dynamic changes in efficiency under the
impact of security events, thus providing a methodological supplement to the study of market
reactions under extreme events. Third, this thesis offers new insights into risk transmission by
uncovering the mechanisms through which security breaches propagate within the DeFi
ecosystem. By distinguishing between the strong internal interconnectedness of mainstream
DeFi tokens and the comparatively weaker spillover effects from peripheral DeFi tokens to
the mainstream, the findings show that project heterogeneity and the presence of mainstream
DeFi tokens help to localise the impact of hacking incidents and mitigate disruption.
However, the results also reveal that contagion can intensify when compromised DeFi
platforms share similar governance mechanisms with other platforms, amplifying market
reactions. These findings underscore the importance of robust governance frameworks and
security design for preserving stability in the rapidly evolving DeFi landscape, and they

deepen our understanding of risk diffusion mechanisms in the DeFi market.

Despite these contributions, this thesis has several limitations. First, the study focuses on
selected cryptocurrency heists, meaning that its findings may not be fully generalisable to all
security breaches within the cryptocurrency market. The selected cases primarily involve

well-known heists with large-scale thefts, while smaller-scale hacking incidents or internal
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fraud remain underexplored. Different types, scales, and degrees of cryptocurrency heists
may also influence market reactions differently, yet they are not comprehensively examined
in this study. Second, the CFGI presents several methodological constraints. While
Alternative.me discloses the index’s six components’ weighting scheme, it does not provide
their underlying numerical values, thereby preventing detailed component-level analysis. As a
result, it is challenging to determine which factors predominantly drive sentiment fluctuations
during critical events such as cryptocurrency heists. A valuable direction for future studies
would be to disentangle the relative contributions of market-based components (e.g.,
volatility and trading volume) and behavioural components (e.g., social media activity and
search intensity). Doing so would enhance understanding of whether sentiment shifts are
primarily driven by objective market dynamics or by behavioural responses. Future studies
could address this limitation by employing sentiment indices that allow component-level
decomposition or by constructing new sentiment measures capable of isolating heterogeneous

drivers of market sentiment.

Thirdly, the study’s analysis of market efficiency is primarily focused on short-term effects,
examining efficiency changes before, during, and immediately after cryptocurrency heists.
While this approach captures immediate market disruptions, it does not account for the long-
term recovery process or potential structural changes in market efficiency over time. Future
studies could extend this analysis by investigating whether efficiency gradually returns to
pre-heist levels or whether certain inefficiencies persist due to lingering market uncertainty.
Fourthly, the liquidity analysis of DeFi tokens relies on low-frequency price impact measures,
which, while useful, may not fully capture real-time liquidity dynamics in decentralised
markets. Given that DeFi operates through automated market makers (AMMs) rather than
traditional order books (Mohan, 2022), incorporating high-frequency liquidity indicators

could offer deeper insights into how liquidity providers respond to security breaches.

Finally, this thesis does not explicitly consider the role of regulatory responses or institutional
actions following cryptocurrency heists. Government interventions, such as asset freezes,
trading suspensions, or legal actions against perpetrators, may significantly influence market
sentiment and efficiency, but these factors fall outside the scope of this thesis. Moreover,
cryptocurrency regulation is currently in a state of high complexity and ongoing evolution.
For example, the European Union has adopted the Markets in Crypto-Assets (MiCA)
framework to establish a unified regulatory environment. In contrast, the United States

continues to lack a coherent regulatory system, with different agencies offering conflicting
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guidance on how to classify and regulate digital assets. China, by comparison, has taken a
prohibition-based approach. These divergent regulatory paths raise an important question for
future research: which regulatory model—proactive and harmonised (EU), fragmented yet
enforcement-driven (US), or prohibitive (China)—is most effective in maintaining market
stability and protecting investors in the aftermath of major security incidents? As regulatory
frameworks continue to develop globally, future studies could explore how different

regulatory responses to security incidents affect market stability and investor confidence.

Overall, this thesis offers a comprehensive and novel contribution to the understanding of
how cryptocurrency heists affect market efficiency, investor sentiment, and DeFi market
stability. By integrating multiple methodological approaches and extending the analysis
beyond Bitcoin to DeFi, this thesis provides valuable insights for investors, market
participants, and policymakers seeking to navigate the risks associated with security breaches
in the cryptocurrency ecosystem. The remainder of this thesis is structured as follows.
Chapter 2 empirically investigates the impact of cryptocurrency heists on Bitcoin’s market
efficiency. Using permutation entropy and the Complexity—entropy causality plane within the
framework of the AMH, it examines how efficiency dynamically evolves before and after
major hacking incidents. Chapter 2 extends the analysis to investor sentiment, exploring the
bidirectional predictive relationship between Bitcoin price movements and sentiment during
security breaches. Employing the time-varying Granger causality test, it provides new
insights into the sentiment-price feedback loop under extreme market stress. Chapter 4 shifts
the focus to the DeFi ecosystem, analysing how major DeFi heists affect token liquidity and
cross-platform contagion using the low-frequency price impact measures and the QVAR
model. Finally, Chapter 5 concludes the thesis by summarising the main findings, discussing
their theoretical and practical implications, highlighting limitations, and proposing a clear

agenda for future studies.
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Chapter 2 The Impact of Cryptocurrency Heists on Bitcoin’s
Market Efficiency

Parts of this chapter have been published in the International Journal of Finance and

Economics
2.1 Introduction

Do cryptocurrency heists affect the market efficiency of the Bitcoin market? This chapter
examines this substantial risk posed to the Bitcoin market (Kriickeberg & Scholz, 2020;
Lybcsa et al., 2020; Corbet et al., 2020a) by the presence of cryptocurrency hacking incidents
on the platforms where cryptocurrencies are traded. Cryptocurrency heists have led to more
than $12 billion in stolen funds. When we account for rising cryptocurrency prices, if hackers
were to liquidate all stolen cryptocurrencies today, their total wealth would surpass $50
billion (Tsihitas, 2025). These cryptocurrency heists, which have been increasing in both
frequency and magnitude, have significantly impacted the cryptocurrency community,
directly affecting investor trust, shaking market confidence and may cause investors to exit

the market.

Bitcoin is the most popular cryptocurrency, but its price has experienced extreme volatility
since its inception, soaring from one cent to approximately $66,000 in 2021 before dropping
to $16,000 in early 2023 and substantially increasing to around $100,000 in 2024
(CoinGecko, 2024). This extreme volatility has altered how people view the function and role
of Bitcoin, from being a cryptocurrency to being increasingly perceived as a financial asset
(Yermack, 2024; Baek & Elbeck, 2015; Baur et al., 2018). While Bitcoin and other
cryptocurrencies have emerged as a new investment sector, their high volatility challenges
monetary authorities and impacts the financial system. The unique market environment of
cryptocurrency results in market efficiency dynamics that differ from traditional financial
assets. For example, the relative immaturity of the cryptocurrency market, with a large
proportion of retail investors, often leads to decisions driven more by sentiment and
speculation than by rational analysis (Rudkin et al., 2023; Brini & Lenz, 2024). This market
immaturity often leads to heightened price volatility. Additionally, because the regulatory
environment for cryptocurrencies is still developing, the market is particularly vulnerable to
manipulation and fraud (Eigelshoven et al., 2021). Manipulative practices (e.g. pump-and-

dump schemes) are common in the cryptocurrency market. These activities disrupt normal
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market operations, preventing prices from accurately reflecting true information. Lastly, the
rapid development of blockchain technology, while enhancing transparency and information
dissemination, also introduces instability due to smart contract vulnerabilities and scalability
challenges (Ghosh et al., 2020; Singh et al., 2021). Therefore, scholars believe that examining
cryptocurrency’s market efficiency across different contexts is crucial for understanding its
pricing mechanisms and stability (Naeem et al., 2021a; Aslam et al., 2023). As the frequency
of cryptocurrency heists increases, understanding their impact on market efficiency is
essential for investors to adjust strategies and for policymakers to implement effective

regulations.

This chapter employs the Adaptive Market Hypothesis (AMH) framework to examine
Bitcoin’s market efficiency changes during the twelve largest cryptocurrency heists (Mt Gox,
Coincheck, KuCoin, PancakeBunny, Poly Network, Bitmart, Wormhole, Ronin Network,
Beanstalk, Nomad, Binance and FTX). As cryptocurrency heists mainly involve multiple
tokens, this chapter also considers if the token(s) predominantly stolen within cryptocurrency
heists are explanatory. Adopting an Econophysics approach, this chapter uses permutation
entropy and Complexity—entropy causality plane to measure Bitcoin’s dynamic market
efficiency during multiple cryptocurrency heists. The results show that Bitcoin’s market
efficiency fluctuates over time, with significant drops in permutation entropy during many
cryptocurrency heists, indicating a decline in efficiency. Furthermore, it also finds that
different tokens react differently to cryptocurrency heists, with variable market efficiency and
volatility. Specifically, investors tend to focus more on the token(s) most affected by
cryptocurrency heists, resulting in greater volatility and more pronounced declines in those
tokens’ market efficiency. According to AMH, external changes lead to dynamic fluctuations
in market efficiency. If investors fail to adapt, efficiency declines due to maladaptive
behaviour. The uncertainty and chaos from a cryptocurrency heist make it hard for investors
to quickly process and analyse new information, delaying rational decision-making and
triggering emotional reactions like panic selling or buying. This causes prices to deviate from
their true price, reducing market efficiency. However, market efficiency may recover as new

information is gradually absorbed and investors adjust.

This study is essential for many reasons, including the safety and stability of the Bitcoin
market, the protection of investors, and perhaps most of all, the scale, growing frequency, and
increasing magnitude of these hacking incidents. The Bitcoin market relies on trust and

transparency among participants, and cryptocurrency heists could trigger investor concerns
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about the security of cryptocurrency platforms, prompting investors to sell off their holdings
to avoid losses. This fear may lead to a herd effect in the market, amplifying volatility and
generating further market inefficiency (Bouri et al., 2019; Gurdgiev & O’Loughlin, 2020;
Raimundo Junior et al., 2022). Further, some cryptocurrency platforms lack adequate security
measures to protect customer assets, and the anonymity and irreversibility of cryptocurrency
transactions make these thefts challenging to trace. This allows cryptocurrency thieves to
exploit vulnerabilities and steal assets. After a platform suffers an attack, investors often
struggle to obtain comprehensive details or accurately assess future risks. This uncertainty
exacerbates information asymmetry, further affecting market efficiency (Barron & Qu, 2014;

Hu & Prigent, 2019).

The findings offer important insights for both investors and policymakers. Investors should
adapt strategies in response to changing external conditions. When the market is disrupted,
efficiency may temporarily decline, so investors should avoid rigid strategies and instead
continuously assess market signals and adapt to new environments. During cryptocurrency
heists, investors could use high-frequency data and automated tools to respond swiftly,
minimising losses caused by delayed market reactions. Additionally, diversifying holdings
could reduce individual token volatility, mitigating risks in periods of inefficiency. For
policymakers, these fluctuations highlight the need for stronger regulatory frameworks.
Enhancing oversight of cryptocurrency exchanges through higher security standards and
regular audits could help reduce the risk of cryptocurrency heists. Requiring timely disclosure
of security breaches will also enable the market to react more quickly, minimising the impact

of information asymmetry on market efficiency.

The contribution to the literature is examining cryptocurrency heists and their influence on
market efficiency. While numerous scholars have explored multiple financial issues within
the Bitcoin market (Corbet et al. 2019a) and have repeatedly examined Bitcoin and its market
efficiency, the impact of cryptocurrency heists remains an overlooked area. Recent literature
on Bitcoin’s market efficiency has focused on specific timeframes (Urquhart, 2016; Bariviera,
2017; Jiang et al., 2018; Yi et al., 2022) or global crises like the COVID-19 pandemic (El
Montasser et al., 2022; Kakinaka & Umeno, 2022; Wu et al., 2022). Similarly, the impact of
launching Bitcoin derivatives (Kochling et al., 2019; Ruan et al., 2021; Shynkevich, 2021;
Strych, 2022) and altering regulatory frameworks (Alexander & Heck, 2020; Shanaev et al.,

2020) have also been examined. This study contributes to this contemporary literature on the
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market conditions influencing Bitcoin’s market efficiency by examining the impact of

cryptocurrency heists.

This chapter is structured as follows. The second section reviews the literature review, and
the third discusses the data and methodology. The fourth section reports empirical results, and
the fifth section provides conclusions and implications for investors and policymakers and

explores future study directions.
2.2 Literature Review

A voluminous literature has examined Bitcoin’s market efficiency. This work can be divided
into efficiency testing and identifying factors affecting market efficiency. Most efficiency
tests indicate that Bitcoin’s market is inefficient. However, as the market matures and
improves in areas like liquidity, derivatives adoption, and government regulation, the Bitcoin

market may become efficient.
2.2.1 Bitcoin Market Efficiency Test

A starting point for testing market efficiency is randomness tests. Urquhart (2016) used daily
Bitcoin returns as samples and conducted the Ljung—Box, Runs, Bartels, AVR, BDS, and R/S
Hurst tests. The findings indicated that the Bitcoin market was inefficient between August 1,
2010, and July 31, 2016. Nadarajah and Chu (2017) conducted the same tests on the odd
integer powers of Bitcoin returns, providing conflicting results. Tiwari et al. (2018) used
seven robust long-term dependency estimators to evaluate market efficiency, reporting that
the Bitcoin market was generally efficient between 2010 and 2017, with some exceptions

occurring from April to August 2013 and August to November 2016.

These methods have also examined the causes of Bitcoin market inefficiency. Kang et al.
(2022) assessed Bitcoin’s market efficiency using the Runs, Durbin—Watson, and variance
ratio tests after the 2017 price surge and concluded that speculative investment led to market
inefficiency. Zargar and Kumar (2019) used a series of variance ratio tests and found that
low-frequency Bitcoin returns followed a memoryless stochastic process from 2013 to 2018,
indicating market efficiency. However, this result may have been misleading, as high-

frequency traders could gain additional returns over time through speculation.

The second way to test market efficiency is to examine the multifractal properties of time
series. For example, Bariviera (2017), Alvarez-Ramirez et al. (2018), and Al-Yahyaee et al.
(2018) used the Hurst exponent, reporting that between 2011 and 2014, the Hurst exponent
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was generally above 0.5, indicating a long-term dependence on daily returns and inefficiency
in the Bitcoin market. Jiang et al. (2018), Takaishi (2018) and Yi et al. (2022) used the
generalised Hurst exponent and found that from 2010 to 2018, the Bitcoin market exhibited
long-term dependence, indicating inefficiency. Kakinaka and Umeno (2022) applied the
asymmetric multifractal detrended fluctuation analysis (A-MFDFA) method and the
generalised Hurst exponent, and their results showed that following the COVID-19 pandemic,
market efficiency was strong in the long-term but weak in the short term. This suggests that a
herd effect operates in the cryptocurrency market during black swan events like pandemics,

leading to market inefficiency.
2.2.2 Factors Affecting Bitcoin Market Efficiency

The above multifractal methods have also been employed to identify factors affecting
Bitcoin’s market efficiency. Commonly discussed factors include (i) liquidity, referring to
how easily Bitcoin can be bought and sold; (ii) the impact of derivatives, which could
improve market efficiency by enhancing liquidity, providing hedging opportunities, and
improving price discovery; and (iii) regulatory policies, which could offer a stable,

transparent environment for investors and potentially improve market efficiency.

Brauneis and Mestel (2018) used the Corwin—Schultz spread estimator, log-market
capitalisation, turnover ratio, and Amihud illiquidity ratio to examine liquidity. They found
that as liquidity increased, Bitcoin’s market efficiency improved. Wei (2018) and Takaishi
and Adachi (2020) also used the Amihud illiquidity ratio and found that Bitcoin’s market
efficiency improved after 2017. These authors proposed that lower liquidity resulted in fewer
active traders and slower responses to new information, reducing market efficiency.
Conversely, more liquid markets attract active traders who can act on new information,
improving efficiency. Al-Yahyaee et al. (2020) examined the relationships between the
market transaction value and Bitcoin market value to quantify liquidity, discovering that
improved liquidity enhanced market efficiency while greater volatility reduced market

efficiency.

Multiple studies have also examined the introduction of cryptocurrency derivatives,
producing some conflicting findings. Kochling et al. (2019) argued that the introduction of
Bitcoin futures reduced barriers for institutional investors and provided a way to short Bitcoin.
Their study applied Urquhart’s (2016) methodology to discover that Bitcoin’s market

efficiency improved after the futures launch. This is important as previous studies have
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displayed that the participation of institutional investors and short-selling can improve market
efficiency (Boehmer & Kelley, 2009; Saffi & Sigurdsson, 2011). Shynkevich (2021)
employed technical analysis and revealed that before the introduction of Bitcoin futures,
returns were significantly predictable, but technical trading rules became less effective after
these derivatives were introduced. Distinctly, Ruan et al. (2021) used multifractal detrending
moving-average cross-correlation analysis and non-linear Granger causality tests,
demonstrating a strong positive correlation between Bitcoin spot and futures returns,
indicating that futures improved the spot market’s efficiency. Lastly, Strych (2022) examined
the effects of margin trading and short selling on Bitcoin’s market efficiency, finding that
efficiency declined when both were introduced. High levels of market efficiency were also
recorded when only short selling was allowed, suggesting margin trading was the main

reason for the decline in efficiency.

While some cryptocurrency trading platforms, such as Coinbase, actively comply with
regulatory requirements, many others—including BitMEX and Huobi Global—enable trading
in largely unregulated environments, particularly in derivatives markets where extreme
leverage (e.g., 100 x leveraged contracts) is common. Using minute-level data, Alexander
and Heck (2020) compared price discovery across spot exchanges, perpetual contracts, and
both regulated and unregulated futures markets to assess the influence of regulatory oversight.
Their findings indicated that Bitcoin prices on unregulated derivatives exchanges were
vulnerable to manipulation via high-frequency trading strategies, demonstrating inefficiencies
in the Bitcoin market. Moreover, their results underscored the need for stronger regulatory
involvement and harmonised legislative frameworks in cryptocurrency derivatives markets to
enhance overall market efficiency and stability. Shanaev et al. (2020) used data from 120
regulatory interventions to examine how cryptocurrency markets responded to changes in
regulatory oversight. However, they found that announcements concerning anti-money-
laundering measures or foreign exchange controls did not significantly alter market efficiency,
while notable price reactions occurred only on the announcement day. This suggests that the
cryptocurrency market exhibits characteristics of weak-form efficiency, where prices adjust
rapidly to publicly available information but do not fully incorporate all relevant information.
They also argued that excessive regulatory intervention could hinder the development of the
cryptocurrency industry. Allowing the market to operate within a more accessible and
innovation-friendly regulatory environment could, therefore, reduce volatility and enhance

price stability.
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2.2.3 Adaptive Market Hypothesis

Empirical evidence in the literature suggests that market efficiency may vary over time, and
external changes can drive shifts in efficiency. This implies that market efficiency is not static
but dynamically evolves in response to environmental conditions. Therefore, the traditional
Efficient Market Hypothesis (EMH), which categorises markets as simply efficient or

inefficient, may not adequately explain the observed fluctuations in market efficiency.

One of the core assumptions of EMH is that investors are fully rational. According to Fama
(1965), the influence of irrational behaviour is negligible, as it is offset by more rational
market participants. However, an increasing number of behavioural finance studies have
shown that irrational behaviour is both persistent and widespread. Phenomena such as the
Ellsberg Paradox, loss aversion, and probability matching demonstrate that cognitive biases
are common. Moreover, major financial events such as the dot-com bubble and the subprime
mortgage crisis further reflect the prominent role of irrationality in financial markets.
Therefore, rational expectations constitute only one aspect of investor behaviour and cannot

fully capture all market dynamics.

In contrast to the assumption of full rationality under the EMH, Simon (1990) proposed the
theory of bounded rationality. He argued that investors face decision-making costs and stop
processing information when the marginal benefit equals the marginal cost. As a result,
investors seek satisfactory rather than optimal decisions. However, critics argue that this
theory assumes investors already know what the optimal decision is, otherwise, they would

be unable to assess the value of further optimisation.

To address this criticism, Lo (2004) contended that investors do not need prior knowledge of
optimal decisions. Instead, they form heuristics through trial and error. Their decisions
generate feedback, which in turn influences future behaviour. Sentiment plays a crucial role
in this feedback process. When investors receive positive feedback, they are likely to retain
the heuristic; when feedback is negative, they adjust. As market conditions change,
previously effective heuristics may become obsolete, leading to suboptimal behaviour. Lo
(2004) referred to such behaviour not as irrationality, but as maladaptation—actions based on

outdated heuristics in a new environment.

Building on this perspective, Lo (2004) integrated insights from sociobiology, evolutionary
psychology, and evolutionary dynamics to propose the Adaptive Market Hypothesis (AMH).

When market participants fail to adapt to market changes and exhibit maladaptive behaviour,
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the market becomes inefficient. However, when market participants adjust to new market
conditions through feedback, their behaviour aligns with the current market environment and
efficiency returns (Lo, 2004). The adaptive behaviour of market participants does not occur
independently of market forces but is driven by competition. The current market environment
is the result of interactions among different participants. Self-interested individuals,
competition, adaptation, natural selection, and environmental conditions form efficient

markets (Lo, 2005).

The AMH not only explains the phenomena addressed by EMH but also accounts for
behavioural anomalies that EMH cannot. These anomalies are interpreted as maladaptive
behaviours rather than pure irrationality. As such, the AMH serves as an evolutionary
alternative to the EMH. It asserts that market efficiency may appear and disappear over time
as market conditions change. When investors fail to adapt, the market becomes inefficient;
when they adjust, efficiency is restored. Thus, the predictability of returns emerges and fades

in a cyclical, environment-driven manner.

AMH has been examined in multiple studies. Khuntia and Pattanayak (2018) used the
Dominguez—Lobato conformance and the generalised spectral test in a rolling window to
account for linear and non-linear correlations in Bitcoin returns from 2010 to 2017. Their
results showed that market efficiency varied over time, with inefficient markets recorded
from 2010-2012 and 2013-2014 and efficient markets observed between 2012-2013 and
2015-2017. These inconsistencies were associated with changes in the external financial
environment, supporting the AMH. Similarly, Stosic et al. (2019) used the Complexity—
entropy causality plane to find that Bitcoin and other major cryptocurrency markets moved
between efficient and inefficient states over time. Khursheed et al. (2020) reached similar
conclusions, adding an automatic portmanteau test to assess Bitcoin’s AMH. These findings
showed that price movements with linear and non-linear dependencies change over time,
resulting in market efficiency falling during unstable conditions and market efficiency
improving when conditions stabilise. Mokni et al. (2024) used the adjusted market
inefficiency magnitude (AMIM) metric and a quantile regression model to show that
Bitcoin’s market efficiency fluctuates over time. They also identified how various factors
influence market efficiency. Specifically, rising global financial stress tends to decrease
market efficiency, while increased liquidity enhances it. Among the factors considered,

liquidity appears to be the primary driver of changes in market efficiency.
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In summary, previous studies have primarily tested for weak efficiency within the Bitcoin
market. These studies have produced divergent findings, indicating that Bitcoin’s market
efficiency varies over time (Khursheed et al., 2020). Subsequently, the AMH has been applied
to explain the dynamic nature of market efficiency, whereby environmental factors influence
market efficiency. AMH is not a replacement for the EMH but helps to explain its empirical
variations, offering a better understanding of time-varying efficiency (Patil & Rastogi, 2019;
Khursheed et al., 2020), with current studies supporting the detection of Bitcoin’s market
efficiency using this AMH framework (Khuntia & Pattanayak, 2018; Chu et al., 2019;
Khursheed et al., 2020; Noda, 2021; Lopez-Martin, 2023).

However, most studies have focused on changes in Bitcoin’s market efficiency within a
specific timeframe or in the context of global events like the COVID-19 pandemic, while
neglecting specific events within the cryptocurrency market, such as cryptocurrency heists.
This oversight may hinder a full understanding of the impact of internal market events on
Bitcoin’s market efficiency and the vulnerabilities of the cryptocurrency ecosystem. Chawki
(2022) discussed how cryptocurrencies have become targets for hacking, phishing, malware,
extortion, and ransomware. The study highlighted the need for market participants to consider
cryptocurrency security and the importance of developing appropriate regulatory measures.
Current studies on the effects of cryptocurrency heists primarily centre on cryptocurrency
market stability (Caporale et al., 2020; Corbet et al., 2020a), with less attention given to
market efficiency, and the results are mixed. For instance, Kriickeberg and Scholz (2020),
using high-frequency Bitcoin data, identified significant arbitrage opportunities following
cryptocurrency heists, indicating market inefficiency. In contrast, using daily data, Yousaf et
al. (2021) found no evidence of herding behaviour during cyberattacks, suggesting high
market efficiency. These differences may stem from variations in data scope and frequency,
with high-frequency data potentially offering better insights into the short-term impacts of
hacker attacks on the market. Moreover, the existing studies have focused only on post-heist
market efficiency, neglecting to compare efficiency before and after the incident. This gap
may lead to an incomplete understanding of cryptocurrency heists. By comparing market
efficiency before and after a cryptocurrency heist, we can better assess the incident’s impact
and the speed of market recovery. Therefore, this chapter aims to address this gap by
examining the issue within the AMH framework, contributing to the literature on the impact

of cryptocurrency heists on market efficiency.
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2.2.4 Application of the Permutation Entropy Model in Market Efficiency

Given that the existing literature has systematically examined different methods of testing
market efficiency in the context of Bitcoin, a further question arises as to how to choose an
appropriate approach to capture the dynamic evolution of market efficiency under extreme
shocks. Among the various complexity-based measures, the permutation entropy model
(Bandt & Pompe, 2002) is particularly suitable, as it effectively distinguishes random noise
from deterministic structures and has been validated in studies of efficiency in stock, bond,

and commodity markets.

The permutation entropy can capture the disorder and complexity within a time series,
thereby revealing the dynamic changes in the market when it experiences external shocks.
The underlying idea is that if asset prices follow a random walk hypothesis, converting them
into a numerical sequence according to specific rules will result in disorder, with entropy
reaching its maximum value. Conversely, if a relationship exists between past and future
prices, the numerical sequence will display specific patterns, and entropy will not reach its
maximum. Thus, calculating the price change entropy relative to the maximum entropy can
reflect the predictability of the asset and quantify the current market efficiency (Zunino et al.,

2010).

Zanin et al. (2012) highlighted the potential applications of permutation entropy in economics
and finance. They argued that assessing market efficiency and development is a central issue
in economics, and since market indicators’ time series are often the only available objective
information, they naturally serve as the basis for testing the EMH. In this context,
permutation entropy can distinguish between deterministic chaos and random noise, and
through the “forbidden patterns” method (i.e., ordinal patterns that are theoretically possible
but never observed in the actual series) proposed by Bandt and Pompe (2002), it can uncover
deterministic structures in financial time series. Empirical evidence shows that the number of
forbidden patterns in different financial indicators, such as the Dow Jones Index, Nasdaq
Index, IBM and Boeing stock prices, and the U.S. ten-year Treasury yield, is far greater than
expected under randomness, and their temporal evolution reveals when markets shift from

deterministic behaviour to being dominated by noise (Zanin, 2008).

A growing body of literature further confirms the usefulness of permutation entropy in
detecting market efficiency. Zunino et al. (2009) compared 32 stock markets and found that

developed markets exhibit fewer forbidden patterns and higher efficiency, while emerging
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markets display greater predictability. Building on this idea, Zunino et al. (2010, 2011, 2012)
introduced the Complexity—entropy causality plane to characterise efficiency in stock,
commodity, and sovereign bond markets, effectively distinguishing between developed and
emerging economies. Hou et al. (2017) examined the temporal evolution of permutation
entropy in the Chinese stock market and found that permutation entropy declined
significantly during two critical periods, each characterised by a rapid market boom followed
by several severe crashes. Siokis (2018) employed permutation entropy and the Complexity—
entropy causality plane to investigate the dynamics of informational efficiency in selected
instruments from the U.S. money, bond, and stock markets around the Great Recession. The
results revealed that, following the credit crunch and the collapse of Lehman Brothers, the
efficiency of certain money market instruments decreased markedly, while the efficiency of

stock market indices and bond market instruments remained relatively high.

Nevertheless, studies applying permutation entropy to Bitcoin remain limited. Lahmiri et al.
(2018) found that Bitcoin returns from 2010 to 2017 were not random, indicating low
efficiency. Sensoy (2019), using high-frequency data from 2013 to 2018, showed that the
BTC/USD market was more efficient than the BTC/EUR market and that efficiency
improved after 2016. Fernandes et al. (2022) employed permutation entropy and Fisher
information to construct the Shannon—Fisher causality plane and analysed five
cryptocurrencies before and after COVID-19. Their findings revealed high informational

efficiency across these markets, with prices largely unpredictable.

In sum, permutation entropy has been widely applied to the study of efficiency across
different markets and assets. It effectively distinguishes random noise from deterministic
structure and captures the dynamic evolution of efficiency. Therefore, when examining
Bitcoin’s market efficiency under cryptocurrency heists, permutation entropy provides a

suitable and reliable tool to capture the shift in market efficiency.
2.3 Data and Methodology

2.3.1 Data Selection and Variable Description

Alexander and Dakos (2020) reviewed 152 published papers and Social Science Research
Network (SSRN) discussion papers on cryptocurrency data. Their analysis revealed that over
80 of these studies had issues related to data selection, including unreliable data sources, the

use of non-concurrent time series data in multivariate analysis, and reliance on prices that did
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not reflect actual transaction values. Consequently, they emphasised that discrepancies in data
sources can lead to inconsistent findings, highlighting the need for scholars to exercise
caution when selecting cryptocurrency data. Scholars face two challenges when selecting
Bitcoin data: (i) determining daily prices and (ii) the data source. Vidal-Tomas (2021) found
differences in the scaling features of Bitcoin returns calculated using closing prices (last price
on each day), following a Brownian motion, versus weighted prices (the average of the prices
across the 24-h period), which deviate from this random process. This study noted that
scholars using closing prices perceive the market as exhibiting weak efficiency, whereas
those using weighted prices report inefficient market conditions. Therefore, using differently

calculated daily prices can lead to varying outcomes.

Additionally, Vidal-Tomas (2022) used the generalised Hurst exponent to analyse main
cryptocurrency databases’ scaling properties and underlying processes, including USD
trading platforms (e.g. Coinbase), USD databases, which limit cryptocurrency price
calculations to USD (e.g. Cryptocompare), and USD (cross-rate) databases, which are
calculated by converting any non-US dollar cross rate into US dollars using the foreign
exchange rate (e.g. CoinMarketCap, CoinGecko). All sources reported time series with the
same underlying characteristics, suggesting that using different sources to calculate a unified
Bitcoin price does not distort its underlying process. Therefore, the data source had minimal

impact on Bitcoin’s market efficiency studies.

In summary, the method used to calculate daily prices significantly impacts the results, while
the choice of data source has relatively less influence. This chapter chooses Cryptocompare
as the data source, which uses the closing price as the price proxy. Unlike weighted methods,
the closing price more accurately reflects actual trading prices. Since cryptocurrency heists
often happen quickly, typically within minutes or hours, low-frequency data might miss these
fluctuations. Therefore, this chapter uses Bitcoin’s 1-minute closing price in USD as the

variable.

Tsihitas (2025) recorded the twelve largest cryptocurrency heists based on the stolen dollar
amount. To investigate the impact of these cryptocurrency heists on Bitcoin’s market
efficiency, this chapter examines the changes in market efficiency on the day before, the day
of, and the day after each cryptocurrency heist. From a theoretical perspective, in the
cryptocurrency market, the most pronounced changes in price liquidity typically occur within

48 to 72 hours following a negative shock (Corbet et al., 2019b; Chu et al., 2019). Moreover,
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news of cryptocurrency heists spreads rapidly across social media platforms such as Twitter,
Reddit, and Telegram, enabling investors to react almost immediately after the incident
(Guégan and Renault, 2021; Naeem et al., 2021b, 2021c¢). From a practical standpoint, this
study aims to investigate the short-term direct effects of cryptocurrency heists on the Bitcoin
market while minimising the influence of longer market fluctuations. A three-day event
window is well-suited to capturing the impact of the shock while avoiding the introduction of
noise from unrelated market dynamics, thereby improving the causal interpretation of the
results. Table 2.1 presents the twelve largest cryptocurrency heists, spanning from 2014 to

2022, and displays the data range associated with each incident.

Table 2.2 reports the descriptive statistics of Bitcoin prices during the twelve cryptocurrency
heists. The results indicate that price fluctuations across these incidents were substantial. For
example, in the cases of the Bitmart exchange and PancakeBunny platform, the price ranges
reached $13,757.79 and $10,964.63, respectively, suggesting considerable market turbulence.
Moreover, the Jarque—Bera (JB) test indicates that Bitcoin prices deviate from normality in
most cases, characterised by negative skewness and platykurtic kurtosis. This pattern implies
a higher probability of extreme values in the left tail of the distribution, reflecting an

increased likelihood of price declines during such incidents.

Table 2.1: Twelve cryptocurrency heists data range

Platform Data range
Mt Gox February 23, 2014, to February 25, 2014
Coincheck January 25, 2018, to January 27, 2018
KuCoin September 24, 2020, to September 26, 2020
PancakeBunny May 19, 2021, to May 21, 2021
Poly Network August 9, 2021, to August 11, 2021
Bitmart December 3, 2021, to December 5, 2021
Wormbhole February 2, 2022, to February 4, 2022
Ronin Network March 28, 2022, to March 30, 2022
Beanstalk April 15, 2022, to April 17,2022
Nomad August 1, 2022, to August 3, 2022
Binance October 6, 2022, to October 8, 2022
FTX November 10, 2022, to November 12, 2022

Source: https://www.comparitech.com/crypto/biggest-cryptocurrency-heists/
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Table 2.2: Descriptive statistics of Bitcoin prices in twelve cryptocurrency heists

Platform Obs Mean S.Dev. Min Max Skew Kurt JB ADF

Mt Gox 4320  573.76 45.12 450.00 645.64 -0.45  -0.86  280.90"" -2.65
Coincheck 4320 11186.00 274.12 10334.25 11723.02 -0.73 0.22  394.57™" -2.07
KuCoin 4320 10617.59 151.40 10223.14 10802.32 -1.22 -0.14 1072.30™"  -1.85
PancakeBunny 4320 39379.49 1786.70 32600.00 43564.63 -0.77 049  467.58™ -2.98
Poly Network 4320 45524.68 878.73  42844.25 46746.73 -1.50 132 1923.50™" -2.02
Bitmart 4320 51350.70 3502.54 43781.92 57539.71 0.52 -1.35 521.40™ -0.94
Wormhole 4320 37852.60 1163.26 36277.29 41702.14 1.15 0.59 1019.70™"  0.093
Ronin Network 4320 47372.66 288.08 46674.65 48184.74 0.15 -045 5291™ -3.49™
Beanstalk 4320 40314.85 171.33  39580.56 40704.14 -0.83 0.72  593.05™ -2.26

Nomad 4320 23124.10 227.39 22673.61 23605.82 -0.04 -1.35 327.02"" -2.40
Binance 4320 19803.66 312.85 19276.37 20437.75 0.21 -1.43 399.50""  -3.21"
FTX 4320 16941.34 399.65 15678.51 1810593 0.18  0.09 25.99™ -2.96

The data source is from Cryptocompare; Skew: Skewness, it is a measure of symmetry; Kurt: Kurtosis, it is a
measure of whether the data are heavy-tailed or light-tailed relative to a normal distribution; JB: Jarque—Bera
test; ADF: Augmented Dickey—Fuller test; *** At the 1% significance level; ** At the 5% significance level; *
At the 10% significance level

The descriptive statistics reveal abnormal distributional characteristics of Bitcoin prices
around cryptocurrency heists, but do not capture the dynamic process of price changes. To
address this limitation, Figure 2.1 presents Bitcoin returns before, during, and after each
cryptocurrency heist, providing a direct view of the market’s price response to these incidents.
The results show that most cryptocurrency heists were accompanied by sharp fluctuations in
Bitcoin returns, with the incident day typically marked by pronounced negative returns,
indicating a broadly adverse market reaction to such extreme shocks. In contrast, the day
before the incidents generally remained relatively stable, suggesting that cryptocurrency
heists were largely unexpected rather than anticipated by the market. Post-event dynamics,
however, reveal heterogeneous patterns: while major incidents such as Mt. Gox exchange,
Coincheck exchange, and FTX exchange were followed by persistent negative effects and
slower recovery, other incidents such as PancakeBunny platform or Ronin Network were
quickly absorbed, with the market stabilising shortly afterwards. These findings highlight
both the commonality of short-term panic-driven declines and the heterogeneity in impact

severity.
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Figure 2.1: Bitcoin returns before, during, and after each cryptocurrency heist
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While the return figures illustrate the pronounced volatility in Bitcoin prices during
cryptocurrency heists, such graphical analysis only captures the magnitude of price
fluctuations and does not address the core question of how market efficiency evolves. The
essence of market efficiency lies in whether information is rapidly and fully incorporated into
prices. Hence, it is essential to apply methods that characterise the complexity and correlation
structures of time series to systematically examine market efficiency and uncover the

dynamic impact of cryptocurrency heists on Bitcoin’s market efficiency.
2.3.2 Permutation Entropy Model

The permutation entropy model is well-suited for analysing the impact of cryptocurrency
heists on Bitcoin’s market efficiency. Its advantage is its high sensitivity to small changes
within a time series (Zanin et al., 2012). Cryptocurrency market often exhibits rapid price
fluctuations and behavioural changes when subjected to external shocks, such as
cryptocurrency heists (Corbet et al., 2019b; Bhatnagar et al., 2023). Permutation entropy can
capture these short-term fluctuations and disorders, reflecting the immediate market
efficiency changes. If the Bitcoin market quickly absorbs the information and stabilises after
a cryptocurrency heist, permutation entropy should be high, indicating that the market
remains efficient. Conversely, if permutation entropy remains low for an extended period,
indicating that market price changes are highly predictable, it suggests that market efficiency
has been negatively impacted. Therefore, the permutation entropy model directly quantifies

the changes in market efficiency before and after such events.

Furthermore, the permutation entropy model does not rely on any specific probability
distribution of the time series (Darbellay & Wuertz, 2000). The cryptocurrency market often
exhibits complex and nonlinear behaviours, where price movements may not follow standard
statistical distributions. The permutation entropy model provides the flexibility to measure

market disorder and efficiency changes without assuming any particular distribution.

Finally, since this chapter uses Bitcoin’s 1-minute price data as the variable, and the
permutation entropy model is more effective at distinguishing time series when using prices
rather than returns, it can be applied to non-stationary processes without the need to assess
time series stationarity (Stosic et al., 2019). This means that when analysing the
cryptocurrency market, there is no need for stationarity preprocessing (e.g. differencing or
detrending), and we can directly apply permutation entropy to evaluate market disorder. This

is particularly important for the rapidly changing cryptocurrency market, as it allows us to
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capture the true dynamics of the market without being constrained by data preprocessing

steps.

Following Bandt and Pompe (2002), the permutation entropy under the embedding dimension

n(n = 2)isas follows:

H = = ) p@logp(m) ()

where H(n) is the permutation entropy under the embedding dimension n, the factorial of n
should be less than the number of samples. The value of the embedded dimension n does not
affect the trend of the permutation entropy. p(m) represents the probability of occurrence of

each permutation. As usual, the log is base 2.

Bandt and Pompe (2002) gave an example to explain how the model works. There is a 1-

dimensional time series dataset S(t):
S(t) = {4,7,9,10,6,11,3} (2)

Because the factorial of n should be less than the data point (there are 7 data points in the
dataset S(t)), n can be 2 or 3. Using n = 3, S(t) will be divided into overlapping column

vector matrix as follows:

7 9 10 6 11
9 10 6 11 3

4 7 9 10 6
EESE

To show the ordinal rankings of the data, an n-dimensional vector can be mapped into unique

permutations :

7=1{0,1,2,--n—1} (4)
There are a total of six different possible permutations  of a 3-dimensional vector: m; =
{0,1,2}, m, ={0,2,1}, m3 = {1,0,2}, m, = {1 2,0}, m5 = {2,1,0}, and gz = {2,0, 1}. For

4
the column vector [7], we have xy = 4,x; = 7,and x, = 9. Since xy < x; < X, this column
9

9
can be represented by the permutation m; = {0, 1, 2}. For the column vector [10], with xy =
6

9,x; = 10,and x, = 6, the order x, < xy < x4 corresponds to the permutation 7y = {2,0, 1}.

Thus, the matrix (3) can be represented as follows:
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0 0 21 2
11000 (5)
2 212 1
The probabilities of occurrence of each permutation 7 are as follows: p(m;) = 2/5, p(1,) =
0, p(my) =1/5, p(n,) =0, p(s) =0, and p(mg) = 2/5. Therefore, the permutation

entropy under the embedding dimension (n) 3 is:

9= Q- Qo) Q@15 o

If the following number can be accurately predicted from the previous one, p(m) will be 1,
resulting in H(n) being 0, indicating an inefficient market. Conversely, if there is no
relationship between the numbers, permutation entropy will be higher. Hence, the greater the
permutation entropy, the more efficient the market. This chapter normalises the permutation
entropy model to confine its results within the 0 to 1 range. The normalised permutation

entropy model can be written as:
Hg[n] = H[n]/logn! (7)

where Hg[n] represents the normalised permutation entropy under the embedding dimension
n. If Hg[n] equals 1, it signifies an efficient market. Conversely, if H;[n] equals 0, it indicates
an inefficient market. Hg[n] equals the permutation entropy H[n] divided by the maximum

value of permutation entropy logn!, and the log is base 2.
2.3.3 Complexity—Entropy Causality Plane

Although permutation entropy can assess the complexity of time series data, it does not
account for its correlation structure. Additionally, the permutation entropy model cannot
distinguish between varying degrees of periodicity and chaos or reveal information about
probability distributions. The Complexity—entropy causality plane (Lamberti et al., 2004)
addresses these issues with two parameters that reveal complementary information about a
time series: (1) normalised permutation entropy measures a process’s unpredictability, while
(i1) Jensen—Shannon statistical complexity assesses the extent of privileged fluctuations for a
given entropy level. Calculating these two quantities provides insights into the distribution of
fluctuation patterns and the degree of correlation between these fluctuations (Zunino et al.,

2010). The Jensen—Shannon statistical complexity C;s[n] can be shown as:
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Cjsnl = Qj[n, ne1Hs[n]

Ol = 0, { p I(n : ne)l i H[;ze]} ®)

where Q;[n,n,] is a measure of disequilibrium and Q;[n,n.] € [0,1]. Q¢ is a normalisation
constant, which equals the inverse of the maximum possible value of {H[(n + n,)/2] —
H[n]/2 — H[n.]/2}. n, = {1/n!,---,1/n!} is the uniform distribution. C;s[n] captures the
fundamental dynamics and differentiates between varying degrees of periodicity and chaos. It
offers valuable insights into the characteristics of the underlying probability distribution, with
C;s[n] ranging from 0O to 1. Based on the range constraints of Hs[n] and C;s[n], we can plot

the Complexity—entropy causality plane (Figure 2.2).

Based on the work of Zunino et al. (2010), the Complexity—entropy causality plane provides
a model-independent diagnostic tool that overcomes the limitations of traditional approaches.
Jensen—Shannon statistical complexity is not a simple function of entropy; rather, it is derived
from the divergence between the system’s actual distribution and the uniform distribution,
thereby capturing non-randomness and revealing the presence of “privileged states” or
“ordered structures” within the series. In contrast, variance-based or GARCH-type models
can capture changes in volatility and correlation structures but cannot reflect the degree of
organisation in the underlying probability distribution. Therefore, Jensen—Shannon statistical
complexity can distinguish randomness, correlations, and structural patterns within a unified
framework, which information that conventional indicators such as GARCH or the Hurst

exponent are unable to provide.
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Figure 2.2: The Complexity—entropy causality plane
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The market efficiency at a certain time can be plotted on this plane by the coordinates of normalised
permutation entropy (X-axis) and Jensen-Shannon statistical complexity (Y-axis). The X-axis measures
unpredictability in the market, while the Y-axis measures complexity. If the coordinates are closer to the lower
right, it indicates higher entropy, lower complexity, and high market efficiency. Conversely, if the coordinates
are closer to the upper left, it suggests lower entropy, higher complexity, and lower market efficiency.

According to the EMH, efficient markets should correspond to higher entropy and lower
complexity (Zanin et al., 2012). When specific temporal patterns exist in a series, its position
will deviate from the ideal point associated with a completely random process. Thus, the
extent of deviation from this ideal point can be used to measure market inefficiency. The
empirical findings of Zunino et al. (2010) demonstrated that the Complexity—entropy
causality plane can robustly differentiate between developed and emerging markets.
Developed markets cluster near the ideal random position (high entropy, low complexity),
whereas emerging markets exhibit lower entropy and higher complexity, reflecting stronger
long-range correlations and fat-tailed distributions. This suggests that the level of market
development is closely aligned with its position on the plane, forming a downward trajectory
from the upper left to the lower right. Such a trajectory not only reveals the evolutionary path
from inefficient to efficient markets but also indicates that inefficiency primarily stems from

correlations rather than distributional features alone.
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Overall, the Complexity—entropy causality plane offers a visual representation of market
conditions, enabling an intuitive assessment of the market’s current state and its response to
external shocks based on positioning points on the plane. Positions in the lower right denote
an efficient market characterised by high entropy and low complexity, indicating high market
efficiency. Conversely, positions in the upper left signify an inefficient market with low
entropy and high complexity, suggesting the presence of predictable patterns and reduced
efficiency. By observing how points on the plane shift over time, especially before and after

cryptocurrency heists, we can visually track changes in market efficiency.
2.4 Empirical Results

2.4.1 Detection of Bitcoin’s Market Efficiency

Since the calculation of permutation entropy and complexity does not require differencing or
detrending, the raw 1-minute Bitcoin price data are used directly. The dataset is divided into
consecutive non-overlapping hourly windows (e.g., 00:00-00:59, 01:00-01:59). For each
window, all 1-minute observations within the hour are retained, and permutation entropy and
complexity of that hour are calculated based on the resulting sequence. This approach allows

us to capture the information dynamics at the hourly level.

Figure 2.3 presents the Complexity—entropy causality plane (sub-figures a.1, b.1, c.1, ...) and
permutation entropy changes (sub-figures a.2, b.2, c.2, ...) for twelve cryptocurrency heists.
Permutation entropy is calculated with an embedding dimension of 3. In the Complexity—
entropy causality plane, the red dots represent the hourly distribution of Bitcoin’s market
efficiency the day before the cryptocurrency heist, green squares represent the day of the
cryptocurrency heist, and blue triangles represent the day after. Points closer to the upper left
corner indicate lower market efficiency, while those near the lower right corner indicate
higher efficiency. The permutation entropy figure illustrates the level of disorder in the
Bitcoin market on the day before (red), the day of (green), and the day after the
cryptocurrency heist (blue). A higher permutation entropy signifies greater disorder, while a
lower value indicates less disorder. The results show that Bitcoin’s market efficiency
fluctuated before, during, and after these cryptocurrency heists, aligning with the AMH,

which suggests market efficiency changes in response to external events.

In most cases during and after cryptocurrency heists, the complexity—entropy points are

located in the upper left corner, indicating high complexity and low permutation entropy,
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signalling low market efficiency. This supports AMH: investor sentiment and behavioural
inadaptability could temporarily weaken price discovery and lower market efficiency during
shocks like cryptocurrency heists. In the nine cryptocurrency heists, including Coincheck
(Figure 2.3 b.2), KuCoin (Figure 2.3 c.2), Poly Network (Figure 2.3 e.2), Bitmart (Figure 2.3
f.2), Wormhole (Figure 2.3 g.2), Beanstalk (Figure 2.3 1.2), Nomad (Figure 2.3 j.2), Binance
(Figure 2.3 k.2), and FTX (Figure 2.3 1.2), Bitcoin’s permutation entropy dropped
significantly during or after the cryptocurrency heists, showing a sharp decline in efficiency.
In the six cryptocurrency heists (Coincheck, Poly Network, Bitmart, Wormhole, Nomad, and
Binance), this drop was particularly evident during the cryptocurrency heists, reflecting the
maladaptive behaviours of investors when faced with significant uncertainties and the

asymmetry of market information.

According to AMH, market efficiency fluctuates in response to shocks as investors fail to
adapt to changing environments. When a cryptocurrency heist occurs, the sudden uncertainty
and chaos make it difficult for investors to quickly process, understand, and analyse the new
information related to the incident. This delay in information processing hinders investors
from making rational decisions, often leading to emotional reactions like panic selling or
buying, causing prices to deviate from their true price and further declining market efficiency.
As the market gradually absorbs the information and investors adapt to the new environment,
efficiency may recover. The findings highlight the dynamic nature of market adaptation and
the significant impact that cryptocurrency heists have on investor behaviour and market

mechanisms.
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Figure 2.3: The Complexity—entropy causality plane and permutation entropy for the twelve

cryptocurrency heists
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In sub-figures a.1, b.1, c.1, ..., coordinates located closer to the lower right corner indicate higher entropy, lower
complexity, and thus higher market efficiency, whereas those positioned closer to the upper left corner reflect
lower entropy, higher complexity, and lower market efficiency. In sub-figures a.2, b.2, c.2, ..., higher

permutation entropy corresponds to higher levels of market efficiency.
Notably, the Complexity—entropy causality plane for the Mt. Gox exchange heist (Figure 2.3

a.1) differs from other incidents. After the Mt. Gox exchange heist, most complexity—entropy
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points shifted to the lower left corner, and permutation entropy (Figure 2.3 a.2) dropped to
zero for 19 hours over three days, indicating a severe decline in market efficiency. As the
world’s largest Bitcoin exchange at the time, the Mt. Gox exchange heist resulted in the loss
of approximately $450 million in Bitcoin, around 7% of the global Bitcoin supply. This
incident triggered market panic, leading to mass sell-offs and significant price volatility.
AMH highlights that market efficiency fluctuates as participants adapt to shocks. The Mt.
Gox exchange heist, being the first large-scale hacking incident, disrupted the usual
information-processing mechanisms. Investor panic and emotional reactions caused
information transmission and price discovery to fail, leading to a sharp decline in market
efficiency. Over time, the market may readjust and recover, but the initial drop in efficiency

aligns with the dynamic efficiency characteristics outlined in AMH.

Moreover, Bitcoin’s market efficiency did not significantly decrease during or after the
PancakeBunny platform and Ronin Network heists. This may be because investors focused
more on the tokens directly affected during these heists. In the PancakeBunny platform heist,
hackers manipulated Binance Coin to steal approximately $200 million, while in the Ronin
Network heist, they stole 173,600 Ethereum, totalling $620 million (Tsihitas, 2025).
Subsequently, this chapter examines whether investors will pay more attention to Binance
Coin and Ethereum than Bitcoin during these two cryptocurrency heists. This chapter collects
I-minute price data for Binance Coin and Ethereum from Cryptocompare and calculates their
hourly permutation entropy. Figure 2.4 shows that the permutation entropy of Binance Coin
and Ethereum fluctuated and dropped significantly during and after these two cryptocurrency

heists.

While such cryptocurrency heists can affect the market efficiency of cryptocurrency markets,
this impact varies across different tokens. For example, Ethereum was the most affected
token in the Ronin Network heist; hence, its market efficiency changed significantly as
investors focused more on the directly impacted tokens and adjusted their holdings
accordingly. In contrast, although Bitcoin’s market efficiency also fluctuated during this heist,

its volatility was much lower than that observed in the Ethereum market.
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Figure 2.4: The permutation entropy of Binance Coin in PancakeBunny platform heist and

Ethereum in Ronin Network heist
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Permutation entropy is calculated with an embedding dimension of 3. The sub-figures (a) and (b) illustrates the
level of disorder in the Binance Coin and Ethereum market on the day before (red), the day of (green), and the
day after the heist (blue). The higher the permutation entropy, the higher the market efficiency.
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In summary, Bitcoin’s market efficiency in the context of cryptocurrency heists is not static
but fluctuates over time, consistent with previous findings (Lahmiri et al., 2018; Sensoy, 2019;
Stosic et al., 2019; Fernandes et al., 2022). During or after most cryptocurrency heists,
permutation entropy significantly declines, signalling a drop in market efficiency. However,
in some cases, Bitcoin is less impacted as investors focus on the most affected tokens rather
than Bitcoin, leading to a smaller decline in efficiency. Investors should adapt their strategies
flexibly, avoid rigid approaches, and respond swiftly to external shocks based on market
signals. Using high-frequency data makes it possible to promptly detect sudden shifts in
investor sentiment and abnormal price fluctuations, providing early warning signals during
periods of severe market turbulence and enabling investors to adjust their trading strategies
swiftly, thereby managing losses or seizing opportunities more effectively under extreme
shocks. At the same time, automated trading tools could execute buy and sell orders within
milliseconds, quickly stopping losses or taking profits. Such strategies could also be
automatically triggered to prevent investors from making suboptimal decisions during periods
of panic, thereby helping to mitigate losses in times of large market fluctuations. Diversifying
token holdings could also reduce the risks associated with the volatility of individual tokens,
and by closely monitoring the most affected tokens, investors could better navigate

fluctuations in market efficiency.

For policymakers, these fluctuations in market efficiency underscore the need for targeted
regulatory frameworks. Increasing oversight of cryptocurrency exchanges, enforcing stricter
security standards, and conducting regular audits could help reduce the risk of cryptocurrency
heists. Additionally, requiring exchanges to promptly disclose security breaches and heist
incidents would allow the market to respond more quickly, minimising the impact of
information asymmetry on market efficiency. Maintaining efficient market conditions is
essential for preserving investor confidence, liquidity, and stable price discovery in the
cryptocurrency market. Several jurisdictions have already taken steps in this direction. For
instance, the European Union’s Markets in Crypto—Assets (MiCA) regulation mandates
crypto service providers to meet security, transparency, and reporting standards, thereby
reducing the risk of theft and improving market response to such events (Donnelly et al.,
2024; Wronka, 2024). Similarly, following the Coincheck exchange heist, Japan’s Financial
Services Agency (2022) implemented stricter regulations requiring asset segregation and

routine third-party audits for crypto exchanges, ensuring higher operational integrity.
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Incorporating such practices globally could help build a more secure cryptocurrency

ecosystem.
2.4.2 Robustness Checks

To ensure the robustness of the results, this chapter uses six classical randomness tests to
assess Bitcoin’s market efficiency during cryptocurrency heists. These include the Hurst
exponent (Hurst, 1951), the Ljung—Box test (Ljung & Box, 1978), the Runs test (Wald &
Wolfowitz, 1940), the Bartels test (Bartels, 1982), the Variance Ratio (VR) test (Lo &
MacKinlay, 1988), and the BDS test (Broock et al., 1996). Although these tests are typically
used within the framework of the EMH, they are applied here as methodological tools to
detect deviations from randomness. The AMH does not reject the concept of market
efficiency but instead conceptualises it as an evolving condition. Therefore, while grounded
in EMH, the results of these tests can still provide complementary insights into the time-

varying nature of market efficiency as proposed under the AMH framework.

The Hurst exponent measures the long-term memory of a time series, ranging from 0 to 1. A
value above 0.5 suggests a positive long-term memory, below 0.5 indicates a negative long-
term memory, and precisely 0.5 implies a random walk. The Ljung—Box test checks for serial
correlation in the data, with the null hypothesis being no autocorrelation. The Runs test is a
non-parametric test method for detecting the independence or randomness of a time series,
and its null hypothesis is that the samples in the data set are random. The Bartels and VR tests
detect whether the time series is a random walk. Their null hypothesis is that the time series is
a random walk. The BDS test is a non-parametric statistical method that evaluates whether a
time series exhibits autocorrelation or nonlinear correlation, assuming the null hypothesis that

the series is independently and identically distributed.

Table 2.3 presents the p-value results of six randomness tests. Except for the VR test, which
shows that the Bitcoin market is efficient during some cryptocurrency heists, the other five
tests all indicate that it is inefficient during these cryptocurrency heists. These robustness test
results align with the previous findings from the permutation entropy model and the

Complexity—entropy causality plane.
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Table 2.3: p-value results of six randomness tests in twelve cryptocurrency heists

Platform Hurst exponent Ljung—Box test Runs test Bartels test VR test BDS test
Mt Gox 0.54 0.00 0.00 0.00 0.00 0.00
Coincheck 0.59 0.00 0.00 0.00 0.00 0.00
KuCoin 0.49 0.00 0.00 0.00 0.00 0.00
PancakeBunny 0.59 0.00 0.00 0.00 0.19 0.00
Poly Network 0.52 0.00 0.00 0.00 0.00 0.00
Bitmart 0.61 0.00 0.00 0.00 0.82 0.00
Wormbhole 0.44 0.00 0.00 0.00 0.05 0.00
Ronin Network 0.47 0.00 0.00 0.00 0.00 0.00
Beanstalk 0.60 0.00 0.00 0.00 0.22 0.00
Nomad 0.49 0.00 0.00 0.00 0.39 0.00
Binance 0.56 0.00 0.00 0.00 0.20 0.00
FTX 0.53 0.00 0.00 0.00 0.01 0.00

Before conducting the robustness tests, the data are subjected to necessary preprocessing procedures.
Specifically, Bitcoin returns are calculated as R, = Ln[(P,)/(P; — 1)] X 100, and the first differences are tested
for stationarity using the Augmented Dickey—Fuller (ADF) test.

2.5 Conclusion

This chapter delves into the impact of cryptocurrency heists on the efficiency of the Bitcoin
market. The analysis of permutation entropy and the Complexity—entropy causality plane
reveals a significant reduction in market efficiency during most cryptocurrency heists.
According to AMH, market efficiency fluctuates in response to shocks, as investors struggle
to adapt to changing environments. The sudden uncertainty and chaos following a
cryptocurrency heist make it challenging for investors to process, understand, and analyse the
new information related to the incident. This delay in information processing impedes
investors from making suitable decisions, often leading to sentiment reactions like panic
selling or buying, causing prices to deviate from their true price and further declining market
efficiency. This chapter also reports instances of cryptocurrency heists where Bitcoin’s
market efficiency does not decrease significantly. This suggests that investors may
concentrate on the most impacted tokens when analysing specific incidents. Different tokens
may respond differently to cryptocurrency heists, so investors should recognise that market

efficiency and volatility vary among tokens.

The findings provide valuable insights for investors to refine their investment and risk
management strategies. For instance, they should adapt their strategies flexibly and respond

quickly to external shocks based on market signals. By using high-frequency data and
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automated tools, investors could mitigate losses during periods of significant market volatility.
The results also underscore the importance of distinguishing between different tokens, as they
may react differently to cryptocurrency heists. Investors need to recognise that the volatility
and efficiency of each token vary, and their investment strategies should be adjusted
accordingly. Diversifying token holdings could help reduce the risks associated with the
fluctuations of individual tokens, and by closely monitoring the most affected tokens,

investors could better navigate changes in market efficiency.

Because Bitcoin’s market efficiency declines during cryptocurrency heists, policymakers
should work to enhance exchange and platform security standards and transparency to
respond quickly to such incidents, reduce uncertainty, and maintain market stability.
Policymakers also need to devise more effective regulatory measures that embrace a dynamic
approach to mitigate market risks and minimise the influence of malicious activities. It is
essential to maintain Bitcoin’s market efficiency by implementing stricter security protocols
on the platform and establishing transaction limits to prevent hackers’ exploitation of
vulnerabilities. For example, the European Union has taken the lead in implementing a
unified framework through the Markets in Crypto—Assets (MiCA) regulation, which
introduces comprehensive requirements for crypto service providers, including licensing,
capital requirements, cybersecurity standards, and mandatory disclosure of security breaches.
Japan, learning from high-profile incidents like the Coincheck exchange heist, now imposes
strict oversight on cryptocurrency exchanges through the Financial Services Agency (FSA),
requiring asset segregation, third-party audits, and robust security protocols. Such measures

could be productively replicated internationally.

An important avenue for future studies is to extend the event window to longer horizons to
capture the delayed effects of cryptocurrency heists. While this study adopts a three-day
window to focus on immediate market reactions, some consequences may unfold over longer
periods, particularly in cases where stolen cryptocurrencies or funds are eventually resituated.
Asset restitution may not only accelerate market recovery but also strengthen investor
confidence and liquidity, thereby reshaping the dynamics of market efficiency. Designing
longer event windows would thus enable us to distinguish between short-term volatility
shocks and medium- to long-term recovery processes. In addition, future studies should seek
to develop statistical methods capable of testing whether changes in permutation entropy

measures are significant, so as to provide a more rigorous assessment of the evolution of
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market efficiency. While such tools are not yet fully developed, their advancement would

offer valuable support for related studies.

Furthermore, the present study documents associations between cryptocurrency heists and
shifts in Bitcoin’s market efficiency, but it does not formally establish causality. This is a
common limitation of entropy-based approaches, which are effective in detecting structural
changes but not designed for causal identification. Future studies can integrate permutation
entropy with econometric techniques such as Granger causality tests or structural break
models to assess whether hacking incidents are genuine drivers of efficiency losses rather
than coincidental correlates. Finally, the findings should be interpreted in the context of
broader market conditions. The use of a three-day event window helps mitigate the influence
of concurrent macroeconomic or regulatory events, but given Bitcoin’s high volatility and its
sensitivity to external shocks, it is difficult to rule out residual confounding entirely. Future
studies can incorporate controls such as macroeconomic news shocks or global risk sentiment
to more clearly isolate the marginal effect of cryptocurrency heists on market efficiency

dynamics.

Overall, this chapter provides investors with important insights by enhancing their
understanding of how extreme events affect the Bitcoin market and by improving their risk
management practices. Investors should recognise that the Bitcoin market is vulnerable to
cryptocurrency heists, particularly major events that have far-reaching consequences for the
entire crypto community. Therefore, investors are advised to remain vigilant regarding market

volatility and uncertainty and to formulate investment strategies accordingly to manage risk.

62



Chapter 3 The Relationship between Bitcoin Price and Market

Sentiment: New Evidence from a Cryptocurrency Heist

Parts of this chapter have been published in the North American Journal of Economics and

Finance
3.1 Introduction

With a 56.8% market share and the highest market value, Bitcoin dominates the
cryptocurrency market. However, its price is highly volatile. For instance, the price of Bitcoin
dropped from about $66,000 at the end of 2021 to just over $16,000 in early 2023, then
surged back to $100,000 by December 2024 (CoinGecko, 2024). Traditional financial
theories based on rational pricing models struggle to provide predictive or valuable insights
into the pricing of highly volatile assets such as Bitcoin, as argued by Kristoufek (2013).
Instead, Bitcoin’s price is primarily driven by investors’ perceptions of its growth potential
(Cachanosky, 2019; Eom et al., 2019). Current studies have highlighted the crucial role of
investor sentiment in Bitcoin price formation. Positive beliefs about Bitcoin’s future may lead
investors to buy more, driving up prices, while pessimistic beliefs could prompt selling and
price declines. Therefore, understanding and analysing investor sentiment is key to

understanding Bitcoin’s price dynamics.

Previous studies have focused on the role of different sentiment indicators in predicting
Bitcoin price, such as surveys, social media, indices, and Google search volume (Kaminski,
2014; Kapar & Olmo, 2021; Ullah et al., 2022; Kim et al., 2021; Meyer et al., 2023).
However, these studies usually focus only on the impact of sentiment on price while ignoring
the effect of prices on sentiment. Sentiment movements can influence price, and price can, in
turn, affect sentiment movements. For instance, sentiment changes can drive price
movements. Negative news or pessimistic sentiment on social media platforms can induce
fear, prompting selling and price drops. Conversely, positive news or sentiment attracts
buyers, driving prices up. On the other hand, a surge in Bitcoin price typically sparks
excitement and optimism among investors, driving further investment and increasing the
price. Conversely, price declines can trigger anxiety and panic, leading to selloffs and
additional downward pressure on price. Moreover, many studies focused on global events,
such as the COVID-19 pandemic and geopolitical conflicts, while neglecting the specific

context of the Bitcoin market. This oversight may hinder our ability to discern whether
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Bitcoin price fluctuations are primarily driven by Bitcoin market sentiment or broader
sentiment in global financial markets, potentially leading to biased research results (Gaies et

al., 2023).

Cryptocurrency heists offer a significant opportunity to examine the predictive relationship
between price and sentiment. Many individuals store their cryptocurrencies in exchanges’ hot
wallets, linking the security of these assets to the exchanges. Over the years, hackers have
targeted these exchanges, exploiting vulnerabilities to steal cryptocurrencies and make profits.
The Mt. Gox exchange hack in 2014 and the Ronin Network platform attack in 2022 led to
the theft of billions of dollars in Bitcoin and $595 million in Ethereum, respectively,
underscoring this vulnerability. As the cryptocurrency with the highest price, Bitcoin garners
significant attention from attackers. From 2011 to 2021, around 1.7 million Bitcoins, worth
over $700 million, were stolen, representing about 10% of the total Bitcoin supply (Grobys et
al., 2022). These attackers employ 51% attacks (i.e. control over 50% of the network) and
exploit exchange and wallet vulnerabilities to steal Bitcoin and generate substantial profits
(Wen et al., 2021). These heists amplify concerns about cryptocurrency ecosystem security,
potentially sparking panic, anxiety, and selling pressure among investors (Marella et al.,
2021). When the price drops significantly, the value of investors’ assets shrinks rapidly,
potentially intensifying market panic and anxiety. Additionally, the market may perceive a
price decline as further confirmation of the incident’s risks, reinforcing negative sentiment
and leading to further market environment deterioration (Kapar & Olmo, 2021; Dias et al.,

2022), such as a decline in market efficiency (Li et al., 2024).

This chapter uses the Crypto Fear & Greed Index (CFGI) as a proxy for investor sentiment in
the Bitcoin market. Since CFGI primarily captures sentiment related to Bitcoin, the analysis
focuses on cryptocurrency heists that directly target Bitcoin or involve the theft of a large
amount of Bitcoin, thereby avoiding distortion of the relationship between Bitcoin price and
sentiment. The most recent major incident of this kind was the KuCoin exchange heist.
KuCoin, a Singapore-based cryptocurrency exchange, offers trading in over 200 different
assets, with a daily trading volume of approximately $100 million. On September 25, 2020,
KuCoin exchange suffered a cyberattack in which hackers infiltrated the exchange’s system,
obtained the private keys to its hot wallets, and transferred approximately $281 million worth
of Bitcoin. This cryptocurrency heist is also one of the largest to date (Tsihitas, 2025).
Although this incident does not compromise the Bitcoin blockchain itself, which is widely

regarded as virtually hack-proof, it exposes security vulnerabilities in centralised trading
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platforms and seriously damages investor confidence. This is because Bitcoin is the largest
and most symbolic asset stolen, and it functions as the benchmark currency for the entire
cryptocurrency market. Ordinary investors often fail to distinguish between “an exchange
being hacked” and “Bitcoin itself being hacked,” and thus may interpret such incidents as
evidence of Bitcoin’s insecurity. Moreover, as exchanges are the primary gateways to Bitcoin
liquidity, their security is directly linked to trust in the Bitcoin market (Fang et al., 2025). For
these reasons, the KuCoin exchange heist is not merely perceived as a case of asset loss but
as a shock to the stability and safety of the Bitcoin ecosystem, likely exerting a deeper
influence on Bitcoin price and sentiment than cryptocurrency heists involving other
cryptocurrencies. Figure 3.1 illustrates the dynamics of Bitcoin price (BP) and CFGI over the
three months before and after the KuCoin exchange heist. The figure shows that Bitcoin price
and investor sentiment move somewhat together both before and after the incident. However,
correlation does not necessarily imply a predictive relationship, highlighting the need for

further investigation.

Figure 3.1: Bitcoin price (BP) and CFGI dynamics in the three months before and after the

KuCoin exchange heist
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The red dashed line marks the date of the KuCoin exchange heist on 25 September 2020. The Bitcoin price data

is sourced from CoinGecko, while the CFGI data is obtained from Alternative.me.

65



Existing studies suggest that external shocks often amplify market reactions by altering
investor sentiment (Polat et al., 2022; Anamika et al., 2023; Gaies et al., 2023). In the
cryptocurrency market, sudden events such as hacks or exchange thefts not only cause direct
asset losses but also intensify uncertainty and fear among participants. When sentiment
deteriorates, panic selling may drive prices down, while falling prices in turn reinforce
negative sentiment, creating a self-reinforcing feedback loop. Hence, it can be expected that
after a cryptocurrency heist, the relationship between Bitcoin price and sentiment is more
likely to exhibit a bidirectional predictive relationship. Based on this context, this chapter

proposes the first hypothesis:

HI: KuCoin exchange heist may enhance the bidirectional predictability between Bitcoin
price and CFGL

However, since the CFGI is specifically designed to capture sentiment within the Bitcoin
market, its effectiveness as a sentiment proxy may be limited in cryptocurrency heists that do
not directly involve Bitcoin. In such cases, the sentiment and trading responses of investors
may be concentrated on the affected token, with Bitcoin playing a less central role in the
incident. As a result, the interaction between the Bitcoin price and CFGI may be weaker.

Based on this reasoning, this chapter proposes the second hypothesis:

H2: In cryptocurrency heists not targeting Bitcoin, the influence of CFGI on Bitcoin price is

weaker, and the impact of Bitcoin price on CFGI is also limited.

Additionally, as the benchmark asset in the cryptocurrency market, Bitcoin often profoundly
influences the broader ecosystem (Katsiampa et al., 2019a; Kuma & Anandarao, 2019;
Ozdemir, 2022). While market panic triggered by the KuCoin exchange heist may ripple
through other cryptocurrency markets, CFGI primarily reflects sentiment within the Bitcoin
market. As such, relying on CFGI to predict other cryptocurrencies’ performance in the
KuCoin exchange heist may not be reliable. Therefore, this chapter proposes the third

hypothesis:

H3: The volatility in CFGI caused by Bitcoin heist has a limited impact on other

cryptocurrency markets.

There are three key findings in this chapter. First, time-varying Granger causality tests reveal
that the predictive relationship between Bitcoin price and CFGI changes significantly before

and after the KuCoin exchange heist. During the 90 days prior to the KuCoin exchange heist,
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there is no statistically significant bidirectional predictive relationship between Bitcoin price
and CFGI, with CFGI showing limited predictive power for Bitcoin price and vice versa.
However, in the 90 days following the KuCoin exchange heist, a statistically significant
bidirectional predictive relationship emerges, with CFGI’s influence on Bitcoin price
strengthening and Bitcoin price also influencing CFGI. This suggests that, although CFGI
serves as a key indicator of Bitcoin market sentiment, its predictive relationship with Bitcoin
price is dynamic. Under stable market conditions without major unexpected events, CFGI has
limited predictive value for Bitcoin price, and minor price fluctuations exert little impact on
CFGI. However, during major shocks, swings in market sentiment and increased price
volatility amplify this relationship. For investors, it is important to approach panic-driven
trading behaviour with caution during cryptocurrency heists, as sentiment responses may
exacerbate price declines and lead to suboptimal decisions. At the same time, the dynamic
interaction between Bitcoin price and sentiment during such periods highlights the potential
of event-driven trading strategies, where sentiment indicators can serve as early warning

signals for heightened market instability.

Second, no statistically significant bidirectional predictive relationship is found between
Bitcoin price and CFGI in cryptocurrency heists that do not involve Bitcoin theft. In such
cases, relying on CFGI to predict Bitcoin price, or using Bitcoin price to forecast changes in
CFG@I, is not an effective approach. However, if the cryptocurrency heist indirectly affects the
Bitcoin market, a statistically significant bidirectional predictive relationship between Bitcoin
price and CFGI can still be observed. This suggests that the predictive power of CFGI for
Bitcoin price, as well as the influence of Bitcoin price on CFGI, is closely tied to whether the
cryptocurrency heist impacts the Bitcoin market. Finally, using the TVP-VAR-based
connectedness approach, this chapter finds that the CFGI volatility triggered by the KuCoin
exchange heist does not exhibit statistically significant spillovers into other cryptocurrency
markets. This indicates that the impact of CFGI fluctuations remains primarily confined to
the Bitcoin market, with minimal influence on other cryptocurrency markets. However, while
investors can use CFGI to make short-term trading decisions for Bitcoin during Bitcoin-
specific heists, its applicability to other cryptocurrencies may be limited. Solely relying on
CFGI could lead investors with diversified cryptocurrency portfolios to draw misleading

conclusions.

These findings offer valuable insights for policymakers focused on the Bitcoin market. First,

the intensified bidirectional predictive relationship between Bitcoin price and CFGI following
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cryptocurrency heists that directly involve Bitcoin suggests that the market is highly sensitive
to such security breaches. This underscores the importance of timely and transparent incident
disclosure by affected exchanges to reduce uncertainty and prevent sentiment overreaction
within the Bitcoin market. Second, the heightened volatility in CFGI during these incidents
demonstrates its potential as a real-time sentiment indicator for Bitcoin-specific market risk.
Regulators may consider incorporating CFGI into early warning systems for detecting risks in

the Bitcoin market.

To sum up, this study is highly significant for two reasons. First, cryptocurrency heists
substantially impact asset prices, market sentiment, and the overall stability of the ecosystem,
warranting detailed analysis. Second, as cryptocurrencies emerge as a new frontier in
financial markets, understanding the factors that influence market stability is critical for
investors to adjust their strategies and for policymakers to implement effective regulation.
This chapter is structured as follows. The second section presents the literature review, the
third outlines the data and methodology, the fourth discusses the empirical results, and the
fifth concludes the chapter. The sixth section contains the appendix, which includes

robustness checks and supplementary analyses.
3.2 Literature Review

3.2.1 From Traditional Finance to Behavioural Finance

Modern financial theory is strongly influenced by two cornerstone concepts: the Capital Asset
Pricing Model (CAPM) and the Efficient Market Hypothesis (EMH) (Sharpe, 1964; Fama,
1970). Both assume that investors are rational and able to respond efficiently to market
information, thereby overlooking the complexities of actual investor behaviour and treating
the stock market as inherently unpredictable. However, since the emergence of behavioural
finance, many studies have shown that under incomplete information, investors’ actions,
attitudes, and preferences often deviate from the assumption of full rationality. Asset prices
are not purely random and can, to some extent, be predictable (Zhang et al., 2017).
Behavioural finance integrates insights from the broader social sciences into financial
economics. Since the pioneering work of scholars such as Shiller (1981), De Bondt and
Thaler (1985), Shefrin and Statman (1985), and Roll (1986), a substantial body of literature
has emerged, positioning behavioural finance as an important complement to traditional

financial theory.
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Sentiment is a core concept in behavioural finance, which posits that sentiment influences
individual decision-makers, institutions, and markets. For example, Kamstra et al. (2000)
found that stock returns tended to be negative around the weekend when daylight saving time
transitioned to standard time. They suggested investors suffering from seasonal affective
disorder might experience negative sentiment due to the time change. Such sentiment can
impair investors’ ability to process information efficiently and concentrate on trading, leading
to lower stock returns. Similarly, Hirshleifer and Shumway (2003) found that weather
conditions could influence investor sentiment, positive on sunny days and negative on cloudy
days. They observed that stock returns were significantly higher on sunny days and lower on
cloudy days. This may be because positive sentiment enhances investors’ capacity to process
information and make rational decisions, whereas negative sentiment may induce doubt and
pessimistic interpretations of subsequent information, resulting in suboptimal investment

choices.

Ashton et al. (2003) suggested that there may be a relationship between national sports
performance and stock market returns. Their findings indicated that when the England
football team performed well in qualifying or final matches, subsequent stock market
performance tended to improve; conversely, poor performance was associated with market
declines. This may be attributed to the psychological boost from sporting success, which
increases investors’ confidence in the future. While the positive effect of victory has
gradually diminished, the anomaly has persisted (Ashton et al., 2011). Similarly, Scholtens
and Peenstra (2009) examined the relationship between football match results and stock price
changes using data from eight national teams across 1,274 matches between 2000 and 2004.
The results showed that stock markets generally reacted positively to victories and negatively
to defeats, with losses triggering stronger price reactions than wins. Bernile and Lyandres
(2011) further argued that such effects might be the result of systematic expectation bias.
Investors may become overly optimistic before matches, only to be disappointed after
unfavourable outcomes, which in turn drives pessimism and negative returns in the following

trading days.

These studies indicate that investor sentiment plays an important role in the process of price
formation, yet the relationship between sentiment and price is not unidirectional. Price
fluctuations can, in turn, influence investor sentiment, creating a self-reinforcing feedback
mechanism (Marczak & Beissinger, 2016; He et al., 2019; Kapar & Olmo, 2021). For

example, when asset prices suddenly experience a sharp decline, investors often react with
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panic and intensify selling pressure, which further drives prices down. Conversely, when
prices rise rapidly, optimism and greed may attract more investors to enter the market,
leading to momentum-driven buying that pushes prices even higher. This process, in which
price changes trigger shifts in sentiment that subsequently amplify price movements,

exemplifies the bidirectional interaction between price and sentiment.

Behavioural finance provides a theoretical framework to understand this mechanism, such as
limited attention theory (Barber & Odean, 2008), overreaction theory (De Bondt & Thaler,
1985), and herding behaviour (Banerjee, 1992; Bikhchandani et al., 1992). Limited attention
theory posits that individuals have limited cognitive resources and cannot process all
information simultaneously, forcing them to allocate attention selectively. This limited
attention makes investors more susceptible to salient information (e.g., media coverage,
market sentiment), which may cause asset prices to become temporarily overvalued or
undervalued. When asset returns are negative, investors tend to focus excessively on
downward trends, increasing the likelihood of undervaluation; when returns are positive, they
tend to overemphasise upward trends, increasing the likelihood of overvaluation.
Overreaction theory highlights that, under uncertainty, investors often respond excessively to
market information due to cognitive biases, leading to short-term deviations of asset prices
from their intrinsic value. This is most visible in the form of excessive optimism in bull
markets that drives prices higher and excessive pessimism in bear markets that accelerates
declines, generating mutually reinforcing effects. Herding behaviour further emphasises that
investors often do not act independently but instead follow the actions of others. In
downturns, panic sentiment may trigger widespread selling, whereas in upswings, greed may
fuel momentum-driven buying. Sentiment contagion and price dynamics reinforce one

another, thereby amplifying volatility.

Taken together, these behavioural finance frameworks reveal that price fluctuations
themselves stimulate psychological responses, while investor sentiment rapidly spreads
through mechanisms such as herding, ultimately creating a bidirectional feedback loop
between price and sentiment. This dynamic interaction provides a theoretical foundation for
understanding the relationship between Bitcoin price and sentiment in the context of
cryptocurrency heists. However, while these theories establish the foundations for the
sentiment-price feedback mechanism, empirical validation remains a central challenge.
Sentiment is inherently vague and subjective, and individuals may interpret and respond to

the same situation differently. Consequently, scholars typically rely on proxy indicators to

70



measure sentiment, but different proxies may significantly affect the findings. In examining
the relationship between Bitcoin price and sentiment, the choice of sentiment proxies can thus
shape the results. The following section reviews the literature on various sentiment indicators

to identify suitable measures for empirical analysis.
3.2.2 Sentiment Measures and Their Application in the Bitcoin Market

According to the survey, sentiment measures can be broadly categorised into direct and
indirect (Bouteska et al., 2022). The first group measures investor sentiment through direct
measurement, including two sentiment indicators: survey-based and sentiment analysis-based.
Survey-based indicators, such as Sentix survey data, measure investor sentiment monthly by
assessing investors’ willingness to purchase Bitcoin. Scholars found that when investors are
more willing to buy (optimism towards Bitcoin), Bitcoin price shows an upward trend.
Moreover, negative sentiment from investors has a more pronounced impact on Bitcoin price
than positive sentiment (AlNemer et al., 2021; Anamika et al., 2023). In studies using
sentiment analysis-based indicators, Scholars often gather sentiment data from platforms like
Twitter, BitcoinTalk, or Reddit to capture current investor sentiment. Kaminski (2014)
examined three months of tweets related to Bitcoin, constructing a sentiment indicator from
words indicating positive and negative sentiment. They found that sentiment mirrors market
conditions rather than predicts Bitcoin price trends. However, Garcia and Schweitzer (2015)
and Perry-Carrera (2018) used sentiment analysis methods on tweets with cryptocurrency-
specific lexicons, discovering that sentiment can predict Bitcoin price trends using vector
autoregression models. Kraaijeveld and De Smedt (2020) demonstrated Twitter sentiment’s
predictive ability on returns for Bitcoin, Bitcoin Cash, and Litecoin. Sattarov et al. (2020)
analysed Bitcoin-related tweets and financial data, finding the predictive power of Twitter
sentiment on Bitcoin price, achieving 62.48% accuracy in out-of-sample price predictions.
Saleem et al. (2024) collected over 3 million tweets from 2013 to 2022 using ‘bitcoin’ and
‘BTC’ keywords. They employed the Valence Aware Dictionary and Sentiment Reasoner
(VADER) and logistic regression model for sentiment analysis, showing that negative
sentiment significantly impacts Bitcoin price declines. In contrast, positive sentiment has a

minor role in driving price increases.

Twitter provides the Twitter Happiness Index, a direct sentiment indicator derived from about
10,000 sentiment-related words in randomly selected Twitter posts. Naeem et al. (2021b)

assessed its predictive ability on returns of six major cryptocurrencies, revealing a significant
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nonlinear Granger causality relationship with returns. Subsequently, Naeem et al. (2021c¢)
employed bivariate cross-change plots and found their ability to predict Bitcoin returns under
extreme market conditions, suggesting sentiment-based portfolio adjustments. However,
Perry-Carrera (2018) noted that because Twitter is a platform for general users, many posts
may be misclassified, leading to the collection of irrelevant information and an inefficient
data-gathering process. Specialised cryptocurrency discussion platforms like BitcoinTalk,
StockTwits, or Reddit are preferable to enhance sentiment data quality. These platforms have
a high level of specialisation, reducing the likelihood of collecting unrelated information
about Bitcoin. Mai et al. (2018) examined the dynamic interaction between investor
sentiment on social media and Bitcoin price using text analysis and a vector error correction
model. They found that investor sentiment is a significant predictor of Bitcoin price, but not
all social media sentiments have an equal impact. Compared to sentiment gathered from
Twitter, investor sentiment collected from professional discussion platforms or websites has a

more significant influence on the future price of Bitcoin.

Therefore, recent studies focused on gathering investor sentiment from professional
discussion platforms or websites. Chen et al. (2019) created a cryptocurrency-specific lexicon
from StockTwits and Reddit messages. They used a local-momentum autoregression model
and found sentiment effects during cryptocurrency bubbles that persist but reverse after the
bubble bursts. Bouteska et al. (2022) developed a sentiment indicator using computational
text analysis from StockTwits and Reddit, employing vector autoregression analysis to
predict short-term returns in the Bitcoin market. Guégan and Renault (2021) analysed
approximately one million StockTwits messages, finding a significant relationship between
investor sentiment and Bitcoin returns only in high-frequency data at 15-minute intervals,

disappearing as data frequency decreases.

The second group of measuring investor sentiment involves indirect measurement, which
includes using cryptocurrency indices or Google search volume. One commonly used
cryptocurrency index is the Cryptocurrency Volatility Index (CVI), developed by the research
team at COTI (Currency of the Internet). This innovative tool aims to capture the overall
volatility of the cryptocurrency market. Based on the Black—Scholes—Merton model, the CVI
is calculated using the 30-day implied volatility of the two largest cryptocurrencies by market
capitalisation, Bitcoin and Ethereum. It reflects not only idiosyncratic risk within the
cryptocurrency market but also systemic risk. Gaies et al. (2024) used the CVI to reveal a

strong dependence between instability in the U.S. financial system and volatility in the global
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cryptocurrency market, a relationship that becomes even more pronounced during periods of
financial turbulence. Their findings suggested a transmission mechanism of financial risk
between the stock market and the cryptocurrency market, implying that during turbulent
times, volatility in the cryptocurrency market could spill over into broader financial markets.
Another commonly used cryptocurrency index is the Volatility Index of Cryptocurrency
(VCRIX), proposed by Kim et al. (2021). Studies by Kim et al. (2021) and Bouteska et al.
(2022) indicated that VCRIX can effectively predict market trends and has good predictive

ability for Bitcoin returns.

Google search volume serves as another sentiment proxy. Using the vector autoregression
model, Kristoufek (2013, 2015) found a close relationship between Bitcoin price, Google
search volume, and Wikipedia search volume. Building on this, Abraham et al. (2018)
predicted cryptocurrency prices using sentiment from both tweets and Google search volume,
finding superior predictions from Google search volume. Goczek and Skliarov (2019)
employed a factor-augmented vector error correction model, identifying Bitcoin’s popularity,
reflected in Google search volume, as the primary driver of its price. Eom et al. (2019) used
autoregressive models to study sentiment’s impact on Bitcoin returns and volatility changes,
finding Google search volume informative in predicting Bitcoin volatility. Kapar and Olmo
(2021) constructed vector error correction models for 2010-2017 and 2010-2019,
considering factors like the S&P 500 Index, gold prices, Bitcoin Google search volume, and
the FED Financial Stress Index. They found that from 2010 to 2018, all factors influenced
Bitcoin price, with Google search volume positively impacting prices. However, Google
search volume becomes the sole variable explaining Bitcoin price dynamics in subsequent
periods. Sabalionis et al. (2021) utilised the VAR—-GARCH-BEKK model to analyse how
Google search volume, tweet counts, and blockchain active addresses impact Bitcoin and
Ethereum prices over time. Results showed that while Google search volume and tweet
counts have some influence on prices, they are much weaker compared to active addresses.
Bouteska et al. (2022) similarly used Google search volume to study sentiment’s predictive
power on Bitcoin price during COVID-19. The results are consistent with their StockTwits
and Reddit sentiment data findings, indicating that investor sentiment significantly impacts

Bitcoin returns during the COVID-19 pandemic.

However, some studies have suggested that Google search volume has a limited impact on
Bitcoin price. Aalborg et al. (2019) incorporated this variable into a factor model explaining

Bitcoin price, finding minimal influence across different data frequencies. Cheah et al. (2022)
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treated search volume as a sentiment proxy but discovered no significant relationship with
Bitcoin returns in various samples and asset allocation tests. Discrepancies in findings may
arise from differing research periods, data frequencies, or market conditions. Moreover,
sentiment complexity and noisy trading in the Bitcoin market may lead to short-term
inconsistencies between sentiment and prices, affecting research outcomes. Panagiotidis et al.
(2019) observed Google search volume’s greater predictiveness in cryptocurrency’s early
stages, yet with diminishing effectiveness over time. This may reflect the rise of professional
discussion platforms, where investors rely less on internet searches to gauge sentiment,

reducing Google search volume's representativeness in today’s cryptocurrency market.

Most findings suggest sentiment could predict Bitcoin price, but limitations exist. Firstly,
direct or indirect sentiment measures may not capture sentiment comprehensively, potentially
biasing indicators (Gaies et al., 2023). For instance, sentiment classification indirect measures
may be subjective, and data from platforms like Twitter or Reddit may have limited samples,
not fully representing the Bitcoin market or sentiment (Kim et al., 2018). Also, manipulation,
fake accounts, and bots can influence social media platforms, introducing biases to sentiment
analysis (Chen et al., 2022; Weng & Lin, 2022). Social media data may also lack robustness
and be influenced by cycles, intervals, and measurement methods (Ahmed, 2022; Cheah et al.,
2022). In indirect measures, the popularity of professional social media forums has gradually
diminished the capacity of such indicators to reflect sentiment, rendering them unsuitable as
reliable proxies for sentiment (Panagiotidis et al., 2019; Gaies et al., 2023). Hence, adopting
new sentiment measurement methods is crucial. One potential approach is a comprehensive
method combining direct and indirect components to form a holistic sentiment measure rather

than considering these elements separately.
3.2.3 Crypto Fear & Greed Index

This chapter recommends using the Crypto Fear & Greed Index (CFGI) as a proxy for
Bitcoin market sentiment. This indicator integrates social signals and market trends to capture
overall sentiment in the Bitcoin market. It is calculated by Alternative.me and released daily
at midnight. The CFGI is specifically designed for Bitcoin and consists of six components:
social media interest (15%), volatility (25%), market volume (25%), cryptocurrency surveys

(15%), market dominance (10%), and Google search trends (10%).

Social media interest is measured using a Twitter sentiment analysis tool, which collects posts

under Bitcoin-related hashtags and evaluates their interaction speed and frequency within a
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given time frame. An abnormally high engagement rate indicates rising public interest in
Bitcoin and reflects greedy market behaviour. Volatility is assessed by comparing current
Bitcoin volatility and maximum drawdowns against the 30-day and 90-day averages, where
unusually high volatility signals market fear. Market volume captures current trading activity
and momentum relative to the 30-day and 90-day averages, with abnormally high buying
volume in a bullish market reflecting excessive greed and optimism. Cryptocurrency surveys
are conducted weekly in collaboration with the large public polling platform Strawpoll.com,
typically collecting 2,000 to 3,000 responses, thereby providing a general measure of investor
sentiment. Market dominance refers to Bitcoin’s share of the total cryptocurrency market
capitalisation. An increase in dominance indicates a flight to safety toward Bitcoin due to
concerns about speculative alt-coin investments, which is interpreted as a signal of fear.
Conversely, a decrease in dominance suggests a shift toward more speculative alt-coins,
signalling greed. Finally, Google search trends, obtained from Google Trends, measure the
number of searches for Bitcoin-related keywords. Rising searches for terms such as “Bitcoin
price manipulation” are interpreted as signs of fear, while increased searches for “Bitcoin

price prediction” reflect optimism in the market.

The CFGI identifies both positive and negative sentiment by combining the above data
sources into a single value, ranging from 0 (extreme fear) to 100 (extreme greed). An increase
in the CFGI indicates a rise in positive sentiment, whereas a decrease reflects a rise in
negative sentiment. Gaies et al. (2023) highlighted CFGI’s advantage in considering multiple
factors in Bitcoin price formation. CFGI signals ‘fear’ amid Bitcoin volatility and low
purchasing volume, while increased social media activity, like Google search trends and
market dominance, shifts it towards ‘greed’. Furthermore, by integrating direct investor
survey responses, CFGI captures diverse behavioural factors (‘fear’ and ‘greed’) that might
otherwise be analysed separately. Therefore, utilising CFGI provides a holistic view of
sentiment trends among Bitcoin market participants, offering valuable insights for investors
and policymakers to understand the psychological state of the Bitcoin market and anticipate

potential trends.

The CFGI has increasingly become a widely accepted sentiment indicator in academic
research. For instance, Gaies et al. (2023) employed a bootstrap rolling-window Granger
causality test to examine the relationship between Bitcoin price and CFGI during the
COVID-19 pandemic. Their findings suggested that the causal relationship between Bitcoin

price and CFGI is not constant over time. Specifically, the interaction between panic
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sentiment and Bitcoin price can be either negative or positive, with such bidirectional effects
observed across several subperiods. More importantly, the nature of this relationship differs
significantly before and during the pandemic, indicating that external shocks can alter the
dynamic interplay between investor sentiment and price. Wang et al. (2024) reported a U-
shaped relationship between CFGI and cryptocurrency price synchronicity. In particular,
synchronicity decreases as CFGI rises, but when investors are in a state of extreme fear or
greed, the herding behaviour driven by CFGI amplifies market co-movement, thereby
increasing systemic risk and undermining portfolio diversification. Another study by Huang
et al. (2024), using monthly data from 2016 to 2021 and employing both autoregressive
distributed lag (ARDL) and error correction models (ECM), investigated the impact of CFGI
on Bitcoin returns. The ARDL results revealed a significant long-term positive association,
whereby heightened optimism and greed attract capital inflows that push Bitcoin’s value
upward, while heightened pessimism and fear trigger capital outflows that adversely affect
market performance. The ECM analysis further confirmed that changes in sentiment exert
direct and significant short-term effects on Bitcoin returns, underscoring the market’s
sensitivity to fluctuations in sentiment. Overall, these studies demonstrate that CFGI not only
captures the multidimensional features of investor sentiment in cryptocurrency markets but
also provides significant explanatory power for price volatility, market co-movement, and

return dynamics.
3.2.4 Volatility and Structural Breaks in the Bitcoin Market

Although previous studies have proposed various sentiment measures and confirmed, to some
extent, their predictive power for Bitcoin price, they often overlook the specific
characteristics of the Bitcoin market. Compared with traditional financial assets, Bitcoin
exhibits extreme volatility and frequent structural breaks following major shocks (Baur et al.,
2018; Panagiotidis et al., 2022). These features not only influence the stability of the
sentiment-price relationship but also provide a new perspective for understanding investor
behaviour. Therefore, it is essential to review the literature on volatility and structural breaks

to better understand Bitcoin’s dynamics under extreme market conditions.

Previous studies have examined the time-varying behaviour of Bitcoin volatility within the
GARCH framework. Gronwald (2014) employed an autoregressive jump intensity GARCH
model and found that the Bitcoin price is particularly sensitive to extreme fluctuations,

highlighting the market’s vulnerability to sudden shocks. Bouoiyour and Selmi (2015)
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evaluated the goodness-of-fit of different GARCH specifications over two sub-periods
between 2010 and 2015. Their results indicated that in the earlier period, threshold GARCH
models revealed high volatility persistence, whereas in the latter period, EGARCH suggested
a reduction in persistence, implying that the evolution of market structure influences
volatility dynamics. Bouri et al. (2017) compared the return-volatility relationship before and
after the 2013 price crash. They found that before the crash, past shocks and volatility were
negatively correlated, while the relationship disappeared afterwards. This suggests that before
December 2013, positive shocks increased conditional volatility more than negative shocks, a
reversed asymmetry compared with the stock market. They attributed this to Bitcoin’s “safe-
haven effect,” whereby investors regarded Bitcoin as a hedge, causing volatility to rise
alongside price increases. Similarly, Klein et al. (2018) adopted the asymmetric power ARCH
(APARCH) and the fractionally integrated APARCH (FIGARCH) models, confirming the
presence of asymmetric volatility in Bitcoin. Given that speculative activity intensifies during
extreme price increases, volatility tends to rise during sharp upswings. They also identified
strong persistence in variance shocks, indicating that once volatility rises, it declines only
gradually over time. This persistence was especially evident during the boom of 2017 and the
subsequent correction, when sharp price increases left volatility elevated for an extended
period. Stavroyiannis (2018) employed a GIR-GARCH model to examine Bitcoin’s Value-at-
Risk (VaR) and related indicators, concluding that Bitcoin is highly volatile and more prone
to breaching VaR thresholds than assets such as gold. Collectively, these findings demonstrate
that Bitcoin’s volatility is not only far higher than that of traditional assets but also
characterised by persistence, asymmetry, and shifts, suggesting that its price dynamics are

deeply shaped by external shocks and market state transitions.

Importantly, Bitcoin’s high volatility does not occur in isolation but often coincides with
structural breaks triggered by external shocks. Such breaks not only reshape the dynamics of
price and volatility but also significantly affect investor sentiment, thereby amplifying market
instability. Notably, the relationship between sentiment and volatility appears heterogeneous
across studies. Cheung et al. (2015) documented the existence of bubbles in Bitcoin between
2011 and 2013, with their collapse coinciding with the failure of the Mt. Gox exchange. This
structural break induced both drastic adjustments in price and volatility and a sharp
deterioration in investor sentiment, which further destabilised the market. Wang et al. (2020)
provided complementary evidence by showing that spikes in the Economic Policy

Uncertainty (EPU) index exacerbate investor uncertainty, significantly increasing Bitcoin
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volatility and trading volume while generating cross-country spillover effects. Lopez-
Cabarcos et al. (2021) further showed that investor sentiment exerts a significant influence on
Bitcoin volatility, with negative sentiment and panic often associated with heightened
volatility. Thus, Bitcoin’s volatility may be amplified in both speculative environments and
fear-driven markets, reflecting a dual sensitivity. This feature highlights how Bitcoin price
dynamics are shaped by the interaction of market conditions and investor sentiment, in
contrast to traditional financial markets, where volatility expansions are typically driven by
negative shocks (Black, 1976; Christie, 1982; Campbell & Hentschel, 1992; Calvo &
Mendoza, 2000).

Additionally, previous studies also found that different structural changes in the market have
varying impacts on Bitcoin’s volatility. Corbet et al. (2020b) revealed that cryptocurrencies
react heterogeneously to U.S. Federal Reserve interest rate adjustments and quantitative
easing (QE) announcements, with currency-based digital assets being particularly sensitive to
policy shocks. These policy-driven structural breaks often trigger shifts in investor sentiment.
Corbet et al. (2020c) further found that macroeconomic news related to unemployment and
durable goods significantly influences Bitcoin returns, whereas announcements concerning
GDP and CPI have a limited impact. This suggests that different types of external shocks
elicit differentiated investor sentiment responses. Overall, these studies reveal that structural
breaks often affect volatility by altering investor sentiment, underscoring its mediating role in
cryptocurrency price dynamics. However, existing studies have primarily focused on shocks
arising from structural breaks at the macroeconomic, policy, or financial market level. In
contrast, there remains a lack of systematic investigation into how sudden events such as
cryptocurrency heists shape investor sentiment and, through a bidirectional feedback
mechanism, interact with Bitcoin’s price dynamics. Addressing this gap, this chapter centres
on the bidirectional interaction between Bitcoin price and sentiment in the context of

cryptocurrency heists.
3.3 Data and Methodology

3.3.1 Variable and Descriptive Statistics

This chapter analyses the interaction between price and sentiment during the KuCoin

exchange heist using the Bitcoin daily price (BP) in US dollars and the daily CFGI?. The

2 CFGI only provides daily data.
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Bitcoin price data is sourced from CoinGecko®, while the CFGI data is obtained from
Alternative.me. Since the dataset is daily data, it needs to ensure that the sample period is
sufficiently long to guarantee the robustness of the model results. If the sample period is too
short (less than one month), it may fail to capture the complete causal relationship.
Conversely, a sample period that is too long (e.g. six months or one year) might dilute the
heist’s direct impact on investor sentiment and price dynamics due to the increasing influence
of unrelated external factors over time. Manahov and Li (2024) found that, using daily data, a
120-day window could effectively capture the negative impact of cryptocurrency heists on
the market. Building on this precedent, this chapter also employs a relatively long event
window to trace the dynamics of price and sentiment surrounding the KuCoin exchange heist.
However, a 120-day horizon risks incorporating unrelated macroeconomic, policy, or market
events that could obscure the effect of the heist itself. To strike a balance between model
robustness and noise minimisation, a 90-day window 1is therefore considered more
appropriate. A 90-day period is sufficiently long to ensure an adequate sample size and
capture short- to medium-term adjustments in price and sentiment, yet short enough to
minimise external noise and ensure that the identified effects can be primarily attributed to
the heist. Specifically, the pre-heist period spans from June 27, 2020, to September 24, 2020,
while the post-heist period covers September 25, 2020, to December 23, 2020.

Table 3.1 (Panel A) presents the descriptive statistics of Bitcoin prices over the 90-day period
before and after the KuCoin exchange heist. The results show that following the incident, the
standard deviation increased from 1,040.61 to 3,827.55, indicating a significant rise in price
volatility and heightened market uncertainty. The results of the Jarque—Bera (JB) and
Augmented Dickey—Fuller (ADF) tests further confirm that Bitcoin prices exhibit non-
normality and non-stationarity. Similarly, Table 3.1 (Panel B) provides the descriptive
statistics for the CFGI over the same time frame. Its standard deviation increased from 17.17
to 18.73, suggesting greater fluctuations in investor sentiment following the KuCoin
exchange heist. The JB and ADF tests also indicate that the CFGI is non-normally distributed

and non-stationary.

Overall, the descriptive statistics for Bitcoin prices and CFGI reveal a similar pattern: a

notable increase in volatility following the KuCoin exchange heist. This preliminary evidence

3 Bitcoin price refers to the current global volume-weighted average price of Bitcoin traded on an active crypto
asset exchange as tracked by CoinGecko. This closing price should be representative of the entire Bitcoin
market.
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suggests that extreme incidents may simultaneously intensify market uncertainty and investor
sentiment fluctuations, laying the groundwork for further analysis of the dynamic relationship

between Bitcoin price and market sentiment.

Table 3.1: Descriptive statistics of BP (Panel A) and CFGI (Panel B)

Data Range Obs Mean S.Dev. Skew Kurt JB ADF
27/06/2020-24/09/2020 90 10532.16 1040.61 -0.13 -1.55 8.85™ -0.93
25/09/2020-23/12/2020 90 15423.10 3827.55 0.35 -0.96 5.00" -2.41

Data Range Obs Mean S.Dev. Skew Kurt JB ADF
27/06/2020-24/09/2020 90 57.92 17.17 0.23 -1.78 12.57" -0.93
25/09/2020-23/12/2020 90 75.01 18.73 -0.57 -1.29 10.84™* -1.32

The Bitcoin price (BP) data is sourced from CoinGecko, while the CFGI data is obtained from Alternative.me;
Skew: Skewness, it is a measure of symmetry; Kurt: Kurtosis, it is a measure of whether the data are heavy-
tailed or light-tailed relative to a normal distribution; JB: Jarque—Bera test; ADF: Augmented Dickey—Fuller
test; *** At the 1% significance level; ** At the 5% significance level; * At the 10% significance level

3.3.2 Bootstrap Full-Sample Granger Causality Test

This chapter first uses the Granger causality test to explore the bidirectional predictive
relationship between Bitcoin price and CFGI (Granger, 1969). This test, grounded in the
Vector Autoregression (VAR) model, assesses the causal relationship between two time series.
Unlike conventional models based on economic principles, the VAR model is empirical,
comprising multiple equations. Each equation links the endogenous variable to its lagged
terms and those of other endogenous variables, enabling the estimation of dynamic
relationships among them. Unlike single-variable autoregressive models, the VAR model
captures interactions between multiple variables, improving analysis and prediction accuracy.
It avoids a priori assumptions and specific functional forms, estimating parameters directly

from data. This flexibility makes it adaptable to various situations (Sims, 1980).

Compared to the simple correlation analyses, which only capture the degree of association
between variables, the Granger causality framework allows for testing whether one time
series has predictive power over another in a temporal context. This is especially important
when studying the interaction between sentiment and price, where feedback effects may exist
and unfold over time. Since Bitcoin price and CFGI are time-dependent variables, the VAR-
based Granger causality test captures the dynamic lagged interactions between them without
requiring strict theoretical assumptions about their structural relationship. Moreover, it
enables the analysis of whether the causal direction between price and sentiment changes

under different market conditions, such as before and after a heist. These characteristics make
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Granger causality testing a robust and flexible method for capturing the evolving nature of

sentiment-price interactions in the cryptocurrency market.

The Granger causality test assumes that all the predictive information about the variable, Y;;
and variable Y,; is contained within their respective time series. The bivariate VAR(p) can be

represented as follows:

P P
Yie = Co + Z A ()Y + Z A,(P)Yor—p + €1t
p=1 p=1
p » 9)
Yor = Cop + Z Ay (P)Yie—p + Z Ay (P)Yapp + 2t
p=1 p=1

where Y; ;_,, and Y, ;_, are lagged time series, determined by information criteria. &1, and €,
are two uncorrelated white-noise series. If A, ,(p) is not statistically equal to 0, Y;, is causing
Y;¢. Similarly, if A, 1 (p) is not statistically equal to 0, Y3, is causing Y;,. If both A, ,(p) and
A, 1(p) are statistically nonzero, it indicates a feedback relationship between Y;, and Yy,
which can be referred to as bidirectional causality. In this chapter, Y;; and Y,; represent
Bitcoin price (BP) and CFGI, respectively. Therefore, Equation (9) can be rewritten in the

following form:

p 14
BP=Ciot ) Ans(0)BPy+ ) Ava(p)CFGL + &1

p:l p:]_
» v (10)
CFGI = Cyo + Z Ay (P)BP,_, + Z Az, (P)CFGI_y + 3,
p=1 p=1

Given the limited sample size in this study, relying solely on the traditional Granger causality
test may result in biased estimates, particularly under small-sample conditions. To improve
the accuracy and robustness of the results, this chapter adopts the Bootstrap full-sample
Granger causality test as an extension of the traditional Granger framework. This method
enhances inference by repeatedly resampling from the original dataset to construct the
empirical distribution of the test statistics, thereby allowing for more precise significance
testing without relying on strict distributional assumptions. Even with relatively small
samples, the Bootstrap approach can extract more information from the data and mitigate the

limitations of traditional Granger causality tests (Balcilar et al., 2010). Therefore, it serves as
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a more reliable method for capturing shifts in the causal relationship between price and

sentiment around extreme incidents.
3.3.3 Parameter Stability Test

In the full-sample Granger causality test, it is typically assumed that the parameters of the
VAR model remain constant over time. However, this assumption may be violated if the
underlying full-sample time series undergoes structural changes, rendering the results of the
full-sample Granger causality test invalid. Therefore, this chapter examines the stability of
short-term and long-term parameters. This chapter employs the Sup-F, Ave-F, and Exp-F tests
developed by Andrews (1993) and Andrews and Ploberger (1994) to assess the short-term
stability of the VAR model parameters and identify potential structural changes. Additionally,
it also applies the Lc test proposed by Nyblom (1989) and Hansen (1992) to evaluate the
long-term stability of all parameters within the VAR system.

The Sup-F statistic for testing the null hypothesis of no structural change in k coefficients is
given by

Supremum S = sup Sr(b) (11)
by<bsb,

where b is the potential break date in the range [b4, b,] for a sample size T. S;(b) is the Wald
or Likelihood Ratio test (LR test) statistic evaluated at a potential break date b. The Ave-F

and Exp-F tests statistic are

b,
1
Average ST = m z ST(b) (12)
b=b1
b,
E tial S = 1 ! Z {15 (b)} (13)
Xponential 5> = In bz—b1+1b . exp 5 T
=Dq

The limiting distributions of the test statistics are given by

Supremum Sy =»; sup S(4)
16[81182]

! B AdA
&) — € Ll SM) (14)

1

Average St =4

1 €2 1
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where

{Bx(1) — 1B (DY {B (1) — 1B, (1)}

S() = FICEE))

(15)

B (1) is a vector of k-dimensional independent Brownian motions, &; = b, /T, &, = b, /T,

and 1 = &,(1 — &) /{e1(1 — &)}

Following Andrews (1993), this chapter trims 15% from both sides of the sample when
conducting structural break tests, restricting the evaluation interval to (0.15, 0.85) fraction of
the data. The full interval (0, 1) is not desirable because the Sup-F" statistic diverges when the
change point is near the sample boundaries. As Andrews (1993) notes, using the unrestricted
interval results in a loss of power due to the divergence of the test statistics near zero or one.
By restricting the interval, the Sup-F statistic converges in distribution and maintains higher
power for detecting change points occurring within the central portion of the sample.
Therefore, trimming improves the test’s robustness and statistical reliability when the location
of the change point is unknown. The p-values are generated using the bootstrap method with

1000 repetitions.
3.3.4 Time-Varying Granger Causality Test

If the parameters of the VAR model are unstable, this suggests that Granger causality may
vary over time. To address this, recursive estimation methods are required to detect the
potential time-varying nature of Granger causality (Thoma, 1994; Swanson, 1998; Baum et
al., 2021). Baum et al. (2021) summarised three algorithms to generate sequences of Granger
causality test statistics across different periods: forward expanding window (FE), rolling
window (RO), and recursive evolving window (RE) algorithms. Figure 3.2 illustrates the
workflows of these algorithms, where each arrow represents a possible subsample for

calculating the relevant test statistics.

Suppose {Yo, V1, V2, >+, Y7 } is a sample with T + 1 observations, and a number r which
satisfies 0 < r < 1. [T;] represents the integer part of the product. T;. . will be used to
represent the Wald test statistic computed on the subsample starting at y[r,,] and ending at
Yirr]- The FE algorithm (Thoma, 1994) is a standard forward recursive approach. After
determining the minimum window length Tr, the sample size is gradually expanded. In this
recursive process, each subsample always starts from the first data point and progressively

extends until the entire sample is used to calculate the final test statistic. This method can
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capture the cumulative changes of long-term trends and causal relationships, but because the
window continues to expand and the amount of data included gradually increases, the FE
method is not sensitive to short-term fluctuations, and the results are usually smoother. The
RO algorithm (Swanson, 1998; Arora & Shi, 2016) generates new windows by rolling
forward one observation at a time and calculates the Wald test statistic for each window.
Since only fixed-length data is used, the RO method is very sensitive to short-term changes
and fluctuations, but its results are easily affected by the window size, and it is difficult to
capture long-term trends or cumulative effects. In the RE algorithm, each observation is used
as an endpoint for calculating a test statistic for all possible subsamples of size 7 or larger.
This process is repeated for every data point in the sample, except for the first one, while
adhering to the minimum window size requirement. Consequently, a collection of Wald test
statistics is generated for each observation beyond the initial data point (Phillips et al.,2015b).
The RE algorithm combines the features of the FE and RO algorithms, taking into account
both short-term dynamics and long-term trends and has a greater capacity to detect temporal

instabilities (Baum et al., 2021).

Figure 3.2: Three different algorithms to generate Granger causality test statistic series for

different periods
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(a) Forward expanding window (FE) (b) Rolling window (RE) (c) Recursive evolving window (RE)

Source: Phillips et al. (2015a); Baum et al. (2021)

3.3.5 TVP-VAR-Based Connectedness Approach

This chapter also uses the extended TVP-VAR method proposed by Diebold and Yilmaz
(2009, 2012) to investigate whether the volatility of CFGI spilt over into other cryptocurrency

markets during the KuCoin exchange heist. This method not only addresses the potential
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issue of results being dependent on lag selection caused by Cholesky factor orthogonalization
(Diebold and Yilmaz, 2009), but also allows for the characterisation of both the direction and
the dynamic evolution of volatility spillovers. These features could help us identify shock
transmission channels and risk contagion mechanisms during extreme events. Furthermore,
due to its ease of implementation and strong adaptability, this method has been widely
adopted in the study of volatility spillovers across financial markets (Yarovaya et al., 2016; Yi

et al., 2018; Mensi et al., 2021; Elsayed et al., 2022).
An N-variable TVP-VAR process with stationary covariance, as shown in Equation (16):
Ve =Por + PreVe1 + PoeVia t 0+ Pp Ve p + & (16)

where y; is an N-dimensional column vector representing the volatility of N financial time
series, each of which follows a covariance stationary process. & is an N -dimensional
disturbance vector with no serial correlation, where each component of ¢; is independent and
identically distributed, following &, ~ N(0,Z;), where X, represents the covariance matrix.
®;is a N X 1-dimensional intercept vector, and @, ;, @, -+, P, are N X N-dimensional

time-varying lag coefficient matrices.

If we define B, = vecr(®g ., @1, Db, dD;,lt), where vecr(+) denotes the column stacking

operator, then assuming the coefficient vector 5; follows a random walk process of AR(1):

Bt = Br—1 + V¢ 17

The disturbance term v, is a time-invariant, independently and identically distributed (i.i.d.)
Gaussian white noise process. Solving the above TVP-VAR model to get the posterior

estimated coefficient 3,, and rearranging to get the coefficient matrix EI\DM, (’I\)Z,t, o, @y p, WE

can use the following recurrence relation:
Ape =@y Ap_1p + Pohn_gr + -+ PpAn_pe (18)

The coefficient matrix A, associated with the TVP-VMA(c0) model can be calculated. Next,

the H-step ahead Generalised Forecast Error Variance Decomposition (GFEVD) given by
Koop et al. (1996) and Pesaran and Shin (1998) is defined as follows:

- _ 2
Ujj,ltZIiL(} (ei,Ah,tZt ej) —

- 7 7 L] =
Yhoo (eiAh,t Xt Ah,tei)

dl],t(H) = 1l21“'1N (19)

85



where d;; (H) represents the contribution of the j-th variable to the forecast error variance of
the i-th variable at horizon H. )}, represents the variance matrix of the vector of errors. gj; is
denotes the j-th diagonal element of the )} matrix, and e; is a vector with a value of one in the

i-th position and zero otherwise.
To maintain consistency with the economic interpretation of traditional variance
decomposition, the variance decomposition results are typically row-standardised.

. (H) = _ Qe (20)
l]'t - N d
j=1 “ijt

The total directional spillover index (S/) from variable i to variables j is:

N

Vo d

TO = Sl;,; = =27 % 100 (21)
j=1 ]l,t

The total directional spillover index (S/) from variables j to variable i is:

y )
Voo 4.
FROM = SI;_; = 2202 5 100 (22)

N r
j=1 %ijt

The net total directional spillover (NS]) index is:
NET = NSI = SI;,; — Sl;.j; =TO — FROM (23)

A positive value indicates that the variable is a net transmitter of volatility, whereas a

negative value indicates that the variable is a net receiver of volatility.

The total connectivity index (7CI) among the variables is:

N N 3
i=1 Zij=1,i%j dije
N N 3
i=1 4j=1, “%ijt

TCI = X 100 (24)

3.4 Empirical Results
3.4.1 Stationarity, Cointegration, and Stability Tests

Since Bitcoin price and CFGI are non-stationary series, differencing is required to make them
stationary. Table 3.2 presents the statistical results from three linear unit root tests, namely the
Augmented Dickey—Fuller (ADF) test, the Phillips—Perron (PP) test, and the Kwiatkowski—

Phillips—Schmidt—Shin (KPSS) test, as well as one nonlinear unit root test, the Kapetanios—
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Shin—Shell (KSS) test. After first-order differencing, the ADF, PP, and KSS tests reject the
null hypothesis of a unit root and indicate that the series are stationary. At the same time, the
KPSS test could not reject the null hypothesis of stationarity. Therefore, after the first-order

difference, the Bitcoin price and CFGI become stationary series.

Table 3.2: Unit root tests (ADF, PP and KPSS) for BP and CFGI

Before the heist After the heist
(27/06/2020-24/09/2020) (25/09/2020-23/12/2020)
Unit root test BP CFGI BP CFGI
ADF -10.577" -10.045™" -8.482™" -13.254™
PP -10.567"" -10.047" -8.482™" -13.892"
KPSS 0.270 0.256 0.175 0.137
KSS -4.744™ -4.192™" -3.670™" -3.507"

ADF: Augmented Dickey—Fuller test; PP: Phillips—Perron test; KPSS: Kwiatkowski—Phillips—Schmidt—Shin
test; KSS: Kapetanios—Shin—Shell test; *** At the 1% significance level

Next, since the original series are non-stationary I(1) processes (each series itself is non-
stationary, but its first-order difference is stationary), it is necessary to conduct cointegration
tests to determine whether a long-term equilibrium relationship exists between them. If no
cointegration is found, the series are differenced, and a VAR model is then constructed on the
stationary series. In line with Johansen’s (1988, 1991) methodology, the optimal lag length is
first determined using the original (non-differenced) data. Table 3.3 shows that, based on the
results of the Akaike Information Criterion (AIC), the Hannan—Quinn Criterion (HQ), the
Schwarz Bayesian Information Criterion (SIC), and the Final Prediction Error (FPE), the
optimal lag length between Bitcoin price and CFGI is 2, both before and after the KuCoin

exchange heist.

Table 3.3: Lag order selection criteria

Panel A: Before the heist (27/06/2020-24/09/2020)

1 2 3 4 5 6 7 8
AIC 19.578 19.473" 19.482 19.555 19.611 19.576 19.561 19.653
HQ 19.649 19.591" 19.647 19.767 19.870 19.882 19.914 20.054
SIC 19.754" 19.766 19.893 20.083 20.256 20.339 20.441 20.651

FPE 1091096  982064.500° 991314.500 1067430 1130338 1094064 1081044 1189943

Panel B: After the heist (25/09/2020-23/12/2020)

1 2 3 4 5 6 7 8
AIC 20.918 20.839" 20.869 20.950 21.002 21.059 21.078 21.134
HQ 20.989 20.956" 21.034 21.162 21.261 21.365 21.431 21.534
SIC 21.094 21.132 21.280 21.479 21.647 21.821 21.958 22.132

FPE 4166238 3848284" 3968362 4309626 4543618 4819291 4927004 5231672

AIC: Akaike Information Criterion; HQ: Hannan-Quinn Criterion; SIC: Schwarz Bayesian Information
Criterion; FPE: Final Prediction Error; * Indicates lag order selected by the criterion
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Table 3.4 reports the results of the Johansen cointegration trace test before and after the
KuCoin exchange heist. Panel A shows that, for the pre-heist period, the null hypothesis of no
cointegration (rank = 0) cannot be rejected, as the trace statistic (6.443) is below the 5%
critical value (15.410). Similarly, for the post-heist period reported in Panel B, the null
hypothesis of no cointegration is also not rejected, with a trace statistic of 4.775 compared
with the 5% critical value of 15.410. These results suggest that Bitcoin price and CFGI do not
share a long-term equilibrium relationship, either before or after the KuCoin exchange heist.
Consequently, the analysis proceeds with a VAR model based on the first-differenced

stationary series to capture short-run dynamics.

Table 3.4: Johansen cointegration test results for BP and CFGI before and after the KuCoin

exchange heist

Panel A: Before the heist (27/06/2020-24/09/2020)

Maximum rank Params  Log likelihood Eigenvalue Trace statistic Critical value at 5%
0 6 -843.997 6.443" 15.410
1 9 -842.053 0.043 2.555 3.760
2 10 -840.776 0.029
Panel B: After the heist (25/09/2020-23/12/2020)
Maximum rank Params  Log likelihood Eigenvalue Trace statistic Critical value at 5%
0 6 -906.614 4.775" 15.410
1 9 -904.261 0.052 0.069 3.760
2 10 -904.226 0.001

* Selected rank

Building on the previous tests, this chapter employs the Bootstrap full-sample Granger
causality test to examine the relationship between Bitcoin price and CFGI. Table 3.5 shows
that, based on the first-order differenced series, the optimal lag length between Bitcoin price
and CFGI is 1, both before and after the KuCoin exchange heist. This result provides the
basis for constructing the VAR model. Before the KuCoin exchange heist, the results in Table
3.6 (Panel A) indicate no statistically significant bidirectional predictive relationship between
Bitcoin price and CFGI. This implies that the Bitcoin price did not influence CFGI, and CFGI
did not affect the Bitcoin price. However, after the KuCoin exchange heist, the results in
Table 3.6 (Panel B) reveal a statistically significant bidirectional predictive relationship
between Bitcoin price and CFGI. During this period, not only did the Bitcoin price influence

CFGI, but CFGI also affected the Bitcoin price.
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Table 3.5: VAR lag order selection criteria

Panel A: Before the heist (27/06/2020-24/09/2020)

1 2 3 4 5 6 7 8
AIC 13.837" 13.840 13.910 13.975 13.934 13.904 14.003 14.058
HQ 13.909 13.960 14.078 14.191 14.198 14.217 14.363 14.466
SIC 14.017" 14.140 14.330 14.515 14.594 14.684 14.903 15.077

FPE  1021473" 1025266 1099814 1174877 1129681 1099571 1217433 1291394

Panel B: After the heist (25/09/2020-23/12/2020)

1 2 3 4 5 6 7 8
AIC 15.213" 15.229 15.310 15.366 15.421 15.457 15.512 15.531
HQ 15.285" 15.349 15.478 15.582 15.685 15.770 15.872 15.940
SIC 15.393" 15.529 15.730 15.906 16.081 16.237 16.412 16.551

FPE  4043913" 4110612 4461538 4723152 4997791 5196069 5505580 5636148

AIC: Akaike Information Criterion; HQ: Hannan—Quinn Criterion; SIC: Schwarz Bayesian Information
Criterion; FPE: Final Prediction Error; * Indicates lag order selected by the criterion

Table 3.6: The results of Bootstrap full-sample Granger causality test

Panel A: Before the heist: (27/06/2020-24/09/2020)

Null hypothesis F-Statistics p-value
BP does not Granger cause CFGI 4.060 0.222
CFGI does not Granger cause BP 0.122 0.713
Panel B: After the heist: (25/09/2020-23/12/2020)
Null hypothesis F-Statistics p-value
BP does not Granger cause CFGI 2.182 0.037
CFGI does not Granger cause BP 6.555 0.016

p-value is calculated using 1000 bootstrap repetitions

Khalik and Shukur (2004) highlighted that the stability of VAR model parameters
significantly impacts Granger causality tests conducted on the full sample. The presence of
structural breaks may cause the parameters of the VAR model to be non-constant during full-
sample estimation. The parameter stability results in Table 3.7 indicate that the parameters of
the Bitcoin price (BP) equation, the CFGI equation, and the overall VAR system are not
stable. For instance, before the KuCoin exchange heist (Panel A), the Sup-F test results show
that the null hypothesis of short-term parameter stability is rejected at the 1% level for the BP
equation, the CFGI equation, and the VAR system. The Exp-F test results further reveal that
the null hypothesis of short-term parameter stability is rejected at the 5% level for the BP
equation. After the KuCoin exchange heist (Panel B), the Sup-F test results again show that
the null hypothesis of short-term parameter stability is rejected at the 1% level for all three
equations. Additionally, the Lc test results indicate that the null hypothesis of long-term
parameter stability for the VAR system is rejected at the 10% level.
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Table 3.7: Parameter stability test

Panel A: Before the heist: (27/06/2020-24/09/2020)

BP equation CFGI equation VAR system
Statistics p-value Statistics p-value Statistics p-value
Sup-F 21.703"* 0.000 69.198"" 0.001 33.739™" 0.001
Ave-F 1.323 0.347 1.535 0.221 2.073 0.329
Exp-F 4.014™ 0.049 27.691°" 0.006 9.963™ 0.021
Lc 0.351 0.915
Panel B: After the heist: (25/09/2020-23/12/2020)
BP equation CFGI equation VAR system
Statistics p-value Statistics p-value Statistics p-value
Sup-F 9.250™" 0.001 9.493™ 0.001 14.370™" 0.001
Ave-F 1.398 0.363 1.395 0.370 2.172 0.363
Exp-F 1.050 0.502 0.995 0.542 2.281 0.341
Lc 2.627° 0.072

*x* At the 1% significance level; ** At the 5% significance level; * At the 10% significance level; p-value is
calculated using 1000 bootstrap repetitions

Given the potential presence of structural changes, traditional Granger causality tests may not
be suitable. Therefore, this chapter employs time-varying Granger causality tests to examine
the dynamic predictive relationship between Bitcoin price and CFGI. The main analysis

adopts a rolling window size of 30 and 999 bootstrap repetitions.
3.4.2 Time-Varying Granger Causality Test Results

Figure 3.3 illustrates the time-varying Granger causality between Bitcoin price and CFGI
before the KuCoin exchange heist. The null hypotheses are that Bitcoin price does not
Granger cause CFGI and that CFGI does not Granger cause Bitcoin price, respectively. The
Wald statistics used in all algorithms are robust to heteroskedasticity. The results from all
three algorithms consistently indicate that no statistically significant bidirectional predictive
relationship exists between Bitcoin price and CFGI, whether in short-term dynamics or long-
term trends. This absence of causality suggests that, before the KuCoin exchange heist, there
is no meaningful feedback loop between investor sentiment, as measured by CFGI, and
Bitcoin price movements. In other words, shifts in CFGI do not significantly anticipate or
drive changes in Bitcoin price, and likewise, fluctuations in Bitcoin price do not exert a
substantial influence on the sentiment captured by CFGI. These findings imply that during
relatively stable market conditions, the predictive relationship between sentiment and price
remains weak, reflecting the limited informational role of CFGI in predicting Bitcoin price

dynamics in the absence of extreme external shocks.
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Figure 3.3: Time-varying Granger causality test results before the KuCoin exchange heist

(window size = 30, using 30% of the sample, with 999 bootstrap repetitions)
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Rolling Wald test for CFGI G-caused by BP, bootstrap number is 999
with 90th (--) and 95th (-) percentiles of bootstrapped test statistics
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Recursive expanding Wald test for CFGI| G-caused by BP, bootstrap number is 999
with 90th (--) and 95th (-) percentiles of bootstrapped test statistics
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Recursive expanding Wald test for BP G-caused by CFGI, bootstrap number is 999
with 90th () and 95th (-) percentiles of bootstrapped test statistics
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The rolling window size is 30, and the bootstrap repetition is 999. The dashed line represents the 95th percentile
of the bootstrapped test statistics, while the dotted line corresponds to the 90th percentile. When the test statistic
exceeds these critical values, the null hypothesis is rejected at the corresponding significance level, indicating
that Bitcoin price Granger causes CFGI (or CFGI Granger causes Bitcoin price) during those periods.

Figure 3.4 illustrates the time-varying Granger causality between Bitcoin price and CFGI
after the KuCoin exchange heist. The FE algorithm reveals that while Bitcoin price and CFGI
do not consistently influence each other in the long term, the Wald statistics exhibit a smooth
and gradually increasing trend. This indicates that the influence of Bitcoin price on CFGI and

vice versa has been slowly strengthening over the entire time horizon. Meanwhile, the RO
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and RE algorithms reveal statistically significant bidirectional predictive relationship between
Bitcoin price and CFGI across most of the sample period. In summary, the RO and RE
algorithm results support the existence of statistically significant bidirectional predictive

relationship between Bitcoin price and CFGI after the KuCoin exchange heist.

Figure 3.4: Time-varying Granger causality test results after the KuCoin exchange heist

(window size = 30, using 30% of the sample, with 999 bootstrap repetitions)
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Rolling Wald test for BP G-caused by CFGI, bootstrap number is 999
with 90th (--) and 95th (-) percentiles of boolstrapped test statistics
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Recursive expanding Wald test for CFGI G-caused by BP, bootstrap number is 999
with 90th (--) and 95th (-) percentiles of bootstrapped test statistics
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The rolling window size is 30, and the bootstrap repetition is 999. The dashed line represents the 95th percentile
of the bootstrapped test statistics, while the dotted line corresponds to the 90th percentile. When the test statistic
exceeds these critical values, the null hypothesis is rejected at the corresponding significance level, indicating
that Bitcoin price Granger causes CFGI (or CFGI Granger causes Bitcoin price) during those periods.

The fluctuating predictive relationship between Bitcoin price and sentiment before and after
the KuCoin exchange heist may be attributed to structural market changes triggered by the
incident. Cryptocurrency heists are typically unforeseen incidents that generate significant
market uncertainty. In such situations, investors often become apprehensive about future

market trends, leading to shifts in behaviour. These behavioural changes can cause market
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price fluctuations, as suggested by Shiller (2003). For instance, investors may reduce trading
activity to mitigate risks, which impacts market liquidity. A decline in liquidity can have
lasting consequences on market operations and structures. Additionally, market confidence
often deteriorates in the aftermath of a cryptocurrency heist, raising investor concerns about
regulations and security. This erosion of confidence can result in sell-offs and market
turbulence. The recovery of market confidence tends to be prolonged, introducing structural
shifts in the market. Before the KuCoin exchange heist, the market appeared relatively stable,
with investors relying more on long-term trends than on sentiment. However, this heist
marked a turning point as media coverage amplified negative sentiment. For example, reports
suggested that the amount stolen might exceed initial estimates, and concerns about the

security of cryptocurrency exchanges were raised (Jagati, 2020).

Although the KuCoin exchange heist did not compromise the Bitcoin blockchain itself, which
is widely regarded as virtually hack-proof, it exposed security vulnerabilities in centralised
trading platforms and severely damaged investor confidence. Bitcoin was the largest and
most symbolic asset stolen in this incident. As the benchmark currency of the entire
cryptocurrency market, it was central to the perceived stability of the system. Many retail
investors do not clearly distinguish between “an exchange being hacked” and “Bitcoin itself
being hacked,” and may thus interpret such incidents as evidence of Bitcoin’s insecurity.
Furthermore, since exchanges are the primary gateways to Bitcoin liquidity, their security is
closely tied to overall trust in the Bitcoin market (Fang et al., 2025). Consequently, the
KuCoin exchange heist was perceived not merely as an incident of asset theft but as a shock
to the stability and safety of the Bitcoin ecosystem, likely exerting a deeper influence on

Bitcoin price and sentiment than cryptocurrency heists involving other tokens.

However, the influence of this heist on investor sentiment and its feedback on Bitcoin price
does not materialise immediately. Comprehensive sentiment indicators such as the CFGI are
constructed from multiple underlying components, including volatility, trading volume, and
search trends, that adjust gradually to new information. Consequently, their response to
sudden shocks tends to be delayed. From a behavioural finance perspective, sentiment
evolution is also time-dependent: initial reactions are marked by uncertainty and observation,
followed by collective emotional responses once the event’s implications become widely
discussed and internalised. This lagged adjustment process explains why the bidirectional
predictive relationship between Bitcoin price and CFGI becomes significant only about a

month after the heist. Moreover, the upward trend in the Wald statistics observed during this
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period further indicates that the bidirectional predictive relationship between Bitcoin price
and CFGI gradually strengthens over time, reflecting the progressive reinforcement of market

feedback mechanisms.

In summary, this unease prompted sell-offs or reduced investments, which directly impact the
Bitcoin price. Price volatility further fuels investor anxiety, encouraging emotional trading
decisions that exacerbate price fluctuations (Bourghelle et al., 2022). These dynamics
contributed to a stronger predictive relationship between Bitcoin price and CFGI in the
aftermath of the KuCoin exchange heist. These findings are consistent with those of Cheung
et al. (2015), Corbet et al. (2020b, 2020c), and Wang et al. (2020), further suggesting that
structural breaks induced by external shocks reshape the dynamic predictive relationship

between Bitcoin price and sentiment.

This chapter also provides robustness checks with a window size of 10 in Appendix 3.6 to
examine whether the results are sensitive to the choice of window size. In general, the choice
of window size reflects a trade-off between smoothness and responsiveness. A larger window
smooths short-term fluctuations and highlights long-term trends but may obscure short-term
variations in causal dynamics. In contrast, a smaller window is more sensitive to local
changes and better captures short-term adjustments in relationships following sudden events.
Therefore, comparing results across different window specifications helps verify the temporal

robustness of the findings.

Figure 3.9 in the appendix presents the results of the time-varying Granger causality tests
before the KuCoin exchange heist. The RO and RE algorithms indicate that Bitcoin price
influences CFGI during certain periods, while CFGI affects Bitcoin price during others.
However, the FE algorithm suggests that these short-term causal relationships are temporary,
as no statistically significant long-term relationship is detected. This finding is consistent
with the results obtained using a rolling window of 30, suggesting that before the KuCoin
exchange heist, the interaction between Bitcoin price and investor sentiment remains weak

and unstable.

Figure 3.10 in the appendix presents the results of the time-varying Granger causality tests
after the KuCoin exchange heist. The FE algorithm indicates that the effects of Bitcoin price
on CFGI and vice versa gradually strengthen over time. Moreover, compared with a window
size of 30, the RO and RE algorithms reveal that using a smaller window size of 10 produces

statistically significant bidirectional predictive relationships across a larger number of
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overlapping periods. This suggests that a smaller window can capture finer short-term
dynamic adjustments. The incident heightened uncertainty, tightened liquidity, and intensified
media attention, making the price—sentiment feedback more frequent and short-lived.
Consequently, a smaller window is more sensitive to such high-frequency, short-horizon
causal episodes and thus uncovers more significant predictive relationships after the heist,

reflecting stronger behavioural responses and structural shifts triggered by the event.

In summary, the robustness tests using different window sizes consistently support the main
conclusion that, after the KuCoin exchange heist, there exists a statistically significant and
gradually strengthening bidirectional predictive relationship between Bitcoin price and CFGI,
whereas before the heist, this bidirectional predictive relationship is not statistically

significant.
3.4.3 Local Projection Impulse Response Analysis

Next, this chapter uses local projection impulse response methods to investigate further the
dynamic interaction between the Bitcoin price and the CFGI following the KuCoin exchange
heist. This approach explores how price shocks (or market sentiment) propagate over time
and influence changes in market sentiment (or prices). To ensure the robustness of our
findings, this chapter conducts impulse response analyses with different forecast horizons
(steps set at 10, 20, 30, and 40). The orthogonalized impulse response results presented in
Figure 3.5 indicate that the Bitcoin price exerts a significant positive impact on CFGI, and
similarly, CFGI has a significant positive effect on the Bitcoin price. This suggests that when
the Bitcoin price (or CFGI) increases, CFGI (or Bitcoin price) also rises, and when the
Bitcoin price (or CFGI) decreases, CFGI (or Bitcoin price) declines accordingly. Additionally,
it observes that the impact of Bitcoin price on CFGI gradually weakens over time, stabilising
around 40 days after the shock. In contrast, the influence of CFGI on Bitcoin price exhibits
greater fluctuation, with an initial sharp increase reaching a peak around 30 days before
gradually tapering off. These findings highlight the significant role of market sentiment in
influencing Bitcoin price after the KuCoin exchange heist and reveal an asymmetric dynamic

relationship between sentiment and price.
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Figure 3.5: Local projected impulse responses of BP and CFGI
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Firstly, the more decisive influence of market sentiment on prices can be attributed to the
behavioural drivers of investor actions (Schmeling, 2009; Wang et al., 2021; Ballis &
Verousis, 2022; Anamika et al., 2023). Following a cryptocurrency heist, investor panic or
confidence directly shapes trading behaviours, amplifying market price volatility. For
example, panic sentiment can trigger widespread sell-offs, further depressing prices.
Moreover, market sentiment has a high degree of transmissibility and self-reinforcing
characteristics. When panic spreads, it not only affects individual investors but also
propagates through network effects to the entire market, leading to more pronounced price
fluctuations (Bourghelle et al., 2022; Jia et al., 2022; Lin et al., 2023; Manahov & Li, 2024).
In contrast, the feedback effect of price on market sentiment is typically slower and may be
diluted by other market information or events during the transmission process. This

asymmetry reflects a key characteristic of cryptocurrency markets: compared to traditional
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financial markets, cryptocurrency markets are more sentiment-driven (Waghmare & Uike,
2023; Long et al., 2024). Due to their high volatility and lack of mature regulatory
frameworks, cryptocurrency investors are more susceptible to external information (such as
cryptocurrency heists) and sentiment swings, further exacerbating price volatility (Gupta et
al., 2024). Finally, while sentiment may fluctuate rapidly in the short term, its overall trend
(e.g. panic or confidence) usually takes longer to undergo fundamental changes (Chen et al.,
2019). Conversely, price can change rapidly in the short term, but these changes may not
immediately affect market sentiment (Gaies et al., 2023). During the recovery period
following the incident, market sentiment may gradually adapt to price fluctuations and adjust
expectations based on longer-term trends rather than reacting immediately to isolated price

movements.

These findings are consistent with previous studies that emphasised the significant impact of
sentiment on Bitcoin price (Kraaijeveld & De Smedt, 2020; Kapar & Olmo, 2021; Sabalionis
et al.,, 2021; Bouteska et al., 2022; Gaies et al., 2023). However, this chapter’s findings
further highlight the asymmetric relationship between price and sentiment. This asymmetry
underscores the central role of sentiment in shaping price movements in cryptocurrency
markets while also revealing the complexities of feedback mechanisms in the sentiment-price
relationship. These findings provide deeper insights into the intricate dynamics of
cryptocurrency markets, particularly in the aftermath of disruptive incidents such as
cryptocurrency heists, where sentiment and price fluctuations can amplify each other in

unique and unpredictable ways.

In summary, the results of the time-varying Granger causality tests and local projection
impulse response analysis support the hypothesis H/. The dynamic predictive relationship
between Bitcoin price and CFGI highlights the significant impact of specific incidents on
Bitcoin price and market sentiment. Following Bitcoin-specific heists, the bidirectional
predictive relationship between Bitcoin price and CFGI becomes notably stronger. Investors
can use CFGI to forecast price trends and market reactions during such incidents. Similarly,
changes in Bitcoin prices can provide insights into future shifts in market sentiment, enabling
investors to refine their Bitcoin trading strategies. This predictive relationship offers investors
an additional source of information, helping them better navigate market volatility and

mitigate potential losses (AlNemer et al., 2021).
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3.4.4 Time-Varying Granger Causality Test between Bitcoin Price and CFGI during
Other Cryptocurrency Heists

As of April 2024, there are more than 9,000 cryptocurrencies (CoinMarketCap, 2024). This
diversity has expanded the range of potential target assets for cryptocurrency heists, with
commonly stolen cryptocurrencies including Ethereum, Binance Coin, Ripple, and Tether.
Although this chapter observes that in the KuCoin exchange heist, Bitcoin price influenced
CFGI, and CFGI, in turn, influenced Bitcoin price, whether this bidirectional predictive
relationship applies to heists targeting other cryptocurrencies still deserves further exploration.
Considering CFGI’s available data range, this chapter uses nine cryptocurrency heists
discussed in Chapter 2 as a sample. Table 3.8 presents the data span for each cryptocurrency
heist. To ensure consistency across cases, the same time frame as used in the KuCoin

exchange heist analysis is applied, a 30-day period following each cryptocurrency heist.

Table 3.8: The scope of cryptocurrency heist data

Platform Data range
PancakeBunny May 20, 2021, to August 17,2021
Poly Network August 10, 2021, to November 07, 2021

Bitmart December 4, 2021, to March 3, 2022
Wormbhole February 03, 2022, to May 03, 2022
Ronin Network March 29, 2022, to June 26, 2022
Beanstalk April 16, 2022, to July 14, 2022
Nomad August 02, 2022, to October 30, 2022
Binance October 07, 2022, to January 04, 2023
FTX November 11, 2022, to February 08, 2023

The Bitcoin price (BP) data is sourced from CoinGecko, while the CFGI data is obtained from Alternative.me.

Since the RE algorithm integrates the strengths of both the FE and RO algorithms, which
capture short-term dynamics and long-term trends simultaneously while demonstrating
superior sensitivity to temporal instability (Baum et al., 2021), this chapter primarily presents
results based on the RE algorithm. The results from the FE and RO algorithms are provided
in Appendix 3.6 (Figure 3.11) as robustness checks. Figure 3.6 presents the results of the
time-varying Granger causality test using the RE algorithm®. The findings indicate that,

following most cryptocurrency heists, Bitcoin price has little to no statistically significant

4The VAR model is constructed using the first-order differenced Bitcoin price (BP) and the CFGI series. Except
for the Nomad protocol and Binance platform heists, where the optimal lag orders are 4 and 2, respectively, all
other cryptocurrency heists adopt a lag order of 1. The rolling window size is set to 20, balancing the trade-off
between capturing short-term fluctuations and maintaining estimation stability. 999 bootstrap repetitions are
used. Wald statistics are computed to be robust to heteroskedasticity.
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effect on CFGI. Likewise, CFGI shows limited statistically significant influence on Bitcoin
price. This phenomenon is understandable, as CFGI primarily measures sentiment specific to
the Bitcoin market, and Bitcoin itself is not directly targeted in these cryptocurrency heists.
Typically, such heists trigger widespread market anxiety, but the concern is often
concentrated on the affected tokens. Investors tend to monitor the markets of stolen tokens
more closely, as these assets are directly associated with potential financial losses, leading to

greater volatility in those markets.

In contrast, unlike the dramatic fluctuations of the stolen tokens, Bitcoin may exhibit more
stable price movements over the long-term following these cryptocurrency heists. As a result,
the influence of Bitcoin price on Bitcoin market sentiment may not be significant.
Furthermore, the speed and scope of sentiment diffusion in the cryptocurrency market may be
constrained by prevailing market conditions (Vasudevan et al., 2024). Negative sentiment
generated around stolen tokens may not immediately spill into the Bitcoin market. The
relatively stable sentiment in the Bitcoin market may not significantly influence the Bitcoin

price.

Figure 3.6: Time-varying Granger causality between BP and CFGI using the RE algorithm

across nine cryptocurrency heists
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Recursive expanding Wald test for BF G-caused by CFGI in Wormhole
withh 90tk (--] and 95Lh {-] parcenlilas of baoisirapped st statislics

10

0
T T T T T T
2192022 52022 312022 Af252022 AME2022 L3222

Recursive expanding Wald test for CFGI G-caused by BPF in Ronin Metwork

withh S0tk [—-) and 951 {-) percentilas of bootstrapped 1ast statistics
3
2
10
ﬂ._
T T T T T T
A B/2022 AA2022 Sr142022 RI2RM2022 Br1/2023 Gl2A5M2022

109



Recursive expanding Wald test for BF G-caused by CFGI in Ronin Mebtwork
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Recursive expanding Wald test for BP G-caused by CFGI| in Beanstalk
with B0th [--) and 95Lh {-] percenlilas of baalsirapped last statislics
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Recursive expanding Wald test for BF G-caused by CFG| in Momad
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Recursive expanding Wald test for BF G-caused by CFGI in Binance
with B0th (--) and 951h {-] percenlilas of haatsirapped lest statislics
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Recursive expanding Wald test for BP G-caused by CFGI in FTX
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The Nomad protocol heist is particularly noteworthy, as it represents a rare case where
statistically significant bidirectional predictive relationship is observed between Bitcoin price
and CFGI following the incident. Nomad is a cryptocurrency bridging service provider whose
core smart contract contained a critical vulnerability in the past. This flaw allowed attackers
to manipulate transactions, facilitating the widespread theft of tokens bridged through the
protocol. Multiple parties rapidly exploited the vulnerability, resulting in the loss of
substantial assets and making it one of the most chaotic and extensive hacks in
cryptocurrency history. What distinguishes the Nomad protocol heist is its far-reaching
impact. Unlike attacks targeting specific tokens, the vulnerability in the Nomad bridge affects
all assets connected to its infrastructure, leading to significant disruptions across the
cryptocurrency market and severely undermining investor confidence in bridging protocols.
Figure 3.7 illustrates the changes in Bitcoin price and CFGI following the Nomad protocol
heist, revealing a pronounced simultaneous decline in Bitcoin price and market sentiment.
Although Bitcoin is not directly targeted, the exploitation of the Nomad protocol heightens
investor perceptions of systemic risk in the cryptocurrency market. As the benchmark asset in
the crypto space, Bitcoin experiences considerable volatility in both price and sentiment. The
collapse of confidence in bridging protocols—critical for cross-chain transactions—raises
broader concerns about the security of blockchain ecosystems. This erosion of trust leads to a

decline in Bitcoin’s price and poses major challenges to the recovery of market sentiment.

114



Figure 3.7: Trends of BP and CFGI after the Nomad protocol heist
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The Bitcoin price data is sourced from CoinGecko, while the CFGI data is obtained from Alternative.me.

The results of the FE and RO algorithms presented in Appendix 3.6 (Figure 3.11) show
consistent findings. In summary, the empirical evidence supports Hypothesis 2. Specifically,
in Bitcoin-targeted heists, the predictive relationship between Bitcoin price and market
sentiment is stronger. However, in broader cryptocurrency heists that do not directly involve
Bitcoin, this predictability weakens. For investors, especially in an environment where
cryptocurrency heists occur frequently, using the CFGI to formulate investment strategies
after a cryptocurrency heist requires careful consideration of the incident’s impact on the
Bitcoin market. If a cryptocurrency heist severely disrupts the Bitcoin market, the CFGI may
become highly valuable for forecasting Bitcoin price movements. Conversely, if the
cryptocurrency heist has little direct effect on Bitcoin, relying solely on CFGI may lead to

inaccurate predictions and suboptimal investment decisions.
3.4.5 The Impact of CFGI on Other Cryptocurrency Markets

As the most significant cryptocurrency market by capitalisation, Bitcoin’s dynamics often
profoundly impact the broader cryptocurrency ecosystem. However, whether the market
panic triggered by Bitcoin thefts affects other cryptocurrency markets remains uncertain.
Existing studies offer mixed findings regarding the spillover effects between cryptocurrency

markets. Some studies suggested that Bitcoin, as a high-capitalisation cryptocurrency, serves
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as a major source of returns and volatility spillovers to other cryptocurrency markets, with
these effects intensifying over time (Katsiampa et al., 2019a; Kumar & Anandarao, 2019;
Ozdemir, 2022; Manahov & Li, 2024). In contrast, other studies indicated weak or non-
existent volatility spillovers between Bitcoin and other cryptocurrency markets (Luu Duc
Huynh, 2019; Zigba et al., 2019). These discrepancies imply that the relationships between
cryptocurrency markets may inherently be dynamic, shaped by market sentiment, regulatory
changes, and unexpected market events. In the previous analysis of the KuCoin exchange
heist, this chapter finds that CFGI significantly influences the Bitcoin price after the heist.
Next, it aims to investigate whether CFGI also influences other cryptocurrency markets. This
chapter selects Ethereum and Binance Coin as representative assets. These two
cryptocurrencies are among the most highly capitalised and particularly susceptible to hacker
theft. Daily price data for Ethereum (EP) and Binance Coin (BCP) is also sourced from
CoinGecko, and the data range is from September 25, 2020, to December 23, 2020.

This chapter employs a connectedness test based on the TVP-VAR model to examine the
spillovers among CFGI, Bitcoin, Ethereum, and Binance Coin. By analysing their
connectedness, this analysis investigates how much of the price volatility in Ethereum and
Binance Coin can be attributed to fluctuations in CFGI, thereby revealing whether volatility
in Bitcoin-related market sentiment affects other major cryptocurrencies. Table 3.9 reports the
connectedness results among the variables following the KuCoin exchange heist. The total
connectedness index (7CI) is relatively low, at 51.68, indicating that the spillover effects
among CFGI, Bitcoin, Ethereum, and Binance Coin are moderate and that their fluctuations
remain relatively independent. For CFGI, the largest volatility contribution it receives comes
from Bitcoin (22.07%), while it receives much less from Ethereum (15.44%) and Binance
Coin (11.98%). This indicates that Bitcoin volatility is the primary driver of CFGI, whereas
Ethereum and Binance Coin play a more limited role in influencing it. Moreover, Bitcoin also
receives a substantial volatility contribution from CFGI, amounting to 20.24%. This finding
aligns with previous results showing that, after the KuCoin exchange heist, the predictive
relationship between Bitcoin and CFGI strengthened, with each exerting a significant

influence on the other.
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Table 3.9: Connectivity results between CFGI, BP, EP and BCP

BP CFGI EP BCP FROM

BP 4491 20.24 25.71 9.14 55.09
CFGI 22.07 50.51 15.44 11.98 49.49
EP 25.47 14.09 43.42 17.02 56.58
BCP 11.39 11.95 22.23 54.43 45.57

TO 58.92 46.28 63.39 38.14 206.73
NET 3.84 -3.21 6.81 -7.43 TCI
51.68

The data for Bitcoin price (BP), Ethereum price (EP), and Binance Coin price (BCP) are obtained from
CoinGecko, while the CFGI data is sourced from Alternative.me. The findings are derived from a TVP-VAR
method with a lag length of 1, determined by the Akaike Information Criterion (AIC). The rolling window size
is 20 hourly observations, and forecast market dynamics 10 time steps into the future. FROM indicates the
source of causal impacts that each variable receives, while 7O denotes the destination of these effects. NET
equals 70 minus FROM. Positive values of NET indicate that the variable is a net transmitter of spillover
impacts, whereas negative values suggest it is a net receiver. TCI represents the overall level of connectedness
among the variables, while a lower TCI suggests weaker linkages and more independence among variables.

For Ethereum and Binance Coin, the volatility contribution they receive from CFGI is
relatively modest, at only 14.09% and 11.95%, respectively. This indicates that while Bitcoin
market sentiment plays a significant role in driving Bitcoin’s price dynamics following the
KuCoin exchange heist, its influence on other cryptocurrencies, such as Ethereum and
Binance Coin, appears more limited. This may be attributed to investors’ differing
perceptions of cryptocurrencies, influenced by factors such as variations in blockchain
technology. While the KuCoin exchange heist may raise security concerns for Bitcoin, it does
not necessarily affect other cryptocurrencies. Moreover, the cryptocurrency market comprises
thousands of tokens, each with its own ecosystem and community. Consequently, when a
token is affected by a cryptocurrency heist, the impact tends to remain confined within its
own market, exerting limited influence on others (Victor & Weintraud, 2021; Li et al., 2024).
This fragmentation attenuates the linkage between Bitcoin sentiment and other
cryptocurrency markets. Therefore, the sentiment and prices of different cryptocurrencies
may remain stable in the aftermath of the KuCoin exchange heist, largely unaffected by
negative sentiment in the Bitcoin market. Figure 3.8 illustrates the dynamic connectedness
among CFGI, Bitcoin, Ethereum, and Binance Coin. The connection between Bitcoin and
CFGl is considerably stronger than that between CFGI and either Ethereum or Binance Coin.
This suggests that Bitcoin market sentiment exerts a relatively limited influence on Ethereum

and Binance Coin, whose market volatility is primarily driven by endogenous factors.
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Figure 3.8: Dynamic net connectedness plot between CFGI and BP, EP, and BCP
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The data range is from September 25, 2020 to December 23, 2020.

In summary, the findings support Hypothesis H3. The connectedness test results continue to
show that the predictive relationship between Bitcoin price and CFGI becomes stronger
during cryptocurrency heists that specifically target Bitcoin. However, the predictive impact
of CFGI on other major cryptocurrencies, such as Ethereum and Binance Coin, appears to be
less pronounced. While CFGI can assist investors in making short-term trading decisions for
Bitcoin during Bitcoin-specific heists, its applicability to other cryptocurrencies remains
limited. Relying solely on CFGI may therefore lead investors with diversified cryptocurrency

portfolios to draw misleading inferences.
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3.5 Conclusion

Cryptocurrency heists expose platform vulnerabilities, undermine investor confidence, and
destabilise markets. However, they offer a unique opportunity to examine the interplay
between price dynamics and market sentiment. As Bitcoin is the largest cryptocurrency by

market capitalisation, cryptocurrency heists targeting it are even more worthy of our attention.

This chapter uses the Crypto Fear & Greed Index (CFGI) as a proxy for market sentiment to
examine the predictive relationship between Bitcoin price and sentiment, focusing on the
KuCoin exchange heist, which involved the theft of a large amount of Bitcoin. The findings
reveal a dynamic predictive relationship between Bitcoin price and sentiment, particularly
during periods of market disruption. Before the KuCoin exchange heist, no statistically
significant bidirectional predictive relationship is observed. However, in the aftermath, a
statistically significant bidirectional predictive relationship emerges. While sentiment may
have a limited influence on price under normal market conditions, it becomes a pivotal driver
during crises. Furthermore, price fluctuations can amplify shifts in sentiment, creating a
reinforcing feedback loop (Bourghelle et al., 2022). These findings underscore the
importance of understanding this dynamic relationship, particularly for investors developing

strategies to navigate potential market disruptions.

This chapter further examines nine additional cryptocurrency heists to assess whether the
observed predictive relationship between Bitcoin price and CFGI represents a general pattern
or one specific to events that directly affect the Bitcoin market. The results indicate that this
predictive relationship largely depends on the extent to which a cryptocurrency heist impacts
the Bitcoin market. When a heist has little or no influence on Bitcoin, no statistically
significant bidirectional predictive relationship is observed between Bitcoin price and
sentiment. In a market environment where cryptocurrency heists occur frequently, investors
should carefully assess the extent to which such incidents affect the Bitcoin market before

relying on CFGI to guide their investment strategies.

Additionally, this chapter examines the spillover effects of the CFGI on other cryptocurrency
markets during the KuCoin exchange heist. The findings indicate that the turmoil in Bitcoin
sentiment caused by the heist does not significantly affect other cryptocurrency markets, such
as Ethereum and Binance Coin. This suggests that the negative sentiment in the Bitcoin
market resulting from the heist may not immediately influence other cryptocurrencies, due to

factors such as differences in investor perceptions of various cryptocurrencies and the
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technological distinctions between blockchains (Victor & Weintraud, 2021; Li et al., 2024).
The findings highlight that during Bitcoin-targeted heists, relying solely on CFGI may lead

investors with diversified cryptocurrency portfolios to draw misleading conclusions.

This study deepens our understanding of the predictive relationship between Bitcoin price
and market sentiment under extreme market conditions. However, several limitations remain.
First, although this chapter provides evidence of changes in the predictive relationship
between Bitcoin price and CFGI following the KuCoin exchange heist, the Granger causality
tests employed capture predictability rather than true economic causation. As the findings are
based on a single cryptocurrency heist, future studies could examine multiple Bitcoin-related
heists to validate the robustness and generalisability of the results. Second, although the
CFGI is a comprehensive and widely used indicator of Bitcoin sentiment, it has inherent
limitations. While it discloses the weights of its six components, Alternative.me does not
release its numerical values, preventing component-level analysis. Consequently, it is difficult
to identify which factors primarily drive sentiment changes during major events such as
cryptocurrency heists. Distinguishing between market-based and non-market-based
components represents a promising direction for future study, helping clarify whether market
activity factors (e.g., volatility and trading volume) or behavioural factors (e.g., social media
and search trends) dominate the predictive relationship between Bitcoin price and sentiment.
Future studies could address this limitation by using sentiment measures that allow
component-level analysis or by constructing decomposed sentiment indices to capture

heterogeneous sentiment drivers.

Moreover, future studies could explore alternative sentiment indicators. For instance,
CoinMarketCap introduced the CMC Crypto Fear and Greed Index (CMC) in 2023, which
measures sentiment across the entire cryptocurrency market rather than focusing solely on
Bitcoin. Comparing the predictive performance of CMC and CFGI during extreme events
would provide valuable insights. Finally, while this chapter focuses on the predictive
relationship between CFGI and other cryptocurrencies during the KuCoin heist, future work
could extend the analysis to other cryptocurrency heists to examine sentiment—price
dynamics across a wider range of cryptocurrencies, offering a deeper understanding of

sentiment’s broader relevance in cryptocurrency markets.
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3.6 Appendix

Figure 3.9: Time-varying Granger causality test results before the KuCoin exchange heist
(window size = 10, using 10% of the sample, with 999 bootstrap repetitions)
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Rolling Wald test for CFGI G-caused by BP, bootstrap number is 999
with 90th (--) and 95th (-) percentiles of bootstrapped test statistics
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Recursive expanding Wald test for CFG| G-caused by BP, bootstrap number is 999
with 90th (--) and 95th (-) percentiles of bootstrapped lest statistics
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The rolling window size is 10, and the bootstrap repetition is 999. The dashed line represents the 95th percentile
of the bootstrapped test statistics, while the dotted line corresponds to the 90th percentile. When the test statistic
exceeds these critical values, the null hypothesis is rejected at the corresponding significance level, indicating
that Bitcoin price Granger causes CFGI (or CFGI Granger causes Bitcoin price) during those periods.
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Figure 3.10: Time-varying Granger causality test results after the KuCoin exchange heist

(window size = 10, using 10% of the sample, with 999 bootstrap repetitions)
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Rolling Wald test for CFGI G-caused by BP, bootstrap number is 999
with 90th (--) and 95th (-) percentiles of bootstrapped test statistics
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Recursive expanding Wald test for CFGI G-caused by BP, bootstrap number is 999
with 90th (—) and 95th (-) percentiles of bootstrapped test statistics
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The rolling window size is 10, and the bootstrap repetition is 999. The dashed line represents the 95th percentile
of the bootstrapped test statistics, while the dotted line corresponds to the 90th percentile. When the test statistic
exceeds these critical values, the null hypothesis is rejected at the corresponding significance level, indicating
that Bitcoin price Granger causes CFGI (or CFGI Granger causes Bitcoin price) during those periods.
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Figure 3.11: Time-varying Granger causality between BP and CFGI using the FE and RO
algorithms across nine cryptocurrency heists
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Forward expanding Wald test for CFGI G-caused by BP in Warmhale
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Rolling Wald test for CFGI G-caused by BP in Ronin Network
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Farward expanding Wald test for CFGI G-caused by BP in Nomad
with 50th () and 951h {-] parcentilas of baatstrapped Lest stalislics

Forward expanding Wald test for BP G-caused by CFGI in Nomad
with 50th () and 951h {-] parcentilas of baatstrapped Lest stalislics

204 254
159 201
104 154
[\\/JA r\v
5 o4 _ A N ottt ot et &:
0 5
T T T T T T T T T T T T
81202022 8302022 ane0ze 10172022 10M15/2022 1062402022 81202022 8302022 ane0ze 10172022 10M15/2022 1062402022
Rolling Wald test for CFG| G-caused by BP in Nomad Rolling Wald test for BP G-caused by CFGI in Nomad
with 90th () and G51h [-) parcentilas of baatslrapped teat statislics with 90th () and G51h [-) parcentilas of baotslrapped teat statislics
250+
1004
200+
150
504
1004
501 /\J j\
——————————————— L ity e
etulieded ) b a2 ol Voo v
04 04
T T T T T T T T T T T T
BI20/2022 8132022 a/{7i2022 100172022 10152022 10/2412022 BI20/2022 8132022 a/{7i2022 100172022 10152022 10/2412022
Forward expanding Wald test for CFGI| G-caused by BP in Binance Forward expanding Wald test for BF G-caused by CFGI in Binance
with 80th (-] and 851h {-] percenliles of baatsirapped lest slatislics wilh 80th {--) and 95Lh {-] percenlilas of baatstrapped lest statislics
304 8
[ — PP IS I ISP
e
4 -
10
24
04 »—/\M——’—’" [IE
T T T T T T T T T T T T
10/2212022 114512022 11182022 12132022 121712022 1112023 107222022 114512022 1111812022 124312022 1211712022 1112023

131



Rolling Wald test for CFGI G-caused by BP in Binance
with 50th () and 951h {-] parcentiles of baatstrapped Lest salislics
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Chapter 4 The Impact of Major DeFi Heists on DeFi Token
Liquidity and Market Stability

4.1 Introduction

Decentralised Finance (DeFi) leverages the transparency, security, and decentralised nature of
blockchain technology, combined with the use of cryptocurrencies, to facilitate financial
transactions without the need for centralised institutions. Through peer-to-peer financial
networks, DeFi provides online wallets, lending, spot trading, margin trading, market making,
and derivatives (Chen & Bellavitis, 2019; Corbet et al., 2023). For example, users can borrow
stablecoins using any cryptocurrency as collateral to place leveraged bets on certain
cryptocurrencies; conversely, users can also earn interest by lending out stablecoins. Most
DeFi protocols and applications are built on Ethereum, with users participating in DeFi
through decentralised applications (dapps)’. DeFi applications cover various aspects of
financial services, promising higher efficiency, lower costs, and greater inclusivity (Schér,
2021). By February 2025, the total value of assets locked in DeFi protocols reached $97.91
billion, a substantial increase from about $630 million at the beginning of 2020. This increase
was not solely driven by rising cryptocurrency prices; the number of tokens locked also rose
substantially. For example, the amount of Ethereum locked on the Ethereum chain increased
from 4.73 million in early 2020 to 19.57 million in early 2025; the amount of Solana locked
on the Solana chain rose from 10.4 million in early 2021 to 45.03 million in early 2025; and
the amount of Avalanche locked on the Avalanche chain grew from 243,054 in early 2021 to
37.09 million in early 2025 (DeFiLlama, 2025). This dramatic growth demonstrates the
exploding interest and confidence investors have in decentralised finance solutions, marking
DeFi’s significant position at the forefront of financial technology innovation (The Fintech
Times, 2023; Alamsyah & Muhammad, 2024). With an increasing number of projects and
capital flowing into this space, DeFi is expected to continue playing a key role in the global
financial ecosystem, driving the decentralisation and digital transformation of traditional

financial services (Alamsyah et al., 2024; Bakare et al., 2024).

5 Decentralised applications (dapps) are autonomously running applications that typically operate on
decentralised computing platforms, blockchains, or other distributed ledger systems through the use of smart
contracts. Unlike traditional applications, dapps operate without human intervention and are not owned by any
single entity. Instead, ownership is represented through the distribution of tokens to users, which are allocated
based on programmed algorithms, thus diluting ownership and control of the dapps. As no single entity controls
the system, the application remains decentralised (Wu et al., 2021).
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DeFi tokens are a unique type of cryptocurrency utilised within the DeFi ecosystem, and the
uses of different types of DeFi tokens vary greatly. Table 4.1 summarises the current common
uses of DeFi tokens. These tokens are often based on blockchain platforms like Ethereum and
follow standards such as ERC-20, facilitating easy trading and interoperability across the
DeFi ecosystem (Harvey et al., 2021; Hertig, 2023). The innovation of DeFi tokens lies not
just in their function as a medium of value transfer; they also empower users to participate in
and influence the development of DeFi protocols. This marks a significant departure from
traditional financial instruments like stocks or bonds, highlighting their unique position in the

financial world (Metelski & Sobieraj, 2022).

Table 4.1: Types and uses of DeFi tokens

Application Details
Allows holders to vote on decisions affecting the DeFi
Governance protocol, participating in the decentralised governance

of the protocol’s future direction and updates.

Issued to users who deposit assets into liquidity pools

to provide liquidity, these tokens represent their share
Liquidity provider of the deposit and can be redeemed at any time for the

original deposit plus any earned transaction fees.

In certain DeFi lending platforms, depositing assets

Loan into a loan account earns tokens representing its loan
balance. These tokens can track the borrower’s debt or
serve as collateral.

Engaging in yield farming activities (providing
Yield farming liquidity, lending, etc.) in some DeFi projects earns

additional tokens as rewards, incentivising

participation and support for the ecosystem.

Though often considered a separate category of digital

Stablecoins currency, stablecoins play a crucial role in the DeFi
ecosystem by providing a stable medium of exchange,
allowing users to avoid the volatility of the
cryptocurrency market.

By creating equivalent tokens on different

Wrapped blockchains, cross-chain circulation and
interoperability of assets are achieved while retaining
their value and characteristics.

Source: https://www.coindesk.com/learn/what-are-defi-tokens/

Although DeFi is an emerging phenomenon, it also carries many risks. Its ecosystem is
particularly vulnerable to bugs, hacking, and fraud. Figure 4.1 shows that 2021 and 2022 saw
a significant uptick in cryptocurrency heists, largely driven by attacks on DeFi protocols,
with cybercriminals making off with over $3.1 billion from DeFi hacks in 2022 alone,

representing 82.1% of all crypto stolen that year.
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Figure 4.1: Cryptocurrency stolen in hacks by victim platform type, 2016-2022
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Source: https://www.chainalysis.com/blog/2022-biggest-year-ever-for-crypto-hacking/

Of the $3.1 billion stolen, 64% of the losses came from attacks on cross-chain bridge
protocols (Chainalysis, 2023). Bridges are especially attractive to hackers because of their
design: to transfer assets across blockchains, bridges lock tokens in a smart contract on the
source chain and issue “wrapped” tokens on the destination chain. This creates large,
concentrated pools of locked assets that act as collateral (Chainalysis, 2024b). As a result, any
vulnerability in the underlying code can jeopardise the entire pool of collateral. The
combination of high concentration and large transaction volumes means that a single exploit
may yield extraordinary profits, making bridges a primary target for malicious actors.
Moreover, the technical complexity of cross-chain interoperability increases the likelihood of
overlooked bugs or design flaws, further amplifying their security risks (Belenkov et al.,
2025). The attack vectors affecting DeFi are diverse and constantly evolving. Table 4.2
summarises the current methods of attacking DeFi. Overall, most DeFi hacks stem from
flaws in the design and implementation of smart contracts, because a large proportion of DeFi

protocols are either unaudited or insufficiently audited (Chainalysis, 2024a).
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Table 4.2: Classification of DeFi attack methods

Attack method

Description

Protocol exploitation

Insider attack

Phishing

Contagion

Compromised server

Wallet hack

Price manipulation hack

Smart contract exploitation

Compromised private key

Governance attacks

Third-party compromised

Hackers exploit vulnerabilities in the blockchain
components of the protocol (e.g. validator nodes, the
protocol’s virtual machine or mining layer related) to
carry out attacks.

Protocol developers steal funds directly.
Hackers replace the protocol to spend tokens on behalf
of users or trick users into sending funds to malicious

smart contracts.

Hackers use the same vulnerability to attack across
different protocols.

Hackers attack the protocol’s servers, thereby
preventing the protocol from running.

Hackers steal wallet services hosted by protocols.
When there is a vulnerability in a smart contract that
prevents asset prices from accurately reflecting the
situation, hackers exploit the vulnerability to

manipulate token prices.

Embedding vulnerabilities in the development process
of smart contracts to facilitate future attacks.

Hackers directly steal users’ private keys to heist.

Hackers gain enough influence or voting power to
push harmful proposals.

Hackers attack by using vulnerabilities in third-party

programs under the protocol.

Source: https://www.chainalysis.com/blog/crypto-hacking-stolen-funds-
2024/#:~:text=In%202023%2C%20however%2C%20funds%20stolen,a%20drop%20in%20DeFi%20hacking

In addition to being vulnerable to hacker attacks, the decentralised nature of DeFi, which
aims to automate the provision of financial services and reduce human dependence, makes it
lack standardised regulation (Benson et al., 2024). What is more, when stablecoins are widely
used as collateral for debt financing, the financial stability risk of the DeFi ecosystem will
also increase accordingly (Darlin et al., 2022). Finally, many transactions in the DeFi market
require confirmation of the user’s private key, and the risk of private key loss is not
uncommon in the DeFi market, which also raises concerns about the security of DeFi (Carter

& Jeng, 2021).

Hence, despite the promising outlook of DeFi, it still has a considerable path to navigate. This
chapter uses the event study method, focusing on the top six DeFi heists of 2022 (Table 4.3)

as a backdrop, to examine the impact of increasingly frequent heists on the DeFi ecosystem.
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This chapter aims to address the following two questions: How do the native DeFi tokens on
the stolen platforms perform post-heists? Will these compromised platforms’ DeFi tokens
influence the entire DeFi market? This study is crucial and timely for two reasons:
cryptocurrency hacks have become a widespread and formidable threat that demands
attention, and DeFi is emerging as a key area in the crypto economy with vast potential for
future growth. Previous studies have largely overlooked an in-depth analysis of the risk factor
associated with cryptocurrency heists, and studies on DeFi have focused on its definition,

regulation, advantages and disadvantages, and connections with other assets (Amler, 2021;

Schueffel, 2021; Karim et al., 2022; Yousaf & Yarovaya, 2022; Corbet et al., 2023).

Table 4.3: Top six DeFi heists of 2022

Stolen platform Date Stolen Details
(native token) amount (§)
Hackers obtained large amounts of fake
xEthereum collateral by attacking the QBridge
Qubit Finance January 28, 2022 80 million protocol. This collateral is then used to replace all
(Qubit) Binance Coins held in QBridge.
Hackers obtained 5 private keys used to verify
transactions and thus faked withdrawals, resulting
Ronin Network March 29, 2022 620 million  in 173,600 Ethereum and $25.5 million in USD
(Ronin) Coin being stolen from the Ronin Bridge in two
transactions.
The hackers borrowed $80 million in
cryptocurrency and deposited it into the project’s
Beanstalk April 16, 2022 182 million  silo, in exchange for receiving enough voting
(Bean) rights to transfer the vault’s funds to themselves.
Hackers exploited a smart contract vulnerability to
withdraw approximately $113 million worth of
Elrond and sold them on the Maiar Exchange,
Maiar Exchange June 5, 2022 113 million  causing the value of Elrond to temporarily
(Elrond) plummet 92%, which they then converted to
Ethereum and traded on other exchanges.
Hackers exploited a vulnerability in a smart
Binance® October 7, 2022 100 million  contract to fake transactions, causing more

(Binance Coin)

Mango Markets
(Mango)

October 11, 2022

114 million

Binance Coin to be minted on the network.

Hackers manipulated price oracle data to allow
them to withdraw large loans without adequate
collateral.

Source: https://shuftipro.com/blog/the-10-biggest-defi-hacks-of-2022-and-how-can-kyc-aml-compliance-help/;

When selecting DeFi heists, this chapter only selects DeFi that have their own native tokens.

5 Although Binance platform is primarily a centralised exchange, it also offers DeFi products through its
Binance Smart Chain. Its native token, Binance Coin, enables participation in DeFi activities and access to
decentralised exchanges. Thus, hacker attacks on Binance platform also affect its DeFi services.
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Among various performance indicators, liquidity is particularly important in assessing the
impact of DeF1i heists on DeFi tokens. Unlike centralised financial markets, where liquidity is
typically ensured by market makers and institutional investors, most DeFi markets are
implemented via automated market makers (AMMs)-based decentralised liquidity pools
funded by liquidity providers (LPs) (Shah et al., 2023). As a result, any disruption, such as a
security breach, can severely affect the liquidity of DeFi tokens, leading to increased slippage,
higher transaction costs, and reduced market depth (Hedera, 2025). Moreover, liquidity is a
key determinant of price stability; lower liquidity levels can exacerbate price volatility,
making assets more susceptible to manipulation and panic-driven sell-offs. Low liquidity also
reduces the utility of the platform’s native DeFi token within DeFi protocols, such as lending
or staking, further diminishing the platform’s attractiveness and preventing the formation of a
healthy trading ecosystem (Financial Stability Board, 2023). Given these factors, this chapter
evaluates the post-heist performance of stolen platforms’ native DeFi tokens primarily
through the lens of liquidity, as it provides direct insights into platform performance and

investor confidence.

Due to the relative ease of obtaining token price and trading volume data, low-frequency
liquidity indicators based on these variables have been widely used in cryptocurrency
liquidity studies (Brauneis & Mestel, 2018). Brauneis et al. (2021) emphasised that among
these low-frequency measures, the Amihud illiquidity ratio (Amihud, 2002) and the Kyle and
Obizhaeva (2016) estimator are most effective in approximating benchmark liquidity levels.
However, the Amihud illiquidity ratio, which measures the price impact per unit of trading
volume, does not account for zero-volume trading days. To address this limitation, the
Amivest liquidity ratio (Cooper et al., 1985; Amihud et al., 1997), which captures the amount
of volume that can be absorbed per unit of price change, can serve as a complementary
measure to the Amihud illiquidity ratio. Therefore, this chapter uses hourly price data of DeFi
tokens and applies the above three low-frequency price impact measures as proxies for
liquidity to investigate the changes in the liquidity of the stolen platforms’ native DeFi tokens
five days before and after DeFi heists. The results indicate that the liquidity of most stolen

platforms’ native DeFi tokens significantly deteriorates after the DeFi heists.

According to market microstructure theory by the Glosten-Milgrom model (Glosten &
Milgrom, 1985), when information asymmetry exists, liquidity providers (market makers)
tend to widen bid—ask spreads and reduce liquidity supply out of concern that they may trade

against informed traders with superior information. Although the DeFi market relies on
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AMMs and lacks traditional quote-driven mechanisms, LPs face similar concerns when
deciding whether to continue supplying liquidity to pools. In the context of DeFi heists,
hackers gain early knowledge of the stolen assets and their potential devaluation, and trade on
this private information. Such early informed trading intensifies adverse selection pressures
in the market, making it difficult for LPs to distinguish informed from uninformed traders.
Consequently, they respond by withdrawing liquidity or widening effective spreads, which
further exacerbates the deterioration of market liquidity. Furthermore, this chapter finds that
the response speed and transparency of the victim platform play a crucial role in sustaining
the liquidity of its native DeFi tokens. Faster responses and higher levels of transparency can
mitigate market participants’ informational disadvantages, reduce the risk of adverse selection,

and thereby alleviate the negative impact of DeFi heists on liquidity.

This chapter also employs the Quantile Vector Autoregressive (QVAR) model to investigate
the potential volatility spillover effects of DeFi heists. Unlike traditional VAR models that
focus on average relationships, the QVAR framework allows for analysing dynamic
interactions between variables across different points in the distribution. This is particularly
important in cryptocurrency markets, where extreme events and asymmetric responses are
common (Demiralay & Golitsis, 2021). The QVAR model captures both lower-tail and upper-
tail dependencies, which provides more informative insights into market behaviour during
stress periods or in response to highly positive or negative shocks (Jena et al., 2022).
Therefore, the use of QVAR is well-suited for this study, as it allows for a more nuanced

understanding of how DeFi-related shocks propagate across the market under DeFi heists.

This chapter selects the top five DeFi tokens by market capitalisation and uses the QVAR
method to investigate whether the volatility of the stolen platform’s native DeFi token spills
over to these five mainstream DeFi tokens. The selection of the top five DeFi tokens by
market capitalisation as a comparison benchmark is based on several considerations. First,
these DeFi tokens represent the most established and widely traded assets within the DeFi
ecosystem, providing a reliable measure of broader market trends. Due to their high liquidity
and strong investor participation, they serve as a natural reference point for assessing the
extent of volatility spillovers (Barchat, 2023). Second, larger DeFi tokens typically have
more robust security mechanisms, governance frameworks, and diversified use cases, which
may make them more resilient to external shocks. Comparing the impact of the stolen
platforms’ native DeFi tokens on these mainstream DeFi tokens allows us to determine

whether the volatility induced by DeFi heist has broader market implications or remains
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confined to the affected platform. At the same time, by comparing the effects of different
forms of DeFi heists on mainstream DeFi tokens, it becomes possible to identify which type
of attack generates more substantial and severe consequences. This issue has received limited
attention in prior studies, yet it contributes to a deeper understanding of the heterogeneous
impacts of different attack mechanisms on market stability. Such insights are highly relevant
for the design of regulation, risk management, and governance structures in both current and
future DeFi markets, and they also provide a central theme and research motivation for
subsequent studies. Lastly, previous studies on DeFi market dynamics have predominantly
focused on these major tokens due to their significant role in decentralised finance. By
aligning with existing studies’ samples, this study ensures consistency while addressing a

novel research gap related to volatility spillovers.

The results indicate that while there is a high level of interconnectedness within the DeFi
market, the spillover effects between different DeFi tokens vary. Specifically, mainstream
DeFi tokens exhibit significant interconnectedness and mutual influence, but their
interconnectedness on the smaller market-cap DeFi tokens from the stolen platforms is
relatively limited. Consequently, although the native DeFi tokens of the stolen platforms
cause some volatility spillover to mainstream DeFi tokens, the extent is minimal. The native
DeF1 tokens of the stolen platforms are often net receivers of volatility rather than
transmitters. Furthermore, it finds that if investors develop broader concerns about the
security of DeFi protocols with governance structures similar to those of the stolen platforms,
the resulting fear and uncertainty lead to increased market volatility. In such cases, the native
DeF1 tokens of the stolen platforms become transmitters of volatility. In other words, attacks
targeting the governance mechanisms of DeFi may generate more significant and severe
impacts than other forms of DeFi heists. The findings underscore the importance of robust
governance and security measures in maintaining market stability and protecting investor

interests in the rapidly evolving DeFi environment.

Finally, drawing on the primary economic rationale of regulating financial intermediary
activities, this chapter proposes several regulatory approaches for the future of DeFi to help it
cope with the increasingly frequent DeFi heists. It recommends that policymakers enhance
DeF1 oversight by introducing third-party institutions, setting stringent risk management
standards, implementing decentralised insurance protocols, and strengthening regulations on

liquidity pools. These measures aim to protect both protocol developers and investors.

140



This chapter makes three key contributions to advancing knowledge in the field of DeFi risk.
First, it systematically examines how major DeFi heists affect DeFi token liquidity and
volatility spillovers, which is an area that remains underexplored in the existing literature.
Second, it introduces the QVAR framework into the DeFi study, enabling the analysis of
asymmetric spillover effects under extreme market conditions. Compared with traditional
VAR or GARCH models, this approach provides a more nuanced understanding of risk
transmission across different states of the market. Third, the study finds that DeFi heists
related to governance mechanisms produce more severe and persistent effects than other
types of attacks, highlighting the critical role of protocol design and information transparency
in shaping market reactions. Overall, these contributions provide new empirical evidence,
methodological innovation, and theoretical insights into how DeFi markets respond to severe

security shocks.

In practical terms, the findings help market participants better understand how crypto hacks
influence DeFi market dynamics, allowing them to develop more effective risk management
strategies. The study also offers valuable guidance for policymakers in designing regulatory
frameworks aimed at mitigating such risks. By promoting stronger security mechanisms and
sustainable development, this study contributes to the long-term stability and resilience of the
DeFi ecosystem. Finally, the insights gained from this study lay a foundation for future

research into DeFi risk, governance, and market behaviour.

This chapter is structured as follows. The second section is the literature review, the third is
the data and methodology, the fourth is the empirical research results, the fifth is the

regulatory recommendations for DeFi, and the sixth is the conclusion.
4.2 Literature Review

4.2.1 Information Asymmetry and Liquidity

Liquidity is one of the core characteristics of financial markets, reflecting an asset’s ability to
be traded quickly without causing significant price changes. A highly liquid market facilitates
price discovery, reduces transaction costs, enhances risk sharing, and improves market
efficiency and investor confidence (Amihud & Mendelson, 1986; Pastor & Stambaugh, 2003).
In contrast, illiquid markets often exhibit prices that deviate from fundamentals, greater
trading frictions, and, in extreme cases, systemic instability (Brunnermeier & Pedersen, 2009).

Therefore, liquidity serves not only as an indicator of market health but also as a key
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dimension for understanding asset price dynamics and investor behaviour (Chordia et al.,

2000).

In traditional financial studies, asset liquidity could be analysed through the lens of market
microstructure theory. This theoretical framework examines how trading mechanisms,
information asymmetry, order book depth, and market-making behaviour jointly shape price
formation and liquidity provision. Among these contributions, the information asymmetry
pricing model proposed by Glosten and Milgrom (1985) demonstrates that bid—ask spreads
originate from adverse selection risks faced by market makers who interact with both
informed and uninformed traders. Because market makers cannot distinguish between the two,
they widen bid—ask spreads to compensate for potential losses when trading with informed
participants. The model predicts that as information asymmetry increases or the proportion of
informed traders rises, market makers set higher spreads to maintain zero expected profits,
thereby raising transaction costs and reducing market liquidity. In this framework, liquidity is
effectively modelled as a function of information asymmetry—markets become less liquid

when private information disparities intensify.

Building on this foundation, numerous studies have extended the Glosten and Milgrom (1985)
framework to explore the relationship between information asymmetry and liquidity. Stoll
(1989) decomposed bid—ask spreads into order-processing, inventory-holding, and
information asymmetry components, showing that information asymmetry could capture the
intrinsic link between liquidity and information structure. Hasbrouck (1991) verified this
decomposition using high-frequency data and found that the information component accounts
for a substantial portion of spreads, especially during periods of intense information flow
such as earnings announcements. Biais et al. (1995) demonstrated how dynamic quote
adjustments and order book depth jointly determine liquidity. Huang and Stoll (1997) further
developed a structural estimation approach to identify spread components across different
markets and found that higher market transparency and competition improve liquidity.
Collectively, these studies establish that information asymmetry is a central driver of liquidity

fluctuations, while the bid—ask spread remains an effective measure of liquidity conditions.

With the rise of electronic trading and high-frequency data, scholars have expanded this
framework to emerging markets and alternative asset classes. Chordia et al. (2000, 2001)
found significant commonality in stock market liquidity, which tends to decline during

periods of market stress, indicating that information asymmetry shocks can propagate across
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assets through investor sentiment and funding constraints. Easley et al. (2002) introduced the
Probability of Informed Trading (PIN) measure, providing a quantitative approach to assess
information asymmetry. Brennan and Subrahmanyam (1996) and Pastor and Stambaugh
(2003) integrated liquidity risk into asset pricing, demonstrating that information asymmetry
not only affects trading efficiency but also generates a liquidity risk premium in expected

returns.

In recent years, scholars have applied the Glosten and Milgrom information asymmetry
mechanism to cryptocurrency markets to explain price volatility and liquidity variations. Due
to decentralisation, anonymity, and the lack of mandatory disclosure, information asymmetry
among cryptocurrency traders is particularly severe (Othman et al., 2019; Park & Chai, 2020;
Alfieri et al.,, 2025). The study by Makarov and Schoar (2020) showed that market
fragmentation across exchanges leads to cross-platform liquidity segmentation and frictions
in information transmission, and that these information asymmetries result in frequent and
sizable arbitrage opportunities across trading venues. Tini¢ et al. (2023), using Bitfinex limit
order book data, found that adverse selection costs account for approximately 10% of bid—ask
spreads, confirming that information asymmetry plays a significant economic role in
cryptocurrency pricing. Moreover, they showed that the adverse selection component is
positively related to future return volatility but negatively related to liquidity indicators such
as realised spreads, order book slope, and the Amihud illiquidity ratio, implying that
increased information asymmetry amplifies volatility and reduces market liquidity. Manahov
and Li (2025¢) further found that information asymmetry between issuers and investors
significantly reduces newly issued tokens’ liquidity during hacker attacks in ICO markets,
with the effect most pronounced for newly issued tokens on the same blockchain as the
attacked assets. Overall, these studies establish information asymmetry as a key theoretical

foundation for understanding low liquidity in cryptocurrency markets.

Despite these advances, studies on DeFi token liquidity remain limited. Existing studies have
primarily focused on the liquidity of major cryptocurrencies such as Bitcoin and Ethereum.
Most findings suggest that cryptocurrencies exhibit lower liquidity than traditional assets (Loi,
2018; Corbet et al., 2019a; Smales, 2019; Trimborn et al., 2020), although liquidity may
improve under certain market conditions (Sensoy, 2019; Scharnowski, 2021; Brauneis et al.,
2022; Leirvik, 2022). As a form of cryptocurrency, DeFi tokens are inevitably affected by
both external market conditions and changes in information environments. DeFi hacking

incidents represent sudden informational shocks that disrupt the distribution of information
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among market participants. Although DeFi trading relies on AMMSs rather than centralised
market makers, the Glosten-Milgrom market microstructure model remains applicable.
Compared with traditional financial markets, the decentralised and pseudonymous nature of
DeFi, along with the lack of standardised disclosure mechanisms, amplifies the consequences
of information asymmetry and makes liquidity provision more sensitive to external shocks.
Therefore, this chapter adopts the theoretical framework of Glosten and Milgrom (1985) to
investigate how information asymmetry affects DeFi token liquidity in the context of DeFi

heists, thereby addressing an important gap in the existing literature.
4.2.2 Examining Relationships Between DeFi Tokens and Other Assets

Existing literature on DeFi primarily focuses on the interconnections between DeFi tokens
and other assets, aiming to provide valuable insights for risk management and portfolio
management. Spillover effect theory posits that shocks affecting one asset, market, or
institution can propagate to others through various transmission mechanisms. These
mechanisms include price co-movements, correlated investor sentiment, portfolio rebalancing
activities, and liquidity linkages. Originally developed in the context of international finance
to explain how a crisis in one country can influence others (Allen & Gale, 2000; Forbes &
Rigobon, 2002), the theory has since been widely applied to analyse risk transmission across
financial sectors, asset classes, and institutional networks (Diebold & Yilmaz, 2009, 2012;
Acemoglu et al., 2015). In highly interconnected systems, spillover effects have the potential
to transform localised disruptions into broader systemic risks. In the context of DeFi, this
theoretical framework is particularly relevant. Although DeFi platforms operate
independently from a technical standpoint, they are often tightly linked through shared user
bases, token dependencies, and interoperable smart contracts. As a result, a security breach on
one platform could trigger ripple effects that compromise the stability of the broader DeFi

ecosystem.

Specifically, existing studies on the spillover effects of DeFi tokens can be broadly divided
into two areas: (1) examining the relationships between DeFi tokens and other crypto assets

and (i1) exploring the relationships between DeFi tokens and traditional assets.

In studying the relationship between DeFi tokens and other crypto assets, most studies
indicate significant interconnectedness between DeFi tokens and other crypto assets. For
example, Karim et al. (2022) explored the interconnectedness between NFTs, DeFi tokens,

and cryptocurrencies. Using quantile connectedness techniques, they examined the
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transmission of extreme risks in the blockchain market under median, extremely low, and
extremely high volatility conditions. They found evidence of extreme risk transmission across
different cryptocurrency markets. They noted that there is a positive spillover effect between
DeFi tokens and mainstream cryptocurrencies under median and extremely low volatility
conditions. Similarly, Qiao et al. (2023) employed the wavelet-based quantile causality
method and reached similar conclusions. They also highlighted that within the DeFi token
market, the volatility of yield farming DeFi tokens spills over to other types of DeFi tokens in
both the short and long term. Furthermore, they observed that the density of downside risk

networks within DeFi tokens increases over time.

Akkus and Dogan (2024) used the TVP-VAR model to study the dynamic interconnectedness
among cryptocurrencies, NFTs, and DeFi tokens. Their results indicated the presence of
volatility spillover relationships among these three types of crypto assets, with Ethereum and
Chainlink transmitting volatility to other crypto assets. Kumar et al. (2023) also used the
TVP-VAR model to study the changes in return and volatility spillovers between
cryptocurrencies, NFTs, and DeFi tokens before and after the Russia-Ukraine conflict. They
found significant spillover effects among them both before and after the conflict, but the
receiver and transmitter roles of these assets changed in the pre- and post-conflict periods.
Regarding return spillovers, they discovered that Ethereum, Chainlink, Bancor, Basic
Attention Token, and Bitcoin consistently acted as net return spillover transmitters, while
Decentraland, Maker, DigiByte, and XRP consistently served as net return spillover receivers.
For volatility spillovers, only Chainlink and Basic Attention Token consistently acted as net
volatility spillover transmitters, while Bitcoin and XRP consistently served as net volatility
receivers. Additionally, they explored the return and volatility spillover effects within three
subsystems: cryptocurrency-NFT, cryptocurrency-DeFi, and NFT-DeFi. The results indicated
that cryptocurrencies play a significant role in absorbing volatility shocks from NFT and
DeFi assets. Their findings are helpful for investors seeking to reduce the negative impact of
geopolitical events on their portfolios. Assaf et al. (2024) aimed to investigate the impact of
COVID-19 on the interconnectedness among crypto assets. They used the TVP-VAR model
to study the relationships between cryptocurrencies and DeFi tokens before and after
COVID-19 and found that the return spillover effects from cryptocurrencies were
significantly larger, being the main drivers of most changes in DeFi returns. Specifically,
cryptocurrencies like Bitcoin, Ethereum, Cardano, and Binance Coin, as well as the DeFi

token Bancor, were the primary sources of return and volatility shocks to other
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cryptocurrencies and DeFi tokens. They also noted that this interconnectedness varies over
time, peaking during the COVID-19 period and subsequently declining. Therefore, investing
in DeFi could offer diversification benefits during normal and low-uncertainty periods, but
during extreme periods, the increased interconnectedness of crypto assets may reduce the

diversification benefits of DeFi investments.

Huang and Hsu (2024) further used a GARCH-EVT—Copula model to analyse the
dependence structure between eight leading DeFi tokens and Bitcoin and Ethereum. Their
results showed that the dependence between DeFi tokens and Bitcoin and Ethereum is
positive and time-varying, with DeFi tokens being more closely correlated with Ethereum
than with Bitcoin. They also found that when Bitcoin and Ethereum returns rise, investors are
willing to pay a premium to purchase DeFi tokens to gain governance rights, which in turn
drives up the prices of DeFi tokens. However, when Bitcoin and Ethereum returns fall, the
prices of DeFi tokens do not fall as sharply because their governance rights remain
unchanged. Thus, they argued that DeFi tokens are strongly correlated with cryptocurrencies,

and this correlation is more pronounced in the upper tail.

On the contrary, some studies have pointed out that the connection between DeFi tokens and
other crypto assets is not strong. For example, Park et al. (2023) used Pearson’s pairwise
correlation coefficients to determine the correlation between the returns of DeFi tokens. They
found that the returns of tokens classified as DeFi projects exhibit a persistent co-movement
trend and have a higher degree of correlation compared to other cryptocurrencies. Corbet et al.
(2023) used the Diebold-Yilmaz connectedness test and found volatility spillover effects
between Ethereum and DeFi tokens, which may be attributed to Ethereum’s dominant role in
the DeFi market. However, they also noted that the volatility spillover effects from traditional
cryptocurrencies like Bitcoin and Ethereum to the DeFi market are smaller than the spillover
effects among DeFi tokens within the DeFi market itself. Therefore, they suggested that DeFi
tokens should be considered a distinct asset class from traditional cryptocurrencies. Similarly,
Mensi et al. (2024), using the same method, also found that the connection between DeFi
tokens and mainstream cryptocurrencies is weak. They further discovered that within
cryptocurrencies, the primary currency transmitting volatility to both the system and DeFi
assets 1s Ethereum, followed by Bitcoin and Litecoin, but their influence is smaller compared
to Ethereum. Therefore, they suggested that portfolio managers should consider DeFi tokens

as diversification tools.
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Different findings suggest that the correlation between DeFi tokens and other crypto assets
may be dynamic. Under extreme market conditions, such as black swan events, the
interconnections between DeFi tokens and other crypto assets may strengthen as investors
react collectively to heightened uncertainty. However, during normal market conditions, DeFi
tokens may exhibit weaker correlations with other crypto assets due to their unique market
structures, liquidity mechanisms, and governance models, which often lead to idiosyncratic

price movements driven by protocol-specific developments rather than broader market trends.

In studying the relationship between DeFi tokens and traditional assets, most studies indicate
that the relationship between DeFi tokens and traditional assets is relatively weak. For
example, Cevik et al. (2022) used time and frequency domain causality tests and cross-
quantilogram methods to examine the interrelationship between DeFi tokens and natural
resource assets, focusing on return and volatility spillovers as well as hedging effectiveness.
Their results showed that during bear markets, the correlation between DeFi tokens and
natural resources is generally negative, indicating that DeFi tokens could provide effective

hedging for gold and oil investors.

Yousaf et al. (2022) used the TVP-VAR model to study the dynamic interconnectedness
between DeFi tokens (Chainlink, Maker, Basic Attention Token, and Synthetix) and
mainstream currencies (Renminbi, Yen, Euro, and Pound). Their spillover analysis results
indicated a low interdependence between DeFi tokens and currency markets. Ali et al. (2023)
also employed the same method to study the connections between precious metals, industrial
metals, and DeFi tokens before and during COVID-19. Their findings suggested that the
relationship between DeFi tokens and both precious and industrial metals is weak; adding
DeFi tokens to metal-based portfolios helps achieve diversification. Yousaf et al. (2023)
utilised both the TVP-VAR and DCC-GARCH models to study the dynamic interconnections
between DeFi tokens and sectoral stock markets during COVID-19. Their study revealed that
DeF1 tokens had the lowest spillover indices. They highlighted that incorporating DeFi tokens
into traditional portfolios could provide effective hedging against risks present in traditional

assets.
4.2.3 Studies on the Impact of Cryptocurrency Heists on Crypto Assets

There are limited studies on the impact of cryptocurrency heists on crypto assets. Manahov
and Li (2024, 2025a, 2025b) examined the effects of cryptocurrency heists on different types

of tokens. They found statistically significant spillover effects between the stolen
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cryptocurrencies and tourism, energy, and real estate tokens, indicating that cryptocurrency
heists not only harm the targeted crypto assets but also transmit negative effects to other
tokens. They also reported that these tokens suffered severe liquidity deterioration during
heist periods, with Ethereum-based tokens being particularly affected when Ethereum itself
was attacked. Furthermore, Manahov and Li (2025c) investigated whether newly issued
tokens (ICO tokens) were influenced during cryptocurrency heists. Their results showed that
within five trading days, ICO tokens experienced a significant decline in both market
efficiency and liquidity, with those issued on the same blockchain as the attacked tokens
being most severely impacted, highlighting the interconnected risks within blockchain

ecosystems.

Mohamad and Dimitriou (2024) investigated nine cryptocurrency heists and fraud incidents
that occurred between 2020 and 2022. Using a multivariate GARCH model, they found that
cybercrime events have a significant impact on the volatility of specific cryptocurrencies.
Additionally, they discovered that while hacking incidents are generally perceived as bad
news, cryptocurrency investors seem to be less affected when the cybercrime involves less
popular tokens. This may be attributed to the lower market integration and liquidity of these

tokens.

In summary, existing studies suggest that DeFi tokens exhibit a certain degree of correlation
with other crypto assets, and their level of interconnectivity may vary over time. The weak
linkage between DeFi tokens and traditional assets adds value to DeFi tokens as hedge assets.
However, as common targets of crypto attacks, there is a lack of studies on the impact of
cryptocurrency heists on DeFi assets. Do DeFi heists affect the native DeFi tokens of the
compromised platforms? If so, does this impact spill over to other DeFi tokens, causing
broader effects? This chapter seeks to address these questions to help market participants
better understand these risks, develop effective risk management strategies, and enhance their

ability to respond to volatility in the DeFi market.

4.3 Data and Methodology

4.3.1 Data and Variable

To compare the performance of native DeFi tokens on stolen platforms before and after the
DeFi heists, this chapter uses hourly price data to analyse their performance in the five days

preceding and following each DeFi heist. Based on Table 4.3, which lists the DeFi heists and
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the affected native DeFi tokens, the datasets are as follows: In the Qubit Finance platform
heist, the affected native token is the Qubit, and the data range is from January 23, 2022, to
February 1, 2022; In the Ronin Network heist, the affected native token is the Ronin, and the
data range is from March 24, 2022, to April 2, 2022; In the Beanstalk protocol heist, the
affected native token is the Bean, and the data range is from April 11, 2022, to April 20, 2022;
In the Maiar Exchange heist, the affected native token is the Elrond, and the data range is
from May 31, 2022, to June 9, 2022; In the Binance platform heist, the affected native token
is the Binance Coin, and the data range is from October 2, 2022, to October 11, 2022; In the
Mango Markets platform heist, the affected native token is the Mango, and the data range is
from October 6, 2022, to October 15, 2022.

All DeFi tokens’ price data comes from coincodex. The coincodex tracks over 400
cryptocurrency exchanges and thousands of trading pairs, and its token prices are calculated
by averaging the cryptocurrency exchange rates on different cryptocurrency trading platforms
to accurately reflect the average price of each token as much as possible. Figure 4.2 provides
a more intuitive illustration of the impact of the DeFi heists on the prices of native DeFi
tokens from affected platforms. Most of these DeFi tokens experienced substantial price
declines following the incident. For instance, Qubit fell by approximately 70.6%, Ronin by
24.8%, Bean by 98%, Elrond by 17.3%, and Mango by 54.5%. In contrast, Binance Coin
showed the smallest decline, dropping only 4%. These price movements highlight not only
the negative effects of DeFi heists on platform-specific tokens but also suggest that different
platforms may exhibit varying degrees of market sensitivity in response to such security

breaches.
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Figure 4.2: Price changes of the stolen platform’s native Defi token

(a) Qubit Finance platform heist — January 28, 2022
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(d) Maiar Exchange heist — June 5, 2022
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(e) Binance platform heist — October 7, 2022
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(f) Mango Markets platform — October 11, 2022
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The hourly return of the DeFi token is calculated as:

R, = Ln (%) (25)

where R; is the hourly return of the DeFi token, Ln(P;) and Ln(P,_,) are the natural logs of
DeFi token prices at time t and t — 1. Table 4.4 presents the descriptive statistics of the
returns for each DeFi token over the five days before and after the DeFi heists. The results
indicate that, except for Binance Coin, the average returns of all other DeFi tokens decreased
following the heists, suggesting that these incidents negatively affected the native DeFi
tokens of the stolen platforms. Additionally, the standard deviations of most DeFi tokens
increased, highlighting heightened volatility in the post-heist period. In particular, the
standard deviation of Bean increased from 0.003 to 0.290, and that of Mango rose from 0.003
to 0.057. Furthermore, the returns for most DeFi tokens exhibited negative skewness and
leptokurtosis after the heists, indicating the presence of more extreme negative returns. The
Jarque—Bera (JB) test results confirm that the return distributions deviate from normality,
while the Augmented Dickey—Fuller (ADF) test results demonstrate that the time series are

stationary.

Table 4.4: Descriptive statistics of DeFi token returns in six DeFi heists

Panel A: Five days before the DeFi heists

DeFi token  Obs Min Max Mean S.Dev. Skew Kurt JB ADF
Qubit 119  -2.275 2.299 0.000 0.298 0.116 55311 15718.000™" -7.775™"
Ronin 119  -0.043 0.040 0.001  0.010 -1.029 7.360 303.170™*  -5.000™"
Bean 119  -0.011 0.014 0.000  0.003 0.290 2.585 37.316™" -4.899™

Elrond 119  -0.037 0.042 -0.001 0.011 0.439 3.213 58.536™" -5.219™
Binance Coin 119  -0.018 0.009 0.000  0.003 -0.823 4.903 139.610"*" -3.361"
Mango 119  -0.009 0.009 0.000  0.003 -0.041 -0.427 0.762 -6.557™"
Panel B: Five days after the DeFi heists

DeFi token  Obs Min Max Mean S.Dev. Skew Kurt JB ADF
Qubit 119  -0.235 0.034 -0.009 0.037 -4.377  21.818  2842.300™  -4.374™
Ronin 119  -0.208 0.026 -0.002  0.021 -7.977 75.515  30579.000™" -5.038™"
Bean 119  -1.571 0.901 -0.028 0.290  -2.162 12.349 883.540™"  -5.708""

Elrond 119  -0.104 0.034 -0.002 0.015 2.740 15.958  1467.000™"  -6.683""
Binance Coin 119  -0.010 0.008 0.000 0.003 -0.791 2.215 39.054™" -5.235™
Mango 119 -0.485 0.150 -0.004 0.057  -5.174  45.152  9251.000""  -5.520"*"

The data source is from coincodex; Skew: Skewness, it is a measure of symmetry; Kurt: Kurtosis, it is a
measure of whether the data are heavy-tailed or light-tailed relative to a normal distribution; JB: Jarque—Bera
test; ADF: Augmented Dickey-Fuller test; *** At the 1% significance level; ** At the 5% significance level; *
At the 10% significance level
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4.3.2 Market Liquidity Test

Due to the complexity of the cryptocurrency market, obtaining and processing data on bid-
ask spreads and order book dynamics is challenging. As a result, few studies have used full
order book data to examine liquidity in cryptocurrency markets (Brauneis et al., 2021).
Instead, price and trading volume data are more readily available, making low-frequency
liquidity indicators based on these variables commonly used in cryptocurrency liquidity
studies (Brauneis & Mestel, 2018). Among these low-frequency indicators, the most widely
used are the Amihud illiquidity ratio (Amihud, 2002) and the Roll spread ratio (Roll, 1984).
However, when the covariance of price changes is positive, the modified Roll spread ratio
assigns the indicator value to zero, but a positive covariance of price changes does not

necessarily indicate high liquidity.

Brauneis et al. (2021) emphasised that among these low-frequency indicators, the Amihud
illiquidity ratio and the Kyle and Obizhaeva (2016) estimator best estimate the level of the
liquidity benchmark measures. However, since the Amihud illiquidity ratio measures the
price impact per unit of trading volume, it does not account for days with zero trading volume.
To address this limitation, this chapter also incorporates the Amivest liquidity ratio (Cooper et
al., 1985; Amihud et al., 1997), which evaluates the amount of trading volume that can be
absorbed per unit of price change. Unlike the Amihud illiquidity ratio, the Amivest liquidity
ratio considers days with zero trading volume but excludes trading days with zero returns.
Given their complementary nature, these two indicators provide a more comprehensive
assessment of market liquidity by considering both the impact of trading volume on price

movements and the ability of price changes to absorb trading volume.

Since this chapter employs hourly data, three low-frequency price impact indicators are used
as proxies for liquidity: the Amihud illiquidity ratio (Amihud), the Amivest liquidity ratio
(Amivest), and the Kyle and Obizhaeva estimator (Kyle).

Amihud illiquidity ratio is used to assess the price changes caused by a unit of trading volume
(Amihud, 2002). This ratio can be expressed as:
N
R I R
Amihud illiquidity ratio = Nl Vo (26)

%
t=1

where R, is the return of the token at hour ¢, and V; is the trading volume in USD at hour t. N

is the total number of non-zero trading volume hours in the observation period. A higher ratio

153



indicates lower market liquidity, as price changes are more sensitive to trading volume.

Conversely, a lower ratio suggests better market liquidity.

The Amivest liquidity ratio measures the volume of trades that the market can accommodate
for a given price change, thereby reflecting the overall level of market liquidity. Unlike the
Amihud illiquidity ratio, which emphasises the sensitivity of price changes to trading volume,
the Amivest liquidity ratio focuses on the market’s capacity to absorb trading volume under

price fluctuations. It can be expressed as:
N
: . .1 Vi
Amivest liquidity ratio = NZ — (27)

where R; is the return of the token at hour ¢, and V; is the trading volume in USD at hour t. N
is the total number of non-zero return hours in the observation period. A higher ratio indicates
greater trading volume for a given price change, indicating better liquidity (Cooper et al.,

1985, Amihud et al., 1997; Berkman & Eleswarapu, 1998).

Kyle and Obizhaeva (2016) developed an illiquidity measure by calculating the ratio of an

asset’s volatility to its dollar trading volume within a specified time interval. It is defined as:

1
3
Utz,i )

N
t=1 Vt

(28)

Kyle and Obizhaeva estimator = [

where atz’l- (r) represents the mean of the squared returns of all subintervals i in interval t. V;
is the sum of trading volume in USD during the time interval t. A higher value of this
estimator indicates greater price volatility but lower trading volume, suggesting poorer
market liquidity. Conversely, a lower value signifies smaller price fluctuations accompanied

by higher trading volume, indicating better market liquidity.
4.3.3 Quantile VAR Model

This chapter uses the Quantile Vector Autoregressive (QVAR) model to analyse the potential
spillover effects of the DeFi heists. The QVAR model, as proposed by Ando et al. (2022)
within the framework of graphical analysis for VAR models, employs quantile regression and
factor structures to distinguish between common error components and idiosyncratic error
components. Compared to traditional VAR models, the QVAR model captures dynamic
relationships at different quantiles. This means that the QVAR model can capture
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relationships between variables across different parts of the data distribution (e.g. high
quantiles and low quantiles), providing deeper insights into extreme events and tail risks.
According to the study by Jena et al. (2022), analyses conducted at the 5th and 95th quantiles
using the QVAR approach are more valuable and informative for understanding the spillover
effects of negative and positive news. Moreover, Ando et al. (2022) noted that the QVAR
model differs from traditional conditional mean estimators, such as Ordinary Least Squares
(OLS), because OLS regression suffers from omitted variable bias (Wilms et al., 2021). This
bias occurs when an omitted third variable affects both the independent and dependent
variables. The VAR framework addresses the potential for significant bias in network analysis
that can arise from failing to account for sources of common variation (Khalfaoui et al.,

2022).

Compared with DCC-GARCH or TVP-VAR models that are widely used to study volatility
spillovers, QVAR offers distinct advantages. While DCC-GARCH effectively captures time-
varying correlations in conditional variances, it primarily focuses on average dependence and
neglects heterogeneity across different parts of the return distribution (Engle, 2002; Bouri et
al., 2021b). Similarly, although TVP-VAR allows parameters to evolve, it remains centred on
mean relationships, which may obscure asymmetric dynamics that arise during periods of
market stress (Primiceri, 2005; Koop & Korobilis, 2013). Therefore, these estimators can
only measure the average shock system. However, systemic shocks do not necessarily
correspond to average shocks and may in fact be much larger, indicating the need to account
for potential heterogeneous effects across the distribution of shock magnitudes (Bouri et al.,
2021b). In contrast, QVAR explicitly estimates relationships at different quantiles, enabling

the examination of whether spillover effects intensify in the tails (Ando et al., 2022).

This property is significant in DeFi markets. Unlike traditional financial systems, DeFi lacks
circuit breakers and centralised stabilisers, meaning that once a DeFi heist occurs, shocks are
sudden and accompanied by severe information asymmetry. Prices can fluctuate dramatically,
and LPs’ withdrawals may further amplify tail risks. In this context, a framework such as
QVAR, which can uncover contagion effects in the tails rather than only at the mean, is
highly appropriate. The key assumption of QVAR is that dependence structures among
variables may differ across quantiles: spillover effects may be modest or insignificant in
tranquil periods (e.g., at the 50th quantile), but become significantly stronger under extreme

market conditions (e.g., at the 95th or 5th quantiles). Accordingly, QVAR results can be
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interpreted as evidence of heterogeneous transmission mechanisms, whereby spillovers are

limited in normal states but highly contagious during extremes (Bouri et al., 2021b).

Quantile regression allows us to estimate the relationship between y; and x; at each quantile

7 of the conditional distribution (y; | x;). This can be expressed as:

Q:(ye | x¢) = x. (1) (29)

where Q. represents the 7-th conditional quantile function of y,. T € (0,1) represents quantile
index. x; represents a vector of explanatory variables. S(7) represents the dependence
relationship between x; and the t-th conditional quantile function of y;. Specifically, B(7) is

the parameter vector estimated at the 7-th conditional using the following expression:

T
B = argmin ) (= To,capcon)be < 5@ (30)
Y=

Subsequently, the n-variable quantile VAR process p-th order is estimated as:

P
y: =c(t) + Z D, ()Y +e(0),t=1,..,T (31)

where y; denotes the n-vector of dependent variable (In this chapter, it is volatility). c(t) and
e;(T) represent the n-vector of constants and residuals at quantile T, respectively. ®;(7)
denotes the matrix of lagged coefficients of the dependent valuable at quantile 7, with i =
1,...,p. The estimates (1) and é(7) are obtained under the assumption that the residuals
satisfy the population quantile restriction, Q; (et(r) | Ve_1, yt_p) = 0. The population z-th

conditional quantile of the response variable y is given in Equation (32) below:

p
Qr(}’t | YVe-1, '"yt—p) =c(1) + Z &, (1)ye-1 (32)

Next, it needs to calculate several return connectedness measures for each quantile 7. We

represent equation (31) as an infinite-order vector moving average (MA) process:
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ye =@+ ) A@e 5@t =1,..,T
s=0

k@ = (I = &1 (0 == @,(®) () (33)
_ 0,s<0:I,,s=0
As(T) = {CI)l(T)AS_l o+ Op(D)Ag_p (1), 5 > 0

where y, is defined by the sum of the residuals e; (7).

Following Koop et al. (1996) and Pesaran and Shin (1998), the Generalized Forecast Error
Variance Decomposition (GFEVD) quantifies the proportion of a variable’s forecast error

variance that can be attributed to shocks from different variables over a forecast horizon H:

o THd (elAsXe)’
Yhio (eiIAsZej)

wfj(H) = (34)

where wf} (H) represents the contribution of the j-th variable to the forecast error variance of
the i-th variable at horizon H. }, illustrates the variance matrix of the vector of errors. gj;

denotes the j-th diagonal element of the ), matrix, and e; is a vector with a value of one in the

i-th position and zero otherwise.

We next normalise every entry of the variance decomposition matrix using the expression
below:
wZ(H)

55(}1) = NU—

a)g.(H) (35)

j=1
Finally, we follow Diebold and Yilmaz (2012, 2014) to define the GFEVD connectedness
measures at each quintile . The total directional spillover index (S/) from variable i to

variables j at quintile 7 is:

N ~3
Zj:l,i:#j Wy (™

TO = SI;,; (1) = X 100 (36)

The total directional spillover index (S7) from variables j to variable i at quintile 7 is:

N ~4g
Zj:l,iij wij(T)

FROM = SI;_;(x) = x 100 (37)

The net total directional spillover (NS7) index at quantile 7 is:
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A positive value indicates that the variable is a net transmitter of volatility, whereas a

negative value indicates that the variable is a net receiver of volatility.

The total connectivity index (7CI) captures the overall level of interconnectedness within the
system, reflecting the extent to which shocks are transmitted across the system. A higher 7CI
indicates stronger spillover effects and greater systemic interdependence, while a lower TCI
suggests weaker linkages and more independence among the system. The 7CI among the

variables at quantile 7 is:

N N ~39
i=1 Lj=1,izj Wij (™

N N ~9

TCI(r) = x 100 (39)

4.4 Empirical Results

4.4.1 Impact of the DeFi Heists on the Liquidity of the DeFi Tokens

To examine the direct impact of price and trading volume fluctuations caused by DeFi heists
on the liquidity of the native DeFi tokens on the affected platforms, this chapter uses the
Amihud, the Amivest, and the Kyle indicators to estimate the liquidity. These indicators are
used to measure the daily liquidity levels of DeFi tokens over a ten-day window, including
the five days before and after each DeFi heist. This chapter collects the trading volume data
for each DeFi token from coincodex, and the empirical results presented in Table 4.5 indicate
that the impact of DeFi heists on DeFi token liquidity is not uniform. In some cases, a
significant deterioration in liquidity is observed, whereas in others, the decline in liquidity is
less pronounced. Figure 4.3 illustrates the trends of the three liquidity indicators, further

demonstrating that DeFi heists have heterogeneous impacts on different DeFi tokens.

Specifically, the Amihud for Qubit increased from 2.343 to 8.279 over the five days following
the heist, while the Amivest declined from 46.504 to 2.552. Although Kyle did not show a
substantial increase after the heist, a noticeable rise was observed from 7.171 to 10.860
between the day before and after the heist (Days 5 to 7 in Table 4.5). These results indicate a
significant deterioration in Qubit’s liquidity. Similarly, Mango also experienced a decline in
liquidity. Over the five days following the heist, the Amihud rose from 1.151 to 4.525, while
the Amivest dropped from 4.296 to 2.677. Meanwhile, the Kyle increased from 1.481 to 3.705,

further confirming the deterioration in liquidity.
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Table 4.5: Liquidity test results of Defi tokens

Amihud illiquidity ratio (4Amihud)

o)}
T

\_/‘

1 2 3 4 5 6 7 8 9 10
Qubit 4794 10231 4.030 3.826 2.894 2.343 2379 1.505 3.225 8.279
Ronin 9.035 15.602 5392 13.660 9.509 13.107 6.476 7.341 5.677 8.743
Bean 3.572 3.252 2.009 2.739 1.898  1.821 79.065 23675911 57397.295 15642.312
Elrond 5.339 5.819 4353 4.177 10231 5.853 8519 1.787 4.770 5.224
Binance Coin  1.806 1.649 1.994  1.327 2232 1.007 0.967 0.900 1.702 1.539
Mango 1.357 1.979 1250 2.049 1449 1.151 1478 1.383 2.621 4.525
Amivest liquidity ratio (4mivest)
Qubit 5.673 4.754 4.137  9.874 16333 46.504 59.413 28.765 14.929 2.552
Ronin 8.384 7.391 11.428 8.653 12984 18.821 40.230 88.370 827.546 56.290
Bean 6.577  10.092  8.809 14.880 76.866 11.454 8.690 0.672 0.006 0.022
Elrond 3.164 3.637 9.174  6.735  5.059 4543  4.554 21.029 6.229 5.003
Binance Coin  17.217  8.373 1.923 1904 1.234 5319 3.704 7.786 1.794 2.284
Mango 2.661 4.787 4320 1.101 1.912 4296 11.024 4.786 2.598 2.677
Kyle and Obizhaeva estimator (Kyle)
Qubit 6.696 8.976 5703  5.602 7.171  9.705 10.860 7.419 6.426 5.203
Ronin 7.731 9.790 5115  9.847  9.620 18.567 6.671 6.683 7.180 7.163
Bean 3.594 3.755 2973  4.048 3411 3.322 78.295 54.308 276.487 194.586
Elrond 3.245 3.587 2518  2.641 4281 2279 4.251 2.052 2.973 3.695
Binance Coin  6.618 6.456 7.158  5.798 8968 5437  5.286 4.363 6.776 6.464
Mango 1.366 1.621 1.156  1.589 1324 1481 4.784 2.452 3.199 3.705
Figure 4.3: The trends of the three liquidity indicators
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The larger the Amihud value, the worse the liquidity; Since Bean’s Amihud values are substantially higher than
those of the other DeFi tokens in the post-heist period, they are plotted on the right-hand Y-axis to allow for a
clearer comparison of the changes across DeFi tokens; Each line represents one DeFi token around its own heist.
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(b) Amivest liquidity ratio
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The smaller the Amivest value, the worse the liquidity; Since Ronin’s Amivest values are substantially higher than
those of the other DeFi tokens in the post-heist period, they are plotted on the right-hand Y-axis to allow for a
clearer comparison of the changes across DeFi tokens; Each line represents one DeFi token around its own heist.

(c) Kyle and Obizhaeva estimator
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Kyle and Obizhaeva estimator (normal scale)
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The larger the Kyle value, the worse the liquidity; Since Bean’s Kyle values are substantially higher than those
of the other DeFi tokens in the post-heist period, they are plotted on the right-hand Y-axis to allow for a clearer
comparison of the changes across DeFi tokens; Each line represents one DeFi token around its own heist.

By comparison, the liquidity deterioration for Ronin and Elrond appeared to be shorter-lived.
For example, Ronin’s liquidity worsened most severely on the day of the heist (Day 6 in
Table 4.5), with its Amihud surging from 9.509 to 13.107 and the Kyle increasing from 9.620
to 18.567. On the other hand, Elrond’s liquidity significantly declined the day after the heist
(Day 7 in Table 4.5), as its Amihud rose from 5.853 to 8.519, while its Kyle increased from
2.279 to 4.251. Both DeFi tokens’ Amihud and Kyle suggest that trading volume exerted a

stronger impact on price movements, leading to greater market instability, intensified price

160



shocks, and reduced market depth. However, Amivest did not provide evidence of declining
liquidity. Therefore, while Ronin and Elrond faced short-term liquidity shocks, market
participants were still able to trade, allowing investors to adjust more quickly to a new
equilibrium, which explains why their liquidity levels improved in subsequent trading days.
Despite the relatively short duration of the liquidity deterioration, Ronin and Elrond
experienced significant price declines of 24.8% and 17.3%, respectively, during this period.
This suggests that short-term liquidity shocks could still lead to substantial price fluctuations,
increasing trading costs and liquidity risk for investors. Market sentiment deteriorated sharply
following the heist, triggering panic selling and exacerbating the downward price movement.
Although a few DeFi heists may take several days or even weeks to be detected (Carreras,
2022), the vast majority are identified within a short time. Since all transactions are recorded
on-chain, blockchain monitoring tools, security firms, and community observers could often
capture abnormal movements within a short time (Wang et al., 2021; Chainalysis, 2025),
which can then be widely disseminated via social media, official announcements, or crypto

news outlets.

The Glosten-Milgrom model (Glosten & Milgrom, 1985) of market microstructure helps
further explain why liquidity deteriorates following a DeFi heist. Although DeFi relies on
AMMs rather than centralised dealers, the same mechanism remains applicable. In a constant
product AMM (x X y = k), token prices are determined by the ratio of the two assets in the
pool (Mohan, 2022). When a DeFi heist occurs, informed traders (usually the hacker),
anticipating a decline in token value, rapidly sell tokens (x) into the pool in exchange for
stablecoins or higher-quality assets (y). This process increases the pool’s inventory of
depreciating tokens, decreases its stablecoin reserves, and immediately incorporates the
negative information into pool prices. LPs then face two types of risks: first, adverse selection,
as they effectively transact at unfavourable prices against informed traders; and second,
impermanent loss arising from price jumps and heightened volatility, where the pool’s
rebalancing shifts LPs’ portfolios toward depreciating assets, generating losses relative to a
passive benchmark (Del Monte et al., 2025). Because DeFi heists are often accompanied by
sharp price declines and high volatility, these risks are amplified. Anticipating or observing
such order flow, LPs’ optimal response is typically to withdraw liquidity, which directly
reduces pool depth. As pools become shallower, subsequent trades exert greater price impact,

which is equivalent to a widening of bid—ask spreads. This further worsens market liquidity
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and creates a negative feedback loop: informed selling induces LPs’ withdrawals, which in

turn magnify liquidity shocks (Pellicer, 2024).

Beyond the adverse selection mechanism captured by the Glosten-Milgrom framework,
investor sentiment plays a complementary role in amplifying liquidity shocks. Security
breaches heighten concerns about platform safety and undermine confidence in native DeFi
tokens. Overreacting investors engage in large-scale sell-offs while refraining from new
investments, thereby depressing both trading activity and liquidity (Borgards & Czudaj, 2020;
Jia et al., 2022; Wanidwaranan & Termprasertsakul, 2024). The study by Yao et al. (2024)
also showed that abnormal attention exerts a persistent negative impact on liquidity, leading
to excessive net buying pressure and buyer-side market congestion, which ultimately results
in a sharp deterioration of market liquidity. In summary, this dual channel highlights that
liquidity deterioration in DeFi markets stems not only from informed trading and liquidity

withdrawals but also from heightened market fragility and sensitivity to shocks.

In the Binance platform heist, although Amihud, Amivest, and Kyle all suggest a decline in
Binance Coin’s liquidity five days after the heist, the magnitude of these changes was not
substantial. Specifically, the Amihud and Kyle increased by only 52.83% and 18.89%,
respectively, while the Amivest declined by 57.06%. Furthermore, Figure 4.2 indicates that
Binance Coin’s price drop during this heist was relatively modest. One possible reason why
Binance Coin’s liquidity did not experience a significant deterioration is the swift response of
the Binance platform to the heist. Upon discovering that the exploit had been executed, the
Binance platform immediately suspended network (Binance Smart Chain) operations,
instructing all 44 validators to temporarily halt Binance Smart Chain activities to contain the
losses. As a result, while approximately $137 million was successfully transferred by the
attackers, the remaining funds were frozen on the Binance Smart Chain (Nansen, 2022).
Additionally, the Binance platform promptly issued an official security response and
conducted an on-chain governance vote to address the heist. From the perspective of the
Glosten-Milgrom framework, the Binance platform’s rapid disclosure and on-chain
governance response effectively reduced information asymmetry in the aftermath of the
attack. By narrowing the informational advantage of informed traders, these actions lowered
adverse selection risk for LPs and mitigated the incentive to withdraw liquidity. Consequently,
the expected widening of spreads and the severe deterioration of market liquidity were largely

avoided. At the same time, this series of proactive measures reinforced investor confidence in
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the platform and its native DeFi token, and alleviated market panic. As a result, investors did

not withdraw from the Binance platform, preventing a significant decline in liquidity.

Another noteworthy DeFi heist is the Beanstalk protocol heist. Within five days of the heist,
Bean’s liquidity deteriorated significantly. For instance, its Amihud surged from 1.821 to
15,642.312, while the Amivest plummeted from 11.454 to 0.022. Similarly, the Kyle rose
sharply from 3.322 to 194.586, indicating a near-total collapse in market liquidity. The severe
liquidity deterioration in Bean could largely be attributed to the fact that this attack not only
exposed a fundamental system vulnerability but also completely drained the protocol’s Total
Value Locked (TVL). TVL represents the total value of crypto assets locked within a DeFi
platform and serves as a crucial metric for assessing its attractiveness and activity level. As
shown in Figure 4.4, the Beanstalk protocol’s TVL plunged to nearly zero following the
attack, severely undermining investor confidence and destabilising the market environment

for Bean.

Figure 4.4: TVL at Beanstalk protocol before and after the heist

Replant

nvemnance proposal hack

Source: https://defillama.com/protocol/beanstalk?mcap=false

Concerns over protocol security further reduced trading activity in Bean, exacerbating the
decline in market liquidity (Manahov et al., 2014; Ibikunle et al., 2016). Additionally, the
Beanstalk protocol was shut down following the exploit, with no immediate recovery plan
announced, leaving LPs and investors with limited information and heightened uncertainty
regarding future risks. This lack of transparency intensified information asymmetry, further

hindering the restoration of market liquidity (Barron & Qu, 2014; Hu & Prigent, 2019).
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These findings are consistent with previous studies. Yue et al. (2021) applied four liquidity
metrics to the top 100 cryptocurrencies and reported that negative news announcements
impair liquidity within four days. Yao et al. (2024) found that crypto assets with smaller
market shares and unique volatility attract fewer investors. These assets experience less
trading activity, making their liquidity highly sensitive to changes in investor interest. Due to
the magnifying effect of trading behaviour, increased attention from investors to these lesser-
known cryptocurrencies could lead to significant liquidity fluctuations. Manahov and Li
(2024) discovered that within two weeks of a cryptocurrency heist, the liquidity of three
tourism tokens, Bitcoin, and Ethereum decreases, with smaller market cap tourism tokens
exhibiting greater liquidity volatility than the larger market cap Bitcoin and Ethereum. In this
chapter, except for Binance Coin, the market capitalisation of the studied DeFi tokens is
relatively small, so DeFi heists are likely to have a more substantial impact on the liquidity of
these small market-cap DeFi tokens. As a result, heists targeting DeFi platforms could lead to

significant declines in the price and liquidity of the platform’s native DeFi tokens.

In summary, Amihud, Amivest, and Kyle indicate that DeFi heists significantly reduce the
liquidity of most DeFi tokens. This highlights the severe impact of security breaches on DeFi
platforms, leading to substantial declines in the price and liquidity of their native DeFi tokens,
and underscores the importance of robust security measures in maintaining market stability.
The comparative study of the Binance platform and Beanstalk protocol heists emphasises the
crucial role of timely response and increased transparency in preserving the liquidity of the
platform’s native DeFi tokens. The faster and clearer the disclosure, the smaller the
informational advantage between informed traders and other participants. As this advantage
diminishes, the adverse selection risk faced by LPs decreases, strengthening their incentive to
remain in the pool and mitigating the decline in liquidity. Moreover, effective remedial
measures for the project help investors maintain confidence and continue holding the tokens.
Therefore, this study not only reveals the negative impact of DeFi heists on liquidity but also
underscores the central role of disclosure mechanisms and response speed in shaping market

reactions.
4.4.2 Impact of the DeFi Heists on the DeFi Market

Next, this chapter aims to investigate whether the volatility of the stolen platforms’ native
DeFi tokens will spill over to other mainstream DeFi tokens five days after the DeFi heists,

thereby analysing the scope and extent of the DeFi heists’ impact on the DeFi market.
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According to market capitalisation data provided by CoinMarketCap, this chapter selects the
top five DeFi tokens: Avalanche, Chainlink, Uniswap, Maker, and Stacks. The reasons for
choosing these tokens are as follows: First, the top five DeFi tokens by market capitalisation
typically have significant market influence and liquidity, with their price fluctuations
reflecting the overall sentiment and trends of the DeFi market (Barchat, 2023). Second, these
tokens represent different DeFi projects, including lending platforms, decentralised
exchanges, and oracle services, providing strong representativeness. Tables 4.6-4.11 present
the dynamic spillover results of the stolen platforms’ native DeFi tokens and five major DeFi
tokens across high, median, and low quantiles (i.e., the 95th, 50th, and 5th percentiles,

respectively).

The results show that the 7CI at both the extremely high and low quantiles are significantly
large, and both exceed the 7CI at the median quantile. This indicates that the volatilities of
different DeFi tokens are highly correlated under extreme market conditions. When a single
DeFi token experiences volatility, this fluctuation could easily spill over to other DeFi tokens,
triggering a chain reaction. These findings are consistent with previous studies, which suggest
that the cryptocurrency market is highly interconnected, and volatility within the same
category of tokens is highly correlated (Canh et al., 2019; Katsiampa, 2019a; Katsiampa et al.,
2019; Tiwari et al., 2020; Ante, 2022; Charfeddine et al., 2022; Dowling, 2022; Corbet et al.,
2023; Aharon et al., 2024; Yousaf et al., 2024a). Therefore, the high interconnectedness
within the DeFi market indicates a high level of risk, meaning the market’s stability is poor
and it is susceptible to external shocks (Barunik & Kiehlik, 2018). Interestingly, it also finds
that the interconnectedness among mainstream DeFi tokens is higher than their
interconnectedness with the stolen platform’s native DeFi token. For instance, in the Qubit
Finance platform heist, the pairwise spillover effects between the Qubit and Avalanche during
the high-volatility period (95th quantile) were 14.51% and 9.81%, respectively, while the
pairwise spillover effects between the Chainlink and Avalanche were 17.07% and 18.90%,
respectively. This indicates that although the overall connectedness within the DeFi market is

high, this high interconnectedness is predominantly among mainstream DeFi tokens.
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Table 4.6: Spillover connectedness between the Qubit and five mainstream DeFi tokens in
the Qubit Finance platform heist

Panel A: Spillover connectedness at the 95th quantile

Qubit  Avalanche Chainlink Uniswap Maker  Stacks FROM

Qubit 24.26 14.51 15.21 15.47 14.52 16.03 75.74
Avalanche 9.81 19.18 18.90 18.49 15.48 18.14 80.82
Chainlink 10.41 17.07 20.84 18.03 16.07 17.57 79.16
Uniswap 10.32 18.06 18.74 19.97 15.51 17.42 80.03

Maker 10.50 17.64 17.99 17.29 18.69 17.89 81.31

Stacks 11.32 17.07 17.79 16.62 16.15 21.04 78.96

TO 52.36 84.34 88.64 85.9 77.73 87.04 TCI

NET -23.38 3.53 9.47 5.87 -3.57 8.09 95.20

Panel B: Spillover connectedness at the S0th quantile

Qubit  Avalanche Chainlink Uniswap Maker  Stacks FROM

Qubit 50.43 12.39 9.78 7.26 855 1158  49.57

Avalanche  6.40 33.63 18.89 1469 1293  13.46 66.37

Chainlink ~ 4.82 20.32 30.98 1488  13.06  15.93 69.02

Uniswap  4.69 18.84 19.23 2803 1447 1474 7197

Maker 6.17 16.74 14.27 13.87 3579  13.16 64.21

Qubit Finance  gyackg 7.90 16.64 18.08 13.2 11.93 3224 67.76
TO 29.99 84.93 80.25 63.9 60.94  68.88 TCI

NET -19.58 18.56 11.24 -8.07 327 112 77.78

Panel C: Spillover connectedness at the Sth quantile

Qubit  Avalanche Chainlink Uniswap Maker  Stacks FROM

Qubit 21.66 15.76 15.63 13.65 18.03 15.27 78.34
Avalanche 15.06 19.86 17.61 14.11 18.01 15.34 80.14
Chainlink 14.60 17.48 18.99 14.60 18.93 15.39 81.01
Uniswap 14.98 17.86 16.23 17.21 18.80 14.92 82.79

Maker 15.85 16.46 15.18 14.07 22.57 15.87 77.43

Stacks 15.44 16.25 15.58 14.17 19.50 19.07 80.93

TO 75.93 83.81 80.24 70.60 93.27 76.79 TCI

NET -241 3.67 -0.77 -12.19 15.85 -4.15 96.13

The findings are derived from a Quantile VAR method with a lag length of 1, determined by the Akaike
Information Criterion (AIC). The rolling window size is 20 hourly observations, and forecast market dynamics
10 time steps into the future. FROM indicates the source of causal impacts that each DeFi token receives, while
TO denotes the destination of these effects. NET equals TO minus FROM. Positive values of NET indicate that
the DeFi token is a net transmitter of spillover impacts, whereas negative values suggest it is a net receiver. A
higher TCI indicates stronger spillover effects and greater systemic interdependence, while a lower 7CI suggests
weaker linkages and more independence among DeFi tokens.
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Table 4.7: Spillover connectedness between the Ronin and five mainstream DeFi tokens in

the Ronin Network heist

Panel A: Spillover connectedness at the 95th quantile

Ronin  Avalanche Chainlink Uniswap  Maker Stacks FROM

Ronin 20.12 14.82 16.58 16.49 18.50 13.49 79.88
Avalanche  11.77 19.60 16.42 16.50 21.80 13.91 80.40
Chainlink 12.21 17.90 18.16 16.78 21.46 13.50 81.84
Uniswap 11.40 17.10 15.92 18.80 22.90 13.87 81.20
Maker 12.99 17.20 15.71 16.09 24.84 13.17 75.16
Stacks 12.39 17.07 17.32 17.22 19.28 16.72 83.28
TO 60.76 84.10 81.95 83.08 103.95 67.93 TCI
NET -19.12 3.70 0.11 1.88 28.79 -15.36 96.35

Panel B: Spillover connectedness at the 50th quantile

Ronin  Avalanche Chainlink Uniswap  Maker Stacks FROM

Ronin 35.44 10.27 12.96 14.51 14.19 12.62 64.56

Avalanche 6.68 27.80 15.69 17.97 15.30 16.55 72.20

Chainlink 9.40 16.74 25.75 18.13 14.55 15.44 74.25

Uniswap 7.33 16.26 15.72 28.78 16.06 15.85 71.22

Maker 8.51 16.16 13.53 18.08 31.18 12.53 68.82

Ronin Network Stacks 9.05 16.67 14.65 17.92 13.54 28.17 71.83
TO 40.97 76.11 72.55 86.61 73.64 72.99 TCI

NET -23.59 3.91 -1.70 15.4 4.83 1.16 84.58

Panel C: Spillover connectedness at the Sth quantile

Ronin  Avalanche Chainlink Uniswap  Maker Stacks FROM

Ronin 21.35 15.26 15.34 18.31 13.69 16.05 78.65
Avalanche  17.65 17.53 15.07 19.15 14.79 15.80 82.47
Chainlink 16.66 16.32 16.99 18.86 14.67 16.50 83.01
Uniswap 16.26 17.35 15.41 19.90 14.24 16.84 80.10

Maker 17.62 16.07 15.14 19.16 15.61 16.41 84.39

Stacks 17.12 16.57 15.36 18.56 13.29 19.09 80.91

TO 85.32 81.56 76.32 94.04 70.68 81.60 TCI

NET 6.67 -0.90 -6.69 13.94 -13.71 0.69 97.91

The findings are derived from a Quantile VAR method with a lag length of 1, determined by the Akaike
Information Criterion (AIC). The rolling window size is 20 hourly observations, and forecast market dynamics
10 time steps into the future. FROM indicates the source of causal impacts that each DeFi token receives, while
TO denotes the destination of these effects. NET equals TO minus FROM. Positive values of NET indicate that
the DeFi token is a net transmitter of spillover impacts, whereas negative values suggest it is a net receiver. A
higher TCI indicates stronger spillover effects and greater systemic interdependence, while a lower TCI suggests
weaker linkages and more independence among DeFi tokens.
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Table 4.8: Spillover connectedness between the Bean and five mainstream DeFi tokens in the

Beanstalk protocol heist

Panel A: Spillover connectedness at the 95th quantile

Bean  Avalanche Chainlink Uniswap Maker  Stacks FROM

Bean 26.59 14.59 12.16 13.74 14.93 17.98 73.41
Avalanche  15.78 19.10 13.38 15.99 15.62 20.14 80.90
Chainlink  16.64 15.59 15.76 16.09 16.05 19.87 84.24
Uniswap 15.98 14.63 14.07 18.08 16.82 20.41 81.92

Maker 15.97 15.23 13.44 17.18 19.53 18.65 80.47

Stacks 16.47 14.45 12.51 14.85 14.96 26.76 73.24

TO 80.84 74.49 65.56 77.85 78.38 97.06 TCI

NET 7.44 -6.41 -18.69 -4.07 -2.09 23.82 94.84

Panel B: Spillover connectedness at the 50th quantile

Bean  Avalanche Chainlink Uniswap Maker  Stacks FROM

Bean 46.70 11.61 8.23 10.15 13.08 10.22 53.30

Avalanche  10.86 29.01 14.68 17.35 15.23 12.87 70.99

Chainlink 9.25 15.23 27.53 19.04 17.61 11.34 72.47

Uniswap 9.89 17.26 16.32 26.24 18.17 12.11 73.76

Maker 10.79 15.37 13.41 18.33 30.71 11.39 69.29

Beanstalk Stacks 9.64 12.98 11.48 12.92 10.94 42.04 57.96
TO 50.44 72.45 64.13 77.79 75.03 57.93 TCI

NET -2.86 1.46 -8.34 4.03 5.73 -0.03 79.55

Panel C: Spillover connectedness at the Sth quantile

Bean  Avalanche Chainlink Uniswap Maker  Stacks FROM

Bean 21.28 13.28 12.74 16.64 16.64 19.42 78.72
Avalanche  17.29 15.35 13.24 17.38 16.64 20.10 84.65
Chainlink  17.74 13.40 14.70 17.03 16.80 20.33 85.29
Uniswap 17.25 13.97 12.96 18.29 17.39 20.14 81.71
Maker 16.5 14.32 13.38 18.14 18.38 19.28 81.62
Stacks 17.00 13.82 12.91 16.62 16.60 23.05 76.95
TO 85.77 68.79 65.23 85.81 84.06 99.26 TCI
NET 7.06 -15.85 -20.06 4.10 245 22.31 97.79

The findings are derived from a Quantile VAR method with a lag length of 1, determined by the Akaike
Information Criterion (AIC). The rolling window size is 20 hourly observations, and forecast market dynamics
10 time steps into the future. FROM indicates the source of causal impacts that each DeFi token receives, while
TO denotes the destination of these effects. NET equals TO minus FROM. Positive values of NET indicate that
the DeFi token is a net transmitter of spillover impacts, whereas negative values suggest it is a net receiver. A
higher TCI indicates stronger spillover effects and greater systemic interdependence, while a lower TCI suggests
weaker linkages and more independence among DeFi tokens.
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Table 4.9: Spillover connectedness between the Elrond and five mainstream DeFi tokens in

the Maiar Exchange heist

Panel A: Spillover connectedness at the 95th quantile

Elrond Avalanche Chainlink Uniswap Maker Stacks FROM

Elrond 20.24 14.49 19.01 14.66 13.85 1774  79.76
Avalanche 14.33 16.58 20.58 15.64 1597 1690 83.42
Chainlink 14.40 15.29 21.22 16.66 1533 17.10  78.78
Uniswap 13.82 15.69 20.14 17.39 1594 17.02  82.61

Maker 14.47 14.92 20.29 16.39 1625 17.68  83.75

Stacks 15.56 14.37 19.32 15.94 1538 19.42  80.58

TO 72.58 74.77 99.34 79.30 76.47  86.45 TCI
NET -7.18 -8.66 20.56 -3.31 -7.28 5.86 97.78

Panel B: Spillover connectedness at the 50th quantile

Elrond Avalanche Chainlink Uniswap Maker Stacks FROM

Elrond 33.28 14.88 14.91 12.56 12.74  11.63  66.72

Avalanche 11.59 24.07 17.46 17.58 16.76  12.54 7593

Chainlink 8.73 14.96 31.24 17.25 1526 1256  68.76

Uniswap 7.62 16.67 19.93 26.28 16.29 13.2 73.72

Maker 10.29 17.64 16.95 17.13 2535 12,63  74.65

Maiar Exchange Stacks 9.23 15.71 16.29 15.52 15.84 2741 72.59
TO 47.47 79.86 85.54 80.04 76.88  62.56 TCI

NET -19.25 3.93 16.79 6.32 223 -10.02 86.47

Panel C: Spillover connectedness at the Sth quantile

Elrond Avalanche Chainlink Uniswap Maker Stacks FROM

Elrond 23.89 17.75 16.22 13.83 1454 13.76  76.11
Avalanche 16.83 20.63 15.12 15.67 1692 14.84  79.37
Chainlink 16.75 17.63 20.56 15.25 1532 1448 79.44
Uniswap 17.07 18.21 17.48 17.01 15.65 1459  82.99

Maker 17.59 17.65 15.99 15.07 1895 1475 81.05

Stacks 16.48 17.85 16.92 15.30 1573 1772 82.28

TO 84.73 89.10 81.73 75.12 78.15  72.42 TCI

NET 8.62 9.73 2.30 -7.88 -290 -9.87 96.25

The findings are derived from a Quantile VAR method with a lag length of 1, determined by the Akaike
Information Criterion (AIC). The rolling window size is 20 hourly observations, and forecast market dynamics
10 time steps into the future. FROM indicates the source of causal impacts that each DeFi token receives, while
TO denotes the destination of these effects. NET equals TO minus FROM. Positive values of NET indicate that
the DeFi token is a net transmitter of spillover impacts, whereas negative values suggest it is a net receiver. A
higher TCI indicates stronger spillover effects and greater systemic interdependence, while a lower TCI suggests
weaker linkages and more independence among DeFi tokens.
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Table 4.10: Spillover connectedness between the Binance Coin and five mainstream DeFi

tokens in the Binance platform heist

Panel A: Spillover connectedness at the 95th quantile

Binance Coin  Avalanche Chainlink Uniswap Maker Stacks FROM

Binance Coin 17.71 18.85 17.20 13.48 15.07 17.69 82.29
Avalanche 16.37 20.18 17.40 12.38 16.27 17.40  79.82
Chainlink 15.39 18.53 19.93 12.26 16.55 17.34 80.07
Uniswap 15.32 18.27 16.70 16.83 15.59 17.28 83.17

Maker 14.25 17.32 17.83 12.46 2098 17.16  79.02
Stacks 14.77 18.60 16.82 12.89 17.10  19.82 80.18

TO 76.10 91.58 85.96 63.47 80.57  86.87 TCI
NET -6.19 11.76 5.89 -19.69 1.54 6.69 96.91

Panel B: Spillover connectedness at the 50th quantile

Binance Coin  Avalanche Chainlink Uniswap Maker Stacks FROM

Binance Coin 33.96 18.16 16.80 13.66 8.32 9.10 66.04

Avalanche 16.24 31.33 16.48 12.52 9.62 13.80 68.67

Chainlink 13.70 15.34 36.45 11.88 11.37  11.26 63.55

Uniswap 14.48 16.24 13.37 32.22 1047 13.21 67.78

Maker 10.54 11.75 12.32 11.33 39.96 14.10 60.04

Binance Stacks 10.18 15.05 14.10 10.16 11.72  38.79 61.21
TO 65.14 76.54 73.07 59.56 51.51  61.47 TCI

NET -0.90 7.87 9.52 -8.23 -8.53 0.27 77.46

Panel C: Spillover connectedness at the Sth quantile

Binance Coin  Avalanche Chainlink Uniswap Maker Stacks FROM

Binance Coin 19.90 18.85 16.54 15.12 1245 17.15 80.10
Avalanche 17.54 21.35 16.75 15.28 12.37 16.72 78.65
Chainlink 16.05 17.39 23.17 15.18 12.86  15.35 76.83
Uniswap 16.79 18.05 16.78 18.62 1221  17.55 81.38

Maker 15.07 16.46 16.38 13.95 21.49  16.65 78.51
Stacks 16.06 17.76 14.12 15.32 12.02  24.72 75.28

TO 81.51 88.5 80.57 74.84 61.91 83.42 TCI
NET 1.41 9.85 3.74 -6.53 -16.6 8.14 94.15

The findings are derived from a Quantile VAR method with a lag length of 1, determined by the Akaike
Information Criterion (AIC). The rolling window size is 20 hourly observations, and forecast market dynamics
10 time steps into the future. FROM indicates the source of causal impacts that each DeFi token receives, while
TO denotes the destination of these effects. NET equals TO minus FROM. Positive values of NET indicate that
the DeFi token is a net transmitter of spillover impacts, whereas negative values suggest it is a net receiver. A
higher TCI indicates stronger spillover effects and greater systemic interdependence, while a lower TCI suggests
weaker linkages and more independence among DeFi tokens.
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Table 4.11: Spillover connectedness between the Mango and five mainstream DeFi tokens in

the Mango Markets platform heist

Panel A: Spillover connectedness at the 95th quantile

Mango  Avalanche Chainlink Uniswap Maker Stacks FROM

Mango 24.97 13.25 14.38 15.70 17.08 14.62 75.03
Avalanche 15.64 16.02 17.30 16.63 18.25 16.16 83.98
Chainlink 15.09 15.51 18.60 16.23 18.20 16.37 81.40
Uniswap 16.45 14.69 16.81 19.12 17.07 15.85 80.88
Maker 15.26 14.96 16.06 16.30 22.60 14.82 77.40
Stacks 16.21 14.62 17.14 16.69 17.01 18.33 81.67
TO 78.65 73.04 81.69 81.54 87.62  77.82 TCI
NET 3.62 -10.94 0.28 0.66 10.22 -3.85 96.07

Panel B: Spillover connectedness at the 50th quantile

Mango  Avalanche Chainlink Uniswap Maker Stacks FROM

Mango 48.11 10.87 10.67 11.59 9.13 9.63 51.89

Avalanche 10.00 25.58 17.67 16.92 12.42 17.41 74.42

Chainlink 9.39 18.38 26.24 18.84 11.35 15.8 73.76

Uniswap 9.40 16.25 16.04 29.46 13.91 14.95 70.54

Maker 7.22 14.21 11.19 16.83 37.73 12.82 62.27

Mango Markets Stacks 10.94 17.93 14.95 16.96 11.16  28.06 71.94
TO 46.95 77.65 70.52 81.14 57.96  70.61 TCI

NET -4.95 3.23 -3.24 10.60 -4.31 -1.33 80.96

Panel C: Spillover connectedness at the Sth quantile

Mango  Avalanche Chainlink Uniswap Maker Stacks FROM

Mango 24.61 14.78 11.81 14.74 18.10 15.96 75.39
Avalanche 15.76 19.13 13.22 15.81 17.64 18.45 80.87
Chainlink 15.75 16.66 17.68 15.18 16.27 18.47 82.32
Uniswap 14.27 17.44 12.87 18.26 16.61 20.55 81.74

Maker 14.49 16.36 12.09 15.35 23.10 18.61 76.90

Stacks 14.82 17.20 13.38 14.55 17.08 2298 77.02

TO 75.08 82.43 63.37 75.63 85.7 92.04 TCI
NET -0.31 1.56 -18.96 -6.11 8.79 15.02 94.85

The findings are derived from a Quantile VAR method with a lag length of 1, determined by the Akaike
Information Criterion (AIC). The rolling window size is 20 hourly observations, and forecast market dynamics
10 time steps into the future. FROM indicates the source of causal impacts that each DeFi token receives, while
TO denotes the destination of these effects. NET equals TO minus FROM. Positive values of NET indicate that
the DeFi token is a net transmitter of spillover impacts, whereas negative values suggest it is a net receiver. A
higher TCI indicates stronger spillover effects and greater systemic interdependence, while a lower TCI suggests
weaker linkages and more independence among DeFi tokens.

In the cryptocurrency market, large-cap tokens tend to be the initiators and receivers of
volatility, which is related to their market capitalisation and high liquidity (Corbet et al.,
2018b; Yi et al., 2018; Ji et al., 2019; Omane-Adjepong & Alagidede, 2019; Yousaf et al.,
2024b). Mainstream DeFi tokens generally have larger market capitalisation and higher

liquidity, which allows their market fluctuations to be more effectively transmitted to other
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mainstream tokens. Additionally, mainstream DeFi tokens are widely used and integrated
across multiple DeFi protocols and trading platforms, further enhancing their network effects
and interconnectedness. The high degree of interconnectedness among mainstream DeFi
tokens also reflects investor behaviour patterns. Investors tend to focus on and invest in
tokens with larger market caps and higher liquidity (Hasan et al., 2022; Ozdamar et al., 2022),
resulting in more frequent capital flows among these tokens and strengthening their volatility
transmission effects. In contrast, the native DeFi tokens on the stolen platforms have smaller
market capitalisations. Small-cap DeFi tokens, due to their lower market capitalisation,
insufficient liquidity, and limited application and integration within the DeFi ecosystem,
exhibit relatively weaker connectedness with mainstream DeFi tokens. These findings are
consistent with previous studies by Corbet et al. (2019a) and Yarovaya and Zigba (2022),
which observed that interconnectedness within the cryptocurrency market is primarily seen
among leading cryptocurrencies and is stronger in the short term. Therefore, considering the
TCI and the interconnectedness among various DeFi tokens, it is concluded that the
interconnectedness is higher among mainstream DeFi tokens, while the connectedness

between the native DeFi tokens of the stolen platforms and mainstream DeFi tokens is lower.

Next, although the native DeFi tokens of the stolen platforms exhibit spillover effects on
other mainstream DeFi tokens (as indicated by positive 70 values), a comparison of the 7O
values across tokens reveals that most of these native DeFi tokens have lower TO values than
other mainstream DeFi tokens. Furthermore, as shown in the connectedness networks
(Figures 4.5-4.10), most of the stolen platforms’ native DeFi tokens are net receivers of
volatility (red nodes represent receivers, whereas green nodes represent transmitters). This
suggests that the volatility transmitted from the stolen platforms’ native DeFi tokens to other
mainstream DeFi tokens is smaller than the volatility they receive from them. In addition, the
volatility received by mainstream DeFi tokens primarily originates from within their own

network rather than from the native DeFi tokens of the stolen platforms’.

7 This can be seen from the interconnectivity value between DeFi tokens, which can be observed at the
intersection of the rows and columns corresponding to two DeFi tokens in the spillover connectedness table.
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Figure 4.5: Quantile overflow network between the Qubit and five mainstream DeFi tokens
in the Qubit Finance platform heist

(a) 95th quantile overflow network

Ae

{b) 50th quantile overflow network

Avalanche
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(c) 5th quantile overflow network

s

Based on the full-sample QVAR model with a lag order of 1 and a forecast market dynamics 10 time steps into
the future. Node colours represent the sign of the net spillover, with red indicating receivers of volatility and
green indicating transmitters. Node sizes reflect the magnitude of the absolute net spillover. Arrows on the edges
indicate the direction of spillovers, while edge widths capture the spillover intensity. To account for overlapping
edges, curved edges are used in the visualisation.
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(c) 5th quantile overflow network

Based on the full-sample QVAR model with a lag order of 1 and a forecast market dynamics 10 time steps into
the future. Node colours represent the sign of the net spillover, with red indicating receivers of volatility and
green indicating transmitters. Node sizes reflect the magnitude of the absolute net spillover. Arrows on the edges
indicate the direction of spillovers, while edge widths capture the spillover intensity. To account for overlapping
edges, curved edges are used in the visualisation.
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(c) 5th quantile overflow network

Avalanche

Based on the full-sample QVAR model with a lag order of 1 and a forecast market dynamics 10 time steps into
the future. Node colours represent the sign of the net spillover, with red indicating receivers of volatility and
green indicating transmitters. Node sizes reflect the magnitude of the absolute net spillover. Arrows on the edges
indicate the direction of spillovers, while edge widths capture the spillover intensity. To account for overlapping
edges, curved edges are used in the visualisation.
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(c) 5th quantile overflow network

Avalanche

Based on the full-sample QVAR model with a lag order of 1 and a forecast market dynamics 10 time steps into
the future. Node colours represent the sign of the net spillover, with red indicating receivers of volatility and
green indicating transmitters. Node sizes reflect the magnitude of the absolute net spillover. Arrows on the edges
indicate the direction of spillovers, while edge widths capture the spillover intensity. To account for overlapping
edges, curved edges are used in the visualisation.
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(c) 5th quantile overflow network

Based on the full-sample QVAR model with a lag order of 1 and a forecast market dynamics 10 time steps into
the future. Node colours represent the sign of the net spillover, with red indicating receivers of volatility and
green indicating transmitters. Node sizes reflect the magnitude of the absolute net spillover. Arrows on the edges
indicate the direction of spillovers, while edge widths capture the spillover intensity. To account for overlapping
edges, curved edges are used in the visualisation.
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(c) 5th quantile overflow network

Ae

Based on the full-sample QVAR model with a lag order of 1 and a forecast market dynamics 10 time steps into
the future. Node colours represent the sign of the net spillover, with red indicating receivers of volatility and
green indicating transmitters. Node sizes reflect the magnitude of the absolute net spillover. Arrows on the edges
indicate the direction of spillovers, while edge widths capture the spillover intensity. To account for overlapping
edges, curved edges are used in the visualisation.

While a heist targeting a specific DeFi platform could cause volatility in the platform’s native
DeFi token and transmit some of this volatility to other mainstream DeFi tokens, the
contagion effect is relatively weak. This aligns with the previous analysis that the
connectedness level between mainstream DeFi tokens and the native DeFi tokens of stolen
platforms is low. The diversity of protocols and assets within the DeFi market helps absorb
the impact of individual assets. Even if the native DeFi token of one platform is compromised,
other platforms’ DeFi tokens continue to support the DeFi market, mitigating the spread of
negative effects (Metelski & Sobieraj, 2022). Furthermore, in this chapter, the most affected
DeFi1 tokens hold a small market share within the DeFi market, limiting their impact on
overall market volatility. Other mainstream DeFi tokens could stabilise the market
environment and buffer the shocks potentially caused by DeFi heists (Kollias et al., 2011).
Investors may also have developed certain psychological expectations and behavioural
adaptations to DeFi heists. Given that most hacker attacks target DeFi protocols, investors
might now consider them a normal occurrence within the DeFi investment space. According

to Immunefi (2023), there were 155 attacks targeting DeFi in 2022 alone. Therefore, a single
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DeFi heist does not trigger excessive market reactions, as investors have learned to
incorporate such risks into their investment strategies, thereby reducing the overall market

impact of these events.

In the Beanstalk protocol heist, the Bean exhibits significant spillover effects (high 70 values
and positive NET values) at extreme quantiles (Table 4.8 and Figure 4.7). This indicates that
the impact of the Beanstalk protocol heist on the DeFi market is considerably greater than
that of other DeFi heists that this chapter investigates. A possible explanation for this is that
the attack exploited Beanstalk protocol’s majority voting governance system, which is a core
feature of many DeFi protocols. Like many other DeFi projects, the Beanstalk protocol
incorporates a governance mechanism where participants can collectively vote on code
changes. They receive voting power proportional to the value of the Bean they hold.
According to Certik (2022), the attacker utilised a flash loan obtained through the
decentralised protocol Aave to borrow nearly $1 billion in cryptocurrency assets. They then
used these assets to acquire enough bean tokens to gain 67% voting power in the project.
With this absolute majority, they were able to approve the execution of code that transferred
the assets to their wallet. The attacker then immediately repaid the flash loan, netting $80

million in profit.

The vulnerability in the majority voting governance system raised concerns among investors
about the security of other DeFi protocols. This incident highlighted the potential risks
associated with governance mechanisms that allow significant control through token holdings,
especially when such control can be quickly accumulated via flash loans. Chainalysis (2024a)
reported that governance attacks result in an average loss of about $1 million, ranking second
among all types of DeFi attack methods. The resulting fear and uncertainty may have had a
broader impact on the DeFi market, as investors began to question the robustness and security
of similar governance structures in other projects (Bouri et al., 2021a; Corbet et al., 2022).
Investors losing confidence might decide to divest from these projects, leading to selling
pressure and price declines. Additionally, in response to perceived risks, investors might
reallocate their funds to what they consider safer assets, including more established
cryptocurrencies or stablecoins, further increasing the selling pressure on DeFi tokens.
Previous studies have also highlighted the vulnerability of decentralised governance in DeFi.
Dotan et al. (2023) pointed out that the use of governance tokens exhibits a strong tendency
toward centralisation, which may undermine the security of DeFi platforms. Gudgeon et al.

(2020) proposed a novel strategy that exploits so-called flash loans, which in principle
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enables a governance attack to be executed with only two transactions and without locking
any assets, further underscoring how deficiencies in governance design can trigger crises in

DeFi protocols.

To sum up, the analysis highlights the interconnectedness within the DeFi market and the
varying degrees of spillover effects among different DeFi tokens. Mainstream DeFi tokens
exhibit significant interconnectivity and mutual influence, but they tend to be less
interconnected with smaller DeFi tokens from stolen platforms. The Beanstalk protocol heist,
however, stands out due to its significant spillover effects, underscoring the vulnerabilities in
governance mechanisms that can be exploited via flash loans. This incident has not only
shaken investor confidence in Beanstalk protocol but also raised broader concerns about the
security of DeFi protocols with similar governance structures. The resultant fear and
uncertainty have led to increased market volatility, with investors reallocating funds to
perceived safer assets, thereby exerting further selling pressure on DeFi tokens. These
findings emphasise the importance of robust governance and security measures in
maintaining market stability and protecting investor interests in the rapidly evolving DeFi

landscape.
4.4.3 Robustness Tests of Liquidity Analysis and Volatility Spillover Effects

To mitigate the estimation instability caused by the limited number of hourly observations,
this chapter reports the results of estimating the three liquidity indicators using a 6-hour
rolling window in Appendix 4.7. The rolling-window approach incorporates overlapping
samples from adjacent time intervals, helping to smooth out the influence of outliers and
capture the dynamic evolution of liquidity over time. This method enhances the ability to
detect structural changes in liquidity before and after DeFi heists, thereby improving the
robustness and interpretability of the estimates. The corresponding results are presented in

Figures 4.11-4.16 in Appendix 4.7.

Consistent with the earlier results, the liquidity of Qubit and Mango deteriorated significantly
following the heists (Figures 4.11 and 4.16). This is reflected in the upward trend of the
Amihud and Kyle after the heists, accompanied by a decline in the Amivest, indicating higher
trading costs and reduced market depth. For Ronin and Elrond, liquidity deterioration was
particularly severe on the day of the heists (Figures 4.12 and 4.14), as evidenced by the sharp
increase in the Amihud and Kyle within on the day of the heists, suggesting a short-term

liquidity shock. The liquidity dynamics of Bean (Figure 4.13) also point to substantial
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deterioration, with Amihud and Kyle rising markedly in the post-heist period, while the
Amivest declined significantly, highlighting sustained liquidity stress. In contrast, Binance
Coin’s liquidity showed no significant change before and after the heist (Figure 4.15), with
only a slight deterioration on the day of the heist, followed by a quick recovery to its pre-heist
level. Overall, the robustness checks confirm that DeFi heists exert significant negative
impacts on the liquidity of the native DeFi tokens of the stolen platforms, while the

magnitude and persistence of these effects vary across DeFi tokens.

Furthermore, Appendix 4.7 reports the robustness results obtained by re-estimating the
QVAR model using a longer 80-hour rolling window while keeping the forecast horizon fixed
at 10 steps, to test the sensitivity of the results to the choice of rolling window length. A
longer window provides more effective observations at the tail of the sample, reducing
estimation variance and yielding smoother and more stable quantile estimates. The robustness
results presented in Tables 4.12—4.17 in Appendix 4.7 indicate that, even under extreme
market conditions, the 7CI continues to show a high degree of volatility synchronisation
among DeFi tokens, with strong interconnectedness remaining concentrated among the major
DeFi tokens. During the most DeFi heist periods, the volatility received by mainstream DeFi
tokens mainly originates from within the mainstream DeFi token network rather than from
the native DeFi token of the stolen platform. In the Beanstalk protocol heist, Bean still
exhibits significant spillover effects at extreme quantiles, further indicating that this DeFi
heist has a severe impact on the DeFi market due to its attack on the governance mechanisms.
Overall, the findings are consistent with the previous results, suggesting that the choice of

estimation window does not drive the conclusions.

In summary, the robustness tests on liquidity and volatility spillovers support the previous
findings. First, regarding liquidity, the robustness checks of the three liquidity indicators
consistently show that most stolen platforms’ native DeFi tokens experience significant
liquidity deterioration after the DeFi heists, further confirming the negative impact of DeFi
heists on these DeFi tokens’ liquidity. Second, in terms of volatility spillovers, the QVAR
results re-estimated with a longer rolling window remain consistent with the baseline,
indicating that under extreme market conditions, volatility across different DeFi tokens
continues to move in a highly synchronised manner. However, the strongest
interconnectedness is observed among mainstream DeFi tokens rather than the native tokens
of the stolen platforms. This suggests that the overall impact of DeFi heists on the wider DeFi

market is limited, with the negative effects concentrated mainly on the stolen platforms
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themselves, thereby highlighting the resilience of the DeFi market in the face of such shocks.
However, attacks targeting the governance mechanisms may trigger widespread concerns
about the security of other DeFi protocols with similar structures, further amplifying market
uncertainty. This highlights the need for future DeFi protocols to pay particular attention to

vulnerabilities in their governance system.
4.5 Potential Regulatory Recommendations

In the face of increasingly frequent DeFi hacking attacks, implementing appropriate
regulatory measures is urgent and crucial for protecting protocol developers and investors.
Currently, the regulatory environment for DeFi remains uncertain and varies significantly
across different jurisdictions. For example, the European Union finalised the Markets in
Crypto-Assets Regulation (MiCA) in 2023, becoming the first jurisdiction to adopt a
comprehensive regulatory framework for digital assets. MiCA provides legal clarity
regarding the privacy, security, and transparency of crypto-assets, requiring issuers to publish
approved white papers and obtain regulatory authorisation. Non-compliance may result in
penalties (European Union, 2023a). However, MiCA excludes crypto-asset services that are
offered in a fully decentralised manner without the involvement of any intermediaries. This
has created ambiguity in the regulation of DeFi platforms, as MiCA equates decentralisation
with the complete absence of intermediaries (European Union, 2023b). In reality, many DeFi
ecosystems rely on critical intermediaries that play a pivotal role in the functioning and
sustainability of the system. These are often referred to as systemically important crypto
intermediaries (SICIs). As such, the key challenge for the European Union regulators lies in
distinguishing between genuinely decentralised systems and those that merely reduce, but do

not eliminate, intermediation.

Hong Kong has not yet introduced DeFi-specific legislation, but regulates DeFi-related
activities through its existing financial regulatory framework. The Securities and Futures
Commission (SFC) evaluates DeFi activities based on their actual operation under the
Securities and Futures Ordinance (SFO) and the Anti-Money Laundering Ordinance (AMLO).
This functional approach follows the principle of “same business, same risks, same rules,”
aiming to strike a balance between financial innovation and regulatory integrity (Financial
Services and the Treasury Bureau, 2023). Meanwhile, the Hong Kong Monetary Authority
(HKMA) has issued guidelines for banks on the risk management considerations associated

with adopting distributed ledger technology (DLT), reflecting a growing interest in
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integrating DLT into traditional finance (Hong Kong Monetary Authority, 2024). The key
challenge in Hong Kong is maintaining regulatory transparency and accountability while

fostering innovation.

In Singapore, the regulatory framework for digital assets is based primarily on the Payment
Services Act of 2019 and the Financial Services and Markets Act of 2022, both overseen by
the Monetary Authority of Singapore (MAS) (2019, 2022). While MAS has acknowledged
the risks associated with DeFi and issued consumer advisories, the existing legislation does
not comprehensively cover all forms of DeFi activity, particularly those involving
decentralised governance and anonymous transactions. The main challenge for Singaporean
regulators is to ensure financial stability and investor protection without stifling innovation in

the DeFi space.

The United Kingdom is in the process of developing a comprehensive regulatory regime for
digital assets. The Financial Conduct Authority (FCA) oversees crypto-asset activities under
the Financial Services and Markets Act 2023, and regulations differentiate between digital
securities, unbacked crypto-assets, and stablecoins. The HM Treasury (2023) has signalled
that DeFi will be addressed under its future financial services regulatory framework, with a
focus on eliminating regulatory arbitrage. The key regulatory challenge in the United
Kingdom lies in defining legal boundaries for DeFi and designing flexible, yet enforceable,

rules that can accommodate its diverse governance structures.

The United States adopts a fragmented regulatory model for digital assets, with oversight
shared among multiple agencies, including the Securities and Exchange Commission (SEC),
the Commodity Futures Trading Commission (CFTC), the Financial Crimes Enforcement
Network (FinCEN), and the Federal Deposit Insurance Corporation (FDIC) (Emmert, 2023).
These agencies attempt to apply existing securities and commodities laws to DeFi protocols,
often relying on enforcement actions due to a lack of unified regulatory guidance. The
Financial Innovation and Technology for the 21st Century Act (FIT21) represents a recent
attempt to establish a compliant pathway for decentralised networks, including computing
and social networks, ensuring that digital assets receive appropriate and secure regulatory
treatment (Gensler, 2024). The central challenge in the United States is how to establish clear
and coherent compliance mechanisms for decentralised systems without undermining

innovation or pushing projects offshore.
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Overall, different jurisdictions have adopted diverse regulatory approaches to DeFi, reflecting
varying interpretations of decentralisation and different balances between innovation and
oversight. The European Union offers a unified framework but faces definitional challenges.
Jurisdictions such as Hong Kong and Singapore pursue function-based, gradual approaches,
while the United Kingdom is working to develop a forward-looking but structured regime.
The United States, by contrast, exhibits fragmented enforcement with limited clarity. These
regulatory divergences may lead to inconsistencies and jurisdictional arbitrage in the global
DeFi ecosystem, while also opening the door for international cooperation in shaping future
standards. This chapter attempts to propose some regulatory methods for the future of DeFi
based on the primary economic rationale of regulating financial intermediary activities,

thereby reducing the negative impact of DeFi heists.

The primary economic rationale for regulating financial intermediary activities is the
existence of market failures, which could, in principle, be improved through policy
intervention. Market failures can be categorised into two main types: (i) information

problems and (ii) externalities (Aquilina et al., 2024).
4.5.1 How to Solve Information Problems

Information problems include both information insufficiency and information asymmetry
(Aquilina et al., 2024). In the DeFi market, investors often lack adequate information. For
instance, they may question whether they can fully trust the development team behind a dapp
or whether specific smart contracts have vulnerabilities that hackers could exploit. Regarding
information asymmetry, it is difficult for investors to distinguish between high-quality and
low-quality projects in the DeFi market. Some low-quality projects may persist in the market
for a long time and are more susceptible to hacker attacks due to a lack of robust security
measures. Additionally, the structure of many Decentralised Autonomous Organisations
(DAOs) that dapps rely on makes it challenging to understand where decision-making
authority lies and who is accountable for the consequences of such decisions (Doerr et al.,
2021). This complexity can leave investors unable to protect their interests in the event of a

DeFi heist.

To mitigate issues of information insufficiency and asymmetry, regulatory authorities can
require DeF1 projects to introduce third-party platforms to monitor on-chain illegal activities
and conduct third-party audits to assess and review the security of projects. Third-party

platforms can monitor on-chain activities in real time, detect and report suspicious
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transactions, and prevent the spread of illegal activities. Meanwhile, third-party audits can
uncover vulnerabilities and security risks in smart contracts, helping development teams fix
them promptly and prevent exploitation by hackers. For investors, the monitoring results and
audit reports from third parties can help them differentiate between high-quality and high-risk
projects, avoiding investments in the latter. Furthermore, the involvement of third parties
could increase investor confidence in DeFi projects, knowing that these projects have been

validated by independent entities.

There are many on-chain security monitoring and project auditing platforms, such as Hacken
and Certik. Hacken provides these services to many clients, such as FTX and Gate.io, as well
as data provider CoinGecko. The foundation has even partnered with the government of
Ukraine to support its blockchain initiatives. Certik offers services to inspect project code
security, identifying any vulnerabilities that hackers could exploit. Developers can fix issues
before re-auditing, aiming for positive results (Rearick, 2022). However, the challenge is that
auditing standards vary between firms, and their reliability remains unclear (Yuyama et al.,
2023). Currently, most global regulatory efforts for DeFi focus primarily on centralised
intermediaries, stablecoins, and AML/KYC compliance. Areas such as security auditing and
technical transparency remain underregulated. Therefore, future regulatory efforts should aim
to formalise and standardise third-party auditing practices within the regulatory framework.
Doing so would help bridge the gap between voluntary self-regulation and formal oversight,

thereby reducing the risk of DeFi projects being exploited by malicious actors.
4.5.2 How to Solve External Problems

In financial markets, the actions of one party in a financial transaction can significantly
impact other entities and, in some cases, even affect the stability of the entire system. The
most notable example of this is the 2008 subprime mortgage crisis in the United States
(Brunnermeier et al., 2009; Aquilina et al., 2024). In the DeFi sector, whether through
collateralisation, staking, or any other crypto-financial model, many DeFi protocols are
interlinked. The advantage of this interconnectivity is that during periods of market stability
and growth, the synergies between DeFi protocols can create a positive feedback loop,
propelling the crypto industry upward. However, the same interconnectivity can lead to a
‘death spiral’ during market downturns, causing a chain reaction of negative effects. Although
this chapter's findings indicate that the impact of smaller DeFi tokens from compromised

platforms on mainstream DeFi tokens is minimal, we cannot overlook the broader
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implications of heists on the DeFi ecosystem. As observed in the Beanstalk protocol heist,
investors’ broader concerns about the security of DeFi protocols with similar voting
governance systems can exacerbate market volatility. This underscores the need for effective

regulatory measures to mitigate external volatility in the DeFi market.

Aquilina et al. (2024) showed that in traditional financial markets, systemic externalities
could be mitigated through four approaches: (i) prudential regulation of financial institutions;
(i) stringent risk management requirements; (iii) deposit insurance for deposit-taking
institutions; and (iv) the central bank acting as the lender (or dealer) of last resort in extreme
situations. The DeFi market could adopt these regulatory strategies from traditional financial

markets to enhance its stability in the face of DeFi heists.

For example, (i) similar to addressing information problems, implementing regular audits and
compliance checks in DeFi could ensure that projects adhere to security and operational
standards. This could be achieved through third-party auditing firms that assess the
robustness of smart contracts and the overall security framework of the platform. (ii) DeFi
projects should set leverage limits, ensure adequate collateral for loans, and implement
automated liquidation mechanisms to manage risks in real time. Specifically, if a DeFi
platform sets a leverage limit, even if hackers attempt to exploit vulnerabilities to borrow
large amounts, the leverage cap will restrict their borrowing capacity, thereby reducing
potential losses. In terms of collateral, if a DeFi project requires 150% collateral for each loan,
the collateral can cover the loan amounts even if hackers manipulate the market to cause
significant price swings, reducing financial stress on the platform. Lastly, during a DeFi heist,
automated liquidation mechanisms can quickly react to liquidate problematic loans,

protecting the overall health of the platform and preventing larger financial losses.

(i11) DeFi projects could provide insurance to cover losses resulting from hacking incidents or
smart contract failures. At present, almost all traditional financial institutions are unwilling to
provide insurance coverage for crypto assets (Zhou & Zhang, 2025). As a result, the DeFi
ecosystem has been compelled to develop its own insurance projects to meet the inherent
demand for risk-sharing and loss mitigation through smart contracts. This could be achieved
through decentralised insurance protocols that pool resources from multiple participants to
provide coverage for specific risks. Nexus Mutual is one of the earliest and most prominent
decentralised insurance protocols built on the Ethereum blockchain. Operating under a

mutual insurance model, it allows members to pool capital to provide coverage against risks
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such as smart contract vulnerabilities, exchange hacks, and, more recently, yield-bearing
token risks. Claims are assessed and settled through a decentralised governance process, in
which holders of the native Nexus Mutual token vote on the validity of claims, with
economic incentives designed to reward accurate assessments and penalise dishonest
behaviour. This design aims to create a market-based risk pricing mechanism that is

transparent and community-driven (Walters, 2023).

Nadler et al. (2023) proposed a fully decentralised insurance protocol. Current protocols often
rely on governance voting or external oracles, which introduce subjectivity, coordination
problems, and capital inefficiencies. By contrast, their design is based on a tranche structure
that splits pooled capital into senior (A) and junior (B) tokens. Losses are absorbed first by
junior token holders, while senior tokens are affected only in extreme cases. This mechanism
creates a market-based pricing system for risk, as the relative valuation of the two tranches
reflects the perceived likelihood of protocol failure. Importantly, the model enables claims to
be settled automatically on-chain without external inputs, thus eliminating the need for
subjective assessment or governance intervention. The protocol also improves capital
efficiency by allowing part of the collateral to be allocated to yield-bearing assets, while
providing fallback mechanisms to ensure orderly redemption in the event of failure. Despite
the emergence of more and more DeFi insurance, Zhou and Zhang (2025) also pointed out
that the DeFi insurance market is still in its early stages of development and continues to face

challenges such as actuarial difficulties and regulatory hurdles.

(iv) The decentralised nature of DeFi makes it challenging to have a central bank-like lender
of last resort, which also makes it difficult for investors to recover their losses when a
protocol fails. Additionally, Avgouleas and Seretakis (2023) pointed out that applying the
lender-of-last-resort mechanism to the cryptocurrency market may create a moral hazard.
Government implicit guarantees could turn these DeFi projects into another class of ‘too big
to fail’ institutions. In the absence of a safety net provided by a lender of last resort
mechanism, prudently regulating the liquidity pools of projects is a suitable way to mitigate
the liquidity risks faced by DeFi platforms. Ensuring that decentralised liquidity pools can
provide timely liquidity support when a DeFi platform encounters a hacking attack and users

start large-scale withdrawals, thereby preventing the platform from becoming paralysed.

In conclusion, regulating DeFi is a complex issue that involves ensuring compliance and

security while also maintaining the innovative nature of the services (Amler et al., 2021;
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Yuyama et al., 2023). In the context of frequent DeFi heists, it is crucial to establish
disclosure systems and enforcement frameworks tailored to the characteristics of DeFi and
crypto assets. This chapter recommends the introduction of third-party institutions, the
establishment of stringent risk management standards, the adoption of decentralised
insurance protocols, and the strengthening of regulations on liquidity pools to safeguard the

interests of both protocol developers and investors.
4.6 Conclusion

The continuous development of decentralised finance (DeFi) has brought an increasing
number of DeFi tokens into the spotlight for investors. However, its ecosystem is particularly
susceptible to vulnerabilities, hacks, and fraud, which have raised ongoing concerns about the
security of DeFi. This chapter, set against the backdrop of the six largest DeFi heists in 2022,
is the first to investigate the impact of DeFi heists on the DeFi market. Understanding
whether DeFi heists affect the native DeFi tokens of hacked platforms and whether these
impacts spill over to other DeFi tokens is crucial for grasping the risks and dynamics within

the DeFi ecosystem.

This chapter uses three low-frequency price impact measures as proxies for liquidity to
investigate the liquidity levels of the stolen platforms’ native DeFi tokens five days before
and after the DeFi heist. The findings reveal that DeFi heists significantly reduce the liquidity
of most of the stolen platforms’ native DeFi tokens. This underscores the critical impact of
security breaches on DeFi platforms, highlighting the necessity of robust security measures
for platform stability. Furthermore, the analysis shows that the speed and transparency of the
compromised platform’s response are crucial in preserving the liquidity of its native DeFi
token. According to the Glosten-Milgrom model (Glosten & Milgrom, 1985), information
asymmetry leads to wider bid—ask spreads and reduced liquidity. Although DeFi relies on
automated market makers (AMMs) rather than traditional dealers, similar mechanisms apply:
informed traders sell depreciating tokens into liquidity pools, while liquidity providers (LPs),
facing adverse selection and impermanent loss, withdraw liquidity. This process reduces pool
depth and magnifies price impacts, equivalent to a widening of bid—ask spreads. Therefore, a
quicker response and higher transparency could help reduce the likelihood of the DeFi
token’s liquidity being adversely impacted by the DeFi heist.

Additionally, using the Quantile Vector Autoregressive (QVAR) model, it finds that

mainstream DeFi tokens exhibit strong mutual influence and interconnectedness. However,
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the interconnectedness between these mainstream DeFi tokens and the native DeFi tokens of
compromised platforms is relatively weak. This indicates that while the volatility of native
DeFi tokens from hacked platforms could cause some spillover to other mainstream DeFi
tokens, the contagion effect is not very pronounced. This could be attributed to the diversity
of protocols and assets within the DeFi market, which helps absorb the impact of individual
assets. Even if a platform’s native DeFi token is compromised, tokens from other platforms
continue to support the market, mitigating negative effects. Mainstream DeFi tokens, with
their large market capitalisations, could stabilise the market and buffer the shocks from DeFi
heists. Notably, this chapter observes significant volatility spillover effects from the native
DeFi token of hacked platforms to mainstream DeFi tokens in the Beanstalk protocol heist. If
investors develop broader concerns about the security of DeFi protocols with governance
structures similar to those of the compromised platforms, the resulting fear and uncertainty
could exacerbate market volatility. Overall, these findings underscore the importance of
robust governance and security measures for maintaining market stability and protecting

investor interests in the rapidly evolving DeFi market.

For investors, the results suggest that caution is warranted when incorporating DeFi tokens
into diversified portfolios, as frequent DeFi heists could lead to significant market volatility.
Investors should favour larger market-cap DeFi tokens, as their size and better security
features help buffer the impacts of DeFi heists. For policymakers, this study highlights the
necessity of developing strong governance frameworks and security measures to maintain
market stability and protect investor interests. Policymakers could focus on introducing third-
party institutions, setting stringent risk management standards, implementing decentralised
insurance protocols, and strengthening regulations on liquidity pools. These measures will
enhance DeFi platforms’ resilience to potential hacker attacks and ensure that governance
mechanisms are not easily exploited. Overall, this chapter emphasises the need for continuous
improvements in DeFi platform security and governance to ensure the sustainable growth of

the DeFi1 ecosystem.
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Liquidity changes of the Qubit before and after the Qubit Finance platform heist
(a) Amihud illiquidity ratio (6-hour rolling window)

Time (end of 6-hour rolling window)
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4.7 Appendix
Figure 4.11
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Liquidity changes of the Ronin before and after the Ronin Network heist
(a) Amihud illiquidity ratio (6-hour rolling window)

Time (end of 6-hour rolling window)
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Figure 4.12
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Liquidity changes of the Bean before and after the Beanstalk protocol during

Figure 4.13
the heist

(a) Amihud illiquidity ratio (6-hour rolling window)
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Liquidity changes of the Elrond before and after the Maiar Exchange heist

Figure 4.14

(a) Amihud illiquidity ratio (6-hour rolling window)
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Liquidity changes of the Binance Coin before and after the Binance platform

Figure 4.15
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(a) Amihud illiquidity ratio (6-hour rolling window)
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Liquidity changes of the Mango before and after the Mango Markets platform
(a) Amihud illiquidity ratio (6-hour rolling window)
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Figure 4.16
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Table 4.12: Spillover connectedness between the Qubit and five mainstream DeFi tokens in
the Qubit Finance platform heist

Panel A: Spillover connectedness at the 95th quantile

Qubit  Avalanche Chainlink Uniswap Maker  Stacks FROM

Qubit 15.66 21.46 10.48 14.87 20.38 17.15 84.34
Avalanche 9.58 23.97 9.94 16.92 21.24 18.34 76.03
Chainlink 9.40 22.45 12.93 16.39 21.22 17.61 87.07
Uniswap 9.42 20.16 13.64 18.90 20.33 17.55 81.10

Maker 8.49 22.68 11.04 17.47 22.84 17.49 77.16

Stacks 7.65 21.40 13.64 16.98 20.92 19.41 80.59

TO 44.55 108.14 58.74 82.62 104.10 88.14 TCI

NET -39.79 32.12 -28.33 1.52 26.93 7.55 81.05

Panel B: Spillover connectedness at the S0th quantile

Qubit  Avalanche Chainlink Uniswap Maker  Stacks FROM

Qubit 93.35 1.18 1.56 0.98 0.95 1.98 6.65

Avalanche  0.28 35.87 18.96 18.52 11.87 1449  64.13

Chainlink  0.43 19.43 36.45 15.42 970  18.57  63.55

Uniswap  0.32 19.47 16.60 37.92 1192 1376 6208

Maker 0.29 15.22 11.69 1573 4352 1356 5648

Qubit Finance  gyacks 1.49 15.77 20.25 13.02 10.99  38.47 61.53
TO 2.82 71.07 69.06 63.67 4544 6235 TCI

NET -3.83 6.95 551 159 -11.05  0.82 52.40

Panel C: Spillover connectedness at the Sth quantile

Qubit  Avalanche Chainlink Uniswap Maker  Stacks FROM

Qubit 16.89 28.79 13.20 14.51 9.68 16.92 83.11
Avalanche 6.64 36.41 14.52 15.89 10.08 16.46 63.59
Chainlink 7.55 25.80 19.47 15.30 13.09 18.79 80.53
Uniswap 6.02 32.15 14.35 18.90 9.82 18.76 81.10
Maker 8.61 25.20 14.77 13.86 20.18 17.38 79.82
Stacks 6.94 24.63 16.11 16.45 12.18 23.68 76.32
TO 35.76 136.58 72.95 76.02 54.86 88.30 TCI
NET -47.36 72.99 -7.58 -5.08 -24.96 11.99 77.41

The findings are derived from a Quantile VAR method with a lag length of 1, determined by the Akaike
Information Criterion (AIC). The rolling window size is 80 hourly observations, and forecast market dynamics
10 time steps into the future. FROM indicates the source of causal impacts that each DeFi token receives, while
TO denotes the destination of these effects. NET equals TO minus FROM. Positive values of NET indicate that
the DeFi token is a net transmitter of spillover impacts, whereas negative values suggest it is a net receiver. A
higher TCI indicates stronger spillover effects and greater systemic interdependence, while a lower 7CI suggests
weaker linkages and more independence among DeFi tokens.
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Table 4.13: Spillover connectedness between the Ronin and five mainstream DeFi tokens in

the Ronin Network heist

Panel A: Spillover connectedness at the 95th quantile

Ronin  Avalanche Chainlink Uniswap  Maker Stacks FROM

Ronin 30.10 10.98 14.76 13.93 16.18 14.06 69.90
Avalanche  10.49 20.60 17.91 17.52 19.57 13.92 79.40
Chainlink 9.99 16.72 2091 17.88 18.14 16.37 79.09
Uniswap 8.76 17.08 17.27 21.97 17.17 17.74 78.03
Maker 9.11 17.89 17.04 18.26 23.39 14.32 76.61
Stacks 10.96 15.32 17.82 19.00 15.44 21.46 78.54
TO 49.31 77.99 84.80 86.58 86.49 76.41 TCI
NET -20.59 -1.41 5.70 8.55 9.88 -2.14 76.93

Panel B: Spillover connectedness at the 50th quantile

Ronin  Avalanche Chainlink Uniswap  Maker Stacks FROM

Ronin 65.42 4.21 7.68 6.05 5.85 10.78 34.58

Avalanche 1.46 32.72 18.39 16.88 15.79 14.77 67.28

Chainlink 2.46 17.05 30.27 18.21 14.45 17.55 69.73

Uniswap 1.28 15.46 18.00 30.86 16.07 18.33 69.14

Maker 1.97 16.24 16.18 18.38 33.97 13.27 66.03

Ronin Network Stacks 4.54 14.23 18.18 19.36 12.75 30.94 69.06
TO 11.71 67.20 78.43 78.88 64.91 74.69 TCI

NET -22.86 -0.08 8.70 9.74 -1.12 5.63 62.64

Panel C: Spillover connectedness at the Sth quantile

Ronin  Avalanche Chainlink Uniswap  Maker Stacks FROM

Ronin 20.30 14.81 16.64 15.16 16.38 16.70 79.70
Avalanche 8.68 20.97 17.83 17.08 18.44 17.00 79.03
Chainlink 8.68 17.20 20.37 18.20 17.60 17.96 79.63
Uniswap 7.17 17.24 18.49 20.40 18.27 18.44 79.60
Maker 7.96 17.57 18.05 18.23 21.15 17.05 78.85
Stacks 8.54 17.19 18.61 18.21 17.57 19.87 80.13
TO 41.02 84.01 89.62 86.88 88.26 87.16 TCI
NET -38.68 4.98 9.99 7.28 9.40 7.03 79.49

The findings are derived from a Quantile VAR method with a lag length of 1, determined by the Akaike
Information Criterion (AIC). The rolling window size is 80 hourly observations, and forecast market dynamics
10 time steps into the future. FROM indicates the source of causal impacts that each DeFi token receives, while
TO denotes the destination of these effects. NET equals TO minus FROM. Positive values of NET indicate that
the DeFi token is a net transmitter of spillover impacts, whereas negative values suggest it is a net receiver. A
higher TCI indicates stronger spillover effects and greater systemic interdependence, while a lower TCI suggests
weaker linkages and more independence among DeFi tokens.
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Table 4.14: Spillover connectedness between the Bean and five mainstream DeFi tokens in

the Beanstalk protocol heist

Panel A: Spillover connectedness at the 95th quantile

Bean  Avalanche Chainlink Uniswap Maker  Stacks FROM

Bean 26.96 10.77 12.51 13.89 12.35 23.51 73.04
Avalanche  17.41 15.56 13.38 16.74 13.96 22.95 84.44
Chainlink ~ 16.79 11.98 16.12 16.52 13.03 25.57 83.88
Uniswap 16.67 13.00 14.05 18.45 13.82 24.01 81.55
Maker 17.43 12.38 12.67 16.20 17.92 23.41 82.08
Stacks 17.09 12.30 13.02 15.69 12.37 29.53 70.47
TO 85.40 60.43 65.63 79.04 65.52 119.45 TCI
NET 12.36 -24.01 -18.25 -2.52 -16.56 48.98 79.25

Panel B: Spillover connectedness at the 50th quantile

Bean  Avalanche Chainlink Uniswap Maker  Stacks FROM

Bean 74.62 5.85 3.64 5.19 6.23 4.47 25.38

Avalanche  4.23 35.44 16.27 19.88 14.32 9.87 64.56

Chainlink 3.91 16.03 35.82 19.70 16.51 8.03 64.18

Uniswap 3.16 20.72 18.07 31.24 16.39 10.42 68.76

Maker 4.01 16.67 13.79 19.84 39.58 6.11 60.42

Beanstalk Stacks 4.29 12.27 10.15 10.85 5.77 56.68 43.32
TO 19.60 71.53 61.92 75.46 59.22 38.90 TCI

NET -5.78 6.97 -2.26 6.70 -1.20 -4.42 54.44

Panel C: Spillover connectedness at the Sth quantile

Bean  Avalanche Chainlink Uniswap Maker  Stacks FROM

Bean 25.57 17.06 12.47 14.06 15.31 15.53 74.43
Avalanche 2145 18.66 12.02 16.18 16.04 15.64 81.34
Chainlink  20.00 17.29 14.11 16.20 16.55 15.84 85.89
Uniswap 19.91 17.81 12.80 16.92 16.65 15.92 83.08

Maker 18.93 18.00 12.87 16.89 19.25 14.06 80.75

Stacks 20.04 16.93 12.15 15.77 16.89 18.23 81.77

TO 100.32 87.09 62.31 79.11 81.44 76.99 TCI

NET 25.89 5.75 -23.58 -3.97 0.69 -4.78 81.21

The findings are derived from a Quantile VAR method with a lag length of 1, determined by the Akaike
Information Criterion (AIC). The rolling window size is 80 hourly observations, and forecast market dynamics
10 time steps into the future. FROM indicates the source of causal impacts that each DeFi token receives, while
TO denotes the destination of these effects. NET equals TO minus FROM. Positive values of NET indicate that
the DeFi token is a net transmitter of spillover impacts, whereas negative values suggest it is a net receiver. A
higher TCI indicates stronger spillover effects and greater systemic interdependence, while a lower TCI suggests
weaker linkages and more independence among DeFi tokens.
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Table 4.15: Spillover connectedness between the Elrond and five mainstream DeFi tokens in

the Maiar Exchange heist

Panel A: Spillover connectedness at the 95th quantile

Elrond Avalanche Chainlink Uniswap Maker Stacks FROM

Elrond 28.43 14.54 16.53 12.74 11.14 16.62  71.57
Avalanche 10.27 20.54 19.19 16.37 15.62  18.01  79.46
Chainlink 10.59 17.29 24.76 15.29 16.17 1589 75.24
Uniswap 10.79 18.11 18.80 19.51 16.43 1637  80.49

Maker 8.51 17.62 20.56 17.03 2033 1595 79.67

Stacks 12.66 17.95 18.03 15.24 14.19 2194 78.06

TO 52.81 85.51 93.11 76.67 73.55 82.84 TCI
NET -18.76 6.05 17.87 -3.82 -6.12 4.78 77.42

Panel B: Spillover connectedness at the 50th quantile

Elrond Avalanche Chainlink Uniswap Maker Stacks FROM

Elrond 73.09 5.16 4.34 4.94 5.59 6.88 26.91

Avalanche 0.93 26.79 17.39 20.29 1995 14.66 73.21

Chainlink 0.60 18.78 29.06 19.89 1796 13.71  70.94

Uniswap 1.03 20.73 18.57 26.17 19.61 13.89 73.83

Maker 1.25 19.40 16.99 20.23 27.08 15.04 72.92

Maiar Exchange Stacks 1.46 16.62 15.02 16.17 18.42 3232  67.68
TO 5.27 80.69 72.30 81.52 81.53 64.18 TCI

NET -21.63 7.48 1.36 7.69 8.61 -3.50 64.25

Panel C: Spillover connectedness at the Sth quantile

Elrond Avalanche Chainlink Uniswap Maker Stacks FROM

Elrond 19.16 18.66 16.23 12.53 16.07 1735  80.84
Avalanche 11.89 20.35 17.50 14.11 18.09 18.06  79.65
Chainlink 12.13 18.70 19.39 14.94 17.04 17.80  80.61
Uniswap 12.50 19.33 17.47 15.23 17.66 17.81  84.77

Maker 12.10 19.68 17.46 14.09 18.80 17.88  81.20

Stacks 12.58 19.36 17.13 13.78 17.57 19.58  80.42

TO 61.19 95.73 85.80 69.44 86.43  88.89 TCI

NET -19.65 16.09 5.19 -15.33 5.22 8.48 81.25

The findings are derived from a Quantile VAR method with a lag length of 1, determined by the Akaike
Information Criterion (AIC). The rolling window size is 80 hourly observations, and forecast market dynamics
10 time steps into the future. FROM indicates the source of causal impacts that each DeFi token receives, while
TO denotes the destination of these effects. NET equals TO minus FROM. Positive values of NET indicate that
the DeFi token is a net transmitter of spillover impacts, whereas negative values suggest it is a net receiver. A
higher TCI indicates stronger spillover effects and greater systemic interdependence, while a lower TCI suggests
weaker linkages and more independence among DeFi tokens.
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Table 4.16: Spillover connectedness between the Binance Coin and five mainstream DeFi

tokens in the Binance platform heist

Panel A: Spillover connectedness at the 95th quantile

Binance Coin  Avalanche Chainlink Uniswap Maker Stacks FROM

Binance Coin 24.09 18.35 17.23 17.81 9.82 12.70 7591
Avalanche 14.58 20.20 17.90 16.41 17.66  13.25 79.80
Chainlink 17.27 18.22 26.07 16.55 10.94 10.95 73.93
Uniswap 16.48 17.50 16.90 23.79 12.22 13.11 76.21

Maker 11.23 13.96 15.18 14.74 30.80 14.08 69.20
Stacks 13.92 15.72 15.14 15.08 17.54 22.60  77.40
TO 73.49 83.75 82.37 80.59 68.17  64.07 TCI
NET -2.42 3.95 8.44 4.38 -1.03  -13.32  75.41

Panel B: Spillover connectedness at the 50th quantile

Binance Coin  Avalanche Chainlink Uniswap Maker Stacks FROM

Binance Coin 44.73 20.30 12.66 15.22 1.47 5.63 55.27

Avalanche 19.60 43.09 16.99 11.42 5.85 3.04 56.91

Chainlink 11.72 17.85 56.68 8.47 3.44 1.85 43.32

Uniswap 17.57 15.13 8.63 49.94 4.40 4.33 50.06

Maker 0.49 6.12 1.56 1.40 82.81 7.63 17.19

Binance Stacks 8.72 2.95 5.11 5.84 8.09  69.29 30.71
TO 58.08 62.35 44.96 42.34 2325 2249 TCI

NET 2.81 5.44 1.64 -7.72 6.05 -8.22 42.24

Panel C: Spillover connectedness at the Sth quantile

Binance Coin  Avalanche Chainlink Uniswap Maker Stacks FROM

Binance Coin 22.54 15.52 17.71 17.09 12.38  14.76 77.46
Avalanche 17.54 21.38 17.67 18.20 11.09 14.13 78.62
Chainlink 15.46 16.13 24.24 14.75 14.77  14.64 75.76
Uniswap 18.74 15.84 16.56 23.40 11.70  13.76 76.60

Maker 11.87 13.41 13.36 13.42 3022 17.72 69.78
Stacks 15.20 15.76 12.39 15.28 16.70  24.66 75.34

TO 78.81 76.66 77.69 78.74 66.63  75.02 TCI
NET 1.36 -1.96 1.93 2.14 -3.15  -0.32 75.59

The findings are derived from a Quantile VAR method with a lag length of 1, determined by the Akaike
Information Criterion (AIC). The rolling window size is 80 hourly observations, and forecast market dynamics
10 time steps into the future. FROM indicates the source of causal impacts that each DeFi token receives, while
TO denotes the destination of these effects. NET equals TO minus FROM. Positive values of NET indicate that
the DeFi token is a net transmitter of spillover impacts, whereas negative values suggest it is a net receiver. A
higher TCI indicates stronger spillover effects and greater systemic interdependence, while a lower TCI suggests
weaker linkages and more independence among DeFi tokens.
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Table 4.17: Spillover connectedness between the Mango and five mainstream DeFi tokens in

the Mango Markets platform heist

Panel A: Spillover connectedness at the 95th quantile

Mango  Avalanche Chainlink Uniswap Maker Stacks FROM

Mango 31.64 13.31 13.35 12.38 16.65 12.67 68.36
Avalanche 9.45 19.15 19.39 17.24 16.08 18.69 80.85
Chainlink 9.18 17.00 21.09 16.08 1435 2230 78.91
Uniswap 8.19 17.42 18.39 21.36 15.33 19.31 78.64

Maker 9.68 16.68 15.09 17.34 24.39 16.82 75.61

Stacks 7.87 16.77 18.77 16.84 1562  24.13 75.87

TO 44.38 81.18 85.00 79.88 78.02  89.79 TCI
NET -23.98 0.33 6.09 1.24 2.41 13.92 76.37

Panel B: Spillover connectedness at the 50th quantile

Mango  Avalanche Chainlink Uniswap Maker Stacks FROM

Mango 94.44 1.99 1.19 0.95 0.62 0.82 5.56
Avalanche 0.38 30.09 25.63 16.44 7.91 19.55 69.91
Chainlink 0.34 23.41 33.43 15.92 7.09 19.82 66.57
Uniswap 0.21 19.35 19.31 37.63 8.68 14.82 62.37
Maker 0.18 12.88 9.25 12.52 54.77 10.40 45.23
Mango Markets Stacks 0.42 21.73 21.11 15.10 6.06 35.57 64.43
TO 1.53 79.35 76.48 60.94 3036 65.40 TCI
NET -4.03 9.45 9.91 -1.43 -14.87 0.97 52.34

Panel C: Spillover connectedness at the Sth quantile

Mango  Avalanche Chainlink Uniswap Maker Stacks FROM

Mango 17.55 17.99 16.87 16.38 17.01 14.20 82.45
Avalanche 6.59 21.14 19.48 18.25 17.38 17.15 78.86
Chainlink 6.96 20.36 21.04 18.17 16.68 16.80 78.96
Uniswap 5.76 19.55 19.10 21.15 17.17 17.27 78.85

Maker 6.49 19.21 17.75 18.39 21.60 16.56 78.40

Stacks 5.88 19.51 19.39 18.41 17.42 19.40 80.60

TO 31.67 96.61 92.59 89.60 85.67  81.98 TCI
NET -50.78 17.75 13.63 10.75 7.27 1.38 79.69

The findings are derived from a Quantile VAR method with a lag length of 1, determined by the Akaike
Information Criterion (AIC). The rolling window size is 80 hourly observations, and forecast market dynamics
10 time steps into the future. FROM indicates the source of causal impacts that each DeFi token receives, while
TO denotes the destination of these effects. NET equals TO minus FROM. Positive values of NET indicate that
the DeFi token is a net transmitter of spillover impacts, whereas negative values suggest it is a net receiver. A
higher TCI indicates stronger spillover effects and greater systemic interdependence, while a lower TCI suggests
weaker linkages and more independence among DeFi tokens.
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Chapter 5 Summary and Conclusion

The increasing prevalence of cryptocurrency heists has raised critical concerns regarding
their broader impact on the cryptocurrency ecosystem. Despite the growing number of
security breaches, academic studies have yet to fully explore how these events affect key
market dynamics, such as market efficiency, investor sentiment, etc. Given Bitcoin’s
dominant position in the cryptocurrency market, this thesis primarily focuses on
understanding how cryptocurrency heists influence Bitcoin’s market efficiency and investor
sentiment. Additionally, as DeFi platforms have become frequent targets of hacking attacks,
this thesis extends its analysis beyond Bitcoin to investigate the impact of DeFi heists on the
stolen platform’s native DeFi tokens’ liquidity and overall DeFi market stability. By
systematically analysing these aspects, this thesis contributes to a deeper understanding of

how security breaches disrupt cryptocurrency markets.

The second chapter of this thesis examines how cryptocurrency heists influence Bitcoin’s
market efficiency. Using the Adaptive Market Hypothesis (AMH) as a theoretical framework,
this study applies the permutation entropy and the Complexity—entropy causality plane to
assess efficiency changes across twelve major cryptocurrency heists (Mt Gox, Coincheck,
KuCoin, PancakeBunny, Poly Network, Bitmart, Wormhole, Ronin Network, Beanstalk,
Nomad, Binance and FTX). The findings indicate that Bitcoin’s market efficiency declines
significantly on the day of and immediately following these cryptocurrency heists. This
decline is characterised by reduced permutation entropy and increased complexity, suggesting
that security breaches introduce temporary inefficiencies into the Bitcoin market.
Furthermore, tokens directly targeted by cryptocurrency heists exhibit even greater efficiency
losses compared to Bitcoin, implying that investor attention is more focused on the affected
tokens. These results underscore the disruptive nature of cryptocurrency heists and highlight
the importance of improving market stability through enhanced security protocols and risk

management measures.

The third chapter investigates the bidirectional predictive relationship between Bitcoin price
and investor sentiment in the context of cryptocurrency heists. By employing the
Cryptocurrency Fear & Greed Index (CFGI) as a proxy for sentiment, this study uses a time-
varying Granger causality approach to examine sentiment-price dynamics before and after the
KuCoin exchange heist, where large amounts of Bitcoin were stolen. The results reveal that

no significant bidirectional predictive relationship exists between Bitcoin price and CFGI in
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the 90 days preceding the heist. However, within 90 days following the heist, a strong
feedback loop emerges, in which CFGI fluctuations significantly influence Bitcoin price
movements and vice versa. This intensified sentiment-price interaction suggests that
heightened uncertainty following a heist exacerbates investor reactions, potentially creating a
cycle of price declines and market panic. Additionally, this study also finds that the
bidirectional predictive relationship between price and CFGI does not always hold after
cryptocurrency heists. Only cryptocurrency heists that directly impact Bitcoin exhibit a strong
sentiment-price feedback mechanism, whereas those targeting other cryptocurrencies display
a weaker relationship. This may be attributed to CFGI primarily measuring sentiment within
the Bitcoin market, making it less reflective of fluctuations in other cryptocurrencies. Finally,
this study finds that the bidirectional sentiment-price relationship is primarily confined to
Bitcoin, with limited effects on other cryptocurrencies such as Ethereum and Binance Coin.
This highlights the specificity of sentiment dynamics in the Bitcoin market and suggests that
while CFGI is a useful indicator for predicting Bitcoin price movements during Bitcoin crisis

periods, it may not be as effective for other cryptocurrencies.

The fourth chapter extends the analysis to the DeFi ecosystem, where security vulnerabilities
have become an increasing concern. This chapter investigates six major DeFi heists in 2022
(Qubit Finance, Ronin Network, Beanstalk, Maiar Exchange, Binance and Mango Markets)
and their impact on the liquidity of stolen platforms’ native DeFi tokens as well as the
broader DeFi market. Using low-frequency price impact measures and the Quantile VAR
model, the findings show that the liquidity of the affected DeFi tokens declines sharply post-
heist. However, the spillover effects on mainstream DeFi tokens are relatively limited,
suggesting that while individual DeFi platforms suffer substantial liquidity shocks, the overall
DeFi market exhibits a degree of stability. Nonetheless, if investor confidence in DeFi
security deteriorates significantly, for example due to concerns about governance
mechanisms, market-wide volatility may increase, posing systemic risks to the broader DeFi
ecosystem. These findings highlight the importance of robust security mechanisms,
transparent governance, and crisis management strategies in maintaining stability within the
DeFi sector. Beyond its empirical findings, this chapter provides valuable implications for the
design and safety of DeFi. Drawing on lessons from traditional financial systems, DeFi
platforms could enhance systemic stability through four design dimensions: (i) regular
security audits and compliance assessments to ensure protocol integrity and transparency; (ii)

prudent risk management mechanisms, including leverage limits, adequate collateralisation
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ratios, and automated liquidation processes to contain losses during attacks; (iii) the
development of decentralised insurance frameworks to provide compensation for hacking
incidents and smart contract failures, thus restoring investor confidence; and (iv) improved
liquidity management within decentralised liquidity pools to prevent liquidity freezes during
crisis events. Collectively, these design implications emphasise that building a secure and
sustainable DeFi ecosystem requires balancing innovation with risk control, transparency, and

accountability.

Overall, this thesis makes several key contributions to the understanding of cryptocurrency
markets in the context of cryptocurrency heists. First, it provides empirical evidence that
cryptocurrency heists may significantly impact Bitcoin’s market efficiency, further supporting
the notion that Bitcoin’s market efficiency evolves in response to changes in the external
market environment. Second, it reveals the crucial role of investor sentiment in shaping
market reactions during periods of heightened uncertainty, demonstrating how sentiment-
driven feedback loops can amplify price volatility. Third, it extends the scope of analysis
beyond Bitcoin to the DeFi ecosystem, offering novel insights into how security breaches

affect DeFi token liquidity and market stability.

These findings carry substantial implications for investors, policymakers, and academics
operating within the rapidly evolving cryptocurrency ecosystem. For investors, the results
reveal that cryptocurrency heists may lead to sudden and significant declines in market
efficiency, particularly in the immediate aftermath of an attack. This volatility is not random
but shaped by behavioural responses such as panic selling, herding, and overreaction to
sentiment shocks. As such, investors should not only account for technological risks but also
recognise the informational inefficiencies and emotional contagion that follow security
breaches. The evidence also cautions against over-reliance on a single sentiment indicator
such as CFGI, particularly during crisis periods when sentiment dynamics become asset-
specific. To mitigate behavioural biases and manage short-term risks more effectively,
investors should adopt a multi-indicator sentiment approach and consider event-driven

strategies that factor in the nature and perceived severity of security incidents.

For policymakers, this thesis reveals critical regulatory blind spots, particularly in the
governance and security infrastructure of DeFi platforms. Existing frameworks often
overlook the systemic risks posed by decentralised protocols that lack standardised audits,

transparent incident disclosures, and robust governance mechanisms. The findings suggest
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that regulators should implement mandatory security audits, establish timely disclosure
protocols for security breaches, and promote governance reforms tailored to decentralised
organisational structures. Such interventions can help mitigate market disruptions and
investor anxiety caused by cryptocurrency heists, while enhancing overall regulatory

compliance and investor confidence in the digital asset market.

For academics, this thesis examines the impact of cryptocurrency heists on the
cryptocurrency market through the lens of market microstructure theory, thereby extending
the existing literature’s understanding of market behaviour under extreme events. By
conceptualising security breaches as endogenous shocks, this thesis reveals how information
asymmetry, liquidity fragility, and market interconnectedness interact within the
cryptocurrency market to influence market efficiency, investor sentiment, token liquidity, and
risk transmission channels. This perspective not only applies market microstructure theory to
the emerging cryptocurrency ecosystem but also enriches its applicability and explanatory
power under conditions of high uncertainty, providing a suitable theoretical framework for

understanding price discovery and information transmission in the cryptocurrency market.

Despite its contributions, this thesis is subject to several limitations that should be
acknowledged. First, the empirical analysis focuses on a limited number of high-profile
cryptocurrency heists, which may constrain the generalisability of the findings to the broader
cryptocurrency ecosystem. Smaller-scale hacking incidents, insider frauds, or protocol-level
vulnerabilities are not fully explored, even though they may trigger distinct market reactions.
The heterogeneous nature of heist types, magnitudes, and timing suggests that different forms
of security breaches could have varying effects on market dynamics. Second, the empirical
models and indicators employed in this thesis could be further developed. The permutation
entropy measure currently does not provide formal statistical significance testing, which
presents a challenge for rigorously assessing the evolution of market efficiency. Moreover,
although Alternative.me discloses the weighting scheme of the six components comprising
the sentiment index, it does not release their exact numerical values, preventing a detailed
component-level analysis. As a result, it remains difficult to identify which specific factors
primarily drive fluctuations in market sentiment during major events such as cryptocurrency

heists.

Third, the investigation of market efficiency and liquidity is largely confined to short-term

responses surrounding heist events. While this focus effectively captures immediate
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disruptions, it does not fully address the long-term adjustment process or the persistence of
structural inefficiencies after market recovery. Moreover, the liquidity analysis relies on low-
frequency measures, which, although widely used, may not adequately reflect the high-
frequency dynamics of liquidity. Finally, given the global divergence in regulatory
approaches, from the EU’s harmonised MiCA framework to the fragmented enforcement-
driven U.S. model and China’s prohibition-based stance, which regulatory model—proactive
and harmonised (EU), fragmented yet enforcement-driven (US), or prohibitive (China)—is
most effective in maintaining market stability and protecting investors in the aftermath of
major security incidents? This is important for global cryptocurrency governance and risk

management.

Building on the limitations identified above, several clear avenues for future studies emerge,
all centred on deepening understanding of how extreme security events shape cryptocurrency
market dynamics through microstructural mechanisms. First, expanding the dataset of
cryptocurrency heists to include a wider range of security incidents, such as smaller-scale
attacks, protocol-level vulnerabilities, and insider fraud, would enable a more comprehensive
understanding of how different types and magnitudes of breaches influence market dynamics.
Such studies could further explore cross-sectional differences in market reactions across
blockchain ecosystems and cryptocurrency classes. Second, future studies should seek to
develop statistical methods capable of testing whether changes in permutation entropy
measures are significant, so as to provide a more rigorous assessment of the evolution of
market efficiency. Moreover, a valuable direction for future studies would be to disentangle
the relative contributions of market-based components (e.g., volatility and trading volume)
and behavioural components (e.g., social media activity and search intensity). Doing so
would enhance understanding of whether sentiment shifts are primarily driven by objective
market dynamics or by behavioural responses. Future studies could address this limitation by
employing sentiment indices that allow component-level decomposition or by constructing

new sentiment measures capable of isolating heterogeneous drivers of market sentiment.

Third, longitudinal analyses are needed to examine the long-term consequences of
cryptocurrency heists. Future work could assess whether market efficiency and liquidity
eventually recover to pre-attack levels or whether persistent inefficiencies arise due to
structural distrust or technological vulnerabilities. Integrating high-frequency data and micro-
level order book information would also help capture the real-time liquidity dynamics.

Finally, given the global divergence in regulatory approaches, future studies could examine
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how these differing regimes shape post-heist market stability, investor protection, and

systemic safety.

In conclusion, this thesis provides a comprehensive investigation into how cryptocurrency
heists impact Bitcoin’s market efficiency, investor sentiment, and the DeFi market. By
bridging gaps in the existing literature and offering new empirical insights, it contributes to a
more nuanced understanding of the vulnerabilities within the cryptocurrency market and its
influence. As the crypto industry continues to evolve, addressing security risks will be crucial

in fostering greater market stability and investor confidence in digital asset markets.
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