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Abstract 

Glutathione transferases (GSTs) are multi-functional enzymes with an important role 

in plant biochemical mechanisms of xenobiotic detoxification. The GSTs have been 

extensively studied due to their ability to detoxify herbicides; recently they have 

been implicated in numerous stress responses, including defence against pathogen 

attack, oxidative stress, heavy metal toxicity and the detoxification of a wide variety 

of xenobiotic compounds. 

GSTs catalyse the conjugation of the tripeptide glutathione (GSH) (γ-Glutamyl-

Cysteinyl-Glycine) to a variety of hydrophobic, electrophilic, and usually cytotoxic 

substrates to form a polar S-glutathionylated reaction product. Products of oxidative 

stress can also be a substrate as GSTs have a role in the protection of tissues against 

oxidative damage. 

This project focused on the role of GSTs from Arabidopsis thaliana to detoxify 

2,4,6-trinitrotoluene (TNT). Globally, manufacturing, use and storage of TNT has 

resulted in widespread soil contamination. Current strategies of TNT remediation 

(incineration, composting and landfilling) are expensive and damaging 

to the environment. Phytoremediation using the ability of plants to uptake, 

metabolise and detoxify xenobiotics in situ could present a cost-effective, non-

invasive, environmentally friendly alternative. 

In vitro studies focused on investigating the conjugation activity of purified 

recombinant GSTs with TNT. In vivo experiments aimed to determine the role of 

GSTs in TNT detoxification in Arabidopsis plants transformed with 35S-GST 

constructs in comparison with untransformed, wild type plants. 

Purified recombinant GSTU24 and GSTU25 directly conjugated TNT to form 

a range of glutathionylated products. GSTU25 was found to produce 2-glutathionyl-

4,6-dinitrotoluene, formed by nucleophilic substitution of a nitro group 



 

 

 

III 

 

by glutathione, previously identified in the conjugation reaction of mammalian GSTs 

with TNT. The data on two other compounds suggest the substances are 

C-glutathionylated 4-hydroxyaminodinitrotoluene and C-glutathionylated 

2-hydroxyaminodinitrotoluene with the glutathione attached via the methyl group 

of TNT. The effect of pH and temperature on product formation and enzyme activity 

was also studied. 

Experiments using transgenic lines overexpressing GSTU24 and GSTU25 showed 

better tolerance of the overexpressing lines compared to the wild type plants, as 

characterised by enhanced root growth in TNT containing medium and faster TNT 

removal from the growth medium. 

In summary, this work presents biochemical data on the first identified 

glutathionylated TNT conjugates produced by plant GSTs in vitro and in the plants. 

It also shows that overexpressing detoxification enzymes in the plant results 

in increased transformation of TNT, improving the ability of plants to tolerate 

the pollutant, and could lead to the identification and breeding of native plant species 

with active detoxification systems suitable for the phytoremediation of contaminated 

sites. 
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1. Introduction 

1.1. Phytoremediation 

1.1.1. TNT toxicity 

2,4,6-Trinitrotoluene (TNT) is the most widely used military explosive and is 

associated with wide-scale soil contamination. It belongs to the nitroaromatics group 

of explosives that are characterized by an aromatic ring and three nitro groups. 

(Fig. 1.1). The nitro groups contribute to the stability of the chemical structure 

by withdrawing electrons from the aromatic ring. This makes TNT resistant 

to the enzymes involved in the microbial metabolism of aromatic compounds, 

making it recalcitrant to degradation in the environment (Hannink et al. 2002; Lima 

et al. 2011).  

 

 

 

Fig. 1.1. The chemical structure of 2,4,6-Trinitrotoluene. 

 

The nitro groups also have a strong oxidising power, making TNT highly toxic 

to living organisms (Rylott & Bruce 2009).  
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In humans, TNT is readily absorbed by the skin, respiratory tract and gastrointestinal 

tract (Lima et al. 2011). Exposure to TNT is known to cause rashes, skin 

haemorrhages, aplastic anemia and hepatitis (Hannink et al. 2002; Lachance et al. 

1999).  

Nitroreductases in the liver metabolize TNT into 2-aminodinitrotoluene (2-ADNT) 

and 4-aminodinitrotoluene (4-ADNT) as the major metabolites. The nitro and 

hydroxylamine groups responsible for the toxicity of TNT react with biological 

molecules causing carcinogenic and mutagenic effects (Lima et al. 2011). TNT is 

considered a possible human carcinogen by the EPA and its metabolites exhibited 

variable levels of mutagenicity and cytotoxicity in different assays using bacterial 

and mammalian cell systems (Honeycutt et al. 1996; Lachance et al. 1999; Tan et al. 

1992; Tchounwou et al. 2001; Won et al. 1976). 

In plants TNT causes chlorosis, stunting of roots and inhibition of lateral root growth 

(Pavlostathis et al. 1998) and affects seed germination and fresh seedling biomass (P. 

Gong et al. 1999). 

 

1.1.2. TNT pollution 

Large areas previously used as firing ranges and open detonation sites together 

with places of production, burning, detonation and dismantlement of munitions are 

heavily contaminated with TNT. Even though the United States ceased TNT 

production in the mid-1980s, the EPA reports more than 30 munitions sites covering 

several thousand square kilometres across the United States contaminated 

with explosives (www.epa.gov). The United States Department of Defense has 

identified more than 1000 sites with explosives contamination, of which more than 

95% were contaminated with TNT (Rodgers & Bunce 2001). Similarly, many former 

military sites in Germany, often from World War I and II, have been contaminated 

http://www.epa.gov/
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with TNT and other contaminants (Schoenmuth & Pestemer 2004). Explosives 

contamination levels are heterogeneous, with very high levels of pollution (50 - 

200 g TNT /kg soil) found on relatively small hot spot areas and lower (<1 g TNT/kg 

soil) and diffuse levels present at battlefields or training and testing ranges (Stenuit & 

Agathos 2010). 

 

1.1.3. Phytoremediation 

Current strategies of TNT remediation (incineration, composting and landfilling) are 

expensive, insufficient to address the scale of the problem and damaging 

to the environment. Figures from 2005 showed that $6–8 billion per year was spent 

on environmental cleanup in the United States, and $25–50 billion per year 

worldwide (Pilon-Smits 2005). Phytoremediation using the ability of plants 

to uptake, metabolise and detoxify xenobiotics in situ could present a cost-effective, 

non-invasive, environmentally friendly alternative (Hannink et al. 2002; 

McCutcheon & Schnoor 2003; K. C. Makris et al. 2007a; K. C. Makris et al. 2007b). 

Plant biotechnology usually tolerates high concentrations of contaminants better than 

microorganisms (Rodgers & Bunce 2001). The EPA considers phytoremediation 

cheaper, requiring less equipment and labour than other methods. Trees and other 

plants can also make a site more attractive. The site can be cleaned up without 

removing and disposing of polluted soil (www.epa.gov). The U.S. phytoremediation 

market has grown two to threefold during 2000 - 2005. In Europe there is no 

significant commercial use of phytoremediation, but this may change in future 

because of increased interest and research, and the need for remediation in many 

polluted sites across the European Union countries. Phytoremediation may also 

become a suitable technology for remediation projects in developing countries 

because it is cost-efficient and easy to implement (Pilon-Smits 2005). 

http://www.epa.gov/
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Phytoremediation involves several different processes (Fig. 1.2). Phytoextraction 

enables concentrating contaminants in the plant biomass without degradation; 

phytostabilisation reduces the bioavailability of contaminants by binding them 

in plant tissues. In phytodegradation, the plant enzyme systems metabolise the toxic 

compounds to a less toxic or less bioavailable compound, while phytovolatilisation 

uses plant transpiration to release pollutants in a modified form into the atmosphere. 

Additionally, rhizodegradation is the breakdown of contaminants in the soil through 

microbial activity, which is enhanced by root exudates (phytostimulation) (Hannink 

et al. 2002; Pilon-Smits 2005; Rodgers & Bunce 2001). 

 

Fig. 1.2. Different processes of phytoremediation: the pollutant (represented by red 

circles) can be stabilized or degraded in the rhizosphere, sequestered or degraded 

inside the plant tissue, or volatilized. (Figure from Pilon-Smits 2005). 

 

The limitations of phytoremediation lie in the use of a suitable plant capable 

of growing in given soil properties, toxicity level and climate. Phytoremediation is 
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also limited by root depth because the plants have to be able to reach the pollutant, 

and by availability of the contaminant.  

Grasses can be particularly useful in cleaning up soils contaminated with TNT due to 

their fast growth and adaptability to various types of soil and climate. Vetiver grass 

(Vetiveria zizanioides) demonstrated high affinity for TNT without any visible toxic 

effects in hydroponic systems (40 mg TNT/l for 8 days) (K. C. Makris et al. 2007b) 

as well as in soil experiments (80 mg TNT/kg), especially due to the catalytic effect 

of urea (0.1 %) on TNT absorption by the plant (Das et al. 2010; K. C. Makris et al. 

2007a). Several tree species have also been studied for their high phytoremediation 

potential (Salix sp. and Populus sp.) due to their longevity, low nutrient and soil 

quality requirements and high tolerance to many soil pollutants (Brentner et al. 2008; 

Schoenmuth & Pestemer 2004; B. Van Aken et al. 2004). 

To increase the efficiency of phytoremediation technologies, it is important to study 

the biological processes involved. These include xenobiotic uptake, translocation, 

tolerance mechanisms (compartmentation, degradation) and transport and storage 

in the plant (Pilon-Smits 2005). 

 

1.1.4. Xenobiotic metabolism in plants 

Plants have evolved numerous and complex detoxification pathways to deal with 

the stress factors, including toxic chemicals, they are exposed to in their 

environment. Metabolism of xenobiotics has been classified into three phases. 

In phase I the compound is activated by adding functional groups (most often 

hydroxyl, amino or sulphuryl groups). These reactions create active sites 

in the substance prior to the Phase II transformation and although there is 

a possibility of transforming the substance to a more toxic metabolite, generally 

products of these reactions are less toxic than the original compound. This 

transformation involves one or more enzymes, and oxidation or reduction is the most 
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common type of reaction depending on the plant species and type of xenobiotic 

(Bhadra et al. 1999; Hannink et al. 2002). 

During phase II the activated substance undergoes conjugation with a hydrophilic 

molecule (saccharide, malonate or glutathione) catalyzed by glucosyl-, malonyl-, 

or glutathione transferases, respectively, to produce a water soluble conjugate that is 

usually nontoxic or less toxic than the parent compound (Hannink et al. 2002; Rylott 

& Bruce 2009).  

In phase III the conjugated xenobiotic is sequestered by the cell usually to 

the vacuole or cell wall, depending on its solubility (Hannink et al. 2002; Rylott & 

Bruce 2009). 

 

1.1.5. Metabolism of TNT in plants 

Although TNT is phytotoxic, toxicity is species dependent. The phytotoxicity 

of TNT to all plant species tested is demonstrated by chlorosis (change in colour 

from green to yellow, brown in severe toxicity) and by growth suppression. 

The lowest concentration of TNT to cause observable adverse effects was determined 

to be 50 mg/kg soil and several studied plant species were able to tolerate levels 

of the compound between 50 - 100 mg/kg soil (Hannink et al. 2002). Oat (Acena 

sativa) was found to be the most TNT resistant plant capable of tolerating 1600 mg 

TNT/kg soil. Uptake is also affected by the type of soil and TNT availability; TNT 

forms covalent bonds with soil humic acid, which effectively lowers its 

bioavailability and toxicity (Gong et al. 1999; Rylott & Bruce 2009; Hannink et al. 

2002; Thorn & Kennedy 2002). 

TNT concentrations higher than 30 mg/l (in agar plates) were found to affect 

germination in a range of species. With increasing TNT concentration, germination 

decreases linearly. In studies with bromegrass (Bromus inermis) TNT did not affect 

germination but reduced the root growth as the emerging radicle absorbed TNT 

(Peterson et al. 1998). 
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In an effort to determine how plant tolerance could be further improved, 

the biochemistry and enzymology underlying the ability of plants to detoxify TNT 

was studied. Gene expression studies have found genes that were upregulated 

in response to TNT exposure that correspond to the transformation, conjugation 

and sequestration steps of xenobiotic detoxification (Fig. 1.3) (Rylott et al. 2011). 

Phase I of TNT detoxification in plants primarily follows the reductive pathway well 

known from microorganisms, in which nitroreductases reduce TNT to 

hydroxylaminodinitrotoluenes (HADNTs) and aminodinitrotoluenes (ADNTs). Data 

from microarray experiments have found that members of the small gene family 

of oxophytodienoate reductases (OPRs) in Arabidopsis were up-regulated following 

exposure to TNT. The OPRs share similarity with the Old Yellow Enzyme family; 

bacterial OYEs have been shown to transform explosives. Arabidopsis OPRs have 

the conserved amino acids in their active site necessary for this transformation 

and play a physiological role in xenobiotic detoxification (Beynon et al. 2009). 

Plants also contain nitroreductases and cytochromes P450 and other oxidases 

involved in oxidative transformation of TNT (methyl oxidation and/or aromatic 

hydroxylation), which introduce chemical substituents to the molecule susceptible to 

conjugation (Bhadra et al. 1999; Ekman et al. 2003; Pavlostathis et al. 1998). 

Phase II of xenobiotic detoxification involves the conjugation of transformed 

intermediates to sugars or glutathione. Polar, water-soluble TNT conjugates were 

first observed in Phaseolus vulgaris (Harvey et al. 1990), Madagascar Periwinkle 

(Catharanthus roseus) (Bhadra et al. 1998) and Myriophyllum aquaticum (Wayment 

et al. 1999). UDP-glucosyltransferases (UGTs) from Arabidopsis were shown to 

have an important role in the detoxification process, conjugating HADNTs and, 

to a lesser extent, ADNTs, forming both O- and C-glucosidic bonds. Overexpressing 

some of these UGTs resulted in increased conjugate production in the plant 

and enhanced root growth of the transformed seedlings (Gandia-Herrero et al. 2008). 

The expression of glutathione transferases (GSTs) was also increased in response 

to TNT treatment in Arabidopsis and poplar (Populus trichocarpa) (Brentner et al. 

2008; Ekman et al. 2003). Although commercially available GST was shown to 
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conjugate TNT to form 2-S-glutathionyl-4,6-dinitrotoluene, the identity 

of the glutathione-conjugated product in plants is not yet known (Brentner et al. 

2008; Rylott & Bruce 2009).  

 

 

 

Fig. 1.3. Proposed metabolic pathway of TNT in plants. After uptake, TNT is reduced 

in Phase I of TNT detoxification via nitroso-dinitrotoluene (NO-DNT) to 2- and 4-

hydroxylaminodinitrotoluene (HADNT) isomers. Phase II involves the conjugation of 

the transformed intermediates to endogenous hydrophilic plant compounds, e.g. 

sugars. During Phase III, the conjugates are sequestered into the plant biomass, 

probably into plant cell walls or vacuoles (Rylott & Bruce 2009,  Figure from Gandia-

Herrero et al. 2008). 
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Experiments using radiolabelled TNT in Phaseolus vulgaris and hybrid aspen 

(Populus tremula x tremuloides var. Etropole) showed that the majority (~95 %) 

of TNT intermediates and conjugates were found predominantly in the root, where 

label was distributed evenly between cytosolic and cell wall fractions, particularly 

in the lignin fraction (Harvey et al. 1990; Rylott & Bruce 2009; Sens et al. 1998; van 

Dillewijn et al. 2008). Several transporters have been found to be upregulated 

in plants, including ABC transporters responsible for ATP-dependent transport 

of GSH conjugates across membranes (Ekman et al. 2003, Lorenz, 2007), as well as 

cell wall modification enzymes abundantly upregulated especially in roots (Landa et 

al. 2010). 

 

1.1.6. Engineering plants for the phytoremediation of explosives 

Explosives are phytotoxic and detoxification rates of explosives pollutants are low 

in plants when compared with bacterial cultures. Although bacteria isolated from 

contaminated soil can rapidly detoxify explosives in laboratory conditions, 

the explosives persist in the environment suggesting that bacteria do not have enough 

biomass or metabolic activity to decontaminate these areas. Methods of genetic 

engineering could be used to transfer the TNT-detoxifying bacterial genes into 

plants, enhancing the ability of plants to both withstand and detoxify explosives. 

A nitroreductase gene nsfI from Enterobacter cloacae was constitutively expressed 

in Nicotiana tabacum, resulting in enhanced transformation of TNT by transgenic 

plants, which were able to tolerate levels of TNT contamination that would be toxic 

to untransformed plants (Hannink et al. 2007). Similarly, transgenic hybrid aspen 

(Populus tremula x tremuloides var. Etropole), which expressed the bacterial 

nitroreductase gene pnrA, were able to tolerate and take-up greater amounts of  TNT 

from contaminated hydroponic media and soil than untransformed aspen plants (Van 

Dillewijn et al. 2008). 



 Introduction 

 

 

10 

 

Overexpressing Arabidopsis detoxification enzymes in the plant also results in 

increased transformation of TNT and improved ability of plants to tolerate the 

pollutant, as was shown with seedlings overexpressing UGTs (Gandia-Herrero et al. 

2008). Studying the biochemical mechanisms of TNT detoxification in plants could 

lead to identification and breeding of native plant species with active detoxification 

systems suitable for the phytoremediation of contaminated sites (Gandia-Herrero et 

al. 2008). 
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1.2. Glutathione transferases 

Glutathione transferases (GSTs) are multifunctional enzymes found in all aerobic 

organisms from bacteria to humans (Frova 2003). GSTs catalyse the conjugation 

of the tripeptide glutathione (GSH) (γ-Glutamyl-Cysteinyl-Glycine) to a variety 

of hydrophobic, electrophilic, and usually cytotoxic substrates to form a polar 

S-glutathionylated reaction product. Products of oxidative stress can also be 

substrates, for example hydroperoxides, formed by the action of active oxygen 

species that are generated both as normal by-products of aerobic metabolism and as 

the result of pathogen infection or during abiotic stress (Axarli et al. 2009).  

 

1.2.1. Nomenclature 

The soluble GSTs have an ancient, monophyletic origin and a high degree 

of structural conservation in prokaryotes and eukaryotes revealed by 

the crystallography and x-ray diffraction analysis data (Dixon & Edwards 2010, 

Frova 2003). They are encoded by large gene families - in different plant species 

the family contains 25 - 60 members (Frova 2003). The proteins can be grouped into 

eight classes on the basis of nucleotide sequence identity, gene organization 

and active site residues in the proteins. The Theta and Zeta classes of GSTs are also 

present in animals, while the Phi and Tau classes are plant specific (Dixon, A. 

Lapthorn, et al. 2002). All these classes have an active site with a serine residue 

involved in the formation of the reactive thiolate anion of GSH, which is used 

in addition or substitution reactions with the hydrophobic substrate. Further plant-

specific classes of GST-like proteins identified in Arabidopsis include the Lambda 

and dehydroascorbate reductase (DHAR) classes with dehydroascorbate reductase 

activity described by Dixon et al. 2002. These proteins have a cysteine residue in the 

active site which alters the catalytic properties of the enzymes. They cannot directly 
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catalyse the S-glutathionylation of substrates, but instead are more likely to catalyse 

redox reactions (Dixon et al. 2010). The tetrachlorohydroquinone dehalogenase-like 

(TCHQD) class contains a membrane associated protein with an, as yet, unknown 

function (Dixon et al. 2010).  

GSTs are related to other GSH- and cysteine-binding proteins, which also contain 

a thioredoxin-like protein fold; and also to stress-related proteins from a range 

of organisms. Based on the conservation of introns, active site residue and function 

in all eukaryotes, Theta and Zeta GSTs are considered the predecessors of 

the family, preceding the separation of animal - plant structures (Frova 2003). 

Phylogenetic studies indicate that plant GSTs have mainly evolved after 

the divergence of plants; the two prevalent Phi and Tau classes being the result 

of recent multiple duplication events (Frova 2003).  

 

1.2.2. Gene organisation 

The Arabidopsis genome contains 54 GST genes, with the Tau (GSTU) and Phi 

(GSTF) classes being the most numerous, represented by 28 and 13 genes 

respectively, whereas there are only three Theta GSTs (GSTT), two Zeta GSTs 

(GSTZ), three Lambda GSTs (GSTL), four DHAR and one TCHQD (Fig. 1.4). 

Out of these genes 52 are subscribed and 41 of the proteins were shown to have 

GSH-dependent catalytic activity (Dixon, A. Lapthorn, et al. 2002; Dixon, Davis, et 

al. 2002; Dixon et al. 2010). The GST genes are predominantly organized in clusters 

non-randomly distributed in the genome (Fig. 1.5) Progress has been made in 

defining the function of some of the smaller groups of plant GSTs and the cellular 

localisation of the members of the family (Dixon et al. 2009). 
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Fig. 1.4. Phylogenetic tree showing the diversity of Arabidopsis GSTs and the 

relationships between classes. Branch lengths correspond to the estimated 

evolutionary distance between protein sequences. GST class nomenclature: U, Tau 

class; F, Phi class; T, Theta class; Z, Zeta class; L, Lambda class; DHAR, 

dehydroascorbate reductase class, TCHQD, tetrachlorohydroquinone 

dehalogenase-like class; (Figure from Dixon & Edwards 2010, the tree was 

calculated and drawn using the PHYLIP package, using Protdist [JTT method], 

Neighbor [UPGMA method] and Drawtree). 
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Fig. 1.5. Distribution of GST genes on the Arabidopsis chromosomes. GST class 

nomenclature: U, Tau class; F, Phi class; T, Theta class; Z, Zeta class; L, Lambda class; 

DHAR, dehydroascorbate reductase class, TCHQD, tetrachlorohydroquinone 

dehalogenase-like class (Figure from Dixon & Edwards 2010). 

 

1.2.3. Structure 

The GST sequences are divergent, even within a family. In plants, sequence identity 

within the larger Phi and Tau classes can be as low as 40 % and is less than 25 % 

between classes (Frova 2003). Structures of ten plant GSTs have been solved 

by x-ray crystallography, two of which were Arabidopsis GSTs: GSTF2 (Reinemer 

et al. 1996) and GSTZ1 (Thom et al. 2001). Despite differences in their primary 
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sequences the structures of these soluble GSTs are very similar, with comparable 

protein folds. All known GST structures consist of a conserved N-terminal, which is 

a GSH binding site (the G site), formed from a conserved group of amino-acid 

residues, which has evolved from the thioredoxin fold. The second component is 

a site that binds the hydrophobic substrate (the H site), which is much more 

structurally variable and is formed from residues in the C-terminal alpha-helical 

domain (Fig. 1.6) (Dixon & Edwards 2010; Frova 2003). The hydrophobic H-site is 

located next to the G-site. Catalytic activity of the protein is dependent on 

stabilisation of the reactive thiolate anion of GSH. GSTs facilitate proton removal 

from the thiol of GSH using serine residue Ser17 in the active centre (Dixon et al. 

2010; Dixon & Edwards 2010). 

 

 

 

 

 

 

 

 

 

 

Fig. 1.6. GST structure and substrate binding. Representation of a typical GST 

subunit with the N-terminal domain in green, the linker region in red, 

the C-terminal domain in blue and the protein surface in gray. The GSH-binding site 

(G site) is highlighted in yellow and the hydrophobic site (H site) is highlighted in 

blue. (Figure from Dixon, A. Lapthorn, et al. 2002). 
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Eukaryotic GSTs are mostly cytosolic and in plants can constitute up to 2 % 

of soluble proteins (Dixon, A. Lapthorn, et al. 2002; Frova 2003). Recently, family 

members have also been shown to be selectively targeted to the nucleus 

and peroxisome (Dixon et al. 2009). As a general rule, GSTs are active as dimers 

of either identical (homodimers) or different (heterodimers) subunits, each encoded 

by independent genes (Frova 2003; Frova 2006), although the lambda and DHAR 

classes appear to be monomeric by gel filtration (Dixon, Davis, et al. 2002). 

The monomeric subunits associate to form the dimer with the central cleft containing 

an active site on each side and this dimerisation is essential for the function 

of soluble GSTs (Fig. 1.7) (Dixon & Edwards 2010). Molecular weights of 

the subunits range from 23 to 29 kDa, forming a hydrophobic 50 kDa protein 

with an isoelectric point in the pH range 4 - 5. Heterodimers form from subunits of 

the same class and further contribute to the diversity of GSTs (Dixon, A. Lapthorn, 

et al. 2002; Frova 2003). 
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Fig. 1.7. The dimeric structure of Arabidopsis GST determined by x-ray 

crystallography: GSTF2 (A & B) and GSTZ1 (C & D). The structure is coloured from 

purple at the N-terminus to red at the C terminus for each polypeptide. A and C 

show a view looking into the active site showing the symmetry of the dimer, 

B and D show a side-on view of the dimer with a central cleft containing an active 

site on each side (Figure from Dixon & Edwards 2010). 

 

1.2.4. Functions of GST classes 

Zeta 

The GSTZs are highly conserved in eukaryotes, which suggests they have an 

important function in the cell metabolism. The GSTZ genes contain eight or nine 

introns. Arabidopsis has two GSTZ genes (GSTZ1 and GSTZ2), although only 

GSTZ1 is transcribed at a significant level (Dixon & Edwards 2010). This enzyme 



 Introduction 

 

 

18 

 

catalyses GSH-dependent isomerisation of maleylacetoacetate to 

fumarylacetoacetate, a reaction which is part of tyrosine degradation pathway 

functional in plants. Carnation GSTZs are induced during senescence, which is 

consistent with their function in amino acid catabolism (Dixon & Edwards 2010; 

Frova 2003; Sheehan et al. 2001). 

DHAR 

The DHARs are plant specific enzymes catalysing the reduction of dehydroascorbate 

to ascorbate, maintaining a reduced ascorbate pool. DHARs are monomers and have 

a cysteine residue in their active site which makes them unable to stabilise 

the thiolate anion of GSH, therefore they do not catalyse conjugating reactions using 

GSH. Instead, the cysteine forms a disulfide with GSH as a part of the catalytic 

mechanism of the enzyme. DHARs are most likely present in the organelles where 

the redox reactions are needed to maintain a pool of reductants. They have been 

reported in mitochondria, chloroplasts and peroxisomes and have been proposed to 

have a role during oxidative stress in plants (Dixon & Edwards 2010). 

Lambda 

The GSTLs are similar to the DHAR class, they are expressed as monomers, contain 

cysteine in their active centre forming disulfides with GSH, but their endogenous 

substrates are, as yet, unknown (Dixon & Edwards 2010). 

Theta 

Theta class of GSTs is conserved between plants and animals. Genes contain six 

introns; enzymes have an active site with a serine residue and high glutathione-

dependent peroxidase (GPOX) activity. They are located in the peroxisomes, where 

the cellular metabolism generates quantities of hydrogen peroxide which could 

oxidatively damage endogenous fatty acids to form lipid hydroperoxides, which are 
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likely substrates of peroxisomal GSTs. Arabidopsis GSTT3 is transcribed as a fusion 

protein with the C-terminal domain resembling myb-like transcription factors. 

The fusion protein is localised exclusively to the nucleus. The significance of this 

accumulation is unclear and roles in regulating gene transcription under oxidative 

stress or detoxifying oxidatively damaged DNA have been suggested (Dixon et al. 

2009; Dixon & Edwards 2010). 

Phi 

The GSTFs are a large, plant-specific class of enzymes, with apparent functional 

redundancy. This class includes some of the first GSTs identified due to their 

herbicide detoxifying activity. The Phi genes contain two introns at conserved 

positions (Frova 2003). A lot of the proteins have been studied in detail. GSTF2 is 

strongly inducible by oxidative stress and has a role in flavonoid metabolism (Smith 

et al. 2003). GSTF8 expression is induced by hydrogen peroxide, pathogens, 

salicylic acid and herbicides due to the presence of an ocs element in the promoter, 

mainly in the root tissue (Chen & Singh 1999). GSTF8 is also the most active 

of Arabidopsis GSTs in assays with the model substrate CDNB (Dixon et al. 2009). 

GSTF12 has a role in the transport of anthocyanins into the vacuole, its transcription 

being closely co-regulated with other anthocyanin synthesis genes (Brazier-Hicks et 

al. 2008; Dixon & Edwards 2010; Sun et al. 2012). 

Tau 

GSTUs are plant-specific enzymes and the most numerous GST class in Arabidopsis 

and other plants. The Tau genes each contain one intron in a conserved position. 

GSTU19 is the best studied of GSTs and is induced by drought and exposure 

to herbicide safeners as well as other stress reactions. GSTU24 transcription is 

induced by various xenobiotics including TNT; GSTU25 is characterised by high 
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activity towards CDNB and high GPOX activity (Brazier-Hicks et al. 2008; Dixon & 

Edwards 2010; Frova 2003). 

TCHQD 

Arabidopsis has a single TCHQD, showing sequence homology to the prokaryotic 

enzymes involved in metabolism of chlorinated xenobiotics. It is localised to 

the plasma membrane and contains a serine residue in its active site suggesting it 

could catalyse GST reactions (Dixon & Edwards 2010). 

MAPEG 

Plants also have members of phylogenetically unrelated GST family known as 

the membrane associated proteins in eicosanoid and glutathione metabolism. 

Arabidopsis has a single MAPEG-like protein with sequence similarity 

with mammalian proteins (Dixon & Edwards 2010). 

 

1.2.5. Functions of GSTs 

Initially GSTs were intensively studied because of their ability to detoxify 

herbicides; recently they have been implicated in numerous stress responses, 

including defence against pathogen attack, oxidative stress, and heavy-metal toxicity 

and the detoxification of a wide variety of xenobiotic compounds.  

Following glutathionylation, the glutathione conjugates are transported to the 

vacuole by ABC transporters and processed by at least two distinct pathways. Based 

on molecular studies, these functions seem to be organ- and species-specific. Studies 

of herbicide metabolism in cereal crops suggests that glutathione conjugates are 

hydrolysed in the vacuole by carboxypeptidases to form γ-glutamylcysteine 

derivatives, which are processed to cysteine conjugates by γ-glutamyl 
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transpeptidases. In Arabidopsis, in the pathway, which based on enzyme expression 

studies predominates in roots, glutathionylated conjugates are sequentially processed 

in the vacuole to cysteinylglycine derivatives and then to the cysteine conjugates. In 

the pathway functioning in the leaves, conjugates are first metabolised to the γ-

glutamylcysteine derivative in the cytosol through the carboxypeptidase activity of 

the enzyme phytochelatin synthase. Subsequent conversion to the cysteine conjugate 

is then catalysed by γ-glutamyltranspeptidase isoenzyme which is localized in the 

plasma membrane (Brazier-Hicks et al. 2008; Cummins et al. 2011; Dixon & 

Edwards 2010). 

In the GSTs studies, gene expression is regulated at the transcription level, although 

evidence of alternative splicing was found for the Phi and Tau classes of Arabidopsis 

GSTs. Inducibility of GSTs by a wide range of signals suggests the presence 

of regulatory sequences in the promoters are activated by a number of different 

molecules. The plant GST promoters analysed so far do not contain responsive 

elements that are found in animal promoters. Octopine synthase (ocs) elements are 

the only regulatory motifs identified in a number of GST promoters from different 

plant species. Ocs elements were found to mediate induction of GST expression 

by auxin, salicylic acid, hydrogen peroxide, methyl jasmonate, wounding and 

cadmium (Frova 2003). A common effect of these factors is the generation of active 

oxygen species, causing membrane lipid peroxidation and cytotoxic product 

formation resulting from oxidative DNA injury. GSTs also have GPOX activity and 

reduce hydroperoxides to alcohols, metabolising the toxic products of lipid 

peroxidation and DNA injury and thus counteracting oxidative injury (Cummins et 

al. 2011; Frova 2003). 

Research to gain a better understanding of GST functions may lead to 

the development of more tolerant plant and crop varieties. Overexpression of GSTs, 

or introduction of GST from different species, has been used to enhance 

the tolerance of plants to different stress factors, including toxic xenobiotics (Dixit, 
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et al. 2011b) and herbicides (Benekos et al. 2010). Improved tolerance to oxidative 

stresses induced in tobacco plants by heavy metals such as cadmium  has also been 

demonstrated (Dixit, et al. 2011a), as well as  improved drought and salt tolerance 

of transgenic tobacco (Ji et al. 2010). 

In addition, plant GSTs participate in light signalling and can affect various aspects 

of Arabidopsis development. GSTs are also involved in the normal metabolism 

of plant secondary products like glucosinolates, anthocyanins and cinnamic acid 

(Dixon, Lapthorn, et al. 2002; Cummins et al. 2011; Jiang et al. 2010; Kitamura et al. 

2012; Sun et al. 2012). 
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1.3. Aim of the current project 

Experimental background 

During previous research in Prof. Neil Bruce’s group, a cDNA microarray assay 

using Arabidopsis seedlings treated with TNT was used to identify genes which 

could play a role in TNT detoxification. Many Phase I and II enzymes were found 

to be upregulated, including two Phi class GSTs and 12 Tau class GSTs, which were 

upregulated two fold or more (Gandia-Herrero et al. 2008). 

During a previous PhD project (Sparrow, 2010), the seven Tau class GSTs, whose 

expression was most increased after TNT treatment, were further characterised 

(AtGSTU1, AtGSTU3, AtGSTU4, AtGSTU7, AtGSTU22, AtGSTU24 

and AtGSTU25). The microarray data were confirmed using real-time PCR and 

the selected GSTs were cloned into the LIC vector system and conditions optimised 

for recombinant expression in Escherichia coli. These GSTs were also cloned into 

plant expression vectors under the control of the 35S promoter and a number 

of Arabidopsis over-expression lines were generated (Sparrow, 2010).  

Based on the previous results of conjugation activity of purified GSTs with TNT 

(Sparrow, 2010), GSTU24 and GSTU25 were selected for further study because 

these GSTs gave the highest activity towards TNT. The aim of this MSc project was 

to characterise the biochemistry of these selected Arabidopsis GSTs. 

In vitro experiments 

In vitro studies focused on investigating the conjugation activity of purified 

recombinant GSTs with TNT. The experiments investigated the mechanism 

and kinetics of the conjugation reaction and aimed to identify the reaction product. 
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In vivo experiments 

In vivo experiments aimed to determine the role of GSTs in TNT detoxification 

in Arabidopsis plants transformed with 35S-GST constructs in comparison with 

untransformed, wild type plants. The characterisation of the transgenic lines included 

morphological analyses, rate of TNT uptake by plants and analyses of metabolites 

from transformed and wild-type plants. 
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2. Biochemical characterisation of 

AtGSTU24 and AtGSTU25 

2.1. Materials 

Consumables and reagents used for this work were obtained from the following 

suppliers: Sigma-Aldrich (Gillingham, UK), Thermo Fisher Scientific 

(Loughborough, UK), Invitrogen (Paisley, UK), Promega (Southampton, UK), 

Starlab Ltd. (Milton Keynes, UK), Waters Ltd. (Elstree, UK), GE Healthcare 

(Chalfont St. Giles, UK). The compost used in this work was Levington F2 

compost sourced from Scotts (Suffolk, UK). Water used for all solutions and media 

was purified using an Elga Purelab Ultra water polisher (Elga Labwater, High 

Wycombe, UK) and sterilized by autoclave if necessary. 

 

2.2. Methods 

2.2.1. Cloning and expression of GSTs 

Plasmids 

Plasmids for transformation of Escherichia coli were created by Ligation 

Independent Cloning using the pET-YSBLIC3C vector by Sparrow, 2010. 

The vector contained the gst insert with 6 × His-Tag and a kanamycin resistance 

gene as well as a repressor gene (Lacl) for IPTG induction (Sparrow, 2010). 

Expression of LIC-GSTs in Escherichia coli 

The conditions for in vitro expression of GSTU24 and GSTU25 were optimised by 

Sparrow, 2010.  
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Transformation of competent E. coli 

Chemically competent E. coli cells of the BL21 (DE3) strain were transformed 

with pET-YSBLIC3C plasmid containing the respective gst gene. Aliquots of 50 μl 

of competent cells were defrosted on ice, incubated with 1 μl plasmid DNA 

for 30 min on ice, heat shocked for 90 s at 42 °C and returned to ice for another 

2 - 3 min. For recovery, 500 μl of LB was added and the cells were incubated at 

37 ºC with 250 rpm shaking for 1 h. The transformed cells were plated onto LB 

agar plates containing 50 μg/ml kanamycin. The plates were incubated overnight 

at 37 °C and a single colony was used to prepare a starter culture for protein 

expression. 

Protein expression 

The starter culture for expression of GSTU24 and GSTU25 was prepared from 

a single colony of transformed E.coli BL21 (DE3) cells grown on LBA with 

kanamycin. A single colony was transferred to 5 ml LB medium and incubated 

overnight at 37 °C with 250 rpm shaking. The starter culture was added to 

autoinduction (AI) medium (Table 1.1 & 1.2) and grown at 37 ºC with 180 rpm 

shaking until the optical density of the culture reached 0.8 - 1.0 at 600 nm. 

The culture was then incubated at 20 °C with 180 rpm shaking for an expression 

time of 60 h. 

 

 

Table 2.1. The components of AI medium (per 1l): 

ZY both (10 g/l tryptone, 5 g/l yeast extract)  928 ml 

1 M MgSO4      1 ml 

1000 × metals      1 ml 

50 × 5052 solution     20 ml 

20 × NPS solution     50 ml 
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Table 2.2. Stock solutions for AI medium: 

1000 x metals (100 ml) 

0.1 M FeCl3.6H2O (in 0.1 M HCl) 

1 M CaCl2 

1 M MnCl2.4H2O 

1 M ZnSO4.7H2O 

0.2 M CoCl2.6H2O 

0.1 M CuCl2.2H2O 

0.2 M NiCl2.6H2O 

0.1 M Na2MoO4.2H2O 

0.1 M Na2SeO3.5H2O 

0.1 M H3BO3 

H2O 

50 ml 

2 ml 

1 ml 

1 ml 

1 ml 

2 ml 

1 ml 

2 ml 

2 ml 

2 ml 

36 ml 

50 x 5052 solution  

(100 ml) 

Glycerol 

Glucose 

-Lactose 

H2O 

25 g 

2.5 g 

10 g 

73 ml 

20 x NPS solution  

(100 ml) 

Na2SO4 

NH4Cl 

KH2PO4 

Na2HPO4 

H2O 

3.6 g 

13.4 g 

17.0 g 

17.7 g 

90 ml 

 

2.2.2. Cell lysis 

After 60 h expression time the E. coli cells were centrifuged for 5 min at 5000 rpm 

and the cell pellets were re-suspended in PBS. Cell lysis was performed 

by sonication with S-4000 Sonicator (Misonix) at 70 % amplitude for 4 min, 

with cycles of 3 s interrupted by 7 s cooling at 0 ºC. Cell lysates were centrifuged 

at 17 500 g for 30 min to remove the cell debris. Prior to enzyme purification 

the supernatants were filtered through 0.45 μm syringe filters.  
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2.2.3. Purification of recombinant protein 

GSTU24 and GSTU25 were purified by batch purification with Glutathione 

Sepharose 4B according to the manufacturer’s instructions. Prior to use the resin 

was washed with PBS buffer (140 mM NaCl, 2.7 mM KCL, 10 mM Na2HPO4, 

1.8 mM KH2PO4), pH 7.4. The resin was added to protein extract, after incubation 

for 30 - 60 min at room temperature the mixture was centrifuged at 500 g for 5 min. 

The resin was washed 5 times with 10 bed volumes of PBS buffer. Protein was 

eluted with elution buffer (50 mM Tris-HCl, 10 mM GSH) after 10 min incubation 

at room temperature. The elution step was repeated for total of three to six elutions. 

 

2.2.4. Protein visualisation by SDS-PAGE 

The binding capacity of the Glutathione Sepharose 4B resin, the protein content 

of the wash steps and the purity of the enzyme was analysed by SDS-PAGE. 

The concentration of proteins in the analysed samples was quantified by Coomassie 

(Bradford) colorimetric protein assay at 595 nm, using Bovine Serum Albumin 

Standard to create a standard curve. Samples were solubilised in a 4 × SDS-PAGE 

loading buffer containing 2 ml water, 1.6 ml 10 % SDS, 1 ml 0.5 M Tris-HCl, 1 ml 

glycerol, 0.4 ml β-mercaptoethanol and 20 mg bromophenol blue. A denaturing 

step was performed at 100 °C for 5 min. Samples containing 20 mg of protein 

extracts and 10 mg of purified proteins were run through an acrylamide gel 

(Biorad) at 200 V alongside 10 μl of broad range molecular weight marker and 

visualised using Coomassie brilliant blue stain. 
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2.2.5. CDNB activity assay 

To assess the activity of the purified recombinant GSTs, an activity assay with 

CDNB was performed. GST catalyses the conjugation of GSH to CDNB through 

the thiol group of the glutathione. The reaction product, GS-DNB conjugate, 

absorbs at 340 nm, therefore the increase in absorption due to conjugate production 

can be measured spectrophotometrically following a protocol published by Habig et 

al. 1974 and adapted by Sparrow, 2010. The reaction mix contained 100 mM 

potassium phosphate buffer pH 6.5, 5 mM GHS, 1 mM CDNB and 5 μg of protein 

in the total reaction volume of 1 ml. The reaction was initiated by the addition of 

CDNB and followed over 1 min. 

Kinetic analysis of GSTU24 with CDNB 

The described spectrophotometric assay was performed using CDNB 

concentrations ranging from 0 to 3000 μM. The rates of conjugate production were 

measured in triplicate and Michaelis-Menten parameters were calculated using 

Sigma Plot 12.0. 

 

2.2.6. TNT activity assay 

An activity assay using TNT as the enzyme substrate was performed using similar 

conditions as in the experiment with CDNB in 100 mM potassium phosphate buffer 

at the temperature of 20 °C with 150 μg of the enzyme, 200 μM TNT and 5 mM 

GSH. Assays were performed in triplicate, aliquots of the samples were taken over 

a particular time course and the reaction was stopped with 1 % TCA to precipitate 

the protein. After centrifugation at 13 000 rpm for 10 min the products 

of the conjugation reaction were analysed by HPLC using a Waters Alliance 2695 

separation module with a Waters 2996 photodiode array detector. The samples 
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(40 μl) were loaded onto a Waters X-Bridge C18 column (250 × 4.6 mm, 5 μm) 

heated to 25 °C and separated using gradient elution (Table 1.3). Integration was 

performed at 240 and 250 nm with Empower Pro software. 

 

Table 2.3. HPLC conditions optimised for Waters X-Bridge C18 column: 

Mobile phase A: acetonitrile 

Mobile phase B: water + 0.1 % formic acid 

HPLC gradient: 0 min  5 % A  95 % B 

 5 min  5 % A  95 % B 

 25 min 40 % A 60 % B 

 30 min  100 % A 0 % B 

 35 min 5 % A  95 % B 

Equine liver GST was used as a positive control in the experiments, as it was 

previously shown to have activity towards TNT and LC-MS-MS analyses 

of the TNT conjugate confirmed the formation of 2-S-glutathionyl-4,6-

dinitrotoluene (Brentner et al. 2008), therefore this reaction facilitated identification 

of the compound in the chromatogram. 

The conjugation reactions were performed in triplicate using 10 U (173 mg) 

of enzyme (Sigma, 576 U/10g), 200 μM TNT and 5 mM GSH in 100 mM 

potassium phosphate buffer at 20 °C and 37 °C. Aliquots were taken from 

the reactions at the same time points as in Arabidopsis GST reactions. The reactions 

were stopped with 1 % (v/v) TCA and the samples were analysed by HPLC. 

 

2.2.7. Griess assay 

The Griess assay is a colorimetric assay used to measure the amount of free nitrite 

released in the reaction. The assay was used to obtain initial data on conjugation 
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of GSH by nucleophillic substitution of NO2
-
 group of TNT. The reactions were 

performed in duplicates at 20 °C in 100 mM phosphate buffer pH 6.5 and 9.5 with 

150 μg of the enzyme, 500 μM TNT and 5mM GSH in a total volume of 250 μl. 

After 1 h and 3 h the reaction was stopped by 1 % TCA. After centrifugation 

the samples were transformed to 1 ml cuvettes and water was added to bring the 

total volume to 760 ml. After adding 200 μl of acidified sulphanilamide solution, 

the reaction was incubated protected from light at room temperature for 10 min 

before adding 40 μl of N-1-napthylethylenediamine dihydrochloride (NED) 

solution. After incubation in the dark at room temperature for 10 min the samples 

were measured spectrophotometrically at 540 nm. The amount of free nitrite 

released in the reaction was quantified using a standard curve produced with 0 – 

100 μM NaNO2. 

 

2.2.8. LC-MS analysis of conjugation products 

Mass spectrometry of the conjugated TNT products was performed using Finnigan 

Surveyor Autosampler 1.4 (Thermo Electron Corporation), Finnigan Surveyor LC 

pump 1.4 SP1, Finnigan Surveyor PDA detector 1.0 and LCQ detector Finnigan 

MAT 2.0 with a Waters X-Bridge C18 column (250 × 4.6 mm, 5 μm) and the same 

HPLC conditions as used for analytical LC with 10 μl injection (section 2.2.6). 

The LCQ detector was tuned using TNT standard. Data were collected for peaks 

from 5.11 to 32.77 minutes. ESI was used to produce ions in negative mode with 

mass range 100 - 1000. Data were analysed with Excalibur 2.0 SUR 1 software. 

 

2.2.9. Purification of conjugation products 

The conjugation products were formed in the reaction of GSTU25 with 2 mM TNT, 

as GSTU25 forms all of the conjugates possible. The reaction was performed 

in 100 mM potassium phosphate buffer pH 9.5 at 20 °C for 6 h using 1.5 mg of 



 Biochemical characterisation of AtGSTU24 and AtGSTU25 

 

 

32 

 

the purified enzyme with 2 mM TNT and 25 mM GSH in a total volume of 500 μl. 

To increase the solubility of TNT in the aqueous solution, 50 μl of DMSO was 

added to the reaction. The TNT conjugates were purified from the reaction by 

means of analytical HPLC (conditions in section 2.2.6). Acetonitrile from 

the HPLC mobile phase was evaporated in a fume hood and water was removed 

by freeze-drying. The dried purified compounds were re-suspended in water after 

determining weight and stored at -80 °C for use as HPLC standards. For NMR 

analyses, the purified substances were dissolved in 0.7 ml D2O and transferred into 

NMR tubes.  

 

2.2.10. NMR analysis of conjugation products 

Bruker AVII 700 MHz spectrometer was used to obtain 13C, COSY, HSQC, HMBC 

and NOESY NMR spectra to identify the products of the TNT conjugation 

reactions. 

 

2.2.11. Kinetic assay of GSTU24 and GSTU25 with TNT 

Kinetic assays of GSTs with TNT were performed at conditions optimal for 

the enzyme activity: 100 mM phosphate buffer pH 9.5 at 42 °C with 150 μg 

of the enzyme. The concentration of TNT ranged from 25 - 5000 μM and GSH 

concentration ranged between 5 to 45 mM. To ensure TNT was solubilised 

in the solution, stock solutions of different TNT concentrations were prepared 

in DMSO and 5 % DMSO (10 % DMSO to solubilise 3, 4 and 5 mM TNT) was 

added to the total volume of the reaction, as this amount of DMSO was found to 

have no effect on GST protein activity and at the same time solubilised TNT in 

the solution (Sparrow, 2010). Experiments were performed in triplicate under 

the optimised conditions, aliquots of the samples were taken at 0, 5, 10, 15, 20 and 

25 min and the enzymatic reaction was stopped with 1 % TCA. Following 

centrifugation, the samples were analysed by HPLC (section 2.2.6). Michaelis-

Menten parameters were calculated using Sigma Plot 12.0.  
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2.3. Results 

2.3.1. Cloning and expression of GSTU24 and GSTU25 

Chemically competent E. coli cells, BL21 (DE3) strain, were transformed with 

pET-YSBLIC3C containing the gst of interest (created by Sparrow, 2010), 

or the empty vector as a negative control. The expression conditions using 

autoinduction medium and expression time of 60 h at 20 °C were also optimized 

by Sparrow, 2010. 

GSTU24 and GSTU25 were purified with Glutathione Sepharose 4B according 

to the manufacturer’s instructions, as these enzymes were found to bind effectively 

to the Sepharose beads (Sparrow, 2010). The binding capacity of the Glutathione 

Sepharose 4B resin, the protein content of the wash steps and the purity 

of the enzyme were analysed by SDS-PAGE. Samples containing 20 mg of protein 

were run through an acrylamide gel alongside a broad range molecular weight 

marker and visualised using Coomassie brilliant blue stain (Fig. 2.1 & 2.2). 

A B 

Fig. 2.1. Coomassie Brilliant Blue-stained SDS–PAGE gel showing purification 

profile of GSTU24 (A) and GSTU25 (B). Lanes show: M, molecular weight marker 

(kDa); C, crude protein extract from E. coli after 60 h expression time; U, unbound 

fraction of the purification process; W1 - 3, wash steps, E1 - 3, purified fractions.  

 



 Biochemical characterisation of AtGSTU24 and AtGSTU25 

 

 

34 

 

 

A B 

Fig. 2.2. SDS-PAGE gel of expression profile and purification of GSTU24 (A) and 

GSTU25 (B). M, molecular weight marker (kDa); EV, protein extract from E. coli 

transformed with empty vector; OD1, protein extract from E. coli culture  with 

optical density 0.8-1 at 600 nm before the induction of the protein expression; 

C, crude protein extract from E. coli after 60 h expression time; U, unbound 

fraction of the purification process; P, purified protein.  
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2.3.2. Activity of GSTU24 and GSTU25 with CDNB 

GSH-conjugating activity of the purified proteins was assessed 

spectrophotometrically using the generic substrate CDNB. The CDNB assay was 

originally developed as a simple colorimetric assay to measure mammalian GST 

activity (Habig et al. 1974). Although many GSTs are not active with this 

exogenous substrate, GSTU24 and GSTU25 were previously found to be capable of 

catalysing the conjugation of several model substrates, particularly CDNB and 

benzyl isothiocyanate (BITC), which is a potential natural GST substrate in 

cruciferous plants derived from the degradation of glucosinolates (Dixon et al. 

2009; Dixon & Edwards 2010). GSTs catalyse the removal of a proton from GSH 

to generate the thiolate anion GSˉ, which is more reactive than GSH. In the case of 

CDNB, the conjugation of the thiolate anion occurs at carbon 1 where the chloride 

is bound, producing a Meisenheimer complex. The complex is unstable and the 

chloride dissociates leaving glutathionyl-dinitrobenzene conjugate (Fig. 2.3). 

 

 

 

Fig. 2.3. The conjugation of glutathione anion with CDNB via the Meisenheimer 

complex (centre). Figure from Bowman et al. 2007. 

 

A conjugation assay with CDNB was performed to test activity and functionality 

of the purified enzymes (Fig. 2.4 A). The Km value of GSTU24 of 954.9 μM CDNB 

(648 nkat.mg
-1

) and Vmax of 38.9 μM/min were calculated based on the Michaelis-

Menten plot presented in Fig. 2.4 B.  
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Fig. 2.4. Kinetic assays of GSTU24 with CDNB. A, rate of conjugate production 

determined spectrophotometrically over 1 min at 340 nm. Reactions contained 0 - 

3000 μM CDNB, 5 μg of purified recombinant protein and 5 mM GSH in 100 mM 
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phosphate buffer pH 6.5. Absorbance values are the means of the reactions 

performed in triplicate. B, Michaelis-Menten plot showing the rate of conjugate 

production in the set of samples described in A. Points are the mean and error 

bars represent ± 1 standard deviation of the experiments performed in triplicate. 

 

The kinetic analysis of GSTU24 with CDNB provided a Km value of 648 nkat.mg
-1

, 

which is in accordance with the value established by Dixon et al., 2009, 

of 635 nkat.mg
-1

. Of the 41 Arabidopsis GSTs tested by Dixon et al., 2009, 

GSTU25 was found to be one of the most active with CDNB. The kinetic analyses 

of GSTU25 were performed by Sparrow, 2010, who calculated a Km of 

1560 nkat.mg
-1

, in agreement with the value of Dixon et al., 2009, 

of 1240 nkat.mg
-1

. 
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2.3.3. Activity of GSTU24 and GSTU25 with TNT 

The rate of conjugation of TNT in an enzymatic reaction is affected by both 

enzyme quantity and substrate concentration. Preliminary assays to establish a 

suitable amount of enzyme in the reaction were performed by Sparrow, 2010. 

Concentrations of GSU25 from 50 - 800 μg produced reliably detectable levels of a 

conjugation product (Sparrow, 2010). For consistency, in the current project the 

amount of enzyme used in all reactions was 150 μg. The solubility limit of TNT in 

aqueous solutions is 512 μM at 20 °C, to ensure complete solubilisation of TNT 

the concentration used in all pH and temperature assays was 200 μM. 

Analyses of the conjugation reaction products of GSTU24 and GSTU25 

The conjugation activities of GSTU24 and GSTU25 were studied in assays 

containing 100 mM potassium phosphate buffer with the pH ranging from 5.5 - 9.5, 

increasing by 0.5 units, at a temperature of 20 °C over a time course of 6 h. 

The HPLC analyses show formation of different products by the respective 

enzymes. GSTU24 produces a single major product with a molecular weight of 

518, as determined by the results of LC-MS analyses. The spectrum of conjugates 

formed by GSTU25 varies across the pH range. At pH below 7, the main conjugate 

produced has a molecular mass of 487 corresponding to 2-glutathionyl-4,6-

dinitrotoluene (conjugate 3), previously identified by LC-MS in the conjugation 

reaction of commercially available GSTs from equine liver (Sigma) with TNT 

(Brentner et al. 2008). At pH above 7.5 two major compounds are formed, both 

with masses of 518 (Fig. 2.5), one of which is identical to the compound produced 

by GSTU24 (conjugate 2) and the other substance (conjugate 1) is present 

in GSTU24 reactions in trace amounts. All compounds have characteristic UV 

absorption spectra (Fig 2.6). 
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A 

 

B 

 

Fig. 2.5. HPLC chromatogram (analysed at 250 nm) of conjugation products of TNT 

with GSH formed by GSTU24 (A) and GSTU25 (B) across the pH range of 

the reaction (5.5 - 9.5). The reactions were performed in 100 mM potassium 
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phosphate buffer at the temperature of 20 °C with 150 μg of the enzyme, 200 μM 

TNT and 5 mM GSH. 

 

 

Fig. 2.6. UV absorption spectra and absorption maxima of TNT conjugates: 

conjugate 1 (blue), conjugate 2 (dark blue), conjugate 3 (purple). 

 

To confirm the conjugated products are formed by the enzymatic activity, and not 

in a chemical reaction between GSH and TNT, control reactions were performed 

under the same conditions as the enzyme reactions but using the enzyme denatured 

by heating to 95 °C for 5 min. No compounds were found to be formed in 

the reactions with the heat deactivated enzyme (Fig. 2.5 A). 

Griess assay  

Apart from MS analysis, Griess assays were performed to obtain data on 

the conjugation of GSH by nucleophillic substitution of the NO2
-
 group of TNT. 

The Griess assay is a colorimetric assay used to measure the amount of free nitrite 

released in the reaction. This assay relies on a diazotization reaction that was 

originally described by Griess in 1879 and has been modified over the years. 
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The chemical reaction uses sulfanilamide and N-1-napthylethylenediamine 

dihydrochloride (NED) under acidic conditions (Fig. 2.7). 

 

 
Fig. 2.7. Chemical reactions involved in the measurement of NO2

- using the Griess 

reaction (Figure from Promega Griess Reagent System protocol). 

 

Results of the Griess assay performed on the products of the conjugation reaction of 

GSTU24 and GSTU25 indicated that only conjugate 3 (expected 2-glutathionyl-

4,6-dinitrotoluene), produced by GSTU24 in small amount and as the major 

product by GSTU25 at the pH of 6.5 and lower, is formed in a substitution reaction 

via the removal of a nitro group (Fig. 2.8).  
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B 

 

Fig. 2.8. Standard curve for the Griess assay (A) and the Griess assay of TNT 

conjugation reaction (B). TNT conjugation reactions were performed for 1 and 3 h 

at 20 °C in 100 mM phosphate buffer pH 6.5 and 9.5 with 150 μg of the enzyme, 

500 μM TNT and 5mM GSH in total volume of 250 μl. After the reaction was 

stopped the concentration of NO2
- produced by substitution of GSH for NO2

- group 

of TNT was measured spectrophotometrically at 540 nm due to pink coloration 

indicating the presence of free nitrite. Quantification was performed based on 

standard curve produced with 0 – 100 μM NaNO2. 

Chemical structure of TNT conjugates 

To elucidate the complete chemical structure, all three TNT conjugates were 

purified and their NMR spectra measured. The NMR data confirmed the structure 

of 2-glutathionyl-4,6-dinitrotoluene (conjugate 3, m/z 486 [M-H]
-
) formed 

by nucleophilic substitution of NO2
-
 group by GSH. The data on the remaining 

compounds (m/z 517 [M-H]
-
) suggest the substances are C-glutathionylated 4-

HADNT (conjugate 1) and C-glutathionylated 2-HADNT (conjugate 2) with GSH 

attached via CH3 group of TNT (Fig. 2.9 and 2.10). 
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A 

 

 

B 

 

 

Fig 2.9. Mass spectrometry data from LC/MS analyses of products of GSTU24 and 

GSTU25 conjugation reactions. A, mass spectrum of conjugate 1 and 2 in negative 

mode with [M-H]- ion of 517 and molecular mass of 518; B, mass spectrum of the 

conjugate 3 with [M-H]- ion of 486 and mass of 487. 
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Fig. 2.10. Chemical structure of TNT conjugation products elucidated by NMR. 
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2.3.4. Effect of pH on GST activity 

To determine the effect of pH on the conjugation activity of GSTU24 and GSTU25, 

the conjugation reaction was performed over 6 h in 100 mM potassium phosphate 

buffer with the pH ranging from 5.5 - 9.5, increasing by 0.5 units, at 

the temperature of 20 °C. To establish the rate of non-enzymatic chemical 

transformation of TNT under the assay conditions, control reactions were 

performed across the pH range with enzymes denatured by heating to 95 °C for 

5 min. 

Results of the HPLC analyses show that both enzymes were most active towards 

TNT at the higher pH values tested, transforming 96 - 98 % of TNT into 

the respective conjugates at pH 9 - 9.5 within 6 h, while no quantitative or 

qualitative changes of TNT were observed in the reactions without the active 

enzyme (Fig. 2.11 & 2.12).  
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B 

 

 

Fig. 2.11. Effect of pH on conjugation activity of GSTU24 (A) and GSTU25 (B). 

Concentrations of TNT and TNT conjugates were analysed by HPLC for 6 h at 20 °C 

at pH ranging from 5.5 - 9.5. The results show mean of experiments performed 

in triplicate with 150 μg of the enzyme, 200 μM TNT and 5 mM GSH; error bars 

represent standard deviation from the mean. 
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Fig. 2.12. Effect of pH on the quantity and spectrum of conjugates formed 

by GSTU25. Concentrations of TNT conjugates were analysed by HPLC. The results 

show mean of experiments performed in triplicate; error bars represent standard 

deviation from the mean.  
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2.3.5. Effect of temperature on the enzyme activity 

Enzyme activity increases with temperature, but so does denaturation. To study the 

effect of temperature on the activity of GSTU24 and GSTU25, enzymatic reactions 

were performed in triplicate over 6 h with 150 μg of enzyme, 200 μM TNT 

and 5 mM GSH in 100 mM potassium phosphate buffer pH 9 at temperatures 

ranging from 4 - 60 °C.  

The enzymes are active in a wide range of temperatures; at 4 °C GSTU24 can 

transform 75 % of initial TNT concentration in the reaction within 6 h and GSTU25 

conjugates 65 % of TNT into the respective conjugates. The highest rate of TNT 

transformation by GSTU24 and GSTU25 was observed at 42 °C when 93 % 

and 90 % of TNT, respectively, were conjugated within 1 h (Fig. 2.13).  

The temperature of 50 °C causes visible aggregation of the enzymes, and although 

does not affect the tertiary structure of the protein significantly to reduce activity 

with the substrate concentration studied, it affects together with high pH 

the stability of the products causing chemical degradation of the unstable HADNT. 

At 60 °C the activity significantly decreased, probably due to changes in 

the enzyme structure. 

Temperatures from 30 °C had a negative effect on the accumulation of reaction 

product (conjugate 2) in the GSTU24 reactions after 1 h, when nearly all available 

TNT was used, and an increase in 2-HADNT concentration, a possible degradation 

product of the conjugate, was observed. The degradation might be of enzymatic 

origin, as the isolated, purified conjugates were found to be stable when subjected 

to temperatures of 50 °C for 3 h in water solution, therefore it was further 

investigated. 
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Fig. 2.13. Effect of temperature on conjugation activity of GSTU24 (A) and GSTU25 (B). Concentrations of TNT and TNT conjugates were 

analysed by HPLC for 6 h at pH 9 and temperature range 4 - 42 °C. The results show mean of experiments performed in triplicate with 150 μg 

of the enzyme, 200 μM TNT and 5 mM GSH; error bars represent standard deviation from the mean.  
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2.3.6. Substrate specificity of GSTU24 

To study the accumulation of 2-HADNT (identified based on the comparison 

of retention time and UV spectra of 2-HADNT standard) in the reaction, parallel 

experiments were conducted using the same conditions at the temperature of 42 °C 

(150 μg of enzyme, 200 μM TNT and 5 mM GSH in 100 mM potassium phosphate 

buffer pH 9). In the first experiment the enzyme was active for the duration of 

the experiment (6 h), in the second experiment the reaction was stopped with TCA 

after 1 h, the time at which all available TNT had been converted to conjugate 2, and 

then incubated at 42 °C for 5 h. The results of the HPLC analyses showed an 

increase in 2-HADNT concentration in reactions with GSTU24 active for 6 h, while 

there were no changes in the amount of conjugate 2 and no accumulation of 2-

HADNT in the second experiment (Fig. 2.14). This suggests that conjugate 2 could 

be a substrate for GSTU24 when no TNT is present in the reaction mixture. This 

hypothesis was tested using purified conjugate 2 (200 μM) as the substrate for 

GSTU24 using the same conditions as the conjugation reaction with TNT (150 μg 

of enzyme in 100 mM potassium phosphate buffer pH 9, 20 °C and 42 °C for 6 h). 

The HPLC results showed that GSTU24 was capable of using conjugate 2 as 

a substrate, forming two products: 2-HADNT and a novel substance with a shorter 

retention time and the same molecular weight of 518 (Fig. 2.15). The reaction rate of 

GSTU24 with conjugate 2 was slower than with TNT and only ~23 % of the 

compound was metabolised after 6 h at 20 °C compared with 98.5 % of TNT 

conjugated in the same conditions, although the reaction rate was significantly higher 

at the increased temperature (87 % of the conjugate 2 metabolised at 42 °C after 6 h). 

2-HADNT, 4-HADNT, 2-ADNT and 4-ADNT were also tested as  possible 

substrates for the GSTs, but no product of conjugational activity was observed for 

GSTU24 and GSTU25 using a range of different conditions with low and high pH 

(6.5 and 9.5) and a range of temperatures (20 – 42 °C) (Fig. 2.16). It is therefore 

possible to conclude that only TNT is the substrate of GSTU24 and GSTU25, but not 

the products of TNT activation reactions during Phase I of xenobiotic detoxification, 

although GSTU24 is capable of unique de-glutathionylation reaction using conjugate 

2 as a substrate. Only traces of 2-HADNT and 4-HADNT were found in 

the GSTU25 reactions, which suggests this enzyme is capable of the de-

glutathionylation reaction in a very small extent. 



 Biochemical characterisation of AtGSTU24 and AtGSTU25 

 

 

52 

 

A 

 
B 

 

Fig. 2.14. HPLC analysis of GSTU24 enzymatic activity analysed at 250 nm with TNT 

as a substrate. Reactions were performed with 150 μg of enzyme, 200 μM TNT, 
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5 mM GSH in phosphate buffer pH 9 and temperature of 42 °C for 6 h. A, TNT was 

conjugated into conjugate 2 in 1 h, after 6 h 2-HADNT and an unidentified 

conjugate with molecular mass of 518 was accumulated in the reaction mixture; 

B, GSTU24 enzymatic activity was stopped by precipitating the enzyme with 1 % 

TCA after 1 h when TNT was conjugated into the respective conjugate, no further 

chemical changes of conjugate 2 were observed in the reaction for following 5 h. 

 

 

 

 

Fig. 2.15. HPLC analyses of GSTU24 enzymatic activity with conjugate 2 as 

a substrate analysed at 250 nm. Reactions were performed with 150 μg of enzyme, 

200 μM conjugate 2, 5 mM GSH in phosphate buffer pH 9 and temperature of 42 °C 

for 6 h.  
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Fig. 2.16. Substrate specificity of GSTU24 was tested using different substances and 

different conditions. The reactions were performed with 150 μg of enzyme, 200 μM 

substrate and 5 mM GSH at 20 °C and 42 °C and at pH 6.5 and 9.5. The results show 

mean of experiments performed in duplicate; error bars represent standard 

deviation from the mean. 
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2.3.7. Kinetic analyses of GSTU24 and GSTU25 

Kinetic assays of GSTs with TNT were performed at the conditions optimal for 

the enzyme activity and product stability- in 100 mM phosphate buffer pH 9.5 at 

42 °C with 150 μg of enzyme. The concentration of TNT ranged from 25 - 5000 μM 

and GSH concentration ranged between 5 - 45 mM. To ensure TNT was solubilised 

in the solution, stock TNT concentrations were prepared in DMSO and 5 % DMSO 

added to the total volume of the reaction, as this amount of DMSO was found 

to have no effect on GST protein activity and at the same time solubilise TNT 

(Sparrow, 2010). The reaction rates of conjugate production were calculated and 

plotted against TNT concentration to produce Michaelis-menten plots for GSTU24 

and GSTU25 (Fig. 2.17). 
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Fig. 2.17. Michaelis-Menten plot of GSTU24 (A) and GSTU25 (B) rate of conjugate 

production with different initial TNT concentrations. The reactions were performed 

in triplicate with 150 μg of the enzyme, 0 – 5 mM TNT and 5 - 45 mM GSH in 

phosphate buffer pH 9.5 at 42 °C, samples were analysed during 25 min time course 

by HPLC; error bars represent standard deviation from the mean.  

 

The kinetic analyses of GSTU24 with TNT provided a Km value of 1644.2 μM 

TNT and Vmax of 369.3 μmol.min
-1

 (6155 nkat.mg
-1

). The Km value of GSTU25 

calculated from the kinetic analyses (based on the sum value of the concentrations of 

three reaction products) was 1210.6 μM TNT and Vmax was 393.6 μmol.min
-1

 (6560 

nkat.mg
-1

). The turnover rate values kcat calculated based on the Vmax values were 

1029 ± 26 s
-1

 and 1088 ± 40 s-1
 for GSTU24 and GSTU25, respectively. The results 

of the kinetic analyses show that in the optimal conditions both enzymes have 

a similar activity towards TNT with GSTU25 being the more active of the two 

enzymes studied. 
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2.3.8. Equine liver GST 

Commercially available purified GSTs (Sigma) from equine liver are characterised 

by their activity towards CDNB (1 unit conjugates 1 μmol CDNB/min). Equine liver 

GST has been used as a positive control in the experiments helping to identify 

the reaction product, as it was previously shown to have activity towards TNT and 

LC–MS–MS analyses of the TNT conjugate confirmed the formation of 2-S-

glutathionyl-4,6-dinitrotoluene (Brentner et al. 2008) (Fig. 2.18). 

 

Fig. 2.18. HPLC chromatogram of conjugation product of TNT with GSH formed by 

equine liver GST at pH 7.5 and temperature 37 °C after 3 h reaction time (analysed 

at 250 nm). 

 

In the HPLC analyses equine liver GST produced a product with a molecular weight 

of 487 corresponding to the 2-S-glutathionyl-4,6-dinitrotoluene, matching in 

retention time and UV spectrum the conjugate 3 from GSTU24 and GSTU25 

TNT 

Conjugate 3 



 Biochemical characterisation of AtGSTU24 and AtGSTU25 

 

 

58 

 

reactions. The enzyme produced only trace amounts of the product at 20 °C. 

At 37 °C, the enzyme showed TNT conjugating activity increasing with pH, similar 

to that seen by GSTU24 and GSTU25 (Fig. 2.19) 

 

 

Fig. 2.19. Effect of pH on TNT conjugating activity of equine liver GST (Sigma) 

compared to the activity of GSTU24 and GSTU25. Concentrations of TNT in equine 

liver GST reactions (10 U of enzyme, 200 μM TNT and 5 mM GSH) were analysed by 

HPLC for 6 h at 37 °C at pH ranging from 5 - 9 and compared to the activity of 

GSTU24 and GSTU25 with 150 μg of enzyme, 200 μM TNT and 5 mM GSH at 20°C 

and 37 °C at pH 9. The results show mean of experiments performed in triplicate; 

error bars represent standard deviation from the mean. 
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2.4. Discussion and Conclusions 

GSTU24 and GSTU25 are phylogenetically the closest of Arabidopsis GSTs 

and share 77 % sequence identity. There are, however, differences in some amino 

acids present in the active centres of GSTU24 and GSTU25 (Fig. 2.20), which could 

explain the differences in TNT product formation.  

 

GSTU24   MADEVILLDFWASMFGMRTRIALAEKRVKYDHREEDLWNKSSLLLEMNPVHKKIPVLIHN 60 

GSTU25   MADEVILLDFWPSMFGMRTRIALEEKNVKFDYREQDLWNKSPILLEMNPVHKKIPVLIHN 60 

         ***********.*********** **.**:*:**:******.:***************** 

 

GSTU24   GKPVCESLIQIEYIDETWPDNNPLLPSDPYKRAHAKFWADFIDKKVNVTARRIWAVKGEE 120 

GSTU25   GNPVCESLIQIEYIDEVWPSKTPLLPSDPYQRAQAKFWGDFIDKKVYASARLIWGAKGEE 120 

         *:**************.**.:.********:**:****.******* .:** **..**** 

 

GSTU24   QEAAK-ELIEILKTLESELGDKKYFGDETFGYVDIALIGFHSWFAVYEKFGNVSIESECS 179 

GSTU25   HEAGKKEFIEILKTLESELGDKTYFGGETFGYVDIALIGFYSWFEAYEKFGSFSIEAECP 180 

         :**.* *:**************.***.*************:*** .*****..***:**. 

 

GSTU24   KLVAWAKRCLERESVAKALPESEKVITFISERRKKLGLE-- 218 

GSTU25   KLIAWGKRCVERESVAKSLPDSEKIIKFVPELRKKLGIEIE 221 

         **:**.***:*******:**:***:*.*:.* *****:*   

 

 

Fig. 2.20. CLUSTAL 2.1 Multiple Sequence Alignments of AtGSTU24 and AtGSTU25. 

Ser17 is marked by *, residues involved in GSH binding are marked with red  . 

Amino acid residues forming the H-site are in blue    , those considered important to 

substrate specificity are highlighted in blue. (Amino acid identification according to 

Thom et al. 2002). 

The increased activity towards TNT at high pH conditions seems to be a common 

feature of the GSTs studied. The pH of the solution in which the enzymes perform 

their catalytic reactions has a significant effect on enzyme activity. Amino acid 

residues play important roles in the binding of proteins to other molecules 

and in enzyme mechanisms. They also have a large influence on protein structure, 

stability and solubility. The types of interactions these side chains will have 

with their environment depend on their protonation state (Di Russo et al. 2012). 

Acidic amino acids have carboxyl functional groups in their side chains, while basic 

amino acids have amino functional groups in their side chains. If the state 

of ionization of amino acids in a protein is altered, the ionic bonds that help to 

http://academic.brooklyn.cuny.edu/biology/bio4fv/page/carboxyl.htm
http://academic.brooklyn.cuny.edu/biology/bio4fv/page/amine_f.htm
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determine the tertiary structure of the protein can be altered. This can lead to change 

in protein recognition of the substrate or an enzyme might become inactive 

(http://academic.brooklyn.cuny.edu/biology/bio4fv/page/lect_o.htm).  

The amino acids forming the active centres of GSTU24 and GSTU25 are generally 

non-polar, containing a number of amino groups in their side chains, which will be 

protonised at lower pH values, as the amino group accepts 

a proton at pH 7 and carries a positive charge at pHs below 7 

(http://academic.brooklyn.cuny.edu/biology/bio4fv) affecting the activity and 

product identity of the enzymes. 

Glutathione might also contribute to the higher activity of the enzymes at pH 9 - 9.5 

due to the increased reactivity at high pH, as the sulfhydryl group has a pKa value of 

9.4 and therefore the reactive thiolate anion is more stable at these conditions (Dixon 

& Edwards 2010). 

Kinetic assays with recombinant proteins at different conditions were most often 

performed using CDNB as a substrate. Most assays using CDNB to characterise 

GSTs were performed at pH 6.5 to minimize non-enzymatic reaction (Habig et al. 

1974). Results of a detailed kinetic study of PtGSTU1 from Pinus tabulaeformis 

showed the enzyme had the highest activity towards CDNB in the pH range 8.5 - 

9.0. The enzyme still had 56 % and 49% of its maximum activity at pH 7.5 and 9.5, 

respectively, at pH 5.5 and 10.5 enzyme activity was barely detectable (Zeng et al. 

2005). The pH optima for GSTs from animal species using CDNB are pH 6.5 - 7.5 

(Akkemik et al. in press, Samra et al. 2012). 

GSTs from different plant and animal species had a broad temperature optimum, with 

higher activity at 40 - 45 °C than at 24 °C. PtGSTU1 from Pinus tabulaeformis also 

retains 60 % of its enzymatic activity at 15 °C, probably contributing to the ability of 

the plant to cope with the temperature fluctuations throughout its life span as well as 

http://academic.brooklyn.cuny.edu/biology/bio4fv/page/lect_o.htm
http://academic.brooklyn/
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with variations across its extensive distribution range (Akkemik et al. in press, 

Samra et al. 2012; Zeng et al. 2005). 

Biotransformation of TNT was studied in several plant species and cell cultures 

without analyzing contributions of different enzymes to the production 

of metabolites (Bhadra et al. 1998; Duringer et al. 2010; Hawari et al. 1999; Martin 

et al. 1997; Pavlostathis et al. 1998; B. Singh et al. 2011; Hawari et al. 1998). 

The pH optimum of Arabidopsis UGTs towards TNT was determined to be 7.0 

(Gandia-Herrero et al. 2008), but there are no literature available on optimum 

activity conditions of recombinant GSTs with TNT. 

To conclude, Arabidopsis GSTs conjugate TNT into different transformation 

products when compared to previously characterised mammalian GSTs. 

The mammalian GSTs from the liver fraction are active only at body temperature, 

whereas plant GSTs are active across wider temperature range from 4 - 42 °C, 

exhibiting higher conjugation reaction rates. Increase in activity with increasing 

pH value seems to be a common characteristic of all GSTs studied. 
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3. Role of GSTs in TNT detoxification in 

Arabidopsis plants 

3.1. Methods 

3.1.1. Plant material 

The experiments were performed using wild type Arabidopsis plants and GST 

overexpressing lines, wild type and all lines were Col 0 ecotype. The overexpressing 

lines were created by transforming Arabidopsis plants with 35SGSTU24 and 

35SGSTU25 constructs by Dr E. Rylott and Dr H. Sparrow using Agrobacterium 

tumefaciens (Sparrow, 2010). T2 seeds of GSTU25 transformed plants were sown on 

½ MS agar with kanamycin as a selective marker; lines with T-DNA insertion 

in a single locus were selected based on a 3:1 ratio of kanamycin resistant and 

sensitive seedlings. Homozygous T3 seeds originating from kanamycin resistant 

plants grown in soil were used in all experiments. T3 lines of GSTU24 

overexpressing plants were screened for segregation in kanamycin resistance and 

homozygous plants were grown in the soil to produce T4 seeds used for analyses. 

 

3.1.2. Plant methods 

Seed sterilisation 

Seeds intended for growing in sterile conditions were sterilised by chlorine gas 

produced by mixing 100 ml Chloros bleach with 3 ml concentrated HCl in an airtight 

container. After 4 h the seeds were aired in the flow hood to remove chlorine. 
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Stratification of seeds 

Before planting, Arabidopsis seeds were stratified in the dark for 3 nights at 4 °C 

on ½ MS agar plates or in 500 μl of sterile water to ensure even germination. 

Growth conditions 

Plant growth on solid medium 

Transformed lines were selected by scattering the sterile seeds on ½ MS agar 

(0.215 % MS Basalt Salt mixture, 20 mM sucrose, 8 % agar) plates, supplemented 

with 50 μg/ml kanamycin. The seeds were imbibed in the dark for 3 nights at 4 °C 

before transferring to a growth room with 20 ºC/18 ºC day/night temperatures with 

a 16 hour light (80 μmol.m
-2

.s
-1

)/8 hour dark cycle. 

Sterile seedlings were produced by sowing the seeds on ½ MS agar plates without 

kanamycin and 7- day old seedlings were transferred to liquid ½ MS medium.  

Root length studies were carried out by imbibing sterile seeds in 500 μl of sterile 

water in the dark for 3 nights at 4 °C. Stratified seeds were placed in a single line on 

a ½ MS agar plate containing TNT dissolved in DMSO and transferred to the growth 

room. 

Plant growth in soil 

For seed and plant tissue production the plants were grown in non-sterile conditions 

in the greenhouse. Kanamycin resistant seedlings were transferred from ½ MS agar 

plate to the trays filled with F2 compost and propagated in the greenhouse until 

the seeds were collected. 

Plant growth in liquid medium 

The uptake of TNT by plants in liquid cultures was studied by growing seedlings 

initially on ½ MS agar plates without kanamycin. After seed stratification, the plates 
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were placed in the growth room and 7- day-old seedlings were transferred to sterile 

100 ml flasks containing 20 ml ½ MS medium (8 seedlings per flask). After growing 

for 14 days under reduced light conditions (~15 μmol m
-2

.s
-1

) with 120 rpm shaking, 

the medium was replaced with 20 mM sucrose solution with 200 μM TNT 

in DMSO. 

Hydroponic growth conditions 

Arabidopsis was grown according to the method described by Taylor (2011). Rafts 

were made from circular lightweight plastic, 70 mm in diameter and 6 mm thick, 

with approximately 100 holes (3 - 4 mm diameter) drilled into each disk. The rafts 

were sterilised by autoclaving and the holes were plugged with ½ MS agar. Sterile 

Arabidopsis seeds stratified in the sterile water for three nights in the dark at 4 ºC 

were pipetted onto the plugged holes (8 seeds per raft). Rafts were then placed 

on liquid ½ MS medium in the sterile jars. Plants were grown in the sealed jars 

for 21 days at 20 ºC/18 ºC day/night temperatures with 16 h photoperiod 

(80 μmol.m
-2

.s
-1

). After three weeks the medium was removed and replaced with 

sterile ½ MS medium containing 50 μM and 100 μM TNT in DMSO. 

 

3.1.3. Extraction of proteins from plant material 

Rosette leaves of 3-week-old plants were used for protein extraction. Approximately 

equal weights of fresh leaves (60 - 80 mg) were homogenised in 400 μl of protein 

extraction buffer (0.1 M Tris-HCl pH 8, 2 mM EDTA, 1 mM DTT, 50 g/kg PVPP). 

Samples were centrifuged 15 min at 13 000 rpm; the supernatant was kept on ice 

and used in GST activity measurements. 
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3.1.4. GST activity measurements 

The general activity of all GSTs was measured in the whole cell protein extracts 

from fresh rosette leaves spectrophotometrically using a CDNB assay (section 2.2.5) 

Solutions of 825 μl of 100 mM potassium phosphate buffer pH 6.5 and 25 μl 

of 100 mM CDNB were pre-incubated at 30 °C for 5 min. After this time, 50 μl 

of 100 mM GSH and 100 μl of the plant protein extract were added to the buffer and 

the increase in the reaction product concentration was measured 

spectrophotometrically at 340 nm. 

 

3.1.5. Root length image analysis 

To measure the effect of TNT on Arabidopsis root length, stratified seeds of Col 0 

(wild type) and overexpressing lines were placed in a single row on ½ MS agar plate 

containing 0, 2, 7, 15 and 50 μM TNT dissolved in DMSO. The plates were placed 

vertically in the growth room. Photographs of the seedlings were taken after 9, 14 

and 20 days. Photographs were subsequently analysed by image processing software. 

To measure the root area the photographs were processed by Image Pro 6.2 (Media 

Cybernetics Inc. USA). Image spatial calibrations were provided by ruler included in 

each image (calibrated over 65 mm of the ruler). Pre-analysis processing (to remove 

reflections and enhance root contrast): 

1× 50 pixel flatten filter (dark) 

1 × Sobel edge enhancement 

1 × dilate (5 × 5 pixel circle) 

1 × erode (5 × 5 pixel circle) 

Inage J software was used to measure the root lengths where seedlings were too 

small for Image Pro software to process correctly. 

Statistical differences were calculated using ANOVA and LSD multiple comparisons 

performed by IBM SPSS Statistics 19. 
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3.1.6. TNT analyses in the liquid medium 

Samples of plant growth medium containing TNT were taken from the flasks 

or sterile jars at 0, 8, 24, 48, 72, 96 and 168 h. Samples were analysed by HPLC 

using a Waters Alliance 2695 separation module with a Waters 2996 photodiode 

array detector. The samples (50 μl and 100 μl) were loaded onto a Techsphere C18 

column (250 × 4.6 mm, 5 μm) heated to 35 °C and separated using isocratic elution 

with methanol:water mixture (60:40). Integration was performed at 230 nm 

with Empower Pro software. 

 

3.1.7. Extraction of TNT metabolites from plant tissues 

Plants for the metabolite extraction were harvested at 0, 4, 6, 8, and 24 h after 

transferring the plants in the TNT containing medium in the liquid cultures. Plants 

growing hydroponically were harvested 0, 24, 48, 72, 96 and 168 h after adding TNT 

to the medium. 

Fresh plant tissues were weighed and frozen by liquid nitrogen and ground to 

powder. The metabolites were extracted from the tissues with methanol:water 

mixture (60:40). After centrifugation the supernatant was removed and evaporated 

using Genevac centrifugal evaporator (SP Industries). Residues were re-dissolved 

in methanol:water mixture (60:40) according to the initial plant fresh weight 

and analysed by HPLC (conditions in section 2.2.6) and LC/MS (condition in section 

2.2.8) 
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3.2. Results 

3.2.1. Activity of GSTs in fresh leaves 

The physiological importance of the TNT conjugates formation in plants was studied 

using transgenic Arabidopsis lines overexpressing GSTU24 and GSTU25 under 

the control of CaMV 35S promoter, compared to the wild type Columbia 0 plants. 

The total activity of all GSTs in the plant lines was measured in protein extracts 

from fresh rosette leaves using CDNB spectrophotometric assay (section 2.2.5). 

The increase in absorbance due to reaction product accumulation was measured over 

1 min, data were normalised against no-enzyme control. 

The transgenic lines with the highest GST activity were selected for future studies 

of the role of the GSTs in TNT detoxification (Fig. 3.1). 
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Fig. 3.1. Activity of GSTU24 (A) and GSTU25 (B) was measured using CDNB 

conjugation assay in protein extracts from fresh rosette leaves. Results are mean of 

3 - 5 biological replicates for each plant line, error bars represent standard 

deviation from the mean.  

 

GST activity in selected Arabidopsis lines overexpressing GSTU24 and GSTU25 

was 2.2 - 8.7 fold and 10.6 - 21.5 fold higher, respectively, compared to the wild 

type plants; these lines were used in following experiments to characterise the role of 

GSTU24 and GSTU25 in TNT detoxification in plants. 

Western blot analysis was not performed as the levels of GSTU24 and GSTU25 

protein expression underlying the increased GST activity in the transgenic levels 

compared to the wild type plants could not be analysed due to the unavailability of 

specific antibodies. 
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3.2.2. Root length studies of 35S-GST lines 

Root lengths of Arabidopsis seedlings grown in medium containing TNT were found 

to be an indicator of the tolerance of plants towards TNT (Beynon et al. 2009; 

Gandia-Herrero et al. 2008), as one of the symptoms of TNT phytotoxicity is 

characterised by severe root stunting. 

Sterile imbibed seeds were placed in a single row on ½ MSA plates containing 0, 2, 

7, 15 and 50 μM TNT in DMSO. Three plates each containing 20 seeds of each plant 

line were analysed. Photographs of 9-, 14- and 20-day-old seedlings were taken and 

root lengths and root areas of the plants under control conditions and in TNT 

containing medium were measured using Image J and Image Pro software (section 

3.1.5). 

TNT present in the medium had a severe effect on root growth affecting both root 

length and branching (Table 3.1 & 3.2). The results of root measurements 

also revealed that particularly GSTU25 overexpressing lines have 7 - 28 % 

(on average 17 %) smaller root biomass compared to the wild type plants in control 

conditions. 

 

A 
wild 
type 

12-3D 7-1C 6-4B 4-4C 7-5B 1-4E 4-2B 

Control (mm2) 268.5 271.2 280.6 315.7 278.0 302.4 284.9 295.6 

2 μM TNT (mm2) 198.6 235.1 256.4 243.3 237.9 310.4 218.5 354.0 

7 μM TNT (mm2) 100.9 120.1 138.1 127.6 151.7 144.3 126.8 126.0 

15 μM TNT (mm) 0.367 0.428 0.444 0.475 0.438 0.390 0.482 0.433 

50 μM TNT (mm) 0.078 0.071 0.062 0.101 0.058 0.104 0.054 0.070 

 

B 
wild 
type 

12-3D 7-1C 6-4B 4-4C 7-5B 1-4E 4-2B 

Control (mm2) 765.3 680.2 690.1 965.6 925.6 815.9 797.8 918.6 

2 μM TNT (mm2) 622.6 797.7 835.9 939.7 885.5 1130.9 647.8 1045.8 

7 μM TNT (mm2) 452.0 820.1 825.8 628.6 950.2 1140.2 835.2 756.9 

15 μM TNT (mm2) 207.5 399.8 466.3 652.1 332.6 289.3 639.1 500.0 

50 μM TNT (mm) 0.119 0.108 0.112 0.169 0.097 0.159 0.093 0.138 
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C 
wild 
type 

12-3D 7-1C 6-4B 4-4C 7-5B 1-4E 4-2B 

Control (mm2) 1983.1 1642.1 1771.7 1707.0 1762.4 1854.5 1779.3 1902.5 

2 μM TNT (mm2) 1766.3 1857.6 1702.9 2040.8 1975.6 2020.0 1447.2 2089.6 

7 μM TNT (mm2) 1169.0 1579.6 1509.2 1446.6 1464.4 1763.8 1518.8 1362.9 

15 μM TNT (mm2) 621.7 994.0 1082.9 1285.6 1069.0 732.4 1321.1 1217.5 

50 μM TNT (mm) 0.165 0.261 0.298 0.477 0.111 0.320 0.127 0.349 

 

Table 3.1. Root area (mm2)/length (mm) of 9-day-old (A), 14-day-old (B) and 

20-day-old (C) Col 0 (wild type) and GSTU24 overexpressing lines grown vertically 

on ½ MSA plates containing 0 - 50 μM TNT. Results are mean of 3 replicates of each 

plant line (root areas of the plates) or ~60 replicates of each plant line (root lengths 

of the seedlings).  

 

A 
wild 
type 

a4 ab5 ap1 aq2 as4 e3 u5 

Control (mm2) 280.1 258.9 217.5 233.1 203.5 251.5 232.3 229.7 

2 μM TNT (mm2) 224.9 131.2 138.5 157.4 206.0 180.2 210.1 202.2 

7 μM TNT (mm2) 105.5 81.7 91.0 73.7 114.0 118.9 88.9 111.3 

15 μM TNT (mm) 0.363 0.376 0.419 0.373 0.399 0.390 0.362 0.401 

50 μM TNT (mm) 0.104 0.166 0.094 0.088 0.088 0.113 0.096 0.102 

 

B 
wild 
type 

a4 ab5 ap1 aq2 as4 e3 u5 

Control (mm2) 878.0 969.7 575.1 769.3 547.7 663.7 710.8 749.1 

2 μM TNT (mm2) 806.7 543.0 554.4 742.9 774.0 676.2 811.9 773.7 

7 μM TNT (mm2) 499.4 256.3 379.4 371.3 543.4 618.4 355.4 554.4 

15 μM TNT (mm2) 267.7 205.4 180.7 277.8 230.3 237.6 131.0 283.1 

50 μM TNT (mm) 0.500 0.407 0.237 0.440 0.724 0.821 0.547 0.244 

 

C 
wild 
type 

a4 ab5 ap1 aq2 as4 e3 u5 

Control (mm2) 1576.8 1357.0 1463.5 1184.4 1445.5 1450.0 1308.0 1512.8 

2 μM TNT (mm2) 1057.0 1406.3 1579.1 1729.1 1499.8 1423.0 1576.8 1557.4 

7 μM TNT (mm2) 778.9 1457.3 1073.2 810.4 1232.7 1104.8 1427.7 1374.0 

15 μM TNT (mm²) 354.7 562.4 751.2 889.1 988.1 710.8 592.2 906.0 

50 μM TNT (mm) 0.721 0.771 0.512 0.622 0.282 0.422 0.353 0.329 

 

Table 3.2. Root area (mm2)/length (mm) of 9-day-old (A), 14-day-old (B) and 

20-day-old (C) Col 0 (wild type) and GSTU25 overexpressing lines grown vertically 

on ½ MSA plates containing 0 - 50 μM TNT. Results are mean of 3 replicates of each 

plant line (root areas of the plates) or ~60 replicates of each plant line (root lengths 

of the seedlings). 
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wild type GSTU24 GSTU25 

wild type GSTU24 GSTU25 

wild type GSTU24 GSTU25 

Fig. 3.2. Effect of TNT on root growth of Arabidopsis seedlings. Photographs of 9-

day-old (A), 14-day-old (B) and 20-day- old (C) seedlings. Plants of Col 0 (wild type), 

GSTU24 and GSTU25 overexpressing lines were grown vertically on ½ MSA plates 

containing 0 - 50 μM TNT. Scale bar is 10 mm in each photograph. 

C  7 μM TNT 

15 μM TNT 

50 μM TNT 
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The differences in the root growth between the wild type and the transgenic plants 

are not significant in 9-day-old seedlings, with root areas on average 1.2 and 1.12 

fold larger in GSTU24 and GSTU25 transgenic lines, respectively, and reaching 1.62 

and 1.51 fold increase in root area of the best performing lines (Fig. 3.2, 3.3 A & 

3.4 A). 

Most of the analysed 14- and 20-day-old plants of the transgenic lines, however, had 

significantly (1.6 fold on average) larger root area/length compared to the wild type, 

with 3.21 and 3.34 increases in the most successful GSTU24 and GSTU25 plant 

lines, respectively (Fig. 3.2 & 3.3), suggesting that overexpression of these particular 

detoxifying enzymes in plants can result in better tolerance of higher concentrations 

of TNT in plant growth medium. 
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Fig. 3.3. Root area (mm2)/length (mm) of 9-day-old (A), 14-day-old (B) and 20-day-

old (C) Col 0 (wild type) and GSTU24 overexpressing lines grown on vertically 

on ½ MSA plates containing 0 - 50 μM TNT relative to wild type. Results are mean of 

3 replicates (plates) of each plant line or ~60 root length replicates of each plant 

line, error bars represent standard deviation from the mean; * denotes statistical 

difference compared to wild type (p<0.05); ** denotes statistical difference 

compared to wild type (p<0.001). 
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Fig. 3.4. Root area (mm2)/length (mm) of 9-day-old (A), 14-day-old (B) and 20-day-

old (C) Col 0 (wild type) and GSTU25 overexpressing lines grown on vertically 

on ½ MSA plates containing 0 - 50 μM TNT relative to wild type. Results are mean of 

3 replicates (plates) of each plant line or ~60 root length replicates of each plant 

line, error bars represent standard deviation from the mean; * denotes statistical 

difference compared to wild type (p<0.05); ** denotes statistical difference 

compared to wild type (p<0.001). 
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3.2.3. Liquid culture studies of 35S-GST lines 

Growing Arabidopsis plants in liquid cultures enabled the uptake of TNT from 

the medium by wild type and GSTU24 and GSTU25 transformed lines to be 

followed. It was also possible to extract and analyse the TNT conjugates formed in 

the plants.  

In this experiment imbibed seeds were germinated on ½ MSA plates and 7-day-old 

seedlings were transformed to 100 ml flasks containing 20 ml of ½ MS. After 

14 days the medium was replaced by 20 mM sucrose solution containing 200 μM 

TNT. Samples of the medium were taken at 0, 8, 24, 48, 72, 96 and 168 and analysed 

by HPLC (section 3.1.6) (Fig. 3.5). 
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Fig. 3.5. Appearance of Col 0 (wild type) and GSTU24 and GSTU25 overexpressing 

lines growing in ½ MS medium for three weeks (A) and after growing in 20 mM 

sucrose solution containing 200 μM TNT for 7 days (B). 

 

 

The results of the analyses show that there is a significant difference in the amount 

of TNT removed from the medium between the transgenic lines and wild type plants 

only at the 24 h time point (Fig. 3.6). The extracts of the plants growing in the liquid 

medium containing TNT were therefore analysed to study and compare 

the formation of different TNT conjugates in the plants. 
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Fig. 3.6. Uptake of TNT from the medium of Col 0 (wild type) and GSTU24 and 

GSTU25 overexpressing lines. A, Eight 21-day-old seedlings were grown for 7 days 

in flasks containing 20 ml of 20 mM sucrose solution with 200 μM TNT. Samples of 

the medium were taken from the flasks at regular time points and analysed by 

HPLC; B, uptake of TNT from the liquid medium 24 h and 28 h after the seedlings 

were transferred to the TNT containing medium. NPC, no plant control. Results are 
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mean of 5 replicates of each plant line, error bars represent standard deviation 

from the mean. 

 

For the conjugate analysis the plants were grown in the same conditions 

but the samples were taken at 0, 4, 6, 8 and 24 h. Metabolites were extracted from 

the whole plants by methanol:water mixture (60:40) and analysed by HPLC and 

LC/MS. The results of the analyses show presence of free TNT in the plant tissues 

4 h after the plants were transferred to the TNT containing media. Within 24 h most 

of the TNT in the tissues was conjugated (Fig. 3.7). The metabolite analyses show 

that the prevalent detoxification pathway is the conjugation of TNT by UDP-

glycosyltransferases (UGTs), and the major TNT conjugation product had 

a molecular weight of 375 corresponding to O-glucosylated HADNT identified 

previously during UGT conjugation reaction analyses (Fig. 3.8) (Gandia-Herrero et 

al. 2008). The LC/MS analyses also confirmed formation of glutathionylated 

products in the transgenic plants, GSTU24 overexpressing plants contained 

conjugate 2 (Fig. 3.9), analyses GSTU25 overexpressing plants showed formation of 

conjugate 3 but not conjugate 1 and 2 in the physiological conditions in the plant 

cells (Fig. 3.10). The concentration of the conjugates increased with time during the 

analysis, reaching maximum at the 24 h time point characterised by the biggest 

differences between the wild type and the transgenic lines. 
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Fig. 3.7. HPLC chromatogram of metabolite analyses in the extracts of Col 0 (wild 

type) and transgenic plants grown in the liquid cultures (analysed at 250 nm). 

Metabolites were extracted from the whole plants by methanol:water mixture 

(60:40) at different time points after transferring the plants into the TNT containing 

½ MS medium. 2, conjugate 2; 3, conjugate 3. 

 

 

 

Fig. 3.8. MS spectrum of O-glucosylated HADNT with m/z 374 [M-H] corresponding 

to the molecular mass of 375, the main TNT conjugate formed in plant during TNT 

metabolism. 
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C 

 

Fig. 3.9. LC/MS scan of TNT metabolite analyses analysed at m/z = 517-519 (A). No 

peak corresponding to the conjugate 2 was registered in the GSTU25 transgenic 

plant extracts. B, MS spectrum of a peak with the retention time of 21.01 min (WT); 

extract of Col 0 (wild type) plants contains a smaller peak with a correct retention 

time but MS spectra did not correspond to the conjugate 2; C, MS spectra of 

conjugate 2; GSTU24 overexpressing plants contain a compound with the right 

retention time and mass of 517 characteristic of conjugate 2. 
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D 

 
 

Fig. 3.10. LC/MS scan of TNT metabolite analyses analysed at m/z = 485-487 (A). B, 

Extracts of Col 0 (wild type) plants do not contain a peak with the correct retention 

time and MS spectra to correspond to the conjugate 3; C, GSTU24 overexpressing 

plants contain a compound with the right retention time of conjugate 3 and but 

different mass; D, MS of conjugate 3; GSTU25 overexpressing plants contain 

a compound with the right retention time and mass of 487 characteristic of 

conjugate 3.  
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3.2.4. Hydroponic experiment 

When Arabdiopsis plants are grown in the liquid culture flasks (as described in 

section 3.1.2 Plant growth in liquid medium), the physiology of the plant is altered. The 

waxy cuticle layer is reduced and much of the plant is submerged. These factors are 

likely to enable TNT to penetrate all the plant organs equally. These conditions are 

far removed from the in-field conditions of a plant growing on a military training 

range, where only the roots are in contact with TNT. To isolate exposure to the roots, 

and thus more closely resemble the natural environment, plants were grown 

hydroponically on top of plastic rafts with holes drilled through them to allow roots 

grow into the liquid medium under the rafts inside the sterile jars, as shown 

in Fig. 3.11 and described in section 3.1.2 Hydroponic growth conditions. 

 

 

Fig. 3.11. Hydroponic growing of Arabidopsis seedlings for TNT uptake experiments. 

Twenty-day-old plants growing hydroponically in liquid ½ MS medium in the sterile 

jars before placing the plants in the TNT containing medium. Rafts were made from 

circular lightweight plastic, 70 mm on diameter and 6 mm thick, with approximately 

100 holes (3-4 mm diameter) drilled into each disk. Sterile stratified Arabidopsis 

seeds (8 seeds per raft) were pipetted onto the hole filled with ½ MSA.  



 Role of GSTs in TNT detoxification in Arabidopsis plants  

 

 

86 

 

After 21 days ½ MS medium was replaced with 30 ml of liquid ½ MS medium 

containing 50 and 100 μM TNT. Samples of the medium were taken every 24 h 

during 7 days and analysed by HPLC (conditions in section 3.1.6) (Fig. 3.12). 

 

 

Fig. 3.12. Uptake of TNT from the medium of Col 0 (wild type) and GSTU24 and 

GSTU25 overexpressing lines. Eight 21-day-old seedlings were grown hydroponically 

for 7 days in jars containing 30 ml of ½ MS with 50 μM TNT (A) and 100 μM TNT (B). 

Samples of the medium were taken from the flasks at regular time points and 

analysed by HPLC. NPC, no plant control without raft; NPC2, no plant control with 

raft to check the absorption of TNT by the plastic rafts. Results are mean of 5 - 6 
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replicates of each plant line, error bars represent standard deviation from the 

mean. 

 

Analyses of TNT metabolites extracted from the plants by LC/MS revealed similar 

composition and quantity of conjugates, with O-glucosylated HADNT being 

the dominant compound, and with the concentration of conjugate 2 and 3, 

respectively, increasing in GSTU24 and GSTU25 plant extracts during the duration 

of the experiment. 
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3.3. Conclusions and discussion 

Glutathionylated conjugates undergo a sequence of chemical modification in 

the plant, which were well studied using herbicide safeners in Arabidopsis 

suspension cell cultures. In these experiments, glutathionylated herbicide safener 

fenclorim was found present in the highest concentration in the cells 4 h – 8 h after 

treatment. After 24 h the concentration of glutathionylated fenclorim in the cell 

cultures declined and a number of new compounds appeared, resulting from 

the sequential processing of the conjugates in the vacuoles to the cysteine conjugates 

(Brazier-Hicks et al. 2008). Uptake of TNT by the whole plant in current research is 

a slower process compared to the suspension cultures; the highest concentration 

of free unconjugated TNT was found in plants 4 h after adding TNT into 

the medium. The very rapid uptake of the safener in plant cultures compared with 

the foliage was also observed in the previous metabolism studies (Skipsey et al. 

2011). The free TNT was rapidly conjugated by UDP-glucosyltransferases and 

glutathione transferases and the concentration of the conjugates increased during 

the experiment duration until TNT was removed from the medium. In the present 

study, LC/MS did not reveal presence of metabolites resulting from the processing 

of glutathionylated TNT (cysteinglycine, γ-glutamylcysteine or cysteine derivatives). 

Overexpressing Arabidopsis detoxifying enzymes, which were found to play role 

in the TNT detoxification, was successfully used to prove the function of these genes 

in the xenobiotic metabolism and also to produce plants tolerating higher levels 

of TNT than untransformed wild type plants. The oxophytodienoate reductases, 

which are upregulated in response to the TNT treatment, were shown to produce 

TNT derivatives with reduced nitro group (HADNTs and ADNTs). Overexpression 

of OPR1 and OPR2 resulted in longer roots of seedlings growing on solid medium 

containing TNT compared to the wild type plants. Transgenic plants also had faster 

TNT uptake form liquid medium and produced more TNT transformation products 
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than wild type (Beynon et al. 2009). Similarly, overexpression of Arabidopsis UGTs 

resulted in improved root growth and TNT uptake from the medium (Gandia-Herrero 

et al. 2008). The results of experiments presented here suggest that glucosylation of 

reduced TNT derivatives is the main detoxification pathway of TNT metabolism in 

Arabidopsis.  

Based on microarray data of GST expression in Arabidopsis tissues, GSTU24 and 

GSTU25 expression is localised predominantly in roots (GSTU24 is localised mainly 

in the root endodermis, GSTU25 is expressed primarily in the root epidermal 

atrichoblasts) (Dixon & Edwards 2010). This localisation could be important for 

the function of the GSTs in TNT detoxification, as TNT is not transported to 

the aerial parts of the plant (Sens et al. 1998; van Dillewijn et al. 2008). Based on 

results of SAGE studies in Arabidopsis, GSTs were considered to be primarily 

responsible for TNT conjugation reactions (Ekman et al. 2003a). In another study of 

the activity of detoxifying enzymes towards several different xenobiotics 

in Arabidopsis GSTU24 was the highest induced GST by all chemical treatments 

(TNT, RDX, herbicides metolachlor and acetochlor). The induction of GSTU24 in 

2-week-old Arabidopsis plants exposed to 0.6 mM TNT showed an average 40-fold 

increase in gene expression 6 h after treatment. In the same experiment, in vivo 

analysis of GSH conjugation activity showed no conjugation of GSH to TNT or 

RDX in contrast to strong activity towards CDNB and herbicides (Mezzari et al. 

2005). 

Overexpressing GSTU24 and GSTU25 in the current study had a significant effect 

on the root length of transformed seedlings growing on TNT containing medium and 

also improved TNT uptake from liquid medium. The glutathionylated conjugates, 

which the enzymes produce in in vitro conjugation assays, were also found to be 

formed in vivo in plants exposed to TNT. These conjugates are, however, only found 

in small amounts in plants compared to the glucosylated metabolites, which suggests 
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a possible different mechanism of GST action in addition to the direct TNT 

conjugation, resulting from the GPOX activity of both enzymes. 
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4. Discussion 

Glutathione transferases play critical roles in the detoxification of xenobiotics and 

the protection of tissues against oxidative damage. GSTs are important enzymes in 

plant responses to a number of environmental stresses including herbicides and 

pathogen attack, heavy metal toxicity and reactive oxygen species (Chen & Singh 

1999).  

Plant GSTs have been intensively studied for their ability to detoxify a range 

of herbicides. They catalyze the conjugation of GSH to herbicide molecules to form 

glutathione-S-conjugates, which are then imported to vacuoles, thus protecting 

the plants from herbicide damage. Pre-treatment with herbicide safeners greatly 

elevates the capability of herbicide detoxification via GSH conjugation by activation 

of detoxification systems, including upregulating GST activity (H. Gong, et al. 

2005a; Riechers et al. 2010). A number of mechanisms have been proposed for 

safener activity. Herbicide safeners protect monocotyledoneous crops from herbicide 

injury but have little effect on dicotyledonous species (target weed species). Safeners 

are also able to induce the expression of herbicide detoxifying enzymes in dicots, 

such as Arabidopsis (DeRidder et al. 2002). In experiments studying the effect 

of various safeners on gene expression in Arabidopsis, induction of AtGSTU19 and 

AtGSTF2 expression was observed predominantly in roots. Transgenic plants 

overexpressing AtGSTU19 had an increased level of AtGSTU19 protein in roots, 

but this had no effect on tolerance to chloroacetamide herbicides (DeRidder & 

Goldsbrough 2006). It has since been suggested that the localisation of expression 

of GST proteins expression in the outer cell layers of the coleoptiles 

in monocotyledonous crops is important to prevent the herbicide from reaching 

the sensitive new leaves of etiolated shoots as they emerge from the soil (Riechers et 

al. 2003; Riechers et al. 2010). In addition to upregulating GST expression, safeners 

increase the activity of enzymes involved in GSH biosynthesis (Riechers et al. 2010). 
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The glutathione-mediated metabolism of fenclorim suggested that the changes in 

GSH metabolism could play an active role in the safener response. Changes in GSH 

content, and the ratio to its oxidized form GSSG, have been found to be involved 

in redox stress signalling in a number of plants (Foyer & Noctor 2009). Both CDNB 

and fenclorim are known to be rapidly glutathionylated in Arabidopsis cell cultures 

and, therefore, have the potential to affect gene expression by disturbing thiol 

homeostasis. CDNB and fenclorim treatments of Arabidopsis root cultures caused 

depletion of the thiol pool in the cells and lead to increases in GSTU19 and GSTU24 

transcription (Skipsey et al. 2011). 

New research suggests that safeners might be using oxidised lipid (oxylipin)-

mediated pathway, which subsequently leads to the increase in expression 

of detoxification enzymes, including GSTs. Oxylipins are structurally diverse 

metabolites derived from fatty acid oxidation and can be formed non-enzymatically 

or in enzymatic reactions. Non-enzymatically generated oxylipins are formed via 

free radical-catalyzed reactions in or near cell membranes, e.g. during wounding, 

where membrane polyunsaturated fatty acids are precursors for oxylipin synthesis. 

These unstable, reactive oxylipins have been used as biochemical markers 

for monitoring oxidative stress and membrane damage in plant and animal systems. 

Enzymatically produced oxylipins include jasmonic acid (JA) and 12-oxo-

phytodienoic acid (OPDA), which are part of the jasmonate biosynthetic pathway in 

plants. JA-conjugates and biosynthetic precursors have a hormonal activity in 

defence gene activation in response to stress. Highly reactive oxylipins, for example 

A1-type phytoprostanes and OPDA, have a similar effect to safeners on strong, 

coordinated induction of genes and enzymes involved in detoxification and stress 

responses (Riechers et al. 2010; Skipsey et al. 2011). To examine the link between 

safener- and oxylipin-mediated signalling and metabolism, GSTs were tested 

for detoxifying activities toward oxylipins. Studies have shown that OPDA can be 

conjugated by the Arabidopsis enzymes GSTU6, GSTU10, GSTU17, GSTU19 and 
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GSTU25 (Dixon & Edwards 2009). However, no activity towards OPDA was 

detected for GSTU24 (Skipsey et al. 2011). 

Many other factors apart from herbicides (pathogen attack, wounding, plant 

hormones, heavy metal toxicity, and hydrogen peroxide) were found to induce GST 

expression in plants. The promoters of several GSTs were found to contain a well 

characterised plant enhancer sequence, the ocs element. The ocs element was found 

to have an important role in the transcriptional response of GST genes to H2O2 

and salicylic acid (SA) (Chen et al. 1996; Chen & Singh 1999). One mechanism 

by which a number of diverse compounds could induce plant GST expression via 

the ocs element is by inducing conditions of oxidative stress at the cellular level 

(Gong et al. 2005a). GST upregulation in response to SA may also be attributed 

to H2O2 accumulation. It is known that SA inhibits catalase (Gong et al. 2005b), 

an enzyme involved in H2O2 degradation, and exogenous application of SA has been 

shown to cause H2O2 accumulation (Chen et al. 1993). 

Hydrogen peroxide and superoxide (O2
-
), reactive oxygen species (ROS), are 

produced in a number of cellular reactions. The main cellular components 

susceptible to damage by ROS are lipids (unsaturated fatty acids in membranes), 

proteins and nucleic acids (Blokhina et al. 2003). Oxidative stress is often manifested 

as leaf chlorosis (and subsequent necrosis) in a wide variety of both abiotic 

and biotic stresses (Mullineaux et al. 2000). To counteract the production of ROS, 

plants have evolved an antioxidant system consisting of low molecular weight 

antioxidants (ascorbic acid, glutathione, tocopherols), enzymes regenerating 

the reduced forms of antioxidants, and ROS detoxifying enzymes (peroxidases and 

catalases) (Blokhina et al. 2003). 

In experiments with animal cell systems and tissues, the toxic effect of TNT 

exposure was associated with generation of ROS (Sun et al. 2006). Morphological 

studies showed damaged mitochondria, dilatated Golgi apparatus, vacuolization and 
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accumulation of lipid material. The production of H2O2 by mitochondria was more 

pronounced in the liver than in other organs, but its production by microsomes was 

more pronounced in the brain tissue (Kong et al. 1989). The results suggested that 

ROS formed during nitroreduction of TNT  may cause the observed adverse effects 

(Zitting et al., 1982; Sun et al. 2006). In plants, the effect of TNT at the cellular level 

has not been studied in detail; results of electron microscopy radioautography 

showed the presence of radio-labelled TNT in vacuoles, plastids, mitochondria, 

endoplasmic reticulum, and cytoplasm and substantially damaged ultrastructure of 

differentiated cells (Ghoghoberidze et al. 2009).  

Many GSTs also act as GSH-dependent peroxidases by catalyzing the reduction of 

organic hydroperoxide to the less toxic monohydroxy alcohols (GPOX activity). 

GSTU24 and GSTU25 both have GPOX activity, with GSTU25 being the most 

active of the Arabidopsis GSTs (Dixon et al. 2009). In the current research GSTU24 

and GSU25 were shown to be able directly metabolise TNT in the plants. 

The analyses of TNT conjugation products from Arabidopsis plants showed, 

however, that the dominant pathway of TNT detoxification in Arabidopsis is 

the glucosidation of reduced TNT derivatives. This result suggests that, in addition 

to their GSH conjugating activity, GSTs could exhibit their detoxification activity in 

plants (resulting from the GPOX activity of both enzymes) by protecting the cellular 

components from ROX damage generated by exposure of the cells to TNT. 

Arabidopsis, the object of the current research, is an annual plant with a relatively 

small root system, unsuitable for phytoremediation application. Perennial grass 

species, such as switchgrass species (Panicum virgatum), which are native to 

military training ranges in temperate regions and produce dense root systems 

extending over a metre below the soil surface would be more suitable (Rylott et al. 

2006). The results of current study show that overexpressing plant detoxification 

systems results in plants that are significantly more resistant to TNT and that GSTs 

play an important role in the detoxification mechanism of many xenobiotics, 
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including TNT. Overexpression of plant endogenous detoxification enzymes might 

lead to a breeding of native species with effective detoxification systems for 

phytoremediation of contaminated soil. 
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