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Abstract 
 
Alzheimer’s disease (AD) is a neurodegenerative disease characterised by 

the accumulation of Amyloid-beta (Aβ) plaques and neurofibrillary tangles. Aβ 

plaques form as a result of improper trafficking and processing of the Amyloid 

precursor protein (APP). APP trafficking is highly spatially and temporally 

regulated through a complex network of protein-protein interactions. 

Mint1/X11α is one of four neuronal trafficking adaptor proteins that bind to the 

YENPTY motif in the APP C-terminus. Whilst these adaptor proteins are 

known to regulate APP trafficking and processing, it is as yet unclear how 

these interactions with APP are regulated. Previous data from the laboratory 

shows that Mint1 is phosphorylated on Y202 and that this phosphorylation 

regulates APP trafficking. Here I have further investigated the role of Mint1-

Y202 phosphorylation by Src in the regulation of APP trafficking and 

processing. I have utilized a stable, inducible APP expressing HeLa cell line to 

show that disruption of Mint1-Y202 phosphorylation disrupts APP trafficking 

following internalisation of the protein. In addition to this, data suggests that 

the neuronal isoform of the kinase, N1-Src, has a higher affinity for Mint1 than 

its ubiquitously expressed isoform C-Src. Previous studies have shown that 

Mint1 overexpression results in accumulation of APP in the trans-Golgi 

network (TGN). Interestingly, I also see this effect and moreover, observe the 

recruitment of N1-Src, along with APP to the perinuclear region in a Mint1-

dependent manner. Together, these data suggest Mint1 and N1-Src are 

recruited to regulate correct APP trafficking and processing. 
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1: Introduction 
 

1.1: Alzheimer’s disease 

 

Alzheimer’s disease (AD) is the most common form of dementia. According to 

the Alzheimer’s society, around 800,000 people in the UK have some form of 

dementia. As well as the emotional burden of the disease, it costs the UK 

economy approximately £20 billion per year 

(http://www.alzheimers.org.uk/site/scripts/documents_info.php?documentID=3

41, accessed 6/3/13). Despite its prevalence, relatively little is known about 

the cause and molecular background of the disease. The two main 

microscopic pathologies of AD are the presence of amyloid-β (Aβ) plaques 

and neurofibrillary tangles, found in the brains of patients. Neurofibrillary 

tangles mainly consist of filaments of hyperphosphorylated tau protein, a 

microtubule associated protein, while Aβ plaques are formed by alternative 

cleavage of the amyloid precursor protein (APP), producing the aggregation 

prone peptide, Aβ-42. Macroscopically, AD is characterised by atrophy of the 

hippocampal formation and cerebral cortex (Perl 2010). AD symptoms can 

vary between patients, adding to the difficulty faced when diagnosing the 

disease. Generally, the disease presents as a gradual decline in memory, with 

an inability to retain new information being the initial sign, leading to severe 

memory loss. Other symptoms include changes in mood, declines in abstract 

reasoning and language. In the later stages of the disease, a number of 

neurological symptoms may present, such as seizures, hypertonia, myoclonus 

and mutism (Bekris et al. 2010). 

 

In 1984, a set of criteria defining Alzheimer's disease was outlined, including 

aspects of medical history, clinical examination, neuropsychological testing 

and laboratory testing (McKhann et al. 1984). They were out together to allow 

clinicians and researchers to maintain consistency when dealing with the 

disease. Following improvements in research and diagnostic techniques these 

criteria were recently revised (McKhann et al. 2011). Following these revisions 
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it was found that the incidence of the disease symptoms were more 

widespread than previously thought, for example some symptoms, such as 

neuropathological changes, can present years before the onset of the 

classically recognised dementia. With these clinical criteria a number of risk 

factors for the disease were out lined. For example, it is widely known that the 

prevalence rates for AD rise exponentially with age, it was found there is 

around a 15-fold increase in the prevalence of AD between the ages of 60 

and 85 years old (Evans et al. 1989). Other risk factors for the disease include 

cerebrovascular disease (Blennow et al. 2006; Wen et al. 2008; Schneider 

and Bennett 2010), diabetes (Farris et al. 2003; Yu and Ginsberg 2005), 

hypertension (Morris et al. 2001; Skoog and Gustafson 2006), smoking 

(Whitehouse et al. 1988; Perry et al. 2002) and obesity (Profenno et al. 2010). 

 

Recent advances in genetic research have revealed a number of genetic 

mutations associated with AD. These generally fall into two classes – i) 

familial, Mendelian inherited mutations associated with early onset AD (40-50 

years of age) ii) sporadic, non-inherited mutations associated with late onset 

AD (at >60 years of age). 

 

1.2: Genetics of AD 
 

Familial cases of AD account for less than 1 % of cases, however 

investigations into the mutations found in these cases has proved informative 

in identifying a number of proteins involved in the progression of both familial 

and sporadic forms of the disease.  

 

Over 32 mutant forms of APP itself have been reported in around 85 families. 

The majority of these are found at the sites where the secretases cleave the 

protein. Of these the missense ‘Swedish’ (APPsw, APPK670N, and M671L) 

and ‘London’ (APPlon, APPV717I) mutations are perhaps the most studied 

(Goate et al. 1991; Mullan 1992). Mice expressing APPsw and APPlon 

mutations are often used to study the mechanisms behind AD progression. 

Mice carrying these mutations exhibit different APP expression levels and 

neurological abnormalities. For example the APPsw mutant mouse, Tg2576 



	
   10	
  

exhibits high APP and Aβ levels that get progressively worse and begin from 

around 6 months of age (Irizarry et al. 1997; Westerman et al. 2002).  

 

Presenilins are a major component of the APP γ-secretase complex, 

mutations found in Presenilin 1 (PSEN1) are the most common cause of early 

onset AD accounting for 18-50 % of cases (Theuns et al. 2000). PSEN1 

mutations cause an increase in the ratio of Aβ42 to Aβ40 (Citron et al. 1997), 

and are responsible for some of the most severe cases of AD with onset seen 

as early as 30 years of age.  There have been 176 PSEN1 mutations 

reported, the majority of which are missense mutations present throughout the 

protein. PSEN1 null mice are not viable (Shen et al. 1997), however, mice 

with conditional knockout of PSEN1 in the postnatal forebrain show mild 

cognitive impairment in long term memory retention, coupled with the 

accumulation of C-terminal APP fragments and a reduction in Aβ production 

(Yu et al. 2001). 

 

Another important component of the γ-secretase complex is Presenilin 2 

(PSEN2). Mutations in this protein are rare and patients carrying the 

mutations show different disease progression to those with PSEN 1 

mutations. The age of onset is often later, and this may vary widely between 

members of the same family (Sherrington et al. 1996). Mutations within PSEN 

2 are generally of lower penetrance that those in PSEN 1, they therefore may 

be subject to modifications by other genes or environmental factors (Tandon 

and Fraser 2002).  

 

Whilst it is apparent a number of mechanisms may lead to cases of sporadic 

AD, a number of mutations associated with late onset AD have also been 

identified. Of these, the most common mutations are those found in the 

Apolipoprotein E (ApoE) gene (Götz et al. 2012). ApoE plays a role in 

receptor-mediated endocytosis of lipoproteins. Under certain conditions, ApoE 

is expressed at low levels in neurons in the brain (Xu et al. 2006),  however 

the protein is mainly expressed in non-neuronal cells such as astrocytes and 

microglia (Grehan et al. 2001). Although mutations in the protein differ by only 
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a couple of amino acid, the structure and function of the protein are 

significantly changed. Although the effects of ApoE mutations are clearly 

present in AD patients, it is unclear by what mode of action this occurs, 

although a number of mechanisms have been proposed including those 

involving neurite outgrowth, cytoskeletal changes in addition to direct effects 

on Aβ (Mahley et al. 2006).  

 

1.3: Amyloid precursor protein 
 

There are 3 members of the APP gene family in humans; APP and APP-like 

proteins (APLP) 1 and 2 (reviewed in (Muller and Zheng 2012). They are all 

type one membrane bound proteins with large extracellular N-termini and a 

shorter, very highly conserved intracellular C-terminal domain. The 

extracellular domain of APLP2 and some APP isoforms contain a Kunitz 

protease inhibitor (KPI) domain, which is lacking in APLP1 and APP695 (the 

main neuronally expressed isoform). The KPI domain is thought to play a role 

in APP dimerisation in addition to affecting trafficking of the protein (reviewed 

in (Khalifa et al. 2012). The variation between APP gene family proteins lies in 

the transmembrane and extracellular juxtamembrane regions. Importantly 

only APP, not APLP1 or APLP2, contains the sequence encoding Aβ 

peptides. 

 

Figure 1.1 illustrates the alternative mechanisms via which APP is processed. 

The integral membrane protein can be cleaved by either α, β or γ secretases 

(reviewed in Thinakaran & Koo 2008). α secretase cleaves the protein near 

the extracellular side of the cell membrane, when further cleaved by γ 

secretase within the plasma membrane, the 40 amino acid p3 peptide is 

produced. However, initial cleavage by β secretase followed by γ secretase 

produces the longer Aβ-42 peptide (reviewed in King & Scott Turner, 2004, 

Tang, 2009). It is not fully understood why this differential cleavage occurs, or 

why Aβ curiously only appears to aggregate in brain cells, although it is most 

likely this is due to the highly specialised nature of neuronal cells including the 

specialised trafficking processes APP undergoes due to the distance the 
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protein travels along the axon. A number of functions of APP have been 

proposed, including regulation of cell signaling mechanisms, calcium 

regulation and cell adhesion (reviewed in Brunholz et al., 2011). The 

importance of APP in the onset of AD is highlighted by the increased 

incidence of the disease in individuals with Down syndrome. Down syndrome 

occurs as a result of chromosome 21 being present in triplicate, which 

coincides with the location of the APP gene (Nistor et al., 2007).  

 

 
 
 
 
 

Figure 1.1 – The alternative cleavage pathways of APP. The membrane protein APP is 
processed by secretase enzymes through one of two pathways. The α-secretase cleaving 
pathway (left) is a non-pathogenic pathway in which α-secretase cleaves the protein 
extracellularly, before γ-secretase cleaves the protein within the membrane to release the 
soluble peptide, p3, and the C-terminal APP intracellular domain (AICD). However, the 
protein can also be processed through the pathogenic β-secretase pathway (right). Here 
the β-secretase enzyme cleaves the protein before γ-secretase cleaves the protein in the 
membrane again, this time producing the aggregation prone peptide Aβ-42, as well as the 
AICD. 
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1.4: The secretases 
 

1.4.1: α-secretase   

 

Multiple transmembrane metalloproteases have been proposed to act as α-

secretases. Members of the A Disintegrin And Metalloprotease (ADAM) family 

have been proposed as α-secretases– including ADAM 9, 10 and 17 (Asai et 

al. 2003). Although all display α-secretase activity the expression levels of the 

proteases vary in the brain, with ADAM10 being expressed at high levels 

whereas ADAM 9 and 17 are found at lower concentrations (Weskamp et al. 

1996; Black et al. 1997). Coupled with varied expression levels, experimental 

evidence suggests ADAM10 is the major α-site protease that cleaves APP in 

neurons (Kuhn et al. 2010). It has been shown ADAM10 is synthesised in the 

Endoplasmic Reticulum (ER) and is present as a proenzyme mainly in the 

Golgi (Lammich et al. 1999), whereas the majority of mature ADAM10 is 

found at the cell surface in neurons (Parvathy et al. 1999). It has been 

reported that mutations in the ADAM10 prodomain could cause late-onset AD 

(Kim et al. 2009), perhaps because this domain is important for preventing the 

protease from being degraded along the secretory pathway (Roghani et al. 

1999). The presence of active ADAM10 in neurons has been shown to be 

important in the processing of APP and AD, for example ADAM10 KO mice 

were shown to have almost no soluble alpha-secretase cleaved APP (sAPPα) 

secretion (Jorissen et al. 2010). It has been suggested cholesterol plays a role 

in regulating α-secretase activity (Kojro et al. 2001). It has recently been 

shown that cholesterol-lowering drugs, such as statins, can upregulate α-

secretase activity via their cholesterol lowering properties (Kojro et al. 2010). 

 

1.4.2: β-secretase   

 

The APP β-secretase has been identified as the enzyme BACE1 (β-site APP 

cleaving enzyme), a transmembrane aspartic protease (Vassar et al. 1999). 

After being identified as having β-secretase activity and shown to cleave APP, 

inhibition of BACE1 in the brain was proven to lower levels of Aβ (Li et al. 
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2006). Studies utilizing Förster resonance energy transfer techniques and 

microscopy have shown that BACE1 mainly interacts with APP in endosomes 

(Kinoshita et al. 2003). The activity of BACE1 is regulated by the low pH in 

endosomes, a favourable environment for the enzyme (Knops et al. 1995). It 

was recently shown that sAPPα directly modulates BACE1, decreasing Aβ 

production in mice (Obregon et al. 2012). In addition to this it was suggested 

Aβ can upregulate BACE1 and APP transcription by direct interaction with an 

Aβ interacting domain in the APP gene promoter, thus facilitating its own 

production (Bailey et al. 2011).  

 

1.4.3: γ-secretase   

 

Following cleavage by α- or β-secretase APP is further cleaved by γ-

secretase in a process known as Regulated Intermembrane Proteolysis (RIP) 

(reviewed by (Prox et al. 2012). γ-secretase is a complex consisting of a 

1:1:1:1 ratio (Renzi et al. 2011) of Nicastrin (Nct), Anterior pharynx defective 

one (APH1), Presenelin enhancer 2 (PEN2) and Presenilin 1 and/or 2 

(PSEN1/2) (Steiner et al. 2008). The individual roles of the proteins that make 

up this complex are not yet fully understood; it is thought PSEN1/2 is the 

active catalytic subunit (Li et al. 2000), whilst Nct is responsible for anchoring 

the substrate (Shah et al. 2005), however a role for APH1 has not yet been 

elucidated. Mutations in the PSEN component are responsible for the majority 

of familial cases of AD (Bertram et al. 2010). One of the proteins that interacts 

with and is involved in regulation of γ-secretase is Arc (Dickey et al. 2004). 

Arc is a postsynaptic protein that regulates trafficking of a number of proteins, 

and interacts with PSEN1. APP and BACE1 have been found to be trafficked 

in Arc-endosomes and deletion of Arc causes a decrease in Aβ in a mouse 

model of AD (Wu et al. 2011).  

 

1.5: APP in neurons 
 
Much of the research into APP metabolism and processing thus far has been 

carried out in non-neuronal cell systems. Historically it has not been clear how 
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similar APP processing in these systems is to APP processing in the brain, 

largely due to the difficulty of culturing and manipulating neurons as well as 

producing sufficient materials for protein biochemistry compared to other cell 

systems. However, more information about how APP behaves in neurons is 

beginning to emerge and is critical to our understanding of how the protein 

contributes to the progression of AD, in addition to being informative in studies 

using non-neuronal cell systems.  

 

 There have been a number of discrete functional in vivo roles suggested for 

APP metabolites in the brain. It had been previously reported that APP levels 

in the brain increase following traumatic brain injury, and this was traditionally 

thought to be detrimental to the patients and lead to an increase in β-

secretase cleavage of APP and Aβ production (Chen et al. 2004). However, it 

has more recently been reported that sAPPα has neuroprotective properties. 

Mice administered with a post-traumatic treatment of sAPPα showed a 

decrease in the number of apoptotic neurons and reduction in axonal injury 

(Thornton et al. 2006). Additionally, exogenous sAPPα was shown to 

enhance both short- and long-term memory in mice (Meziane et al. 1998). 

This effect was attributed to increased synaptic density and enhanced NMDA 

receptor mediated currents. Mounting evidence that presynaptic terminals are 

a major site for sAPPα secretion (Nitsch et al. 1992), coupled with more 

recent observations that sAPPα secretion correlates with enhanced synaptic 

activity (Nitsch et al. 1993; Hoey et al. 2009) suggest sAPPα may act as a 

ligand for post-synaptic neurotransmitter receptors (reviewed in (Brunholz et 

al. 2011).  

 

Much research has also been carried out on the physiological role of Aβ 

peptides, however conclusions from experimental data have varied 

substantially (reviewed in (Lahiri and Maloney 2010). Several studies have 

suggested lower concentrations of Aβ may positively regulate long-term 

potentiation and memory (Puzzo et al. 2008), as well as regulating cholesterol 

transport and homeostasis (Grimm et al. 2005). Alternatively, it has been 

reported Aβ has inhibitory effects on synaptic transmission (Moreno et al. 
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2009) and axonal transport (Pigino et al. 2009). A number of studies have 

reported that APP is localised in both axons and dendrites in neurons 

(Schubert et al. 1991; Ferreira et al. 1993; Back et al. 2007), these 

observations coincide with data showing BACE1 is also localised in axons 

and dendrites (Tienari et al. 1996). Tienari and colleagues also examined a 

number of sorting signals on APP itself, finding the Aβ region to be essential 

for axonal trafficking (Tienari et al. 1996). Interestingly it has been suggested 

that APP is differentially processed at pre- and post-synaptic sites, and that 

the majority of aggregated Aβ results from APP that has been transported 

along axons rather than dendrites (Lazarov et al. 2002).  

 

Recent research into APP processing in neurons suggests that there are 

some neuron-specific features of APP trafficking due to the complex and 

specialised subcellular organisation of the cell. Although the majority of APP 

in both neuronal and non-neuronal cells is processed by α-secretase (Sisodia 

et al. 1990), it has been shown that in neurons a larger fraction of APP is 

processed by β-secretase (Simons et al. 1996). Due to their size and 

complexity neurons have developed a specialised mechanism for trafficking 

proteins, known as fast axonal transport. APP interacts with a number of 

different proteins in neurons that are involved in fast axonal transport 

(reviewed in (Morfini et al. 2002). For example, APP has been shown to 

interact, via a YKFFE sequence in its cytosolic tail, with a subunit of the 

adaptor protein 4 (AP4) complex to facilitate the sorting of APP into specific 

post-Golgi transport vesicles (Burgos et al. 2010). Consistent with the 

proposed function of APP in neurons APP has been shown to interact with a 

number of pre-synaptic proteins in these transport vesicles (Groemer et al. 

2011). Due to the observation that aggregation prone Aβ-42 is generated from 

APP that has been transported along axons, a number of groups investigated 

whether APP was co-transported with the secretases responsible for its 

processing. Kamal et al. suggested that APP, BACE1 and γ-secretase are co-

transported in the same discrete transport vesicles, and that APP undergoes 

processing as the components are trafficked along the axon and that fast 

axonal transport of this compartment is mediated by APP and kinesin-I 
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(Kamal et al. 2001). However, more recent studies failed to detect Aβ within 

axonal compartments (Goldsbury et al. 2006). This study also used live cell 

imaging to show APP and BACE1 in separate vesicles along the axon 

(Goldsbury et al. 2006). Furthermore, studies with all secretase components 

found only active ADAM10 was detected in APP-containing vesicles (Szodorai 

et al. 2009). Together, these data suggest APP and its secretases are 

trafficked separately and that pathogenic cleavage of the protein occurs in 

specific areas within the neuron, after it has been transported.  

 

1.6: APP trafficking  
 

A number of groups have investigated the path though which APP is trafficked 

around the cell, in numerous cell lines and begun to clarify which proteins are 

involved at each stage. It is generally accepted that APP is trafficked through 

the endoplasmic reticulum (ER), Golgi and trans-Golgi network (TGN) to the 

plasma membrane, where it can either be processed and secreted or recycled 

through clathrin coated endocytic vesicles (reviewed in (Thinakaran and Koo 

2008; Claeysen et al. 2012). It is believed the majority of β-secretase activity 

occurs as APP is endocytosed and rapid, unperturbed transport to the plasma 

membrane favours non-amyloidogenic cleavage (Claeysen et al. 2012). A 

recent study by Khalifa et al. showed high levels of APP are found in the 

ERGIC, the compartment between the ER and Golgi (Khalifa et al. 2012). 

They also highlighted the importance of the KPI domain, found in the APP795 

isoform but not in the neuronally expressed APP695 isoform, in allowing 

transport of APP out to the plasma membrane. This may be one explanation 

to account for high levels of Aβ in neurons when compared to other cells.  

 

When in the Golgi and TGN, APP is heavily post-translationally modified. The 

protein is glycosylated, phosphorylated and tyrosine sulphated. It has been 

reported there is some ADAM 10 activity in the TGN, however this is a very 

small proportion when compared to α-secretase activity at the plasma 

membrane (Skovronsky et al. 2012). One study into α-secretase activity also 

reported ADAM 10 activity in trafficking vesicles moving towards the 



	
   18	
  

membrane (Szodorai et al. 2009). This observation serves to back up the 

widely believed theory that APP trafficking along the secretory pathway leads 

to non-amyloidogenic cleavage of the protein.  

 

In contrast to this experimental data suggests that Aβ-42 production occurs 

mainly as APP is recycled through the endocytic sorting pathway. The C-

terminally located YENPTY motif of APP, to which a number of neuronal 

trafficking adaptors including Mint1, bind is essential for this internalisation 

(Perez et al. 1999). High levels of β secretase activity have been reported in 

endocytic compartments (Grbovic et al. 2003). The relevance of APP 

endocytosis in Aβ-42 production is also highlighted when the process is 

disrupted. It was recently observed that overexpressing a component of the 

E3 ubiquitin ligase complex, FBL2 (F-box and leucine rich repeat protein 2), 

inhibited APP endocytosis by promoting its ubiquitination (Watanabe et al. 

2012). Increased ubiquitination was shown to have an effect on both cell 

surface APP, inhibiting endocytosis and reducing Aβ production, and on 

intracellular APP, by promoting its ubiquitin dependent degradation. Mutations 

in APP have also been shown to affect the protein’s degradation in the 

lysosome. A recent study by Lorenzen et al. demonstrated that APP can be 

rapidly and directly transported to the lysosome for degredation, however the 

presence of either London or Swedish mutations of the protein inhibited this 

direct transport (Lorenzen et al. 2010).  

 

In contrast to reports of high β and γ secretase activity in endosomes, Burgos 

et al. proposed high levels of the enzymes were actually found in the Golgi 

(Burgos et al. 2010). This study demonstrated APP interacts with adaptor 

protein 4 (AP-4), which is involved in sorting of proteins in post-Golgi 

compartments, to move out of the TGN to endosomes. They reported 

disruption of this interaction resulted in an increase in γ secretase activity on 

APP and an increase in Aβ-42 production.  
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1.7: APP adaptor proteins 
 
Processing and trafficking of the APP protein is by the interaction of a number 

of adaptor proteins with the conserved YENPTY sequence in the C-terminal 

domain of the protein. Interaction with these adaptor proteins has been shown 

to alter the levels of Aβ in the cell, as discussed later. These interactions are 

therefore important for studying the progression of AD and might be 

exploitable as therapeutic targets for the disease. There are four known 

neuronal trafficking adaptors of APP that bind to this motif via conserved 

phosphotyrosine binding (PTB) domains; Fe65, Mint, JIP and DAB.  

 

1.7.1: Fe65 
 
There are three members of the Fe65 family; Fe65, Fe65-like 1 (Fe65L1) and 

Fe65-like 2 (Fe65L2). Their name is derived from the initials of the first author 

(FE), plus the clone number (65) and they were found when characterising 

brain specific cDNA fragments (Esposito et al. 1990). They were subsequently 

identified as APP adaptor proteins using the yeast two-hybrid system (Fiore et 

al. 1995). They bind to the YENPTY motif of APP in a phosphotyrosine 

independent manner through their PTB domain (Zambrano et al. 1997). The 

proteins all contain two PTB domains, as well as a WW domain, which binds 

to particular proline rich motifs. This WW domain links the proteins to actin via 

Mama (mammalian active) (Ermekova et al. 1997), thus indicating the family 

plays a role in cellular trafficking.  

 

There are contrasting reports as to what role Fe65 plays in regulating APP 

processing. It was reported that APP and Fe65 colocalise in the ER and Golgi 

and that Fe65 increases translocation of APP to the cell surface resulting in 

an increase of sAPPα and Aβ in a non-neuronal cell system (Sabo et al. 

1999). One study also showed Fe65 null primary neuronal cultures from 

transgenic mice displayed a reduction in Aβ secretion. However, expression 

of human Fe65 has been reported to decrease Aβ production in APP 
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transgenic mice known to show Aβ plaque loads by 6 months (Santiard-Baron 

et al. 2005). 

 

The mechanism by which γ-secretase cleavage of APP occurs is homologous 

to the process of cleaving the Notch receptor. The Notch signaling pathway is 

involved in cell proliferation, cell fate and cell death in development. One 

mechanism involved in this pathway is intramembranous γ-cleavage of the 

Notch receptor, with the translocation of the intracellular domain to the 

nucleus in order to regulate the transcription of related genes (Bray 2006). 

Much support has been put forward for APP to act in this manner. It has been 

reported that when Fe65 is bound to the intracellular domain of APP (AICD) 

the complex can stimulate transcription of the APP and BACE1 (which 

cleaves APP at the β-secretase site) (von Rotz et al. 2004).  Fe65 interacts 

with a number of nuclear proteins (reviewed by (McLoughlin and Miller 2008). 

It has been reported by numerous groups that Fe65 forms a transcriptionally 

active complex with the AICD in heterologous gene reporter systems 

(Scheinfeld et al. 2003; Araki et al. 2004; Perkinton et al. 2004; Cao and 

Südhof 2006). Although it is as yet unclear precisely how this mechanism 

works, it has been proposed the interaction between Fe65 and the AICD 

could be regulated by phosphorylation. Phosphorylation or mutation of Thr668 

in the AICD region of APP blocks Fe65 binding (Ando et al. 2001; Chang et al. 

2006). Similarly phosphorylation of the residue tyrosine 547 in the second 

PTB domain of Fe65 stimulated transcription (Perkinton et al. 2004). 

 

1.7.2: Dab1 
 
Disabled 1 (Dab1) is active in embryogenesis and has a role in regulating the 

position of neurons during development.  Dab1 has been shown to bind to the 

YENPTY motif of APP in a phosphtyrosine-dependant manner (Howell et al. 

1999). The effects of Dab1 on APP trafficking and processing are largely 

unclear. Dab1 regulates neuronal positioning via the Reelin signaling pathway 

(Bar et al. 2000). Reelin is a secreted glycoprotein that is involved in the cell-

cell interactions that are vital for neuronal migration and development (Rice et 
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al. 1998). Treatment of cells with the extracellular Reelin protein has been 

seen to increase co-immunoprecipitation of Dab1 and APP; and Reelin itself 

can increase cleavage of APP (Hoe et al. 2006).  

 

It has been shown that Dab1 can be phosphorylated and regulated by the Src 

family kinase Fyn, which, in turn, can be regulated by reelin (Hoe et al. 2008). 

Fyn has been shown to localise to detergent resistant membranes (DRM) in 

cells (Kramer et al. 1999), interestingly high amounts of β- and γ-secretases 

are also found to localise to DRMs (Parkin et al. 1999). It was found that 

treatment of cells with reelin increased the localisation of Dab1 and APP to 

DRMs, however the treatment also increased phosphorylation of Dab1 

therefore decreasing its interaction with APP. This effect was not seen in Fyn 

knockout mutants, suggesting reelin promotes recruitment of APP and Dab1 

to DRMs and regulates the activity of Fyn, which regulates the Dab1-APP 

interaction (Minami et al. 2011).  

 

A number of studies have shown that Dab1 can compete for binding to APP 

with other neuronal adaptors. One study has also shown that Mint1 

expression can counteract the effect of Dab1 on APP levels (Parisiadou and 

Efthimiopoulos 2007). They found that increasing levels of Mint1 reduced the 

levels of Dab1 bound to APP, whereas the opposite effect was not observed. 

Surprisingly, it was found that the unphosphorylated C-terminus of Dab1 can 

bind to Fe65, and decreases the effect of Fe65 on APP processing (Kwon et 

al. 2010). This competition for binding to the C-terminal YENPTY motif of APP 

could provide a further level of regulation for APP processing and trafficking.  

 

1.7.3: JIP 
 

JIPs are a family of c-Jun N-terminal kinases (JNK) interacting proteins; they 

act as scaffold proteins for JNK and MAP kinases. There are 4 members of 

the JIP family; JIP1 and 2 have an SH3 domain, a PTB domain and a JNK 

interacting domain, whereas JIP3 and 4 have a coiled-coil domain, a 

transmembrane domain and the JNK interacting domain. JIP1 and 3 have 
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been shown to be important in axonal transport via interaction with a number 

of proteins (Koushika 2008). APP has been identified as one of the cargoes to 

which JIP1 can bind (Matsuda et al. 2001) however the relevance of this 

interaction is still under debate. It has been shown that JIP1 can stabilise 

immature APP and decrease the production of Aβ, suggesting the adaptor 

directly regulates APP processing (Taru et al. 2002). It is possible JIP1 acts 

as a scaffold protein for JNK and APP as the presence of JIP1 enhanced in 

vitro phosphorylation of APP at threonine668 (Inomata et al. 2003).  

 

Coprecipitation experiments suggest JIP proteins, pre-loaded with cargo 

proteins, interact with kinesin light chain (KLC) acting as scaffolds for motor-

protein trafficking (Verhey et al. 2001). It has been suggested that this 

interaction may mediate APP interaction with kinesin light-chain 1 in a 

mechanism regulating APP trafficking (Matsuda et al. 2003). However, others 

suggest that APP and KLC interact directly (Kamal et al. 2000). It has also 

been illustrated JIP1 can interact with the AICD to promote transcription of 

APP, however, unlike Fe65, the study suggests JIP1 and AICD interact in the 

cytosol rather than in the nucleus (Scheinfeld et al. 2003). 

 
1.7.4: Mints 

There are 3 isoforms of Mint (Mint1/X11α, Mint2/X11β, Mint3/X11) all of which 

bind to the YENPTY motif in the intracellular domain of APP (Figure 1.2). 

Mints1 and 2 are specifically expressed in the brain, whereas Mint 3 is 

expressed ubiquitously (Okamoto and Sudhof 1997). The isoforms have 

conserved C-terminal domains, differing in their N-terminus. The domain 

structure of Mint1 is shown in figure 1.2. They are all highly conserved and 

homologues have been found in a number of organisms, such as the C. 

Elegans homologue lin-10. The proteins were named Mint (Munc18 

interacting proteins) when they were found to be adaptors for the synaptic 

protein Munc18 (Okamoto and Sudhof 1997).  

Mint proteins have been implicated in neuronal trafficking. Mint 1 has been 

shown to bind, via its PDZ domain, to the motor protein KIF17 (Setou et al. 
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2000), whilst Mint 2 can be immunoprecipitated with kinesin-heavy chain 

(Araki et al. 2003). In neurons, APP is processed whilst being trafficked to the 

neuronal terminals (Wilquet and Strooper 2004). It is thought this process is 

associated with the kinesin light-chain subunit of kinesin-1 (Kamal et al. 

2000). These factors indicate Mint-APP interactions are of physiological 

importance for studying AD pathology.  

 

A number of laboratories have shown that altering expression levels of Mint 1 

or 2 has an effect on APP processing. For example, over expression of Mint 1 

and 2 have been shown to stabilise APP and therefore reduce the levels of Aβ 

produced (Saito et al. 2008), (Borg et al. 1998).  

Mice with Mint mutations were crossed with Alzheimer model mice (Tg2576) 

predisposed to the early accumulation of Aβ plaques. Deletion of all three Mint 

proteins was shown to reduce the level of both Aβ40 and Aβ42, as well as the 

number of Aβ plaques in the Tg2576 mice (Ho et al. 2008).  However, the 

mechanism by which this occurs is unknown. It has been suggested that 

Figure 1.2 – Domain structure of APP adaptor protein Mint1. Showing the 
Munc18 binding domain (MBD), CASK binding domain (CBD), phosphotyrosine 
binding domain (PTB) and the two PDZ domains (post synaptic density protein 
(PSD95), Drosophila disc large tumor suppressor (Dlg1), and zonula occludens-1 
protein (zo-1) domain). The PTB domain of the protein binds to the YENPTY 
sequence of APP situated in the intracellular section of the protein and has been 
shown to play a role in regulating APP trafficking. The grey line represents the 
plasma membrane. 
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Mints could interfere with Fe65-APP interactions. Mints 1 and 2 may block the 

upregulation of BACE1 and APP genes, which is thought to be regulated by 

Fe65 (Lau et al. 2000). Alternatively, more recent studies have suggested 

Mints 1 and 2 may interfere with γ-secretase cleavage of APP. In order to 

function γ-secretase requires four components; PSEN1, PSEN2, APH1 and 

nicastrin. Mint may interfere directly with this complex in a number of ways, 

either at the level of transcription or by interfering with binding (reviewed in 

(Miller et al. 2006). It was reported that Mint1 impairs γ but not β cleavage of 

APP, potentially by preventing the APP from being trafficked to sites of active 

γ-secretase (King et al. 2004). Mint 2 and the Mint 2 binding protein, alcadein, 

have also been shown to inhibit Presenelin-1 APP interactions (Araki et al. 

2003).  

The Mint proteins have recently been shown to play a role in APP trafficking. 

Mint knock-out neurons were shown to have reduced internalisation of APP 

from the plasma membrane (Chaufty et al. 2012).  

1.8: Regulating the Mint-APP interaction  

There is still little known about the mechanisms by which the Mint-APP 

interaction is modulated. Earlier studies indicated the N- and C- termini of 

Mint1 play an important role in the regulation of the protein. It was shown that 

overexpression of Mint1 N-terminal domains were sufficient for promoting 

APP and Aβ secretion, whereas overexpression of the C-terminus alone 

reduced APP metabolism (Mueller et al. 2000). The C-terminus, including the 

two PDZ domains, has since been implicated in regulating Mint1 activity via 

conformational changes, resulting in autoinhibition. One study found the C-

terminal tail of Mint1 displayed intramolecular interactions with the first PDZ 

domain of the protein, thus forming an autoinhibited conformation (Long et al. 

2005). More recently, it has been shown a similar mechanism; again involving 

the C terminal domain of Mint1 can inhibit binding between the Mint1 PTB 

domain and target proteins (Matos et al. 2012). This study showed a C-

terminal linker region of the protein is structurally located adjacent to the PTB 

domain and the short alpha helix can sterically inhibit APP binding. 
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Furthermore, the study suggests tyrosine phosphorylation could play a part in 

this regulatory mechanism. Mutating the residue Tyr633 was shown to disrupt 

this inhibitory interaction and increase APP binding and Aβ production. Similar 

structural regulatory mechanisms have been suggested for the Mint2-APP 

interaction. One recent study demonstrated the protein undergoes a 

conformational change between an ‘open’ and ‘closed’ structure in which the 

region between the PDZ and PTB domains blocks the peptide binding region 

of the PTB domain in a ligand free structure (Xie et al. 2012). Despite early 

studies suggesting the Mint N-terminal played an important role in regulating 

Mint activity, little work has since been done to elucidate the specific 

mechanisms by which this occurs. 

 

1.9: Regulation of APP trafficking by protein phosphorylation 
 
The mechanisms for how the interactions of APP with its trafficking adaptors 

and secretases are regulated, both temporally and spatially, are poorly 

understood.  However, phosphorylation, and in particular tyrosine 

phosphorylation, has been shown to add a layer of regulation to APP function.  

Reports from several laboratories have shown that Src family kinases (SFKs) 

can modulate APP adaptors via tyrosine phosphorylation. For example, Dab1 

has been shown to interact with the SFK Fyn (Howell et al., 1997). Fyn has 

been shown to phosphorylate both Dab1 and APP to affect the level of APP 

processing (Hoe et al., 2008). It was found that, whilst Fyn alone could alter 

the processing of APP, this effect was increased in the presence of Dab1, 

suggesting the regulation is a collaborative process. In addition to this Abl, 

another tyrosine kinase related to Src, has been shown to interact with APP 

and the Fe65 adaptor protein. It has been shown Abl can stimulate 

Fe65/APP-mediated transcription (Perkinton et al., 2004). It is unclear how 

this phosphorylation affects their transcriptional activity. The study by 

Perkinton et al. suggested it didn’t do this through inhibiting the Fe65-APP 

interaction, as was initially thought. A previous study revealed that 

phosphorylation of two serine residues (Ser 236 and 238), which are located 

N-terminal to the PTB domain, enhances the association between Mint2 and 
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APP (Sakuma et al., 2009).  This phosphorylation was seen in Mints extracted 

from the brain, but not in the ubiquitously expressed Mint3, indicating it is an 

important feature of APP regulation. Another recent study has identified 3 

tyrosine residues in Mint2 which are phosphorylated by the tyrosine kinase c-

Src (Chaufty et al. 2012). Moreover the study found the phosphorylation state 

of Mint2 had an effect on the sub-cellular localisation of the protein. They 

found that a phospho-mimetic mutant of Mint2 heavily colocalised with the 

autophagosome marker LC3, whereas a phospho-resistant mutant form of the 

protein colocalised with a Golgi marker (Chaufty et al. 2012). Importantly the 

study found the phosphorylation state of Mint2 had no effect on the proteins 

binding affinity for APP, nor the expression of the protein. 

 

1.10: Src family kinases 
 

Tyrosine phosphorylation has been implicated in the regulation of a number of 

cellular processes, including cell motility, proliferation and differentiation. 

There are a number of different protein tyrosine kinase families, one of which 

is the Src family kinases (SFKs). SFKs were first identified in their oncogenic 

from, v-Src, in the Rous sarcoma virus (Brugge and Erikson 1977). v-Src is a 

mutated version of the ubiquitously expressed c-Src. Src was found to 

possess tyrosine kinase activity in 1978 (Collett and Erikson 1978), and has 

since been implicated in a number of cellular functions. Src is one of 9 non-

receptor tyrosine kinases (nRTKs) that make up the SFKs. The proteins share 

six common, functional domains- a myristylation domain that associates the 

kinase with cellular membranes; a unique domain; Src homology (SH) 

domains SH2 and SH3 that interact with target proteins; the tyrosine kinase 

domain; an autophosphorylation site which is involved in autoregulation; and a 

C-terminal regulatory domain. 
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1.11: Src activation and regulation 
 
Src activity itself is regulated by tyrosine phosphorylation. It was noted that 

tyrosine-416 of c-Src was phosphorylated in transforming, oncogenic forms of 

Src, but was not 

phosphorylated in 

inactive wild-type c-

Src (Cooper et al. 

1986; Parsons and 

Weber 1989). It has 

since been found 

there are two sites on 

which Src in 

phosphorylated that 

cause conformational 

changes in the 

protein (Figure 1.3). 

When inactive, Src 

is phosphorylated 

on Y527 in the 

regulatory C-

terminal domain, 

this interacts with 

the SH2 domain 

(Roussel et al. 

1991) causing the 

linker region 

between the kinase 

and SH2 domains to 

interact leaving the 

protein in a folded, 

‘closed’ conformation, at basal levels 90-95 % of c-Src is in this state (Zheng 

et al. 2000). Src is phosphorylated at Y527 by either C-terminal Src kinase 

Figure 1.3 – The domains and regulatory mechanism of 
Src kinases. A) Src kinase activity is regulated by 
phosphorylation causing a conformational shift between 
‘closed’ inactive conformations and the ‘open’ active 
structure. Y527 can be phosphorylated by Csk or Chk. 
The phosphotyrosine then forms intramolecular 
interactions with the SH2 domain causing it to be in the 
‘closed’ conformation. Alternatively the protein is active 
and ‘open’ following dephosphorylation of Y527, by any of 
a number of phosphatases, and intermolecular 
autophosphorylation of Y416 promoting kinase activity. B) 
The domain structure of Src kinases. Shown is the 
myristolation domain, the SH3 (Src homology 3) and SH2 
domains, and the tyrosine kinase domain. The SH3 
domain recognizes a PXXP motif in target proteins. Sh2 
domains typically bind to phosphotyrosines. The neuron 
specific Src isoforms N1 and N2-Src have short amino 
acid inserts in their SH3 domains of 6 and 18 residues 
respectively. 
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(Csk) (Okada and Nakagawa 1989)  or Csk homology kinase (Chk) (Zrihan-

Licht et al. 1997). Dephosphorylation of Y527 and phosphorylation of Y416 

disrupts the intramolecular interactions resulting in the protein being in an 

‘open’ active conformation. Src undergoes an intermolecular 

autophosphorylation at Y416 (Roskoski 2004). There are numerous candidate 

phosphatases which have been implicated in Y527 dephosphorylation, these 

include PTP1B, Shp1 (Src homology 2 domain-containing tyrosine 

phosphatase 1), Shp2, PTPα, PTPγ and PTPε (Levin 2004). The importance 

of this regulatory mechanism is highlighted in the consequences of a mutation 

in the c-terminus of c-Src which causes a frame shift and disrupts it’s 

interaction with the SH2 domain, this mutation causes the protein to be 

constitutively active and giving rise to the oncogenic v-Src form of the protein 

(Takeya and Hanafusa 1983). 

 

In an additional regulatory mechanism, it has been found that the activity state 

of Src is also dependent on its cellular localisation. Trafficking studies carried 

out using a temperature sensitive mutant of v-Src found that the protein was   

present in its inactive state localised to the perinuclear region, whereas the 

active form of the protein was found at the periphery of the cell (Welham and 

Wyke 1988). The same activity-localisation pattern was noticed with c-Src, 

where the inactive form of the protein was associated with the perinuclear 

region and colocalised with endosomal markers (Kaplan et al. 1992). Despite 

these early observations, until recently, very little was known about the spatial 

regulation of SFK activity and whether the association with endosomal and 

membrane compartments was significant (Kaplan et al. 1992). Recent 

studies, using a phospho-antibody specific to active c-Src, showed that c-Src 

was held, in its inactive form, in the perinuclear region. However, stimulation 

of the protein with growth factors resulted in translocation of c-Src to the 

plasma membrane, where it is activated and localises in cytoplasmic 

endosomes (Sandilands et al. 2004).  
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1.12: Src in neurons 
 
It is well documented that one of the main functions of Src in neurons is to 

regulate the ion channels involved in synaptic plasticity. Src has been found to 

regulate the NMDA receptor (Wang and Salter 1994), potassium channels 

(Fadool et al. 1997), calcium channels (Cataldi et al. 1996), γ-aminobutyric 

acid type A  (GABAA) (Moss et al. 1995) and nicotinic acetylcholine receptors 

(Wang et al. 2004). It has been shown for example, that Src mediates NMDA 

receptor activity by balancing receptor phosphorylation and 

dephosphorylation, one study showed that inhibiting phosphotyrosine 

phosphatase (PTP) activity and increasing exogenous Src expression in cells 

enhances NMDA mediated currents (Wang and Salter 1994). This process 

highlights the flexibility and reversible nature of regulating protein function by 

phosphorylation. NMDA receptors are involved in numerous aspects of 

neuronal plasticity, including long-term potentiation (LTP) in learning and 

memory. Importantly NMDA receptor upregulation by Src is required for the 

induction of LTP at synapses in the hippocampus (Lu et al. 1998; Huang et al. 

2001). Src expression in significantly upregulated in neuronal development 

(Cartwright et al. 1988), however it is also expressed at high levels in 

differentiated, post mitotic neurons (Cotton and Brugge 1983; Sudol and 

Hanafusa 1986). Src null mice show no significant neuronal phenotypes 

however do present with bone formation defects and osteopetrosis (Soriano 

et al. 1991). This is most likely due to redundancy in function between SFKs 

in neurons. Another SFK that is highly expressed in neurons is Fyn. Fyn 

knockout mice, in contrast to Src deficient ones, do show abnormal neuronal 

phenotypes. These mice show impaired LTP and decreased short and long 

term contextual fear memory (Grant et al. 1992). Impairments in ion channels 

and the hippocampal region of the brain have been linked to a number of 

neurological diseases including AD (Santos et al. 2010), especially in the 

early stages of the disease(Gotz et al. 2011). In fact the NMDA receptor 

inhibitor memantine is used as an AD treatment (Schmitt et al. 2007), thus 



	
   30	
  

highlighting the importance of SFK mediated regulation of neuronal 

processes. 

 
Following the identification of the ubiquitously expressed c-Src it was found 

that neurons expressed a higher level of a more active form of Src than seen 

in cells from other tissues (Brugge et al. 1985). This neuronal Src was shown 

to be one of two neuronal splice variants of c-Src, both posses short amino 

acid inserts in their SH3 domain (Brugge et al. 1985; Pyper and Bolen 1990).  

 

Since the identification of the two variants, N1 and N2-Src, little progress has 

been made in elucidating whether the kinases have any specific targets or 

functions that differ from c-Src. However, research into the roles of SH2 and 

SH3 domains does suggest that, due to their important role in regulating the 

interactions of kinases to their target proteins, splice variations in these 

domains would effect the affinity of the kinases for certain targets. A recent 

study by Groveman et al. (2011) examined the differential effects of the SH2 

and SH3 domains of neuronal Src on phosphorylation. They found that 

dysfunction of the SH2 domain has a greater detrimental effect on Src kinase 

activity than that of the SH3 domain. Previous studies have also shown that 

conformational changes in Src kinases, shifting the position of the SH2 and 

SH3 domains, can alter its kinase activity (Nagar et al., 2006, Filippakopoulos 

et al., 2008).  

 

1.13: Project aims 
 
Mint1 has previously been identified as a C-Src substrate in the laboratory 

(Figure 1.4; Dunning et al., manuscript in preparation). When screening the 

Mint1 amino acid sequence for functional domains and motifs, it was noted 

there was a YEEI motif, the canonical motif recognised by Src kinases, in the 

N-terminus. In vitro kinase assays using Mint1 N-terminus (1-431) showed 

that this motif showed tyrosine phosphorylation by C-Src. In addition to this it 

was noted, as the N-terminus of Mint proteins differ significantly, no 

phosphorylation was detected on the equivalent regions of Mint 2 and 3 

(Figure 1.4A). Subsequent in vitro phosphorylation of recombinant Mint1 and 
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analysis of the phosphorylated protein following 2D-gel electrophoresis and 

LC-MS/MS (liquid chromatography-tandem mass spectrometry) found the 

phosphorylated peptide (the sequence of which is shown in figure 1.4) was 

present in its mono-, di- and tri-phosphorylated forms. All detected peptides 

were phosphorylated on Y202, with subsequent phosphorylation at Y191 and 

Y187. Significantly neither phosphorylation of Y191/Y187 alone nor 

phosphorylation of Y202 and Y187 was observed. More over, mutation of 

Y202 to a phospho-resistant phenylalanine resulted in abolition of all 

phosphorylation. It was therefore concluded that Mint1 is processively 

phosphorylated by Src kinase at the three residues (Dunning et al., 

manuscript in preparation, Figure 1.4). 

 

In addition to this it was noted that overexpression of Mint1-WT disrupted the 

regular appearance of APP distribution in COS7 cells, and moreover that this 

disruption was not observed in cells overexpressing Mint1-Y202F (Dunning et 

al., manuscript in preparation). These findings suggest phosphorylation of the 

N-terminal region of Mint1 may play an important role in regulation of APP 

trafficking, and that this regulation is specific for Mint1. I therefore aim to study 

the effects of Mint1-WT or -Y202F and Src kinases on the APP subcellular 

trafficking cycle. In order to do this I used a combination of in vivo studies of 

the APP trafficking cycle in a HeLa cell system, along with in vitro assays. 
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Figure 1.4- Preliminary data from the laboratory (adapted from Dunning et al., 
manuscript in preparation. A) Mint1 (1-431) is seen to be phosphorylated by 
Src, whereas Mints 2 (1-341) and 3 (1-184) show no phosphorylation. A kinase 
assay with C-Src was carried out with GST-fusions of N-terminal Mint regions. 
Phosphorylation was detected by immunoblotting (top panel). Coomassie 
loading control (* show Mint1-3 loading) is shown in the bottom panel. B) 
Sequences and masses of the phosphopeptides detected by mass 
spectrometry. Highlighted are the tyrosine residues that are phosphorylated by 
Src. C) Mutation of Mint1-Y202 to phenylalanine was shown to stop all Mint1 N-
terminal phosphorylation by C-Src in a recombinant Mint1 kinase assay when 
probed with an anti-phosphotyrosine antibody (top panel). Coomassie staining 
for protein loading is shown in the bottom panel.  
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2: Materials and methods 

 
2.1: Materials 
 

Rabbit, monoclonal anti-Myc antibody and rabbit, polyclonal anti-FLAG were 

purchased from Cell Signalling Technologies, Hitchin, UK. Mouse anti-

phosphotyrosine (PY20) was purchased from BD Biosciences, Oxford, UK. 

The anti-GFP antibody (used to detect CFP and YFP) was a generous gift 

from Paul Pryor’s laboratory (University of York). Mouse anti-β-actin antibody 

was obtained from Proteintech, Manchester, UK. Mouse, monoclonal anti-

FLAG was purchased from Sigma Aldrich Company Ltd, Dorset, United 

Kingdom. Anti-mouse and anti-rabbit, Horseraddish peroxidase-linked 

secondary antibodies produced in goat were obtained from Sigma Aldrich 

Company Ltd, Dorset, UK. Alexa-fluor conjugated secondary antibodies used 

in immunocytochemistry were as follows; Anti-mouse Alexa-594 and -568, 

Anti-rabbit Alexa-488, and were purchased from Invitrogen, Paisley, UK. 

 

Miniprep purification of plasmids was carried out using the QIAprep Spin 

MiniPrep Kit according to the manufacturers instructions. Gel extraction of 

DNA was carried out using QIAquick Gel Extraction Kit according to the 

manufacturer’s instructions (QIAGEN, Sussex, UK). Proteins were produced 

using XL10 Gold Ultracompetent E. Coli purchased from Agilent technologies, 

Berkshire, United Kingdom. For culturing of cell lines Dulbecco’s modified 

eagle medium, Penicillin-streptomycin and FBS were all obtained from 

Invitrogen Ltd, Paisley, United Kingdom. For transfections, Ecotransfect was 

purchased from Oz biosciences, Nottingham, UK. 
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Table 2.1: Plasmids used in cell expression experiments 

Gene of interest Species 
of gene 

Tag (Terminal) Vector 

Mint1WT 
1-842  

(full length) 

Mouse CFP (N) 

MYC (N) 

pmCer 

pMH (Roche) 

Mint1-Y202F 
1-842  

(full length 

Mouse CFP (N) 

MYC (N) 

pmCer 

pMH (Roche) 

APP(695) Human FLAG (C) 

YFP (C) 

pcDNA5/FRT/TO 

pFLAG-N1(YFP 

introduced to replace 

FLAG) 

N1-Src Rat FLAG (C) pcDNA5/FRT/TO 

C-Src Rat FLAG (C) pcDNA5/FRT/TO 

 
Table 2.2: Constructs used in in vitro assays 

Protein Region  Tag Plasmid 

Mint1 1-341  
(N-terminus) 
183-208 
(Phospho-box) 

GST 
 
GST 

pGEX-6P1 

N1-Src  His pGEX4T-1 

(PTP1B fusion 

and 3C protease 

site) 

C-Src  His pGEX4T-1 
(PTP1B fusion 

and a 3C 

protease site) 
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2.2: Expression, production and purification of His-tagged Src kinases 
  
Transformed, competent XL10 Gold were grown to an appropriate cell density 

(showing an absorbance at 600 nm of around 0.6-1) in 1 L autoclave sterilised 

supermedia containing 5 g/l NaCl, 15 g/l tryptone, 25 g/l yeast extract and the 

appropriate antibiotic (Ampicillin at 100 µg/ml, kanamycin at 50 µg/ml). Protein 

production was induced by the addition of isopropyl-β-D-1 

thiogalactopyranoside (IPTG) at a concentration of 1 mM and incubated 

overnight with aggitation at 18 °C. The culture was then spun at 5000 rpm for 

10 minutes. Pellets were resuspended in PBS containing 1 mM of the serine 

protease inhibitor phenylmethanesulfonylfluoride (PMSF) and incubated on 

ice for 30 minutes. The suspensions were then sonicated at 10 kHz to lyse 

bacteria cells on a 30 second on 30 second off cycle 6X on ice. The sonicated 

suspension was then centrifuged at 15000 rpm for 30 minutes at 4 °C. The 

protein, now present in the supernatant, was bound to 2 mL of glutathione-

sepharose beads in a 50 % slurry in PBS by incubating the two for 2-3 hours 

at 4 °C with agitation. Following the incubation the beads were washed in 

PBS and centrifuged at 860 rpm, for 3 minutes at 4 °C 5X, once in 1.2 M NaCl 

in PBS, and a final wash in PBS. Excess PBS was removed to leave beads in 

a 50 % slurry and beads were transferred to a 1.5 mL eppendorf. The protein 

was cleaved by overnight incubation at 4 °C with 3 units of 3C PreScission 

protease. The presence and effective cleavage of the proteins was tested 

using SDS-PAGE. Samples were separated on a 10 % SDS-PAGE gel at 160 

V for around one hour. Gels were then stained with Coomassie protein stain 

(50 % Methanol, 9 % Acetic acid, 0.3 % Brilliant blue R) for 30 minutes and 

destained using 14% acetic acid, 7% methanol in distilled H2O for 30 minutes. 

Proteins were stored in kinase storage buffer (50 mM Tris-HCl pH 7.5, 100 

mM NaCl, 0.05 mM EDTA, 1 mM DTT, 10 % glycerol, 1 mg/mL BSA (prevents 

aggregation of kinase and adsorption to tube wall) and 0.05 % NP-40) at -80 

°C. 
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2.3: SDS-PAGE   
 
Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was 

carried out using a Bio Rad Mini-PROTEAN Tetra cell gel apparatus (Bio-Rad 

Laboratories Ltd, Hemel Hempstead, UK) according to the manufacturer’s 

protocol. Gels were prepared with either 7.5 % or 10 % resolving gel (375 mM 

Tris.HCl, pH 8.8, 0.1 % SDS, 10 or 7.5 % acrylamide, 0.05 % Ammonium 

persulfate and 0.01 % TEMED) with 4 % stacking gel (125 mM Tris.HCl, pH 

6.8, 0.1 % SDS, 4 % acrylamide, 0.05 % Ammonium persulfate and 0.01 % 

TEMED). Gels were run in SDS running buffer (25 mM Tris, 0.192 M glycine 

and 0.1 % SDS in distilled H2O). Gels were run at 160 V for around 60 

minutes, or until the dye front reached the bottom of the gel. Gels were then 

either stained using Coomassie blue, or transferred for Western blot analysis.  

 

2.4: Western blotting  
 
Proteins were transferred from SDS-PAGE gels using Bio-Rad Mini Trans-

Blot transfer apparatus (Bio-Rad Laboratories Ltd, Hemel Hempstead, 

Hertfordshire, HP2 7DX).  Proteins were transferred onto Polyvinylidene 

fluoride (PVDF) membranes. PVDF membranes were used for their increased 

protein retention, and increased resilience allowing reprobing of membranes 

when compared to the alternative nitrocellulose membranes. PVDF 

membranes were first activated in 100 % methanol for around 30 seconds, 

before being equilibrated along with SDS-PAGE gels in transfer buffer (25 mM 

Tris, 190 mM Glycine and 20 % Methanol). Transfer apparatus was 

assembled in cassettes containing the gel and PVDF membrane surrounded 

by 3 MM filter paper and pads, taking care to ensure there was no air bubbles 

between the gel and membrane. The transfer was carried out at either 66 V 

for 1 hour or 20 V overnight, with an ice block in the transfer tank to avoid 

overheating. Transfer efficiency was tested by staining the membrane with 

Pancau-Red (6.5 mM ponceau S and 1 % acetic acid), before de-staining in 

dH2O.  Membranes were then incubated in PBS + 3 % milk powder (or 3 % 

BSA if probing for phospho-tyrosines) for one hour, all incubations were 
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carried out on a rocking platform. Primary antibodies were then added at 

concentrations as recommended by manufacturers, in PBS with or without 

0.1% Tween-20 and 0.5 % BSA, for either 2 hours at room temperature or 

overnight at 4 °C. Membranes were washed in PBS with 0.5% Tween-20 in 

between primary and secondary antibodies. Horse-raddish peroxidase (HRP)- 

linked secondary antibodies raised against the desired species were added at 

1:5000-1:2000 dilution in PBS plus 0.5 % Tween-20 for around an hour at 

room temperature. Membranes were washed again in PBS plus 0.5% Tween-

20. Proteins were detected by incubation with ECL (Equal volumes of solution 

A – 2.5 µM luminol, 1% DMSO, 0.1M Tris/HCl, pH 8.5, and solution B – 0.06 

% hydrogen peroxide, 0.1M Tris/HCl, pH 8.5, plus ‘enhancer’ 90 µM p-

coumaric acid in DMSO at 2 µL/mL of A+B) for 1 minute before being 

exposed to X-Ray film for between 30 seconds – 5 minutes, and developed. 

Membranes were probed with an anti β-actin antibody as a loading control. 

For reprobing membranes the previous antibodies were stripped in a buffer 

containing 136mM NaCl, 20mM glycine, pH 2.5. 

 

2.5: In vitro kinase assay 
 
All kinase assays were carried out at in a final volume of 25 µL, at 30°C for 90 

minutes. Reactions contained 100 mM Tris, pH 7.5, 10 mM MgCl2, 0.5 mM 

ATP, 5 nM kinase, and up to 25 µM substrate. Reagents were mixed on ice, 

minus ATP, and pre-warmed for around 5 minutes. ATP was added to start 

the reaction. The assays were stopped using an equal amount of 2X Laemmli 

buffer (final concentrations 2 % SDS, 10 % glycerol, 5 % beta-

mercaptoethanol, 0.002 % bromophenol blue, 62.5 mM Tris.HCl pH 6.8) to 

the reaction mixture. The assays were then analysed using SDS-PAGE and 

Western blotting. 

 

2.6: Cell culture 
 

Cells were cultured in Dulbecco’s modified eagle medium (DMEM) plus filter 

sterilized 1 % penicillin/steptromycin and 10 % FBS, in 25 cm culture flasks. 
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Cells were kept at 37 °C, in a humidified atmosphere of 5 % CO2 and 95 % 

air.  

 

2.7: Transfection 
 
Cells were transfected using Ecotransfect according to the manufacturers 

protocol. In summary, cells were seeded in either 24 or 6 well plates, 24 hours 

later (or when cells reached 75-80 % confluency) cells were transfected with 2 

µl Ecotransfect plus 1 µg total DNA in 100 µl DMEM for 24 well plates, or 6 µl 

Ecotransfect plus 3 µg total DNA in 200 µl DMEM for 6 wells plates. Cells 

were cultured in transfection media for 24 hours.  

 

2.8: Generating a stable, inducible APP expressing HeLa cell line 
 
APP-HeLas were produced using the Flp-In system (Invitrogen). Flp-In HeLas 

were received as a generous gift from Dani Ungar’s laboratory (University of 

York). The Flp-In HeLas contain a Flp Recombination target (FRT) site, the 

presence of which had been previously selected for using Zeomycin 

resistance. Zeomycin resistant clones are then screened to select for clones 

that contain only one FRT site per cell. The Flp-In HeLas received were co-

transfected with plasmids containing the gene of interest (GOI) 

(pcDNA5/FRT/TO-APP-FLAG) and Flp-recombinase (pOG44). Approximately 

1.5 x 105 cells were plated in 6 well plates and co-transfected using the 

Ecotransfect protocol mentioned previously, 0.5 µg of each of the plasmids 

was co-transfected using 6 µl of EcoTransfect per well. Expression of the Flp 

recombinase facilitates a recombination event between FRT sites in the 

genome and that included in the GOI plasmid. The resulting site has an SV40 

promoter; ATG initiation codon in frame with the GOI and a hygromycin 

resistance gene, as a result of this recombination event the Zeomycin 

resistance gene is interrupted. Clones that have been successfully transfected 

were then selected for using 200 µg/mL hygromycin. 24 hours after 

transfection, cells were transferred to 10 cm culture dishes to select for 

successfully transfected clone. Cells were removed from 6 well plates by 

incubating with 500 µl trypsin at 37 °C for around 3-5 minutes, trypsinised 
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cells were the dislodged and 1.5 mL of media was added. Cells were plated at 

various concentrations and cultured until colonies of hygromycin resistant 

cells formed, 200 µg/mL hygromycin containing culture medium was changed 

every 2 days until colonies formed. Individual colonies were then selected, 

firstly the medium was removed and cells were carefully washed 3X with 

sterile PBS. Colonies were isolated using autoclave sterilized wide ends of 1 

mL pipette tips attached to the plate using autoclaved silicon grease. Selected 

colonies were then incubated with 100 µL trypsin for around one minute 

before being suspended by trituration with the trypsin. Colonies were 

expanded, and APP expression was characterised using Western blotting of 

cell lysates and immunocytochemistry. A total of 5 APP-HeLa clones were 

selected, one of which showed slightly increased APP expression above the 

others and was used in all future experiments. APP-HeLas were cultured as 

with other cells, with the inclusion of 200 µg/mL hygromycin in the culture 

medium.  

 

N1-Src and C-Src HeLa cell lines were also generated, following the same 

protocol, by Philip Lewis, Evans Laboratory, University of York. Once 

transfected HeLa cells were treated with 1 µg/mL doxycycline to induce 

expression of either APP of N1-Src. Cells were treated with doxycycline for up 

to 48 hours.  

 

2.9: Cell lysis  
 
Around 1.5 x 105 cells were plated in 6 well plates. Following transfection and 

treatments, cells were first washed 3X in PBS before being lysed by scraping 

in 200 µl Laemmli buffer. Whole cell lysates were analysed by SDS-PAGE 

and Western blotting. Between 10-20 µl of cell lysates in 2X Laemmli buffer 

were loaded on the gel, along with Precision plus protein standards from Bio 

Rad. 
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2.10: Immunocytochemistry  
 

For immunocyctochemical analysis, 1.5 x 104 cells were plated on 13 mm 

coverslips in 24 well plates. Following transfections and treatments, cells were 

fixed. Cells were first washed 3X in PBS, before being fixed in 4% PFA for 20 

minutes. Cells were stained using commercially available antibodies, all 

incubations were carried out at room temperature. They were first 

permeabilised and blocked in PBS containing 0.1% Triton-X100 and 1% BSA 

for 30 minutes. Primary antibodies were applied at 1/500 concentrations in 

PBS containing 1% BSA for 2 hours. Cells were then washed 3X in PBS 

before secondary antibodies, linked to the desired fluorophore, were applied, 

again at 1:500 concentration in PBS + 1% BSA, for 1 hour in the dark. 

Following subsequent washes in PBS (3X) and distilled H2O (1X) coverslips 

were air-dried and mounted on slides using Mowiol (13 % Mowiol, 30 % 

glycerol, 0.2 M Tris, pH 8.5) plus 1µg/mL DAPI. Slides were stored at 4 °C 

prior to image analysis. 

 

2.11: Imaging and statistics  
 
Slides were imaged on confocal microscopes in the Technology Facility, 

Department of Biology, University of York. Confocal microscopes used were 

Zeiss LSM 710 on an Axio Observer.Z1 invert and Zeiss LSM 510 meta on an 

Axioplan 2M, both running ZEN software (Zeiss microscopy, Cambridge, UK). 

All image analysis was carried out using Image J software. Analysis of APP 

particles was carried out using threshold, particle analysis. The threshold of 

each image was adjusted to a point where the maximum number of individual 

APP containing particles could be counted, this was carried out for each cell 

analysed. Binary images were then analysed using the ‘Analyse particles’ 

function in imageJ. One-way ANOVAS were used to calculate statistical 

significance, where appropriate, with post-hoc Tukey test. Adjusted P values 

were also calculated; values have been adjusted to compensate for multiple 

comparisons. Chi squared analysis was used to examine the statistical 

significance of phenotyping data. Bonferroni correction was used to correct for 
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multiple comparisons. The following equation was used to calculate the 

adjusted α value; with the normal α value set at 0.05 - 

  αadjusted = α/number of comparisons 

 

 All statistics and graphs were carried out using Graphpad Prism 6.0 software. 
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3: Results 
 

3.1: Generating and characterising a stable, inducible APP expressing 
HeLa cell line 

 

Mint1 is a neuronally expressed adaptor protein that binds to and facilitates 

trafficking of APP. Previous data from the Evans laboratory has shown that 

Mint1 is N-terminally phosphorylated by the tyrosine kinase C-Src. It was also 

shown that this phosphorylation is dependent on a canonical YEEI motif in Src 

and mutation of the tyrosine residue Y202 to a phospho-resistant 

phenylalanine (Y202F) abolishes all phosphorylation (Dunning et al., 

manuscript in preparation).  In light of these observations this study aims to 

evaluate the mechanisms by which Mint1 and Src regulate APP trafficking.  

 

In order to thoroughly examine this process, a stable, inducible, APP 

expressing HeLa cell line was generated. To generate this cell line HeLa cells 

containing an FRT site, a site that is recognised by the enzyme Flp 

recombinase, were co-transfected with a plasmid encoding Flp recombinase 

and one encoding the gene of interest (GOI). The GOI is then incorporated 

into the genome at the FRT site. Importantly this system ensures only one 

copy of the GOI is inserted into each cell. Cells therefore display similar levels 

of the GOI thus improving analysis and quantification of images from the cells. 

Exploiting a stable cell line reduces the need for multiple co-transfections of 

plasmids, and ensures higher expression efficiency as each cell is derived 

from a single clone, and is continuously cultured in media containing 200 

µg/mL hygromycin to select for cells which keep the GOI incorporated. The 

inducible nature of this cell line allows the localisation and expression of APP 

to be examined as early as possible after translation. The expression of the 

gene of interest is under the control of a CMV promoter, containing 

tetracycline operon sequences allowing doxycycline inducible expression, 

which is known to give high levels of expression in mammalian cells and so 

the system will provide sufficient levels of protein to be visualized using 

biochemical techniques.  
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Figure 3.1 shows APP expression in a selected, single clone of FLAG tagged 

APP-HeLa cells. Figure 3.1A shows immunocytochemical images of cells 

cultured in the presence (bottom) or absence (top) of doxycycline. APP was 

visualized using an anti-FLAG antibody 48 hours after doxycycline induction. 

Figure 3.1B shows Western blot analysis of APP-HeLa cell lysates, probed 

with an α-FLAG antibody. Two bands representing APP at around 120 and 

130 kDa can be seen, the presence of more than one band may represent 

APP that has been differentially post-translationally modified, as seen in 

previous studies (Tomita et al. 1998; Jacobsen and Iverfeldt 2011). Figure 

3.1B also shows an increase in the amount of APP detected between 24 and 

48 hours of doxycycline treatment, for this reason 48 hours was used as a 

standard doxycycline induction period throughout the study. Importantly the 

lack of FLAG staining in cells or lysates that have not been treated with 

doxycycline, demonstrates the system doesn’t exhibit leaky expression of the 

GOI. The FLAG staining of the protein is representative of endogenous APP 

localisation, with the majority being perinuclear, as well as some in punctate 

trafficking vesicles (Seen clearer in Figure 3.2A) (von Rotz et al. 2004).  
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Figure 3.1 – Characterisation of a stable, inducible APP HeLa cell line. A) 
Representative images of APP HeLa cells with or without doxycycline treatment. 
APP (red) can be seen in doxycycline treated cells but is not present in non-
treated cells. Cells were cultured in 1 µg/mL doxycycline for 48 hours. Scale bar = 
20 µm. B) Western blot analysis of APP expression in HeLa cell lysates cultured 
in 1 µg/mL doxycycline for 24 or 48 hours. Expression is seen to increase with 
prolonged exposure to doxycycline. Lane 1 shows a positive FLAG control of 
whole cell lysates expressing FLAG-tagged C-Src. Lane 2 shows lysates in which 
APP expression has not been induced. * denotes non-specific binding of the 
antibody. 
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The Evans laboratory has previously obtained data that demonstrates the 

phosphorylation state of Mint1 disrupts APP trafficking in COS7 cells 

(Dunning et al., manuscript in preparation). The data shows APP has a 

perinuclear distribution when Mint1 is overexpressed in heterologous cells 

(Figure 1.4). In order to characterise whether the same effect is observed in 

APP-HeLa cells, the cells were transfected with CFP-fusions of mutant, wild 

type Mint1 or a CFP control plasmid; 24 hours later APP expression was 

induced by incubating cells with 1 µg/mL doxycycline for 48 hours. Figure 3.2 

shows immunocytochemical analysis of APP-HeLa cells expressing CFP-

Mint1-WT or -Y202F. APP is seen in puncta throughout the cell, most likely in 

trafficking vesicles, upon transfection of Mint1–WT the distribution of these 

punctae changes significantly. Overexpression of Mint-WT results in a 70 % 

reduction in the number of APP containing particles per cell compared to 

those over-expressing APP alone (Mean number of particles/cell 360.32 and 

1186.06 respectively, adjusted P value <0.0001). Additionally, overexpression 

of Mint1–WT resulted in a 45 % decrease in APP containing particles when 

compared to cells expressing Mint1–Y202F or an empty CFP control plasmid 

(Mean particle number/cell CFP = 727, Mint1-Y202F = 808, adjusted P values 

0.0057 and <0.0001 respectively when compared to Mint1-WT). Whilst 

transfection alone is responsible for around a 25 % reduction in APP particle 

number (Fig 3.2B) the 45 % reduction of APP particles in cells expressing 

Mint1–WT compared to phospho-resistant Mint1–Y202F suggests the change 

in APP distribution, and therefore particle number, is a result of Mint1 

phosphorylation at Y202F. 
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Figure 3.2 – Mutation of the phosphorylation site Y202 of Mint1 alters APP 
localisation. Cells were transfected with either Mint-WT or Y202F and 24 hours later 
cultured in 1 µg/mL doxycycline for 48 hours. Empty CFP plasmid is used as a 
control for the effect of transfection. A) Representative images showing altered 
localisation of induced APP (red) following overexpression of Mint1 constructs 
(green). Images show a change in the distribution and number of APP containing 
particles in the cell when Mint-WT is overexpressed, the same change is not 
observed when overexpressing the Mint1 phospho-resistant mutant Y202F. B) 
Graphs show quantification of APP containing particle number B) and size C). 
Between 15 and 20 cells were analysed for each condition from three separate 
coverslips.  *s denote statistical difference between means, data was subjected to 
one-way ANOVA with post-hoc tukey test. D) Western blot analysis of APP-HeLa 
lysates ± Mint1 constructs. The presence of Mint1 results in a higher molecular 
weight FLAG-APP band, suggesting Mint1 alters APP processing in a non-
phosphodependent manner. 
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In addition to noting the change in APP particle number the size of the APP 

containing trafficking vesicles appeared to change with Mint1 transfection (Fig 

3.2A). In an attempt to quantify this change the mean size of APP containing 

particles per cell was measured (Fig 3.2C). HeLa cells overexpressing Mint-

WT showed a 38 % increase in mean APP particle size per cell (Mean particle 

size µm2 Mint1-WT = 0.122 and APP alone = 0.0757, adjusted P value 0.032). 

However, no significant difference was observed between cells 

overexpressing Mint-WT and Mint-Y202F (Mean particle size µm2 0.0947), or 

CFP (Mean particle size µm2 0.104). Although Mint-Y202F and CFP 

transfected HeLa cells also showed no significant difference to cells 

expressing APP alone. The lack of difference in particle size between cells 

expressing Mint-WT and Mint-Y202F is due to the wide variation in particle 

sizes seen per cell. Figure 3.2C shows mean particle size for each cell 

plotted, it is clear the cells exhibit a wide range of particles sizes due to the 

different localisation of APP in the cell, for example a cell that is 

overexpressing Mint-Y202F may have many smaller APP containing particles 

than that seen in a cell overexpressing Mint-WT however the presence of a 

collection of perinuclear APP skews the mean particle size increasing it to 

around that seen in Mint-WT cells. In order to address this issue, it could be 

possible to quantify the particle size, discounting the perinuclear collection, 

perhaps by taking a z-stack image of cells and quantifying each layer to 

compare particle size in a layer of the cell that doesn’t include the perinuclear 

region. Additionally it could be possible to quantify the intensity of 

fluorescence across the cell, therefore assessing the distribution of APP in the 

cell, in a similar manner to the phenotyping seen later in this study.  

 

Previous reports, as well as observations in our laboratory, have suggested 

overexpression of Mint1 stabilises full length APP (Borg et al. 1998; Biederer 

et al. 2002). Figure 3.2D shows Western blot analysis of APP-HeLa cells that 

have been transfected with CFP-fusion Mint1 constructs. The top panel shows 

APP levels seen in the cells (visualised using an anti-FLAG antibody). This 

shows the intensity of the levels of APP detected does not significantly 

change between each condition, in contrast to previous reports. This may be 

due to the cell system used, or the inducible nature of APP production. 
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Although the levels of APP do not appear to change, the appearance of a 

higher molecular weight APP band, at around 140 kDa, is seen when APP is 

co-expressed with both wild type and phospho-resistant Mint1. As APP is 

highly post-translationally modified it is possible this heavier APP form is due 

to increased post-translational modification; such as increased glycosylation. 

Notably, and curiously this change doesn’t appear to occur in a phospho-

dependent manner. 

 

Although Mint-WT has a clear effect on APP particle number in the cell line 

(Figure 3.2B), the lack of difference in particle size between cells expressing 

Mint-WT and Mint-Y202F led me to further characterise APP distribution in the 

cell line. As the data for mean particle size exhibited a wide range of values, it 

was thought the more accurate way to quantify APP localisation and assess 

whether APP is accumulating in the perinuclear region as hypothesised, was 

to quantify the phenotype of APP localisation in the APP HeLa cells. Cells 

were catagorised into 3 phenotypes; cytoplasmic, perinuclear or cytoplasmic 

and perinuclear. Figure 3.3A shows examples of each of the three 

phenotypes. Cytoplasmic APP was characterised as being visualised in 

punctate vesicles throughout the cell, with no distinct pool in the cell. Whereas 

APP classed as perinuclear showed a large, clear accumulation of APP 

around the nucleus, with little or no APP containing particles though the 

cytoplasm of the cell. Cytoplasmic & perinuclear was classed as a 

combination of the two. Analysis revealed there was a basal level of around 

40 % of cells with an APP distribution of cytoplasmic & perinuclear (Figure 

3.3B) in cells treated expressing APP alone, APP + CFP and APP + Mint1-

Y202F. This proportion increased to 51 % in APP + Mint1-WT cells.  

However, the principal change in APP localisation following expression of the 

different Mint1 constructs was shown in the large increase in perinuclear 

localised APP. Cells expressing APP, APP + CFP or APP + Mint1-Y202F 

show little or no exclusively perinuclear APP (APP – 0 %, APP + CFP – 1.5 % 

and APP + Mint1-Y202F – 0 %). Whereas 31 % of cells overexpressing 

Mint1-WT exhibit a perinuclear phenotype for APP distribution (Figure 3.3B). 

Chi squared statistical analysis of the data, with Bonferroni correction, showed 

that the phenotypes observed in cells expressing APP and Mint1 were highly 
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significantly different to all other conditions (p value <0.0001 when compared 

to all other conditions, adjusted α value was 0.008).  

 

This observation coupled to the quantification of the number and size of APP 

containing particles per cell (Figure 3.2) suggests Mint1 recruits APP to the 

perinuclear region in a phosphorylation dependent manner.  

 

It is known that APP is trafficked through the Golgi, TGN and to the plasma 

membrane before being recycled through the endocytic pathway (Claeysen et 

al. 2012). With this in mind, it is unclear, from the data in this study thus far, at 

which stage of the APP trafficking pathway Mint1 acts. From the literature we 

know that APP interacts with the YENPTY motif in the C-terminus of APP and 

that this motif is essential for APP endocytosis (Perez et al. 1999). With this in 

mind I hypothesise the effect of Mint1 on APP trafficking seen in figures 3.2 

and 3.3 occurs after APP is trafficked to the plasma membrane. 
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Figure 3.3 – Mint-WT increases the proportion of perinuclear localised APP, in a 
phospho-dependent manner. Phenotypic analysis was carried out on APP-HeLa cells 
that had been transiently transfected with Mint1 constructs and APP expression 
induced for 48 hours. A) Representative images of the three phenotypes of APP 
localisation analysed. Scale bar represents 10 µm. B) Quantification of the 
representation of each phenotype, normalised to the percentage of cells analysed. 
Between 45-60 cells were analysed for each treatment across three separate 
coverslips. Chi squared statistical analysis was carried out, * indicate APP + MintWT 
was highly significantly different to other coditions.  
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3.2: Mint1 recruits APP to the perinuclear region after APP has been 
trafficked through the cytoplasm. 
 

Thus far this study has shown that overexpression of Mint-WT in a stable, 

APP expressing HeLa cell line, recruits APP to the perinuclear region in a 

phospho-dependent manner (Figures 3.2 and 3.3). However, it is unclear at 

which stage in the trafficking cycle APP is arrested. In order to address this, a 

time course experiment was carried out. It was first established, by Western 

blot analysis of APP-HeLa cell lysates, how early APP could be detected 

following doxycycline induction of the APP-HeLa cell line. APP-HeLa cells 

were cultured in media containing 1 µg/mL doxycycline and lysed 0, 3, 6, 12 

and 24 hours after the addition of the doxycycline. Figure 3.4A shows APP 

can begin to be detected by Western blotting between 3 and 6 hours after 

doxycycline induction. The blot also shows that the APP doublet band seen 

on previous Western blots (Figure 3.1B) is only detected after 12 hours, this 

indicates that post-translational modifications don’t occur immediately after 

APP expression.  

 

Using the same time points, I examined whether the cellular localization of 

APP changed over time when over expressing Mint1. Cells were first 

transfected with Myc-tagged Mints and APP expression induced after 24 

hours using 1 µg/mL doxycycline. Figure 3.4B shows representative images 

of APP and Mint expression in APP-HeLa cells. The images from 3, 6 and 12 

hours show a fairly even distribution and amount of APP across all conditions. 

However, at 24 hours the distribution of APP in cells over-expressing Mint-WT 

looks considerably different to that seen in APP and APP + MintY202F cells.  

The number of APP containing particles is quantified in Figure 3.4C. APP 

alone and APP + Mint-WT show particle numbers of no significant difference 

to each other (all Adjusted P values >0.999), however, at 24 hours the 

number of APP containing particles in APP alone cells is around 2 fold higher 

than the number of APP containing particles in APP + Mint-WT cells (Mean 

number of APP containing particles 281 and 142 respectively, Adjusted P 

value <0.001). Although following the same trend as the number of particles in 

APP alone cells, cells overexpressing Mint-Y202F show particle numbers 
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considerably higher at all time points, with the most significant being at 24 

hours, where the number of APP containing particles in APP + Mint-Y202F 

cells is 1.5 fold higher that the number seen in APP alone cells, and 2.8 fold 

higher than that seen in APP + Mint-WT cells (Mean number of APP 

containing particles in APP + Mint-Y202F 407) (Figure 3.4C).  
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Figure 3.4 – Mint1 recruits APP to the perinuclear region once the protein has been 
trafficked through the cytoplasm. 24 hours after transfection with Mint1 constructs in 
APP-HeLa cell lines APP expression was induced. Cells were fixed or lysed at fixed 
time points following induction. A) Representative images showing the localisation of 
APP 0, 3, 6, 12 and 24 hours after APP induction. Cells transfected with Mint-WT show 
APP is internalized after 6 hours and held, mainly in the perinuclear region, whereas 
cells expressing APP alone or Mint-Y202F show APP moving towards the perinuclear 
region before being recycled back towards the plasma membrane. B) Western blot 
analysis showing APP can be detected around 6 hours following induction. Actin is 
used as a loading control. C) Quantification of the number of APP containing particles 
per cell. The number of particles in cells expressing Mint-WT decreases significantly 
after 12 hours when compared to cells expressing Mint-Y202F or APP alone. Between 
15 and 40 cells from three separate coverslips were analysed for each condition and 
time point across three different cover slips. Error bars show the standard error of the 
mean. 
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Further quantification of the distribution of APP over time was carried out 

using phenotypic analysis as previously described for Figure 3.3. Figure 3.5A 

shows representative images for each phenotype. There was no statistical 

difference in APP localisation between conditions at 3, 6 and 12 hours (All P 

values >0.1, α value=0.0166). Under all conditions APP was mainly 

characterized as being cytoplasmic at 3 hours, whereas at 6 hours APP 

localisation is evenly divided between cytoplasmic and cytoplasmic & 

perinuclear. However, after 12 hours APP distribution in cells expressing 

Mint1-WT becomes increasingly perinuclear, whereas in those expressing 

Mint1-Y202F and APP alone the distribution of APP returns to being mostly 

cytoplasmic. 24 hours after APP induction, cells expressing Mint1-Y202F and 

APP alone show phenotypes similar to the distribution of APP at 3 hours, with 

90 % and 78 % of APP respectively being cytoplasmic (Figure 3.5B). In 

contrast to this, 26 % of cells expressing Mint1-WT are characterised as 

having a perinuclear phenotype with respect to APP distribution (At 24 hours 

P=<0.0001 when APP + MintWT was compared with other conditions). Data 

from figures 3.4 and 3.5 indicate that the phosphorylation state of Mint1 

affects APP localisation after internalisation of the protein.  
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Figure 3.5 – The phosphorylation state of Mint1 alters the subcellular 
distribution of APP after 12 hours. APP expression was induced in HeLa cells 
transiently expressing Mint1 constructs, cells were fixed at intervals and APP 
distribution scored according to three phenotypes. A) Representative images 
of phenotypes. B) Quantification of the proportion of cells for each of the three 
phenotypes characterised. The phenotypes are similarly represented up to 6 
hours for each treatment. However, after 6 hours post-APP induction, the 
proportion of perinuclear and cytoplasmic & perinuclear APP rises in cells 
overexpressing Mint1-WT, whereas the proportion of cells with cytoplasmic 
APP increases in cells with no Mint1 or Mint1-Y202F. Between 30 and 60 cells 
were analysed for each condition from three separate coverslips. Pair wise chi 
squared statistical analysis, with Bonferroni correction, was carried out for 
each condition. 
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All images were collected and figures compiled using the same magnification 

and objective. Figure 3.4A shows cells expressing APP alone appear to be 

larger than those expressing Mint1. Initially it was thought this size difference 

observed between cells not expressing Mints and those which do was a 

significant effect brought on by Mint1. However, from analysing the area of 

cells that had been transfected with Mint1-WT, Mint1-Y202 or CFP before 

APP expression was induced, no significant difference was observed (data 

not shown). The apparent size difference seen between APP alone cells and 

those expressing Mint1 was therefore attributed to the effect of transfection 

alone as APP only cells have not been transfected, this observation highlights 

the need for an empty plasmid control. 

 

3.3: N1-Src phosphorylates N-terminal regions of Mint1  
 

Previous data from the laboratory has shown that Mint1 is phosphorylated by 

C-Src (Figure 1.4). Mint1 is a neuronal specific protein, and pathogenic 

processing of APP only occurs in neurons, therefore the neuronal splice 

variant N1-Src was examined for it’s ability to phosphorylate Mint1 in order to 

establish whether the neuronal kinase is more likely to be the neuronal Mint1 

kinase isoform. Figure 3.6 shows a Western blot an in vitro kinase assay 

comparing the phosphorylation of varying concentrations of the Mint1 N-

terminal peptide with both N1- and C-Src. Also shown, is the sequence 

structure of the phospho-box region of Mint1 used in kinase assays (Figure 

3.6A). Highlighted are the three tyrosine residues that can be phosphorylated 

processively. Evidence from the lab shows that phosphorylation is dependent 

on the canonical YEEI SH2 binding motif. From initial experiments, using the 

Mint1 1-314, it was assumed there was an additional PXXP motif (a known 

SH3 binding motif) in the N terminal of Mint1. However, the fact that the short 

phospho-box peptide, which contains no PXXP motif, shows a similar 

discrepancy between C- and N1-Src phosphorylation suggests there are 

additional factors in the preferential binding by N1-Src. In order to draw firm 

conclusions from the assay the experiment would need to be repeated 

numerous times in order to establish the kinetics of the reaction. It is also 
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notable that clear loading controls to demonstrate the equal concentrations of 

Src kinases would be needed in future experiments. 

 

  

Figure 3.6 – N1-Src phosphorylates Mint1 N-terminal regions. A) The 
‘phospho-box’ region of Mint1, amino acids 183-208. Underlined are the 
three tyrosine residues on which Mint1 is phosphorylated. These residues 
are processively phosphorylated in the order indicated by the arrows. B) In 
vitro kinase assays of Mint1 N-terminus (1-341, top panel) and phospho-box 
(183-208, bottom panel).  Varying concentrations of Mint1 N-terminal 
regions were incubated with C- or N1-Src in the presence of ATP for 90 
minutes. Phosphorylation of the peptides was visualised using an anti-
phospho tyrosine (PY20) antibody. Kinase concentrations were all at 5 nM. 
Smeared bands seen with high concentrations of N1-Src are likely due to 
photo bleaching from high signal. Figure is missing positive controls. 
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3.4: N1-Src increases the accumulation of perinuclear APP when in the 
presence of Mint1, independent of tyrosine phosphorylation at Y202. 
 
In vitro data (Figure 3.6) suggests N1-Src may have a higher affinity for Mint1 

than C-Src. I therefore went on to examine the effect of overexpression of N1-

Src on the process of Mint1 mediated APP trafficking. I hypothesised the 

overexpression of N1-Src in cells expressing APP and Mint1-WT will increase 

the interference of APP trafficking seen in figures 3.2-5. To test this I utilized a 

stable, inducible Flp-In N1-Src-HeLa cell line, which had been produced in the 

laboratory by Phillip Lewis. N1-HeLas were transfected with YFP-fusions of 

APP plus CFP-fusions of Mint1 proteins and N1-Src expression induced, 

where required, 24 hours later. After 48 hours of N1-Src induction cells were 

fixed and imaged.  

 

Figure 3.7A shows illustrative images of N1-HeLa cells. The effect of N1-Src 

on APP localisation has been quantified in Figure 3.7B. The number of APP 

particles was analysed for each condition, from the quantification of the 

number of APP containing particles its appears that when APP and Mint1 are 

expressed along with N1-Src the accumulation of APP in the perinuclear 

region increases when compared to APP and Mint1 alone. In cells lacking N1-

Src expression, Mint1-WT expressing cells had 47 % fewer APP containing 

particles than those expressing Mint1-Y202F (Mean particle number/cell 229 

and 430 respectively, Adjusted P value 0.0266). Similarly, in cells expressing 

N1-Src, Mint1-WT cells exhibited 56 % fewer APP vesicles than Mint1-Y202F 

cells (Mean particle number/cell 113 and 263 respectively, Adjusted P value 

0.0044)  (Figure 3.7B). This demonstrates that inhibiting Mint1-Y202 

phosphorylation has the same effect in cells over-expressing N1-Src as seen 

previously in APP-HeLa cells. Importantly however, cells expressing Mint1-

WT + N1-Src had 50 % fewer APP containing particles than cells expressing 

Mint1-WT without N1-Src (Adjusted P value 0.0251). On a similar note, Mint1-

Y202F + N1-Src expressing cells had 40 % less APP containing particles than 

cells expressing Mint1-Y202F with no N1-Src (229 and 430 respectively, this 

difference was found to be not significant) (Figure 3.7B). Importantly, this 

effect is not seen to be dependent on phosphorylation at Y202. The 
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expression of N1-Src is seen to cause a similar decrease in cells expressing 

both Mint1-WT and the phospho-resistant mutant Mint1-Y202F. This suggests 

an additional level of regulation of APP trafficking and processing.  
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Figure 3.7 – N1-Src increases the accumulation of perinuclear APP when 
in the presence of Mint1, in a Y202 phospho-independent manner. N1-
Src-HeLa cells were co-transfected with APP ± Mint1 constructs, prior to 
N1-Src induction for 48 hours. A) Representative images showing YFP-
APP (yellow), CFP-Mint1 (blue) and FLAG-N1-Src (red) expression and 
localisation in HeLa cells. B) Quantification of APP particle number in N1-
Src-HeLa cells. 12 – 26 cells from three different coverslips were analysed 
for each condition. Statistical significance was calculated using one-way 
ANOVA with a post-hoc Tukey test, stars denote statistically significant 
means. Scale bar= 10µm 
 



	
   61	
  

 

3.5: Mint1 recruits N1-Src to the perinuclear region, in a Y202 phospho-
independent manner in HeLa cells  
 
Data from figure 3.7 suggests Mint1 and N1-Src work to recruit APP to the 

perinuclear region through a mechanism independent of Mint1 

phosphorylation at Y202. In order to further study this mechanism, the cellular 

localisation of N1-Src in the HeLa cells was examined. Srcs are membrane-

associated kinases usually expressed throughout the cell and have seen to be 

associated with endosomes and the TGN (Kaplan et al. 1992). Phenotypic 

analysis was carried out in order to quantify the change in N1-Src localisation 

(Figure 3.8). It was found around half of N1-Src under all conditions is 

distributed in both the perinuclear region and the cytoplasm. However co-

expression of N1-Src and APP with either Mint1-WT or Mint1-Y202F 

significantly increases the proportion of cell in which N1-Src is localised 

specifically perinuclearly to 42 % and 35 % respectively compared to 5.3 % in 

cells lacking Mint1 (Figure 3.8B). Notably, this effect does not appear to be 

dependent on APP or Y202 phosphorylation. Cells expressing N1-Src and 

either of the Mint1 constructs, but not APP, also showed that N1-Src was 

localised to the perinuclear region in 25 % of cells (Figure 3.8B). Statistical 

analysis of the data, using chi squared tests with Bonferroni correction, shows 

that N1-Src localisation differs greatly between N1 alone or N1 + APP cells 

and those expressing N1-Src, APP and Mint1-WT or -Y202F (P=<0.0001 for 

each pairwise comparison, adjusted α= 0.0033). Similarly, cells expressing 

N1-Src ± APP show significant difference to those expressing N1-Src + Mint1-

WT or –Y202F (P=0.003 and 0.002 respectively) but to a lesser extent. 

Although the change in N1-Src localisation is not as pronounced in cells 

expressing Mint1 in the absence of APP, there is still a noticable increase in 

the proportion of perinuclear N1-Src. 
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Figure 3.8 – Mint1 recruits N1-Src to the perinuclear region in a Y202 
phospho-independent manner. N1-HeLa cells we co-transfected with CFP-
Mint1 and YFP-APP constructs before N1-Src expression was induced. Cells 
were fixed and stained after 48 h of N1-Src induction. A) Representative 
images of N1-HeLa cells expressing combinations of Mint1, APP and N1-Src. 
Images show examples of each of the three phenotypes of N1-Src 
localisation; cytoplasmic (top), cytoplasmic and perinuclear (middle) and 
perinuclear (bottom). Scale bars= 10 µm B) Quantification of the change in 
N1-Src phenotypes observed. Data showed as the % of cells analysed 
displaying each phenotype. Between 25-50 cells were analysed for each 
condition from three different coverslips. 
	
  

N1-Src localisation 
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3.6: Co-expression of Mint1 and N1-Src stabilises APP and leads to a 
change in YFP-APP fragment size 
 
Following the observations that N1-Src increases accumulation of APP in the 

perinucler region, and that Mint1 recruit N1-Src to the perinuclear region in an 

N1-HeLa cell line, I then investigated the effect of overexpression of Src on 

APP expression levels in the cell line. A C-Src HeLa cell line was also 

available in the laboratory (also prepared by Philip Lewis) and so I compared 

expression levels of APP, Mint1 and Src in both N1- and C-Src HeLa cell lines 

(Figure 3.9). Src-HeLa cell lines were transfected with YFP-APP and myc-

Mint1 constructs, before Src expression was induced by incubation with 1 

µg/mL doxycycline for 48 hours. Analysis by Western blot shows APP levels 

increase with the co-expression of N1-Src and Mint1, irrespective of Mint1 

phosphorylation state. Cells co-expressing Mint1-Wt or Mint1-Y202F and N1-

Src showed a significant increase in YFP-APP signal at between 110-150 

kDa. The presence of the heavier APP band at 140 kDa seen in cells co-

expressing N1-Src and Mint1 isn’t present in samples not expressing the 

kinase (Figure 3.9A). This suggests the presence of N1-Src may result in 

increased post-translational modifications of APP. The increase of APP 

expression seen in N1 expressing cells is not observed in those co-

expressing C-Src and Mint1. Co-expression of Mint1 and APP in C-Src HeLas 

results in the presence of an YFP-APP band just above the original at 130 

kDa. This suggests that expression of Mint1 increases some posttranslational 

modification of APP, and co-expression of Mint1 (Figure 2.9B), APP and N1-

Src further increases this causing the protein to run at 140 kDa. In addition to 

affecting full length APP, the expression of Mint1 and N1-Src also causes a 

change in molecular weight of lower mass YFP-APP fragments from 30 kDa 

to 25 kDa (Figure 2.9A, second panel). This shift is not observed when APP + 

Mint1 are expressed in the presence of C-Src (Figure 2.9B, second panel). 

Curiously, although the effect seen differs between the ubiquitous C-Src and 

neuronal N1-Src the effect does not appear to be Y202 phosphorylation 

dependent as overexpression of both Mint1-WT and Mint1-Y202F alter APP 

expression levels and size of APP fragments detected in the presence of N1-

Src. These observations, coupled with previous the previous observations of 
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N1-Src and APP localisation (Figures 2.7 and 2.8) suggest the accumulation 

of APP and N1-Src, most likely in the TGN, causes a change in APP 

modification, stabilisation and processing. 
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Figure 3.9 – N1-Src stabilises full length APP and results in a change in the 
mass of YFP-APP fragments detected. N1- or C-Src HeLa cell lines were 
transfected with Myc-Mint1, YFP-APP and Src kinase expression induced for 48 
hours before lysing. Samples were analysed by Western blotting and probed with 
α-Myc (Mint1), α-GFP (YFP-APP +CFP-control), α-FLAG (Src) and α-actin. A) 
Western blot analysis of N1-HeLa cell lysates. YFP-APP (top panel) levels are 
seen to increase when Mint1 and N1-Src are co-expressed (lanes 11-14). A lower 
molecular weight YFP-APP fragment is also seen when co-expressed with Mint1 
and N1-Src. This fragment is most-likely the C-terminal end of APP fused with the 
YFP fluorophore (Second panel lanes 7-14). B) C-Src HeLa cells were transfected 
with Mint1 and APP as above. Unlike when co-expressed with N1-Src and Mint1 
YFP-APP levels are not seen to increase. The presence of the APP doublet seen 
in previous experiments was detected with co-expression of Mint1 and APP, 
however the intensity of the YFP-APP band does not change upon expression of 
C-Src. Similarly, no change is seen in the molecular weight of smaller YFP-APP 
fragments. All conditions are shown in duplicate. Actin was used as a loading 
control, whilst CFP was used as a transfection control replacing CFP-fusion Mint1 
constructs (represented by second panel in A and B lanes 5 and 6). 
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4: Discussion  
 

It is well documented that the neuronal adaptor protein Mint1 binds to and 

alters the trafficking and processing of APP (Borg et al. 1998; King et al. 2003; 

Miller et al. 2006). Although the mechanisms behind this regulation were 

previously unclear, recent studies have highlighted a number of regulatory 

mechanisms in both the C- and N- terminal ends of Mints 1 and 2 (Chaufty et 

al. 2012; Matos et al. 2012; Xie et al. 2012). In addition, recent observations in 

the laboratory have identified a further regulatory mechanism in the Mint1 N-

terminus via Src mediated tyrosine phosphorylation (Dunning et al., 

manuscript in preparation). In this study I further examined the regulation of 

APP trafficking by Mint1 and N1-Src. I have shown that abolition of Mint1 

phosphorylation by Src at Y202 disrupts the APP trafficking cycle, most likely 

after internalisation, in a stable, inducible APP-HeLa cell model (Figures 3.1-

3.5). In addition to this it has been observed that APP and N1-Src are 

recruited to the perinuclear regions of cells in the presence of Mint1 in an 

apparent phospho-independent mechanism suggesting that N1-Src is the 

preferential isoform of the kinase rather than c-Src (Figures 3.6-3.9).  

 

4.1: Src phosphorylation of Mint1-Y202 regulates APP trafficking, most 
likely after internalistation 
 
By utilizing a stable, inducible APP expressing HeLa cell line I examined the 

effect of overexpressing both Mint1-WT and the phospho-resistant mutant 

Mint1-Y202F. It was seen that after 48 hours of Mint1 and APP expression, a 

large proportion of APP was recruited to the perinuclear region. However, 

when overexpressing Mint1-Y202F the majority of APP was seen to be 

cytoplasmic (Figures 3.2 and 3.3). As specific cellular localisation markers 

weren’t used in this study I cannot categorically identify the compartments in 

which APP is localised. From studying the literature it has been shown that 

APP and Mint colocalise in the TGN (Borg et al. 1996; Sastre et al. 1998; 

Biederer et al. 2002) I therefore hypothesize that the accumulation of APP 

observed in this study would also show APP mainly localizing to the TGN 
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when in the presence of Mint1-WT. However, it would be interesting and 

informative to examine whether this is the case and also to monitor APP 

localisation in endosomes, and more importantly which endosomes using 

specific subcellular markers.  

 

In addition to this time course experiments, exploiting the inducible nature of 

the Flp-In HeLa cell system, demonstrated that mutation of Y202 disrupted 

APP trafficking between 6 and 12 hours after doxycycline induction of the 

protein (Figures 3.4 and 3.5). These results suggest that the phosphorylation 

of Mint1 at tyrosine residues 202, 191 and 187 by Src kinase is an important 

regulatory step in APP trafficking, and therefore processing. This regulatory 

mechanism is similar to that seen to regulate the Mint2-APP interaction in a 

study by Chaufty et al. Whilst this study also observed an increase in APP 

internalisation with Mint2 phosphorylation they observed very different 

subcellular localisation of the proteins involved.  

 

It was also recently found that Mint proteins may play a role in the insertion of 

APP into the plasma membrane (Chaufty et al. 2012). This study showed that 

Mint knock-out neurons showed a significant decrease in the amount of APP 

which had been newly inserted into the membrane. Data from time course 

experiments in this study has shown that the APP trafficking cycle is disrupted 

following internalisation of APP (Figure 3.4). APP in cells overexpressing the 

Mint1-WT is seen to remain localised to the perinuclear region whereas over-

expression of Mint1-Y202F allows APP to be trafficked back to the plasma 

membrane. It is possible that phosphorylation of Mint1 at these residues 

either increases endocytosis of APP or may decrease the reinsertion of APP 

into the membrane following endocytosis. Data from this and previous studies 

suggest it may regulate both processes.  Previous studies carried out in the 

lab found that Mint1-WT causes APP to stabilise in COS7 cells, although this 

result is not seen in HeLa cells in this study unless also expressed in the 

presence of N1-Src, this may be due to increased endocytosis and decreased 

insertion of APP into the membrane causing it to accumulate in the cell.  
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4.2: The phosphorylation state of Mint1-Y202 alters APP and N1-Src 
localisation. 
 

Here I have shown that APP accumulates in the perinuclear region when 

Mint1-WT is expressed and this phenotype isn’t seen in cells expressing 

Mint1-Y202F. Chaufty et al. report that both APP and Mint2 localise 

predominantly in autophagic vesicles when phosphorylated whereas 

expression of phospho-resistant Mint2 results in APP and Mint2 localising to 

the perinuclear region (Chaufty et al. 2012). Interestingly, in many studies 

examining the effect of Mint proteins on APP processing and trafficking, the 

two isoforms are used interchangeably and previous differences in results 

have been attributed to varying expression levels (Ho et al. 2008). Although 

the proteins appear to have the same affect on the overall levels of APP and 

processing of APP, comparisons between this study and the one carried out 

by Chaufty et al. suggest that while the end products may not differ, the 

mechanisms by which Mint1 and 2 regulate APP and the trafficking pathways 

involved differ significantly. This suggests the two proteins have distinct roles 

in regulating trafficking of the protein and moreover that these roles are 

regulated by the N-terminus, as this is the region in which the proteins differ 

(Rogelj 2006). 

 

In addition to the change in APP localisation observed in this study, a change 

in N1-Src localisation was observed when the kinase was co-expressed with 

Mint1. Curiously, the accumulation of N1-Src in the perinuclear region 

appears to be phospho-independent (Figure 3.8). Previous work had been 

carried out in the laboratory to assess whether this effect was seen with C-Src 

with no success (data not shown). These observations, coupled with the in 

vitro kinase assay and HeLa cell lysate data from this study (Figures 3.6 and 

3.7), strongly suggest that N1-Src is the preferential Src kinase isoform for 

Mint1 phosphorylation at this site and that the kinase has specific effects on 

APP trafficking and processing. There have been numerous theories as to 

why Aβ plaques only form in the brain and not in other tissues as APP is 

expressed ubiquitously (Gotz et al. 2011). One of the factors thought to 
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influence this is the specialised trafficking pathway APP goes through in 

neuronal cells. The observations shown in this study indicate that the 

specificity of neuronal isoforms of proteins, Mint1 and N1-Src, add to neuron 

specific regulatory pathways and might explain why APP is only pathologically 

processed in the brain. 

 

4.3: The potential affect of Mint1 phosphorylation on Aβ accumulation 

 

Previous studies have shown that the majority of Aβ-40 is produced at the 

plasma membrane (Skovronsky et al. 2012), with an increase in APP 

internalisation correlating with an increase in toxic Aβ-42 production 

(Claeysen et al. 2012). It is therefore possible to hypothesize that disruption of 

Mint1-Y202 phosphorylation by Src would also correlate with a decrease in 

Aβ-42 production, this effect would need to be assessed in further studies. 

However, it would also be important to quantify the amount of APP in the 

cells. The distribution of APP in cells overexpressing Mint1-Y202F is mainly 

cytoplasmic so it is possible that it is present in endosomal vesicles that have 

been described as the compartment where the majority of Aβ-42 cleavage 

occurs (Ferreira et al. 1993; Vassar et al. 1999). On the other hand 

overexpression of Mint1-WT, which can be phosphorylated, results in the 

accumulation of APP in the perinuclear region. Previous studies, using both 

cell and animal models, have suggested that intracellular Aβ accumulation is 

more cytotoxic than extracellular plaque deposits (Koistinaho et al. 2001; Yu 

et al. 2004; LaFerla et al. 2007). Therefore the accumulation of APP in the 

perinuclear regions may result in a build up of highly toxic intracellular Aβ. For 

this reason a potential treatment for AD may be to disrupt the Mint1-APP 

interaction by targeting Y202 phosphorylation and therefore allowing normal 

trafficking of APP from the cell. This coupled with previous conflicting 

evidence as to what specific effect Mint1 has on APP suggests that levels of 

Mint1 must be precise and any alterations in expression levels can affect APP 

processing. 
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4.4: The Mint1-N1-Src-APP interaction may alter C-terminal APP 
processing 
 

Whilst it is known that APP is cleaved by α-, β- and γ- secretases, and these 

cleavage events and products have been widely studied, other APP cleaving 

sites have been identified. Lu and colleagues identified a short C-terminal 

peptide fragment of APP, named C31 (Lu et al. 2000). They found this 

fragment was produced as a result of caspases or a caspase-like protease at 

aspartic acid residue 664 (D664), and that the presence of this fragment has 

cytotoxic effects. Figure 3.9 shows the effect of APP levels and processing in 

cells overexpressing N1- or C-Src kinases. In cells co-expressing N1-Src, 

Mint1 and APP a change in the mass of the C-terminal YFP-tagged peptide is 

seen. The mass of the peptide changes from around 28 kDa to 25 kDa. It is 

possible this change is due to a shift in APP cleavage from the expected γ-

secretase cleavage site, which would result in a YFP-C57 peptide having a 

mass of around 28 kDa, to the potential caspase cleavage site producing the 

shorter YFP-C31 fragment having a mass of around 25 kDa. Figure 4.1 shows 

a schematic of the two C-terminal products and their masses. The 3 kDa 

difference between the two peptides is representative of the shift seen in 

Figure 3.9, thus making it feasible that the presence of N1-Src and Mint1 

results in significant changes in APP processing.  
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One study noted that production of the C31 fragment curiously appeared to 

rely on the presence of full length APP. They proposed that dimerisation of full 

length APP triggered this alternative cleaving mechanism, resulting in 

cytotoxic C31 production (Park et al. 2009). Taking these studies in to 

consideration, one possible explanation for the shift in C-terminal APP 

processing is that the presence of N1-Src and Mint1 causes APP to dimerise, 

thus stabilising the protein and explaining the increased levels of full length 

APP seen in the N1-HeLas but not in the APP-HeLas and, in turn, causing a 

change in the C-terminal cleavage site. Significantly, neither the increase in 

full length APP or the shift in C-terminal APP fragment size is seen in C-Src 

HeLa cells, further implying that N1-Src plays a more important role in APP 

trafficking and processing.  

 

Notably this effect does not appear to be dependent on Y202 phosphorylation 

as it is seen in cells expressing both Mint1-WT and Mint1-Y202F. Whilst this 

observation indicates that the change observed does not rely on 

phosphorylation of Mint1 at Y202, it is possible that N1-Src kinase 

Figure 4.1 – Diagram showing the alternative cleavage sites and products of the APP C-
terminus. APP can be cleaved either at threonine 638 by γ-secretase to produce the longer 
C57 fragment. Alternatively caspase can cleave APP at aspartic acid residue 664 to 
produce the shorter C31 fragment. The presence of these differential cleavage sites may 
explain the change in mass of YFP-tagged C-terminal APP seen in Fig 3.9 upon 
cotransfection of APP with Mint1 and N1-Src.  
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phosphorylates Mint1 or APP at a different location in the protein and that this 

site of phosphorylation is specific to N1-Src, most likely as a result of the 

amino acid inset in the SH3 domain. As multiple phosphorylation sites on both 

APP and Mint1 have been identified (Borg et al. 1996; Chang et al. 2006; 

Sakuma et al. 2009; Chaufty et al. 2012), it is reasonable to suspect that N1-

Src may phosphorylate a number of residues on either protein. This again 

complicates the mechanisms by which APP trafficking and processing is 

regulated by adding yet another layer of transient post-translational 

modification in order to influence the fate of the protein. Importantly the 

change in APP cleavage products is only seen in cells co-expressing N1-Src, 

APP and Mint1 and is not seen in those cells expressing only N1-Src and 

APP. This suggests that the three proteins are interacting, possibly forming a 

complex to regulate APP processing and that the effects seen in figure 3.9 are 

both Mint1 and N1-Src dependent. 

 

4.5: Regulation of APP adaptor proteins by tyrosine phosphorylation 

 

Despite the volume of studies which have been carried out investigating how 

neuronal PTB adaptor proteins regulate APP, and notable recent advances in 

our understanding of these mechanisms, the overall picture of how the 

proteins regulate APP trafficking and processing and specifically how they 

work together to do this is generally unknown. However, it is apparent that 

phosphorylation is an important process in this regulation. Not only can APP 

be phosphorylated on multiple residues, so can the adaptor proteins. Mint1, 

for example, can be both N- and C-terminally phosphorylated (Sakuma et al. 

2009; Chaufty et al. 2012; Matos et al. 2012). In addition to this it has been 

shown that the other PTB adaptor proteins can be regulated by tyrosine 

phosphorylation; Fe65 by Abl (Perkinton et al. 2004; Vazquez et al. 2009), 

Dab1 by Src and Fyn (Hoe et al. 2008; Minami et al. 2011) and JIP1 by JNK 

(Nihalani et al. 2007). As the proteins all bind to the same YENPTY motif of 

APP to regulate trafficking and processing of the protein, understanding the 

mechanisms behind regulating which adaptor protein binding is favoured 

under certain conditions may be a key step in understanding the triggers 

behind the development of AD. A study by Tamayev and colleagues in 2009 
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sought to investigate the role of phosphorylation in regulating the proteins that 

interact with APP (Tamayev et al. 2009). They investigated the effect of 

phosphorylating Y682, in general the study found that phosphorylation of this 

residue increased binding of SH2 domain containing proteins, but had no real 

effect on proteins containing a PTB binding domain. The observation that 

these PTB domain adaptor proteins bind to APP in a phospho-APP 

independent manner highlights the importance of third party regulation, likely 

by tyrosine phosphorylation, on regulating their interaction with APP. With this 

in mind it is likely that the adaptor proteins compete for binding with APP, with 

tyrosine phosphorylation, potentially along with other interactions, regulating 

which adaptor is bound.  

 

4.6: Conclusions and future work 
 
Earlier investigations into the effects of Mint proteins on APP in mice models 

have been largely conflicting. Studies investigating the effect of Mint 

knockdowns (Sano et al. 2006; Saito et al. 2008) and overexpression (Borg et 

al. 1998; Mueller et al. 2000; King et al. 2003; Parisiadou and Efthimiopoulos 

2007) studies have reported both increases and decreases in Aβ production. 

The conflicts in these studies may be attributable to the different mice strains 

used, extent of knockdown or methods of overexpression and knockdown. It 

is likely that it is necessary to have the right levels of Mint proteins in order for 

them to correctly regulate their interaction with APP. It is important to 

remember there is a whole catalogue of proteins with which APP interacts, 

and specifically with the YENPTY motif (Tamayev et al. 2009) suggesting the 

protein has many functions and that disrupting it’s interaction with one may 

affect the interaction of the protein with the others. It is therefore important to 

take data from both In vitro, cell and whole organism studies when attempting 

to elucidate the complex mechanisms of regulation involved.  

 

Despite the conflicting results it is apparent that Mint proteins do play a 

significant role in regulating APP trafficking and processing. Evidence of 

altered Aβ accumulation in mice models suggests that the Mint1-APP could 
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be an important therapeutic target for treating AD. Whilst it is feasible that 

knockdown of Mint expression would reduce Aβ levels evidence from this 

study suggests that by targeting the Mint1-APP interaction specifically by 

disrupting Mint1 Y202 phosphorylation may be a more specific target 

therefore having fewer side effects on other Mint1 functions. Previous 

experiments in the laboratory have suggested that the effects of mutating 

Y202 is specific to the Mint1-APP interaction as trafficking of the NR2B 

subunit of the NMDA receptor, another Mint1 interacting protein (Setou et al. 

2000), was not disrupted (Dunning et al., manuscript in preparation). This 

could potentially be done via small molecule inhibitors or gene therapies.  

 

All together, the number of mechanisms by which the Mint-APP interaction is 

regulated, and the fact that they are regulated by phosphorylation (a 

reversible process) suggests that, under physiological conditions, these 

regulatory mechanisms are transient and highly spatially and temporally 

regulated. The complexity produced my numerous regulatory systems, 

coupled with the difficulty of working with neuronal cells and the use of 

heterologous cell systems, may go some way to explain the contradictory 

results seen from previous studies looking at the Mint-APP interaction. Future 

studies should incorporate the findings of this and other studies together to 

elucidate the precise mechanisms behind the regulation of the Mint-APP 

interaction and to assess how the various forms of regulation work together in 

order to find potential treatment targets for the prevention of Aβ plaque 

accumulation in the brains of patients with AD. 

 

This study has shed some light on the possible mechanisms behind the 

regulation of the Mint1 APP interaction. However, much future work would 

need to be done to fully elucidate the importance of Mint1-Y202 

phosphorylation by Src. Initially it would be important to identify the cellular 

compartments in which APP is located when coexpressed with either Mint1-

WT and Mint1-Y202F. Detailed knowledge of the cellular compartments in 

which APP and Mint1 are located would help to understand the effect on APP 

processing as the different APP cleaving enzymes are known to localise in 
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different compartments within the cell. Another key feature would be to assess 

the effect of Y202 phosphorylation on the production of both intra- and 

extracellular Aβ. This could be done using enzyme-linked immunosorbent 

assays (ELISA) as used in a number of previous studies (King et al. 2003; 

Sano et al. 2006; Ho et al. 2008). The effect of both N1-Src and Mint1 on APP 

trafficking would also need to be further assessed. Further co-localisation and 

Src knock out and recovery experiments would confirm whether the effects on 

N1-Src and APP trafficking seen in this study (Figures 3.6-3.9) were specific 

to these interactions. Given that the effects seen in N1-Src HeLa cells do not 

appear to be dependent on the phosphorylation of Y202 it would also be 

informative to screen the protein for further Src phosphorylation sites, most 

likely in the N-terminus of the protein. A number of further In vitro kinase and 

binding assays would allow the kinetics of N1- and C-Src phosphorylation of 

Mint1 to be elucidated as well as assessing whether the three proteins act to 

form a complex and in what ratio this may occur. As data from figure 3.9 

suggests that the presence of N1-Src may alter C-terminal cleavage of APP in 

the presence of Mint1 it may be that N1-Src causes a change in the complex 

formed leading to possible dimerisation of APP resulting in a switch from γ-

secretase cleavage to caspase cleavage of the protein. 

 

Finally, it would be important to validate the results seen in the HeLa cell lines 

by assessing whether the same effects are seen in neuronal cell lines. As AD 

is a neuronal disease these experiments are critical before firm conclusions 

can be made about the potential of the Mint1-APP interaction as a target for 

AD treatment. 

 

 

 

 

 

 

 

 



	
   76	
  

 

Definitions and abbreviations 
 

°C   Degrees Celsius 

α   alpha 

Aβ   Amyloid beta peptide 

AD   Alzheimer’s disease 

APP   Amyloid precursor protein 

APS    Amonium persulphate 

ATP   Adenosine 5’-triphosphate 

β   beta 

BSA   Bovine serum albumin 

C-terminal  Carboxy terminal 

CFP   Cerulium fluorescent protein 

CMV promoter Cytomegalovirus promoter 

DMEM  Dulbecco’s modified Eagle’s medium 

DMSO  Dimethyl sulphoxide 

DNA   Deoxyribonucleic acid 

E. coli   Escherichia coli 

ECL   Enhanced chemiluminescence 

ELISA   Enzyme-linked immunosorbent assay 

FBS   Fetal bovine serum 

γ   gama 

g   Gram 

GFP   Green fluorescent protein 

GST   Glutathione S transferase 

HCl   Hydrochloric acid 

HEPES  2-[4-(2-Hydroxyethyl)-1-piperazine] ethanesulphonic acid 

HRP   Horseradish peroxidase 

IgG   Immunoglobulin G 

IPTG   Isopropyl-β-D-thiogalactopyranoside 

k   kilo (prefix) 

L   Litre 
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µ   micro 

m   milli (prefix) 

M   molar 

Mint   Munc18 interacting protein 

NMDA   N-methyl-D-aspartate 

N-terminal  Amino terminal 

OD   Optical density 

PBS   Phosphate buffered saline 

PMSF   Phenylmethylsulfonyl fluoride 

RNA   Ribonucleic acid 

rpm   Rotations per minute 

SH   Src homology domain 

TEMED  N, N, N’, N’-tetramethylenediamine 

Tris   2-amino-2-(hydroxymethyl)-1,3-propanediol 

Tween-20  Polyoxyethylene sorbitan monolaurate 

YFP   Yellow fluorescent protein 
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