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Abstract 

Coral reef patches are connected via dispersal of larvae, i.e., larval connectivity, that varies 

across space and time. Larval connectivity supports gene flow, sustains fisheries, and 

stabilizes larval supply. Connectivity also enhances the effectiveness of marine reserves by 

facilitating valuable conservation processes. How larval connectivity responds to 

environmental factors, excluding oceanographic factors, is largely unknown, with little 

information available on the influence of external factors on connectivity patterns. I address 

this knowledge gap by identifying how environmental, climate, and habitat factors drive 

variability in larval connectivity. I correlate graph-theoretic proxies of larval connectivity 

with sea surface temperature (SST) and climate variables using Generalized Additive 

Models (GAM) and recursive partitioning with regression trees to assess each factor’s 

effect on connectivity between 487 reefs in Southeast Sulawesi, Indonesia over a 20-year 

period. I further simulate how coral reef habitat degradation over that period may change 

patterns of larval connectivity. There is a significant effect of El Nino, Pacific Decadal 

Oscillation (PDO), and Sea Surface Temperature (SST) on larval connectivity. SST above 

28°C decreased out-degree and in-degree by an average of 0.65 standard deviations and 

increased self-recruitment by an average of 0.74 standard deviations. This result means that 

as SST increases above 28°C, there is a decrease in both incoming and outgoing 

connections between reefs, and more larvae remaining within their source reef. Generalized 

Additive Model (GAM) analysis of the effect of SST on connectivity metrics shows higher 

explanation of variance at higher SST. This result supports the existence of an SST 

threshold at which connectivity for fish species in the region will predictably decline. 

Spatial analysis using spectral clustering shows a larger effect of reef location (spatial 

cluster) on connectivity metrics compared to SST. Generally, two out of six clusters have 

high self-recruitment while the remaining four clusters have high out-degree and in-degree. 

Habitat degradation decreases cumulative flow of larvae by 73 percent when comparing 

flow matrices before and after habitat degradation. Additionally, habitat degradation 

reduces variance of cumulative flow for coral trout and rabbitfish species. Further, these 

trends are predicted to continue under future habitat degradation values. These results allow 

us to predict how connectivity will change as SST and habitat degradation increase due to 

climate change.  
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Introduction 

Coral reef seascapes are composed of seemingly disconnected habitats, fragmented into 

multiple patches which may or may not be connected via dispersal and migration (Jones et 

al., 2009). This connectivity is defined as the “demographic linking of local populations 

through dispersal of individuals among them as larvae, juveniles, or adults” (Sale et al. 

2005). Understanding larval connectivity is essential to predicting population dynamics and 

sustainably managing marine species (Kough et al., 2013). One example is management of 

marine fisheries, which are a major source of food and livelihood for communities around 

the globe (Ramesh et al., 2019). Temporal and spatial variability of larval connectivity 

contributes to such fisheries, but also to conservation benefits of marine reserve networks. 

For example, more than 10 billion United States Dollars (value in 2010) in annual fisheries 

catch over a 10-year period resulted from transnational larval connectivity (Ramesh et al., 

2019). However, the main role and interplay of the drivers of annual connectivity 

variability is still unclear. 

Since larval connectivity measures a highly variable movement of very small individuals, 

the most widespread technique for quantifying larval connectivity patterns is the use of 

biophysical modeling (Swearer et al., 2019). Biophysical models couple oceanographic 

conditions with physiological and behavioral conditions of larvae to best predict larval 

movement in marine environments (Swearer et al., 2019). Biophysical modeling has been 

used to predict larval movement of coral species (Figueiredo et al., 2022; Faryuni et al., 

2024; Sciascia et al., 2022), fish species (Gurdek-Bas et al., 2022; Munguia-Vega et al., 

2017; Ramesh et al., 2019; Wang et al., 2022), and other invertebrate species (Ayata et al., 

2009; Meerhoff et al., 2025). However, there is a high level of uncertainty in these models, 

due to high variability in behavior and physiology and a lack of empirical data on the 

interactions of oceanographic currents and larval behavior (Chaput et al., 2022). Some 

studies have matched outputs from biophysical models with realized larval connectivity at 

regional scales (Cowen et al., 2006), while other studies have found a lack of predictive 

accuracy of biophysical models across large geographic and species scales (Toonen et al., 

2011). Still, biophysical models remain to date the best technique for estimating large-scale 

larval connectivity, and it is therefore important to further investigate the accuracy and 

predictive ability of these models to improve them for future use (Chaput et al., 2022). 
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Temporal variability in connectivity patterns may result from a range of factors, such as 

oceanographic currents, reproductive timing, or larvae mortality. These factors may work 

synergistically or antagonistically to change dispersal (Andrello et al., 2015). Approaches to 

connectivity studies that incorporate multiple factors will have the best chance to produce 

accurate predictions of variability in dispersal patterns (Bashevkin et al., 2020). The main 

known factors influencing connectivity variability include: (1) oceanographic factors, (2) 

physiological factors, and (3) climate change factors.  

Firstly, oceanographic drivers of larval connectivity patterns are largely dependent on 

oceanic currents. This dependency is due to the inability of most larvae to swim against the 

current (Munguia-Vega et al., 2017). Oceanic currents can predict spawning time, larval 

origin, and larval recruitment (Daudén-Bengoa et al., 2024). For example, oceanic 

circulation during spring and summer are the best predictors of Pacific red snapper 

(Lutjanus peru) dispersal (Munguia-Vega et al., 2017). Additionally, estuarine fish species 

that spawn in winter in the Iberian Atlantic coast more commonly disperse northward due 

to prevailing currents from the Iberian Poleward Currents (Cabral et al., 2021). Intra-

seasonal variability in ocean currents can create a spatially and temporally heterogeneous 

pattern of larval recruitment (Feng et al., 2016). Anisotropic connectivity patterns occur in 

areas with asymmetric currents, where upstream reefs generally supply more larvae 

downstream and downstream reefs have little to no effect on larval export (Munguia-Vega 

et al., 2017). This creates a trend in which connectivity values differ when measured in 

different directions. The influence of oceanic currents on larval connectivity patterns has 

been further supported by the use of biophysical modeling to estimate larval connectivity 

patterns (Werner et al., 2007). Results from larval transport modelling that coupled oceanic 

current information with satellite mapping matched realized dispersal between coral reefs at 

a regional scale (Werner et al., 2007). Overall, oceanic circulation structures dispersal 

pathways, therefore structuring connectivity (Catalano et al., 2024).  

Secondly, physiological processes of larvae strongly influence dispersal patterns. Such 

processes include mortality rate at dispersal stage, maximum Pelagic Larval Duration 

(PLD), and relative duration of pre-competency windows (Treml et al., 2015). High 

mortality rates mean most surviving larvae settle close to natal populations, effectively 

decreasing connectivity (Cowen et al., 2000). PLD is the length of time larvae spend in the 
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water column before settlement (Selkoe & Toonen, 2011). PLD is directly related to 

dispersal as short PLD results in larvae settling closer to natal populations, and long PLD 

results in larvae dispersing further (Cowen et al., 2006). Increased PLD increases not only 

the distance, but also the number of connections between patches (Treml et al., 2015). The 

pre-competency window is the duration of time in which larvae are not physiologically 

capable of settling (Randall et al., 2024). Longer pre-competency therefore increases 

geographical distance that individuals travel, effectively increasing connectivity (Cecino & 

Treml, 2021). These physiological processes are heavily influenced by environmental 

variations (Bashevkin et al., 2020; Figueiredo et al., 2022). High mortality rates occur due 

to increases in temperature, as warmer waters accelerate developmental processes, leading 

to a higher frequency of fatal malformations (Llopiz et al., 2014). Warm temperatures also 

decrease the length of pre-competency (Randall et al., 2024). Additionally, fluctuations in 

PLD are attributed to changes in conditions such as temperature, pH, and salinity 

(Bashevkin et al., 2020). Therefore, with ongoing warming due to climate change, 

physiological larval processes will change, in turn creating variability in connectivity 

patterns. 

Thirdly, impacts from climate change (e.g., extreme ENSO, increased SST) affect larval 

connectivity and dispersal. Rising atmospheric temperatures associated with climate change 

directly or indirectly alter ocean pH, salinity, stratification, circulation, long-term climate 

cycles, storms, upwelling, ultra-violet radiation, and dissolved O2. These factors directly 

impact larval development by changing embryo development time, metabolic rates, oxygen 

consumption, increasing morphological deformities, increasing otolith size, etc. (Llopiz et 

al., 2014). Long-term climate cycles like El Nino Southern Oscillation (ENSO) are likely to 

increase in extremity with climate change (Cai et al., 2021). There is a strong correlation 

between larval connectivity patterns and the Southern Oscillation Index, with greater 

poleward connectivity during El Nino and weak Southern Oscillation Index, and 

alternatively weaker poleward connectivity during La Nina (Gurdek-Bas et al., 2022).  

Ocean acidification is deleterious to calcifying larval stages, and changes in salinity also 

influence larval development and behavior (Llopiz et al., 2014). The magnitude and 

direction of these effects likely vary between species and region and are unknown. 

Additionally, temperature influences connectivity patterns. Using a biophysical model of 
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coral larvae, elevating temperature by 2°C resulted in a 7% decrease in distance dispersed 

and an 8% decrease in number of connections between coral reefs in the southern Great 

Barrier Reef (Figueiredo et al., 2022). Rising Sea Surface Temperature (SST) increases 

metabolic rates of larvae, decreases PLD, and increases the probability that larvae will 

settle on natal reefs (Andrello et al., 2015; Bashevkin et al., 2020; Figueiredo et al., 2022). 

Net weakening in inter-reef connectivity driven by increased larval mortality in early 

development is a result of rising temperature, which increases rates of cell division, 

resulting in a higher frequency of errors leading to fatal malformations (Figueiredo et al., 

2022). Warmer temperatures further increase the rate of growth and development (Munday 

et al., 2009). This process shortens PLD, which in turn disrupts connectivity patterns, with 

larvae settling closer to natal populations. Similarities in the relationships between 

temperature, distance dispersed, and PLD were found between a diverse group of marine 

fish and invertebrates, suggesting such an effect can be universally applied (O’Connor et 

al., 2007). Additionally, there is evidence that the relationship between PLD and 

temperature is non-linear, with a decline in PLD with rising temperature up to 28-29°C, 

then PLD stabilizes in some species and increases in others (McLeod et al., 2015). 

Increased temperature also shifts reproduction and spawning times through disruption of 

environmental cues, which shifts dispersal timing (Andrello et al., 2015).  

Reef habitat degradation may also influence variability in connectivity. Reef degradation 

typically relates to structural reef complexity, with highly degraded reefs being composed 

of dead coral and rubble and healthy reefs being composed of live coral (Wolfe et al., 

2021). Anthropogenic disturbance has historically resulted in increased habitat degradation 

of reefs (Hughes, 1994). More recently, climate change impacts such as increased SST have 

led to coral bleaching and loss of live coral cover, influencing ecosystem structure and 

function (Stuart-Smith et al., 2018). This decline has implications for larval connectivity 

between coral reefs. Reductions in habitat quality reduce reproductive output, and therefore 

dispersal (Magris et al., 2016). However, there remains a significant knowledge gap in 

understanding the role of connectivity in moderating coral reef resilience under future 

climate regimes (Edmunds et al., 2018). Similarly, little is known about the role of habitat 

degradation in influencing larval connectivity. While it is unknown whether coral reef 

degradation acts as a driver of variability in connectivity, investigations of this relationship 
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are crucial due to the global decline in coral cover, and therefore increased abundance of 

“degraded” reefs (Eddy et al., 2021).  

Lastly, connectivity plays a key role in the success of no-take marine reserves (Green et al. 

2015). Marine reserves with enhanced connectivity host fish taxa with increased body 

mass, increasing fecundity and contributing to spillover (Goetze et al., 2021). Well-

connected reserves also provide a dampening effect which minimizes temporal fluctuations 

in larval supply and recruitment (Harrison et al., 2020). This dampening is referred to as the 

“connectivity portfolio effect” and can be utilized in marine network design to create 

marine reserves that are well connected and therefore can successfully provide such 

benefits (Harrison et al., 2020). Environmental drivers may influence connectivity and 

subsequently the connectivity portfolio effect, but this relationship remains unknown. 

Therefore, understanding variability in connectivity will allow us to better conserve the 

effectiveness of marine networks and marine reserves. 

Here, I study how environmental factors influence larval connectivity in coral reef 

ecosystems over a period of 20 years (1993-2012). Specifically, I examine three main 

hypotheses in Southeast Sulawesi, Indonesia. First, I predict connectivity will decrease over 

the 20-year period as environmental factors change (SST, ocean acidification, extreme 

climate cycles, stratification, salinity), disrupting larval processes. Second, I predict that 

variance in SST, El Nino, and PDO will be a significant predictor of variance in 

connectivity, as climate cycles and warming water influence the movement and 

development of larvae. Third, I predict habitat degradation will decrease cumulative larval 

flow over time as degraded reef habitat is functionally “smaller” and outputs less larvae. 

These hypotheses aim to understand external drivers of variability in connectivity, which in 

turn will allow me to infer potential impacts of climate change on coral reef connectivity to 

inform marine management and marine network design. 

 

Methodology 

Study Site  

I focus on connectivity and climate change processes on coral reefs in the Southeast 

Sulawesi province of Indonesia (Figure 1). This region is at the center of the Coral 
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Triangle, containing some of the most biodiverse coral reefs in the world (Reaka et al., 

2008). The coral reefs of Southeast Sulawesi are threatened by bleaching (Yusuf & Jompa, 

2012), pollution and destructive fishing (Edinger et al., 1998), and the Crown of Thorns 

starfish (Acanthaster planci) (Plass-Johnson et al., 2015). These effects on the reef have 

consequences for fisheries and local livelihoods (Ferse et al., 2014). To help alleviate some 

of these impacts, Southeast Sulawesi supports various ongoing projects and policies to 

enhance marine conservation efforts (Watt-Pringle et al., 2024). In 2018, the Indonesian 

government announced plans to protect 30 million hectares of marine area by 2030, joining 

together village and fishing communities to codevelop a management plan (Muenzel et al., 

2023). The protection of marine areas is accomplished through Marine Protected Areas 

(MPAs), which focus on conservation and sustainable use of marine biodiversity, with an 

emphasis on fisheries in Indonesia (Tranter et al., 2022). These efforts aim to successfully 

manage MPAs, while conserving MPA function to protect and sustainably source marine 

biodiversity. The larval connectivity data I am using are from 487 coral reef sites, 

quantifying connectivity from 1993-2012 (Figure 1). 
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Larval Connectivity Model    

Larval connectivity estimates for coral trout (Plectropomus leopardus), white-spotted 

rabbitfish (Siganus canaliculatus), malabar snapper (Lutjanus malabaricus), and common 

octopus (Octopus vulgaris) were created using a biophysical modeling approach (Treml et 

al., 2012). The first species, coral trout, have an average pre-competency window of 15 

days, a PLD of 19-31 days, and spawn September-November (Doherty et al., 1994; 

SCRFA, 2019). Secondly, rabbitfish have an average pre-competency of 10 days, a PLD of 

17 days, and spawn March-September (Soliman et al., 2010). Thirdly, snapper have an 

average pre-competency of 25 days, a PLD of 33-40 days, and spawn October-February 

(Quéré & Leis, 2010). All three species are important to commercial fisheries in the area, 

Southeast 
Sulawesi 

Wakatobi 
National 

Park Makassar 

Muna 

Island 

Buton 
Island 

Benteng 

Figure 1. Map of study area in Southeast Sulawesi showing 487 reefs (in pink) used in 

the biophysical model.  
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while the species octopus was added because they spawn year-round (Lourenço et al., 

2012), allowing me to analyze variance based on spawning period and length.  

Larval connectivity data were derived from the biophysical model in Treml et al., 2012. 

The model has three components: 1) a gridded map of the seascape, 2) biological 

parameters, and 3) data on oceanic currents and velocity. The map extends from 100°E to 

170°E and 30°N to 30°S. The biological parameters included in the model are: 1) larval 

release date and periodicity (months), 2) reproductive output per area (fecundity), 3) 

maximum Pelagic Larval Duration (PLD) (days), 4) pre-competency period (days), 5) 

larval swimming and homing behavior during settlement, and 6) larval mortality (survival 

function). Oceanic currents were modeled from the US Jet Propulsion Laboratory Regional 

Ocean Monitoring System (ROMS). The ROMS data was forced with the National Center 

for Environmental Prediction/National Center for Atmospheric Research reanalysis to 

account for wind, temperature, and solar radiation. This creates an oceanographic model 

that reflects seasonal and interannual variability.  

A 2-D Eulerian model was used, which represents dispersal as a cloud of larvae, as opposed 

to individual larvae. Each simulation of the model involved releasing a cloud of larvae over 

a habitat patch and tracking the cloud as it moved through the seascape. The clouds moved 

through the model using an advection transport algorithm. As a cloud encountered suitable 

habitat, the quantity of larvae settled was recorded and this process repeated for years 1993-

2012 (Treml et al., 2012). The total amount of larvae that settled on each habitat was 

recorded through time and saved as the dispersal matrix (D). Simulations were run across 

three years (a strong El Nino, La Nina, and a neutral year) then a weighted average was 

taken to create the dispersal matrix. The settlement matrix (S) was then calculated by 

multiplying D by a larval survivorship function and post-settlement mortality parameters. S 

represents the cumulative number of larvae exchanged between all habitats after larval 

mortality. The probability matrix (P) rescales S to the probability of larval exchange 

between habitats. Therefore, the probability matrix represents the proportion of individuals 

originating from a donor habitat which arrive at a recipient habitat, or the arrival likelihood 

(Marxan Connect Glossary, 2024). The migration matrix (M) quantifies the proportion of 

settlers to each destination habitat that came from each source habitat, or the proportion of 

individuals arriving at a recipient habitat that originated from a donor habitat (Bodmer & 
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Cavalli-Sforza, 1968; Caswell, 2014). An additional matrix we created was the flow matrix, 

which is calculated by multiplying P by reef size to account for the effect of differing 

population sizes on connectivity. Therefore, the flow matrix represents connectivity 

between habitats based on fecundity and density of species per km2 area of reef. The flow 

matrix does not account for habitat degradation, meaning the km2 reef size used to calculate 

fecundity and density of species assumes all habitat is suitable. These matrices are 

summarized at a yearly resolution, resulting in 20 matrices for the 20 years of the 

biophysical model.  

Environmental Data  

To determine the influence of environmental factors on connectivity, I use Sea Surface 

Temperature (SST), El Niño 3.4 SST Index, and Pacific Decadal Oscillation (PDO) (Table 

1). This approach allows me to examine annual and interannual variation of environmental 

conditions. The SST data combines a 5km resolution European Space Agency Climate 

Change Initiative SST Analysis daily dataset and a 1km Multi-scale Ultra-high Resolution 

SST Analysis dataset. The 5km dataset was downscaled to match a 1km resolution (Dixon 

et al., 2022). The El Niño 3.4 SST Index samples a specific region from 5N-5S and 170W-

120W and represents average SST anomalies. Anomalies are defined by SSTs exceeding +/- 

0.4°C for six months or more (Schneider et al., 2013). PDO data are representative of more 

long-lived El Niño patterns. PDO is positive when SST is anomalously warm on the Pacific 

Coast and sea level pressures are below average. Therefore, PDO is negative when SST is 

anomalously cool on the Pacific Coast and sea level pressures are above average (Newman 

et al., 2016). I obtained habitat degradation data from two different sources, the National 

Research and Innovation Agency (BRIN, https://data.brin.go.id/dataverse/crmis) and 

Operation Wallacea (Opwall, https://www.opwall.com) which each provided percent hard 

coral cover data. Habitat degradation data was provided from 1997-2024. An average 

percent cover value was calculated per year and used to multiply into the connectivity 

matrix.  

 

 

https://data.brin.go.id/dataverse/crmis
https://www.opwall.com/
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Environmental Data Sources 

Sea Surface Temperature (SST) Dixon et al., 2022 

El Nino 3.4 Index https://psl.noaa.gov/data/timeseries/month/ 

Pacific Decadal Oscillation 

(PDO) 

https://psl.noaa.gov/data/timeseries/month/DS/PDOUW/ 

Opwall  https://www.opwall.com/ 

BRIN  https://data.brin.go.id/dataverse/crmis 

 

Data Analysis 

To create a usable data frame for analysis, I first summarized PDO and El Nino data into 

mean values per year. These means were generated from the 14 provided values per year 

for each year within the connectivity model (1993-2012). SST values were clipped from the 

original raster to only include dates from January 1, 1993 to December 31, 2012. Values 

were then split by species, and the only dates retained were those within that species’ 

spawning month (inclusive of PLD). SST mean and standard deviation were calculated. 

These data were then combined into a data frame which included species, year, SST mean, 

and SST standard deviation for each of the 487 reefs within the connectivity model. 

Approximately 30 percent of the data was comprised of NA values, so I used an 

interpolation technique to populate all missing values. I then calculated varying 

connectivity metrics to add to the data frame. Using the package “igraph” (Csardi & 

Nepusz, 2006) in RStudio (2024), I calculated out-degree and in-degree for each unique 

combination of species, year, and reef. I used the package “ConnMatTools” (Kaplan et al., 

in press) in RStudio (2024) to calculate self-recruitment for each species, year, and reef. 

These values were then added into the SST data frame. I then used spectral clustering in the 

“kernlab” (Karatzoglou, Smola, & Hornik, 2024) package in RStudio (2024) to create 

spatial clusters for each species, year, and reef. Spectral clustering is a graph-based method 

that caters to complex, non-convex cluster structures (Ng et al., 2001). Creating clusters 

Table 1. Environmental data sources used in analyses and their citations.  

https://psl.noaa.gov/data/timeseries/month/
https://psl.noaa.gov/data/timeseries/month/DS/PDOUW/
https://www.opwall.com/
https://data.brin.go.id/dataverse/crmis
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and using them as a random effect in the models allowed me to account for spatial variation 

in connectivity patterns. I chose to calculate 6 clusters after performing clustering using 

between 5-10 cluster groupings and examining the spatial clustering in QGIS to ensure 

groupings were generally aligned with geographic proximity. I then calculated a mean 

matrix for each of the four model species and performed spectral clustering with 6 centers 

on these mean matrices to obtain a cluster grouping across all years for each species. These 

data were then added to the data frame. The final result was a data frame that included 

cluster group, out-degree, in-degree, self-recruitment, mean El Nino, mean PDO, and mean 

SST for each unique combination of reef, species, and year (n=38960).  

To determine how connectivity changed over the 20-year period, I used cumulative flow 

and three graph-theoretic metrics (out-degree, in-degree, and self-recruitment) as a proxy 

for connectivity. Cumulative flow is the sum of all values within one flow matrix, resulting 

in a single value for each year. Out-degree is the number of connections originating from 

each reef (Minor & Urban, 2007). This metric can be a useful tool in determining source 

reefs. In-degree is the number of connections coming into each reef, useful in determining 

sink populations. Self-recruitment is the proportion of individuals arriving at each reef from 

that reef (Minor & Urban, 2007), which quantifies the local retention. These metrics are 

dimensionless, all representing a number or proportion of connections or larvae. To 

compare all four metrics, I averaged out-degree, in-degree, and self-recruitment per year, 

per species, to obtain one value for each species within each year. I then performed a 

Generalized Linear Model (GLM) (McCullagh, 2019) to test my hypothesis that 

connectivity would decrease over time. A GLM was performed for each connectivity metric 

for each species. Lastly, to summarize the variance seen in cumulative flow between 

species, I calculated the standard deviation for each species and then performed a Levene’s 

test (Levene, 1960) to determine statistical significance of the variance.  

To determine how variability in climate factors affects variability in connectivity, I used a 

recursive partitioning analysis with a regression tree. This analysis is useful in identifying 

patterns in large, complex datasets. The analysis works by repeatedly splitting the data into 

homogenous groups using an explanatory variable (De’ath & Fabricius, 2000). In this case, 

the regression tree “splits” the connectivity data based on two predictor variables: 1) SST, 

and 2) cluster. I used these results to separate my data based on the highest SST split in the 
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regression tree (e.g., octopus out-degree values were split by values when SST mean ≥ 29 

and values when SST mean < 29). I performed an independent effect size analysis between 

connectivity metrics of the split data using Cohen’s d (Davies et al., 2024). Cohen’s d 

measures the difference between the means of two groups using standard deviation (e.g. d = 

0.5, the means of group 1 and 2 vary by half a standard deviation) (Cohen, 1992). 

Generally, values between 0.2-0.5 are considered a small effect, 0.5-0.8 is medium, and 

above 0.8 is a large effect (Blanar et al., 2009). This allowed me to quantify the effect of 

SST on out-degree, in-degree, and self-recruitment for each species when SST was above 

or below a certain threshold and between cluster groupings. I created a forest plot using an 

SST threshold of 29°C to visualize Cohen’s d values with a 95% confidence interval. I then 

performed a generalized additive model (GAM) (Hastie & Tibshirani, 1986) on the data to 

further visualize the effect of the threshold SST on out-degree, in-degree, and self-

recruitment with year as a fixed effect and cluster as a random effect. I additionally 

performed GAMs for El Nino 3.4 and PDO values across the whole dataset to examine the 

effect of these metrics on connectivity. This looked at the effect of mean El Nino 3.4 and 

PDO values (i.e. the mean El Nino 3.4 and PDO value across space for each year) across 

the 20-year period on out-degree, in-degree, and self-recruitment for each species. The 

GAMs were run across the entire dataset (all reefs across all years) and had year as a fixed 

effect and cluster as a random effect. Model fits were evaluated via adjusted R-squared. 

To account for spatial variance in connectivity patterns, I included cluster as a random 

effect in each GAM analyzing El Nino 3.4 and PDO with out-degree, in-degree, and self-

recruitment. I additionally repeated all GAMs without cluster as a random effect and 

performed a Likelihood Ratio Test (LRT) (Lewis et al., 2011) to examine the significance of 

the random effect of cluster. I then used cluster as a predictor variable in the recursive 

partitioning analysis. I repeated the Cohen’s d effect size analysis using the highest cluster 

split in the recursive partitioning model to determine the effect of cluster on connectivity 

(e.g., octopus out-degree values were split by values within clusters 1, 4, and 6 and values 

within clusters 2, 3, and 5). I created a forest plot using each cluster split for each 

connectivity metric and species to visualize the Cohen’s d values with a 95% confidence 

interval. 



22 

 
To quantify to what degree habitat degradation is reducing connectivity, I used coral cover 

as a proxy for reef habitat condition (Vercammen et al., 2019). I first summarized coral 

cover data from the two sources to determine average percent coral cover for each year in 

the dataset (1997-2024 with missing years 1993-1996, 2000, 2002, and 2004). I then 

performed a GLM to predict coral cover values for missing years within my connectivity 

data range (1993-2012) using the known percent cover values and the data provider 

(Opwall and BRIN) as a random effect. Years in which there were both Opwall and BRIN 

data the percent coral cover value was the average of the two values (years 2006-2010). 

Since data were not from the exact locations of the 487 model reefs, I determined average 

percent coral cover temporally (average percent cover value in that year) rather than 

spatially for model years. I multiplied percent cover values into the flow matrices for all 

years and species (1 value for each year and across all species), simulating model results if 

each reef were smaller and therefore output less larvae. This approach created flow 

matrices that account for habitat loss due to habitat degradation. I then calculated the sum 

of each matrix to obtain a cumulative flow value. I then compared cumulative flow before 

and after habitat degradation using an Analysis of Variance (ANOVA). I used these results 

to calculate the relative difference in flow to obtain a percentage decrease value for each 

species and then calculated the average percent decrease in flow across all four species. 

Additionally, I performed a Levene’s test to determine the statistical significance of the 

variance between cumulative flow before and after degradation for each species. I then used 

the percent coral cover values from non-model years (2013-2020, 2023, and 2024) and 

multiplied each value into all 20 flow matrices for each species. I calculated the sum of 

each flow matrix for each species. I took the mean of the cumulative flow values for each 

year (mean cumulative flow values being from percent coral cover values 2013-2020, 2023, 

and 2024 multiplied into model year flow matrices from 1993-2012) to obtain a “predicted” 

cumulative flow value with standard error for years 2013-2020, 2023, and 2024.  

 

Results 

1. How is connectivity changing across the 20-year period?  

All connectivity metrics had non-linear trends across time (Figure 2). GLM results showed 

non-significant decreases in cumulative flow (p = 0.140), out-degree (p = 0.846), and in-
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degree (p = 0.846) across time. There was a significant increase in self-recruitment across 

time (p = 0.042).Minimum and maximum values varied across metrics, species, and year 

with no visible trend. There was a significant difference in variance of cumulative flow 

between species. The standard deviations of flow for octopus (σ = 0.003) and snapper (σ = 

0.001) were lower than coral trout (σ = 0.300) and rabbitfish (σ = 0.032). Levene’s test 

further supported these results, showing a significant difference in variance between the 

four species (p < 0.001).  

 

 

2. How do changes in climate change factors (i.e. SST, El Nino, PDO) affect connectivity?  

The effect of SST on out-degree, in-degree, and self-recruitment varied widely by species. 

For coral trout, when SST is greater than or equal to 28°C, there is a medium negative 

effect on out-degree (Cohen’s d = -0.68) and in-degree (d = -0.54), and a large positive 

Figure 2. Changes in connectivity over the 20-year model period (1993-2012). Metrics 

are A) cumulative flow, B) out-degree, C) in-degree, and D) self-recruitment. Each 

colored line represents a different species.  
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effect on self-recruitment (d = 1.25) when SST is greater than or equal to 29°C. For 

octopus, when SST is greater than or equal to 29°C, there is a medium negative effect on 

out-degree (d = -0.70) and in-degree (d = -0.62) and a medium positive effect on self-

recruitment (d = 0.50). For rabbitfish, when SST is greater than or equal to 29°C, there is a 

medium negative effect on out-degree (d = -0.55), a small negative effect on in-degree (d = 

-0.28), and a small positive effect on self-recruitment (d = 0.38). For snapper, when SST is 

greater than or equal to 29°C, there is a large negative effect on out-degree (d = -0.99) and 

in-degree (d = -0.85), and a large positive effect on self-recruitment (d = 0.83) (Table 2). 

These results are further summarized into a forest plot using an SST threshold of 29°C with 

95% confidence intervals (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Cohen’s d values comparing the effect of SST on three connectivity metrics 

(out-degree, in-degree, self-recruitment) for each species. Values between 0.2-0.5 are 

considered a small effect, 0.5-0.8 is medium, and above 0.8 is a large effect (Blanar et 

al., 2009). 
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When comparing GAM model results between SST groupings (e.g. coral trout data split 

into SST mean values ≥ 28 and SST mean values < 28), the model results fit better at higher 

SST. For example, for coral trout, out-degree at values when SST ≥ 28°C had an R2 value 

of 0.397 compared to values when SST < 28°C with an R2 of only 0.146. This trend is seen 

in all connectivity metrics for coral trout (Figure 4), octopus (Figure 5), rabbitfish (Figure 

6), and snapper (Figure 7). GAM results were significant for all models (p < 0.001) while 

the R2 values differed between each model (Table 3). 

 

 

 

 

Figure 3. Forest plot of Cohen’s d values with 95% confidence intervals for each of the 

three connectivity metrics (out-degree, in-degree, and self-recruitment) separated by 

species (coral trout, octopus, rabbitfish, and snapper). Cohen’s d compared 

connectivity values at SST < 29°C to values at SST ≥ 29°C. The dashed line in the 

middle represents zero effect. 
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Figure 4. GAM results analyzing three connectivity metrics (out-degree, in-degree, and 

self-recruitment) against mean SST for values A. below 28°C (for out-degree and in-

degree) 29°C (for self-recruitment) and B. greater than or equal to 28°C (for out-degree 

and in-degree) and 29°C (for self-recruitment) for coral trout. 
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Figure 5. GAM results analyzing three connectivity metrics (out-degree, in-degree, and 

self-recruitment) against mean SST for values A. below 29°C and B. greater than or 

equal to 29°C for octopus.  
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Figure 6. GAM results analyzing three connectivity metrics (out-degree, in-degree, and 

self-recruitment) against mean SST for values A. below 29°C and B. greater than or 

equal to 29°C for rabbitfish.  
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I performed a GAM for El Nino 3.4 and PDO to assess the relationship between mean El 

Nino 3.4 and PDO and connectivity metrics out-degree, in-degree, and self-recruitment 

between species. GAM results showed significance across all metrics and species (p < 

0.001). The adjusted R2 value was highest for out-degree, followed by in-degree and self-

recruitment for all species across El Nino and PDO models.  Adjusted R2 was on average 

0.59 across species between El Nino and PDO on out-degree, R2=0.52 on in-degree, and 

R2=0.25 on self-recruitment (Table 3). The significance of year as a fixed effect was p < 

0.001 for El Nino and PDO across all metrics for coral trout and rabbitfish, and for out-

degree and in-degree for octopus and snapper. Year as a fixed effect was not significant for 

El Nino and self-recruitment for octopus (p=0.808), and snapper (p=0.853), and PDO and 

self-recruitment for octopus (p=0.764) and snapper (p=0.897). 

Figure 7. GAM results analyzing three connectivity metrics (out-degree, in-degree, and 

self-recruitment) against mean SST for values A. below 29°C and B. greater than or 

equal to 29°C for snapper.  
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The effect of spatial clusters was significant for both El Nino and PDO GAMs across all 

species and metric (p < 0.001) and when comparing models with and without cluster as a 

random effect using an LRT (p < 0.001). There was a large effect (d > 0.8) of cluster on all 

connectivity metrics for all species (Table 4). For coral trout, there was a decrease in out-

degree and in-degree for reefs in cluster 4, and an increase in self-recruitment (Figure 8). 

For octopus, there was a decrease in out-degree and in-degree for reefs in clusters 1, 4, and 

6, and an increase in self-recruitment (Figure 9). For rabbitfish, there was a decrease in out-

degree and in-degree for reefs in cluster 6, and an increase in self-recruitment (Figure 10). 

For snapper, there was a decrease in out-degree and in-degree for reefs in cluster 6, and an 

increase in self-recruitment (Figure 11). These are the effects compared to connectivity 

metric values in the other clusters (e.g., an increase in self-recruitment for reefs in cluster 6 

compared to self-recruitment for reefs in clusters 1, 2, 3, 4, and 5) (Figure 12). This effect 

varies slightly between metric within each species, with only the shared cluster groups 

being retained here.  
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Figure 8. Spectral clustering grouping for coral trout. Each color represents a different 

cluster group (1-6). Panel: a) all 487 model reefs and their cluster groupings, reefs are 

colored by cluster and colored circles are used to represent the general area of each 

cluster group, b) cluster 1, c) cluster 2, d) cluster 3, e) cluster 4, f) cluster 5, and g) 

cluster 6.  
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Figure 9. Spectral clustering grouping for octopus. Each color represents a different cluster 

group (1-6). Panel: a) all 487 model reefs and their cluster groupings, reefs are colored by 

cluster and colored circles are used to represent the general area of each cluster group, b) cluster 

1, c) cluster 2, d) cluster 3, e) cluster 4, f) cluster 5, and g) cluster 6.  
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Figure 10. Spectral clustering grouping for rabbitfish. Each color represents a different cluster 

group (1-6). Panel: a) all 487 model reefs and their cluster groupings, reefs are colored by 

cluster and colored circles are used to represent the general area of each cluster group, b) cluster 

1, c) cluster 2, d) cluster 3, e) cluster 4, f) cluster 5, and g) cluster 6.  
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Table 4. Cohen’s d values comparing the effect of cluster on three connectivity metrics 

(out-degree, in-degree, self-recruitment) for each species. Values between 0.2-0.5 are 

considered a small effect, 0.5-0.8 is medium, and above 0.8 is a large effect (Blanar et 

al., 2009). 

 

Figure 11. Spectral clustering grouping for snapper. Each color represents a different cluster 

group (1-6). Panel: a) all 487 model reefs and their cluster groupings, reefs are colored by 

cluster and colored circles are used to represent the general area of each cluster group, b) cluster 

1, c) cluster 2, d) cluster 3, e) cluster 4, f) cluster 5, and g) cluster 6.  
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3. How does habitat degradation affect connectivity?  

There was a significant effect of the data source on percent coral cover values in the GLM, 

confirmed by an LRT between the model with data source as a random effect and a reduced 

model without it (p < 0.001). There was a significant difference for all species between 

cumulative flow before and after habitat degradation (Figure 13). ANOVA results showed 

significance for all species (p < 0.001). Cumulative flow decreased by an average of 73 

percent for all species after habitat degradation. Coral cover values were on average 26.6 

percent between the years 1993-2012 (relative to total reef composition) (Figure 14). 

Levene’s test shows a significant difference in the variance of cumulative flow for coral 

trout (p < 0.001), rabbitfish (p < 0.01), octopus (p < 0.05), and snapper (p < 0.05). Overall, 

all species experienced a decrease in cumulative flow and variance of flow. Additionally, 

Figure 12. Forest plot of Cohen’s d values with 95% confidence intervals for each 

of the three connectivity metrics (out-degree, in-degree, and self-recruitment) 

separated by species (coral trout, octopus, rabbitfish, and snapper). Cohen’s d 

compared connectivity values from different cluster groupings (Table 4). The 

dashed line on the far right represents zero effect. 
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this trend is predicted to continue beyond the year 2012 with cumulative flow remaining at 

significantly lower values when habitat degradation is included in the calculation (Figure 

13).  

Figure 13. Changes in cumulative flow over the 20-year model period (1993-2012) 

compared before coral reef habitat degradation (blue line) and after habitat 

degradation (red line) for each species: A) coral trout, B) octopus, C) rabbitfish, and 

D) snapper. The grey dashed line represents the first year in which there is no 

connectivity model data (2013). The black line is “predicted” cumulative flow values 

using the mean of the 20 flow matrices to get standard error. Cumulative flow 

predictions were made with percent coral cover values from years 2013-2020, 2023, 

and 2024. 
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It is important to note that multiple testing was done to describe the relationships between 

SST, El Nino, PDO, and connectivity. With multiple testing, the likelihood of a type I error 

increases, meaning statistically significant results may not reflect true relationships between 

variables. I did not make any adjustments in my analysis to account for this error, therefore 

replication and extension of this analysis is necessary to confirm significant findings. 

 

Discussion 

My objective was to determine the effects of external drivers on larval connectivity. My 

results show that variability in connectivity metrics can be explained by variance in the 

environmental factors SST, El Nino, and PDO. GAM analysis shows the significance of El 

Nino and PDO climate patterns in explaining variance of out-degree, in-degree, and self-

recruitment. With more extreme ENSO events as a result of climate change, connectivity 

will decrease. Effect size analysis shows that when SST reaches 28°C or above, there are 

large effects on out-degree, in-degree, and self-recruitment dependent on species. 

Figure 14. Average percent coral cover values from predicted and observed years. 

Predicted values are represented by red dots and observed values by black dots. Values 

for years 1993-1996, 2000, 2002, and 2004 were generated from a GLM using existing 

percent coral cover values with data source as a random effect. The grey shading 

represents a 95% confidence interval for predicted values. Percent cover was on average 

26.6 percent across the 20-year period. 
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Generally, with increasing SST there is a decrease in inter-reef connectivity and an increase 

in local retention of larvae. Additionally, recursive partitioning, effect size analysis, and 

compared GAM analysis supports the existence of an SST threshold of 28-29°C at which 

connectivity will predictably drop for fish species in the region. Spatial analysis showed 

that spatial clustering of reefs has a larger effect on connectivity metrics compared to SST 

thresholds. Additionally, models were better fit with cluster as a random effect. Habitat 

degradation decreases cumulative flow and variance in cumulative flow across species, 

with similar trends expected in future years. With increasing habitat degradation due to 

climate change, the effects of increased SST on connectivity may be exacerbated.  

These results align with previous work that show correlations between El Nino Southern 

Oscillation and larval connectivity patterns (Gurdek-Bas et al., 2022), and a decrease in 

distance dispersed and number of connections caused by an increase in SST (Figueiredo et 

al., 2022). Effect size analysis shows that when SST reaches 28°C or above, there are large 

effects on out-degree, in-degree, and self-recruitment dependent on species (Table 2). The 

effect of temperature was further exaggerated for these two metrics for coral trout when 

creating the forest plot using 29°C for all values (Figure 3). All species experience a 

negative effect of SST on out-degree and in-degree, and a positive effect of SST on self-

recruitment. This result suggests that increasing SST reduces the number of incoming and 

outgoing connections and increases the number of larvae returning to their natal population. 

When modeling larval dispersal under future climate conditions (including increased SST), 

there was predicted suppression of long-distance dispersal, a decrease in average distance 

dispersed, and an increase in self-recruitment (Lett et al., 2010). Though distance dispersed 

was not specifically measured in my analysis, I did observe increases in self-recruitment 

with increasing SST and decreases in inter-reef connectivity, which may capture a decrease 

in distance dispersed. Decreased inter-reef connectivity and increased self-recruitment may 

be due to high mortality rates in warmer water, decreasing pre-competency length, and 

fluctuations inPLD from changes in temperature, pH, and salinity that all result in larvae 

settling closer to natal populations (Andrello et al., 2015; Bashevkin et al., 2020; Cecino & 

Treml, 2021; Cowen et al., 2000; Cowen et al., 2006; Treml et al., 2015). Overall, reefs are 

becoming more isolated and inter-reef connectivity is decreasing (Figueiredo et al., 2022; 

Lett et al., 2010). 
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I observed the strongest effect of increased SST on connectivity in snapper (Lutjanus 

malabaricus) which have the shortest spawning period of the four species (October-

December) (Muenzel et al., 2023). The weakest effect was in rabbitfish (Siganus 

canaliculatus) which only spawn March-October (Muenzel et al., 2023). The differential 

effect of high SST on species could be a result of varying spawning periods or seasons, 

with species spawning in warmer months (rabbitfish) being less affected by high SST. 

Spawning periodicity strongly influences the number and persistence of connections 

between reefs, with more frequent spawning improving connectivity (Kough & Paris, 

2015). Though there was less variance in connectivity for octopus (year-round spawners), 

there were no trends to suggest improved connectivity of octopus compared to the other 

three species with shorter spawning periods. Increased temperature shifts reproduction and 

spawning times through disruption of environmental cues (Andrello et al., 2015), which 

may also relate to the differential impact based on spawning periods.  

PLD was included in the spawning period length when clipping SST values to spawning 

period (spawning period = spawning months + length of PLD), with rabbitfish having the 

shortest PLD (19 days) compared to the other species (Muenzel et al., 2023). PLD is 

directly related to dispersal, as species with long PLD will have larvae that settle further 

from natal populations, increasing connectivity (Cowen et al., 2006; Treml et al., 2015). It 

is possible that the effect of SST on species might change when looking at temperature 

during each species’ PLD rather than spawning period, though studies suggest decreasing 

sensitivity of larval dispersal to PLD once PLD is greater than 10 days (Sciascia et al., 

2022), which is true for all four species in this analysis. Additionally, there is increasing 

evidence that the relationship between PLD and temperature is non-linear, with PLD 

increasing in some species after temperatures reach 28-29°C (McLeod et al., 2015), which 

means temperature and PLD may not work synergistically to decrease connectivity.  

Connectivity did not significantly decrease over time when measuring cumulative flow, 

out-degree, and in-degree, but did have a significant increase in self-recruitment (p = 0.042) 

across all species (Figure 2). The significant increase in self-recruitment reflects the 

expected decrease in inter-reef connectivity with global warming (Figueiredo et al., 2022; 

Lett et al., 2010). The significant increase in self-recruitment across time with no 

significant decrease in out-degree or in-degree may be due to differing “sensitivities” of 
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each metric. Self-recruitment may be more affected by changes in external variables 

compared to metrics like out-degree and in-degree (Meerhoff et al., 2025; Wolanski et al., 

2024). Additionally, variance in cumulative flow was statistically significant between 

species (Figure 2) with the standard deviations of octopus (σ = 0.003) and snapper (σ = 

0.001) being lower than coral trout (σ = 0.300) and rabbitfish (σ = 0.032). The differences 

in variance may be due to spawning periods, as octopus spawn year-round, but are most 

likely random as snapper species (also with low standard deviation) have the shortest 

spawning period.  

Additionally, connectivity metrics were better predicted by GAMs at higher SST compared 

to lower SST (Figure 4, 5, 6, 7). This is evidence of an SST threshold at which connectivity 

is better predicted or driven by SST. This will increase accuracy of connectivity predictions 

when SST reaches that threshold. GAM results supported the recursive partitioning and 

effect size analysis, with a decrease in out-degree and in-degree with increasing SST, and 

an increase in self-recruitment. Variance in the models also aligned with the differential 

effect based on species. Rabbitfish for example, with the weakest Cohen’s d effect size, had 

the lowest adjusted R2 value in the GAM analysis. This result further supports a threshold 

value of SST at which connectivity will predictably drop for fish species in Southeast 

Sulawesi. A thermal threshold value increasing prediction accuracy was also seen when 

evaluating Hotspot and Degree-Heating Week ability to predict coral bleaching in the South 

China Sea (Liu et al., 2024). The temperature metrics Hotspot and Degree-Heating Week 

measure degree-difference from an average rather than a fixed temperature, so it is 

unknown whether the threshold is similar. There are also critical values which determine 

thermal niches for juvenile and adult fish, which may influence dispersal and connectivity 

if these same niches apply to larvae (Llopiz et al., 2014). 

Though there was a compelling predictive ability of the El Nino 3.4 and PDO parameters, 

variation in these parameters may be dampened due to the small sample size (n=20) I was 

constrained to by data availability (Table 3). Effects of ENSO factors on connectivity may 

be better examined through more localized oceanic current variability rather than global 

temperature trends. Correlations between ENSO and connectivity may also be better 

explained by more fine-scale ENSO effects such as changes in stratification or salinity 

(Bashevkin et al., 2020). El Nino events shift current patterns, which directly influence 
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larval dispersal, resulting in correlations showing an increase in connectivity during El 

Nino events (Novi et al., 2025). These correlations are often described directionally, as El 

Nino events influence the direction of currents, therefore increasing connectivity 

exclusively in one direction (Lian et al., 2025). The decrease observed in out-degree and in-

degree with increasing El Nino and PDO might not accurately predict the realized influence 

of ENSO factors on connectivity due to dampened variation, small sample size, and the 

measurement of El Nino and PDO being described by SST anomalies, not oceanic currents.  

Spatial analysis supported the importance of spatial variation in predicting connectivity 

patterns. Cohen’s d effect size analysis results were higher on average when comparing 

connectivity metrics between clusters (Table 4, Figure 12) than comparing connectivity 

metrics between the SST threshold (Table 2, Figure 3). Additionally, GAMs were better fit 

when spatial clusters were used as a random effect in the model. When including cluster as 

a random effect, cluster was significant across all GAMs for every metric (out-degree, in-

degree, self-recruitment), predictor variable (El Nino, PDO, SST), and species. Similar 

studies have found significant differences in larval dispersal between spatial groupings of 

reefs (Thomas et al., 2014). Additionally, cluster groupings are influenced by oceanic 

currents and are therefore inherently linked to larvae dispersal and movement (Wang et al., 

2022). In my analysis, clusters 4 and 6 have high self-recruitment and low inter-reef 

connectivity, and clusters 1, 2, 3, and 5 have low self-recruitment and high inter-reef 

connectivity when compared to each other (Table 4). These differential patterns in 

connectivity based on spatial groupings are often not reflected in spatial conservation 

planning such as Marine Protected Areas (MPAs) (Thomas et al., 2014). Therefore, this 

information could be useful in spatial conservation planning, possibly prioritizing 

protection of reef clusters 1, 2, 3, and 5 to promote gene flow and species diversity (Kough 

et al., 2013).  

Habitat degradation had a significant effect on cumulative flow for all species. When 

degradation was added into the connectivity matrix, cumulative flow decreased by an 

average of 73 percent for all four species (Figure 13). The habitat degradation value was on 

average 0.266 between 1993-2012, or 26.6 percent coral cover (Figure 14). This means 

coral reefs in the Southeast Sulawesi region are on average composed of only 26.6 percent 

hard coral cover. This is likely due to increased coral bleaching (Yusuf & Jompa, 2012), 
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pollution, and destructive fishing (Edinger et al., 1998). The decrease seen in cumulative 

flow is a result of this habitat degradation, as coral reefs will host less fish, of smaller size, 

outputting less larvae when habitat is limited (Magris et al., 2016). Additionally, habitat 

degradation significantly decreased the variance in cumulative flow for species coral trout 

(p < 0.001), rabbitfish (p < 0.01), octopus (p < 0.05), and snapper (p < 0.05). These trends 

are expected to continue in future years (Figure 13). It is unknown whether habitat 

degradation impacts the effect of SST on connectivity metrics such as out-degree, in-

degree, and self-recruitment. If implemented into the original connectivity model, it is 

possible that we would see similar decreases in those connectivity metrics. The original 

connectivity model uses reef area detected by satellites to scale reproductive outputs. In my 

habitat degradation analysis, I use coral cover as a proxy for habitat degradation to scale 

reproductive outputs (i.e., multiplication of percent cover into flow matrices). Therefore, 

the flow after habitat degradation (red line, Figure 13) can be interpreted as a correction of 

the original model. Including habitat degradation in these models is therefore important to 

reduce the risk of overestimation of connectivity, and subsequently conservation priorities 

(Vercammen et al., 2019).  

Certain species are more resilient to high SST (Trégarot et al., 2024). My results suggest 

that species that spawn in warmer months are less affected by high SST. Though this is a 

preliminary finding, considering I only analyzed four different species, it suggests a 

possibility that species which spawn in cold months and those with short spawning periods 

may be at higher risk of decreased connectivity when SST reaches 28-29°C. This finding 

could provide insight into future species compositions of reefs (Ceccarelli et al., 2023; Cruz 

et al., 2024). If SST continues to increase, there may be a higher proportion of species that 

spawn in warm months on the reefs with species which spawn in cold months becoming 

rarer. These findings highlight the importance of species-specific research to inform coral 

reef conservation efforts (Hughes et al., 2023). 

Larval connectivity variability can be explained by SST at a threshold of 28-29°C. At this 

threshold, connectivity declines due to a decrease in outgoing and incoming connections 

between reefs and increasing self-recruitment. With increasing SST due to climate change, 

coral reefs will experience a decline in inter-reef connectivity, and an increase in local 

retention of larvae (Figueiredo et al., 2022). This loss of larval exchange between reefs may 
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have detrimental effects on gene flow and diversity of marine animal populations (Kough et 

al., 2013). Declining connectivity will also affect marine fisheries, changing diversity, 

abundance, and size of species within the reef (Ramesh et al., 2019). Increasing SST is also 

associated with reef degradation due to coral bleaching (Stuart-Smith et al., 2018). This 

habitat degradation decreases total cumulative flow, possibly leading to a further decline in 

connectivity. With increasing SST and habitat degradation due to climate change, we can 

expect a decline in connectivity between coral reefs. 

These findings are an important consideration for spatial conservation planning of coral 

reefs. Larval connectivity plays a key role in the success of marine reserves (Green et al. 

2015), increasing fecundity and spillover (Goetze et al., 2021). Well-connected marine 

reserves also experience a dampening effect on temporal fluctuations in larval supply 

(Harrison et al., 2020). Understanding how connectivity may change under future climate 

conditions is therefore important to understanding the success of marine conservation 

planning. Marine reserves in Southeast Sulawesi, specifically Wakatobi National Park 

(Figure 1), are not found to overlap with coral reefs that rank high in incoming and 

outgoing connections (in-degree and out-degree) (Faryuni et al., 2024). As out-degree and 

in-degree are expected to decrease with increasing SST, determining which reefs rank high 

in connectivity metrics will be vital information for determining the placement of marine 

reserves. This analysis suggests those are reefs in clusters 1, 2, 3, and 5 across all species 

(Figure 8, 9, 10, 11). Therefore, using connectivity models that predict connectivity under 

future climate conditions (high SST, high habitat degradation) may best inform spatial 

conservation planning. This strategy will allow for the protection of inter-reef connectivity, 

fisheries supply, and stable larval supply under future climates conditions (Goetze et al., 

2021; Harrison et al., 2020). 

 

Conclusions 

Future studies should focus on the additive effects of high SST and degraded reef habitats 

on larval connectivity between coral reefs. Biophysical modeling of larval connectivity that 

can predict connectivity at high SST and high habitat degradation will best predict future 

connectivity patterns. Additionally, modelling should be performed with a wider range of 

marine species to accurately infer broader impacts. Connectivity is also useful in 
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determining clusters of well-connected reefs (Ani et al., 2024). Studies that further examine 

the differential effects of SST on connectivity between reef clusters may be useful in 

conservation planning, prioritizing resilient reef clusters to be protected in marine reserves 

(Pata & Yñiguez, 2021). My results suggest a critical SST value at which connectivity will 

begin to decline between coral reefs in Southeast Sulawesi. This allows us to more 

accurately predict species compositions and connectivity patterns under future climate 

conditions.   
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