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Abstract 

Cryptocurrency heists have become an increasingly frequent and disruptive phenomenon, 

raising concerns about their broader impact on the cryptocurrency market. This thesis uses an 

event study approach, using various cryptocurrency heists as case studies to systematically 

examine the impact of cryptocurrency heists on the cryptocurrency market. The first study 

investigates the impact of cryptocurrency heists on Bitcoin’s market efficiency within the 

Adaptive Market Hypothesis (AMH) framework. Using permutation entropy and the 

Complexity–entropy causality plane, the study finds that Bitcoin’s efficiency declines 

significantly on and immediately after most major cryptocurrency heists, highlighting the 

impact of security breaches on Bitcoin market stability and further supporting the notion that 

Bitcoin market efficiency evolves in response to changes in the external environment. The 

second study examines the bidirectional predictive relationship between Bitcoin price and 

investor sentiment using the Cryptocurrency Fear & Greed Index (CFGI). A time-varying 

Granger causality analysis around the KuCoin exchange heist reveals that while no 

significant feedback loop exists before this heist, a strong sentiment-price interaction emerges 

afterwards. This intensified sentiment-price predictive relationship suggests that heightened 

uncertainty following a heist amplifies investor reactions, creating price declines and market 

panic. The third study extends the analysis to decentralised finance (DeFi), assessing liquidity 

shocks and spillover effects by low-frequency price impact measures and the Quantile VAR 

model from six major DeFi heists. Findings indicate that while affected platforms’ native 

DeFi tokens experience severe liquidity declines, spillover effects on mainstream DeFi tokens 

remain limited, suggesting some degree of DeFi market stability. This thesis contributes to 

the literature by demonstrating that cryptocurrency heists significantly impact market stability 

and investor behaviour. The findings emphasise the importance of robust security measures, 

crisis management, and governance improvements to mitigate risks in the cryptocurrency 

market. 
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Chapter 1 Thesis Introduction 

1.1 Thesis Background 

Cryptocurrency is a digital asset designed to function as a medium of exchange, using 

cryptographic technology to secure transactions, control the creation of new units, and verify 

asset transfers (Corbet et al., 2019a). Unlike traditional financial systems that rely on 

centralised institutions such as banks and governments, cryptocurrency operates on 

decentralised networks, primarily using blockchain technology (Dorofeyev et al., 2018; 

Ghosh et al., 2020; Härdle et al., 2020). This decentralisation offers several advantages, 

including lower transaction costs, enhanced privacy, global accessibility, and financial 

inclusion for individuals without access to traditional banking services (Chen & Bellavitis, 

2020; Ozili, 2022; Hayes, 2024). For example, in countries with an underdeveloped banking 

infrastructure, individuals can use cryptocurrencies to send and receive payments without 

relying on traditional banks. In Venezuela, where hyperinflation has severely devalued the 

national currency, many citizens have turned to Bitcoin and other cryptocurrencies to 

preserve wealth and conduct transactions beyond the reach of government-imposed capital 

controls (Mills, 2024). 

Since Bitcoin was first introduced by Satoshi Nakamoto (2008), more than 9,000 

cryptocurrencies have emerged, including Ethereum, Ripple, Binance Coin, and Solana. As of 

2024, the total market capitalisation of cryptocurrencies has reached approximately $3.18 

trillion (CoinMarketCap, 2024). Over the past decade, academic research on cryptocurrency 

has expanded rapidly, exploring various aspects of this emerging financial ecosystem. Corbet 

et al. (2019a) conducted a comprehensive review of cryptocurrency studies published 

between 2014 and 2018 and found that market efficiency had received the greatest attention, 

accounting for 26 of the 104 papers reviewed. This was followed by research on the 

cryptocurrency structure (18 papers), as well as studies on price dynamics and diversification, 

which comprised 12 and 11 papers, respectively. More recently, Almeida and Gonçalves 

(2024) classified the body of research on the microstructure of the cryptocurrency market up 

to 2021, showing that topics such as market efficiency, liquidity, volatility, uncertainty, price 

behaviour, connectedness, and investment attributes have continued to attract significant 

academic interest. This sustained attention is largely driven by the inconsistent and often 

contradictory findings across studies regarding the microstructural characteristics of the 

cryptocurrency market. 
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The analysis of cryptocurrency’s market efficiency is predominantly anchored in the 

framework of the Efficient Market Hypothesis (EMH). The EMH posits that asset prices fully 

and immediately reflect all available information (Fama, 1970). EMH is commonly classified 

into three forms according to the type of information incorporated into prices: the weak form, 

which states that prices reflect all historical price and return information; the semi-strong 

form, which holds that prices adjust rapidly to all publicly available information; and the 

strong form, which asserts that prices fully incorporate both public and private (insider) 

information. Early evidence generally supports a high level of efficiency in most developed 

markets, where returns are generally found to be largely unpredictable based on past price 

information (Lim, 2007; Hull & McGroarty, 2014; Rizvi et al., 2014; Ali et al., 2018). By 

contrast, studies focusing on emerging markets report a weak form of efficiency, suggesting 

greater return predictability and slower information incorporation (Huang, 1995; Lee et al., 

2001; Cajueiro & Tabak, 2004; Jin, 2006; Hoque et al., 2007). 

In the cryptocurrency market, Urquhart (2016) applied a series of randomness tests and 

demonstrated that the Bitcoin market was inefficient between August 1, 2010, and July 31, 

2016, although such inefficiencies tended to diminish over time. Similarly, Kang et al. (2022) 

found that speculative trading contributed significantly to Bitcoin’s inefficiency. A range of 

studies employing multifractality analysis of time series (Bariviera, 2017; Alvarez-Ramirez et 

al., 2018; Al-Yahyaee et al., 2018; Jiang et al., 2018; Takaishi, 2018; Yi et al., 2022; Kakinaka 

& Umeno, 2022) also suggest that the Bitcoin market is inefficient. However, some evidence 

indicates weak-form efficiency. Nadarajah and Chu (2017) and Tiwari et al. (2018) reported 

that Bitcoin may exhibit weak-form efficiency, while Zargar and Kumar (2019) found that 

low-frequency Bitcoin returns followed a memory-less random process during 2013–2018. 

Nevertheless, they cautioned that traders could still obtain abnormal returns through high-

frequency speculative strategies. Overall, these conflicting findings indicate that Bitcoin’s 

market efficiency is not static but evolves in response to changes in market conditions. 

Differences in methodological approaches, sample periods, and market environments 

contribute to varying empirical results across studies.  

This has prompted scholars to study market efficiency from a dynamic perspective. Khuntia 

and Pattanayak (2018), Stosic et al. (2019), and Khursheed et al. (2020) showed that the 

efficiency of Bitcoin and other major cryptocurrencies fluctuates between efficient and 

inefficient states over time, with efficiency tending to deteriorate during periods of market 

turbulence and to improve under more stable conditions. In addition, Mensi et al. (2019a, 
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2019b, 2019c) demonstrated that inefficiency is more pronounced when the cryptocurrency 

market is declining, while it appears to subside during bullish phases. Mokni et al. (2024) 

employed the adjusted market inefficiency magnitude (AMIM) metric and a quantile 

regression model to further confirm the time-varying behaviour of Bitcoin’s market efficiency. 

Existing studies have also identified several key factors that influence the evolution of market 

efficiency. For example,  improvements in liquidity (Brauneis & Mestel, 2018; Wei, 2018; 

Al-Yahyaee et al., 2020; Takaishi & Adachi, 2020; Mokni et al., 2024), the development of 

derivatives markets (Köchling et al., 2019; Ruan et al., 2021), and strengthened regulatory 

oversight (Alexander & Heck, 2020) have all been shown to enhance the efficiency of the 

Bitcoin market. Therefore, market efficiency should be understood from a dynamic rather 

than a static perspective. 

Similarly, the liquidity of the cryptocurrency market has continued to receive sustained 

attention from scholars. Liquidity represents one of the fundamental attributes of financial 

markets, reflecting the ease with which assets can be traded without generating significant 

price movements. A liquid market supports efficient price discovery, reduces trading frictions, 

enables effective risk sharing, and strengthens investor confidence (Amihud & Mendelson, 

1986; Pástor & Stambaugh, 2003). In contrast, illiquidity tends to amplify pricing deviations, 

heighten trading frictions, and, in extreme cases, contribute to systemic vulnerabilities 

(Brunnermeier & Pedersen, 2009). Consequently, liquidity has become a central dimension 

for understanding market quality, return dynamics, and investor behaviour (Chordia et al., 

2000). A substantial body of studies has examined liquidity through the lens of information 

asymmetry, which is regarded as a key determinant of trading conditions.  

Akerlof (1978) proposed that when one party possesses superior information, adverse 

selection problems arise, discouraging uninformed participants from trading, thereby 

reducing market activity and depth. Extending this insight to financial markets, Grossman 

and Stiglitz (1980) argued that information can never be fully reflected in prices, as the cost 

of acquiring information ensures a persistent imbalance between informed and uninformed 

traders. This informational disparity generates uncertainty for less-informed traders, causing 

them to trade more cautiously and withdraw liquidity from the market. Kyle (1985) further 

formalised the strategic interaction between informed and uninformed traders, showing that 

informed traders exploit their informational advantage gradually to avoid revealing it, while 

uninformed traders face higher valuation uncertainty and reduce their trading aggressiveness. 

This behaviour slows the incorporation of information into prices and diminishes the 
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willingness of uninformed traders to supply liquidity. Glosten and Milgrom (1985) directly 

linked information asymmetry to liquidity provision by demonstrating that market makers 

widen spreads to protect themselves against losses when trading with better-informed 

investors. As information asymmetry increases, market makers require greater compensation 

for adverse selection risk, raising trading costs and reducing liquidity. 

Collectively, these findings show that information asymmetry reduces the willingness of 

uninformed participants to trade, increases the cost of supplying liquidity, and ultimately 

weakens market liquidity. Empirical evidence from traditional markets demonstrates that 

information disparities between informed and uninformed traders are closely linked to 

liquidity fluctuations, market participation, and asset price dynamics (Stoll, 1989; Hasbrouck, 

1991; Brennan & Subrahmanyam, 1996; Huang & Stoll, 1997; Chordia et al., 2000; Easley et 

al., 2002; Pástor & Stambaugh, 2003). These studies collectively underline that liquidity 

conditions are strongly shaped by the information environment and that information 

asymmetry plays an integral role in explaining variations in market functioning. 

Information asymmetry is particularly pronounced in the cryptocurrency market owing to 

decentralisation, limited disclosure requirements, and the anonymity of market participants 

(Othman et al., 2019; Park & Chai, 2020; Alfieri et al., 2025). The fragmented nature of 

trading across numerous exchanges further contributes to information frictions, which can 

lead to pricing discrepancies and arbitrage opportunities (Makarov & Schoar, 2020). 

Evidence also suggests that informed trading plays a measurable role in cryptocurrency 

pricing, as information-based trading components have been found to correlate positively 

with return volatility and negatively with several liquidity metrics (Tiniç et al., 2023). 

Moreover, information asymmetry has been shown to weaken liquidity in token issuance 

markets, particularly during periods of security shocks such as cyberattacks, with tokens 

issued on the same blockchain as the attacked asset being disproportionately affected 

(Manahov & Li, 2025c). The majority of empirical findings further suggest that 

cryptocurrencies exhibit lower liquidity and more fragile trading conditions relative to 

traditional financial assets (Loi, 2018; Corbet et al., 2019a; Smales, 2019; Trimborn et al., 

2020). Taken together, this literature establishes information asymmetry as a crucial 

theoretical foundation for understanding the liquidity characteristics of the cryptocurrency 

market. 



5 
 

As the cryptocurrency has emerged as a new asset class with a rapidly expanding range of 

cryptocurrencies, scholars have increasingly examined the level of interconnectedness 

between cryptocurrencies and traditional financial assets, as well as across cryptocurrencies 

themselves, to understand patterns of risk transmission and spillover effects. The 

interconnectedness among assets is not only a reflection of co-movements but also reveals 

how information and shocks propagate across markets. Hasbrouck (1995) introduced a 

framework to quantify the contribution of different markets to price discovery, demonstrating 

that some markets lead in incorporating information while others follow. This highlights that 

price discovery is not confined to individual markets; rather, it is a collective process shaped 

by the interaction and relative informational dominance of different trading venues. As a 

result, the degree of connectedness between markets reflects the efficiency of cross-market 

information transmission and the level of market integration (Baele, 2005). While price 

discovery models explain how information diffuses across markets, they do not fully capture 

the transmission of shocks and volatility. Diebold and Yilmaz (2012) later formalised this 

notion by proposing a connectedness framework to measure the extent and direction of return 

and volatility spillovers across markets, offering a broader perspective on cross-market 

interdependence. These approaches have since been widely used to assess the degree of 

interdependence between financial markets (Samarakoon, 2011; Dhanaraj et al., 2013; Zhang 

et al., 2017; Raddant & Kenett, 2021; Hoque et al., 2024), offering a useful lens through 

which to examine cryptocurrency market linkages. 

Research examining interconnectedness within cryptocurrency markets generally provides 

evidence of return and volatility spillovers across major cryptocurrencies. Before 2017, 

Bitcoin’s price dynamics appeared relatively isolated, with limited interaction with other 

cryptocurrencies (Zięba et al., 2019). However, Kumar and Anandarao (2019) found that 

spillover effects strengthened substantially after 2017 and were further amplified following 

major market events such as Chinese regulatory interventions and the creation of Bitcoin 

Cash in 2018 (Zeng et al., 2020; Karimi et al., 2023). The later studies suggest a high level of 

co-movement and contagion within the market, indicating that shocks in one cryptocurrency 

can rapidly transmit to others (Corbet et al., 2018b; Tiwari et al., 2020; Shahzad et al., 2021). 

More recent findings indicate that Ethereum has increasingly assumed a leading role as a 

transmitter of volatility within the cryptocurrency network, frequently driving spillover 

effects across the market (Kumar et al., 2022). Interestingly, smaller-capitalisation 

cryptocurrencies have also been shown to exert influence on major cryptocurrencies (Huynh 
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et al., 2020), suggesting a non-hierarchical and evolving dependency structure within the 

cryptocurrency network. However, the degree of interconnectedness among cryptocurrencies 

is not consistent across studies. Some evidence indicates that major cryptocurrencies exhibit 

weak correlations and lack a common long-run trend (Gil-Alana et al., 2020; Kostika & 

Laopodis, 2020), and no clear lead–lag relationship between Bitcoin and Ethereum has been 

identified during certain periods (Sifat et al., 2019). Consequently, an increasing number of 

scholars recognise that cryptocurrency connectedness is time-varying, strengthening during 

periods of market stress and weakening in calmer market conditions (Antonakakis et al., 2019; 

Aslanidis et al., 2019). 

Studies exploring the linkages between cryptocurrencies and traditional financial assets 

present mixed evidence (Adelopo & Luo, 2025). Kalyvas et al. (2021) identified positive 

return co-movements between cryptocurrencies and technology or clean energy indices, 

especially when market sentiment strengthens. Spillover effects from cryptocurrencies to 

commodities and equity markets have also been documented, with Bitcoin influencing 

precious metals, equities, and certain currency markets (Kurka, 2019; Rehman, 2020; Elsayed 

et al., 2022). Evidence further shows that cryptocurrencies can both transmit and receive 

information flows from global markets. For example, the US oil index acts primarily as a 

spillover recipient, whereas the European oil index serves as a source of information to the 

cryptocurrency market (Huynh et al., 2022). However, other studies characterise 

cryptocurrencies as relatively segmented from traditional financial markets. For example, 

Aslanidis et al. (2019) reported weak or insignificant correlations between cryptocurrencies 

and conventional assets, including bonds, equities, gold, and broad financial indices. No 

cointegration relationship has been identified in many cases (Corbet et al., 2018b; Gil-Alana 

et al., 2020), supporting the view that the cryptocurrency may serve as a potential 

diversification instrument, particularly for commodity risk (Milunovich, 2018; Giudici & 

Abu-Hashish, 2019; Huynh et al., 2024).  

Beyond market efficiency, liquidity, and interconnectedness, several other research directions 

have contributed to a broader understanding of the cryptocurrency market. A widely 

established finding is that cryptocurrencies exhibit pronounced volatility (Cheung et al., 2015; 

Wu et al., 2022), with substantial heterogeneity across cryptocurrencies in terms of return 

behaviour, regime dynamics, and sensitivity to external shocks (Bejaoui et al., 2020), 

particularly during periods of geopolitical tension or major news events (Aysan et al., 2019; 

Katsiampa, 2019b; Cheng & Yen, 2020). Building on this, scholars have sought to explain 
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and predict return patterns in the cryptocurrency market. Evidence shows that various 

measures of market uncertainty and risk, such as economic policy uncertainty (Demir et al., 

2018; Cheng & Yen, 2020), volatility indices (Panagiotidis et al., 2019), and size and reversal 

factors (Shen et al., 2020), offer greater explanatory and predictive power than traditional 

asset-pricing models. There is also evidence that simple price-based indicators, including 

previous closing prices and recent high prices, possess predictive power for future returns 

(Yang & Zhao, 2021). These return dynamics have been linked to speculative behaviour, with 

several studies documenting the presence of price bubbles in the cryptocurrency market, 

reinforcing the view that price formation is often driven by speculation rather than 

fundamentals (Phillips et al., 2011, 2015b; Baek & Elbeck, 2015; Corbet et al., 2018a; Fry, 

2018; Hafner, 2020). What is more, some studies have examined the investment properties of 

cryptocurrencies. Findings suggest that they may provide diversification benefits relative to 

traditional financial assets (Corbet et al., 2018b; Giudici & Abu-Hashish, 2019; Kurka, 2019; 

Gil-Alana et al., 2020), particularly for cryptocurrencies with higher market capitalisation and 

liquidity (Wang et al., 2019). In certain cases, Bitcoin has also demonstrated hedging 

capabilities against geopolitical risk (Aysan et al., 2019; Kurka, 2019) and inflation 

expectations (Blau et al., 2021). 

Despite significant progress in understanding the financial characteristics of the 

cryptocurrency market, one critical dimension remains notably underexplored: the impact of 

hacking events on market functioning. Unlike traditional financial systems, cryptocurrency 

trading operates under a decentralised and irreversible structure with weak regulatory 

oversight and limited investor protection, rendering the market highly vulnerable to security 

breaches and cyberattacks (Corbet et al., 2019a). Once a security breach or theft occurs, the 

stolen assets are typically irretrievable, which can rapidly erode investor confidence and 

trigger spillover effects across tokens and trading platforms (Manahov & Li, 2025a, 2025b). 

As the cryptocurrency market has expanded rapidly, security risks have intensified, 

particularly with the growing frequency of cryptocurrency heists (Barnes, 2018; Gandal et al., 

2018; Corbet et al., 2020a; Corbet, 2021; Chen et al., 2023). These incidents involve hackers 

exploiting vulnerabilities in cryptocurrency exchanges, wallets, and decentralised finance 

(DeFi) platforms to steal large amounts of digital assets. One of the most well-known cases is 

the Mt. Gox exchange theft in 2014. This was the first large-scale hacking attack on a 

cryptocurrency exchange and remains the largest Bitcoin theft suffered by an exchange to 

date. The platform had been losing funds since 2011, but the theft was only discovered in 
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February 2014. Over the years, hackers stole 100,000 Bitcoins from the exchange itself and 

750,000 Bitcoins from its customers. At that time, these Bitcoins were valued at $470 million, 

but today, their value would be approximately $81.3 billion. Shortly after the hack, Mt. Gox 

exchange entered liquidation proceedings (Hunter, 2024). Figure 1.1 shows that since 2021, 

the frequency of cryptocurrency heists has significantly increased, with a particular focus on 

attacks targeting DeFi platforms. For instance, before 2021, the average number of 

cryptocurrency heists per month did not exceed 10. However, since 2021, this figure has 

doubled, reaching an average of 20 cryptocurrency heists per month, with attacks on DeFi 

platforms accounting for more than half of them. In July 2023 alone, the number of 

cryptocurrency heists surged to nearly 50, with almost 30 specifically targeting DeFi 

platforms. To date, hackers have stolen over $12 billion in funds. If hackers were to retain all 

the cryptocurrency they had stolen and cash it out, their wealth would amount to 

approximately $50 billion (Tsihitas, 2025).  

Figure 1.1: Number of cryptocurrency heists between 2011 and 2024  

 

Source: https://www.comparitech.com/crypto/biggest-cryptocurrency-heists/ 

https://www.comparitech.com/crypto/biggest-cryptocurrency-heists/
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During the early stage of my doctoral research, I co-authored a study with one of my 

supervisors that examined how cryptocurrency heists affected the performance of tourism 

tokens (Manahov & Li, 2024). This preliminary work provided the empirical evidence that 

hacking incidents significantly influence investor behaviour within a specific segment of the 

cryptocurrency market. However, as I expanded this study and reviewed the wider literature, 

it became apparent that academic attention to cryptocurrency heists remained limited, 

fragmented, and insufficiently integrated into mainstream discussions of cryptocurrency 

market microstructure. Existing studies predominantly examine market behaviour under 

normal market conditions or during macroeconomic or geopolitical shocks, yet offer limited 

insights into how extreme, endogenous events such as cryptocurrency heists disrupt market 

functioning. These cryptocurrency heists are fundamentally different from external shocks 

because they directly undermine trust in the decentralised financial system and challenge the 

security of the decentralisation system. Existing studies have primarily focused on short-term 

price responses to hacking incidents (Corbet et al., 2020a; Hu et al., 2020; Grobys, 2021; 

Chen et al., 2023; Umar, 2021, 2025), with limited attention to their broader implications for 

market efficiency, liquidity, and the transmission of shocks across cryptocurrencies and 

platforms. A deeper examination of these mechanisms is therefore essential to understand 

how security breaches reshape market functioning and to identify vulnerabilities within the 

cryptocurrency ecosystem. This research gap forms the starting point of this thesis and 

motivates the development of the research agenda explored in the subsequent chapters. 

1.2 Thesis Motivation 

The growing prevalence of cryptocurrency heists has raised questions about how security 

vulnerabilities within decentralised financial ecosystems impact market behaviour. Given that 

cyberattacks have become a frequent occurrence in the cryptocurrency market, understanding 

their effects extends beyond the realm of security concerns, becoming an important issue that 

influences market dynamics, asset pricing, liquidity, and cross-platform spillover effects. 

These incidents provide a unique lens through which we can examine how the cryptocurrency 

market responds to endogenous shocks originating from within the system. However, despite 

the increasing frequency and scale of cryptocurrency heists, there is still limited empirical 

evidence in the academic literature regarding the extent and scope of their impact. This 

research gap highlights the need for a more comprehensive investigation into the financial 

consequences of security breaches in the cryptocurrency market. 
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This thesis focuses on Bitcoin due to its dominant position in the cryptocurrency market, high 

liquidity, and role as a benchmark asset that can better reflect overall cryptocurrency market 

dynamics compared to smaller, less liquid tokens (Antonakakis et al., 2019). Most scholars 

classify Bitcoin as a financial asset rather than a currency. For example, Luther and White 

(2014) argued that Bitcoin’s price instability makes it unsuitable as a payment method. 

Similarly, Yermack (2024) found that Bitcoin fails to fulfil the fundamental functions of a 

currency, namely serving as a medium of exchange, a store of value, and a unit of account. 

Bitcoin’s high volatility introduces significant short-term risks compared to traditional fiat 

currencies. Baek and Elbeck (2015) further contended that Bitcoin is better understood as a 

financial asset, given its speculative nature and price being largely driven by market 

participants rather than intrinsic value. 

Given Bitcoin’s classification as a financial asset, understanding its market efficiency 

becomes particularly important. Market efficiency determines whether asset prices accurately 

reflect all available information, which is essential for price discovery, risk management, and 

investment decision-making (Fama, 1970; Malkiel, 2003). As Corbet et al. (2019a) have 

stated, Bitcoin’s market efficiency has been one of the most widely studied topics in the field 

of cryptocurrency research. Most empirical studies indicate that Bitcoin’s market exhibits 

inefficiencies (Urquhart, 2016; Bariviera, 2017; Alvarez-Ramirez et al., 2018; Al-Yahyaee et 

al., 2018). However, as the market matures through improvements in liquidity, the adoption 

of derivatives, and increased regulatory oversight, the Bitcoin market has the potential to 

become more efficient over time (Brauneis & Mestel, 2018; Wei, 2018; Shanaev et al., 2020; 

Takaishi & Adachi, 2020; Shynkevich, 2021). Therefore, based on the current empirical 

findings, we can infer that Bitcoin’s market efficiency is not fixed but rather evolves in 

response to changes in the external environment. While Bitcoin market efficiency has been 

widely studied, the impact of cryptocurrency heists on its efficiency remains underexplored. 

Analysing Bitcoin’s market efficiency following such incidents can help us better understand 

their effects on market dynamics, providing investors with clearer investment insights while 

offering valuable guidance for regulators in formulating more effective policies to maintain 

market stability. 

Existing literature on Bitcoin’s market efficiency has primarily examined it through the lens 

of the EMH. However, a key limitation of this approach is that it views market efficiency as a 

static concept, assuming that markets are either fully efficient or entirely inefficient, which is 

inconsistent with the constantly evolving market environment and investor behaviour. As 
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previous empirical studies have shown, Bitcoin’s market efficiency varies under different 

market conditions. Therefore, market efficiency should be regarded as a dynamic concept that 

adapts to changing conditions (Lo, 2004). Based on this assumption, it is essential to analyse 

how Bitcoin’s market efficiency evolves before and after cryptocurrency heists from a 

dynamic perspective to provide a more comprehensive assessment of their impact on market 

efficiency. 

If Bitcoin’s market efficiency is affected by cryptocurrency heists, then it is essential to 

further explore the potential driving factors behind these efficiency changes in the context of 

such incidents. Behavioural finance theory (Shleifer, 2000; Barberis & Thaler, 2003) suggests 

that during extreme market incidents, investors may engage in panic-driven trading, 

exacerbating market inefficiencies. Previous studies have shown that investor sentiment plays 

a crucial role during black swan events in financial markets (Fisher & Statman, 2000; 

Zouaoui et al., 2011; Chundakkadan & Nedumparambil, 2022; Hsu & Tang, 2022). It is 

reasonable to hypothesise that sentiment is also a key factor influencing Bitcoin’s market 

efficiency following cryptocurrency heists. Fear-driven or panic-induced emotional reactions 

can exacerbate inefficiencies and prolong market instability. For instance, panic selling may 

lead to excessive volatility and cause prices to deviate from their fundamental values (Baker 

& Ricciardi, 2014; Lal et al., 2024). Additionally, sentiment-driven trading reduces liquidity 

(Chiu et al., 2018; Dunham & Garcia, 2021) as investors hesitate to participate in the market 

during heightened uncertainty, further impairing efficiency. In such an environment, 

misinformation and herd behaviour can spread rapidly, distorting price discovery and 

delaying market stabilisation. Given the significant influence of sentiment on trading 

behaviour, investigating the interaction between price movements and investor sentiment 

during cryptocurrency heists is essential. 

Finally, considering that DeFi has become a crucial component of the cryptocurrency market1, 

it is important to acknowledge that while decentralisation may improve financial efficiency, it 

also introduces significant vulnerabilities to security breaches. In recent years, hacking 

attacks have increasingly targeted DeFi platforms, yet the existing literature has paid limited 

attention to how the DeFi ecosystem responds to such incidents. Therefore, broadening the 

analytical scope beyond Bitcoin is necessary to investigate the potential repercussions of 

cryptocurrency heists on the DeFi ecosystem. The spillover effects posit that when a shock 

 
1 According to data provided by Statista (2025), as of February 2025, DeFi accounts for 3.6% of the total 

cryptocurrency market cap. 
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occurs in one market or asset, it may transmit through channels such as price linkages, capital 

flows, and investor sentiment to other related markets or assets, thereby generating broader 

systemic impacts (Diebold & Yilmaz, 2012). In the DeFi context, although individual 

platforms are technically independent, they are tightly interconnected through shared investor 

bases, similar smart contract protocols, and cross-platform liquidity pools. This structural 

interdependence creates a high potential for contagion effects. When a DeFi platform 

experiences a critical security breach or a large-scale cryptocurrency heist, the resulting 

turmoil may not only cause severe fluctuations in the price of its native DeFi token but also 

undermine investor confidence in the broader DeFi ecosystem. Such fear-driven reactions 

may trigger panic selling and liquidity withdrawals across other DeFi platforms, potentially 

transforming a platform-specific incident into a risk affecting the entire DeFi market. 

Therefore, by analysing how major DeFi heists (i.e. cryptocurrency heists targeting DeFi 

platforms) affect both platform-specific token (DeFi token) performance and the broader 

DeFi market, it could assess whether these incidents generate systemic risks beyond the 

directly affected platforms. Since DeFi operates without traditional financial intermediaries, 

understanding its resilience to security breaches is essential for evaluating its long-term 

sustainability and regulatory needs. 

1.3 Aims and Objectives 

This thesis aims to systematically investigate the impact of cryptocurrency heists on the 

cryptocurrency market, including market efficiency, investor sentiment, and risk contagion 

among different crypto assets. Based on the findings, this thesis will also explore potential 

regulatory measures to mitigate the adverse effects of cryptocurrency heists, thereby 

enhancing market stability and investor confidence, and providing policy guidance for 

building a more secure and sustainable cryptocurrency ecosystem. 

The first study (in Chapter 2) of this thesis examines how cryptocurrency heists influence 

Bitcoin’s market efficiency. Within the Adaptive Market Hypothesis (AMH) framework, this 

chapter analyses the twelve largest cryptocurrency heists (Mt. Gox, Coincheck, KuCoin, 

PancakeBunny, Poly Network, Bitmart, Wormhole, Ronin Network, Beanstalk, Nomad, 

Binance and FTX) and their effects on Bitcoin’s market efficiency. In contrast to the EMH, 

which treats market efficiency as a static concept, the AMH views market efficiency as 

dynamic and evolving in response to external shocks and changes in investor behaviour. 

Therefore, it is more suitable for examining the impact of unexpected incidents such as 
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cryptocurrency heists on Bitcoin’s market efficiency. This chapter uses the permutation 

entropy and the Complexity–entropy causality plane to assess changes in Bitcoin’s market 

efficiency the day before, the day of, and the day after the cryptocurrency heist. The findings 

indicate that Bitcoin’s market efficiency declines significantly on the day of and immediately 

following these cryptocurrency heists, characterised by reduced permutation entropy and 

increased complexity. Furthermore, the chapter reveals that tokens directly targeted by theft 

experience even greater efficiency losses compared to Bitcoin. This suggests that investor 

attention is disproportionately drawn to affected tokens, amplifying their volatility while 

causing a relatively smaller impact on Bitcoin’s efficiency. These results underscore the 

importance of market stability measures and enhanced security protocols to mitigate the 

disruptive effects of cryptocurrency heists. 

The second study (in Chapter 3) of this thesis investigates the bidirectional predictive 

relationship between Bitcoin price and market sentiment in the context of cryptocurrency 

heists from a behavioural finance perspective. Using the Cryptocurrency Fear & Greed Index 

(CFGI) as a proxy for investor sentiment, this study applies a time-varying Granger causality 

test to analyse the predictive relationship between Bitcoin price and sentiment before and 

after the KuCoin exchange heist (large amounts of Bitcoin stolen). The results show that there 

is no statistically significant bidirectional predictive relationship between Bitcoin price and 

CFGI 90 days before the KuCoin exchange heist. However, within 90 days of the KuCoin 

exchange heist, a strong feedback loop emerges, where CFGI fluctuations statistically 

significantly influence Bitcoin price movements and vice versa. This intensified predictive 

relationship suggests that heightened uncertainty amplifies investor reactions, potentially 

creating a cycle of price declines and market panic. Additionally, this chapter finds that the 

bidirectional predictive relationship between Bitcoin price and CFGI does not always hold 

after cryptocurrency heists. Only cryptocurrency heists that directly impact Bitcoin exhibit a 

strong sentiment-price feedback mechanism, whereas those targeting other crypto assets 

display a weaker predictive relationship. This may be attributed to CFGI primarily measuring 

sentiment within the Bitcoin market, making it less reflective of fluctuations in other 

cryptocurrencies. These findings underscore the importance of understanding market 

sentiment dynamics during periods of heightened uncertainty, as they play a crucial role in 

shaping price movements and investor behaviour. Finally, this chapter also employs a TVP-

VAR-based connectedness approach to examine the impact of CFGI volatility during the 

KuCoin exchange heist. The results indicate that CFGI fluctuations have a weaker influence 
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on other cryptocurrencies, such as Ethereum and Binance Coin, than on Bitcoin. This 

suggests that the effects of CFGI volatility remain primarily confined to the Bitcoin market, 

with minimal impact on other cryptocurrency markets during the KuCoin exchange heist. As 

a result, while investors can use CFGI to make short-term trading decisions for Bitcoin 

during Bitcoin-specific heists, its applicability to other cryptocurrencies may be limited. 

Relying solely on CFGI may lead investors with diversified cryptocurrency portfolios to draw 

misleading conclusions, potentially affecting the effectiveness of their investment strategies. 

The third study (in Chapter 4) of this thesis expands the analysis beyond Bitcoin to examine 

the impact of cryptocurrency heists on the DeFi ecosystem. This chapter investigates six 

major DeFi heists in 2022 (Qubit Finance, Ronin Network, Beanstalk, Maiar Exchange, 

Binance and Mango Markets) and their effects on the liquidity of the stolen platforms’ native 

DeFi tokens and overall DeFi market stability. Using low-frequency price impact measures 

(the Amihud illiquidity ratio, the Amivest liquidity ratio, and the Kyle and Obizhaeva 

estimator) and the Quantile VAR model (QVAR model), the analysis reveals that the liquidity 

of stolen platforms’ native DeFi tokens declines sharply after a DeFi heist. At the same time, 

the level of interconnectedness among mainstream DeFi tokens is significantly higher than 

that between the stolen platform’s native DeFi token and mainstream DeFi tokens. This 

indicates that the volatility spillover effect from the stolen platform’s native DeFi token to 

mainstream DeFi tokens is relatively limited. Despite the severe disruption experienced by 

the affected platform, the overall DeFi market has remained relatively stable. However, if 

investor confidence in DeFi security deteriorates, for example in the event of attacks targeting 

DeFi governance mechanisms, market-wide volatility may increase, posing risks to the entire 

DeFi ecosystem. These findings emphasise the importance of robust security measures, 

transparency in crisis management, and continuous improvements in DeFi governance to 

sustain market stability. 

1.4 Contributions and Limitations 

This thesis makes several significant contributions to the literature on cryptocurrency markets, 

particularly in the context of cryptocurrency heists and their broader implications. First, it 

provides a systematic examination of how cryptocurrency heists impact Bitcoin’s market 

efficiency, an area that has remained largely underexplored. While prior studies have 

primarily assessed Bitcoin’s efficiency through the lens of the EMH, this thesis adopts a 

dynamic framework based on the AMH to capture the evolving nature of market efficiency 
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before and after cryptocurrency heists. By employing permutation entropy and Complexity–

entropy causality plane, this thesis empirically demonstrates that Bitcoin’s efficiency 

deteriorates significantly during most cryptocurrency heists. This finding further indicates 

that Bitcoin market efficiency is dynamically changing based on the market conditions, and 

highlights the disruptive impact of security breaches on market stability. 

Changes in investor sentiment can influence investor behaviour, potentially leading to 

fluctuations in market efficiency. Therefore, this thesis further extends its analysis to investor 

sentiment, representing a critical yet underexplored factor in understanding the bidirectional 

predictive relationship between price and sentiment during extreme market incidents. By 

using CFGI to examine the bidirectional predictive relationship between Bitcoin price and 

investor sentiment, this thesis finds that heists targeting Bitcoin amplify the predictive 

relationship between sentiment and Bitcoin price dynamics. The heightened uncertainty 

following such heists strengthens the feedback loop between CFGI fluctuations and Bitcoin 

price movements, creating a cycle of falling prices and rising panic sentiment. However, this 

sentiment-price feedback loop appears to be primarily confined to Bitcoin, with limited 

impact on other major cryptocurrencies. This finding suggests that although the CFGI 

provides useful insights into Bitcoin price movements during crisis incidents, its applicability 

to other cryptocurrencies may be limited. This highlights the importance for investors of not 

relying solely on a single sentiment indicator. Instead, they should take into account the 

differences in construction methodologies and emphasis across various sentiment measures, 

and adopt a more comprehensive approach by combining multiple indicators to capture shifts 

in market sentiment better. 

Another key contribution of this thesis is its expansion of the analysis beyond Bitcoin to the 

DeFi ecosystem, a rapidly growing sector that has increasingly become a target for hacking 

attacks. While existing literature has largely focused on DeFi’s potential, regulation, and risk-

return characteristics, little attention has been given to how security breaches affect its 

liquidity and stability. This thesis fills this gap by investigating major DeFi heists in 2022 and 

their effects on both the liquidity of stolen platforms’ native DeFi tokens and the broader 

DeFi market. The results show that although DeFi platforms are vulnerable to hacking attacks, 

such security risks are often localised in nature. In particular, attacks targeting smaller DeFi 

projects tend to have a limited impact on the broader DeFi ecosystem. However, the results 

also show a high level of connectivity between mainstream DeFi platforms. When 

mainstream DeFi platforms are compromised, the consequences can trigger widespread 
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market contagion. Therefore, to prevent such systemic risks, it is essential to strengthen 

security mechanisms, improve governance structures, and enhance the transparency of crisis 

management. These measures are crucial for reducing the likelihood of DeFi-related attacks 

and maintaining investor confidence in the market. 

In addition to its empirical contributions, this thesis advances academic knowledge in three 

key dimensions. First, it systematically reviews and synthesises major cryptocurrency heists 

and conceptualises such security breaches as internally rooted shocks with externally 

disruptive characteristics. This introduces a novel analytical perspective that differs from 

traditional studies focusing on macroeconomic or policy shocks. By integrating market 

microstructure theory with behavioural finance, the thesis provides a comprehensive 

explanation of how security incidents influence market efficiency, investor sentiment, 

liquidity, and risk transmission mechanisms. Second, this thesis integrates a variety of 

analytical tools in terms of methodology. It not only adopts commonly used event study 

methods, Granger causality tests, and liquidity indicators, but also introduces models and 

methods that are less commonly used in security event analysis. For example, it introduces 

methods such as permutation entropy and the Complexity–entropy causality plane in market 

efficiency analysis to more sensitively capture the dynamic changes in efficiency under the 

impact of security events, thus providing a methodological supplement to the study of market 

reactions under extreme events. Third, this thesis offers new insights into risk transmission by 

uncovering the mechanisms through which security breaches propagate within the DeFi 

ecosystem. By distinguishing between the strong internal interconnectedness of mainstream 

DeFi tokens and the comparatively weaker spillover effects from peripheral DeFi tokens to 

the mainstream, the findings show that project heterogeneity and the presence of mainstream 

DeFi tokens help to localise the impact of hacking incidents and mitigate disruption. 

However, the results also reveal that contagion can intensify when compromised DeFi 

platforms share similar governance mechanisms with other platforms, amplifying market 

reactions. These findings underscore the importance of robust governance frameworks and 

security design for preserving stability in the rapidly evolving DeFi landscape, and they 

deepen our understanding of risk diffusion mechanisms in the DeFi market. 

Despite these contributions, this thesis has several limitations. First, the study focuses on 

selected cryptocurrency heists, meaning that its findings may not be fully generalisable to all 

security breaches within the cryptocurrency market. The selected cases primarily involve 

well-known heists with large-scale thefts, while smaller-scale hacking incidents or internal 
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fraud remain underexplored. Different types, scales, and degrees of cryptocurrency heists 

may also influence market reactions differently, yet they are not comprehensively examined 

in this study. Second, the CFGI presents several methodological constraints. While 

Alternative.me discloses the index’s six components’ weighting scheme, it does not provide 

their underlying numerical values, thereby preventing detailed component-level analysis. As a 

result, it is challenging to determine which factors predominantly drive sentiment fluctuations 

during critical events such as cryptocurrency heists. A valuable direction for future studies 

would be to disentangle the relative contributions of market-based components (e.g., 

volatility and trading volume) and behavioural components (e.g., social media activity and 

search intensity). Doing so would enhance understanding of whether sentiment shifts are 

primarily driven by objective market dynamics or by behavioural responses. Future studies 

could address this limitation by employing sentiment indices that allow component-level 

decomposition or by constructing new sentiment measures capable of isolating heterogeneous 

drivers of market sentiment. 

Thirdly, the study’s analysis of market efficiency is primarily focused on short-term effects, 

examining efficiency changes before, during, and immediately after cryptocurrency heists. 

While this approach captures immediate market disruptions, it does not account for the long-

term recovery process or potential structural changes in market efficiency over time. Future 

studies could extend this analysis by investigating whether efficiency gradually returns to 

pre-heist levels or whether certain inefficiencies persist due to lingering market uncertainty. 

Fourthly, the liquidity analysis of DeFi tokens relies on low-frequency price impact measures, 

which, while useful, may not fully capture real-time liquidity dynamics in decentralised 

markets. Given that DeFi operates through automated market makers (AMMs) rather than 

traditional order books (Mohan, 2022), incorporating high-frequency liquidity indicators 

could offer deeper insights into how liquidity providers respond to security breaches. 

Finally, this thesis does not explicitly consider the role of regulatory responses or institutional 

actions following cryptocurrency heists. Government interventions, such as asset freezes, 

trading suspensions, or legal actions against perpetrators, may significantly influence market 

sentiment and efficiency, but these factors fall outside the scope of this thesis. Moreover, 

cryptocurrency regulation is currently in a state of high complexity and ongoing evolution. 

For example, the European Union has adopted the Markets in Crypto-Assets (MiCA) 

framework to establish a unified regulatory environment. In contrast, the United States 

continues to lack a coherent regulatory system, with different agencies offering conflicting 
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guidance on how to classify and regulate digital assets. China, by comparison, has taken a 

prohibition-based approach. These divergent regulatory paths raise an important question for 

future research: which regulatory model—proactive and harmonised (EU), fragmented yet 

enforcement-driven (US), or prohibitive (China)—is most effective in maintaining market 

stability and protecting investors in the aftermath of major security incidents? As regulatory 

frameworks continue to develop globally, future studies could explore how different 

regulatory responses to security incidents affect market stability and investor confidence. 

Overall, this thesis offers a comprehensive and novel contribution to the understanding of 

how cryptocurrency heists affect market efficiency, investor sentiment, and DeFi market 

stability. By integrating multiple methodological approaches and extending the analysis 

beyond Bitcoin to DeFi, this thesis provides valuable insights for investors, market 

participants, and policymakers seeking to navigate the risks associated with security breaches 

in the cryptocurrency ecosystem. The remainder of this thesis is structured as follows. 

Chapter 2 empirically investigates the impact of cryptocurrency heists on Bitcoin’s market 

efficiency. Using permutation entropy and the Complexity–entropy causality plane within the 

framework of the AMH, it examines how efficiency dynamically evolves before and after 

major hacking incidents. Chapter 2 extends the analysis to investor sentiment, exploring the 

bidirectional predictive relationship between Bitcoin price movements and sentiment during 

security breaches. Employing the time-varying Granger causality test, it provides new 

insights into the sentiment-price feedback loop under extreme market stress. Chapter 4 shifts 

the focus to the DeFi ecosystem, analysing how major DeFi heists affect token liquidity and 

cross-platform contagion using the low-frequency price impact measures and the QVAR 

model. Finally, Chapter 5 concludes the thesis by summarising the main findings, discussing 

their theoretical and practical implications, highlighting limitations, and proposing a clear 

agenda for future studies. 
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Chapter 2 The Impact of Cryptocurrency Heists on Bitcoin’s 

Market Efficiency 

Parts of this chapter have been published in the International Journal of Finance and 

Economics 

2.1 Introduction 

Do cryptocurrency heists affect the market efficiency of the Bitcoin market? This chapter 

examines this substantial risk posed to the Bitcoin market (Krückeberg & Scholz, 2020; 

Lyócsa et al., 2020; Corbet et al., 2020a) by the presence of cryptocurrency hacking incidents 

on the platforms where cryptocurrencies are traded. Cryptocurrency heists have led to more 

than $12 billion in stolen funds. When we account for rising cryptocurrency prices, if hackers 

were to liquidate all stolen cryptocurrencies today, their total wealth would surpass $50 

billion (Tsihitas, 2025). These cryptocurrency heists, which have been increasing in both 

frequency and magnitude, have significantly impacted the cryptocurrency community, 

directly affecting investor trust, shaking market confidence and may cause investors to exit 

the market. 

Bitcoin is the most popular cryptocurrency, but its price has experienced extreme volatility 

since its inception, soaring from one cent to approximately $66,000 in 2021 before dropping 

to $16,000 in early 2023 and substantially increasing to around $100,000 in 2024 

(CoinGecko, 2024). This extreme volatility has altered how people view the function and role 

of Bitcoin, from being a cryptocurrency to being increasingly perceived as a financial asset 

(Yermack, 2024; Baek & Elbeck, 2015; Baur et al., 2018). While Bitcoin and other 

cryptocurrencies have emerged as a new investment sector, their high volatility challenges 

monetary authorities and impacts the financial system. The unique market environment of 

cryptocurrency results in market efficiency dynamics that differ from traditional financial 

assets. For example, the relative immaturity of the cryptocurrency market, with a large 

proportion of retail investors, often leads to decisions driven more by sentiment and 

speculation than by rational analysis (Rudkin et al., 2023; Brini & Lenz, 2024). This market 

immaturity often leads to heightened price volatility. Additionally, because the regulatory 

environment for cryptocurrencies is still developing, the market is particularly vulnerable to 

manipulation and fraud (Eigelshoven et al., 2021). Manipulative practices (e.g. pump-and-

dump schemes) are common in the cryptocurrency market. These activities disrupt normal 
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market operations, preventing prices from accurately reflecting true information. Lastly, the 

rapid development of blockchain technology, while enhancing transparency and information 

dissemination, also introduces instability due to smart contract vulnerabilities and scalability 

challenges (Ghosh et al., 2020; Singh et al., 2021). Therefore, scholars believe that examining 

cryptocurrency’s market efficiency across different contexts is crucial for understanding its 

pricing mechanisms and stability (Naeem et al., 2021a; Aslam et al., 2023). As the frequency 

of cryptocurrency heists increases, understanding their impact on market efficiency is 

essential for investors to adjust strategies and for policymakers to implement effective 

regulations. 

This chapter employs the Adaptive Market Hypothesis (AMH) framework to examine 

Bitcoin’s market efficiency changes during the twelve largest cryptocurrency heists (Mt Gox, 

Coincheck, KuCoin, PancakeBunny, Poly Network, Bitmart, Wormhole, Ronin Network, 

Beanstalk, Nomad, Binance and FTX). As cryptocurrency heists mainly involve multiple 

tokens, this chapter also considers if the token(s) predominantly stolen within cryptocurrency 

heists are explanatory. Adopting an Econophysics approach, this chapter uses permutation 

entropy and Complexity–entropy causality plane to measure Bitcoin’s dynamic market 

efficiency during multiple cryptocurrency heists. The results show that Bitcoin’s market 

efficiency fluctuates over time, with significant drops in permutation entropy during many 

cryptocurrency heists, indicating a decline in efficiency. Furthermore, it also finds that 

different tokens react differently to cryptocurrency heists, with variable market efficiency and 

volatility. Specifically, investors tend to focus more on the token(s) most affected by 

cryptocurrency heists, resulting in greater volatility and more pronounced declines in those 

tokens’ market efficiency. According to AMH, external changes lead to dynamic fluctuations 

in market efficiency. If investors fail to adapt, efficiency declines due to maladaptive 

behaviour. The uncertainty and chaos from a cryptocurrency heist make it hard for investors 

to quickly process and analyse new information, delaying rational decision-making and 

triggering emotional reactions like panic selling or buying. This causes prices to deviate from 

their true price, reducing market efficiency. However, market efficiency may recover as new 

information is gradually absorbed and investors adjust. 

This study is essential for many reasons, including the safety and stability of the Bitcoin 

market, the protection of investors, and perhaps most of all, the scale, growing frequency, and 

increasing magnitude of these hacking incidents. The Bitcoin market relies on trust and 

transparency among participants, and cryptocurrency heists could trigger investor concerns 
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about the security of cryptocurrency platforms, prompting investors to sell off their holdings 

to avoid losses. This fear may lead to a herd effect in the market, amplifying volatility and 

generating further market inefficiency (Bouri et al., 2019; Gurdgiev & O’Loughlin, 2020; 

Raimundo Júnior et al., 2022). Further, some cryptocurrency platforms lack adequate security 

measures to protect customer assets, and the anonymity and irreversibility of cryptocurrency 

transactions make these thefts challenging to trace. This allows cryptocurrency thieves to 

exploit vulnerabilities and steal assets. After a platform suffers an attack, investors often 

struggle to obtain comprehensive details or accurately assess future risks. This uncertainty 

exacerbates information asymmetry, further affecting market efficiency (Barron & Qu, 2014; 

Hu & Prigent, 2019). 

The findings offer important insights for both investors and policymakers. Investors should 

adapt strategies in response to changing external conditions. When the market is disrupted, 

efficiency may temporarily decline, so investors should avoid rigid strategies and instead 

continuously assess market signals and adapt to new environments. During cryptocurrency 

heists, investors could use high-frequency data and automated tools to respond swiftly, 

minimising losses caused by delayed market reactions. Additionally, diversifying holdings 

could reduce individual token volatility, mitigating risks in periods of inefficiency. For 

policymakers, these fluctuations highlight the need for stronger regulatory frameworks. 

Enhancing oversight of cryptocurrency exchanges through higher security standards and 

regular audits could help reduce the risk of cryptocurrency heists. Requiring timely disclosure 

of security breaches will also enable the market to react more quickly, minimising the impact 

of information asymmetry on market efficiency. 

The contribution to the literature is examining cryptocurrency heists and their influence on 

market efficiency. While numerous scholars have explored multiple financial issues within 

the Bitcoin market (Corbet et al. 2019a) and have repeatedly examined Bitcoin and its market 

efficiency, the impact of cryptocurrency heists remains an overlooked area. Recent literature 

on Bitcoin’s market efficiency has focused on specific timeframes (Urquhart, 2016; Bariviera, 

2017; Jiang et al., 2018; Yi et al., 2022) or global crises like the COVID-19 pandemic (El 

Montasser et al., 2022; Kakinaka & Umeno, 2022; Wu et al., 2022). Similarly, the impact of 

launching Bitcoin derivatives (Köchling et al., 2019; Ruan et al., 2021; Shynkevich, 2021; 

Strych, 2022) and altering regulatory frameworks (Alexander & Heck, 2020; Shanaev et al., 

2020) have also been examined. This study contributes to this contemporary literature on the 
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market conditions influencing Bitcoin’s market efficiency by examining the impact of 

cryptocurrency heists. 

This chapter is structured as follows. The second section reviews the literature review, and 

the third discusses the data and methodology. The fourth section reports empirical results, and 

the fifth section provides conclusions and implications for investors and policymakers and 

explores future study directions. 

2.2 Literature Review 

A voluminous literature has examined Bitcoin’s market efficiency. This work can be divided 

into efficiency testing and identifying factors affecting market efficiency. Most efficiency 

tests indicate that Bitcoin’s market is inefficient. However, as the market matures and 

improves in areas like liquidity, derivatives adoption, and government regulation, the Bitcoin 

market may become efficient. 

2.2.1 Bitcoin Market Efficiency Test 

A starting point for testing market efficiency is randomness tests. Urquhart (2016) used daily 

Bitcoin returns as samples and conducted the Ljung–Box, Runs, Bartels, AVR, BDS, and R/S 

Hurst tests. The findings indicated that the Bitcoin market was inefficient between August 1, 

2010, and July 31, 2016. Nadarajah and Chu (2017) conducted the same tests on the odd 

integer powers of Bitcoin returns, providing conflicting results. Tiwari et al. (2018) used 

seven robust long-term dependency estimators to evaluate market efficiency, reporting that 

the Bitcoin market was generally efficient between 2010 and 2017, with some exceptions 

occurring from April to August 2013 and August to November 2016. 

These methods have also examined the causes of Bitcoin market inefficiency. Kang et al. 

(2022) assessed Bitcoin’s market efficiency using the Runs, Durbin–Watson, and variance 

ratio tests after the 2017 price surge and concluded that speculative investment led to market 

inefficiency. Zargar and Kumar (2019) used a series of variance ratio tests and found that 

low-frequency Bitcoin returns followed a memoryless stochastic process from 2013 to 2018, 

indicating market efficiency. However, this result may have been misleading, as high-

frequency traders could gain additional returns over time through speculation. 

The second way to test market efficiency is to examine the multifractal properties of time 

series. For example, Bariviera (2017), Alvarez-Ramirez et al. (2018), and Al-Yahyaee et al. 

(2018) used the Hurst exponent, reporting that between 2011 and 2014, the Hurst exponent 
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was generally above 0.5, indicating a long-term dependence on daily returns and inefficiency 

in the Bitcoin market. Jiang et al. (2018), Takaishi (2018) and Yi et al. (2022) used the 

generalised Hurst exponent and found that from 2010 to 2018, the Bitcoin market exhibited 

long-term dependence, indicating inefficiency. Kakinaka and Umeno (2022) applied the 

asymmetric multifractal detrended fluctuation analysis (A-MFDFA) method and the 

generalised Hurst exponent, and their results showed that following the COVID-19 pandemic, 

market efficiency was strong in the long-term but weak in the short term. This suggests that a 

herd effect operates in the cryptocurrency market during black swan events like pandemics, 

leading to market inefficiency. 

2.2.2 Factors Affecting Bitcoin Market Efficiency 

The above multifractal methods have also been employed to identify factors affecting 

Bitcoin’s market efficiency. Commonly discussed factors include (i) liquidity, referring to 

how easily Bitcoin can be bought and sold; (ii) the impact of derivatives, which could 

improve market efficiency by enhancing liquidity, providing hedging opportunities, and 

improving price discovery; and (iii) regulatory policies, which could offer a stable, 

transparent environment for investors and potentially improve market efficiency. 

Brauneis and Mestel (2018) used the Corwin–Schultz spread estimator, log-market 

capitalisation, turnover ratio, and Amihud illiquidity ratio to examine liquidity. They found 

that as liquidity increased, Bitcoin’s market efficiency improved. Wei (2018) and Takaishi 

and Adachi (2020) also used the Amihud illiquidity ratio and found that Bitcoin’s market 

efficiency improved after 2017. These authors proposed that lower liquidity resulted in fewer 

active traders and slower responses to new information, reducing market efficiency. 

Conversely, more liquid markets attract active traders who can act on new information, 

improving efficiency. Al-Yahyaee et al. (2020) examined the relationships between the 

market transaction value and Bitcoin market value to quantify liquidity, discovering that 

improved liquidity enhanced market efficiency while greater volatility reduced market 

efficiency. 

Multiple studies have also examined the introduction of cryptocurrency derivatives, 

producing some conflicting findings. Köchling et al. (2019) argued that the introduction of 

Bitcoin futures reduced barriers for institutional investors and provided a way to short Bitcoin. 

Their study applied Urquhart’s (2016) methodology to discover that Bitcoin’s market 

efficiency improved after the futures launch. This is important as previous studies have 
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displayed that the participation of institutional investors and short-selling can improve market 

efficiency (Boehmer & Kelley, 2009; Saffi & Sigurdsson, 2011). Shynkevich (2021) 

employed technical analysis and revealed that before the introduction of Bitcoin futures, 

returns were significantly predictable, but technical trading rules became less effective after 

these derivatives were introduced. Distinctly, Ruan et al. (2021) used multifractal detrending 

moving-average cross-correlation analysis and non-linear Granger causality tests, 

demonstrating a strong positive correlation between Bitcoin spot and futures returns, 

indicating that futures improved the spot market’s efficiency. Lastly, Strych (2022) examined 

the effects of margin trading and short selling on Bitcoin’s market efficiency, finding that 

efficiency declined when both were introduced. High levels of market efficiency were also 

recorded when only short selling was allowed, suggesting margin trading was the main 

reason for the decline in efficiency. 

While some cryptocurrency trading platforms, such as Coinbase, actively comply with 

regulatory requirements, many others—including BitMEX and Huobi Global—enable trading 

in largely unregulated environments, particularly in derivatives markets where extreme 

leverage (e.g., 100 × leveraged contracts) is common. Using minute-level data, Alexander 

and Heck (2020) compared price discovery across spot exchanges, perpetual contracts, and 

both regulated and unregulated futures markets to assess the influence of regulatory oversight. 

Their findings indicated that Bitcoin prices on unregulated derivatives exchanges were 

vulnerable to manipulation via high-frequency trading strategies, demonstrating inefficiencies 

in the Bitcoin market. Moreover, their results underscored the need for stronger regulatory 

involvement and harmonised legislative frameworks in cryptocurrency derivatives markets to 

enhance overall market efficiency and stability. Shanaev et al. (2020) used data from 120 

regulatory interventions to examine how cryptocurrency markets responded to changes in 

regulatory oversight. However, they found that announcements concerning anti-money-

laundering measures or foreign exchange controls did not significantly alter market efficiency, 

while notable price reactions occurred only on the announcement day. This suggests that the 

cryptocurrency market exhibits characteristics of weak-form efficiency, where prices adjust 

rapidly to publicly available information but do not fully incorporate all relevant information. 

They also argued that excessive regulatory intervention could hinder the development of the 

cryptocurrency industry. Allowing the market to operate within a more accessible and 

innovation-friendly regulatory environment could, therefore, reduce volatility and enhance 

price stability. 
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2.2.3 Adaptive Market Hypothesis 

Empirical evidence in the literature suggests that market efficiency may vary over time, and 

external changes can drive shifts in efficiency. This implies that market efficiency is not static 

but dynamically evolves in response to environmental conditions. Therefore, the traditional 

Efficient Market Hypothesis (EMH), which categorises markets as simply efficient or 

inefficient, may not adequately explain the observed fluctuations in market efficiency. 

One of the core assumptions of EMH is that investors are fully rational. According to Fama 

(1965), the influence of irrational behaviour is negligible, as it is offset by more rational 

market participants. However, an increasing number of behavioural finance studies have 

shown that irrational behaviour is both persistent and widespread. Phenomena such as the 

Ellsberg Paradox, loss aversion, and probability matching demonstrate that cognitive biases 

are common. Moreover, major financial events such as the dot-com bubble and the subprime 

mortgage crisis further reflect the prominent role of irrationality in financial markets. 

Therefore, rational expectations constitute only one aspect of investor behaviour and cannot 

fully capture all market dynamics. 

In contrast to the assumption of full rationality under the EMH, Simon (1990) proposed the 

theory of bounded rationality. He argued that investors face decision-making costs and stop 

processing information when the marginal benefit equals the marginal cost. As a result, 

investors seek satisfactory rather than optimal decisions. However, critics argue that this 

theory assumes investors already know what the optimal decision is, otherwise, they would 

be unable to assess the value of further optimisation. 

To address this criticism, Lo (2004) contended that investors do not need prior knowledge of 

optimal decisions. Instead, they form heuristics through trial and error. Their decisions 

generate feedback, which in turn influences future behaviour. Sentiment plays a crucial role 

in this feedback process. When investors receive positive feedback, they are likely to retain 

the heuristic; when feedback is negative, they adjust. As market conditions change, 

previously effective heuristics may become obsolete, leading to suboptimal behaviour. Lo 

(2004) referred to such behaviour not as irrationality, but as maladaptation—actions based on 

outdated heuristics in a new environment. 

Building on this perspective, Lo (2004) integrated insights from sociobiology, evolutionary 

psychology, and evolutionary dynamics to propose the Adaptive Market Hypothesis (AMH). 

When market participants fail to adapt to market changes and exhibit maladaptive behaviour, 
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the market becomes inefficient. However, when market participants adjust to new market 

conditions through feedback, their behaviour aligns with the current market environment and 

efficiency returns (Lo, 2004). The adaptive behaviour of market participants does not occur 

independently of market forces but is driven by competition. The current market environment 

is the result of interactions among different participants. Self-interested individuals, 

competition, adaptation, natural selection, and environmental conditions form efficient 

markets (Lo, 2005). 

The AMH not only explains the phenomena addressed by EMH but also accounts for 

behavioural anomalies that EMH cannot. These anomalies are interpreted as maladaptive 

behaviours rather than pure irrationality. As such, the AMH serves as an evolutionary 

alternative to the EMH. It asserts that market efficiency may appear and disappear over time 

as market conditions change. When investors fail to adapt, the market becomes inefficient; 

when they adjust, efficiency is restored. Thus, the predictability of returns emerges and fades 

in a cyclical, environment-driven manner. 

AMH has been examined in multiple studies. Khuntia and Pattanayak (2018) used the 

Dominguez–Lobato conformance and the generalised spectral test in a rolling window to 

account for linear and non-linear correlations in Bitcoin returns from 2010 to 2017. Their 

results showed that market efficiency varied over time, with inefficient markets recorded 

from 2010–2012 and 2013–2014 and efficient markets observed between 2012–2013 and 

2015–2017. These inconsistencies were associated with changes in the external financial 

environment, supporting the AMH. Similarly, Stosic et al. (2019) used the Complexity–

entropy causality plane to find that Bitcoin and other major cryptocurrency markets moved 

between efficient and inefficient states over time. Khursheed et al. (2020) reached similar 

conclusions, adding an automatic portmanteau test to assess Bitcoin’s AMH. These findings 

showed that price movements with linear and non-linear dependencies change over time, 

resulting in market efficiency falling during unstable conditions and market efficiency 

improving when conditions stabilise. Mokni et al. (2024) used the adjusted market 

inefficiency magnitude (AMIM) metric and a quantile regression model to show that 

Bitcoin’s market efficiency fluctuates over time. They also identified how various factors 

influence market efficiency. Specifically, rising global financial stress tends to decrease 

market efficiency, while increased liquidity enhances it. Among the factors considered, 

liquidity appears to be the primary driver of changes in market efficiency. 
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In summary, previous studies have primarily tested for weak efficiency within the Bitcoin 

market. These studies have produced divergent findings, indicating that Bitcoin’s market 

efficiency varies over time (Khursheed et al., 2020). Subsequently, the AMH has been applied 

to explain the dynamic nature of market efficiency, whereby environmental factors influence 

market efficiency. AMH is not a replacement for the EMH but helps to explain its empirical 

variations, offering a better understanding of time-varying efficiency (Patil & Rastogi, 2019; 

Khursheed et al., 2020), with current studies supporting the detection of Bitcoin’s market 

efficiency using this AMH framework (Khuntia & Pattanayak, 2018; Chu et al., 2019; 

Khursheed et al., 2020; Noda, 2021; López-Martín, 2023).  

However, most studies have focused on changes in Bitcoin’s market efficiency within a 

specific timeframe or in the context of global events like the COVID-19 pandemic, while 

neglecting specific events within the cryptocurrency market, such as cryptocurrency heists. 

This oversight may hinder a full understanding of the impact of internal market events on 

Bitcoin’s market efficiency and the vulnerabilities of the cryptocurrency ecosystem. Chawki 

(2022) discussed how cryptocurrencies have become targets for hacking, phishing, malware, 

extortion, and ransomware. The study highlighted the need for market participants to consider 

cryptocurrency security and the importance of developing appropriate regulatory measures. 

Current studies on the effects of cryptocurrency heists primarily centre on cryptocurrency 

market stability (Caporale et al., 2020; Corbet et al., 2020a), with less attention given to 

market efficiency, and the results are mixed. For instance, Krückeberg and Scholz (2020), 

using high-frequency Bitcoin data, identified significant arbitrage opportunities following 

cryptocurrency heists, indicating market inefficiency. In contrast, using daily data, Yousaf et 

al. (2021) found no evidence of herding behaviour during cyberattacks, suggesting high 

market efficiency. These differences may stem from variations in data scope and frequency, 

with high-frequency data potentially offering better insights into the short-term impacts of 

hacker attacks on the market. Moreover, the existing studies have focused only on post-heist 

market efficiency, neglecting to compare efficiency before and after the incident. This gap 

may lead to an incomplete understanding of cryptocurrency heists. By comparing market 

efficiency before and after a cryptocurrency heist, we can better assess the incident’s impact 

and the speed of market recovery. Therefore, this chapter aims to address this gap by 

examining the issue within the AMH framework, contributing to the literature on the impact 

of cryptocurrency heists on market efficiency. 
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2.2.4 Application of the Permutation Entropy Model in Market Efficiency 

Given that the existing literature has systematically examined different methods of testing 

market efficiency in the context of Bitcoin, a further question arises as to how to choose an 

appropriate approach to capture the dynamic evolution of market efficiency under extreme 

shocks. Among the various complexity-based measures, the permutation entropy model 

(Bandt & Pompe, 2002) is particularly suitable, as it effectively distinguishes random noise 

from deterministic structures and has been validated in studies of efficiency in stock, bond, 

and commodity markets. 

The permutation entropy can capture the disorder and complexity within a time series, 

thereby revealing the dynamic changes in the market when it experiences external shocks. 

The underlying idea is that if asset prices follow a random walk hypothesis, converting them 

into a numerical sequence according to specific rules will result in disorder, with entropy 

reaching its maximum value. Conversely, if a relationship exists between past and future 

prices, the numerical sequence will display specific patterns, and entropy will not reach its 

maximum. Thus, calculating the price change entropy relative to the maximum entropy can 

reflect the predictability of the asset and quantify the current market efficiency (Zunino et al., 

2010). 

Zanin et al. (2012) highlighted the potential applications of permutation entropy in economics 

and finance. They argued that assessing market efficiency and development is a central issue 

in economics, and since market indicators’ time series are often the only available objective 

information, they naturally serve as the basis for testing the EMH. In this context, 

permutation entropy can distinguish between deterministic chaos and random noise, and 

through the “forbidden patterns” method (i.e., ordinal patterns that are theoretically possible 

but never observed in the actual series) proposed by Bandt and Pompe (2002), it can uncover 

deterministic structures in financial time series. Empirical evidence shows that the number of 

forbidden patterns in different financial indicators, such as the Dow Jones Index, Nasdaq 

Index, IBM and Boeing stock prices, and the U.S. ten-year Treasury yield, is far greater than 

expected under randomness, and their temporal evolution reveals when markets shift from 

deterministic behaviour to being dominated by noise (Zanin, 2008). 

A growing body of literature further confirms the usefulness of permutation entropy in 

detecting market efficiency. Zunino et al. (2009) compared 32 stock markets and found that 

developed markets exhibit fewer forbidden patterns and higher efficiency, while emerging 
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markets display greater predictability. Building on this idea, Zunino et al. (2010, 2011, 2012) 

introduced the Complexity–entropy causality plane to characterise efficiency in stock, 

commodity, and sovereign bond markets, effectively distinguishing between developed and 

emerging economies. Hou et al. (2017) examined the temporal evolution of permutation 

entropy in the Chinese stock market and found that permutation entropy declined 

significantly during two critical periods, each characterised by a rapid market boom followed 

by several severe crashes. Siokis (2018) employed permutation entropy and the Complexity–

entropy causality plane to investigate the dynamics of informational efficiency in selected 

instruments from the U.S. money, bond, and stock markets around the Great Recession. The 

results revealed that, following the credit crunch and the collapse of Lehman Brothers, the 

efficiency of certain money market instruments decreased markedly, while the efficiency of 

stock market indices and bond market instruments remained relatively high. 

Nevertheless, studies applying permutation entropy to Bitcoin remain limited. Lahmiri et al. 

(2018) found that Bitcoin returns from 2010 to 2017 were not random, indicating low 

efficiency. Sensoy (2019), using high-frequency data from 2013 to 2018, showed that the 

BTC/USD market was more efficient than the BTC/EUR market and that efficiency 

improved after 2016. Fernandes et al. (2022) employed permutation entropy and Fisher 

information to construct the Shannon–Fisher causality plane and analysed five 

cryptocurrencies before and after COVID-19. Their findings revealed high informational 

efficiency across these markets, with prices largely unpredictable. 

In sum, permutation entropy has been widely applied to the study of efficiency across 

different markets and assets. It effectively distinguishes random noise from deterministic 

structure and captures the dynamic evolution of efficiency. Therefore, when examining 

Bitcoin’s market efficiency under cryptocurrency heists, permutation entropy provides a 

suitable and reliable tool to capture the shift in market efficiency. 

2.3 Data and Methodology 

2.3.1 Data Selection and Variable Description 

Alexander and Dakos (2020) reviewed 152 published papers and Social Science Research 

Network (SSRN) discussion papers on cryptocurrency data. Their analysis revealed that over 

80 of these studies had issues related to data selection, including unreliable data sources, the 

use of non-concurrent time series data in multivariate analysis, and reliance on prices that did 
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not reflect actual transaction values. Consequently, they emphasised that discrepancies in data 

sources can lead to inconsistent findings, highlighting the need for scholars to exercise 

caution when selecting cryptocurrency data. Scholars face two challenges when selecting 

Bitcoin data: (i) determining daily prices and (ii) the data source. Vidal-Tomás (2021) found 

differences in the scaling features of Bitcoin returns calculated using closing prices (last price 

on each day), following a Brownian motion, versus weighted prices (the average of the prices 

across the 24-h period), which deviate from this random process. This study noted that 

scholars using closing prices perceive the market as exhibiting weak efficiency, whereas 

those using weighted prices report inefficient market conditions. Therefore, using differently 

calculated daily prices can lead to varying outcomes.  

Additionally, Vidal-Tomás (2022) used the generalised Hurst exponent to analyse main 

cryptocurrency databases’ scaling properties and underlying processes, including USD 

trading platforms (e.g. Coinbase), USD databases, which limit cryptocurrency price 

calculations to USD (e.g. Cryptocompare), and USD (cross-rate) databases, which are 

calculated by converting any non-US dollar cross rate into US dollars using the foreign 

exchange rate (e.g. CoinMarketCap, CoinGecko). All sources reported time series with the 

same underlying characteristics, suggesting that using different sources to calculate a unified 

Bitcoin price does not distort its underlying process. Therefore, the data source had minimal 

impact on Bitcoin’s market efficiency studies. 

In summary, the method used to calculate daily prices significantly impacts the results, while 

the choice of data source has relatively less influence. This chapter chooses Cryptocompare 

as the data source, which uses the closing price as the price proxy. Unlike weighted methods, 

the closing price more accurately reflects actual trading prices. Since cryptocurrency heists 

often happen quickly, typically within minutes or hours, low-frequency data might miss these 

fluctuations. Therefore, this chapter uses Bitcoin’s 1-minute closing price in USD as the 

variable. 

Tsihitas (2025) recorded the twelve largest cryptocurrency heists based on the stolen dollar 

amount. To investigate the impact of these cryptocurrency heists on Bitcoin’s market 

efficiency, this chapter examines the changes in market efficiency on the day before, the day 

of, and the day after each cryptocurrency heist. From a theoretical perspective, in the 

cryptocurrency market, the most pronounced changes in price liquidity typically occur within 

48 to 72 hours following a negative shock (Corbet et al., 2019b; Chu et al., 2019). Moreover, 
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news of cryptocurrency heists spreads rapidly across social media platforms such as Twitter, 

Reddit, and Telegram, enabling investors to react almost immediately after the incident 

(Guégan and Renault, 2021; Naeem et al., 2021b, 2021c). From a practical standpoint, this 

study aims to investigate the short-term direct effects of cryptocurrency heists on the Bitcoin 

market while minimising the influence of longer market fluctuations. A three-day event 

window is well-suited to capturing the impact of the shock while avoiding the introduction of 

noise from unrelated market dynamics, thereby improving the causal interpretation of the 

results. Table 2.1 presents the twelve largest cryptocurrency heists, spanning from 2014 to 

2022, and displays the data range associated with each incident.  

Table 2.2 reports the descriptive statistics of Bitcoin prices during the twelve cryptocurrency 

heists. The results indicate that price fluctuations across these incidents were substantial. For 

example, in the cases of the Bitmart exchange and PancakeBunny platform, the price ranges 

reached $13,757.79 and $10,964.63, respectively, suggesting considerable market turbulence. 

Moreover, the Jarque–Bera (JB) test indicates that Bitcoin prices deviate from normality in 

most cases, characterised by negative skewness and platykurtic kurtosis. This pattern implies 

a higher probability of extreme values in the left tail of the distribution, reflecting an 

increased likelihood of price declines during such incidents. 

Table 2.1: Twelve cryptocurrency heists data range 

Platform  Data range 

Mt Gox February 23, 2014, to February 25, 2014  

Coincheck January 25, 2018, to January 27, 2018 

KuCoin September 24, 2020, to September 26, 2020 

PancakeBunny May 19, 2021, to May 21, 2021 

Poly Network August 9, 2021, to August 11, 2021 

Bitmart December 3, 2021, to December 5, 2021 

Wormhole February 2, 2022, to February 4, 2022  

Ronin Network March 28, 2022, to March 30, 2022 

Beanstalk April 15, 2022, to April 17, 2022 

Nomad August 1, 2022, to August 3, 2022 

Binance October 6, 2022, to October 8, 2022 

FTX November 10, 2022, to November 12, 2022 

Source: https://www.comparitech.com/crypto/biggest-cryptocurrency-heists/  

 

 

https://www.comparitech.com/crypto/biggest-cryptocurrency-heists/


32 
 

Table 2.2: Descriptive statistics of Bitcoin prices in twelve cryptocurrency heists 

Platform Obs Mean S.Dev. Min Max Skew Kurt JB ADF 

Mt Gox 4320 573.76 45.12 450.00 645.64 -0.45 -0.86 280.90*** -2.65 

Coincheck 4320 11186.00 274.12 10334.25 11723.02 -0.73 0.22 394.57*** -2.07 

KuCoin 4320 10617.59 151.40 10223.14 10802.32 -1.22 -0.14 1072.30*** -1.85 

PancakeBunny 4320 39379.49 1786.70 32600.00 43564.63 -0.77 0.49 467.58*** -2.98 

Poly Network 4320 45524.68 878.73 42844.25 46746.73 -1.50 1.32 1923.50*** -2.02 

Bitmart 4320 51350.70 3502.54 43781.92 57539.71 0.52 -1.35 521.40*** -0.94 

Wormhole 4320 37852.60 1163.26 36277.29 41702.14 1.15 0.59 1019.70*** 0.093 

Ronin Network 4320 47372.66 288.08 46674.65 48184.74 0.15 -0.45 52.91*** -3.49** 

Beanstalk 4320 40314.85 171.33 39580.56 40704.14 -0.83 0.72 593.05*** -2.26 

Nomad 4320 23124.10 227.39 22673.61 23605.82 -0.04 -1.35 327.02*** -2.40 

Binance 4320 19803.66 312.85 19276.37 20437.75 0.21 -1.43 399.50*** -3.21* 

FTX 4320 16941.34 399.65 15678.51 18105.93 0.18 0.09 25.99*** -2.96 

The data source is from Cryptocompare; Skew: Skewness, it is a measure of symmetry; Kurt: Kurtosis, it is a 

measure of whether the data are heavy-tailed or light-tailed relative to a normal distribution; JB: Jarque–Bera 

test; ADF: Augmented Dickey–Fuller test; *** At the 1% significance level; ** At the 5% significance level; * 

At the 10% significance level 

The descriptive statistics reveal abnormal distributional characteristics of Bitcoin prices 

around cryptocurrency heists, but do not capture the dynamic process of price changes. To 

address this limitation, Figure 2.1 presents Bitcoin returns before, during, and after each 

cryptocurrency heist, providing a direct view of the market’s price response to these incidents. 

The results show that most cryptocurrency heists were accompanied by sharp fluctuations in 

Bitcoin returns, with the incident day typically marked by pronounced negative returns, 

indicating a broadly adverse market reaction to such extreme shocks. In contrast, the day 

before the incidents generally remained relatively stable, suggesting that cryptocurrency 

heists were largely unexpected rather than anticipated by the market. Post-event dynamics, 

however, reveal heterogeneous patterns: while major incidents such as Mt. Gox exchange, 

Coincheck exchange, and FTX exchange were followed by persistent negative effects and 

slower recovery, other incidents such as PancakeBunny platform or Ronin Network were 

quickly absorbed, with the market stabilising shortly afterwards. These findings highlight 

both the commonality of short-term panic-driven declines and the heterogeneity in impact 

severity. 
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Figure 2.1: Bitcoin returns before, during, and after each cryptocurrency heist 
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While the return figures illustrate the pronounced volatility in Bitcoin prices during 

cryptocurrency heists, such graphical analysis only captures the magnitude of price 

fluctuations and does not address the core question of how market efficiency evolves. The 

essence of market efficiency lies in whether information is rapidly and fully incorporated into 

prices. Hence, it is essential to apply methods that characterise the complexity and correlation 

structures of time series to systematically examine market efficiency and uncover the 

dynamic impact of cryptocurrency heists on Bitcoin’s market efficiency. 

2.3.2 Permutation Entropy Model 

The permutation entropy model is well-suited for analysing the impact of cryptocurrency 

heists on Bitcoin’s market efficiency. Its advantage is its high sensitivity to small changes 

within a time series (Zanin et al., 2012). Cryptocurrency market often exhibits rapid price 

fluctuations and behavioural changes when subjected to external shocks, such as 

cryptocurrency heists (Corbet et al., 2019b; Bhatnagar et al., 2023). Permutation entropy can 

capture these short-term fluctuations and disorders, reflecting the immediate market 

efficiency changes. If the Bitcoin market quickly absorbs the information and stabilises after 

a cryptocurrency heist, permutation entropy should be high, indicating that the market 

remains efficient. Conversely, if permutation entropy remains low for an extended period, 

indicating that market price changes are highly predictable, it suggests that market efficiency 

has been negatively impacted. Therefore, the permutation entropy model directly quantifies 

the changes in market efficiency before and after such events. 

Furthermore, the permutation entropy model does not rely on any specific probability 

distribution of the time series (Darbellay & Wuertz, 2000). The cryptocurrency market often 

exhibits complex and nonlinear behaviours, where price movements may not follow standard 

statistical distributions. The permutation entropy model provides the flexibility to measure 

market disorder and efficiency changes without assuming any particular distribution. 

Finally, since this chapter uses Bitcoin’s 1-minute price data as the variable, and the 

permutation entropy model is more effective at distinguishing time series when using prices 

rather than returns, it can be applied to non-stationary processes without the need to assess 

time series stationarity (Stosic et al., 2019). This means that when analysing the 

cryptocurrency market, there is no need for stationarity preprocessing (e.g. differencing or 

detrending), and we can directly apply permutation entropy to evaluate market disorder. This 

is particularly important for the rapidly changing cryptocurrency market, as it allows us to 
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capture the true dynamics of the market without being constrained by data preprocessing 

steps. 

Following Bandt and Pompe (2002), the permutation entropy under the embedding dimension 

𝑛 (𝑛 ≥  2) is as follows: 

𝐻(𝑛) =  − ∑ 𝑝(𝜋)𝑙𝑜𝑔𝑝(𝜋) (1) 

where 𝐻(𝑛) is the permutation entropy under the embedding dimension 𝑛, the factorial of 𝑛 

should be less than the number of samples. The value of the embedded dimension 𝑛 does not 

affect the trend of the permutation entropy. 𝑝(𝜋) represents the probability of occurrence of 

each permutation. As usual, the 𝑙𝑜𝑔 is base 2. 

Bandt and Pompe (2002) gave an example to explain how the model works. There is a 1-

dimensional time series dataset 𝑆(𝑡): 

𝑆(𝑡) = {4, 7, 9, 10, 6, 11, 3} (2) 

Because the factorial of 𝑛 should be less than the data point (there are 7 data points in the 

dataset 𝑆(𝑡)), 𝑛 can be 2 or 3. Using 𝑛 = 3, 𝑆(𝑡) will be divided into overlapping column 

vector matrix as follows: 

[
4 7 9
7 9 10
9 10 6

    
10 6
6 11

11 3
] (3) 

To show the ordinal rankings of the data, an 𝑛-dimensional vector can be mapped into unique 

permutations 𝜋: 

𝜋 = {0, 1, 2, ⋯ n − 1} (4) 

There are a total of six different possible permutations 𝜋 of a 3-dimensional vector: 𝜋1 =

{0, 1, 2}, 𝜋2 = {0, 2, 1}, 𝜋3 = {1, 0, 2}, 𝜋4 = {1 2, 0}, 𝜋5 = {2, 1, 0}, and 𝜋6 = {2, 0, 1}. For 

the column vector [
4
7
9

], we have 𝑥0 = 4, 𝑥1 = 7, and 𝑥2 = 9. Since 𝑥0 < 𝑥1 < 𝑥2, this column 

can be represented by the permutation 𝜋1 = {0, 1, 2}. For the column vector [
9

10
6

], with 𝑥0 =

9, 𝑥1 = 10, and 𝑥2 = 6, the order 𝑥2 < 𝑥0 < 𝑥1 corresponds to the permutation 𝜋6 = {2, 0, 1}. 

Thus, the matrix (3) can be represented as follows: 
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[
0 0 2
1 1 0
2 2 1

    
1 2
0 0
2 1

] (5) 

The probabilities of occurrence of each permutation 𝜋 are as follows: 𝑝(𝜋1) = 2/5, 𝑝(𝜋2) =

0 , 𝑝(𝜋3) = 1/5 , 𝑝(𝜋4) = 0 , 𝑝(𝜋5) = 0 , and 𝑝(𝜋6) = 2/5 . Therefore, the permutation 

entropy under the embedding dimension (𝑛) 3 is:  

𝐻(3) =  − (
2

5
) log2 (

2

5
) − (

1

5
) log2 (

1

5
) − (

2

5
) log2 (

2

5
) ≈ 1.522 (6) 

If the following number can be accurately predicted from the previous one, 𝑝(𝜋) will be 1, 

resulting in 𝐻(𝑛)  being 0, indicating an inefficient market. Conversely, if there is no 

relationship between the numbers, permutation entropy will be higher. Hence, the greater the 

permutation entropy, the more efficient the market. This chapter normalises the permutation 

entropy model to confine its results within the 0 to 1 range. The normalised permutation 

entropy model can be written as: 

𝐻𝑠[𝑛] = 𝐻[𝑛]/𝑙𝑜𝑔𝑛! (7) 

where 𝐻𝑠[𝑛] represents the normalised permutation entropy under the embedding dimension 

𝑛. If 𝐻𝑠[𝑛] equals 1, it signifies an efficient market. Conversely, if 𝐻𝑠[𝑛] equals 0, it indicates 

an inefficient market. 𝐻𝑠[𝑛] equals the permutation entropy 𝐻[𝑛] divided by the maximum 

value of permutation entropy 𝑙𝑜𝑔𝑛!, and the 𝑙𝑜𝑔 is base 2. 

2.3.3 Complexity–Entropy Causality Plane 

Although permutation entropy can assess the complexity of time series data, it does not 

account for its correlation structure. Additionally, the permutation entropy model cannot 

distinguish between varying degrees of periodicity and chaos or reveal information about 

probability distributions. The Complexity–entropy causality plane (Lamberti et al., 2004) 

addresses these issues with two parameters that reveal complementary information about a 

time series: (i) normalised permutation entropy measures a process’s unpredictability, while 

(ii) Jensen–Shannon statistical complexity assesses the extent of privileged fluctuations for a 

given entropy level. Calculating these two quantities provides insights into the distribution of 

fluctuation patterns and the degree of correlation between these fluctuations (Zunino et al., 

2010). The Jensen–Shannon statistical complexity 𝐶𝐽𝑆[𝑛] can be shown as: 
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𝐶𝐽𝑆[𝑛] = 𝑄𝑗[𝑛, 𝑛𝑒]𝐻𝑠[𝑛]

𝑄𝑗[𝑛, 𝑛𝑒] = 𝑄0 {𝐻 [
(𝑛 + 𝑛𝑒)

2
] −

𝐻[𝑛]

2
−

𝐻[𝑛𝑒]

2
}

(8) 

where 𝑄𝑗[𝑛, 𝑛𝑒] is a measure of disequilibrium and 𝑄𝑗[𝑛, 𝑛𝑒] ∈ [0,1]. 𝑄0 is a normalisation 

constant, which equals the inverse of the maximum possible value of {𝐻[(𝑛 + 𝑛𝑒)/2] −

𝐻[𝑛]/2 − 𝐻[𝑛𝑒]/2} . 𝑛𝑒 = {1/𝑛!, ⋯ ,1/𝑛!}  is the uniform distribution. 𝐶𝐽𝑆[𝑛]  captures the 

fundamental dynamics and differentiates between varying degrees of periodicity and chaos. It 

offers valuable insights into the characteristics of the underlying probability distribution, with 

𝐶𝐽𝑆[𝑛] ranging from 0 to 1. Based on the range constraints of 𝐻𝑠[𝑛] and 𝐶𝐽𝑆[𝑛], we can plot 

the Complexity–entropy causality plane (Figure 2.2). 

Based on the work of Zunino et al. (2010), the Complexity–entropy causality plane provides 

a model-independent diagnostic tool that overcomes the limitations of traditional approaches. 

Jensen–Shannon statistical complexity is not a simple function of entropy; rather, it is derived 

from the divergence between the system’s actual distribution and the uniform distribution, 

thereby capturing non-randomness and revealing the presence of “privileged states” or 

“ordered structures” within the series. In contrast, variance-based or GARCH-type models 

can capture changes in volatility and correlation structures but cannot reflect the degree of 

organisation in the underlying probability distribution. Therefore, Jensen–Shannon statistical 

complexity can distinguish randomness, correlations, and structural patterns within a unified 

framework, which information that conventional indicators such as GARCH or the Hurst 

exponent are unable to provide. 
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Figure 2.2: The Complexity–entropy causality plane 

 

The market efficiency at a certain time can be plotted on this plane by the coordinates of normalised 

permutation entropy (X-axis) and Jensen-Shannon statistical complexity (Y-axis). The X-axis measures 

unpredictability in the market, while the Y-axis measures complexity. If the coordinates are closer to the lower 

right, it indicates higher entropy, lower complexity, and high market efficiency. Conversely, if the coordinates 

are closer to the upper left, it suggests lower entropy, higher complexity, and lower market efficiency. 

According to the EMH, efficient markets should correspond to higher entropy and lower 

complexity (Zanin et al., 2012). When specific temporal patterns exist in a series, its position 

will deviate from the ideal point associated with a completely random process. Thus, the 

extent of deviation from this ideal point can be used to measure market inefficiency. The 

empirical findings of Zunino et al. (2010) demonstrated that the Complexity–entropy 

causality plane can robustly differentiate between developed and emerging markets. 

Developed markets cluster near the ideal random position (high entropy, low complexity), 

whereas emerging markets exhibit lower entropy and higher complexity, reflecting stronger 

long-range correlations and fat-tailed distributions. This suggests that the level of market 

development is closely aligned with its position on the plane, forming a downward trajectory 

from the upper left to the lower right. Such a trajectory not only reveals the evolutionary path 

from inefficient to efficient markets but also indicates that inefficiency primarily stems from 

correlations rather than distributional features alone. 
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Overall, the Complexity–entropy causality plane offers a visual representation of market 

conditions, enabling an intuitive assessment of the market’s current state and its response to 

external shocks based on positioning points on the plane. Positions in the lower right denote 

an efficient market characterised by high entropy and low complexity, indicating high market 

efficiency. Conversely, positions in the upper left signify an inefficient market with low 

entropy and high complexity, suggesting the presence of predictable patterns and reduced 

efficiency. By observing how points on the plane shift over time, especially before and after 

cryptocurrency heists, we can visually track changes in market efficiency. 

2.4 Empirical Results 

2.4.1 Detection of Bitcoin’s Market Efficiency 

Since the calculation of permutation entropy and complexity does not require differencing or 

detrending, the raw 1-minute Bitcoin price data are used directly. The dataset is divided into 

consecutive non-overlapping hourly windows (e.g., 00:00–00:59, 01:00–01:59). For each 

window, all 1-minute observations within the hour are retained, and permutation entropy and 

complexity of that hour are calculated based on the resulting sequence. This approach allows 

us to capture the information dynamics at the hourly level.  

Figure 2.3 presents the Complexity–entropy causality plane (sub-figures a.1, b.1, c.1, …) and 

permutation entropy changes (sub-figures a.2, b.2, c.2, …) for twelve cryptocurrency heists. 

Permutation entropy is calculated with an embedding dimension of 3. In the Complexity–

entropy causality plane, the red dots represent the hourly distribution of Bitcoin’s market 

efficiency the day before the cryptocurrency heist, green squares represent the day of the 

cryptocurrency heist, and blue triangles represent the day after. Points closer to the upper left 

corner indicate lower market efficiency, while those near the lower right corner indicate 

higher efficiency. The permutation entropy figure illustrates the level of disorder in the 

Bitcoin market on the day before (red), the day of (green), and the day after the 

cryptocurrency heist (blue). A higher permutation entropy signifies greater disorder, while a 

lower value indicates less disorder. The results show that Bitcoin’s market efficiency 

fluctuated before, during, and after these cryptocurrency heists, aligning with the AMH, 

which suggests market efficiency changes in response to external events. 

In most cases during and after cryptocurrency heists, the complexity–entropy points are 

located in the upper left corner, indicating high complexity and low permutation entropy, 
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signalling low market efficiency. This supports AMH: investor sentiment and behavioural 

inadaptability could temporarily weaken price discovery and lower market efficiency during 

shocks like cryptocurrency heists. In the nine cryptocurrency heists, including Coincheck 

(Figure 2.3 b.2), KuCoin (Figure 2.3 c.2), Poly Network (Figure 2.3 e.2), Bitmart (Figure 2.3 

f.2), Wormhole (Figure 2.3 g.2), Beanstalk (Figure 2.3 i.2), Nomad (Figure 2.3 j.2), Binance 

(Figure 2.3 k.2), and FTX (Figure 2.3 l.2), Bitcoin’s permutation entropy dropped 

significantly during or after the cryptocurrency heists, showing a sharp decline in efficiency. 

In the six cryptocurrency heists (Coincheck, Poly Network, Bitmart, Wormhole, Nomad, and 

Binance), this drop was particularly evident during the cryptocurrency heists, reflecting the 

maladaptive behaviours of investors when faced with significant uncertainties and the 

asymmetry of market information. 

According to AMH, market efficiency fluctuates in response to shocks as investors fail to 

adapt to changing environments. When a cryptocurrency heist occurs, the sudden uncertainty 

and chaos make it difficult for investors to quickly process, understand, and analyse the new 

information related to the incident. This delay in information processing hinders investors 

from making rational decisions, often leading to emotional reactions like panic selling or 

buying, causing prices to deviate from their true price and further declining market efficiency. 

As the market gradually absorbs the information and investors adapt to the new environment, 

efficiency may recover. The findings highlight the dynamic nature of market adaptation and 

the significant impact that cryptocurrency heists have on investor behaviour and market 

mechanisms. 
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Figure 2.3: The Complexity–entropy causality plane and permutation entropy for the twelve 

cryptocurrency heists 
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In sub-figures a.1, b.1, c.1, …, coordinates located closer to the lower right corner indicate higher entropy, lower 

complexity, and thus higher market efficiency, whereas those positioned closer to the upper left corner reflect 

lower entropy, higher complexity, and lower market efficiency. In sub-figures a.2, b.2, c.2, …, higher 

permutation entropy corresponds to higher levels of market efficiency. 

Notably, the Complexity–entropy causality plane for the Mt. Gox exchange heist (Figure 2.3 

a.1) differs from other incidents. After the Mt. Gox exchange heist, most complexity–entropy 
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points shifted to the lower left corner, and permutation entropy (Figure 2.3 a.2) dropped to 

zero for 19 hours over three days, indicating a severe decline in market efficiency. As the 

world’s largest Bitcoin exchange at the time, the Mt. Gox exchange heist resulted in the loss 

of approximately $450 million in Bitcoin, around 7% of the global Bitcoin supply. This 

incident triggered market panic, leading to mass sell-offs and significant price volatility. 

AMH highlights that market efficiency fluctuates as participants adapt to shocks. The Mt. 

Gox exchange heist, being the first large-scale hacking incident, disrupted the usual 

information-processing mechanisms. Investor panic and emotional reactions caused 

information transmission and price discovery to fail, leading to a sharp decline in market 

efficiency. Over time, the market may readjust and recover, but the initial drop in efficiency 

aligns with the dynamic efficiency characteristics outlined in AMH. 

Moreover, Bitcoin’s market efficiency did not significantly decrease during or after the 

PancakeBunny platform and Ronin Network heists. This may be because investors focused 

more on the tokens directly affected during these heists. In the PancakeBunny platform heist, 

hackers manipulated Binance Coin to steal approximately $200 million, while in the Ronin 

Network heist, they stole 173,600 Ethereum, totalling $620 million (Tsihitas, 2025). 

Subsequently, this chapter examines whether investors will pay more attention to Binance 

Coin and Ethereum than Bitcoin during these two cryptocurrency heists. This chapter collects 

1-minute price data for Binance Coin and Ethereum from Cryptocompare and calculates their 

hourly permutation entropy. Figure 2.4 shows that the permutation entropy of Binance Coin 

and Ethereum fluctuated and dropped significantly during and after these two cryptocurrency 

heists. 

While such cryptocurrency heists can affect the market efficiency of cryptocurrency markets, 

this impact varies across different tokens. For example, Ethereum was the most affected 

token in the Ronin Network heist; hence, its market efficiency changed significantly as 

investors focused more on the directly impacted tokens and adjusted their holdings 

accordingly. In contrast, although Bitcoin’s market efficiency also fluctuated during this heist, 

its volatility was much lower than that observed in the Ethereum market. 
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Figure 2.4: The permutation entropy of Binance Coin in PancakeBunny platform heist and 

Ethereum in Ronin Network heist 

 

 

Permutation entropy is calculated with an embedding dimension of 3. The sub-figures (a) and (b) illustrates the 

level of disorder in the Binance Coin and Ethereum market on the day before (red), the day of (green), and the 

day after the heist (blue). The higher the permutation entropy, the higher the market efficiency. 
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In summary, Bitcoin’s market efficiency in the context of cryptocurrency heists is not static 

but fluctuates over time, consistent with previous findings (Lahmiri et al., 2018; Sensoy, 2019; 

Stosic et al., 2019; Fernandes et al., 2022). During or after most cryptocurrency heists, 

permutation entropy significantly declines, signalling a drop in market efficiency. However, 

in some cases, Bitcoin is less impacted as investors focus on the most affected tokens rather 

than Bitcoin, leading to a smaller decline in efficiency. Investors should adapt their strategies 

flexibly, avoid rigid approaches, and respond swiftly to external shocks based on market 

signals. Using high-frequency data makes it possible to promptly detect sudden shifts in 

investor sentiment and abnormal price fluctuations, providing early warning signals during 

periods of severe market turbulence and enabling investors to adjust their trading strategies 

swiftly, thereby managing losses or seizing opportunities more effectively under extreme 

shocks. At the same time, automated trading tools could execute buy and sell orders within 

milliseconds, quickly stopping losses or taking profits. Such strategies could also be 

automatically triggered to prevent investors from making suboptimal decisions during periods 

of panic, thereby helping to mitigate losses in times of large market fluctuations. Diversifying 

token holdings could also reduce the risks associated with the volatility of individual tokens, 

and by closely monitoring the most affected tokens, investors could better navigate 

fluctuations in market efficiency. 

For policymakers, these fluctuations in market efficiency underscore the need for targeted 

regulatory frameworks. Increasing oversight of cryptocurrency exchanges, enforcing stricter 

security standards, and conducting regular audits could help reduce the risk of cryptocurrency 

heists. Additionally, requiring exchanges to promptly disclose security breaches and heist 

incidents would allow the market to respond more quickly, minimising the impact of 

information asymmetry on market efficiency. Maintaining efficient market conditions is 

essential for preserving investor confidence, liquidity, and stable price discovery in the 

cryptocurrency market. Several jurisdictions have already taken steps in this direction. For 

instance, the European Union’s Markets in Crypto–Assets (MiCA) regulation mandates 

crypto service providers to meet security, transparency, and reporting standards, thereby 

reducing the risk of theft and improving market response to such events (Donnelly et al., 

2024; Wronka, 2024). Similarly, following the Coincheck exchange heist, Japan’s Financial 

Services Agency (2022) implemented stricter regulations requiring asset segregation and 

routine third-party audits for crypto exchanges, ensuring higher operational integrity. 
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Incorporating such practices globally could help build a more secure cryptocurrency 

ecosystem. 

2.4.2 Robustness Checks 

To ensure the robustness of the results, this chapter uses six classical randomness tests to 

assess Bitcoin’s market efficiency during cryptocurrency heists. These include the Hurst 

exponent (Hurst, 1951), the Ljung–Box test (Ljung & Box, 1978), the Runs test (Wald & 

Wolfowitz, 1940), the Bartels test (Bartels, 1982), the Variance Ratio (VR) test (Lo & 

MacKinlay, 1988), and the BDS test (Broock et al., 1996). Although these tests are typically 

used within the framework of the EMH, they are applied here as methodological tools to 

detect deviations from randomness. The AMH does not reject the concept of market 

efficiency but instead conceptualises it as an evolving condition. Therefore, while grounded 

in EMH, the results of these tests can still provide complementary insights into the time-

varying nature of market efficiency as proposed under the AMH framework. 

The Hurst exponent measures the long-term memory of a time series, ranging from 0 to 1. A 

value above 0.5 suggests a positive long-term memory, below 0.5 indicates a negative long-

term memory, and precisely 0.5 implies a random walk. The Ljung–Box test checks for serial 

correlation in the data, with the null hypothesis being no autocorrelation. The Runs test is a 

non-parametric test method for detecting the independence or randomness of a time series, 

and its null hypothesis is that the samples in the data set are random. The Bartels and VR tests 

detect whether the time series is a random walk. Their null hypothesis is that the time series is 

a random walk. The BDS test is a non-parametric statistical method that evaluates whether a 

time series exhibits autocorrelation or nonlinear correlation, assuming the null hypothesis that 

the series is independently and identically distributed. 

Table 2.3 presents the p-value results of six randomness tests. Except for the VR test, which 

shows that the Bitcoin market is efficient during some cryptocurrency heists, the other five 

tests all indicate that it is inefficient during these cryptocurrency heists. These robustness test 

results align with the previous findings from the permutation entropy model and the 

Complexity–entropy causality plane. 
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Table 2.3: p-value results of six randomness tests in twelve cryptocurrency heists 

Platform Hurst exponent Ljung–Box test Runs test Bartels test VR test BDS test 

Mt Gox 0.54 0.00 0.00 0.00 0.00 0.00 

Coincheck 0.59 0.00 0.00 0.00 0.00 0.00 

KuCoin 0.49 0.00 0.00 0.00 0.00 0.00 

PancakeBunny 0.59 0.00 0.00 0.00 0.19 0.00 

Poly Network 0.52 0.00 0.00 0.00 0.00 0.00 

Bitmart 0.61 0.00 0.00 0.00 0.82 0.00 

Wormhole 0.44 0.00 0.00 0.00 0.05 0.00 

Ronin Network 0.47 0.00 0.00 0.00 0.00 0.00 

Beanstalk 0.60 0.00 0.00 0.00 0.22 0.00 

Nomad 0.49 0.00 0.00 0.00 0.39 0.00 

Binance 0.56 0.00 0.00 0.00 0.20 0.00 

FTX 0.53 0.00 0.00 0.00 0.01 0.00 

Before conducting the robustness tests, the data are subjected to necessary preprocessing procedures. 

Specifically, Bitcoin returns are calculated as 𝑅𝑡 = Ln[(𝑃𝑡)/(𝑃𝑡 − 1)] × 100, and the first differences are tested 

for stationarity using the Augmented Dickey–Fuller (ADF) test. 

2.5 Conclusion 

This chapter delves into the impact of cryptocurrency heists on the efficiency of the Bitcoin 

market. The analysis of permutation entropy and the Complexity–entropy causality plane 

reveals a significant reduction in market efficiency during most cryptocurrency heists. 

According to AMH, market efficiency fluctuates in response to shocks, as investors struggle 

to adapt to changing environments. The sudden uncertainty and chaos following a 

cryptocurrency heist make it challenging for investors to process, understand, and analyse the 

new information related to the incident. This delay in information processing impedes 

investors from making suitable decisions, often leading to sentiment reactions like panic 

selling or buying, causing prices to deviate from their true price and further declining market 

efficiency. This chapter also reports instances of cryptocurrency heists where Bitcoin’s 

market efficiency does not decrease significantly. This suggests that investors may 

concentrate on the most impacted tokens when analysing specific incidents. Different tokens 

may respond differently to cryptocurrency heists, so investors should recognise that market 

efficiency and volatility vary among tokens. 

The findings provide valuable insights for investors to refine their investment and risk 

management strategies. For instance, they should adapt their strategies flexibly and respond 

quickly to external shocks based on market signals. By using high-frequency data and 
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automated tools, investors could mitigate losses during periods of significant market volatility. 

The results also underscore the importance of distinguishing between different tokens, as they 

may react differently to cryptocurrency heists. Investors need to recognise that the volatility 

and efficiency of each token vary, and their investment strategies should be adjusted 

accordingly. Diversifying token holdings could help reduce the risks associated with the 

fluctuations of individual tokens, and by closely monitoring the most affected tokens, 

investors could better navigate changes in market efficiency. 

Because Bitcoin’s market efficiency declines during cryptocurrency heists, policymakers 

should work to enhance exchange and platform security standards and transparency to 

respond quickly to such incidents, reduce uncertainty, and maintain market stability. 

Policymakers also need to devise more effective regulatory measures that embrace a dynamic 

approach to mitigate market risks and minimise the influence of malicious activities. It is 

essential to maintain Bitcoin’s market efficiency by implementing stricter security protocols 

on the platform and establishing transaction limits to prevent hackers’ exploitation of 

vulnerabilities. For example, the European Union has taken the lead in implementing a 

unified framework through the Markets in Crypto–Assets (MiCA) regulation, which 

introduces comprehensive requirements for crypto service providers, including licensing, 

capital requirements, cybersecurity standards, and mandatory disclosure of security breaches. 

Japan, learning from high-profile incidents like the Coincheck exchange heist, now imposes 

strict oversight on cryptocurrency exchanges through the Financial Services Agency (FSA), 

requiring asset segregation, third-party audits, and robust security protocols. Such measures 

could be productively replicated internationally. 

An important avenue for future studies is to extend the event window to longer horizons to 

capture the delayed effects of cryptocurrency heists. While this study adopts a three-day 

window to focus on immediate market reactions, some consequences may unfold over longer 

periods, particularly in cases where stolen cryptocurrencies or funds are eventually resituated. 

Asset restitution may not only accelerate market recovery but also strengthen investor 

confidence and liquidity, thereby reshaping the dynamics of market efficiency. Designing 

longer event windows would thus enable us to distinguish between short-term volatility 

shocks and medium- to long-term recovery processes. In addition, future studies should seek 

to develop statistical methods capable of testing whether changes in permutation entropy 

measures are significant, so as to provide a more rigorous assessment of the evolution of 
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market efficiency. While such tools are not yet fully developed, their advancement would 

offer valuable support for related studies. 

Furthermore, the present study documents associations between cryptocurrency heists and 

shifts in Bitcoin’s market efficiency, but it does not formally establish causality. This is a 

common limitation of entropy-based approaches, which are effective in detecting structural 

changes but not designed for causal identification. Future studies can integrate permutation 

entropy with econometric techniques such as Granger causality tests or structural break 

models to assess whether hacking incidents are genuine drivers of efficiency losses rather 

than coincidental correlates. Finally, the findings should be interpreted in the context of 

broader market conditions. The use of a three-day event window helps mitigate the influence 

of concurrent macroeconomic or regulatory events, but given Bitcoin’s high volatility and its 

sensitivity to external shocks, it is difficult to rule out residual confounding entirely. Future 

studies can incorporate controls such as macroeconomic news shocks or global risk sentiment 

to more clearly isolate the marginal effect of cryptocurrency heists on market efficiency 

dynamics. 

Overall, this chapter provides investors with important insights by enhancing their 

understanding of how extreme events affect the Bitcoin market and by improving their risk 

management practices. Investors should recognise that the Bitcoin market is vulnerable to 

cryptocurrency heists, particularly major events that have far-reaching consequences for the 

entire crypto community. Therefore, investors are advised to remain vigilant regarding market 

volatility and uncertainty and to formulate investment strategies accordingly to manage risk. 
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Chapter 3 The Relationship between Bitcoin Price and Market 

Sentiment: New Evidence from a Cryptocurrency Heist 

Parts of this chapter have been published in the North American Journal of Economics and 

Finance 

3.1 Introduction 

With a 56.8% market share and the highest market value, Bitcoin dominates the 

cryptocurrency market. However, its price is highly volatile. For instance, the price of Bitcoin 

dropped from about $66,000 at the end of 2021 to just over $16,000 in early 2023, then 

surged back to $100,000 by December 2024 (CoinGecko, 2024). Traditional financial 

theories based on rational pricing models struggle to provide predictive or valuable insights 

into the pricing of highly volatile assets such as Bitcoin, as argued by Kristoufek (2013). 

Instead, Bitcoin’s price is primarily driven by investors’ perceptions of its growth potential 

(Cachanosky, 2019; Eom et al., 2019). Current studies have highlighted the crucial role of 

investor sentiment in Bitcoin price formation. Positive beliefs about Bitcoin’s future may lead 

investors to buy more, driving up prices, while pessimistic beliefs could prompt selling and 

price declines. Therefore, understanding and analysing investor sentiment is key to 

understanding Bitcoin’s price dynamics. 

Previous studies have focused on the role of different sentiment indicators in predicting 

Bitcoin price, such as surveys, social media, indices, and Google search volume (Kaminski, 

2014; Kapar & Olmo, 2021; Ullah et al., 2022; Kim et al., 2021; Meyer et al., 2023). 

However, these studies usually focus only on the impact of sentiment on price while ignoring 

the effect of prices on sentiment. Sentiment movements can influence price, and price can, in 

turn, affect sentiment movements. For instance, sentiment changes can drive price 

movements. Negative news or pessimistic sentiment on social media platforms can induce 

fear, prompting selling and price drops. Conversely, positive news or sentiment attracts 

buyers, driving prices up. On the other hand, a surge in Bitcoin price typically sparks 

excitement and optimism among investors, driving further investment and increasing the 

price. Conversely, price declines can trigger anxiety and panic, leading to selloffs and 

additional downward pressure on price. Moreover, many studies focused on global events, 

such as the COVID-19 pandemic and geopolitical conflicts, while neglecting the specific 

context of the Bitcoin market. This oversight may hinder our ability to discern whether 
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Bitcoin price fluctuations are primarily driven by Bitcoin market sentiment or broader 

sentiment in global financial markets, potentially leading to biased research results (Gaies et 

al., 2023). 

Cryptocurrency heists offer a significant opportunity to examine the predictive relationship 

between price and sentiment. Many individuals store their cryptocurrencies in exchanges’ hot 

wallets, linking the security of these assets to the exchanges. Over the years, hackers have 

targeted these exchanges, exploiting vulnerabilities to steal cryptocurrencies and make profits. 

The Mt. Gox exchange hack in 2014 and the Ronin Network platform attack in 2022 led to 

the theft of billions of dollars in Bitcoin and $595 million in Ethereum, respectively, 

underscoring this vulnerability. As the cryptocurrency with the highest price, Bitcoin garners 

significant attention from attackers. From 2011 to 2021, around 1.7 million Bitcoins, worth 

over $700 million, were stolen, representing about 10% of the total Bitcoin supply (Grobys et 

al., 2022). These attackers employ 51% attacks (i.e. control over 50% of the network) and 

exploit exchange and wallet vulnerabilities to steal Bitcoin and generate substantial profits 

(Wen et al., 2021). These heists amplify concerns about cryptocurrency ecosystem security, 

potentially sparking panic, anxiety, and selling pressure among investors (Marella et al., 

2021). When the price drops significantly, the value of investors’ assets shrinks rapidly, 

potentially intensifying market panic and anxiety. Additionally, the market may perceive a 

price decline as further confirmation of the incident’s risks, reinforcing negative sentiment 

and leading to further market environment deterioration (Kapar & Olmo, 2021; Dias et al., 

2022), such as a decline in market efficiency (Li et al., 2024). 

This chapter uses the Crypto Fear & Greed Index (CFGI) as a proxy for investor sentiment in 

the Bitcoin market. Since CFGI primarily captures sentiment related to Bitcoin, the analysis 

focuses on cryptocurrency heists that directly target Bitcoin or involve the theft of a large 

amount of Bitcoin, thereby avoiding distortion of the relationship between Bitcoin price and 

sentiment. The most recent major incident of this kind was the KuCoin exchange heist. 

KuCoin, a Singapore-based cryptocurrency exchange, offers trading in over 200 different 

assets, with a daily trading volume of approximately $100 million. On September 25, 2020, 

KuCoin exchange suffered a cyberattack in which hackers infiltrated the exchange’s system, 

obtained the private keys to its hot wallets, and transferred approximately $281 million worth 

of Bitcoin. This cryptocurrency heist is also one of the largest to date (Tsihitas, 2025). 

Although this incident does not compromise the Bitcoin blockchain itself, which is widely 

regarded as virtually hack-proof, it exposes security vulnerabilities in centralised trading 
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platforms and seriously damages investor confidence. This is because Bitcoin is the largest 

and most symbolic asset stolen, and it functions as the benchmark currency for the entire 

cryptocurrency market. Ordinary investors often fail to distinguish between “an exchange 

being hacked” and “Bitcoin itself being hacked,” and thus may interpret such incidents as 

evidence of Bitcoin’s insecurity. Moreover, as exchanges are the primary gateways to Bitcoin 

liquidity, their security is directly linked to trust in the Bitcoin market (Fang et al., 2025). For 

these reasons, the KuCoin exchange heist is not merely perceived as a case of asset loss but 

as a shock to the stability and safety of the Bitcoin ecosystem, likely exerting a deeper 

influence on Bitcoin price and sentiment than cryptocurrency heists involving other 

cryptocurrencies. Figure 3.1 illustrates the dynamics of Bitcoin price (BP) and CFGI over the 

three months before and after the KuCoin exchange heist. The figure shows that Bitcoin price 

and investor sentiment move somewhat together both before and after the incident. However, 

correlation does not necessarily imply a predictive relationship, highlighting the need for 

further investigation.  

Figure 3.1: Bitcoin price (BP) and CFGI dynamics in the three months before and after the 

KuCoin exchange heist 

 

The red dashed line marks the date of the KuCoin exchange heist on 25 September 2020. The Bitcoin price data 

is sourced from CoinGecko, while the CFGI data is obtained from Alternative.me. 
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Existing studies suggest that external shocks often amplify market reactions by altering 

investor sentiment (Polat et al., 2022; Anamika et al., 2023; Gaies et al., 2023). In the 

cryptocurrency market, sudden events such as hacks or exchange thefts not only cause direct 

asset losses but also intensify uncertainty and fear among participants. When sentiment 

deteriorates, panic selling may drive prices down, while falling prices in turn reinforce 

negative sentiment, creating a self-reinforcing feedback loop. Hence, it can be expected that 

after a cryptocurrency heist, the relationship between Bitcoin price and sentiment is more 

likely to exhibit a bidirectional predictive relationship. Based on this context, this chapter 

proposes the first hypothesis: 

H1: KuCoin exchange heist may enhance the bidirectional predictability between Bitcoin 

price and CFGI. 

However, since the CFGI is specifically designed to capture sentiment within the Bitcoin 

market, its effectiveness as a sentiment proxy may be limited in cryptocurrency heists that do 

not directly involve Bitcoin. In such cases, the sentiment and trading responses of investors 

may be concentrated on the affected token, with Bitcoin playing a less central role in the 

incident. As a result, the interaction between the Bitcoin price and CFGI may be weaker. 

Based on this reasoning, this chapter proposes the second hypothesis: 

H2: In cryptocurrency heists not targeting Bitcoin, the influence of CFGI on Bitcoin price is 

weaker, and the impact of Bitcoin price on CFGI is also limited. 

Additionally, as the benchmark asset in the cryptocurrency market, Bitcoin often profoundly 

influences the broader ecosystem (Katsiampa et al., 2019a; Kuma & Anandarao, 2019; 

Özdemir, 2022). While market panic triggered by the KuCoin exchange heist may ripple 

through other cryptocurrency markets, CFGI primarily reflects sentiment within the Bitcoin 

market. As such, relying on CFGI to predict other cryptocurrencies’ performance in the 

KuCoin exchange heist may not be reliable. Therefore, this chapter proposes the third 

hypothesis: 

H3: The volatility in CFGI caused by Bitcoin heist has a limited impact on other 

cryptocurrency markets. 

There are three key findings in this chapter. First, time-varying Granger causality tests reveal 

that the predictive relationship between Bitcoin price and CFGI changes significantly before 

and after the KuCoin exchange heist. During the 90 days prior to the KuCoin exchange heist, 
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there is no statistically significant bidirectional predictive relationship between Bitcoin price 

and CFGI, with CFGI showing limited predictive power for Bitcoin price and vice versa. 

However, in the 90 days following the KuCoin exchange heist, a statistically significant 

bidirectional predictive relationship emerges, with CFGI’s influence on Bitcoin price 

strengthening and Bitcoin price also influencing CFGI. This suggests that, although CFGI 

serves as a key indicator of Bitcoin market sentiment, its predictive relationship with Bitcoin 

price is dynamic. Under stable market conditions without major unexpected events, CFGI has 

limited predictive value for Bitcoin price, and minor price fluctuations exert little impact on 

CFGI. However, during major shocks, swings in market sentiment and increased price 

volatility amplify this relationship. For investors, it is important to approach panic-driven 

trading behaviour with caution during cryptocurrency heists, as sentiment responses may 

exacerbate price declines and lead to suboptimal decisions. At the same time, the dynamic 

interaction between Bitcoin price and sentiment during such periods highlights the potential 

of event-driven trading strategies, where sentiment indicators can serve as early warning 

signals for heightened market instability. 

Second, no statistically significant bidirectional predictive relationship is found between 

Bitcoin price and CFGI in cryptocurrency heists that do not involve Bitcoin theft. In such 

cases, relying on CFGI to predict Bitcoin price, or using Bitcoin price to forecast changes in 

CFGI, is not an effective approach. However, if the cryptocurrency heist indirectly affects the 

Bitcoin market, a statistically significant bidirectional predictive relationship between Bitcoin 

price and CFGI can still be observed. This suggests that the predictive power of CFGI for 

Bitcoin price, as well as the influence of Bitcoin price on CFGI, is closely tied to whether the 

cryptocurrency heist impacts the Bitcoin market. Finally, using the TVP-VAR-based 

connectedness approach, this chapter finds that the CFGI volatility triggered by the KuCoin 

exchange heist does not exhibit statistically significant spillovers into other cryptocurrency 

markets. This indicates that the impact of CFGI fluctuations remains primarily confined to 

the Bitcoin market, with minimal influence on other cryptocurrency markets. However, while 

investors can use CFGI to make short-term trading decisions for Bitcoin during Bitcoin-

specific heists, its applicability to other cryptocurrencies may be limited. Solely relying on 

CFGI could lead investors with diversified cryptocurrency portfolios to draw misleading 

conclusions. 

These findings offer valuable insights for policymakers focused on the Bitcoin market. First, 

the intensified bidirectional predictive relationship between Bitcoin price and CFGI following 
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cryptocurrency heists that directly involve Bitcoin suggests that the market is highly sensitive 

to such security breaches. This underscores the importance of timely and transparent incident 

disclosure by affected exchanges to reduce uncertainty and prevent sentiment overreaction 

within the Bitcoin market. Second, the heightened volatility in CFGI during these incidents 

demonstrates its potential as a real-time sentiment indicator for Bitcoin-specific market risk. 

Regulators may consider incorporating CFGI into early warning systems for detecting risks in 

the Bitcoin market. 

To sum up, this study is highly significant for two reasons. First, cryptocurrency heists 

substantially impact asset prices, market sentiment, and the overall stability of the ecosystem, 

warranting detailed analysis. Second, as cryptocurrencies emerge as a new frontier in 

financial markets, understanding the factors that influence market stability is critical for 

investors to adjust their strategies and for policymakers to implement effective regulation. 

This chapter is structured as follows. The second section presents the literature review, the 

third outlines the data and methodology, the fourth discusses the empirical results, and the 

fifth concludes the chapter. The sixth section contains the appendix, which includes 

robustness checks and supplementary analyses. 

3.2 Literature Review 

3.2.1 From Traditional Finance to Behavioural Finance 

Modern financial theory is strongly influenced by two cornerstone concepts: the Capital Asset 

Pricing Model (CAPM) and the Efficient Market Hypothesis (EMH) (Sharpe, 1964; Fama, 

1970). Both assume that investors are rational and able to respond efficiently to market 

information, thereby overlooking the complexities of actual investor behaviour and treating 

the stock market as inherently unpredictable. However, since the emergence of behavioural 

finance, many studies have shown that under incomplete information, investors’ actions, 

attitudes, and preferences often deviate from the assumption of full rationality. Asset prices 

are not purely random and can, to some extent, be predictable (Zhang et al., 2017). 

Behavioural finance integrates insights from the broader social sciences into financial 

economics. Since the pioneering work of scholars such as Shiller (1981), De Bondt and 

Thaler (1985), Shefrin and Statman (1985), and Roll (1986), a substantial body of literature 

has emerged, positioning behavioural finance as an important complement to traditional 

financial theory. 
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Sentiment is a core concept in behavioural finance, which posits that sentiment influences 

individual decision-makers, institutions, and markets. For example, Kamstra et al. (2000) 

found that stock returns tended to be negative around the weekend when daylight saving time 

transitioned to standard time. They suggested investors suffering from seasonal affective 

disorder might experience negative sentiment due to the time change. Such sentiment can 

impair investors’ ability to process information efficiently and concentrate on trading, leading 

to lower stock returns. Similarly, Hirshleifer and Shumway (2003) found that weather 

conditions could influence investor sentiment, positive on sunny days and negative on cloudy 

days. They observed that stock returns were significantly higher on sunny days and lower on 

cloudy days. This may be because positive sentiment enhances investors’ capacity to process 

information and make rational decisions, whereas negative sentiment may induce doubt and 

pessimistic interpretations of subsequent information, resulting in suboptimal investment 

choices. 

Ashton et al. (2003) suggested that there may be a relationship between national sports 

performance and stock market returns. Their findings indicated that when the England 

football team performed well in qualifying or final matches, subsequent stock market 

performance tended to improve; conversely, poor performance was associated with market 

declines. This may be attributed to the psychological boost from sporting success, which 

increases investors’ confidence in the future. While the positive effect of victory has 

gradually diminished, the anomaly has persisted (Ashton et al., 2011). Similarly, Scholtens 

and Peenstra (2009) examined the relationship between football match results and stock price 

changes using data from eight national teams across 1,274 matches between 2000 and 2004. 

The results showed that stock markets generally reacted positively to victories and negatively 

to defeats, with losses triggering stronger price reactions than wins. Bernile and Lyandres 

(2011) further argued that such effects might be the result of systematic expectation bias. 

Investors may become overly optimistic before matches, only to be disappointed after 

unfavourable outcomes, which in turn drives pessimism and negative returns in the following 

trading days. 

These studies indicate that investor sentiment plays an important role in the process of price 

formation, yet the relationship between sentiment and price is not unidirectional. Price 

fluctuations can, in turn, influence investor sentiment, creating a self-reinforcing feedback 

mechanism (Marczak & Beissinger, 2016; He et al., 2019; Kapar & Olmo, 2021). For 

example, when asset prices suddenly experience a sharp decline, investors often react with 
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panic and intensify selling pressure, which further drives prices down. Conversely, when 

prices rise rapidly, optimism and greed may attract more investors to enter the market, 

leading to momentum-driven buying that pushes prices even higher. This process, in which 

price changes trigger shifts in sentiment that subsequently amplify price movements, 

exemplifies the bidirectional interaction between price and sentiment. 

Behavioural finance provides a theoretical framework to understand this mechanism, such as 

limited attention theory (Barber & Odean, 2008), overreaction theory (De Bondt & Thaler, 

1985), and herding behaviour (Banerjee, 1992; Bikhchandani et al., 1992). Limited attention 

theory posits that individuals have limited cognitive resources and cannot process all 

information simultaneously, forcing them to allocate attention selectively. This limited 

attention makes investors more susceptible to salient information (e.g., media coverage, 

market sentiment), which may cause asset prices to become temporarily overvalued or 

undervalued. When asset returns are negative, investors tend to focus excessively on 

downward trends, increasing the likelihood of undervaluation; when returns are positive, they 

tend to overemphasise upward trends, increasing the likelihood of overvaluation. 

Overreaction theory highlights that, under uncertainty, investors often respond excessively to 

market information due to cognitive biases, leading to short-term deviations of asset prices 

from their intrinsic value. This is most visible in the form of excessive optimism in bull 

markets that drives prices higher and excessive pessimism in bear markets that accelerates 

declines, generating mutually reinforcing effects. Herding behaviour further emphasises that 

investors often do not act independently but instead follow the actions of others. In 

downturns, panic sentiment may trigger widespread selling, whereas in upswings, greed may 

fuel momentum-driven buying. Sentiment contagion and price dynamics reinforce one 

another, thereby amplifying volatility. 

Taken together, these behavioural finance frameworks reveal that price fluctuations 

themselves stimulate psychological responses, while investor sentiment rapidly spreads 

through mechanisms such as herding, ultimately creating a bidirectional feedback loop 

between price and sentiment. This dynamic interaction provides a theoretical foundation for 

understanding the relationship between Bitcoin price and sentiment in the context of 

cryptocurrency heists. However, while these theories establish the foundations for the 

sentiment-price feedback mechanism, empirical validation remains a central challenge. 

Sentiment is inherently vague and subjective, and individuals may interpret and respond to 

the same situation differently. Consequently, scholars typically rely on proxy indicators to 
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measure sentiment, but different proxies may significantly affect the findings. In examining 

the relationship between Bitcoin price and sentiment, the choice of sentiment proxies can thus 

shape the results. The following section reviews the literature on various sentiment indicators 

to identify suitable measures for empirical analysis. 

3.2.2 Sentiment Measures and Their Application in the Bitcoin Market 

According to the survey, sentiment measures can be broadly categorised into direct and 

indirect (Bouteska et al., 2022). The first group measures investor sentiment through direct 

measurement, including two sentiment indicators: survey-based and sentiment analysis-based. 

Survey-based indicators, such as Sentix survey data, measure investor sentiment monthly by 

assessing investors’ willingness to purchase Bitcoin. Scholars found that when investors are 

more willing to buy (optimism towards Bitcoin), Bitcoin price shows an upward trend. 

Moreover, negative sentiment from investors has a more pronounced impact on Bitcoin price 

than positive sentiment (AlNemer et al., 2021; Anamika et al., 2023). In studies using 

sentiment analysis-based indicators, Scholars often gather sentiment data from platforms like 

Twitter, BitcoinTalk, or Reddit to capture current investor sentiment. Kaminski (2014) 

examined three months of tweets related to Bitcoin, constructing a sentiment indicator from 

words indicating positive and negative sentiment. They found that sentiment mirrors market 

conditions rather than predicts Bitcoin price trends. However, Garcia and Schweitzer (2015) 

and Perry-Carrera (2018) used sentiment analysis methods on tweets with cryptocurrency-

specific lexicons, discovering that sentiment can predict Bitcoin price trends using vector 

autoregression models. Kraaijeveld and De Smedt (2020) demonstrated Twitter sentiment’s 

predictive ability on returns for Bitcoin, Bitcoin Cash, and Litecoin. Sattarov et al. (2020) 

analysed Bitcoin-related tweets and financial data, finding the predictive power of Twitter 

sentiment on Bitcoin price, achieving 62.48% accuracy in out-of-sample price predictions. 

Saleem et al. (2024) collected over 3 million tweets from 2013 to 2022 using ‘bitcoin’ and 

‘BTC’ keywords. They employed the Valence Aware Dictionary and Sentiment Reasoner 

(VADER) and logistic regression model for sentiment analysis, showing that negative 

sentiment significantly impacts Bitcoin price declines. In contrast, positive sentiment has a 

minor role in driving price increases. 

Twitter provides the Twitter Happiness Index, a direct sentiment indicator derived from about 

10,000 sentiment-related words in randomly selected Twitter posts. Naeem et al. (2021b) 

assessed its predictive ability on returns of six major cryptocurrencies, revealing a significant 
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nonlinear Granger causality relationship with returns. Subsequently, Naeem et al. (2021c) 

employed bivariate cross-change plots and found their ability to predict Bitcoin returns under 

extreme market conditions, suggesting sentiment-based portfolio adjustments. However, 

Perry-Carrera (2018) noted that because Twitter is a platform for general users, many posts 

may be misclassified, leading to the collection of irrelevant information and an inefficient 

data-gathering process. Specialised cryptocurrency discussion platforms like BitcoinTalk, 

StockTwits, or Reddit are preferable to enhance sentiment data quality. These platforms have 

a high level of specialisation, reducing the likelihood of collecting unrelated information 

about Bitcoin. Mai et al. (2018) examined the dynamic interaction between investor 

sentiment on social media and Bitcoin price using text analysis and a vector error correction 

model. They found that investor sentiment is a significant predictor of Bitcoin price, but not 

all social media sentiments have an equal impact. Compared to sentiment gathered from 

Twitter, investor sentiment collected from professional discussion platforms or websites has a 

more significant influence on the future price of Bitcoin. 

Therefore, recent studies focused on gathering investor sentiment from professional 

discussion platforms or websites. Chen et al. (2019) created a cryptocurrency-specific lexicon 

from StockTwits and Reddit messages. They used a local-momentum autoregression model 

and found sentiment effects during cryptocurrency bubbles that persist but reverse after the 

bubble bursts. Bouteska et al. (2022) developed a sentiment indicator using computational 

text analysis from StockTwits and Reddit, employing vector autoregression analysis to 

predict short-term returns in the Bitcoin market. Guégan and Renault (2021) analysed 

approximately one million StockTwits messages, finding a significant relationship between 

investor sentiment and Bitcoin returns only in high-frequency data at 15-minute intervals, 

disappearing as data frequency decreases. 

The second group of measuring investor sentiment involves indirect measurement, which 

includes using cryptocurrency indices or Google search volume. One commonly used 

cryptocurrency index is the Cryptocurrency Volatility Index (CVI), developed by the research 

team at COTI (Currency of the Internet). This innovative tool aims to capture the overall 

volatility of the cryptocurrency market. Based on the Black–Scholes–Merton model, the CVI 

is calculated using the 30-day implied volatility of the two largest cryptocurrencies by market 

capitalisation, Bitcoin and Ethereum. It reflects not only idiosyncratic risk within the 

cryptocurrency market but also systemic risk. Gaies et al. (2024) used the CVI to reveal a 

strong dependence between instability in the U.S. financial system and volatility in the global 
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cryptocurrency market, a relationship that becomes even more pronounced during periods of 

financial turbulence. Their findings suggested a transmission mechanism of financial risk 

between the stock market and the cryptocurrency market, implying that during turbulent 

times, volatility in the cryptocurrency market could spill over into broader financial markets. 

Another commonly used cryptocurrency index is the Volatility Index of Cryptocurrency 

(VCRIX), proposed by Kim et al. (2021). Studies by Kim et al. (2021) and Bouteska et al. 

(2022) indicated that VCRIX can effectively predict market trends and has good predictive 

ability for Bitcoin returns.  

Google search volume serves as another sentiment proxy. Using the vector autoregression 

model, Kristoufek (2013, 2015) found a close relationship between Bitcoin price, Google 

search volume, and Wikipedia search volume. Building on this, Abraham et al. (2018) 

predicted cryptocurrency prices using sentiment from both tweets and Google search volume, 

finding superior predictions from Google search volume. Goczek and Skliarov (2019) 

employed a factor-augmented vector error correction model, identifying Bitcoin’s popularity, 

reflected in Google search volume, as the primary driver of its price. Eom et al. (2019) used 

autoregressive models to study sentiment’s impact on Bitcoin returns and volatility changes, 

finding Google search volume informative in predicting Bitcoin volatility. Kapar and Olmo 

(2021) constructed vector error correction models for 2010–2017 and 2010–2019, 

considering factors like the S&P 500 Index, gold prices, Bitcoin Google search volume, and 

the FED Financial Stress Index. They found that from 2010 to 2018, all factors influenced 

Bitcoin price, with Google search volume positively impacting prices. However, Google 

search volume becomes the sole variable explaining Bitcoin price dynamics in subsequent 

periods. Sabalionis et al. (2021) utilised the VAR–GARCH–BEKK model to analyse how 

Google search volume, tweet counts, and blockchain active addresses impact Bitcoin and 

Ethereum prices over time. Results showed that while Google search volume and tweet 

counts have some influence on prices, they are much weaker compared to active addresses. 

Bouteska et al. (2022) similarly used Google search volume to study sentiment’s predictive 

power on Bitcoin price during COVID-19. The results are consistent with their StockTwits 

and Reddit sentiment data findings, indicating that investor sentiment significantly impacts 

Bitcoin returns during the COVID-19 pandemic.  

However, some studies have suggested that Google search volume has a limited impact on 

Bitcoin price. Aalborg et al. (2019) incorporated this variable into a factor model explaining 

Bitcoin price, finding minimal influence across different data frequencies. Cheah et al. (2022) 
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treated search volume as a sentiment proxy but discovered no significant relationship with 

Bitcoin returns in various samples and asset allocation tests. Discrepancies in findings may 

arise from differing research periods, data frequencies, or market conditions. Moreover, 

sentiment complexity and noisy trading in the Bitcoin market may lead to short-term 

inconsistencies between sentiment and prices, affecting research outcomes. Panagiotidis et al. 

(2019) observed Google search volume’s greater predictiveness in cryptocurrency’s early 

stages, yet with diminishing effectiveness over time. This may reflect the rise of professional 

discussion platforms, where investors rely less on internet searches to gauge sentiment, 

reducing Google search volume's representativeness in today’s cryptocurrency market. 

Most findings suggest sentiment could predict Bitcoin price, but limitations exist. Firstly, 

direct or indirect sentiment measures may not capture sentiment comprehensively, potentially 

biasing indicators (Gaies et al., 2023). For instance, sentiment classification indirect measures 

may be subjective, and data from platforms like Twitter or Reddit may have limited samples, 

not fully representing the Bitcoin market or sentiment (Kim et al., 2018). Also, manipulation, 

fake accounts, and bots can influence social media platforms, introducing biases to sentiment 

analysis (Chen et al., 2022; Weng & Lin, 2022). Social media data may also lack robustness 

and be influenced by cycles, intervals, and measurement methods (Ahmed, 2022; Cheah et al., 

2022). In indirect measures, the popularity of professional social media forums has gradually 

diminished the capacity of such indicators to reflect sentiment, rendering them unsuitable as 

reliable proxies for sentiment (Panagiotidis et al., 2019; Gaies et al., 2023). Hence, adopting 

new sentiment measurement methods is crucial. One potential approach is a comprehensive 

method combining direct and indirect components to form a holistic sentiment measure rather 

than considering these elements separately. 

3.2.3 Crypto Fear & Greed Index 

This chapter recommends using the Crypto Fear & Greed Index (CFGI) as a proxy for 

Bitcoin market sentiment. This indicator integrates social signals and market trends to capture 

overall sentiment in the Bitcoin market. It is calculated by Alternative.me and released daily 

at midnight. The CFGI is specifically designed for Bitcoin and consists of six components: 

social media interest (15%), volatility (25%), market volume (25%), cryptocurrency surveys 

(15%), market dominance (10%), and Google search trends (10%). 

Social media interest is measured using a Twitter sentiment analysis tool, which collects posts 

under Bitcoin-related hashtags and evaluates their interaction speed and frequency within a 
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given time frame. An abnormally high engagement rate indicates rising public interest in 

Bitcoin and reflects greedy market behaviour. Volatility is assessed by comparing current 

Bitcoin volatility and maximum drawdowns against the 30-day and 90-day averages, where 

unusually high volatility signals market fear. Market volume captures current trading activity 

and momentum relative to the 30-day and 90-day averages, with abnormally high buying 

volume in a bullish market reflecting excessive greed and optimism. Cryptocurrency surveys 

are conducted weekly in collaboration with the large public polling platform Strawpoll.com, 

typically collecting 2,000 to 3,000 responses, thereby providing a general measure of investor 

sentiment. Market dominance refers to Bitcoin’s share of the total cryptocurrency market 

capitalisation. An increase in dominance indicates a flight to safety toward Bitcoin due to 

concerns about speculative alt-coin investments, which is interpreted as a signal of fear. 

Conversely, a decrease in dominance suggests a shift toward more speculative alt-coins, 

signalling greed. Finally, Google search trends, obtained from Google Trends, measure the 

number of searches for Bitcoin-related keywords. Rising searches for terms such as “Bitcoin 

price manipulation” are interpreted as signs of fear, while increased searches for “Bitcoin 

price prediction” reflect optimism in the market. 

The CFGI identifies both positive and negative sentiment by combining the above data 

sources into a single value, ranging from 0 (extreme fear) to 100 (extreme greed). An increase 

in the CFGI indicates a rise in positive sentiment, whereas a decrease reflects a rise in 

negative sentiment. Gaies et al. (2023) highlighted CFGI’s advantage in considering multiple 

factors in Bitcoin price formation. CFGI signals ‘fear’ amid Bitcoin volatility and low 

purchasing volume, while increased social media activity, like Google search trends and 

market dominance, shifts it towards ‘greed’. Furthermore, by integrating direct investor 

survey responses, CFGI captures diverse behavioural factors (‘fear’ and ‘greed’) that might 

otherwise be analysed separately. Therefore, utilising CFGI provides a holistic view of 

sentiment trends among Bitcoin market participants, offering valuable insights for investors 

and policymakers to understand the psychological state of the Bitcoin market and anticipate 

potential trends. 

The CFGI has increasingly become a widely accepted sentiment indicator in academic 

research. For instance, Gaies et al. (2023) employed a bootstrap rolling-window Granger 

causality test to examine the relationship between Bitcoin price and CFGI during the 

COVID-19 pandemic. Their findings suggested that the causal relationship between Bitcoin 

price and CFGI is not constant over time. Specifically, the interaction between panic 
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sentiment and Bitcoin price can be either negative or positive, with such bidirectional effects 

observed across several subperiods. More importantly, the nature of this relationship differs 

significantly before and during the pandemic, indicating that external shocks can alter the 

dynamic interplay between investor sentiment and price. Wang et al. (2024) reported a U-

shaped relationship between CFGI and cryptocurrency price synchronicity. In particular, 

synchronicity decreases as CFGI rises, but when investors are in a state of extreme fear or 

greed, the herding behaviour driven by CFGI amplifies market co-movement, thereby 

increasing systemic risk and undermining portfolio diversification. Another study by Huang 

et al. (2024), using monthly data from 2016 to 2021 and employing both autoregressive 

distributed lag (ARDL) and error correction models (ECM), investigated the impact of CFGI 

on Bitcoin returns. The ARDL results revealed a significant long-term positive association, 

whereby heightened optimism and greed attract capital inflows that push Bitcoin’s value 

upward, while heightened pessimism and fear trigger capital outflows that adversely affect 

market performance. The ECM analysis further confirmed that changes in sentiment exert 

direct and significant short-term effects on Bitcoin returns, underscoring the market’s 

sensitivity to fluctuations in sentiment. Overall, these studies demonstrate that CFGI not only 

captures the multidimensional features of investor sentiment in cryptocurrency markets but 

also provides significant explanatory power for price volatility, market co-movement, and 

return dynamics. 

3.2.4 Volatility and Structural Breaks in the Bitcoin Market 

Although previous studies have proposed various sentiment measures and confirmed, to some 

extent, their predictive power for Bitcoin price, they often overlook the specific 

characteristics of the Bitcoin market. Compared with traditional financial assets, Bitcoin 

exhibits extreme volatility and frequent structural breaks following major shocks (Baur et al., 

2018; Panagiotidis et al., 2022). These features not only influence the stability of the 

sentiment-price relationship but also provide a new perspective for understanding investor 

behaviour. Therefore, it is essential to review the literature on volatility and structural breaks 

to better understand Bitcoin’s dynamics under extreme market conditions. 

Previous studies have examined the time-varying behaviour of Bitcoin volatility within the 

GARCH framework. Gronwald (2014) employed an autoregressive jump intensity GARCH 

model and found that the Bitcoin price is particularly sensitive to extreme fluctuations, 

highlighting the market’s vulnerability to sudden shocks. Bouoiyour and Selmi (2015) 
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evaluated the goodness-of-fit of different GARCH specifications over two sub-periods 

between 2010 and 2015. Their results indicated that in the earlier period, threshold GARCH 

models revealed high volatility persistence, whereas in the latter period, EGARCH suggested 

a reduction in persistence, implying that the evolution of market structure influences 

volatility dynamics. Bouri et al. (2017) compared the return-volatility relationship before and 

after the 2013 price crash. They found that before the crash, past shocks and volatility were 

negatively correlated, while the relationship disappeared afterwards. This suggests that before 

December 2013, positive shocks increased conditional volatility more than negative shocks, a 

reversed asymmetry compared with the stock market. They attributed this to Bitcoin’s “safe-

haven effect,” whereby investors regarded Bitcoin as a hedge, causing volatility to rise 

alongside price increases. Similarly, Klein et al. (2018) adopted the asymmetric power ARCH 

(APARCH) and the fractionally integrated APARCH (FIGARCH) models,  confirming the 

presence of asymmetric volatility in Bitcoin. Given that speculative activity intensifies during 

extreme price increases, volatility tends to rise during sharp upswings. They also identified 

strong persistence in variance shocks, indicating that once volatility rises, it declines only 

gradually over time. This persistence was especially evident during the boom of 2017 and the 

subsequent correction, when sharp price increases left volatility elevated for an extended 

period. Stavroyiannis (2018) employed a GJR–GARCH model to examine Bitcoin’s Value-at-

Risk (VaR) and related indicators, concluding that Bitcoin is highly volatile and more prone 

to breaching VaR thresholds than assets such as gold. Collectively, these findings demonstrate 

that Bitcoin’s volatility is not only far higher than that of traditional assets but also 

characterised by persistence, asymmetry, and shifts, suggesting that its price dynamics are 

deeply shaped by external shocks and market state transitions. 

Importantly, Bitcoin’s high volatility does not occur in isolation but often coincides with 

structural breaks triggered by external shocks. Such breaks not only reshape the dynamics of 

price and volatility but also significantly affect investor sentiment, thereby amplifying market 

instability. Notably, the relationship between sentiment and volatility appears heterogeneous 

across studies. Cheung et al. (2015) documented the existence of bubbles in Bitcoin between 

2011 and 2013, with their collapse coinciding with the failure of the Mt. Gox exchange. This 

structural break induced both drastic adjustments in price and volatility and a sharp 

deterioration in investor sentiment, which further destabilised the market. Wang et al. (2020) 

provided complementary evidence by showing that spikes in the Economic Policy 

Uncertainty (EPU) index exacerbate investor uncertainty, significantly increasing Bitcoin 
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volatility and trading volume while generating cross-country spillover effects. López-

Cabarcos et al. (2021) further showed that investor sentiment exerts a significant influence on 

Bitcoin volatility, with negative sentiment and panic often associated with heightened 

volatility. Thus, Bitcoin’s volatility may be amplified in both speculative environments and 

fear-driven markets, reflecting a dual sensitivity. This feature highlights how Bitcoin price 

dynamics are shaped by the interaction of market conditions and investor sentiment, in 

contrast to traditional financial markets, where volatility expansions are typically driven by 

negative shocks (Black, 1976; Christie, 1982; Campbell & Hentschel, 1992; Calvo & 

Mendoza, 2000). 

Additionally, previous studies also found that different structural changes in the market have 

varying impacts on Bitcoin’s volatility. Corbet et al. (2020b) revealed that cryptocurrencies 

react heterogeneously to U.S. Federal Reserve interest rate adjustments and quantitative 

easing (QE) announcements, with currency-based digital assets being particularly sensitive to 

policy shocks. These policy-driven structural breaks often trigger shifts in investor sentiment. 

Corbet et al. (2020c) further found that macroeconomic news related to unemployment and 

durable goods significantly influences Bitcoin returns, whereas announcements concerning 

GDP and CPI have a limited impact. This suggests that different types of external shocks 

elicit differentiated investor sentiment responses. Overall, these studies reveal that structural 

breaks often affect volatility by altering investor sentiment, underscoring its mediating role in 

cryptocurrency price dynamics. However, existing studies have primarily focused on shocks 

arising from structural breaks at the macroeconomic, policy, or financial market level. In 

contrast, there remains a lack of systematic investigation into how sudden events such as 

cryptocurrency heists shape investor sentiment and, through a bidirectional feedback 

mechanism, interact with Bitcoin’s price dynamics. Addressing this gap, this chapter centres 

on the bidirectional interaction between Bitcoin price and sentiment in the context of 

cryptocurrency heists. 

3.3 Data and Methodology 

3.3.1 Variable and Descriptive Statistics 

This chapter analyses the interaction between price and sentiment during the KuCoin 

exchange heist using the Bitcoin daily price (BP) in US dollars and the daily CFGI2. The 

 
2 CFGI only provides daily data. 
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Bitcoin price data is sourced from CoinGecko 3 , while the CFGI data is obtained from 

Alternative.me. Since the dataset is daily data, it needs to ensure that the sample period is 

sufficiently long to guarantee the robustness of the model results. If the sample period is too 

short (less than one month), it may fail to capture the complete causal relationship. 

Conversely, a sample period that is too long (e.g. six months or one year) might dilute the 

heist’s direct impact on investor sentiment and price dynamics due to the increasing influence 

of unrelated external factors over time. Manahov and Li (2024) found that, using daily data, a 

120-day window could effectively capture the negative impact of cryptocurrency heists on 

the market. Building on this precedent, this chapter also employs a relatively long event 

window to trace the dynamics of price and sentiment surrounding the KuCoin exchange heist. 

However, a 120-day horizon risks incorporating unrelated macroeconomic, policy, or market 

events that could obscure the effect of the heist itself. To strike a balance between model 

robustness and noise minimisation, a 90-day window is therefore considered more 

appropriate. A 90-day period is sufficiently long to ensure an adequate sample size and 

capture short- to medium-term adjustments in price and sentiment, yet short enough to 

minimise external noise and ensure that the identified effects can be primarily attributed to 

the heist. Specifically, the pre-heist period spans from June 27, 2020, to September 24, 2020, 

while the post-heist period covers September 25, 2020, to December 23, 2020. 

Table 3.1 (Panel A) presents the descriptive statistics of Bitcoin prices over the 90-day period 

before and after the KuCoin exchange heist. The results show that following the incident, the 

standard deviation increased from 1,040.61 to 3,827.55, indicating a significant rise in price 

volatility and heightened market uncertainty. The results of the Jarque–Bera (JB) and 

Augmented Dickey–Fuller (ADF) tests further confirm that Bitcoin prices exhibit non-

normality and non-stationarity. Similarly, Table 3.1 (Panel B) provides the descriptive 

statistics for the CFGI over the same time frame. Its standard deviation increased from 17.17 

to 18.73, suggesting greater fluctuations in investor sentiment following the KuCoin 

exchange heist. The JB and ADF tests also indicate that the CFGI is non-normally distributed 

and non-stationary. 

Overall, the descriptive statistics for Bitcoin prices and CFGI reveal a similar pattern: a 

notable increase in volatility following the KuCoin exchange heist. This preliminary evidence 

 
3 Bitcoin price refers to the current global volume-weighted average price of Bitcoin traded on an active crypto 

asset exchange as tracked by CoinGecko. This closing price should be representative of the entire Bitcoin 

market. 
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suggests that extreme incidents may simultaneously intensify market uncertainty and investor 

sentiment fluctuations, laying the groundwork for further analysis of the dynamic relationship 

between Bitcoin price and market sentiment. 

Table 3.1: Descriptive statistics of BP (Panel A) and CFGI (Panel B) 

Data Range Obs Mean S.Dev. Skew Kurt JB ADF 

27/06/2020–24/09/2020 90 10532.16 1040.61 -0.13 -1.55 8.85** -0.93 

25/09/2020–23/12/2020 90 15423.10 3827.55 0.35 -0.96 5.00* -2.41 

Data Range Obs Mean S.Dev. Skew Kurt JB ADF 

27/06/2020–24/09/2020 90 57.92 17.17 0.23 -1.78 12.57*** -0.93 

25/09/2020–23/12/2020 90 75.01 18.73 -0.57 -1.29 10.84*** -1.32 

The Bitcoin price (BP) data is sourced from CoinGecko, while the CFGI data is obtained from Alternative.me; 

Skew: Skewness, it is a measure of symmetry; Kurt: Kurtosis, it is a measure of whether the data are heavy-

tailed or light-tailed relative to a normal distribution; JB: Jarque–Bera test; ADF: Augmented Dickey–Fuller 

test; *** At the 1% significance level; ** At the 5% significance level; * At the 10% significance level 

3.3.2 Bootstrap Full-Sample Granger Causality Test 

This chapter first uses the Granger causality test to explore the bidirectional predictive 

relationship between Bitcoin price and CFGI (Granger, 1969). This test, grounded in the 

Vector Autoregression (VAR) model, assesses the causal relationship between two time series. 

Unlike conventional models based on economic principles, the VAR model is empirical, 

comprising multiple equations. Each equation links the endogenous variable to its lagged 

terms and those of other endogenous variables, enabling the estimation of dynamic 

relationships among them. Unlike single-variable autoregressive models, the VAR model 

captures interactions between multiple variables, improving analysis and prediction accuracy. 

It avoids a priori assumptions and specific functional forms, estimating parameters directly 

from data. This flexibility makes it adaptable to various situations (Sims, 1980). 

Compared to the simple correlation analyses, which only capture the degree of association 

between variables, the Granger causality framework allows for testing whether one time 

series has predictive power over another in a temporal context. This is especially important 

when studying the interaction between sentiment and price, where feedback effects may exist 

and unfold over time. Since Bitcoin price and CFGI are time-dependent variables, the VAR-

based Granger causality test captures the dynamic lagged interactions between them without 

requiring strict theoretical assumptions about their structural relationship. Moreover, it 

enables the analysis of whether the causal direction between price and sentiment changes 

under different market conditions, such as before and after a heist. These characteristics make 
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Granger causality testing a robust and flexible method for capturing the evolving nature of 

sentiment-price interactions in the cryptocurrency market. 

The Granger causality test assumes that all the predictive information about the variable, 𝑌1𝑡 

and variable 𝑌2𝑡 is contained within their respective time series. The bivariate VAR(𝑝) can be 

represented as follows: 

𝑌1𝑡 = 𝐶1,0 + ∑  

𝑝

𝑝=1

𝐴1,1(𝑝)𝑌1,𝑡−𝑝 + ∑  

𝑝

𝑝=1

𝐴1,2(𝑝)𝑌2,𝑡−𝑝 + 𝜀1𝑡

𝑌2𝑡 = 𝐶2,0 + ∑  

𝑝

𝑝=1

𝐴2,1(𝑝)𝑌1,𝑡−𝑝 + ∑  

𝑝

𝑝=1

𝐴2,2(𝑝)𝑌2,𝑡−𝑝 + 𝜀2𝑡

(9) 

where 𝑌1,𝑡−𝑝 and 𝑌2,𝑡−𝑝 are lagged time series, determined by information criteria. 𝜀1𝑡 and 𝜀2𝑡 

are two uncorrelated white-noise series. If 𝐴1,2(𝑝) is not statistically equal to 0, 𝑌2𝑡 is causing 

𝑌1𝑡. Similarly, if 𝐴2,1(𝑝) is not statistically equal to 0, 𝑌1𝑡 is causing 𝑌2𝑡. If both 𝐴1,2(𝑝) and 

𝐴2,1(𝑝) are statistically nonzero, it indicates a feedback relationship between 𝑌1𝑡  and 𝑌2𝑡 , 

which can be referred to as bidirectional causality. In this chapter, 𝑌1𝑡  and 𝑌2𝑡  represent 

Bitcoin price (BP) and CFGI, respectively. Therefore, Equation (9) can be rewritten in the 

following form: 

𝐵𝑃 = 𝐶1,0 + ∑  

𝑝

𝑝=1

𝐴1,1(𝑝)𝐵𝑃𝑡−𝑝 + ∑  

𝑝

𝑝=1

𝐴1,2(𝑝)𝐶𝐹𝐺𝐼𝑡−𝑝 + 𝜀1𝑡

𝐶𝐹𝐺𝐼 = 𝐶2,0 + ∑  

𝑝

𝑝=1

𝐴2,1(𝑝)𝐵𝑃𝑡−𝑝 + ∑  

𝑝

𝑝=1

𝐴2,2(𝑝)𝐶𝐹𝐺𝐼𝑡−𝑝 + 𝜀2𝑡

(10) 

Given the limited sample size in this study, relying solely on the traditional Granger causality 

test may result in biased estimates, particularly under small-sample conditions. To improve 

the accuracy and robustness of the results, this chapter adopts the Bootstrap full-sample 

Granger causality test as an extension of the traditional Granger framework. This method 

enhances inference by repeatedly resampling from the original dataset to construct the 

empirical distribution of the test statistics, thereby allowing for more precise significance 

testing without relying on strict distributional assumptions. Even with relatively small 

samples, the Bootstrap approach can extract more information from the data and mitigate the 

limitations of traditional Granger causality tests (Balcilar et al., 2010). Therefore, it serves as 
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a more reliable method for capturing shifts in the causal relationship between price and 

sentiment around extreme incidents. 

3.3.3 Parameter Stability Test 

In the full-sample Granger causality test, it is typically assumed that the parameters of the 

VAR model remain constant over time. However, this assumption may be violated if the 

underlying full-sample time series undergoes structural changes, rendering the results of the 

full-sample Granger causality test invalid. Therefore, this chapter examines the stability of 

short-term and long-term parameters. This chapter employs the Sup-F, Ave-F, and Exp-F tests 

developed by Andrews (1993) and Andrews and Ploberger (1994) to assess the short-term 

stability of the VAR model parameters and identify potential structural changes. Additionally, 

it also applies the Lc test proposed by Nyblom (1989) and Hansen (1992) to evaluate the 

long-term stability of all parameters within the VAR system.  

The Sup-F statistic for testing the null hypothesis of no structural change in 𝑘 coefficients is 

given by 

Supremum 𝑆𝑇 = 𝑠𝑢𝑝
𝑏1≤𝑏≤𝑏2

 𝑆𝑇(𝑏) (11) 

where 𝑏 is the potential break date in the range [𝑏1, 𝑏2] for a sample size T. 𝑆𝑇(𝑏) is the Wald 

or Likelihood Ratio test (LR test) statistic evaluated at a potential break date 𝑏. The Ave-F 

and Exp-F tests statistic are 

Average 𝑆𝑇 =
1

𝑏2 − 𝑏1 + 1
∑  

𝑏2

𝑏=𝑏1

𝑆𝑇(𝑏) (12) 

Exponential 𝑆𝑇 = ln [
1

𝑏2 − 𝑏1 + 1
∑  

𝑏2

𝑏=𝑏1

exp {
1

2
𝑆𝑇(𝑏)}] (13) 

The limiting distributions of the test statistics are given by 

 Supremum 𝑆𝑇 →𝑑 𝑠𝑢𝑝
𝜆∈[𝜀1,𝜀2]

 𝑆(𝜆)

 Average 𝑆𝑇 →𝑑

1

𝜀2 − 𝜀1
∫  

𝜀2

𝜀1

𝑆(𝜆)𝑑𝜆

 Exponential 𝑆𝑇 →𝑑 ln [
1

𝜀2 − 𝜀1
∫  

𝜀2

𝜀1

exp {
1

2
𝑆(𝜆)𝑑𝜆}]

(14) 
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where 

𝑆(𝜆) =
{𝐵𝑘(𝜆) − 𝜆𝐵𝑘(1)}′{𝐵𝑘(𝜆) − 𝜆𝐵𝑘(1)}

𝜆(1 − 𝜆)
(15) 

𝐵𝑘(𝜆) is a vector of 𝑘-dimensional independent Brownian motions, 𝜀1 = 𝑏1/𝑇, 𝜀2 = 𝑏2/𝑇, 

and 𝜆 = 𝜀2(1 − 𝜀1)/{𝜀1(1 − 𝜀2)}.  

Following Andrews (1993), this chapter trims 15% from both sides of the sample when 

conducting structural break tests, restricting the evaluation interval to (0.15, 0.85) fraction of 

the data. The full interval (0, 1) is not desirable because the Sup-F statistic diverges when the 

change point is near the sample boundaries. As Andrews (1993) notes, using the unrestricted 

interval results in a loss of power due to the divergence of the test statistics near zero or one. 

By restricting the interval, the Sup-F statistic converges in distribution and maintains higher 

power for detecting change points occurring within the central portion of the sample. 

Therefore, trimming improves the test’s robustness and statistical reliability when the location 

of the change point is unknown. The p-values are generated using the bootstrap method with 

1000 repetitions. 

3.3.4 Time-Varying Granger Causality Test 

If the parameters of the VAR model are unstable, this suggests that Granger causality may 

vary over time. To address this, recursive estimation methods are required to detect the 

potential time-varying nature of Granger causality (Thoma, 1994; Swanson, 1998; Baum et 

al., 2021). Baum et al. (2021) summarised three algorithms to generate sequences of Granger 

causality test statistics across different periods: forward expanding window (FE), rolling 

window (RO), and recursive evolving window (RE) algorithms. Figure 3.2 illustrates the 

workflows of these algorithms, where each arrow represents a possible subsample for 

calculating the relevant test statistics. 

Suppose {𝑦0, 𝑦1, 𝑦2, ⋯ , 𝑦𝑇 }  is a sample with 𝑇 + 1  observations, and a number 𝑟  which 

satisfies 0 < 𝑟 < 1 . [𝑇𝑟]  represents the integer part of the product. 𝒯𝑟1,𝑟  will be used to 

represent the Wald test statistic computed on the subsample starting at 𝑦[𝑇𝑟1] and ending at 

𝑦[𝑇r] . The FE algorithm (Thoma, 1994) is a standard forward recursive approach. After 

determining the minimum window length 𝑇𝑟0, the sample size is gradually expanded. In this 

recursive process, each subsample always starts from the first data point and progressively 

extends until the entire sample is used to calculate the final test statistic. This method can 
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capture the cumulative changes of long-term trends and causal relationships, but because the 

window continues to expand and the amount of data included gradually increases, the FE 

method is not sensitive to short-term fluctuations, and the results are usually smoother. The 

RO algorithm (Swanson, 1998; Arora & Shi, 2016) generates new windows by rolling 

forward one observation at a time and calculates the Wald test statistic for each window. 

Since only fixed-length data is used, the RO method is very sensitive to short-term changes 

and fluctuations, but its results are easily affected by the window size, and it is difficult to 

capture long-term trends or cumulative effects. In the RE algorithm, each observation is used 

as an endpoint for calculating a test statistic for all possible subsamples of size 𝑟0 or larger. 

This process is repeated for every data point in the sample, except for the first one, while 

adhering to the minimum window size requirement. Consequently, a collection of Wald test 

statistics is generated for each observation beyond the initial data point (Phillips et al.,2015b). 

The RE algorithm combines the features of the FE and RO algorithms, taking into account 

both short-term dynamics and long-term trends and has a greater capacity to detect temporal 

instabilities (Baum et al., 2021). 

Figure 3.2: Three different algorithms to generate Granger causality test statistic series for 

different periods 

 

Source: Phillips et al. (2015a); Baum et al. (2021) 

3.3.5 TVP-VAR-Based Connectedness Approach 

This chapter also uses the extended TVP-VAR method proposed by Diebold and Yilmaz 

(2009, 2012) to investigate whether the volatility of CFGI spilt over into other cryptocurrency 

markets during the KuCoin exchange heist. This method not only addresses the potential 
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issue of results being dependent on lag selection caused by Cholesky factor orthogonalization 

(Diebold and Yilmaz, 2009), but also allows for the characterisation of both the direction and 

the dynamic evolution of volatility spillovers. These features could help us identify shock 

transmission channels and risk contagion mechanisms during extreme events. Furthermore, 

due to its ease of implementation and strong adaptability, this method has been widely 

adopted in the study of volatility spillovers across financial markets (Yarovaya et al., 2016; Yi 

et al., 2018; Mensi et al., 2021; Elsayed et al., 2022). 

An 𝑁-variable TVP-VAR process with stationary covariance, as shown in Equation (16): 

𝑦𝑡 = Φ0,𝑡 + Φ1,𝑡𝑦𝑡−1 + Φ2,𝑡𝑦𝑡−2 + ⋯ + Φ𝑝,𝑡𝑦𝑡−𝑝 + 𝜀𝑡 (16) 

where 𝑦𝑡 is an 𝑁-dimensional column vector representing the volatility of 𝑁 financial time 

series, each of which follows a covariance stationary process. 𝜀𝑡  is an 𝑁 -dimensional 

disturbance vector with no serial correlation, where each component of 𝜀𝑡 is independent and 

identically distributed, following 𝜀𝑡 ∼ 𝑁(0, Σ𝑡), where Σ𝑡  represents the covariance matrix. 

Φ0,𝑡 is a 𝑁 × 1-dimensional intercept vector, and Φ1,𝑡, Φ2,𝑡, ⋯, Φ𝑝,𝑡 are 𝑁 ×  𝑁-dimensional 

time-varying lag coefficient matrices.  

If we define 𝛽𝑡 = vecr(Φ0,𝑡
′ , Φ1,𝑡

′ , Φ2,𝑡
′ , ⋯ , Φ𝑝,𝑡

′ ), where 𝑣𝑒𝑐𝑟(·) denotes the column stacking 

operator, then assuming the coefficient vector 𝛽𝑡 follows a random walk process of AR(1): 

𝛽𝑡 = 𝛽𝑡−1 + 𝑣𝑡 (17) 

The disturbance term 𝑣𝑡 is a time-invariant, independently and identically distributed (i.i.d.) 

Gaussian white noise process. Solving the above TVP-VAR model to get the posterior 

estimated coefficient 𝛽̂𝑡, and rearranging to get the coefficient matrix Φ̂1,𝑡, Φ̂2,𝑡, ⋯ , Φ̂𝑝,𝑡, we 

can use the following recurrence relation: 

𝐴ℎ,𝑡 = Φ̂1,𝑡𝐴ℎ−1,𝑡 + Φ̂2,𝑡𝐴ℎ−2,𝑡 + ⋯ + Φ̂𝑝,𝑡𝐴ℎ−𝑝,𝑡 (18) 

The coefficient matrix 𝐴ℎ,𝑡 associated with the TVP-VMA(∞) model can be calculated. Next, 

the 𝐻-step ahead Generalised Forecast Error Variance Decomposition (GFEVD) given by 

Koop et al. (1996) and Pesaran and Shin (1998) is defined as follows: 

𝑑𝑖𝑗,𝑡(𝐻) =
𝜎𝑗𝑗,𝑡

−1 ∑  𝐻−1
ℎ=0 (𝑒𝑖

′𝐴ℎ,𝑡 ∑  𝑡 𝑒𝑗)
2

∑  𝐻−1
ℎ=0 (𝑒𝑖

′𝐴ℎ,𝑡 ∑  𝑡 𝐴ℎ,𝑡
′ 𝑒𝑖)

, 𝑖, 𝑗 = 1,2, ⋯ , 𝑁 (19) 
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where 𝑑𝑖𝑗,𝑡(𝐻) represents the contribution of the 𝑗-th variable to the forecast error variance of 

the 𝑖-th variable at horizon 𝐻. ∑  𝑡 represents the variance matrix of the vector of errors. 𝜎𝑗𝑗  is 

denotes the j-th diagonal element of the ∑ matrix, and 𝑒𝑖 is a vector with a value of one in the 

𝑖-th position and zero otherwise. 

To maintain consistency with the economic interpretation of traditional variance 

decomposition, the variance decomposition results are typically row-standardised. 

𝑑̃𝑖𝑗,𝑡(𝐻) =
𝑑𝑖𝑗,𝑡

∑  𝑁
𝑗=1 𝑑𝑖𝑗,𝑡

(20) 

The total directional spillover index (SI) from variable 𝑖 to variables 𝑗 is:  

𝑇𝑂 = 𝑆𝐼𝑖→𝑗 =
∑  𝑁

𝑗=1,𝑖≠𝑗 𝑑̃𝑗𝑖,𝑡

∑  𝑁
𝑗=1 𝑑̃𝑗𝑖,𝑡

× 100 (21) 

The total directional spillover index (SI) from variables 𝑗 to variable 𝑖 is:  

𝐹𝑅𝑂𝑀 = 𝑆𝐼𝑖←𝑗 =
∑  𝑁

𝑗=1,𝑖≠𝑗 𝑑̃𝑖𝑗,𝑡

∑  𝑁
𝑗=1 𝑑̃𝑖𝑗,𝑡

× 100 (22) 

The net total directional spillover (NSI) index is: 

𝑁𝐸𝑇 = 𝑁𝑆𝐼 = 𝑆𝐼𝑖→𝑗 − 𝑆𝐼𝑖←𝑗 = 𝑇𝑂 − 𝐹𝑅𝑂𝑀 (23) 

A positive value indicates that the variable is a net transmitter of volatility, whereas a 

negative value indicates that the variable is a net receiver of volatility. 

The total connectivity index (TCI) among the variables is: 

𝑇𝐶𝐼 =
∑  𝑁

𝑖=1 ∑  𝑁
𝑗=1,𝑖≠𝑗 𝑑̃𝑖𝑗,𝑡

∑  𝑁
𝑖=1 ∑  𝑁

𝑗=1, 𝑑̃𝑖𝑗,𝑡

× 100 (24) 

3.4 Empirical Results 

3.4.1 Stationarity, Cointegration, and Stability Tests 

Since Bitcoin price and CFGI are non-stationary series, differencing is required to make them 

stationary. Table 3.2 presents the statistical results from three linear unit root tests, namely the 

Augmented Dickey–Fuller (ADF) test, the Phillips–Perron (PP) test, and the Kwiatkowski–

Phillips–Schmidt–Shin (KPSS) test, as well as one nonlinear unit root test, the Kapetanios–
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Shin–Shell (KSS) test. After first-order differencing, the ADF, PP, and KSS tests reject the 

null hypothesis of a unit root and indicate that the series are stationary. At the same time, the 

KPSS test could not reject the null hypothesis of stationarity. Therefore, after the first-order 

difference, the Bitcoin price and CFGI become stationary series. 

Table 3.2: Unit root tests (ADF, PP and KPSS) for BP and CFGI 

 
Before the heist 

(27/06/2020–24/09/2020) 

After the heist 

(25/09/2020–23/12/2020) 

Unit root test BP CFGI BP CFGI 

ADF -10.577*** -10.045*** -8.482*** -13.254*** 

PP -10.567*** -10.047*** -8.482*** -13.892*** 

KPSS 0.270 0.256 0.175 0.137 

KSS -4.744*** -4.192*** -3.670*** -3.507*** 

ADF: Augmented Dickey–Fuller test; PP: Phillips–Perron test; KPSS: Kwiatkowski–Phillips–Schmidt–Shin 

test; KSS: Kapetanios–Shin–Shell test; ∗∗∗ At the 1% significance level 

Next, since the original series are non-stationary I(1) processes (each series itself is non-

stationary, but its first-order difference is stationary), it is necessary to conduct cointegration 

tests to determine whether a long-term equilibrium relationship exists between them. If no 

cointegration is found, the series are differenced, and a VAR model is then constructed on the 

stationary series. In line with Johansen’s (1988, 1991) methodology, the optimal lag length is 

first determined using the original (non-differenced) data. Table 3.3 shows that, based on the 

results of the Akaike Information Criterion (AIC), the Hannan–Quinn Criterion (HQ), the 

Schwarz Bayesian Information Criterion (SIC), and the Final Prediction Error (FPE), the 

optimal lag length between Bitcoin price and CFGI is 2, both before and after the KuCoin 

exchange heist. 

Table 3.3: Lag order selection criteria 

Panel A: Before the heist (27/06/2020–24/09/2020)  
1 2 3 4 5 6 7 8 

AIC 19.578 19.473* 19.482 19.555 19.611 19.576 19.561 19.653 

HQ 19.649 19.591* 19.647 19.767 19.870 19.882 19.914 20.054 

SIC 19.754* 19.766 19.893 20.083 20.256 20.339 20.441 20.651 

FPE 1091096 982064.500* 991314.500 1067430 1130338 1094064 1081044 1189943 

Panel B: After the heist (25/09/2020–23/12/2020)  
1 2 3 4 5 6 7 8 

AIC 20.918 20.839* 20.869 20.950 21.002 21.059 21.078 21.134 

HQ 20.989 20.956* 21.034 21.162 21.261 21.365 21.431 21.534 

SIC 21.094* 21.132 21.280 21.479 21.647 21.821 21.958 22.132 

FPE 4166238 3848284* 3968362 4309626 4543618 4819291 4927004 5231672 

AIC: Akaike Information Criterion; HQ: Hannan-Quinn Criterion; SIC: Schwarz Bayesian Information 

Criterion; FPE: Final Prediction Error; * Indicates lag order selected by the criterion 
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Table 3.4 reports the results of the Johansen cointegration trace test before and after the 

KuCoin exchange heist. Panel A shows that, for the pre-heist period, the null hypothesis of no 

cointegration (rank = 0) cannot be rejected, as the trace statistic (6.443) is below the 5% 

critical value (15.410). Similarly, for the post-heist period reported in Panel B, the null 

hypothesis of no cointegration is also not rejected, with a trace statistic of 4.775 compared 

with the 5% critical value of 15.410. These results suggest that Bitcoin price and CFGI do not 

share a long-term equilibrium relationship, either before or after the KuCoin exchange heist. 

Consequently, the analysis proceeds with a VAR model based on the first-differenced 

stationary series to capture short-run dynamics. 

Table 3.4: Johansen cointegration test results for BP and CFGI before and after the KuCoin 

exchange heist 

Panel A: Before the heist (27/06/2020–24/09/2020) 

Maximum rank Params Log likelihood Eigenvalue Trace statistic Critical value at 5% 

0 6 -843.997 
 

6.443* 15.410 

1 9 -842.053 0.043 2.555 3.760 

2 10 -840.776 0.029 
  

Panel B: After the heist (25/09/2020–23/12/2020) 

Maximum rank Params Log likelihood Eigenvalue Trace statistic Critical value at 5% 

0 6 -906.614 
 

4.775* 15.410 

1 9 -904.261 0.052 0.069 3.760 

2 10 -904.226 0.001 
  

* Selected rank 

Building on the previous tests, this chapter employs the Bootstrap full-sample Granger 

causality test to examine the relationship between Bitcoin price and CFGI. Table 3.5 shows 

that, based on the first-order differenced series, the optimal lag length between Bitcoin price 

and CFGI is 1, both before and after the KuCoin exchange heist. This result provides the 

basis for constructing the VAR model. Before the KuCoin exchange heist, the results in Table 

3.6 (Panel A) indicate no statistically significant bidirectional predictive relationship between 

Bitcoin price and CFGI. This implies that the Bitcoin price did not influence CFGI, and CFGI 

did not affect the Bitcoin price. However, after the KuCoin exchange heist, the results in 

Table 3.6 (Panel B) reveal a statistically significant bidirectional predictive relationship 

between Bitcoin price and CFGI. During this period, not only did the Bitcoin price influence 

CFGI, but CFGI also affected the Bitcoin price. 
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Table 3.5: VAR lag order selection criteria 

Panel A: Before the heist (27/06/2020–24/09/2020)  
1 2 3 4 5 6 7 8 

AIC 13.837* 13.840 13.910 13.975 13.934 13.904 14.003 14.058 

HQ 13.909* 13.960 14.078 14.191 14.198 14.217 14.363 14.466 

SIC 14.017* 14.140 14.330 14.515 14.594 14.684 14.903 15.077 

FPE 1021473* 1025266 1099814 1174877 1129681 1099571 1217433 1291394 

Panel B: After the heist (25/09/2020–23/12/2020)  
1 2 3 4 5 6 7 8 

AIC 15.213* 15.229 15.310 15.366 15.421 15.457 15.512 15.531 

HQ 15.285* 15.349 15.478 15.582 15.685 15.770 15.872 15.940 

SIC 15.393* 15.529 15.730 15.906 16.081 16.237 16.412 16.551 

FPE 4043913* 4110612 4461538 4723152 4997791 5196069 5505580 5636148 

AIC: Akaike Information Criterion; HQ: Hannan–Quinn Criterion; SIC: Schwarz Bayesian Information 

Criterion; FPE: Final Prediction Error; * Indicates lag order selected by the criterion 

Table 3.6: The results of Bootstrap full-sample Granger causality test 

Panel A: Before the heist: (27/06/2020–24/09/2020) 

Null hypothesis F-Statistics p-value 

BP does not Granger cause CFGI 4.060 0.222 

CFGI does not Granger cause BP 0.122 0.713 

Panel B: After the heist: (25/09/2020–23/12/2020) 

Null hypothesis F-Statistics p-value 

BP does not Granger cause CFGI 2.182 0.037 

CFGI does not Granger cause BP 6.555 0.016 

p-value is calculated using 1000 bootstrap repetitions 

Khalik and Shukur (2004) highlighted that the stability of VAR model parameters 

significantly impacts Granger causality tests conducted on the full sample. The presence of 

structural breaks may cause the parameters of the VAR model to be non-constant during full-

sample estimation. The parameter stability results in Table 3.7 indicate that the parameters of 

the Bitcoin price (BP) equation, the CFGI equation, and the overall VAR system are not 

stable. For instance, before the KuCoin exchange heist (Panel A), the Sup-F test results show 

that the null hypothesis of short-term parameter stability is rejected at the 1% level for the BP 

equation, the CFGI equation, and the VAR system. The Exp-F test results further reveal that 

the null hypothesis of short-term parameter stability is rejected at the 5% level for the BP 

equation. After the KuCoin exchange heist (Panel B), the Sup-F test results again show that 

the null hypothesis of short-term parameter stability is rejected at the 1% level for all three 

equations. Additionally, the Lc test results indicate that the null hypothesis of long-term 

parameter stability for the VAR system is rejected at the 10% level. 
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Table 3.7: Parameter stability test 

Panel A: Before the heist: (27/06/2020–24/09/2020)  
BP equation CFGI equation VAR system 

 
Statistics p-value Statistics p-value Statistics p-value 

Sup-F 21.703*** 0.000 69.198*** 0.001 33.739*** 0.001 

Ave-F 1.323 0.347 1.535 0.221 2.073 0.329 

Exp-F 4.014** 0.049 27.691*** 0.006 9.963** 0.021 

Lc 
    

0.351 0.915 

Panel B: After the heist: (25/09/2020–23/12/2020)  
BP equation CFGI equation VAR system 

 
Statistics p-value Statistics p-value Statistics p-value 

Sup-F 9.250*** 0.001 9.493*** 0.001 14.370*** 0.001 

Ave-F 1.398 0.363 1.395 0.370 2.172 0.363 

Exp-F 1.050 0.502 0.995 0.542 2.281 0.341 

Lc 
    

2.627* 0.072 

∗∗∗ At the 1% significance level; ∗∗ At the 5% significance level; ∗ At the 10% significance level; p-value is 

calculated using 1000 bootstrap repetitions 

Given the potential presence of structural changes, traditional Granger causality tests may not 

be suitable. Therefore, this chapter employs time-varying Granger causality tests to examine 

the dynamic predictive relationship between Bitcoin price and CFGI. The main analysis 

adopts a rolling window size of 30 and 999 bootstrap repetitions.  

3.4.2 Time-Varying Granger Causality Test Results 

Figure 3.3 illustrates the time-varying Granger causality between Bitcoin price and CFGI 

before the KuCoin exchange heist. The null hypotheses are that Bitcoin price does not 

Granger cause CFGI and that CFGI does not Granger cause Bitcoin price, respectively. The 

Wald statistics used in all algorithms are robust to heteroskedasticity. The results from all 

three algorithms consistently indicate that no statistically significant bidirectional predictive 

relationship exists between Bitcoin price and CFGI, whether in short-term dynamics or long-

term trends. This absence of causality suggests that, before the KuCoin exchange heist, there 

is no meaningful feedback loop between investor sentiment, as measured by CFGI, and 

Bitcoin price movements. In other words, shifts in CFGI do not significantly anticipate or 

drive changes in Bitcoin price, and likewise, fluctuations in Bitcoin price do not exert a 

substantial influence on the sentiment captured by CFGI. These findings imply that during 

relatively stable market conditions, the predictive relationship between sentiment and price 

remains weak, reflecting the limited informational role of CFGI in predicting Bitcoin price 

dynamics in the absence of extreme external shocks. 
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Figure 3.3: Time-varying Granger causality test results before the KuCoin exchange heist 

(window size = 30, using 30% of the sample, with 999 bootstrap repetitions) 
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The rolling window size is 30, and the bootstrap repetition is 999. The dashed line represents the 95th percentile 

of the bootstrapped test statistics, while the dotted line corresponds to the 90th percentile. When the test statistic 

exceeds these critical values, the null hypothesis is rejected at the corresponding significance level, indicating 

that Bitcoin price Granger causes CFGI (or CFGI Granger causes Bitcoin price) during those periods. 

Figure 3.4 illustrates the time-varying Granger causality between Bitcoin price and CFGI 

after the KuCoin exchange heist. The FE algorithm reveals that while Bitcoin price and CFGI 

do not consistently influence each other in the long term, the Wald statistics exhibit a smooth 

and gradually increasing trend. This indicates that the influence of Bitcoin price on CFGI and 

vice versa has been slowly strengthening over the entire time horizon. Meanwhile, the RO 
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and RE algorithms reveal statistically significant bidirectional predictive relationship between 

Bitcoin price and CFGI across most of the sample period. In summary, the RO and RE 

algorithm results support the existence of statistically significant bidirectional predictive 

relationship between Bitcoin price and CFGI after the KuCoin exchange heist. 

Figure 3.4: Time-varying Granger causality test results after the KuCoin exchange heist 

(window size = 30, using 30% of the sample, with 999 bootstrap repetitions) 
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The rolling window size is 30, and the bootstrap repetition is 999. The dashed line represents the 95th percentile 

of the bootstrapped test statistics, while the dotted line corresponds to the 90th percentile. When the test statistic 

exceeds these critical values, the null hypothesis is rejected at the corresponding significance level, indicating 

that Bitcoin price Granger causes CFGI (or CFGI Granger causes Bitcoin price) during those periods. 

The fluctuating predictive relationship between Bitcoin price and sentiment before and after 

the KuCoin exchange heist may be attributed to structural market changes triggered by the 

incident. Cryptocurrency heists are typically unforeseen incidents that generate significant 

market uncertainty. In such situations, investors often become apprehensive about future 

market trends, leading to shifts in behaviour. These behavioural changes can cause market 
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price fluctuations, as suggested by Shiller (2003). For instance, investors may reduce trading 

activity to mitigate risks, which impacts market liquidity. A decline in liquidity can have 

lasting consequences on market operations and structures. Additionally, market confidence 

often deteriorates in the aftermath of a cryptocurrency heist, raising investor concerns about 

regulations and security. This erosion of confidence can result in sell-offs and market 

turbulence. The recovery of market confidence tends to be prolonged, introducing structural 

shifts in the market. Before the KuCoin exchange heist, the market appeared relatively stable, 

with investors relying more on long-term trends than on sentiment. However, this heist 

marked a turning point as media coverage amplified negative sentiment. For example, reports 

suggested that the amount stolen might exceed initial estimates, and concerns about the 

security of cryptocurrency exchanges were raised (Jagati, 2020). 

Although the KuCoin exchange heist did not compromise the Bitcoin blockchain itself, which 

is widely regarded as virtually hack-proof, it exposed security vulnerabilities in centralised 

trading platforms and severely damaged investor confidence. Bitcoin was the largest and 

most symbolic asset stolen in this incident. As the benchmark currency of the entire 

cryptocurrency market, it was central to the perceived stability of the system. Many retail 

investors do not clearly distinguish between “an exchange being hacked” and “Bitcoin itself 

being hacked,” and may thus interpret such incidents as evidence of Bitcoin’s insecurity. 

Furthermore, since exchanges are the primary gateways to Bitcoin liquidity, their security is 

closely tied to overall trust in the Bitcoin market (Fang et al., 2025). Consequently, the 

KuCoin exchange heist was perceived not merely as an incident of asset theft but as a shock 

to the stability and safety of the Bitcoin ecosystem, likely exerting a deeper influence on 

Bitcoin price and sentiment than cryptocurrency heists involving other tokens.  

However, the influence of this heist on investor sentiment and its feedback on Bitcoin price 

does not materialise immediately. Comprehensive sentiment indicators such as the CFGI are 

constructed from multiple underlying components, including volatility, trading volume, and 

search trends, that adjust gradually to new information. Consequently, their response to 

sudden shocks tends to be delayed. From a behavioural finance perspective, sentiment 

evolution is also time-dependent: initial reactions are marked by uncertainty and observation, 

followed by collective emotional responses once the event’s implications become widely 

discussed and internalised. This lagged adjustment process explains why the bidirectional 

predictive relationship between Bitcoin price and CFGI becomes significant only about a 

month after the heist. Moreover, the upward trend in the Wald statistics observed during this 
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period further indicates that the bidirectional predictive relationship between Bitcoin price 

and CFGI gradually strengthens over time, reflecting the progressive reinforcement of market 

feedback mechanisms. 

In summary, this unease prompted sell-offs or reduced investments, which directly impact the 

Bitcoin price. Price volatility further fuels investor anxiety, encouraging emotional trading 

decisions that exacerbate price fluctuations (Bourghelle et al., 2022). These dynamics 

contributed to a stronger predictive relationship between Bitcoin price and CFGI in the 

aftermath of the KuCoin exchange heist. These findings are consistent with those of Cheung 

et al. (2015), Corbet et al. (2020b, 2020c), and Wang et al. (2020), further suggesting that 

structural breaks induced by external shocks reshape the dynamic predictive relationship 

between Bitcoin price and sentiment. 

This chapter also provides robustness checks with a window size of 10 in Appendix 3.6 to 

examine whether the results are sensitive to the choice of window size. In general, the choice 

of window size reflects a trade-off between smoothness and responsiveness. A larger window 

smooths short-term fluctuations and highlights long-term trends but may obscure short-term 

variations in causal dynamics. In contrast, a smaller window is more sensitive to local 

changes and better captures short-term adjustments in relationships following sudden events. 

Therefore, comparing results across different window specifications helps verify the temporal 

robustness of the findings.  

Figure 3.9 in the appendix presents the results of the time-varying Granger causality tests 

before the KuCoin exchange heist. The RO and RE algorithms indicate that Bitcoin price 

influences CFGI during certain periods, while CFGI affects Bitcoin price during others. 

However, the FE algorithm suggests that these short-term causal relationships are temporary, 

as no statistically significant long-term relationship is detected. This finding is consistent 

with the results obtained using a rolling window of 30, suggesting that before the KuCoin 

exchange heist, the interaction between Bitcoin price and investor sentiment remains weak 

and unstable.  

Figure 3.10 in the appendix presents the results of the time-varying Granger causality tests 

after the KuCoin exchange heist. The FE algorithm indicates that the effects of Bitcoin price 

on CFGI and vice versa gradually strengthen over time. Moreover, compared with a window 

size of 30, the RO and RE algorithms reveal that using a smaller window size of 10 produces 

statistically significant bidirectional predictive relationships across a larger number of 
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overlapping periods. This suggests that a smaller window can capture finer short-term 

dynamic adjustments. The incident heightened uncertainty, tightened liquidity, and intensified 

media attention, making the price–sentiment feedback more frequent and short-lived. 

Consequently, a smaller window is more sensitive to such high-frequency, short-horizon 

causal episodes and thus uncovers more significant predictive relationships after the heist, 

reflecting stronger behavioural responses and structural shifts triggered by the event. 

In summary, the robustness tests using different window sizes consistently support the main 

conclusion that, after the KuCoin exchange heist, there exists a statistically significant and 

gradually strengthening bidirectional predictive relationship between Bitcoin price and CFGI, 

whereas before the heist, this bidirectional predictive relationship is not statistically 

significant. 

3.4.3 Local Projection Impulse Response Analysis 

Next, this chapter uses local projection impulse response methods to investigate further the 

dynamic interaction between the Bitcoin price and the CFGI following the KuCoin exchange 

heist. This approach explores how price shocks (or market sentiment) propagate over time 

and influence changes in market sentiment (or prices). To ensure the robustness of our 

findings, this chapter conducts impulse response analyses with different forecast horizons 

(steps set at 10, 20, 30, and 40). The orthogonalized impulse response results presented in 

Figure 3.5 indicate that the Bitcoin price exerts a significant positive impact on CFGI, and 

similarly, CFGI has a significant positive effect on the Bitcoin price. This suggests that when 

the Bitcoin price (or CFGI) increases, CFGI (or Bitcoin price) also rises, and when the 

Bitcoin price (or CFGI) decreases, CFGI (or Bitcoin price) declines accordingly. Additionally, 

it observes that the impact of Bitcoin price on CFGI gradually weakens over time, stabilising 

around 40 days after the shock. In contrast, the influence of CFGI on Bitcoin price exhibits 

greater fluctuation, with an initial sharp increase reaching a peak around 30 days before 

gradually tapering off. These findings highlight the significant role of market sentiment in 

influencing Bitcoin price after the KuCoin exchange heist and reveal an asymmetric dynamic 

relationship between sentiment and price. 
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Figure 3.5: Local projected impulse responses of BP and CFGI 
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Firstly, the more decisive influence of market sentiment on prices can be attributed to the 

behavioural drivers of investor actions (Schmeling, 2009; Wang et al., 2021; Ballis & 

Verousis, 2022; Anamika et al., 2023). Following a cryptocurrency heist, investor panic or 

confidence directly shapes trading behaviours, amplifying market price volatility. For 

example, panic sentiment can trigger widespread sell-offs, further depressing prices. 

Moreover, market sentiment has a high degree of transmissibility and self-reinforcing 

characteristics. When panic spreads, it not only affects individual investors but also 

propagates through network effects to the entire market, leading to more pronounced price 

fluctuations (Bourghelle et al., 2022; Jia et al., 2022; Lin et al., 2023; Manahov & Li, 2024). 

In contrast, the feedback effect of price on market sentiment is typically slower and may be 

diluted by other market information or events during the transmission process. This 

asymmetry reflects a key characteristic of cryptocurrency markets: compared to traditional 
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financial markets, cryptocurrency markets are more sentiment-driven (Waghmare & Uike, 

2023; Long et al., 2024). Due to their high volatility and lack of mature regulatory 

frameworks, cryptocurrency investors are more susceptible to external information (such as 

cryptocurrency heists) and sentiment swings, further exacerbating price volatility (Gupta et 

al., 2024). Finally, while sentiment may fluctuate rapidly in the short term, its overall trend 

(e.g. panic or confidence) usually takes longer to undergo fundamental changes (Chen et al., 

2019). Conversely, price can change rapidly in the short term, but these changes may not 

immediately affect market sentiment (Gaies et al., 2023). During the recovery period 

following the incident, market sentiment may gradually adapt to price fluctuations and adjust 

expectations based on longer-term trends rather than reacting immediately to isolated price 

movements. 

These findings are consistent with previous studies that emphasised the significant impact of 

sentiment on Bitcoin price (Kraaijeveld & De Smedt, 2020; Kapar & Olmo, 2021; Sabalionis 

et al., 2021; Bouteska et al., 2022; Gaies et al., 2023). However, this chapter’s findings 

further highlight the asymmetric relationship between price and sentiment. This asymmetry 

underscores the central role of sentiment in shaping price movements in cryptocurrency 

markets while also revealing the complexities of feedback mechanisms in the sentiment-price 

relationship. These findings provide deeper insights into the intricate dynamics of 

cryptocurrency markets, particularly in the aftermath of disruptive incidents such as 

cryptocurrency heists, where sentiment and price fluctuations can amplify each other in 

unique and unpredictable ways. 

In summary, the results of the time-varying Granger causality tests and local projection 

impulse response analysis support the hypothesis H1. The dynamic predictive relationship 

between Bitcoin price and CFGI highlights the significant impact of specific incidents on 

Bitcoin price and market sentiment. Following Bitcoin-specific heists, the bidirectional 

predictive relationship between Bitcoin price and CFGI becomes notably stronger. Investors 

can use CFGI to forecast price trends and market reactions during such incidents. Similarly, 

changes in Bitcoin prices can provide insights into future shifts in market sentiment, enabling 

investors to refine their Bitcoin trading strategies. This predictive relationship offers investors 

an additional source of information, helping them better navigate market volatility and 

mitigate potential losses (AlNemer et al., 2021). 
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3.4.4 Time-Varying Granger Causality Test between Bitcoin Price and CFGI during 

Other Cryptocurrency Heists 

As of April 2024, there are more than 9,000 cryptocurrencies (CoinMarketCap, 2024). This 

diversity has expanded the range of potential target assets for cryptocurrency heists, with 

commonly stolen cryptocurrencies including Ethereum, Binance Coin, Ripple, and Tether. 

Although this chapter observes that in the KuCoin exchange heist, Bitcoin price influenced 

CFGI, and CFGI, in turn, influenced Bitcoin price, whether this bidirectional predictive 

relationship applies to heists targeting other cryptocurrencies still deserves further exploration. 

Considering CFGI’s available data range, this chapter uses nine cryptocurrency heists 

discussed in Chapter 2 as a sample. Table 3.8 presents the data span for each cryptocurrency 

heist. To ensure consistency across cases, the same time frame as used in the KuCoin 

exchange heist analysis is applied, a 30-day period following each cryptocurrency heist. 

Table 3.8: The scope of cryptocurrency heist data 

Platform Data range 

PancakeBunny May 20, 2021, to August 17, 2021 

Poly Network August 10, 2021, to November 07, 2021 

Bitmart December 4, 2021, to March 3, 2022 

Wormhole February 03, 2022, to May 03, 2022 

Ronin Network March 29, 2022, to June 26, 2022 

Beanstalk April 16, 2022, to July 14, 2022 

Nomad August 02, 2022, to October 30, 2022 

Binance October 07, 2022, to January 04, 2023 

FTX November 11, 2022, to February 08, 2023 

The Bitcoin price (BP) data is sourced from CoinGecko, while the CFGI data is obtained from Alternative.me. 

Since the RE algorithm integrates the strengths of both the FE and RO algorithms, which 

capture short-term dynamics and long-term trends simultaneously while demonstrating 

superior sensitivity to temporal instability (Baum et al., 2021), this chapter primarily presents 

results based on the RE algorithm. The results from the FE and RO algorithms are provided 

in Appendix 3.6 (Figure 3.11) as robustness checks. Figure 3.6 presents the results of the 

time-varying Granger causality test using the RE algorithm4 . The findings indicate that, 

following most cryptocurrency heists, Bitcoin price has little to no statistically significant 

 
4 The VAR model is constructed using the first-order differenced Bitcoin price (BP) and the CFGI series. Except 

for the Nomad protocol and Binance platform heists, where the optimal lag orders are 4 and 2, respectively, all 

other cryptocurrency heists adopt a lag order of 1. The rolling window size is set to 20, balancing the trade-off 

between capturing short-term fluctuations and maintaining estimation stability. 999 bootstrap repetitions are 

used. Wald statistics are computed to be robust to heteroskedasticity. 
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effect on CFGI. Likewise, CFGI shows limited statistically significant influence on Bitcoin 

price. This phenomenon is understandable, as CFGI primarily measures sentiment specific to 

the Bitcoin market, and Bitcoin itself is not directly targeted in these cryptocurrency heists. 

Typically, such heists trigger widespread market anxiety, but the concern is often 

concentrated on the affected tokens. Investors tend to monitor the markets of stolen tokens 

more closely, as these assets are directly associated with potential financial losses, leading to 

greater volatility in those markets.  

In contrast, unlike the dramatic fluctuations of the stolen tokens, Bitcoin may exhibit more 

stable price movements over the long-term following these cryptocurrency heists. As a result, 

the influence of Bitcoin price on Bitcoin market sentiment may not be significant. 

Furthermore, the speed and scope of sentiment diffusion in the cryptocurrency market may be 

constrained by prevailing market conditions (Vasudevan et al., 2024). Negative sentiment 

generated around stolen tokens may not immediately spill into the Bitcoin market. The 

relatively stable sentiment in the Bitcoin market may not significantly influence the Bitcoin 

price. 

Figure 3.6: Time-varying Granger causality between BP and CFGI using the RE algorithm 

across nine cryptocurrency heists 
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The Nomad protocol heist is particularly noteworthy, as it represents a rare case where 

statistically significant bidirectional predictive relationship is observed between Bitcoin price 

and CFGI following the incident. Nomad is a cryptocurrency bridging service provider whose 

core smart contract contained a critical vulnerability in the past. This flaw allowed attackers 

to manipulate transactions, facilitating the widespread theft of tokens bridged through the 

protocol. Multiple parties rapidly exploited the vulnerability, resulting in the loss of 

substantial assets and making it one of the most chaotic and extensive hacks in 

cryptocurrency history. What distinguishes the Nomad protocol heist is its far-reaching 

impact. Unlike attacks targeting specific tokens, the vulnerability in the Nomad bridge affects 

all assets connected to its infrastructure, leading to significant disruptions across the 

cryptocurrency market and severely undermining investor confidence in bridging protocols. 

Figure 3.7 illustrates the changes in Bitcoin price and CFGI following the Nomad protocol 

heist, revealing a pronounced simultaneous decline in Bitcoin price and market sentiment. 

Although Bitcoin is not directly targeted, the exploitation of the Nomad protocol heightens 

investor perceptions of systemic risk in the cryptocurrency market. As the benchmark asset in 

the crypto space, Bitcoin experiences considerable volatility in both price and sentiment. The 

collapse of confidence in bridging protocols—critical for cross-chain transactions—raises 

broader concerns about the security of blockchain ecosystems. This erosion of trust leads to a 

decline in Bitcoin’s price and poses major challenges to the recovery of market sentiment. 
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Figure 3.7: Trends of BP and CFGI after the Nomad protocol heist 

 

The Bitcoin price data is sourced from CoinGecko, while the CFGI data is obtained from Alternative.me. 

The results of the FE and RO algorithms presented in Appendix 3.6 (Figure 3.11) show 

consistent findings. In summary, the empirical evidence supports Hypothesis H2. Specifically, 

in Bitcoin-targeted heists, the predictive relationship between Bitcoin price and market 

sentiment is stronger. However, in broader cryptocurrency heists that do not directly involve 

Bitcoin, this predictability weakens. For investors, especially in an environment where 

cryptocurrency heists occur frequently, using the CFGI to formulate investment strategies 

after a cryptocurrency heist requires careful consideration of the incident’s impact on the 

Bitcoin market. If a cryptocurrency heist severely disrupts the Bitcoin market, the CFGI may 

become highly valuable for forecasting Bitcoin price movements. Conversely, if the 

cryptocurrency heist has little direct effect on Bitcoin, relying solely on CFGI may lead to 

inaccurate predictions and suboptimal investment decisions. 

3.4.5 The Impact of CFGI on Other Cryptocurrency Markets 

As the most significant cryptocurrency market by capitalisation, Bitcoin’s dynamics often 

profoundly impact the broader cryptocurrency ecosystem. However, whether the market 

panic triggered by Bitcoin thefts affects other cryptocurrency markets remains uncertain. 

Existing studies offer mixed findings regarding the spillover effects between cryptocurrency 

markets. Some studies suggested that Bitcoin, as a high-capitalisation cryptocurrency, serves 
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as a major source of returns and volatility spillovers to other cryptocurrency markets, with 

these effects intensifying over time (Katsiampa et al., 2019a; Kumar & Anandarao, 2019; 

Özdemir, 2022; Manahov & Li, 2024). In contrast, other studies indicated weak or non-

existent volatility spillovers between Bitcoin and other cryptocurrency markets (Luu Duc 

Huynh, 2019; Zięba et al., 2019). These discrepancies imply that the relationships between 

cryptocurrency markets may inherently be dynamic, shaped by market sentiment, regulatory 

changes, and unexpected market events. In the previous analysis of the KuCoin exchange 

heist, this chapter finds that CFGI significantly influences the Bitcoin price after the heist. 

Next, it aims to investigate whether CFGI also influences other cryptocurrency markets. This 

chapter selects Ethereum and Binance Coin as representative assets. These two 

cryptocurrencies are among the most highly capitalised and particularly susceptible to hacker 

theft. Daily price data for Ethereum (EP) and Binance Coin (BCP) is also sourced from 

CoinGecko, and the data range is from September 25, 2020, to December 23, 2020. 

This chapter employs a connectedness test based on the TVP-VAR model to examine the 

spillovers among CFGI, Bitcoin, Ethereum, and Binance Coin. By analysing their 

connectedness, this analysis investigates how much of the price volatility in Ethereum and 

Binance Coin can be attributed to fluctuations in CFGI, thereby revealing whether volatility 

in Bitcoin-related market sentiment affects other major cryptocurrencies. Table 3.9 reports the 

connectedness results among the variables following the KuCoin exchange heist. The total 

connectedness index (TCI) is relatively low, at 51.68, indicating that the spillover effects 

among CFGI, Bitcoin, Ethereum, and Binance Coin are moderate and that their fluctuations 

remain relatively independent. For CFGI, the largest volatility contribution it receives comes 

from Bitcoin (22.07%), while it receives much less from Ethereum (15.44%) and Binance 

Coin (11.98%). This indicates that Bitcoin volatility is the primary driver of CFGI, whereas 

Ethereum and Binance Coin play a more limited role in influencing it. Moreover, Bitcoin also 

receives a substantial volatility contribution from CFGI, amounting to 20.24%. This finding 

aligns with previous results showing that, after the KuCoin exchange heist, the predictive 

relationship between Bitcoin and CFGI strengthened, with each exerting a significant 

influence on the other. 
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Table 3.9: Connectivity results between CFGI, BP, EP and BCP 

 
BP CFGI EP BCP FROM 

BP 44.91 20.24 25.71 9.14 55.09 

CFGI 22.07 50.51 15.44 11.98 49.49 

EP 25.47 14.09 43.42 17.02 56.58 

BCP 11.39 11.95 22.23 54.43 45.57 

TO 58.92 46.28 63.39 38.14 206.73 

NET 3.84 -3.21 6.81 -7.43 TCI 
     

51.68 

The data for Bitcoin price (BP), Ethereum price (EP), and Binance Coin price (BCP) are obtained from 

CoinGecko, while the CFGI data is sourced from Alternative.me. The findings are derived from a TVP-VAR 

method with a lag length of 1, determined by the Akaike Information Criterion (AIC). The rolling window size 

is 20 hourly observations, and forecast market dynamics 10 time steps into the future. FROM indicates the 

source of causal impacts that each variable receives, while TO denotes the destination of these effects. NET 

equals TO minus FROM. Positive values of NET indicate that the variable is a net transmitter of spillover 

impacts, whereas negative values suggest it is a net receiver. TCI represents the overall level of connectedness 

among the variables, while a lower TCI suggests weaker linkages and more independence among variables. 

For Ethereum and Binance Coin, the volatility contribution they receive from CFGI is 

relatively modest, at only 14.09% and 11.95%, respectively. This indicates that while Bitcoin 

market sentiment plays a significant role in driving Bitcoin’s price dynamics following the 

KuCoin exchange heist, its influence on other cryptocurrencies, such as Ethereum and 

Binance Coin, appears more limited. This may be attributed to investors’ differing 

perceptions of cryptocurrencies, influenced by factors such as variations in blockchain 

technology. While the KuCoin exchange heist may raise security concerns for Bitcoin, it does 

not necessarily affect other cryptocurrencies. Moreover, the cryptocurrency market comprises 

thousands of tokens, each with its own ecosystem and community. Consequently, when a 

token is affected by a cryptocurrency heist, the impact tends to remain confined within its 

own market, exerting limited influence on others (Victor & Weintraud, 2021; Li et al., 2024). 

This fragmentation attenuates the linkage between Bitcoin sentiment and other 

cryptocurrency markets. Therefore, the sentiment and prices of different cryptocurrencies 

may remain stable in the aftermath of the KuCoin exchange heist, largely unaffected by 

negative sentiment in the Bitcoin market. Figure 3.8 illustrates the dynamic connectedness 

among CFGI, Bitcoin, Ethereum, and Binance Coin. The connection between Bitcoin and 

CFGI is considerably stronger than that between CFGI and either Ethereum or Binance Coin. 

This suggests that Bitcoin market sentiment exerts a relatively limited influence on Ethereum 

and Binance Coin, whose market volatility is primarily driven by endogenous factors. 
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Figure 3.8: Dynamic net connectedness plot between CFGI and BP, EP, and BCP 

 

The data range is from September 25, 2020 to December 23, 2020. 

In summary, the findings support Hypothesis H3. The connectedness test results continue to 

show that the predictive relationship between Bitcoin price and CFGI becomes stronger 

during cryptocurrency heists that specifically target Bitcoin. However, the predictive impact 

of CFGI on other major cryptocurrencies, such as Ethereum and Binance Coin, appears to be 

less pronounced. While CFGI can assist investors in making short-term trading decisions for 

Bitcoin during Bitcoin-specific heists, its applicability to other cryptocurrencies remains 

limited. Relying solely on CFGI may therefore lead investors with diversified cryptocurrency 

portfolios to draw misleading inferences. 
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3.5 Conclusion 

Cryptocurrency heists expose platform vulnerabilities, undermine investor confidence, and 

destabilise markets. However, they offer a unique opportunity to examine the interplay 

between price dynamics and market sentiment. As Bitcoin is the largest cryptocurrency by 

market capitalisation, cryptocurrency heists targeting it are even more worthy of our attention. 

This chapter uses the Crypto Fear & Greed Index (CFGI) as a proxy for market sentiment to 

examine the predictive relationship between Bitcoin price and sentiment, focusing on the 

KuCoin exchange heist, which involved the theft of a large amount of Bitcoin. The findings 

reveal a dynamic predictive relationship between Bitcoin price and sentiment, particularly 

during periods of market disruption. Before the KuCoin exchange heist, no statistically 

significant bidirectional predictive relationship is observed. However, in the aftermath, a 

statistically significant bidirectional predictive relationship emerges. While sentiment may 

have a limited influence on price under normal market conditions, it becomes a pivotal driver 

during crises. Furthermore, price fluctuations can amplify shifts in sentiment, creating a 

reinforcing feedback loop (Bourghelle et al., 2022). These findings underscore the 

importance of understanding this dynamic relationship, particularly for investors developing 

strategies to navigate potential market disruptions. 

This chapter further examines nine additional cryptocurrency heists to assess whether the 

observed predictive relationship between Bitcoin price and CFGI represents a general pattern 

or one specific to events that directly affect the Bitcoin market. The results indicate that this 

predictive relationship largely depends on the extent to which a cryptocurrency heist impacts 

the Bitcoin market. When a heist has little or no influence on Bitcoin, no statistically 

significant bidirectional predictive relationship is observed between Bitcoin price and 

sentiment. In a market environment where cryptocurrency heists occur frequently, investors 

should carefully assess the extent to which such incidents affect the Bitcoin market before 

relying on CFGI to guide their investment strategies. 

Additionally, this chapter examines the spillover effects of the CFGI on other cryptocurrency 

markets during the KuCoin exchange heist. The findings indicate that the turmoil in Bitcoin 

sentiment caused by the heist does not significantly affect other cryptocurrency markets, such 

as Ethereum and Binance Coin. This suggests that the negative sentiment in the Bitcoin 

market resulting from the heist may not immediately influence other cryptocurrencies, due to 

factors such as differences in investor perceptions of various cryptocurrencies and the 
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technological distinctions between blockchains (Victor & Weintraud, 2021; Li et al., 2024). 

The findings highlight that during Bitcoin-targeted heists, relying solely on CFGI may lead 

investors with diversified cryptocurrency portfolios to draw misleading conclusions. 

This study deepens our understanding of the predictive relationship between Bitcoin price 

and market sentiment under extreme market conditions. However, several limitations remain. 

First, although this chapter provides evidence of changes in the predictive relationship 

between Bitcoin price and CFGI following the KuCoin exchange heist, the Granger causality 

tests employed capture predictability rather than true economic causation. As the findings are 

based on a single cryptocurrency heist, future studies could examine multiple Bitcoin-related 

heists to validate the robustness and generalisability of the results. Second, although the 

CFGI is a comprehensive and widely used indicator of Bitcoin sentiment, it has inherent 

limitations. While it discloses the weights of its six components, Alternative.me does not 

release its numerical values, preventing component-level analysis. Consequently, it is difficult 

to identify which factors primarily drive sentiment changes during major events such as 

cryptocurrency heists. Distinguishing between market-based and non-market-based 

components represents a promising direction for future study, helping clarify whether market 

activity factors (e.g., volatility and trading volume) or behavioural factors (e.g., social media 

and search trends) dominate the predictive relationship between Bitcoin price and sentiment. 

Future studies could address this limitation by using sentiment measures that allow 

component-level analysis or by constructing decomposed sentiment indices to capture 

heterogeneous sentiment drivers.  

Moreover, future studies could explore alternative sentiment indicators. For instance, 

CoinMarketCap introduced the CMC Crypto Fear and Greed Index (CMC) in 2023, which 

measures sentiment across the entire cryptocurrency market rather than focusing solely on 

Bitcoin. Comparing the predictive performance of CMC and CFGI during extreme events 

would provide valuable insights. Finally, while this chapter focuses on the predictive 

relationship between CFGI and other cryptocurrencies during the KuCoin heist, future work 

could extend the analysis to other cryptocurrency heists to examine sentiment–price 

dynamics across a wider range of cryptocurrencies, offering a deeper understanding of 

sentiment’s broader relevance in cryptocurrency markets. 
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3.6 Appendix 

Figure 3.9: Time-varying Granger causality test results before the KuCoin exchange heist 

(window size = 10, using 10% of the sample, with 999 bootstrap repetitions) 
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The rolling window size is 10, and the bootstrap repetition is 999. The dashed line represents the 95th percentile 

of the bootstrapped test statistics, while the dotted line corresponds to the 90th percentile. When the test statistic 

exceeds these critical values, the null hypothesis is rejected at the corresponding significance level, indicating 

that Bitcoin price Granger causes CFGI (or CFGI Granger causes Bitcoin price) during those periods. 
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Figure 3.10: Time-varying Granger causality test results after the KuCoin exchange heist 

(window size = 10, using 10% of the sample, with 999 bootstrap repetitions) 
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The rolling window size is 10, and the bootstrap repetition is 999. The dashed line represents the 95th percentile 

of the bootstrapped test statistics, while the dotted line corresponds to the 90th percentile. When the test statistic 

exceeds these critical values, the null hypothesis is rejected at the corresponding significance level, indicating 

that Bitcoin price Granger causes CFGI (or CFGI Granger causes Bitcoin price) during those periods. 
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Figure 3.11: Time-varying Granger causality between BP and CFGI using the FE and RO 

algorithms across nine cryptocurrency heists 
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Chapter 4 The Impact of Major DeFi Heists on DeFi Token 

Liquidity and Market Stability 

4.1 Introduction 

Decentralised Finance (DeFi) leverages the transparency, security, and decentralised nature of 

blockchain technology, combined with the use of cryptocurrencies, to facilitate financial 

transactions without the need for centralised institutions. Through peer-to-peer financial 

networks, DeFi provides online wallets, lending, spot trading, margin trading, market making, 

and derivatives (Chen & Bellavitis, 2019; Corbet et al., 2023). For example, users can borrow 

stablecoins using any cryptocurrency as collateral to place leveraged bets on certain 

cryptocurrencies; conversely, users can also earn interest by lending out stablecoins. Most 

DeFi protocols and applications are built on Ethereum, with users participating in DeFi 

through decentralised applications (dapps) 5 . DeFi applications cover various aspects of 

financial services, promising higher efficiency, lower costs, and greater inclusivity (Schär, 

2021). By February 2025, the total value of assets locked in DeFi protocols reached $97.91 

billion, a substantial increase from about $630 million at the beginning of 2020. This increase 

was not solely driven by rising cryptocurrency prices; the number of tokens locked also rose 

substantially. For example, the amount of Ethereum locked on the Ethereum chain increased 

from 4.73 million in early 2020 to 19.57 million in early 2025; the amount of Solana locked 

on the Solana chain rose from 10.4 million in early 2021 to 45.03 million in early 2025; and 

the amount of Avalanche locked on the Avalanche chain grew from 243,054 in early 2021 to 

37.09 million in early 2025 (DeFiLlama, 2025). This dramatic growth demonstrates the 

exploding interest and confidence investors have in decentralised finance solutions, marking 

DeFi’s significant position at the forefront of financial technology innovation (The Fintech 

Times, 2023; Alamsyah & Muhammad, 2024). With an increasing number of projects and 

capital flowing into this space, DeFi is expected to continue playing a key role in the global 

financial ecosystem, driving the decentralisation and digital transformation of traditional 

financial services (Alamsyah et al., 2024; Bakare et al., 2024). 

 
5  Decentralised applications (dapps) are autonomously running applications that typically operate on 

decentralised computing platforms, blockchains, or other distributed ledger systems through the use of smart 

contracts. Unlike traditional applications, dapps operate without human intervention and are not owned by any 

single entity. Instead, ownership is represented through the distribution of tokens to users, which are allocated 

based on programmed algorithms, thus diluting ownership and control of the dapps. As no single entity controls 

the system, the application remains decentralised (Wu et al., 2021). 
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DeFi tokens are a unique type of cryptocurrency utilised within the DeFi ecosystem, and the 

uses of different types of DeFi tokens vary greatly. Table 4.1 summarises the current common 

uses of DeFi tokens. These tokens are often based on blockchain platforms like Ethereum and 

follow standards such as ERC-20, facilitating easy trading and interoperability across the 

DeFi ecosystem (Harvey et al., 2021; Hertig, 2023). The innovation of DeFi tokens lies not 

just in their function as a medium of value transfer; they also empower users to participate in 

and influence the development of DeFi protocols. This marks a significant departure from 

traditional financial instruments like stocks or bonds, highlighting their unique position in the 

financial world (Metelski & Sobieraj, 2022). 

Table 4.1: Types and uses of DeFi tokens 

Application Details 

 

Governance 

Allows holders to vote on decisions affecting the DeFi 

protocol, participating in the decentralised governance 

of the protocol’s future direction and updates. 

 

 

 

Liquidity provider 

Issued to users who deposit assets into liquidity pools 

to provide liquidity, these tokens represent their share 

of the deposit and can be redeemed at any time for the 

original deposit plus any earned transaction fees. 

 

 

Loan 

In certain DeFi lending platforms, depositing assets 

into a loan account earns tokens representing its loan 

balance. These tokens can track the borrower’s debt or 

serve as collateral. 

 

 

Yield farming 

Engaging in yield farming activities (providing 

liquidity, lending, etc.) in some DeFi projects earns 

additional tokens as rewards, incentivising 

participation and support for the ecosystem. 

 

 

Stablecoins 

Though often considered a separate category of digital 

currency, stablecoins play a crucial role in the DeFi 

ecosystem by providing a stable medium of exchange, 

allowing users to avoid the volatility of the 

cryptocurrency market. 

 

 

Wrapped 

By creating equivalent tokens on different 

blockchains, cross-chain circulation and 

interoperability of assets are achieved while retaining 

their value and characteristics. 

Source: https://www.coindesk.com/learn/what-are-defi-tokens/  

Although DeFi is an emerging phenomenon, it also carries many risks. Its ecosystem is 

particularly vulnerable to bugs, hacking, and fraud. Figure 4.1 shows that 2021 and 2022 saw 

a significant uptick in cryptocurrency heists, largely driven by attacks on DeFi protocols, 

with cybercriminals making off with over $3.1 billion from DeFi hacks in 2022 alone, 

representing 82.1% of all crypto stolen that year. 

https://www.coindesk.com/learn/what-are-defi-tokens/
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Figure 4.1: Cryptocurrency stolen in hacks by victim platform type, 2016-2022 

Source: https://www.chainalysis.com/blog/2022-biggest-year-ever-for-crypto-hacking/  

Of the $3.1 billion stolen, 64% of the losses came from attacks on cross-chain bridge 

protocols (Chainalysis, 2023). Bridges are especially attractive to hackers because of their 

design: to transfer assets across blockchains, bridges lock tokens in a smart contract on the 

source chain and issue “wrapped” tokens on the destination chain. This creates large, 

concentrated pools of locked assets that act as collateral (Chainalysis, 2024b). As a result, any 

vulnerability in the underlying code can jeopardise the entire pool of collateral. The 

combination of high concentration and large transaction volumes means that a single exploit 

may yield extraordinary profits, making bridges a primary target for malicious actors. 

Moreover, the technical complexity of cross-chain interoperability increases the likelihood of 

overlooked bugs or design flaws, further amplifying their security risks (Belenkov et al., 

2025). The attack vectors affecting DeFi are diverse and constantly evolving. Table 4.2 

summarises the current methods of attacking DeFi. Overall, most DeFi hacks stem from 

flaws in the design and implementation of smart contracts, because a large proportion of DeFi 

protocols are either unaudited or insufficiently audited (Chainalysis, 2024a). 

 

 

 

 

 

https://www.chainalysis.com/blog/2022-biggest-year-ever-for-crypto-hacking/
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Table 4.2: Classification of DeFi attack methods 

Attack method Description 

 

Protocol exploitation 

Hackers exploit vulnerabilities in the blockchain 

components of the protocol (e.g. validator nodes, the 

protocol’s virtual machine or mining layer related) to 

carry out attacks. 

 

Insider attack Protocol developers steal funds directly. 

 

 

Phishing 

Hackers replace the protocol to spend tokens on behalf 

of users or trick users into sending funds to malicious 

smart contracts. 

 

Contagion Hackers use the same vulnerability to attack across 

different protocols. 

 

Compromised server Hackers attack the protocol’s servers, thereby 

preventing the protocol from running. 

 

Wallet hack Hackers steal wallet services hosted by protocols. 

 

 

 

Price manipulation hack 

When there is a vulnerability in a smart contract that 

prevents asset prices from accurately reflecting the 

situation, hackers exploit the vulnerability to 

manipulate token prices. 

 

Smart contract exploitation Embedding vulnerabilities in the development process 

of smart contracts to facilitate future attacks. 

 

Compromised private key Hackers directly steal users’ private keys to heist. 

 

 

Governance attacks 

Hackers gain enough influence or voting power to 

push harmful proposals. 

 

Third-party compromised Hackers attack by using vulnerabilities in third-party 

programs under the protocol. 

Source: https://www.chainalysis.com/blog/crypto-hacking-stolen-funds-

2024/#:~:text=In%202023%2C%20however%2C%20funds%20stolen,a%20drop%20in%20DeFi%20hacking 

In addition to being vulnerable to hacker attacks, the decentralised nature of DeFi, which 

aims to automate the provision of financial services and reduce human dependence, makes it 

lack standardised regulation (Benson et al., 2024). What is more, when stablecoins are widely 

used as collateral for debt financing, the financial stability risk of the DeFi ecosystem will 

also increase accordingly (Darlin et al., 2022). Finally, many transactions in the DeFi market 

require confirmation of the user’s private key, and the risk of private key loss is not 

uncommon in the DeFi market, which also raises concerns about the security of DeFi (Carter 

& Jeng, 2021). 

Hence, despite the promising outlook of DeFi, it still has a considerable path to navigate. This 

chapter uses the event study method, focusing on the top six DeFi heists of 2022 (Table 4.3) 

as a backdrop, to examine the impact of increasingly frequent heists on the DeFi ecosystem. 

https://www.chainalysis.com/blog/crypto-hacking-stolen-funds-2024/#:~:text=In%202023%2C%20however%2C%20funds%20stolen,a%20drop%20in%20DeFi%20hacking
https://www.chainalysis.com/blog/crypto-hacking-stolen-funds-2024/#:~:text=In%202023%2C%20however%2C%20funds%20stolen,a%20drop%20in%20DeFi%20hacking
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This chapter aims to address the following two questions: How do the native DeFi tokens on 

the stolen platforms perform post-heists? Will these compromised platforms’ DeFi tokens 

influence the entire DeFi market? This study is crucial and timely for two reasons: 

cryptocurrency hacks have become a widespread and formidable threat that demands 

attention, and DeFi is emerging as a key area in the crypto economy with vast potential for 

future growth. Previous studies have largely overlooked an in-depth analysis of the risk factor 

associated with cryptocurrency heists, and studies on DeFi have focused on its definition, 

regulation, advantages and disadvantages, and connections with other assets (Amler, 2021; 

Schueffel, 2021; Karim et al., 2022; Yousaf & Yarovaya, 2022; Corbet et al., 2023). 

Table 4.3: Top six DeFi heists of 2022 

Stolen platform 

(native token) 

Date Stolen 

amount ($) 

Details 

 

 

Qubit Finance 

(Qubit) 

 

 

January 28, 2022 

 

 

80 million 

Hackers obtained large amounts of fake 

xEthereum collateral by attacking the QBridge 

protocol. This collateral is then used to replace all 

Binance Coins held in QBridge. 

 

 

 

Ronin Network 

(Ronin) 

 

 

March 29, 2022 

 

 

620 million 

Hackers obtained 5 private keys used to verify 

transactions and thus faked withdrawals, resulting 

in 173,600 Ethereum and $25.5 million in USD 

Coin being stolen from the Ronin Bridge in two 

transactions. 

 

 

 

Beanstalk 

(Bean) 

 

 

April 16, 2022 

 

 

182 million 

The hackers borrowed $80 million in 

cryptocurrency and deposited it into the project’s 

silo, in exchange for receiving enough voting 

rights to transfer the vault’s funds to themselves. 

 

 

 

 

Maiar Exchange 

(Elrond) 

 

 

 

June 5, 2022 

 

 

 

113 million 

Hackers exploited a smart contract vulnerability to 

withdraw approximately $113 million worth of 

Elrond and sold them on the Maiar Exchange, 

causing the value of Elrond to temporarily 

plummet 92%, which they then converted to 

Ethereum and traded on other exchanges. 

 

 

Binance6 

(Binance Coin) 

 

October 7, 2022 

 

100 million 

Hackers exploited a vulnerability in a smart 

contract to fake transactions, causing more 

Binance Coin to be minted on the network. 

 

 

Mango Markets 

(Mango) 

 

October 11, 2022 

 

114 million 

Hackers manipulated price oracle data to allow 

them to withdraw large loans without adequate 

collateral. 

Source: https://shuftipro.com/blog/the-10-biggest-defi-hacks-of-2022-and-how-can-kyc-aml-compliance-help/; 

When selecting DeFi heists, this chapter only selects DeFi that have their own native tokens. 

 
6 Although Binance platform is primarily a centralised exchange, it also offers DeFi products through its 

Binance Smart Chain. Its native token, Binance Coin, enables participation in DeFi activities and access to 

decentralised exchanges. Thus, hacker attacks on Binance platform also affect its DeFi services. 

https://shuftipro.com/blog/the-10-biggest-defi-hacks-of-2022-and-how-can-kyc-aml-compliance-help/
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Among various performance indicators, liquidity is particularly important in assessing the 

impact of DeFi heists on DeFi tokens. Unlike centralised financial markets, where liquidity is 

typically ensured by market makers and institutional investors, most DeFi markets are 

implemented via automated market makers (AMMs)-based decentralised liquidity pools 

funded by liquidity providers (LPs) (Shah et al., 2023). As a result, any disruption, such as a 

security breach, can severely affect the liquidity of DeFi tokens, leading to increased slippage, 

higher transaction costs, and reduced market depth (Hedera, 2025). Moreover, liquidity is a 

key determinant of price stability; lower liquidity levels can exacerbate price volatility, 

making assets more susceptible to manipulation and panic-driven sell-offs. Low liquidity also 

reduces the utility of the platform’s native DeFi token within DeFi protocols, such as lending 

or staking, further diminishing the platform’s attractiveness and preventing the formation of a 

healthy trading ecosystem (Financial Stability Board, 2023). Given these factors, this chapter 

evaluates the post-heist performance of stolen platforms’ native DeFi tokens primarily 

through the lens of liquidity, as it provides direct insights into platform performance and 

investor confidence. 

Due to the relative ease of obtaining token price and trading volume data, low-frequency 

liquidity indicators based on these variables have been widely used in cryptocurrency 

liquidity studies (Brauneis & Mestel, 2018). Brauneis et al. (2021) emphasised that among 

these low-frequency measures, the Amihud illiquidity ratio (Amihud, 2002) and the Kyle and 

Obizhaeva (2016) estimator are most effective in approximating benchmark liquidity levels. 

However, the Amihud illiquidity ratio, which measures the price impact per unit of trading 

volume, does not account for zero-volume trading days. To address this limitation, the 

Amivest liquidity ratio (Cooper et al., 1985; Amihud et al., 1997), which captures the amount 

of volume that can be absorbed per unit of price change, can serve as a complementary 

measure to the Amihud illiquidity ratio. Therefore, this chapter uses hourly price data of DeFi 

tokens and applies the above three low-frequency price impact measures as proxies for 

liquidity to investigate the changes in the liquidity of the stolen platforms’ native DeFi tokens 

five days before and after DeFi heists. The results indicate that the liquidity of most stolen 

platforms’ native DeFi tokens significantly deteriorates after the DeFi heists.  

According to market microstructure theory by the Glosten-Milgrom model (Glosten & 

Milgrom, 1985), when information asymmetry exists, liquidity providers (market makers) 

tend to widen bid–ask spreads and reduce liquidity supply out of concern that they may trade 

against informed traders with superior information. Although the DeFi market relies on 
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AMMs and lacks traditional quote-driven mechanisms, LPs face similar concerns when 

deciding whether to continue supplying liquidity to pools. In the context of DeFi heists, 

hackers gain early knowledge of the stolen assets and their potential devaluation, and trade on 

this private information. Such early informed trading intensifies adverse selection pressures 

in the market, making it difficult for LPs to distinguish informed from uninformed traders. 

Consequently, they respond by withdrawing liquidity or widening effective spreads, which 

further exacerbates the deterioration of market liquidity. Furthermore, this chapter finds that 

the response speed and transparency of the victim platform play a crucial role in sustaining 

the liquidity of its native DeFi tokens. Faster responses and higher levels of transparency can 

mitigate market participants’ informational disadvantages, reduce the risk of adverse selection, 

and thereby alleviate the negative impact of DeFi heists on liquidity. 

This chapter also employs the Quantile Vector Autoregressive (QVAR) model to investigate 

the potential volatility spillover effects of DeFi heists. Unlike traditional VAR models that 

focus on average relationships, the QVAR framework allows for analysing dynamic 

interactions between variables across different points in the distribution. This is particularly 

important in cryptocurrency markets, where extreme events and asymmetric responses are 

common (Demiralay & Golitsis, 2021). The QVAR model captures both lower-tail and upper-

tail dependencies, which provides more informative insights into market behaviour during 

stress periods or in response to highly positive or negative shocks (Jena et al., 2022). 

Therefore, the use of QVAR is well-suited for this study, as it allows for a more nuanced 

understanding of how DeFi-related shocks propagate across the market under DeFi heists.  

This chapter selects the top five DeFi tokens by market capitalisation and uses the QVAR 

method to investigate whether the volatility of the stolen platform’s native DeFi token spills 

over to these five mainstream DeFi tokens. The selection of the top five DeFi tokens by 

market capitalisation as a comparison benchmark is based on several considerations. First, 

these DeFi tokens represent the most established and widely traded assets within the DeFi 

ecosystem, providing a reliable measure of broader market trends. Due to their high liquidity 

and strong investor participation, they serve as a natural reference point for assessing the 

extent of volatility spillovers (Barchat, 2023). Second, larger DeFi tokens typically have 

more robust security mechanisms, governance frameworks, and diversified use cases, which 

may make them more resilient to external shocks. Comparing the impact of the stolen 

platforms’ native DeFi tokens on these mainstream DeFi tokens allows us to determine 

whether the volatility induced by DeFi heist has broader market implications or remains 
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confined to the affected platform. At the same time, by comparing the effects of different 

forms of DeFi heists on mainstream DeFi tokens, it becomes possible to identify which type 

of attack generates more substantial and severe consequences. This issue has received limited 

attention in prior studies, yet it contributes to a deeper understanding of the heterogeneous 

impacts of different attack mechanisms on market stability. Such insights are highly relevant 

for the design of regulation, risk management, and governance structures in both current and 

future DeFi markets, and they also provide a central theme and research motivation for 

subsequent studies. Lastly, previous studies on DeFi market dynamics have predominantly 

focused on these major tokens due to their significant role in decentralised finance. By 

aligning with existing studies’ samples, this study ensures consistency while addressing a 

novel research gap related to volatility spillovers. 

The results indicate that while there is a high level of interconnectedness within the DeFi 

market, the spillover effects between different DeFi tokens vary. Specifically, mainstream 

DeFi tokens exhibit significant interconnectedness and mutual influence, but their 

interconnectedness on the smaller market-cap DeFi tokens from the stolen platforms is 

relatively limited. Consequently, although the native DeFi tokens of the stolen platforms 

cause some volatility spillover to mainstream DeFi tokens, the extent is minimal. The native 

DeFi tokens of the stolen platforms are often net receivers of volatility rather than 

transmitters. Furthermore, it finds that if investors develop broader concerns about the 

security of DeFi protocols with governance structures similar to those of the stolen platforms, 

the resulting fear and uncertainty lead to increased market volatility. In such cases, the native 

DeFi tokens of the stolen platforms become transmitters of volatility. In other words, attacks 

targeting the governance mechanisms of DeFi may generate more significant and severe 

impacts than other forms of DeFi heists. The findings underscore the importance of robust 

governance and security measures in maintaining market stability and protecting investor 

interests in the rapidly evolving DeFi environment. 

Finally, drawing on the primary economic rationale of regulating financial intermediary 

activities, this chapter proposes several regulatory approaches for the future of DeFi to help it 

cope with the increasingly frequent DeFi heists. It recommends that policymakers enhance 

DeFi oversight by introducing third-party institutions, setting stringent risk management 

standards, implementing decentralised insurance protocols, and strengthening regulations on 

liquidity pools. These measures aim to protect both protocol developers and investors. 
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This chapter makes three key contributions to advancing knowledge in the field of DeFi risk. 

First, it systematically examines how major DeFi heists affect DeFi token liquidity and 

volatility spillovers, which is an area that remains underexplored in the existing literature. 

Second, it introduces the QVAR framework into the DeFi study, enabling the analysis of 

asymmetric spillover effects under extreme market conditions. Compared with traditional 

VAR or GARCH models, this approach provides a more nuanced understanding of risk 

transmission across different states of the market. Third, the study finds that DeFi heists 

related to governance mechanisms produce more severe and persistent effects than other 

types of attacks, highlighting the critical role of protocol design and information transparency 

in shaping market reactions. Overall, these contributions provide new empirical evidence, 

methodological innovation, and theoretical insights into how DeFi markets respond to severe 

security shocks. 

In practical terms, the findings help market participants better understand how crypto hacks 

influence DeFi market dynamics, allowing them to develop more effective risk management 

strategies. The study also offers valuable guidance for policymakers in designing regulatory 

frameworks aimed at mitigating such risks. By promoting stronger security mechanisms and 

sustainable development, this study contributes to the long-term stability and resilience of the 

DeFi ecosystem. Finally, the insights gained from this study lay a foundation for future 

research into DeFi risk, governance, and market behaviour. 

This chapter is structured as follows. The second section is the literature review, the third is 

the data and methodology, the fourth is the empirical research results, the fifth is the 

regulatory recommendations for DeFi, and the sixth is the conclusion. 

4.2 Literature Review 

4.2.1 Information Asymmetry and Liquidity 

Liquidity is one of the core characteristics of financial markets, reflecting an asset’s ability to 

be traded quickly without causing significant price changes. A highly liquid market facilitates 

price discovery, reduces transaction costs, enhances risk sharing, and improves market 

efficiency and investor confidence (Amihud & Mendelson, 1986; Pástor & Stambaugh, 2003). 

In contrast, illiquid markets often exhibit prices that deviate from fundamentals, greater 

trading frictions, and, in extreme cases, systemic instability (Brunnermeier & Pedersen, 2009). 

Therefore, liquidity serves not only as an indicator of market health but also as a key 
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dimension for understanding asset price dynamics and investor behaviour (Chordia et al., 

2000). 

In traditional financial studies, asset liquidity could be analysed through the lens of market 

microstructure theory. This theoretical framework examines how trading mechanisms, 

information asymmetry, order book depth, and market-making behaviour jointly shape price 

formation and liquidity provision. Among these contributions, the information asymmetry 

pricing model proposed by Glosten and Milgrom (1985) demonstrates that bid–ask spreads 

originate from adverse selection risks faced by market makers who interact with both 

informed and uninformed traders. Because market makers cannot distinguish between the two, 

they widen bid–ask spreads to compensate for potential losses when trading with informed 

participants. The model predicts that as information asymmetry increases or the proportion of 

informed traders rises, market makers set higher spreads to maintain zero expected profits, 

thereby raising transaction costs and reducing market liquidity. In this framework, liquidity is 

effectively modelled as a function of information asymmetry—markets become less liquid 

when private information disparities intensify. 

Building on this foundation, numerous studies have extended the Glosten and Milgrom (1985) 

framework to explore the relationship between information asymmetry and liquidity. Stoll 

(1989) decomposed bid–ask spreads into order-processing, inventory-holding, and 

information asymmetry components, showing that information asymmetry could capture the 

intrinsic link between liquidity and information structure. Hasbrouck (1991) verified this 

decomposition using high-frequency data and found that the information component accounts 

for a substantial portion of spreads, especially during periods of intense information flow 

such as earnings announcements. Biais et al. (1995) demonstrated how dynamic quote 

adjustments and order book depth jointly determine liquidity. Huang and Stoll (1997) further 

developed a structural estimation approach to identify spread components across different 

markets and found that higher market transparency and competition improve liquidity. 

Collectively, these studies establish that information asymmetry is a central driver of liquidity 

fluctuations, while the bid–ask spread remains an effective measure of liquidity conditions. 

With the rise of electronic trading and high-frequency data, scholars have expanded this 

framework to emerging markets and alternative asset classes. Chordia et al. (2000, 2001) 

found significant commonality in stock market liquidity, which tends to decline during 

periods of market stress, indicating that information asymmetry shocks can propagate across 
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assets through investor sentiment and funding constraints. Easley et al. (2002) introduced the 

Probability of Informed Trading (PIN) measure, providing a quantitative approach to assess 

information asymmetry. Brennan and Subrahmanyam (1996) and Pástor and Stambaugh 

(2003) integrated liquidity risk into asset pricing, demonstrating that information asymmetry 

not only affects trading efficiency but also generates a liquidity risk premium in expected 

returns. 

In recent years, scholars have applied the Glosten and Milgrom information asymmetry 

mechanism to cryptocurrency markets to explain price volatility and liquidity variations. Due 

to decentralisation, anonymity, and the lack of mandatory disclosure, information asymmetry 

among cryptocurrency traders is particularly severe (Othman et al., 2019; Park & Chai, 2020; 

Alfieri et al., 2025). The study by Makarov and Schoar (2020) showed that market 

fragmentation across exchanges leads to cross-platform liquidity segmentation and frictions 

in information transmission, and that these information asymmetries result in frequent and 

sizable arbitrage opportunities across trading venues. Tiniç et al. (2023), using Bitfinex limit 

order book data, found that adverse selection costs account for approximately 10% of bid–ask 

spreads, confirming that information asymmetry plays a significant economic role in 

cryptocurrency pricing. Moreover, they showed that the adverse selection component is 

positively related to future return volatility but negatively related to liquidity indicators such 

as realised spreads, order book slope, and the Amihud illiquidity ratio, implying that 

increased information asymmetry amplifies volatility and reduces market liquidity. Manahov 

and Li (2025c) further found that information asymmetry between issuers and investors 

significantly reduces newly issued tokens’ liquidity during hacker attacks in ICO markets, 

with the effect most pronounced for newly issued tokens on the same blockchain as the 

attacked assets. Overall, these studies establish information asymmetry as a key theoretical 

foundation for understanding low liquidity in cryptocurrency markets. 

Despite these advances, studies on DeFi token liquidity remain limited. Existing studies have 

primarily focused on the liquidity of major cryptocurrencies such as Bitcoin and Ethereum. 

Most findings suggest that cryptocurrencies exhibit lower liquidity than traditional assets (Loi, 

2018; Corbet et al., 2019a; Smales, 2019; Trimborn et al., 2020), although liquidity may 

improve under certain market conditions (Sensoy, 2019; Scharnowski, 2021; Brauneis et al., 

2022; Leirvik, 2022). As a form of cryptocurrency, DeFi tokens are inevitably affected by 

both external market conditions and changes in information environments. DeFi hacking 

incidents represent sudden informational shocks that disrupt the distribution of information 
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among market participants. Although DeFi trading relies on AMMs rather than centralised 

market makers, the Glosten-Milgrom market microstructure model remains applicable. 

Compared with traditional financial markets, the decentralised and pseudonymous nature of 

DeFi, along with the lack of standardised disclosure mechanisms, amplifies the consequences 

of information asymmetry and makes liquidity provision more sensitive to external shocks. 

Therefore, this chapter adopts the theoretical framework of Glosten and Milgrom (1985) to 

investigate how information asymmetry affects DeFi token liquidity in the context of DeFi 

heists, thereby addressing an important gap in the existing literature. 

4.2.2 Examining Relationships Between DeFi Tokens and Other Assets 

Existing literature on DeFi primarily focuses on the interconnections between DeFi tokens 

and other assets, aiming to provide valuable insights for risk management and portfolio 

management. Spillover effect theory posits that shocks affecting one asset, market, or 

institution can propagate to others through various transmission mechanisms. These 

mechanisms include price co-movements, correlated investor sentiment, portfolio rebalancing 

activities, and liquidity linkages. Originally developed in the context of international finance 

to explain how a crisis in one country can influence others (Allen & Gale, 2000; Forbes & 

Rigobon, 2002), the theory has since been widely applied to analyse risk transmission across 

financial sectors, asset classes, and institutional networks (Diebold & Yilmaz, 2009, 2012; 

Acemoglu et al., 2015). In highly interconnected systems, spillover effects have the potential 

to transform localised disruptions into broader systemic risks. In the context of DeFi, this 

theoretical framework is particularly relevant. Although DeFi platforms operate 

independently from a technical standpoint, they are often tightly linked through shared user 

bases, token dependencies, and interoperable smart contracts. As a result, a security breach on 

one platform could trigger ripple effects that compromise the stability of the broader DeFi 

ecosystem. 

Specifically, existing studies on the spillover effects of DeFi tokens can be broadly divided 

into two areas: (i) examining the relationships between DeFi tokens and other crypto assets 

and (ii) exploring the relationships between DeFi tokens and traditional assets. 

In studying the relationship between DeFi tokens and other crypto assets, most studies 

indicate significant interconnectedness between DeFi tokens and other crypto assets. For 

example, Karim et al. (2022) explored the interconnectedness between NFTs, DeFi tokens, 

and cryptocurrencies. Using quantile connectedness techniques, they examined the 
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transmission of extreme risks in the blockchain market under median, extremely low, and 

extremely high volatility conditions. They found evidence of extreme risk transmission across 

different cryptocurrency markets. They noted that there is a positive spillover effect between 

DeFi tokens and mainstream cryptocurrencies under median and extremely low volatility 

conditions. Similarly, Qiao et al. (2023) employed the wavelet-based quantile causality 

method and reached similar conclusions. They also highlighted that within the DeFi token 

market, the volatility of yield farming DeFi tokens spills over to other types of DeFi tokens in 

both the short and long term. Furthermore, they observed that the density of downside risk 

networks within DeFi tokens increases over time. 

Akkus and Dogan (2024) used the TVP-VAR model to study the dynamic interconnectedness 

among cryptocurrencies, NFTs, and DeFi tokens. Their results indicated the presence of 

volatility spillover relationships among these three types of crypto assets, with Ethereum and 

Chainlink transmitting volatility to other crypto assets. Kumar et al. (2023) also used the 

TVP-VAR model to study the changes in return and volatility spillovers between 

cryptocurrencies, NFTs, and DeFi tokens before and after the Russia-Ukraine conflict. They 

found significant spillover effects among them both before and after the conflict, but the 

receiver and transmitter roles of these assets changed in the pre- and post-conflict periods. 

Regarding return spillovers, they discovered that Ethereum, Chainlink, Bancor, Basic 

Attention Token, and Bitcoin consistently acted as net return spillover transmitters, while 

Decentraland, Maker, DigiByte, and XRP consistently served as net return spillover receivers. 

For volatility spillovers, only Chainlink and Basic Attention Token consistently acted as net 

volatility spillover transmitters, while Bitcoin and XRP consistently served as net volatility 

receivers. Additionally, they explored the return and volatility spillover effects within three 

subsystems: cryptocurrency-NFT, cryptocurrency-DeFi, and NFT-DeFi. The results indicated 

that cryptocurrencies play a significant role in absorbing volatility shocks from NFT and 

DeFi assets. Their findings are helpful for investors seeking to reduce the negative impact of 

geopolitical events on their portfolios. Assaf et al. (2024) aimed to investigate the impact of 

COVID-19 on the interconnectedness among crypto assets. They used the TVP-VAR model 

to study the relationships between cryptocurrencies and DeFi tokens before and after 

COVID-19 and found that the return spillover effects from cryptocurrencies were 

significantly larger, being the main drivers of most changes in DeFi returns. Specifically, 

cryptocurrencies like Bitcoin, Ethereum, Cardano, and Binance Coin, as well as the DeFi 

token Bancor, were the primary sources of return and volatility shocks to other 
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cryptocurrencies and DeFi tokens. They also noted that this interconnectedness varies over 

time, peaking during the COVID-19 period and subsequently declining. Therefore, investing 

in DeFi could offer diversification benefits during normal and low-uncertainty periods, but 

during extreme periods, the increased interconnectedness of crypto assets may reduce the 

diversification benefits of DeFi investments. 

Huang and Hsu (2024) further used a GARCH–EVT–Copula model to analyse the 

dependence structure between eight leading DeFi tokens and Bitcoin and Ethereum. Their 

results showed that the dependence between DeFi tokens and Bitcoin and Ethereum is 

positive and time-varying, with DeFi tokens being more closely correlated with Ethereum 

than with Bitcoin. They also found that when Bitcoin and Ethereum returns rise, investors are 

willing to pay a premium to purchase DeFi tokens to gain governance rights, which in turn 

drives up the prices of DeFi tokens. However, when Bitcoin and Ethereum returns fall, the 

prices of DeFi tokens do not fall as sharply because their governance rights remain 

unchanged. Thus, they argued that DeFi tokens are strongly correlated with cryptocurrencies, 

and this correlation is more pronounced in the upper tail. 

On the contrary, some studies have pointed out that the connection between DeFi tokens and 

other crypto assets is not strong. For example, Park et al. (2023) used Pearson’s pairwise 

correlation coefficients to determine the correlation between the returns of DeFi tokens. They 

found that the returns of tokens classified as DeFi projects exhibit a persistent co-movement 

trend and have a higher degree of correlation compared to other cryptocurrencies. Corbet et al. 

(2023) used the Diebold-Yilmaz connectedness test and found volatility spillover effects 

between Ethereum and DeFi tokens, which may be attributed to Ethereum’s dominant role in 

the DeFi market. However, they also noted that the volatility spillover effects from traditional 

cryptocurrencies like Bitcoin and Ethereum to the DeFi market are smaller than the spillover 

effects among DeFi tokens within the DeFi market itself. Therefore, they suggested that DeFi 

tokens should be considered a distinct asset class from traditional cryptocurrencies. Similarly, 

Mensi et al. (2024), using the same method, also found that the connection between DeFi 

tokens and mainstream cryptocurrencies is weak. They further discovered that within 

cryptocurrencies, the primary currency transmitting volatility to both the system and DeFi 

assets is Ethereum, followed by Bitcoin and Litecoin, but their influence is smaller compared 

to Ethereum. Therefore, they suggested that portfolio managers should consider DeFi tokens 

as diversification tools. 
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Different findings suggest that the correlation between DeFi tokens and other crypto assets 

may be dynamic. Under extreme market conditions, such as black swan events, the 

interconnections between DeFi tokens and other crypto assets may strengthen as investors 

react collectively to heightened uncertainty. However, during normal market conditions, DeFi 

tokens may exhibit weaker correlations with other crypto assets due to their unique market 

structures, liquidity mechanisms, and governance models, which often lead to idiosyncratic 

price movements driven by protocol-specific developments rather than broader market trends.  

In studying the relationship between DeFi tokens and traditional assets, most studies indicate 

that the relationship between DeFi tokens and traditional assets is relatively weak. For 

example, Cevik et al. (2022) used time and frequency domain causality tests and cross-

quantilogram methods to examine the interrelationship between DeFi tokens and natural 

resource assets, focusing on return and volatility spillovers as well as hedging effectiveness. 

Their results showed that during bear markets, the correlation between DeFi tokens and 

natural resources is generally negative, indicating that DeFi tokens could provide effective 

hedging for gold and oil investors. 

Yousaf et al. (2022) used the TVP-VAR model to study the dynamic interconnectedness 

between DeFi tokens (Chainlink, Maker, Basic Attention Token, and Synthetix) and 

mainstream currencies (Renminbi, Yen, Euro, and Pound). Their spillover analysis results 

indicated a low interdependence between DeFi tokens and currency markets. Ali et al. (2023) 

also employed the same method to study the connections between precious metals, industrial 

metals, and DeFi tokens before and during COVID-19. Their findings suggested that the 

relationship between DeFi tokens and both precious and industrial metals is weak; adding 

DeFi tokens to metal-based portfolios helps achieve diversification. Yousaf et al. (2023) 

utilised both the TVP-VAR and DCC-GARCH models to study the dynamic interconnections 

between DeFi tokens and sectoral stock markets during COVID-19. Their study revealed that 

DeFi tokens had the lowest spillover indices. They highlighted that incorporating DeFi tokens 

into traditional portfolios could provide effective hedging against risks present in traditional 

assets. 

4.2.3 Studies on the Impact of Cryptocurrency Heists on Crypto Assets 

There are limited studies on the impact of cryptocurrency heists on crypto assets. Manahov 

and Li (2024, 2025a, 2025b) examined the effects of cryptocurrency heists on different types 

of tokens. They found statistically significant spillover effects between the stolen 
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cryptocurrencies and tourism, energy, and real estate tokens, indicating that cryptocurrency 

heists not only harm the targeted crypto assets but also transmit negative effects to other 

tokens. They also reported that these tokens suffered severe liquidity deterioration during 

heist periods, with Ethereum-based tokens being particularly affected when Ethereum itself 

was attacked. Furthermore, Manahov and Li (2025c) investigated whether newly issued 

tokens (ICO tokens) were influenced during cryptocurrency heists. Their results showed that 

within five trading days, ICO tokens experienced a significant decline in both market 

efficiency and liquidity, with those issued on the same blockchain as the attacked tokens 

being most severely impacted, highlighting the interconnected risks within blockchain 

ecosystems. 

Mohamad and Dimitriou (2024) investigated nine cryptocurrency heists and fraud incidents 

that occurred between 2020 and 2022. Using a multivariate GARCH model, they found that 

cybercrime events have a significant impact on the volatility of specific cryptocurrencies. 

Additionally, they discovered that while hacking incidents are generally perceived as bad 

news, cryptocurrency investors seem to be less affected when the cybercrime involves less 

popular tokens. This may be attributed to the lower market integration and liquidity of these 

tokens. 

In summary, existing studies suggest that DeFi tokens exhibit a certain degree of correlation 

with other crypto assets, and their level of interconnectivity may vary over time. The weak 

linkage between DeFi tokens and traditional assets adds value to DeFi tokens as hedge assets. 

However, as common targets of crypto attacks, there is a lack of studies on the impact of 

cryptocurrency heists on DeFi assets. Do DeFi heists affect the native DeFi tokens of the 

compromised platforms? If so, does this impact spill over to other DeFi tokens, causing 

broader effects? This chapter seeks to address these questions to help market participants 

better understand these risks, develop effective risk management strategies, and enhance their 

ability to respond to volatility in the DeFi market. 

4.3 Data and Methodology 

4.3.1 Data and Variable  

To compare the performance of native DeFi tokens on stolen platforms before and after the 

DeFi heists, this chapter uses hourly price data to analyse their performance in the five days 

preceding and following each DeFi heist. Based on Table 4.3, which lists the DeFi heists and 
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the affected native DeFi tokens, the datasets are as follows: In the Qubit Finance platform 

heist, the affected native token is the Qubit, and the data range is from January 23, 2022, to 

February 1, 2022; In the Ronin Network heist, the affected native token is the Ronin, and the 

data range is from March 24, 2022, to April 2, 2022; In the Beanstalk protocol heist, the 

affected native token is the Bean, and the data range is from April 11, 2022, to April 20, 2022; 

In the Maiar Exchange heist, the affected native token is the Elrond, and the data range is 

from May 31, 2022, to June 9, 2022; In the Binance platform heist, the affected native token 

is the Binance Coin, and the data range is from October 2, 2022, to October 11, 2022; In the 

Mango Markets platform heist, the affected native token is the Mango, and the data range is 

from October 6, 2022, to October 15, 2022. 

All DeFi tokens’ price data comes from coincodex. The coincodex tracks over 400 

cryptocurrency exchanges and thousands of trading pairs, and its token prices are calculated 

by averaging the cryptocurrency exchange rates on different cryptocurrency trading platforms 

to accurately reflect the average price of each token as much as possible. Figure 4.2 provides 

a more intuitive illustration of the impact of the DeFi heists on the prices of native DeFi 

tokens from affected platforms. Most of these DeFi tokens experienced substantial price 

declines following the incident. For instance, Qubit fell by approximately 70.6%, Ronin by 

24.8%, Bean by 98%, Elrond by 17.3%, and Mango by 54.5%. In contrast, Binance Coin 

showed the smallest decline, dropping only 4%. These price movements highlight not only 

the negative effects of DeFi heists on platform-specific tokens but also suggest that different 

platforms may exhibit varying degrees of market sensitivity in response to such security 

breaches. 
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Figure 4.2: Price changes of the stolen platform’s native Defi token 
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Source: coincodex 
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The hourly return of the DeFi token is calculated as: 

𝑅𝑡 = 𝐿𝑛 (
𝑃𝑡

𝑃𝑡−1
) (25) 

where 𝑅𝑡 is the hourly return of the DeFi token, 𝐿𝑛(𝑃𝑡) and 𝐿𝑛(𝑃𝑡−1) are the natural logs of 

DeFi token prices at time 𝑡 and 𝑡 − 1. Table 4.4 presents the descriptive statistics of the 

returns for each DeFi token over the five days before and after the DeFi heists. The results 

indicate that, except for Binance Coin, the average returns of all other DeFi tokens decreased 

following the heists, suggesting that these incidents negatively affected the native DeFi 

tokens of the stolen platforms. Additionally, the standard deviations of most DeFi tokens 

increased, highlighting heightened volatility in the post-heist period. In particular, the 

standard deviation of Bean increased from 0.003 to 0.290, and that of Mango rose from 0.003 

to 0.057. Furthermore, the returns for most DeFi tokens exhibited negative skewness and 

leptokurtosis after the heists, indicating the presence of more extreme negative returns. The 

Jarque–Bera (JB) test results confirm that the return distributions deviate from normality, 

while the Augmented Dickey–Fuller (ADF) test results demonstrate that the time series are 

stationary.  

Table 4.4: Descriptive statistics of DeFi token returns in six DeFi heists 

Panel A: Five days before the DeFi heists 

DeFi token Obs Min Max Mean S.Dev. Skew Kurt JB ADF 

Qubit 119 -2.275 2.299 0.000 0.298 0.116 55.311 15718.000*** -7.775*** 

Ronin 119 -0.043 0.040 0.001 0.010 -1.029 7.360 303.170*** -5.000*** 

Bean 119 -0.011 0.014 0.000 0.003 0.290 2.585 37.316*** -4.899** 

Elrond 119 -0.037 0.042 -0.001 0.011 0.439 3.213 58.536*** -5.219*** 

Binance Coin 119 -0.018 0.009 0.000 0.003 -0.823 4.903 139.610*** -3.361* 

Mango 119 -0.009 0.009 0.000 0.003 -0.041 -0.427 0.762 -6.557*** 

Panel B: Five days after the DeFi heists 

DeFi token Obs Min Max Mean S.Dev. Skew Kurt JB ADF 

Qubit 119 -0.235 0.034 -0.009 0.037 -4.377 21.818 2842.300*** -4.374** 

Ronin 119 -0.208 0.026 -0.002 0.021 -7.977 75.515 30579.000*** -5.038*** 

Bean 119 -1.571 0.901 -0.028 0.290 -2.162 12.349 883.540*** -5.708*** 

Elrond 119 -0.104 0.034 -0.002 0.015 2.740 15.958 1467.000*** -6.683*** 

Binance Coin 119 -0.010 0.008 0.000 0.003 -0.791 2.215 39.054*** -5.235*** 

Mango 119 -0.485 0.150 -0.004 0.057 -5.174 45.152 9251.000*** -5.520*** 

The data source is from coincodex; Skew: Skewness, it is a measure of symmetry; Kurt: Kurtosis, it is a 

measure of whether the data are heavy-tailed or light-tailed relative to a normal distribution; JB: Jarque–Bera 

test; ADF: Augmented Dickey-Fuller test; *** At the 1% significance level; ** At the 5% significance level; * 

At the 10% significance level 
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4.3.2 Market Liquidity Test 

Due to the complexity of the cryptocurrency market, obtaining and processing data on bid-

ask spreads and order book dynamics is challenging. As a result, few studies have used full 

order book data to examine liquidity in cryptocurrency markets (Brauneis et al., 2021). 

Instead, price and trading volume data are more readily available, making low-frequency 

liquidity indicators based on these variables commonly used in cryptocurrency liquidity 

studies (Brauneis & Mestel, 2018). Among these low-frequency indicators, the most widely 

used are the Amihud illiquidity ratio (Amihud, 2002) and the Roll spread ratio (Roll, 1984). 

However, when the covariance of price changes is positive, the modified Roll spread ratio 

assigns the indicator value to zero, but a positive covariance of price changes does not 

necessarily indicate high liquidity.  

Brauneis et al. (2021) emphasised that among these low-frequency indicators, the Amihud 

illiquidity ratio and the Kyle and Obizhaeva (2016) estimator best estimate the level of the 

liquidity benchmark measures. However, since the Amihud illiquidity ratio measures the 

price impact per unit of trading volume, it does not account for days with zero trading volume. 

To address this limitation, this chapter also incorporates the Amivest liquidity ratio (Cooper et 

al., 1985; Amihud et al., 1997), which evaluates the amount of trading volume that can be 

absorbed per unit of price change. Unlike the Amihud illiquidity ratio, the Amivest liquidity 

ratio considers days with zero trading volume but excludes trading days with zero returns. 

Given their complementary nature, these two indicators provide a more comprehensive 

assessment of market liquidity by considering both the impact of trading volume on price 

movements and the ability of price changes to absorb trading volume.  

Since this chapter employs hourly data, three low-frequency price impact indicators are used 

as proxies for liquidity: the Amihud illiquidity ratio (Amihud), the Amivest liquidity ratio 

(Amivest), and the Kyle and Obizhaeva estimator (Kyle). 

Amihud illiquidity ratio is used to assess the price changes caused by a unit of trading volume 

(Amihud, 2002). This ratio can be expressed as: 

Amihud illiquidity ratio =
1

𝑁
∑  

𝑁

𝑡=1

|𝑅𝑡|

𝑉𝑡

(26) 

where 𝑅𝑡 is the return of the token at hour 𝑡, and 𝑉𝑡 is the trading volume in USD at hour 𝑡. 𝑁 

is the total number of non-zero trading volume hours in the observation period. A higher ratio 
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indicates lower market liquidity, as price changes are more sensitive to trading volume. 

Conversely, a lower ratio suggests better market liquidity. 

The Amivest liquidity ratio measures the volume of trades that the market can accommodate 

for a given price change, thereby reflecting the overall level of market liquidity. Unlike the 

Amihud illiquidity ratio, which emphasises the sensitivity of price changes to trading volume, 

the Amivest liquidity ratio focuses on the market’s capacity to absorb trading volume under 

price fluctuations. It can be expressed as: 

Amivest liquidity ratio =
1

𝑁
∑  

𝑁

𝑡=1

𝑉𝑡

|𝑅𝑡|
(27) 

where 𝑅𝑡 is the return of the token at hour 𝑡, and 𝑉𝑡 is the trading volume in USD at hour 𝑡. 𝑁 

is the total number of non-zero return hours in the observation period. A higher ratio indicates 

greater trading volume for a given price change, indicating better liquidity (Cooper et al., 

1985, Amihud et al., 1997; Berkman & Eleswarapu, 1998). 

Kyle and Obizhaeva (2016) developed an illiquidity measure by calculating the ratio of an 

asset’s volatility to its dollar trading volume within a specified time interval. It is defined as: 

Kyle and Obizhaeva estimator  = [
𝜎𝑡,𝑖

2 (𝑟)

∑  𝑁
𝑡=1 𝑉𝑡

]

1
3

(28) 

where 𝜎𝑡,𝑖
2 (𝑟) represents the mean of the squared returns of all subintervals 𝑖 in interval 𝑡. 𝑉𝑡 

is the sum of trading volume in USD during the time interval 𝑡 . A higher value of this 

estimator indicates greater price volatility but lower trading volume, suggesting poorer 

market liquidity. Conversely, a lower value signifies smaller price fluctuations accompanied 

by higher trading volume, indicating better market liquidity. 

4.3.3 Quantile VAR Model 

This chapter uses the Quantile Vector Autoregressive (QVAR) model to analyse the potential 

spillover effects of the DeFi heists. The QVAR model, as proposed by Ando et al. (2022) 

within the framework of graphical analysis for VAR models, employs quantile regression and 

factor structures to distinguish between common error components and idiosyncratic error 

components. Compared to traditional VAR models, the QVAR model captures dynamic 

relationships at different quantiles. This means that the QVAR model can capture 
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relationships between variables across different parts of the data distribution (e.g. high 

quantiles and low quantiles), providing deeper insights into extreme events and tail risks. 

According to the study by Jena et al. (2022), analyses conducted at the 5th and 95th quantiles 

using the QVAR approach are more valuable and informative for understanding the spillover 

effects of negative and positive news. Moreover, Ando et al. (2022) noted that the QVAR 

model differs from traditional conditional mean estimators, such as Ordinary Least Squares 

(OLS), because OLS regression suffers from omitted variable bias (Wilms et al., 2021). This 

bias occurs when an omitted third variable affects both the independent and dependent 

variables. The VAR framework addresses the potential for significant bias in network analysis 

that can arise from failing to account for sources of common variation (Khalfaoui et al., 

2022). 

Compared with DCC-GARCH or TVP-VAR models that are widely used to study volatility 

spillovers, QVAR offers distinct advantages. While DCC-GARCH effectively captures time-

varying correlations in conditional variances, it primarily focuses on average dependence and 

neglects heterogeneity across different parts of the return distribution (Engle, 2002; Bouri et 

al., 2021b). Similarly, although TVP-VAR allows parameters to evolve, it remains centred on 

mean relationships, which may obscure asymmetric dynamics that arise during periods of 

market stress (Primiceri, 2005; Koop & Korobilis, 2013). Therefore, these estimators can 

only measure the average shock system. However, systemic shocks do not necessarily 

correspond to average shocks and may in fact be much larger, indicating the need to account 

for potential heterogeneous effects across the distribution of shock magnitudes (Bouri et al., 

2021b). In contrast, QVAR explicitly estimates relationships at different quantiles, enabling 

the examination of whether spillover effects intensify in the tails (Ando et al., 2022). 

This property is significant in DeFi markets. Unlike traditional financial systems, DeFi lacks 

circuit breakers and centralised stabilisers, meaning that once a DeFi heist occurs, shocks are 

sudden and accompanied by severe information asymmetry. Prices can fluctuate dramatically, 

and LPs’ withdrawals may further amplify tail risks. In this context, a framework such as 

QVAR, which can uncover contagion effects in the tails rather than only at the mean, is 

highly appropriate. The key assumption of QVAR is that dependence structures among 

variables may differ across quantiles: spillover effects may be modest or insignificant in 

tranquil periods (e.g., at the 50th quantile), but become significantly stronger under extreme 

market conditions (e.g., at the 95th or 5th quantiles). Accordingly, QVAR results can be 
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interpreted as evidence of heterogeneous transmission mechanisms, whereby spillovers are 

limited in normal states but highly contagious during extremes (Bouri et al., 2021b). 

Quantile regression allows us to estimate the relationship between 𝑦𝑡 and 𝑥𝑡 at each quantile 

𝜏 of the conditional distribution (𝑦𝑡 ∣ 𝑥𝑡). This can be expressed as: 

𝑄𝜏(𝑦𝑡 ∣ 𝑥𝑡) = 𝑥𝑡𝛽(𝜏) (29) 

where 𝑄𝜏 represents the 𝜏-th conditional quantile function of 𝑦𝑡. 𝜏 ∈ (0,1) represents quantile 

index. 𝑥𝑡  represents a vector of explanatory variables. 𝛽(𝜏)  represents the dependence 

relationship between 𝑥𝑡 and the 𝜏-th conditional quantile function of 𝑦𝑡. Specifically, 𝛽(𝜏) is 

the parameter vector estimated at the 𝜏-th conditional using the following expression: 

𝛽̂(𝜏) = 𝑎rg min
𝛽(𝜏)

∑  

𝑇

𝑡=1

(𝜏 − 1{𝑦𝑡<𝑥𝑡𝛽(𝜏)})|𝑦𝑡 < 𝑥𝑡𝛽(𝜏)| (30) 

Subsequently, the 𝑛-variable quantile VAR process 𝑝-th order is estimated as: 

𝑦𝑡 = 𝑐(𝜏) + ∑  

𝑝

𝑖=1

Φ𝑖(𝜏)𝑦𝑡−1 + 𝑒𝑡(𝜏), 𝑡 = 1, … , 𝑇 (31) 

where 𝑦𝑡 denotes the 𝑛-vector of dependent variable (In this chapter, it is volatility). 𝑐(𝜏) and 

𝑒𝑡(𝜏)  represent the 𝑛 -vector of constants and residuals at quantile 𝜏 , respectively. Φ𝑖(𝜏) 

denotes the matrix of lagged coefficients of the dependent valuable at quantile 𝜏, with 𝑖 =

1, … , 𝑝. The estimates 𝛽̂(𝜏) and 𝑐̂(𝜏) are obtained under the assumption that the residuals 

satisfy the population quantile restriction, 𝑄𝜏(𝑒𝑡(𝜏) ∣ 𝑦𝑡−1, … 𝑦𝑡−𝑝) = 0. The population 𝜏-th 

conditional quantile of the response variable 𝑦 is given in Equation (32) below: 

𝑄𝜏(𝑦𝑡 ∣ 𝑦𝑡−1, … 𝑦𝑡−𝑝) = 𝑐(𝜏) + ∑  

𝑝

𝑖=1

Φ𝑖(𝜏)𝑦𝑡−1 (32) 

Next, it needs to calculate several return connectedness measures for each quantile 𝜏. We 

represent equation (31) as an infinite-order vector moving average (MA) process: 
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𝑦𝑡 = 𝜇(𝜏) + ∑  

∞

𝑠=0

𝐴𝑠(𝜏)𝑒𝑡−𝑠(𝜏), 𝑡 = 1, … , 𝑇

𝜇(𝜏) = (𝐼𝑛 − Φ1(𝜏) − ⋯ − Φ𝑝(𝜏))
−1

𝑐(𝜏) (33)

𝐴𝑠(𝜏) = {
0, 𝑠 < 0 ∶ 𝐼𝑛, 𝑠 = 0

Φ1(𝜏)𝐴𝑠−1 + ⋯ + Φ𝑃(𝜏)𝐴𝑠−𝑝(𝜏), 𝑠 > 0

 

where 𝑦𝑡 is defined by the sum of the residuals 𝑒𝑡(𝜏).  

Following Koop et al. (1996) and Pesaran and Shin (1998), the Generalized Forecast Error 

Variance Decomposition (GFEVD) quantifies the proportion of a variable’s forecast error 

variance that can be attributed to shocks from different variables over a forecast horizon H: 

𝜔𝑖𝑗
𝑔(𝐻) =

𝜎𝑗𝑗
−1 ∑  𝐻−1

ℎ=0 (𝑒𝑖
′𝐴𝑠∑𝑒𝑗)

2

∑  𝐻−1
ℎ=0 (𝑒𝑖

′𝐴𝑠∑𝑒𝑗)
(34) 

where 𝜔𝑖𝑗
𝑔(𝐻) represents the contribution of the 𝑗-th variable to the forecast error variance of 

the 𝑖-th variable at horizon 𝐻. ∑ illustrates the variance matrix of the vector of errors. 𝜎𝑗𝑗  

denotes the j-th diagonal element of the ∑ matrix, and 𝑒𝑖 is a vector with a value of one in the 

𝑖-th position and zero otherwise. 

We next normalise every entry of the variance decomposition matrix using the expression 

below: 

𝜔̃𝑖𝑗
𝑔(𝐻) =

𝜔𝑖𝑗
𝑔(𝐻)

∑  𝑁
𝑗=1 𝜔𝑖𝑗

𝑔(𝐻)
(35) 

Finally, we follow Diebold and Yilmaz (2012, 2014) to define the GFEVD connectedness 

measures at each quintile 𝜏 . The total directional spillover index (SI) from variable 𝑖  to 

variables 𝑗 at quintile 𝜏 is:  

𝑇𝑂 = 𝑆𝐼𝑖→𝑗(𝜏) =
∑  𝑁

𝑗=1,𝑖≠𝑗 𝜔̃𝑗𝑖
𝑔(𝜏)

∑  𝑁
𝑗=1 𝜔̃𝑗𝑖

𝑔(𝜏)
× 100 (36) 

The total directional spillover index (SI) from variables 𝑗 to variable 𝑖 at quintile 𝜏 is:  

𝐹𝑅𝑂𝑀 = 𝑆𝐼𝑖←𝑗(𝜏) =
∑  𝑁

𝑗=1,𝑖≠𝑗 𝜔̃𝑖𝑗
𝑔(𝜏)

∑  𝑁
𝑗=1 𝜔̃𝑖𝑗

𝑔(𝜏)
× 100 (37) 

The net total directional spillover (NSI) index at quantile 𝜏 is: 
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𝑁𝐸𝑇 = 𝑁𝑆𝐼 = 𝑆𝐼𝑖→𝑗(𝜏) − 𝑆𝐼𝑖←𝑗(𝜏) = 𝑇𝑂 − 𝐹𝑅𝑂𝑀 (38) 

A positive value indicates that the variable is a net transmitter of volatility, whereas a 

negative value indicates that the variable is a net receiver of volatility. 

The total connectivity index (TCI) captures the overall level of interconnectedness within the 

system, reflecting the extent to which shocks are transmitted across the system. A higher TCI 

indicates stronger spillover effects and greater systemic interdependence, while a lower TCI 

suggests weaker linkages and more independence among the system. The TCI among the 

variables at quantile 𝜏 is: 

𝑇𝐶𝐼(𝜏) =
∑  𝑁

𝑖=1 ∑  𝑁
𝑗=1,𝑖≠𝑗 𝜔̃𝑖𝑗

𝑔(𝜏)

∑  𝑁
𝑖=1 ∑  𝑁

𝑗=1 𝜔̃𝑖𝑗
𝑔(𝜏)

× 100 (39) 

4.4 Empirical Results 

4.4.1 Impact of the DeFi Heists on the Liquidity of the DeFi Tokens 

To examine the direct impact of price and trading volume fluctuations caused by DeFi heists 

on the liquidity of the native DeFi tokens on the affected platforms, this chapter uses the 

Amihud, the Amivest, and the Kyle indicators to estimate the liquidity. These indicators are 

used to measure the daily liquidity levels of DeFi tokens over a ten-day window, including 

the five days before and after each DeFi heist. This chapter collects the trading volume data 

for each DeFi token from coincodex, and the empirical results presented in Table 4.5 indicate 

that the impact of DeFi heists on DeFi token liquidity is not uniform. In some cases, a 

significant deterioration in liquidity is observed, whereas in others, the decline in liquidity is 

less pronounced. Figure 4.3 illustrates the trends of the three liquidity indicators, further 

demonstrating that DeFi heists have heterogeneous impacts on different DeFi tokens. 

Specifically, the Amihud for Qubit increased from 2.343 to 8.279 over the five days following 

the heist, while the Amivest declined from 46.504 to 2.552. Although Kyle did not show a 

substantial increase after the heist, a noticeable rise was observed from 7.171 to 10.860 

between the day before and after the heist (Days 5 to 7 in Table 4.5). These results indicate a 

significant deterioration in Qubit’s liquidity. Similarly, Mango also experienced a decline in 

liquidity. Over the five days following the heist, the Amihud rose from 1.151 to 4.525, while 

the Amivest dropped from 4.296 to 2.677. Meanwhile, the Kyle increased from 1.481 to 3.705, 

further confirming the deterioration in liquidity. 
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Table 4.5: Liquidity test results of Defi tokens 

Amihud illiquidity ratio (Amihud) 
 

1 2 3 4 5 6 7 8 9 10 

Qubit 4.794 10.231 4.030 3.826 2.894 2.343 2.379 1.505 3.225 8.279 

Ronin 9.035 15.602 5.392 13.660 9.509 13.107 6.476 7.341 5.677 8.743 

Bean 3.572 3.252 2.009 2.739 1.898 1.821 79.065 23675.911 57397.295 15642.312 

Elrond 5.339 5.819 4.353 4.177 10.231 5.853 8.519 1.787 4.770 5.224 

Binance Coin 1.806 1.649 1.994 1.327 2.232 1.007 0.967 0.900 1.702 1.539 

Mango 1.357 1.979 1.250 2.049 1.449 1.151 1.478 1.383 2.621 4.525 

Amivest liquidity ratio (Amivest) 

Qubit 5.673 4.754 4.137 9.874 16.333 46.504 59.413 28.765 14.929 2.552 

Ronin 8.384 7.391 11.428 8.653 12.984 18.821 40.230 88.370 827.546 56.290 

Bean 6.577 10.092 8.809 14.880 76.866 11.454 8.690 0.672 0.006 0.022 

Elrond  3.164 3.637 9.174 6.735 5.059 4.543 4.554 21.029 6.229 5.003 

Binance Coin 17.217 8.373 1.923 1.904 1.234 5.319 3.704 7.786 1.794 2.284 

Mango 2.661 4.787 4.320 1.101 1.912 4.296 11.024 4.786 2.598 2.677 

Kyle and Obizhaeva estimator (Kyle) 

Qubit 6.696 8.976 5.703 5.602 7.171 9.705 10.860 7.419 6.426 5.203 

Ronin 7.731 9.790 5.115 9.847 9.620 18.567 6.671 6.683 7.180 7.163 

Bean 3.594 3.755 2.973 4.048 3.411 3.322 78.295 54.308 276.487 194.586 

Elrond 3.245 3.587 2.518 2.641 4.281 2.279 4.251 2.052 2.973 3.695 

Binance Coin 6.618 6.456 7.158 5.798 8.968 5.437 5.286 4.363 6.776 6.464 

Mango 1.366 1.621 1.156 1.589 1.324 1.481 4.784 2.452 3.199 3.705 

 

Figure 4.3: The trends of the three liquidity indicators 

 

The larger the Amihud value, the worse the liquidity; Since Bean’s Amihud values are substantially higher than 

those of the other DeFi tokens in the post-heist period, they are plotted on the right-hand Y-axis to allow for a 

clearer comparison of the changes across DeFi tokens; Each line represents one DeFi token around its own heist. 
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The smaller the Amivest value, the worse the liquidity; Since Ronin’s Amivest values are substantially higher than 

those of the other DeFi tokens in the post-heist period, they are plotted on the right-hand Y-axis to allow for a 

clearer comparison of the changes across DeFi tokens; Each line represents one DeFi token around its own heist. 

 

The larger the Kyle value, the worse the liquidity; Since Bean’s Kyle values are substantially higher than those 

of the other DeFi tokens in the post-heist period, they are plotted on the right-hand Y-axis to allow for a clearer 

comparison of the changes across DeFi tokens; Each line represents one DeFi token around its own heist. 

By comparison, the liquidity deterioration for Ronin and Elrond appeared to be shorter-lived. 

For example, Ronin’s liquidity worsened most severely on the day of the heist (Day 6 in 

Table 4.5), with its Amihud surging from 9.509 to 13.107 and the Kyle increasing from 9.620 

to 18.567. On the other hand, Elrond’s liquidity significantly declined the day after the heist 

(Day 7 in Table 4.5), as its Amihud rose from 5.853 to 8.519, while its Kyle increased from 

2.279 to 4.251. Both DeFi tokens’ Amihud and Kyle suggest that trading volume exerted a 

stronger impact on price movements, leading to greater market instability, intensified price 
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shocks, and reduced market depth. However, Amivest did not provide evidence of declining 

liquidity. Therefore, while Ronin and Elrond faced short-term liquidity shocks, market 

participants were still able to trade, allowing investors to adjust more quickly to a new 

equilibrium, which explains why their liquidity levels improved in subsequent trading days. 

Despite the relatively short duration of the liquidity deterioration, Ronin and Elrond 

experienced significant price declines of 24.8% and 17.3%, respectively, during this period. 

This suggests that short-term liquidity shocks could still lead to substantial price fluctuations, 

increasing trading costs and liquidity risk for investors. Market sentiment deteriorated sharply 

following the heist, triggering panic selling and exacerbating the downward price movement. 

Although a few DeFi heists may take several days or even weeks to be detected (Carreras, 

2022), the vast majority are identified within a short time. Since all transactions are recorded 

on-chain, blockchain monitoring tools, security firms, and community observers could often 

capture abnormal movements within a short time (Wang et al., 2021; Chainalysis, 2025), 

which can then be widely disseminated via social media, official announcements, or crypto 

news outlets. 

The Glosten-Milgrom model (Glosten & Milgrom, 1985) of market microstructure helps 

further explain why liquidity deteriorates following a DeFi heist. Although DeFi relies on 

AMMs rather than centralised dealers, the same mechanism remains applicable. In a constant 

product AMM (𝑥 × 𝑦 = 𝑘), token prices are determined by the ratio of the two assets in the 

pool (Mohan, 2022). When a DeFi heist occurs, informed traders (usually the hacker), 

anticipating a decline in token value, rapidly sell tokens (𝑥) into the pool in exchange for 

stablecoins or higher-quality assets ( 𝑦 ). This process increases the pool’s inventory of 

depreciating tokens, decreases its stablecoin reserves, and immediately incorporates the 

negative information into pool prices. LPs then face two types of risks: first, adverse selection, 

as they effectively transact at unfavourable prices against informed traders; and second, 

impermanent loss arising from price jumps and heightened volatility, where the pool’s 

rebalancing shifts LPs’ portfolios toward depreciating assets, generating losses relative to a 

passive benchmark (Del Monte et al., 2025). Because DeFi heists are often accompanied by 

sharp price declines and high volatility, these risks are amplified. Anticipating or observing 

such order flow, LPs’ optimal response is typically to withdraw liquidity, which directly 

reduces pool depth. As pools become shallower, subsequent trades exert greater price impact, 

which is equivalent to a widening of bid–ask spreads. This further worsens market liquidity 
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and creates a negative feedback loop: informed selling induces LPs’ withdrawals, which in 

turn magnify liquidity shocks (Pellicer, 2024).  

Beyond the adverse selection mechanism captured by the Glosten-Milgrom framework, 

investor sentiment plays a complementary role in amplifying liquidity shocks. Security 

breaches heighten concerns about platform safety and undermine confidence in native DeFi 

tokens. Overreacting investors engage in large-scale sell-offs while refraining from new 

investments, thereby depressing both trading activity and liquidity (Borgards & Czudaj, 2020; 

Jia et al., 2022; Wanidwaranan & Termprasertsakul, 2024). The study by Yao et al. (2024) 

also showed that abnormal attention exerts a persistent negative impact on liquidity, leading 

to excessive net buying pressure and buyer-side market congestion, which ultimately results 

in a sharp deterioration of market liquidity. In summary, this dual channel highlights that 

liquidity deterioration in DeFi markets stems not only from informed trading and liquidity 

withdrawals but also from heightened market fragility and sensitivity to shocks. 

In the Binance platform heist, although Amihud, Amivest, and Kyle all suggest a decline in 

Binance Coin’s liquidity five days after the heist, the magnitude of these changes was not 

substantial. Specifically, the Amihud and Kyle increased by only 52.83% and 18.89%, 

respectively, while the Amivest declined by 57.06%. Furthermore, Figure 4.2 indicates that 

Binance Coin’s price drop during this heist was relatively modest. One possible reason why 

Binance Coin’s liquidity did not experience a significant deterioration is the swift response of 

the Binance platform to the heist. Upon discovering that the exploit had been executed, the 

Binance platform immediately suspended network (Binance Smart Chain) operations, 

instructing all 44 validators to temporarily halt Binance Smart Chain activities to contain the 

losses. As a result, while approximately $137 million was successfully transferred by the 

attackers, the remaining funds were frozen on the Binance Smart Chain (Nansen, 2022). 

Additionally, the Binance platform promptly issued an official security response and 

conducted an on-chain governance vote to address the heist. From the perspective of the 

Glosten-Milgrom framework, the Binance platform’s rapid disclosure and on-chain 

governance response effectively reduced information asymmetry in the aftermath of the 

attack. By narrowing the informational advantage of informed traders, these actions lowered 

adverse selection risk for LPs and mitigated the incentive to withdraw liquidity. Consequently, 

the expected widening of spreads and the severe deterioration of market liquidity were largely 

avoided. At the same time, this series of proactive measures reinforced investor confidence in 
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the platform and its native DeFi token, and alleviated market panic. As a result, investors did 

not withdraw from the Binance platform, preventing a significant decline in liquidity. 

Another noteworthy DeFi heist is the Beanstalk protocol heist. Within five days of the heist, 

Bean’s liquidity deteriorated significantly. For instance, its Amihud surged from 1.821 to 

15,642.312, while the Amivest plummeted from 11.454 to 0.022. Similarly, the Kyle rose 

sharply from 3.322 to 194.586, indicating a near-total collapse in market liquidity. The severe 

liquidity deterioration in Bean could largely be attributed to the fact that this attack not only 

exposed a fundamental system vulnerability but also completely drained the protocol’s Total 

Value Locked (TVL). TVL represents the total value of crypto assets locked within a DeFi 

platform and serves as a crucial metric for assessing its attractiveness and activity level. As 

shown in Figure 4.4, the Beanstalk protocol’s TVL plunged to nearly zero following the 

attack, severely undermining investor confidence and destabilising the market environment 

for Bean.  

Figure 4.4: TVL at Beanstalk protocol before and after the heist 

 

Source: https://defillama.com/protocol/beanstalk?mcap=false 

Concerns over protocol security further reduced trading activity in Bean, exacerbating the 

decline in market liquidity (Manahov et al., 2014; Ibikunle et al., 2016). Additionally, the 

Beanstalk protocol was shut down following the exploit, with no immediate recovery plan 

announced, leaving LPs and investors with limited information and heightened uncertainty 

regarding future risks. This lack of transparency intensified information asymmetry, further 

hindering the restoration of market liquidity (Barron & Qu, 2014; Hu & Prigent, 2019). 

https://defillama.com/protocol/beanstalk?mcap=false
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These findings are consistent with previous studies. Yue et al. (2021) applied four liquidity 

metrics to the top 100 cryptocurrencies and reported that negative news announcements 

impair liquidity within four days. Yao et al. (2024) found that crypto assets with smaller 

market shares and unique volatility attract fewer investors. These assets experience less 

trading activity, making their liquidity highly sensitive to changes in investor interest. Due to 

the magnifying effect of trading behaviour, increased attention from investors to these lesser-

known cryptocurrencies could lead to significant liquidity fluctuations. Manahov and Li 

(2024) discovered that within two weeks of a cryptocurrency heist, the liquidity of three 

tourism tokens, Bitcoin, and Ethereum decreases, with smaller market cap tourism tokens 

exhibiting greater liquidity volatility than the larger market cap Bitcoin and Ethereum. In this 

chapter, except for Binance Coin, the market capitalisation of the studied DeFi tokens is 

relatively small, so DeFi heists are likely to have a more substantial impact on the liquidity of 

these small market-cap DeFi tokens. As a result, heists targeting DeFi platforms could lead to 

significant declines in the price and liquidity of the platform’s native DeFi tokens. 

In summary, Amihud, Amivest, and Kyle indicate that DeFi heists significantly reduce the 

liquidity of most DeFi tokens. This highlights the severe impact of security breaches on DeFi 

platforms, leading to substantial declines in the price and liquidity of their native DeFi tokens, 

and underscores the importance of robust security measures in maintaining market stability. 

The comparative study of the Binance platform and Beanstalk protocol heists emphasises the 

crucial role of timely response and increased transparency in preserving the liquidity of the 

platform’s native DeFi tokens. The faster and clearer the disclosure, the smaller the 

informational advantage between informed traders and other participants. As this advantage 

diminishes, the adverse selection risk faced by LPs decreases, strengthening their incentive to 

remain in the pool and mitigating the decline in liquidity. Moreover, effective remedial 

measures for the project help investors maintain confidence and continue holding the tokens. 

Therefore, this study not only reveals the negative impact of DeFi heists on liquidity but also 

underscores the central role of disclosure mechanisms and response speed in shaping market 

reactions. 

4.4.2 Impact of the DeFi Heists on the DeFi Market 

Next, this chapter aims to investigate whether the volatility of the stolen platforms’ native 

DeFi tokens will spill over to other mainstream DeFi tokens five days after the DeFi heists, 

thereby analysing the scope and extent of the DeFi heists’ impact on the DeFi market. 
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According to market capitalisation data provided by CoinMarketCap, this chapter selects the 

top five DeFi tokens: Avalanche, Chainlink, Uniswap, Maker, and Stacks. The reasons for 

choosing these tokens are as follows: First, the top five DeFi tokens by market capitalisation 

typically have significant market influence and liquidity, with their price fluctuations 

reflecting the overall sentiment and trends of the DeFi market (Barchat, 2023). Second, these 

tokens represent different DeFi projects, including lending platforms, decentralised 

exchanges, and oracle services, providing strong representativeness. Tables 4.6-4.11 present 

the dynamic spillover results of the stolen platforms’ native DeFi tokens and five major DeFi 

tokens across high, median, and low quantiles (i.e., the 95th, 50th, and 5th percentiles, 

respectively). 

The results show that the TCI at both the extremely high and low quantiles are significantly 

large, and both exceed the TCI at the median quantile. This indicates that the volatilities of 

different DeFi tokens are highly correlated under extreme market conditions. When a single 

DeFi token experiences volatility, this fluctuation could easily spill over to other DeFi tokens, 

triggering a chain reaction. These findings are consistent with previous studies, which suggest 

that the cryptocurrency market is highly interconnected, and volatility within the same 

category of tokens is highly correlated (Canh et al., 2019; Katsiampa, 2019a; Katsiampa et al., 

2019; Tiwari et al., 2020; Ante, 2022; Charfeddine et al., 2022; Dowling, 2022; Corbet et al., 

2023; Aharon et al., 2024; Yousaf et al., 2024a). Therefore, the high interconnectedness 

within the DeFi market indicates a high level of risk, meaning the market’s stability is poor 

and it is susceptible to external shocks (Baruník & Křehlík, 2018). Interestingly, it also finds 

that the interconnectedness among mainstream DeFi tokens is higher than their 

interconnectedness with the stolen platform’s native DeFi token. For instance, in the Qubit 

Finance platform heist, the pairwise spillover effects between the Qubit and Avalanche during 

the high-volatility period (95th quantile) were 14.51% and 9.81%, respectively, while the 

pairwise spillover effects between the Chainlink and Avalanche were 17.07% and 18.90%, 

respectively. This indicates that although the overall connectedness within the DeFi market is 

high, this high interconnectedness is predominantly among mainstream DeFi tokens. 
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Table 4.6: Spillover connectedness between the Qubit and five mainstream DeFi tokens in 

the Qubit Finance platform heist 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Qubit Finance 

Panel A: Spillover connectedness at the 95th quantile 
 

Qubit Avalanche Chainlink Uniswap Maker Stacks FROM 

Qubit 24.26 14.51 15.21 15.47 14.52 16.03 75.74 

Avalanche 9.81 19.18 18.90 18.49 15.48 18.14 80.82 

Chainlink 10.41 17.07 20.84 18.03 16.07 17.57 79.16 

Uniswap 10.32 18.06 18.74 19.97 15.51 17.42 80.03 

Maker 10.50 17.64 17.99 17.29 18.69 17.89 81.31 

Stacks 11.32 17.07 17.79 16.62 16.15 21.04 78.96 

TO 52.36 84.34 88.64 85.9 77.73 87.04 TCI 

NET -23.38 3.53 9.47 5.87 -3.57 8.09 95.20 

Panel B: Spillover connectedness at the 50th quantile 
 

Qubit Avalanche Chainlink Uniswap Maker Stacks FROM 

Qubit 50.43 12.39 9.78 7.26 8.55 11.58 49.57 

Avalanche 6.40 33.63 18.89 14.69 12.93 13.46 66.37 

Chainlink 4.82 20.32 30.98 14.88 13.06 15.93 69.02 

Uniswap 4.69 18.84 19.23 28.03 14.47 14.74 71.97 

Maker 6.17 16.74 14.27 13.87 35.79 13.16 64.21 

Stacks 7.90 16.64 18.08 13.2 11.93 32.24 67.76 

TO 29.99 84.93 80.25 63.9 60.94 68.88 TCI 

NET -19.58 18.56 11.24 -8.07 -3.27 1.12 77.78 

Panel C: Spillover connectedness at the 5th quantile 
 

Qubit Avalanche Chainlink Uniswap Maker Stacks FROM 

Qubit 21.66 15.76 15.63 13.65 18.03 15.27 78.34 

Avalanche 15.06 19.86 17.61 14.11 18.01 15.34 80.14 

Chainlink 14.60 17.48 18.99 14.60 18.93 15.39 81.01 

Uniswap 14.98 17.86 16.23 17.21 18.80 14.92 82.79 

Maker 15.85 16.46 15.18 14.07 22.57 15.87 77.43 

Stacks 15.44 16.25 15.58 14.17 19.50 19.07 80.93 

TO 75.93 83.81 80.24 70.60 93.27 76.79 TCI 

NET -2.41 3.67 -0.77 -12.19 15.85 -4.15 96.13 

The findings are derived from a Quantile VAR method with a lag length of 1, determined by the Akaike 

Information Criterion (AIC). The rolling window size is 20 hourly observations, and forecast market dynamics 

10 time steps into the future. FROM indicates the source of causal impacts that each DeFi token receives, while 

TO denotes the destination of these effects. NET equals TO minus FROM. Positive values of NET indicate that 

the DeFi token is a net transmitter of spillover impacts, whereas negative values suggest it is a net receiver. A 

higher TCI indicates stronger spillover effects and greater systemic interdependence, while a lower TCI suggests 

weaker linkages and more independence among DeFi tokens. 
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Table 4.7: Spillover connectedness between the Ronin and five mainstream DeFi tokens in 

the Ronin Network heist 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ronin Network 

Panel A: Spillover connectedness at the 95th quantile 
 

Ronin Avalanche Chainlink Uniswap Maker Stacks FROM 

Ronin 20.12 14.82 16.58 16.49 18.50 13.49 79.88 

Avalanche 11.77 19.60 16.42 16.50 21.80 13.91 80.40 

Chainlink 12.21 17.90 18.16 16.78 21.46 13.50 81.84 

Uniswap 11.40 17.10 15.92 18.80 22.90 13.87 81.20 

Maker 12.99 17.20 15.71 16.09 24.84 13.17 75.16 

Stacks 12.39 17.07 17.32 17.22 19.28 16.72 83.28 

TO 60.76 84.10 81.95 83.08 103.95 67.93 TCI 

NET -19.12 3.70 0.11 1.88 28.79 -15.36 96.35 

Panel B: Spillover connectedness at the 50th quantile 
 

Ronin Avalanche Chainlink Uniswap Maker Stacks FROM 

Ronin 35.44 10.27 12.96 14.51 14.19 12.62 64.56 

Avalanche 6.68 27.80 15.69 17.97 15.30 16.55 72.20 

Chainlink 9.40 16.74 25.75 18.13 14.55 15.44 74.25 

Uniswap 7.33 16.26 15.72 28.78 16.06 15.85 71.22 

Maker 8.51 16.16 13.53 18.08 31.18 12.53 68.82 

Stacks 9.05 16.67 14.65 17.92 13.54 28.17 71.83 

TO 40.97 76.11 72.55 86.61 73.64 72.99 TCI 

NET -23.59 3.91 -1.70 15.4 4.83 1.16 84.58 

Panel C: Spillover connectedness at the 5th quantile 
 

Ronin Avalanche Chainlink Uniswap Maker Stacks FROM 

Ronin 21.35 15.26 15.34 18.31 13.69 16.05 78.65 

Avalanche 17.65 17.53 15.07 19.15 14.79 15.80 82.47 

Chainlink 16.66 16.32 16.99 18.86 14.67 16.50 83.01 

Uniswap 16.26 17.35 15.41 19.90 14.24 16.84 80.10 

Maker 17.62 16.07 15.14 19.16 15.61 16.41 84.39 

Stacks 17.12 16.57 15.36 18.56 13.29 19.09 80.91 

TO 85.32 81.56 76.32 94.04 70.68 81.60 TCI 

NET 6.67 -0.90 -6.69 13.94 -13.71 0.69 97.91 

The findings are derived from a Quantile VAR method with a lag length of 1, determined by the Akaike 

Information Criterion (AIC). The rolling window size is 20 hourly observations, and forecast market dynamics 

10 time steps into the future. FROM indicates the source of causal impacts that each DeFi token receives, while 

TO denotes the destination of these effects. NET equals TO minus FROM. Positive values of NET indicate that 

the DeFi token is a net transmitter of spillover impacts, whereas negative values suggest it is a net receiver. A 

higher TCI indicates stronger spillover effects and greater systemic interdependence, while a lower TCI suggests 

weaker linkages and more independence among DeFi tokens. 
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Table 4.8: Spillover connectedness between the Bean and five mainstream DeFi tokens in the 

Beanstalk protocol heist 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Beanstalk 

Panel A: Spillover connectedness at the 95th quantile 
 

Bean Avalanche Chainlink Uniswap Maker Stacks FROM 

Bean 26.59 14.59 12.16 13.74 14.93 17.98 73.41 

Avalanche 15.78 19.10 13.38 15.99 15.62 20.14 80.90 

Chainlink 16.64 15.59 15.76 16.09 16.05 19.87 84.24 

Uniswap 15.98 14.63 14.07 18.08 16.82 20.41 81.92 

Maker 15.97 15.23 13.44 17.18 19.53 18.65 80.47 

Stacks 16.47 14.45 12.51 14.85 14.96 26.76 73.24 

TO 80.84 74.49 65.56 77.85 78.38 97.06 TCI 

NET 7.44 -6.41 -18.69 -4.07 -2.09 23.82 94.84 

Panel B: Spillover connectedness at the 50th quantile 
 

Bean Avalanche Chainlink Uniswap Maker Stacks FROM 

Bean 46.70 11.61 8.23 10.15 13.08 10.22 53.30 

Avalanche 10.86 29.01 14.68 17.35 15.23 12.87 70.99 

Chainlink 9.25 15.23 27.53 19.04 17.61 11.34 72.47 

Uniswap 9.89 17.26 16.32 26.24 18.17 12.11 73.76 

Maker 10.79 15.37 13.41 18.33 30.71 11.39 69.29 

Stacks 9.64 12.98 11.48 12.92 10.94 42.04 57.96 

TO 50.44 72.45 64.13 77.79 75.03 57.93 TCI 

NET -2.86 1.46 -8.34 4.03 5.73 -0.03 79.55 

Panel C: Spillover connectedness at the 5th quantile 
 

Bean Avalanche Chainlink Uniswap Maker Stacks FROM 

Bean 21.28 13.28 12.74 16.64 16.64 19.42 78.72 

Avalanche 17.29 15.35 13.24 17.38 16.64 20.10 84.65 

Chainlink 17.74 13.40 14.70 17.03 16.80 20.33 85.29 

Uniswap 17.25 13.97 12.96 18.29 17.39 20.14 81.71 

Maker 16.5 14.32 13.38 18.14 18.38 19.28 81.62 

Stacks 17.00 13.82 12.91 16.62 16.60 23.05 76.95 

TO 85.77 68.79 65.23 85.81 84.06 99.26 TCI 

NET 7.06 -15.85 -20.06 4.10 2.45 22.31 97.79 

The findings are derived from a Quantile VAR method with a lag length of 1, determined by the Akaike 

Information Criterion (AIC). The rolling window size is 20 hourly observations, and forecast market dynamics 

10 time steps into the future. FROM indicates the source of causal impacts that each DeFi token receives, while 

TO denotes the destination of these effects. NET equals TO minus FROM. Positive values of NET indicate that 

the DeFi token is a net transmitter of spillover impacts, whereas negative values suggest it is a net receiver. A 

higher TCI indicates stronger spillover effects and greater systemic interdependence, while a lower TCI suggests 

weaker linkages and more independence among DeFi tokens. 
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Table 4.9: Spillover connectedness between the Elrond and five mainstream DeFi tokens in 

the Maiar Exchange heist 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maiar Exchange 

Panel A: Spillover connectedness at the 95th quantile 
 

Elrond Avalanche Chainlink Uniswap Maker Stacks FROM 

Elrond 20.24 14.49 19.01 14.66 13.85 17.74 79.76 

Avalanche 14.33 16.58 20.58 15.64 15.97 16.90 83.42 

Chainlink 14.40 15.29 21.22 16.66 15.33 17.10 78.78 

Uniswap 13.82 15.69 20.14 17.39 15.94 17.02 82.61 

Maker 14.47 14.92 20.29 16.39 16.25 17.68 83.75 

Stacks 15.56 14.37 19.32 15.94 15.38 19.42 80.58 

TO 72.58 74.77 99.34 79.30 76.47 86.45 TCI 

NET -7.18 -8.66 20.56 -3.31 -7.28 5.86 97.78 

Panel B: Spillover connectedness at the 50th quantile 
 

Elrond Avalanche Chainlink Uniswap Maker Stacks FROM 

Elrond 33.28 14.88 14.91 12.56 12.74 11.63 66.72 

Avalanche 11.59 24.07 17.46 17.58 16.76 12.54 75.93 

Chainlink 8.73 14.96 31.24 17.25 15.26 12.56 68.76 

Uniswap 7.62 16.67 19.93 26.28 16.29 13.2 73.72 

Maker 10.29 17.64 16.95 17.13 25.35 12.63 74.65 

Stacks 9.23 15.71 16.29 15.52 15.84 27.41 72.59 

TO 47.47 79.86 85.54 80.04 76.88 62.56 TCI 

NET -19.25 3.93 16.79 6.32 2.23 -10.02 86.47 

Panel C: Spillover connectedness at the 5th quantile 
 

Elrond Avalanche Chainlink Uniswap Maker Stacks FROM 

Elrond 23.89 17.75 16.22 13.83 14.54 13.76 76.11 

Avalanche 16.83 20.63 15.12 15.67 16.92 14.84 79.37 

Chainlink 16.75 17.63 20.56 15.25 15.32 14.48 79.44 

Uniswap 17.07 18.21 17.48 17.01 15.65 14.59 82.99 

Maker 17.59 17.65 15.99 15.07 18.95 14.75 81.05 

Stacks 16.48 17.85 16.92 15.30 15.73 17.72 82.28 

TO 84.73 89.10 81.73 75.12 78.15 72.42 TCI 

NET 8.62 9.73 2.30 -7.88 -2.90 -9.87 96.25 

The findings are derived from a Quantile VAR method with a lag length of 1, determined by the Akaike 

Information Criterion (AIC). The rolling window size is 20 hourly observations, and forecast market dynamics 

10 time steps into the future. FROM indicates the source of causal impacts that each DeFi token receives, while 

TO denotes the destination of these effects. NET equals TO minus FROM. Positive values of NET indicate that 

the DeFi token is a net transmitter of spillover impacts, whereas negative values suggest it is a net receiver. A 

higher TCI indicates stronger spillover effects and greater systemic interdependence, while a lower TCI suggests 

weaker linkages and more independence among DeFi tokens. 
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Table 4.10: Spillover connectedness between the Binance Coin and five mainstream DeFi 

tokens in the Binance platform heist 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Binance 

Panel A: Spillover connectedness at the 95th quantile 
 

Binance Coin Avalanche Chainlink Uniswap Maker Stacks FROM 

Binance Coin 17.71 18.85 17.20 13.48 15.07 17.69 82.29 

Avalanche 16.37 20.18 17.40 12.38 16.27 17.40 79.82 

Chainlink 15.39 18.53 19.93 12.26 16.55 17.34 80.07 

Uniswap 15.32 18.27 16.70 16.83 15.59 17.28 83.17 

Maker 14.25 17.32 17.83 12.46 20.98 17.16 79.02 

Stacks 14.77 18.60 16.82 12.89 17.10 19.82 80.18 

TO 76.10 91.58 85.96 63.47 80.57 86.87 TCI 

NET -6.19 11.76 5.89 -19.69 1.54 6.69 96.91 

Panel B: Spillover connectedness at the 50th quantile 
 

Binance Coin Avalanche Chainlink Uniswap Maker Stacks FROM 

Binance Coin 33.96 18.16 16.80 13.66 8.32 9.10 66.04 

Avalanche 16.24 31.33 16.48 12.52 9.62 13.80 68.67 

Chainlink 13.70 15.34 36.45 11.88 11.37 11.26 63.55 

Uniswap 14.48 16.24 13.37 32.22 10.47 13.21 67.78 

Maker 10.54 11.75 12.32 11.33 39.96 14.10 60.04 

Stacks 10.18 15.05 14.10 10.16 11.72 38.79 61.21 

TO 65.14 76.54 73.07 59.56 51.51 61.47 TCI 

NET -0.90 7.87 9.52 -8.23 -8.53 0.27 77.46 

Panel C: Spillover connectedness at the 5th quantile 
 

Binance Coin Avalanche Chainlink Uniswap Maker Stacks FROM 

Binance Coin 19.90 18.85 16.54 15.12 12.45 17.15 80.10 

Avalanche 17.54 21.35 16.75 15.28 12.37 16.72 78.65 

Chainlink 16.05 17.39 23.17 15.18 12.86 15.35 76.83 

Uniswap 16.79 18.05 16.78 18.62 12.21 17.55 81.38 

Maker 15.07 16.46 16.38 13.95 21.49 16.65 78.51 

Stacks 16.06 17.76 14.12 15.32 12.02 24.72 75.28 

TO 81.51 88.5 80.57 74.84 61.91 83.42 TCI 

NET 1.41 9.85 3.74 -6.53 -16.6 8.14 94.15 

The findings are derived from a Quantile VAR method with a lag length of 1, determined by the Akaike 

Information Criterion (AIC). The rolling window size is 20 hourly observations, and forecast market dynamics 

10 time steps into the future. FROM indicates the source of causal impacts that each DeFi token receives, while 

TO denotes the destination of these effects. NET equals TO minus FROM. Positive values of NET indicate that 

the DeFi token is a net transmitter of spillover impacts, whereas negative values suggest it is a net receiver. A 

higher TCI indicates stronger spillover effects and greater systemic interdependence, while a lower TCI suggests 

weaker linkages and more independence among DeFi tokens. 
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Table 4.11: Spillover connectedness between the Mango and five mainstream DeFi tokens in 

the Mango Markets platform heist 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mango Markets 

Panel A: Spillover connectedness at the 95th quantile 
 

Mango Avalanche Chainlink Uniswap Maker Stacks FROM 

Mango 24.97 13.25 14.38 15.70 17.08 14.62 75.03 

Avalanche 15.64 16.02 17.30 16.63 18.25 16.16 83.98 

Chainlink 15.09 15.51 18.60 16.23 18.20 16.37 81.40 

Uniswap 16.45 14.69 16.81 19.12 17.07 15.85 80.88 

Maker 15.26 14.96 16.06 16.30 22.60 14.82 77.40 

Stacks 16.21 14.62 17.14 16.69 17.01 18.33 81.67 

TO 78.65 73.04 81.69 81.54 87.62 77.82 TCI 

NET 3.62 -10.94 0.28 0.66 10.22 -3.85 96.07 

Panel B: Spillover connectedness at the 50th quantile 
 

Mango Avalanche Chainlink Uniswap Maker Stacks FROM 

Mango 48.11 10.87 10.67 11.59 9.13 9.63 51.89 

Avalanche 10.00 25.58 17.67 16.92 12.42 17.41 74.42 

Chainlink 9.39 18.38 26.24 18.84 11.35 15.8 73.76 

Uniswap 9.40 16.25 16.04 29.46 13.91 14.95 70.54 

Maker 7.22 14.21 11.19 16.83 37.73 12.82 62.27 

Stacks 10.94 17.93 14.95 16.96 11.16 28.06 71.94 

TO 46.95 77.65 70.52 81.14 57.96 70.61 TCI 

NET -4.95 3.23 -3.24 10.60 -4.31 -1.33 80.96 

Panel C: Spillover connectedness at the 5th quantile 
 

Mango Avalanche Chainlink Uniswap Maker Stacks FROM 

Mango 24.61 14.78 11.81 14.74 18.10 15.96 75.39 

Avalanche 15.76 19.13 13.22 15.81 17.64 18.45 80.87 

Chainlink 15.75 16.66 17.68 15.18 16.27 18.47 82.32 

Uniswap 14.27 17.44 12.87 18.26 16.61 20.55 81.74 

Maker 14.49 16.36 12.09 15.35 23.10 18.61 76.90 

Stacks 14.82 17.20 13.38 14.55 17.08 22.98 77.02 

TO 75.08 82.43 63.37 75.63 85.7 92.04 TCI 

NET -0.31 1.56 -18.96 -6.11 8.79 15.02 94.85 

The findings are derived from a Quantile VAR method with a lag length of 1, determined by the Akaike 

Information Criterion (AIC). The rolling window size is 20 hourly observations, and forecast market dynamics 

10 time steps into the future. FROM indicates the source of causal impacts that each DeFi token receives, while 

TO denotes the destination of these effects. NET equals TO minus FROM. Positive values of NET indicate that 

the DeFi token is a net transmitter of spillover impacts, whereas negative values suggest it is a net receiver. A 

higher TCI indicates stronger spillover effects and greater systemic interdependence, while a lower TCI suggests 

weaker linkages and more independence among DeFi tokens. 

In the cryptocurrency market, large-cap tokens tend to be the initiators and receivers of 

volatility, which is related to their market capitalisation and high liquidity (Corbet et al., 

2018b; Yi et al., 2018; Ji et al., 2019; Omane-Adjepong & Alagidede, 2019; Yousaf et al., 

2024b). Mainstream DeFi tokens generally have larger market capitalisation and higher 

liquidity, which allows their market fluctuations to be more effectively transmitted to other 
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mainstream tokens. Additionally, mainstream DeFi tokens are widely used and integrated 

across multiple DeFi protocols and trading platforms, further enhancing their network effects 

and interconnectedness. The high degree of interconnectedness among mainstream DeFi 

tokens also reflects investor behaviour patterns. Investors tend to focus on and invest in 

tokens with larger market caps and higher liquidity (Hasan et al., 2022; Ozdamar et al., 2022), 

resulting in more frequent capital flows among these tokens and strengthening their volatility 

transmission effects. In contrast, the native DeFi tokens on the stolen platforms have smaller 

market capitalisations. Small-cap DeFi tokens, due to their lower market capitalisation, 

insufficient liquidity, and limited application and integration within the DeFi ecosystem, 

exhibit relatively weaker connectedness with mainstream DeFi tokens. These findings are 

consistent with previous studies by Corbet et al. (2019a) and Yarovaya and Zięba (2022), 

which observed that interconnectedness within the cryptocurrency market is primarily seen 

among leading cryptocurrencies and is stronger in the short term. Therefore, considering the 

TCI and the interconnectedness among various DeFi tokens, it is concluded that the 

interconnectedness is higher among mainstream DeFi tokens, while the connectedness 

between the native DeFi tokens of the stolen platforms and mainstream DeFi tokens is lower. 

Next, although the native DeFi tokens of the stolen platforms exhibit spillover effects on 

other mainstream DeFi tokens (as indicated by positive TO values), a comparison of the TO 

values across tokens reveals that most of these native DeFi tokens have lower TO values than 

other mainstream DeFi tokens. Furthermore, as shown in the connectedness networks 

(Figures 4.5–4.10), most of the stolen platforms’ native DeFi tokens are net receivers of 

volatility (red nodes represent receivers, whereas green nodes represent transmitters). This 

suggests that the volatility transmitted from the stolen platforms’ native DeFi tokens to other 

mainstream DeFi tokens is smaller than the volatility they receive from them. In addition, the 

volatility received by mainstream DeFi tokens primarily originates from within their own 

network rather than from the native DeFi tokens of the stolen platforms7. 

 

 

 

 
7  This can be seen from the interconnectivity value between DeFi tokens, which can be observed at the 

intersection of the rows and columns corresponding to two DeFi tokens in the spillover connectedness table. 
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Figure 4.5: Quantile overflow network between the Qubit and five mainstream DeFi tokens 

in the Qubit Finance platform heist  
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Based on the full-sample QVAR model with a lag order of 1 and a forecast market dynamics 10 time steps into 

the future. Node colours represent the sign of the net spillover, with red indicating receivers of volatility and 

green indicating transmitters. Node sizes reflect the magnitude of the absolute net spillover. Arrows on the edges 

indicate the direction of spillovers, while edge widths capture the spillover intensity. To account for overlapping 

edges, curved edges are used in the visualisation. 
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Figure 4.6: Net spillover between the Ronin and five mainstream DeFi tokens in the Ronin 

Network heist 
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Based on the full-sample QVAR model with a lag order of 1 and a forecast market dynamics 10 time steps into 

the future. Node colours represent the sign of the net spillover, with red indicating receivers of volatility and 

green indicating transmitters. Node sizes reflect the magnitude of the absolute net spillover. Arrows on the edges 

indicate the direction of spillovers, while edge widths capture the spillover intensity. To account for overlapping 

edges, curved edges are used in the visualisation. 

 

 

 

 

 

 

 

 

 

 



177 
 

Figure 4.7: Net spillover between the Bean and five mainstream DeFi tokens in the 

Beanstalk protocol heist 

 

 



178 
 

 

Based on the full-sample QVAR model with a lag order of 1 and a forecast market dynamics 10 time steps into 

the future. Node colours represent the sign of the net spillover, with red indicating receivers of volatility and 

green indicating transmitters. Node sizes reflect the magnitude of the absolute net spillover. Arrows on the edges 

indicate the direction of spillovers, while edge widths capture the spillover intensity. To account for overlapping 

edges, curved edges are used in the visualisation. 
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Figure 4.8: Net spillover between the Elrond and five mainstream DeFi tokens in the Maiar 

Exchange heist 
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Based on the full-sample QVAR model with a lag order of 1 and a forecast market dynamics 10 time steps into 

the future. Node colours represent the sign of the net spillover, with red indicating receivers of volatility and 

green indicating transmitters. Node sizes reflect the magnitude of the absolute net spillover. Arrows on the edges 

indicate the direction of spillovers, while edge widths capture the spillover intensity. To account for overlapping 

edges, curved edges are used in the visualisation. 
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Figure 4.9: Net spillover between the Binance Coin and five mainstream DeFi tokens in the 

Binance platform heist 
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Based on the full-sample QVAR model with a lag order of 1 and a forecast market dynamics 10 time steps into 

the future. Node colours represent the sign of the net spillover, with red indicating receivers of volatility and 

green indicating transmitters. Node sizes reflect the magnitude of the absolute net spillover. Arrows on the edges 

indicate the direction of spillovers, while edge widths capture the spillover intensity. To account for overlapping 

edges, curved edges are used in the visualisation. 
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Figure 4.10: Net spillover between the Mango and five mainstream DeFi tokens in the 

Mango Markets platform heist 
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Based on the full-sample QVAR model with a lag order of 1 and a forecast market dynamics 10 time steps into 

the future. Node colours represent the sign of the net spillover, with red indicating receivers of volatility and 

green indicating transmitters. Node sizes reflect the magnitude of the absolute net spillover. Arrows on the edges 

indicate the direction of spillovers, while edge widths capture the spillover intensity. To account for overlapping 

edges, curved edges are used in the visualisation. 

While a heist targeting a specific DeFi platform could cause volatility in the platform’s native 

DeFi token and transmit some of this volatility to other mainstream DeFi tokens, the 

contagion effect is relatively weak. This aligns with the previous analysis that the 

connectedness level between mainstream DeFi tokens and the native DeFi tokens of stolen 

platforms is low. The diversity of protocols and assets within the DeFi market helps absorb 

the impact of individual assets. Even if the native DeFi token of one platform is compromised, 

other platforms’ DeFi tokens continue to support the DeFi market, mitigating the spread of 

negative effects (Metelski & Sobieraj, 2022). Furthermore, in this chapter, the most affected 

DeFi tokens hold a small market share within the DeFi market, limiting their impact on 

overall market volatility. Other mainstream DeFi tokens could stabilise the market 

environment and buffer the shocks potentially caused by DeFi heists (Kollias et al., 2011). 

Investors may also have developed certain psychological expectations and behavioural 

adaptations to DeFi heists. Given that most hacker attacks target DeFi protocols, investors 

might now consider them a normal occurrence within the DeFi investment space. According 

to Immunefi (2023), there were 155 attacks targeting DeFi in 2022 alone. Therefore, a single 
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DeFi heist does not trigger excessive market reactions, as investors have learned to 

incorporate such risks into their investment strategies, thereby reducing the overall market 

impact of these events. 

In the Beanstalk protocol heist, the Bean exhibits significant spillover effects (high TO values 

and positive NET values) at extreme quantiles (Table 4.8 and Figure 4.7). This indicates that 

the impact of the Beanstalk protocol heist on the DeFi market is considerably greater than 

that of other DeFi heists that this chapter investigates. A possible explanation for this is that 

the attack exploited Beanstalk protocol’s majority voting governance system, which is a core 

feature of many DeFi protocols. Like many other DeFi projects, the Beanstalk protocol 

incorporates a governance mechanism where participants can collectively vote on code 

changes. They receive voting power proportional to the value of the Bean they hold. 

According to Certik (2022), the attacker utilised a flash loan obtained through the 

decentralised protocol Aave to borrow nearly $1 billion in cryptocurrency assets. They then 

used these assets to acquire enough bean tokens to gain 67% voting power in the project. 

With this absolute majority, they were able to approve the execution of code that transferred 

the assets to their wallet. The attacker then immediately repaid the flash loan, netting $80 

million in profit. 

The vulnerability in the majority voting governance system raised concerns among investors 

about the security of other DeFi protocols. This incident highlighted the potential risks 

associated with governance mechanisms that allow significant control through token holdings, 

especially when such control can be quickly accumulated via flash loans. Chainalysis (2024a) 

reported that governance attacks result in an average loss of about $1 million, ranking second 

among all types of DeFi attack methods. The resulting fear and uncertainty may have had a 

broader impact on the DeFi market, as investors began to question the robustness and security 

of similar governance structures in other projects (Bouri et al., 2021a; Corbet et al., 2022). 

Investors losing confidence might decide to divest from these projects, leading to selling 

pressure and price declines. Additionally, in response to perceived risks, investors might 

reallocate their funds to what they consider safer assets, including more established 

cryptocurrencies or stablecoins, further increasing the selling pressure on DeFi tokens. 

Previous studies have also highlighted the vulnerability of decentralised governance in DeFi. 

Dotan et al. (2023) pointed out that the use of governance tokens exhibits a strong tendency 

toward centralisation, which may undermine the security of DeFi platforms. Gudgeon et al. 

(2020) proposed a novel strategy that exploits so-called flash loans, which in principle 
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enables a governance attack to be executed with only two transactions and without locking 

any assets, further underscoring how deficiencies in governance design can trigger crises in 

DeFi protocols. 

To sum up, the analysis highlights the interconnectedness within the DeFi market and the 

varying degrees of spillover effects among different DeFi tokens. Mainstream DeFi tokens 

exhibit significant interconnectivity and mutual influence, but they tend to be less 

interconnected with smaller DeFi tokens from stolen platforms. The Beanstalk protocol heist, 

however, stands out due to its significant spillover effects, underscoring the vulnerabilities in 

governance mechanisms that can be exploited via flash loans. This incident has not only 

shaken investor confidence in Beanstalk protocol but also raised broader concerns about the 

security of DeFi protocols with similar governance structures. The resultant fear and 

uncertainty have led to increased market volatility, with investors reallocating funds to 

perceived safer assets, thereby exerting further selling pressure on DeFi tokens. These 

findings emphasise the importance of robust governance and security measures in 

maintaining market stability and protecting investor interests in the rapidly evolving DeFi 

landscape. 

4.4.3 Robustness Tests of Liquidity Analysis and Volatility Spillover Effects 

To mitigate the estimation instability caused by the limited number of hourly observations, 

this chapter reports the results of estimating the three liquidity indicators using a 6-hour 

rolling window in Appendix 4.7. The rolling-window approach incorporates overlapping 

samples from adjacent time intervals, helping to smooth out the influence of outliers and 

capture the dynamic evolution of liquidity over time. This method enhances the ability to 

detect structural changes in liquidity before and after DeFi heists, thereby improving the 

robustness and interpretability of the estimates. The corresponding results are presented in 

Figures 4.11–4.16 in Appendix 4.7. 

Consistent with the earlier results, the liquidity of Qubit and Mango deteriorated significantly 

following the heists (Figures 4.11 and 4.16). This is reflected in the upward trend of the 

Amihud and Kyle after the heists, accompanied by a decline in the Amivest, indicating higher 

trading costs and reduced market depth. For Ronin and Elrond, liquidity deterioration was 

particularly severe on the day of the heists (Figures 4.12 and 4.14), as evidenced by the sharp 

increase in the Amihud and Kyle within on the day of the heists, suggesting a short-term 

liquidity shock. The liquidity dynamics of Bean (Figure 4.13) also point to substantial 
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deterioration, with Amihud and Kyle rising markedly in the post-heist period, while the 

Amivest declined significantly, highlighting sustained liquidity stress. In contrast, Binance 

Coin’s liquidity showed no significant change before and after the heist (Figure 4.15), with 

only a slight deterioration on the day of the heist, followed by a quick recovery to its pre-heist 

level. Overall, the robustness checks confirm that DeFi heists exert significant negative 

impacts on the liquidity of the native DeFi tokens of the stolen platforms, while the 

magnitude and persistence of these effects vary across DeFi tokens. 

Furthermore, Appendix 4.7 reports the robustness results obtained by re-estimating the 

QVAR model using a longer 80-hour rolling window while keeping the forecast horizon fixed 

at 10 steps, to test the sensitivity of the results to the choice of rolling window length. A 

longer window provides more effective observations at the tail of the sample, reducing 

estimation variance and yielding smoother and more stable quantile estimates. The robustness 

results presented in Tables 4.12–4.17 in Appendix 4.7 indicate that, even under extreme 

market conditions, the TCI continues to show a high degree of volatility synchronisation 

among DeFi tokens, with strong interconnectedness remaining concentrated among the major 

DeFi tokens. During the most DeFi heist periods, the volatility received by mainstream DeFi 

tokens mainly originates from within the mainstream DeFi token network rather than from 

the native DeFi token of the stolen platform. In the Beanstalk protocol heist, Bean still 

exhibits significant spillover effects at extreme quantiles, further indicating that this DeFi 

heist has a severe impact on the DeFi market due to its attack on the governance mechanisms. 

Overall, the findings are consistent with the previous results, suggesting that the choice of 

estimation window does not drive the conclusions. 

In summary, the robustness tests on liquidity and volatility spillovers support the previous 

findings. First, regarding liquidity, the robustness checks of the three liquidity indicators 

consistently show that most stolen platforms’ native DeFi tokens experience significant 

liquidity deterioration after the DeFi heists, further confirming the negative impact of DeFi 

heists on these DeFi tokens’ liquidity. Second, in terms of volatility spillovers, the QVAR 

results re-estimated with a longer rolling window remain consistent with the baseline, 

indicating that under extreme market conditions, volatility across different DeFi tokens 

continues to move in a highly synchronised manner. However, the strongest 

interconnectedness is observed among mainstream DeFi tokens rather than the native tokens 

of the stolen platforms. This suggests that the overall impact of DeFi heists on the wider DeFi 

market is limited, with the negative effects concentrated mainly on the stolen platforms 
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themselves, thereby highlighting the resilience of the DeFi market in the face of such shocks. 

However, attacks targeting the governance mechanisms may trigger widespread concerns 

about the security of other DeFi protocols with similar structures, further amplifying market 

uncertainty. This highlights the need for future DeFi protocols to pay particular attention to 

vulnerabilities in their governance system. 

4.5 Potential Regulatory Recommendations 

In the face of increasingly frequent DeFi hacking attacks, implementing appropriate 

regulatory measures is urgent and crucial for protecting protocol developers and investors. 

Currently, the regulatory environment for DeFi remains uncertain and varies significantly 

across different jurisdictions. For example, the European Union finalised the Markets in 

Crypto-Assets Regulation (MiCA) in 2023, becoming the first jurisdiction to adopt a 

comprehensive regulatory framework for digital assets. MiCA provides legal clarity 

regarding the privacy, security, and transparency of crypto-assets, requiring issuers to publish 

approved white papers and obtain regulatory authorisation. Non-compliance may result in 

penalties (European Union, 2023a). However, MiCA excludes crypto-asset services that are 

offered in a fully decentralised manner without the involvement of any intermediaries. This 

has created ambiguity in the regulation of DeFi platforms, as MiCA equates decentralisation 

with the complete absence of intermediaries (European Union, 2023b). In reality, many DeFi 

ecosystems rely on critical intermediaries that play a pivotal role in the functioning and 

sustainability of the system. These are often referred to as systemically important crypto 

intermediaries (SICIs). As such, the key challenge for the European Union regulators lies in 

distinguishing between genuinely decentralised systems and those that merely reduce, but do 

not eliminate, intermediation. 

Hong Kong has not yet introduced DeFi-specific legislation, but regulates DeFi-related 

activities through its existing financial regulatory framework. The Securities and Futures 

Commission (SFC) evaluates DeFi activities based on their actual operation under the 

Securities and Futures Ordinance (SFO) and the Anti-Money Laundering Ordinance (AMLO). 

This functional approach follows the principle of “same business, same risks, same rules,” 

aiming to strike a balance between financial innovation and regulatory integrity (Financial 

Services and the Treasury Bureau, 2023). Meanwhile, the Hong Kong Monetary Authority 

(HKMA) has issued guidelines for banks on the risk management considerations associated 

with adopting distributed ledger technology (DLT), reflecting a growing interest in 
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integrating DLT into traditional finance (Hong Kong Monetary Authority, 2024). The key 

challenge in Hong Kong is maintaining regulatory transparency and accountability while 

fostering innovation. 

In Singapore, the regulatory framework for digital assets is based primarily on the Payment 

Services Act of 2019 and the Financial Services and Markets Act of 2022, both overseen by 

the Monetary Authority of Singapore (MAS) (2019, 2022). While MAS has acknowledged 

the risks associated with DeFi and issued consumer advisories, the existing legislation does 

not comprehensively cover all forms of DeFi activity, particularly those involving 

decentralised governance and anonymous transactions. The main challenge for Singaporean 

regulators is to ensure financial stability and investor protection without stifling innovation in 

the DeFi space. 

The United Kingdom is in the process of developing a comprehensive regulatory regime for 

digital assets. The Financial Conduct Authority (FCA) oversees crypto-asset activities under 

the Financial Services and Markets Act 2023, and regulations differentiate between digital 

securities, unbacked crypto-assets, and stablecoins. The HM Treasury (2023) has signalled 

that DeFi will be addressed under its future financial services regulatory framework, with a 

focus on eliminating regulatory arbitrage. The key regulatory challenge in the United 

Kingdom lies in defining legal boundaries for DeFi and designing flexible, yet enforceable, 

rules that can accommodate its diverse governance structures. 

The United States adopts a fragmented regulatory model for digital assets, with oversight 

shared among multiple agencies, including the Securities and Exchange Commission (SEC), 

the Commodity Futures Trading Commission (CFTC), the Financial Crimes Enforcement 

Network (FinCEN), and the Federal Deposit Insurance Corporation (FDIC) (Emmert, 2023). 

These agencies attempt to apply existing securities and commodities laws to DeFi protocols, 

often relying on enforcement actions due to a lack of unified regulatory guidance. The 

Financial Innovation and Technology for the 21st Century Act (FIT21) represents a recent 

attempt to establish a compliant pathway for decentralised networks, including computing 

and social networks, ensuring that digital assets receive appropriate and secure regulatory 

treatment (Gensler, 2024). The central challenge in the United States is how to establish clear 

and coherent compliance mechanisms for decentralised systems without undermining 

innovation or pushing projects offshore. 
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Overall, different jurisdictions have adopted diverse regulatory approaches to DeFi, reflecting 

varying interpretations of decentralisation and different balances between innovation and 

oversight. The European Union offers a unified framework but faces definitional challenges. 

Jurisdictions such as Hong Kong and Singapore pursue function-based, gradual approaches, 

while the United Kingdom is working to develop a forward-looking but structured regime. 

The United States, by contrast, exhibits fragmented enforcement with limited clarity. These 

regulatory divergences may lead to inconsistencies and jurisdictional arbitrage in the global 

DeFi ecosystem, while also opening the door for international cooperation in shaping future 

standards. This chapter attempts to propose some regulatory methods for the future of DeFi 

based on the primary economic rationale of regulating financial intermediary activities, 

thereby reducing the negative impact of DeFi heists. 

The primary economic rationale for regulating financial intermediary activities is the 

existence of market failures, which could, in principle, be improved through policy 

intervention. Market failures can be categorised into two main types: (i) information 

problems and (ii) externalities (Aquilina et al., 2024). 

4.5.1 How to Solve Information Problems 

Information problems include both information insufficiency and information asymmetry 

(Aquilina et al., 2024). In the DeFi market, investors often lack adequate information. For 

instance, they may question whether they can fully trust the development team behind a dapp 

or whether specific smart contracts have vulnerabilities that hackers could exploit. Regarding 

information asymmetry, it is difficult for investors to distinguish between high-quality and 

low-quality projects in the DeFi market. Some low-quality projects may persist in the market 

for a long time and are more susceptible to hacker attacks due to a lack of robust security 

measures. Additionally, the structure of many Decentralised Autonomous Organisations 

(DAOs) that dapps rely on makes it challenging to understand where decision-making 

authority lies and who is accountable for the consequences of such decisions (Doerr et al., 

2021). This complexity can leave investors unable to protect their interests in the event of a 

DeFi heist. 

To mitigate issues of information insufficiency and asymmetry, regulatory authorities can 

require DeFi projects to introduce third-party platforms to monitor on-chain illegal activities 

and conduct third-party audits to assess and review the security of projects. Third-party 

platforms can monitor on-chain activities in real time, detect and report suspicious 
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transactions, and prevent the spread of illegal activities. Meanwhile, third-party audits can 

uncover vulnerabilities and security risks in smart contracts, helping development teams fix 

them promptly and prevent exploitation by hackers. For investors, the monitoring results and 

audit reports from third parties can help them differentiate between high-quality and high-risk 

projects, avoiding investments in the latter. Furthermore, the involvement of third parties 

could increase investor confidence in DeFi projects, knowing that these projects have been 

validated by independent entities. 

There are many on-chain security monitoring and project auditing platforms, such as Hacken 

and Certik. Hacken provides these services to many clients, such as FTX and Gate.io, as well 

as data provider CoinGecko. The foundation has even partnered with the government of 

Ukraine to support its blockchain initiatives. Certik offers services to inspect project code 

security, identifying any vulnerabilities that hackers could exploit. Developers can fix issues 

before re-auditing, aiming for positive results (Rearick, 2022). However, the challenge is that 

auditing standards vary between firms, and their reliability remains unclear (Yuyama et al., 

2023). Currently, most global regulatory efforts for DeFi focus primarily on centralised 

intermediaries, stablecoins, and AML/KYC compliance. Areas such as security auditing and 

technical transparency remain underregulated. Therefore, future regulatory efforts should aim 

to formalise and standardise third-party auditing practices within the regulatory framework. 

Doing so would help bridge the gap between voluntary self-regulation and formal oversight, 

thereby reducing the risk of DeFi projects being exploited by malicious actors. 

4.5.2 How to Solve External Problems 

In financial markets, the actions of one party in a financial transaction can significantly 

impact other entities and, in some cases, even affect the stability of the entire system. The 

most notable example of this is the 2008 subprime mortgage crisis in the United States 

(Brunnermeier et al., 2009; Aquilina et al., 2024). In the DeFi sector, whether through 

collateralisation, staking, or any other crypto-financial model, many DeFi protocols are 

interlinked. The advantage of this interconnectivity is that during periods of market stability 

and growth, the synergies between DeFi protocols can create a positive feedback loop, 

propelling the crypto industry upward. However, the same interconnectivity can lead to a 

‘death spiral’ during market downturns, causing a chain reaction of negative effects. Although 

this chapter's findings indicate that the impact of smaller DeFi tokens from compromised 

platforms on mainstream DeFi tokens is minimal, we cannot overlook the broader 
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implications of heists on the DeFi ecosystem. As observed in the Beanstalk protocol heist, 

investors’ broader concerns about the security of DeFi protocols with similar voting 

governance systems can exacerbate market volatility. This underscores the need for effective 

regulatory measures to mitigate external volatility in the DeFi market. 

Aquilina et al. (2024) showed that in traditional financial markets, systemic externalities 

could be mitigated through four approaches: (i) prudential regulation of financial institutions; 

(ii) stringent risk management requirements; (iii) deposit insurance for deposit-taking 

institutions; and (iv) the central bank acting as the lender (or dealer) of last resort in extreme 

situations. The DeFi market could adopt these regulatory strategies from traditional financial 

markets to enhance its stability in the face of DeFi heists. 

For example, (i) similar to addressing information problems, implementing regular audits and 

compliance checks in DeFi could ensure that projects adhere to security and operational 

standards. This could be achieved through third-party auditing firms that assess the 

robustness of smart contracts and the overall security framework of the platform. (ii) DeFi 

projects should set leverage limits, ensure adequate collateral for loans, and implement 

automated liquidation mechanisms to manage risks in real time. Specifically, if a DeFi 

platform sets a leverage limit, even if hackers attempt to exploit vulnerabilities to borrow 

large amounts, the leverage cap will restrict their borrowing capacity, thereby reducing 

potential losses. In terms of collateral, if a DeFi project requires 150% collateral for each loan, 

the collateral can cover the loan amounts even if hackers manipulate the market to cause 

significant price swings, reducing financial stress on the platform. Lastly, during a DeFi heist, 

automated liquidation mechanisms can quickly react to liquidate problematic loans, 

protecting the overall health of the platform and preventing larger financial losses.  

(iii) DeFi projects could provide insurance to cover losses resulting from hacking incidents or 

smart contract failures. At present, almost all traditional financial institutions are unwilling to 

provide insurance coverage for crypto assets (Zhou & Zhang, 2025). As a result, the DeFi 

ecosystem has been compelled to develop its own insurance projects to meet the inherent 

demand for risk-sharing and loss mitigation through smart contracts. This could be achieved 

through decentralised insurance protocols that pool resources from multiple participants to 

provide coverage for specific risks. Nexus Mutual is one of the earliest and most prominent 

decentralised insurance protocols built on the Ethereum blockchain. Operating under a 

mutual insurance model, it allows members to pool capital to provide coverage against risks 
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such as smart contract vulnerabilities, exchange hacks, and, more recently, yield-bearing 

token risks. Claims are assessed and settled through a decentralised governance process, in 

which holders of the native Nexus Mutual token vote on the validity of claims, with 

economic incentives designed to reward accurate assessments and penalise dishonest 

behaviour. This design aims to create a market-based risk pricing mechanism that is 

transparent and community-driven (Walters, 2023).  

Nadler et al. (2023) proposed a fully decentralised insurance protocol. Current protocols often 

rely on governance voting or external oracles, which introduce subjectivity, coordination 

problems, and capital inefficiencies. By contrast, their design is based on a tranche structure 

that splits pooled capital into senior (A) and junior (B) tokens. Losses are absorbed first by 

junior token holders, while senior tokens are affected only in extreme cases. This mechanism 

creates a market-based pricing system for risk, as the relative valuation of the two tranches 

reflects the perceived likelihood of protocol failure. Importantly, the model enables claims to 

be settled automatically on-chain without external inputs, thus eliminating the need for 

subjective assessment or governance intervention. The protocol also improves capital 

efficiency by allowing part of the collateral to be allocated to yield-bearing assets, while 

providing fallback mechanisms to ensure orderly redemption in the event of failure. Despite 

the emergence of more and more DeFi insurance, Zhou and Zhang (2025) also pointed out 

that the DeFi insurance market is still in its early stages of development and continues to face 

challenges such as actuarial difficulties and regulatory hurdles. 

(iv) The decentralised nature of DeFi makes it challenging to have a central bank-like lender 

of last resort, which also makes it difficult for investors to recover their losses when a 

protocol fails. Additionally, Avgouleas and Seretakis (2023) pointed out that applying the 

lender-of-last-resort mechanism to the cryptocurrency market may create a moral hazard. 

Government implicit guarantees could turn these DeFi projects into another class of ‘too big 

to fail’ institutions. In the absence of a safety net provided by a lender of last resort 

mechanism, prudently regulating the liquidity pools of projects is a suitable way to mitigate 

the liquidity risks faced by DeFi platforms. Ensuring that decentralised liquidity pools can 

provide timely liquidity support when a DeFi platform encounters a hacking attack and users 

start large-scale withdrawals, thereby preventing the platform from becoming paralysed. 

In conclusion, regulating DeFi is a complex issue that involves ensuring compliance and 

security while also maintaining the innovative nature of the services (Amler et al., 2021; 
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Yuyama et al., 2023). In the context of frequent DeFi heists, it is crucial to establish 

disclosure systems and enforcement frameworks tailored to the characteristics of DeFi and 

crypto assets. This chapter recommends the introduction of third-party institutions, the 

establishment of stringent risk management standards, the adoption of decentralised 

insurance protocols, and the strengthening of regulations on liquidity pools to safeguard the 

interests of both protocol developers and investors. 

4.6 Conclusion 

The continuous development of decentralised finance (DeFi) has brought an increasing 

number of DeFi tokens into the spotlight for investors. However, its ecosystem is particularly 

susceptible to vulnerabilities, hacks, and fraud, which have raised ongoing concerns about the 

security of DeFi. This chapter, set against the backdrop of the six largest DeFi heists in 2022, 

is the first to investigate the impact of DeFi heists on the DeFi market. Understanding 

whether DeFi heists affect the native DeFi tokens of hacked platforms and whether these 

impacts spill over to other DeFi tokens is crucial for grasping the risks and dynamics within 

the DeFi ecosystem. 

This chapter uses three low-frequency price impact measures as proxies for liquidity to 

investigate the liquidity levels of the stolen platforms’ native DeFi tokens five days before 

and after the DeFi heist. The findings reveal that DeFi heists significantly reduce the liquidity 

of most of the stolen platforms’ native DeFi tokens. This underscores the critical impact of 

security breaches on DeFi platforms, highlighting the necessity of robust security measures 

for platform stability. Furthermore, the analysis shows that the speed and transparency of the 

compromised platform’s response are crucial in preserving the liquidity of its native DeFi 

token. According to the Glosten-Milgrom model (Glosten & Milgrom, 1985), information 

asymmetry leads to wider bid–ask spreads and reduced liquidity. Although DeFi relies on 

automated market makers (AMMs) rather than traditional dealers, similar mechanisms apply: 

informed traders sell depreciating tokens into liquidity pools, while liquidity providers (LPs), 

facing adverse selection and impermanent loss, withdraw liquidity. This process reduces pool 

depth and magnifies price impacts, equivalent to a widening of bid–ask spreads. Therefore, a 

quicker response and higher transparency could help reduce the likelihood of the DeFi 

token’s liquidity being adversely impacted by the DeFi heist.  

Additionally, using the Quantile Vector Autoregressive (QVAR) model, it finds that 

mainstream DeFi tokens exhibit strong mutual influence and interconnectedness. However, 
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the interconnectedness between these mainstream DeFi tokens and the native DeFi tokens of 

compromised platforms is relatively weak. This indicates that while the volatility of native 

DeFi tokens from hacked platforms could cause some spillover to other mainstream DeFi 

tokens, the contagion effect is not very pronounced. This could be attributed to the diversity 

of protocols and assets within the DeFi market, which helps absorb the impact of individual 

assets. Even if a platform’s native DeFi token is compromised, tokens from other platforms 

continue to support the market, mitigating negative effects. Mainstream DeFi tokens, with 

their large market capitalisations, could stabilise the market and buffer the shocks from DeFi 

heists. Notably, this chapter observes significant volatility spillover effects from the native 

DeFi token of hacked platforms to mainstream DeFi tokens in the Beanstalk protocol heist. If 

investors develop broader concerns about the security of DeFi protocols with governance 

structures similar to those of the compromised platforms, the resulting fear and uncertainty 

could exacerbate market volatility. Overall, these findings underscore the importance of 

robust governance and security measures for maintaining market stability and protecting 

investor interests in the rapidly evolving DeFi market. 

For investors, the results suggest that caution is warranted when incorporating DeFi tokens 

into diversified portfolios, as frequent DeFi heists could lead to significant market volatility. 

Investors should favour larger market-cap DeFi tokens, as their size and better security 

features help buffer the impacts of DeFi heists. For policymakers, this study highlights the 

necessity of developing strong governance frameworks and security measures to maintain 

market stability and protect investor interests. Policymakers could focus on introducing third-

party institutions, setting stringent risk management standards, implementing decentralised 

insurance protocols, and strengthening regulations on liquidity pools. These measures will 

enhance DeFi platforms’ resilience to potential hacker attacks and ensure that governance 

mechanisms are not easily exploited. Overall, this chapter emphasises the need for continuous 

improvements in DeFi platform security and governance to ensure the sustainable growth of 

the DeFi ecosystem. 
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4.7 Appendix 

Figure 4.11: Liquidity changes of the Qubit before and after the Qubit Finance platform heist 
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Figure 4.12: Liquidity changes of the Ronin before and after the Ronin Network heist 
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Figure 4.13: Liquidity changes of the Bean before and after the Beanstalk protocol during 

the heist 
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Figure 4.14: Liquidity changes of the Elrond before and after the Maiar Exchange heist 
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Figure 4.15: Liquidity changes of the Binance Coin before and after the Binance platform 

heist 
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Figure 4.16: Liquidity changes of the Mango before and after the Mango Markets platform 

heist 
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Table 4.12: Spillover connectedness between the Qubit and five mainstream DeFi tokens in 

the Qubit Finance platform heist 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Qubit Finance 

Panel A: Spillover connectedness at the 95th quantile 
 

Qubit Avalanche Chainlink Uniswap Maker Stacks FROM 

Qubit 15.66 21.46 10.48 14.87 20.38 17.15 84.34 

Avalanche 9.58 23.97 9.94 16.92 21.24 18.34 76.03 

Chainlink 9.40 22.45 12.93 16.39 21.22 17.61 87.07 

Uniswap 9.42 20.16 13.64 18.90 20.33 17.55 81.10 

Maker 8.49 22.68 11.04 17.47 22.84 17.49 77.16 

Stacks 7.65 21.40 13.64 16.98 20.92 19.41 80.59 

TO 44.55 108.14 58.74 82.62 104.10 88.14 TCI 

NET -39.79 32.12 -28.33 1.52 26.93 7.55 81.05 

Panel B: Spillover connectedness at the 50th quantile 
 

Qubit Avalanche Chainlink Uniswap Maker Stacks FROM 

Qubit 93.35 1.18 1.56 0.98 0.95 1.98 6.65 

Avalanche 0.28 35.87 18.96 18.52 11.87 14.49 64.13 

Chainlink 0.43 19.43 36.45 15.42 9.70 18.57 63.55 

Uniswap 0.32 19.47 16.60 37.92 11.92 13.76 62.08 

Maker 0.29 15.22 11.69 15.73 43.52 13.56 56.48 

Stacks 1.49 15.77 20.25 13.02 10.99 38.47 61.53 

TO 2.82 71.07 69.06 63.67 45.44 62.35 TCI 

NET -3.83 6.95 5.51 1.59 -11.05 0.82 52.40 

Panel C: Spillover connectedness at the 5th quantile 
 

Qubit Avalanche Chainlink Uniswap Maker Stacks FROM 

Qubit 16.89 28.79 13.20 14.51 9.68 16.92 83.11 

Avalanche 6.64 36.41 14.52 15.89 10.08 16.46 63.59 

Chainlink 7.55 25.80 19.47 15.30 13.09 18.79 80.53 

Uniswap 6.02 32.15 14.35 18.90 9.82 18.76 81.10 

Maker 8.61 25.20 14.77 13.86 20.18 17.38 79.82 

Stacks 6.94 24.63 16.11 16.45 12.18 23.68 76.32 

TO 35.76 136.58 72.95 76.02 54.86 88.30 TCI 

NET -47.36 72.99 -7.58 -5.08 -24.96 11.99 77.41 

The findings are derived from a Quantile VAR method with a lag length of 1, determined by the Akaike 

Information Criterion (AIC). The rolling window size is 80 hourly observations, and forecast market dynamics 

10 time steps into the future. FROM indicates the source of causal impacts that each DeFi token receives, while 

TO denotes the destination of these effects. NET equals TO minus FROM. Positive values of NET indicate that 

the DeFi token is a net transmitter of spillover impacts, whereas negative values suggest it is a net receiver. A 

higher TCI indicates stronger spillover effects and greater systemic interdependence, while a lower TCI suggests 

weaker linkages and more independence among DeFi tokens. 
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Table 4.13: Spillover connectedness between the Ronin and five mainstream DeFi tokens in 

the Ronin Network heist 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ronin Network 

Panel A: Spillover connectedness at the 95th quantile 
 

Ronin Avalanche Chainlink Uniswap Maker Stacks FROM 

Ronin 30.10 10.98 14.76 13.93 16.18 14.06 69.90 

Avalanche 10.49 20.60 17.91 17.52 19.57 13.92 79.40 

Chainlink 9.99 16.72 20.91 17.88 18.14 16.37 79.09 

Uniswap 8.76 17.08 17.27 21.97 17.17 17.74 78.03 

Maker 9.11 17.89 17.04 18.26 23.39 14.32 76.61 

Stacks 10.96 15.32 17.82 19.00 15.44 21.46 78.54 

TO 49.31 77.99 84.80 86.58 86.49 76.41 TCI 

NET -20.59 -1.41 5.70 8.55 9.88 -2.14 76.93 

Panel B: Spillover connectedness at the 50th quantile 
 

Ronin Avalanche Chainlink Uniswap Maker Stacks FROM 

Ronin 65.42 4.21 7.68 6.05 5.85 10.78 34.58 

Avalanche 1.46 32.72 18.39 16.88 15.79 14.77 67.28 

Chainlink 2.46 17.05 30.27 18.21 14.45 17.55 69.73 

Uniswap 1.28 15.46 18.00 30.86 16.07 18.33 69.14 

Maker 1.97 16.24 16.18 18.38 33.97 13.27 66.03 

Stacks 4.54 14.23 18.18 19.36 12.75 30.94 69.06 

TO 11.71 67.20 78.43 78.88 64.91 74.69 TCI 

NET -22.86 -0.08 8.70 9.74 -1.12 5.63 62.64 

Panel C: Spillover connectedness at the 5th quantile 
 

Ronin Avalanche Chainlink Uniswap Maker Stacks FROM 

Ronin 20.30 14.81 16.64 15.16 16.38 16.70 79.70 

Avalanche 8.68 20.97 17.83 17.08 18.44 17.00 79.03 

Chainlink 8.68 17.20 20.37 18.20 17.60 17.96 79.63 

Uniswap 7.17 17.24 18.49 20.40 18.27 18.44 79.60 

Maker 7.96 17.57 18.05 18.23 21.15 17.05 78.85 

Stacks 8.54 17.19 18.61 18.21 17.57 19.87 80.13 

TO 41.02 84.01 89.62 86.88 88.26 87.16 TCI 

NET -38.68 4.98 9.99 7.28 9.40 7.03 79.49 

The findings are derived from a Quantile VAR method with a lag length of 1, determined by the Akaike 

Information Criterion (AIC). The rolling window size is 80 hourly observations, and forecast market dynamics 

10 time steps into the future. FROM indicates the source of causal impacts that each DeFi token receives, while 

TO denotes the destination of these effects. NET equals TO minus FROM. Positive values of NET indicate that 

the DeFi token is a net transmitter of spillover impacts, whereas negative values suggest it is a net receiver. A 

higher TCI indicates stronger spillover effects and greater systemic interdependence, while a lower TCI suggests 

weaker linkages and more independence among DeFi tokens. 
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Table 4.14: Spillover connectedness between the Bean and five mainstream DeFi tokens in 

the Beanstalk protocol heist 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Beanstalk 

Panel A: Spillover connectedness at the 95th quantile 
 

Bean Avalanche Chainlink Uniswap Maker Stacks FROM 

Bean 26.96 10.77 12.51 13.89 12.35 23.51 73.04 

Avalanche 17.41 15.56 13.38 16.74 13.96 22.95 84.44 

Chainlink 16.79 11.98 16.12 16.52 13.03 25.57 83.88 

Uniswap 16.67 13.00 14.05 18.45 13.82 24.01 81.55 

Maker 17.43 12.38 12.67 16.20 17.92 23.41 82.08 

Stacks 17.09 12.30 13.02 15.69 12.37 29.53 70.47 

TO 85.40 60.43 65.63 79.04 65.52 119.45 TCI 

NET 12.36 -24.01 -18.25 -2.52 -16.56 48.98 79.25 

Panel B: Spillover connectedness at the 50th quantile 
 

Bean Avalanche Chainlink Uniswap Maker Stacks FROM 

Bean 74.62 5.85 3.64 5.19 6.23 4.47 25.38 

Avalanche 4.23 35.44 16.27 19.88 14.32 9.87 64.56 

Chainlink 3.91 16.03 35.82 19.70 16.51 8.03 64.18 

Uniswap 3.16 20.72 18.07 31.24 16.39 10.42 68.76 

Maker 4.01 16.67 13.79 19.84 39.58 6.11 60.42 

Stacks 4.29 12.27 10.15 10.85 5.77 56.68 43.32 

TO 19.60 71.53 61.92 75.46 59.22 38.90 TCI 

NET -5.78 6.97 -2.26 6.70 -1.20 -4.42 54.44 

Panel C: Spillover connectedness at the 5th quantile 
 

Bean Avalanche Chainlink Uniswap Maker Stacks FROM 

Bean 25.57 17.06 12.47 14.06 15.31 15.53 74.43 

Avalanche 21.45 18.66 12.02 16.18 16.04 15.64 81.34 

Chainlink 20.00 17.29 14.11 16.20 16.55 15.84 85.89 

Uniswap 19.91 17.81 12.80 16.92 16.65 15.92 83.08 

Maker 18.93 18.00 12.87 16.89 19.25 14.06 80.75 

Stacks 20.04 16.93 12.15 15.77 16.89 18.23 81.77 

TO 100.32 87.09 62.31 79.11 81.44 76.99 TCI 

NET 25.89 5.75 -23.58 -3.97 0.69 -4.78 81.21 

The findings are derived from a Quantile VAR method with a lag length of 1, determined by the Akaike 

Information Criterion (AIC). The rolling window size is 80 hourly observations, and forecast market dynamics 

10 time steps into the future. FROM indicates the source of causal impacts that each DeFi token receives, while 

TO denotes the destination of these effects. NET equals TO minus FROM. Positive values of NET indicate that 

the DeFi token is a net transmitter of spillover impacts, whereas negative values suggest it is a net receiver. A 

higher TCI indicates stronger spillover effects and greater systemic interdependence, while a lower TCI suggests 

weaker linkages and more independence among DeFi tokens. 
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Table 4.15: Spillover connectedness between the Elrond and five mainstream DeFi tokens in 

the Maiar Exchange heist 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maiar Exchange 

Panel A: Spillover connectedness at the 95th quantile 
 

Elrond Avalanche Chainlink Uniswap Maker Stacks FROM 

Elrond 28.43 14.54 16.53 12.74 11.14 16.62 71.57 

Avalanche 10.27 20.54 19.19 16.37 15.62 18.01 79.46 

Chainlink 10.59 17.29 24.76 15.29 16.17 15.89 75.24 

Uniswap 10.79 18.11 18.80 19.51 16.43 16.37 80.49 

Maker 8.51 17.62 20.56 17.03 20.33 15.95 79.67 

Stacks 12.66 17.95 18.03 15.24 14.19 21.94 78.06 

TO 52.81 85.51 93.11 76.67 73.55 82.84 TCI 

NET -18.76 6.05 17.87 -3.82 -6.12 4.78 77.42 

Panel B: Spillover connectedness at the 50th quantile 
 

Elrond Avalanche Chainlink Uniswap Maker Stacks FROM 

Elrond 73.09 5.16 4.34 4.94 5.59 6.88 26.91 

Avalanche 0.93 26.79 17.39 20.29 19.95 14.66 73.21 

Chainlink 0.60 18.78 29.06 19.89 17.96 13.71 70.94 

Uniswap 1.03 20.73 18.57 26.17 19.61 13.89 73.83 

Maker 1.25 19.40 16.99 20.23 27.08 15.04 72.92 

Stacks 1.46 16.62 15.02 16.17 18.42 32.32 67.68 

TO 5.27 80.69 72.30 81.52 81.53 64.18 TCI 

NET -21.63 7.48 1.36 7.69 8.61 -3.50 64.25 

Panel C: Spillover connectedness at the 5th quantile 
 

Elrond Avalanche Chainlink Uniswap Maker Stacks FROM 

Elrond 19.16 18.66 16.23 12.53 16.07 17.35 80.84 

Avalanche 11.89 20.35 17.50 14.11 18.09 18.06 79.65 

Chainlink 12.13 18.70 19.39 14.94 17.04 17.80 80.61 

Uniswap 12.50 19.33 17.47 15.23 17.66 17.81 84.77 

Maker 12.10 19.68 17.46 14.09 18.80 17.88 81.20 

Stacks 12.58 19.36 17.13 13.78 17.57 19.58 80.42 

TO 61.19 95.73 85.80 69.44 86.43 88.89 TCI 

NET -19.65 16.09 5.19 -15.33 5.22 8.48 81.25 

The findings are derived from a Quantile VAR method with a lag length of 1, determined by the Akaike 

Information Criterion (AIC). The rolling window size is 80 hourly observations, and forecast market dynamics 

10 time steps into the future. FROM indicates the source of causal impacts that each DeFi token receives, while 

TO denotes the destination of these effects. NET equals TO minus FROM. Positive values of NET indicate that 

the DeFi token is a net transmitter of spillover impacts, whereas negative values suggest it is a net receiver. A 

higher TCI indicates stronger spillover effects and greater systemic interdependence, while a lower TCI suggests 

weaker linkages and more independence among DeFi tokens. 
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Table 4.16: Spillover connectedness between the Binance Coin and five mainstream DeFi 

tokens in the Binance platform heist 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Binance 

Panel A: Spillover connectedness at the 95th quantile 
 

Binance Coin Avalanche Chainlink Uniswap Maker Stacks FROM 

Binance Coin 24.09 18.35 17.23 17.81 9.82 12.70 75.91 

Avalanche 14.58 20.20 17.90 16.41 17.66 13.25 79.80 

Chainlink 17.27 18.22 26.07 16.55 10.94 10.95 73.93 

Uniswap 16.48 17.50 16.90 23.79 12.22 13.11 76.21 

Maker 11.23 13.96 15.18 14.74 30.80 14.08 69.20 

Stacks 13.92 15.72 15.14 15.08 17.54 22.60 77.40 

TO 73.49 83.75 82.37 80.59 68.17 64.07 TCI 

NET -2.42 3.95 8.44 4.38 -1.03 -13.32 75.41 

Panel B: Spillover connectedness at the 50th quantile 
 

Binance Coin Avalanche Chainlink Uniswap Maker Stacks FROM 

Binance Coin 44.73 20.30 12.66 15.22 1.47 5.63 55.27 

Avalanche 19.60 43.09 16.99 11.42 5.85 3.04 56.91 

Chainlink 11.72 17.85 56.68 8.47 3.44 1.85 43.32 

Uniswap 17.57 15.13 8.63 49.94 4.40 4.33 50.06 

Maker 0.49 6.12 1.56 1.40 82.81 7.63 17.19 

Stacks 8.72 2.95 5.11 5.84 8.09 69.29 30.71 

TO 58.08 62.35 44.96 42.34 23.25 22.49 TCI 

NET 2.81 5.44 1.64 -7.72 6.05 -8.22 42.24 

Panel C: Spillover connectedness at the 5th quantile 
 

Binance Coin Avalanche Chainlink Uniswap Maker Stacks FROM 

Binance Coin 22.54 15.52 17.71 17.09 12.38 14.76 77.46 

Avalanche 17.54 21.38 17.67 18.20 11.09 14.13 78.62 

Chainlink 15.46 16.13 24.24 14.75 14.77 14.64 75.76 

Uniswap 18.74 15.84 16.56 23.40 11.70 13.76 76.60 

Maker 11.87 13.41 13.36 13.42 30.22 17.72 69.78 

Stacks 15.20 15.76 12.39 15.28 16.70 24.66 75.34 

TO 78.81 76.66 77.69 78.74 66.63 75.02 TCI 

NET 1.36 -1.96 1.93 2.14 -3.15 -0.32 75.59 

The findings are derived from a Quantile VAR method with a lag length of 1, determined by the Akaike 

Information Criterion (AIC). The rolling window size is 80 hourly observations, and forecast market dynamics 

10 time steps into the future. FROM indicates the source of causal impacts that each DeFi token receives, while 

TO denotes the destination of these effects. NET equals TO minus FROM. Positive values of NET indicate that 

the DeFi token is a net transmitter of spillover impacts, whereas negative values suggest it is a net receiver. A 

higher TCI indicates stronger spillover effects and greater systemic interdependence, while a lower TCI suggests 

weaker linkages and more independence among DeFi tokens. 
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Table 4.17: Spillover connectedness between the Mango and five mainstream DeFi tokens in 

the Mango Markets platform heist 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mango Markets 

Panel A: Spillover connectedness at the 95th quantile 
 

Mango Avalanche Chainlink Uniswap Maker Stacks FROM 

Mango 31.64 13.31 13.35 12.38 16.65 12.67 68.36 

Avalanche 9.45 19.15 19.39 17.24 16.08 18.69 80.85 

Chainlink 9.18 17.00 21.09 16.08 14.35 22.30 78.91 

Uniswap 8.19 17.42 18.39 21.36 15.33 19.31 78.64 

Maker 9.68 16.68 15.09 17.34 24.39 16.82 75.61 

Stacks 7.87 16.77 18.77 16.84 15.62 24.13 75.87 

TO 44.38 81.18 85.00 79.88 78.02 89.79 TCI 

NET -23.98 0.33 6.09 1.24 2.41 13.92 76.37 

Panel B: Spillover connectedness at the 50th quantile 
 

Mango Avalanche Chainlink Uniswap Maker Stacks FROM 

Mango 94.44 1.99 1.19 0.95 0.62 0.82 5.56 

Avalanche 0.38 30.09 25.63 16.44 7.91 19.55 69.91 

Chainlink 0.34 23.41 33.43 15.92 7.09 19.82 66.57 

Uniswap 0.21 19.35 19.31 37.63 8.68 14.82 62.37 

Maker 0.18 12.88 9.25 12.52 54.77 10.40 45.23 

Stacks 0.42 21.73 21.11 15.10 6.06 35.57 64.43 

TO 1.53 79.35 76.48 60.94 30.36 65.40 TCI 

NET -4.03 9.45 9.91 -1.43 -14.87 0.97 52.34 

Panel C: Spillover connectedness at the 5th quantile 
 

Mango Avalanche Chainlink Uniswap Maker Stacks FROM 

Mango 17.55 17.99 16.87 16.38 17.01 14.20 82.45 

Avalanche 6.59 21.14 19.48 18.25 17.38 17.15 78.86 

Chainlink 6.96 20.36 21.04 18.17 16.68 16.80 78.96 

Uniswap 5.76 19.55 19.10 21.15 17.17 17.27 78.85 

Maker 6.49 19.21 17.75 18.39 21.60 16.56 78.40 

Stacks 5.88 19.51 19.39 18.41 17.42 19.40 80.60 

TO 31.67 96.61 92.59 89.60 85.67 81.98 TCI 

NET -50.78 17.75 13.63 10.75 7.27 1.38 79.69 

The findings are derived from a Quantile VAR method with a lag length of 1, determined by the Akaike 

Information Criterion (AIC). The rolling window size is 80 hourly observations, and forecast market dynamics 

10 time steps into the future. FROM indicates the source of causal impacts that each DeFi token receives, while 

TO denotes the destination of these effects. NET equals TO minus FROM. Positive values of NET indicate that 

the DeFi token is a net transmitter of spillover impacts, whereas negative values suggest it is a net receiver. A 

higher TCI indicates stronger spillover effects and greater systemic interdependence, while a lower TCI suggests 

weaker linkages and more independence among DeFi tokens. 
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Chapter 5 Summary and Conclusion 

The increasing prevalence of cryptocurrency heists has raised critical concerns regarding 

their broader impact on the cryptocurrency ecosystem. Despite the growing number of 

security breaches, academic studies have yet to fully explore how these events affect key 

market dynamics, such as market efficiency, investor sentiment, etc. Given Bitcoin’s 

dominant position in the cryptocurrency market, this thesis primarily focuses on 

understanding how cryptocurrency heists influence Bitcoin’s market efficiency and investor 

sentiment. Additionally, as DeFi platforms have become frequent targets of hacking attacks, 

this thesis extends its analysis beyond Bitcoin to investigate the impact of DeFi heists on the 

stolen platform’s native DeFi tokens’ liquidity and overall DeFi market stability. By 

systematically analysing these aspects, this thesis contributes to a deeper understanding of 

how security breaches disrupt cryptocurrency markets. 

The second chapter of this thesis examines how cryptocurrency heists influence Bitcoin’s 

market efficiency. Using the Adaptive Market Hypothesis (AMH) as a theoretical framework, 

this study applies the permutation entropy and the Complexity–entropy causality plane to 

assess efficiency changes across twelve major cryptocurrency heists (Mt Gox, Coincheck, 

KuCoin, PancakeBunny, Poly Network, Bitmart, Wormhole, Ronin Network, Beanstalk, 

Nomad, Binance and FTX). The findings indicate that Bitcoin’s market efficiency declines 

significantly on the day of and immediately following these cryptocurrency heists. This 

decline is characterised by reduced permutation entropy and increased complexity, suggesting 

that security breaches introduce temporary inefficiencies into the Bitcoin market. 

Furthermore, tokens directly targeted by cryptocurrency heists exhibit even greater efficiency 

losses compared to Bitcoin, implying that investor attention is more focused on the affected 

tokens. These results underscore the disruptive nature of cryptocurrency heists and highlight 

the importance of improving market stability through enhanced security protocols and risk 

management measures. 

The third chapter investigates the bidirectional predictive relationship between Bitcoin price 

and investor sentiment in the context of cryptocurrency heists. By employing the 

Cryptocurrency Fear & Greed Index (CFGI) as a proxy for sentiment, this study uses a time-

varying Granger causality approach to examine sentiment-price dynamics before and after the 

KuCoin exchange heist, where large amounts of Bitcoin were stolen. The results reveal that 

no significant bidirectional predictive relationship exists between Bitcoin price and CFGI in 
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the 90 days preceding the heist. However, within 90 days following the heist, a strong 

feedback loop emerges, in which CFGI fluctuations significantly influence Bitcoin price 

movements and vice versa. This intensified sentiment-price interaction suggests that 

heightened uncertainty following a heist exacerbates investor reactions, potentially creating a 

cycle of price declines and market panic. Additionally, this study also finds that the 

bidirectional predictive relationship between price and CFGI does not always hold after 

cryptocurrency heists. Only cryptocurrency heists that directly impact Bitcoin exhibit a strong 

sentiment-price feedback mechanism, whereas those targeting other cryptocurrencies display 

a weaker relationship. This may be attributed to CFGI primarily measuring sentiment within 

the Bitcoin market, making it less reflective of fluctuations in other cryptocurrencies. Finally, 

this study finds that the bidirectional sentiment-price relationship is primarily confined to 

Bitcoin, with limited effects on other cryptocurrencies such as Ethereum and Binance Coin. 

This highlights the specificity of sentiment dynamics in the Bitcoin market and suggests that 

while CFGI is a useful indicator for predicting Bitcoin price movements during Bitcoin crisis 

periods, it may not be as effective for other cryptocurrencies. 

The fourth chapter extends the analysis to the DeFi ecosystem, where security vulnerabilities 

have become an increasing concern. This chapter investigates six major DeFi heists in 2022 

(Qubit Finance, Ronin Network, Beanstalk, Maiar Exchange, Binance and Mango Markets) 

and their impact on the liquidity of stolen platforms’ native DeFi tokens as well as the 

broader DeFi market. Using low-frequency price impact measures and the Quantile VAR 

model, the findings show that the liquidity of the affected DeFi tokens declines sharply post-

heist. However, the spillover effects on mainstream DeFi tokens are relatively limited, 

suggesting that while individual DeFi platforms suffer substantial liquidity shocks, the overall 

DeFi market exhibits a degree of stability. Nonetheless, if investor confidence in DeFi 

security deteriorates significantly, for example due to concerns about governance 

mechanisms, market-wide volatility may increase, posing systemic risks to the broader DeFi 

ecosystem. These findings highlight the importance of robust security mechanisms, 

transparent governance, and crisis management strategies in maintaining stability within the 

DeFi sector. Beyond its empirical findings, this chapter provides valuable implications for the 

design and safety of DeFi. Drawing on lessons from traditional financial systems, DeFi 

platforms could enhance systemic stability through four design dimensions: (i) regular 

security audits and compliance assessments to ensure protocol integrity and transparency; (ii) 

prudent risk management mechanisms, including leverage limits, adequate collateralisation 
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ratios, and automated liquidation processes to contain losses during attacks; (iii) the 

development of decentralised insurance frameworks to provide compensation for hacking 

incidents and smart contract failures, thus restoring investor confidence; and (iv) improved 

liquidity management within decentralised liquidity pools to prevent liquidity freezes during 

crisis events. Collectively, these design implications emphasise that building a secure and 

sustainable DeFi ecosystem requires balancing innovation with risk control, transparency, and 

accountability. 

Overall, this thesis makes several key contributions to the understanding of cryptocurrency 

markets in the context of cryptocurrency heists. First, it provides empirical evidence that 

cryptocurrency heists may significantly impact Bitcoin’s market efficiency, further supporting 

the notion that Bitcoin’s market efficiency evolves in response to changes in the external 

market environment. Second, it reveals the crucial role of investor sentiment in shaping 

market reactions during periods of heightened uncertainty, demonstrating how sentiment-

driven feedback loops can amplify price volatility. Third, it extends the scope of analysis 

beyond Bitcoin to the DeFi ecosystem, offering novel insights into how security breaches 

affect DeFi token liquidity and market stability. 

These findings carry substantial implications for investors, policymakers, and academics 

operating within the rapidly evolving cryptocurrency ecosystem. For investors, the results 

reveal that cryptocurrency heists may lead to sudden and significant declines in market 

efficiency, particularly in the immediate aftermath of an attack. This volatility is not random 

but shaped by behavioural responses such as panic selling, herding, and overreaction to 

sentiment shocks. As such, investors should not only account for technological risks but also 

recognise the informational inefficiencies and emotional contagion that follow security 

breaches. The evidence also cautions against over-reliance on a single sentiment indicator 

such as CFGI, particularly during crisis periods when sentiment dynamics become asset-

specific. To mitigate behavioural biases and manage short-term risks more effectively, 

investors should adopt a multi-indicator sentiment approach and consider event-driven 

strategies that factor in the nature and perceived severity of security incidents. 

For policymakers, this thesis reveals critical regulatory blind spots, particularly in the 

governance and security infrastructure of DeFi platforms. Existing frameworks often 

overlook the systemic risks posed by decentralised protocols that lack standardised audits, 

transparent incident disclosures, and robust governance mechanisms. The findings suggest 
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that regulators should implement mandatory security audits, establish timely disclosure 

protocols for security breaches, and promote governance reforms tailored to decentralised 

organisational structures. Such interventions can help mitigate market disruptions and 

investor anxiety caused by cryptocurrency heists, while enhancing overall regulatory 

compliance and investor confidence in the digital asset market. 

For academics, this thesis examines the impact of cryptocurrency heists on the 

cryptocurrency market through the lens of market microstructure theory, thereby extending 

the existing literature’s understanding of market behaviour under extreme events. By 

conceptualising security breaches as endogenous shocks, this thesis reveals how information 

asymmetry, liquidity fragility, and market interconnectedness interact within the 

cryptocurrency market to influence market efficiency, investor sentiment, token liquidity, and 

risk transmission channels. This perspective not only applies market microstructure theory to 

the emerging cryptocurrency ecosystem but also enriches its applicability and explanatory 

power under conditions of high uncertainty, providing a suitable theoretical framework for 

understanding price discovery and information transmission in the cryptocurrency market. 

Despite its contributions, this thesis is subject to several limitations that should be 

acknowledged. First, the empirical analysis focuses on a limited number of high-profile 

cryptocurrency heists, which may constrain the generalisability of the findings to the broader 

cryptocurrency ecosystem. Smaller-scale hacking incidents, insider frauds, or protocol-level 

vulnerabilities are not fully explored, even though they may trigger distinct market reactions. 

The heterogeneous nature of heist types, magnitudes, and timing suggests that different forms 

of security breaches could have varying effects on market dynamics. Second, the empirical 

models and indicators employed in this thesis could be further developed. The permutation 

entropy measure currently does not provide formal statistical significance testing, which 

presents a challenge for rigorously assessing the evolution of market efficiency. Moreover, 

although Alternative.me discloses the weighting scheme of the six components comprising 

the sentiment index, it does not release their exact numerical values, preventing a detailed 

component-level analysis. As a result, it remains difficult to identify which specific factors 

primarily drive fluctuations in market sentiment during major events such as cryptocurrency 

heists. 

Third, the investigation of market efficiency and liquidity is largely confined to short-term 

responses surrounding heist events. While this focus effectively captures immediate 
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disruptions, it does not fully address the long-term adjustment process or the persistence of 

structural inefficiencies after market recovery. Moreover, the liquidity analysis relies on low-

frequency measures, which, although widely used, may not adequately reflect the high-

frequency dynamics of liquidity. Finally, given the global divergence in regulatory 

approaches, from the EU’s harmonised MiCA framework to the fragmented enforcement-

driven U.S. model and China’s prohibition-based stance, which regulatory model—proactive 

and harmonised (EU), fragmented yet enforcement-driven (US), or prohibitive (China)—is 

most effective in maintaining market stability and protecting investors in the aftermath of 

major security incidents? This is important for global cryptocurrency governance and risk 

management. 

Building on the limitations identified above, several clear avenues for future studies emerge, 

all centred on deepening understanding of how extreme security events shape cryptocurrency 

market dynamics through microstructural mechanisms. First, expanding the dataset of 

cryptocurrency heists to include a wider range of security incidents, such as smaller-scale 

attacks, protocol-level vulnerabilities, and insider fraud, would enable a more comprehensive 

understanding of how different types and magnitudes of breaches influence market dynamics. 

Such studies could further explore cross-sectional differences in market reactions across 

blockchain ecosystems and cryptocurrency classes. Second, future studies should seek to 

develop statistical methods capable of testing whether changes in permutation entropy 

measures are significant, so as to provide a more rigorous assessment of the evolution of 

market efficiency. Moreover, a valuable direction for future studies would be to disentangle 

the relative contributions of market-based components (e.g., volatility and trading volume) 

and behavioural components (e.g., social media activity and search intensity). Doing so 

would enhance understanding of whether sentiment shifts are primarily driven by objective 

market dynamics or by behavioural responses. Future studies could address this limitation by 

employing sentiment indices that allow component-level decomposition or by constructing 

new sentiment measures capable of isolating heterogeneous drivers of market sentiment. 

Third, longitudinal analyses are needed to examine the long-term consequences of 

cryptocurrency heists. Future work could assess whether market efficiency and liquidity 

eventually recover to pre-attack levels or whether persistent inefficiencies arise due to 

structural distrust or technological vulnerabilities. Integrating high-frequency data and micro-

level order book information would also help capture the real-time liquidity dynamics. 

Finally, given the global divergence in regulatory approaches, future studies could examine 
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how these differing regimes shape post-heist market stability, investor protection, and 

systemic safety. 

In conclusion, this thesis provides a comprehensive investigation into how cryptocurrency 

heists impact Bitcoin’s market efficiency, investor sentiment, and the DeFi market. By 

bridging gaps in the existing literature and offering new empirical insights, it contributes to a 

more nuanced understanding of the vulnerabilities within the cryptocurrency market and its 

influence. As the crypto industry continues to evolve, addressing security risks will be crucial 

in fostering greater market stability and investor confidence in digital asset markets. 
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